Science.gov

Sample records for vascular permeability index

  1. Vascular permeability in cerebral cavernous malformations.

    PubMed

    Mikati, Abdul G; Khanna, Omaditya; Zhang, Lingjiao; Girard, Romuald; Shenkar, Robert; Guo, Xiaodong; Shah, Akash; Larsson, Henrik B W; Tan, Huan; Li, Luying; Wishnoff, Matthew S; Shi, Changbin; Christoforidis, Gregory A; Awad, Issam A

    2015-10-01

    Patients with the familial form of cerebral cavernous malformations (CCMs) are haploinsufficient for the CCM1, CCM2, or CCM3 gene. Loss of corresponding CCM proteins increases RhoA kinase-mediated endothelial permeability in vitro, and in mouse brains in vivo. A prospective case-controlled observational study investigated whether the brains of human subjects with familial CCM show vascular hyperpermeability by dynamic contrast-enhanced quantitative perfusion magnetic resonance imaging, in comparison with CCM cases without familial disease, and whether lesional or brain vascular permeability correlates with CCM disease activity. Permeability in white matter far (WMF) from lesions was significantly greater in familial than in sporadic cases, but was similar in CCM lesions. Permeability in WMF increased with age in sporadic patients, but not in familial cases. Patients with more aggressive familial CCM disease had greater WMF permeability compared to those with milder disease phenotype, but similar lesion permeability. Subjects receiving statin medications for routine cardiovascular indications had a trend of lower WMF, but not lesion, permeability. This is the first demonstration of brain vascular hyperpermeability in humans with an autosomal dominant disease, as predicted mechanistically. Brain permeability, more than lesion permeability, may serve as a biomarker of CCM disease activity, and help calibrate potential drug therapy. PMID:25966944

  2. Vascular Permeability and Drug Delivery in Cancers

    PubMed Central

    Azzi, Sandy; Hebda, Jagoda K.; Gavard, Julie

    2013-01-01

    The endothelial barrier strictly maintains vascular and tissue homeostasis, and therefore modulates many physiological processes such as angiogenesis, immune responses, and dynamic exchanges throughout organs. Consequently, alteration of this finely tuned function may have devastating consequences for the organism. This is particularly obvious in cancers, where a disorganized and leaky blood vessel network irrigates solid tumors. In this context, vascular permeability drives tumor-induced angiogenesis, blood flow disturbances, inflammatory cell infiltration, and tumor cell extravasation. This can directly restrain the efficacy of conventional therapies by limiting intravenous drug delivery. Indeed, for more effective anti-angiogenic therapies, it is now accepted that not only should excessive angiogenesis be alleviated, but also that the tumor vasculature needs to be normalized. Recovery of normal state vasculature requires diminishing hyperpermeability, increasing pericyte coverage, and restoring the basement membrane, to subsequently reduce hypoxia, and interstitial fluid pressure. In this review, we will introduce how vascular permeability accompanies tumor progression and, as a collateral damage, impacts on efficient drug delivery. The molecular mechanisms involved in tumor-driven vascular permeability will next be detailed, with a particular focus on the main factors produced by tumor cells, especially the emblematic vascular endothelial growth factor. Finally, new perspectives in cancer therapy will be presented, centered on the use of anti-permeability factors and normalization agents. PMID:23967403

  3. Control of vascular permeability by adhesion molecules

    PubMed Central

    Sarelius, Ingrid H; Glading, Angela J

    2014-01-01

    Vascular permeability is a vital function of the circulatory system that is regulated in large part by the limited flux of solutes, water, and cells through the endothelial cell layer. One major pathway through this barrier is via the inter-endothelial junction, which is driven by the regulation of cadherin-based adhesions. The endothelium also forms attachments with surrounding proteins and cells via 2 classes of adhesion molecules, the integrins and IgCAMs. Integrins and IgCAMs propagate activation of multiple downstream signals that potentially impact cadherin adhesion. Here we discuss the known contributions of integrin and IgCAM signaling to the regulation of cadherin adhesion stability, endothelial barrier function, and vascular permeability. Emphasis is placed on known and prospective crosstalk signaling mechanisms between integrins, the IgCAMs- ICAM-1 and PECAM-1, and inter-endothelial cadherin adhesions, as potential strategic signaling nodes for multipartite regulation of cadherin adhesion. PMID:25838987

  4. Control of vascular permeability by adhesion molecules.

    PubMed

    Sarelius, Ingrid H; Glading, Angela J

    2015-01-01

    Vascular permeability is a vital function of the circulatory system that is regulated in large part by the limited flux of solutes, water, and cells through the endothelial cell layer. One major pathway through this barrier is via the inter-endothelial junction, which is driven by the regulation of cadherin-based adhesions. The endothelium also forms attachments with surrounding proteins and cells via 2 classes of adhesion molecules, the integrins and IgCAMs. Integrins and IgCAMs propagate activation of multiple downstream signals that potentially impact cadherin adhesion. Here we discuss the known contributions of integrin and IgCAM signaling to the regulation of cadherin adhesion stability, endothelial barrier function, and vascular permeability. Emphasis is placed on known and prospective crosstalk signaling mechanisms between integrins, the IgCAMs- ICAM-1 and PECAM-1, and inter-endothelial cadherin adhesions, as potential strategic signaling nodes for multipartite regulation of cadherin adhesion. PMID:25838987

  5. The clinical usefulness of extravascular lung water and pulmonary vascular permeability index to diagnose and characterize pulmonary edema: a prospective multicenter study on the quantitative differential diagnostic definition for acute lung injury/acute respiratory distress syndrome

    PubMed Central

    2012-01-01

    Introduction Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is characterized by features other than increased pulmonary vascular permeability. Pulmonary vascular permeability combined with increased extravascular lung water content has been considered a quantitative diagnostic criterion of ALI/ARDS. This prospective, multi-institutional, observational study aimed to clarify the clinical pathophysiological features of ALI/ARDS and establish its quantitative diagnostic criteria. Methods The extravascular lung water index (EVLWI) and the pulmonary vascular permeability index (PVPI) were measured using the transpulmonary thermodilution method in 266 patients with PaO2/FiO2 ratio ? 300 mmHg and bilateral infiltration on chest radiography, in 23 ICUs of academic tertiary referral hospitals. Pulmonary edema was defined as EVLWI ? 10 ml/kg. Three experts retrospectively determined the pathophysiological features of respiratory insufficiency by considering the patients' history, clinical presentation, chest computed tomography and radiography, echocardiography, EVLWI and brain natriuretic peptide level, and the time course of all preceding findings under systemic and respiratory therapy. Results Patients were divided into the following three categories on the basis of the pathophysiological diagnostic differentiation of respiratory insufficiency: ALI/ARDS, cardiogenic edema, and pleural effusion with atelectasis, which were noted in 207 patients, 26 patients, and 33 patients, respectively. EVLWI was greater in ALI/ARDS and cardiogenic edema patients than in patients with pleural effusion with atelectasis (18.5 6.8, 14.4 4.0, and 8.3 2.1, respectively; P < 0.01). PVPI was higher in ALI/ARDS patients than in cardiogenic edema or pleural effusion with atelectasis patients (3.2 1.4, 2.0 0.8, and 1.6 0.5; P < 0.01). In ALI/ARDS patients, EVLWI increased with increasing pulmonary vascular permeability (r = 0.729, P < 0.01) and was weakly correlated with intrathoracic blood volume (r = 0.236, P < 0.01). EVLWI was weakly correlated with the PaO2/FiO2 ratio in the ALI/ARDS and cardiogenic edema patients. A PVPI value of 2.6 to 2.85 provided a definitive diagnosis of ALI/ARDS (specificity, 0.90 to 0.95), and a value < 1.7 ruled out an ALI/ARDS diagnosis (specificity, 0.95). Conclusion PVPI may be a useful quantitative diagnostic tool for ARDS in patients with hypoxemic respiratory failure and radiographic infiltrates. Trial registration UMIN-CTR ID UMIN000003627 PMID:23232188

  6. Atrial natriuretic factor increases vascular permeability

    NASA Technical Reports Server (NTRS)

    Lockette, Warren; Brennaman, Bruce

    1990-01-01

    An increase in central blood volume in microgravity may result in increased plasma levels of atrial natriuretic factor (ANF). In this study, it was determined whether ANF increases capillary permeability to plasma protein. Conscious, bilaterally nephrectomized male rats were infused with either saline, ANF + saline, or hexamethonium + saline over 2 h following bolus injections of (I-125)-albumin and (C-14)-dextran of similar molecular size. Blood pressure was monitored, and serial determinations of hematocrits were made. Animals infused with 1.0 microg/kg per min ANF had significantly higher hematocrits than animals infused with saline vehicle. Infusion of ANF increased the extravasation of (I-125)-albumin, but not (C-14)-dextran from the intravascular compartment. ANF also induced a depressor response in rats, but the change in blood pressure did not account for changes in capillary permeability to albumin; similar depressor responses induced by hexamethonium were not accompanied by increased extravasation of albumin from the intravascular compartment. ANF may decrease plasma volume by increasing permeability to albumin, and this effect of ANF may account for some of the signs and symptoms of space motion sickness.

  7. Neuropilin-1 mediates vascular permeability independently of vascular endothelial growth factor receptor-2 activation.

    PubMed

    Roth, Lise; Prahst, Claudia; Ruckdeschel, Tina; Savant, Soniya; Weström, Simone; Fantin, Alessandro; Riedel, Maria; Héroult, Mélanie; Ruhrberg, Christiana; Augustin, Hellmut G

    2016-01-01

    Neuropilin-1 (NRP1) regulates developmental and pathological angiogenesis, arteriogenesis, and vascular permeability, acting as a coreceptor for semaphorin 3A (Sema3A) and the 165-amino acid isoform of vascular endothelial growth factor A (VEGF-A165). NRP1 is also the receptor for the CendR peptides, a class of cell- and tissue-penetrating peptides with a specific R-x-x-R carboxyl-terminal motif. Because the cytoplasmic domain of NRP1 lacks catalytic activity, NRP1 is mainly thought to act through the recruitment and binding to other receptors. We report here that the NRP1 intracellular domain mediates vascular permeability. Stimulation with VEGF-A165, a ligand-blocking antibody, and a CendR peptide led to NRP1 accumulation at cell-cell contacts in endothelial cell monolayers, increased cellular permeability in vitro and vascular leakage in vivo. Biochemical analyses, VEGF receptor-2 (VEGFR-2) silencing, and the use of a specific VEGFR blocker established that the effects induced by the CendR peptide and the antibody were independent of VEGFR-2. Moreover, leakage assays in mice expressing a mutant NRP1 lacking the cytoplasmic domain revealed that this domain was required for NRP1-induced vascular permeability in vivo. Hence, these data define a vascular permeability pathway mediated by NRP1 but independent of VEGFR-2 activation. PMID:27117252

  8. Wogonin influences vascular permeability via Wnt/β-catenin pathway.

    PubMed

    Song, Xiuming; Zhou, Yuxin; Zhou, Mi; Huang, Yujie; Li, Zhiyu; You, Qidong; Lu, Na; Guo, Qinglong

    2015-07-01

    Wogonin, a flavone from the root of Scutellaria baicalensis Georgi, has shown various biological activities. In our previous study, it was confirmed that wogonin could decrease the expression of hypoxia-inducible factor-1α (HIF-1α) by affecting its stability under hypoxia. However, it is still unknown whether wogonin could influence Wnt/β-catenin pathway under hypoxia. In this study, we found that wogonin disrupted Wnt/β-catenin signaling and reduced the secretion of vascular endothelial growth factor (VEGF, also known as vascular permeability factor, VPF), which increased vascular permeability in certain diseases. It was found that wogonin suppressed HUVECs hyperactivity and actin remodeling induced by hypoxia, inhibited transendothelial cell migration of the human breast carcinoma cell MDA-MB-231 and the extravasated Evans in vivo Miles vascular permeability assay. Wogonin-treated cells showed a decrease in the expression of Wnt protein and its co-receptors, as well as a parallel increase in the expression of Axin and GSK-3β in degradation complex, leading to degradation of β-catenin. In addition, wogonin promoted the binding between Axin and β-catenin, increased ubiquitination of β-catenin and promoted its degradation. Interestingly, wogonin decreased the expression of TCF-1, TCF-3, and LEF-1 and inhibited nuclear accumulation of β-catenin as well as the binding of β-catenin and TCF-1, TCF-3, or LEF-1. All of the above results showed that wogonin could inhibit the expression of VEGF, which is an important factor regulated by β-catenin. Taken together, the results suggested that wogonin was a potent inhibitor of Wnt/β-catenin and influenced vascular permeability, and this might provide new therapeutics in certain diseases. PMID:24136474

  9. Ocular Albumin Fluorophotometric Quantitation of Endotoxin-Induced Vascular Permeability

    PubMed Central

    Cousins, Scott W.; Rosenbaum, James T.; Guss, Robert B.; Egbert, Peter R.

    1982-01-01

    Bacterial endotoxin (lipopolysaccharide; LPS) is known to alter systemic vascular permeability, but this effect is difficult to monitor and quantitate in vivo. The ocular vessels of the rabbit are particularly sensitive to LPS. Using a slit lamp equipped with a fluorophotometer, we have adapted a method to quantitate endotoxin-induced ocular vascular permeability by measuring the accumulation of fluorescein isothiocyanate-conjugated albumin into the anterior chamber of the eye. After intravenous administration of Salmonella typhimurim LPS, the anterior chamber fluorescence and blood fluorescence were measured at intervals of 15 min and 1 h, respectively, over 4 h. In controls, maximal fluorescence in the anterior chamber was 3.1 ± 0.8% of blood fluorescence. Doses of LPS as low as 0.25 μg/kg produced an ocular/serum fluorescence ratio of 17.6 ± 4.9. A dose of 2.5 μg of LPS per kg tended to produce a higher ratio (68.0 ± 7.1) than a larger dose of 50 μg/kg (30.5 ± 16.6). Permeability changes began within 30 min after LPS, and the rate of dye accumulation varied over time, with maximal leakage usually occurring 90 min after LPS, but occasionally occurring much later. Repeated doses produced tolerance. By conjugating albumin to rhodamine and utilizing a second filter with the slit lamp to measure accumulation of this dye, we demonstrated the persistence of marked permeability during a period when intraocular fluorescein isothiocyanate and albumin levels were relatively constant. This methodology indicates that extremely low doses of LPS induce ocular permeability changes and that neither the time course nor the dose response of this effect is linear. Ocular fluorophotometry is a sensitive, noninvasive technique to study the dynamics and pharmacology of LPS-induced permeability changes. PMID:6806194

  10. Strategies for improving chemotherapeutic delivery to solid tumors mediated by vascular permeability modulation

    NASA Astrophysics Data System (ADS)

    Roy Chaudhuri, Tista

    An essential mode of distribution of blood-borne chemotherapeutic agents within a solid tumor is via the micro-circulation. Poor tumor perfusion, because of a lack of functional vasculature or a lack of microvessels, as well as low tumor vascular permeability, can prevent adequate deposition of even low molecular-weight agents into the tumor. The modulation of tumor vascular function and density can provides numerous strategies for improving intratumor deposition of chemotherapeutic agents. Here we investigated strategies to improve drug delivery to two tumor types that share in common poor drug delivery, but differ in the underlying cause. First, in an angiogenesis-driven brain tumor model of Glioblastoma, the vascular permeability barrier, along with poorly-functional vasculature, hinders drug delivery. A strategy of nanoparticle-based tumor 'priming' to attack the vascular permeability barrier, employing sterically stabilized liposomal doxorubicin (SSL-DXR), was investigated. Functional and histological evaluation of tumor vasculature revealed that after an initial period of depressed vascular permeability and vascular pruning 3--4 days after SSL-DXR administration, vascular permeability and perfusion were restored and then elevated after 5--7 days. As a result of tumor priming, deposition of subsequently-administered nanoparticles was enhanced, and the efficacy of temozolomide (TMZ), if administered during the window of elevated permeability, was increased. The sequenced regimen resulted in a persistent reduction of the tumor proliferative index and a 40% suppression of tumor volume, compared to animals that received both agents simultaneously. Second, in a hypovascular, pancreatic ductal adenocarcinoma model, disruption of tumor-stromal communication via sonic hedgehog (sHH) signaling pathway inhibition mediated an indirect vascular proliferation and a more than 2-fold increase in intratumor nanoparticle deposition. Enhanced delivery of SSL-DXR in tumors pre-treated with sHH-inhibitor led to a 90% lifespan extension in animals that received a single cycle of the combined regimen, and a 200% extension in animals receiving 3-cycles of treatment, compared to control animals or those receiving either of the agents alone. We surmise that direct or indirect modulation of tumor vasculature can provide new opportunities for combination therapies that could improve delivery and efficacy of both small- and large- molecular weight agents in treatment-resistant solid tumors.

  11. Non-invasive optical modulation of local vascular permeability

    NASA Astrophysics Data System (ADS)

    Choi, Myunghwan; Choi, Chulhee

    2011-03-01

    For a systemically administered drug to act, it first needs to cross the vascular wall. This step represents a bottleneck for drug development, especially in the brain or retina, where tight junctions between endothelial cells form physiological barriers. Here, we demonstrate that femtosecond pulsed laser irradiation focused on the blood vessel wall induces transient permeabilization of plasma. Nonlinear absorption of the pulsed laser enabled the noninvasive modulation of vascular permeability with high spatial selectivity in three dimensions. By combining this method with systemic injection, we could locally deliver molecular probes in various tissues, such as brain cortex, meninges, ear, striated muscle, and bone. We suggest this method as a novel delivery tool for molecular probes or drugs.

  12. Vascular endothelial growth factor regulates angiogenesis and vascular permeability in Kaposi's sarcoma.

    PubMed Central

    Cornali, E.; Zietz, C.; Benelli, R.; Weninger, W.; Masiello, L.; Breier, G.; Tschachler, E.; Albini, A.; Stürzl, M.

    1996-01-01

    Abundant vasculature with increased permeability is a prominent histological feature of Kaposi's sarcoma (KS), a multifocal, cytokine-regulated tumor. Here we report on the role of vascular endothelial growth factor (VEGF) in AIDS-KS angiogenesis and vascular permeability. We demonstrate that different cytokines, which were previously shown to be active in KS development, modulate VEGF expression in KS spindle cells and cooperate with VEGF on the functional level. Northern blot analysis as well as studies on single cells using in situ hybridization revealed that VEGF expression in cultivated AIDS-KS spindle cells is up-regulated by platelet-derived growth factor-B and interleukin-1 beta. Western blot and enzyme-linked immunosorbent assay analysis of cell culture supernatants demonstrated that the VEGF protein is secreted by stimulated AIDS-KS spindle cells in sufficiently high amounts to activate proliferation of human dermal microvascular endothelial cells. Basic fibroblast growth factor did not increase VEGF expression but acted synergistically with VEGF in the induction of angiogenic KS-like lesions in a mouse model in vivo. Angiogenesis and cellularity of KS-like lesions were clearly increased when both factors were injected simultaneously into the flanks of mice, compared with separate injection of each factor. A comparable angiogenic reaction as obtained by simultaneous injection of basic fibroblast growth factor and VEGF was observed when cell culture supernatants of AIDS-KS spindle cells were used for these experiments. Finally, analysis of primary human AIDS-KS lesions revealed that high amounts of VEGF mRNA and protein were present in KS spindle cells in vivo. These data provide evidence that VEGF, in concert with platelet-derived growth factor-B, interleukin-1 beta, and basic fibroblast growth factor, is a key mediator of angiogenesis and vascular permeability in KS lesions in vivo. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:8952523

  13. Increased Sheep Lung Vascular Permeability Caused by Pseudomonas Bacteremia

    PubMed Central

    Brigham, Kenneth L.; Woolverton, William C.; Blake, Lynn H.; Staub, Norman C.

    1974-01-01

    In awake sheep, we compared the responses of lung lymph flow and lymph and plasma protein concentrations to steady state elevations of pulmonary vascular pressures made by inflating a left atrial balloon with those after an intravenous infusion of 105-1010Pseudomonas aeruginosa. Lymph flow increased when pressure was increased, but lymph-plasma protein concentration ratios always fell and lymph protein flow (lymph flow × lymph protein concentration) increased only slightly. After Pseudomonas, sheep had transient chills, fever, leukopenia, hypoxemia, increased pulmonary artery pressure and lymph flow and decreased left atrial pressure and lymph protein concentration, 3-5 h after Pseudomonas, when vascular pressures and lymph protein concentrations had returned to near base line, lymph flow increased further to 3-10 times base line and remained at a steady level for many hours. During this steady state period, lymph-plasma protein concentration ratios were similar to base line and lymph protein flow was higher than in the increased pressure studies. Two sheep died of pulmonary edema 7 and 9 h after Pseudomonas, but in 16 studies, five other sheep appeared well during the period of highest lymph flow and all variables returned to base line in 24-72 h. Six serial indicator dilution lung water studies in five sheep changed insignificantly from base line after Pseudomonas. Postmortem lung water was high in the two sheep dead of pulmonary edema and one other, but six sheep killed 1-6 h after Pseudomonas had normal lung water. Because of the clear difference between the effects of increased pressure and Pseudomonas on lymphplasma protein concentration ratios and lymph protein flow, we conclude that Pseudomonas causes a prolonged increase in lung vessel permeability to protein. Because we saw lung lymph flow as high as 10 times base line without pulmonary edema, we conclude that lung lymphatics are a sensitive high-capacity mechanism for removing excess filtered fluid. An equivalent pore model of sheep lung vessels suggests that the changes we saw after Pseudomonas could result from small changes in the structure of exchanging vessel walls. Images PMID:4430713

  14. Resistance of essential fatty acid-deficient rats to endotoxin-induced increases in vascular permeability

    SciTech Connect

    Li, E.J.; Cook, J.A.; Spicer, K.M.; Wise, W.C.; Rokach, J.; Halushka, P.V. )

    1990-06-01

    Resistance to endotoxin in essential fatty acid-deficient (EFAD) rats is associated with reduced synthesis of certain arachidonic acid metabolites. It was hypothesized that EFAD rats would manifest decreased vascular permeability changes during endotoxemia as a consequence of reduced arachidonic acid metabolism. To test this hypothesis, changes in hematocrit (HCT) and mesenteric localization rate of technetium-labeled human serum albumin (99mTc-HSA) and red blood cells (99mTc-RBC) were assessed in EFAD and normal rats using gamma-camera imaging. Thirty minutes after Salmonella enteritidis endotoxin, EFAD rats exhibited less hemoconcentration as determined by % HCT than normal rats. Endotoxin caused a less severe change in permeability index in the splanchnic region in EFAD rats than in normal rats (1.2 +/- 0.6 x 10(-3)min-1 vs. 4.9 +/- 1.7 x 10(-3)min-1 respectively, P less than 0.05). In contrast to 99mTc-HSA, mesenteric localization of 99mTc-RBC was not changed by endotoxin in control or EFAD rats. Supplementation with ethyl-arachidonic acid did not enhance susceptibility of EFAD rats to endotoxin-induced splanchnic permeability to 99mTc-HSA. Leukotrienes have been implicated as mediators of increased vascular permeability in endotoxin shock. Since LTC3 formation has been reported to be increased in EFA deficiency, we hypothesized that LTC3 may be less potent than LTC4. Thus the effect of LTC3 on mean arterial pressure and permeability was compared to LTC4 in normal rats. LTC3-induced increases in peak mean arterial pressure were less than LTC4 at 10 micrograms/kg (39 +/- 5 mm Hg vs. 58 +/- 4 mm Hg respectively, P less than 0.05) and at 20 micrograms/kg (56 +/- 4 mm Hg vs. 75 +/- 2 mm Hg respectively, P less than 0.05). LY171883 (30 mg/kg), an LTD4/E4 receptor antagonist, attenuated the pressor effect of LTC4, LTD4, and LTC3.

  15. Multiple roles of the PGE2-EP receptor signal in vascular permeability

    PubMed Central

    Omori, K; Kida, T; Hori, M; Ozaki, H; Murata, T

    2014-01-01

    Background and Purpose PGE2 is a major prostanoid that regulates inflammation by stimulating EP1–4 receptors. However, how PGE2 induces an initial inflammatory response to vascular hyper-permeability remains unknown. Here we investigated the role of the PGE2-EP receptor signal in modulating vascular permeability both in vivo and in vitro. Experimental Approach We used a modified Miles assay and intravital microscopy to examine vascular permeability in vivo. Endothelial barrier property was assessed by measuring transendothelial electrical resistance (TER) in vitro. Key Results Local administration of PGE2, an EP2 or EP4 receptor agonist into FVB/NJcl mouse ear skin caused vascular leakage, indicated by dye extravasation. Intravital microscopy and laser Doppler blood-flow imaging revealed that these treatments dilated peripheral vessels and increased local blood flow. Pretreatment with the vasoconstrictor phenylephrine inhibited the PGE2-induced blood flow increase and vascular leakage. In contrast to the EP2 and EP4 receptor agonists, administration of an EP3 receptor agonist suppressed vascular leakage without altering vascular diameter or blood flow. In isolated HUVECs, the EP3 receptor agonist elevated TER and blocked thrombin-induced dextran passage. Inhibiting PKA restored the hypo-permeability induced by the EP3 receptor agonist. Conclusions and Implications Activation of the PGE2-EP2 or -EP4 receptor signal induces vasodilatation in mural cells, resulting in increased local blood flow and hyper-permeability. In contrast, activation of the PGE2-EP3 receptor signal induces a cAMP-dependent enhancement of the endothelial barrier, leading to hypo-permeability. We provide the first evidence that endothelial cells and mural cells cooperate to modulate vascular permeability. PMID:24923772

  16. Acute respiratory distress syndrome caused by Mycoplasma pneumoniae without elevated pulmonary vascular permeability: a case report

    PubMed Central

    Takahashi, Naoki; Oi, Rie; Ota, Muneyuki; Toriumi, Shinichi; Ogushi, Fumitaka

    2016-01-01

    Sporadic patients with acute respiratory distress syndrome (ARDS) caused by Mycoplasma pneumoniae have been reported. However, knowledge about the pathophysiology and pharmacological treatment of this condition is insufficient. Moreover, the pulmonary vascular permeability in ARDS related to M. pneumoniae infection has not been reported. We report a case of ARDS caused by Mycoplasma pneumoniae without elevated pulmonary vascular permeability, which was successfully treated using low-dose short-term hydrocortisone, suggesting that pulmonary infiltration in ARDS caused by Mycoplasma pneumoniae does not match the criteria of permeability edema observed in typical ARDS. PMID:27162691

  17. Recombinant tumor necrosis factor increases pulmonary vascular permeability independent of neutrophils.

    PubMed Central

    Horvath, C J; Ferro, T J; Jesmok, G; Malik, A B

    1988-01-01

    We studied the effects of intravenous infusion of recombinant human tumor necrosis factor type alpha (rTNF-alpha; 12 micrograms/kg) on lung fluid balance in sheep prepared with chronic lung lymph fistulas. The role of neutrophils was examined in sheep made neutropenic with hydroxyurea (200 mg/kg for 4 or 5 days) before receiving rTNF-alpha. Infusion of rTNF-alpha resulted in respiratory distress and 3-fold increases in pulmonary arterial pressure and pulmonary vascular resistance within 15 min, indicating intense pulmonary vasoconstriction. Pulmonary lymph flow (i.e., net transvascular fluid filtration rate) and transvascular protein clearance rate (a measure of vascular permeability to protein) increased 2-fold within 30 min. The increased permeability was associated with leukopenia and neutropenia. The pulmonary hypertension and vasoconstriction subsided but fluid filtration and vascular permeability continued to increase. Sheep made neutropenic had similar increases in pulmonary transvascular fluid filtration and vascular permeability. rTNF-alpha also produced concentration-dependent increases in permeability of 125I-labeled albumin across ovine endothelial cell monolayers in the absence of neutrophils or other inflammatory mediators. The results indicate that rTNF-alpha increases pulmonary vascular permeability to protein by an effect on the endothelium. PMID:3143114

  18. Phosphorylation and action of the immunomodulator FTY720 inhibits vascular endothelial cell growth factor-induced vascular permeability.

    PubMed

    Sanchez, Teresa; Estrada-Hernandez, Tatiana; Paik, Ji-Hye; Wu, Ming-Tao; Venkataraman, Krishnan; Brinkmann, Volker; Claffey, Kevin; Hla, Timothy

    2003-11-21

    FTY720, a potent immunosuppressive agent, is phosphorylated in vivo into FTY720-P, a high affinity agonist for sphingosine 1-phosphate (S1P) receptors. The effects of FTY720 on vascular cells, a major target of S1P action, have not been addressed. We now report the metabolic activation of FTY720 by sphingosine kinase-2 and potent activation of vascular endothelial cell functions in vitro and in vivo by phosphorylated FTY720 (FTY720-P). Incubation of endothelial cells with FTY720 resulted in phosphorylation by sphingosine kinase activity and formation of FTY720-P. Sphingosine kinase-2 effectively phosphorylated FTY720 in the human embryonic kidney 293T heterologous expression system. FTY720-P treatment of endothelial cells stimulated extracellular signal-activated kinase and Akt phosphorylation and adherens junction assembly and promoted cell survival. The effects of FTY720-P were inhibited by pertussis toxin, suggesting the requirement for Gi-coupled S1P receptors. Indeed, transmonolayer permeability induced by vascular endothelial cell growth factor was potently reversed by FTY720-P. Furthermore, oral FTY720 administration in mice potently blocked VEGF-induced vascular permeability in vivo. These findings suggest that FTY720 or its analogs may find utility in the therapeutic regulation of vascular permeability, an important process in angiogenesis, inflammation, and pathological conditions such as sepsis, hypoxia, and solid tumor growth. PMID:12954648

  19. Role of platelets in maintenance of pulmonary vascular permeability to protein

    SciTech Connect

    Lo, S.K.; Burhop, K.E.; Kaplan, J.E.; Malik, A.B. )

    1988-04-01

    The authors examined the role of platelets in maintenance of pulmonary vascular integrity by inducing thrombocytopenia in sheep using antiplatelet serum (APS). A causal relationship between thrombocytopenia and increase in pulmonary vascular permeability was established by platelet repletion using platelet-rich plasma (PRP). Sheep were chronically instrumented and lung lymph fistulas prepared to monitor pulmonary lymph flow (Q{sub lym}). A balloon catheter was positioned in the left atrium to assess pulmonary vascular permeability to protein after raising the left atrial pressure (P{sub la}). Thrombocytopenia was maintained for 3 days by daily intramuscular APS injections. In studies using cultured bovine pulmonary artery endothelial monolayers, transendothelia permeability of {sup 125}I-labeled albumin was reduced 50 and 95%, respectively, when 2.5 {times} 10{sup 7} or 5 {times} 10{sup 7} platelets were added onto endothelial monolayers. However, addition of 5 {times} 10{sup 6} platelets or 5 {times} 10{sup 7} red blood cells did not reduce endothelial monolayer albumin permeability. Results indicate that platelets are required for the maintenance of pulmonary vascular permeability. Reduction in permeability appears to involve an interaction of platelets with the endothelium.

  20. Sphingosine-1-phosphate Maintains Normal Vascular Permeability by Preserving Endothelial Surface Glycocalyx in Intact Microvessels

    PubMed Central

    Zhang, Lin; Zeng, Min; Fan, Jie; Tarbell, John, M.; Curry, Fitz-Roy E.; Fu, Bingmei M.

    2016-01-01

    Objective Sphingosine-1-phosphate (S1P) was found to protect the endothelial surface glycocalyx (ESG) by inhibiting matrix metalloproteinase (MMP) activity-dependent shedding of ESG in cultured endothelial cell studies. We aimed to further test that S1P contributes to the maintenance of normal vascular permeability by protecting the ESG in intact microvessels. Methods We quantified the ESG in post-capillary venules of rat mesentery and measured the vascular permeability to albumin in the presence and absence of 1 μM S1P. We also measured permeability to albumin in the presence of MMP inhibitors and compared the measured permeability with those predicted by a transport model for the inter-endothelial cleft. Results We found that in the absence of S1P, the fluorescence intensity of the FITC-anti-heparan sulfate labeled ESG was ~10% of that in the presence of S1P, while the measured permeability to albumin was ~6.5 fold that in the presence of S1P. Similar results were observed with MMP inhibition. The predictions by the mathematical model further confirmed that S1P maintains microvascular permeability by preserving ESG. Conclusions Our results show that S1P contributes to the maintenance of normal vascular permeability by protecting the ESG in intact microvessels, consistent with parallel observation in cultured endothelial monolayers. PMID:27015105

  1. Real-Time Visualization and Quantitation of Vascular Permeability In Vivo: Implications for Drug Delivery

    PubMed Central

    Pink, Desmond B. S.; Schulte, Wendy; Parseghian, Missag H.; Zijlstra, Andries; Lewis, John D.

    2012-01-01

    The leaky, heterogeneous vasculature of human tumors prevents the even distribution of systemic drugs within cancer tissues. However, techniques for studying vascular delivery systems in vivo often require complex mammalian models and time-consuming, surgical protocols. The developing chicken embryo is a well-established model for human cancer that is easily accessible for tumor imaging. To assess this model for the in vivo analysis of tumor permeability, human tumors were grown on the chorioallantoic membrane (CAM), a thin vascular membrane which overlays the growing chick embryo. The real-time movement of small fluorescent dextrans through the tumor vasculature and surrounding tissues were used to measure vascular leak within tumor xenografts. Dextran extravasation within tumor sites was selectively enhanced an interleukin-2 (IL-2) peptide fragment or vascular endothelial growth factor (VEGF). VEGF treatment increased vascular leak in the tumor core relative to surrounding normal tissue and increased doxorubicin uptake in human tumor xenografts. This new system easily visualizes vascular permeability changes in vivo and suggests that vascular permeability may be manipulated to improve chemotherapeutic targeting to tumors. PMID:22479438

  2. Twist1 controls lung vascular permeability and endotoxin-induced pulmonary edema by altering Tie2 expression.

    PubMed

    Mammoto, Tadanori; Jiang, Elisabeth; Jiang, Amanda; Lu, Yongbo; Juan, Aimee M; Chen, Jing; Mammoto, Akiko

    2013-01-01

    Tight regulation of vascular permeability is necessary for normal development and deregulated vascular barrier function contributes to the pathogenesis of various diseases, including acute respiratory distress syndrome, cancer and inflammation. The angiopoietin (Ang)-Tie2 pathway is known to control vascular permeability. However, the mechanism by which the expression of Tie2 is regulated to control vascular permeability has not been fully elucidated. Here we show that transcription factor Twist1 modulates pulmonary vascular leakage by altering the expression of Tie2 in a context-dependent way. Twist1 knockdown in cultured human lung microvascular endothelial cells decreases Tie2 expression and phosphorylation and increases RhoA activity, which disrupts cell-cell junctional integrity and increases vascular permeability in vitro. In physiological conditions, where Ang1 is dominant, pulmonary vascular permeability is elevated in the Tie2-specific Twist1 knockout mice. However, depletion of Twist1 and resultant suppression of Tie2 expression prevent increase in vascular permeability in an endotoxin-induced lung injury model, where the balance of Angs shifts toward Ang2. These results suggest that Twist1-Tie2-Angs signaling is important for controlling vascular permeability and modulation of this mechanism may lead to the development of new therapeutic approaches for pulmonary edema and other diseases caused by abnormal vascular permeability. PMID:24023872

  3. Twist1 Controls Lung Vascular Permeability and Endotoxin-Induced Pulmonary Edema by Altering Tie2 Expression

    PubMed Central

    Mammoto, Tadanori; Jiang, Elisabeth; Jiang, Amanda; Lu, Yongbo; Juan, Aimee M.; Chen, Jing; Mammoto, Akiko

    2013-01-01

    Tight regulation of vascular permeability is necessary for normal development and deregulated vascular barrier function contributes to the pathogenesis of various diseases, including acute respiratory distress syndrome, cancer and inflammation. The angiopoietin (Ang)-Tie2 pathway is known to control vascular permeability. However, the mechanism by which the expression of Tie2 is regulated to control vascular permeability has not been fully elucidated. Here we show that transcription factor Twist1 modulates pulmonary vascular leakage by altering the expression of Tie2 in a context-dependent way. Twist1 knockdown in cultured human lung microvascular endothelial cells decreases Tie2 expression and phosphorylation and increases RhoA activity, which disrupts cell-cell junctional integrity and increases vascular permeability in vitro. In physiological conditions, where Ang1 is dominant, pulmonary vascular permeability is elevated in the Tie2-specific Twist1 knockout mice. However, depletion of Twist1 and resultant suppression of Tie2 expression prevent increase in vascular permeability in an endotoxin-induced lung injury model, where the balance of Angs shifts toward Ang2. These results suggest that Twist1-Tie2-Angs signaling is important for controlling vascular permeability and modulation of this mechanism may lead to the development of new therapeutic approaches for pulmonary edema and other diseases caused by abnormal vascular permeability. PMID:24023872

  4. A comparison of two catalase preparations used to examine vascular permeability.

    PubMed

    Hart, T K; Pino, R M

    1985-05-01

    Beef liver catalase has been used as a tracer in cytochemical studies of vascular permeability. The use of Sigma catalase C-40 and C-100 preparations in capillary permeability studies of the ileojejunum and choriocapillaris was examined. Catalase C-40 is restricted by the fenestrated capillaries of the ileojejunum in contrast to their permeability to C-100. The choriocapillaris restricts both catalase preparations. Sephadex G-200 chromatography of plasma samples incubated with catalase C-40, or from C-40-injected animals, demonstrated an increase in the molecular weight of the tracer. No increase in molecular weight was evident for catalase C-100. The isoelectric point of both preparations was 5.4-5.7. These findings indicate that Sigma catalase C-100 is the preferred preparation for use in vascular permeability studies. PMID:3999995

  5. Wogonin inhibits LPS-induced vascular permeability via suppressing MLCK/MLC pathway.

    PubMed

    Huang, Yujie; Luo, Xuwei; Li, Xiaorui; Song, Xiuming; Wei, Libin; Li, Zhiyu; You, Qidong; Guo, Qinglong; Lu, Na

    2015-09-01

    Wogonin, a naturally occurring monoflavonoid extracted from the root of Scutellaria baicalensis Georgi, has been shown to have anti-inflammatory and anti-tumor activities and inhibits oxidant stress-induced vascular permeability. However, the influence of wogonin on vascular hyperpermeability induced by overabounded inflammatory factors often appears in inflammatory diseases and tumor is not well known. In this study, we evaluate the effects of wogonin on LPS induced vascular permeability in human umbilical vein endothelial cells (HUVECs) and investigate the underlying mechanisms. We find that wogonin suppresses the LPS-stimulated hyperactivity and cytoskeleton remodeling of HUVECs, promotes the expression of junctional proteins including VE-Cadherin, Claudin-5 and ZO-1, as well as inhibits the invasion of MDA-MB-231 across EC monolayer. Miles vascular permeability assay proves that wogonin can restrain the extravasated Evans in vivo. The mechanism studies reveal that the expressions of TLR4, p-PLC, p-MLCK and p-MLC are decreased by wogonin without changing the total steady state protein levels of PLC, MLCK and MLC. Moreover, wogonin can also inhibit KCl-activated MLCK/MLC pathway, and further affect vascular permeability. Significantly, compared with wortmannin, the inhibitor of MLCK/MLC pathway, wogonin exhibits similar inhibition effects on the expression of p-MLCK, p-MLC and LPS-induced vascular hyperpermeability. Taken together, wogonin can inhibit LPS-induced vascular permeability by suppressing the MLCK/MLC pathway, suggesting a therapeutic potential for the diseases associated with the development of both inflammatory and tumor. PMID:25956732

  6. A bioengineered array of 3D microvessels for vascular permeability assay.

    PubMed

    Lee, Hyunjae; Kim, Sudong; Chung, Minhwan; Kim, Jeong Hun; Jeon, Noo Li

    2014-01-01

    Blood vessels exhibit highly regulated barrier function allowing selective passage of macromolecules. Abnormal vascular permeability caused by disorder in barrier function is often associated with various pathological states such as tumor progression or pulmonary fibrosis. There are no realistic in vitro models for measuring vascular permeability as most models are limited to mimicking anatomical structural properties of in vivo vessel barriers. This paper presents a reliable microfluidic-based chip for measuring permeability by engineering tubular perfusable microvessels. This platform is compatible with high resolution, live-cell time-lapse imaging and high throughput permeability measurements. The microvessels were formed by natural angiogenic process and thus exhibit reliable barrier properties with permeability coefficient of 1.55×10(-6)cm/s (for 70kDa FITC-dextran). The bioengineered microvessels showed properties similar to in vivo vessels in terms of cell-cell junction expression (ZO-1, Claudin-5 and VE-cadherin) and response to agonists such as histamine and TNF-α. We showed that hyperpermeability of the tumor microvessel could be normalized with anti-VEGF (bevacizumab) treatment, consistent with the mechanism of action for bevacizumab. The method developed here provides a relatively simple, robust technique for assessing drug effects on permeability of microvessels with a number of potential applications in fundamental vascular biology as well as drug screening. PMID:24333621

  7. Pulmonary vascular permeability to transferrin in the pulmonary oedema of renal failure.

    PubMed Central

    Rocker, G M; Morgan, A G; Pearson, D; Basran, G S; Shale, D J

    1987-01-01

    Thirteen patients with renal failure and pulmonary oedema were assessed for evidence of increased pulmonary vascular permeability to protein by a double isotope technique. Comparison was made with 10 patients with cardiogenic pulmonary oedema, 11 healthy volunteers, and 10 patients with the adult respiratory distress syndrome. There was no significant difference in the accumulation of a radiolabelled plasma protein (transferrin) in patients with renal or cardiogenic pulmonary oedema and normal volunteers. Patients with adult respiratory distress syndrome showed significantly greater protein permeability (p less than 0.001). In pulmonary oedema associated with renal failure managed by current regimens there was no evidence of increased permeability to transferrin. PMID:3660315

  8. Suppressions of serotonin-induced increased vascular permeability and leukocyte infiltration by Bixa orellana leaf extract.

    PubMed

    Yong, Yoke Keong; Sulaiman, NurShahira; Hakim, Muhammad Nazrul; Lian, Gwendoline Ee Cheng; Zakaria, Zainul Amirudin; Othman, Fauziah; Ahmad, Zuraini

    2013-01-01

    The aim of the present study was to evaluate the anti-inflammatory activities of aqueous extract of Bixa orellana (AEBO) leaves and its possible mechanisms in animal models. The anti-inflammatory activity of the extract was evaluated using serotonin-induced rat paw edema, increased peritoneal vascular permeability, and leukocyte infiltrations in an air-pouch model. Nitric oxide (NO), indicated by the sum of nitrites and nitrates, and vascular growth endothelial growth factor (VEGF) were measured in paw tissues of rats to determine their involvement in the regulation of increased permeability. Pretreatments with AEBO (50 and 150?mg?kg?) prior to serotonin inductions resulted in maximum inhibitions of 56.2% of paw volume, 45.7% of Evans blue dye leakage in the peritoneal vascular permeability model, and 83.9% of leukocyte infiltration in the air-pouch model. 57.2% maximum inhibition of NO and 27% of VEGF formations in rats' paws were observed with AEBO at the dose of 150?mg?kg?. Pharmacological screening of the extract showed significant (P < 0.05) anti-inflammatory activity, indicated by the suppressions of increased vascular permeability and leukocyte infiltration. The inhibitions of these inflammatory events are probably mediated via inhibition of NO and VEGF formation and release. PMID:24224164

  9. Suppressions of Serotonin-Induced Increased Vascular Permeability and Leukocyte Infiltration by Bixa orellana Leaf Extract

    PubMed Central

    Sulaiman, NurShahira; Hakim, Muhammad Nazrul; Lian, Gwendoline Ee Cheng; Zakaria, Zainul Amirudin; Othman, Fauziah; Ahmad, Zuraini

    2013-01-01

    The aim of the present study was to evaluate the anti-inflammatory activities of aqueous extract of Bixa orellana (AEBO) leaves and its possible mechanisms in animal models. The anti-inflammatory activity of the extract was evaluated using serotonin-induced rat paw edema, increased peritoneal vascular permeability, and leukocyte infiltrations in an air-pouch model. Nitric oxide (NO), indicated by the sum of nitrites and nitrates, and vascular growth endothelial growth factor (VEGF) were measured in paw tissues of rats to determine their involvement in the regulation of increased permeability. Pretreatments with AEBO (50 and 150 mg kg−1) prior to serotonin inductions resulted in maximum inhibitions of 56.2% of paw volume, 45.7% of Evans blue dye leakage in the peritoneal vascular permeability model, and 83.9% of leukocyte infiltration in the air-pouch model. 57.2% maximum inhibition of NO and 27% of VEGF formations in rats' paws were observed with AEBO at the dose of 150 mg kg−1. Pharmacological screening of the extract showed significant (P < 0.05) anti-inflammatory activity, indicated by the suppressions of increased vascular permeability and leukocyte infiltration. The inhibitions of these inflammatory events are probably mediated via inhibition of NO and VEGF formation and release. PMID:24224164

  10. The induction of nitric oxide synthase and intestinal vascular permeability by endotoxin in the rat.

    PubMed Central

    Boughton-Smith, N. K.; Evans, S. M.; Laszlo, F.; Whittle, B. J.; Moncada, S.

    1993-01-01

    1. The effect of endotoxin (E. coli lipopolysaccharide) on the induction of nitric oxide synthase (NOS) and the changes in vascular permeability in the colon and jejunum over a 5 h period have been investigated in the rat. 2. Under resting conditions, a calcium-dependent constitutive NOS, determined by the conversion of radiolabelled L-arginine to citrulline, was detected in homogenates of both colonic and jejunal tissue. 3. Administration of endotoxin (3 mg kg-1, i.v.) led, after a 2 h lag period, to the appearance of calcium-independent NOS activity in the colon and jejunum ex vivo, characteristic of the inducible NOS enzyme. 4. Administration of endotoxin led to an increase in colonic and jejunal vascular permeability after a lag period of 3 h, determined by the leakage of radiolabelled albumin. 5. Pretreatment with dexamethasone (1 mg kg-1 s.c., 2 h prior to challenge) inhibited both the induction of NOS and the vascular leakage induced by endotoxin. 6. Administration of the NO synthase inhibitor NG-monomethyl-L-arginine (12.5-50 mg kg-1, s.c.) 3 h after endotoxin injection, dose-dependently reduced the subsequent increase in vascular permeability in jejunum and colon, an effect reversed by L-arginine (300 mg kg-1, s.c.). 7. These findings suggest that induction of NOS is associated with the vascular injury induced by endotoxin in the rat colon and jejunum. PMID:7507778

  11. Different vascular permeability between the sensory and secretory circumventricular organs of adult mouse brain.

    PubMed

    Morita, Shoko; Miyata, Seiji

    2012-08-01

    The blood-brain barrier (BBB) prevents free access of circulating molecules to the brain and maintains a specialized brain environment to protect the brain from blood-derived bioactive and toxic molecules; however, the circumventricular organs (CVOs) have fenestrated vasculature. The fenestrated vasculature in the sensory CVOs, including the organum vasculosum of lamina terminalis (OVLT), subfornical organ (SFO) and area postrema (AP), allows neurons and astrocytes to sense a variety of plasma molecules and convey their information into other brain regions and the vasculature in the secretory CVOs, including median eminence (ME) and neurohypophysis (NH), permits neuronal terminals to secrete many peptides into the blood stream. The present study showed that vascular permeability of low-molecular-mass tracers such as fluorescein isothiocyanate (FITC) and Evans Blue was higher in the secretory CVOs and kidney as compared with that in the sensory CVOs. On the other hand, vascular permeability of high-molecular-mass tracers such as FITC-labeled bovine serum albumin and Dextran 70,000 was lower in the CVOs as compared with that in the kidney. Prominent vascular permeability of low- and high-molecular-mass tracers was also observed in the arcuate nucleus. These data demonstrate that vascular permeability for low-molecular-mass molecules is higher in the secretory CVOs as compared with that in the sensory CVOs, possibly for large secretion of peptides to the blood stream. Moreover, vascular permeability for high-molecular-mass tracers in the CVOs is smaller than that of the kidney, indicating that the CVOs are not totally without a BBB. PMID:22584508

  12. Vascular stasis, intestinal hemorrhage, and heightened vascular permeability complicate acute portal hypertension in cd39-null mice.

    PubMed

    Sun, Xiaofeng; Crdenas, Andrs; Wu, Yan; Enjyoji, Keichi; Robson, Simon C

    2009-08-01

    Vasoactive factors that regulate splanchnic hemodynamics include nitric oxide, catecholamines, and possibly extracellular nucleosides/nucleotides (adenosine, ATP). CD39/ectonucleoside triphosphate diphosphohydrolase-1 (NTPDase1) is the major vascular ectonucleotidase that hydrolyzes extracellular nucleotides. CD39 activity may be modulated by vascular injury, inflammation, and altered oxygen tension. Altered Cd39 expression by the murine hepatosplanchnic vasculature may impact hemodynamics and portal hypertension (PHT) in vivo. We noted that basal portal pressures (PPs) were comparable in wild-type and Cd39-null mice (n = 9). ATP infusions resulted in increments in PP in wild-type mice, but, in contrast, this significantly decreased in Cd39-null mice (n = 9) post-ATP in a nitric oxide-dependent manner. We then studied Cd39/NTPDase1 deletion in the regulation of portal hemodynamics, vascular integrity, and intestinal permeability in a murine model of PHT. Partial portal vein ligation (PPVL) was performed in Cd39-null (n = 44) and wild-type (n = 23) mice. Sequential measurements obtained after PPVL were indicative of comparable levels of PHT (ranges 14-29 mmHg) in both groups. There was one death in the wild-type group and eight in the Cd39-null group from intestinal bleeding (P = 0.024). Circulatory stasis in the absence of overt portal vein thrombosis, portal congestion, intestinal hemorrhage, and increased permeability were evident in all surviving Cd39-null mice. Deletion of Cd39 results in deleterious outcomes post-PPVL that are associated with significant microcirculatory derangements and major intestinal congestion with hemorrhage mimicking acute mesenteric occlusion. Absent Cd39/NTPDase1 and decreased generation of adenosine in the splanchnic circulation cause heightened vascular permeability and gastrointestinal hemorrhage in PPVL. PMID:19520738

  13. Intra-arterial delivery of triolein emulsion increases vascular permeability in skeletal muscles of rabbits

    PubMed Central

    Kim, Hak Jin; Kim, Yong Woo; Lee, In Sook; Song, Jong Woon; Jeong, Yeon Joo; Choi, Seon Hee; Choi, Kyung Un; Suh, Kuen Tak; Cho, Byung Mann

    2009-01-01

    Background To test the hypothesis that triolein emulsion will increase vascular permeability of skeletal muscle. Methods Triolein emulsion was infused into the superficial femoral artery in rabbits (triolein group, n = 12). As a control, saline was infused (saline group, n = 18). Pre- and post-contrast T1-weighted MR images were obtained two hours after infusion. The MR images were qualitatively and quantitatively evaluated by assessing the contrast enhancement of the ipsilateral muscles. Histologic examination was performed in all rabbits. Results The ipsilateral muscles of the rabbits in the triolein group showed contrast enhancement, as opposed to in the ipsilateral muscles of the rabbits in the saline group. The contrast enhancement of the lesions was statistically significant (p < 0.001). Histologic findings showed that most examination areas of the triolein and saline groups had a normal appearance. Conclusion Rabbit thigh muscle revealed significantly increased vascular permeability with triolein emulsion; this was clearly demonstrated on the postcontrast MR images. PMID:19604410

  14. Oxidative stress and vascular permeability in steroid-induced osteonecrosis model.

    PubMed

    Ichiseki, Toru; Matsumoto, Tadami; Nishino, Mitsuru; Kaneuji, Ayumi; Katsuda, Shogo

    2004-01-01

    We focused on the role of oxidative stress in the pathogenesis of steroid-induced osteonecrosis (ON) and the possibility of preventing this condition by antioxidant administration. Methylprednisolone 4 mg/kg was injected only once into Japanese white rabbits. The involvement of oxidative stress and the presence/absence of bone circulatory impairment were investigated in groups of 10 rabbits killed at 3, 5, and 14 days each and in 10 rabbits administered the antioxidant glutathione. Reduced blood glutathione and lipid peroxide levels were determined biochemically, and the presence/absence of advanced glycation end-product expression was determined immunohistochemically. Vascular permeability in bone was confirmed by finding albumin leakage into the stroma. These blood biochemical and immunohistochemical studies clarified that the oxidative stress in this model developed 3-5 days after steroid administration. Elevated vascular permeability was observed in the 5- and 14-day groups. Hence, circulatory disturbance in bone was noted 5 days after steroid administration, coinciding with the onset of oxidative stress. The rate of ON development, which was 70% in the steroid-alone 14-day group, was significantly reduced to 0% in the steroid + antioxidant group. These results suggest the involvement of oxidative stress and vascular permeability in this steroid-induced ON model and the possibility of its prevention by suppression of oxidative stress. PMID:15449127

  15. Cadmium induces vascular permeability via activation of the p38 MAPK pathway

    SciTech Connect

    Dong, Fengyun; Guo, Fang; Li, Liqun; Guo, Ling; Hou, Yinglong; Hao, Enkui; Yan, Suhua; Allen, Thaddeus D.; Liu, Ju

    2014-07-18

    Highlights: • Low-dose cadmium (Cd) induces vascular hyper-permeability. • p38 MAPK mediates Cd-induced disruption of endothelial cell barrier function. • SB203850 inhibits Cd-induced membrane dissociation of VE-cadherin and β-catenin. • SB203850 reduces Cd-induced expression and secretion of TNF-α. - Abstract: The vasculature of various organs is a targeted by the environmental toxin, cadmium (Cd). However, mechanisms leading to pathological conditions are poorly understood. In the present study, we examined the effect of cadmium chloride (CdCl{sub 2}) on human umbilical vein endothelial cells (HUVECs). At 4 μM, CdCl{sub 2} induced a hyper-permeability defect in HUVECs, but not the inhibition of cell growth up to 24 h. This effect of CdCl{sub 2} was dependent on the activation of the p38 mitogen-activated protein kinase (MAPK) pathway. The p38 MAPK inhibitor SB203850 suppressed the CdCl{sub 2}-induced alteration in trans-endothelial electrical resistance in HUVEC monolayers, a model measurement of vascular endothelial barrier integrity. SB203850 also inhibited the Cd-induced membrane dissociation of vascular endothelial (VE) cadherin and β-catenin, the important components of the adherens junctional complex. In addition, SB203850 reduces the Cd-induced expression and secretion of tumor necrosis factor α (TNF-α). Taken together, our findings suggest that Cd induces vascular hyper-permeability and disruption of endothelial barrier integrity through stimulation of p38 MAPK signaling.

  16. Histamine H3 receptors regulate vascular permeability changes in the skin of mast cell-deficient mice.

    PubMed

    Hossen, Maria Alejandra; Fujii, Yoko; Sugimoto, Yukio; Kayasuga, Ryoji; Kamei, Chiaki

    2003-11-01

    The participation of histamine H(3) receptors in the regulation of skin vascular permeability changes in mast cell-deficient mice was studied. Although intradermal injection of histamine H(3) antagonists, iodophenpropit and clobenpropit, at a dose of 100 nmol/site caused significant increases in skin vascular permeability in both mast cell-deficient (WBB6F1 W/W(v)) and wild-type (WBB6F1 +/+) mice, this response was significantly lower in mast cell-deficient mice than in the wild-type controls. Histamine also caused dose-related increases in skin vascular permeability in both wild-type and mast cell-deficient mice. Significant effects were observed at doses of 10 and 100 nmol/site, and no significant difference in skin vascular permeability was observed between mast cell-deficient and wild-type mice. However, histamine contents of dorsal skin in mast cell-deficient mice were significantly lower than in wild-type mice. In addition, the H(1) antagonists diphenhydramine and chlorpheniramine and the NK(1) antagonists, L-732,138 and L-733,060, were able to antagonize H(3) antagonist-induced skin vascular permeability. These results indicated that blockade of H(3) receptors by H(3) antagonists induce skin vascular permeability through mast cell-dependent mechanisms. In addition, histamine and, to a lesser extent substance P are involved in the reaction. PMID:14555281

  17. Podocalyxin Regulates Murine Lung Vascular Permeability by Altering Endothelial Cell Adhesion

    PubMed Central

    Debruin, Erin J.; Hughes, Michael R.; Sina, Christina; Liu, Alex; Cait, Jessica; Jian, Zhiqi; Lopez, Martin; Lo, Bernard; Abraham, Thomas; McNagny, Kelly M.

    2014-01-01

    Despite the widespread use of CD34-family sialomucins (CD34, podocalyxin and endoglycan) as vascular endothelial cell markers, there is remarkably little known of their vascular function. Podocalyxin (gene name Podxl), in particular, has been difficult to study in adult vasculature as germ-line deletion of podocalyxin in mice leads to kidney malformations and perinatal death. We generated mice that conditionally delete podocalyxin in vascular endothelial cells (Podxl?EC mice) to study the homeostatic role of podocalyxin in adult mouse vessels. Although Podxl?EC adult mice are viable, their lungs display increased lung volume and changes to the matrix composition. Intriguingly, this was associated with increased basal and inflammation-induced pulmonary vascular permeability. To further investigate the etiology of these defects, we isolated mouse pulmonary endothelial cells. Podxl?EC endothelial cells display mildly enhanced static adhesion to fibronectin but spread normally when plated on fibronectin-coated transwells. In contrast, Podxl?EC endothelial cells exhibit a severely impaired ability to spread on laminin and, to a lesser extent, collagen I coated transwells. The data suggest that, in endothelial cells, podocalyxin plays a previously unrecognized role in maintaining vascular integrity, likely through orchestrating interactions with extracellular matrix components and basement membranes, and that this influences downstream epithelial architecture. PMID:25303643

  18. Desert Hedgehog/Patch2 Axis Contributes to Vascular Permeability and Angiogenesis in Glioblastoma

    PubMed Central

    Azzi, Sandy; Treps, Lucas; Leclair, Hlose M.; Ngo, Hai-Mi; Harford-Wright, Elizabeth; Gavard, Julie

    2015-01-01

    Glioblastoma multiforme (GBM) constitutes the most common and the most aggressive type of human tumors affecting the central nervous system. Prognosis remains dark due to the inefficiency of current treatments and the rapid relapse. Paralleling other human tumors, GBM contains a fraction of tumor initiating cells with the capacity to self-renew, initiate and maintain the tumor mass. These cells were found in close proximity to brain vasculature, suggesting functional interactions between brain tumor-initiating cells (BTICs) and endothelial cells within the so-called vascular niche. However, the mechanisms by which these cells impact on the endothelium plasticity and function remain unclear. Using culture of BTICs isolated from a cohort of 14 GBM patients, we show that BTICs secretome promotes brain endothelial cell remodeling in a VEGF-independent manner. Gene array analysis unmasked that BTICs-released factors drove the expression of Ptch2 in endothelial cells. Interestingly, BTICs produce desert hedgehog (DHH) ligand, enabling a paracrine DHH/Ptch2 signaling cascade that conveys elevated permeability and angiogenesis. Finally, DHH silencing in BTICs dramatically reduced tumor growth, as well as vascularization and intra-tumor permeability. Collectively, our data unveil a role for DHH in exacerbated tumor angiogenesis and permeability, which may ultimately favor glioblastoma growth, and thus place the DHH/Ptch2 nexus as a molecular target for novel therapies. PMID:26635611

  19. Cortactin deficiency is associated with reduced neutrophil recruitment but increased vascular permeability in vivo.

    PubMed

    Schnoor, Michael; Lai, Frank P L; Zarbock, Alexander; Kläver, Ruth; Polaschegg, Christian; Schulte, Dörte; Weich, Herbert A; Oelkers, J Margit; Rottner, Klemens; Vestweber, Dietmar

    2011-08-01

    Neutrophil extravasation and the regulation of vascular permeability require dynamic actin rearrangements in the endothelium. In this study, we analyzed in vivo whether these processes require the function of the actin nucleation-promoting factor cortactin. Basal vascular permeability for high molecular weight substances was enhanced in cortactin-deficient mice. Despite this leakiness, neutrophil extravasation in the tumor necrosis factor-stimulated cremaster was inhibited by the loss of cortactin. The permeability defect was caused by reduced levels of activated Rap1 (Ras-related protein 1) in endothelial cells and could be rescued by activating Rap1 via the guanosine triphosphatase (GTPase) exchange factor EPAC (exchange protein directly activated by cAMP). The defect in neutrophil extravasation was caused by enhanced rolling velocity and reduced adhesion in postcapillary venules. Impaired rolling interactions were linked to contributions of β(2)-integrin ligands, and firm adhesion was compromised by reduced ICAM-1 (intercellular adhesion molecule 1) clustering around neutrophils. A signaling process known to be critical for the formation of ICAM-1-enriched contact areas and for transendothelial migration, the ICAM-1-mediated activation of the GTPase RhoG was blocked in cortactin-deficient endothelial cells. Our results represent the first physiological evidence that cortactin is crucial for orchestrating the molecular events leading to proper endothelial barrier function and leukocyte recruitment in vivo. PMID:21788407

  20. Increased pulmonary vascular permeability as a cause of re-expansion edema in rabbits

    SciTech Connect

    Pavlin, D.J.; Nessly, M.L.; Cheney, F.W.

    1981-01-01

    In order to study the mechanism(s) underlying re-expansion edema, we measured the concentration of labeled albumin (RISA) in the extravascular, extracellular water (EVECW) of the lung as a measure of pulmonary vascular permeability. Re-expansion edema was first induced by rapid re-expansion of rabbit lungs that had been collapsed for 1 wk by pneumothorax. The RISA in EVECW was expressed as a fraction of its plasma concentration: (RISA)L/(RISA)PL. The volume of EVECW (ml/gm dry lung) was measured using a /sup 24/Na indicator. Results in re-expansion edema were compared with normal control lungs and with oleic acid edema as a model of permeability edema. In re-expanded lungs, EVECW (3.41 +/- SD 1.24 ml/g) and (RISA)L/(RISA)PL 0.84 +/- SD 0.15) were significantly increased when compared with normal control lungs (2.25 +/- 0.41 ml/g and 0.51 +/- 0.20, respectively). Results in oleic acid edema (5.66 +/- 2.23 ml/g and 0.84 +/- 0.23) were similar to re-expansion edema. This suggested that re-expansion edema is due to increased pulmonary vascular permeability caused by mechanical stresses applied to the lung during re-expansion.

  1. Estimating retinal vascular permeability using the adiabatic approximation to the tissue homogeneity model with fluorescein videoangiography

    NASA Astrophysics Data System (ADS)

    Tichauer, Kenneth M.; Osswald, Christian R.; Dosmar, Emily; Guthrie, Micah J.; Hones, Logan; Sinha, Lagnojita; Xu, Xiaochun; Mieler, William F.; St. Lawrence, Keith; Kang-Mieler, Jennifer J.

    2015-06-01

    Clinical symptoms of diabetic retinopathy are not detectable until damage to the retina reaches an irreversible stage, at least by today's treatment standards. As a result, there is a push to develop new, "sub-clinical" methods of predicting the onset of diabetic retinopathy before the onset of irreversible damage. With diabetic retinopathy being associated with the accumulation of long-term mild damage to the retinal vasculature, retinal blood vessel permeability has been proposed as a key parameter for detecting preclinical stages of retinopathy. In this study, a kinetic modeling approach used to quantify vascular permeability in dynamic contrast-enhanced medical imaging was evaluated in noise simulations and then applied to retinal videoangiography data in a diabetic rat for the first time to determine the potential for this approach to be employed clinically as an early indicator of diabetic retinopathy. Experimental levels of noise were found to introduce errors of less than 15% in estimates of blood flow and extraction fraction (a marker of vascular permeability), and fitting of rat retinal fluorescein angiography data provided stable maps of both parameters.

  2. Clostridium sordellii Lethal Toxin Kills Mice by Inducing a Major Increase in Lung Vascular Permeability

    PubMed Central

    Geny, Blandine; Khun, Huot; Fitting, Catherine; Zarantonelli, Leticia; Mazuet, Christelle; Cayet, Nadège; Szatanik, Marek; Prevost, Marie-Christine; Cavaillon, Jean-Marc; Huerre, Michel; Popoff, Michel R.

    2007-01-01

    When intraperitoneally injected into Swiss mice, Clostridium sordellii lethal toxin reproduces the fatal toxic shock syndrome observed in humans and animals after natural infection. This animal model was used to study the mechanism of lethal toxin-induced death. Histopathological and biochemical analyses identified lung and heart as preferential organs targeted by lethal toxin. Massive extravasation of blood fluid in the thoracic cage, resulting from an increase in lung vascular permeability, generated profound modifications such as animal dehydration, increase in hematocrit, hypoxia, and finally, cardiorespiratory failure. Vascular permeability increase induced by lethal toxin resulted from modifications of lung endothelial cells as evidenced by electron microscopy. Immunohistochemical analysis demonstrated that VE-cadherin, a protein participating in intercellular adherens junctions, was redistributed from membrane to cytosol in lung endothelial cells. No major sign of lethal toxin-induced inflammation was observed that could participate in the toxic shock syndrome. The main effect of the lethal toxin is the glucosylation-dependent inactivation of small GTPases, in particular Rac, which is involved in actin polymerization occurring in vivo in lungs leading to E-cadherin junction destabilization. We conclude that the cells most susceptible to lethal toxin are lung vascular endothelial cells, the adherens junctions of which were altered after intoxication. PMID:17322384

  3. Cadmium induces vascular permeability via activation of the p38 MAPK pathway.

    PubMed

    Dong, Fengyun; Guo, Fang; Li, Liqun; Guo, Ling; Hou, Yinglong; Hao, Enkui; Yan, Suhua; Allen, Thaddeus D; Liu, Ju

    2014-07-18

    The vasculature of various organs is a targeted by the environmental toxin, cadmium (Cd). However, mechanisms leading to pathological conditions are poorly understood. In the present study, we examined the effect of cadmium chloride (CdCl2) on human umbilical vein endothelial cells (HUVECs). At 4 μM, CdCl2 induced a hyper-permeability defect in HUVECs, but not the inhibition of cell growth up to 24h. This effect of CdCl2 was dependent on the activation of the p38 mitogen-activated protein kinase (MAPK) pathway. The p38 MAPK inhibitor SB203850 suppressed the CdCl2-induced alteration in trans-endothelial electrical resistance in HUVEC monolayers, a model measurement of vascular endothelial barrier integrity. SB203850 also inhibited the Cd-induced membrane dissociation of vascular endothelial (VE) cadherin and β-catenin, the important components of the adherens junctional complex. In addition, SB203850 reduces the Cd-induced expression and secretion of tumor necrosis factor α (TNF-α). Taken together, our findings suggest that Cd induces vascular hyper-permeability and disruption of endothelial barrier integrity through stimulation of p38 MAPK signaling. PMID:24909688

  4. Measurements of pulmonary vascular permeability with PET and gallium-68 transferrin

    SciTech Connect

    Mintun, M.A.; Dennis, D.R.; Welch, M.J.; Mathias, C.J.; Schuster, D.P.

    1987-11-01

    We quantified pulmonary vascular permeability with positron emission tomography (PET) and gallium-68-(/sup 68/Ga) labeled transferrin. Six dogs with oleic acid-induced lung injury confined to the left lower lobe, two normal human volunteers, and two patients with the adult respiratory distress syndrome (ARDS) were evaluated. Lung tissue-activity measurements were obtained from sequential 1-5 min PET scans collected over 60 min, after in vivo labeling of transferrin through intravenous administration of (/sup 68/Ga)citrate. Blood-activity measurements were measured from simultaneously obtained peripheral blood samples. A forward rate constant describing the movement of transferrin from pulmonary vascular to extravascular compartments, the pulmonary transcapillary escape rate (PTCER), was then calculated from these data using a two-compartment model. In dogs, PTCER was 49 +/- 18 in normal lung tissue and 485 +/- 114 10(-4) min-1 in injured lung. A repeat study in these dogs 4 hr later showed no significant change. Values in the human subjects showed similarly marked differences between normal and abnormal lung tissue. We conclude that PET will be a useful method of evaluating vascular permeability changes after acute lung injury.

  5. Effects of Extremely Low Frequency Electromagnetic Fields on Vascular Permeability of Circumventricular Organs in the Adult Rat

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Mercado, Y. K.; Cañedo-Dorantes, L.; Bañuelos-Pineda, J.; Serrano-Luna, G.; Feria-Velasco, A.

    2008-08-01

    The present work deals with the effects of extremely low frequency electromagnetic fields (ELF-EMF) on blood vessels permeability to non liposoluble substances of the circumventricular organs (CVO) of adult rats. Male Wistar adult rats were exposed to ELF-EMF and vascular permeability to colloidal carbon was investigated with the use of histological techniques. Results were compared to corresponding data from sham-exposed and control groups of animals. Exposure to ELF-EMF increased the CVO vascular permeability to colloidal carbon intravascularly injected, particularly in the subfornical organ, the median eminence, the pineal gland and the area postrema.

  6. Vascular Endothelial Growth Factors Enhance the Permeability of the Mouse Blood-brain Barrier

    PubMed Central

    Jiang, Shize; Xia, Rui; Jiang, Yong; Wang, Lei; Gao, Fabao

    2014-01-01

    The blood-brain barrier (BBB) impedes entry of many drugs into the brain, limiting clinical efficacy. A safe and efficient method for reversibly increasing BBB permeability would greatly facilitate central nervous system (CNS) drug delivery and expand the range of possible therapeutics to include water soluble compounds, proteins, nucleotides, and other large molecules. We examined the effect of vascular endothelial growth factor (VEGF) on BBB permeability in Kunming (KM) mice. Human VEGF165 was administered to treatment groups at two concentrations (1.6 or 3.0 µg/mouse), while controls received equal-volume saline. Changes in BBB permeability were measured by parenchymal accumulation of the contrast agent Gd-DTPA as assessed by 7 T magnetic resonance imaging (MRI). Mice were then injected with Evans blue, sacrificed 0.5 h later, and perfused transcardially. Brains were removed, fixed, and sectioned for histological study. Both VEGF groups exhibited a significantly greater signal intensity from the cerebral cortex and basal ganglia than controls (P<0.001). Evans blue fluorescence intensity was higher in the parenchyma and lower in the cerebrovasculature of VEGF-treated animals compared to controls. No significant brain edema was observed by diffusion weighted MRI (DWI) or histological staining. Exogenous application of VEGF can increase the permeability of the BBB without causing brain edema. Pretreatment with VEGF may be a feasible method to facilitate drug delivery into the CNS. PMID:24551038

  7. Detection of a vascular permeability factor in the extracellular products of Renibacterium salmoninarum.

    PubMed

    Bandín, I; Santos, Y; Toranzo, A E; Barja, J L

    1992-09-01

    The presence of vascular permeability factors in the extracellular products (ECP) of 10 strains of Renibacterium salmoninarum with different geographical origin and serological characteristics are reported. All the ECP produced haemorrhagic and/or oedematous zones at the injection site with a diameter ranging from 10-30 mm. However, the ECP samples did not display toxic effect in fish at the same dose as inoculated in rabbit (180-400 micrograms protein/0.1 ml). No differences were observed in the production of this dermatotoxic factor between the two antigenic groups found in this microorganism. Whereas heating (80 and 100 degrees C/15 min) the ECP samples resulted in a complete loss of their proteolytic activity, only a decrease (but not total inactivation) of the dermatotoxic effects was detected. Therefore, although proteases could be implicated in the permeability factor, they are not totally responsible for this activity. PMID:1291845

  8. Heterogeneous vascular permeability and alternative diffusion barrier in sensory circumventricular organs of adult mouse brain.

    PubMed

    Morita, Shoko; Furube, Eriko; Mannari, Tetsuya; Okuda, Hiroaki; Tatsumi, Kouko; Wanaka, Akio; Miyata, Seiji

    2016-02-01

    Fenestrated capillaries of the sensory circumventricular organs (CVOs), including the organum vasculosum of the lamina terminalis, the subfornical organ and the area postrema, lack completeness of the blood-brain barrier (BBB) to sense a variety of blood-derived molecules and to convey the information into other brain regions. We examine the vascular permeability of blood-derived molecules and the expression of tight-junction proteins in sensory CVOs. The present tracer assays revealed that blood-derived dextran 10 k (Dex10k) having a molecular weight (MW) of 10,000 remained in the perivascular space between the inner and outer basement membranes, but fluorescein isothiocyanate (FITC; MW: 389) and Dex3k (MW: 3000) diffused into the parenchyma. The vascular permeability of FITC was higher at central subdivisions than at distal subdivisions. Neither FITC nor Dex3k diffused beyond the dense network of glial fibrillar acidic protein (GFAP)-positive astrocytes/tanycytes. The expression of tight-junction proteins such as occludin, claudin-5 and zonula occludens-1 (ZO-1) was undetectable at the central subdivisions of the sensory CVOs but some was expressed at the distal subdivisions. Electron microscopic observation showed that capillaries were surrounded with numerous layers of astrocyte processes and dendrites. The expression of occludin and ZO-1 was also observed as puncta on GFAP-positive astrocytes/tanycytes of the sensory CVOs. Our study thus demonstrates the heterogeneity of vascular permeability and expression of tight-junction proteins and indicates that the outer basement membrane and dense astrocyte/tanycyte connection are possible alternative mechanisms for a diffusion barrier of blood-derived molecules, instead of the BBB. PMID:26048259

  9. EPHA4-FC TREATMENT REDUCES ISCHEMIA/REPERFUSION-INDUCED INTESTINAL INJURY BY INHIBITING VASCULAR PERMEABILITY.

    PubMed

    Woodruff, Trent M; Wu, Mike C-L; Morgan, Michael; Bain, Nathan T; Jeanes, Angela; Lipman, Jeffrey; Ting, Michael J; Boyd, Andrew W; Taylor, Stephen M; Coulthard, Mark G

    2016-02-01

    The inflammatory response is characterized by increased endothelial permeability, which permits the passage of fluid and inflammatory cells into interstitial spaces. The Eph/ephrin receptor ligand system plays a role in inflammation through a signaling cascade, which modifies Rho-GTPase activity. We hypothesized that blocking Eph/ephrin signaling using an EphA4-Fc would result in decreased inflammation and tissue injury in a model of ischemia/reperfusion (I/R) injury. Mice undergoing intestinal I/R pretreated with the EphA4-Fc had significantly reduced intestinal injury compared to mice injected with the control Fc. This reduction in I/R injury was accompanied by significantly reduced neutrophil infiltration, but did not affect intestinal inflammatory cytokine generation. Using microdialysis, we identified that intestinal I/R induced a marked increase in systemic vascular leakage, which was completely abrogated in EphA4-Fc-treated mice. Finally, we confirmed the direct role of Eph/ephrin signaling in endothelial leakage by demonstrating that EphA4-Fc inhibited tumor necrosis factor-?-induced vascular permeability in human umbilical vein endothelial cells. This study identifies that Eph/ephrin interaction induces proinflammatory signaling in vivo by inducing vascular leak and neutrophil infiltration, which results in tissue injury in intestinal I/R. Therefore, therapeutic targeting of Eph/ephrin interaction using inhibitors, such as EphA4-Fc, may be a novel method to prevent tissue injury in acute inflammation by influencing endothelial integrity and by controlling vascular leak. PMID:26771935

  10. Protein Kinase Cβ Phosphorylates Occludin Regulating Tight Junction Trafficking in Vascular Endothelial Growth Factor–Induced Permeability In Vivo

    PubMed Central

    Murakami, Tomoaki; Frey, Tiffany; Lin, Chengmao; Antonetti, David A.

    2012-01-01

    Vascular endothelial growth factor (VEGF)–induced breakdown of the blood-retinal barrier requires protein kinase C (PKC)β activation. However, the molecular mechanisms related to this process remain poorly understood. In this study, the role of occludin phosphorylation and ubiquitination downstream of PKCβ activation in tight junction (TJ) trafficking and endothelial permeability was investigated. Treatment of bovine retinal endothelial cells and intravitreal injection of PKCβ inhibitors as well as expression of dominant-negative kinase was used to determine the contribution of PKCβ to endothelial permeability and occludin phosphorylation at Ser490 detected with a site-specific antibody. In vitro kinase assay was used to demonstrate direct occludin phosphorylation by PKCβ. Ubiquitination was measured by immunoblotting after occludin immunoprecipitation. Confocal microscopy revealed organization of TJ proteins. The results reveal that inhibition of VEGF-induced PKCβ activation blocks occludin Ser490 phosphorylation, ubiquitination, and TJ trafficking in retinal vascular endothelial cells both in vitro and in vivo and prevents VEGF-stimulated vascular permeability. Occludin Ser490 is a direct target of PKCβ, and mutating Ser490 to Ala (S490A) blocks permeability downstream of PKCβ. Therefore, PKCβ activation phosphorylates occludin on Ser490, leading to ubiquitination required for VEGF-induced permeability. These data demonstrate a novel mechanism for PKCβ targeted inhibitors in regulating vascular permeability. PMID:22438576

  11. Control of vascular permeability by atrial natriuretic peptide via a GEF-H1-dependent mechanism.

    PubMed

    Tian, Xinyong; Tian, Yufeng; Gawlak, Grzegorz; Sarich, Nicolene; Wu, Tinghuai; Birukova, Anna A

    2014-02-21

    Microtubule (MT) dynamics is involved in a variety of cell functions, including control of the endothelial cell (EC) barrier. Release of Rho-specific nucleotide exchange factor GEF-H1 from microtubules activates the Rho pathway of EC permeability. In turn, pathologic vascular leak can be prevented by treatment with atrial natriuretic peptide (ANP). This study investigated a novel mechanism of vascular barrier protection by ANP via modulation of GEF-H1 function. In pulmonary ECs, ANP suppressed thrombin-induced disassembly of peripheral MT and attenuated Rho signaling and cell retraction. ANP effects were mediated by the Rac1 GTPase effector PAK1. Activation of Rac1-PAK1 promoted PAK1 interaction with the Rho activator GEF-H1, inducing phosphorylation of total and MT-bound GEF-H1 and leading to attenuation of Rho-dependent actin remodeling. In vivo, ANP attenuated lung injury caused by excessive mechanical ventilation and TRAP peptide (TRAP/HTV), which was further exacerbated in ANP(-/-) mice. The protective effects of ANP against TRAP/HTV-induced lung injury were linked to the increased pool of stabilized MT and inactivation of Rho signaling via ANP-induced, PAK1-dependent inhibitory phosphorylation of GEF-H1. This study demonstrates a novel protective mechanism of ANP against pathologic hyperpermeability and suggests a novel pharmacological intervention for the prevention of increased vascular leak via PAK1-dependent modulation of GEF-H1 activity. PMID:24352660

  12. Vascular permeability factor expression influences tumor angiogenesis in human melanoma lines xenografted to nude mice.

    PubMed Central

    Pötgens, A. J.; Lubsen, N. H.; van Altena, M. C.; Schoenmakers, J. G.; Ruiter, D. J.; de Waal, R. M.

    1995-01-01

    We studied the expression of the angiogenic factor vascular permeability factor) (VPF, also called vascular endothelial growth factor), in human melanoma cells in vitro and in vivo. Melanoma lines that develop tumors with a low metastatic potential in nude mice were found to have low expression levels of VPF in vitro, and the VPF expression levels in melanoma lines that yield highly metastatic xenografts were high. However, in vivo the correlation between VPF mRNA levels and the frequency of metastasis was lost; in all xenografts equally high levels of VPF mRNA were found, independent of the parental cell line. Hence, in vivo VPF gene expression was upregulated in the low expressing lines. The external factor responsible for this induction may be hypoxia, given that we found that low oxygen tension caused a (reversible) increase in the VPF mRNA levels in otherwise low expressing melanoma lines in vitro. A melanoma line with an inducible VPF expression was engineered into a line with a constitutive VPF expression. In the xenografts from this line a change in the vascular architecture was seen, indicating that the pattern or the level of VPF expression is important for tumor angiogenesis in melanoma xenografts. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:7531947

  13. Placenta growth factor-1 exerts time-dependent stabilization of adherens junctions following VEGF-induced vascular permeability.

    PubMed

    Cai, Jun; Wu, Lin; Qi, Xiaoping; Shaw, Lynn; Li Calzi, Sergio; Caballero, Sergio; Jiang, Wen G; Vinores, Stanley A; Antonetti, David; Ahmed, Asif; Grant, Maria B; Boulton, Michael E

    2011-01-01

    Increased vascular permeability is an early event characteristic of tissue ischemia and angiogenesis. Although VEGF family members are potent promoters of endothelial permeability the role of placental growth factor (PlGF) is hotly debated. Here we investigated PlGF isoforms 1 and 2 and present in vitro and in vivo evidence that PlGF-1, but not PlGF-2, can inhibit VEGF-induced permeability but only during a critical window post-VEGF exposure. PlGF-1 promotes VE-cadherin expression via the trans-activating Sp1 and Sp3 interaction with the VE-cadherin promoter and subsequently stabilizes transendothelial junctions, but only after activation of endothelial cells by VEGF. PlGF-1 regulates vascular permeability associated with the rapid localization of VE-cadherin to the plasma membrane and dephosphorylation of tyrosine residues that precedes changes observed in claudin 5 tyrosine phosphorylation and membrane localization. The critical window during which PlGF-1 exerts its effect on VEGF-induced permeability highlights the importance of the translational significance of this work in that PLGF-1 likely serves as an endogenous anti-permeability factor whose effectiveness is limited to a precise time point following vascular injury. Clinical approaches that would pattern nature's approach would thus limit treatments to precise intervals following injury and bring attention to use of agents only during therapeutic windows. PMID:21464949

  14. Interleukin-33 induces angiogenesis and vascular permeability through ST2/TRAF6-mediated endothelial nitric oxide production.

    PubMed

    Choi, Yeon-Sook; Choi, Hyun-Jung; Min, Jeong-Ki; Pyun, Bo-Jeong; Maeng, Yong-Sun; Park, Hongryeol; Kim, Jihye; Kim, Young-Myeong; Kwon, Young-Guen

    2009-10-01

    Interleukin-33 (IL-33), a member of the IL-1 cytokine family, is emerging as a new regulator of immune responses and inflammatory vascular diseases. Although IL-33 and its cognate receptor ST2 appear to be expressed in vascular cells, the precise role of IL-33 in the vasculature has not been determined. In this study, we report a novel role of IL-33 as a potent endothelial activator, promoting both angiogenesis and vascular permeability. IL-33 increased proliferation, migration, and morphologic differentiation of human endothelial cells, consistently with increased angiogenesis in vivo. IL-33 also increased endothelial permeability with reduced vascular endothelial-cadherin-facilitated cell-cell junctions in vitro and induced vascular leakage in mouse skin. These effects of IL-33 were blocked by knockdown of ST2. Ligation of IL-33 with ST2 rapidly increased endothelial nitric oxide (NO) production through TRAF6-mediated activation of phosphoinoside-3-kinase, Akt, and endothelial NO synthase. Moreover, pharmacologic or genetic blockage of endothelial NO generation resulted in the inhibition of angiogenesis and vascular hyperpermeability induced by IL-33. These data demonstrate that IL-33 promotes angiogenesis and vascular leakage by stimulating endothelial NO production via the ST2/TRAF6-Akt-eNOS signaling pathway. These findings open new perspectives for the role of IL-33 in the pathogenesis of angiogenesis-dependent and inflammatory vascular diseases. PMID:19661270

  15. The diaphragms of fenestrated endothelia – gatekeepers of vascular permeability and blood composition

    PubMed Central

    Stan, Radu V.; Tse, Dan; Deharvengt, Sophie J.; Smits, Nicole C.; Xu, Yan; Luciano, Marcus R.; McGarry, Caitlin L.; Buitendijk, Maarten; Nemani, Krishnamurthy V.; Elgueta, Raul; Kobayashi, Takashi; Shipman, Samantha L.; Moodie, Karen L.; Daghlian, Charles P.; Ernst, Patricia A.; Lee, Hong-Kee; Suriawinata, Arief A.; Schned, Alan R.; Longnecker, Daniel S.; Fiering, Steven N.; Noelle, Randolph J.; Gimi, Barjor; Shworak, Nicholas W.; Carrière, Catherine

    2012-01-01

    SUMMARY Fenestral and stomatal diaphragms are endothelial subcellular structures of unknown function that form on organelles implicated in vascular permeability: fenestrae, transendothelial channels and caveolae. PV1 protein is required for diaphragm formation in vitro. Here, we report that deletion of the PV1-encoding Plvap gene in mice results in the absence of diaphragms and decreased survival. Loss of diaphragms did not affect the fenestrae and transendothelial channels formation but disrupted the barrier function of fenestrated capillaries causing a major leak of plasma proteins. This disruption results in early death of animals due to severe non-inflammatory protein loosing enteropathy. Deletion of PV1 in endothelium, but not the hematopoietic compartment, recapitulates the phenotype of global PV1 deletion, whereas endothelial reconstitution of PV1 rescues the phenotype. Taken together, these data provide genetic evidence for the critical role of the diaphragms in fenestrated capillaries in the maintenance of blood composition. PMID:23237953

  16. Enhanced vascular permeability in solid tumor involving peroxynitrite and matrix metalloproteinases.

    PubMed

    Wu, J; Akaike, T; Hayashida, K; Okamoto, T; Okuyama, A; Maeda, H

    2001-04-01

    Peroxynitrite (ONOO(-)), which is generated from nitric oxide (NO) and superoxide anion (O(2)(.-)) under pathological conditions, plays an important role in pathophysiological processes. Activation of matrix metalloproteinases (MMPs) contributes to tumor angiogenesis and metastasis. NO mediates the enhanced vascular permeability and retention (EPR) effect in solid tumors, and ONOO(-)activates proMMP to MMP in vitro. In this study, we examined the role of ONOO(-)in the EPR effect in solid tumors and normal tissues as related to MMP activation. Authentic ONOO(-), at 50 nmol or higher concentrations, induced the enhanced vascular permeability in normal dorsal skin of mice. ONOO(-)scavengers ebselen and uric acid significantly suppressed the EPR effect in mouse sarcoma 180 (S-180) tumors. Indirect evidence for formation of ONOO(-)in S-180 and mouse colon adenocarcinoma (C-38) tumors included strong immunostaining for nitrotyrosine in the tumor tissue, predominantly surrounding the tumor vessels. MMP inhibitor BE16627B (66.6 mg / kg i.v., given 2 times) or SI-27 (10 mg / kg i.p., given 2 times) significantly suppressed the ONOO(-)-induced EPR effect in S-180 tumors and in normal skin. Soybean trypsin inhibitor (Kunitz type), broad-spectrum proteinase inhibitor ovomacroglobulin, and bradykinin receptor antagonist HOE 140 also significantly suppressed the ONOO(-)-induced EPR effect in normal skin tissues. These data suggest that ONOO(-)may be involved in and promote the EPR effect in tumors, which could be mediated partly through activation of MMPs and a subsequent proteinase cascade to generate potent vasoactive mediators such as bradykinin. PMID:11346467

  17. Cardiopulmonary bypass increases pulmonary microvascular permeability through the Src kinase pathway: Involvement of caveolin-1 and vascular endothelial cadherin

    PubMed Central

    ZHANG, JUNWEN; JIANG, ZHAOLEI; BAO, CHUNRONG; MEI, JU; ZHU, JIAQUAN

    2016-01-01

    Changes in pulmonary microvascular permeability following cardiopulmonary bypass (CPB) and the underlying mechanisms have not yet been established. Therefore, the aim of the present study was to elucidate the alterations in pulmonary microvascular permeability following CPB and the underlying mechanism. The pulmonary microvascular permeability was measured using Evans Blue dye (EBD) exclusion, and the neutrophil infiltration and proinflammatory cytokine secretion was investigated. In addition, the activation of Src kinase and the phosphorylation of caveolin-1 and vascular endothelial cadherin (VE-cadherin) was examined. The results revealed that CPB increased pulmonary microvascular leakage, neutrophil count and proinflammatory cytokines in the bronchoalveolar lavage fluid, and activated Src kinase. The administration of PP2, an inhibitor of Src kinase, decreased the activation of Src kinase and attenuated the increase in pulmonary microvascular permeability observed following CPB. Two important proteins associated with vascular permeability, caveolin-1 and VE-cadherin, were significantly activated at 24 h in the lung tissues following CPB, which correlated with the alterations in pulmonary microvascular permeability and Src kinase. PP2 administration inhibited their activation, suggesting that they are downstream factors of Src kinase activation. The data indicated that the Src kinase pathway increased pulmonary microvascular permeability following CPB, and the activation of caveolin-1 and VE-cadherin may be involved. Inhibition of this pathway may provide a potential therapy for acute lung injury following cardiac surgery. PMID:26847917

  18. Baseflow index regionalization analysis in a mediterranean area and data scarcity context: Role of the catchment permeability index

    NASA Astrophysics Data System (ADS)

    Longobardi, Antonia; Villani, Paolo

    2008-06-01

    SummaryLow flow characteristics are affected by different physiographic factors such as climate, topography, geology and soils, and regional regression prediction models, to estimate low flow indexes at ungauged sites, mainly rely on these factors. The paper focuses on the baseflow index, one of the most important low flow characteristics for a catchment, and presents: (i) the analysis of baseflow separation algorithms for BFI evaluation and (ii) a regional approach to predict the BFI at ungauged sites in a Mediterranean region, for which only very poor data are available. The prediction of baseflow contribution to total streamflow is based on the introduction of a permeability index, at the catchment scale, and regional linear regression equations simply relate the latter to the BFI. For the studied area geological features have been found to be the major factor affecting baseflow and the permeability index estimation for a particular catchment, in an apparently over-simplified schematization, essentially reflects catchment lithology. As a matter of fact, an accurate catchment geology spatial variability description reduces the average long-term BFI index prediction error from 23% to 14% and above all increases the explained variance from 23% to 68%.

  19. Galactose ingestion increases vascular permeability and collagen solubility in normal male rats.

    PubMed

    Chang, K; Tomlinson, M; Jeffrey, J R; Tilton, R G; Sherman, W R; Ackermann, K E; Berger, R A; Cicero, T J; Kilo, C; Williamson, J R

    1987-02-01

    In view of the similarity of cataracts and neuropathy in galactose-fed and diabetic rats, the present experiments were undertaken to determine whether consumption of galactose-enriched diets (10, 25, or 50% by weight) also increases collagen crosslinking and permeation of vessels by 125I-albumin analogous to that observed in diabetic rats. The observations in these experiments: demonstrate that consumption of galactose-enriched diets for 3 wk selectively increases 125I-albumin permeation of the same vascular beds affected in diabetic rats and by diabetic vascular disease in humans (i.e., the aorta and vessels in the eye, kidney, sciatic nerve, and new tissue formed in the diabetic milieu); demonstrate that the susceptibility of the vasculature to aldose reductase-linked injury (increased permeability) varies greatly in different tissues; indicate that collagen solubility (crosslinking) changes in galactose-fed rats differ sharply from those in diabetic rats; and provide new evidence that consumption of galactose-enriched diets induces a hypogonadal state in male rats. PMID:3100575

  20. Role of nitric oxide in tumor microcirculation. Blood flow, vascular permeability, and leukocyte-endothelial interactions.

    PubMed Central

    Fukumura, D.; Yuan, F.; Endo, M.; Jain, R. K.

    1997-01-01

    The present study was designed to define the role of nitric oxide (NO) in tumor microcirculation, through the direct intravital microcirculatory observations after administration of NO synthase (NOS) inhibitor and NO donor both regionally and systemically. More specifically, we tested the following hypotheses: 1) endogenous NO derived from tumor vascular endothelium and/or tumor cells increases and/or maintains tumor blood flow, decreases leukocyte-endothelial interactions, and increases vascular permeability, 2) exogenous NO can increase tumor blood flow via vessel dilatation and decrease leukocyte-endothelial interactions, and 3) NO production and tissue responses to NO are tumor dependent. To this end, a murine mammary adenocarcinoma (MCaIV) and a human colon adenocarcinoma (LS174T) were implanted in the dorsal skinfold chamber in C3H and severe combined immunodeficient mice, respectively, and observed by means of intravital fluorescence microscopy. Both regional and systemic inhibition of endogenous NO by N omega-nitro-L-arginine methyl ester (L-NAME; 100 mumol/L superfusion or 10 mg/kg intravenously) significantly decreased vessel diameter and local blood flow rate. The diameter change was dominant on the arteriolar side. Superfusion of NO donor (spermine NO, 100 mumol/L) increased tumor vessel diameter and flow rate, whereas systemic injection of spermine NO (2.62 mg/kg) had no significant effect on these parameters. Rolling and stable adhesion of leukocytes were significantly increased by intravenous injection of L-NAME. In untreated animals, both MCaIV and LS174T tumor vessels were leaky to albumin. Systemic NO inhibition significantly attenuated tumor vascular permeability of MCaIV but not of LS174T tumor. Immunohistochemical studies, using polyclonal antibodies to endothelial NOS and inducible NOS, revealed a diffuse pattern of positive labeling in both MCaIV and LS174T tumors. Nitrite and nitrate levels in tumor interstitial fluid of MCaIV but not of LS174T were significantly higher than that in normal subcutaneous interstitial fluid. These results support our hypotheses regarding the microcirculatory response to NO in tumors. Modulation of NO level in tumors is a potential strategy for altering tumor hemodynamics and thus improving oxygen, drug, gene vector, and effector cell delivery to solid tumors. Images Figure 5 PMID:9033284

  1. Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) in normal and atherosclerotic human arteries.

    PubMed Central

    Couffinhal, T.; Kearney, M.; Witzenbichler, B.; Chen, D.; Murohara, T.; Losordo, D. W.; Symes, J.; Isner, J. M.

    1997-01-01

    Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) is an endothelial-cell-specific mitogen; as such, its role in angiogenesis has been studied extensively. VEGF/VPF may also serve as a local, endogenous regulator of large-vessel endothelial cell integrity. Surprisingly, however, VEGF/VPF expression in normal and/or atherosclerotic vessels has not been previously characterized. Accordingly, we studied normal human arteries and veins as well as atherosclerotic and restenotic human coronary arteries for evidence of VEGF/VPF expression. VEGF/VPF was detected immunohistochemically in sections of normal human aorta, mammary artery, and saphenous vein. Moreover, VEGF/ VPF expression was identified in 32 (97%) of 33 pathological coronary arterial specimens; the extent of VEGF/VPF staining was graded as moderate to strong in 21 of the 32 (66%) positive specimens. VEGF/VPF double immunostaining and in situ hybridization demonstrated that smooth muscle cells constitute the principal cellular source of VEGF/VPF. VEGF/VPF immunostaining among primary atherosclerotic lesions localized predominantly to the extracellular matrix. In restenotic specimens, VEGF/VPF immunostaining was more prominently cellular, particularly among proliferating smooth muscle cells. Although VEGF/VPF expression was observed in areas of macrophage infiltration, double immunostaining failed to localize VEGF/VPF to macrophages in these foci; instead, double immunostaining clearly identified CD45RO-positive cells as responsible for VEGF/VPF expression in such areas. No correlation could be demonstrated between VEGF/VPF immunostaining and extent of vasa vasorum. These findings thus establish that postnatal VEGF/VPF expression is a feature of normal human arteries and veins and is often extensively expressed in arteries narrowed by atherosclerotic plaque. VEGF/VPF expression in the wall and/or plaque of medium to large vessels suggests a role for VEGF/VPF other than promoting angiogenesis. This role may involve maintenance and repair of luminal endothelium. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9137092

  2. PEDF improves cardiac function in rats with acute myocardial infarction via inhibiting vascular permeability and cardiomyocyte apoptosis.

    PubMed

    Zhang, Hao; Wang, Zheng; Feng, Shou-Jie; Xu, Lei; Shi, He-Xian; Chen, Li-Li; Yuan, Guang-Da; Yan, Wei; Zhuang, Wei; Zhang, Yi-Qian; Zhang, Zhong-Ming; Dong, Hong-Yan

    2015-01-01

    Pigment epithelium-derived factor (PEDF) is a pleiotropic gene with anti-inflammatory, antioxidant and anti-angiogenic properties. However, recent reports about the effects of PEDF on cardiomyocytes are controversial, and it is not known whether and how PEDF acts to inhibit hypoxic or ischemic endothelial injury in the heart. In the present study, adult Sprague-Dawley rat models of acute myocardial infarction (AMI) were surgically established. PEDF-small interfering RNA (siRNA)-lentivirus (PEDF-RNAi-LV) or PEDF-LV was delivered into the myocardium along the infarct border to knockdown or overexpress PEDF, respectively. Vascular permeability, cardiomyocyte apoptosis, myocardial infarct size and animal cardiac function were analyzed. We also evaluated PEDF's effect on the suppression of the endothelial permeability and cardiomyocyte apoptosis under hypoxia in vitro. The results indicated that PEDF significantly suppressed the vascular permeability and inhibited hypoxia-induced endothelial permeability through PPARγ-dependent tight junction (TJ) production. PEDF protected cardiomyocytes against ischemia or hypoxia-induced cell apoptosis both in vivo and in vitro via preventing the activation of caspase-3. We also found that PEDF significantly reduced myocardial infarct size and enhanced cardiac function in rats with AMI. These data suggest that PEDF could protect cardiac function from ischemic injury, at least by means of reducing vascular permeability, cardiomyocyte apoptosis and myocardial infarct size. PMID:25768344

  3. Arsenite induces endothelial cell permeability increase through a reactive oxygen species-vascular endothelial growth factor pathway.

    PubMed

    Bao, Lingzhi; Shi, Honglian

    2010-11-15

    As a potent environmental oxidative stressor, arsenic exposure has been reported to exacerbate cardiovascular diseases and increase vascular endothelial cell monolayer permeability. However, the underlying mechanism of this effect is not well understood. In this paper, we test our hypothesis that reactive oxygen species (ROS)-induced vascular endothelial growth factor (VEGF) expression may play an important role in an arsenic-caused increase of endothelial cell monolayer permeability. The mouse brain vascular endothelial cell bEnd3 monolayer was exposed to arsenite for 1, 3, and 6 days. The monolayer permeability, VEGF protein release, and ROS generation were determined. In addition, VE-cadherin and zonula occludens-1 (ZO-1), two membrane structure proteins, were immunostained to elucidate the effects of arsenite on the cell-cell junction. The roles of ROS and VEGF in arsenite-induced permeability was determined by inhibiting ROS with antioxidants and immuno-depleting VEGF with a VEGF antibody. We observed that arsenite increased bEnd3 monolayer permeability, elevated the production of cellular ROS, and increased VEGF release. VE-cadherin and ZO-1 disruptions were also found in cells treated with arsenite. Furthermore, both antioxidant (N-acetyl cysteine and tempol) and the VEGF antibody treatments significantly lowered the arsenite-induced permeability of the bEnd3 monolayer as well as VEGF expression. VE-cadherin and ZO-1 disruptions were also diminished by N-acetyl cysteine and the VEGF antibody. Our data suggest that the increase in VEGF expression caused by ROS may play an important role in the arsenite-induced increase in endothelial cell permeability. PMID:20954712

  4. [Estimation of the Index Value of Dielectric Permeability inside the Membranes of Purple Bacteria].

    PubMed

    Borisov, A Y; Kozlovsky, V S

    2015-01-01

    The joint application of the precise X-ray data for isolated bacteriochlorophyll complexes of reaction centers and the fundamental formulae for the energy of interaction between two equal dipoles enabled us to suggest a new methodical approach for determination of the values of the index of dielectric permeability in the micro volume enclosing special pairs in Rhodobacter sphaeroides reaction centers. The most probable value for this parameter was thus determined within 1.66-1.76. This approach was generalized for the inner layer of the membranes of purple bacteria and yielded the index value about 1.70-1.85. It is argued that this range of dielectric permeability is adequate for bacterial and plant membranes as well. Low magnitude of this parameter contributes to higher efficiency of energy migration from vast light-harvesting chlorophyll "antenna" to the energy converting reaction centers and hence to higher efficiency of the whole photosynthesis. PMID:26394473

  5. Measurement of injectivity indexes in geothermal wells with two permeable zones

    SciTech Connect

    Acuna, Jorge A.

    1994-01-20

    Injectivity tests in wells with two permeable zones and internal flow is analyzed in order to include the usually severe thermal transient effects. A theoretical analysis is performed and a method devised to obtain information from the thermal transient, provided that temperature is measured simultaneously with pressure. The technique is illustrated with two real tests performed at Miravalles, Costa Rica. It allows to estimate total injectivity index as well as the injectivity index of each one of the two zones separately. Correct position of measuring tools and nature of spontaneous internal flow is also discussed.

  6. VEGFR2 induces c-Src signaling and vascular permeability in vivo via the adaptor protein TSAd

    PubMed Central

    Sun, Zuyue; Li, Xiujuan; Massena, Sara; Kutschera, Simone; Padhan, Narendra; Gualandi, Laura; Sundvold-Gjerstad, Vibeke; Gustafsson, Karin; Choy, Wing Wen; Zang, Guangxiang; Quach, My; Jansson, Leif; Phillipson, Mia; Abid, Md Ruhul; Spurkland, Anne

    2012-01-01

    Regulation of vascular endothelial (VE) growth factor (VEGF)–induced permeability is critical in physiological and pathological processes. We show that tyrosine phosphorylation of VEGF receptor 2 (VEGFR2) at Y951 facilitates binding of VEGFR2 to the Rous sarcoma (Src) homology 2-domain of T cell–specific adaptor (TSAd), which in turn regulates VEGF-induced activation of the c-Src tyrosine kinase and vascular permeability. c-Src was activated in vivo and in vitro in a VEGF/TSAd-dependent manner, and was regulated via increased phosphorylation at pY418 and reduced phosphorylation at pY527. Tsad silencing blocked VEGF-induced c-Src activation, but did not affect pathways involving phospholipase Cγ, extracellular regulated kinase, and endothelial nitric oxide. VEGF-induced rearrangement of VE–cadherin–positive junctions in endothelial cells isolated from mouse lungs, or in mouse cremaster vessels, was dependent on TSAd expression, and TSAd formed a complex with VE-cadherin, VEGFR2, and c-Src at endothelial junctions. Vessels in tsad−/− mice showed undisturbed flow and pressure, but impaired VEGF-induced permeability, as measured by extravasation of Evans blue, dextran, and microspheres in the skin and the trachea. Histamine-induced extravasation was not affected by TSAd deficiency. We conclude that TSAd is required for VEGF-induced, c-Src-mediated regulation of endothelial cell junctions and for vascular permeability. PMID:22689825

  7. VEGFR2 induces c-Src signaling and vascular permeability in vivo via the adaptor protein TSAd.

    PubMed

    Sun, Zuyue; Li, Xiujuan; Massena, Sara; Kutschera, Simone; Padhan, Narendra; Gualandi, Laura; Sundvold-Gjerstad, Vibeke; Gustafsson, Karin; Choy, Wing Wen; Zang, Guangxiang; Quach, My; Jansson, Leif; Phillipson, Mia; Abid, Md Ruhul; Spurkland, Anne; Claesson-Welsh, Lena

    2012-07-01

    Regulation of vascular endothelial (VE) growth factor (VEGF)-induced permeability is critical in physiological and pathological processes. We show that tyrosine phosphorylation of VEGF receptor 2 (VEGFR2) at Y951 facilitates binding of VEGFR2 to the Rous sarcoma (Src) homology 2-domain of T cell-specific adaptor (TSAd), which in turn regulates VEGF-induced activation of the c-Src tyrosine kinase and vascular permeability. c-Src was activated in vivo and in vitro in a VEGF/TSAd-dependent manner, and was regulated via increased phosphorylation at pY418 and reduced phosphorylation at pY527. Tsad silencing blocked VEGF-induced c-Src activation, but did not affect pathways involving phospholipase Cγ, extracellular regulated kinase, and endothelial nitric oxide. VEGF-induced rearrangement of VE-cadherin-positive junctions in endothelial cells isolated from mouse lungs, or in mouse cremaster vessels, was dependent on TSAd expression, and TSAd formed a complex with VE-cadherin, VEGFR2, and c-Src at endothelial junctions. Vessels in tsad(-/-) mice showed undisturbed flow and pressure, but impaired VEGF-induced permeability, as measured by extravasation of Evans blue, dextran, and microspheres in the skin and the trachea. Histamine-induced extravasation was not affected by TSAd deficiency. We conclude that TSAd is required for VEGF-induced, c-Src-mediated regulation of endothelial cell junctions and for vascular permeability. PMID:22689825

  8. Antioxidant-related gene polymorphisms associated with the cardio-ankle vascular index in young Russians.

    PubMed

    Sorokin, Alexander V; Kotani, Kazuhiko; Bushueva, Olga Y; Polonikov, Alexey V

    2016-04-01

    The cardio-ankle vascular index is a measure of arterial stiffness, whereas oxidative stress underlies arterial pathology. This study aimed to investigate the association between the cardio-ankle vascular index and antioxidant-related gene polymorphisms in young Russians. A total of 89 patients (mean age, 21.6 years) were examined by the cardio-ankle vascular index and for 15 gene polymorphisms related to antioxidant enzymes including FMO3 (flavin-containing monooxygenase 3), GPX1 (glutathione peroxidase 1), and GPX4 (glutathione peroxidase 4). A higher cardio-ankle vascular index level was detected in carriers with the KK-genotype of FMO3 polymorphism rs2266782 than in those without (mean levels: 6.2 versus 5.6, respectively, p<0.05). Similarly, a higher cardio-ankle vascular index level was seen in carriers with the CC-genotype of GPX4 polymorphism rs713041 than in those without (6.0 versus 5.5, respectively, p<0.05). We did not observe significant associations between the cardio-ankle vascular index levels and the other gene polymorphisms. Although carriers with the LL-genotype of GPX1 polymorphism rs1050450 showed a higher diastolic blood pressure level than those without, the polymorphism did not affect the cardio-ankle vascular index level. This study showed a significant association between rs2266782 and rs713041 polymorphisms and arterial stiffness, as measured by the cardio-ankle vascular index, in young Russians. The pathways utilised by antioxidant enzymes may be responsible for early arterial stiffening in the Russian population. PMID:26081749

  9. Attenuation of vascular permeability by methylnaltrexone: role of mOP-R and S1P3 transactivation.

    PubMed

    Singleton, Patrick A; Moreno-Vinasco, Liliana; Sammani, Saad; Wanderling, Sherry L; Moss, Jonathan; Garcia, Joe G N

    2007-08-01

    Endothelial cell (EC) barrier dysfunction (i.e., increased vascular permeability) is observed in inflammatory states, tumor angiogenesis, atherosclerosis, and both sepsis and acute lung injury. Therefore, agents that preserve vascular integrity have important clinical therapeutic implications. We examined the effects of methylnaltrexone (MNTX), a mu opioid receptor (mOP-R) antagonist, on human pulmonary EC barrier disruption produced by edemagenic agents including morphine, the endogenous mOP-R agonist DAMGO, thrombin, and LPS. Pretreatment of EC with MNTX (0.1 muM, 1 h) or the uncharged mOP-R antagonist naloxone attenuated morphine- and DAMGO-induced barrier disruption in vitro. However, MNTX, but not naloxone, pretreatment of EC inhibited thrombin- and LPS-induced barrier disruption, indicating potential mOP-R-independent effects of MNTX. In addition, intravenously delivered MNTX attenuated LPS-induced vascular hyperpermeability in the murine lung. We next examined the mechanistic basis for this MNTX barrier protection and observed that silencing of mOP-R attenuated the morphine- and DAMGO-induced EC barrier disruption, but not the permeability response to either thrombin or LPS. Because activation of the sphingosine 1-phosphate receptor, S1P(3), is key to a number of barrier-disruptive responses, we examined the role of this receptor in the permeability response to mOP-R ligation. Morphine, DAMGO, thrombin, and LPS induced RhoA/ROCK-mediated threonine phosphorylation of S1P(3), which was blocked by MNTX, suggesting S1P(3) transactivation. In addition, silencing of S1P(3) receptor expression (siRNA) abolished the permeability response to each edemagenic agonist. These results indicate that MNTX provides barrier protection against edemagenic agonists via inhibition of S1P(3) receptor activation and represents a potentially useful therapeutic agent for syndromes of increased vascular permeability. PMID:17395891

  10. Differentiation between vascular permeability factor and IL-2 in lymphocyte supernatants from patients with minimal-change nephrotic syndrome.

    PubMed Central

    Heslan, J M; Branellec, A I; Pilatte, Y; Lang, P; Lagrue, G

    1991-01-01

    Immunotherapy of cancers with recombinant IL-2 induces a vascular leak syndrome which is mainly due to an increase in vascular permeability. A lymphokine, the vascular permeability factor (VPF), which increases vascular permeability, has been characterized in minimal-change nephrotic syndrome (MCNS) and appeared very similar to IL-2. Here we have undertaken a further characterization of VPF in order to determine how closely related this factor was to human IL-2. Both the IL-2 bioassay and Western blot analysis of the MCNS lymphocyte concentrated supernatants with high VPF activity revealed the presence of low quantities of IL-2. Preparative isoelectrofocusing (IEF) of concentrated supernatants resolved each lymphokine in a separate peak, with apparent pIs of 5.2 for VPF and 7.5-10.1 for IL-2. Since a sensitive IL-2 ELISA failed to exhibit any significant antigenic presence of IL-2 in the IEF fractions with the highest VPF activity, we conclude that VPF activity of the concentrated supernatants is not related to IL-2 nor to a biologically inactive form of IL-2. When concentrated supernatants were subjected to preparative SDS-PAGE, VPF activity was recovered within low mol. wt material (1-12 kD). Immunoadsorption experiments gave definite proof since the complete removal of IL-2 from concentrated supernatants did not affect the VPF activity. Although high amounts of IL-2 increased vascular permeability, our experiments clearly demonstrate that VPF is a lymphokine distinct from IL-2. Images Fig. 1 Fig. 3 Fig. 4 PMID:1914229

  11. Effect of Melilotus suaveolens extract on pulmonary microvascular permeability by downregulating vascular endothelial growth factor expression in rats with sepsis

    PubMed Central

    LIU, MING-WEI; SU, MEI-XIAN; ZHANG, WEI; WANG, YUN HUI; QIN, LAN-FANG; LIU, XU; TIAN, MAO-LI; QIAN, CHUAN-YUN

    2015-01-01

    A typical indicator of sepsis is the development of progressive subcutaneous and body-cavity edema, which is caused by the breakdown of endothelial barrier function, leading to a marked increase in vascular permeability. Microvascular leakage predisposes to microvascular thrombosis, breakdown of microcirculatory flow and organ failure, which are common events preceding mortality in patients with severe sepsis. Melilotus suaveolens (M. suaveolens) is a Traditional Tibetan Medicine. Previous pharmacological studies have demonstrated that an ethanolic extract of M. suaveolens has powerful anti-inflammatory activity and leads to an improvement in capillary permeability. However, the mechanisms underlying its pharmacological activity remain elusive. The present study aimed to assess the impact of M. suaveolens extract tablets on pulmonary vascular permeability, and their effect on regulating lung inflammation and the expression of vascular endothelial growth factor (VEGF) in the lung tissue of rats with sepsis. A cecal ligation and puncture (CLP) sepsis model was established for both the control and treatment groups. ~2 h prior to surgery, 25 mg/kg of M. suaveolens extract tablet was administered to the treatment group. Polymerase chain reaction and western blot analyses were used to assess the expression of nuclear factor (NF)-κB and VEGF in the lung tissue, and ELISA was applied to detect changes in serum tumor necrosis factor-α as well as interleukins (IL) -1, -4, -6, and -10. The lung permeability, wet/dry weight ratio and lung pathology were determined. The results demonstrated that in the lung tissue of CLP-rats with sepsis, M. suaveolens extract inhibited the expression of NF-κB, reduced the inflammatory response and blocked the expression of VEGF, and thus significantly decreased lung microvascular permeability. The effects of M. Suaveolens extract may be of potential use in the treatment of CLP-mediated lung microvascular permeability. PMID:25571852

  12. Dissociation of cutaneous vascular permeability and the development of cutaneous late-phase allergic reactions

    SciTech Connect

    Keahey, T.M.; Indrisano, J.; Kaliner, M.A.

    1989-03-01

    Cutaneous late-phase allergic reactions (LPR) are characterized by an early, immediate hypersensitivity whealing reaction followed by persistent, localized induration that peaks 6 to 8 hours later. In this study we used rodents to examine the relationship between vascular permeability (VP) and induration during LPR. Efflux of macromolecular tracers from the vasculature into skin was measured with the use of radiolabeled albumin and neutral dextran tracers having large molecular radii. To induce LPR immunologically, we used either intradermal injections of antirat IgE or passive cutaneous sensitization with IgE antidinitrophenyl followed 24 hours later by intravenous injection of albumin-dinitrophenyl. (/sup 125/I)albumin and (/sup 3/H)dextran tracers were injected intravenously before and at various intervals after the induction of LPR. Although a marked increase in VP occurred within the first 30 minutes after induction of mast cell degranulation, analysis of radiolabeled tracer accumulation at 2, 4, 8, and 24 hours failed to demonstrate any further increase in VP. These findings indicate that the induration observed in rodent LPR is not associated with increased VP beyond the immediate hypersensitivity stage and suggest that impairment of lymphatic drainage, cellular infiltration, and/or fibrin deposition are contributing factors.

  13. Asef controls vascular endothelial permeability and barrier recovery in the lung

    PubMed Central

    Tian, Xinyong; Tian, Yufeng; Gawlak, Grzegorz; Meng, Fanyong; Kawasaki, Yoshihiro; Akiyama, Tetsu; Birukova, Anna A.

    2015-01-01

    Increased levels of hepatocyte growth factor (HGF) in injured lungs may reflect a compensatory response to diminish acute lung injury (ALI). HGF-induced activation of Rac1 GTPase stimulates endothelial barrier protective mechanisms. This study tested the involvement of Rac-specific guanine nucleotide exchange factor Asef in HGF-induced endothelial cell (EC) cytoskeletal dynamics and barrier protection in vitro and in a two-hit model of ALI. HGF induced membrane translocation of Asef and stimulated Asef Rac1-specific nucleotide exchange activity. Expression of constitutively activated Asef mutant mimicked HGF-induced peripheral actin cytoskeleton enhancement. In contrast, siRNA-induced Asef knockdown or expression of dominant-negative Asef attenuated HGF-induced Rac1 activation evaluated by Rac-GTP pull down and FRET assay with Rac1 biosensor. Molecular inhibition of Asef attenuated HGF-induced peripheral accumulation of cortactin, formation of lamellipodia-like structures, and enhancement of VE-cadherin adherens junctions and compromised HGF-protective effect against thrombin-induced RhoA GTPase activation, Rho-dependent cytoskeleton remodeling, and EC permeability. Intravenous HGF injection attenuated lung inflammation and vascular leak in the two-hit model of ALI induced by excessive mechanical ventilation and thrombin signaling peptide TRAP6. This effect was lost in Asef−/− mice. This study shows for the first time the role of Asef in HGF-mediated protection against endothelial hyperpermeability and lung injury. PMID:25518936

  14. Real-time imaging reveals local, transient vascular permeability and tumor cell intravasation stimulated by Tie2Hi macrophage-derived VEGFA

    PubMed Central

    Harney, Allison S.; Arwert, Esther N.; Entenberg, David; Wang, Yarong; Guo, Peng; Qian, Bin-Zhi; Oktay, Maja H.; Pollard, Jeffrey W.; Jones, Joan G.; Condeelis, John S.

    2015-01-01

    Dissemination of tumor cells is an essential step in metastasis. Direct contact between a macrophage, Mena over-expressing tumor cell and endothelial cell [Tumor MicroEnvironment of Metastasis (TMEM)], correlates with metastasis in breast cancer patients. Here we show, using intravital high-resolution two-photon microscopy, that transient vascular permeability and tumor cell intravasation occur simultaneously and exclusively at TMEM. The hyperpermeable nature of tumor vasculature is described as spatially and temporally heterogeneous. Using real-time imaging we observed that vascular permeability is transient, restricted to TMEM, and required for tumor cell dissemination. VEGFA signaling from Tie2Hi TMEM macrophages causes local loss of vascular junctions, transient vascular permeability and tumor cell intravasation, demonstrating a role for TMEM within the primary mammary tumor. These data provide insight into the mechanism of tumor cell intravasation and vascular permeability in breast cancer, explaining the value of TMEM density as a predictor of distant metastatic recurrence in patients. PMID:26269515

  15. Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination.

    PubMed

    Beatty, P Robert; Puerta-Guardo, Henry; Killingbeck, Sarah S; Glasner, Dustin R; Hopkins, Kaycie; Harris, Eva

    2015-09-01

    The four dengue virus serotypes (DENV1 to DENV4) are mosquito-borne flaviviruses that cause up to ~100 million cases of dengue annually worldwide. Severe disease is thought to result from immunopathogenic processes involving serotype cross-reactive antibodies and T cells that together induce vasoactive cytokines, causing vascular leakage that leads to shock. However, no viral proteins have been directly implicated in triggering endothelial permeability, which results in vascular leakage. DENV nonstructural protein 1 (NS1) is secreted and circulates in patients' blood during acute infection; high levels of NS1 are associated with severe disease. We show that inoculation of mice with DENV NS1 alone induces both vascular leakage and production of key inflammatory cytokines. Furthermore, simultaneous administration of NS1 with a sublethal dose of DENV2 results in a lethal vascular leak syndrome. We also demonstrate that NS1 from DENV1, DENV2, DENV3, and DENV4 triggers endothelial barrier dysfunction, causing increased permeability of human endothelial cell monolayers in vitro. These pathogenic effects of physiologically relevant amounts of NS1 in vivo and in vitro were blocked by NS1-immune polyclonal mouse serum or monoclonal antibodies to NS1, and immunization of mice with NS1 from DENV1 to DENV4 protected against lethal DENV2 challenge. These findings add an important and previously overlooked component to the causes of dengue vascular leak, identify a new potential target for dengue therapeutics, and support inclusion of NS1 in dengue vaccines. PMID:26355030

  16. Expression of vascular permeability factor/vascular endothelial growth factor by human granulosa and theca lutein cells. Role in corpus luteum development.

    PubMed Central

    Kamat, B. R.; Brown, L. F.; Manseau, E. J.; Senger, D. R.; Dvorak, H. F.

    1995-01-01

    Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is a cytokine that is overexpressed in many tumors, in healing wounds, and in rheumatoid arthritis. VPF/VEGF is thought to induce angiogenesis and accompanying connective tissue stroma in two ways: 1), by increasing microvascular permeability, thereby modifying the extracellular matrix and 2), as an endothelial cell mitogen. VPF/VEGF has been reported in animal corpora lutea and we investigated the possibility that it might be present in human ovaries and have a role in corpus luteum formation. We here report that VPF/VEGF mRNA and protein are expressed by human ovarian granulosa and theca cells late in follicle development and, subsequent to ovulation, by granulosa and theca lutein cells. Therefore, VPF/VEGF is ideally positioned to provoke the increased permeability of thecal blood vessels that occurs shortly before ovulation. VPF/VEGF likely also contributes to the angiogenesis and connective tissue stroma generation that accompany corpus luteum/corpus albicans formation. Finally, VPF/VEGF was overexpressed in the hyperthecotic ovarian stroma of Stein-Leventhal syndrome in which it may also have a pathophysiological role. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7531945

  17. Bactericidal/permeability-increasing protein protects vascular endothelial cells from lipopolysaccharide-induced activation and injury.

    PubMed

    Arditi, M; Zhou, J; Huang, S H; Luckett, P M; Marra, M N; Kim, K S

    1994-09-01

    Bactericidal/permeability-increasing protein (BPI), a human neutrophil granule protein, has been shown to bind lipopolysaccharide (LPS) and neutralize LPS-mediated cytokine production in adherent monocytes and the whole-blood system. In this study we investigated the ability of recombinant human BPI (rBPI) to inhibit LPS-induced vascular endothelial cell (EC) injury and activation. rBPI inhibited significantly both rough and smooth LPS-mediated injury for cultured bovine brain microvessel ECs, as measured by lactic dehydrogenase release, and blocked the LPS-induced interleukin-6 (IL-6) release from human umbilical vein ECs in a dose-dependent manner. BPI was able to inhibit LPS-mediated EC injury or activation whether it was added before or at the same time with LPS, but delaying the time of addition of rBPI resulted only in a partial inhibition. BPI also inhibited LPS-induced tumor necrosis factor alpha, IL-1 beta, and IL-6 release from human whole blood. This inhibition of tumor necrosis factor alpha, IL-1 beta, and IL-6 release from whole blood was maximal when BPI was premixed with LPS before addition to blood and was partial when BPI was added simultaneously with LPS, but no inhibition was observed when the addition of rBPI was delayed for 5 min. These findings suggest that rBPI is a potent inhibitor of LPS-mediated responses in ECs and whole blood and underscore the potential use of BPI in treatment or prevention of endotoxic shock. In contrast, the anti-lipid A monoclonal antibodies HA-1A and E5 were ineffective in inhibiting LPS-mediated EC injury and activation as well as LPS-induced cytokine release in whole blood. PMID:8063410

  18. Modulation of VEGF-Induced Retinal Vascular Permeability by Peroxisome Proliferator-Activated Receptor-β/δ

    PubMed Central

    Suarez, Sandra; McCollum, Gary W.; Bretz, Colin A.; Yang, Rong; Capozzi, Megan E.; Penn, John S.

    2014-01-01

    Purpose. Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability contributes to diabetic macular edema (DME), a serious vision-threatening condition. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) antagonist/reverse agonist, GSK0660, inhibits VEGF-induced human retinal microvascular endothelial cell (HRMEC) proliferation, tubulogenesis, and oxygen-induced retinal vasculopathy in newborn rats. These VEGF-induced HRMEC behaviors and VEGF-induced disruption of endothelial cell junctional complexes may well share molecular signaling events. Thus, we sought to examine the role of PPARβ/δ in VEGF-induced retinal hyperpermeability. Methods. Transendothelial electrical resistance (TEER) measurements were performed on HRMEC monolayers to assess permeability. Claudin-1/Claudin-5 localization in HRMEC monolayers was determined by immunocytochemistry. Extracellular signal-regulated protein kinases 1 and 2 (Erk 1/2) phosphorylation, VEGF receptor 1 (VEGFR1) and R2 were assayed by Western blot analysis. Expression of VEGFR1 and R2 was measured by quantitative RT-PCR. Last, retinal vascular permeability was assayed in vivo by Evans blue extravasation. Results. Human retinal microvascular endothelial cell monolayers treated with VEGF for 24 hours showed decreased TEER values that were completely reversed by the highest concentration of GSK0660 (10 μM) and PPARβ/δ-directed siRNA (20 μM). In HRMEC treated with VEGF, GSK0660 stabilized tight-junctions as evidenced by Claudin-1 staining, reduced phosphorylation of Erk1/2, and reduced VEGFR1/2 expression. Peroxisome proliferator-activated receptor β/δ siRNA had a similar effect on VEGFR expression and Claudin-1, supporting the specificity of GSK0660 in our experiments. Last, GSK0660 significantly inhibited VEGF-induced retinal vascular permeability and reduced retinal VEGFR1and R2 levels in C57BL/6 mice. Conclusions. These data suggest a protective effect for PPARβ/δ antagonism against VEGF-induced vascular permeability, possibly through reduced VEGFR expression. Therefore, antagonism/reverse agonism of PPARβ/δ siRNA may represent a novel therapeutic methodology against retinal hyperpermeability and is worthy of future investigation. PMID:25406289

  19. Sp1-mediated nonmuscle myosin light chain kinase expression and enhanced activity in vascular endothelial growth factor–induced vascular permeability

    PubMed Central

    2015-01-01

    Abstract Despite the important role played by the nonmuscle isoform of myosin light chain kinase (nmMLCK) in vascular barrier regulation and the implication of both nmMLCK and vascular endothelial growth factor (VEGF) in the pathogenesis of acute respiratory distress syndrome (ARDS), the role played by nmMLCK in VEGF-induced vascular permeability is poorly understood. In this study, the role played by nmMLCK in VEGF-induced vascular hyperpermeability was investigated. Human lung endothelial cell barrier integrity in response to VEGF is examined in both the absence and the presence of nmMLCK small interfering RNAs. Levels of nmMLCK messenger RNA (mRNA), protein, and promoter activity expression were monitored after VEGF stimulation in lung endothelial cells. nmMYLK promoter activity was assessed using nmMYLK promoter luciferase reporter constructs with a series of nested deletions. nmMYLK transcriptional regulation was further characterized by examination of a key transcriptional factor. nmMLCK plays an important role in VEGF-induced permeability. We found that activation of the VEGF signaling pathway in lung endothelial cells increases MYLK gene product at both mRNA and protein levels. Increased nmMLCK mRNA and protein expression is a result of increased nmMYLK promoter activity, regulated in part by binding of the Sp1 transcription factor on triggering by the VEGF signaling pathway. Taken together, these findings suggest that MYLK is an important ARDS candidate gene and a therapeutic target that is highly influenced by excessive VEGF concentrations in the inflamed lung. PMID:26697178

  20. Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin.

    PubMed Central

    Senger, D. R.; Ledbetter, S. R.; Claffey, K. P.; Papadopoulos-Sergiou, A.; Peruzzi, C. A.; Detmar, M.

    1996-01-01

    We have identified several mechanisms by which the angiogenic cytokine vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) likely regulates endothelial cells (EC) migration. VPF/VEGF induced dermal microvascular EC expression of mRNAs encoding the alphav and beta3 integrin subunits resulting in increased levels of the alphavbeta3 heterodimer at the cell surface, and VPF/VEGF also induced mRNA encoding osteopontin (OPN), an alphavbeta3 ligand. OPN promoted EC migration in vitro; and VPF/VEGF induction of alphavbeta3 was accompanied by increased EC migration toward OPN. Because thrombin cleavage of OPN results in substantial enhancement of OPN's adhesive properties, and because VPF/VEGF promotes increased microvascular permeability leading to activation of the extrinsic coagulation pathway, we also investigated whether VPF/VEGF facilitates thrombin cleavage of OPN in vivo. Consistent with this hypothesis, co-injection of VPF/VEGF together with OPN resulted in rapid cleavage of OPN by endogenous thrombin. Furthermore, in comparison with native OPN, thrombin-cleaved OPN stimulated a greater rate of EC migration in vitro, which was additive to the increased migration associated with induction of alpha v beta 3. Thus, these data demonstrate cooperative mechanisms for VPF/VEGF regulation of EC migration involving the alphavbeta3 integrin, the alphavbeta3 ligand OPN, and thrombin cleavage of OPN. These findings also illustrate an operational link between VPF/VEGF induction of EC gene expression and VPF/VEGF enhancement of microvascular permeability, suggesting that these distinct biological activities may act accordingly to stimulate EC migration during angiogenesis. Images Figure 1 Figure 2 Figure 4 PMID:8686754

  1. Duration of action of topical antiallergy drugs in a Guinea pig model of histamine-induced conjunctival vascular permeability.

    PubMed

    Beauregard, Clay; Stephens, Donna; Roberts, Leighann; Gamache, Daniel; Yanni, John

    2007-08-01

    The topical application of 0.1% olopatadine has been shown to provide significant attenuation of histamine-induced conjunctival vascular permeability (CVP) within 5 min and for as long as 24 h following a topical administration. The duration of the action of olopatadine was compared to that of epinastine, azelastine, and ketotifen. Male Hartley outbred guinea pigs (weighing 250-300 g) were administered a drug or vehicle as single O.D. topical drops, at times ranging from 4 to 24 h prior to histamine challenge. One (1) h prior to histamine challenge, the animals were administered 1 mL of Evans blue dye (1 mg/mL) through the marginal ear vein. Histamine (300 ng) was administered by a subconjunctival injection, and the guinea pigs were sacrificed 30 min later. CVP was assessed as the area and color intensity stained with Evans blue dye. The potencies of each drug were determined by calculating a 50% effective dose (ED(50)) for the inhibition of vascular leakage, compared to vehicle treatment, at each time point. Olopatadine was the only compound tested that was significantly effective 16 h following a single topical application. The ED(50) for olopatadine at 16 h was 0.031%. Epinastine, azelastine, and ketotifen were only significantly effective for up to 4 h. Olopatadine exhibited the longest duration of action for inhibition of histamine-induced vascular permeability in guinea pigs of any topical antiallergic drug tested. Concentrations of olopatadine, which provided a greater than 50% inhibition of the histamine-induced vascular response, were consistently less than 0.1% over a 16-h pretreatment interval. PMID:17803429

  2. Changes in Vascular Permeability and Expression of Different Angiogenic Factors Following Anti-Angiogenic Treatment in Rat Glioma

    PubMed Central

    Babajani-Feremi, Abbas; Varma, Nadimpalli R. S.; Iskander, A. S. M.; Anagli, John; Arbab, Ali S.

    2010-01-01

    Background Anti-angiogenic treatments of malignant tumors targeting vascular endothelial growth factor receptors (VEGFR) tyrosine kinase are being used in different early stages of clinical trials. Very recently, VEGFR tyrosine kinase inhibitor (Vetanalib, PTK787) was used in glioma patient in conjunction with chemotherapy and radiotherapy. However, changes in the tumor size, tumor vascular permeability, vascular density, expression of VEGFR2 and other angiogenic factors in response to PTK787 are not well documented. This study was to determine the changes in tumor size, vascular permeability, fractional plasma volume and expression of VEGFR2 in PTK787 treated U-251 glioma rat model by in vivo magnetic resonance imaging (MRI) and single photon emission computed tomography (SPECT). The findings were validated with histochemical and western blot studies. Methodologies and Principal Findings Seven days after implantation of U251 glioma cells, animals were treated with either PTK787 or vehicle-only for two weeks, and then tumor size, tumor vascular permeability transfer constant (Ktrans), fractional plasma volume (fPV) and expression of VEGFR2 and other relevant angiogenic factors were assessed by in vivo MRI and SPECT (Tc-99-HYNIC-VEGF), and by immunohistochemistry and western blot analysis. Dynamic contrast-enhanced MRI (DCE-MRI) using a high molecular weight contrast agent albumin-(GdDTPA) showed significantly increased Ktrans at the rim of the treated tumors compared to that of the central part of the treated as well as the untreated (vehicle treated) tumors. Size of the tumors was also increased in the treated group. Expression of VEGFR2 detected by Tc-99m-HYNIC-VEGF SPECT also showed significantly increased activity in the treated tumors. In PTK787-treated tumors, histological staining revealed increase in microvessel density in the close proximity to the tumor border. Western blot analysis indicated increased expression of VEGF, SDF-1, HIF-1α, VEGFR2, VEGFR3 and EGFR at the peripheral part of the treated tumors compared to that of central part of the treated tumors. Similar expression patters were not observed in vehicle treated tumors. Conclusion These findings indicate that PTK787 treatment induced over expression of VEGF as well as the Flk-1/VEGFR2 receptor tyrosine kinase, especially at the rim of the tumor, as proven by DCE-MRI, SPECT imaging, immunohistochemistry and western blot. PMID:20090952

  3. Tc-99m radioaerosol clearance as an index of pulmonary epithelial permeability

    SciTech Connect

    Waldman, D.L.

    1988-01-01

    This investigation examines radiopharmaceutical clearance as an index of alveolar-capillary membrane permeability and as an indicator of disease. Specific objectives include: evaluation of radiopharmaceutical chemical purity following aerosolization, investigation of a chemically related family of compounds to develop new radiopharmaceuticals with improved chemical properties, determination of reproducibility of the radiopharmaceutical clearance technique and the evaluation of the sensitivity of aerosolized solute clearance as an indicator of lung injury. The integrity of the radiopharmaceutical was examined prior to and following aerosol generation. The in vivo pharmacokinetics of a family of aerosolized solutes was evaluated in the beagle dog. The reproducibility of the biological response to radiopharmaceutical deposition was evaluated using dynamic functional imaging in humans and in the beagle. The sensitivity of the technique was evaluated using Tc-99m DTPA and an animal model for lung injury.

  4. The von Hippel-Lindau gene product inhibits vascular permeability factor/vascular endothelial growth factor expression in renal cell carcinoma by blocking protein kinase C pathways.

    PubMed

    Pal, S; Claffey, K P; Dvorak, H F; Mukhopadhyay, D

    1997-10-31

    Mutation or loss of function of the von Hippel-Lindau (VHL) tumor suppressor gene is regularly found in sporadic renal cell carcinomas (RCC), well vascularized malignant tumors that characteristically overexpress vascular permeability factor/vascular endothelial growth factor (VPF/VEGF). The wild-type VHL (wt-VHL) gene product acts to suppress VPF/VEGF expression, which is overexpressed when wt-VHL is inactive. The present study investigated the pathways by which VHL regulates VPF/VEGF expression. We found that inhibition of protein kinase C (PKC) represses VPF/VEGF expression in RCC cells that regularly overexpress VPF/VEGF. The wt-VHL expressed by stably transfected RCC cells forms cytoplasmic complexes with two specific PKC isoforms, zeta and delta, and prevents their translocation to the cell membrane where they otherwise would engage in signaling steps that lead to VPF/VEGF overexpression. Other experiments implicated mitogen-activated protein kinase (MAPK) phosphorylation as a downstream step in PKC regulation of VPF/VEGF expression. Taken together, these data demonstrate that wt-VHL, by neutralizing PKC isoforms zeta and delta and thereby inhibiting MAPK activation, plays an important role in preventing aberrant VPF/VEGF overexpression and the angiogenesis that results from such overexpression. PMID:9346879

  5. Simultaneous evaluation of vascular morphology, blood volume and transvascular permeability using SPION-based, dual-contrast MRI: imaging optimization and feasibility test.

    PubMed

    Kwon, Heon-Ju; Shim, Woo Hyun; Cho, Gyunggoo; Cho, Hyung Joon; Jung, Hoe Su; Lee, Chang Kyung; Lee, Yong Seok; Baek, Jin Hee; Kim, Eun Ju; Suh, Ji-Yeon; Sung, Yu Sub; Woo, Dong-Cheol; Kim, Young Ro; Kim, Jeong Kon

    2015-06-01

    Exploiting ultrashort-T(E) (UTE) MRI, T1-weighted positive contrast can be obtained from superparamagnetic iron oxide nanoparticles (SPIONs), which are widely used as a robust T2-weighted, negative contrast agent on conventional MR images. Our study was designed (a) to optimize the dual-contrast MRI method using SPIONs and (b) to validate the feasibility of simultaneously evaluating the vascular morphology, blood volume and transvascular permeability using the dual-contrast effect of SPIONs. All studies were conducted using 3 T MRI. According to numerical simulation, 0.15 mM was the optimal blood SPION concentration for visualizing the positive contrast effect using UTE MRI (T(E) = 0.09 ms), and a flip angle of 40° could provide sufficient SPION-induced enhancement and acceptable measurement noise for UTE MR angiography. A pharmacokinetic study showed that this concentration can be steadily maintained from 30 to 360 min after the injection of 29 mg/kg of SPIONs. An in vivo study using these settings displayed image quality and CNR of SPION-enhanced UTE MR angiography (image quality score 3.5; CNR 146) comparable to those of the conventional, Gd-enhanced method (image quality score 3.8; CNR 148) (p > 0.05). Using dual-contrast MR images obtained from SPION-enhanced UTE and conventional spin- and gradient-echo methods, the transvascular permeability (water exchange index 1.76-1.77), cerebral blood volume (2.58-2.60%) and vessel caliber index (3.06-3.10) could be consistently quantified (coefficient of variation less than 9.6%; Bland-Altman 95% limits of agreement 0.886-1.111) and were similar to the literature values. Therefore, using the optimized setting of combined SPION-based MRI techniques, the vascular morphology, blood volume and transvascular permeability can be comprehensively evaluated during a single session of MR examination. PMID:25865029

  6. Crosstalk between ACE2 and PLGF regulates vascular permeability during acute lung injury

    PubMed Central

    Wang, Lantao; Li, Yong; Qin, Hao; Xing, Dong; Su, Jie; Hu, Zhenjie

    2016-01-01

    Angiotensin converting enzyme 2 (ACE2) treatment suppresses the severity of acute lung injury (ALI), through antagonizing hydrolyzing angiotensin II (AngII) and the ALI-induced apoptosis of pulmonary endothelial cells. Nevertheless, the effects of ACE2 on vessel permeability and its relationship with placental growth factor (PLGF) remain ill-defined. In the current study, we examined the relationship between ACE2 and PLGF in ALI model in mice. We used a previously published bleomycin method to induce ALI in mice, and treated the mice with ACE2. We analyzed the levels of PLGF in these mice. The mouse lung vessel permeability was determined by a fluorescence pharmacokinetic assay following i.v. injection of 62.5 µg/kg Visudyne. PLGF pump or soluble Flt-1 (sFlt-1) pump was given to augment or suppress PLGF effects, respectively. The long-term effects on lung function were determined by measurement of lung resistance using methacholine. We found that ACE2 treatment did not alter PLGF levels in lung, but antagonized the effects of PLGF on increases of lung vessel permeability. Ectogenic PLGF abolished the antagonizing effects of ACE2 on the vessel permeability against PLGF. On the other hand, suppression of PLGF signaling mimicked the effects of ACE2 on the vessel permeability against PLGF. The suppression of vessel permeability resulted in improvement of lung function after ALI. Thus, ACE2 may antagonize the PLGF-mediated increases in lung vessel permeability during ALI, resulting in improvement of lung function after ALI.

  7. Src inhibitor reduces permeability without disturbing vascularization and prevents bone destruction in steroid-associated osteonecrotic lesions in rabbits.

    PubMed

    He, Yi-Xin; Liu, Jin; Guo, Baosheng; Wang, Yi-Xiang; Pan, Xiaohua; Li, Defang; Tang, Tao; Chen, Yang; Peng, Songlin; Bian, Zhaoxiang; Liang, Zicai; Zhang, Bao-Ting; Lu, Aiping; Zhang, Ge

    2015-01-01

    To examine the therapeutic effect of Src inhibitor on the VEGF mediating vascular hyperpermeability and bone destruction within steroid-associated osteonecrotic lesions in rabbits. Rabbits with high risk for progress to destructive repair in steroid-associated osteonecrosis were selected according to our published protocol. The selected rabbits were systemically administrated with either Anti-VEGF antibody (Anti-VEGF Group) or Src inhibitor (Src-Inhibition Group) or VEGF (VEGF-Supplement Group) or a combination of VEGF and Src inhibitor (Supplement &Inhibition Group) or control vehicle (Control Group) for 4 weeks. At 0, 2 and 4 weeks after administration, in vivo dynamic MRI, micro-CT based-angiography, histomorphometry and immunoblotting were employed to evaluate the vascular and skeletal events in different groups. The incidence of the destructive repair in the Anti-VEGF Group, Src-Inhibition Group and Supplement &Inhibition Group was all significantly lower than that in the Control Group. The angiogenesis was promoted in VEGF-Supplement Group, Src-Inhibition Group and Supplement &Inhibition Group, while the hyperpermeability was inhibited in Anti-VEGF Group, Src-Inhibition Group and Supplement &Inhibition Group. The trabecular structure was improved in Src-Inhibition Group and Supplement &Inhibition Group. Src inhibitor could reduce permeability without disturbing vascularization and prevent destructive repair in steroid-associated osteonecrosis. PMID:25748225

  8. Src inhibitor reduces permeability without disturbing vascularization and prevents bone destruction in steroid-associated osteonecrotic lesions in rabbits

    PubMed Central

    He, Yi-Xin; Liu, Jin; Guo, Baosheng; Wang, Yi-Xiang; Pan, Xiaohua; Li, Defang; Tang, Tao; Chen, Yang; Peng, Songlin; Bian, Zhaoxiang; Liang, Zicai; Zhang, Bao-Ting; Lu, Aiping; Zhang, Ge

    2015-01-01

    To examine the therapeutic effect of Src inhibitor on the VEGF mediating vascular hyperpermeability and bone destruction within steroid-associated osteonecrotic lesions in rabbits. Rabbits with high risk for progress to destructive repair in steroid-associated osteonecrosis were selected according to our published protocol. The selected rabbits were systemically administrated with either Anti-VEGF antibody (Anti-VEGF Group) or Src inhibitor (Src-Inhibition Group) or VEGF (VEGF-Supplement Group) or a combination of VEGF and Src inhibitor (Supplement & Inhibition Group) or control vehicle (Control Group) for 4 weeks. At 0, 2 and 4 weeks after administration, in vivo dynamic MRI, micro-CT based-angiography, histomorphometry and immunoblotting were employed to evaluate the vascular and skeletal events in different groups. The incidence of the destructive repair in the Anti-VEGF Group, Src-Inhibition Group and Supplement & Inhibition Group was all significantly lower than that in the Control Group. The angiogenesis was promoted in VEGF-Supplement Group, Src-Inhibition Group and Supplement & Inhibition Group, while the hyperpermeability was inhibited in Anti-VEGF Group, Src-Inhibition Group and Supplement & Inhibition Group. The trabecular structure was improved in Src-Inhibition Group and Supplement & Inhibition Group. Src inhibitor could reduce permeability without disturbing vascularization and prevent destructive repair in steroid-associated osteonecrosis. PMID:25748225

  9. Inhibition of SUR1 Decreases the Vascular Permeability of Cerebral Metastases1

    PubMed Central

    Thompson, Eric M; Pishko, Gregory L; Muldoon, Leslie L; Neuwelt, Edward A

    2013-01-01

    Inhibition of sulfonylurea receptor 1 (SUR1) by glyburide has been shown to decrease edema after subarachnoid hemorrhage. We investigated if inhibiting SUR1 reduces cerebral edema due to metastases, the most common brain tumor, and explored the putative association of SUR1 and the endothelial tight junction protein, zona occludens-1 (ZO-1). Nude rats were intracerebrally implanted with small cell lung carcinoma (SCLC) LX1 or A2058 melanoma cells (n = 36). Rats were administered vehicle, glyburide (4.8 µg twice, orally), or dexamethasone (0.35 mg, intravenous). Blood-tumor barrier (BTB) permeability (Ktrans) was evaluated before and after treatment using dynamic contrast-enhanced magnetic resonance imaging. SUR1 and ZO-1 expression was evaluated using immunofluorescence and Western blots. In both models, SUR1 expression was significantly increased (P < .05) in tumors. In animals with SCLC, control mean Ktrans (percent change ± standard error) was 101.8 ± 36.6%, and both glyburide (-21.4 ± 14.2%, P < .01) and dexamethasone (-14.2 ± 13.1%, P < .01) decreased BTB permeability. In animals with melanoma, compared to controls (117.1 ± 43.4%), glyburide lowered BTB permeability increase (3.2 ± 15.4%, P < .05), while dexamethasone modestly lowered BTB permeability increase (63.1 ± 22.1%, P > .05). Both glyburide (P < .001) and dexamethasone (P < .01) decreased ZO-1 gap formation. By decreasing ZO-1 gaps, glyburide was at least as effective as dexamethasone at halting increased BTB permeability caused by SCLC and melanoma. Glyburide is a safe, inexpensive, and efficacious alternative to dexamethasone for the treatment of cerebral metastasis-related vasogenic edema. PMID:23633925

  10. Vascular permeability changes in the central nervous system of rats with hyperacute experimental allergic encephalomyelitis induced with the aid of a substance from Bordetella pertussis.

    PubMed Central

    Bergman, R K; Munoz, J J; Portis, J L

    1978-01-01

    Development of hyperacute experimental allergic encephalomyelitis in Lewis rats after intraperitoneal administration of a mixture of guinea pig spinal cord emulsion and pertussigen from Bordetella pertussis was accompanied by an increase in vascular permeability in the central nervous system. The increased permeability was most striking in the spinal cord and seemed to be associated with the ascending development of paralysis. Rats that had completely recovered from paralysis did not have any increased permeability in the central nervous system. Rats which developed paralysis after inoculation with either guinea pig spinal cord emulsion alone or with complete Freund adjuvant had only a small degree, if any, of increased permeability in the vascular system of the central nervous system. Images PMID:211087

  11. Differential effects of formaldehyde exposure on the cell influx and vascular permeability in a rat model of allergic lung inflammation.

    PubMed

    Lino-dos-Santos-Franco, Adriana; Domingos, Helori Vanni; de Oliveira, Ana Paula Ligeiro; Breithaupt-Faloppa, Ana Cristina; Peron, Jean Pierre Schatzmann; Bolonheis, Simone; Muscará, Marcelo Nicolas; Oliveira-Filho, Ricardo Martins; Vargaftig, B Boris; Tavares-de-Lima, Wothan

    2010-09-01

    Exposure to air pollutants such as formaldehyde (FA) leads to inflammation, oxidative stress and immune-modulation in the airways and is associated with airway inflammatory disorders such as asthma. The purpose of our study was to investigate the effects of exposure to FA on the allergic lung inflammation. The hypothesized link between reactive oxygen species and the effects of FA was also studied. To do so, male Wistar rats were exposed to FA inhalation (1%, 90 min daily) for 3 days, and subsequently sensitized with ovalbumin (OVA)-alum by subcutaneous route. One week later the rats received another OVA-alum injection by the same route (booster). Two weeks later the rats were challenged with aerosolized OVA. The OVA challenge of rats upon FA exposure induced an elevated release of LTB 4, TXB 2, IL-1 beta, IL-6 and VEGF in lung cells, increased phagocytosis and lung vascular permeability, whereas the cell recruitment into lung was reduced. FA inhalation induced the oxidative burst and the nitration of proteins in the lung. Vitamins C, E and apocynin reduced the levels of LTB 4 in BAL-cultured cells of the FA and FA/OVA groups, but increased the cell influx into the lung of the FA/OVA rats. In OVA-challenged rats, the exposure to FA was associated to a reduced lung endothelial cells expression of intercellular cell adhesion molecule 1 (ICAM-1). In conclusion, our findings suggest that FA down regulate the cellular migration into the lungs after an allergic challenge and increase the ability of resident lung cells likely macrophages to generate inflammatory mediators, explaining the increased lung vascular permeability. Our data are indicative that the actions of FA involve mechanisms related to endothelium-leukocyte interactions and oxidative stress, as far as the deleterious effects of this air pollutant on airways are concerned. PMID:20658762

  12. Role of Staphylococcus aureus Virulence Factors in Inducing Inflammation and Vascular Permeability in a Mouse Model of Bacterial Endophthalmitis

    PubMed Central

    Kumar, Ajay; Kumar, Ashok

    2015-01-01

    Staphylococcus (S.) aureus is a common causative agent of bacterial endophthalmitis, a vision threatening complication of eye surgeries. The relative contribution of S. aureus virulence factors in the pathogenesis of endophthalmitis remains unclear. Here, we comprehensively analyzed the development of intraocular inflammation, vascular permeability, and the loss of retinal function in C57BL/6 mouse eyes, challenged with live S. aureus, heat-killed S. aureus (HKSA), peptidoglycan (PGN), lipoteichoic acid (LTA), staphylococcal protein A (SPA), α-toxin, and Toxic-shock syndrome toxin 1 (TSST1). Our data showed a dose-dependent (range 0.01 μg/eye to 1.0 μg/eye) increase in the levels of inflammatory mediators by all virulence factors. The cell wall components, particularly PGN and LTA, seem to induce higher levels of TNF-α, IL-6, KC, and MIP2, whereas the toxins induced IL-1β. Similarly, among the virulence factors, PGN induced higher PMN infiltration. The vascular permeability assay revealed significant leakage in eyes challenged with live SA (12-fold) and HKSA (7.3-fold), in comparison to other virulence factors (~2-fold) and controls. These changes coincided with retinal tissue damage, as evidenced by histological analysis. The electroretinogram (ERG) analysis revealed a significant decline in retinal function in eyes inoculated with live SA, followed by HKSA, SPA, and α-toxin. Together, these findings demonstrate the differential innate responses of the retina to S. aureus virulence factors, which contribute to intraocular inflammation and retinal function loss in endophthalmitis. PMID:26053426

  13. Negatively charged silver nanoparticles cause retinal vascular permeability by activating plasma contact system and disrupting adherens junction.

    PubMed

    Long, Yan-Min; Zhao, Xing-Chen; Clermont, Allen C; Zhou, Qun-Fang; Liu, Qian; Feener, Edward P; Yan, Bing; Jiang, Gui-Bin

    2016-05-01

    Silver nanoparticles (AgNPs) have been extensively used as antibacterial component in numerous healthcare, biomedical and consumer products. Therefore, their adverse effects to biological systems have become a major concern. AgNPs have been shown to be absorbed into circulation and redistributed into various organs. It is thus of great importance to understand how these nanoparticles affect vascular permeability and uncover the underlying molecular mechanisms. A negatively charged mecaptoundeonic acid-capped silver nanoparticle (MUA@AgNP) was investigated in this work. Ex vivo experiments in mouse plasma revealed that MUA@AgNPs caused plasma prekallikrein cleavage, while positively charged or neutral AgNPs, as well as Ag ions had no effect. In vitro tests revealed that MUA@AgNPs activated the plasma kallikrein-kinin system (KKS) by triggering Hageman factor autoactivation. By using specific inhibitors aprotinin and HOE 140, we demonstrated that KKS activation caused the release of bradykinin, which activated B2 receptors and induced the shedding of adherens junction protein, VE-cadherin. These biological perturbations eventually resulted in endothelial paracellular permeability in mouse retina after intravitreal injection of MUA@AgNPs. The findings from this work provided key insights for toxicity modulation and biomedical applications of AgNPs. PMID:26399585

  14. Aminoguanidine effects on nerve blood flow, vascular permeability, electrophysiology, and oxygen free radicals

    SciTech Connect

    Kihara, Mikihiro; Schmelzer, J.D.; Poduslo, J.F.; Curran, G.L.; Nickander, K.K.; Low, P.A. )

    1991-07-15

    Since advanced glycosylation end products have been suggested to mediate hyperglycemia-induced microvascular atherogenesis and because aminoguanidine (AG) prevents their generation, the authors examined whether AG could prevent or ameliorate the physiologic and biochemical indices of streptozotocin (STZ)-induced experimental diabetic neuropathy. Four groups of adult Sprague-Dawley rats were studied: group I received STZ plus AG, group II received STZ plus AG, group III received STZ alone, and group IV was a control. They monitored conduction and action potential amplitudes serially in sciatic-tibial and caudal nerves, nerve blood flow, oxygen free radical activity (conjugated dienes and hydroperoxides), and the product of the permeability coefficient and surface area to {sup 125}I-labeled albumin. STZ-induced diabetes (group III) caused a 57% reduction in nerve blood flow and in abnormal nerve conduction and amplitudes and a 60% increase in conjugated dienes. Nerve blood flow was normalized by 8 weeks with AG (groups I and II) and conduction was significantly improved, in a dose-dependent manner, by 16 and 24 weeks in sciatic-tibial and caudal nerves, respectively. The permeability coefficient was not impaired, suggesting a normal blood-nerve barrier function for albumin, and the oxygen free-radical indices were not ameliorated by AG. They suggest that AG reverses nerve ischemia and more gradually improves their electrophysiology by an action on nerve microvessels. AG may have potential in the treatment of diabetic neuropathy.

  15. The genesis of peritumoral vasogenic brain edema and tumor cysts: a hypothetical role for tumor-derived vascular permeability factor.

    PubMed Central

    Criscuolo, G. R.

    1993-01-01

    Cerebral edema and fluid-filled cysts are common accompaniments of brain tumors. They contribute to the mass effect imposed by the primary tumor and are often responsible for a patient's signs and symptoms. Cerebral edema significantly increases the morbidity associated with tumor biopsy, excision, radiation therapy, and chemotherapy. Both edema and cyst formation are thought to result from a deficiency in the blood-brain barrier, with consequent extravasation of water, electrolytes, and plasma proteins from altered tumor microvessels. The resultant expansion of the cerebral interstitial space contributes to the elevated intracranial pressure observed with brain tumors. Departure from the typical blood-brain barrier microvascular architecture may only partially explain the occurrence of edema and tumor cyst formation. Biochemical mediators have also been implicated in vascular extravasation. Vascular permeability factor or vascular endothelial growth factor (VPF/VEGF) is a protein that has recently been isolated from a variety of tumors including human brain tumors. VPFb is an extraordinarily potent inducer of both microvascular extravasation (edemagenesis) and the formation of new blood vessels (angiogenesis). Its role in tumor growth and progression would therefore appear pivotal. Herein, the author presents an updated account of the investigation of VPF. Historical and clinical perspectives of the study and treatment of tumor associated edema are provided. The efficacy of high-dose dexamethasone in the treatment of neoplastic brain edema is discussed. A hypothetical role for VPF in edemagenesis is presented and discussed. It is hoped that an expanded understanding of the mechanisms responsible for the genesis of edema will ultimately facilitate therapeutic intervention. Images Figure 1 Figure 2 Figure 3 PMID:7516104

  16. Investigating the turbulent to laminar flow transition across a permeable wall using Refractive-Index Matching (RIM)

    NASA Astrophysics Data System (ADS)

    Kim, T.; Blois, G.; Christensen, K. T.; Best, J.; Sambrook Smith, G.

    2013-12-01

    Permeable boundaries occur in a variety of natural environments. Turbulent flow overlying such boundaries is perhaps one of the most common, yet one of the most complex, types of flow found in any geophysical environment (e.g. river beds, forests). Unlike flows over impermeable walls, which have been widely studied, the characteristics of flow generated by permeable walls is relatively poorly understood. This work considers the flow both above and within a permeable bed focusing on the linkage between the free flow and the Darcian layer through an experimental investigation of the transitional (Brinkman) layer. To overcome the challenges related with the complex geometry of porous structures, a Refractive-Index-Matching (RIM) approach was employed to gain full optical access to the fluid flowing across a permeable wall. A permeable wall, made by packing acrylic spheres in a cubic arrangement, was immersed in an aqueous solution of Sodium Iodide (NaI). With such an arrangement the refractive index of the two phases was accurately matched, thus providing unobstructed optical access within the permeable bed. Data was collected on the flow across the wall interface and the turbulent attributes of these surface-subsurface interactions were quantified. The first part of this paper highlights the fundamental differences between flows above permeable and impermeable beds, and examines the implications of these differences for the mechanisms of mass and momentum exchange. For example, permeable beds have significant injection and suction events that move fluid across the interface, and result in an absence of low-speed streaks that are ubiquitous over impermeable beds. Additionally, in contrast to flow over impermeable surfaces, ejection events dominate over sweep events above a permeable wall, this has significant implications for the mechanisms of drag and thus energy dissipation that occur within the transition layer. The second part of the paper examines the complexity of flow within the pores of the transition layer. This new data suggests that the manner in which the transition layer is commonly represented in current numerical models may be inappropriate, and that future work must better account for flow across this dynamic interface.

  17. Host endothelial S1PR1 regulation of vascular permeability modulates tumor growth

    PubMed Central

    Sarkisyan, Gor; Gay, Laurie J.; Nguyen, Nhan; Felding, Brunhilde H.

    2014-01-01

    Understanding vascular growth and maturation in developing tumors has important implications for tumor progression, spread, and ultimately host survival. Modulating the signaling of endothelial G protein-coupled receptors (GPCRs) in blood and lymphatic vessels can enhance or limit tumor progression. Sphingosine 1-phosphate receptor 1 (S1PR1) is a GPCR for circulating lysophospholipid S1P that is highly expressed in blood and lymphatic vessels. Using the S1PR1- enhanced green fluorescent protein (eGFP) mouse model in combination with intravital imaging and pharmacologic modulation of S1PR1 signaling, we show that boundary conditions of high and low S1PR1 signaling retard tumor progression by enhancing or destabilizing neovasculature integrity, respectively. In contrast, midrange S1PR1 signaling, achieved by receptor antagonist titration, promotes abundant growth of small, organized vessels and thereby enhances tumor progression. Furthermore, in vivo S1PR1 antagonism supports lung colonization by circulating tumor cells. Regulation of endothelial S1PR1 dynamically controls vascular integrity and maturation and thus modulates angiogenesis, tumor growth, and hematogenous metastasis. PMID:24740542

  18. Peripheral augmentation index and vascular inflammation in autosomal dominant polycystic kidney disease

    PubMed Central

    Kuvin, Jeffrey T.; Sarnak, Mark J.; Perrone, Ronald D.; Miskulin, Dana C.; Rudym, Darya; Chandra, Priya; Karas, Richard H.; Menon, Vandana

    2011-01-01

    Background. Cardiovascular disease is the leading cause of premature mortality in autosomal dominant polycystic kidney disease (ADPKD). We examined peripheral augmentation index (AIx) as a measure of systemic vascular function and circulating markers of vascular inflammation in patients with ADPKD. Methods. Fifty-two ADPKD patients with hypertension and estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2, 50 ADPKD patients with hypertension and eGFR ≥60 mL/min/1.73 m2, 42 normotensive ADPKD patients with eGFR ≥60 mL/min/1.73 m2 and 51 normotensive healthy controls were enrolled in this study. AIx was measured from peripheral artery tone recordings using finger plethysmography. Serum levels of soluble intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule-1, P-selectin, E-selectin, soluble Fas (sFas) and Fas ligand (FasL) were measured as markers of vascular inflammation. Results. AIx was higher in all three patient groups with ADPKD compared to healthy controls (P < 0.05). AIx was similar between the normotensive ADPKD patients with eGFR ≥60 mL/min/1.73 m2 and hypertensive ADPKD patients with eGFR <60 mL/min/1.73 m2 (P > 0.05). ICAM, P-selectin, E-selectin and sFas were higher and FasL lower in all ADPKD groups compared to controls (P < 0.05). ICAM, P-selectin and E-selectin were similar between the normotensive ADPKD patients with eGFR ≥60 mL/min/1.73 m2 and hypertensive ADPKD patients with eGFR < 60 mL/min/1.73 m2 (P > 0.05). According to multiple regression analysis, predictors of AIx in ADPKD included age, height, heart rate and mean arterial pressure (P < 0.05). Vascular inflammatory markers were not predictors of AIx in ADPKD. Conclusions. Systemic vascular dysfunction, manifesting as an increase in AIx and vascular inflammation is evident in young normotensive ADPKD patients with preserved renal function. Vascular inflammation is not associated with elevated AIx in ADPKD. PMID:21292815

  19. Hydrogen-Rich Medium Attenuated Lipopolysaccharide-Induced Monocyte-Endothelial Cell Adhesion and Vascular Endothelial Permeability via Rho-Associated Coiled-Coil Protein Kinase.

    PubMed

    Xie, Keliang; Wang, Weina; Chen, Hongguang; Han, Huanzhi; Liu, Daquan; Wang, Guolin; Yu, Yonghao

    2015-07-01

    Sepsis is the leading cause of death in critically ill patients. In recent years, molecular hydrogen, as an effective free radical scavenger, has been shown a selective antioxidant and anti-inflammatory effect, and it is beneficial in the treatment of sepsis. Rho-associated coiled-coil protein kinase (ROCK) participates in junction between normal cells, and regulates vascular endothelial permeability. In this study, we used lipopolysaccharide to stimulate vascular endothelial cells and explored the effects of hydrogen-rich medium on the regulation of adhesion of monocytes to endothelial cells and vascular endothelial permeability. We found that hydrogen-rich medium could inhibit adhesion of monocytes to endothelial cells and decrease levels of adhesion molecules, whereas the levels of transepithelial/endothelial electrical resistance values and the expression of vascular endothelial cadherin were increased after hydrogen-rich medium treatment. Moreover, hydrogen-rich medium could lessen the expression of ROCK, as a similar effect of its inhibitor Y-27632. In addition, hydrogen-rich medium could also inhibit adhesion of polymorphonuclear neutrophils to endothelial cells. In conclusion, hydrogen-rich medium could regulate adhesion of monocytes/polymorphonuclear neutrophils to endothelial cells and vascular endothelial permeability, and this effect might be related to the decreased expression of ROCK protein. PMID:25895142

  20. Epigalloccatechin-3-gallate inhibits ocular neovascularization and vascular permeability in human retinal pigment epithelial and human retinal microvascular endothelial cells via suppression of MMP-9 and VEGF activation.

    PubMed

    Lee, Hak Sung; Jun, Jae-Hyun; Jung, Eun-Ha; Koo, Bon Am; Kim, Yeong Shik

    2014-01-01

    Epigalloccatechin-3-gallate (EGCG) is the main polyphenol component of green tea (leaves of Camellia sinensis). EGCG is known for its antioxidant, anti-inflammatory, antiviral, and anti-carcinogenic properties. Here, we identify EGCG as a new inhibitor of ocular angiogenesis and its vascular permeability. Matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) play a key role in the processes of extracellular matrix (ECM) remodeling and microvascular permeability during angiogenesis. We investigated the inhibitory effects of EGCG on ocular neovascularization and vascular permeability using the retina oriented cells and animal models induced by VEGF and alkaline burn. EGCG treatment significantly decreased mRNA and protein expression levels of MMP-9 in the presence of 12-O-tetradecanoylphorbol-13-acetate (TPA) and tumor necrosis factor alpha (TNF-α) in human retinal pigment epithelial cells (HRPECs). EGCG also effectively protected ARPE-19 cells from cell death and attenuated mRNA expressions of key angiogenic factors (MMP-9, VEGF, VEGF Receptor-2) by inhibiting generation of reactive oxygen species (ROS). EGCG significantly inhibited proliferation, vascular permeability, and tube formation in VEGF-induced human retinal microvascular endothelial cells (HRMECs). Furthermore, EGCG significantly reduced vascular leakage and permeability by blood-retinal barrier breakdown in VEGF-induced animal models. In addition, EGCG effectively limited upregulation of MMP-9 and platelet endothelial cell adhesion molecule (PECAM/CD31) on corneal neovascularization (CNV) induced by alkaline burn. Our data suggest that MMP-9 and VEGF are key therapeutic targets of EGCG for treatment and prevention of ocular angiogenic diseases such as age-related macular degeneration, diabetic retinopathy, and corneal neovascularization. PMID:25123184

  1. Measurement of canine gastric vascular permeability to plasma proteins in the normal and protein-losing states

    SciTech Connect

    Wood, J.G.; Davenport, H.W.

    1982-04-01

    An isolated segment of the greater curvature of a dog's stomach was perfused at constant flow through a single cannulated artery with donor blood containing 131I-albumin, 125I-fibrinogen, and papaverine. Perfusion pressure was 30-50 mmHg, and venous pressure was set at 15 mmHg. Venous blood was collected in 1-min samples for 60 min. Filtration of fluid and loss of labeled proteins were calculated as the difference between measured arterial inflow and venous outflow. Permeability-surface area products (PS) were calculated for the proteins, and reflection coefficients (sigma) were calculated from solute flux and filtration. Intraarterial infusion of histamine (1.6-1.9 microgram . ml-1) increased filtration and PS and decreased sigma for albumin but not fibrinogen. When protein-losing was established by topical irrigation with 10 mM dithiothreitol in neutral solution, filtration and PS increased, and sigma for albumin but not fibrinogen decreased. Irrigation of the mucosa with 10 mM salicylic acid in 100 mN HCl caused bleeding that was quantitated by addition of 51Cr-erythrocytes to perfusing blood. Filtration and PS increased, and sigma for albumin but not fibrinogen decreased. Hematocrit of blood lost remained low during extensive mucosal damage. Effects of histamine infusion were attenuated or abolished by cimetidine (4 mg . kg-1 loading, 1.4 mg . kg-1 . h-1 continuous infusion) or by pyrilamine maleate (5 mg . kg-1 bolus injection at beginning of irrigation, repeated at 40-50 min). Pyrilamine attenuated or abolished effects of topical dithiothreitol or salicylic acid. We conclude that during protein loss caused by dithiothreitol or salicylic acid, histamine released within the mucosa causes increased vascular permeability for plasma proteins.

  2. Cell Treatment for Stroke in Type Two Diabetic Rats Improves Vascular Permeability Measured by MRI

    PubMed Central

    Ding, Guangliang; Chen, Jieli; Chopp, Michael; Li, Lian; Yan, Tao; Li, Qingjiang; Cui, Chengcheng; Davarani, Siamak P. N.; Jiang, Quan

    2016-01-01

    Treatment of stroke with bone marrow stromal cells (BMSC) significantly enhances brain remodeling and improves neurological function in non-diabetic stroke rats. Diabetes is a major risk factor for stroke and induces neurovascular changes which may impact stroke therapy. Thus, it is necessary to test our hypothesis that the treatment of stroke with BMSC has therapeutic efficacy in the most common form of diabetes, type 2 diabetes mellitus (T2DM). T2DM was induced in adult male Wistar rats by administration of a high fat diet in combination with a single intraperitoneal injection (35mg/kg) of streptozotocin. These rats were then subjected to 2h of middle cerebral artery occlusion (MCAo). T2DM rats received BMSC (5x106, n = 8) or an equal volume of phosphate-buffered saline (PBS) (n = 8) via tail-vein injection at 3 days after MCAo. MRI was performed one day and then weekly for 5 weeks post MCAo for all rats. Compared with vehicle treated control T2DM rats, BMSC treatment of stroke in T2DM rats significantly (p<0.05) decreased blood-brain barrier disruption starting at 1 week post stroke measured using contrast enhanced T1-weighted imaging with gadopentetate, and reduced cerebral hemorrhagic spots starting at 3 weeks post stroke measured using susceptibility weighted imaging, although BMSC treatment did not reduce the ischemic lesion volumes as demarcated by T2 maps. These MRI measurements were consistent with histological data. Thus, BMSC treatment of stroke in T2DM rats initiated at 3 days after stroke significantly reduced ischemic vascular damage, although BMSC treatment did not change infarction volume in T2DM rats, measured by MRI. PMID:26900843

  3. Choroidal Vascularity Index (CVI) - A Novel Optical Coherence Tomography Parameter for Monitoring Patients with Panuveitis?

    PubMed Central

    Agrawal, Rupesh; Salman, Mohammed; Tan, Kara-Anne; Karampelas, Michael; Sim, Dawn A.; Keane, Pearse A.; Pavesio, Carlos

    2016-01-01

    Purpose To compute choroidal vascularity index (CVI) using an image binarization tool on enhanced depth imaging (EDI)-optical coherence tomography (OCT) scans as a non-invasive optical tool to monitor progression in panuveitis and to investigate the utility of volumetric data from EDI-OCT scans using custom image analysis software. Materials and Methods In this retrospective cohort study, segmented EDI-OCT scans of both eyes in 19 patients with panuveitis were taken at baseline and at 3-month follow-up and were compared with EDI-OCT scans of normal eyes. Subfoveal choroidal area was segmented into luminal (LA) and stromal interstitial area (SA). Choroidal vascularity index (CVI) was defined as the proportion of LA to the total circumscribed subfoveal choroidal area (TCA). Results The mean choroidal thickness was 265.5±100.1μm at baseline and 278.4±102.6μm at 3 months follow up (p = 0.06). There was no statistically significant difference in TCA between study and control eyes (p = 0.08). CVI in the control group was 66.9±1.5% at baseline and 66.4±1.5% at follow up. CVI was 74.1±4.7% at baseline and 69.4±4.8% at 3 months follow up for uveitic eyes (p<0.001). The % change in CVI was 6.2 ±3.8 (4.3 to 8.0) for uveitic eyes, which was significantly higher from % change in CVI for control eyes (0.7±1.1, 0.2 to 1.3, p<0.001). Conclusion The study reports composite OCT-derived parameters and CVI as a possible novel tool in monitoring progression in panuveitis. CVI may be further validated in larger studies as a novel optical tool to quantify choroidal vascular status. PMID:26751702

  4. Application of the Red List Index for conservation assessment of Spanish vascular plants.

    PubMed

    Saiz, Juan Carlos Moreno; Lozano, Felipe Domínguez; Gómez, Manuel Marrero; Baudet, Ángel Bañares

    2015-06-01

    The International Union for Conservation of Nature (IUCN) Red List Index (RLI) is used to measure trends in extinction risk of species over time. The development of 2 red lists for Spanish vascular flora during the past decade allowed us to apply the IUCN RLI to vascular plants in an area belonging to a global biodiversity hotspot. We used the Spanish Red Lists from 2000 and 2010 to assess changes in level of threat at a national scale and at the subnational scales of Canary Islands, Balearic Islands, and peninsular Spain. We assigned retrospective IUCN categories of threat to 98 species included in the Spanish Red List of 2010 but absent in the Spanish Red List of 2000. In addition, we tested the effect of different random and taxonomic and spatial Spanish samples on the overall RLI value. From 2000 to 2010, the IUCN categories of 768 species changed (10% of Spanish flora), mainly due to improved knowledge (63%), modifications in IUCN criteria (14%), and changes in threat status (12%). All measured national and subnational RLI values decreased during this period, indicating a general decline in the conservation status of the Spanish vascular flora. The Canarian RLI value (0.84) was the lowest, although the fastest deterioration in conservation status occurred on peninsular Spain (from 0.93 in 2000 to 0.92 in 2010). The RLI values based on subsamples of the Spanish Red List were not representative of RLI values for the entire country, which would discourage the use of small areas or small taxonomic samples to assess general trends in the endangerment of national biotas. The role of the RLI in monitoring of changes in biodiversity at the global and regional scales needs further reassessment because additional areas and taxa are necessary to determine whether the index is sufficiently sensitive for use in assessing temporal changes in species' risk of extinction. PMID:25580521

  5. [Study of mithochondrial permeability transition pore in the development of myocardial and vascular contractility disfunctions].

    PubMed

    Dmytriieva, A V; Sahach, V F; Bohuslavs'ky?, A Iu

    2005-01-01

    In experiments on the isolated myocardial and vascular preparations the role of the mithochondrial permiability transition pore (mPTP) in the development of reperfusion injury was investigated. Co-perfusion of the previously activated myocardial trabecula (MT) and arterial rings (AR) by solution collected during the first 5 min of isolated heart reperfusion, caused a sharp and significant decrease of tonic tension of both isolated preparations. Besides the significant inhibition of the MT and AR reactions after electrical stimulation, modulation of AR reaction by the influence of MT is also registered. The solution collected at first minutes of heart reperfusion, preserve a dilation property within 24 hours of storage at room temperature. Preliminary perfusion of MT and AR with methylen blue (MB, 10(-4) M/l) or the addition to the solution dithiothreitol (DTT, 2 x 10(-5) M/l) and diethyl maleate (DEM, 2 x 10(-5) M/l) resulted in an almost complete inhibition of this dilatation influence on the isolated preparations. The data received testify that the solution comprise a NO-containing substance, possible nitrosoglutation. Pre-incubation (2 min) MT in a solution with mPTP activator phenylarsine oxide (PAO, 10(-5) M/l) and subsequent reperfusion with a control solution resulted in deep and irreversible decrease of tonic tension and inhibition of contractility of both isolated preparations. The received data are qualitatively similar to results described above. Our data and results received in additional experiments on isolated mitochondria allow us to assert that solution flowing from the ischemized heart contains the stable mitochondrial factor (SMF) with a significant dilatation property. An addition of MB and DEM in the reperfusion solution abrogated its dilation influence. Co-perfusion (10 min) of the injured MT and AR by the solution with nitrosoglutation (10 (-5) M/l) restored normal contractility of the isolated preparations and modulation of the AR reaction by the influence of MT. It once again confirms the presence of an NO-containing substance in the SMF content. Thus, the mPTP activation plays the key role in the development ofmyocardial reperfusion injury and results in release of SMF, which can be the basic agent of paracrine regulation of myocardial contractility, coronary and peripheral vessels tone. PMID:16108221

  6. Vascular permeability of spinal nerve roots. A study in the rat with Evans blue and lanthanum as tracers.

    PubMed

    Pettersson, C A; Sharma, H S; Olsson, Y

    1990-01-01

    The permeability of blood vessels in rat spinal nerve roots was investigated with Evans blue-albumin as an in vivo macromolecular tracer and lanthanum nitrate as an electron microscopic ionic marker added to a fixative. Rats injected intravenously with Evans blue, showed macroscopic distinct staining of dorsal root ganglia, whereas spinal nerve roots remained unstained. Fluorescence microscopy, however, revealed clear extravascular fluorescence both in ventral and dorsal roots 2 or 18 h after tracer administration. Two different types of blood vessels exists in spinal nerve roots; large extrinsic (radicular) in the root sheath and minute intrinsic vessels in the parenchyma. Lanthanum added to a fixative, perfused through the vessels was detected in the lumen of both types of vessels, usually adhering to the luminal plasma membrane and in many invaginations from that membrane. Lanthanum also entered the clefts between endothelial cells but was always stopped at the junctions which are, thus, of the tight type. Diffuse penetration of the compound into the cytoplasm was seen in one endothelial cell, but no fenestrations were detected. Junctions between the endothelial cells of vessels in rat spinal nerve roots are impermeable to lanthanum and most likely also to other large molecular substances like albumin. Thus, probable routes for serum albumin to enter the nerve roots, where it normally is present, must be either by centripetal extracellular diffusion from the ganglia and the peripheral nerve or by vascular leakage in the roots, caused by for instance pinocytosis across endothelial cells. PMID:2082654

  7. Up-Regulation of Pressure-activated Ca2+-permeable Cation Channel in Intact Vascular Endothelium of Hypertensive Rats

    NASA Astrophysics Data System (ADS)

    Hoyer, J.; Kohler, R.; Haase, W.; Distler, A.

    1996-10-01

    In endothelial cells, stretch-activated cation channels have been proposed to act as mechanosensors for changes in hemodynamic forces. We have identified a novel mechanosensitive pressure-activated channel in intact endothelium from rat aorta and mesenteric artery. The 18-pS cation channel responded with a multifold increase in channel activity when positive pressure was applied to the luminal cell surface with the patch pipette and inactivated at negative pipette pressure. Channel permeability ratio for K+, Na+, and Ca2+ ions was 1:0.98:0.23. Ca2+ influx through the channel was sufficient to activate a neighboring Ca2+-dependent K+ channel. Hemodynamic forces are chronically disturbed in arterial hypertension. Endothelial cell dysfunction has been implicated in the pathogenesis of arterial hypertension. In two comparative studies, density of the pressure-activated channel was found to be significantly higher in spontaneously hypertensive rats and renovascular hypertensive rats compared with their respective normotensive controls. Channel activity presumably leads to mechanosensitive Ca2+ influx and induces cell hyperpolarization by K+ channel activity. Both Ca2+ influx and hyperpolarization are known to induce a vasodilatory endothelial response by stimulating endothelial nitric oxide (NO) production. Up-regulation of channel density in hypertension could, therefore, represent a counterregulatory mechanism of vascular endothelium.

  8. Enhanced vascular permeability facilitates entry of plasma HDL and promotes macrophage-reverse cholesterol transport from skin in mice.

    PubMed

    Kareinen, Ilona; Cedó, Lídia; Silvennoinen, Reija; Laurila, Pirkka-Pekka; Jauhiainen, Matti; Julve, Josep; Blanco-Vaca, Francisco; Escola-Gil, Joan Carles; Kovanen, Petri T; Lee-Rueckert, Miriam

    2015-02-01

    Reverse cholesterol transport (RCT) pathway from macrophage foam cells initiates when HDL particles cross the endothelium, enter the interstitial fluid, and induce cholesterol efflux from these cells. We injected [(3)H]cholesterol-loaded J774 macrophages into the dorsal skin of mice and measured the transfer of macrophage-derived [(3)H]cholesterol to feces [macrophage-RCT (m-RCT)]. Injection of histamine to the macrophage injection site increased locally vascular permeability, enhanced influx of intravenously administered HDL, and stimulated m-RCT from the histamine-treated site. The stimulatory effect of histamine on m-RCT was abolished by prior administration of histamine H1 receptor (H1R) antagonist pyrilamine, indicating that the histamine effect was H1R-dependent. Subcutaneous administration of two other vasoactive mediators, serotonin or bradykinin, and activation of skin mast cells to secrete histamine and other vasoactive compounds also stimulated m-RCT. None of the studied vasoactive mediators affected serum HDL levels or the cholesterol-releasing ability of J774 macrophages in culture, indicating that acceleration of m-RCT was solely due to increased availability of cholesterol acceptors in skin. We conclude that disruption of the endothelial barrier by vasoactive compounds enhances the passage of HDL into interstitial fluid and increases the rate of RCT from peripheral macrophage foam cells, which reveals a novel tissue cholesterol-regulating function of these compounds. PMID:25473102

  9. Monitoring Vascular Permeability and Remodeling After Endothelial Injury in a Murine Model Using a Magnetic Resonance Albumin-Binding Contrast Agent

    PubMed Central

    Phinikaridou, Alkystis; Lorrio, Silvia; Zaragoza, Carlos; Botnar, René M.

    2015-01-01

    Background— Despite the beneficial effects of vascular interventions, these procedures may damage the endothelium leading to increased vascular permeability and remodeling. Re-endothelialization of the vessel wall, with functionally and structurally intact cells, is controlled by endothelial nitric oxide synthase (NOS3) and is crucial for attenuating adverse effects after injury. We investigated the applicability of the albumin-binding MR contrast agent, gadofosveset, to noninvasively monitor focal changes in vascular permeability and remodeling, after injury, in NOS3-knockout (NOS3−/−) and wild-type (WT) mice in vivo. Methods and Results— WT and NOS3−/− mice were imaged at 7, 15, and 30 days after aortic denudation or sham-surgery. T1 mapping (R1=1/T1, s−1) and delayed-enhanced MRI were used as measurements of vascular permeability (R1) and remodeling (vessel wall enhancement, mm2) after gadofosveset injection, respectively. Denudation resulted in higher vascular permeability and vessel wall enhancement 7 days after injury in both strains compared with sham-operated animals. However, impaired re-endothelialization and increased neovascularization in NOS3−/− mice resulted in significantly higher R1 at 15 and 30 days post injury compared with WT mice that showed re-endothelialization and lack of neovascularization (R1 [s−1]=15 days: NOS3−/−4.02 [interquartile range, IQR, 3.77–4.41] versus WT2.39 [IQR, 2.35–2.92]; 30 days: NOS3−/−4.23 [IQR, 3.94–4.68] versus WT2.64 [IQR, 2.33–2.80]). Similarly, vessel wall enhancement was higher in NOS3−/− but recovered in WT mice (area [mm2]=15 days: NOS3−/−5.20 [IQR, 4.68–6.80] versus WT2.13 [IQR, 0.97–3.31]; 30 days: NOS3−/−7.35 [IQR, 5.66–8.61] versus WT1.60 [IQR, 1.40–3.18]). Ex vivo histological studies corroborated the MRI findings. Conclusions— We demonstrate that increased vascular permeability and remodeling, after injury, can be assessed noninvasively using an albumin-binding MR contrast agent and may be used as surrogate markers for evaluating the healing response of the vessel wall after injury. PMID:25873720

  10. Ozone-induced bronchial hyperresponsiveness in the rat is not accompanied by neutrophil influx or increased vascular permeability in the trachea

    SciTech Connect

    Evans, T.W.; Brokaw, J.J.; Chung, K.F.; Nadel, J.A.; McDonald, D.M.

    1988-07-01

    We determined whether ozone-induced bronchial hyperresponsiveness in the rat is accompanied by neutrophil influx or increased vascular permeability in the trachea. Three groups of female Long-Evans rats were studied. One group was exposed to 4 ppm ozone for 2 h and studied immediately thereafter, another group was similarly exposed but was not studied until 24 h after the ozone exposure, and a third group consisted of control rats that breathed room air. Increases in total pulmonary resistance caused by acetylcholine aerosol were measured to assess bronchial responsiveness in these 3 groups. In parallel studies, neutrophil influx into the tracheal mucosa was quantified by counting cells within whole mounts of tracheas that were treated histochemically to stain the myeloperoxidase in neutrophils, and tracheal vascular permeability was quantified by measuring the amount of Evans blue dye extravasated into the trachea. In the rats studied immediately after the ozone exposure, the concentration of acetylcholine required to increase total pulmonary resistance to three-fold the baseline value was only 6% of that required in the controls. In the rats studied 24 h after the ozone exposure, this provocative acetylcholine concentration was not significantly different from that of the controls. Neither the number of neutrophils in the tracheal mucosa nor the amount of Evans blue dye extravasated into the trachea was significantly different from the corresponding control values at either time. We conclude that rats exposed to ozone develop bronchial hyperresponsiveness without detectable neutrophil influx or increased vascular permeability in the trachea.

  11. Upregulation of Tissue Factor by Activated Stat3 Contributes to Malignant Pleural Effusion Generation via Enhancing Tumor Metastasis and Vascular Permeability in Lung Adenocarcinoma

    PubMed Central

    Yeh, Hsuan-Heng; Chang, Wen-Tsan; Lu, Kuang-Chu; Lai, Wu-Wei; Liu, Hsiao-Sheng; Su, Wu-Chou

    2013-01-01

    Malignant pleural effusion (MPE) is a poor prognostic sign for patients with lung cancer. Tissue factor (TF) is a coagulation factor that participates in angiogenesis and vascular permeability and is abundant in MPE. We previously demonstrated that autocrine IL-6-activated Stat3 contributes to tumor metastasis and upregulation of VEGF, resulting in the generation of MPE in lung adenocarcinoma. In this study, we found IL-6-triggered Stat3 activation also induces TF expression. By using pharmacologic inhibitors, it was shown that JAK2 kinase, but not Src kinase, contributed to autocrine IL-6-induced TF expression. Inhibition of Stat3 activation by dominant negative Stat3 (S3D) in lung adenocarcinoma suppressed TF-induced coagulation, anchorage-independent growth in vitro, and tumor growth in vivo. Consistently, knockdown of TF expression by siRNA resulted in a reduction of anchorage-independent growth of lung adenocarcinoma cells. Inhibition of TF expression also decreased the adhesion ability of cancer cells in normal lung tissues. In the nude mouse model, both lung metastasis and MPE generation were decreased when PC14PE6/AS2-siTF cells (TF expression was silenced) were intravenously injected. PC14PE6/AS2-siTF cells also produced less malignant ascites through inhibition of vascular permeability. In summary, we showed that TF expression plays a pivotal role in the pathogenesis of MPE generation via regulating of tumor metastasis and vascular permeability in lung adenocarcinoma bearing activated Stat3. PMID:24086497

  12. Upregulation of tissue factor by activated Stat3 contributes to malignant pleural effusion generation via enhancing tumor metastasis and vascular permeability in lung adenocarcinoma.

    PubMed

    Yeh, Hsuan-Heng; Chang, Wen-Tsan; Lu, Kuang-Chu; Lai, Wu-Wei; Liu, Hsiao-Sheng; Su, Wu-Chou

    2013-01-01

    Malignant pleural effusion (MPE) is a poor prognostic sign for patients with lung cancer. Tissue factor (TF) is a coagulation factor that participates in angiogenesis and vascular permeability and is abundant in MPE. We previously demonstrated that autocrine IL-6-activated Stat3 contributes to tumor metastasis and upregulation of VEGF, resulting in the generation of MPE in lung adenocarcinoma. In this study, we found IL-6-triggered Stat3 activation also induces TF expression. By using pharmacologic inhibitors, it was shown that JAK2 kinase, but not Src kinase, contributed to autocrine IL-6-induced TF expression. Inhibition of Stat3 activation by dominant negative Stat3 (S3D) in lung adenocarcinoma suppressed TF-induced coagulation, anchorage-independent growth in vitro, and tumor growth in vivo. Consistently, knockdown of TF expression by siRNA resulted in a reduction of anchorage-independent growth of lung adenocarcinoma cells. Inhibition of TF expression also decreased the adhesion ability of cancer cells in normal lung tissues. In the nude mouse model, both lung metastasis and MPE generation were decreased when PC14PE6/AS2-siTF cells (TF expression was silenced) were intravenously injected. PC14PE6/AS2-siTF cells also produced less malignant ascites through inhibition of vascular permeability. In summary, we showed that TF expression plays a pivotal role in the pathogenesis of MPE generation via regulating of tumor metastasis and vascular permeability in lung adenocarcinoma bearing activated Stat3. PMID:24086497

  13. Magnetic resonance parkinsonism index in progressive supranuclear palsy and vascular parkinsonism.

    PubMed

    Mostile, Giovanni; Nicoletti, Alessandra; Cicero, Calogero Edoardo; Cavallaro, Tiziana; Bruno, Elisa; Dibilio, Valeria; Luca, Antonina; Sciacca, Giorgia; Raciti, Loredana; Contrafatto, Donatella; Chiaramonte, Ignazio; Zappia, Mario

    2016-04-01

    To investigate accuracy of the magnetic resonance parkinsonism index (MRPI) in differentiating progressive supranuclear palsy (PSP) from vascular parkinsonism (VP). We retrospectively analyzed radiological data of 12 PSP patients and 17 VP patients group-matched by age and sex who performed a standardized brain magnetic resonance imaging (MRI). Analysis of selected structures morphometry was performed to all study subjects and the MRPI was calculated for each selected patient. MRI midbrain area as well as superior cerebellar peduncle width were significantly lower in PSP patients compared to VP subjects. MRPI was significantly larger in PSP patients compared to VP subjects. MRPI value ≥13 distinguished the two groups with a sensitivity of 100 % (95 % CI 69.9-100) and a specificity of 100 % (95 % CI 77.1-100). MRPI may represent an accurate tool in differentiating PSP from VP. PMID:26820655

  14. Transient Receptor Potential Channel 4 Encodes a Vascular Permeability Defect and High-Frequency Ca(2+) Transients in Severe Pulmonary Arterial Hypertension.

    PubMed

    Francis, Michael; Xu, Ningyong; Zhou, Chun; Stevens, Troy

    2016-06-01

    The canonical transient receptor potential channel 4 (TRPC4) comprises an endothelial store-operated Ca(2+) entry channel, and TRPC4 inactivation confers a survival benefit in pulmonary arterial hypertension (PAH). Endothelial Ca(2+) signals mediated by TRPC4 enhance vascular permeability in vitro, but the contribution of TRPC4-dependent Ca(2+) signals to the regulation of endothelial permeability in PAH is poorly understood. We tested the hypothesis that TRPC4 increases vascular permeability and alters the frequency of endothelial Ca(2+) transients in PAH. We measured permeability in isolated lungs, and found that TRPC4 exaggerated permeability responses to thapsigargin in Sugen/hypoxia-treated PAH rats. We compared endothelial Ca(2+) activity of wild-type with TRPC4-knockout rats using confocal microscopy, and evaluated how Ca(2+) signals were influenced in response to thapsigargin and sequential treatment with acetylcholine. We found that thapsigargin-stimulated Ca(2+) signals were increased in PAH, and recovered by TRPC4 inactivation. Store depletion revealed bimodal Ca(2+) responses to acetylcholine, with both short- and long-duration populations. Our results show that TRPC4 underlies an exaggerated endothelial permeability response in PAH. Furthermore, TRPC4 increased the frequency of endothelial Ca(2+) transients in severe PAH, suggesting that TRPC4 provides a Ca(2+) source associated with endothelial dysfunction in the pathophysiology of PAH. This phenomenon represents a new facet of the etiology of PAH, and may contribute to PAH vasculopathy by enabling inflammatory mediator flux across the endothelial barrier. PMID:27083517

  15. Flow Structures in a Healthy and Plaqued Artificial Artery using Fully Index Matched Vascular Flow Facility

    NASA Astrophysics Data System (ADS)

    Mehdi, Faraz; Jain, Akash; Sheng, Jian

    2014-11-01

    Particle Image Velocimetry measurements are made in a closed loop fully index matched flow facility to study the flow structures and flow wall interactions in healthy and diseased model arteries. The test section is 0.63 m long and the facility is capable of emulating both steady and pulsatile flows under physiologically relevant conditions. The model arteries are in-house developed compliant polymer (PDMS) tubes with 1 cm diameter and 1 mm wall thickness. The Reynolds numbers of flows vary up to 20,000. The plaque is simulated by introducing a radially asymmetric bump that can be varied in shape, size and compliancy. The overall compliancy of the model can be also controlled by varying ratio between the elastomer and the curing agent. The tubes are doped with particles allowing the simultaneous measurements of wall deformation and flows over it. The working fluid in the facility is NaI and is refractive index matched to the PDMS model. This allows flow measurement very close to the wall and measurement of wall shear stress. The aim of this study is to characterize the changes in flow as the compliancy and geometry of blood vessels change due to age or disease. These differences can be used to develop a diagnostic tool to detect early onset of vascular diseases.

  16. New noninvasive index for evaluation of the vascular age of healthy and sick people

    NASA Astrophysics Data System (ADS)

    Fine, Ilya; Kuznik, Boris I.; Kaminsky, Alexander V.; Shenkman, Louis; Kustovsjya, Evgeniya M.; Maximova, Olga G.

    2012-08-01

    We conducted a study on 861 healthy and sick subjects and demonstrated that some calculated parameters based on measurement of the dynamic light scattering (DLS) signal from the finger correlate highly with chronological age ranging from 1.5 to 85 years old. Measurements of DLS signals were obtained during both occlusion and nonocclusion of blood flow in the finger. For the nonocclusion case we found that the low-frequency component of the DLS signal significantly correlates with the biological age while the high-frequency component of the DLS signal resembles the arterial pulse-wave and does correlate with age. However, the most prominent correlation between the DLS characteristics and age was noted with the stasis stage measurements. We propose that the observed age-related phenomena are caused by alterations in local blood viscosity and interactions of the endothelial cells with erythrocytes. Further, a new noninvasive index based on the age-related optical characteristics was introduced. This noninvasive index may be used as a research and diagnostic tool to examine the endothelial and thrombolytic properties of the vascular system.

  17. Tyrosine phosphorylation of VE-cadherin and claudin-5 is associated with TGF-β1-induced permeability of centrally derived vascular endothelium.

    PubMed

    Shen, Weiyong; Li, Shiying; Chung, Sook Hyun; Zhu, Ling; Stayt, Jason; Su, Tao; Couraud, Pierre-Olivier; Romero, Ignacio A; Weksler, Babette; Gillies, Mark C

    2011-04-01

    Breakdown of the inner blood-retinal barrier and the blood-brain barrier is associated with changes in tight and adherens junction-associated proteins that link vascular endothelial cells. This study aimed to test the hypothesis that transforming growth factor (TGF)-β1 increases the paracellular permeability of vascular endothelial monolayers through tyrosine phosphorylation of VE-cadherin and claudin-5. Bovine retinal and human brain capillary endothelial cells were grown as monolayers on coated polycarbonate membranes. Paracellular permeability was studied by measuring the equilibration of (14)C-inulin or fluorescence-labelled dextran. Changes in VE-cadherin and claudin-5 expression were studied by immunocytochemistry (ICC) and quantified by cell-based enzyme linked immunosorbent assays (ELISA). Tyrosine phosphorylation of VE-cadherin and claudin-5 was studied by ICC, immunoprecipitation and Western blotting. We found that exposure of endothelial cells to TGF-β1 caused a dose-dependent increase in paracellular permeability as reflected by increases in the equilibration of (14)C-inulin. This effect was enhanced by the tyrosine phosphatase inhibitor orthovanadate and attenuated by the tyrosine kinase inhibitor lavendustin A. ICC and cell-based ELISA revealed that TGF-β1 induced both dose- and time-dependent decreases in VE-cadherin and claudin-5 expression. Assessment of cell viability indicated that changes in these junction-associated proteins were not due to endothelial death or injury. ICC revealed that tyrosine phosphorylation of endothelial monolayers was greatly enhanced by TGF-β1 treatment, and immunoprecipitation of cell lysates showed increased tyrosine phosphorylation of VE-cadherin and claudin-5. Our results suggest that tyrosine phosphorylation of VE-cadherin and claudin-5 is involved in the increased paracellular permeability of central nervous system-derived vascular endothelium induced by TGF-β1. PMID:21168935

  18. Effects of antihistamines on the lung vascular response to histamine in unanesthetized sheep. Diphenhydramine prevention of pulmonary edema and increased permeability.

    PubMed Central

    Brigham, K L; Bowers, R E; Owen, P J

    1976-01-01

    To see whether antihistamines could prevent and reverse histamine-induced pulmonary edema and increased lung vascular permeability, we compared the effects of a 4-h intravenous infusion of 4 mug/kg per min histamine phosphate on pulmonary hemodynamics, lung lymph flow, lymph and plasma protein content, arterial blood gases, hematocrit, and lung water with the effects of an identical histamine infusion given during an infusion of diphenhydramine or metiamide on the same variables in unanesthetized sheep. Histamine caused lymph flow to increase from 6.0+/-0.5 to 27.0+/-5.5 (SEM) ml/h (P less than 0.05), lymph; plasma globulin concentration ratio to increase from 0.62+/-0.01 to 0.67+/-0.02 (P less than 0.05), left atrial pressure to fall from 1+/-1 to -3+/-1 cm H2O (P less than 0.05), and lung lymph clearance of eight protein fractions ranging from 36 to 96 A molecular radius to increase significantly. Histamine also caused increases in lung water, pulmonary vascular resistance, arterial PCO2, pH, and hematocrit, and decreases in cardiac output and arterial PO2. Diphenhydramine (3 mg/kg before histamine followed by 1.5 mg/kg per h intravenous infusion) completely prevented the histamine effect on hematocrit, lung lymph flow, lymph protein clearance, and lung water content, and reduced histamine effects on arterial blood gases and pH. 6 mg/kg diphenhydramine given at the peak histamine response caused lymph flow and lymph: plasma protein concentration ratios to fall. Metiamide (10 mg/kg per h) did not affect the histamine lymph response. We conclude that diphenhydramine can prevent histamine-induced pulmonary edema and can prevent and reverse increased lung vascular permeability caused by histamine, and that histamine effects on lung vascular permeability are H1 actions. PMID:956373

  19. Purification and biochemical characterization of a fibrin(ogen)olytic metalloprotease from Macrovipera mauritanica snake venom which induces vascular permeability.

    PubMed

    Lee, Eun Hee; Park, Jung Eun; Park, Jong Woo; Lee, Jung Sup

    2014-10-01

    In the present study, a novel fibrin(ogen)olytic metalloprotease from Macrovipera mauritanica snake venom was purified and characterized in terms of enzyme kinetics and substrate specificity. The purified enzyme [termed snake venom metalloprotease-Macrovipera mauritanica (SVMP‑MM)] was composed of a single polypeptide with an apparent molecular weight of 27 kDa, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The N-terminus of the enzyme was composed of NH(2)-QRFAPRYIEL-COOH, as determined by N-terminal sequencing. The Aα- and the Bβ-chains of fibrinogen were completely cleaved by SVMP-MM within 20 and 480 min, respectively. However, the γ-chain was much more resistant to digestion by the enzyme. The enzyme also exhibited proteolytic activity, cleaving the α-α polymer of cross-linked fibrin, but did not effectively digest the γ-γ polymer. To determine the kinetic parameters for SVMP-MM, a fluorescence-quenching peptide (termed o-aminobenzoic acid-HTEKLVTS-2,4-dinitrophenyl‑NH(2)) containing a K-L sequence for SVMP-MM cleavage was designed and synthesized. The optimal pH and temperature for the enzyme activity were found to be 5.5 and 37˚C, respectively, when the fluorogenic substrate was synthesized and used as a substrate. Among the various divalent cations tested, Ni(2+) and Cu(2+) showed strong inhibitory effects on enzyme activity, with an average of 69.6% inhibition. The enzyme activity was also inhibited by treatment with 1,10-phenanthroline, ethylenediaminetetraacetic acid and glycol-bis-(2‑aminoethylether)-N,N,N',N'-tetra-acetic acid, but not with aprotinin, tosyl-lysine chloromethyl ketone and tosyl-phenylalanyl chloromethyl ketone, suggesting that SVMP-MM is a metalloprotease and not a serine protease. The enzymatic parameters, including the K(M), k(cat), and k(cat)/K(M) values were estimated to be 0.015 mM, 0.031 sec(-1), and 20.67 mM(-1)sec(-1), respectively. SVMP-MM induced vascular permeability by digesting type IV collagen. The results obtained in our study demonstrate that SVMP-MM is a fibrin(ogen)olytic P-I class metalloprotease, which can induce a hemorrhagic reaction in vivo. PMID:25069477

  20. Changes in pericytic expression of NG2 and PDGFRB and vascular permeability in the sensory circumventricular organs of adult mouse by osmotic stimulation.

    PubMed

    Morita, Shoko; Hourai, Atsushi; Miyata, Seiji

    2014-01-01

    The blood-brain barrier (BBB) is a barrier that prevents free access of blood-derived substances to the brain through the tight junctions and maintains a specialized brain environment. Circumventricular organs (CVOs) lack the typical BBB. The fenestrated vasculature of the sensory CVOs, including the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO) and area postrema (AP), allows parenchyma cells to sense a variety of blood-derived information, including osmotic ones. In the present study, we utilized immunohistochemistry to examine changes in the expression of NG2 and platelet-derived growth factor receptor beta (PDGFRB) in the OVLT, SFO and AP of adult mice during chronic osmotic stimulation. The expression of NG2 and PDGFRB was remarkably prominent in pericytes, although these angiogenesis-associated proteins are highly expressed at pericytes of developing immature vasculature. The chronic salt loading prominently increased the expression of NG2 in the OVLT and SFO and that of PDGFRB in the OVLT, SFO and AP. The vascular permeability of low-molecular-mass tracer fluorescein isothiocyanate was increased significantly by chronic salt loading in the OVLT and SFO but not AP. In conclusion, the present study demonstrates changes in pericyte expression of NG2 and PDGFRB and vascular permeability in the sensory CVOs by chronic osmotic stimulation, indicating active participation of the vascular system in osmotic homeostasis. PMID:23629811

  1. Correlation between cardio-ankle vascular index and biomarkers of oxidative stress.

    PubMed

    Chotimol, Phatiwat; Saehuan, Choedchai; Kumphune, Sarawut

    2016-04-01

    Arterial stiffness is a pathological event related to arteriosclerosis that is also closely related to oxidative stress. The cardio-ankle vascular index (CAVI) is a novel arteriosclerotic index that has been used to detect arterial stiffness. However, the association between CAVI and oxidative stress has not yet been elucidated, especially in patients with risk of metabolic disorders. The aim of this study was to investigate the correlation between arterial stiffness by CAVI and biomarkers of oxidative stress. A total of 83 participants were enrolled in this study. Venous blood samples were collected for measurement of plasma oxidative biomarkers. All participants were examined for CAVI score. The univariate analysis showed that age (p < 0.001), systolic blood pressure (SBP) (p = < 0.001), plasma triglyceride (p = 0.02), plasma glucose (p = 0.003) are related to CAVI value. However, the multivariate analysis showed that age was the only significant independent factor related to the CAVI value. In addition, the CAVI and plasma malondialdehyde (MDA) levels showed a positive correlation (r = 0.29, p < 0.01) while, the CAVI was negatively correlated with catalase (CAT) (r = -0.4, p < 0.001) and GPx (r = -0.60, p < 0.001). In conclusion, this study demonstrated that age is the most influential factor for assessing arterial stiffness by the CAVI method, which is possibly due to the increase in oxidative stress. PMID:26750574

  2. Choroidal vascularity index as a measure of vascular status of the choroid: Measurements in healthy eyes from a population-based study

    PubMed Central

    Agrawal, Rupesh; Gupta, Preeti; Tan, Kara-Anne; Cheung, Chui Ming Gemmy; Wong, Tien-Yin; Cheng, Ching-Yu

    2016-01-01

    The vascularity of the choroid has been implicated in the pathogenesis of various eye diseases. To date, no established quantifiable parameters to estimate vascular status of the choroid exists. Choroidal vascularity index (CVI) may potentially be used to assess vascular status of the choroid. We aimed to establish normative database for CVI and identify factors associated with CVI in healthy eyes. In this population-based study on 345 healthy eyes, choroidal enhanced depth imaging optical coherence tomography scans were segmented by modified image binarization technique. Total subfoveal choroidal area (TCA) was segmented into luminal (LA) and stromal (SA) area. CVI was calculated as the proportion of LA to TCA. Linear regression was used to identify ocular and systemic factors associated with CVI and subfoveal choroidal thickness (SFCT). Subfoveal CVI ranged from 60.07 to 71.27% with a mean value of 65.61 ± 2.33%. CVI was less variable than SFCT (coefficient of variation for CVI was 3.55 vs 40.30 for SFCT). Higher CVI was associated with thicker SFCT, but not associated with most physiological variables. CVI was elucidated as a significant determinant of SFCT. While SFCT was affected by many factors, CVI remained unaffected suggesting CVI to be a more robust marker of choroidal diseases. PMID:26868048

  3. Choroidal vascularity index as a measure of vascular status of the choroid: Measurements in healthy eyes from a population-based study

    NASA Astrophysics Data System (ADS)

    Agrawal, Rupesh; Gupta, Preeti; Tan, Kara-Anne; Cheung, Chui Ming Gemmy; Wong, Tien-Yin; Cheng, Ching-Yu

    2016-02-01

    The vascularity of the choroid has been implicated in the pathogenesis of various eye diseases. To date, no established quantifiable parameters to estimate vascular status of the choroid exists. Choroidal vascularity index (CVI) may potentially be used to assess vascular status of the choroid. We aimed to establish normative database for CVI and identify factors associated with CVI in healthy eyes. In this population-based study on 345 healthy eyes, choroidal enhanced depth imaging optical coherence tomography scans were segmented by modified image binarization technique. Total subfoveal choroidal area (TCA) was segmented into luminal (LA) and stromal (SA) area. CVI was calculated as the proportion of LA to TCA. Linear regression was used to identify ocular and systemic factors associated with CVI and subfoveal choroidal thickness (SFCT). Subfoveal CVI ranged from 60.07 to 71.27% with a mean value of 65.61 ± 2.33%. CVI was less variable than SFCT (coefficient of variation for CVI was 3.55 vs 40.30 for SFCT). Higher CVI was associated with thicker SFCT, but not associated with most physiological variables. CVI was elucidated as a significant determinant of SFCT. While SFCT was affected by many factors, CVI remained unaffected suggesting CVI to be a more robust marker of choroidal diseases.

  4. Association of Metabolic Syndrome with the Cardioankle Vascular Index in Asymptomatic Korean Population

    PubMed Central

    Nam, Su-Hyun; Kang, Sung-Goo; Lee, Yun-Ah; Song, Sang-Wook; Rho, Jun-Seung

    2015-01-01

    Aim. Metabolic syndrome is characterized by a cluster of atherosclerotic cardiovascular risk factors. The cardioankle vascular index (CAVI) reflects arterial stiffness and may be used as an indicator of atherosclerotic cardiovascular disease. In this study, we investigated the association of CAVI with metabolic syndrome. Methods. A total of 1,144 adults were included in this study. We measured CAVIs and examined blood samples to identify metabolic syndrome according to WHO Asia Pacific criteria and NCEP-ATPIII criteria. AST, ALT, r-GTP, BUN, creatinine, high sensitivity C-reactive protein, and uric acid were also measured. Results. CAVI values were significantly higher in subjects with metabolic syndrome than those without metabolic syndrome and increased according to the number of metabolic syndrome components present. Subjects with high fasting blood sugar levels or high blood pressure showed high CAVI values. Multiple regression analysis showed that age, sex, diastolic blood pressure, and uric acid were independent predictors of CAVI. Conclusion. Subjects with metabolic syndrome had high CAVIs, which indicated arterial stiffness, and were closely associated with an increase in the number of metabolic risk factors. The individual risk factors for metabolic syndrome have the synergistic effect of elevating arterial stiffness in asymptomatic Korean population. PMID:26273666

  5. Effect of C′1 esterase on vascular permeability in man: studies in normal and complement-deficient individuals and in patients with hereditary angioneurotic edema

    PubMed Central

    Klemperer, Martin R.; Donaldson, Virginia H.; Rosen, Fred S.

    1968-01-01

    When purified human C′1 esterase is injected intradermally in man, increased vascular permeability results. This effect is not blocked by soybean trypsin inhibitor and is not abolished by pretreatment with the antihistamine, pyribenzamine, or by compound 48/80. Thus, the effect is not due to the release of endogenous histamine. The decreased permeability response of individuals with a specific hereditary deficiency of C′2 is evidence for the complement-dependent nature of this reaction. The apparently normal response to intradermal C′1 esterase developed by individuals with an acquired specific deficiency of C′3 suggests that the vasoactive substance may be derived from one of the early reacting complement components. Characteristic attacks of angioedema have been provoked by the intradermal injection of human C′1 esterase in two individuals with hereditary angioneurotic edema. Patients with hereditary angioneurotic edema are unresponsive to intradermal injections of C′1 esterase immediately after attacks. Images PMID:4170149

  6. Characterization of cutaneous vascular permeability induced by platelet-activating factor in guinea pigs and rats and its inhibition by a platelet-activating factor receptor antagonist

    SciTech Connect

    Hwang, S.B.; Li, C.L.; Lam, M.H.; Shen, T.Y.

    1985-06-01

    Mechanisms of platelet-activating factor (PAF)-induced increases of cutaneous vascular permeability in guinea pigs and in rats were further explored. PAF so far is the most potent vasoactive mediator, being more than 1000-fold more potent than histamine and bradykinin in both species. In guinea pigs, there is a time delay of 5 to 10 minutes before PAF action, whereas, in the rat, the increased vasopermeability occurs immediately following the intradermal PAF injection. Relative vasoactive potencies of PAF and several structure-related analogues in both species correlate very well with their relative inhibition of the binding of /sup 3/H-PAF to specific receptor sites on isolated rabbit platelet plasma membranes and their aggregatory abilities of rabbit platelets. Furthermore, the PAF-induced cutaneous vascular permeability is inhibitable by a competitive specific PAF receptor antagonist, kadsurenone, suggesting that binding of PAF to its specific receptor site is the first step to initiate its action of increased cutaneous vascular permeability. Several pure cyclooxygenase inhibitors, including indomethacin, diflunisal, and flurbiprofen, and the dual cyclooxygenase/lipoxygenase inhibitor, BW755C, but not the histamine antagonists, inhibit the PAF-induced vasopermeability in guinea pigs. The inhibition by indomethacin or BW755C can be fully reversed by coinjection intradermally with PAF and prostaglandin E1 but not leukotriene B4. Also, prostaglandin E1 but not leukotriene B4 enhances the guinea pig in vivo response to PAF in this model. However, in rats, none of the cyclooxygenase inhibitors, histamine antagonists, or BW755C inhibit the PAF effect of cutaneous phenomena.

  7. Specific binding of a mutated fragment of Clostridium perfringens enterotoxin to endothelial claudin-5 and its modulation of cerebral vascular permeability.

    PubMed

    Liao, Zhuangbin; Yang, Zhenguo; Piontek, Anna; Eichner, Miriam; Krause, Gerd; Li, Longxuan; Piontek, Joerg; Zhang, Jingjing

    2016-07-01

    The vertebrate blood-brain barrier (BBB) creates an obstacle for central nervous system-related drug delivery. Claudin-5 (Cldn5), expressed in large quantities in BBB, plays a vital role in restricting BBB permeability. The C-terminal domain of Clostridium perfringens enterotoxin (cCPE) has been verified as binding to a subset of claudins (Cldns). The Cldn5-binding cCPE194-319 variant cCPEY306W/S313H was applied in this study to investigate its ability to modulate the permeability of zebrafish larval BBB. In vitro results showed that cCPEY306W/S313H is able to bind specifically to Cldn5 in murine brain vascular endothelial (bEnd.3) cells, and is transported along with Cldn5 from the cell membrane to the cytoplasm, which in turn results in a reduction in transendothelial electrical resistance (TEER). Conversely, this effect can be reversed by removal of cCPEY306W/S313H. In an in vivo experiment, this study estimates the capability of cCPEY306W/S313H to modulate Cldn5 using a rhodamine B-Dextran dye diffusion assay in zebrafish larval BBB. The results show that cCPEY306W/S313H co-localized with Cldn5 in zebrafish cerebral vascular cells and modulated BBB permeability, resulting in dye leakage. Taken together, this study suggests that cCPEY306W/S313H has the capability - both in vitro and in vivo - to modulate BBB permeability temporarily by specific binding to Cldn5. PMID:27095710

  8. Common variants of chemokine receptor gene CXCR3 and its ligands CXCL10 and CXCL11 associated with vascular permeability of dengue infection in peninsular Malaysia.

    PubMed

    Hoh, B P; Umi-Shakina, H; Zuraihan, Z; Zaiharina, M Z; Rafidah-Hanim, S; Mahiran, M; Khairudin, N Y Nik; Benedict, L H Sim; Masliza, Z; Christopher, K C Lee; Sazaly, A B

    2015-06-01

    Dengue causes significantly more human disease than any other arboviruses. It causes a spectrum of illness, ranging from mild self-limited fever, to severe and fatal dengue hemorrhagic fever, as evidenced by vascular leakage and multifactorial hemostatic abnormalities. There is no specific treatment available till date. Evidence shows that chemokines CXCL10, CXCL11 and their receptor CXCR3 are involved in severity of dengue, but their genetic association with the susceptibility of vascular leakage during dengue infection has not been reported. We genotyped 14 common variants of these candidate genes in 176 patients infected with dengue. rs4859584 and rs8878 (CXCL10) were significantly associated with vascular permeability of dengue infection (P<0.05); while variants of CXCL11 showed moderate significance of association (P=0.0527). Haplotype blocks were constructed for genes CXCL10 and CXCL11 (5 and 7 common variants respectively). Haplotype association tests performed revealed that, "CCCCA" of gene CXCL10 and "AGTTTAC" of CXCL11 were found to be significantly associated with vascular leakage (P=0.0154 and 0.0366 respectively). In summary, our association study further strengthens the evidence of the involvement of CXCL10 and CXCL11 in the pathogenesis of dengue infection. PMID:25858769

  9. Doppler resistive index to reflect regulation of renal vascular tone during sepsis and acute kidney injury

    PubMed Central

    2012-01-01

    Introduction Renal resistive index (RI), determined by Doppler ultrasonography, directly reveals and quantifies modifications in renal vascular resistance. The aim of this study was to evaluate if mean arterial pressure (MAP) is determinant of renal RI in septic, critically ill patients suffering or not from acute kidney injury (AKI). Methods This prospective observational study included 96 patients. AKI was defined according to RIFLE criteria and transient or persistent AKI according to renal recovery within 3 days. Results Median renal RIs were 0.72 (0.68-0.75) in patients without AKI and 0.76 (0.72-0.80) in patients with AKI (P=0.001). RIs were 0.75 (0.72-0.79) in transient AKI and 0.77 (0.70-0.80) in persistent AKI (P=0.84). RI did not differ in patients given norepinephrine infusion and was not correlated with norepinephrine dose. RI was correlated with MAP (ρ= -0.47; P=0.002), PaO2/FiO2 ratio (ρ= -0.33; P=0.04) and age (ρ=0.35; P=0.015) only in patients without AKI. Conclusions A poor correlation between renal RI and MAP, age, or PaO2/FiO2 ratio was found in septic and critically ill patients without AKI compared to patients with AKI. These findings suggest that determinants of RI are multiple. Renal circulatory response to sepsis estimated by Doppler ultrasonography cannot reliably be predicted simply from changes in systemic hemodynamics. As many factors influence its value, the interest in a single RI measurement at ICU admission to determine optimal MAP remains uncertain. PMID:22971333

  10. Augmented EPR effect by photo-triggered tumor vascular treatment improved therapeutic efficacy of liposomal paclitaxel in mice bearing tumors with low permeable vasculature.

    PubMed

    Araki, Tomoya; Ogawara, Ken-ichi; Suzuki, Haruka; Kawai, Rie; Watanabe, Taka-ichi; Ono, Tsutomu; Higaki, Kazutaka

    2015-02-28

    The effects of photo-triggered tumor vascular treatment (PVT) on the structural and functional properties of tumor vasculature were assessed in Colon-26 (C26) and B16/BL6 (B16) tumor-bearing mice. Furthermore, anti-tumor efficacy of subsequently injected PEG liposomal paclitaxel (PL-PTX) was also evaluated. As a photosensitizer, a hydrophobic porphyrin derivative was used and formulated in polymeric nanoparticle composed of polyethylene glycol-block-polylactic acid to avoid its non-specific in vivo disposition. In the mice bearing C26 with high permeable vasculature, the prominent anti-tumor activity was confirmed by PVT alone, but the subsequently injected PL-PTX did not show any additive effect. PVT itself initially induced apoptotic cell death of tumor vascular endothelial cells and platelet aggregation, which would have subsequently induced apoptosis of C26 tumor cells surrounding the vasculature. On the other hand, in the mice bearing B16 with low permeable vasculature, PVT enhanced the anti-tumor activity of subsequently injected PL-PTX, which would be attributed to the tumor disposition amount and area of PEG liposomes enhanced by PVT. These results clearly indicated that the treatment would have made it possible to provide more efficient extravasation of PL-PTX, leading to its more potent anti-tumor effect. PMID:25553829

  11. Potent In Vitro Protection Against PM[Formula: see text]-Caused ROS Generation and Vascular Permeability by Long-Term Pretreatment with Ganoderma tsugae.

    PubMed

    Tseng, Chia-Yi; Chung, Meng-Chi; Wang, Jhih-Syuan; Chang, Yu-Jung; Chang, Jing-Fen; Lin, Chin-Hung; Hseu, Ruey-Shyang; Chao, Ming-Wei

    2016-04-01

    Epidemiological studies show increased particulate matter (PM[Formula: see text]) particles in ambient air are correlated with increased myocardial infarctions. Given the close association of capillaries and alveoli, the dysfunction is caused when inhaled PM[Formula: see text] particles come in close proximity to capillary endothelial cells. We previously suggested that the inhalation of PM[Formula: see text] diesel exhaust particles (DEP) induces oxidative stress and upregulates the Nrf2/HO-1 pathway, inducing vascular permeability factor VEGFA secretion, which results in cell-cell adherens junction disruption and PM[Formula: see text] transmigratation into circulation. Here, we minimized the level that PM[Formula: see text] traveled in the bloodstream by pre-supplementing with a traditional Chinese medicine (TCM) Ganoderma tsugae DMSO extract (GTDE) prior to PM[Formula: see text] exposure. Our results show that PM[Formula: see text] caused alterations in enzyme activities and cellular anti-oxidant balance. We found decreased glutathione levels, a reduced cellular redox ratio, increased ROS generation and cytotoxicity in the cellular fractions. The oxidative stress caused DNA damage and apoptosis, likely causing downstream molecular events that trigger vasculature permeabilization and, eventually, cardiovascular disorders. Our results show long-term GTDE treatment increased endogenous glutathione level, while PM[Formula: see text]-reduced glutathione levels and the cellular redox ratio. GTDE was protective against the genotoxic and apoptotic effects initiated by PM[Formula: see text] oxidative stress. Vascular permeability revealed that PM[Formula: see text] only accumulated on the surface of cells after GTDE treatment; no penetration was detected. After two weeks of GTDE treatment, VEGFA secretion was significantly reduced in human umbilical vein endothelial cells (HUVEC) and endothelial cell migration was blocked. Our results suggest GTDE prevents PM[Formula: see text] transmigration into the bloodstream, and the resultant dysfunction, by inhibiting oxidative stress production and endothelial permeability. PMID:27080945

  12. The cytokine response of U937-derived macrophages infected through antibody-dependent enhancement of dengue virus disrupts cell apical-junction complexes and increases vascular permeability.

    PubMed

    Puerta-Guardo, Henry; Raya-Sandino, Arturo; González-Mariscal, Lorenza; Rosales, Victor H; Ayala-Dávila, José; Chávez-Mungía, Bibiana; Martínez-Fong, Daniel; Medina, Fernando; Ludert, Juan E; del Angel, Rosa María

    2013-07-01

    Severe dengue (SD) is a life-threatening complication of dengue that includes vascular permeability syndrome (VPS) and respiratory distress. Secondary infections are considered a risk factor for developing SD, presumably through a mechanism called antibody-dependent enhancement (ADE). Despite extensive studies, the molecular bases of how ADE contributes to SD and VPS are largely unknown. This work compares the cytokine responses of differentiated U937 human monocytic cells infected directly with dengue virus (DENV) or in the presence of enhancing concentrations of a humanized monoclonal antibody recognizing protein E (ADE-DENV infection). Using a cytometric bead assay, ADE-DENV-infected cells were found to produce significantly higher levels of the proinflammatory cytokines interleukin 6 (IL-6), IL-12p70, and tumor necrosis factor alpha (TNF-α), as well as prostaglandin E2 (PGE2), than cells directly infected. The capacity of conditioned supernatants (conditioned medium [CM]) to disrupt tight junctions (TJs) in MDCK cell cultures was evaluated. Exposure of MDCK cell monolayers to CM collected from ADE-DENV-infected cells (ADE-CM) but not from cells infected directly led to a rapid loss of transepithelial electrical resistance (TER) and to delocalization and degradation of apical-junction complex proteins. Depletion of either TNF-α, IL-6, or IL-12p70 from CM from ADE-DENV-infected cells fully reverted the disrupting effect on TJs. Remarkably, mice injected intraperitoneally with ADE-CM showed increased vascular permeability in sera and lungs, as indicated by an Evans blue quantification assay. These results indicate that the cytokine response of U937-derived macrophages to ADE-DENV infection shows an increased capacity to disturb TJs, while results obtained with the mouse model suggest that such a response may be related to the vascular plasma leakage characteristic of SD. PMID:23616663

  13. Correlation of oxygenation with vascular permeability-surface area but not with lung water in humans with acute respiratory failure and pulmonary edema.

    PubMed Central

    Brigham, K L; Kariman, K; Harris, T R; Snapper, J R; Bernard, G R; Young, S L

    1983-01-01

    We used a single-pass multiple tracer technique to measure cardiac output, extravascular lung water (EVLW) and lung vascular [14C]urea permeability-surface area (PSu) in 14 patients with acute respiratory failure and pulmonary edema. All patients had increased EVLW, but EVLW in the 10 surviving patients (0.26 +/- 0.06 SE ml/ml total lung capacity [TLC]) was not significantly different from that in the five patients who died (0.22 +/- 0.05). EVLW did not correlate with intravascular pressures or with alveolar-arterial oxygen pressure difference (A-aDO2). PSu was lower in surviving patients (0.50 +/- 0.16 SE ml/s X liter TLC) than in patients who died (3.44 +/- 0.36; P less than 0.05) and also lower than in previously reported data in patients with normal PSu. PSu correlated significantly with A-aDO2. Serial studies showed that PSu returned from a low value toward normal in a patient who survived but remained high in a patient who died. We conclude that the amount of edema in the lungs measured by indicator methods was not the principal determinant of either the magnitude of oxygenation defect or survival in the patients studied. We interpret the low PSu in surviving patients as decreased surface area and infer that the ability of the lung circulation to reduce perfusion of damaged and edematous areas was important in preserving oxygenation. A high PSu, presumably reflecting perfusion of areas with increased permeability, was a sign of especially poor prognosis. Multiple tracer techniques for measuring lung vascular PSu may help to define the pathogenesis and to evaluate therapies of acute lung injury in humans. Such measurements may be a more useful clinical tool than measurements of lung water in patients with acute respiratory failure and pulmonary edema. PMID:6874950

  14. Oxidative Stress and Modification of Renal Vascular Permeability Are Associated with Acute Kidney Injury during P. berghei ANKA Infection

    PubMed Central

    Elias, Rosa Maria; Correa-Costa, Matheus; Barreto, Claudiene Rodrigues; Silva, Reinaldo Correia; Hayashida, Caroline Y.; Castoldi, Ângela; Gonçalves, Giselle Martins; Braga, Tarcio Teodoro; Barboza, Renato; Rios, Francisco José; Keller, Alexandre Castro; Cenedeze, Marcos Antonio; Hyane, Meire Ioshie; D'Império-Lima, Maria Regina; Figueiredo-Neto, Antônio Martins; Reis, Marlene Antônia; Marinho, Cláudio Romero Farias; Pacheco-Silva, Alvaro; Câmara, Niels Olsen Saraiva

    2012-01-01

    Malaria associated-acute kidney injury (AKI) is associated with 45% of mortality in adult patients hospitalized with severe form of the disease. However, the causes that lead to a framework of malaria-associated AKI are still poorly characterized. Some clinical studies speculate that oxidative stress products, a characteristic of Plasmodium infection, as well as proinflammatory response induced by the parasite are involved in its pathophysiology. Therefore, we aimed to investigate the development of malaria-associated AKI during infection by P. berghei ANKA, with special attention to the role played by the inflammatory response and the involvement of oxidative stress. For that, we took advantage of an experimental model of severe malaria that showed significant changes in the renal pathophysiology to investigate the role of malaria infection in the renal microvascular permeability and tissue injury. Therefore, BALB/c mice were infected with P. berghei ANKA. To assess renal function, creatinine, blood urea nitrogen, and ratio of proteinuria and creatininuria were evaluated. The products of oxidative stress, as well as cytokine profile were quantified in plasma and renal tissue. The change of renal microvascular permeability, tissue hypoxia and cellular apoptosis were also evaluated. Parasite infection resulted in renal dysfunction. Furthermore, we observed increased expression of adhesion molecule, proinflammatory cytokines and products of oxidative stress, associated with a decrease mRNA expression of HO-1 in kidney tissue of infected mice. The measurement of lipoprotein oxidizability also showed a significant increase in plasma of infected animals. Together, our findings support the idea that products of oxidative stress, as well as the immune response against the parasite are crucial to changes in kidney architecture and microvascular endothelial permeability of BALB/c mice infected with P. berghei ANKA. PMID:22952850

  15. Effects and mechanism analysis of vascular endothelial growth factor and salvianolic acid B on 125I-low density lipoprotein permeability of the rabbit aortary endothelial cells.

    PubMed

    Ba, Jianming; Peng, Hu; Chen, Yanqing; Gao, Yong

    2014-12-01

    Atherosclerosis is the common pathological basis of cardiovascular and cerebrovascular disease. This study aimed to investigate the effects of vascular endothelial growth factor (VEGF) and salvianolic acid B (SalB) on the permeability of the rabbit aortary endothelial cells (RAECs) and to figure out the possible underlying molecular mechanisms. The extravasation of (125)I-low density lipoprotein ((125)I-LDL) through the RAECs was significantly increased by VEGF and decreased by SalB. Meanwhile, the tight junction-associated proteins occludin and claudin-5 were found downregulated by VEGF and the caveolae structure proteins caveolin-1 and caveolin-2 upregulated, which were abolished by the infusion of SalB. In addition, a marked increase in levels of cGMP and protein kinase G-1 (PKG-1) as well as activation of nuclear factor-?B (NF-?B) p65 were found after VEGF infusion, which were attenuated by SalB. This study demonstrates that VEGF and SalB can alter the LDL permeability of the RAECs by a paracellular pathway (downregulation of occludin and claudin-5) and a transcellular pathway (upregulation of caveolin-1 and caveolin-2), in which the cGMP/PKG/NF-?B signal pathway is possibly involved. The experimental results provide a new method and basic knowledge of prevention and treatment for cardiovascular and cerebrovascular disease. PMID:25005771

  16. Transforming growth factor-alpha-induced transcriptional activation of the vascular permeability factor (VPF/VEGF) gene requires AP-2-dependent DNA binding and transactivation.

    PubMed Central

    Gille, J; Swerlick, R A; Caughman, S W

    1997-01-01

    The endothelial cell-specific mitogen vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) represents a central regulator of cutaneous angiogenesis. Increased VPF/VEGF expression has recently been reported in psoriatic skin and healing wounds, both conditions in which transforming growth factor-alpha (TGF alpha) and its ligand, the epidermal growth factor receptor, are markedly up-regulated. Since TGF alpha strongly induces VPF/VEGF synthesis in keratinocytes, TGF alpha-mediated VPF/VEGF expression is likely to play a significant role in the initiation and maintenance of increased vascular hyperpermeability and hyperproliferation in skin biology. The objectives of the present studies were to determine the molecular mechanisms responsible for TGF alpha-induced transcriptional activation of the VPF/VEGF gene. We have identified a GC-rich TGF alpha-responsive region between -88 bp and -65 bp of the VPF/VEGF promoter that is necessary for constitutive and TGF alpha-inducible transcriptional activation. In electrophoretic mobility shift assays, this region binds Sp1-dependent protein complexes constitutively and an additional TGF alpha-inducible protein complex that is distinct from Sp1 protein. Both AP-2 and Egr-1 transcription factors were detected as components of the TGF alpha-inducible protein complex in supershift EMSA studies. In co-transfection studies, an AP-2 but not an Egr-1 expression vector activated VPF/VEGF transcription, thus indicating that AP-2 protein is functionally important in TGF alpha-induced VPF/VEGF gene expression. By clarifying regulatory mechanisms that are critical for angiogenic processes in the skin, these studies may form the basis for new therapeutic strategies to modulate VPF/VEGF expression in cutaneous inflammation and wound healing. PMID:9049304

  17. Protective Effects of N-Acetyl Cysteine against Diesel Exhaust Particles-Induced Intracellular ROS Generates Pro-Inflammatory Cytokines to Mediate the Vascular Permeability of Capillary-Like Endothelial Tubes

    PubMed Central

    Tseng, Chia-Yi; Chang, Jing-Fen; Wang, Jhih-Syuan; Chang, Yu-Jung; Gordon, Marion K.; Chao, Ming-Wei

    2015-01-01

    Exposure to diesel exhaust particles (DEP) is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-α and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- α and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione. PMID:26148005

  18. Protective Effects of N-Acetyl Cysteine against Diesel Exhaust Particles-Induced Intracellular ROS Generates Pro-Inflammatory Cytokines to Mediate the Vascular Permeability of Capillary-Like Endothelial Tubes.

    PubMed

    Tseng, Chia-Yi; Chang, Jing-Fen; Wang, Jhih-Syuan; Chang, Yu-Jung; Gordon, Marion K; Chao, Ming-Wei

    2015-01-01

    Exposure to diesel exhaust particles (DEP) is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-α and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- α and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione. PMID:26148005

  19. Simultaneous optical and mr imaging of tissue within implanted window chamber: System development and application in measuring vascular permeability

    NASA Astrophysics Data System (ADS)

    Shayegan Salek, Mir Farrokh

    Simultaneous optical imaging and MRI of a dorsal skin-fold window chamber mouse model is investigated as a novel methodology to study the tumor microenvironment. Simultaneous imaging with two modalities allows for cross-validation of results, integration of the capabilities of the two modalities in one study and mitigation of invasive factors, such as surgery and anesthesia, in an in-vivo experiment. To make this investigation possible, three optical imaging systems were developed that operated inside the MRI scanner. One of the developed systems was applied to estimate vascular kinetic parameters of tumors in a dorsal skin-fold window chamber mouse model with simultaneous optical and MRI imaging. The target of imaging was a molecular agent that was dual labeled with both optical and MRI contrast agents. The labeling of the molecular agent, characteristics of the developed optical systems, the methodologies of measuring vascular kinetic parameters using optical imaging and MRI data, and the obtained results are described and illustrated.

  20. Blood-ocular barrier breakdown in eyes with ocular melanoma. A potential role for vascular endothelial growth factor/vascular permeability factor.

    PubMed Central

    Vinores, S. A.; Küchle, M.; Mahlow, J.; Chiu, C.; Green, W. R.; Campochiaro, P. A.

    1995-01-01

    A series of 130 eyes with ocular melanomas, 19 normal eyes, and 18 eyes affected with other disorders leading to blood-ocular barrier (BOB) breakdown were immunohistochemically stained for albumin to localize sites of BOB failure within the retina, ciliary body, and iris. Thirty-nine of the eyes containing melanomas and all of the other eyes were also immunohistochemically stained for vascular endothelial growth factor (VEGF), to investigate its potential role as a mediator for BOB failure. Eyes with melanomas showed widespread leakage through the retinal pigment epithelium, and 58% demonstrated leakage from retinal vessels in the proximity of the tumor. BOB failure remote from the tumor also occurred in retina (50%), optic nerve head (77%), ciliary body (51%), and iris (51%), suggesting that a soluble mediator may be involved. VEGF was demonstrated intraretinally in the proximity of (46%) and remote from (24%) melanomas and in eyes affected by other disease processes, particularly those involving neoplasia or retinal detachments, usually within particular cell populations (ie, retinal vessel walls, ganglion cells, inner or outer nuclear layers, retinal pigment epithelium). VEGF localization in retina, ciliary body, and iris often coincided with sites of extravasated albumin. Preincubation of albumin or VEGF antibodies with normal serum or VEGF peptide, respectively, eliminated or markedly reduced all immunoreactivity. Only 1 of 14 normal postmortem eyes and 0 of 5 normal surgically removed eyes showed VEGF positivity in the retina, 5 of 19 normal eyes had weak positivity in the ciliary body, and VEGF was not demonstrated in the iris of normal eyes. VEGF cannot account for all of the BOB failure associated with ocular melanomas, but appears likely to play a contributing role in many cases. Images Figure 1 Figure 2 Figure 3 PMID:7485392

  1. Novel CCR3 Antagonists Are Effective Mono- and Combination Inhibitors of Choroidal Neovascular Growth and Vascular Permeability

    PubMed Central

    Nagai, Nori; Ju, Meihua; Izumi-Nagai, Kanako; Robbie, Scott J.; Bainbridge, James W.; Gale, David C.; Pierre, Esaie; Krauss, Achim H.P.; Adamson, Peter; Shima, David T.; Ng, Yin-Shan

    2016-01-01

    Choroidal neovascularization (CNV) is a defining feature of wet age-related macular degeneration. We examined the functional role of CCR3 in the development of CNV in mice and primates. CCR3 was associated with spontaneous CNV lesions in the newly described JR5558 mice, whereas CCR3 ligands localized to CNV-associated macrophages and the retinal pigment epithelium/choroid complex. Intravitreal injection of neutralizing antibodies against vascular endothelial growth factor receptor 2, CCR3, CC chemokine ligand 11/eotaxin-1, and CC chemokine ligand 24/eotaxin-2 all reduced CNV area and lesion number in these mice. Systemic administration of the CCR3 antagonists GW766994X and GW782415X reduced spontaneous CNV in JR5558 mice and laser-induced CNV in mouse and primate models in a dose-dependent fashion. Combination treatment with antivascular endothelial growth factor receptor 2 antibody and GW766994X yielded additive reductions in CNV area and hyperpermeability in mice. Interestingly, topical GW766994X and intravitreal anti-CCR3 antibody yielded strong systemic effects, reducing CNV in the untreated, contralateral eye. Contrarily, ocular administration of GW782415X in primates failed to substantially elevate plasma drug levels or to reduce the development of grade IV CNV lesions. These findings suggest that CCR3 signaling may be an attractive therapeutic target for CNV, utilizing a pathway that is at least partly distinct from that of vascular endothelial growth factor receptor. The findings also demonstrate that systemic exposure to CCR3 antagonists may be crucial for CNV-targeted activity. PMID:26188133

  2. Tumor Vascular Permeability Pattern Is Associated With Complete Response in Immunocompetent Patients With Newly Diagnosed Primary Central Nervous System Lymphoma

    PubMed Central

    Chung, Sae Rom; Choi, Young Jun; Kim, Ho Sung; Park, Ji Eun; Shim, Woo Hyun; Kim, Sang Joon

    2016-01-01

    Abstract A dynamic contrast-enhanced MR imaging (DCE-MRI) could provide the information about tumor drug delivery efficacy. We investigated the potential utility of the permeability pattern of DCE-MRI for predicting tumor response to high dose-methotrexate treatment and progression-free survival (PFS) in patients with primary CNS lymphoma (PCNSL). Clinical and conventional imaging parameters were assessed as potential predictors of tumor response in 48 immunocompetent PCNSL patients in a preliminary study. Fifty additional immunocompetent patients (27 men and 23 women; mean age, 60.6 years) with PCNSL underwent DCE-MRI before starting first-line treatment with high dose-methotrexate. The DCE-MRI pattern was categorized as diffuse or nondiffuse. After 4 courses of high dose methotrexate, patients underwent follow-up brain MR imaging to identify their complete response (CR). Predictors of CR and PFS were analyzed using clinical parameters, conventional MRI, and DCE-MRI. CR was noted in 20 (74.1%) of 27 patients with diffuse DCE-MRI pattern and in 4 (17.4%) of 23 patients with nondiffuse DCE-MRI pattern. The diffuse DCE-MRI pattern showed a significantly higher association with CR than the nondiffuse pattern (P < 0.001). Multivariate Cox proportional hazards model revealed that the DCE-MRI pattern (hazard ratio = 0.70; P = 0.045), age (hazard ratio = 1.47; P = 0.041), and adjuvant autologous stem-cell transplantation (hazard ratio = 6.97; P = 0.003) tended to be associated with a PFS. The pretreatment diffuse DCE-MRI pattern can be used as a potential imaging biomarker for predicting CR and a longer PFS in patients with newly diagnosed PCNSLs. PMID:26871782

  3. ICAM-2 regulates vascular permeability and N-cadherin localization through ezrin-radixin-moesin (ERM) proteins and Rac-1 signalling

    PubMed Central

    2014-01-01

    Background Endothelial junctions control functions such as permeability, angiogenesis and contact inhibition. VE-Cadherin (VECad) is essential for the maintenance of intercellular contacts. In confluent endothelial monolayers, N-Cadherin (NCad) is mostly expressed on the apical and basal membrane, but in the absence of VECad it localizes at junctions. Both cadherins are required for vascular development. The intercellular adhesion molecule (ICAM)-2, also localized at endothelial junctions, is involved in leukocyte recruitment and angiogenesis. Results In human umbilical vein endothelial cells (HUVEC), both VECad and NCad were found at nascent cell contacts of sub-confluent monolayers, but only VECad localized at the mature junctions of confluent monolayers. Inhibition of ICAM-2 expression by siRNA caused the appearance of small gaps at the junctions and a decrease in NCad junctional staining in sub-confluent monolayers. Endothelioma lines derived from WT or ICAM-2-deficient mice (IC2neg) lacked VECad and failed to form junctions, with loss of contact inhibition. Re-expression of full-length ICAM-2 (IC2 FL) in IC2neg cells restored contact inhibition through recruitment of NCad at the junctions. Mutant ICAM-2 lacking the binding site for ERM proteins (IC2 ΔERM) or the cytoplasmic tail (IC2 ΔTAIL) failed to restore junctions. ICAM-2-dependent Rac-1 activation was also decreased in these mutant cell lines. Barrier function, measured in vitro via transendothelial electrical resistance, was decreased in IC2neg cells, both in resting conditions and after thrombin stimulation. This was dependent on ICAM-2 signalling to the small GTPase Rac-1, since transendothelial electrical resistance of IC2neg cells was restored by constitutively active Rac-1. In vivo, thrombin-induced extravasation of FITC-labeled albumin measured by intravital fluorescence microscopy in the mouse cremaster muscle showed that permeability was increased in ICAM-2-deficient mice compared to controls. Conclusions These results indicate that ICAM-2 regulates endothelial barrier function and permeability through a pathway involving N-Cadherin, ERMs and Rac-1. PMID:24593809

  4. Association of Renal Resistive Index with Markers of Extrarenal Vascular Changes in Patients with Systemic Lupus Erythematosus.

    PubMed

    Morreale, Massimiliano; Mulè, Giuseppe; Ferrante, Angelo; D'ignoto, Francesco; Cottone, Santina

    2016-05-01

    Recent data suggest that renal hemodynamic parameters obtained by duplex Doppler sonography, especially the intrarenal resistive index (RRI), may be associated with systemic vascular changes. We evaluated the relationships between RRI and arterial stiffness, assessed by aortic pulse wave velocity, and between RRI and subclinical atherosclerosis, assessed by measuring carotid intima-media thickness in patients with systemic lupus erythematosus. We enrolled 39 patients with systemic lupus erythematosus (mean age 39 y) compared with 19 healthy controls, matched for age and sex. Each participant underwent 24 h of ambulatory blood pressure, aortic pulse wave velocity, carotid intima-media thickness and RRI measurements. RRI correlated significantly with aortic pulse wave velocity (r = 0.44, p = 0.006), and with carotid intima-media thickness (r = 0.46, p = 0.003). Both correlations held (p = 0.01), even after correction for age, mean arterial pressure and glomerular filtration rate. Our results suggest that the RRI may be considered a marker of systemic vascular changes and probably a predictor of cardiovascular risk in patients with systemic lupus erythematosus. PMID:26924695

  5. BET Bromodomain Suppression Inhibits VEGF-induced Angiogenesis and Vascular Permeability by Blocking VEGFR2-mediated Activation of PAK1 and eNOS

    PubMed Central

    Huang, Mingcheng; Qiu, Qian; Xiao, Youjun; Zeng, Shan; Zhan, Mingying; Shi, Maohua; Zou, Yaoyao; Ye, Yujin; Liang, Liuqin; Yang, Xiuyan; Xu, Hanshi

    2016-01-01

    The tyrosine kinase receptor vascular endothelial growth factor receptor 2 (VEGFR2) is a critical modulator of angiogenesis. Increasing evidence indicate the important role of bromodomain and extra-terminal domain (BET) of chromatin adaptors in regulating tumor growth and inflammatory response. However, whether BET proteins have a role in angiogenesis and endothelial permeability is unclear. In this study, we observed that treatment with JQ1, a specific BET inhibitor, suppressed in vitro tube formation of human umbilical vein endothelial cells (HUVECs) and in vivo angiogenesis in a Matrigel plug and oxygen-induced retinopathy neovascularization. JQ1 attenuated the VEGF-induced decrease in TEER in HUVECs and prevented Evans blue dye leakage in the VEGF-induced Miles assay in athymic Balb/c nude mice. BET inhibition with JQ1 or shRNA for Brd2 or Brd4 suppressed VEGF-induced migration, proliferation, and stress fiber formation of HUVECs. Furthermore, BET inhibition suppressed phosphorylation of VEGFR2 and PAK1, as well as eNOS activation in VEGF-stimulated HUVECs. Inhibition with VEGFR2 and PAK1 also reduced migration and proliferation, and attenuated the VEGF-induced decrease in TEER. Thus, our observations suggest the important role of BET bromodomain in regulating VEGF-induced angiogenesis. Strategies that target the BET bromodomain may provide a new therapeutic approach for angiogenesis-related diseases. PMID:27044328

  6. BET Bromodomain Suppression Inhibits VEGF-induced Angiogenesis and Vascular Permeability by Blocking VEGFR2-mediated Activation of PAK1 and eNOS.

    PubMed

    Huang, Mingcheng; Qiu, Qian; Xiao, Youjun; Zeng, Shan; Zhan, Mingying; Shi, Maohua; Zou, Yaoyao; Ye, Yujin; Liang, Liuqin; Yang, Xiuyan; Xu, Hanshi

    2016-01-01

    The tyrosine kinase receptor vascular endothelial growth factor receptor 2 (VEGFR2) is a critical modulator of angiogenesis. Increasing evidence indicate the important role of bromodomain and extra-terminal domain (BET) of chromatin adaptors in regulating tumor growth and inflammatory response. However, whether BET proteins have a role in angiogenesis and endothelial permeability is unclear. In this study, we observed that treatment with JQ1, a specific BET inhibitor, suppressed in vitro tube formation of human umbilical vein endothelial cells (HUVECs) and in vivo angiogenesis in a Matrigel plug and oxygen-induced retinopathy neovascularization. JQ1 attenuated the VEGF-induced decrease in TEER in HUVECs and prevented Evans blue dye leakage in the VEGF-induced Miles assay in athymic Balb/c nude mice. BET inhibition with JQ1 or shRNA for Brd2 or Brd4 suppressed VEGF-induced migration, proliferation, and stress fiber formation of HUVECs. Furthermore, BET inhibition suppressed phosphorylation of VEGFR2 and PAK1, as well as eNOS activation in VEGF-stimulated HUVECs. Inhibition with VEGFR2 and PAK1 also reduced migration and proliferation, and attenuated the VEGF-induced decrease in TEER. Thus, our observations suggest the important role of BET bromodomain in regulating VEGF-induced angiogenesis. Strategies that target the BET bromodomain may provide a new therapeutic approach for angiogenesis-related diseases. PMID:27044328

  7. The Role of Monitoring Arterial Stiffness with Cardio-Ankle Vascular Index in the Control of Lifestyle-Related Diseases

    PubMed Central

    Shirai, Kohji; Saiki, Atsuhito; Nagayama, Daiji; Tatsuno, Ichiro; Shimizu, Kazuhiro; Takahashi, Mao

    2015-01-01

    Arteriosclerosis is a major contributor to cardiovascular diseases. One of the difficulties in controlling those diseases is the lack of a suitable indicator of arteriosclerosis or arterial injury in routine clinical practice. Arterial stiffness was supposed to be one of the monitoring indexes of arteriosclerosis. Cardio-ankle vascular index (CAVI) is reflecting the stiffness of the arterial tree from the origin of the aorta to the ankle, and one of the features of CAVI is independency from blood pressure at a measuring time. When doxazosin, an α1-adrenergic blocker, was administered, CAVI decreased, indicating that arterial stiffness is composed of both organic stiffness and functional stiffness, which reflects the contraction of arterial smooth muscle. CAVI shows a high value with aging and in many arteriosclerotic diseases, and is also high in persons possessing main coronary risk factors such as diabetes mellitus, metabolic syndrome, hypertension and smoking. Furthermore, when the most of those risk factors were controlled by proper methods, CAVI improved. Furthermore, the co-relationship between CAVI and heart function was demonstrated during treatment of heart failure. This paper reviews the principle and rationale of CAVI, and discusses the meaning of monitoring CAVI in following up so-called lifestyle-related diseases and cardiac dysfunction in routine clinical practice. PMID:26587461

  8. The Role of Monitoring Arterial Stiffness with Cardio-Ankle Vascular Index in the Control of Lifestyle-Related Diseases.

    PubMed

    Shirai, Kohji; Saiki, Atsuhito; Nagayama, Daiji; Tatsuno, Ichiro; Shimizu, Kazuhiro; Takahashi, Mao

    2015-09-01

    Arteriosclerosis is a major contributor to cardiovascular diseases. One of the difficulties in controlling those diseases is the lack of a suitable indicator of arteriosclerosis or arterial injury in routine clinical practice. Arterial stiffness was supposed to be one of the monitoring indexes of arteriosclerosis. Cardio-ankle vascular index (CAVI) is reflecting the stiffness of the arterial tree from the origin of the aorta to the ankle, and one of the features of CAVI is independency from blood pressure at a measuring time. When doxazosin, an α1-adrenergic blocker, was administered, CAVI decreased, indicating that arterial stiffness is composed of both organic stiffness and functional stiffness, which reflects the contraction of arterial smooth muscle. CAVI shows a high value with aging and in many arteriosclerotic diseases, and is also high in persons possessing main coronary risk factors such as diabetes mellitus, metabolic syndrome, hypertension and smoking. Furthermore, when the most of those risk factors were controlled by proper methods, CAVI improved. Furthermore, the co-relationship between CAVI and heart function was demonstrated during treatment of heart failure. This paper reviews the principle and rationale of CAVI, and discusses the meaning of monitoring CAVI in following up so-called lifestyle-related diseases and cardiac dysfunction in routine clinical practice. PMID:26587461

  9. StructureFunction Studies Using Deletion Mutants Identify Domains of gC1qR/p33 as Potential Therapeutic Targets for Vascular Permeability and Inflammation

    PubMed Central

    Ghebrehiwet, Berhane; Jesty, Jolyon; Xu, Sulan; Vinayagasundaram, Rama; Vinayagasundaram, Uma; Ji, Yan; Valentino, Alisa; Hosszu, Kinga K.; Mathew, Sally; Joseph, Kusumam; Kaplan, Allen P.; Peerschke, Ellinor I. B.

    2011-01-01

    The endothelial cell receptor complex for kininogen (HK) comprises gC1qR, cytokeratin 1, and urokinase-type plasminogen activator receptor and is essential for activation of the kinin system that leads to bradykinin (BK) generation. Of these, gC1qR/p33 constitutes a high affinity site for HK the BK precursor and is therefore critical for the assembly of the kinin-generating cascade. Previous studies have identified a putative HK site within the C-terminal domain (residues 204218) of gC1qR recognized by mAb 74.5.2. In these studies, we used information from the crystal structure of gC1qR, to engineer several deletion (?) mutants and test their ability to bind and/or support BK generation. While deletion of residues 204218 (gC1qR?204218), showed significantly reduced binding to HK, BK generation was not affected when tested by a sensitive bradykinin immunoassay. In fact, all of the gC1qR deletion mutants supported BK generation with the exception of gC1qR?154162 and a point mutation in which Trp 233 was substituted with Gly. Binding studies also identified the existence of two additional sites at residues 144162 and 190202. Moreover, binding of HK to a synthetic peptide 190202 was inhibited by mAbs 48 and 83, but not by mAb 74.5.2. Since a single residue separates domains 190202 and 204218, they may be part of a highly stable HK binding pocket and therefore a potential target for drug design to prevent vascular permeability and inflammation. PMID:22282702

  10. Pathogenesis of periodontitis: a major arginine-specific cysteine proteinase from Porphyromonas gingivalis induces vascular permeability enhancement through activation of the kallikrein/kinin pathway.

    PubMed Central

    Imamura, T; Pike, R N; Potempa, J; Travis, J

    1994-01-01

    To elucidate the mechanism of production of an inflammatory exudate, gingival crevicular fluid (GCF), from periodontal pockets in periodontitis, we examined the vascular permeability enhancement (VPE) activity induced by an arginine-specific cysteine proteinase, Arg-gingipain-1 (RGP-1), produced by a major periopathogenic bacterium, Porphyromonas gingivalis. Intradermal injections into guinea pigs of RGP-1 (> 10(-8) M), or human plasma incubated with RGP-1 (> 10(-9) M), induced VPE in a dose- and activity-dependent manner but with different time courses for the two routes of production. VPE activity induced by RGP-1 was augmented by kininase inhibitors, inhibited by a kallikrein inhibitor and unaffected by an antihistamine drug. The VPE activity in human plasma incubated with RGP-1 also correlated closely with generation of bradykinin (BK). RGP-1 induced 30-40% less VPE activity in Hageman factor-deficient plasma and no VPE in plasma deficient in either prekallikrein (PK) or high molecular weight kininogen (HMWK). After incubation with RGP-1, plasma deficient in PK or HMWK, reconstituted with each missing protein, caused VPE, as did a mixture of purified PK and HMWK, but RGP-1 induced no VPE from HMWK. The VPE of extracts of clinically isolated P. gingivalis were reduced to about 10% by anti-RGP-1-IgG, leupeptin, or tosyl-L-lysine chloromethyl ketone, which paralleled effects observed with RGP-1. These results indicate that RGP-1 is the major VPE factor of P. gingivalis, inducing this activity through PK activation and subsequent BK release, resulting in GCF production at sites of periodontitis caused by infection with this organism. Images PMID:8040277

  11. Nonalcoholic Fatty Liver Disease as a Risk Factor of Arterial Stiffness Measured by the Cardioankle Vascular Index

    PubMed Central

    Chung, Goh Eun; Choi, Su-Yeon; Kim, Donghee; Kwak, Min-Sun; Park, Hyo Eun; Kim, Min-Kyung; Yim, Jeong Yoon

    2015-01-01

    Abstract Nonalcoholic fatty liver disease (NAFLD) is associated with risk factors for cardiovascular disease. The cardioankle vascular index (CAVI), a new measure of arterial stiffness, was recently developed and is independent of blood pressure. We investigated whether NAFLD is associated with arterial stiffness as measured using the CAVI in an apparently healthy population. A total of 2954 subjects without any known liver diseases were enrolled. NAFLD was diagnosed via typical ultrasonography. The clinical characteristics examined included age, sex, body mass index (BMI), waist circumference (WC), and the levels of aspartate aminotransferase, alanine aminotransferase, total cholesterol, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol triglycerides, and glucose. Arterial stiffness was defined using an age- and sex-specific threshold of the upper quartile of the CAVI. NAFLD was found in 1249 (42.3%) of the analyzed subjects. Using an age-, sex-, and BMI-adjusted model, NAFLD was associated with a 42% increase in the risk for arterial stiffness (highest quartile of the CAVI). The risk for arterial stiffness increased according to the severity of NAFLD (adjusted odds ratio [95% confidence interval], 1.27 [1.02???1.57] vs 1.78 [1.37???2.31], mild vs moderate-to-severe, respectively). When adjusted for other risk factors, including BMI, WC, smoking status, diabetes, and hypertension, these relationships remained statistically significant. Patients with NAFLD are at a high risk for arterial stiffness regardless of classical risk factors. The presence of cardiometabolic risk factors may attenuate the prediction of arterial stiffness by means of NAFLD presence. Thus, physicians should carefully assess subjects with NAFLD for atherosclerosis and associated comorbidities. PMID:25816034

  12. Nonalcoholic fatty liver disease as a risk factor of arterial stiffness measured by the cardioankle vascular index.

    PubMed

    Chung, Goh Eun; Choi, Su-Yeon; Kim, Donghee; Kwak, Min-Sun; Park, Hyo Eun; Kim, Min-Kyung; Yim, Jeong Yoon

    2015-03-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with risk factors for cardiovascular disease. The cardioankle vascular index (CAVI), a new measure of arterial stiffness, was recently developed and is independent of blood pressure. We investigated whether NAFLD is associated with arterial stiffness as measured using the CAVI in an apparently healthy population.A total of 2954 subjects without any known liver diseases were enrolled. NAFLD was diagnosed via typical ultrasonography. The clinical characteristics examined included age, sex, body mass index (BMI), waist circumference (WC), and the levels of aspartate aminotransferase, alanine aminotransferase, total cholesterol, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol triglycerides, and glucose. Arterial stiffness was defined using an age- and sex-specific threshold of the upper quartile of the CAVI.NAFLD was found in 1249 (42.3%) of the analyzed subjects. Using an age-, sex-, and BMI-adjusted model, NAFLD was associated with a 42% increase in the risk for arterial stiffness (highest quartile of the CAVI). The risk for arterial stiffness increased according to the severity of NAFLD (adjusted odds ratio [95% confidence interval], 1.27 [1.02 - 1.57] vs 1.78 [1.37 - 2.31], mild vs moderate-to-severe, respectively). When adjusted for other risk factors, including BMI, WC, smoking status, diabetes, and hypertension, these relationships remained statistically significant.Patients with NAFLD are at a high risk for arterial stiffness regardless of classical risk factors. The presence of cardiometabolic risk factors may attenuate the prediction of arterial stiffness by means of NAFLD presence. Thus, physicians should carefully assess subjects with NAFLD for atherosclerosis and associated comorbidities. PMID:25816034

  13. Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Boss, Daniel; Kühn, Jonas; Jourdain, Pascal; Depeursinge, Christian; Magistretti, Pierre J.; Marquet, Pierre

    2013-03-01

    A dual-wavelength digital holographic microscope to measure absolute volume of living cells is proposed. The optical setup allows us to reconstruct two quantitative phase contrast images at two different wavelengths from a single hologram acquisition. When adding the absorbing dye fast green FCF as a dispersive agent to the extracellular medium, cellular thickness can be univocally determined in the full field of view. In addition to the absolute cell volume, the method can be applied to derive important biophysical parameters of living cells including osmotic membrane water permeability coefficient and the integral intracellular refractive index (RI). Further, the RI of transmembrane flux can be determined giving an indication about the nature of transported solutes. The proposed method is applied to cultured human embryonic kidney cells, Chinese hamster ovary cells, human red blood cells, mouse cortical astrocytes, and neurons.

  14. Measurement of absolute cell volume, osmotic membrane water permeability, and refractive index of transmembrane water and solute flux by digital holographic microscopy.

    PubMed

    Boss, Daniel; Kühn, Jonas; Jourdain, Pascal; Depeursinge, Christian; Magistretti, Pierre J; Marquet, Pierre

    2013-03-01

    A dual-wavelength digital holographic microscope to measure absolute volume of living cells is proposed. The optical setup allows us to reconstruct two quantitative phase contrast images at two different wavelengths from a single hologram acquisition. When adding the absorbing dye fast green FCF as a dispersive agent to the extracellular medium, cellular thickness can be univocally determined in the full field of view. In addition to the absolute cell volume, the method can be applied to derive important biophysical parameters of living cells including osmotic membrane water permeability coefficient and the integral intracellular refractive index (RI). Further, the RI of transmembrane flux can be determined giving an indication about the nature of transported solutes. The proposed method is applied to cultured human embryonic kidney cells, Chinese hamster ovary cells, human red blood cells, mouse cortical astrocytes, and neurons. PMID:23487181

  15. Determination of permeability index using Stoneley slowness analysis, NMR models, and formation evaluations: a case study from a gas reservoir, south of Iran

    NASA Astrophysics Data System (ADS)

    Hosseini, Mirhasan; Javaherian, Abdolrahim; Movahed, Bahram

    2014-10-01

    In hydrocarbon reservoirs, permeability is one of the most critical parameters with a significant role in the production of hydrocarbon resources. Direct determination of permeability using Stoneley waves has always had some difficulties. In addition, some un-calibrated empirical models such as Nuclear Magnetic Resonance (NMR) models and petrophysical evaluation model (intrinsic permeability) do not provide reliable estimates of permeability in carbonate formations. Therefore, utilizing an appropriate numerical method for direct determination of permeability using Stoneley waves as well as an appropriate calibration method for the empirical models is necessary to have reliable results. This paper shows the application of a numerical method, called bisection method, in the direct determination of permeability from Stoneley wave slowness. In addition, a linear regression (least squares) method was used to calibrate the NMR models including Schlumberger Doll Research (SDR) and Timur-Coates models as well as the intrinsic permeability equation (permeability from petrophysical evaluations). The Express Pressure Tester (XPT) permeability was considered as an option for the reference permeability. Therefore, all permeability models were validated for the Stoneley permeability and calibrated for the empirical models with the XPT permeability. In order to have a quantitative assessment on the results and compare the results before and after the calibration, the Root Mean Squares Error (RMSE) was calculated for each of the used models. The results for the Stoneley permeability showed that, in many points there was not much difference between the Stoneley permeability calculated by the bisection method and the XPT permeability. Comparing the results showed that the calibration of the empirical models reduced their RMSE values. As a result of the calibration, the RMSE was decreased by about 39% for the SDR model, 18% for the Timur-Coates model, and 91% for the petrophysical evaluations model. Presented bisection method calculates permeability directly without of any inversion or external calibration.

  16. Using refractive index matching to image flow above and within a highly-permeable laboratory stream bed

    NASA Astrophysics Data System (ADS)

    Lichtner, Derek; Best, Jim; Blois, Gianluca; Kim, Taehoon; Christensen, Kenneth

    2015-11-01

    Turbulent flow over a rough, porous gravel bed is investigated with particle image velocimetry (PIV) and refractive index matching (RIM). A model stream bed was constructed with 4224 pre-cast acrylic spheres (D = 1.27 cm) in a fixed cubic pattern. The flow above and within the bed was measured in the streamwise-wall-normal plane at Reb = 3.20 × 10, with an image resolution of 11 Mpixel, and the flow was seeded with silver-coated hollow glass spheres (ρ = 1700 kg m-3). The highpermeability of the interface in these experiments permits large, instantaneous, near-bed streamwise momentum due to vertical exchange viaturbulence. The mean velocity flow structure exhibitsa significant slip velocity at the bed interface. In the pore spaces, mean velocities are near-horizontal and 5-10% of the maximum free stream velocity. High Reynolds stresses near the bed, particularly around the crests of spherical roughness elements, suggest turbulence is produced by flow separation and the shedding of vortices from streambed grains. The dimensions of turbulent flow structures, determined via two-point correlations and Galilean decompositions, appear similar to those of hairpin vortices, although the resemblance remains unconfirmed without time-resolved data.

  17. Capsaicin stimulation of the cochlea and electric stimulation of the trigeminal ganglion mediate vascular permeability in cochlear and vertebro-basilar arteries: a potential cause of inner ear dysfunction in headache.

    PubMed

    Vass, Z; Steyger, P S; Hordichok, A J; Trune, D R; Jancs, G; Nuttall, A L

    2001-01-01

    Trigeminal neurogenic inflammation is one explanation for the development of vascular migraine. The triggers for this inflammation and pain are not well understood, but are probably vasoactive components acting on the blood vessel wall. Migraine-related inner ear symptoms like phonophobia, tinnitus, fluctuation in hearing perception and increased noise sensitivity provide indirect evidence that cochlear blood vessels are also affected by basilar artery migraine. The purpose of this investigation was to determine if a functional connection exists between the cochlea and the basilar artery. Neuronally mediated permeability changes in the cochlea and basilar artery were measured by colloidal silver and Evans Blue extravasation, following orthodromic and antidromic stimulation of the trigeminal ganglion innervating the cochlea. Capsaicin and electrical stimulation induced both dose- and time-dependent plasma extravasation of colloidal silver and Evans Blue from the basilar artery and anterior inferior cerebellar artery. Both orthodromic and antidromic activation of trigeminal sensory fibers also induced cochlear vascular permeability changes and significant quantitative differences between the treated and control groups in spectrophotometric assays. These results characterize a vasoactive connection between the cochlea and vertebro-basilar system through the trigeminal sensory neurons. We propose that vertigo, tinnitus and hearing deficits associated with basilar migraine could arise by excitation of the trigeminal nerve fibers in the cochlea, resulting in local plasma extravasation. In addition, cochlear "dysfunction" may also trigger basilar and cluster headache by afferent input to the trigeminal system. PMID:11311800

  18. Role of Krev Interaction Trapped-1 in Prostacyclin-Induced Protection against Lung Vascular Permeability Induced by Excessive Mechanical Forces and Thrombin Receptor Activating Peptide 6.

    PubMed

    Meliton, Angelo; Meng, Fanyong; Tian, Yufeng; Shah, Alok A; Birukova, Anna A; Birukov, Konstantin G

    2015-12-01

    Mechanisms of vascular endothelial cell (EC) barrier regulation during acute lung injury (ALI) or other pathologies associated with increased vascular leakiness are an active area of research. Adaptor protein krev interaction trapped-1 (KRIT1) participates in angiogenesis, lumen formation, and stabilization of EC adherens junctions (AJs) in mature vasculature. We tested a role of KRIT1 in the regulation of Rho-GTPase signaling induced by mechanical stimulation and barrier dysfunction relevant to ventilator-induced lung injury and investigated KRIT1 involvement in EC barrier protection by prostacyclin (PC). PC stimulated Ras-related protein 1 (Rap1)-dependent association of KRIT1 with vascular endothelial cadherin at AJs, with KRIT1-dependent cortical cytoskeletal remodeling leading to EC barrier enhancement. KRIT1 knockdown exacerbated Rho-GTPase activation and EC barrier disruption induced by pathologic 18% cyclic stretch and thrombin receptor activating peptide (TRAP) 6 and attenuated the protective effects of PC. In the two-hit model of ALI caused by high tidal volume (HTV) mechanical ventilation and TRAP6 injection, KRIT1 functional deficiency in KRIT1(+/-) mice increased basal lung vascular leak and augmented vascular leak and lung injury caused by exposure to HTV and TRAP6. Down-regulation of KRIT1 also diminished the protective effects of PC against TRAP6/HTV-induced lung injury. These results demonstrate a KRIT1-dependent mechanism of vascular EC barrier control in basal conditions and in the two-hit model of ALI caused by excessive mechanical forces and TRAP6 via negative regulation of Rho activity and enhancement of cell junctions. We also conclude that the stimulation of the Rap1-KRIT1 signaling module is a major mechanism of vascular endothelial barrier protection by PC in the injured lung. PMID:25923142

  19. The Role of a Novel Arterial Stiffness Parameter, Cardio-Ankle Vascular Index (CAVI), as a Surrogate Marker for Cardiovascular Diseases.

    PubMed

    Saiki, Atsuhito; Sato, Yuta; Watanabe, Rena; Watanabe, Yasuhiro; Imamura, Haruki; Yamaguchi, Takashi; Ban, Noriko; Kawana, Hidetoshi; Nagumo, Ayako; Nagayama, Daiji; Ohira, Masahiro; Endo, Kei; Tatsuno, Ichiro

    2016-02-01

    Measurement of arterial stiffness in routine medical practice is important to assess the progression of arteriosclerosis. So far, many parameters have been proposed to quantitatively represent arterial stiffness. Among these, pulse wave velocity (PWV) has been most frequently applied to clinical medicine because those could be measured simply and non-invasively. PWV had established the usefulness of measuring arterial wall stiffness. However, PWV essentially depends on blood pressure at the time of measurement. Therefore, PWV is not appropriate as a parameter for the evaluation of arterial stiffness, particularly for the studies involving blood pressure changes.On the other hand, stiffness parameter ? is an index reflecting arterial stiffness without the influence of blood pressure. Recently, this parameter has been applied to develop a new arterial stiffness index called cardio-ankle vascular index (CAVI). Therefore, CAVI does not depend on blood pressure changes during the measurements; CAVI could represent the stiffness of the arterial tree from the origin of the aorta to the ankle.Many clinical studies obtained from CAVI are being accumulated. CAVI showed high value in arteriosclerotic diseases, such as coronary artery diseases, cerebral infarction, and chronic kidney diseases, and also in majority of people with various coronary risk factors. The improvement of those risk factors decreased CAVI. Furthermore, the role of CAVI as a predictor of cardio-vascular events was reported recently.We review the clinical studies on CAVI and discuss the clinical usefulness of CAVI as a candidate surrogate end-point marker for cardiovascular disease. PMID:26607350

  20. The Semaphorin 4D-Plexin-B1-RhoA signaling axis recruits pericytes and regulates vascular permeability through endothelial production of PDGF-B and ANGPTL4.

    PubMed

    Zhou, Hua; Yang, Ying-Hua; Basile, John R

    2014-01-01

    Semaphorin 4D (SEMA4D) is a member of a family of transmembrane and secreted proteins that have been shown to act through its receptor Plexin-B1 to regulate axon growth cone guidance, lymphocyte activation, and bone density. SEMA4D is also overexpressed by some malignancies and plays a role in tumor-induced angiogenesis similar to vascular endothelial growth factor (VEGF), a protein that has been targeted as part of some cancer therapies. In an attempt to examine the different effects on tumor growth and vascularity for these two pro-angiogenic factors, we previously noted that while inhibition of both VEGF and SEMA4D restricted tumor vascularity and size, vessels forming under conditions of VEGF blockade retained their association with pericytes while those arising in a background of SEMA4D/Plexin-B1 deficiency did not, an intriguing finding considering that alteration in pericyte association with endothelial cells is an emerging aspect of anti-angiogenic intervention in the treatment of cancer. Here we show through array analysis, immunoblots, migration and co-culture assays and VE-cadherin immunohistochemistry that SEMA4D production by head and neck carcinoma tumor cells induces expression of platelet-derived growth factor-B and angiopoietin-like protein 4 from endothelial cells in a Plexin-B1/Rho-dependent manner, thereby influencing proliferation and differentiation of pericytes and vascular permeability, whereas VEGF lacks these effects. These results partly explain the differences observed between SEMA4D and VEGF in pathological angiogenesis and suggest that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of solid tumors. PMID:24114199

  1. Carbohydrates and Endothelial Function: Is a Low-Carbohydrate Diet or a Low-Glycemic Index Diet Favourable for Vascular Health?

    PubMed Central

    Jovanovski, Elena; Zurbau, Andreea

    2015-01-01

    Low-carbohydrate diets have become increasingly popular in both media and clinical research settings. Although they may improve some metabolic markers, their effects on arterial function remain unclear. Endothelial dysfunction is the well-established response to cardiovascular risk factors and a pivotal feature that precedes atherosclerotic diseases. It has been demonstrated that a high carbohydrate-induced hyperglycemia and subsequent oxidative stress acutely worsen the efficacy of the endothelial vasodilatory system. Thus, in theory, a carbohydrate restricted diet may preserve the integrity of the arterial system. This review attempts to provide insight on whether low-carbohydrate diets have a favorable or detrimental impact on vascular function, or it is perhaps the quality of carbohydrate that should direct dietary recommendations. Research to date suggests that diets low in carbohydrate amount may negatively impact vascular endothelial function. Conversely, it appears that maintaining recommended carbohydrate intake with utilization of low glycemic index foods generates a more favorable vascular profile. Understanding these relationships will aid in deciphering the diverging role of modulating quantity and quality of carbohydrates on cardiovascular risk. PMID:25954727

  2. FECAL CALPROTECTIN AND GASTROINTESTINAL (GI) PERMEABILITY CORRELATE WITH DISEASE ACTIVITY INDEX, AND HISTOLOGIC, ENDOSCOPIC, AND RADIOLOGIC FINDINGS IN CHILDREN WITH CROHN DISEASE (CD)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fecal calprotectin and permeability are noninvasive measures of GI inflammation and damage, respectively. However, there are scant data as to the possible association between the tests and CD disease activity in children. We hypothesized that levels of fecal calprotectin and permeability would corre...

  3. Expansion Duroplasty Improves Intraspinal Pressure, Spinal Cord Perfusion Pressure, and Vascular Pressure Reactivity Index in Patients with Traumatic Spinal Cord Injury: Injured Spinal Cord Pressure Evaluation Study

    PubMed Central

    Phang, Isaac; Werndle, Melissa C.; Saadoun, Samira; Varsos, Georgios; Czosnyka, Marek; Zoumprouli, Argyro

    2015-01-01

    Abstract We recently showed that, after traumatic spinal cord injury (TSCI), laminectomy does not improve intraspinal pressure (ISP), spinal cord perfusion pressure (SCPP), or the vascular pressure reactivity index (sPRx) at the injury site sufficiently because of dural compression. This is an open label, prospective trial comparing combined bony and dural decompression versus laminectomy. Twenty-one patients with acute severe TSCI had re-alignment of the fracture and surgical fixation; 11 had laminectomy alone (laminectomy group) and 10 had laminectomy and duroplasty (laminectomy+duroplasty group). Primary outcomes were magnetic resonance imaging evidence of spinal cord decompression (increase in intradural space, cerebrospinal fluid around the injured cord) and spinal cord physiology (ISP, SCPP, sPRx). The laminectomy and laminectomy+duroplasty groups were well matched. Compared with the laminectomy group, the laminectomy+duroplasty group had greater increase in intradural space at the injury site and more effective decompression of the injured cord. In the laminectomy+duroplasty group, ISP was lower, SCPP higher, and sPRx lower, (i.e., improved vascular pressure reactivity), compared with the laminectomy group. Laminectomy+duroplasty caused cerebrospinal fluid leak that settled with lumbar drain in one patient and pseudomeningocele that resolved completely in five patients. We conclude that, after TSCI, laminectomy+duroplasty improves spinal cord radiological and physiological parameters more effectively than laminectomy alone. PMID:25705999

  4. Quantitative assessment of pulmonary vascular resistance and reactivity in children with pulmonary hypertension due to congenital heart disease using a noninvasive method: new Doppler-derived indexes.

    PubMed

    Nakahata, Yayaoi; Hiraishi, Satoshi; Oowada, Natsuko; Ando, Hisashi; Kimura, Sumito; Furukawa, Shinsuke; Ogata, Shohei; Ishii, Masahiro

    2009-04-01

    We assessed the usefulness of transthoracic Doppler-derived indexes obtained in the proximal pulmonary artery (PA) branch for estimating pulmonary vascular resistance (PVR) in 45 children with congenital heart disease (CHD) and 23 normal control subjects. The acceleration time, inflection time (InT), deceleration index, and peak velocity, which were measured from the systolic PA flow velocity curve obtained at the sites of the main PA, and right and left PA, were compared with the PVR in patients with CHD. In addition, changes in either Doppler-derived indexes or PVR during 100% oxygen administration were compared in 22 patients showing a baseline PVR >or=4.6 U/m(2) (high PVR). The heart-rate-corrected InT (InTc) values obtained in the left PA in the high PVR group were significantly lower than those in the main PA (4.7 +/- 1.5 vs. 7.5 +/- 3.0; p < 0.001). The InTc obtained from the left PA separated patients with high and low PVR (4.7 +/- 1.4 vs. 9.9 +/- 2.4; p < 0.001) and no significant differences in InTc were found between the low PVR and the control groups. An increase in InTc to >6 during 100% oxygen administration for the high PVR group indicated good PA reactivity with a sensitivity of 93%, specificity of 100%, and agreement of 95% (kappa = 0.83). Moreover, this InTc index correlated inversely with PVR (r = -0.80). In conclusion, our method can noninvasively separate high and low PVR and assess the PA reactivity for high PVR in children with CHD. PMID:18956135

  5. The Ketogenic Diet Alters the Hypoxic Response and Affects Expression of Proteins Associated with Angiogenesis, Invasive Potential and Vascular Permeability in a Mouse Glioma Model

    PubMed Central

    Woolf, Eric C.; Curley, Kara L.; Liu, Qingwei; Turner, Gregory H.; Charlton, Julie A.; Preul, Mark C.; Scheck, Adrienne C.

    2015-01-01

    Background The successful treatment of malignant gliomas remains a challenge despite the current standard of care, which consists of surgery, radiation and temozolomide. Advances in the survival of brain cancer patients require the design of new therapeutic approaches that take advantage of common phenotypes such as the altered metabolism found in cancer cells. It has therefore been postulated that the high-fat, low-carbohydrate, adequate protein ketogenic diet (KD) may be useful in the treatment of brain tumors. We have demonstrated that the KD enhances survival and potentiates standard therapy in a mouse model of malignant glioma, yet the mechanisms are not fully understood. Methods To explore the effects of the KD on various aspects of tumor growth and progression, we used the immunocompetent, syngeneic GL261-Luc2 mouse model of malignant glioma. Results Tumors from animals maintained on KD showed reduced expression of the hypoxia marker carbonic anhydrase 9, hypoxia inducible factor 1-alpha, and decreased activation of nuclear factor kappa B. Additionally, tumors from animals maintained on KD had reduced tumor microvasculature and decreased expression of vascular endothelial growth factor receptor 2, matrix metalloproteinase-2 and vimentin. Peritumoral edema was significantly reduced in animals fed the KD and protein analyses showed altered expression of zona occludens-1 and aquaporin-4. Conclusions The KD directly or indirectly alters the expression of several proteins involved in malignant progression and may be a useful tool for the treatment of gliomas. PMID:26083629

  6. Diosmin Alleviates Retinal Edema by Protecting the Blood-Retinal Barrier and Reducing Retinal Vascular Permeability during Ischemia/Reperfusion Injury

    PubMed Central

    Tong, Nianting; Zhang, Zhenzhen; Zhang, Wei; Qiu, Yating; Gong, Yuanyuan; Yin, Lili; Qiu, Qinghua; Wu, Xingwei

    2013-01-01

    Background and Purpose Retinal swelling, leading to irreversible visual impairment, is an important early complication in retinal ischemia/reperfusion (I/R) injury. Diosmin, a naturally occurring flavonoid glycoside, has been shown to have antioxidative and anti-inflammatory effects against I/R injury. The present study was performed to evaluate the retinal microvascular protective effect of diosmin in a model of I/R injury. Methods Unilateral retinal I/R was induced by increasing intraocular pressure to 110 mm Hg for 60 min followed by reperfusion. Diosmin (100 mg/kg) or vehicle solution was administered intragastrically 30 min before the onset of ischemia and then daily after I/R injury until the animals were sacrificed. Rats were evaluated for retinal functional injury by electroretinogram (ERG) just before sacrifice. Retinas were harvested for HE staining, immunohistochemistry assay, ELISA, and western blotting analysis. Evans blue (EB) extravasation was determined to assess blood–retinal barrier (BRB) disruption and the structure of tight junctions (TJ) was examined by transmission electron microscopy. Results Diosmin significantly ameliorated the reduction of b-wave, a-wave, and b/a ratio in ERG, alleviated retinal edema, protected the TJ structure, and reduced EB extravasation. All of these effects of diosmin were associated with increased zonular occluden-1 (ZO-1) and occludin protein expression and decreased VEGF/PEDF ratio. Conclusions Maintenance of TJ integrity and reduced permeability of capillaries as well as improvements in retinal edema were observed with diosmin treatment, which may contribute to preservation of retinal function. This protective effect of diosmin may be at least partly attributed to its ability to regulate the VEGF/PEDF ratio. PMID:23637907

  7. Vascular endothelial growth factor-C, a potential paracrine regulator of glomerular permeability, increases glomerular endothelial cell monolayer integrity and intracellular calcium.

    PubMed

    Foster, Rebecca R; Slater, Sadie C; Seckley, Jaqualine; Kerjaschki, Dontscho; Bates, David O; Mathieson, Peter W; Satchell, Simon C

    2008-10-01

    We have previously reported expression of vascular endothelial growth factor (VEGF)-A and -C in glomerular podocytes and actions of VEGF-A on glomerular endothelial cells (GEnC) that express VEGF receptor-2 (VEGFR-2). Here we define VEGFR-3 expression in GEnC and investigate the effects of the ligand VEGF-C. Renal cortex and cultured GEnC were examined by microscopy, and both cell and glomerular lysates were assessed by Western blotting. VEGF-C effects on trans-endothelial electrical resistance and albumin flux across GEnC monolayers were measured. The effects of VEGF-C156S, a VEGFR-3-specific agonist, and VEGF-A were also studied. VEGF-C effects on intracellular calcium ([Ca2+]i) were measured using a fluorescence technique, receptor phosphorylation was examined by immunoprecipitation assays, and phosphorylation of myosin light chain-2 and VE-cadherin was assessed by blotting with phospho-specific antibodies. GEnC expressed VEGFR-3 in tissue sections and culture, and VEGF-C increased trans-endothelial electrical resistance in a dose-dependent manner with a maximal effect at 120 minutes of 6.8 Omega whereas VEGF-C156S had no effect. VEGF-C reduced labeled albumin flux by 32.8%. VEGF-C and VEGF-A increased [Ca2+]i by 15% and 39%, respectively. VEGF-C phosphorylated VEGFR-2 but not VEGFR-3, myosin light chain-2, or VE-cadherin. VEGF-C increased GEnC monolayer integrity and increased [Ca2+]i, which may be related to VEGF-C-S particular receptor binding and phosphorylation induction characteristics. These observations suggest that podocytes direct GEnC behavior through both VEGF-C and VEGF-A. PMID:18772335

  8. Crustal Permeability

    NASA Astrophysics Data System (ADS)

    Ingebritsen, S.; Gleeson, T.

    2014-12-01

    Existing data and models support a distinction between the hydrodynamics of the brittle upper crust, where topography, permeability contrasts, and magmatic heat sources dominate patterns of flow and externally derived (meteoric) fluids are common, and the ductile lower crust, dominated by devolatilization reactions and internally derived fluids. The permeability structure of the uppermost (~<1 km) crust is highly heterogeneous, and controls include primary lithology, porosity, rheology, geochemistry, and tectonic and time-temperature histories of the rocks. Systematic permeability differences among original lithologies persist to contact-metamorphic depths of 3-10 km, but are not evident at regional-metamorphic depths of 10-30+ km - presumably because, at such depths, metamorphic textures become largely independent of the original lithology. Permeability can vary in time as well as space, and its temporal evolution may be gradual or abrupt: streamflow responses to moderate to large earthquakes demonstrate that dynamic stresses can instantaneously change permeability by factors of up to 20 on a regional scale, whereas a 10-fold decrease in the permeability of a package of shale in a compacting basin may require 107years. Temporal variation is enhanced by strong chemical and thermal disequilibrium; thus lab experiments involving hydrothermal flow in crystalline rocks under pressure, temperature, and chemistry gradients often result in 10-fold permeability decreases over daily to sub-annual time scales. Recent research on enhanced geothermal reservoirs, ore-forming systems, and the hydrologic effects of earthquakes consistently shows that shear dislocation caused by tectonic forcing or fluid injection can increase near-to intermediate-field permeability by factors of 100 to 1000. Nonetheless, considering permeability as static parameter is often a reasonable assumption for low-temperature hydrogeologic investigations with time scales of days to decades.

  9. Hyperemia-Related Changes in Arterial Stiffness: Comparison between Pulse Wave Velocity and Stiffness Index in the Vascular Reactivity Assessment

    PubMed Central

    Torrado, Juan; Bia, Daniel; Zócalo, Yanina; Farro, Ignacio; Farro, Federico; Armentano, Ricardo L.

    2012-01-01

    Carotid-to-radial pulse wave velocity (PWVcr) has been proposed to evaluate endothelial function. However, the measurement of PWVcr is not without limitations. A new simple approach could have wide application. Stiffness index (SI) is obtained by analysis of the peripheral pulse wave and gives reproducible information about stiffness of large arteries. This study assessed the effects of hyperemia on SI and compared it with PWVcr in 14 healthy subjects. Both were measured at rest and during 8 minutes after ischemia. SI temporal course was determined. At 1 minute, SI and PWVcr decreased (5.58 ± 0.24 to 5.34 ± 0.23 m/s, P < 0.05; 7.8 ± 1.0 to 7.2 ± 0.9 m/s; P < 0.05, resp.). SI was positively related to PWVcr in baseline (r = 0.62 , P < 0.05), at 1 minute (r = 0.79, P < 0.05), and during the whole experimental session (r = 0.52, P < 0.05). Conclusion. Hyperemia significantly decreases SI in healthy subjects. SI was related to PWVcr and could be used to facilitate the evaluation of hyperemia-related changes in arterial stiffness. PMID:22919496

  10. Association Between Increased Vascular Nitric Oxide Bioavailability and Progression to Dengue Hemorrhagic Fever in Adults.

    PubMed

    Thein, Tun-Linn; Wong, Joshua; Leo, Yee-Sin; Ooi, Eng-Eong; Lye, David; Yeo, Tsin W

    2015-09-01

    In a prospective longitudinal adult study, vascular nitric oxide bioavailability measured as reactive hyperemia index was significantly higher at enrollment in patients who developed dengue hemorrhagic fever (DHF) (n = 11), compared with the non-DHF group (n = 63) and those with other febrile illnesses (n = 25) (P = .01). After adjustment for age, fever day, and body mass index, enrollment reactive hyperemia index was associated with a 4-fold increased risk for DHF, and predicted DHF with an area under the receiver operating curve of 0.86. Increased vascular nitric oxide in dengue is associated with increased vascular permeability and impaired homeostasis and may have utility as a predictor of DHF. PMID:25732810

  11. Survey of ocular irritation predictive capacity using Chorioallantoic Membrane Vascular Assay (CAMVA) and Bovine Corneal Opacity and Permeability (BCOP) test historical data for 319 personal care products over fourteen years.

    PubMed

    Donahue, D A; Kaufman, L E; Avalos, J; Simion, F A; Cerven, D R

    2011-03-01

    The Chorioallantoic Membrane Vascular Assay (CAMVA) and Bovine Corneal Opacity and Permeability (BCOP) test are widely used to predict ocular irritation potential for consumer-use products. These in vitro assays do not require live animals, produce reliable predictive data for defined applicability domains compared to the Draize rabbit eye test, and are rapid and inexpensive. Data from 304 CAMVA and/or BCOP studies (319 formulations) were surveyed to determine the feasibility of predicting ocular irritation potential for various formulations. Hair shampoos, skin cleansers, and ethanol-based hair styling sprays were repeatedly predicted to be ocular irritants (accuracy rate=0.90-1.00), with skin cleanser and hair shampoo irritation largely dependent on surfactant species and concentration. Conversely, skin lotions/moisturizers and hair styling gels/lotions were repeatedly predicted to be non-irritants (accuracy rate=0.92 and 0.82, respectively). For hair shampoos, ethanol-based hair stylers, skin cleansers, and skin lotions/moisturizers, future ocular irritation testing (i.e., CAMVA/BCOP) can be nearly eliminated if new formulations are systematically compared to those previously tested using a defined decision tree. For other tested product categories, new formulations should continue to be evaluated in CAMVA/BCOP for ocular irritation potential because either the historical data exhibit significant variability (hair conditioners and mousses) or the historical sample size is too small to permit definitive conclusions (deodorants, make-up removers, massage oils, facial masks, body sprays, and other hair styling products). All decision tree conclusions should be made within a conservative weight-of-evidence context, considering the reported limitations of the BCOP test for alcohols, ketones, and solids. PMID:21147215

  12. Neutrophils, nitric oxide, and microvascular permeability in severe sepsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    STUDY OBJECTIVES: Alterations in microvascular permeability are prevalent in patients with sepsis; a recent study reported that patients with septic shock had increased capillary filtration coefficient (Kf), a noninvasive index of microvascular permeability. We aimed to determine whether patients wi...

  13. A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice.

    PubMed

    Terao, Tomio; Nagata, Kenji; Morino, Kazuko; Hirose, Tatsuro

    2010-03-01

    The quantitative trait locus controlling the number of primary rachis branches (PRBs) in rice was identified using backcrossed inbred lines of Sasanishiki/Habataki//Sasanishiki///Sasanishiki. The resultant gene was ABERRANT PANICLE ORGANIZATION 1 (APO1). Habataki-genotype segregated reciprocal recombinant lines for the APO1 locus increased both the number of PRB (12-13%) and the number of grains per panicle (9-12%), which increased the grain yield per plant (5-7%). Further recombination dividing this region revealed that different alleles regulated the number of PRB and the number of grains per panicle. The PRB1 allele, which includes the APO1 open reading frame (ORF) and the proximal promoter region, controlled only the number of PRB but not the number of grains per panicle. In contrast, the HI1 allele, which includes only the distal promoter region, increased the grain yield and harvest index in Habataki-genotype plants, nevertheless, the ORF expressed was Sasanishiki type. It also increased the number of large vascular bundles in the peduncle. APO1 expression occurred not only in developing panicles but also in the developing vascular bundle systems. In addition, Habataki plants displayed increased APO1 expression in comparison to Sasanishiki plants. It suggests that APO1 enhances the formation of vascular bundle systems which, consequently, promote carbohydrate translocation to panicles. The HI1 allele is suggested to regulate the amount of APO1 expression, and thereby control the development of vascular bundle systems. These findings may be useful to improve grain yield as well as quality through the improvement of translocation efficiency. PMID:20151298

  14. Vascular ring

    MedlinePlus

    ... occurs as often in males as females. Some infants with vascular ring also have another congenital heart ... How well the infant does depends on how much pressure the vascular ring is putting on the esophagus and trachea and how quickly ...

  15. Antioxidants and vascular health.

    PubMed

    Bielli, Alessandra; Scioli, Maria Giovanna; Mazzaglia, Donatella; Doldo, Elena; Orlandi, Augusto

    2015-12-15

    Oxygen free radicals and other reactive oxygen species (ROS) are common products of normal aerobic cellular metabolism, but high levels of ROS lead to oxidative stress and cellular damage. Increased production of ROS favors vascular dysfunction, inducing altered vascular permeability and inflammation, accompanied by the loss of vascular modulatory function, the imbalance between vasorelaxation and vasoconstriction, and the aberrant expression of inflammatory adhesion molecules. Inflammatory stimuli promote oxidative stress generated from the increased activity of mitochondrial nicotinamide adenine dinucleotide phosphate oxidase, particularly of the Nox4 isoform, with the consequent impairment of mitochondrial β-oxidation. Vascular dysfunction due to the increase in Nox4 activity and ROS overproduction leads to the progression of cardiovascular diseases, diabetes, inflammatory bowel disease, and neurological disorders. Considerable research into the development of effective antioxidant therapies using natural derivatives or new synthetic molecules has been conducted. Antioxidants may prevent cellular damage by reducing ROS overproduction or interfering in reactions that involve ROS. Vitamin E and ascorbic acid are well known as natural antioxidants that counteract lipid peroxidative damage by scavenging oxygen-derived free radicals, thus restoring vascular function. Recently, preliminary studies on natural antioxidants such as goji berries, thymus, rosemary, green tea ginseng, and garlic have been conducted for their efficacy in preventing vascular damage. N-acetyl-cysteine and propionyl-L-carnitine are synthetic compounds that regulate ROS production by replacing endogenous antioxidants in both endothelial and smooth muscle cells. In this review, we consider the molecular mechanisms underlying the generation of oxidative stress-induced vascular dysfunction as well as the beneficial effects of antioxidant therapies. PMID:26585821

  16. Pressure sensitivity of low permeability sandstones

    USGS Publications Warehouse

    Kilmer, N.H.; Morrow, N.R.; Pitman, J.K.

    1987-01-01

    Detailed core analysis has been carried out on 32 tight sandstones with permeabilities ranging over four orders of magnitude (0.0002 to 4.8 mD at 5000 psi confining pressure). Relationships between gas permeability and net confining pressure were measured for cycles of loading and unloading. For some samples, permeabilities were measured both along and across bedding planes. Large variations in stress sensitivity of permeability were observed from one sample to another. The ratio of permeability at a nominal confining pressure of 500 psi to that at 5000 psi was used to define a stress sensitivity ratio. For a given sample, confining pressure vs permeability followed a linear log-log relationship, the slope of which provided an index of pressure sensitivity. This index, as obtained for first unloading data, was used in testing relationships between stress sensitivity and other measured rock properties. Pressure sensitivity tended to increase with increase in carbonate content and depth, and with decrease in porosity, permeability and sodium feldspar. However, scatter in these relationships increased as permeability decreased. Tests for correlations between pressure sensitivity and various linear combinations of variables are reported. Details of pore structure related to diagenetic changes appears to be of much greater significance to pressure sensitivity than mineral composition. ?? 1987.

  17. Role of the altered transmural permeability in the pathomechanism of arteriosclerosis. History of arteriosclerosis theories. Role of the altered permeability in experimental arteriosclerosis models.

    PubMed

    Jellinek, H; Detre, Z

    1986-12-01

    After presenting an overview on classification and history of arteriosclerosis theories, the physiological factors involved in the transmural permeability of the arteries are discussed in detail. The development and characteristic features of the altered transmural permeability were studied in various experimental models such as in rat's hypercholesterolemia, local aortic hypoxia, lymphedema of the vascular wall and in hypertension. Results appear to show that alterations in permeability invariably developed in all of the pathological conditions examined, they were transient in nature and preceded the onset of intimal proliferation(s). The disturbance of transmural permeability might be the common pathologic clue which initiates uniform vascular responses to injuries produced by a variety of noxious stimuli. The possible role of the altered transmural permeability in the induction of smooth muscle cell proliferation is also discussed and evidence is provided that after withdrawal of stimulus for vascular injury intimal proliferation will not develop despite the manifest disorders in permeability. PMID:3550747

  18. Diabetes and Retinal Vascular Dysfunction

    PubMed Central

    Shin, Eui Seok; Sorenson, Christine M.; Sheibani, Nader

    2014-01-01

    Diabetes predominantly affects the microvascular circulation of the retina resulting in a range of structural changes unique to this tissue. These changes ultimately lead to altered permeability, hyperproliferation of endothelial cells and edema, and abnormal vascularization of the retina with resulting loss of vision. Enhanced production of inflammatory mediators and oxidative stress are primary insults with significant contribution to the pathogenesis of diabetic retinopathy (DR). We have determined the identity of the retinal vascular cells affected by hyperglycemia, and have delineated the cell autonomous impact of high glucose on function of these cells. We discuss some of the high glucose specific changes in retinal vascular cells and their contribution to retinal vascular dysfunction. This knowledge provides novel insight into the molecular and cellular defects contributing to the development and progression of diabetic retinopathy, and will aid in the development of innovative, as well as target specific therapeutic approaches for prevention and treatment of DR. PMID:25667739

  19. Mast Cells Contribute to Radiation-Induced Vascular Hyperpermeability

    PubMed Central

    Park, Kyung Ran; Monsky, Wayne L.; Lee, Chang Geol; Song, Chang Ho; Kim, Dong Heui; Jain, Rakesh K.; Fukumura, Dai

    2016-01-01

    Induction of vascular hyperpermeability is one of the early vascular responses to radiation exposure and is considered to contribute to subsequent fibrosis and tissue injuries. However, the mechanism underlying radiation-induced hyperpermeability has not yet been clearly elucidated. Here, we provide experimental evidence indicating that mast cells contribute to the increase in vascular permeability for albumin in normal mouse skin after irradiation. Vascular permeability in the skin of C3H mice increased after 2, 15 and 50 Gy irradiation, peaked at 24 h after irradiation and gradually decreased thereafter to the baseline level within 3–10 days. Both the extent and duration of hyperpermeability were dose dependent. We found significant degranulation of mast cells in the skin after 15 Gy irradiation. To further investigate the role of mast cells in the radiation-induced increase in vascular permeability, we measured vascular permeability in the skin of mast cell-deficient mice (WWv) and their wild-type littermates at 24 h after irradiation. Vascular permeability in WWv mice did not change, whereas that in wild-type mice significantly increased after irradiation. There were no appreciable changes in the total tissue levels of vascular endothelial growth factor or endothelial nitric oxide synthase after 15 Gy irradiation and there was no detectable expression of inducible nitric oxide synthase. Collectively, these results show that exposure to radiation induces vascular hyperpermeability in a dose-dependent manner and that mast cells contribute to this process. PMID:26771172

  20. Permeability of Clay Concretes

    NASA Astrophysics Data System (ADS)

    Solomon, F.; Ekolu, S. O.

    2015-11-01

    This paper presents an investigation on the effect of clay addition on water permeability and air permeability of concretes. Clay concrete mixes consisted of 0 to 40% clay content incorporated as cement replacement. Flow methods using triaxial cells and air permeameters were used for measuring the injected water and air flows under pressure. It was found that the higher the clay content in the mixture, the greater the permeability. At higher water-cement ratios (w/c), the paste matrix is less dense and easily allows water to ingress into concrete. But at high clay contents of 30 to 40% clay, the variation in permeability was significantly diminished among different concrete mixtures. It was confirmed that air permeability results were higher than the corresponding water permeability values when all permeability coefficients were converted to intrinsic permeability values.

  1. EPA Permeable Surface Research

    EPA Science Inventory

    EPA recognizes permeable surfaces as an effective post-construction infiltration-based Best Management Practice to mitigate the adverse effects of stormwater runoff. The professional user community conceptually embraces permeable surfaces as a tool for making runoff more closely...

  2. Ageing and vascular ageing.

    PubMed

    Jani, B; Rajkumar, C

    2006-06-01

    There is an age related decline in various physiological processes. Vascular ageing is associated with changes in the mechanical and the structural properties of the vascular wall, which leads to the loss of arterial elasticity and reduced arterial compliance. Arterial compliance can be measured by different parameters like pulse wave velocity, augmentation index, and systemic arterial compliance. There is evidence that arterial compliance is reduced in disease states such as hypertension, diabetes, and end stage renal failure. Changes in arterial compliance can be present before the clinical manifestation of cardiovascular disease. Pharmacological and non-pharmacological measures have been shown to improve arterial compliance. Arterial compliance may constitute an early cardiovascular risk marker and may be useful in assessing the effects of drugs on the cardiovascular system. Pharmacogenetics and genetics of arterial compliance in the future will improve our knowledge and understanding about vascular ageing. PMID:16754702

  3. Abnormal intestinal permeability and jejunal morphometry.

    PubMed Central

    Juby, L D; Dixon, M F; Axon, A T

    1987-01-01

    The cellobiose and mannitol differential sugar test is a non-invasive investigation of small bowel permeability, in which urinary recoveries of cellobiose and mannitol after a hyperosmolar oral load are expressed as a ratio to give a permeability index. Changes in the cellobiose:mannitol ratio often occur in coeliac disease, but some patients with abnormal permeability have normal jejunums by routine microscopy. Using computed morphometry the perimeter:lamina propria area index of jejunal biopsy samples was measured and compared with the cellobiose:mannitol ratio in three groups of patients: (i) those with coeliac disease with villous atrophy; (ii) those with normal jejunums and sugar test results: and (iii) those with normal jejunums but abnormal sugar test results. In addition to the expected difference in perimeter:lamina propria area index between patients with coeliac disease and those with normal findings (p less than 0.001), the index was also abnormal in patients with normal jejunums but abnormal sugar test results: (p less than 0.001 compared with group 1) and (0.01 greater than p greater than 0.001 compared with group 2). There was a significant overall correlation between the perimeter:lamina propria area index and cellobiose:mannitol ratio (p = 0.001). This study shows that computed jejunal morphometry can identify patients with subtle morphological changes that are related to abnormal intestinal permeability. Images Fig 1 PMID:3114327

  4. Vascular Tumors

    PubMed Central

    Sepulveda, Abel; Buchanan, Edward P.

    2014-01-01

    Vascular anomalies are divided into two main groups: tumors and malformations. Vascular tumors are a large and complex group of lesions, especially for clinicians with none or little experience in this field. In the past, these lesions caused a great deal of confusion because many appear analogous to the naked eye. Thankfully, recent advances in diagnostic techniques have helped the medical community to enhance our comprehension, accurately label, diagnose, and treat these lesions. In this article, we will review the most frequent vascular tumors and provide the reader with the tools to properly label, diagnose, and manage these complex lesions. PMID:25045329

  5. Endothelial permeability and VE-cadherin

    PubMed Central

    Gavard, Julie

    2014-01-01

    The endothelium forms a selective semi-permeable barrier controlling bidirectional transfer between blood vessel and irrigated tissues. This crucial function relies on the dynamic architecture of endothelial cellcell junctions, and in particular, VE-cadherin-mediated contacts. VE-cadherin indeed chiefly organizes the opening and closing of the endothelial barrier, and is central in permeability changes. In this review, the way VE-cadherin-based contacts are formed and maintained is first presented, including molecular traits of its expression, partners, and signaling. In a second part, the mechanisms by which VE-cadherin adhesion can be disrupted, leading to cellcell junction weakening and endothelial permeability increase, are described. Overall, the molecular basis for VE-cadherin control of the endothelial barrier function is of high interest for biomedical research, as vascular leakage is observed in many pathological conditions and human diseases. PMID:25422846

  6. Endothelial permeability and VE-cadherin

    PubMed Central

    Gavard, Julie

    2013-01-01

    The endothelium forms a selective semi-permeable barrier controlling bidirectional transfer between blood vessel and irrigated tissues. This crucial function relies on the dynamic architecture of endothelial cellcell junctions, and in particular, VE-cadherin-mediated contacts. VE-cadherin indeed chiefly organizes the opening and closing of the endothelial barrier, and is central in permeability changes. In this review, the way VE-cadherin-based contacts are formed and maintained is first presented, including molecular traits of its expression, partners, and signaling. In a second part, the mechanisms by which VE-cadherin adhesion can be disrupted, leading to cellcell junction weakening and endothelial permeability increase, are described. Overall, the molecular basis for VE-cadherin control of the endothelial barrier function is of high interest for biomedical research, as vascular leakage is observed in many pathological conditions and human diseases. PMID:24430214

  7. Vascular Cures

    MedlinePlus

    ... or 911 immediately. @ 2016 Vascular Cures is a tax-exempt, nonprofit organization tax ID#: 94-2825216 as described in the Section ... 3) of the Internal Revenue Code. Donations are tax deductible. 555 Price Ave., Suite 180, Redwood City, ...

  8. Vascular Diseases

    MedlinePlus

    ... heart and blood vessels, such as diabetes or high cholesterol Smoking Obesity Losing weight, eating healthy foods, being active and not smoking can help vascular disease. Other treatments include medicines and surgery.

  9. Vascular permeability—the essentials

    PubMed Central

    2015-01-01

    The vasculature, composed of vessels of different morphology and function, distributes blood to all tissues and maintains physiological tissue homeostasis. In pathologies, the vasculature is often affected by, and engaged in, the disease process. This may result in excessive formation of new, unstable, and hyperpermeable vessels with poor blood flow, which further promotes hypoxia and disease propagation. Chronic vessel permeability may also facilitate metastatic spread of cancer. Thus, there is a strong incentive to learn more about an important aspect of vessel biology in health and disease: the regulation of vessel permeability. The current review aims to summarize current insights into different mechanisms of vascular permeability, its regulatory factors, and the consequences for disease. PMID:26220421

  10. Permeability and relative permeability in rocks

    SciTech Connect

    Blair, S.C.; Berryman, J.G.

    1990-10-01

    Important features of the topology of the pore space of rocks can be usefully quantified by analyzing digitized images of rock cross sections. One approach computes statistical correlation functions using modern image processing techniques. These correlation functions contain information about porosity, specific surface area, tortuosity, formation factor, and elastic constants, as well as the fluid permeability and relative permeability. The physical basis of this approach is discussed and examples of the results for various sandstones are presented. The analysis shows that Kozeny-Carman relations and Archie's empirical laws must be modified to account for finite percolation thresholds in order to avoid unphysical behavior in the calculated relative permeabilities. 33 refs., 4 figs., 1 tab.

  11. Vascular Calcification

    PubMed Central

    Demer, Linda L.; Tintut, Yin

    2009-01-01

    Summary Clinically, vascular calcification is now accepted as a valuable predictor of coronary heart disease.153 Achieving control over this process requires understanding mechanisms in the context of a tightly controlled regulatory network, with multiple, nested feedback loops and cross talk between organ systems, in the realm of control theory. Thus, treatments for osteoporosis such as calcitriol, estradiol, bisphosphonates, calcium supplements, and intermittent PTH are likely to affect vascular calcification, and, conversely, many treatments for cardiovascular disease such as statins, antioxidants, hormone replacement therapy, angiotensin-converting enzyme inhibitors, fish oils, and calcium channel blockers may affect bone health. As we develop and use treatments for cardiovascular and skeletal diseases, we must give serious consideration to the implications for the organ at the other end of the bone-vascular axis. PMID:11602487

  12. Vascular Management in Rotationplasty

    PubMed Central

    Hartman, Curtis W.; Simon, Pamela J.; Baxter, B. Timothy; Neff, James R.

    2008-01-01

    The Van Nes rotationplasty is a useful limb-preserving procedure for skeletally immature patients with distal femoral or proximal tibial malignancy. The vascular supply to the lower limb either must be maintained and rotated or transected and reanastomosed. We asked whether there would be any difference in the ankle brachial index or complication rate for the two methods of vascular management. Vessels were resected with the tumor in seven patients and preserved and rotated in nine patients. One amputation occurred in the group in which the vessels were preserved. Four patients died secondary to metastatic disease diagnosed preoperatively. The most recent ankle brachial indices were 0.96 and 0.82 for the posterior tibial and dorsalis pedis arteries, respectively, in the reconstructed group. The ankle brachial indices were 0.98 and 0.96 for the posterior tibial and dorsalis pedis arteries, respectively, in the rotated group. Outcomes appear similar using both methods of vascular management and one should not hesitate to perform an en bloc resection when there is a question of vascular involvement. Level of Evidence: Level III, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. Electronic supplementary material The online version of this article (doi:10.1007/s11999-008-0197-4) contains supplementary material, which is available to authorized users. PMID:18347891

  13. Permeability of Dentine

    PubMed Central

    Ghazali, Farid Bin Che

    2003-01-01

    This is an update on the present integrated knowledge regarding dentine permeability that assumed a role in dentine sensitivity and contribute clinically to the effective bonding properties of restorative dental materials. This paper will attempt to refer to in vivo and in vitro studies of dentine permeability and the various interrelated factors governing it. PMID:23365497

  14. Effect of dengue virus-induced cytotoxin on capillary permeability.

    PubMed Central

    Dhawan, R.; Khanna, M.; Chaturvedi, U. C.; Mathur, A.

    1990-01-01

    Capillary permeability is increased in cases of dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS) but its genesis is not known. Dengue type 2 virus (DV) induces production of a cytokine (CF2) by mouse macrophages. The present study was undertaken to investigate the effect of CF2 on capillary permeability. It was observed that intraperitoneal inoculation of CF2 in mice increased the capillary permeability in a dose-dependent manner, as shown by leakage of intravenously injected radioactive iodine (125I) or Evan's blue dye in the peritoneal cavity. Peak leakage occurred at 30 min and the vascular integrity was restored by 1-2 h. The increase in capillary permeability was abrogated by pretreatment of mice with avil (H1 receptor blocker) but not by ranitidine (H2 receptor blocker). The findings thus show that DV-induced CF2 increases the capillary permeability via release of histamine. PMID:2310617

  15. Metoclopramide and renal vascular resistance.

    PubMed

    Manara, A R; Bolsin, S; Monk, C R; Hartnell, G; Harris, R A

    1991-01-01

    We have studied the effect of i.v. metoclopramide on renal vascular resistance in nine healthy volunteers. Peak systolic and end-diastolic frequencies were measured using duplex Doppler ultrasound of a renal interlobar artery, before and after the administration of i.v. metoclopramide 10 mg, and the resistance index derived. There was no significant change in mean arterial pressure or resistance index following metoclopramide. PMID:1997046

  16. Diabetes and Vascular Disease

    MedlinePlus

    ... Chronic Venous Insufficiency Congenital Vascular Malformation Critical Limb Ischemia (CLI) Deep Vein Thrombosis (DVT) Diabetes and Vascular ... Chronic Venous Insufficiency Congenital Vascular Malformation Critical Limb Ischemia (CLI) Deep Vein Thrombosis (DVT) Diabetes and Vascular ...

  17. What Is Vascular Disease?

    MedlinePlus

    ... Chronic Venous Insufficiency Congenital Vascular Malformation Critical Limb Ischemia (CLI) Deep Vein Thrombosis (DVT) Diabetes and Vascular ... Chronic Venous Insufficiency Congenital Vascular Malformation Critical Limb Ischemia (CLI) Deep Vein Thrombosis (DVT) Diabetes and Vascular ...

  18. Mechanosensing at the Vascular Interface

    PubMed Central

    Tarbell, John M.; Simon, Scott I.; Curry, Fitz-Roy E.

    2015-01-01

    Mammals are endowed with a complex set of mechanisms that sense mechanical forces imparted by blood flow to endothelial cells (ECs), smooth muscle cells, and circulating blood cells to elicit biochemical responses through a process referred to as mechanotransduction. These biochemical responses are critical for a host of other responses, including regulation of blood pressure, control of vascular permeability for maintaining adequate perfusion of tissues, and control of leukocyte recruitment during immunosurveillance and inflammation. This review focuses on the role of the endothelial surface proteoglycan/glycoprotein layer—the glycocalyx (GCX)—that lines all blood vessel walls and is an agent in mechanotransduction and the modulation of blood cell interactions with the EC surface. We first discuss the biochemical composition and ultrastructure of the GCX, highlighting recent developments that reveal gaps in our understanding of the relationship between composition and spatial organization. We then consider the roles of the GCX in mechanotransduction and in vascular permeability control and review the prominent interaction of plasma borne sphingosine-1 phosphate (S1P), which has been shown to regulate both the composition of the GCX and the endothelial junctions. Finally, we consider the association of GCX degradation with inflammation and vascular disease and end with a final section on future research directions. PMID:24905872

  19. Experimental Investigation on Sandstone Rock Permeability of Pakistan Gas Fields

    NASA Astrophysics Data System (ADS)

    Raza, Arshad; Bing, Chua Han; Nagarajan, Ramasamy; Hamid, Mohamed Ali

    2015-04-01

    Permeability is the ability of formation to produce hydrocarbon which is affected by compaction, pore size, sorting, cementation, layering and clay swelling. The effect of texture on permeability in term of grain size, sorting, sphericity, degree of cementing has been reported in literature. Also, the effect of permeability on capillary pressure, irreducible water saturation, displacement pressure and pore geometry constant has been studied separately. This preliminary study presents the experimental results of eight samples to understand the effect of similar factors of texture on permeability. With the knowledge of the results, it can be said that the effect of grain size, cementation, texture material, sphericity, and porosity can't be observed on permeability except sorting when less than ten samples are considered from different depositional environment. The results also show the impact of permeability on capillary pressure, irreducible water saturation, and displacement pressure and pore geometry index as similar as published in the literature.

  20. Pulmonary microvascular permeability in patients with severe mitral stenosis.

    PubMed Central

    Davies, S W; Wilkinson, P; Keegan, J; Bailey, J; Timmis, A D; Wedzicha, J A; Rudd, R M

    1991-01-01

    Patients with rheumatic mitral stenosis often have no pulmonary oedema despite considerably increased pulmonary venous pressure. Pulmonary microvascular permeability was measured non-invasively by a previously validated method of double isotope scintigraphy with indium-113m and technetium-99m. This permits calculation of an index reflecting transferrin efflux and thus, indirectly, the microvascular permeability. Fifteen patients with severe mitral stenosis (defined as valve area less than 1.0 cm2) were compared with a control group of 11 patients with mild coronary artery disease. The permeability index was significantly lower in patients with mitral stenosis than in the control group. Furthermore, the extent of reduction of the permeability index correlated with the severity of mitral stenosis as reflected by the Gorlin valve area. This finding may account for the relative resistance of these patients to pulmonary oedema despite chronic pulmonary venous hypertension. Images PMID:1867952

  1. Tunable permeability of magnetic wires at microwaves

    NASA Astrophysics Data System (ADS)

    Panina, L. V.; Makhnovskiy, D. P.; Morchenko, A. T.; Kostishin, V. G.

    2015-06-01

    This paper presents the analysis into microwave magnetic properties of magnetic microwires and their composites in the context of applications in wireless sensors and tunable microwave materials. It is demonstrated that the intrinsic permeability of wires has a wide frequency dispersion with relatively large values in the GHz band. In the case of a specific magnetic anisotropy this results in a tunable microwave impedance which could be used for distributed wireless sensing networks in functional composites. The other range of applications is related with developing the artificial magnetic dielectrics with large and tunable permeability. The composites with magnetic wires with a circumferential anisotropy have the effective permeability which differs substantially from unity for a relatively low concentration (less than 10%). This can make it possible to design the wire media with a negative and tunable index of refraction utilising natural magnetic properties of wires.

  2. Effect of low shear stress on permeability and occludin expression in porcine artery endothelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    INTRODUCTION: Although both fluid shear stress and mass transport of atherogenic substances into the vascular wall are known to be important factors in atherogenesis, there has been little research on the effect of shear stress on vascular permeability. Therefore, the effects of shear stress on the ...

  3. Inflammatory Cytokines in Vascular Dysfunction and Vascular Disease

    PubMed Central

    Sprague, Alexander H.; Khalil, Raouf A.

    2009-01-01

    The vascular inflammatory response involves complex interaction between inflammatory cells (neutrophils, lymphocytes, monocytes, macrophages), endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and extracellular matrix (ECM). Vascular injury is associated with increased expression of adhesion molecules by ECs and recruitment of inflammatory cells, growth factors, and cytokines, with consequent effects on ECs, VSMCs and ECM. Cytokines include tumor necrosis factors, interleukins, lymphokines, monokines, interferons, colony stimulating factors, and transforming growth factors. Cytokines are produced by macrophages, T cells and monocytes, as well as platelets, ECs and VSMCs. Circulating cytokines interact with specific receptors on various cell types and activate JAK-STAT, NF-κB, and Smad signaling pathways leading to an inflammatory response involving cell adhesion, permeability and apoptosis. Cytokines also interact with mitochondria to increasie the production of reactive oxygen species. Cytokine-induced activation of these pathways in ECs modifies the production/activity of vasodilatory mediators such as nitric oxide, prostacyclin, endothelium-derived hyperpolarizing factor, and bradykinin, as well as vasoconstrictive mediators such as endothelin and angiotensin II. Cytokines interact with VSMCs to activate Ca2+, protein kinase C, Rho-Kinase, and MAPK pathways, which promote cell growth and migration, and VSM reactivity. Cytokines also interact with integrins and matrix metalloproteinases (MMPs) and modify ECM composition. Persistent increases in cytokines are associated with vascular dysfunction and vascular disease such as atherosclerosis, abdominal aortic aneurysm, varicose veins and hypertension. Genetic and pharmacological tools to decrease the production of cytokines or to diminish their effects using cytokine antagonists could provide new approaches in the management of inflammatory vascular disease. PMID:19413999

  4. Seismic waves increase permeability.

    PubMed

    Elkhoury, Jean E; Brodsky, Emily E; Agnew, Duncan C

    2006-06-29

    Earthquakes have been observed to affect hydrological systems in a variety of ways--water well levels can change dramatically, streams can become fuller and spring discharges can increase at the time of earthquakes. Distant earthquakes may even increase the permeability in faults. Most of these hydrological observations can be explained by some form of permeability increase. Here we use the response of water well levels to solid Earth tides to measure permeability over a 20-year period. At the time of each of seven earthquakes in Southern California, we observe transient changes of up to 24 degrees in the phase of the water level response to the dilatational volumetric strain of the semidiurnal tidal components of wells at the Piñon Flat Observatory in Southern California. After the earthquakes, the phase gradually returns to the background value at a rate of less than 0.1 degrees per day. We use a model of axisymmetric flow driven by an imposed head oscillation through a single, laterally extensive, confined, homogeneous and isotropic aquifer to relate the phase response to aquifer properties. We interpret the changes in phase response as due to changes in permeability. At the time of the earthquakes, the permeability at the site increases by a factor as high as three. The permeability increase depends roughly linearly on the amplitude of seismic-wave peak ground velocity in the range of 0.21-2.1 cm s(-1). Such permeability increases are of interest to hydrologists and oil reservoir engineers as they affect fluid flow and might determine long-term evolution of hydrological and oil-bearing systems. They may also be interesting to seismologists, as the resulting pore pressure changes can affect earthquakes by changing normal stresses on faults. PMID:16810253

  5. The structure of turbulence overlying impermeable and permeable rough walls

    NASA Astrophysics Data System (ADS)

    Kim, T.; Blois, G.; Best, J.; Christensen, K. T.

    2014-11-01

    Turbulent flow overlying complex topographies, both impermeable and permeable, occur across a broad range of scales in both natural and engineering environments. Permeability of the wall introduces a higher degree of both structural and conceptual complexity, with previous studies suggesting that interactions between the turbulent free flow and pore flow occur along the permeable interface and play a defining role in momentum exchange across the interface. Here we employ a Refractive-Index-Matching (RIM) technique in order to access the flow across the permeable interface with the particle image velocimetry (PIV) method, resulting in unimpeded optical access to the fluid flow at and within a permeable bed. Cubic-packed hemispheres are studied in both impermeable and permeable configurations, with models cast by an acrylic resin whose refractive index matched that of the working fluid (aqueous sodium iodide). The statistical and structural features of the flow in the near-wall region of the impermeable case and the interfacial region of the permeable case are compared to understand the role of permeability in driving momentum exchange processes as a function of Reynolds number. Comparisons to recent numerical simulations are also made.

  6. Vascular dementia

    PubMed Central

    Korczyn, Amos D; Vakhapova, Veronika; Grinberg, Lea T

    2012-01-01

    The epidemic grow of dementia causes great concern for the society. It is customary to consider Alzheimer’s disease (AD) as the most common cause of dementia, followed by vascular dementia (VaD). This dichotomous view of a neurodegenerative disease as opposed to brain damage caused by extrinsic factors led to separate lines of research in these two entities. Indeed, accumulated data suggest that the two disorders have additive effects and probably interact; however it is still unknown to what degree. Furthermore, epidemiological studies have shown “vascular” risk factors to be associated with AD. Therefore, a clear distinction between AD and VaD cannot be made in most cases, and is furthermore unhelpful. In the absence of efficacious treatment for the neurodegenerative process, special attention must be given to vascular component, even in patients with presumed mixed pathology. Symptomatic treatment of VaD and AD are similar, although the former is less effective. For prevention of dementia it is important to treat aggressively all factors, even in stroke survivors who do not show evidence of cognitive decline,. In this review, we will give a clinical and pathological picture of the processes leading to VaD and discuss it interaction with AD. PMID:22575403

  7. Vascular proteomics.

    PubMed

    Barderas, Maria G; Vivanco, Fernando; Alvarez-Llamas, Gloria

    2013-01-01

    Cardiovascular diseases constitute the largest of death in developed countries, being atherosclerosis the major contributor. Atherosclerosis is a process of chronic inflammation, characterized by the accumulation of lipids, cells, and fibrous elements in medium and large arteries. There is a continuum in atherosclerotic cardiovascular pathology that extends from the initial endothelial damage to diseases such as angina, myocardial infarction, and stroke. The extent of inflammation, proteolysis, calcification, and neovascularization influences the development of advanced lesions (atheroma plaques) on the arteries. Plaque rupture and the ensuing thrombosis cause the acute complications of atherosclerosis, i.e., myocardial infarction and cerebral ischemia. Thus, identification of early biomarkers of plaque unstability and susceptibility to rupture is of capital importance in preventing acute events. In recent years proteomics has been successfully applied to study proteins involved in these pathological processes. Thus, proteomic studies have been carried out focusing on different elements such as vascular tissues (arteries), artery layers, cells looking at proteomes and secretomes, plasma/serum, exosomes, lipoproteins, and metabolites. This chapter will provide an overview of latest advances in proteomic studies of atherosclerosis and related vascular diseases. PMID:23585080

  8. Wood smoke inhalation increases pulmonary microvascular permeability

    SciTech Connect

    Nieman, G.F.; Clark, W.R. Jr.; Goyette, D.; Hart, A.K.; Bredenberg, C.E.

    1989-04-01

    The effect of wood smoke inhalation (SI) on pulmonary vascular permeability was studied in open-chested, anesthetized dogs. Animals were divided into two groups. A prenodal lymphatic vessel was cannulated in group I (n = 7), and baseline (BL) lung lymph flow (QL) and lymph (CL) and plasma (CP) protein concentrations were measured. The animals' lungs were then ventilated with wood smoke for 5 minutes. Left atrial pressure (Pla) was increased above baseline (mean 16.7 +/- 2.2 mm Hg), and the ratio of CL to CP was used to assess endothelial permeability at high lymph flows. There was little change in either QL (BL: 27 +/- 9; SI: 27 +/- 5 microliters/min) or CL/CP (BL: 0.76 +/- 0.03; SI: 0.74 +/- 0.02) after SI at normal Pla. Elevation of Pla caused a significant increase in QL (136 +/- 15 microliters/min), but CL/CP (0.67 +/- 0.02) failed to decrease significantly at high lymph flows. In group II (n = 15) total protein concentration of airway fluid was compared with that of plasma after smoke inhalation, intravenous alloxan, and increased Pla. The ratio of protein concentration in airway fluid to plasma after SI (0.70 +/- 0.07) was greater than that obtained with increased Pla (0.64 +/- 0.07) but less than that after alloxan (0.85 +/- 0.04). These data indicate that SI in the dog results in a moderate increase in pulmonary vascular permeability that is less severe than that induced by alloxan.

  9. EPA Permeable Surface Research - Poster

    EPA Science Inventory

    EPA recognizes permeable surfaces as an effective post-construction infiltration-based Best Management Practice to mitigate the adverse effects of stormwater runoff. The professional user community conceptually embraces permeable surfaces as a tool for making runoff more closely...

  10. Carboxyhaemoglobin and pulmonary epithelial permeability in man.

    PubMed Central

    Jones, J G; Minty, B D; Royston, D; Royston, J P

    1983-01-01

    The effect of cigarette smoke exposure on pulmonary epithelial permeability was studied in 45 smokers and 22 non-smokers. An index of cigarette smoke exposure was obtained from the carboxyhaemoglobin concentration (HbCO%). Pulmonary epithelial permeability was proportional to the half-time clearance rate of technetium-99m-labelled diethylene triamine pentacetate (99mTc DTPA) from lung to blood (T1/2LB). The relationship between T1/2LB and HbCO% was hyperbolic in form and the data could be fitted to the quadratic formula (formula; see text) where the parameters a0, a1, and a2 represent respectively the asymptotic T1/2LB value at large carboxyhaemoglobin values and the slope and shape of the curve. The values of these parameters were a0 4.4 (2.6), a1 = 77.8 (15.5), and a2 -25.5 (9.7) (SE). This is the first demonstration of a dose-response relationship between carboxyhaemoglobin and an increased permeability of the lungs in man and provides a technique for identifying the roles of carbon monoxide and other cigarette smoke constituents in causing increased pulmonary epithelial permeability. PMID:6344310

  11. Liquid-permeable electrode

    DOEpatents

    Folser, George R.

    1980-01-01

    Electrodes for use in an electrolytic cell, which are liquid-permeable and have low electrical resistance and high internal surface area are provided of a rigid, porous, carbonaceous matrix having activated carbon uniformly embedded throughout. The activated carbon may be catalyzed with platinum for improved electron transfer between electrode and electrolyte. Activated carbon is mixed with a powdered thermosetting phenolic resin and compacted to the desired shape in a heated mold to melt the resin and form the green electrode. The compact is then heated to a pyrolyzing temperature to carbonize and volatilize the resin, forming a rigid, porous structure. The permeable structure and high internal surface area are useful in electrolytic cells where it is necessary to continuously remove the products of the electrochemical reaction.

  12. Intraocular Hemorrhage Causes Retinal Vascular Dysfunction via Plasma Kallikrein

    PubMed Central

    Liu, Jia; Clermont, Allen C.; Gao, Ben-Bo; Feener, Edward P.

    2013-01-01

    Purpose. Retinal hemorrhages occur in a variety of sight-threatening conditions including ocular trauma, high altitude retinopathy, and chronic diseases such as diabetic and hypertensive retinopathies. The goal of this study is to investigate the effects of blood in the vitreous on retinal vascular function in rats. Methods. Intravitreal injections of autologous blood, plasma kallikrein (PK), bradykinin, and collagenase were performed in Sprague-Dawley and Long-Evans rats. Retinal vascular permeability was measured using vitreous fluorophotometry and Evans blue dye permeation. Leukostasis was measured by fluorescein isothiocyanate–coupled concanavalin A lectin and acridine orange labeling. Retinal hemorrhage was examined on retinal flatmounts. Primary cultures of bovine retinal pericytes were cultured in the presence of 25 nM PK for 24 hours. The pericyte-conditioned medium was collected and the collagen proteome was analyzed by tandem mass spectrometry. Results. Intravitreal injection of autologous blood induced retinal vascular permeability and retinal leukostasis, and these responses were ameliorated by PK inhibition. Intravitreal injections of exogenous PK induced retinal vascular permeability, leukostasis, and retinal hemorrhage. Proteomic analyses showed that PK increased collagen degradation in pericyte-conditioned medium and purified type IV collagen. Intravitreal injection of collagenase mimicked PK's effect on retinal hemorrhage. Conclusions. Intraocular hemorrhage increases retinal vascular permeability and leukostasis, and these responses are mediated, in part, via PK. Intravitreal injections of either PK or collagenase, but not bradykinin, induce retinal hemorrhage in rats. PK exerts collagenase-like activity that may contribute to blood–retinal barrier dysfunction. PMID:23299478

  13. Stainless Steel Permeability

    SciTech Connect

    Buchenauer, Dean A.; Karnesky, Richard A.

    2015-09-01

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of the role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.

  14. Vascular Endothelium and Hypovolemic Shock.

    PubMed

    Gulati, Anil

    2016-01-01

    Endothelium is a site of metabolic activity and has a major reservoir of multipotent stem cells. It plays a vital role in the vascular physiological, pathophysiological and reparative processes. Endothelial functions are significantly altered following hypovolemic shock due to ischemia of the endothelial cells and by reperfusion due to resuscitation with fluids. Activation of endothelial cells leads to release of vasoactive substances (nitric oxide, endothelin, platelet activating factor, prostacyclin, mitochondrial N-formyl peptide), mediators of inflammation (tumor necrosis factor α, interleukins, interferons) and thrombosis. Endothelial cell apoptosis is induced following hypovolemic shock due to deprivation of oxygen required by endothelial cell mitochondria; this lack of oxygen initiates an increase in mitochondrial reactive oxygen species (ROS) and release of apoptogenic proteins. The glycocalyx structure of endothelium is compromised which causes an impairment of the protective endothelial barrier resulting in increased permeability and leakage of fluids in to the tissue causing edema. Growth factors such as angiopoetins and vascular endothelial growth factors also contribute towards pathophysiology of hypovolemic shock. Endothelium is extremely active with numerous functions, understanding these functions will provide novel targets to design therapeutic agents for the acute management of hypovolemic shock. Hypovolemic shock also occurs in conditions such as dengue shock syndrome and Ebola hemorrhagic fever, defining the role of endothelium in the pathophysiology of these conditions will provide greater insight regarding the functions of endothelial cells in vascular regulation. PMID:26638794

  15. Ve-ptp Modulates Vascular Integrity by Promoting Adherens Junction Maturation

    PubMed Central

    Carra, Silvia; Foglia, Efrem; Cermenati, Solei; Bresciani, Erica; Giampietro, Costanza; Lora Lamia, Carla; Dejana, Elisabetta

    2012-01-01

    Background Endothelial cell junctions control blood vessel permeability. Altered permeability can be associated with vascular fragility that leads to vessel weakness and haemorrhage formation. In vivo studies on the function of genes involved in the maintenance of vascular integrity are essential to better understand the molecular basis of diseases linked to permeability defects. Ve-ptp (Vascular Endothelial-Protein Tyrosine Phosphatase) is a transmembrane protein present at endothelial adherens junctions (AJs). Methodology/Principal Findings We investigated the role of Ve-ptp in AJ maturation/stability and in the modulation of endothelial permeability using zebrafish (Danio rerio). Whole-mount in situ hybridizations revealed zve-ptp expression exclusively in the developing vascular system. Generation of altered zve-ptp transcripts, induced separately by two different splicing morpholinos, resulted in permeability defects closely linked to vascular wall fragility. The ultrastructural analysis revealed a statistically significant reduction of junction complexes and the presence of immature AJs in zve-ptp morphants but not in control embryos. Conclusions/Significance Here we show the first in vivo evidence of a potentially critical role played by Ve-ptp in AJ maturation, an important event for permeability modulation and for the development of a functional vascular system. PMID:23251467

  16. Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium.

    PubMed Central

    Quinn, T P; Peters, K G; De Vries, C; Ferrara, N; Williams, L T

    1993-01-01

    Vascular endothelial growth factor (VEGF), also known as vascular permeability factor, induces endothelial proliferation in vitro and vascular permeability in vivo. The human transmembrane c-fms-like tyrosine kinase Flt-1 has recently been identified as a VEGF receptor. Flt-1 kinase has seven immunoglobulin-like extracellular domains and a kinase insert sequence, features shared by two other human gene-encoded proteins, kinase insert domain-containing receptor (KDR) and FLT-4. In this study we show that the mouse homologue of KDR, Flk-1, is a second functional VEGF receptor. Flk-1 binds VEGF with high affinity, undergoes autophosphorylation, and mediates VEGF-dependent Ca2+ efflux in Xenopus oocytes injected with Flk-1 mRNA. We also demonstrate by in situ hybridization that Flk-1 protein expression in the mouse embryo is restricted to the vascular endothelium and the umbilical cord stroma. VEGF and its receptors Flk-1/KDR and Flt-1 may play a role in vascular development and regulation of vascular permeability. Images Fig. 2 Fig. 4 PMID:8356051

  17. Relative permeability through fractures

    SciTech Connect

    Diomampo, Gracel, P.

    2001-08-01

    The mechanism of two-phase flow through fractures is of importance in understanding many geologic processes. Currently, two-phase flow through fractures is still poorly understood. In this study, nitrogen-water experiments were done on both smooth and rough parallel plates to determine the governing flow mechanism for fractures and the appropriate methodology for data analysis. The experiments were done using a glass plate to allow visualization of flow. Digital video recording allowed instantaneous measurement of pressure, flow rate and saturation. Saturation was computed using image analysis techniques. The experiments showed that gas and liquid phases flow through fractures in nonuniform separate channels. The localized channels change with time as each phase path undergoes continues breaking and reforming due to invasion of the other phase. The stability of the phase paths is dependent on liquid and gas flow rate ratio. This mechanism holds true for over a range of saturation for both smooth and rough fractures. In imbibition for rough-walled fractures, another mechanism similar to wave-like flow in pipes was also observed. The data from the experiments were analyzed using Darcy's law and using the concept of friction factor and equivalent Reynold's number for two-phase flow. For both smooth- and rough-walled fractures a clear relationship between relative permeability and saturation was seen. The calculated relative permeability curves follow Corey-type behavior and can be modeled using Honarpour expressions. The sum of the relative permeabilities is not equal one, indicating phase interference. The equivalent homogeneous single-phase approach did not give satisfactory representation of flow through fractures. The graphs of experimentally derived friction factor with the modified Reynolds number do not reveal a distinctive linear relationship.

  18. Endothelial permeability and VE-cadherin: a wacky comradeship.

    PubMed

    Gavard, Julie

    2014-01-01

    The endothelium forms a selective semi-permeable barrier controlling bidirectional transfer between blood vessel and irrigated tissues. This crucial function relies on the dynamic architecture of endothelial cell–cell junctions, and in particular, VE -cadherin-mediated contacts. VE -cadherin indeed chiefly organizes the opening and closing of the endothelial barrier, and is central in permeability changes. In this review, the way VE -cadherin-based contacts are formed and maintained is first presented, including molecular traits of its expression, partners, and signaling. In a second part, the mechanisms by which VE -cadherin adhesion can be disrupted, leading to cell–cell junction weakening and endothelial permeability increase, are described. Overall, the molecular basis for VE -cadherin control of the endothelial barrier function is of high interest for biomedical research, as vascular leakage is observed in many pathological conditions and human diseases. PMID:25422846

  19. Vascular malformations: localized defects in vascular morphogenesis.

    PubMed

    Brouillard, P; Vikkula, M

    2003-05-01

    Vascular anomalies are localized defects of the vasculature, and usually affect a limited number of vessels in a restricted area of the body. They are subdivided into vascular malformations and vascular tumours. Most are sporadic, but Mendelian inheritance is observed in some families. By genetic analysis, several causative genes have been identified during the last 10 years. This has shed light into the pathophysiological pathways involved. Interestingly, in most cases, the primary defect seems to affect the characteristics of endothelial cells. Only mutations in the glomulin gene, responsible for hereditary glomuvenous malformations, are thought to directly affect vascular smooth-muscle cells. PMID:12752563

  20. Indexing Images.

    ERIC Educational Resources Information Center

    Rasmussen, Edie M.

    1997-01-01

    Focuses on access to digital image collections by means of manual and automatic indexing. Contains six sections: (1) Studies of Image Systems and their Use; (2) Approaches to Indexing Images; (3) Image Attributes; (4) Concept-Based Indexing; (5) Content-Based Indexing; and (6) Browsing in Image Retrieval. Contains 105 references. (AEF)

  1. Changes in mast cells and in permeability of mesenteric microvessels under the effect of immobilization and electrostimulation

    NASA Technical Reports Server (NTRS)

    Gorizontova, M. P.

    1980-01-01

    It was shown that a reduction in the amount of mast cells in the mesentery and an increase in their degranulation was accompanied by an increase in vascular permeability of rat mesentery. It is supposed that immobilization and electrostimulation causing degranulation of mast cells prompted histamine and serotonin release from them, thus increasing the permeability of the venular portion of the microvascular bed. Prophylactic use of esculamin preparation with P-vitaminic activity decreased mast cell degranulation, which apparently prolonged the release of histamine and serotonin from them and normalized vascular permeability.

  2. Preoperative dynamic contrast-enhanced MRI correlates with molecular markers of hypoxia and vascularity in specific areas of intratumoral microenvironment and is predictive of patient outcome

    PubMed Central

    Jensen, Randy L.; Mumert, Michael L.; Gillespie, David L.; Kinney, Anita Y.; Schabel, Matthias C.; Salzman, Karen L.

    2014-01-01

    Background Measures of tumor vascularity and hypoxia have been correlated with glioma grade and outcome. Dynamic contrast-enhanced (DCE) MRI can noninvasively map tumor blood flow, vascularity, and permeability. In this prospective observational cohort pilot study, preoperative imaging was correlated with molecular markers of hypoxia, vascularity, proliferation, and progression-free and overall patient survival. Methods Pharmacokinetic modeling methods were used to generate maps of tumor blood flow, extraction fraction, permeability-surface area product, transfer constant, washout rate, interstitial volume, blood volume, capillary transit time, and capillary heterogeneity from preoperative DCE-MRI data in human glioma patients. Tissue was obtained from areas of peritumoral edema, active tumor, hypoxic penumbra, and necrotic core and evaluated for vascularity, proliferation, and expression of hypoxia-regulated molecules. DCE-MRI parameter values were correlated with hypoxia-regulated protein expression at tissue sample sites. Results Patient survival correlated with DCE parameters in 2 cases: capillary heterogeneity in active tumor and interstitial volume in areas of peritumoral edema. Statistically significant correlations were observed between several DCE parameters and tissue markers. In addition, MIB-1 index was predictive of overall survival (P = .044) and correlated with vascular endothelial growth factor expression in hypoxic penumbra (r = 0.7933, P = .0071) and peritumoral edema (r = 0.4546). Increased microvessel density correlated with worse patient outcome (P = .026). Conclusions Our findings suggest that DCE-MRI may facilitate noninvasive preoperative predictions of areas of tumor with increased hypoxia and proliferation. Both imaging and hypoxia biomarkers are predictive of patient outcome. This has the potential to allow unprecedented prognostic decisions and to guide therapies to specific tumor areas. PMID:24305704

  3. Design and development of multilayer vascular graft

    NASA Astrophysics Data System (ADS)

    Madhavan, Krishna

    2011-07-01

    Vascular graft is a widely-used medical device for the treatment of vascular diseases such as atherosclerosis and aneurysm as well as for the use of vascular access and pediatric shunt, which are major causes of mortality and morbidity in this world. Dysfunction of vascular grafts often occurs, particularly for grafts with diameter less than 6mm, and is associated with the design of graft materials. Mechanical strength, compliance, permeability, endothelialization and availability are issues of most concern for vascular graft materials. To address these issues, we have designed a biodegradable, compliant graft made of hybrid multilayer by combining an intimal equivalent, electrospun heparin-impregnated poly-epsilon-caprolactone nanofibers, with a medial equivalent, a crosslinked collagen-chitosan-based gel scaffold. The intimal equivalent is designed to build mechanical strength and stability suitable for in vivo grafting and to prevent thrombosis. The medial equivalent is designed to serve as a scaffold for the activity of the smooth muscle cells important for vascular healing and regeneration. Our results have shown that genipin is a biocompatible crosslinker to enhance the mechanical properties of collagen-chitosan based scaffolds, and the degradation time and the activity of smooth muscle cells in the scaffold can be modulated by the crosslinking degree. For vascular grafting and regeneration in vivo, an important design parameter of the hybrid multilayer is the interface adhesion between the intimal and medial equivalents. With diametrically opposite affinities to water, delamination of the two layers occurs. Physical or chemical modification techniques were thus used to enhance the adhesion. Microscopic examination and graft-relevant functional characterizations have been performed to evaluate these techniques. Results from characterization of microstructure and functional properties, including burst strength, compliance, water permeability and suture strength, showed that the multilayer graft possessed properties mimicking those of native vessels. Achieving these FDA-required functional properties is essential because they play critical roles in graft performances in vivo such as thrombus formation, occlusion, healing, and bleeding. In addition, cell studies and animal studies have been performed on the multilayer graft. Our results show that the multilayer graft support mimetic vascular culture of cells and the acellular graft serves as an artery equivalent in vivo to sustain the physiological conditions and promote appropriate cellular activity. In conclusion, the newly-developed hybrid multilayer graft provides a proper balance of biomechanical and biochemical properties and demonstrates the potential for the use of vascular tissue engineering and regeneration.

  4. Anthrax lethal toxin induces cell death-independent permeability in zebrafish vasculature

    PubMed Central

    Bolcome, Robert E.; Sullivan, Sarah E.; Zeller, René; Barker, Adam P.; Collier, R. John; Chan, Joanne

    2008-01-01

    Vascular dysfunction has been reported in human cases of anthrax, in mammalian models of Bacillus anthracis, and in animals injected with anthrax toxin proteins. To examine anthrax lethal toxin effects on intact blood vessels, we developed a zebrafish model that permits in vivo imaging and evaluation of vasculature and cardiovascular function. Vascular defects monitored in hundreds of embryos enabled us to define four stages of phenotypic progression leading to circulatory dysfunction. We demonstrated increased endothelial permeability as an early consequence of toxin action by tracking the extravasation of fluorescent microspheres in toxin-injected embryos. Lethal toxin did not induce a significant amount of cell death in embryonic tissues or blood vessels, as shown by staining with acridine orange, and endothelial cells in lethal toxin-injected embryos continued to divide at the normal rate. Vascular permeability is strongly affected by the VEGF/vascular permeability factor (VPF) signaling pathway, and we were able to attenuate anthrax lethal toxin effects with chemical inhibitors of VEGFR function. Our study demonstrates the importance of vascular permeability in anthrax lethal toxin action and the need for further investigation of the cardiovascular component of human anthrax disease. PMID:18268319

  5. Microcirculation-on-a-Chip: A Microfluidic Platform for Assaying Blood- and Lymphatic-Vessel Permeability

    PubMed Central

    Sato, Miwa; Sasaki, Naoki; Ato, Manabu; Hirakawa, Satoshi; Sato, Kiichi; Sato, Kae

    2015-01-01

    We developed a microfluidic model of microcirculation containing both blood and lymphatic vessels for examining vascular permeability. The designed microfluidic device harbors upper and lower channels that are partly aligned and are separated by a porous membrane, and on this membrane, blood vascular endothelial cells (BECs) and lymphatic endothelial cells (LECs) were cocultured back-to-back. At cell-cell junctions of both BECs and LECs, claudin-5 and VE-cadherin were detected. The permeability coefficient measured here was lower than the value reported for isolated mammalian venules. Moreover, our results showed that the flow culture established in the device promoted the formation of endothelial cell-cell junctions, and that treatment with histamine, an inflammation-promoting substance, induced changes in the localization of tight and adherens junction-associated proteins and an increase in vascular permeability in the microdevice. These findings indicated that both BECs and LECs appeared to retain their functions in the microfluidic coculture platform. Using this microcirculation device, the vascular damage induced by habu snake venom was successfully assayed, and the assay time was reduced from 24 h to 30 min. This is the first report of a microcirculation model in which BECs and LECs were cocultured. Because the micromodel includes lymphatic vessels in addition to blood vessels, the model can be used to evaluate both vascular permeability and lymphatic return rate. PMID:26332321

  6. Endogenous endothelial cell signaling systems maintain vascular stability

    PubMed Central

    London, Nyall R.; Whitehead, Kevin J.; Li, Dean Y.

    2009-01-01

    The function of the endothelium is to provide a network to allow delivery of oxygen and nutrients to tissues throughout the body. This network is comprised of adjacent endothelial cells which utilize adherens junction proteins such as vascular endothelial cadherin (VE-cadherin) to maintain the appropriate level of vascular permeability. The disruption of VE-cadherin interactions during pathologic settings can lead to excessive vascular leak with adverse effects. Endogenous cell signaling systems have been defined that help to maintain the proper level of vascular stability. Perhaps the best described system is Angiopoietin-1 (Ang-1). Ang-1 acting through its receptor Tie2 generates a well described set of signaling events ultimately leading to enhanced vascular stability. In this review we will focus on what is known about additional endogenous cell signaling systems that stabilize the vasculature, and using Ang-1/Tie2 as a model, we will address where our understanding of these additional systems is lacking. PMID:19172407

  7. Modeling of Microvascular Permeability Changes after Electroporation

    PubMed Central

    Corovic, Selma; Markelc, Bostjan; Dolinar, Mitja; Cemazar, Maja; Jarm, Tomaz

    2015-01-01

    Vascular endothelium selectively controls the transport of plasma contents across the blood vessel wall. The principal objective of our preliminary study was to quantify the electroporation-induced increase in permeability of blood vessel wall for macromolecules, which do not normally extravasate from blood into skin interstitium in homeostatic conditions. Our study combines mathematical modeling (by employing pharmacokinetic and finite element modeling approach) with in vivo measurements (by intravital fluorescence microscopy). Extravasation of fluorescently labeled dextran molecules of two different sizes (70 kDa and 2000 kDa) following the application of electroporation pulses was investigated in order to simulate extravasation of therapeutic macromolecules with molecular weights comparable to molecular weight of particles such as antibodies and plasmid DNA. The increase in blood vessel permeability due to electroporation and corresponding transvascular transport was quantified by calculating the apparent diffusion coefficients for skin microvessel wall (D [μm2/s]) for both molecular sizes. The calculated apparent diffusion coefficients were D = 0.0086 μm2/s and D = 0.0045 μm2/s for 70 kDa and 2000 kDa dextran molecules, respectively. The results of our preliminary study have important implications in development of realistic mathematical models for prediction of extravasation and delivery of large therapeutic molecules to target tissues by means of electroporation. PMID:25793292

  8. Society for Vascular Medicine

    MedlinePlus

    ... 2016 Archive Submit a Case New! Vascular Medicine Videos Geoff Barnes talks about the article, VTE: Predicting ... now. Trending Now: Hot Topics in Vascular Medicine Video Series Fibromuscular Dysplasia (FMD) with Drs. Jeffrey W. ...

  9. Vascular cognitive disorder: a new diagnostic category updating vascular cognitive impairment and vascular dementia.

    PubMed

    Román, Gustavo C; Sachdev, Perminder; Royall, Donald R; Bullock, Roger A; Orgogozo, Jean-Marc; López-Pousa, Secundino; Arizaga, Raul; Wallin, Anders

    2004-11-15

    Vascular cognitive impairment (VCI) was proposed as an umbrella term to include subjects affected with any degree of cognitive impairment resulting from cerebrovascular disease (CVD), ranging from mild cognitive impairment (MCI) to vascular dementia. VCI may or may not exclude the host of "focal" circumscribed impairments of specialized functions such as language (aphasia), intentional gesture (apraxia), or categorical recognition (agnosia), among others, that may result from a stroke. Therefore, there are no universally accepted diagnostic criteria for VCI. We conclude that this concept could be more useful if it were to be limited to cases of vascular MCI without dementia, by analogy with the concept of amnestic MCI, currently considered the earliest clinically diagnosable stage of Alzheimer disease (AD). In agreement with our view,the Canadian Study on Health and Aging successfully implemented a restricted definition of VCI, excluding cases of dementia (i.e., vascular cognitive impairment no dementia, VCI-ND). The Canadian definition and diagnostic criteria could be utilized for future studies of VCI. This definition excludes isolated impairments of specialized cognitive functions. Vascular dementia (VaD): The main problem of this diagnostic category stems from the currently accepted definition of dementia that requires memory loss as the sine qua non for the diagnosis. This may result in over-sampling of patients with AD worsened by stroke (AD+CVD). This problem was minimized in controlled clinical trials of VaD by excluding patients with a prior diagnosis of AD, those with pre-existing memory loss before the index stroke, and those with amnestic MCI. We propose a definition of dementia in VaD based on presence of abnormal executive control function, severe enough to interfere with social or occupational functioning. Vascular cognitive disorder (VCD): This term, proposed by Sachdev [P. Sachdev, Vascular cognitive disorder. Int J Geriat Psychiatry 14 (1999)402-403.] would become the global diagnostic category for cognitive impairment of vascular origin, ranging from VCI to VaD. It would include specific disease entities such as post-stroke VCI, post-stroke VaD, CADASIL, Binswanger disease, and AD plus CVD. This category explicitly excludes isolated cognitive dysfunctions such as those mentioned above. PMID:15537526

  10. Tubedown regulation of retinal endothelial permeability signaling pathways

    PubMed Central

    Ho, Nhu; Gendron, Robert L.; Grozinger, Kindra; Whelan, Maria A.; Hicks, Emily Anne; Tennakoon, Bimal; Gardiner, Danielle; Good, William V.; Paradis, Hélène

    2015-01-01

    ABSTRACT Tubedown (Tbdn; Naa15), a subunit of the N-terminal acetyltransferase NatA, complexes with the c-Src substrate Cortactin and supports adult retinal homeostasis through regulation of vascular permeability. Here we investigate the role of Tbdn expression on signaling components of retinal endothelial permeability to understand how Tbdn regulates the vasculature and supports retinal homeostasis. Tbdn knockdown-induced hyperpermeability to Albumin in retinal endothelial cells was associated with an increase in the levels of activation of the Src family kinases (SFK) c-Src, Fyn and Lyn and phospho-Cortactin (Tyr421). The knockdown of Cortactin expression reduced Tbdn knockdown-induced permeability to Albumin and the levels of activated SFK. Inhibition of SFK in retinal endothelial cells decreased Tbdn knockdown-induced permeability to Albumin and phospho-Cortactin (Tyr421) levels. Retinal lesions of endothelial-specific Tbdn knockdown mice, with tissue thickening, fibrovascular growth, and hyperpermeable vessels displayed an increase in the levels of activated c-Src. Moreover, the retinal lesions of patients with proliferative diabetic retinopathy (PDR) associated with a loss of Tbdn expression and hyperpermeability to Albumin displayed increased levels of activated SFK in retinal blood vessels. Taken together, these results implicate Tbdn as an important regulator of retinal endothelial permeability and homeostasis by modulating a signaling pathway involving c-Src and Cortactin. PMID:26142315

  11. Sphingolipids affect fibrinogen-induced caveolar transcytosis and cerebrovascular permeability

    PubMed Central

    Muradashvili, Nino; Khundmiri, Syed Jalal; Tyagi, Reeta; Gartung, Allison; Dean, William L.; Lee, Menq-Jer

    2014-01-01

    Inflammation-induced vascular endothelial dysfunction can allow plasma proteins to cross the vascular wall, causing edema. Proteins may traverse the vascular wall through two main pathways, the paracellular and transcellular transport pathways. Paracellular transport involves changes in endothelial cell junction proteins, while transcellular transport involves caveolar transcytosis. Since both processes are associated with filamentous actin formation, the two pathways are interconnected. Therefore, it is difficult to differentiate the prevailing role of one or the other pathway during various pathologies causing an increase in vascular permeability. Using a newly developed dual-tracer probing method, we differentiated transcellular from paracellular transport during hyperfibrinogenemia (HFg), an increase in fibrinogen (Fg) content. Roles of cholesterol and sphingolipids in formation of functional caveolae were assessed using a cholesterol chelator, methyl-β-cyclodextrin, and the de novo sphingolipid synthesis inhibitor myriocin. Fg-induced formation of functional caveolae was defined by association and colocalization of Na+-K+-ATPase and plasmalemmal vesicle-associated protein-1 with use of Förster resonance energy transfer and total internal reflection fluorescence microscopy, respectively. HFg increased permeability of the endothelial cell layer mainly through the transcellular pathway. While MβCD blocked Fg-increased transcellular and paracellular transport, myriocin affected only transcellular transport. Less pial venular leakage of albumin was observed in myriocin-treated HFg mice. HFg induced greater formation of functional caveolae, as indicated by colocalization of Na+-K+-ATPase with plasmalemmal vesicle-associated protein-1 by Förster resonance energy transfer and total internal reflection fluorescence microscopy. Our results suggest that elevated blood levels of Fg alter cerebrovascular permeability mainly by affecting caveolae-mediated transcytosis through modulation of de novo sphingolipid synthesis. PMID:24829496

  12. How to Prevent Vascular Disease

    MedlinePlus

    ... Chronic Venous Insufficiency Congenital Vascular Malformation Critical Limb Ischemia (CLI) Deep Vein Thrombosis (DVT) Diabetes and Vascular ... Chronic Venous Insufficiency Congenital Vascular Malformation Critical Limb Ischemia (CLI) Deep Vein Thrombosis (DVT) Diabetes and Vascular ...

  13. Negative refractive index in chiral metamaterials.

    PubMed

    Zhang, Shuang; Park, Yong-Shik; Li, Jensen; Lu, Xinchao; Zhang, Weili; Zhang, Xiang

    2009-01-16

    We experimentally demonstrate a chiral metamaterial exhibiting negative refractive index at terahertz frequencies. The presence of strong chirality in the terahertz metamaterial lifts the degeneracy for the two circularly polarized waves and allows for the achievement of negative refractive index without requiring simultaneously negative permittivity and negative permeability. The realization of terahertz chiral negative index metamaterials offers opportunities for investigation of their novel electromagnetic properties, such as negative refraction and negative reflection, as well as important terahertz device applications. PMID:19257274

  14. Vascular restoration therapy and bioresorbable vascular scaffold

    PubMed Central

    Wang, Yunbing; Zhang, Xingdong

    2014-01-01

    This article describes the evolution of minimally invasive intervention technologies for vascular restoration therapy from early-stage balloon angioplasty in 1970s, metallic bare metal stent and metallic drug-eluting stent technologies in 1990s and 2000s, to bioresorbable vascular scaffold (BVS) technology in large-scale development in recent years. The history, the current stage, the challenges and the future of BVS development are discussed in detail as the best available approach for vascular restoration therapy. The criteria of materials selection, design and processing principles of BVS, and the corresponding clinical trial results are also summarized in this article. PMID:26816624

  15. Retina vascular network recognition

    NASA Astrophysics Data System (ADS)

    Tascini, Guido; Passerini, Giorgio; Puliti, Paolo; Zingaretti, Primo

    1993-09-01

    The analysis of morphological and structural modifications of the retina vascular network is an interesting investigation method in the study of diabetes and hypertension. Normally this analysis is carried out by qualitative evaluations, according to standardized criteria, though medical research attaches great importance to quantitative analysis of vessel color, shape and dimensions. The paper describes a system which automatically segments and recognizes the ocular fundus circulation and micro circulation network, and extracts a set of features related to morphometric aspects of vessels. For this class of images the classical segmentation methods seem weak. We propose a computer vision system in which segmentation and recognition phases are strictly connected. The system is hierarchically organized in four modules. Firstly the Image Enhancement Module (IEM) operates a set of custom image enhancements to remove blur and to prepare data for subsequent segmentation and recognition processes. Secondly the Papilla Border Analysis Module (PBAM) automatically recognizes number, position and local diameter of blood vessels departing from optical papilla. Then the Vessel Tracking Module (VTM) analyses vessels comparing the results of body and edge tracking and detects branches and crossings. Finally the Feature Extraction Module evaluates PBAM and VTM output data and extracts some numerical indexes. Used algorithms appear to be robust and have been successfully tested on various ocular fundus images.

  16. Thrombin and vascular inflammation.

    PubMed

    Popović, Milan; Smiljanić, Katarina; Dobutović, Branislava; Syrovets, Tatiana; Simmet, Thomas; Isenović, Esma R

    2012-01-01

    Vascular endothelium is a key regulator of homeostasis. In physiological conditions it mediates vascular dilatation, prevents platelet adhesion, and inhibits thrombin generation. However, endothelial dysfunction caused by physical injury of the vascular wall, for example during balloon angioplasty, acute or chronic inflammation, such as in atherothrombosis, creates a proinflammatory environment which supports leukocyte transmigration toward inflammatory sites. At the same time, the dysfunction promotes thrombin generation, fibrin deposition, and coagulation. The serine protease thrombin plays a pivotal role in the coagulation cascade. However, thrombin is not only the key effector of coagulation cascade; it also plays a significant role in inflammatory diseases. It shows an array of effects on endothelial cells, vascular smooth muscle cells, monocytes, and platelets, all of which participate in the vascular pathophysiology such as atherothrombosis. Therefore, thrombin can be considered as an important modulatory molecule of vascular homeostasis. This review summarizes the existing evidence on the role of thrombin in vascular inflammation. PMID:21858738

  17. Vascular injury associated with extremity trauma: initial diagnosis and management.

    PubMed

    Halvorson, Jason J; Anz, Adam; Langfitt, Maxwell; Deonanan, Joel K; Scott, Aaron; Teasdall, Robert D; Carroll, E A

    2011-08-01

    Vascular injury associated with extremity trauma occurs in <1% of patients with long bone fracture, although vascular injury may be seen in up to 16% of patients with knee dislocation. In the absence of obvious signs of vascular compromise, limb-threatening injuries are easily missed, with potentially devastating consequences. A thorough vascular assessment is essential; an arterial pressure index <0.90 is indicative of potential vascular compromise. Advances in CT and duplex ultrasonography are sensitive and specific in screening for vascular injury. Communication between the orthopaedic surgeon and the vascular or general trauma surgeon is essential in determining whether to address the vascular lesion or the orthopaedic injury first. Quality evidence regarding the optimal fixation method is scarce. Open vascular repair, such as direct repair with or without arteriorrhaphy, interposition replacement, and bypass graft with an autologous vein or polytetrafluoroethylene, remains the standard of care in managing vascular injury associated with extremity trauma. Although surgical technique affects outcome, results are primarily dependent on early detection of vascular injury followed by immediate treatment. PMID:21807917

  18. The M2 macrophages induce autophagic vascular disorder and promote mouse sensitivity to urethane-related lung carcinogenesis.

    PubMed

    Li, G-G; Guo, Z-Z; Ma, X-F; Cao, N; Geng, S-N; Zheng, Y-Q; Meng, M-J; Lin, H-H; Han, G; Du, G-J

    2016-06-01

    Tumor vessels are known to be abnormal, with typically aberrant, leaky and disordered vessels. Here, we investigated whether polarized macrophage phenotypes are involved in tumor abnormal angiogenesis and what is its mechanism. We found that there was no difference in chemotaxis of polarized M1 and M2 macrophages to lewis lung carcinoma (LLC) cells and that either M1 or M2 macrophage-conditioned media had no effect on LLC cell proliferation. Unexpectedly, the M2 but not M1 macrophage-conditioned media promoted the proliferation of human umbilical vein endothelial cells (HUVECs) and simultaneously increased endothelial cell permeability in vitro and angiogenic index in the chick embryo chorioallantoic membrane (CAM). The treatment with M2 but not M1 macrophage-conditioned media increased autophagosomes as well as microtubule-associated protein light chain 3B (LC3-B) expression (a robust marker of autophagosomes) but decreased p62 protein expression (a selective autophagy substrate) in HUVECs, the treatment with chloroquine that blocked autophagy abrogated the abnormal angiogenic efficacy of M2 macrophage-conditioned media. These results were confirmed in urethane-induced lung carcinogenic progression. Urethane-induced lung carcinogenesis led to more M2 macrophage phenotype and increased abnormal angiogenesis concomitant with the upregulation of LC3-B and the downregulation of p62. Clodronate liposome-induced macrophage depletion, chloroquine-induced autophagic prevention or salvianolic acid B-induced vascular protection decreased abnormal angiogenesis and lung carcinogenesis. In addition, we found that the tendency of age-related M2 macrophage polarization also promoted vascular permeability and carcinogenesis in urethane carcinogenic progression. These findings indicate that the M2 macrophages induce autophagic vascular disorder to promote lung cancer progression, and the autophagy improvement represents an efficacious strategy for abnormal angiogenesis and cancer prevention. PMID:26806760

  19. Relative Permeability of Fractured Rock

    SciTech Connect

    Mark D. Habana

    2002-06-30

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  20. Neuroprotective effect of selective DPP-4 inhibitor in experimental vascular dementia.

    PubMed

    Jain, Swati; Sharma, Bhupesh

    2015-12-01

    Vascular risk factors are associated with a higher incidence of dementia. Diabetes mellitus is considered as a main risk factor for Alzheimer's disease and vascular dementia. Both forms of dementia are posing greater risk to the world population and are increasing at a faster rate. In the past we have reported the induction of vascular dementia by experimental diabetes. This study investigates the role of vildagliptin, a dipeptidyl peptidase-4 inhibitor in the pharmacological interdiction of pancreatectomy diabetes induced vascular endothelial dysfunction and subsequent vascular dementia in rats. Attentional set shifting and Morris water-maze test were used for assessment of learning and memory. Vascular endothelial function, blood brain barrier permeability, serum glucose, serum nitrite/nitrate, oxidative stress (viz. aortic superoxide anion, brain thiobarbituric acid reactive species and brain glutathione), brain calcium and inflammation (myeloperoxidase) were also estimated. Pancreatectomy diabetes rats have shown impairment of endothelial function, blood brain barrier permeability, learning and memory along with increase in brain inflammation, oxidative stress and calcium. Administration of vildagliptin has significantly attenuated pancreatectomy induced impairment of learning, memory, endothelial function, blood brain barrier permeability and biochemical parameters. It may be concluded that vildagliptin, a dipeptidyl peptidase-4 inhibitor may be considered as potential pharmacological agents for the management of pancreatectomy induced endothelial dysfunction and subsequent vascular dementia. The selective modulators of dipeptidyl peptidase-4 may further be explored for their possible benefits in vascular dementia. PMID:26382939

  1. Imaging Pediatric Vascular Lesions

    PubMed Central

    Nguyen, Tuyet A.; Krakowski, Andrew C.; Naheedy, John H.; Kruk, Peter G.

    2015-01-01

    Vascular anomalies are commonly encountered in pediatric and dermatology practices. Most of these lesions are benign and easy to diagnose based on history and clinical exam alone. However, in some cases the diagnosis may not be clear. This may be of particular concern given that vascular anomalies may occasionally be associated with an underlying syndrome, congenital disease, or serious, life-threatening condition. Defining the type of vascular lesion early and correctly is particularly important to determine the optimal approach to management and treatment of each patient. The care of pediatric patients often requires collaboration from a multitude of specialties including pediatrics, dermatology, plastic surgery, radiology, ophthalmology, and neurology. Although early characterization of vascular lesions is important, consensus guidelines regarding the evaluation and imaging of vascular anomalies does not exist to date. Here, the authors provide an overview of pediatric vascular lesions, current classification systems for characterizing these lesions, the various imaging modalities available, and recommendations for appropriate imaging evaluation. PMID:26705446

  2. Geothermal Permeability Enhancement - Final Report

    SciTech Connect

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  3. Stroke injury, cognitive impairment and vascular dementia☆

    PubMed Central

    Kalaria, Raj N.; Akinyemi, Rufus; Ihara, Masafumi

    2016-01-01

    The global burden of ischaemic strokes is almost 4-fold greater than haemorrhagic strokes. Current evidence suggests that 25–30% of ischaemic stroke survivors develop immediate or delayed vascular cognitive impairment (VCI) or vascular dementia (VaD). Dementia after stroke injury may encompass all types of cognitive disorders. States of cognitive dysfunction before the index stroke are described under the umbrella of pre-stroke dementia, which may entail vascular changes as well as insidious neurodegenerative processes. Risk factors for cognitive impairment and dementia after stroke are multifactorial including older age, family history, genetic variants, low educational status, vascular comorbidities, prior transient ischaemic attack or recurrent stroke and depressive illness. Neuroimaging determinants of dementia after stroke comprise silent brain infarcts, white matter changes, lacunar infarcts and medial temporal lobe atrophy. Until recently, the neuropathology of dementia after stroke was poorly defined. Most of post-stroke dementia is consistent with VaD involving multiple substrates. Microinfarction, microvascular changes related to blood–brain barrier damage, focal neuronal atrophy and low burden of co-existing neurodegenerative pathology appear key substrates of dementia after stroke injury. The elucidation of mechanisms of dementia after stroke injury will enable establishment of effective strategy for symptomatic relief and prevention. Controlling vascular disease risk factors is essential to reduce the burden of cognitive dysfunction after stroke. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock. PMID:26806700

  4. Stroke injury, cognitive impairment and vascular dementia.

    PubMed

    Kalaria, Raj N; Akinyemi, Rufus; Ihara, Masafumi

    2016-05-01

    The global burden of ischaemic strokes is almost 4-fold greater than haemorrhagic strokes. Current evidence suggests that 25-30% of ischaemic stroke survivors develop immediate or delayed vascular cognitive impairment (VCI) or vascular dementia (VaD). Dementia after stroke injury may encompass all types of cognitive disorders. States of cognitive dysfunction before the index stroke are described under the umbrella of pre-stroke dementia, which may entail vascular changes as well as insidious neurodegenerative processes. Risk factors for cognitive impairment and dementia after stroke are multifactorial including older age, family history, genetic variants, low educational status, vascular comorbidities, prior transient ischaemic attack or recurrent stroke and depressive illness. Neuroimaging determinants of dementia after stroke comprise silent brain infarcts, white matter changes, lacunar infarcts and medial temporal lobe atrophy. Until recently, the neuropathology of dementia after stroke was poorly defined. Most of post-stroke dementia is consistent with VaD involving multiple substrates. Microinfarction, microvascular changes related to blood-brain barrier damage, focal neuronal atrophy and low burden of co-existing neurodegenerative pathology appear key substrates of dementia after stroke injury. The elucidation of mechanisms of dementia after stroke injury will enable establishment of effective strategy for symptomatic relief and prevention. Controlling vascular disease risk factors is essential to reduce the burden of cognitive dysfunction after stroke. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock. PMID:26806700

  5. Permeabilities of Subduction Zone Sediments

    NASA Astrophysics Data System (ADS)

    Screaton, E.; Gamage, K. R.; Daigle, H.; Harris, R. N.

    2013-12-01

    Permeabilities of subseafloor sediments control fluid expulsion from sediments as they are subducted or accreted and thus, compaction state, fluid overpressures, and deformation. We compare results from Integrated Ocean Drilling Program samples to compare to previously-developed permeability-porosity relationships for subduction zone sediments. Hemipelagic clay samples obtained from the incoming plate Kumano transect of the Nankai Trough (NanTroSEIZE) yield slightly lower permeability for a given porosity than previously reported results from Nankai Trough's Muroto transect and are lower than clay-rich sediments from the upper plate of CRISP offshore the Osa Peninsula of Costa Rica (CRISP). Samples from the Pacific Equatorial Transect (PEAT) and the South Pacific Gyre provide further insight to permeability behavior of sediments deposited in the Pacific basin. South Pacific Gyre sediments consist of slowly deposited pelagic clay with little biogenic or coarse clastic input. Measured permeabilities for given porosities are consistently lower than values reported for clay-rich sediments of Nankai and Costa Rica. PEAT samples comprise biogenic oozes and yield inconsistent results, with some of the highest permeabilities (10-14 m2) as well as some results similar to clay-rich sediments.

  6. Permeability of cork to gases.

    PubMed

    Faria, David P; Fonseca, Ana L; Pereira, Helen; Teodoro, Orlando M N D

    2011-04-27

    The permeability of gases through uncompressed cork was investigated. More than 100 samples were assessed from different plank qualities to provide a picture of the permeability distribution. A novel technique based on a mass spectrometer leak detector was used to directly measure the helium flow through the central area of small disks 10 mm in diameter and 2 mm thick. The permeability for nitrogen, oxygen, and other gases was measured by the pressure rise technique. Boiled and nonboiled cork samples from different sections were evaluated. An asymmetric frequency distribution ranging 3 orders of magnitude (roughly from 1 to 1000 μmol/(cm·atm·day)) for selected samples without macroscopic defects was found, having a peak below 100 μmol/(cm·atm·day). Correlation was found between density and permeability: higher density samples tend to show lower permeability. However, boiled cork showed a mean lower permeability despite having a lower density. The transport mechanism of gases through cork was also examined. Calculations suggest that gases permeate uncompressed cork mainly through small channels between cells under a molecular flow regime. The diameter of such channels was estimated to be in the range of 100 nm, in agreement with the plasmodesmata size in the cork cell walls. PMID:21434693

  7. Fibrin endothelial interaction increases pulmonary endothelial permeability in vitro

    SciTech Connect

    Lo, S.K.; Del Vecchio, P.J.; Malik, A.B.

    1986-03-05

    Fibrin has been implicated in the genesis of lung vascular injury. They examined the effect of adherence of fibrin to endothelial cells on endothelial permeability to protein. Bovine pulmonary arterial endothelial cells (EC) were grown to confluence on a gelatinized polycarbonate micropore filter and mounted in a chamber in which the luminal and abluminal media could be sampled. Fibrin was deposited on the endothelium by adding sheep fibrinogen (0.5 mg/ml) in Dulbecco's Modified Eagle Medium (DMEM) to the luminal surface of the endothelium, and then clotting the fibrinogen with 1 U/ml ..cap alpha..-thrombin. The fibrin was kept in contact with the endothelium for 3 hrs in an incubator at 37/sup 0/C plus 5% CO/sub 2/. The endothelial permeability to albumin was assessed by measurement of /sup 125/I-albumin clearance after removal of the fibrin clot from the endothelium. Therefore, fibrin contact with the endothelium independently induces an increase in endothelial permeability to albumin. The reversibility implies a transient change in the permeability dependent on the fibrin endothelial interaction.

  8. Vascular tracers alter hemodynamics and airway pressure in anesthetized sheep

    SciTech Connect

    Albertine, K.H.; Staub, N.C.

    1986-11-01

    The technique of vascular labeling was developed to mark sites of increased microvascular permeability. We used the vascular labeling technique in anesthetized sheep and found that hemodynamics and airway pressure were adversely affected by intraarterial infusions of two vascular tracers. Monastral blue (nine sheep) immediately caused systemic arterial hypotension, pulmonary arterial hypertension, and bronchoconstriction. All three physiological responses were partially blocked by a cyclooxygenase inhibitor (indomethacin) but not by an H1-antihistamine (chlorpheniramine). Colloidal gold (nine sheep) caused immediate, but less dramatic, pulmonary arterial hypertension which was not attenuated by the blocking agents. We conclude that these two vascular tracers caused detrimental physiological side effects in sheep at the usual doses used to label injured microvessels in other species.

  9. HABP2 is a Novel Regulator of Vascular Integrity

    PubMed Central

    Mambetsariev, N.; Mirzapoiazova, T.; Mambetsariev, B.; Sammani, S.; Lennon, F.E.; Garcia, J.G.N.; Singleton, P.A.

    2010-01-01

    Objective We evaluated the role of the extracellular serine protease, Hyaluronic Acid Binding Protein 2 (HABP2), in vascular barrier regulation. Methods and Results Using immunoblot and immunohistochemical analysis, we observed that lipopolysaccharide (LPS)-induces HABP2 expression in murine lung endothelium in vivo and in human pulmonary microvascular endothelial cell (HPMVEC) in vitro. High molecular weight hyaluronan (HMW-HA, ~1 million Da) decreased HABP2 protein expression in HPMVEC and decreased purified HABP2 enzymatic activity whereas low MW HA (LMW-HA, ~2,500 Da) increased these activities. The effects of LMW-HA on HABP2 activity, but not HMW-HA, were inhibited with a peptide of the polyanion binding domain (PABD) of HABP2. Silencing (siRNA) HABP2 expression augmented HMW-HA-induced EC barrier enhancement and inhibited LPS and LMW-HA-mediated EC barrier disruption, results which were reversed with overexpression of HABP2. Silencing PAR receptors 1 and 3, RhoA or ROCK expression attenuated LPS, LMW-HA and HABP2-mediated EC barrier disruption. Utilizing murine models of acute lung injury, we observed that LPS- and ventilator-induced pulmonary vascular hyper-permeability were significantly reduced with vascular silencing (siRNA) of HABP2. Conclusions HABP2 negatively regulates vascular integrity via activation of PAR receptor/RhoA/ROCK signaling and represents a potentially useful therapeutic target for syndromes of increased vascular permeability. PMID:20042707

  10. Permeability extraction: A sonic log inversion

    SciTech Connect

    Akbar, N.; Kim, J.J.

    1994-12-31

    In this paper the authors provide the missing important link between permeability and acoustic velocities by generating a permeability-dependent synthetic sonic log in a carbonate reservoir. The computations are based on Akbar`s theory that relates wave velocity to frequency, rock properties (e.g., lithology, permeability, and porosity), and fluid saturation and properties (viscosity, density, and compressibility). An inverted analytical expression of the theory is used to extract permeability from sonic velocity. The synthetic sonic and the computed permeability are compared with the observed sonic log and with plug permeability, respectively. The results demonstrate, as predicted by theory, that permeability can be related directly to acoustic velocities.

  11. [Vascular factors in glaucoma].

    PubMed

    Mottet, B; Aptel, F; Geiser, M; Romanet, J P; Chiquet, C

    2015-12-01

    The exact pathophysiology of glaucoma is not fully understood. Understanding of the vascular pathophysiology of glaucoma requires: knowing the techniques for measuring ocular blood flow and characterizing the topography of vascular disease and the mechanisms involved in this neuropathy. A decreased mean ocular perfusion pressure and a loss of vascular autoregulation are implicated in glaucomatous disease. Early decrease in ocular blood flow has been identified in primary open-angle glaucoma and normal pressure glaucoma, contributing to the progression of optic neuropathy. The vascular damage associated with glaucoma is present in various vascular territories within the eye (from the ophthalmic artery to the retina) and is characterized by a decrease in basal blood flow associated with a dysfunction of vasoregulation. PMID:26597554

  12. Scoring of vascular disease in the lower extremities.

    PubMed

    Walden, R; Modan, M; Bass, A; Schneiderman, J; Adar, R

    1989-01-01

    Lack of standardisation in reporting the vascular status of patients leads to difficulties in comparing different series. A method of vascular scoring is presented, integrating symptoms, physical examination, vascular laboratory studies and arteriography. The score is expressed in a concise form by several letters and numbers supplying the relevant information as to the main segment involved, the severity of the ischaemia and the completeness of the examination. The files of 100 candidates for vascular surgery were recorded with the scoring method. Vascular indices were calculated by dividing the sum of points assigned to each item by the maximal available score. The internal consistency of the method was evaluated by computing separate indices for the three components of the scoring--clinical examination (CE), vascular laboratory (VL) and arteriography (AR)--and comparing them with the overall index and with each other. Correlation coefficients with the overall index were for CE 0.90, for VL 0.92 and for AR 0.75. The data on the 200 limbs were reviewed independently by three experienced vascular surgeons and ranked in order of increasing severity of ischaemia; the correlation coefficient between this ranking and one based solely on the scoring method was 0.91. A vascular scoring method may help create a mutual language among practitioners, enabling them to compare results and benefit from accumulating worldwide experience. PMID:2708436

  13. Pulmonary vascular dysfunction in ARDS.

    PubMed

    Ryan, Donal; Frohlich, Stephen; McLoughlin, Paul

    2014-01-01

    Acute respiratory distress syndrome (ARDS) is characterised by diffuse alveolar damage and is frequently complicated by pulmonary hypertension (PH). Multiple factors may contribute to the development of PH in this setting. In this review, we report the results of a systematic search of the available peer-reviewed literature for papers that measured indices of pulmonary haemodynamics in patients with ARDS and reported on mortality in the period 1977 to 2010. There were marked differences between studies, with some reporting strong associations between elevated pulmonary arterial pressure or elevated pulmonary vascular resistance and mortality, whereas others found no such association. In order to discuss the potential reasons for these discrepancies, we review the physiological concepts underlying the measurement of pulmonary haemodynamics and highlight key differences between the concepts of resistance in the pulmonary and systemic circulations. We consider the factors that influence pulmonary arterial pressure, both in normal lungs and in the presence of ARDS, including the important effects of mechanical ventilation. Pulmonary arterial pressure, pulmonary vascular resistance and transpulmonary gradient (TPG) depend not alone on the intrinsic properties of the pulmonary vascular bed but are also strongly influenced by cardiac output, airway pressures and lung volumes. The great variability in management strategies within and between studies means that no unified analysis of these papers was possible. Uniquely, Bull et al. (Am J Respir Crit Care Med 182:1123-1128, 2010) have recently reported that elevated pulmonary vascular resistance (PVR) and TPG were independently associated with increased mortality in ARDS, in a large trial with protocol-defined management strategies and using lung-protective ventilation. We then considered the existing literature to determine whether the relationship between PVR/TPG and outcome might be causal. Although we could identify potential mechanisms for such a link, the existing evidence does not allow firm conclusions to be drawn. Nonetheless, abnormally elevated PVR/TPG may provide a useful index of disease severity and progression. Further studies are required to understand the role and importance of pulmonary vascular dysfunction in ARDS in the era of lung-protective ventilation. PMID:25593744

  14. VE-cadherin facilitates BMP-induced endothelial cell permeability and signaling.

    PubMed

    Benn, Andreas; Bredow, Clara; Casanova, Isabel; Vukičević, Slobodan; Knaus, Petra

    2016-01-01

    Several vascular disorders, such as aberrant angiogenesis, atherosclerosis and pulmonary hypertension, have been linked to dysfunctional BMP signaling. Vascular hyperpermeability via distortion of endothelial cell adherens junctions is a common feature of these diseases, but the role of BMPs in this process has not been investigated. BMP signaling is initiated by binding of ligand to, and activation of, BMP type I (BMPRI) and type II (BMPRII) receptors. Internalization of VE-cadherin as well as c-Src kinase-dependent phosphorylation have been implicated in the loosening of cell-cell contacts, thereby modulating vascular permeability. Here we demonstrate that BMP6 induces hyperpermeabilization of human endothelial cells by inducing internalization and c-Src-dependent phosphorylation of VE-cadherin. Furthermore, we show BMP-dependent physical interaction of VE-cadherin with the BMP receptor ALK2 (BMPRI) and BMPRII, resulting in stabilization of the BMP receptor complex and, thereby, the support of BMP6-Smad signaling. Our results provide first insights into the molecular mechanism of BMP-induced vascular permeability, a hallmark of various vascular diseases, and provide the basis for further investigations of BMPs as regulators of vascular integrity, both under physiological and pathophysiological conditions. PMID:26598555

  15. VE-cadherin facilitates BMP-induced endothelial cell permeability and signaling

    PubMed Central

    Benn, Andreas; Bredow, Clara; Casanova, Isabel; Vukičević, Slobodan; Knaus, Petra

    2016-01-01

    ABSTRACT Several vascular disorders, such as aberrant angiogenesis, atherosclerosis and pulmonary hypertension, have been linked to dysfunctional BMP signaling. Vascular hyperpermeability via distortion of endothelial cell adherens junctions is a common feature of these diseases, but the role of BMPs in this process has not been investigated. BMP signaling is initiated by binding of ligand to, and activation of, BMP type I (BMPRI) and type II (BMPRII) receptors. Internalization of VE-cadherin as well as c-Src kinase-dependent phosphorylation have been implicated in the loosening of cell–cell contacts, thereby modulating vascular permeability. Here we demonstrate that BMP6 induces hyperpermeabilization of human endothelial cells by inducing internalization and c-Src-dependent phosphorylation of VE-cadherin. Furthermore, we show BMP-dependent physical interaction of VE-cadherin with the BMP receptor ALK2 (BMPRI) and BMPRII, resulting in stabilization of the BMP receptor complex and, thereby, the support of BMP6-Smad signaling. Our results provide first insights into the molecular mechanism of BMP-induced vascular permeability, a hallmark of various vascular diseases, and provide the basis for further investigations of BMPs as regulators of vascular integrity, both under physiological and pathophysiological conditions. PMID:26598555

  16. Vascular characteristics of patients with dementia.

    PubMed

    Morović, Sandra; Jurasić, Miljenka-Jelena; Martinić Popović, Irena; Serić, Vesna; Lisak, Marijana; Demarin, Vida

    2009-08-15

    Arterial beta stiffness index is a potential risk factor for increased stroke occurrence. Vascular component appears to be significant in both Alzheimer's disease (AD) and vascular dementia (VAD). We aimed to further explore vascular characteristics of patients with both types of cognitive decline using non-invasive neurosonological methods. There were 38 patients; 16 diagnosed with AD and 22 with VAD. Vascular risk factors were assessed and ultrasound measurements on common carotid artery (CCA) were performed using Aloka ProSound ALPHA 10 with 13 MHz linear probe. Among AD patients there were 5 with arterial hypertension (AH), 3 with atrial fibrillation (AF), 2 with diabetes mellitus (DM), 6 with hyper lipidemia and 1 smoker. Nineteen VAD patients had AH, 6 had AF, 12 had hyper lipidemia and one was diabetic. We found no statistically significant differences between groups regarding average body mass index (BMI), blood pressure, pulse pressure, intima-media thickness (IMT), CCA diameter or arterial beta stiffness indices. However, the trend of BMI increase, slight blood and pulse pressure decrease, CCA diameter increase and beta stiffness index increase was noted in VAD patients. Even though there was no significant difference found among two explored subgroups of patients with dementia, there was a tendency of greater systolic and diastolic diameters noted in VAD as well as greater stiffness, especially when measured in the right CCA. This indicates that VAD patients may have more prominent vascular changes that may help differentiate the type of dementia and further monitor these individuals. Further studies on a larger number of patients are needed support this evidence. PMID:19375085

  17. Histamine Induces Vascular Hyperpermeability by Increasing Blood Flow and Endothelial Barrier Disruption In Vivo

    PubMed Central

    Ashina, Kohei; Tsubosaka, Yoshiki; Nakamura, Tatsuro; Omori, Keisuke; Kobayashi, Koji; Hori, Masatoshi; Ozaki, Hiroshi; Murata, Takahisa

    2015-01-01

    Histamine is a mediator of allergic inflammation released mainly from mast cells. Although histamine strongly increases vascular permeability, its precise mechanism under in vivo situation remains unknown. We here attempted to reveal how histamine induces vascular hyperpermeability focusing on the key regulators of vascular permeability, blood flow and endothelial barrier. Degranulation of mast cells by antigen-stimulation or histamine treatment induced vascular hyperpermeability and tissue swelling in mouse ears. These were abolished by histamine H1 receptor antagonism. Intravital imaging showed that histamine dilated vasculature, increased blood flow, while it induced hyperpermeability in venula. Whole-mount staining showed that histamine disrupted endothelial barrier formation of venula indicated by changes in vascular endothelial cadherin (VE-cadherin) localization at endothelial cell junction. Inhibition of nitric oxide synthesis (NOS) by L-NAME or vasoconstriction by phenylephrine strongly inhibited the histamine-induced blood flow increase and hyperpermeability without changing the VE-cadherin localization. In vitro, measurements of trans-endothelial electrical resistance of human dermal microvascular endothelial cells (HDMECs) showed that histamine disrupted endothelial barrier. Inhibition of protein kinase C (PKC) or Rho-associated protein kinase (ROCK), NOS attenuated the histamine-induced barrier disruption. These observations suggested that histamine increases vascular permeability mainly by nitric oxide (NO)-dependent vascular dilation and subsequent blood flow increase and maybe partially by PKC/ROCK/NO-dependent endothelial barrier disruption. PMID:26158531

  18. Mitochondrial Heat Shock Protein-90 Modulates Vascular Smooth Muscle Cell Survival and the Vascular Injury Response in Vivo

    PubMed Central

    Hoel, Andrew W.; Yu, Peng; Nguyen, Khanh P.; Sui, Xinxin; Plescia, Janet; Altieri, Dario C.; Conte, Michael S.

    2013-01-01

    The healing response of blood vessels from the vascular injury induced by therapeutic interventions is characterized by increased cellularity and tissue remodeling. Frequently, this leads to intimal hyperplasia and lumen narrowing, with significant clinical sequelae. Vascular smooth muscle cells are the primary cell type involved in this process, wherein they express a dedifferentiated phenotype that transiently resembles neoplastic transformation. Recent studies have highlighted the role of mitochondrial proteins, such as the molecular chaperone heat shock protein-90 (Hsp90), in promoting cancer cell survival, which leads to new candidate chemotherapeutic agents for neoplastic disease. Herein, we identify mitochondrial Hsp90 as a key modulator of the vascular injury response. Hsp90 expression is up-regulated in injured arteries and colocalizes with the apoptosis inhibitor, survivin, in vascular smooth muscle cell in vitro and in vivo. By using a proteomic approach, we demonstrate that targeted disruption of mitochondrial Hsp90 chaperone function in vascular smooth muscle cell leads to loss of cytoprotective client proteins (survivin and Akt), induces mitochondrial permeability, and leads to apoptotic cell death. Hsp90 targeting using a cell-permeable peptidomimetic agent resulted in marked attenuation of neointimal lesions in a murine arterial injury model. These findings suggest that mitochondrial Hsp90 chaperone function is an important regulator of intimal hyperplasia and may have implications for molecular strategies that promote the long-term patency of cardiovascular interventions. PMID:22841823

  19. Peripheral vascular disease: diagnosis and treatment.

    PubMed

    Sontheimer, Daniel L

    2006-06-01

    Peripheral vascular disease is a manifestation of systemic atherosclerosis that leads to significant narrowing of arteries distal to the arch of the aorta. The most common symptom of peripheral vascular disease is intermittent claudication. At other times, peripheral vascular disease leads to acute or critical limb ischemia. Intermittent claudication manifests as pain in the muscles of the legs with exercise; it is experienced by 2 percent of persons older than 65 years. Physical findings include abnormal pedal pulses, femoral artery bruit, delayed venous filling time, cool skin, and abnormal skin color. Most patients present with subtle findings and lack classic symptoms, which makes the diagnosis difficult. The standard office-based test to determine the presence of peripheral vascular disease is calculation of the ankle-brachial index. Magnetic resonance arteriography, duplex scanning, and hemodynamic localization are noninvasive methods for lesion localization and may be helpful when symptoms or findings do not correlate with the ankle-brachial index. Contrast arteriography is used for definitive localization before intervention. Treatment is divided into lifestyle, medical, and surgical therapies. Lifestyle therapies focus on exercise, smoking cessation, and dietary modification. Medical therapy is directed at reducing platelet aggregation. In addition, patients with contributing disorders such as hypertension, diabetes, and hyperlipidemia need to have these conditions managed as aggressively as possible. Surgical therapies include stents, arterectomies, angioplasty, and bypass surgery. PMID:16770929

  20. Thermal stress induces epithelial permeability.

    PubMed

    Moseley, P L; Gapen, C; Wallen, E S; Walter, M E; Peterson, M W

    1994-08-01

    The mechanisms by which heat injury results in multiorgan system failure are unknown, but the presence of endotoxemia and intestinal hemorrhage suggests that changes in gut epithelial permeability may be crucial to this process. To determine whether alterations in epithelial permeability occur at physiologically relevant temperatures, heat-induced changes on epithelial barrier integrity were studied using a high-resistance clone of Madin-Darby canine kidney epithelial cells. Transepithelial electrical conductance increased when monolayers were heated above 38.3 degrees C. Early changes in conductance were completely reversible with cooling. Increased conductance was due to increased paracellular permeability because heat also induced increased mannitol permeability across the monolayers. A conditioning heat stress (42 degrees C for 90 min) altered heat-induced permeability. When cell monolayers were exposed to this conditioning stress 48 h before measurement of conductance with increasing temperatures, the conductance increase did not occur until they were heated to 39.4 degrees C compared with 38.8 degrees C in naive control cells. This conditioning treatment also conferred thermotolerance as measured by cell survival after a lethal 45.0 degrees C heat stress. There was no difference in the temperature at which conductance increased between preheated and control cells 96 h after a preconditioning heat stress. The conditioning heat stress resulted in accumulation of heat-shock protein (HSP) 70 in cells at 48 h, but HSP 70 returned to control levels at 96 h. These studies demonstrate that small temperature elevations increase epithelial permeability and that prior heat stress which induces HSP 70 shifts the threshold temperature required to disrupt the epithelium. PMID:8074177

  1. Permeability enhancement by shock cooling

    NASA Astrophysics Data System (ADS)

    Griffiths, Luke; Heap, Michael; Reuschlé, Thierry; Baud, Patrick; Schmittbuhl, Jean

    2015-04-01

    The permeability of an efficient reservoir, e.g. a geothermal reservoir, should be sufficient to permit the circulation of fluids. Generally speaking, permeability decreases over the life cycle of the geothermal system. As a result, is usually necessary to artificially maintain and enhance the natural permeability of these systems. One of the methods of enhancement -- studied here -- is thermal stimulation (injecting cold water at low pressure). This goal of this method is to encourage new thermal cracks within the reservoir host rocks, thereby increasing reservoir permeability. To investigate the development of thermal microcracking in the laboratory we selected two granites: a fine-grained (Garibaldi Grey granite, grain size = 0.5 mm) and a course-grained granite (Lanhelin granite, grain size = 2 mm). Both granites have an initial porosity of about 1%. Our samples were heated to a range of temperatures (100-1000 °C) and were either cooled slowly (1 °C/min) or shock cooled (100 °C/s). A systematic microstructural (2D crack area density, using standard stereological techniques, and 3D BET specific surface area measurements) and rock physical property (porosity, P-wave velocity, uniaxial compressive strength, and permeability) analysis was undertaken to understand the influence of slow and shock cooling on our reservoir granites. Microstructurally, we observe that the 2D crack surface area per unit volume and the specific surface area increase as a result of thermal stressing, and, for the same maximum temperature, crack surface area is higher in the shock cooled samples. This observation is echoed by our rock physical property measurements: we see greater changes for the shock cooled samples. We can conclude that shock cooling is an extremely efficient method of generating thermal microcracks and modifying rock physical properties. Our study highlights that thermal treatments are likely to be an efficient method for the "matrix" permeability enhancement of granitic geothermal reservoirs.

  2. Vascular Access in Children

    SciTech Connect

    Krishnamurthy, Ganesh Keller, Marc S.

    2011-02-15

    Establishment of stable vascular access is one of the essential and most challenging procedures in a pediatric hospital. Many clinical specialties provide vascular service in a pediatric hospital. At the top of the 'expert procedural pyramid' is the pediatric interventional radiologist, who is best suited and trained to deliver this service. Growing awareness regarding the safety and high success rate of vascular access using image guidance has led to increased demand from clinicians to provide around-the-clock vascular access service by pediatric interventional radiologists. Hence, the success of a vascular access program, with the pediatric interventional radiologist as the key provider, is challenging, and a coordinated multidisciplinary team effort is essential for success. However, there are few dedicated pediatric interventional radiologists across the globe, and also only a couple of training programs exist for pediatric interventions. This article gives an overview of the technical aspects of pediatric vascular access and provides useful tips for obtaining vascular access in children safely and successfully using image guidance.

  3. Vascular pharmacotherapy and dementia.

    PubMed

    Piguet, Olivier; Garner, Brett

    2010-01-01

    The incidence of dementia is increasing dramatically with the ageing population. Increasing evidence indicates that vascular disease is associated with cognitive decline and with the most common form of dementia, Alzheimer's disease (AD). Cardiovascular risk factors such as hyperlipidaemia, hypertension and type 2 diabetes have attracted attention as potential targets in the prevention of dementia. The present review aims to provide a concise overview of the recent advances linking vascular disease with dementia (with a particular focus on AD) and to examine the evidence for efficacy, where possible, for utilising vascular pharmacotherapy as a treatment option for dementia. PMID:19485934

  4. Thromboxane A{sub 2} increases endothelial permeability through upregulation of interleukin-8

    SciTech Connect

    Kim, Su-Ryun; Medical Research Center for Ischemic Tissue Regeneration and School of Medicine, Pusan National University, Yangsan 626-870 ; Bae, Soo-Kyung; Park, Hyun-Joo; Kim, Mi-Kyoung; Kim, Koanhoi; Park, Shi-Young; Jang, Hye-Ock; Yun, Il; Kim, Yung-Jin; Yoo, Mi-Ae; Bae, Moon-Kyoung

    2010-07-02

    Thromboxane A{sub 2} (TXA{sub 2}), a major prostanoid formed from prostaglandin H{sub 2} by thromboxane synthase, is involved in the pathogenesis of a variety of vascular diseases. In this study, we report that TXA{sub 2} mimetic U46619 significantly increases the endothelial permeability both in vitro and in vivo. U46619 enhanced the expression and secretion of interleukin-8 (IL-8), a major inducer of vascular permeability, in endothelial cells. Promoter analysis showed that the U46619-induced expression of IL-8 was mainly regulated by nuclear factor-{kappa}B (NF-{kappa}B). U46619 induced the activation of NF-{kappa}B through I{kappa}B kinase (IKK) activation, I{kappa}B phosphorylation and NF-{kappa}B nuclear translocation. Furthermore, the inhibition of IL-8 or blockade of the IL-8 receptor attenuated the U46619-induced endothelial cell permeability by modulating the cell-cell junctions. Overall, these results suggest that U46619 promotes vascular permeability through the production of IL-8 via NF-{kappa}B activation in endothelial cells.

  5. Circumferential vascular strain rate to estimate vascular load in aortic stenosis: a speckle tracking echocardiography study.

    PubMed

    Teixeira, Rogério; Monteiro, Ricardo; Baptista, Rui; Barbosa, António; Leite, Luís; Ribeiro, Miguel; Martins, Rui; Cardim, Nuno; Gonçalves, Lino

    2015-04-01

    Evaluation of vascular mechanics through two-dimensional speckle-tracking (2D-ST) echocardiography is a feasible and accurate approach for assessing vascular stiffening. Degenerative aortic stenosis (AS) is currently considered a systemic vascular disease where rigidity of arterial walls increases. To assess the circumferential ascending aorta strain rate (CAASR) in thoracic aortas of patients with AS, applying 2D-ST technology. 45 patients with indexed aortic valve areas (iAVA) ≤0.85 cm(2)/m(2) were studied. Global CAASR served to assess vascular deformation. Clinical, echocardiographic, and non-invasive hemodynamic data were collected. A follow up (955 days) was also performed. Average age of the cohort was 76. ± 10.3 years, with gender balance. Mean iAVA was 0.43 ± 0.15 cm(2)/m(2). Waveforms adequate for determining CAASR were found in 246 (91 %) of the 270 aortic segments evaluated, for a mean global CAASR of 0.74 ± 0.26 s(-1). Both intra- and inter-observer variability of global CAASR were deemed appropriate. CAASR correlated significantly with age (r = -0.49, p < 0.01), the stiffness index (r = -0.59, p < 0.01), systemic arterial compliance and total vascular resistance. There was a significant positive correlation between CAASR, body surface area (BSA), iAVA, and a negative relationship with valvulo-arterial impedance and E/e' ratio (r = -0.37, p = 0.01). The stiffness index was (β = -0.41, p < 0.01) independently associated with CAASR, in a model adjusted for age, BSA, iAVA and E/e'. Patients with a baseline CAASR ≤0.66 s(-1) had a worse long-term outcome (survival 52.4 vs. 83.3 %, Log Rank p = 0.04). CAASR is a promising echocardiographic tool for studying the vascular loading component of patients with AS. PMID:25614329

  6. Turbulent drag reduction by permeable coatings

    NASA Astrophysics Data System (ADS)

    Garcia-Mayoral, Ricardo; Abderrahaman-Elena, Nabil

    2015-11-01

    We present an assessment of permeable coatings as a form of passive drag reduction, proposing a simplified model to quantify the effect of the coating thickness and permeability. To reduce skin friction, the porous layer must be preferentially permeable in the streamwise direction, so that a slip effect is produced. For small permeability, the controlling parameter is the difference between streamwise and spanwise permeability lengths, scaled in viscous units, √{Kx+}-√{Kz+}. In this regime, the reduction in drag is proportional to that difference. However, the proportional performance eventually breaks down for larger permeabilities. A degradation mechanism is investigated, common to other obstructed surfaces in general and permeable substrates in particular, which depends critically on the geometric mean of the streamwise and wall-normal permeabilities, √{Kx+ Ky+}. For a streamwise-to-cross-plane permeability ratio of order Kx+/Ky+ = Kx+/Kz+ 10 -100, the model predicts a maximum drag reduction of order 15-25%.

  7. Rib index.

    PubMed

    Grivas, Theodoros B

    2014-01-01

    This article analyzes the double rib contour sign (DRCS) and the rib index (RI). The analyzed topics are 1. the history of presentations - publication of DRCS-RI, 2. the study source origin: school screening for idiopathic scoliosis (IS), 3. what the DRCS and the RI are- Description, 4. the quantification of the DRCS - RI, 5. a reliability study for RI 6. how much the rib index is affected by the distance between the radiation source and the irradiated individual, 7. the implications on IS aetiology, 8. the applications of Rib index for a. documentation of the deformity, b. assessment of physiotherapy, c. assessment of brace treatment and d. pre- and post-operative assessment; assessment of the rib-cage deformity correction on the transverse plane, 9. the use of RI and implications for screening policies 10. the reference of the RI method in spinal textbooks and finally 11. the citations in Google Scholar. PMID:25635184

  8. Reinforcing endothelial junctions prevents microvessel permeability increase and tumor cell adhesion in microvessels in vivo

    PubMed Central

    Fu, Bingmei M.; Yang, Jinlin; Cai, Bin; Fan, Jie; Zhang, Lin; Zeng, Min

    2015-01-01

    Tumor cell adhesion to the microvessel wall is a critical step during tumor metastasis. Vascular endothelial growth factor (VEGF), a secretion of tumor cells, can increase microvessel permeability and tumor cell adhesion in the microvessel. To test the hypothesis that inhibiting permeability increase can reduce tumor cell adhesion, we used in vivo fluorescence microscopy to measure both microvessel permeability and adhesion rates of human mammary carcinoma MDA-MB-231 cells in post-capillary venules of rat mesentery under the treatment of VEGF and a cAMP analog, 8-bromo-cAMP, which can decrease microvessel permeability. By immunostaining adherens junction proteins between endothelial cells forming the microvessel wall, we further investigated the structural mechanism by which cAMP abolishes VEGF-induced increase in microvessel permeability and tumor cell adhesion. Our results demonstrate that 1) Pretreatment of microvessels with cAMP can abolish VEGF-enhanced microvessel permeability and tumor cell adhesion; 2) Tumor cells prefer to adhere to the endothelial cell junctions instead of cell bodies; 3) VEGF increases microvessel permeability and tumor cell adhesion by compromising endothelial junctions while cAMP abolishes these effects of VEGF by reinforcing the junctions. These results suggest that strengthening the microvessel wall integrity can be a potential approach to inhibiting hematogenous tumor metastasis. PMID:26507779

  9. Reinforcing endothelial junctions prevents microvessel permeability increase and tumor cell adhesion in microvessels in vivo

    NASA Astrophysics Data System (ADS)

    Fu, Bingmei M.; Yang, Jinlin; Cai, Bin; Fan, Jie; Zhang, Lin; Zeng, Min

    2015-10-01

    Tumor cell adhesion to the microvessel wall is a critical step during tumor metastasis. Vascular endothelial growth factor (VEGF), a secretion of tumor cells, can increase microvessel permeability and tumor cell adhesion in the microvessel. To test the hypothesis that inhibiting permeability increase can reduce tumor cell adhesion, we used in vivo fluorescence microscopy to measure both microvessel permeability and adhesion rates of human mammary carcinoma MDA-MB-231 cells in post-capillary venules of rat mesentery under the treatment of VEGF and a cAMP analog, 8-bromo-cAMP, which can decrease microvessel permeability. By immunostaining adherens junction proteins between endothelial cells forming the microvessel wall, we further investigated the structural mechanism by which cAMP abolishes VEGF-induced increase in microvessel permeability and tumor cell adhesion. Our results demonstrate that 1) Pretreatment of microvessels with cAMP can abolish VEGF-enhanced microvessel permeability and tumor cell adhesion; 2) Tumor cells prefer to adhere to the endothelial cell junctions instead of cell bodies; 3) VEGF increases microvessel permeability and tumor cell adhesion by compromising endothelial junctions while cAMP abolishes these effects of VEGF by reinforcing the junctions. These results suggest that strengthening the microvessel wall integrity can be a potential approach to inhibiting hematogenous tumor metastasis.

  10. Vascular Health Activity Book

    MedlinePlus

    ... Surgery Journal of Vascular Surgery IN THIS ISSUE AAA Anatomic Severity Grading Score Compliance of Post-EVAR Surveillance Frailty Predicts Outcomes of Ruptured AAA Access the Journal Venous and Lymphatic Disorders Venous ...

  11. Collagen vascular disease

    MedlinePlus

    ... developed these disorders were previously said to have "connective tissue" or "collagen vascular" disease. We now have names ... be used. These include as undifferentiated systemic rheumatic (connective tissue) diseases or overlap syndromes.

  12. Uterine Vascular Lesions

    PubMed Central

    Vijayakumar, Abhishek; Srinivas, Amruthashree; Chandrashekar, Babitha Moogali; Vijayakumar, Avinash

    2013-01-01

    Vascular lesions of the uterus are rare; most reported in the literature are arteriovenous malformations (AVMs). Uterine AVMs can be congenital or acquired. In recent years, there has been an increasing number of reports of acquired vascular lesions of the uterus following pregnancy, abortion, cesarean delivery, and curettage. It can be seen from these reports that there is confusion concerning the terminology of uterine vascular lesions. There is also a lack of diagnostic criteria and management guidelines, which has led to an increased number of unnecessary invasive procedures (eg, angiography, uterine artery embolization, hysterectomy for abnormal vaginal bleeding). This article familiarizes readers with various vascular lesions of the uterus and their management. PMID:24340126

  13. Diversity in vascular surgery.

    PubMed

    Woo, Karen; Kalata, Emily A; Hingorani, Anil P

    2012-12-01

    A growing body of literature in vascular surgery demonstrates disparities in the type of health care that racial/ethnic minorities receive in the United States. Numerous recommendations, including those of the Institute of Medicine, have been set forth, which identify increasing the number of minority health professionals as a key strategy to eliminating health disparities. The purpose of this study is to compare the racial/ethnic distribution of the Society for Vascular Surgery (SVS) membership, the SVS leadership, vascular surgery trainees, and medical students. The results demonstrate that the racial/ethnic distribution of the SVS membership reflects a considerable lack of diversity with a paucity of diversity among the SVS leadership. An increasing rate of racial/ethnic diversity among vascular surgery trainees may indicate that the SVS will see an improvement in diversity in the future. PMID:23182481

  14. Heart and vascular services

    MedlinePlus

    ... heart or blood vessel problems. This may include: Heart transplant Insertion of pacemakers or defibrillators Open and minimally invasive coronary artery bypass surgery Repair or replacement of ... valves Surgical treatment of congenital heart defects Vascular ...

  15. Assessing vascular endothelial function using frequency and rank order statistics

    NASA Astrophysics Data System (ADS)

    Wu, Hsien-Tsai; Hsu, Po-Chun; Sun, Cheuk-Kwan; Liu, An-Bang; Lin, Zong-Lin; Tang, Chieh-Ju; Lo, Men-Tzung

    2013-08-01

    Using frequency and rank order statistics (FROS), this study analyzed the fluctuations in arterial waveform amplitudes recorded from an air pressure sensing system before and after reactive hyperemia (RH) induction by temporary blood flow occlusion to evaluate the vascular endothelial function of aged and diabetic subjects. The modified probability-weighted distance (PWD) calculated from the FROS was compared with the dilatation index (DI) to evaluate its validity and sensitivity in the assessment of vascular endothelial function. The results showed that the PWD can provide a quantitative determination of the structural changes in the arterial pressure signals associated with regulation of vascular tone and blood pressure by intact vascular endothelium after the application of occlusion stress. Our study suggests that the use of FROS is a reliable noninvasive approach to the assessment of vascular endothelial degeneration in aging and diabetes.

  16. Vascular structures in dermoscopy*

    PubMed Central

    Ayhan, Erhan; Ucmak, Derya; Akkurt, ZeynepMeltem

    2015-01-01

    Dermoscopy is an aiding method in the visualization of the epidermis and dermis. It is usually used to diagnose melanocytic lesions. In recent years, dermoscopy has increasingly been used to diagnose non-melanocytic lesions. Certain vascular structures, their patterns of arrangement and additional criteria may demonstrate lesion-specific characteristics. In this review, vascular structures and their arrangements are discussed separately in the light of conflicting views and an overview of recent literature. PMID:26375224

  17. High membrane permeability for melatonin.

    PubMed

    Yu, Haijie; Dickson, Eamonn J; Jung, Seung-Ryoung; Koh, Duk-Su; Hille, Bertil

    2016-01-01

    The pineal gland, an endocrine organ in the brain, synthesizes and secretes the circulating night hormone melatonin throughout the night. The literature states that this hormone is secreted by simple diffusion across the pinealocyte plasma membrane, but a direct quantitative measurement of membrane permeability has not been made. Experiments were designed to compare the cell membrane permeability to three indoleamines: melatonin and its precursors N-acetylserotonin (NAS) and serotonin (5-HT). The three experimental approaches were (1) to measure the concentration of effluxing indoleamines amperometrically in the bath while cells were being dialyzed internally by a patch pipette, (2) to measure the rise of intracellular indoleamine fluorescence as the compound was perfused in the bath, and (3) to measure the rate of quenching of intracellular fura-2 dye fluorescence as indoleamines were perfused in the bath. These measures showed that permeabilities of melatonin and NAS are high (both are uncharged molecules), whereas that for 5-HT (mostly charged) is much lower. Comparisons were made with predictions of solubility-diffusion theory and compounds of known permeability, and a diffusion model was made to simulate all of the measurements. In short, extracellular melatonin equilibrates with the cytoplasm in 3.5 s, has a membrane permeability of ∼1.7 µm/s, and could not be retained in secretory vesicles. Thus, it and NAS will be "secreted" from pineal cells by membrane diffusion. Circumstances are suggested when 5-HT and possibly catecholamines may also appear in the extracellular space passively by membrane diffusion. PMID:26712850

  18. Permeability of compacting porous lavas

    NASA Astrophysics Data System (ADS)

    Ashwell, P. A.; Kendrick, J. E.; Lavallée, Y.; Kennedy, B. M.; Hess, K.-U.; Aulock, F. W.; Wadsworth, F. B.; Vasseur, J.; Dingwell, D. B.

    2015-03-01

    The highly transient nature of outgassing commonly observed at volcanoes is in part controlled by the permeability of lava domes and shallow conduits. Lava domes generally consist of a porous outer carapace surrounding a denser lava core with internal shear zones of variable porosity. Here we examine densification using uniaxial compression experiments on variably crystalline and porous rhyolitic dome lavas from the Taupo Volcanic Zone. Experiments were conducted at 900°C and an applied stress of 3 MPa to 60% strain, while monitoring acoustic emissions to track cracking. The evolution of the porous network was assessed via X-ray computed tomography, He-pycnometry, and relative gas permeability. High starting connected porosities led to low apparent viscosities and high strain rates, initially accompanied by abundant acoustic emissions. As compaction ensued, the lavas evolved; apparent viscosity increased and strain rate decreased due to strain hardening of the suspensions. Permeability fluctuations resulted from the interplay between viscous flow and brittle failure. Where phenocrysts were abundant, cracks had limited spatial extent, and pore closure decreased axial and radial permeability proportionally, maintaining the initial anisotropy. In crystal-poor lavas, axial cracks had a more profound effect, and permeability anisotropy switched to favor axial flow. Irrespective of porosity, both crystalline samples compacted to a threshold minimum porosity of 17-19%, whereas the crystal-poor sample did not achieve its compaction limit. This indicates that unconfined loading of porous dome lavas does not necessarily form an impermeable plug and may be hindered, in part by the presence of crystals.

  19. Iloprost attenuates the increased permeability in skeletal muscle after ischemia and reperfusion

    SciTech Connect

    Blebea, J.; Cambria, R.A.; DeFouw, D.; Feinberg, R.N.; Hobson, R.W. 2d.; Duran, W.N. )

    1990-12-01

    Increased vascular permeability is an early and sensitive indicator of ischemic muscle injury, occurring before significant histologic or radionuclide changes are evident. We investigated the effect of iloprost, a stable prostacyclin analog, on microvascular permeability in a rat striated muscle model. In six control and six experimental animals the cremaster muscle was dissected, placed in a closed-flow acrylic chamber, and suffused with a bicarbonate buffer solution. Dextran labeled with fluorescein was injected intravenously as a macromolecular tracer, and microvascular permeability was determined on the basis of clearance of the fluorescent tracer. Two hours of ischemia were followed by 2 hours of reperfusion. In the experimental group iloprost (0.5 microgram/kg/min) was given in a continuous intravenous infusion. Microvascular permeability increased significantly during reperfusion in both control and experimental animals (p less than 0.0001). Treatment with iloprost, however, significantly attenuated this response compared to the control group, 4.8 +/- 0.3 versus 7.3 +/- 0.5 microliters/gm/min, respectively (p less than 0.0001). Iloprost decreases the rise in vascular permeability after ischemia and reperfusion. Experimental clinical use of iloprost under controlled conditions in the treatment of patients with acute skeletal muscle ischemia appears justified.

  20. Vascular compression syndromes.

    PubMed

    Czihal, Michael; Banafsche, Ramin; Hoffmann, Ulrich; Koeppel, Thomas

    2015-11-01

    Dealing with vascular compression syndromes is one of the most challenging tasks in Vascular Medicine practice. This heterogeneous group of disorders is characterised by external compression of primarily healthy arteries and/or veins as well as accompanying nerval structures, carrying the risk of subsequent structural vessel wall and nerve damage. Vascular compression syndromes may severely impair health-related quality of life in affected individuals who are typically young and otherwise healthy. The diagnostic approach has not been standardised for any of the vascular compression syndromes. Moreover, some degree of positional external compression of blood vessels such as the subclavian and popliteal vessels or the celiac trunk can be found in a significant proportion of healthy individuals. This implies important difficulties in differentiating physiological from pathological findings of clinical examination and diagnostic imaging with provocative manoeuvres. The level of evidence on which treatment decisions regarding surgical decompression with or without revascularisation can be relied on is generally poor, mostly coming from retrospective single centre studies. Proper patient selection is critical in order to avoid overtreatment in patients without a clear association between vascular compression and clinical symptoms. With a focus on the thoracic outlet-syndrome, the median arcuate ligament syndrome and the popliteal entrapment syndrome, the present article gives a selective literature review on compression syndromes from an interdisciplinary vascular point of view. PMID:26515219

  1. INDEXING MECHANISM

    DOEpatents

    Kock, L.J.

    1959-09-22

    A device is presented for loading and unloading fuel elements containing material fissionable by neutrons of thermal energy. The device comprises a combination of mechanical features Including a base, a lever pivotally attached to the base, an Indexing plate on the base parallel to the plane of lever rotation and having a plurality of apertures, the apertures being disposed In rows, each aperture having a keyway, an Index pin movably disposed to the plane of lever rotation and having a plurality of apertures, the apertures being disposed in rows, each aperture having a keyway, an index pin movably disposed on the lever normal to the plane rotation, a key on the pin, a sleeve on the lever spaced from and parallel to the index pin, a pair of pulleys and a cable disposed between them, an open collar rotatably attached to the sleeve and linked to one of the pulleys, a pin extending from the collar, and a bearing movably mounted in the sleeve and having at least two longitudinal grooves in the outside surface.

  2. Relative permeability of the endothelium and epithelium of rabbit lungs

    SciTech Connect

    Effros, R.M.; Mason, G.R.; Silverman, P.; Hukkanen, J.

    1986-03-05

    Electron micrographic studies of lungs suggest that the epithelial cells are more tightly joined than the underlying endothelium, and macromolecules penetrate the endothelium more readily than the epithelium. Comparisons of epithelial and endothelial permeability to small molecules have been based upon the relative rates at which solutes traverse the alveolar-capillary barrier in fluid filled lungs and those at which they equilibrate across the capillaries in air-filled lungs. Because the former process is much slower than the latter, it has been concluded that the epithelium is less permeable to small solutes than the endothelium. However this difference may be related to inadequate access of solutes to airway surfaces. In this study, solute losses from the vascular space were compared to those from the airspace in perfused, fluid-filled rabbit lungs. /sup 36/Cl/sup -/ and /sup 125/I/sup -/ were lost from air-spaces almost twice as rapidly as /sup 22/Na/sup +/. In contrast, the endothelium is equally permeable to /sup 22/Na/sup +/ and these anions. Loss of /sup 3/H-mannitol from the perfusate resembled that of /sup 22/Na/sup +/ for about 30 minutes, after which diffusion of /sup 3/H-mannitol into the tissue nearly ceased. These observations suggest that the epithelium is more permselective than the endothelium. By resisting solute and water transport, the epithelium tends to prevent alveolar flooding and confines edema to the interstitium, where it is less likely to interfere with gas exchange.

  3. Cytoskeletal mechanisms regulating vascular endothelial barrier function in response to acute lung injury

    PubMed Central

    Ksa, Anita; Csortos, Csilla; Verin, Alexander D

    2014-01-01

    Endothelial cells (EC) form a semi-permeable barrier between the interior space of blood vessels and the underlying tissues. In acute lung injury (ALI) the EC barrier is weakened leading to increased vascular permeability. It is widely accepted that EC barrier integrity is critically dependent upon intact cytoskeletal structure and cell junctions. Edemagenic agonists, like thrombin or endotoxin lipopolysaccharide (LPS), induced cytoskeletal rearrangement, and EC contractile responses leading to disruption of intercellular contacts and EC permeability increase. The highly clinically-relevant cytoskeletal mechanisms of EC barrier dysfunction are currently under intense investigation and will be described and discussed in the current review. PMID:25838980

  4. Permeable Pavement Research - Edison, New Jersey

    EPA Science Inventory

    This presentation provides the background and summary of results collected at the permeable pavement parking lot monitored at the EPA facility in Edison, NJ. This parking lot is surfaced with permeable interlocking concrete pavers (PICP), pervious concrete, and porous asphalt. ...

  5. Quantifying Evaporation in a Permeable Pavement System

    EPA Science Inventory

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  6. Dissolution-Driven Permeability Reduction of a Fractured Carbonate Caprock

    SciTech Connect

    Ellis, Brian R.; Fitts, Jeffrey P.; Bromhal, Grant S.; McIntyre, Dustin L.; Tappero, Ryan; Peters, Catherine

    2013-04-01

    Geochemical reactions may alter the permeability of leakage pathways in caprocks, which serve a critical role in confining CO{sub 2} in geologic carbon sequestration. A caprock specimen from a carbonate formation in the Michigan sedimentary Basin was fractured and studied in a high-pressure core flow experiment. Inflowing brine was saturated with CO{sub 2} at 40°C and 10 MPa, resulting in an initial pH of 4.6, and had a calcite saturation index of −0.8. Fracture permeability decreased during the experiment, but subsequent analyses did not reveal calcite precipitation. Instead, experimental observations indicate that calcite dissolution along the fracture pathway led to mobilization of less soluble mineral particles that clogged the flow path. Analyses of core sections via electron microscopy, synchrotron-based X-ray diffraction imaging, and the first application of microbeam Ca K-edge X-ray absorption near edge structure, provided evidence that these occlusions were fragments from the host rock rather than secondary precipitates. X-ray computed tomography showed a significant loss of rock mass within preferential flow paths, suggesting that dissolution also removed critical asperities and caused mechanical closure of the fracture. The decrease in fracture permeability despite a net removal of material along the fracture pathway demonstrates a nonintuitive, inverse relationship between dissolution and permeability evolution in a fractured carbonate caprock.

  7. Dissolution-Driven Permeability Reduction of a Fractured Carbonate Caprock

    PubMed Central

    Ellis, Brian R.; Fitts, Jeffrey P.; Bromhal, Grant S.; McIntyre, Dustin L.; Tappero, Ryan; Peters, Catherine A.

    2013-01-01

    Abstract Geochemical reactions may alter the permeability of leakage pathways in caprocks, which serve a critical role in confining CO2 in geologic carbon sequestration. A caprock specimen from a carbonate formation in the Michigan sedimentary Basin was fractured and studied in a high-pressure core flow experiment. Inflowing brine was saturated with CO2 at 40°C and 10 MPa, resulting in an initial pH of 4.6, and had a calcite saturation index of −0.8. Fracture permeability decreased during the experiment, but subsequent analyses did not reveal calcite precipitation. Instead, experimental observations indicate that calcite dissolution along the fracture pathway led to mobilization of less soluble mineral particles that clogged the flow path. Analyses of core sections via electron microscopy, synchrotron-based X-ray diffraction imaging, and the first application of microbeam Ca K-edge X-ray absorption near edge structure, provided evidence that these occlusions were fragments from the host rock rather than secondary precipitates. X-ray computed tomography showed a significant loss of rock mass within preferential flow paths, suggesting that dissolution also removed critical asperities and caused mechanical closure of the fracture. The decrease in fracture permeability despite a net removal of material along the fracture pathway demonstrates a nonintuitive, inverse relationship between dissolution and permeability evolution in a fractured carbonate caprock. PMID:23633894

  8. Dissolution-Driven Permeability Reduction of a Fractured Carbonate Caprock.

    PubMed

    Ellis, Brian R; Fitts, Jeffrey P; Bromhal, Grant S; McIntyre, Dustin L; Tappero, Ryan; Peters, Catherine A

    2013-04-01

    Geochemical reactions may alter the permeability of leakage pathways in caprocks, which serve a critical role in confining CO2 in geologic carbon sequestration. A caprock specimen from a carbonate formation in the Michigan sedimentary Basin was fractured and studied in a high-pressure core flow experiment. Inflowing brine was saturated with CO2 at 40°C and 10 MPa, resulting in an initial pH of 4.6, and had a calcite saturation index of -0.8. Fracture permeability decreased during the experiment, but subsequent analyses did not reveal calcite precipitation. Instead, experimental observations indicate that calcite dissolution along the fracture pathway led to mobilization of less soluble mineral particles that clogged the flow path. Analyses of core sections via electron microscopy, synchrotron-based X-ray diffraction imaging, and the first application of microbeam Ca K-edge X-ray absorption near edge structure, provided evidence that these occlusions were fragments from the host rock rather than secondary precipitates. X-ray computed tomography showed a significant loss of rock mass within preferential flow paths, suggesting that dissolution also removed critical asperities and caused mechanical closure of the fracture. The decrease in fracture permeability despite a net removal of material along the fracture pathway demonstrates a nonintuitive, inverse relationship between dissolution and permeability evolution in a fractured carbonate caprock. PMID:23633894

  9. Radiation Effects on the Cytoskeleton of Endothelial Cells and Endothelial Monolayer Permeability

    SciTech Connect

    Gabrys, Dorota; Greco, Olga; Patel, Gaurang; Prise, Kevin M.; Tozer, Gillian M.; Kanthou, Chryso

    2007-12-01

    Purpose: To investigate the effects of radiation on the endothelial cytoskeleton and endothelial monolayer permeability and to evaluate associated signaling pathways, which could reveal potential mechanisms of known vascular effects of radiation. Methods and Materials: Cultured endothelial cells were X-ray irradiated, and actin filaments, microtubules, intermediate filaments, and vascular endothelial (VE)-cadherin junctions were examined by immunofluorescence. Permeability was determined by the passage of fluorescent dextran through cell monolayers. Signal transduction pathways were analyzed using RhoA, Rho kinase, and stress-activated protein kinase-p38 (SAPK2/p38) inhibitors by guanosine triphosphate-RhoA activation assay and transfection with RhoAT19N. The levels of junction protein expression and phosphorylation of myosin light chain and SAPK2/p38 were assessed by Western blotting. The radiation effects on cell death were verified by clonogenic assays. Results: Radiation induced rapid and persistent actin stress fiber formation and redistribution of VE-cadherin junctions in microvascular, but not umbilical vein endothelial cells, and microtubules and intermediate filaments remained unaffected. Radiation also caused a rapid and persistent increase in microvascular permeability. RhoA-guanosine triphosphatase and Rho kinase were activated by radiation and caused phosphorylation of downstream myosin light chain and the observed cytoskeletal and permeability changes. SAPK2/p38 was activated by radiation but did not influence either the cytoskeleton or permeability. Conclusion: This study is the first to show rapid activation of the RhoA/Rho kinase by radiation in endothelial cells and has demonstrated a link between this pathway and cytoskeletal remodeling and permeability. The results also suggest that the RhoA pathway might be a useful target for modulating the permeability and other effects of radiation for therapeutic gain.

  10. Permeability enhancement using explosive techniques

    SciTech Connect

    Adams, T.F.; Schmidt, S.C.; Carter, W.J.

    1980-01-01

    In situ recovery methods for many of our hydrocarbon and mineral resources depend on the ability to create or enhance permeability in the resource bed to allow uniform and predictable flow. To meet this need, a new branch of geomechanics devoted to computer prediction of explosive rock breakage and permeability enhancement has developed. The computer is used to solve the nonlinear equations of compressible flow, with the explosive behavior and constitutive properties of the medium providing the initial/boundary conditions and material response. Once the resulting computational tool has been verified and calibrated with appropriate large-scale field tests, it can be used to develop and optimize commercially useful explosive techniques for in situ resource recovery.

  11. Review of hydrogen isotope permeability through materials

    SciTech Connect

    Steward, S.A.

    1983-08-15

    This report is the first part of a comprehensive summary of the literature on hydrogen isotope permeability through materials that do not readily form hydrides. While we mainly focus on pure metals with low permeabilities because of their importance to tritium containment, we also give data on higher-permeability materials such as iron, nickel, steels, and glasses.

  12. Structure/Permeability Relationships Of Polyimide Membranes

    NASA Technical Reports Server (NTRS)

    St. Clair, A. K.; Yamamoto, H.; Mi, Y.; Stern, S. A.

    1995-01-01

    Report describes experimental study of permeabilities, by each of five gases, of membranes made of four different polyimides. Conducted to gain understanding of effects of molecular structures of membranes on permeabilities and to assess potential for exploitation of selective permeability in gas-separation processes. Gases used: H2, O2, N2, CO2, and CH4.

  13. Novel additives to retard permeable flow

    SciTech Connect

    Golombok, Michael; Crane, Carel; Ineke, Erik; Welling, Marco; Harris, Jon

    2008-09-15

    Low concentrations of surfactant and cosolute in water, can selectively retard permeable flow in high permeability rocks compared to low permeability ones. This represents a way forward for more efficient areal sweep efficiency when water flooding a reservoir during improved oil recovery. (author)

  14. Experimental Volcanology: Fragmentation and Permeability

    NASA Astrophysics Data System (ADS)

    Spieler, O.

    2005-12-01

    An increasing number of scientists design new experiments to analyse processes that control the dynamics of explosive eruptions. There research is mostly coupled to numerical models and aims toward its controlling parameters. The fragmentation process, its threshold and the speed of the fragmentation wave as well as the energy consumed by the fragmentation are some hot spots of the experimental volcanology. Analysing the fragmentation behaviour of volcaniclastics as close to the natural system as possible, we found a number of physical constrains. Identifying the porosity as determining factor of the threshold, we realised that neither threshold nor the speed of the fragmentation process are solely controlled by the rock density. The later results of the shock tube type apparatus lead to the analysis of the specific surface area and permeability as direct links to textural features. Permeability analysis performed in a modified shock tube type apparatus, show two clear, distinct trends for dome rock and pyroclastic samples. The specific surface determined by Argon sorbtion (BET) as well as textural features of pumices from Campi Flegrei, Montserrat and Krakatoa (1883) give in contrary evidence of a more complex story. Large spherical, or ellipsoidal bubbles around fractured crystals prove that the high permeability of the pumice has partially developed after the fixing of the bubble size distribution. This puts up the question, if permeability measurements on pyroclastic samples reveal relevant numbers! The surface tension controlled 'self sealing' behaviour of surfaces from foaming obsidian hinders in situ measurements. Close textural investigations will have to clarify how the 'post process' samples deviate from the syneruptive conduit filling.

  15. Low interfacial tension relative permeability

    SciTech Connect

    Harbert, L.W.

    1983-01-01

    Enhanced oil recovery processes that feature a near miscible process, CO/sub 2/ injected below the minimum miscibility pressure, or micellar fluids, require relative permeability data to calculate the flow behavior of the low interfacial tension (low IFT) fluids. The flow behavior of low IFT fluids differs from that of conventional gas and oil or water and oil; it depends upon IFT, viscosity, and flow rate as well as the rock properties of pore size distribution and wettability. The results of laboratory core tests using an alcohol, brine, and oil fluid system in outcrop and reservoir rock samples are presented. Both water and oil relative permeability curves were found to shift upward, indicating the 2 phases interfere less with each other as IFT is reduced. For a given reservoir rock type, the flow behavior is adequately characterized by a capillary number defined by combined (total) fluid velocity, average viscosity, and interfacial tension. It also was found that flow tests on representative reservoir rock samples are necessary to describe low interfacial tension relative permeability for field process performance calculations. 16 references.

  16. Vascular endothelial growth factor-dependent angiogenesis and dynamic vascular plasticity in the sensory circumventricular organs of adult mouse brain.

    PubMed

    Morita, Shoko; Furube, Eriko; Mannari, Tetsuya; Okuda, Hiroaki; Tatsumi, Kouko; Wanaka, Akio; Miyata, Seiji

    2015-03-01

    The sensory circumventricular organs (CVOs), which comprise the organum vasculosum of the lamina terminalis (OVLT), the subfornical organ (SFO) and the area postrema (AP), lack a typical blood-brain barrier (BBB) and monitor directly blood-derived information to regulate body fluid homeostasis, inflammation, feeding and vomiting. Until now, almost nothing has been documented about vascular features of the sensory CVOs except fenestration of vascular endothelial cells. We therefore examine whether continuous angiogenesis occurs in the sensory CVOs of adult mouse. The angiogenesis-inducing factor vascular endothelial growth factor-A (VEGF-A) and the VEGF-A-regulating transcription factor hypoxia-inducible factor-1α were highly expressed in neurons of the OVLT and SFO and in both neurons and astrocytes of the AP. Expression of the pericyte-regulating factor platelet-derived growth factor B was high in astrocytes of the sensory CVOs. Immunohistochemistry of bromodeoxyuridine and Ki-67, a nuclear protein that is associated with cellular proliferation, revealed active proliferation of endothelial cells. Moreover, immunohistochemistry of caspase-3 and the basement membrane marker laminin showed the presence of apoptosis and sprouting of endothelial cells, respectively. Treatment with the VEGF receptor-associated tyrosine kinase inhibitor AZD2171 significantly reduced proliferation and filopodia sprouting of endothelial cells, as well as the area and diameter of microvessels. The mitotic inhibitor cytosine-b-D-arabinofuranoside reduced proliferation of endothelial cells and the vascular permeability of blood-derived low-molecular-weight molecules without changing vascular area and microvessel diameter. Thus, our data indicate that continuous angiogenesis is dependent on VEGF signaling and responsible for the dynamic plasticity of vascular structure and permeability. PMID:25573819

  17. Endothelial Cell Permeability and Adherens Junction Disruption Induced by Junín Virus Infection

    PubMed Central

    Lander, Heather M.; Grant, Ashley M.; Albrecht, Thomas; Hill, Terence; Peters, Clarence J.

    2014-01-01

    Junín virus (JUNV) is endemic to the fertile Pampas of Argentina, maintained in nature by the rodent host Calomys musculinus, and the causative agent of Argentine hemorrhagic fever (AHF), which is characterized by vascular dysfunction and fluid distribution abnormalities. Clinical as well as experimental studies implicate involvement of the endothelium in the pathogenesis of AHF, although little is known of its role. JUNV has been shown to result in productive infection of endothelial cells (ECs) in vitro with no visible cytopathic effects. In this study, we show that direct JUNV infection of primary human ECs results in increased vascular permeability as measured by electric cell substrate impedance sensing and transwell permeability assays. We also show that EC adherens junctions are disrupted during virus infection, which may provide insight into the role of the endothelium in the pathogenesis of AHF and possibly, other viral hemorrhagic fevers. PMID:24710609

  18. Advances in assessment of bone porosity, permeability and interstitial fluid flow.

    PubMed

    Cardoso, Luis; Fritton, Susannah P; Gailani, Gaffar; Benalla, Mohammed; Cowin, Stephen C

    2013-01-18

    This contribution reviews recent research performed to assess the porosity and permeability of bone tissue with the objective of understanding interstitial fluid movement. Bone tissue mechanotransduction is considered to occur due to the passage of interstitial pore fluid adjacent to dendritic cell structures in the lacunar-canalicular porosity. The movement of interstitial fluid is also necessary for the nutrition of osteocytes. This review will focus on four topics related to improved assessment of bone interstitial fluid flow. First, the advantages and limitations of imaging technologies to visualize bone porosities and architecture at several length scales are summarized. Second, recent efforts to measure the vascular porosity and lacunar-canalicular microarchitecture are discussed. Third, studies associated with the measurement and estimation of the fluid pressure and permeability in the vascular and lacunar-canalicular domains are summarized. Fourth, the development of recent models to represent the interchange of fluids between the bone porosities is described. PMID:23174418

  19. Tumor vascular targeted liposomal-bortezomib minimizes side effects and increases therapeutic activity in human neuroblastoma.

    PubMed

    Zuccari, Guendalina; Milelli, Andrea; Pastorino, Fabio; Loi, Monica; Petretto, Andrea; Parise, Amelia; Marchetti, Chiara; Minarini, Anna; Cilli, Michele; Emionite, Laura; Di Paolo, Daniela; Brignole, Chiara; Piaggio, Francesca; Perri, Patrizia; Tumiatti, Vincenzo; Pistoia, Vito; Pagnan, Gabriella; Ponzoni, Mirco

    2015-08-10

    Neuroblastoma is a childhood cancer with poor long-term prognosis in advanced stages. A major aim in neuroblastoma therapy is to develop targeted drug delivery systems to ameliorate drug therapeutic index and efficacy. In this study, a novel bortezomib (BTZ) liposomal formulation was set-up and characterized. Since BTZ is freely permeable across the lipidic bilayer, an amino-lactose (LM) was synthesized as complexing agent to entrap BTZ inside the internal aqueous compartment of stealth liposomes. High encapsulation efficiency was achieved by a loading method based on the formation of boronic esters between the boronic acid moiety of BTZ and the hydroxyl groups of LM. Next, NGR peptides were linked to the liposome surface as a targeting-ligand for the tumor endothelial cell marker, aminopeptidase N. Liposomes were characterized for size, Z-potential, polydispersity index, drug content, and release. Lyophilization in the presence of cryoprotectants (trehalose, sucrose) was also examined in terms of particle size changes and drug leakage. BTZ was successfully loaded into non-targeted (SL[LM-BTZ]) and targeted (NGR-SL[LM-BTZ]) liposomes with an entrapment efficiency of about 68% and 57%, respectively. These nanoparticles were suitable for intravenous administration, presenting an average diameter of 170nm and narrow polydispersity. Therefore, orthotopic NB-bearing mice were treated with 1.0 or 1.5mg/kg of BTZ, either in free form or encapsulated into liposomes. BTZ loaded liposomes showed a significant reduction of drug systemic adverse effects with respect to free drug, even at the highest dose tested. Moreover, mice treated with 1.5mg/kg of NGR-SL[LM-BTZ] lived statistically longer than untreated mice (P=0.0018) and SL[LM-BTZ]-treated mice (P=0.0256). Our results demonstrate that the novel vascular targeted BTZ formulation is endowed with high therapeutic index and low toxicity, providing a new tool for future applications in neuroblastoma clinical studies. PMID:26031842

  20. Warfarin and Vascular Calcification.

    PubMed

    Poterucha, Timothy J; Goldhaber, Samuel Z

    2016-06-01

    The vitamin K antagonist, warfarin, is the most commonly prescribed oral anticoagulant. Use of warfarin is associated with an increase in systemic calcification, including in the coronary and peripheral vasculature. This increase in vascular calcification is due to inhibition of the enzyme matrix gamma-carboxyglutamate Gla protein (MGP). MGP is a vitamin K-dependent protein that ordinarily prevents systemic calcification by scavenging calcium phosphate in the tissues. Warfarin-induced systemic calcification can result in adverse clinical effects. In this review article, we highlight some of the key translational and clinical studies that associate warfarin with vascular calcification. PMID:26714212

  1. Vascular graft infections.

    PubMed

    Young, Michael H; Upchurch, Gilbert R; Malani, Preeti N

    2012-03-01

    Prosthetic vascular grafting is a commonly performed procedure that is central to the management of arterial disease and renal failure. Though rare, vascular graft infections (VGI) are potentially devastating, and carry a high rate of mortality and amputation. Despite extensive research and clinical experience, VGI remain a daunting therapeutic challenge for surgeons and infectious disease specialists. This article reviews the pathogenesis of VGI, in particular the role of biofilms, as well as the current state of clinical management including diagnostic modalities, surgical options for treatment, antimicrobial therapy, and preventive measures. PMID:22284375

  2. Building Vascular Networks

    PubMed Central

    Bae, Hojae; Puranik, Amey S.; Gauvin, Robert; Edalat, Faramarz; Carrillo-Conde, Brenda; Peppas, Nicholas A.; Khademhosseini, Ali

    2013-01-01

    Only a few engineered tissues—skin, cartilage, bladder—have achieved clinical success, and biomaterials designed to replace more complex organs are still far from commercial availability. This gap exists in part because biomaterials lack a vascular network to transfer the oxygen and nutrients necessary for survival and integration after transplantation. Thus, generation of a functional vasculature is essential to the clinical success of engineered tissue constructs and remains a key challenge for regenerative medicine. In this Perspective, we discuss recent advances in vascularization of biomaterials through the use of biochemical modification, exogenous cells, or microengineering technology. PMID:23152325

  3. Reducing permeability of highly permeable zones in subterranean formations

    SciTech Connect

    Allison, J.D.

    1988-08-30

    A process is described for reducing the permeability of a subterranean formation traversed by a well bore which comprises: (a) introducing into the formation via the well bore an aqueous solution of a water soluble polymer selected from the group consisting of polygalactomannan gums, hydroxyalkyl ethers of polygalactomannan gums, carboxyl alkyl ethers of polygalactomannan gums, their depolymerized counterparts, polyvinyl alcohol and mixtures thereof, the polymer being in the solution in an amount of from about 1% to 10% by weight of the solution; and (b) introducing into the formation via the well bore a slowly hydrolyzable alkoxy amine ester of boric acid.

  4. Soil permeability profiling using multiple geophysical data

    NASA Astrophysics Data System (ADS)

    Takahashi, Toru

    2014-05-01

    We propose a new method to estimate permeability of soils with multiple geophysical data based on rock physics. The method uses the unconsolidated sand model in rock physics to identify the soil type with seismic velocity and resistivity. The grain size representing each soil type thus derived and porosity estimated from resistivity by the modified Archie's law are input to the Kozeny-Carman equation for estimating permeability of the soil. The proposed method is applied to S-wave velocity and resistivity profiles obtained in well logging in saturated diluvial soils and acquired on an earthen levee to estimate soil permeability profiles. Comparison of estimated permeability with actual measurements by the in-situ permeability tests and laboratory tests shows that permeability can be estimated in accuracy less than one order of magnitude. This result indicates that the proposed method is promising for permeability profiling of soils using geophysical data.

  5. Depressive behavior and vascular dysfunction: a link between clinical depression and vascular disease?

    PubMed Central

    d'Audiffret, Alexandre C.; Frisbee, Stephanie J.; Stapleton, Phoebe A.; Goodwill, Adam G.; Isingrini, Elsa

    2010-01-01

    As chronic stress and depression have become recognized as significant risk factors for peripheral vascular disease in patients with no prior history of vasculopathy, we interrogated this relationship utilizing an established mouse model of chronic stress/depressive symptoms from behavioral research. Male mice were exposed to 8 wk of unpredictable chronic mild stress (UCMS; e.g., wet bedding, predator sound/smell, random disruption of light/dark cycle), with indexes of depressive behavior (coat status, grooming, and mobility) becoming exacerbated vs. controls. In vascular rings, constrictor (phenylephrine) and endothelium-independent dilator (sodium nitroprusside) responses were not different between groups, although endothelium-dependent dilation (methacholine) was attenuated with UCMS. Nitric oxide synthase (NOS) inhibition was without effect in UCMS but nearly abolished reactivity in controls, while cyclooxygenase inhibition blunted dilation in both. Combined blockade abolished reactivity in controls, although a significant dilation remained in UCMS that was abolished by catalase. Arterial NO production was attenuated by UCMS, although H2O2 production was increased. UCMS mice demonstrated an increased, although variable, insulin resistance and inflammation. However, while UCMS-induced vascular impairments were consistent, the predictive power of aggregate plasma levels of insulin, TNF-α, IL-1β, and C-reactive peptide were limited. However, when separated into tertiles with regard to vascular outcomes, insulin resistance and hypertension were predictive of the most severe vascular impairments. Taken together, these data suggest that aggregate insulin resistance, inflammation, and hypertension in UCMS mice are not robust predictors of vascular dysfunction, suggesting that unidentified mechanisms may be superior predictors of poor vascular outcomes in this model. PMID:20167667

  6. Vicenin-2 and scolymoside inhibit high-glucose-induced vascular inflammation in vitro and in vivo.

    PubMed

    Ku, Sae-Kwang; Bae, Jong-Sup

    2016-03-01

    The vascular inflammatory process has been suggested to play a key role in the initiation and progression of atherosclerosis, a major complication of diabetes mellitus. Thus, in this study, we attempted to determine whether 2 structurally related flavonoids found in Cyclopia subternata, vicenin-2 and scolymoside, can suppress high-glucose (HG)-induced vascular inflammatory processes in human umbilical vein endothelial cells (HUVECs) and mice. The effects of vicenin-2 and scolymoside on HG-induced vascular inflammation were determined by measuring vascular permeability, leukocyte adhesion and migration, cell adhesion molecule (CAM) expression levels, and reactive oxygen species (ROS) formation. In addition, the anti-inflammation mechanism was investigated using immunofluorescence staining and Western blotting. The data showed that HG markedly increased vascular permeability, monocyte adhesion, expression of CAMs, formation of reactive oxygen species (ROS), and activation of nuclear factor (NF)-κB. Remarkably, pretreatment with vicenin-2 and scolymoside attenuated all of the above-mentioned vascular inflammatory effects of HG. HG-induced vascular inflammatory responses are critical events underlying the development of various diabetic complications; therefore, our results suggest that vicenin-2 and scolymoside have significant therapeutic benefits against diabetic complications and atherosclerosis. PMID:26766560

  7. Mechanisms of Microgravity Effect on Vascular Function

    NASA Technical Reports Server (NTRS)

    Purdy, Ralph E.

    1995-01-01

    The overall goal of the project is to characterize the effects of simulated microgravity on vascular function. Microgravity is simulated using the hindlimb unweighted (HU) rat, and the following vessels are removed from HU and paired control rats for in vitro analysis: abdominal aorta, carotid and femoral arteries, jugular and femoral veins. These vessels are cut into 3 mm long rings and mounted in tissue baths for the measurement of either isometric contraction, or relaxation of pre- contracted vessels. The isolated mesenteric vascular bed is perfused for the measurement of changes in perfusion pressure as an index of arteriolar constriction or dilation. This report presents, in addition to the statement of the overall goal of the project, a summary list of the specific hypotheses to be tested. These are followed by sections on results, conclusions, significance and plans for the next year.

  8. Vascular air embolism

    PubMed Central

    Gordy, Stephanie; Rowell, Susan

    2013-01-01

    Vascular air embolism is a rare but potentially fatal event. It may occur in a variety of procedures and surgeries but is most often associated as an iatrogenic complication of central line catheter insertion. This article reviews the incidence, pathophysiology, diagnosis, treatment, and prevention of this phenomenon. PMID:23724390

  9. Engineered Vascularized Muscle Flap.

    PubMed

    Egozi, Dana; Shandalov, Yulia; Freiman, Alina; Rosenfeld, Dekel; Ben-Shimol, David; Levenberg, Shulamit

    2016-01-01

    One of the main factors limiting the thickness of a tissue construct and its consequential viability and applicability in vivo, is the control of oxygen supply to the cell microenvironment, as passive diffusion is limited to a very thin layer. Although various materials have been described to restore the integrity of full-thickness defects of the abdominal wall, no material has yet proved to be optimal, due to low graft vascularization, tissue rejection, infection, or inadequate mechanical properties. This protocol describes a means of engineering a fully vascularized flap, with a thickness relevant for muscle tissue reconstruction. Cell-embedded poly L-lactic acid/poly lactic-co-glycolic acid constructs are implanted around the mouse femoral artery and vein and maintained in vivo for a period of one or two weeks. The vascularized graft is then transferred as a flap towards a full thickness defect made in the abdomen. This technique replaces the need for autologous tissue sacrifications and may enable the use of in vitro engineered vascularized flaps in many surgical applications. PMID:26779840

  10. Pathogenesis of Vascular Anomalies

    PubMed Central

    Boon, Laurence M.; Ballieux, Fanny; Vikkula, Miikka

    2010-01-01

    Vascular anomalies are localized defects of vascular development. Most of them occur sporadically, i.e. there is no familial history of lesions, yet in a few cases clear inheritance is observed. These inherited forms are often characterized by multifocal lesions that are mainly small in size and increase in number with patient’s age. On the basis of these inherited forms, molecular genetic studies have unraveled a number of inherited mutations giving direct insight into the pathophysiological cause and the molecular pathways that are implicated. Genetic defects have been identified for hereditary haemorrhagic telangiectasia (HHT), inherited cutaneomucosal venous malformation (VMCM), glomuvenous malformation (GVM), capillary malformation - arteriovenous malformation (CM-AVM), cerebral cavernous malformation (CCM) and some isolated and syndromic forms of primary lymphedema. We focus on these disorders, the implicated mutated genes and the underlying pathogenic mechanisms. We also call attention to the concept of Knudson’s double-hit mechanism to explain incomplete penetrance and the large clinical variation in expressivity of inherited vascular anomalies. This variability renders the making of correct diagnosis of the rare inherited forms difficult. Yet, the identification of the pathophysiological causes and pathways involved in them has had an unprecedented impact on our thinking of their etiopathogenesis, and has opened the doors towards a more refined classification of vascular anomalies. It has also made it possible to develop animal models that can be tested for specific molecular therapies, aimed at alleviating the dysfunctions caused by the aberrant genes and proteins. PMID:21095468

  11. Vascular Access Procedures

    MedlinePlus

    ... ray images. top of page What does the equipment look like? In this procedure, x-ray and ultrasound equipment, a needle, a guide wire and a vascular access catheter are used. The equipment typically used for this examination consists of a ...

  12. Amputation in vascular disease.

    PubMed Central

    Robinson, K.

    1980-01-01

    The management of vascular amputees in the Roehampton Limb Surgery Unit since its opening in 1975 is outlined and the results in 167 cases presented. Of the 35 patients over the age of 80, 57% were walking independently at the time of their discharge from the unit. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7377693

  13. Vascular wall extracellular matrix proteins and vascular diseases

    PubMed Central

    Xu, Junyan; Shi, Guo-Ping

    2014-01-01

    Extracellular matrix proteins form the basic structure of blood vessels. Along with providing basic structural support to blood vessels, matrix proteins interact with different sets of vascular cells via cell surface integrin or non-integrin receptors. Such interactions induce vascular cell de novo synthesis of new matrix proteins during blood vessel development or remodeling. Under pathological conditions, vascular matrix proteins undergo proteolytic processing, yielding bioactive fragments to influence vascular wall matrix remodeling. Vascular cells also produce alternatively spliced variants that induce vascular cell production of different matrix proteins to interrupt matrix homeostasis, leading to increased blood vessel stiffness; vascular cell migration, proliferation, or death; or vascular wall leakage and rupture. Destruction of vascular matrix proteins leads to vascular cell or blood-borne leukocyte accumulation, proliferation, and neointima formation within the vascular wall; blood vessels prone to uncontrolled enlargement during blood flow diastole; tortuous vein development; and neovascularization from existing pathological tissue microvessels. Here we summarize discoveries related to blood vessel matrix proteins within the past decade from basic and clinical studies in humans and animals — from expression to cross-linking, assembly, and degradation under physiological and vascular pathological conditions, including atherosclerosis, aortic aneurysms, varicose veins, and hypertension. PMID:25045854

  14. Correlation of permeability with the structure of the endothelial layer of pulmonary artery intimal explants

    SciTech Connect

    Meyrick, B.; Perkett, E.A.; Harris, T.R.; Brigham, K.L.

    1987-06-01

    Changes in vascular permeability are associated with structural damage to endothelial cells. These functional and structural changes can be produced experimentally and examined by using intimal explants from bovine pulmonary artery. Correlation of functional with structural changes allows the authors to dissect the mechanisms responsible for endothelial damage. They have shown that incubation of intimal explants with histamine causes transient formation of interendothelial dilations and an increased rate of equilibration of tritiated water and (/sup 14/C)sucrose across the intimal explant. Exposure to endotoxin also causes interendothial dilations but the endothelial damage is more severe than that with histamine, and in vivo experiments show a more prolonged increase in pulmonary vascular permeability. Leukocyte migration has also been suggested to result in a decreased barrier function of the endothelial layer. Experiments with the endothelial layer of intimal explants and separated bovine leukocytes suggest that transendothelial migration may depend on the chemotactic stimulus. Migration toward lymphocyte-conditioned medium does result in increased equilibration of (/sup 14/C)sucrose. Finally, a theoretical model has been used to examine the permeability changes seen for the intimal explants exposed to histamine. The model consists of two compartments with radioactive tracers diffusing across a filter of known permeability. Such a model gives good agreement with data obtained in intact sheep, indicating that mathematical models allow quantitative estimates of barrier function in intimal explants that compare favorably with in vivo data.

  15. Angiopoietin-4 increases permeability of blood vessels and promotes lymphatic dilation.

    PubMed

    Kesler, Cristina T; Pereira, Ethel R; Cui, Cheryl H; Nelson, Gregory M; Masuck, David J; Baish, James W; Padera, Timothy P

    2015-09-01

    The angiopoietin (Ang) ligands are potential therapeutic targets for lymphatic related diseases, which include lymphedema and cancer. Ang-1 and Ang-2 functions are established, but those of Ang-4 are poorly understood. We used intravital fluorescence microscopy to characterize Ang-4 actions on T241 murine fibrosarcoma-associated vessels in mice. The diameters of lymphatic vessels draining Ang-4- or VEGF-C (positive control)-expressing tumors increased to 123 and 135 μm, respectively, and parental, mock-transduced (negative controls) and tumors expressing Ang-1 or Ang-2 remained at baseline (∼60 μm). Ang-4 decreased human dermal lymphatic endothelial cell (LEC) monolayer permeability by 27% while increasing human dermal blood endothelial cell (BEC) monolayer permeability by 200%. In vivo, Ang-4 stimulated a 4.5-fold increase in tumor-associated blood vessel permeability compared with control when measured using intravital quantitative multiphoton microscopy. Ang-4 activated receptor signaling in both LECs and BECs, evidenced by tyrosine kinase with Ig and endothelial growth factor homology domains-2 (TIE2) receptor, protein kinase B, and Erk1,2 phosphorylation detectable by immunoblotting. These data suggest that Ang-4 actions are mediated through cell-type-specific networks and that lymphatic vessel dilation occurs secondarily to increased vascular leakage. Ang-4 also promoted survival of LECs. Thus, blocking Ang-4 may prune the draining lymphatic vasculature and decrease interstitial fluid pressure (IFP) by reducing vascular permeability. PMID:25977256

  16. Anisotropic hydraulic permeability in compressed articular cartilage.

    PubMed

    Reynaud, Boris; Quinn, Thomas M

    2006-01-01

    The extent to which articular cartilage hydraulic permeability is anisotropic is largely unknown, despite its importance for understanding mechanisms of joint lubrication, load bearing, transport phenomena, and mechanotransduction. We developed and applied new techniques for the direct measurement of hydraulic permeability within statically compressed adult bovine cartilage explant disks, dissected such that disk axes were perpendicular to the articular surface. Applied pressure gradients were kept small to minimize flow-induced matrix compaction, and fluid outflows were measured by observation of a meniscus in a glass capillary under a microscope. Explant disk geometry under radially unconfined axial compression was measured by direct microscopic observation. Pressure, flow, and geometry data were input to a finite element model where hydraulic permeabilities in the disk axial and radial directions were determined. At less than 10% static compression, near free-swelling conditions, hydraulic permeability was nearly isotropic, with values corresponding to those of previous studies. With increasing static compression, hydraulic permeability decreased, but the radially directed permeability decreased more dramatically than the axially directed permeability such that strong anisotropy (a 10-fold difference between axial and radial directions) in the hydraulic permeability tensor was evident for static compression of 20-40%. Results correspond well with predictions of a previous microstructurally-based model for effects of tissue mechanical deformations on glycosaminoglycan architecture and cartilage hydraulic permeability. Findings inform understanding of structure-function relationships in cartilage matrix, and suggest several biomechanical roles for compression-induced anisotropic hydraulic permeability in articular cartilage. PMID:16271597

  17. Chemokine transport across human vascular endothelial cells.

    PubMed

    Mordelet, Elodie; Davies, Heather A; Hillyer, Philippa; Romero, Ignacio A; Male, David

    2007-01-01

    Leukocyte migration across vascular endothelium is mediated by chemokines that are either synthesized by the endothelium or transferred across the endothelium from the tissue. The mechanism of transfer of two chemokines, CXCL10 (interferon gamma-inducible protein [IP]-10) and CCL2 (macrophage chemotactic protein [MCP]-1), was compared across dermal and lung microvessel endothelium and saphenous vein endothelium. The rate of transfer depended on both the type of endothelium and the chemokine. The permeability coefficient (Pe) for CCL2 movement across saphenous vein was twice the value for dermal endothelium and four times that for lung endothelium. In contrast, the Pe value for CXCL10 was lower for saphenous vein endothelium than the other endothelia. The differences in transfer rate between endothelia was not related to variation in paracellular permeability using a paracellular tracer, inulin, and immunoelectron microscopy showed that CXCL10 was transferred from the basal membrane in a vesicular compartment, before distribution to the apical membrane. Although all three endothelia expressed high levels of the receptor for CXCL10 (CXCR3), the transfer was not readily saturable and did not appear to be receptor dependent. After 30 min, the chemokine started to be reinternalized from the apical membrane in clathrin-coated vesicles. The data suggest a model for chemokine transcytosis, with a separate pathway for clearance of the apical surface. PMID:17364892

  18. Relating Permeability to Diagenesis via Numerical Experimentation

    NASA Astrophysics Data System (ADS)

    Kameda, A.; Bosl, W.; Dvorkin, J.

    2002-12-01

    We quantitatively link permeability to diagenesis in sandstone by conducting numerical pore-scale fluid-flow experiments on a CT-scanned sample. The 3D micro-topology of the sample is represented by zeros for the pores and ones for the mineral phase. Absolute permeability is obtained from lattice-Boltzmann viscous flow simulation in the digital pore space. The numerical results closely match measured permeability in the sample. We numerically alter the original digital sample by (a) depositing cement on the grain surface and (b) inserting small "silt" particles into the pore space. By calculating the permeability of the altered sandstone, we obtain permeability-porosity trends that differ depending on the diagenetic alteration process. Thin-section 2D images of rock are much cheaper to obtain and more readily available than 3D images. Thus we explore the possibility of obtaining accurate permeability estimates from 2D images. In this approach, the 3D digital pore space realizations are generated from digitized 2D images via statistical indicator simulation. We produce digital 2D images from the original 3D digital sample by slicing it in the computer. The 2D porosity of the slices, on average, is the same as the measured 3D porosity. However, the statistical spread around the average value is noticeable. It is remarkable that the calculated permeability of the statistically reconstructed 3D realizations matches, on average, the calculated permeability of the original digital sample and also the measured permeability. Finally, we apply diagenetic alterations to 2D slices, statistically reconstruct the corresponding 3D samples, and calculate their permeability. The results indicate that in clastic sediments, absolute permeability can be accurately estimated from 2D sections. Also, the effect of diagenesis on porosity and permeability can be quantified using 2D section alteration and realistic permeability-porosity trends can be established.

  19. G-protein coupled receptors as potential drug targets for lymphangiogenesis and lymphatic vascular diseases

    PubMed Central

    Dunworth, William P; Caron, Kathleen M

    2009-01-01

    G-protein coupled receptors (GPCRs) are widely expressed cell surface receptors that have been successfully exploited for the treatment of a variety of human diseases. Recent studies in genetically engineered mouse models have led to the identification of several GPCRs important for lymphatic vascular development and function. The adrenomedullin receptor, which consists of an oligomer between calcitonin receptor-like receptor and receptor activity modifying protein 2, is required for normal lymphatic vascular development and regulates lymphatic capillary permeability in mice. Numerous studies also suggest that lysophospholipid receptors are involved in the development of lymphatic vessels and lymphatic endothelial cell permeability. Given our current lack of pharmacological targets for the treatment of lymphatic vascular diseases like lymphedema, the continued identification and study of GPCRs in lymphatic endothelial cells may eventually lead to major breakthroughs and new pharmacological strategies for the treatment of lymphedema. PMID:19265032

  20. WANTED: Fully Automated Indexing.

    ERIC Educational Resources Information Center

    Purcell, Royal

    1991-01-01

    Discussion of indexing focuses on the possibilities of fully automated indexing. Topics discussed include controlled indexing languages such as subject heading lists and thesauri, free indexing languages, natural indexing languages, computer-aided indexing, expert systems, and the need for greater creativity to further advance automated indexing.…

  1. Vascular endothelial dysfunction and pharmacological treatment

    PubMed Central

    Su, Jin Bo

    2015-01-01

    The endothelium exerts multiple actions involving regulation of vascular permeability and tone, coagulation and fibrinolysis, inflammatory and immunological reactions and cell growth. Alterations of one or more such actions may cause vascular endothelial dysfunction. Different risk factors such as hypercholesterolemia, homocystinemia, hyperglycemia, hypertension, smoking, inflammation, and aging contribute to the development of endothelial dysfunction. Mechanisms underlying endothelial dysfunction are multiple, including impaired endothelium-derived vasodilators, enhanced endothelium-derived vasoconstrictors, over production of reactive oxygen species and reactive nitrogen species, activation of inflammatory and immune reactions, and imbalance of coagulation and fibrinolysis. Endothelial dysfunction occurs in many cardiovascular diseases, which involves different mechanisms, depending on specific risk factors affecting the disease. Among these mechanisms, a reduction in nitric oxide (NO) bioavailability plays a central role in the development of endothelial dysfunction because NO exerts diverse physiological actions, including vasodilation, anti-inflammation, antiplatelet, antiproliferation and antimigration. Experimental and clinical studies have demonstrated that a variety of currently used or investigational drugs, such as angiotensin-converting enzyme inhibitors, angiotensin AT1 receptors blockers, angiotensin-(1-7), antioxidants, beta-blockers, calcium channel blockers, endothelial NO synthase enhancers, phosphodiesterase 5 inhibitors, sphingosine-1-phosphate and statins, exert endothelial protective effects. Due to the difference in mechanisms of action, these drugs need to be used according to specific mechanisms underlying endothelial dysfunction of the disease. PMID:26635921

  2. Vascular neurobehcet disease: correlation with current disease activity forum and systemic vascular involvement.

    PubMed

    Mohammed, Reem H A; Nasef, Amr; Kewan, Hanady H; Al Shaar, Mohammed

    2012-07-01

    Behcet's syndrome (BS) is a chronic relapsing vascular inflammatory disease of unknown etiology with high morbidity and mortality. This research aims to study the clinical patterns of CNS disease in a group of patients with BS as well as the frequency and type of the associated radiographic findings suggestive of structural cerebral vascular disease. The findings were studied in relation to disease activity and features of systemic vascular involvement. Forty patients fulfilling the diagnostic criteria of the International Study Group for Behcet's Disease, mean age of 33.56 9.7 years, were enrolled. Patients were subjected to magnetic resonance imaging with conjugate survey of cerebral blood vessels' flow pattern abnormalities by transcranial Doppler study. Thirty healthy controls were included. Behcet's Disease Current Activity Form Score was used. Neuro-Behcet's syndrome (NBS) was diagnosed in 37.5% with headache being the most common (86.6% of cases), pyramidal affection (signs of upper motor neuron lesions/hemiplegia) was reported in 33.3%, attacks of disturbed conscious level in 26.6%, and cranial nerve affection in 6.5%. Of the patients, 66.6% with clinical features of NBS had statistically significant radiographic evidences of cerebrovascular disease (p = 0.01). Patients with NBS had significantly higher disease activity index score (r = 0.69, p = 0.0001). Radiographic findings and flow abnormalities were significantly less in patients on immune suppressants and antiplatelet drugs (p = 0.003, 0.04). BS patients with clinical neurologic disease were found to have radiographic findings suggestive of cerebral vascular disease with high disease activity index score. Drugs like immunosuppressants and oral antiplatelets might retard cerebral vascular disease progression and flow abnormalities, respectively. PMID:22415466

  3. Studies on the structure and permeability of the microvasculature in normal rat lymph nodes.

    PubMed Central

    Anderson, A. O.; Anderson, N. D.

    1975-01-01

    The structure and permeability of the microvasculature in normal rat lymph nodes was studied by regional perfusion techniques. The results indicated that characteristic vascular units supplied each cortical lobule of lymphatic tissue. Numerous arteriovenous communications and venous sphincters innervated by unmyelinated nerve fibers were found in this vascular bed. These specialized vascular structures permitted regional control of blood flow through high endothelial venules. Lymphocytes migrated across these venular walls by moving through intercellular spaces in the endothelium and between gaps in the laminated, reticular sheath. No direct anastomoses between blood vessels and lymphatics were seen, but tracer studies with horseradish peroxidase suggested that functional lymph node-venous communications were present in the walls of high endothelial venules. Images Figure 17 Figure 18 Figure 19 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 PMID:1163637

  4. Predicting skin permeability from complex chemical mixtures

    SciTech Connect

    Riviere, Jim E. . E-mail: Jim_Riviere@ncsu.edu; Brooks, James D.

    2005-10-15

    Occupational and environmental exposure to topical chemicals is usually in the form of complex chemical mixtures, yet risk assessment is based on experimentally derived data from individual chemical exposures from a single, usually aqueous vehicle, or from computed physiochemical properties. We present an approach using hybrid quantitative structure permeation relationships (QSPeR) models where absorption through porcine skin flow-through diffusion cells is well predicted using a QSPeR model describing the individual penetrants, coupled with a mixture factor (MF) that accounts for physicochemical properties of the vehicle/mixture components. The baseline equation is log k {sub p} = c + mMF + a{sigma}{alpha} {sub 2} {sup H} + b{sigma}{beta} {sub 2} {sup H} + s{pi} {sub 2} {sup H} + rR {sub 2} + vV {sub x} where {sigma}{alpha} {sub 2} {sup H} is the hydrogen-bond donor acidity, {sigma}{beta} {sub 2} {sup H} is the hydrogen-bond acceptor basicity, {pi} {sub 2} {sup H} is the dipolarity/polarizability, R {sub 2} represents the excess molar refractivity, and V {sub x} is the McGowan volume of the penetrants of interest; c, m, a, b, s, r, and v are strength coefficients coupling these descriptors to skin permeability (k {sub p}) of 12 penetrants (atrazine, chlorpyrifos, ethylparathion, fenthion, methylparathion, nonylphenol, {rho}-nitrophenol, pentachlorophenol, phenol, propazine, simazine, and triazine) in 24 mixtures. Mixtures consisted of full factorial combinations of vehicles (water, ethanol, propylene glycol) and additives (sodium lauryl sulfate, methyl nicotinate). An additional set of 4 penetrants (DEET, SDS, permethrin, ricinoleic acid) in different mixtures were included to assess applicability of this approach. This resulted in a dataset of 16 compounds administered in 344 treatment combinations. Across all exposures with no MF, R{sup 2} for absorption was 0.62. With the MF, correlations increased up to 0.78. Parameters correlated to the MF include refractive index, polarizability and log (1/Henry's Law Constant) of the mixture components. These factors should not be considered final as the focus of these studies was solely to determine if knowledge of the physical properties of a mixture would improve predicting skin permeability. Inclusion of multiple mixture factors should further improve predictability. The importance of these findings is that there is an approach whereby the effects of a mixture on dermal absorption of a penetrant of interest can be quantitated in a standard QSPeR model if physicochemical properties of the mixture are also incorporated.

  5. Intestinal permeability of ophthalmic beta-blockers for predicting ocular permeability.

    PubMed

    Sasaki, H; Igarashi, Y; Nishida, K; Nakamura, J

    1994-09-01

    The purpose of this study was to investigate the intestinal permeability of ophthalmic beta-blockers and evaluate the utility of intestinal membrane for predicting the ocular permeability. The penetrations of beta-blockers were measured across the isolated jejunum and colon of the albino rabbit using a two-chamber glass diffusion cell. beta-Blockers tested include atenolol, carteolol, tilisolol, timolol, and befunolol. Colonic membrane showed lower permeability of hydrophilic drugs than jejunal membrane. Scraping the entire cell monolayer of jejunum increased the drug permeability. There was a significant correlation between colonic permeability coefficients and lipophilicities of beta-blockers. The permeability coefficients through jejunum and scraped jejunum were not susceptible to drug lipophilicities. Jejunum, scraped jejunum, and colon showed permeability coefficients almost equal to those of sclera, conjunctiva, and cornea, respectively. There was a significant correlation between permeability coefficients through colon and cornea. These results indicate that the steady-state permeability of ophthalmic beta-blockers through ocular membranes may be predicted by measuring the permeability through certain intestinal membranes. However, the analyses of intestinal permeability using Fick's equation showed the functional difference of intestinal permeability from ocular permeability of ophthalmic beta-blockers. PMID:7830251

  6. Vascular cognitive impairment and dementia.

    PubMed

    Gorelick, Philip B; Counts, Scott E; Nyenhuis, David

    2016-05-01

    Vascular contributions to cognitive impairment are receiving heightened attention as potentially modifiable factors for dementias of later life. These factors have now been linked not only to vascular cognitive disorders but also Alzheimer's disease. In this chapter we review 3 related topics that address vascular contributions to cognitive impairment: 1. vascular pathogenesis and mechanisms; 2. neuropsychological and neuroimaging phenotypic manifestations of cerebrovascular disease; and 3. prospects for prevention of cognitive impairment of later life based on cardiovascular and stroke risk modification. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock. PMID:26704177

  7. Vascular continuity and auxin signals.

    PubMed

    Berleth, T; Mattsson, J; Hardtke, C S

    2000-09-01

    Plant vascular tissues form systems of interconnected cell files throughout the plant body. Vascular tissues usually differentiate at predictable positions but the wide range of functional patterns generated in response to abnormal growth conditions or wounding reveals partially self-organizing patterning mechanisms. Signals ensuring aligned cell differentiation within vascular strands are crucial in self-organized vascular patterning, and the apical-basal flow of indole acetic acid has been suspected to act as an orienting signal in this process. Several recent advances appear to converge on a more precise definition of the role of auxin flow in vascular tissue patterning. PMID:10973094

  8. Combined and complex vascular malformations.

    PubMed

    Clemens, Robert K; Pfammatter, Thomas; Meier, Thomas O; Alomari, Ahmad I; Amann-Vesti, Beatrice R

    2015-03-01

    The correct diagnosis of vascular malformations is obtainable by clinical assessment and patient history in the majority of cases. Nonetheless, confusion in nomenclature, existence of multiple classifications and rarity of these lesions leads to misdiagnosis and related wrong treatment. This is especially the case in combined or complex vascular malformations or vascular malformations that are part of syndromes as these have overlapping clinical and imaging features. New entities in the field of vascular anomalies have been described recently like fibro-adipose vascular anomaly or central conducting lymphatic anomalies. PMID:25698387

  9. Plant Vascular Biology 2010

    SciTech Connect

    Ding, Biao

    2014-11-17

    This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

  10. [Vascular dementia: an update].

    PubMed

    Yoshimura, Masafumi; Nishida, Keiichiro; Takekita, Yoshiteru; Kinoshita, Toshihiko

    2016-03-01

    The concept of vascular dementia(VaD) has been under discussion for long time. The most widely used guideline is NINDS-AIREN. However, this guideline tends to emphasize memory impairment, which seems very unrealistic in some cases. Although several guidelines have been created in addition to NINDS-AIREN, each of these guidelines has its advantages and disadvantages. With respect to the pathophysiology, there have been recent important findings, particularly about subcortical vascular dementia(SVD). From the therapeutic point of view, there have been high expectations for cholinesterase inhibitors and memantine, but the effectiveness of these drugs has not proved impressive so far. In this manuscript, we summarized the concept of VaD. In addition, we described recent findings related to pathophysiology and medication by cholinesterase inhibitors and memantine. PMID:27025092

  11. Permeability and corrosion behavior of phenoxy coatings

    SciTech Connect

    Tiburcio, A.C.; Manson, J.A.

    1993-12-31

    The corrosion behavior of a glass-bead-filled phenoxy coating system was studied by correlating permeability and electrochemical measurements with actual corrosion performance. The study emphasized the effects of filler and filler/polymer matrix interactions on corrosion behavior. Water vapor permeability, dissolved oxygen permeability and conductivity measurements were made to determine the rate of transport of the three key ingredients in cathodic delamination and corrosion process (H{sub 2}O, O{sub 2}, and cation). The glass bead filler had a greater effect on both cathodic delamination and corrosion behavior than filler/polymer matrix interaction. Overall, the permeability behavior controlled the delamination and corrosion performance.

  12. Vascular Lumen Formation

    PubMed Central

    Lammert, Eckhard; Axnick, Jennifer

    2012-01-01

    The vascular system developed early in evolution. It is required in large multicellular organisms for the transport of nutrients, oxygen, and waste products to and from tissues. The vascular system is composed of hollow tubes, which have a high level of complexity in vertebrates. Vasculogenesis describes the de novo formation of blood vessels, e.g., aorta formation in vertebrate embryogenesis. In contrast, angiogenesis is the formation of blood vessels from preexisting ones, e.g., sprouting of intersomitic blood vessels from the aorta. Importantly, the lumen of all blood vessels in vertebrates is lined and formed by endothelial cells. In both vasculogenesis and angiogenesis, lumen formation takes place in a cord of endothelial cells. It involves a complex molecular mechanism composed of endothelial cell repulsion at the cell–cell contacts within the endothelial cell cords, junctional rearrangement, and endothelial cell shape change. As the vascular system also participates in the course of many diseases, such as cancer, stroke, and myocardial infarction, it is important to understand and make use of the molecular mechanisms of blood vessel formation to better understand and manipulate the pathomechanisms involved. PMID:22474612

  13. Vascular Cambium Development

    PubMed Central

    Nieminen, Kaisa; Blomster, Tiina; Helariutta, Ykä; Mähönen, Ari Pekka

    2015-01-01

    Secondary phloem and xylem tissues are produced through the activity of vascular cambium, the cylindrical secondary meristem which arises among the primary plant tissues. Most dicotyledonous species undergo secondary development, among them Arabidopsis. Despite its small size and herbaceous nature, Arabidopsis displays prominent secondary growth in several organs, including the root, hypocotyl and shoot. Together with the vast genetic resources and molecular research methods available for it, this has made Arabidopsis a versatile and accessible model organism for studying cambial development and wood formation. In this review, we discuss and compare the development and function of the vascular cambium in the Arabidopsis root, hypocotyl, and shoot. We describe the current understanding of the molecular regulation of vascular cambium and compare it to the function of primary meristems. We conclude with a look at the future prospects of cambium research, including opportunities provided by phenotyping and modelling approaches, complemented by studies of natural variation and comparative genetic studies in perennial and woody plant species. PMID:26078728

  14. Pulmonary vascular imaging

    SciTech Connect

    Fedullo, P.F.; Shure, D.

    1987-03-01

    A wide range of pulmonary vascular imaging techniques are available for the diagnostic evaluation of patients with suspected pulmonary vascular disease. The characteristics of any ideal technique would include high sensitivity and specificity, safety, simplicity, and sequential applicability. To date, no single technique meets these ideal characteristics. Conventional pulmonary angiography remains the gold standard for the diagnosis of acute thromboembolic disease despite the introduction of newer techniques such as digital subtraction angiography and magnetic resonance imaging. Improved noninvasive lower extremity venous testing methods, particularly impedance plethysmography, and ventilation-perfusion scanning can play significant roles in the noninvasive diagnosis of acute pulmonary emboli when properly applied. Ventilation-perfusion scanning may also be useful as a screening test to differentiate possible primary pulmonary hypertension from chronic thromboembolic pulmonary hypertension. And, finally, angioscopy may be a useful adjunctive technique to detect chronic thromboembolic disease and determine operability. Optimal clinical decision-making, however, will continue to require the proper interpretation of adjunctive information obtained from the less-invasive techniques, applied with an understanding of the natural history of the various forms of pulmonary vascular disease and with a knowledge of the capabilities and shortcomings of the individual techniques.

  15. ALDOSTERONE DYSREGULATION WITH AGING PREDICTS RENAL-VASCULAR FUNCTION AND CARDIO-VASCULAR RISK

    PubMed Central

    Brown, Jenifer M.; Underwood, Patricia C.; Ferri, Claudio; Hopkins, Paul N.; Williams, Gordon H.; Adler, Gail K.; Vaidya, Anand

    2014-01-01

    Aging and abnormal aldosterone regulation are both associated with vascular disease. We hypothesized that aldosterone dysregulation influences the age-related risk of renal- and cardio-vascular disease. We conducted an analysis of 562 subjects who underwent detailed investigations under conditions of liberal and restricted dietary sodium intake (1,124 visits) in a Clinical Research Center. Aldosterone regulation was characterized by the ratio of maximal suppression-to-stimulation (supine serum aldosterone on a liberal sodium diet divided by the same measure on a restricted sodium diet). We previously demonstrated that higher levels of this Sodium-modulated Aldosterone Suppression-Stimulation Index (SASSI) indicate greater aldosterone dysregulation. Renal plasma flow (RPF) was determined via p-aminohippurate clearance to assess basal renal hemodynamics, and the renal-vascular responses to dietary sodium manipulation and angiotensin II (AngII) infusion. Cardiovascular risk was calculated using the Framingham Risk Score. In univariate linear regression, older age (β= -4.60, p<0.0001) and higher SASSI (β= -58.63, p=0.001) predicted lower RPF and a blunted RPF response to sodium loading and AngII infusion. We observed a continuous, independent, multivariate-adjusted interaction between age and SASSI, where the inverse relationship between SASSI and RPF was most apparent with older age (p<0.05). Higher SASSI and lower RPF independently predicted higher Framingham Risk Score (p<0.0001) and together displayed an additive effect. Aldosterone regulation and age may interact to mediate renal-vascular disease. Our findings suggest that the combination of aldosterone dysregulation and renal-vascular dysfunction could additively increase the risk of future cardiovascular outcomes; therefore, aldosterone dysregulation may represent a modifiable mechanism of age-related vascular disease. PMID:24664291

  16. The adaptation of the blood-brain barrier to vascular endothelial growth factor and placental growth factor during pregnancy

    PubMed Central

    Schreurs, Malou P. H.; Houston, Emily M.; May, Victor; Cipolla, Marilyn J.

    2012-01-01

    Vascular endothelial growth factor (VEGF) and placental growth factor (PLGF) are increased in the maternal circulation during pregnancy. These factors may increase blood-brain barrier (BBB) permeability, yet brain edema does not normally occur during pregnancy. We therefore hypothesized that in pregnancy, the BBB adapts to high levels of these permeability factors. We investigated the influence of pregnancy-related circulating factors on VEGF-induced BBB permeability by perfusing cerebral veins with plasma from nonpregnant (NP) or late-pregnant (LP) rats (n=6/group) and measuring permeability in response to VEGF. The effect of VEGF, PLGF, and VEGF-receptor (VEGFR) activation on BBB permeability was also determined. Results showed that VEGF significantly increased permeability (×107 μm3/min) from 9.7 ± 3.5 to 21.0 ± 1.5 (P<0.05) in NP veins exposed to NP plasma, that was prevented when LP veins were exposed to LP plasma; (9.7±3.8; P>0.05). Both LP plasma and soluble FMS-like tyrosine-kinase 1 (sFlt1) in NP plasma abolished VEGF-induced BBB permeability in NP veins (9.5±2.9 and 12±2.6; P>0.05). PLGF significantly increased BBB permeability in NP plasma (18±1.4; P<0.05), and required only VEGFR1 activation, whereas VEGF-induced BBB permeability required both VEGFR1 and VEGFR2. Our findings suggest that VEGF and PLGF enhance BBB permeability through different VEGFR pathways and that circulating sFlt1 prevents VEGF- and PLGF-induced BBB permeability during pregnancy. —Schreurs, M. P. H., Houston, E. M., May, V., Cipolla, M. J. The adaptation of the blood-brain barrier to vascular endothelial growth factor and placental growth factor during pregnancy. PMID:21911594

  17. Noncontact monitoring of vascular lesion phototherapy efficiency by RGB multispectral imaging

    NASA Astrophysics Data System (ADS)

    Jakovels, Dainis; Kuzmina, Ilona; Berzina, Anna; Valeine, Lauma; Spigulis, Janis

    2013-12-01

    A prototype low-cost RGB imaging system consisting of a commercial RGB CMOS sensor, RGB light-emitting diode ring light illuminator, and a set of polarizers was designed and tested for mapping the skin erythema index, in order to monitor skin recovery after phototherapy of vascular lesions, such as hemangiomas and telangiectasias. The contrast of erythema index (CEI) was proposed as a parameter for quantitative characterization of vascular lesions. Skin recovery was characterized as a decrease of the CEI value relative to the value before the treatment. This approach was clinically validated by examining 31 vascular lesions before and after phototherapy.

  18. Paracellular versus transcellular intestinal permeability to gliadin peptides in active celiac disease.

    PubMed

    Mnard, Sandrine; Lebreton, Corinne; Schumann, Michael; Matysiak-Budnik, Tamara; Dugave, Christophe; Bouhnik, Yoram; Malamut, Georgia; Cellier, Christophe; Allez, Matthieu; Crenn, Pascal; Schulzke, Joerg Dieter; Cerf-Bensussan, Nadine; Heyman, Martine

    2012-02-01

    The intestinal permeability of undegraded ?9-gliadin peptide 31-49 (p31-49) and 33-mer gliadin peptides is increased in active celiac disease. Two distinct transport pathways have been proposed: paracellular leakage through epithelial tight junctions and protected transcellular transport. To analyze the relative contribution of these pathways, we compared mucosa-to-serosa permeability of small and large permeability markers [ionic conductance (G), mannitol, 182 Da; horseradish peroxidase, 40 kDa] and gliadin peptides [33-mer (p56-88, 3900 Da), 19-mer (p31-49, 2245 Da; and p202-220, 2127 Da), and 12-mer (p57-68, 1453 Da)] in duodenal biopsy specimens mounted in Ussing chambers. The permeability of intact peptides was much higher for p31-49 or 33-mer than for horseradish peroxidase, p202-220, and p57-68. A positive correlation was observed between G, an index of paracellular diffusion of ions, and mannitol permeability. The absence of correlation between G and permeability to intact 33-mer or p31-49 did not favor paracellular diffusion of the peptides. Immunofluorescence studies indicated that 33-mer enters the early endosome antigen 1-positive compartment but escapes the lysosomal-associated protein 2-positive compartment. The results underline that mannitol and ionic conductance G cannot be considered markers of permeability to gliadin peptides. In active celiac disease, increases in transcellular permeability to intact gliadin peptides might be considered in treatment strategies aimed at controlling epithelial permeability to gluten. PMID:22119716

  19. Plasma From Patients With HELLP Syndrome Increases Blood–Brain Barrier Permeability

    PubMed Central

    Tremble, Sarah M.; Owens, Michelle Y.; Morris, Rachael; Cipolla, Marilyn J.

    2015-01-01

    Circulating inflammatory factors and endothelial dysfunction have been proposed to contribute to the pathophysiology of hemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome. To date, the occurrence of neurological complications in these women has been reported, but few studies have examined whether impairment in blood–brain barrier (BBB) permeability or cerebrovascular reactivity is present in women having HELLP syndrome. We hypothesized that plasma from women with HELLP syndrome causes increased BBB permeability and cerebrovascular dysfunction. Posterior cerebral arteries from female nonpregnant rats were perfused with 20% serum from women with normal pregnancies (n = 5) or women with HELLP syndrome (n = 5), and BBB permeability and vascular reactivity were compared. Plasma from women with HELLP syndrome increased BBB permeability while not changing myogenic tone and reactivity to pressure. Addition of the nitric oxide (NO) synthase inhibitor Nω-nitro-l-arginine methyl ester caused constriction of arteries that was not different with the different plasmas nor was dilation to the NO donor sodium nitroprusside different between the 2 groups. However, dilation to the small- and intermediate-conductance, calcium-activated potassium channel activator NS309 was decreased in vessels exposed to HELLP plasma. Thus, increased BBB permeability in response to HELLP plasma was associated with selective endothelial dysfunction. PMID:25194151

  20. Role of sulfhydryls in mucosal injury caused by ethanol: relation to microvascular permeability, gastric motility and cytoprotection

    SciTech Connect

    Takeuchi, K.; Okada, M.; Niida, H.; Okabe, S.

    1989-02-01

    The relationship between gastric mucosal glutathione (GSH) levels, vascular permeability, gastric motility and mucosal injury caused by ethanol was investigated in rats. Oral administration of 50% ethanol (1 ml) produced elongated reddish bands of lesions in the mucosa with a significant reduction of GSH levels and increase of microvascular permeability. These lesions were significantly inhibited by pretreatment with s.c. administered diethylmaleate (DEM: 1 ml/kg), cysteamine (100 mg/kg) and 16, 16-dimethyl prostaglandin E2 (dmPGE2, 10 micrograms/kg) but worsened markedly by N-ethylmaleimide (NEM: 10 mg/kg). Irrespective of whether the animals were treated with 50% ethanol or not, the mucosal GSH levels were significantly decreased or increased, respectively, by DEM or cysteamine, and were not affected by both NEM and dmPGE2. NEM significantly enhanced the vascular permeability in the absence or presence of ethanol (greater than 10%), whereas other agents significantly inhibited only the increased vascular permeability caused by ethanol. On the other hand, gastric motility was potently and persistently inhibited by either DEM, cysteamine or dmPGE2 at the doses which prevented ethanol-induced mucosal injury, whereas NEM had no effect on the motility. These results suggest that 1) the mucosal GSH levels do not relate directly to either development or prevention of ethanol-induced gastric injury, 2) potentiation by NEM of the mucosal injury may be accounted for by its enhancement of the vascular permeability and 3) inhibition of gastric motility may be associated with prevention of mucosal lesions.

  1. [How Treatable is Vascular Dementia?].

    PubMed

    Mori, Etsuro

    2016-04-01

    Vascular dementia is an umbrella term, encompassing the pathological changes in the brain due to cerebrovascular disease that result in dementia. Vascular dementia is the second most common form of dementia, after Alzheimer's disease. In this paper, I outline the concept of vascular dementia, the key aspects of the disease that are yet to be clarified, and the current status of clinical trials. Assessing these factors, I discuss how treatable vascular dementia presently is. Use of the term'vascular dementia'is riddled with uncertainties regarding disease classification, and non-standardized diagnostic criteria. There are difficulties in determining the exact relationship between cerebrovascular pathology and cognitive impairment. The comorbid effects of Alzheimer's pathology in some individuals also present an obstacle to reliable clinical diagnosis, and hinder research into effective management approaches. Vascular dementia is preventable and treatable, as there are established primary and secondary prevention measures for the causative cerebrovascular diseases, such as vascular risk factor intervention, antiplatelet therapy, and anticoagulation, amongst others. However, unlike Alzheimer's disease, there are no established symptomatic treatments for vascular dementia. Clinical trials of cholinesterase inhibitors and memantine indicate that they produce small cognitive benefits in patients with vascular dementia, though the exact clinical significance of these is uncertain. Data are insufficient to support the widespread use of these drugs in vascular dementia. Rehabilitation and physical and cognitive exercise may be beneficial, but evidence of cognitive benefit and relief of neuropsychiatric symptoms due to exercise is lacking. PMID:27056862

  2. A method of determination of permeability

    SciTech Connect

    Kuznetsov, S.V.; Trofimov, V.A.

    2007-11-15

    A method is proposed for determining permeability of coals under conditions of steady-state deformation and stationary filtration mode by employing a reference core made of gas-non-sorbing material with a known permeability. The approach has been developed to assess the time of transition to the stable filtration.

  3. Influence of fiber packing structure on permeability

    NASA Technical Reports Server (NTRS)

    Cai, Zhong; Berdichevsky, Alexander L.

    1993-01-01

    The study on the permeability of an aligned fiber bundle is the key building block in modeling the permeability of advanced woven and braided preforms. Available results on the permeability of fiber bundles in the literature show that a substantial difference exists between numerical and analytical calculations on idealized fiber packing structures, such as square and hexagonal packing, and experimental measurements on practical fiber bundles. The present study focuses on the variation of the permeability of a fiber bundle under practical process conditions. Fiber bundles are considered as containing openings and fiber clusters within the bundle. Numerical simulations on the influence of various openings on the permeability were conducted. Idealized packing structures are used, but with introduced openings distributed in different patterns. Both longitudinal and transverse flow are considered. The results show that openings within the fiber bundle have substantial effect on the permeability. In the longitudinal flow case, the openings become the dominant flow path. In the transverse flow case, the fiber clusters reduce the gap sizes among fibers. Therefore the permeability is greatly influenced by these openings and clusters, respectively. In addition to the porosity or fiber volume fraction, which is commonly used in the permeability expression, another fiber bundle status parameter, the ultimate fiber volume fraction, is introduced to capture the disturbance within a fiber bundle.

  4. Low-level X-radiation effects on functional vascular changes in Syrian hamster cheek pouch epithelium during hydrocarbon carcinogenesis

    SciTech Connect

    Lurie, A.G.; Coghill, J.E.; Rippey, R.M.

    1985-07-01

    Effects of repeated low-level X radiation on functional microvascular changes in hamster cheek pouch epithelium during and following carcinogenesis by 7,12-dimethylbenz(a)anthracene (DMBA) were studied. Hamsters were treated with either radiation, DMBA, radiation + DMBA, or no treatment. Animals were sacrificed at 3-week intervals from 0 to 39 weeks after treatments began. Pouch vascular volume and permeability changes were studied by fractional distributions of radiotracers and were analyzed by a variety of statistical methods which explored the vascular parameters, treatment types, elapsed time, presence of the carcinogen, and histopathologic changes. All treatments resulted in significant changes in vascular volume with time, while only DMBA treatments alone resulted in significant changes in vascular permeability with time. As in prior studies, there were significant vascular volume differences between DMBA and DMBA + radiation groups of tumor-bearing cheek pouches. Radiation significantly affected DMBA-associated vascular volume and permeability changes during carcinogenesis. Several possible explanations for the relationship of these changes to the enhancement of DMBA carcinogenesis are discussed.

  5. Composites with tuned effective magnetic permeability

    NASA Astrophysics Data System (ADS)

    Amirkhizi, Alireza V.; Nemat-Nasser, Sia

    2007-07-01

    Pendry et al. [J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999)] and Smith et al. [D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000)] have shown that the effective magnetic permeability, μ, of free space can be rendered negative over a certain frequency range by a periodic arrangement of very thin conductors with suitable magnetic resonance properties, the so-called split-ring resonators. Because of its rather bulky architecture, this structure does not lend itself to a proper integration into a reasonably thin real composite structural panel. To remedy this fundamental barrier, we invented a new magnetic resonator consisting of very thin folded plates that are suitably nested within one another to form folded-doubled resonators (FDRs) that can be integrated into an actual composite panel. Measurements, using a focused beam electromagnetic characterization system combined with time-domain numerical simulations of the reflection and transmission coefficients of such a composite slab have revealed that indeed the composite has a negative μ over a frequency range of about 9.1-9.35 GHz [S. Nemat-Nasser, S. C. Nemat-Nasser, T. A. Plaisted, A. Starr, and A. Vakil Amirkhizi, in Biomimetics: Biologically Inspired Technologies, edited by Y. Bar Cohen (CRC Press, Boca Raton, FL, 2006)]. Thus, it has become possible to construct a structural composite panel with negative index of refraction by simultaneously creating negative effective ɛ and μ [V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968); R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001); A. F. Starr, P. M. Rye, D. R. Smith, and S. Nemat-Nasser, Phys. Rev. B 70, 113102 (2004)].

  6. Functional states of resident vascular stem cells and vascular remodeling

    PubMed Central

    Leach, Desiree F.; Nagarkatti, Mitzi; Nagarkatti, Prakash; Cui, Taixing

    2015-01-01

    Recent evidence indicates that different types of vascular stem cells (VSCs) reside within the mural layers of arteries and veins. The precise identities of these resident VSCs are still unclear; generally, postnatal vasculature contains multilineage stem cells and vascular cell lineage-specific progenitor/stem cells which may participate in both vascular repair and lesion formation. However, the underlying mechanism remains poorly understood. In this review, we summarize the potential molecular mechanisms, which may control the quiescence and activation of resident VSCs and highlight a notion that the differential states of resident VSCs are directly linked to vascular repair or lesion formation. PMID:26913049

  7. [Estrogens and vascular thrombosis].

    PubMed

    Colmou, A

    1982-09-01

    The incidence of thromboses among young women has increased with widespread use of oral contraceptives (OCs) due to the significant thromboembolic risk of estrogen. Estrogens intervene at the vascular, platelet, and plasma levels as a function of hormonal variations in the menstrual cycle, increasing the aggregability of the platelets and thrombocytes, accelerating the formation of clots, and decreasing the amount of antithrombin III. Estrogens are used in medicine to treat breast and prostate cancers and in gynecology to treat dysmenorrhea, during the menopause, and in contraception. Smoking, cardiovascular disease and hypertension, hypercholesterolemia, and diabetes are contraindicators to estrogen use. Thrombosis refers to blockage of a blood vessel by a clot or thrombus. Before estrogens are prescribed, a history of phlebitis, obesity, hyperlipidemia, or significant varicosities should be ruled out. A history of venous thrombosis, hyperlipoproteinemia, breast nodules, serious liver condition, allergies to progesterone, and some ocular diseases of vascular origin definitively rule out treatment with estrogens. A family history of infarct, embolism, diabetes, cancer, or vascular accidents at a young age signals a need for greater patient surveillance. All patients receiving estrogens should be carefully observed for signs of hypertension, hypercholesterolemia, hypercoagulability, or diabetes. Nurses have a role to play in carefully eliciting the patient's history of smoking, personal and family medical problems, and previous and current laboratory results, as well as in informing the patients of the risks and possible side effects of OCs, especially for those who smoke. Nurses should educate patients receiving estrogens, especially those with histories of circulatory problems, to avoid standing in 1 position for prolonged periods, avoid heat which is a vasodilator, avoid obesity, excercise regularly, wear appropriate footgear, and follow other good health practices. PMID:6925385

  8. Fibronectins in Vascular Morphogenesis

    PubMed Central

    Astrof, Sophie; Hynes, Richard O.

    2009-01-01

    Fibronectin is an extracellular matrix protein found only in vertebrate organisms containing endothelium-lined vasculature and is required for cardiovascular development in fish and mice. Fibronectin and its splice variants containing EIIIA and EIIIB domains are highly upregulated around newly developing vasculature during embryogenesis and in pathological conditions including atherosclerosis, cardiac hypertrophy and tumorigenesis, however, their molecular roles in these processes are not entirely understood. We review genetic studies examining functions of fibronectin and its splice variants during embryonic cardiovascular development, and discuss potential roles of fibronectins in vascular disease and tumor angiogenesis. PMID:19219555

  9. Abdominal Vascular Catastrophes.

    PubMed

    Singh, Manpreet; Koyfman, Alex; Martinez, Joseph P

    2016-05-01

    Abdominal vascular catastrophes are among the most challenging and time sensitive for emergency practitioners to recognize. Mesenteric ischemia remains a highly lethal entity for which the history and physical examination can be misleading. Laboratory tests are often unhelpful, and appropriate imaging must be quickly obtained. A multidisciplinary approach is required to have a positive impact on mortality rates. Ruptured abdominal aortic aneurysm likewise may present in a cryptic fashion. A specific type of ruptured aneurysm, the aortoenteric fistula, often masquerades as the more common routine gastrointestinal bleed. The astute clinician recognizes that this is a more lethal variant of gastrointestinal hemorrhage. PMID:27133247

  10. Vascular function and ocular involvement in sarcoidosis.

    PubMed

    Siasos, Gerasimos; Paraskevopoulos, Theodoros; Gialafos, Elias; Rapti, Aggeliki; Oikonomou, Evangelos; Zaromitidou, Marina; Mourouzis, Konstantinos; Siasou, Georgia; Gouliopoulos, Nikolaos; Tsalamandris, Sotiris; Vlasis, Konstantinos; Stefanadis, Christodoulos; Papavassiliou, Athanasios G; Tousoulis, Dimitris

    2015-07-01

    Ocular involvement occurs in sarcoidosis (Sar) patients mainly in the form of uveitis. This study was designed to determine if uveitis in Sar patients is associated with vascular impairment. We enrolled 82 Sar patients and 77, age and sex matched, control subjects (Cl). Sar patients were divided into those with ocular sarcoidosis (OS) and those without ocular sarcoidosis (WOS). Endothelial function was evaluated by flow-mediated dilation (FMD). Pulse wave velocity (PWV) was measured as an index of aortic stiffness and augmentation index (AIx) as a measure of arterial wave reflections. Although there was no significant difference in sex, age and mean arterial pressure, patients with OS compared to WOS patients and Cl subjects had impaired FMD (p<0.001), increased AIx (p=0.02) and increased PWV (p=0.001). Interestingly, impaired FMD in Sar patients was independently, from possible covariates (age, sex, smoking habits, arterial hypertension, dyslipidemia), associated with increased odds of ocular involvement (odds ratio=1.69, p=0.001). More precisely ROC curve analysis revealed that FMD had a significant diagnostic ability for the detection of OS (AUC=0.77, p<0.001) with a sensitivity of 79% and a specificity of 68% for an FMD value below 6.00%. To conclude in the present study we have shown that ocular involvement in Sar patients is associated with impaired endothelial function and increased arterial stiffness. These results strengthen the vascular theory which considers uveitis a consequence of vascular dysfunction in Sar patients and reveals a possible clinical importance of the use of endothelial function tests. PMID:25937082

  11. Compact rock material gas permeability properties

    NASA Astrophysics Data System (ADS)

    Wang, Huanling; Xu, Weiya; Zuo, Jing

    2014-09-01

    Natural compact rocks, such as sandstone, granite, and rock salt, are the main materials and geological environment for storing underground oil, gas, CO2, shale gas, and radioactive waste because they have extremely low permeabilities and high mechanical strengths. Using the inert gas argon as the fluid medium, the stress-dependent permeability and porosity of monzonitic granite and granite gneiss from an underground oil storage depot were measured using a permeability and porosity measurement system. Based on the test results, models for describing the relationships among the permeability, porosity, and confining pressure of rock specimens were analyzed and are discussed. A power law is suggested to describe the relationship between the stress-dependent porosity and permeability; for the monzonitic granite and granite gneiss (for monzonitic granite (A-2), the initial porosity is approximately 4.05%, and the permeability is approximately 10-19 m2; for the granite gneiss (B-2), the initial porosity is approximately 7.09%, the permeability is approximately 10-17 m2; and the porosity-sensitivity exponents that link porosity and permeability are 0.98 and 3.11, respectively). Compared with moderate-porosity and high-porosity rocks, for which φ > 15%, low-porosity rock permeability has a relatively lower sensitivity to stress, but the porosity is more sensitive to stress, and different types of rocks show similar trends. From the test results, it can be inferred that the test rock specimens' permeability evolution is related to the relative particle movements and microcrack closure.

  12. Microfluidic Technology in Vascular Research

    PubMed Central

    van der Meer, A. D.; Poot, A. A.; Duits, M. H. G.; Feijen, J.; Vermes, I.

    2009-01-01

    Vascular cell biology is an area of research with great biomedical relevance. Vascular dysfunction is involved in major diseases such as atherosclerosis, diabetes, and cancer. However, when studying vascular cell biology in the laboratory, it is difficult to mimic the dynamic, three-dimensional microenvironment that is found in vivo. Microfluidic technology offers unique possibilities to overcome this difficulty. In this review, an overview of the recent applications of microfluidic technology in the field of vascular biological research will be given. Examples of how microfluidics can be used to generate shear stresses, growth factor gradients, cocultures, and migration assays will be provided. The use of microfluidic devices in studying three-dimensional models of vascular tissue will be discussed. It is concluded that microfluidic technology offers great possibilities to systematically study vascular cell biology with setups that more closely mimic the in vivo situation than those that are generated with conventional methods. PMID:19911076

  13. The pathobiology of vascular dementia

    PubMed Central

    Iadecola, Costantino

    2013-01-01

    Vascular cognitive impairment defines alterations in cognition, ranging from subtle deficits to full-blown dementia, attributable to cerebrovascular causes. Often coexisting with Alzheimer’s disease, mixed vascular and neurodegenerative dementia has emerged as the leading cause of age-related cognitive impairment. Central to the disease mechanism is the crucial role that cerebral blood vessels play in brain health, not only for the delivery of oxygen and nutrients, but also for the trophic signaling that links inextricably the well being of neurons and glia to that of cerebrovascular cells. This review will examine how vascular damage disrupts these vital homeostatic interactions, focusing on the hemispheric white matter, a region at heightened risk for vascular damage, and on the interplay between vascular factors and Alzheimer’s disease. Finally, preventative and therapeutic prospects will be examined, highlighting the importance of midlife vascular risk factor control in the prevention of late-life dementia. PMID:24267647

  14. ROCK2 primes the endothelium for vascular hyperpermeability responses by raising baseline junctional tension

    PubMed Central

    Beckers, Cora M.L.; Knezevic, Nebojsa; Valent, Erik T.; Tauseef, Mohammad; Krishnan, Ramaswamy; Rajendran, Kavitha; Hardin, C. Corey; Aman, Jurjan; van Bezu, Jan; Sweetnam, Paul; van Hinsbergh, Victor W.M.; Mehta, Dolly; van Nieuw Amerongen, Geerten P.

    2015-01-01

    Rho kinase mediates the effects of inflammatory permeability factors by increasing actomyosin-generated traction forces on endothelial adherens junctions, resulting in disassembly of intercellular junctions and increased vascular leakage. In vitro, this is accompanied by the Rho kinase-driven formation of prominent radial F-actin fibers, but the in vivo relevance of those F-actin fibers has been debated, suggesting other Rho kinase-mediated events to occur in vascular leak. Here, we delineated the contributions of the highly homologous isoforms of Rho kinase (ROCK1 and ROCK2) to vascular hyperpermeability responses. We show that ROCK2, rather than ROCK1 is the critical Rho kinase for regulation of thrombin receptor-mediated vascular permeability. Novel traction force mapping in endothelial monolayers, however, shows that ROCK2 is not required for the thrombin-induced force enhancements. Rather, ROCK2 is pivotal to baseline junctional tension as a novel mechanism by which Rho kinase primes the endothelium for hyperpermeability responses, independent from subsequent ROCK1-mediated contractile stress-fiber formation during the late phase of the permeability response. PMID:25869521

  15. ROCK2 primes the endothelium for vascular hyperpermeability responses by raising baseline junctional tension.

    PubMed

    Beckers, Cora M L; Knezevic, Nebojsa; Valent, Erik T; Tauseef, Mohammad; Krishnan, Ramaswamy; Rajendran, Kavitha; Hardin, C Corey; Aman, Jurjan; van Bezu, Jan; Sweetnam, Paul; van Hinsbergh, Victor W M; Mehta, Dolly; van Nieuw Amerongen, Geerten P

    2015-07-01

    Rho kinase mediates the effects of inflammatory permeability factors by increasing actomyosin-generated traction forces on endothelial adherens junctions, resulting in disassembly of intercellular junctions and increased vascular leakage. In vitro, this is accompanied by the Rho kinase-driven formation of prominent radial F-actin fibers, but the in vivo relevance of those F-actin fibers has been debated, suggesting other Rho kinase-mediated events to occur in vascular leak. Here, we delineated the contributions of the highly homologous isoforms of Rho kinase (ROCK1 and ROCK2) to vascular hyperpermeability responses. We show that ROCK2, rather than ROCK1 is the critical Rho kinase for regulation of thrombin receptor-mediated vascular permeability. Novel traction force mapping in endothelial monolayers, however, shows that ROCK2 is not required for the thrombin-induced force enhancements. Rather, ROCK2 is pivotal to baseline junctional tension as a novel mechanism by which Rho kinase primes the endothelium for hyperpermeability responses, independent from subsequent ROCK1-mediated contractile stress-fiber formation during the late phase of the permeability response. PMID:25869521

  16. Vascular endothelial growth factor from embryonic status to cardiovascular pathology

    PubMed Central

    Azimi-Nezhad, Mohsen

    2014-01-01

    Vascular endothelial growth factor (VEGF) is a multifunctional cytokine with distinct functions in angiogenesis, lymphangiogenesis, vascular permeability, and hematopoiesis. VEGF is a highly conserved, disulfide-bonded dimeric glycoprotein of 34 to 45 kDa produced by several cell types including fibroblasts, neutrophils, endothelial cells, and peripheral blood mononuclear cells, particularly T lymphocytes and macrophages. Six VEGF isoforms are generated as a result of alternative splicing from a single VEGF gene, consisting of 121, 145, 165, 183, 189, or 206 amino acids. VEGF121, VEGF145, and VEGF165 are secreted whereas VEGF183, VEGF189, and VEGF206 are cell membrane-bound. VEGF145 has a key role during the vascularization of the human ovarian follicle and corpus luteum, in the placentation and embryonic periods, and in bone and wound healing, while VEGF165 is the most abundant and biologically active isoform. VEGF has been linked with a number of vascular pathologies including cardiovascular diseases such ischemic heart disease, heart failure, stroke, and diabetes and its related complications. In this review we aimed to present some important roles of VEGF in a number of clinical issues and indicate its involvement in several phenomena from the initial steps of the embryonic period to cardiovascular diseases. PMID:26989723

  17. Tumoral and Choroidal Vascularization

    PubMed Central

    Jost, Maud; Maillard, Catherine; Lecomte, Julie; Lambert, Vincent; Tjwa, Marc; Blaise, Pierre; Alvarez Gonzalez, Maria-Luz; Bajou, Khalid; Blacher, Silvia; Motte, Patrick; Humblet, Chantal; Defresne, Marie Paule; Thiry, Marc; Frankenne, Francis; Gothot, André; Carmeliet, Peter; Rakic, Jean-Marie; Foidart, Jean-Michel; Noël, Agnès

    2007-01-01

    An adequate balance between serine proteases and their plasminogen activator inhibitor-1 (PAI-1) is critical for pathological angiogenesis. PAI-1 deficiency in mice is associated with impaired choroidal neovascularization (CNV) and tumoral angiogenesis. In the present work, we demonstrate unexpected differences in the contribution of bone marrow (BM)-derived cells in these two processes regulated by PAI-1. PAI-1−/− mice grafted with BM-derived from wild-type mice were able to support laser-induced CNV formation but not skin carcinoma vascularization. Engraftment of irradiated wild-type mice with PAI-1−/− BM prevented CNV formation, demonstrating the crucial role of PAI-1 delivered by BM-derived cells. In contrast, the transient infiltration of tumor transplants by local PAI-1-producing host cells rather than by BM cells was sufficient to rescue tumor growth and angiogenesis in PAI-1-deficient mice. These data identify PAI-1 as a molecular determinant of a local permissive soil for tumor angiogenesis. Altogether, the present study demonstrates that different cellular mechanisms contribute to PAI-1-regulated tumoral and CNV. PAI-1 contributes to BM-dependent choroidal vascularization and to BM-independent tumor growth and angiogenesis. PMID:17717143

  18. Vascular Distribution of Nanomaterials

    PubMed Central

    Stapleton, Phoebe A.; Nurkiewicz, Timothy R.

    2014-01-01

    Once considered primarily occupational, novel nanotechnology innovation and application has led to widespread domestic use and intentional biomedical exposures. With these exciting advances, the breadth and depth of toxicological considerations must also be expanded. The vascular system interacts with every tissue in the body, striving to homeostasis. Engineered nanomaterials (ENM) have been reported to distribute in many different organs and tissues. However, these observations have tended to use approaches requiring tissue homogenization and/or gross organ analyses. These techniques, while effective in establishing presence, preclude an exact determination of where ENM are deposited within a tissue. It is necessary to identify this exact distribution and deposition of ENM throughout the cardiovascular system, with respect to vascular hemodynamics and in vivo/ in vitro ENM modifications taken into account if nanotechnology is to achieve its full potential. Distinct levels of the vasculature will first be described as individual compartments. Then the vasculature will be considered as a whole. These unique compartments and biophysical conditions will be discussed in terms of their propensity to favor ENM deposition. Understanding levels of the vasculature will also be discussed. Ultimately, future studies must verify the mechanisms speculated on and presented herein. PMID:24777845

  19. Understanding vascular development

    PubMed Central

    Udan, Ryan S.; Culver, James C.; Dickinson, Mary E.

    2014-01-01

    The vasculature of an organism has the daunting task of connecting all the organ systems to nourish tissue and sustain life. This complex network of vessels and associated cells must maintain blood flow but constantly adapt to acute and chronic changes within tissues. While the vasculature has been studied for over a century, we are just beginning to understand the processes that regulate its formation and how genetic hierarchies are influenced by mechanical and metabolic cues to refine vessel structure and optimize efficiency. As we gain insights into the developmental mechanisms, it is clear that the processes that regulate blood vessel development can also enable the adult to adapt to changes in tissues that can be elicited by exercise, aging, injury, or pathology. Thus, research in vessel development has provided tremendous insights into therapies for vascular diseases and disorders, cancer interventions, wound repair and tissue engineering, and in turn, these models have clearly impacted our understanding of development. Here we provide an overview of the development of the vascular system, highlighting several areas of active investigation and key questions that remain to be answered. PMID:23799579

  20. Changes in permeability of the alveolar-capillary barrier in firefighters.

    PubMed

    Minty, B D; Royston, D; Jones, J G; Smith, D J; Searing, C S; Beeley, M

    1985-09-01

    The effect on alveolar-capillary barrier permeability of chronic exposure to a smoke produced by the partial combusion of diesel oil, paraffin, and wood was examined. An index of permeability was determined from the rate of transfer from the lung into the blood of the hydrophilic, labelled chelate 99mTc diethylene triamine penta-acetate (MW 492 dalton). The results of this test were expressed as the half time clearance of the tracer from the lung into the blood (T1/2 LB). The study was carried out at the Royal Naval Firefighting School, HMS Excellent. Permeability index was measured on seven non-smoking naval firefighting instructors who had worked at the school for periods of longer than two and a half months. Tests of airway function and carbon monoxide transfer factor were performed on four of these seven instructors. The results of the permeability index showed a T1/2 LB of 26 min +/- 5 (SEM) which differed significantly from that of normal non-smokers. By contrast all other lung function tests had values within the predicted normal range. PMID:3899161

  1. Changes in permeability of the alveolar-capillary barrier in firefighters.

    PubMed Central

    Minty, B D; Royston, D; Jones, J G; Smith, D J; Searing, C S; Beeley, M

    1985-01-01

    The effect on alveolar-capillary barrier permeability of chronic exposure to a smoke produced by the partial combusion of diesel oil, paraffin, and wood was examined. An index of permeability was determined from the rate of transfer from the lung into the blood of the hydrophilic, labelled chelate 99mTc diethylene triamine penta-acetate (MW 492 dalton). The results of this test were expressed as the half time clearance of the tracer from the lung into the blood (T1/2 LB). The study was carried out at the Royal Naval Firefighting School, HMS Excellent. Permeability index was measured on seven non-smoking naval firefighting instructors who had worked at the school for periods of longer than two and a half months. Tests of airway function and carbon monoxide transfer factor were performed on four of these seven instructors. The results of the permeability index showed a T1/2 LB of 26 min +/- 5 (SEM) which differed significantly from that of normal non-smokers. By contrast all other lung function tests had values within the predicted normal range. PMID:3899161

  2. Real-time estimation of paracellular permeability of cerebral endothelial cells by capacitance sensor array

    NASA Astrophysics Data System (ADS)

    Hyun Jo, Dong; Lee, Rimi; Hyoung Kim, Jin; Oh Jun, Hyoung; Geol Lee, Tae; Hun Kim, Jeong

    2015-06-01

    Vascular integrity is important in maintaining homeostasis of brain microenvironments. In various brain diseases including Alzheimer’s disease, stroke, and multiple sclerosis, increased paracellular permeability due to breakdown of blood-brain barrier is linked with initiation and progression of pathological conditions. We developed a capacitance sensor array to monitor dielectric responses of cerebral endothelial cell monolayer, which could be utilized to evaluate the integrity of brain microvasculature. Our system measured real-time capacitance values which demonstrated frequency- and time-dependent variations. With the measurement of capacitance at the frequency of 100 Hz, we could differentiate the effects of vascular endothelial growth factor (VEGF), a representative permeability-inducing factor, on endothelial cells and quantitatively analyse the normalized values. Interestingly, we showed differential capacitance values according to the status of endothelial cell monolayer, confluent or sparse, evidencing that the integrity of monolayer was associated with capacitance values. Another notable feature was that we could evaluate the expression of molecules in samples in our system with the reference of real-time capacitance values. We suggest that this dielectric spectroscopy system could be successfully implanted as a novel in vitro assay in the investigation of the roles of paracellular permeability in various brain diseases.

  3. Characterization of tumor microvascular structure and permeability: comparison between magnetic resonance imaging and intravital confocal imaging.

    PubMed

    Reitan, Nina Kristine; Thuen, Marte; Goa, Pål Erik; de Lange Davies, Catharina

    2010-01-01

    Solid tumors are characterized by abnormal blood vessel organization, structure, and function. These abnormalities give rise to enhanced vascular permeability and may predict therapeutic responses. The permeability and architecture of the microvasculature in human osteosarcoma tumors growing in dorsal window chambers in athymic mice were measured by confocal laser scanning microscopy (CLSM) and dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). Dextran (40 kDa) and Gadomer were used as molecular tracers for CLSM and DCE-MRI, respectively. A significant correlation was found between permeability indicators. The extravasation rate K(i) as measured by CLSM correlated positively with DCE-MRI parameters, such as the volume transfer constant K(trans) and the initial slope of the contrast agent concentration-time curve. This demonstrates that these two techniques give complementary information. Extravasation was further related to microvascular structure and was found to correlate with the fractal dimension and vascular density. The structural parameter values that were obtained from CLSM images were higher for abnormal tumor vasculature than for normal vessels. PMID:20615006

  4. Optical investigation of effective permeability of dilute magnetic dielectrics with magnetic field

    NASA Astrophysics Data System (ADS)

    Banerjee, Ananya; Sarkar, A.

    2016-05-01

    The prime objective of this paper is to investigate the magnetic nature of dilute magnetic dielectrics (DMD) under variation of external magnetic field. The said variation is studied over developed nano-sized Gadolinium Oxide as a DMD system. The observed experimental field variation of the effective magnetic permeability is analyzed results of optical experiment. The experiment records the variation of Brewster angle of incident polarized LASER beam from the surface of developed DMD specimen with applied out of plane external magnetic field. The effective refractive index and hence relative magnetic permeability were estimated following electro-magnetic theory. The overall results obtained and agreement between theory and experiment are good.

  5. Using magnetic permeability bits to store information

    NASA Astrophysics Data System (ADS)

    Timmerwilke, John; Petrie, J. R.; Wieland, K. A.; Mencia, Raymond; Liou, Sy-Hwang; Cress, C. D.; Newburgh, G. A.; Edelstein, A. S.

    2015-10-01

    Steps are described in the development of a new magnetic memory technology, based on states with different magnetic permeability, with the capability to reliably store large amounts of information in a high-density form for decades. The advantages of using the permeability to store information include an insensitivity to accidental exposure to magnetic fields or temperature changes, both of which are known to corrupt memory approaches that rely on remanent magnetization. The high permeability media investigated consists of either films of Metglas 2826 MB (Fe40Ni38Mo4B18) or bilayers of permalloy (Ni78Fe22)/Cu. Regions of films of the high permeability media were converted thermally to low permeability regions by laser or ohmic heating. The permeability of the bits was read by detecting changes of an external 32 Oe probe field using a magnetic tunnel junction 10 μm away from the media. Metglas bits were written with 100 μs laser pulses and arrays of 300 nm diameter bits were read. The high and low permeability bits written using bilayers of permalloy/Cu are not affected by 10 Mrad(Si) of gamma radiation from a 60Co source. An economical route for writing and reading bits as small at 20 nm using a variation of heat assisted magnetic recording is discussed.

  6. Fluid permeability of deformable fracture networks

    SciTech Connect

    Brown, S.R.; Bruhn, R.L.

    1997-04-01

    The authors consider the problem of defining the fracture permeability tensor for each grid lock in a rock mass from maps of natural fractures. For this purpose they implement a statistical model of cracked rock due to M. Oda [1985], where the permeability tensor is related to the crack geometry via a volume average of the contribution from each crack in the population. In this model tectonic stress is implicitly coupled to fluid flow through an assumed relationship between crack aperture and normal stress across the crack. The authors have included the following enhancements to the basic model: (1) a realistic model of crack closure under stress has been added along with the provision to apply tectonic stresses to the fracture system in any orientation, the application of stress results in fracture closure and consequently a reduction in permeability; (2) the fracture permeability can be superimposed onto an arbitrary anisotropic matrix permeability; (3) the fracture surfaces are allowed to slide under the application of shear stress, causing fractures to dilate and result in a permeability increase. Through an example, the authors demonstrate that significant changes in permeability magnitudes and orientations are possible when tectonic stress is applied to a fracture system.

  7. Changes in Permeability Produced By Distant Earthquakes

    NASA Astrophysics Data System (ADS)

    Manga, M.; Wang, C. Y.; Shi, Z.

    2014-12-01

    Oscillations in stress, such as those created by earthquakes, can increase permeability and fluid mobility in geologic media. In natural systems, strain amplitudes as small as 10-6 can increase discharge in streams and springs, change the water level of wells, and enhance production from petroleum reservoirs. Enhanced permeability typically recovers to pre-stimulated values over a period of months to years. This presentation will review some of the observations that indicate that dynamic stresses produced by seismic waves change permeability. We use the response of a set of wells distributed throughout China to multiple large earthquakes to probe the relationship between earthquake-generated stresses and water-level changes in wells. We find that dynamic stresses dominate the responses at distances more than 1 fault length from the earthquake and that permeability changes may explain the water level changes. Regions with high deformation rates are most sensitive to seismic waves. We also consider the response of a large alluvial fan in Taiwan to the 1999 M7.5 Chi-Chi earthquake where there were sustained changes in groundwater temperature after the earthquake. Using groundwater flow models, we infer that permeability increased by an order of magnitude over horizontal scales of tens of km, and vertical scales of several km. Permeability returned to the pre-earthquake value over many months. As much as half the total transport in the fan occurs during the short time periods with enhanced permeability.

  8. Permeability Barrier Generation in the Martian Lithosphere

    NASA Astrophysics Data System (ADS)

    Schools, Joe; Montési, Laurent

    2015-11-01

    Permeability barriers develop when a magma produced in the interior of a planet rises into the cooler lithosphere and crystallizes more rapidly than the lithosphere can deform (Sparks and Parmentier, 1991). Crystallization products may then clog the porous network in which melt is propagating, reducing the permeability to almost zero, i.e., forming a permeability barrier. Subsequent melts cannot cross the barrier. Permeability barriers have been useful to explain variations in crustal thickness at mid-ocean ridges on Earth (Magde et al., 1997; Hebert and Montési, 2011; Montési et al., 2011). We explore here under what conditions permeability barriers may form on Mars.We use the MELTS thermodynamic calculator (Ghiorso and Sack, 1995; Ghiorso et al., 2002; Asimow et al., 2004) in conjunction with estimated Martian mantle compositions (Morgan and Anders, 1979; Wänke and Dreibus, 1994; Lodders and Fegley, 1997; Sanloup et al., 1999; Taylor 2013) to model the formation of permeability barriers in the lithosphere of Mars. In order to represent potential past and present conditions of Mars, we vary the lithospheric thickness, mantle potential temperature (heat flux), oxygen fugacity, and water content.Our results show that permeability layers can develop in the thermal boundary layer of the simulated Martian lithosphere if the mantle potential temperature is higher than ~1500°C. The various Martian mantle compositions yield barriers in the same locations, under matching variable conditions. There is no significant difference in barrier location over the range of accepted Martian oxygen fugacity values. Water content is the most significant influence on barrier development as it reduces the temperature of crystallization, allowing melt to rise further into the lithosphere. Our lower temperature and thicker lithosphere model runs, which are likely the most similar to modern Mars, show no permeability barrier generation. Losing the possibility of having a permeability barrier likely changed the character of volcanism on Mars, maybe preventing the formation of new localized volcanic edifices in the Amazonian.

  9. Gas Permeable Chemochromic Compositions for Hydrogen Sensing

    NASA Technical Reports Server (NTRS)

    Bokerman, Gary (Inventor); Mohajeri, Nahid (Inventor); Muradov, Nazim (Inventor); Tabatabaie-Raissi, Ali (Inventor)

    2013-01-01

    A (H2) sensor composition includes a gas permeable matrix material intermixed and encapsulating at least one chemochromic pigment. The chemochromic pigment produces a detectable change in color of the overall sensor composition in the presence of H2 gas. The matrix material provides high H2 permeability, which permits fast permeation of H2 gas. In one embodiment, the chemochromic pigment comprises PdO/TiO2. The sensor can be embodied as a two layer structure with the gas permeable matrix material intermixed with the chemochromic pigment in one layer and a second layer which provides a support or overcoat layer.

  10. Assessment of Cardiovascular Disease Using Permeability Rates: Quantification by Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Ghosn, Mohamad G.; Mashiatulla, Maleeha; Morrisett, Joel D.; Larin, Kirill V.

    In order to prevent major damage to the cardiovascular system, it is of vital importance to monitor molecular changes in vascular tissues. Symptoms of cardiovascular diseases frequently do not manifest themselves until it is too late for effective treatment; therefore, methodologies that facilitate early detection are crucial. Atherosclerosis is a major underlying cause of many cardiovascular diseases; thus, elucidating the mechanisms of atherosclerosis is essential for shedding light on the initiation and progression of atherosclerotic lesions. Atherosclerosis includes an inflammatory process in arterial tissue that involves subintimal accumulation of lipoproteins particles, mainly low-density lipoprotein and lipoprotein[a]. Measurement of the permeation rates of these particles should extend our understanding of this disease and lead to methods for early disease detection. Over the past decade, optical coherence tomography (OCT) has become widely used in research and, more recently, has been used as a high-resolution imaging technique, capable of quantifying molecular permeability in biological tissues. OCT enables highly sensitive and accurate measurement of permeability rates of molecules and particles in vascular tissue. This sensitivity is due to high in-depth and transverse resolution along with a high dynamic range. In this chapter, we discuss the permeation of molecules and particles through human and animal vascular tissue.

  11. Numerical study of a quasi-zero-index photonic metamaterial

    NASA Astrophysics Data System (ADS)

    Jia, Xiuli; Meng, Qingxin; Wang, Xiaoou; Zhou, Zhongxiang

    2016-04-01

    Nanostructures made of metallic cube are arranged in Kagome lattice. Transmitted and reflected electromagnetic fields of normally incident circular polarized plane waves are computed using a tri-dimensional (3D) finite-difference time domain (FDTD) algorithm. Equivalent refractive index, equivalent permittivity, equivalent permeability and normalized impedance are calculated using the modified S-parameter retrieval method. Around the 7.912×1014 Hz and 9.376×1014 Hz, the structure performance for quasi-zero-index frequency bands.

  12. FRACTAL VASCULAR GROWTH PATTERNS

    PubMed Central

    Bassingthwaighte, James B.

    2010-01-01

    Flow distributions in the heart and lung are heterogeneous but not at all random. The apparent degree of heterogeneity increases as one reduces the size of observable elements; the fact that the dispersion of flows shows a logarithmic relation to element size says that the system is statistically fractal. The fractal characterization is a statement that the system is nonrandom and that it shows correlation. The close near neighbor correlation has as the corollary of long tailing or falloff in correlation with distance, so called spatial persistence. Correlation can be expected because flow is delivered via a branching vascular system, and so it appears that the structure of the vasculature itself contributes. Since it is also practical and efficient for growth to occur via recursive rules, such as branch, grow, and repeat the branching and growing, it appears that fractals may be useful in understanding the ontological aspects of growth of tissues and organs, thereby minimizing the requirements for genetic material. PMID:25237211

  13. Isolated Vascular Vertigo

    PubMed Central

    2014-01-01

    Strokes in the distribution of the posterior circulation may present with vertigo, imbalance, and nystagmus. Although the vertigo due to a posterior circulation stroke is usually associated with other neurologic symptoms or signs, small infarcts involving the cerebellum or brainstem can develop vertigo without other localizing symptoms. Approximately 11% of the patients with an isolated cerebellar infarction present with isolated vertigo, nystagmus, and postural unsteadiness mimicking acute peripheral vestibular disorders. The head impulse test can differentiate acute isolated vertigo associated with cerebellar strokes (particularly within the territory of the posterior inferior cerebellar artery) from more benign disorders involving the inner ear. Acute audiovestibular loss may herald impending infarction in the territory of anterior inferior cerebellar artery. Appropriate bedside evaluation is superior to MRIs for detecting central vascular vertigo syndromes. This article reviews the keys to diagnosis of acute isolated vertigo syndrome due to posterior circulation strokes involving the brainstem and cerebellum. PMID:25328871

  14. [Peripheral vascular injuries].

    PubMed

    Cihan, H B; Gülcan, O; Hazar, A; Türköz, R

    2001-04-01

    Between 1994-2000, 60 peripheral vascular injuries were admitted to the Turgut Ozal Medical Center Thoracic and Cardiovascular Surgery Clinic. Forty eight (80%) of patients were male, twelve (20%) were female and their age ranged from 5 to 70 years (mean 28.9 years). The causes of injuries were related to penetrating device in 34 (56.6%), gun shots in 14 (23.3%), blunt trauma in seven (11.6%) and iatrogenic causes in five(8.3%). Total laceration, partial laceration and pseudoaneurysm were observed in 45 (75%), 14 (23.3%) and one (1.6%) respectively. The localization of injuries were the upper limbs in 34(56.6%) and the lower limbs in 26 (43.4%). The vascular injury localizations in order of frequency were femoral artery in 12 cases (20.75%), radial artery in ten cases (17%), popliteal artery in ten cases (15%), brachial artery in nine cases (15%), axillary artery in nine cases (13.2%), ulnar artery in six cases (11.3%) and tibial artery in four cases(7.4%). There were nearby venous injuries in nine patients (15%) and neural injuries in ten patients (16.6%). The patients' mean admission time to the hospital was 3 hours and 30 minutes and mean operation time for revascularization was within 95 minutes. The operative techniques were autogenous saphenous vein graft interposition in 27 cases (45%), resection and end-to-end anastomosis in 19 cases (31.6%), lateral repair in ten cases (16.6%), synthetic graft insertion in three cases (4.8%) and ligation in one case (1.6%). Our success rate was 98.2% in salvaging the limbs. Mean length of hospital stay was 14.4 days. Mortality was not observed during the hospital stay. PMID:11705034

  15. RhoA and ROCK mediate histamine-induced vascular leakage and anaphylactic shock

    PubMed Central

    Mikelis, Constantinos M.; Simaan, May; Ando, Koji; Fukuhara, Shigetomo; Sakurai, Atsuko; Amornphimoltham, Panomwat; Masedunskas, Andrius; Weigert, Roberto; Chavakis, Triantafyllos; Adams, Ralf; Offermanns, Stefan; Mochizuki, Naoki; Zheng, Yi; Gutkind, J. Silvio

    2015-01-01

    Histamine-induced vascular leakage is an integral component of many highly prevalent human diseases, including allergies, asthma, and anaphylaxis. Yet, how histamine induces the disruption of the endothelial barrier is not well defined. By using genetically modified animal models, pharmacologic inhibitors, and a synthetic biology approach, here we show that the small GTPase RhoA mediates histamine-induced vascular leakage. Histamine causes the rapid formation of focal adherens junctions, disrupting the endothelial barrier by acting on H1R Gαq-coupled receptors, which is blunted in endothelial Gαq/11 KO mice. Interfering with RhoA and ROCK function abolishes endothelial permeability, while phospholipase Cβ plays a limited role. Moreover, endothelial-specific RhoA gene deletion prevents vascular leakage and passive cutaneous anaphylaxis in vivo, and ROCK inhibitors protect from lethal systemic anaphylaxis. This study supports a key role for the RhoA signaling circuitry in vascular permeability, thereby identifying novel pharmacological targets for many human diseases characterized by aberrant vascular leakage. PMID:25857352

  16. Caffeine's Vascular Mechanisms of Action

    PubMed Central

    Echeverri, Darío; Montes, Félix R.; Cabrera, Mariana; Galán, Angélica; Prieto, Angélica

    2010-01-01

    Caffeine is the most widely consumed stimulating substance in the world. It is found in coffee, tea, soft drinks, chocolate, and many medications. Caffeine is a xanthine with various effects and mechanisms of action in vascular tissue. In endothelial cells, it increases intracellular calcium stimulating the production of nitric oxide through the expression of the endothelial nitric oxide synthase enzyme. Nitric oxide is diffused to the vascular smooth muscle cell to produce vasodilation. In vascular smooth muscle cells its effect is predominantly a competitive inhibition of phosphodiesterase, producing an accumulation of cAMP and vasodilation. In addition, it blocks the adenosine receptors present in the vascular tissue to produce vasoconstriction. In this paper the main mechanisms of action of caffeine on the vascular tissue are described, in which it is shown that caffeine has some cardiovascular properties and effects which could be considered beneficial. PMID:21188209

  17. Permeability of gypsum samples dehydrated in air

    NASA Astrophysics Data System (ADS)

    Milsch, Harald; Priegnitz, Mike; Blöcher, Guido

    2011-09-01

    We report on changes in rock permeability induced by devolatilization reactions using gypsum as a reference analog material. Cylindrical samples of natural alabaster were dehydrated in air (dry) for up to 800 h at ambient pressure and temperatures between 378 and 423 K. Subsequently, the reaction kinetics, so induced changes in porosity, and the concurrent evolution of sample permeability were constrained. Weighing the heated samples in predefined time intervals yielded the reaction progress where the stoichiometric mass balance indicated an ultimate and complete dehydration to anhydrite regardless of temperature. Porosity showed to continuously increase with reaction progress from approximately 2% to 30%, whilst the initial bulk volume remained unchanged. Within these limits permeability significantly increased with porosity by almost three orders of magnitude from approximately 7 × 10-19 m2 to 3 × 10-16 m2. We show that - when mechanical and hydraulic feedbacks can be excluded - permeability, reaction progress, and porosity are related unequivocally.

  18. NASA In-step: Permeable Membrane Experiment

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Viewgraphs on the Permeable Membrane Experiment are presented. An experiment overview is given. The Membrane Phase Separation Experiment, Membrane Diffusion Interference Experiment, and Membrane Wetting Experiment are described. Finally, summary and conclusions are discussed.

  19. Flexible Sandwich Diaphragms Are Less Permeable

    NASA Technical Reports Server (NTRS)

    Michalovic, John G.; Vassallo, Franklin A.

    1993-01-01

    Diaphragms for use in refrigerator compressors made as laminates of commercially available elastomers and metals. Diaphragms flexible, but less permeable by chlorofluorocarbon refrigerant fluids than diaphragms made of homogeneous mixtures of materials.

  20. Complex permeability measurements of microwave ferrites

    SciTech Connect

    Geyer, R.G.; Krupka, J.

    1996-12-31

    A rigorous and accurate method for the experimental determination of the complex permeability of demagnetized ferrites at microwave frequencies is presented. The measurement uses low-loss dielectric ring resonators, is nondestructive, and allows complex permeability characterization of a single ferrite sample to be performed at frequencies from 2 GHz to 25 GHz. A wide variety of ceramic microwave ferrites having various compositions and differing saturation magnetizations were measured in the demagnetized state. Generally, at any frequency greater than gyromagnetic resonance, the real part of the complex permeability increases as saturation magnetization increases. For the same frequency magnetic losses increases as saturation magnetization increases. The real permeability results are compared with magnetostatic theoretical predictions. Measurement data show excellent agreement with theoretical predictions, but only when 2{pi}{gamma}M{sub s}/{omega} < 0.75, where {gamma} is the gyromagnetic ratio, M{sub s} is saturation magnetization, and {omega} is the radian rf frequency.

  1. PERMEABILITY OF POLYMERIC MEMBRANE LINING MATERIALS

    EPA Science Inventory

    Permeabilities to three gases (carbon dioxide, methane, and nitrogen), water vapor, and five solvents (methanol, acetone, cyclohexane, xylene, and chloroform) are reported for a broad range of commercial polymeric membranes. Gas and water vapor transmission (WVT) data were determ...

  2. Calcium permeability of ligand-gated channels.

    PubMed

    Burnashev, N

    1998-01-01

    Ligand-gated channels activated by excitatory neurotransmitters: glutamate, acetylcholine, ATP or serotonin are cation channels permeable to Ca2+. Molecular cloning revealed a large variety of the ligand-gated channel subunits differentially expressed in mammalian brain. Many of them have different Ca2+ permeability providing immense diversity in Ca2+ entry mediated by ligand-gated channels during synaptic transmission. Functional analysis of cloned channels allowed to identify structural elements in the pore forming regions determining Ca2+ permeability for many types of ligand-gated channels. The functional role of the Ca2+ entry mediated by various ligand-gated channels in mammalian central nervous system is less understood. The studies reviewed in this article provide information about known structural determinants of Ca2+ permeability of the ligand-gated channels and the role of this particular pathway of Ca2+ entry in cell function. PMID:10091002

  3. The Edison Environmental Center Permeable Pavement Site

    EPA Science Inventory

    This a presentation for a Community Outreach Event called "Chemistry Works and Celebration of International Year of Chemistry." It will review the permeable pavement research project at the Edison Environmental center.

  4. Permeability After Impact Testing of Composite Laminates

    NASA Technical Reports Server (NTRS)

    Nettles, A.T.; Munafo, Paul (Technical Monitor)

    2002-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a non-linear fashion for almost all of the specimens tested.

  5. Permeability After Impact Testing of Composite Laminates

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    2003-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a non-linear fashion for almost all of the specimens tested.

  6. Permeability of rayon based polymer composites

    NASA Technical Reports Server (NTRS)

    Stokes, E. H.

    1992-01-01

    Several types of anomalous rayon based phenolic behavior have been observed in post-fired nozzles and exit cones. Many of these events have been shown to be related to the development of internal gas pressure within the material. The development of internal gas pressure is a function of the amount of gas produced within the material and the rate at which that gas is allowed to escape. The latter property of the material is referred to as the material's permeability. The permeability of two dimensional carbonized rayon based phenolic composites is a function of material direction, temperature, and stress/strain state. Recently significant differences in the permeability of these materials has been uncovered which may explain their inconsistent performance. This paper summarizes what is known about the permeability of these materials to date and gives possible implications of these finding to the performance of these materials in an ablative environment.

  7. Lunar electrical conductivity and magnetic permeability

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1975-01-01

    Improved analytical techniques are applied to a large Apollo magnetometer data set to yield values of electroconductivity, temperature, magnetic permeability, and iron abundance. Average bulk electroconductivity of the moon is calculated to be .0007 mho/m; a rapid increase with depth to about .003 mho/m within 250 km is indicated. The temperature profile, obtained from the electroconductivity profile for olivine, indicates high lunar temperatures at relatively shallow depths. Magnetic permeability of the moon relative to its environment is calculated to be 1.008 plus or minus .005; a permeability relative to free space of 1.012 plus 0.011, minus 0.008 is obtained. Lunar iron abundances corresponding to this permeability value are 2.5 plus 2.3, minus 1.7 wt% free iron and 5.0-13.5 wt% total iron for a moon composed of a combination of free iron, olivine, and orthopyroxene.

  8. Specific surface area model for foam permeability.

    PubMed

    Pitois, O; Lorenceau, E; Louvet, N; Rouyer, F

    2009-01-01

    Liquid foams were recognized early to be porous materials, as liquid flowed between the gas bubbles. Drainage theories have been established, and foam permeability has been modeled from the microscopic description of the equivalent pores geometry, emphasizing similarities with their solid counterparts. But to what extent can the theoretical work devoted to the permeability of solid porous materials be useful to liquid foams? In this article, the applicability of the Carman-Kozeny model on foam is investigated. We performed measurements of the permeability of foams with nonmobile surfactants, and we show that, in introducing an equivalent specific surface area for the foam, the model accurately describes the experimental data over two orders of magnitude for the foam liquid fraction, without any additional parameters. Finally, it is shown that this model includes the previous permeability models derived for foams in the dry foams limit. PMID:19032030

  9. Permeable Reactive Zones for Groundwater Remediation

    EPA Science Inventory

    The presentation will cover aspects of the application of permeable reactive zones to treat contaminated ground water. Specific field studies will be discussed covering both granular iron-based and organic carbon-based reactive barriers. Specific contaminants addressed include:...

  10. Abnormal intestinal permeability in Crohn's disease pathogenesis.

    PubMed

    Teshima, Christopher W; Dieleman, Levinus A; Meddings, Jon B

    2012-07-01

    Increased small intestinal permeability is a longstanding observation in both Crohn's disease patients and in their healthy, asymptomatic first-degree relatives. However, the significance of this compromised gut barrier function and its place in the pathogenesis of the disease remains poorly understood. The association between abnormal small intestinal permeability and a specific mutation in the NOD2 gene, which functions to modulate both innate and adaptive immune responses to intestinal bacteria, suggests a common, genetically determined pathway by which an abnormal gut barrier could result in chronic intestinal inflammation. Furthermore, rodent colitis models show that gut barrier defects precede the development of inflammatory changes. However, it remains possible that abnormal permeability is simply a consequence of mucosal inflammation. Further insight into whether abnormal barrier function is the cause or consequence of chronic intestinal inflammation will be crucial to understanding the role of intestinal permeability in the pathogenesis of Crohn's disease. PMID:22731729

  11. Serum Superoxide Dismutase Is Associated with Vascular Structure and Function in Hypertensive and Diabetic Patients

    PubMed Central

    Gómez-Marcos, Manuel A.; Blázquez-Medela, Ana M.; Gamella-Pozuelo, Luis; Recio-Rodriguez, José I.; García-Ortiz, Luis; Martínez-Salgado, Carlos

    2016-01-01

    Oxidative stress is associated with cardiac and vascular defects leading to hypertension and atherosclerosis, being superoxide dismutase (SOD) one of the main intracellular antioxidant defence mechanisms. Although several parameters of vascular function and structure have a predictive value for cardiovascular morbidity-mortality in hypertensive patients, there are no studies on the involvement of SOD serum levels with these vascular parameters. Thus, we assessed if SOD serum levels are correlated with parameters of vascular function and structure and with cardiovascular risk in hypertensive and type 2 diabetic patients. We enrolled 255 consecutive hypertensive and diabetic patients and 52 nondiabetic and nonhypertensive controls. SOD levels were measured with an enzyme-linked immunosorbent assay kit. Vascular function and structure were evaluated by pulse wave velocity, augmentation index, ambulatory arterial stiffness index, and carotid intima-media thickness. We detected negative correlations between SOD and pressure wave velocity, peripheral and central augmentation index and ambulatory arterial stiffness index, pulse pressure, and plasma HDL-cholesterol, as well as positive correlations between SOD and plasma uric acid and triglycerides. Our study shows that SOD is a marker of cardiovascular alterations in hypertensive and diabetic patients, since changes in its serum levels are correlated with alterations in vascular structure and function. PMID:26635913

  12. Moss and vascular plant indices in Ohio wetlands have similar environmental predictors

    USGS Publications Warehouse

    Stapanian, Martin A.; Schumacher, William; Gara, Brian; Adams, Jean V.; Viau, Nick

    2016-01-01

    Mosses and vascular plants have been shown to be reliable indicators of wetland habitat delineation and environmental quality. Knowledge of the best ecological predictors of the quality of wetland moss and vascular plant communities may determine if similar management practices would simultaneously enhance both populations. We used Akaike's Information Criterion to identify models predicting a moss quality assessment index (MQAI) and a vascular plant index of biological integrity based on floristic quality (VIBI-FQ) from 27 emergent and 13 forested wetlands in Ohio, USA. The set of predictors included the six metrics from a wetlands disturbance index (ORAM) and two landscape development intensity indices (LDIs). The best single predictor of MQAI and one of the predictors of VIBI-FQ was an ORAM metric that assesses habitat alteration and disturbance within the wetland, such as mowing, grazing, and agricultural practices. However, the best single predictor of VIBI-FQ was an ORAM metric that assessed wetland vascular plant communities, interspersion, and microtopography. LDIs better predicted MQAI than VIBI-FQ, suggesting that mosses may either respond more rapidly to, or recover more slowly from, anthropogenic disturbance in the surrounding landscape than vascular plants. These results supported previous predictive studies on amphibian indices and metrics and a separate vegetation index, indicating that similar wetland management practices may result in qualitatively the same ecological response for three vastly different wetland biological communities (amphibians, vascular plants, and mosses).

  13. Serum Superoxide Dismutase Is Associated with Vascular Structure and Function in Hypertensive and Diabetic Patients.

    PubMed

    Gómez-Marcos, Manuel A; Blázquez-Medela, Ana M; Gamella-Pozuelo, Luis; Recio-Rodriguez, José I; García-Ortiz, Luis; Martínez-Salgado, Carlos

    2016-01-01

    Oxidative stress is associated with cardiac and vascular defects leading to hypertension and atherosclerosis, being superoxide dismutase (SOD) one of the main intracellular antioxidant defence mechanisms. Although several parameters of vascular function and structure have a predictive value for cardiovascular morbidity-mortality in hypertensive patients, there are no studies on the involvement of SOD serum levels with these vascular parameters. Thus, we assessed if SOD serum levels are correlated with parameters of vascular function and structure and with cardiovascular risk in hypertensive and type 2 diabetic patients. We enrolled 255 consecutive hypertensive and diabetic patients and 52 nondiabetic and nonhypertensive controls. SOD levels were measured with an enzyme-linked immunosorbent assay kit. Vascular function and structure were evaluated by pulse wave velocity, augmentation index, ambulatory arterial stiffness index, and carotid intima-media thickness. We detected negative correlations between SOD and pressure wave velocity, peripheral and central augmentation index and ambulatory arterial stiffness index, pulse pressure, and plasma HDL-cholesterol, as well as positive correlations between SOD and plasma uric acid and triglycerides. Our study shows that SOD is a marker of cardiovascular alterations in hypertensive and diabetic patients, since changes in its serum levels are correlated with alterations in vascular structure and function. PMID:26635913

  14. Quantifying glomerular permeability of fluorescent macromolecules using 2-photon microscopy in Munich Wistar rats.

    PubMed

    Sandoval, Ruben M; Molitoris, Bruce A

    2013-01-01

    Kidney diseases involving urinary loss of large essential macromolecules, such as serum albumin, have long been thought to be caused by alterations in the permeability barrier comprised of podocytes, vascular endothelial cells, and a basement membrane working in unison. Data from our laboratory using intravital 2-photon microscopy revealed a more permeable glomerular filtration barrier (GFB) than previously thought under physiologic conditions, with retrieval of filtered albumin occurring in an early subset of cells called proximal tubule cells (PTC)(1,2,3). Previous techniques used to study renal filtration and establishing the characteristic of the filtration barrier involved micropuncture of the lumen of these early tubular segments with sampling of the fluid content and analysis(4). These studies determined albumin concentration in the luminal fluid to be virtually non-existent; corresponding closely to what is normally detected in the urine. However, characterization of dextran polymers with defined sizes by this technique revealed those of a size similar to serum albumin had higher levels in the tubular lumen and urine; suggesting increased permeability(5). Herein is a detailed outline of the technique used to directly visualize and quantify glomerular fluorescent albumin permeability in vivo. This method allows for detection of filtered albumin across the filtration barrier into Bowman's space (the initial chamber of urinary filtration); and also allows quantification of albumin reabsorption by proximal tubules and visualization of subsequent albumin transcytosis(6). The absence of fluorescent albumin along later tubular segments en route to the bladder highlights the efficiency of the retrieval pathway in the earlier proximal tubule segments. Moreover, when this technique was applied to determine permeability of dextrans having a similar size to albumin virtually identical permeability values were reported(2). These observations directly support the need to expand the focus of many proteinuric renal diseases to included alterations in proximal tubule cell reclamation. PMID:23628966

  15. Renal and Vascular Mechanisms of Thiazolidinedione-Induced Fluid Retention

    PubMed Central

    Yang, Tianxin; Soodvilai, Sunhapas

    2008-01-01

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor subtype γ (PPARγ) activators that are clinically used as an insulin sensitizer for glycemic control in patients with type 2 diabetes. Additionally, TZDs exhibit novel anti-inflammatory, antioxidant, and antiproliferative properties, indicating therapeutic potential for a wide variety of diseases associated with diabetes and other conditions. The clinical applications of TZDs are limited by the common major side effect of fluid retention. A better understanding of the molecular mechanism of TZD-induced fluid retention is essential for the development of novel therapies with improved safety profiles. An important breakthrough in the field is the finding that the renal collecting duct is a major site for increased fluid reabsorption in response to rosiglitazone or pioglitazone. New evidence also indicates that increased vascular permeability in adipose tissues may contribute to edema formation and body weight gain. Future research should therefore be directed at achieving a better understanding of the detailed mechanisms of TZD-induced increases in renal sodium transport and in vascular permeability. PMID:18784848

  16. Defining vascular nursing: a survey of vascular nurses.

    PubMed

    Nunnelee, J D; McSweeney, M

    1995-09-01

    For the purpose of defining the specialty of vascular nursing, a survey was sent to the nursing membership of the Society for Vascular Nursing. Nurses in all geographic locations were included, and the survey was accompanied by a self-addressed, stamped return envelope. A total of 873 nurses were surveyed. Respondents were encouraged to give the survey to other vascular nurses who were not members of the Society for Vascular Nursing. The initial mailing resulted in 276 responses. A second mailing provided an additional 224 responses for a total response of 500. Fifty-six of the 500 respondents (11.2%) were nonmembers. Response rate of members was 50.9% (444 of 873). Demographic information was obtained regarding age, years in nursing and vascular nursing, sex, employment type, and location. In addition to demographic information, the survey asked the respondent to identify a definition or definitions of vascular nursing. There was no restriction on space or content. In a small pilot study, "defining the specialty" was the only question asked. However, on the basis of responses to the pilot, the form was refined to request a description of the skills necessary to be a vascular nurse. A total of 73 definitions were identified on the basis of coded responses. The range in number of definitions given on any survey was 0 to 13. Essential skills listed by any one respondent ranged in number from 0 to 14. A total of 90 skills were identified. The purpose of this study is to identify the definitions of vascular nursing given by vascular nurses. In addition, the skills identified as necessary will be elaborated on.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7547447

  17. Fracture-permeability behavior of shale

    DOE PAGESBeta

    Carey, J. William; Lei, Zhou; Rougier, Esteban; Mori, Hiroko; Viswanathan, Hari

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore » the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less

  18. Fracture-permeability behavior of shale

    SciTech Connect

    Carey, J. William; Lei, Zhou; Rougier, Esteban; Mori, Hiroko; Viswanathan, Hari

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition to the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.

  19. Role of permeability in sulfate attack

    SciTech Connect

    Khatri, R.P.; Sirivivatnanon, V.; Yang, J.L.

    1997-08-01

    The role of permeability in sulfate attack was evaluated in this study. Resistance to sulfate attack was measured by determining the expansion caused in concrete specimens with exposure 5% Na{sub 2}SO{sub 4} solution. Concrete specimens were prepared from five binders, namely: ordinary Portland cement (OPC), high slag cement (HSC), sulfate-resistance cement (SRC), OPC with 7% silica fume (SF) and HSC with 7% SF. Concrete of grades 35 and 40 were used. The expansions of concrete samples were compared to their permeabilities to establish the role of permeability in controlling the expansion due to sulfate attack. It was found that the relative performance of concretes cannot be explained by either their permeability only or by only the chemical resistance of the binder. However, by combining the information on permeability and the chemical resistance of binder, the relative performance of concretes can be estimated. Thus, both permeability and the type of binder play an important role in sulfate attack.

  20. Fracture-permeability behavior of shale

    SciTech Connect

    Carey, J. William; Lei, Zhou; Rougier, Esteban; Mori, Hiroko; Viswanathan, Hari

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition to the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO? sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.

  1. Vascular factors and epigenetic modifications in the pathogenesis of Alzheimer's disease.

    PubMed

    Leszek, Jerzy; Sochocka, Marta; Gąsiorowski, Kazimierz

    2012-12-15

    Alzheimer's disease (AD) is a debilitating illness with no known cure. Nowadays accumulating evidence suggested that the vascular endothelium and chronic hypoperfusion may play important role in pathobiology of AD. The vascular endothelium which regulates the passage of macromolecules and circulating cells from blood to tissue, is a major target of oxidative stress, playing a critical role in the pathophysiology of vascular diseases. Since the vascular endothelium, neurons and glia are all able to synthesize, store and release reactive oxygen species (ROS) and vascular active substances in response to certain stimuli, their contribution to the pathophysiology of AD can be very important. New evidence indicates that continuous formation of free ROS induces cellular damage and decreases antioxidant defenses. Specifically, oxidative stress increases vascular endothelial permeability and promotes leukocyte adhesion. We summarize the reports that sporadic, late-onset of AD results from vascular etiology. Recently an involvement of epigenetic alterations in the etiology of AD is also intensively investigated. Gaining a more complete understanding of the essential components and underlying mechanisms involved in epigenetic regulation could lead to novel treatments for a number of neurological and psychiatric conditions. PMID:23026534

  2. C-type natriuretic peptide modulates permeability of the blood–brain barrier

    PubMed Central

    Bohara, Manoj; Kambe, Yuki; Nagayama, Tetsuya; Tokimura, Hiroshi; Arita, Kazunori; Miyata, Atsuro

    2014-01-01

    C-type natriuretic peptide (CNP) is abundant in brain and is reported to exert autocrine function in vascular cells, but its effect on blood–brain barrier (BBB) permeability has not been clarified yet. Here, we examined this effect. Transendothelial electrical resistance (TEER) of in vitro BBB model, composed of bovine brain microvascular endothelial cells and astrocytes, was significantly dose dependently decreased by CNP (1, 10, and 100 nmol/L). C-type natriuretic peptide treatment reduced both the messenger RNA (mRNA) and protein expressions of tight junction (TJ) protein zonula occludens-1 (ZO-1). The effects on TEER, mRNA, and protein expressions of ZO-1 were mimicked by cyclic GMP (cGMP) analog 8-bromo-cGMP (1 μmol/L) and reversed by protein kinase G (PKG) inhibitor Rp-8-CPT-cGMPS (100 μmol/L), thus implying the role of PKG and cGMP signaling in BBB function. Transcription factor JunD knockdown by small interfering RNA resulted in no change of permeability by CNP. In vivo study of mouse brain by fluorimetric analysis with intravenous administration of sodium fluorescein (40 mg/kg) also showed a significant increase in BBB permeability by CNP (10 nmol/kg, intravenously). These findings suggest that CNP modulates the BBB permeability by altering ZO-1 expression. PMID:24398935

  3. Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect

    PubMed Central

    Nehoff, Hayley; Parayath, Neha N; Domanovitch, Laura; Taurin, Sebastien; Greish, Khaled

    2014-01-01

    The growing research interest in nanomedicine for the treatment of cancer and inflammatory-related pathologies is yielding encouraging results. Unfortunately, enthusiasm is tempered by the limited specificity of the enhanced permeability and retention effect. Factors such as lack of cellular specificity, low vascular density, and early release of active agents prior to reaching their target contribute to the limitations of the enhanced permeability and retention effect. However, improved nanomedicine designs are creating opportunities to overcome these problems. In this review, we present examples of the advances made in this field and endeavor to highlight the potential of these emerging technologies to improve targeting of nanomedicine to specific pathological cells and tissues. PMID:24904213

  4. Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods.

    PubMed

    Li, Hui; Kayhanian, Masoud; Harvey, John T

    2013-03-30

    Fully permeable pavement is gradually gaining support as an alternative best management practice (BMP) for stormwater runoff management. As the use of these pavements increases, a definitive test method is needed to measure hydraulic performance and to evaluate clogging, both for performance studies and for assessment of permeability for construction quality assurance and maintenance needs assessment. Two of the most commonly used permeability measurement tests for porous asphalt and pervious concrete are the National Center for Asphalt Technology (NCAT) permeameter and ASTM C1701, respectively. This study was undertaken to compare measured values for both methods in the field on a variety of permeable pavements used in current practice. The field measurements were performed using six experimental section designs with different permeable pavement surface types including pervious concrete, porous asphalt and permeable interlocking concrete pavers. Multiple measurements were performed at five locations on each pavement test section. The results showed that: (i) silicone gel is a superior sealing material to prevent water leakage compared with conventional plumbing putty; (ii) both methods (NCAT and ASTM) can effectively be used to measure the permeability of all pavement types and the surface material type will not impact the measurement precision; (iii) the permeability values measured with the ASTM method were 50-90% (75% on average) lower than those measured with the NCAT method; (iv) the larger permeameter cylinder diameter used in the ASTM method improved the reliability and reduced the variability of the measured permeability. PMID:23434738

  5. The effects of heparin and related molecules on vascular permeability and neutrophil accumulation in rabbit skin.

    PubMed

    Jones, Helen; Paul, William; Page, Clive P

    2002-01-01

    Unfractionated heparin (UH) has been shown to possess a wide range of properties which are potentially anti-inflammatory. Many of these studies, including effects of heparin on adhesion of inflammatory cells to endothelium, have been carried out in vitro. In the present study, we have used radioisotopic techniques to study the effect of UH, and related molecules, on in vivo inflammatory responses (plasma exudation (PE) and PMN accumulation) in rabbit skin induced by cationic proteins, mediators and antigen. Intradermal (i.d.) pretreatment with UH dose-dependently inhibited poly-L-lysine (PLL)-induced responses. The same treatment had no effect on antigen (extract of Alternaria tenuis, AT)-, formyl-methionyl-leucyl-phenylalanine (fMLP)- or leukotriene (LT) B(4)-induced responses, although i.d. dextran sulphate (DS) significantly inhibited responses to all of these mediators. High dose (10,000 u kg(-1)) intravenous UH significantly decreased cutaneous responses to fMLP and LTB(4). By comparison, the selectin inhibitor, fucoidin, and DS, were very effective inhibitors of these responses, and of responses to AT and PLL. In contrast to the weak effect in the in vivo studies, UH significantly inhibited in vitro homotypic aggregation of rabbit PMNs, showing that it can modify PMN function. Our data with i.d. UH confirm the important ability of this molecule to interact with and neutralize polycationic peptides in vivo, suggesting that this is a prime role of endogenous heparin. The lack of effect of exogenous heparin on acute inflammatory responses induced by allergen, suggests that cationic proteins are unlikely to be primary mediators of the allergen-induced PE or PMN accumulation. PMID:11815383

  6. The effects of heparin and related molecules on vascular permeability and neutrophil accumulation in rabbit skin

    PubMed Central

    Jones, Helen; Paul, William; Page, Clive P

    2002-01-01

    Unfractionated heparin (UH) has been shown to possess a wide range of properties which are potentially anti-inflammatory. Many of these studies, including effects of heparin on adhesion of inflammatory cells to endothelium, have been carried out in vitro. In the present study, we have used radioisotopic techniques to study the effect of UH, and related molecules, on in vivo inflammatory responses (plasma exudation (PE) and PMN accumulation) in rabbit skin induced by cationic proteins, mediators and antigen. Intradermal (i.d.) pretreatment with UH dose-dependently inhibited poly-L-lysine (PLL)-induced responses. The same treatment had no effect on antigen (extract of Alternaria tenuis, AT)-, formyl-methionyl-leucyl-phenylalanine (fMLP)- or leukotriene (LT) B4-induced responses, although i.d. dextran sulphate (DS) significantly inhibited responses to all of these mediators. High dose (10,000 u kg−1) intravenous UH significantly decreased cutaneous responses to fMLP and LTB4. By comparison, the selectin inhibitor, fucoidin, and DS, were very effective inhibitors of these responses, and of responses to AT and PLL. In contrast to the weak effect in the in vivo studies, UH significantly inhibited in vitro homotypic aggregation of rabbit PMNs, showing that it can modify PMN function. Our data with i.d. UH confirm the important ability of this molecule to interact with and neutralize polycationic peptides in vivo, suggesting that this is a prime role of endogenous heparin. The lack of effect of exogenous heparin on acute inflammatory responses induced by allergen, suggests that cationic proteins are unlikely to be primary mediators of the allergen-induced PE or PMN accumulation. PMID:11815383

  7. Perfusion and vascular permeability: basic concepts and measurement in DCE-CT and DCE-MRI.

    PubMed

    Cuenod, C A; Balvay, D

    2013-12-01

    The microvascular network formed by the capillaries supplies the tissues and permits their function. It provides a considerable surface area for exchanges between blood and tissues. All pathological conditions cause changes in the microcirculation. These changes can be used as imaging biomarkers for the diagnosis of lesions and optimisation of treatment. Among the many imaging techniques developed to study the microcirculation, the analysis of the tissue kinetics of intravenously injected contrast agents is the most widely used, either as positive enhancement for CT, T1-weighted MRI and ultrasound - dynamic contrast-enhanced-imaging (DCE-imaging) - or negative enhancement in T2*-weighted brain MRI - dynamic susceptibility contrast-MRI (DSC-MRI) -. Acquisition involves an injection of contrast agent during the acquisition of a dynamic series of images on a zone of interest. These kinetics may be analyzed visually, to define qualitative criteria, or with software using mathematical modelling, to extract quantitative physiological parameters. The results depend on the acquisition conditions (type of imaging device, imaging mode, frequency and total duration of acquisition), the type of contrast agent, the data pre-processing (motion correction, conversion of the signal into concentration) and the data analysis method. Because of these multiple choices it is necessary to understand the physiological processes involved and understand the advantages and limits of each strategy. PMID:24211260

  8. General Surgery Resident Vascular Operative Experience in the Era of Endovascular Surgery and Vascular Fellowships.

    PubMed

    Yan, Huan; Maximus, Steven; Kim, Jerry J; Smith, Brian; Kim, Dennis; Koopmann, Matthew; DeVirgilio, Christian

    2015-10-01

    Advances in endovascular surgery have resulted in a decline in major open arterial reconstructions nationwide. Our objective is to investigate the effect of endovascular surgery on general surgery resident experience with open vascular surgery. Between 2004 and 2014, 112 residents graduated from two academic institutions in Southern California. Residents were separated into those who graduated in 2004 to 2008 (period 1) and in 2009 to 2014 (period 2). Case volumes of vascular procedures were compared using two-sample t test. A total of 43 residents were in period 1 and 59 residents were in period 2. In aggregate, there was no significant difference in open cases recorded between the two periods (84 vs 87, P = 0.194). Subgroup analysis showed period 2 recorded significantly fewer cases of open aneurysm repair (5 vs 3, P < 0.001), cerebrovascular (14 vs 10, P = 0.007), and peripheral obstructive procedures (16 vs 13, P = 0.017). Dialysis access procedures constituted the largest group of procedures and remained similar between the two periods (35 vs 42, P = 0.582). General surgery residents experienced a significant decline in several index open major arterial reconstruction cases. This decline was offset by maintenance of dialysis access procedures. If the trend continues, future general surgeons will not be proficient in open vascular procedures. PMID:26595111

  9. Vascular Injuries: Trends in Management

    PubMed Central

    Wani, Mohd Lateef; Ahangar, Ab Gani; Ganie, Farooq Ahmad; Wani, Shadab Nabi; Wani, Nasir-ud-din

    2012-01-01

    Abstract Vascular injury presents a great challenge to the emergency resident because these injuries require urgent intervention to prevent loss of life or limb. Sometimes serious vascular injury presents with only subtle or occult signs or symptoms. The patient may present weeks or months after initial injury with symptoms of vascular insufficiency, embolization, pseudoaneurysm, arteriovenous fistula etc. Although the majority of vascular injuries are caused by penetrating trauma from gunshot wounds, stabbing or blast injury, the possibility of vascular injury needs to be considered in patients presenting with displaced long bone fractures, crush injury, prolonged immobilization in a fixed position by tight casts or bandages and various invasive procedures. iatrogenic vascular injuries constitute about 10% of cases in most series; however the incidence is an increasing trend because more endovascular procedures such as angioplasty and cardiac catheterization are being performed routinely. Civilian trauma is more frequently seen in young males. However, it can occur at any age due to road accidents, firearms, bomb blasts and diagnostic procedures. Most of the time, civilian trauma causes less tissue damage. There is an epidemic of vascular injuries in Kashmir valley because of problems in law and order in the past two decades. This review deals with the topic in detail. PMID:24350103

  10. Endothelial cell permeability during hantavirus infection involves factor XII-dependent increased activation of the kallikrein-kinin system.

    PubMed

    Taylor, Shannon L; Wahl-Jensen, Victoria; Copeland, Anna Maria; Jahrling, Peter B; Schmaljohn, Connie S

    2013-01-01

    Hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) are diseases caused by hantavirus infections and are characterized by vascular leakage due to alterations of the endothelial barrier. Hantavirus-infected endothelial cells (EC) display no overt cytopathology; consequently, pathogenesis models have focused either on the influx of immune cells and release of cytokines or on increased degradation of the adherens junction protein, vascular endothelial (VE)-cadherin, due to hantavirus-mediated hypersensitization of EC to vascular endothelial growth factor (VEGF). To examine endothelial leakage in a relevant in vitro system, we co-cultured endothelial and vascular smooth muscle cells (vSMC) to generate capillary blood vessel-like structures. In contrast to results obtained in monolayers of cultured EC, we found that despite viral replication in both cell types as well as the presence of VEGF, infected in vitro vessels neither lost integrity nor displayed evidence of VE-cadherin degradation. Here, we present evidence for a novel mechanism of hantavirus-induced vascular leakage involving activation of the plasma kallikrein-kinin system (KKS). We show that incubation of factor XII (FXII), prekallikrein (PK), and high molecular weight kininogen (HK) plasma proteins with hantavirus-infected EC results in increased cleavage of HK, higher enzymatic activities of FXIIa/kallikrein (KAL) and increased liberation of bradykinin (BK). Measuring cell permeability in real-time using electric cell-substrate impedance sensing (ECIS), we identified dramatic increases in endothelial cell permeability after KKS activation and liberation of BK. Furthermore, the alterations in permeability could be prevented using inhibitors that directly block BK binding, the activity of FXIIa, or the activity of KAL. Lastly, FXII binding and autoactivation is increased on the surface of hantavirus-infected EC. These data are the first to demonstrate KKS activation during hantavirus infection and could have profound implications for treatment of hantavirus infections. PMID:23874198

  11. Endothelial Cell Permeability during Hantavirus Infection Involves Factor XII-Dependent Increased Activation of the Kallikrein-Kinin System

    PubMed Central

    Taylor, Shannon L.; Wahl-Jensen, Victoria; Copeland, Anna Maria; Jahrling, Peter B.; Schmaljohn, Connie S.

    2013-01-01

    Hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) are diseases caused by hantavirus infections and are characterized by vascular leakage due to alterations of the endothelial barrier. Hantavirus-infected endothelial cells (EC) display no overt cytopathology; consequently, pathogenesis models have focused either on the influx of immune cells and release of cytokines or on increased degradation of the adherens junction protein, vascular endothelial (VE)-cadherin, due to hantavirus-mediated hypersensitization of EC to vascular endothelial growth factor (VEGF). To examine endothelial leakage in a relevant in vitro system, we co-cultured endothelial and vascular smooth muscle cells (vSMC) to generate capillary blood vessel-like structures. In contrast to results obtained in monolayers of cultured EC, we found that despite viral replication in both cell types as well as the presence of VEGF, infected in vitro vessels neither lost integrity nor displayed evidence of VE-cadherin degradation. Here, we present evidence for a novel mechanism of hantavirus-induced vascular leakage involving activation of the plasma kallikrein-kinin system (KKS). We show that incubation of factor XII (FXII), prekallikrein (PK), and high molecular weight kininogen (HK) plasma proteins with hantavirus-infected EC results in increased cleavage of HK, higher enzymatic activities of FXIIa/kallikrein (KAL) and increased liberation of bradykinin (BK). Measuring cell permeability in real-time using electric cell-substrate impedance sensing (ECIS), we identified dramatic increases in endothelial cell permeability after KKS activation and liberation of BK. Furthermore, the alterations in permeability could be prevented using inhibitors that directly block BK binding, the activity of FXIIa, or the activity of KAL. Lastly, FXII binding and autoactivation is increased on the surface of hantavirus-infected EC. These data are the first to demonstrate KKS activation during hantavirus infection and could have profound implications for treatment of hantavirus infections. PMID:23874198

  12. NADPH Oxidases in Vascular Pathology

    PubMed Central

    Konior, Anna; Schramm, Agata; Czesnikiewicz-Guzik, Marta

    2014-01-01

    Abstract Significance: Reactive oxygen species (ROS) play a critical role in vascular disease. While there are many possible sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases play a central role. They are a source of “kindling radicals,” which affect other enzymes, such as nitric oxide synthase endothelial nitric oxide synthase or xanthine oxidase. This is important, as risk factors for atherosclerosis (hypertension, diabetes, hypercholesterolemia, and smoking) regulate the expression and activity of NADPH oxidases in the vessel wall. Recent Advances: There are seven isoforms in mammals: Nox1, Nox2, Nox3, Nox4, Nox5, Duox1 and Duox2. Nox1, Nox2, Nox4, and Nox5 are expressed in endothelium, vascular smooth muscle cells, fibroblasts, or perivascular adipocytes. Other homologues have not been found or are expressed at very low levels; their roles have not been established. Nox1/Nox2 promote the development of endothelial dysfunction, hypertension, and inflammation. Nox4 may have a role in protecting the vasculature during stress; however, when its activity is increased, it may be detrimental. Calcium-dependent Nox5 has been implicated in oxidative damage in human atherosclerosis. Critical Issues: NADPH oxidase-derived ROS play a role in vascular pathology as well as in the maintenance of normal physiological vascular function. We also discuss recently elucidated mechanisms such as the role of NADPH oxidases in vascular protection, vascular inflammation, pulmonary hypertension, tumor angiogenesis, and central nervous system regulation of vascular function and hypertension. Future Directions: Understanding the role of individual oxidases and interactions between homologues in vascular disease is critical for efficient pharmacological regulation of vascular NADPH oxidases in both the laboratory and clinical practice. Antioxid. Redox Signal. 20, 2794–2814. PMID:24180474

  13. Heterogeneous Vascular Responses to Lifestyle Intervention in Obese Latino Adolescents

    PubMed Central

    Ryder, Justin R.; Vega-López, Sonia; Gaesser, Glenn A.; Buman, Matthew P.

    2014-01-01

    Abstarct Background/Objectives: Among adolescents, obesity may increase the risk for premature cardiovascular disease (CVD). Lifestyle interventions may prevent or delay the onset of CVD through improvements in vascular health. The purpose of this study was to examine the effects of a 12-week lifestyle intervention on markers of vascular health in obese Latino youth. Subjects/Methods: Fifteen obese Latino adolescents [body mass index (BMI) percentile=96.3±1.1%, 15.0±1.0 year, 8 females and 7 males] participated in a 12-week lifestyle intervention consisting of nutrition education and physical activity. Markers of vascular health included oxidized low-density lipoprotein (oxLDL), soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), and soluble endothelial leukocyte adhesion molecule-1 (sE-Selectin). Results: Relative to baseline data, the intervention resulted in lower oxLDL (−21.8%, P=0.001) and sE-Selectin (−13.3%, P=0.008) concentrations; sICAM-1 and sVCAM-1 did not change significantly. When examining overall responsiveness to change for each marker, oxLDL was reduced in 93.3%, sE-Selectin was reduced in 78.6%, and sICAM-1 was reduced in 71.4% of participants, respectively, whereas sVCAM-1 was reduced in only 42.9% of participants following lifestyle. Using a composite change score (summed change in four markers) for each participant there was an improvement in at least three of four markers among 64% of participants; this was confirmed by principal component analysis. Conclusions: Therefore, although improvements in the vascular health of obese youth were observed, the vascular response to lifestyle intervention may be heterogeneous. Further investigation into the mechanisms mediating the heterogeneity in vascular response to lifestyle intervention is warranted. PMID:25162989

  14. Bacterial invasion of vascular cell types: vascular infectology and atherogenesis

    PubMed Central

    Kozarov, Emil

    2012-01-01

    To portray the chronic inflammation in atherosclerosis, leukocytic cell types involved in the immune response to invading pathogens are often the focus. However, atherogenesis is a complex pathological deterioration of the arterial walls, where vascular cell types are participants with regards to deterioration and disease. Since other recent reviews have detailed the role of both the innate and adaptive immune response in atherosclerosis, herein we will summarize the latest developments regarding the association of bacteria with vascular cell types: infections as a risk factor for atherosclerosis; bacterial invasion of vascular cell types; the atherogenic sequelae of bacterial presence such as endothelial activation and blood clotting; and the identification of the species that are able to colonize this niche. The evidence of a polybacterial infectious component of the atheromatous lesions opens the doors for exploration of the new field of vascular infectology and for the study of atherosclerosis microbiome. PMID:22185451

  15. Vascular Endothelial Growth Factor in Eye Disease

    PubMed Central

    Penn, J.S.; Madan, A.; Caldwell, R.B.; Bartoli, M.; Caldwell, R.W.; Hartnett, M.E.

    2012-01-01

    Collectively, angiogenic ocular conditions represent the leading cause of irreversible vision loss in developed countries. In the U.S., for example, retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration are the principal causes of blindness in the infant, working age and elderly populations, respectively. Evidence suggests that vascular endothelial growth factor (VEGF), a 40 kDa dimeric glycoprotein, promotes angiogenesis in each of these conditions, making it a highly significant therapeutic target. However, VEGF is pleiotropic, affecting a broad spectrum of endothelial, neuronal and glial behaviors, and confounding the validity of anti-VEGF strategies, particularly under chronic disease conditions. In fact, among other functions VEGF can influence cell proliferation, cell migration, proteolysis, cell survival and vessel permeability in a wide variety of biological contexts. This article will describe the roles played by VEGF in the pathogenesis of retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration. The potential disadvantages of inhibiting VEGF will be discussed, as will the rationales for targeting other VEGF-related modulators of angiogenesis. PMID:18653375

  16. Vascular infections: exceeding the threshold.

    PubMed

    Cox, T R

    1995-12-01

    During fiscal year 1988, our hospital infection control practitioner identified a 400% increase in the incidence of vascular surgery nosocomial infections. The six graft and six amputation infections were validated as nosocomial against hospital definitions adopted from the Centers for Disease Control. Our Infection Control Committee mandated an audit of the infected vascular surgery patients using a case/control design to identify and examine associated variables that may need attention. The significant finding was microbial resistance to prophylactic antibiotics used during surgery (p > 0.0001, Fisher's exact). The use of vancomycin as a prophylactic antimicrobial agent for all major vascular cases was recommended to the surgeons. PMID:8775383

  17. NOVEL ATYPICAL PKC INHIBITORS PREVENT VASCULAR ENDOTHELIAL GROWTH FACTOR-INDUCED BLOOD-RETINAL BARRIER DYSFUNCTION

    PubMed Central

    Titchenell, Paul M.; Lin, Cheng-Mao; Keil, Jason M.; Sundstrom, Jeffrey M.; Smith, Charles D.; Antonetti, David A.

    2013-01-01

    SYNOPSIS Pro-inflammatory cytokines and growth factors such as vascular endothelial growth factor (VEGF) contribute to the loss of the blood-retinal barrier (BRB) and subsequent macular edema in various retinal pathologies. VEGF signaling requires conventional PKC (PKCβ) activity; however, PKCβ inhibition only partially prevents VEGF-induced endothelial permeability and does not affect pro-inflammatory cytokine-induced permeability suggesting the involvement of alternative signaling pathways. Here, we provide evidence for the involvement of atypical protein kinase C (aPKC) signaling in VEGF-induced endothelial permeability and identify a novel class of inhibitors of aPKC that prevent BRB breakdown in vivo. Genetic and pharmacological manipulations of aPKC isoforms were used to assess their contribution to endothelial permeability in culture. A chemical library was screened using an in vitro kinase assay to identify novel small molecule inhibitors and further medicinal chemistry was performed to delineate a novel pharmacophore. We demonstrate that aPKC isoforms are both sufficient and required for VEGF-induced endothelial permeability. Furthermore, these specific, potent, non-competitive, small molecule inhibitors prevented VEGF-induced tight junction internalization and retinal endothelial permeability in response to VEGF in both primary culture and in rodent retina. These data suggest that aPKC inhibition with 2-amino-4-phenyl-thiophene derivatives may be developed to preserve the BRB in retinal diseases such as diabetic retinopathy or uveitis and the blood-brain barrier (BBB) in the presence of brain tumors. PMID:22721706

  18. Constructal vascularized structures

    NASA Astrophysics Data System (ADS)

    Cetkin, Erdal

    2015-06-01

    Smart features such as self-healing and selfcooling require bathing the entire volume with a coolant or/and healing agent. Bathing the entire volume is an example of point to area (or volume) flows. Point to area flows cover all the distributing and collecting kinds of flows, i.e. inhaling and exhaling, mining, river deltas, energy distribution, distribution of products on the landscape and so on. The flow resistances of a point to area flow can be decreased by changing the design with the guidance of the constructal law, which is the law of the design evolution in time. In this paper, how the flow resistances (heat, fluid and stress) can be decreased by using the constructal law is shown with examples. First, the validity of two assumptions is surveyed: using temperature independent Hess-Murray rule and using constant diameter ducts where the duct discharges fluid along its edge. Then, point to area types of flows are explained by illustrating the results of two examples: fluid networks and heating an area. Last, how the structures should be vascularized for cooling and mechanical strength is documented. This paper shows that flow resistances can be decreased by morphing the shape freely without any restrictions or generic algorithms.

  19. Vascular action of polyphenols.

    PubMed

    Ghosh, Dilip; Scheepens, Arjan

    2009-03-01

    Dietary patterns are widely recognised as contributors to cardiovascular and cerebrovascular disease. Endothelial function, the elastic properties of large arteries and the magnitude and timing of wave reflections are important determinants of cardiovascular performance. Several epidemiological studies suggest that the regular consumption of foods and beverages rich in flavonoids is associated with a reduction in the risk of several pathological conditions ranging from hypertension to coronary heart disease, stroke and dementia. The impairment of endothelial function is directly related to ageing and an association between decreased cerebral perfusion and dementia has been shown to exist. Cerebral blood flow (CBF) must be maintained to ensure a constant delivery of oxygen and glucose as well as the removal of waste products. Increasing blood flow is one potential way for improving brain function and the prospect for increasing CBF with dietary polyphenols is extremely promising. The major polyphenols shown to have some of these effects in humans are primarily from cocoa, wine, grape seed, berries, tea, tomatoes (polyphenolics and nonpolyphenolics), soy and pomegranate. There has been a significant paradigm shift in polyphenol research during the last decade. This review summarises our current knowledge in this area and points the way for the development of new types of functional foods targeted to brain health through improving vascular health. PMID:19051188

  20. Education in vascular access.

    PubMed

    Moist, Louise M; Lee, Timmy C; Lok, Charmaine E; Al-Jaishi, Ahmed; Xi, Wang; Campbell, Vern; Graham, Janet; Wilson, Barb; Vachharajani, Tushar J

    2013-01-01

    The successful creation and use of an arteriovenous vascular access (VA) requires a coordinated, educated multidisciplinary team to ensure an optimal VA for each patient. Patient education programs on VA are associated with increased arteriovenous VA use at dialysis initiation. Education should be tailored to patient goals and preferences with the understanding that experiential education from patient to patient is far more influential than that provided by the healthcare professional. VA education for the nephrologist should focus on addressing the systematic and patient-level barriers in achieving a functional VA, with specific components relating to VA creation, maturation, and cannulation that consider patient goals and preferences. A deficit in nursing skills in the area of assessment and cannulation can have devastating consequences for hemodialysis patients. Delivery of an integrated education program increases nurses' knowledge of VA and development of simulation programs or constructs to assist in cannulation of the VA will greatly facilitate the much needed skill transfer. Adequate VA surgical training and experience are critical to the creation and outcomes of VA. Simulations can benefit nephrologists, dialysis nurses surgeons, and interventionalists though aiding in surgical creation, understanding of the physiology and anatomy of a dysfunctional VA, and practicing cannulation techniques. All future educational initiatives must emphasize the importance of multidisciplinary care to attain successful VA outcomes. PMID:23432319

  1. Autophagy in vascular disease.

    PubMed

    Ryter, Stefan W; Lee, Seon-Jin; Smith, Akaya; Choi, Augustine M K

    2010-02-01

    Autophagy, or "self eating," refers to a regulated cellular process for the lysosomal-dependent turnover of organelles and proteins. During starvation or nutrient deficiency, autophagy promotes survival through the replenishment of metabolic precursors derived from the degradation of endogenous cellular components. Autophagy represents a general homeostatic and inducible adaptive response to environmental stress, including endoplasmic reticulum stress, hypoxia, oxidative stress, and exposure to pharmaceuticals and xenobiotics. Whereas elevated autophagy can be observed in dying cells, the functional relationships between autophagy and programmed cell death pathways remain incompletely understood. Preclinical studies have identified autophagy as a process that can be activated during vascular disorders, including ischemia-reperfusion injury of the heart and other organs, cardiomyopathy, myocardial injury, and atherosclerosis. The functional significance of autophagy in human cardiovascular disease pathogenesis remains incompletely understood, and potentially involves both adaptive and maladaptive outcomes, depending on model system. Although relatively few studies have been performed in the lung, our recent studies also implicate a role for autophagy in chronic lung disease. Manipulation of the signaling pathways that regulate autophagy could potentially provide a novel therapeutic strategy in the prevention or treatment of human disease. PMID:20160147

  2. Lobby index in networks

    NASA Astrophysics Data System (ADS)

    Korn, A.; Schubert, A.; Telcs, A.

    2009-06-01

    We propose a new node centrality measure in networks, the lobby index, which is inspired by Hirsch’s h-index. It is shown that in scale-free networks with exponent α the distribution of the l-index has power tail with exponent α(α+1). Properties of the l-index and extensions are discussed.

  3. Nucleic acid indexing

    DOEpatents

    Guilfoyle, Richard A.; Guo, Zhen

    2001-01-01

    A restriction site indexing method for selectively amplifying any fragment generated by a Class II restriction enzyme includes adaptors specific to fragment ends containing adaptor indexing sequences complementary to fragment indexing sequences near the termini of fragments generated by Class II enzyme cleavage. A method for combinatorial indexing facilitates amplification of restriction fragments whose sequence is not known.

  4. Nucleic acid indexing

    DOEpatents

    Guilfoyle, Richard A.; Guo, Zhen

    1999-01-01

    A restriction site indexing method for selectively amplifying any fragment generated by a Class II restriction enzyme includes adaptors specific to fragment ends containing adaptor indexing sequences complementary to fragment indexing sequences near the termini of fragments generated by Class II enzyme cleavage. A method for combinatorial indexing facilitates amplification of restriction fragments whose sequence is not known.

  5. Vascular risk and Aβ interact to reduce cortical thickness in AD vulnerable brain regions

    PubMed Central

    Reed, Bruce R.; Madison, Cindee M.; Wirth, Miranka; Marchant, Natalie L.; Kriger, Stephen; Mack, Wendy J.; Sanossian, Nerses; DeCarli, Charles; Chui, Helena C.; Weiner, Michael W.; Jagust, William J.

    2014-01-01

    Objective: The objective of this study was to define whether vascular risk factors interact with β-amyloid (Aβ) in producing changes in brain structure that could underlie the increased risk of Alzheimer disease (AD). Methods: Sixty-six cognitively normal and mildly impaired older individuals with a wide range of vascular risk factors were included in this study. The presence of Aβ was assessed using [11C]Pittsburgh compound B–PET imaging, and cortical thickness was measured using 3-tesla MRI. Vascular risk was measured with the Framingham Coronary Risk Profile Index. Results: Individuals with high levels of vascular risk factors have thinner frontotemporal cortex independent of Aβ. These frontotemporal regions are also affected in individuals with Aβ deposition, but the latter show additional thinning in parietal cortices. Aβ and vascular risk were found to interact in posterior (especially in parietal) brain regions, where Aβ has its greatest effect. In this way, the negative effect of Aβ in posterior regions is increased by the presence of vascular risk. Conclusion: Aβ and vascular risk interact to enhance cortical thinning in posterior brain regions that are particularly vulnerable to AD. These findings give insight concerning the mechanisms whereby vascular risk increases the likelihood of developing AD and supports the therapeutic intervention of controlling vascular risk for the prevention of AD. PMID:24907234

  6. Measurement of local permeability at subcellular level in cell models of agonist- and ventilator-induced lung injury

    PubMed Central

    Dubrovskyi, Oleksii; Birukova, Anna A.; Birukov, Konstantin G.

    2013-01-01

    Rationale Alterations of cell monolayer integrity and increased vascular permeability are key to many pathologies including atherosclerosis, stroke, lung injury, cancer, digestive disorders and others. Objective Current approaches to probe cell permeability require specific culture conditions and provide an average estimation of trans-monolayer permeability, while analysis of regional monolayer permeability in static and mechanically challenged monolayer at a single cell scale resolution remains unavailable. Methods and Results We describe a novel method for visualization and rapid quantification of trans-monolayer permeability based on high affinity interactions between ligand (FITC-conjugated avidin) added in the culture medium, which permeates cell monolayer to reach substrate-bound acceptor (biotinylated gelatin or collagen). This approach was used to simultaneously evaluate general and local permeability responses by endothelial cell (EC) monolayer to a spectrum of barrier protective and barrier disruptive agonists and their combinations. The results revealed the paracellular pathway as the predominant mechanism of agonist-induced mass transport by pulmonary EC. We also detected for the first time, in a direct assay, a synergistic effect of pathologically relevant levels of cyclic stretch and edemagenic agent thrombin in the development of pulmonary EC hyper-permeability response observed in ventilator induced lung injury (VILI). Conclusions The reported novel assay provides unique information about local monolayer permeability changes induced by agonists, mechanical factors, or molecular perturbations in single cells. However, the spectrum of substrates, assay formats and experimental conditions compatible with this assay suggests its broad application in the areas of endothelial and epithelial biology, cancer research and other fields. PMID:23212101

  7. Digital image processing of vascular angiograms

    NASA Technical Reports Server (NTRS)

    Selzer, R. H.; Beckenbach, E. S.; Blankenhorn, D. H.; Crawford, D. W.; Brooks, S. H.

    1975-01-01

    The paper discusses the estimation of the degree of atherosclerosis in the human femoral artery through the use of a digital image processing system for vascular angiograms. The film digitizer uses an electronic image dissector camera to scan the angiogram and convert the recorded optical density information into a numerical format. Another processing step involves locating the vessel edges from the digital image. The computer has been programmed to estimate vessel abnormality through a series of measurements, some derived primarily from the vessel edge information and others from optical density variations within the lumen shadow. These measurements are combined into an atherosclerosis index, which is found in a post-mortem study to correlate well with both visual and chemical estimates of atherosclerotic disease.

  8. Vascular Endothelial Growth Factor Induces Endothelial Fenestrations In Vitro

    PubMed Central

    Esser, Sybille; Wolburg, Karen; Wolburg, Hartwig; Breier, Georg; Kurzchalia, Teymuras; Risau, Werner

    1998-01-01

    Abstract. Vascular endothelial growth factor (VEGF) is an important regulator of vasculogenesis, angiogenesis, and vascular permeability. In contrast to its transient expression during the formation of new blood vessels, VEGF and its receptors are continuously and highly expressed in some adult tissues, such as the kidney glomerulus and choroid plexus. This suggests that VEGF produced by the epithelial cells of these tissues might be involved in the induction or maintenance of fenestrations in adjacent endothelial cells expressing the VEGF receptors. Here we describe a defined in vitro culture system where fenestrae formation was induced in adrenal cortex capillary endothelial cells by VEGF, but not by fibroblast growth factor. A strong induction of endothelial fenestrations was observed in cocultures of endothelial cells with choroid plexus epithelial cells, or mammary epithelial cells stably transfected with cDNAs for VEGF 120 or 164, but not with untransfected cells. These results demonstrate that, in these cocultures, VEGF is sufficient to induce fenestrations in vitro. Identical results were achieved when the epithelial cells were replaced by an epithelial-derived basal lamina-type extracellular matrix, but not with collagen alone. In this defined system, VEGF-mediated induction of fenestrae was always accompanied by an increase in the number of fused diaphragmed caveolae-like vesicles. Caveolae, but not fenestrae, were labeled with a caveolin-1–specific antibody both in vivo and in vitro. VEGF stimulation led to VEGF receptor tyrosine phosphorylation, but no change in the distribution, phosphorylation, or protein level of caveolin-1 was observed. We conclude that VEGF in the presence of a basal lamina-type extracellular matrix specifically induces fenestrations in endothelial cells. This defined in vitro system will allow further study of the signaling mechanisms involved in fenestrae formation, modification of caveolae, and vascular permeability. PMID:9472045

  9. Negative-permittivity plasma generation in negative-permeability metamaterial space

    NASA Astrophysics Data System (ADS)

    Sakai, Osamu

    2015-09-01

    Negative-permittivity plasma is generated in negative-permeability metamaterial space. Unlike cases of positive permeability, which is quite usual in almost all materials available so far, negative-permeability space realized in metamaterial structure allows microwaves to propagate in negative-permittivity media. Our previous study verified that microwaves can propagate in a negative-permittivity plasma immersed in a negative-permeability metamaterial space, which indicates that a dynamic state of negative refractive index was successfully generated. In this study, negative-permeability space was prepared using metamaterial structure as well, and we investigated plasma generation by high-power microwaves in such a metamaterial structure. Langmuir probe measurement revealed that electron density is higher than the cutoff density, which means that permittivity is negative. We also confirmed in both model predictions and experimental results that nonlinear phenomena are key issues to understand underlying physics; they include bifurcations of permittivity or electron density in nonlinear dynamics and harmonic wave generation similar to that reported in nonlinear optics, and both phenomena are observed in experiments.

  10. Quantitative Permeability Prediction for Anisotropic Porous Media

    NASA Astrophysics Data System (ADS)

    Sheng, Q.; Thompson, K. E.

    2012-12-01

    Pore-scale modeling as a predictive tool has become an integral to both research and commercial simulation in recent years. Permeability is one of the most important of the many properties that can be simulated. Traditionally, permeability is determined using Darcy's law, based on the assumption that the pressure gradient is aligned with the principal flow direction. However, a wide variety of porous media exhibit anisotropic permeability due to particle orientation or laminated structure. In these types of materials, the direction of fluid flow is not aligned with the pressure gradient (except along the principal directions). Thus, it is desirable to predict the full permeability tensor for anisotropic materials using a first-principles pore-scale approach. In this work, we present a fast method to determine the full permeability tensor and the principal directions using a novel network modeling algorithm. We also test the ability of network modeling (which is an approximate method) to detect anisotropy in various structures. Both computational fluid dynamics (CFD) methods and network modeling have emerged as effective techniques to predict rock properties. CFD models are more rigorous but computationally expensive. Network modeling involves significant approximations but can be orders-of-magnitude more efficient computationally, which is important for both speed and the ability to model larger scales. This work uses network modeling, with simulations performed on two types of anisotropic materials: laminated packings (with layers of different sized particles) and oriented packings (containing particles with preferential orientation). Pore network models are created from the porous media data, and a novel method is used to determine the permeability tensor and principal flow direction using pore network modeling. The method is verified by comparing the calculated principal directions with the known anisotropy and also by comparing permeability with values from CFD simulations. Results show that pore network modeling is able to detect anisotropic effects directly from fundamental descriptions of the pore geometry (such as microtomography images). This work is significant because it shows that pore-scale simulation can augment traditional core analysis in certain applications such as testing anisotropic materials since it is difficult to measure the permeability tensor experimentally. Using the fast network modeling algorithm, permeability can be measured in a pore-scale region with over one million pores while capturing anisotropy in a large span of length scales.

  11. Gastrointestinal permeability in patients with irritable bowel syndrome assessed using a four probe permeability solution

    PubMed Central

    Del Valle-Pinero, Arseima Y.; Van Deventer, Hendrick E.; Fourie, Nicolaas H.; Martino, Angela C.; Patel, Nayan S.; Remaley, Alan T.; Henderson, Wendy A.

    2013-01-01

    Background Abnormal gastrointestinal permeability has been linked to irritable bowel syndrome (IBS). The lactulose-to-mannitol ratio is traditionally used to assess small intestine permeability while sucralose and sucrose are used to assess colonic and gastric permeability respectively. We used a single 4-probe test solution to assess permeability throughout the gastrointestinal tract in IBS patients and healthy controls by measuring the recovery of the probes in urine after ingestion using a modified liquid chromatography mass spectrometry protocol. Methods Fasting participants (N = 59) drank a permeability test solution (100 ml: sucralose, sucrose, mannitol, and lactulose). Urine was collected over a 5-h period and kept frozen until analysis. Urinary sugar concentrations were measured using an liquid chromatography/triple quadruple mass spectrometer. Results Colonic permeability was significantly lower in IBS patients when compared to healthy controls (p = 0.011). Gastric and small intestinal permeability did not significantly differ between the groups. Conclusions The study demonstrates the clinical potential of this non-invasive method for assessing alterations in gastrointestinal permeability in patients with IBS. PMID:23328210

  12. Numerical study of electromagnetic waves interacting with negative index materials.

    PubMed

    Kolinko, Pavel; Smith, David

    2003-04-01

    We study numerically the electromagnetic scattering properties of structures with negative indices of refraction. To perform this analysis, we utilize a commercial finite-element based electromagnetic solver (HFSS, Ansoft), in which a negative index material can be formed from mesh elements whose permittivity and permeability are both negative. In particular, we investigate the expected transmission characteristics of a finite beam incident on negative index prisms and lenses. We also confirm numerically the predicted superlens effect of an image formed by a planar slab with index n=-1, using two subwavelength (ë/20) slits as objects. PMID:19461776

  13. Psoriasis and occlusive vascular disease.

    PubMed

    McDonald, C J; Calabresi, P

    1978-11-01

    To test the hypothesis that psoriasis is associated with an increased incidence of occlusive vascular disease (thrombophlebitis, myocardial infarction, pulmonary embolization, and cerebrovascular accident), the clinical records of 323 psoriatic and 325 non-psoriatic patients admitted to the dermatology service of the Roger Williams General Hospital were examined. The data obtained in this study suggest that (1) the occurrence rate of occlusive vascular disease is significantly greater in the psoriatic than in the non-psoriatic dermatological patient. This is particularly true in the male population; (2) psoriasis predisposes to occlusive vascular disease; and (3) the psoriatic patient with certain predisposing factors is at greater risk of experiencing an occlusive vascular episode than both the non-predisposed psoriatic and the non-psoriatic dermatological patient. PMID:708620

  14. Vascular dementia: a diagnostic challenge.

    PubMed

    Gold, Gabriel

    2003-01-01

    Although vascular dementia was described over a century ago, it remains a difficult and challenging diagnosis. Several sets of clinical criteria have been published in an effort to establish the presence or absence of vascular dementia in a standardized fashion. Clinical studies have demonstrated that they identify different groups of patients and are thus not interchangeable. Retrospective clinicopathological correlations have shown that most are insufficiently sensitive, although they are generally relatively specific. They accurately exclude pure Alzheimer's disease but may include 9% to 39% of mixed dementia cases (Alzheimer's disease and vascular dementia combined). Further studies are needed to develop better performing criteria that could lead to a broad consensus on the clinical diagnosis of vascular and mixed dementia. PMID:16191226

  15. Biomaterials for vascular tissue engineering

    PubMed Central

    Ravi, Swathi; Chaikof, Elliot L

    2010-01-01

    Cardiovascular disease is the leading cause of mortality in the USA. The limited availability of healthy autologous vessels for bypass grafting procedures has led to the fabrication of prosthetic vascular conduits. While synthetic polymers have been extensively studied as substitutes in vascular engineering, they fall short of meeting the biological challenges at the blood–material interface. Various tissue engineering strategies have emerged to address these flaws and increase long-term patency of vascular grafts. Vascular cell seeding of scaffolds and the design of bioactive polymers for in situ arterial regeneration have yielded promising results. This article describes the advances made in biomaterials design to generate suitable materials that not only match the mechanical properties of native vasculature, but also promote cell growth, facilitate extracellular matrix production and inhibit thrombogenicity. PMID:20017698

  16. Gas Permeability in Rubbery Polyphosphazene Membranes

    SciTech Connect

    Frederick F. Stewart; Christopher J. Orme; John R. Klaehn; Mason K. Harrup; Thomas A. Luther; Eric S. Peterson

    2006-09-01

    The synthesis, characterization, and gas permeability of ten new polyphosphazenes has been studied. Additionally, the first gas permeation data has been collected on hydrolytically unstable poly[bis-(chloro)phosphazene]. Gases used in this study include CO2, CH4, O2, N2, H2, and Ar. CO2 was the most permeable gas through any of the phosphazenes and a direct correlation between the Tg of the polymer and CO2 transport was noted with permeability increasing with decreasing polymer Tg. To a lesser degree, permeability of all the other gases studied also yielded increases with decreasing polymer Tg. The trend observed for these new polymers was further supported by published data for other phosphazenes. Furthermore, permeability data for all gases were found to correlate to the gas condensability and the gas critical pressures, except for hydrogen, suggesting that the nature of the gas is also a significant factor for permeation through rubbery phosphazene membranes. Ideal separation factors (á) for the CO2/H2 and CO2/CH4 gas pairs were calculated. For CO2/CH4, no increase in á was observed with decreasing Tg, however increases in á were noted for the CO2/H2 pair.

  17. Honeycomb Core Permeability Under Mechanical Loads

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Raman, V. V.; Venkat, Venki S.; Sankaran, Sankara N.

    1997-01-01

    A method for characterizing the air permeability of sandwich core materials as a function of applied shear stress was developed. The core material for the test specimens was either Hexcel HRP-3/16-8.0 and or DuPont Korex-1/8-4.5 and was nominally one-half inch thick and six inches square. The facesheets where made of Hercules' AS4/8552 graphite/epoxy (Gr/Ep) composites and were nominally 0.059-in. thick. Cytec's Metalbond 1515-3M epoxy film adhesive was used for co-curing the facesheets to the core. The permeability of the specimens during both static (tension) and dynamic (reversed and non-reversed) shear loads were measured. The permeability was measured as the rate of air flow through the core from a circular 1-in2 area of the core exposed to an air pressure of 10.0 psig. In both the static and dynamic testing, the Korex core experienced sudden increases in core permeability corresponding to a core catastrophic failure, while the URP core experienced a gradual increase in the permeability prior to core failure. The Korex core failed at lower loads than the HRP core both in the transverse and ribbon directions.

  18. Permeability evolution in sandstone: Digital rock approach

    NASA Astrophysics Data System (ADS)

    Kameda, Ayako

    Permeability is perhaps one of the most important yet elusive reservoir properties, since it poorly correlates with elastic properties, and as a result, cannot be mapped remotely. Physical permeability measurements may be augmented or even partially replaced by numerical experiments, provided that a numerical simulation accurately mimics the physical process. Numerical simulation of laboratory experiments on rocks, or digital rock physics, is an emerging field that may benefit the petroleum industry. For numerical experimentation to find its way into the mainstream, it has to be practical and easily repeatable, i.e., implemented on standard hardware and in real time. This condition reduces the feasible size of a digital sample to just a few grains across. Will the results be meaningful for a larger rock volume? The answer is that small fragments of medium- to high-porosity sandstone, such as cuttings, which are not statistically representative of a larger sample, cannot be used to numerically calculate the exact porosity and permeability of the sample. However, by using a significant number of such small fragments, it may be possible to establish a site-specific permeability-porosity trend, which can be used to estimate the absolute permeability from independent porosity data, obtained in the well or inferred from seismic measurements.

  19. Permeability of self-affine aperture fields.

    PubMed

    Talon, Laurent; Auradou, Harold; Hansen, Alex

    2010-10-01

    We introduce a model that allows for the prediction of the permeability of self-affine rough channels (one-dimensional fracture) and two-dimensional fractures over a wide range of apertures. In the lubrication approximation, the permeability shows three different scaling regimes. For fractures with a large mean aperture or an aperture small enough to the permeability being close to disappearing, the permeability scales as the cube of the aperture when the zero level of the aperture is set to coincide with the disappearance of the permeability. Between these two regimes, there is a third regime where the scaling is due to the self-affine roughness. For rough channels, the exponent is found to be 3-1/H, where H is the Hurst exponent. For two-dimensional fractures, it is necessary to introduce an equivalent aperture b(c) to make the scaling regime apparent. b(c) is defined as the hydraulic aperture of the most restrictive barrier crossing the fracture normal to the flow direction. This regime is characterized by an exponent higher than that for the one-dimensional case: it is 2.25 for H=0.8 and 2.16 for H=0.3. PMID:21230346

  20. Vascular reactivity in diabetes mellitus: possible role of insulin on the endothelial cell.

    PubMed Central

    Fortes, Z. B.; Garcia Leme, J.; Scivoletto, R.

    1984-01-01

    The response to vasoactive agents of microvessels of the rat was tested in vivo by direct microscopic observation of the exteriorized mesentery and assessment of cutaneous vascular permeability changes with Evans blue. The constrictor response to a standard amount of noradrenaline in mesenteric microvessels was fully antagonized by acetylcholine in normal, diabetic, adrenalectomized and diabetic-adrenalectomized rats. In contrast, the minimum doses of histamine or bradykinin, effective in normal or adrenalectomized animals, had to be increased about 20 fold to be active in diabetic or diabetic-adrenalectomized animals. Topical application of insulin to mesenteric microvessels of diabetic animals, in amounts not causing any increase in serum insulin levels, improved or restored the capacity of the animals to respond to histamine or bradykinin, acting as antagonists of the vasoconstrictor response to noradrenaline. Topical insulin, however, was ineffective in normal animals given 2-deoxyglucose, the acute effects of which result from cellular glucopaenia unrelated to insulin deficiency. Vascular permeability responses to intracutaneous histamine or bradykinin were decreased in animals pretreated with 2-deoxyglucose as much as in diabetic animals. Pretreatment of normal animals with indomethacin produced no effect on the responses of these animals to histamine or bradykinin, tested as antagonists of noradrenaline on mesenteric microvessels, or as vascular permeability-increasing factors in the skin. Pretreatment of normal animals with chloroquine, mepacrine or dexamethasone had no effect on the reactivity of mesenteric microvessels to histamine and bradykinin, acting as antagonists to noradrenaline.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6439270

  1. Vascular Reactivity is Impaired and Associated With Walking Ability in Patients With Intermittent Claudication.

    PubMed

    Silva, Rita de Cassia Gengo E; Wolosker, Nelson; Yugar-Toledo, Juan Carlos; Consolim-Colombo, Fernanda Marciano

    2015-08-01

    We verified whether vascular reactivity is impaired and whether there is any association between vascular reactivity, walking ability, and peripheral artery disease (PAD) severity in patients with intermittent claudication (IC). We studied 63 patients and 17 age- and sex-matched volunteers without PAD. Vascular reactivity was evaluated in the brachial artery during reactive hyperemia (flow-mediated dilation [FMD]) and after a sublingual single dose of nitroglycerin (nitroglycerin-induced vasodilation [NID]). Walking ability was verified by a 6-minute walk test. Vascular reactivity and walking ability were significantly worse in patients with IC compared with control participants. The ankle-brachial index correlated with FMD, NID, as well as total and pain-free distances. The NID and walking ability progressively decreased as PAD severity increased. Walking ability correlated with NID but not with FMD. In patients with IC, vascular reactivity is impaired and is related to the severity of PAD and to walking ability. PMID:25100750

  2. Piezo1 integration of vascular architecture with physiological force.

    PubMed

    Li, Jing; Hou, Bing; Tumova, Sarka; Muraki, Katsuhiko; Bruns, Alexander; Ludlow, Melanie J; Sedo, Alicia; Hyman, Adam J; McKeown, Lynn; Young, Richard S; Yuldasheva, Nadira Y; Majeed, Yasser; Wilson, Lesley A; Rode, Baptiste; Bailey, Marc A; Kim, Hyejeong R; Fu, Zhaojun; Carter, Deborah A L; Bilton, Jan; Imrie, Helen; Ajuh, Paul; Dear, T Neil; Cubbon, Richard M; Kearney, Mark T; Prasad, K Raj; Evans, Paul C; Ainscough, Justin F X; Beech, David J

    2014-11-13

    The mechanisms by which physical forces regulate endothelial cells to determine the complexities of vascular structure and function are enigmatic. Studies of sensory neurons have suggested Piezo proteins as subunits of Ca(2+)-permeable non-selective cationic channels for detection of noxious mechanical impact. Here we show Piezo1 (Fam38a) channels as sensors of frictional force (shear stress) and determinants of vascular structure in both development and adult physiology. Global or endothelial-specific disruption of mouse Piezo1 profoundly disturbed the developing vasculature and was embryonic lethal within days of the heart beating. Haploinsufficiency was not lethal but endothelial abnormality was detected in mature vessels. The importance of Piezo1 channels as sensors of blood flow was shown by Piezo1 dependence of shear-stress-evoked ionic current and calcium influx in endothelial cells and the ability of exogenous Piezo1 to confer sensitivity to shear stress on otherwise resistant cells. Downstream of this calcium influx there was protease activation and spatial reorganization of endothelial cells to the polarity of the applied force. The data suggest that Piezo1 channels function as pivotal integrators in vascular biology. PMID:25119035

  3. Piezo1 integration of vascular architecture with physiological force

    PubMed Central

    Tumova, Sarka; Muraki, Katsuhiko; Bruns, Alexander; Ludlow, Melanie J; Sedo, Alicia; Hyman, Adam J; McKeown, Lynn; Young, Richard S; Yuldasheva, Nadira Y; Majeed, Yasser; Wilson, Lesley A; Rode, Baptiste; Bailey, Marc A; Kim, Hyejeong R; Fu, Zhaojun; Carter, Deborah AL; Bilton, Jan; Imrie, Helen; Ajuh, Paul; Dear, T Neil; Cubbon, Richard M; Kearney, Mark T; Prasad, Raj K; Evans, Paul C; Ainscough, Justin FX; Beech, David J

    2014-01-01

    The mechanisms by which physical forces regulate endothelial cells to determine the complexities of vascular structure and function are enigmatic1-5. Studies of sensory neurons have suggested Piezo proteins as subunits of Ca2+-permeable non-selective cationic channels for detection of noxious mechanical impact6-8. Here we show Piezo1 (FAM38A) channels as sensors of frictional force (shear stress) and determinants of vascular structure in both development and adult physiology. Global or endothelial-specific disruption of mouse Piezo1 profoundly disturbed the developing vasculature and was embryonic lethal within days of the heart beating. Haploinsufficiency was not lethal but endothelial abnormality was detected in mature vessels. Importance of Piezo1 channels as sensors of blood flow was shown by Piezo1 dependence of shear stress-evoked ionic current and calcium influx in endothelial cells and the ability of exogenous Piezo1 to confer sensitivity to shear stress on otherwise resistant cells. Downstream of this calcium influx was protease activity and spatial organization of endothelial cells to the polarity of the applied force. The data suggest Piezo1 channels as pivotal integrators in vascular biology. PMID:25119035

  4. Potassium channels and vascular reactivity in genetically hypertensive rats.

    PubMed

    Furspan, P B; Webb, R C

    1990-06-01

    In hypertension, membrane potassium permeability and vascular reactivity are increased. This study characterizes a potassium-selective channel and contractions to barium, a potassium channel inhibitor, in vascular smooth muscle (tail artery) from spontaneously hypertensive stroke-prone rats (SHRSP) and normotensive Wistar-Kyoto (WKY) rats. Smooth muscle cells were isolated by enzymatic digestion, and potassium channel activity was characterized by using patch-clamp technique (inside-out configuration). Isometric contractile activity was evaluated in helically cut arterial strips by using standard muscle bath methodology. In membrane patches, a voltage-gated, calcium-insensitive, potassium-selective channel of large conductance (200 picosiemens) was observed. The channel did not conduct sodium or rubidium. Barium (10(-6) to 10(-4) M) produced a dose-dependent blockade of channel activity. These channel characteristics did not differ in SHRSP and WKY rat cells. After treatment with 35 mM KCl, barium (10(-5) to 10(-3) M) caused greater contractions in SHRSP arteries compared with arteries in WKY rats. The contractions to barium were markedly attenuated in calcium-free solution, and nifedipine and verapamil abolished contractions induced by barium in depolarizing solution. We conclude that increased vascular reactivity to barium in SHRSP arteries is not due to an alteration in the biophysical properties of the potassium channel studied. PMID:2351424

  5. What the Index Medicus indexes, and why.

    PubMed

    Truelson, S D

    1966-10-01

    The main criterion for selecting journals for indexing in Index Medicus, and thereby largely in MEDLARS, is quality. Subject scope varies with the voiced needs of the biomedical community. The Index aims to cover the best journals in all relevant subject fields, but the percentage of journals on a subject indexed depends on the quality of each journal. Country and language coverage depends on quality, even in the case of the best journals of each, although American biases may affect such selection. While a number of guidelines exist for identifying quality journals, information necessary to apply them confidently is often difficult to obtain. The National Library of Medicine is advised by an Ad Hoc Panel on the Selection of Journals for Index Medicus, composed both of NLM officers and extramural members. Criticism has been voiced that too many titles are indexed, compared with titles actually used, but no meaningful statistics of use exist which can identify titles which should be excluded from indexing. Continuing suggestions from users regarding titles indexed would benefit everyone. PMID:5922258

  6. Tumor vascular permeabilization using localized mild hyperthermia to improve macromolecule transport.

    PubMed

    Kirui, Dickson K; Koay, Eugene J; Guo, Xiaojing; Cristini, Vittorio; Shen, Haifa; Ferrari, Mauro

    2014-10-01

    The abnormal tumor vasculature presents a major challenge to the adequate delivery of chemotherapeutics, often limiting efficacy. We developed a nanoparticle-based technique to deliver localized mild hyperthermia (MHT) used to transiently alter tumor vascular transport properties and enhance transport of macromolecules into tumor interstitium. The strategy involved administering and localizing accumulation of stealth gold nanorods (GNRs, 103 μg of GNRs/g of tumor), and irradiating tumor with a low-photon laser flux (1 W/cm(2)) to generate MHT. The treatment increased vascular permeability within 24 h after treatment, allowing enhanced transport of macromolecules up to 54 nm in size. A mathematical model is used to describe changes in tumor mass transport properties where the rate of macromolecular exchange between interstitial and vascular region (R) and maximum dye enhancement (Ymax) of 23-nm dextran dye is analytically solved. During enhanced permeability, R increased by 200% while Ymax increased by 30% relative to untreated group in pancreatic CAPAN-1 tumors. MHT treatment also enhanced transport of larger dextran dye (54 nm) as assessed by intravital microscopy, without causing occlusive cellular damage. Enhanced vascular transport was prolonged for up to 24 h after treatment, but reversible with transport parameters returning to basal levels after 36 h. This study indicates that localized mild hyperthermia treatment opens a transient time-window with which to enable and augment macromolecule transport and potentially improve therapeutic efficacy. From the clinical editor: In this study, local intra-tumor mild hyperthermia is induced using a nanoparticle-based approach utilizing stealth gold nanorods and irradiating the tumor with low-photon laser flux, resulting in locally increased vascular permeability enabling enhanced delivery of therapeutics, including macromolecules up to 54 nm in size. Similar approaches would be very helpful in addressing treatment-resistant malignancies in clinical practice. PMID:24262998

  7. Dual energy micro-CT imaging of radiation-induced vascular changes in primary mouse sarcomas

    PubMed Central

    Moding, Everett J.; Clark, Darin P.; Qi, Yi; Li, Yifan; Ma, Yan; Ghaghada, Ketan; Johnson, G. Allan; Kirsch, David G.; Badea, Cristian T.

    2013-01-01

    Purpose To evaluate the effects of radiation therapy on primary tumor vasculature using dual energy (DE) micro-computed tomography (micro-CT). Methods and Materials The Cre-loxP system was used to generate primary sarcomas with mutant Kras and p53. Unirradiated tumors were compared to tumors irradiated with 20 Gy. A long-circulating PEGylated liposomal-iodinated contrast agent was administered one day after treatment, and mice were imaged immediately after injection (day 1) and three days later (day 4) using DE micro-CT. CT-derived tumor sizes were used to assess tumor growth. After DE decomposition, iodine maps were used to assess tumor fractional blood volume (FBV) at day 1 and tumor vascular permeability at day 4. For comparison, tumor vascularity and vascular permeability were also evaluated histologically using CD31 immunofluorescence and fluorescently-labeled dextrans. Results Radiation treatment significantly decreased tumor growth (P<0.05). There was a positive correlation between CT-measurement of tumor FBV and extravasated iodine with microvascular density (MVD) (R2=0.53) and dextran accumulation (R2=0.63), respectively. Despite no change in MVD measured by histology, tumor FBV significantly increased after irradiation as measured by DE micro-CT (0.070 vs. 0.091, P<0.05). Both dextran and liposomal-iodine accumulation in tumors increased significantly after irradiation with dextran fractional area increasing 4.2-fold and liposomal-iodine concentration increasing 3.0-fold. Conclusions DE micro-CT is an effective tool for non-invasive assessment of vascular changes in primary tumors. Tumor blood volume and vascular permeability increased after a single therapeutic dose of radiation treatment. PMID:23122984

  8. Cryofixation of vascular endothelium.

    PubMed

    Wagner, R C; Andrews, S B

    1991-11-01

    Cryofixation refers to the immobilization of tissue components by the rapid removal of heat from the specimen, so that the structure is interred and stabilized in a natural embedding medium, namely, frozen (amorphous or microcrystalline) tissue water. Cryofixation is now often used as a complement to the more traditional fixation methods, especially when the cell structure is delicate or dynamic and may be inaccurately preserved by the slow selective action of chemical fixatives. Vascular endothelial cells are specialized for transcellular transport and for the regulation of blood flow and composition. The dynamic and labile subcellular organization of these cells, presumably reflecting these functional specializations, makes them ideal candidates for cryofixation. Several different types of endothelial cells were directly frozen at temperatures below 20 degrees Kelvin by pressing them against a liquid-helium-cooled block. These samples were subsequently processed for structural analysis by freeze-substitution. Detailed rationales, designs, and protocols are described for both freezing and freeze-substitution. Electron micrographs of cryofixed arterial and venous capillaries (rete mirabile of the American eel), iliac vein (rabbit), and cultured endothelium from the iliac vein (human) reveal that the organization of the characteristic intracellular membrane system of endothelial vesicles is qualitatively similar to that seen in chemically fixed endothelium, especially with regard to the interconnection of clusters of individual vesicles to form elaborate networks. The luminal and abluminal networks are not in communication, at least not in static images. Quantitatively, however, most directly frozen endothelial cells have far fewer vesicular profiles than comparable glutaraldehyde-fixed cells. The differences can be explained by presuming that the rapid action of cryofixation (approximately 1 msec) gives a more accurate picture of the vesicular network because it captures the transient structure of labile or dynamic membranes. PMID:1795182

  9. Permeability-controlled optical modulator with Tri-gate metamaterial: control of permeability on InP-based photonic integration platform.

    PubMed

    Amemiya, Tomohiro; Ishikawa, Atsushi; Kanazawa, Toru; Kang, JoonHyung; Nishiyama, Nobuhiko; Miyamoto, Yasuyuki; Tanaka, Takuo; Arai, Shigehisa

    2015-01-01

    Metamaterials are artificially structured materials that can produce innovative optical functionalities such as negative refractive index, invisibility cloaking, and super-resolution imaging. Combining metamaterials with semiconductors enables us to develop novel optoelectronic devices based on the new concept of operation. Here we report the first experimental demonstration of a permeability-controlled waveguide optical modulator consisting of an InGaAsP/InP Mach-Zehnder interferometer with 'tri-gate' metamaterial attached on its arms. The tri-gate metamaterial consists of metal resonator arrays and triple-gate field effect elements. It changes its permeability with a change in the controlling gate voltage, thereby changing the refractive index of the interferometer arm to switch the modulator with an extinction ratio of 6.9 dB at a wavelength of 1.55 μm. The result shows the feasibility of InP-based photonic integrated devices that can produce new functions by controlling their permeability as well as their permittivity. PMID:25797041

  10. Permeability-controlled optical modulator with Tri-gate metamaterial: control of permeability on InP-based photonic integration platform

    NASA Astrophysics Data System (ADS)

    Amemiya, Tomohiro; Ishikawa, Atsushi; Kanazawa, Toru; Kang, Joonhyung; Nishiyama, Nobuhiko; Miyamoto, Yasuyuki; Tanaka, Takuo; Arai, Shigehisa

    2015-03-01

    Metamaterials are artificially structured materials that can produce innovative optical functionalities such as negative refractive index, invisibility cloaking, and super-resolution imaging. Combining metamaterials with semiconductors enables us to develop novel optoelectronic devices based on the new concept of operation. Here we report the first experimental demonstration of a permeability-controlled waveguide optical modulator consisting of an InGaAsP/InP Mach-Zehnder interferometer with `tri-gate' metamaterial attached on its arms. The tri-gate metamaterial consists of metal resonator arrays and triple-gate field effect elements. It changes its permeability with a change in the controlling gate voltage, thereby changing the refractive index of the interferometer arm to switch the modulator with an extinction ratio of 6.9 dB at a wavelength of 1.55 μm. The result shows the feasibility of InP-based photonic integrated devices that can produce new functions by controlling their permeability as well as their permittivity.

  11. Permeability-controlled optical modulator with Tri-gate metamaterial: control of permeability on InP-based photonic integration platform

    PubMed Central

    Amemiya, Tomohiro; Ishikawa, Atsushi; Kanazawa, Toru; Kang, JoonHyung; Nishiyama, Nobuhiko; Miyamoto, Yasuyuki; Tanaka, Takuo; Arai, Shigehisa

    2015-01-01

    Metamaterials are artificially structured materials that can produce innovative optical functionalities such as negative refractive index, invisibility cloaking, and super-resolution imaging. Combining metamaterials with semiconductors enables us to develop novel optoelectronic devices based on the new concept of operation. Here we report the first experimental demonstration of a permeability-controlled waveguide optical modulator consisting of an InGaAsP/InP Mach-Zehnder interferometer with ‘tri-gate’ metamaterial attached on its arms. The tri-gate metamaterial consists of metal resonator arrays and triple-gate field effect elements. It changes its permeability with a change in the controlling gate voltage, thereby changing the refractive index of the interferometer arm to switch the modulator with an extinction ratio of 6.9 dB at a wavelength of 1.55 μm. The result shows the feasibility of InP-based photonic integrated devices that can produce new functions by controlling their permeability as well as their permittivity. PMID:25797041

  12. Continental Portuguese Territory Flood Susceptibility Index - contribution for a vulnerability index

    NASA Astrophysics Data System (ADS)

    Jacinto, R.; Grosso, N.; Reis, E.; Dias, L.; Santos, F. D.; Garrett, P.

    2014-12-01

    This work defines a national flood susceptibility index for the Portuguese continental territory, by proposing the aggregation of different variables which represent natural conditions for permeability, runoff and accumulation. This index is part of the national vulnerability index developed in the scope of Flood Maps in Climate Change Scenarios (CIRAC) project, supported by the Portuguese Association of Insurers (APS). This approach expands on previous works by trying to bridge the gap between different floods mechanisms (e.g. progressive and flash floods) occurring at different spatial scales in the Portuguese territory through: (a) selecting homogeneously processed datasets, (b) aggregating their values to better translate the spatially continuous and cumulative influence in floods at multiple spatial scales. Results show a good ability to capture, in the higher susceptibility classes, different flood types: progressive floods and flash floods. Lower values are usually related to: mountainous areas, low water accumulation potential and more permeable soils. Validation with independent flood datasets confirmed these index characteristics, although some overestimation can be seen in the southern region of Alentejo where, due to a dense hydrographic network and an overall low slope, floods are not as frequent as a result of lower precipitation mean values. Future work will focus on: (i) including extreme precipitation datasets to represent the triggering factor, (ii) improving representation of smaller and stepper basins, (iii) optimizing variable weight definition process, (iii) developing more robust independent flood validation datasets.

  13. Continental Portuguese Territory Flood Susceptibility Index - contribution to a vulnerability index

    NASA Astrophysics Data System (ADS)

    Jacinto, R.; Grosso, N.; Reis, E.; Dias, L.; Santos, F. D.; Garrett, P.

    2015-08-01

    This work defines a national flood susceptibility index for the Portuguese continental territory, by proposing the aggregation of different variables which represent natural conditions for permeability, runoff and accumulation. This index is part of the national vulnerability index developed in the scope of Flood Maps in Climate Change Scenarios (CIRAC) project, supported by the Portuguese Association of Insurers (APS). This approach expands on previous works by trying to bridge the gap between different flood mechanisms (e.g. progressive and flash floods) occurring at different spatial scales in the Portuguese territory through (a) selecting homogeneously processed data sets and (b) aggregating their values to better translate the spatially continuous and cumulative influence in floods at multiple spatial scales. Results show a good ability to capture, in the higher susceptibility classes, different flood types: fluvial floods and flash floods. Lower values are usually related to mountainous areas, low water accumulation potential and more permeable soils. Validation with independent flood data sets confirmed these index characteristics, although some overestimation can be seen in the southern region of Alentejo where, due to a dense hydrographic network and an overall low slope, floods are not as frequent as a result of lower precipitation mean values. Future work will focus on (i) including extreme precipitation data sets to represent the triggering factor, (ii) improving representation of smaller and stepper basins, (iii) optimizing variable weight definition process and (iii) developing more robust independent flood validation data sets.

  14. Permeability of Hollow Microspherical Membranes to Helium

    NASA Astrophysics Data System (ADS)

    Zinoviev, V. N.; Kazanin, I. V.; Pak, A. Yu.; Vereshchagin, A. S.; Lebiga, V. A.; Fomin, V. M.

    2016-01-01

    This work is devoted to the study of the sorption characteristics of various hollow microspherical membranes to reveal particles most suitable for application in the membrane-sorption technologies of helium extraction from a natural gas. The permeability of the investigated sorbents to helium and their impermeability to air and methane are shown experimentally. The sorption-desorption dependences of the studied sorbents have been obtained, from which the parameters of their specific permeability to helium are calculated. It has been established that the physicochemical modification of the original particles exerts a great influence on the coefficient of the permeability of a sorbent to helium. Specially treated cenospheres have displayed high efficiency as membranes for selective extraction of helium.

  15. Intestinal permeability in patients with psoriasis.

    PubMed

    Humbert, P; Bidet, A; Treffel, P; Drobacheff, C; Agache, P

    1991-07-01

    A possible relationship between intestinal structure and function in the pathogenesis of psoriasis has recently brought about considerable interest. The purpose of this study was to evaluate the intestinal permeability in psoriatic patients by comparing it with healthy controls. 15 psoriatic patients and 15 healthy volunteers entered the study. Intestinal permeability was evaluated using the 51Cr-labeled EDTA absorption test. The 24-h urine excretion of 51Cr-EDTA from psoriatic patients was 2.46 +/- 0.81%. These results differed significantly from controls (1.95 +/- 0.36%; P less than 0.05). The difference in intestinal permeability between psoriatic patients and controls could be due to alterations in the small intestinal epithelium of psoriatics. PMID:1911568

  16. Systemic Vascular Function Is Associated with Muscular Power in Older Adults

    PubMed Central

    Heffernan, Kevin S.; Chalé, Angela; Hau, Cynthia; Cloutier, Gregory J.; Phillips, Edward M.; Warner, Patrick; Nickerson, Heather; Reid, Kieran F.; Kuvin, Jeffrey T.; Fielding, Roger A.

    2012-01-01

    Age-associated loss of muscular strength and muscular power is a critical determinant of loss of physical function and progression to disability in older adults. In this study, we examined the association of systemic vascular function and measures of muscle strength and power in older adults. Measures of vascular endothelial function included brachial artery flow-mediated dilation (FMD) and the pulse wave amplitude reactive hyperemia index (PWA-RHI). Augmentation index (AIx) was taken as a measure of systemic vascular function related to arterial stiffness and wave reflection. Measures of muscular strength included one repetition maximum (1RM) for a bilateral leg press. Peak muscular power was measured during 5 repetitions performed as fast as possible for bilateral leg press at 40% 1RM. Muscular power was associated with brachial FMD (r = 0.43, P < 0.05), PWA-RHI (r = 0.42, P < 0.05), and AIx (r = −0.54, P < 0.05). Muscular strength was not associated with any measure of vascular function. In conclusion, systemic vascular function is associated with lower-limb muscular power but not muscular strength in older adults. Whether loss of muscular power with aging contributes to systemic vascular deconditioning or vascular dysfunction contributes to decrements in muscular power remains to be determined. PMID:22966457

  17. Development of an Improved Permeability Modification Simulator

    SciTech Connect

    Gao, H.W.; Elphnick, J.

    1999-03-09

    This report describes the development of an improved permeability modification simulator performed jointly by BDM Petroleum Technologies and Schlumberger Dowell under a cooperative research and development agreement (CRADA) with the US Department of Energy. The improved simulator was developed by modifying NIPER's PC-GEL permeability modification simulator to include a radial model, a thermal energy equation, a wellbore simulator, and a fully implicit time-stepping option. The temperature-dependent gelation kinetics of a delayed gel system (DGS) is also included in the simulator.

  18. Ascorbic acid prevents VEGF-induced increases in endothelial barrier permeability.

    PubMed

    Ulker, Esad; Parker, William H; Raj, Amita; Qu, Zhi-Chao; May, James M

    2016-01-01

    Vascular endothelial growth factor (VEGF) increases endothelial barrier permeability, an effect that may contribute to macular edema in diabetic retinopathy. Since vitamin C, or ascorbic acid, can tighten the endothelial permeability barrier, we examined whether it could prevent the increase in permeability due to VEGF in human umbilical vein endothelial cells (HUVECs). As previously observed, VEGF increased HUVEC permeability to radiolabeled inulin within 60 min in a concentration-dependent manner. Loading the cells with increasing concentrations of ascorbate progressively prevented the leakage caused by 100 ng/ml VEGF, with a significant inhibition at 13 µM and complete inhibition at 50 µM. Loading cells with 100 µM ascorbate also decreased the basal generation of reactive oxygen species and prevented the increase caused by both 100 ng/ml VEGF. VEGF treatment decreased intracellular ascorbate by 25 %, thus linking ascorbate oxidation to its prevention of VEGF-induced barrier leakage. The latter was blocked by treating the cells with 60 µM L-NAME (but not D-NAME) as well as by 30 µM sepiapterin, a precursor of tetrahydrobiopterin that is required for proper function of endothelial nitric oxide synthase (eNOS). These findings suggest that VEGF-induced barrier leakage uncouples eNOS. Ascorbate inhibition of the VEGF effect could thus be due either to scavenging superoxide or to peroxynitrite generated by the uncoupled eNOS, or more likely to its ability to recycle tetrahydrobiopterin, thus avoiding enzyme uncoupling in the first place. Ascorbate prevention of VEGF-induced increases in endothelial permeability opens the possibility that its repletion could benefit diabetic macular edema. PMID:26590088

  19. Endothelial connexin43 mediates acid-induced increases in pulmonary microvascular permeability.

    PubMed

    Parthasarathi, Kaushik

    2012-07-01

    Acid aspiration, a common cause of acute lung injury, leads to alveolar edema. Increase in lung vascular permeability underlies this pathology. To define mechanisms, isolated rat lungs were perfused with autologous blood. Hydrochloric acid and rhodamine-dextran 70 kDa (RDx70) were coinstilled into an alveolus by micropuncture. RDx70 fluorescence was used to establish the spatial distribution of acid. Subsequently, FITC-dextran 20 kDa (FDx20) was infused into microvessels for 60 min followed by a 10-min HEPES-buffered saline wash. During the infusion, FITC fluorescence changes were recorded to quantify the ratio of peak to postwash fluorescence. The ratio, termed normalized fluorescence, was low for acid compared with buffer instillation both in microvessels abutting acid-treated alveoli and those located more than 700 μm away. In contrast, the normalized fluorescence was similar to buffer controls when a higher molecular weight tracer (FITC-dextran 70 kDa) was infused instead of FDx20, suggesting that normalized FDx20 fluorescence faithfully represented microvascular permeability. Inhibiting endothelial connexin43 (Cx43) gap junction communication with Gap27 blunted the acid-induced reduction in normalized fluorescence, although scrambled Gap27 did not have any effect. The blunting was evident not only in microvessels away from the site of injury, but also in those abutting directly injured alveoli. Thus the new fluorescence-based method reveals that acid increases microvascular permeability both at acid-instilled and away sites. Inhibiting endothelial Cx43 blocked the permeability increase even at the direct injury sites. These data indicate for the first time that Cx43-dependent mechanisms mediate acid-induced increases in microvascular permeability. Cx43 may be a therapeutic target in acid injury. PMID:22561459

  20. CENDI Indexing Workshop

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The CENDI Indexing Workshop held at NASA Headquarters, Two Independence Square, 300 E Street, Washington, DC, on September 21-22, 1994 focused on the following topics: machine aided indexing, indexing quality, an indexing pilot project, the MedIndEx Prototype, Department of Energy/Office of Scientific and Technical Information indexing activities, high-tech coding structures, category indexing schemes, and the Government Information Locator Service. This publication consists mostly of viewgraphs related to the above noted topics. In an appendix is a description of the Government Information Locator Service.

  1. Vascular endothelial growth factor coordinates islet innervation via vascular scaffolding

    PubMed Central

    Reinert, Rachel B.; Cai, Qing; Hong, Ji-Young; Plank, Jennifer L.; Aamodt, Kristie; Prasad, Nripesh; Aramandla, Radhika; Dai, Chunhua; Levy, Shawn E.; Pozzi, Ambra; Labosky, Patricia A.; Wright, Christopher V. E.; Brissova, Marcela; Powers, Alvin C.

    2014-01-01

    Neurovascular alignment is a common anatomical feature of organs, but the mechanisms leading to this arrangement are incompletely understood. Here, we show that vascular endothelial growth factor (VEGF) signaling profoundly affects both vascularization and innervation of the pancreatic islet. In mature islets, nerves are closely associated with capillaries, but the islet vascularization process during embryonic organogenesis significantly precedes islet innervation. Although a simple neuronal meshwork interconnects the developing islet clusters as they begin to form at E14.5, the substantial ingrowth of nerve fibers into islets occurs postnatally, when islet vascularization is already complete. Using genetic mouse models, we demonstrate that VEGF regulates islet innervation indirectly through its effects on intra-islet endothelial cells. Our data indicate that formation of a VEGF-directed, intra-islet vascular plexus is required for development of islet innervation, and that VEGF-induced islet hypervascularization leads to increased nerve fiber ingrowth. Transcriptome analysis of hypervascularized islets revealed an increased expression of extracellular matrix components and axon guidance molecules, with these transcripts being enriched in the islet-derived endothelial cell population. We propose a mechanism for coordinated neurovascular development within pancreatic islets, in which endocrine cell-derived VEGF directs the patterning of intra-islet capillaries during embryogenesis, forming a scaffold for the postnatal ingrowth of essential autonomic nerve fibers. PMID:24574008

  2. Anti-YKL-40 antibody and ionizing irradiation synergistically inhibit tumor vascularization and malignancy in glioblastoma.

    PubMed

    Shao, Rong; Francescone, Ralph; Ngernyuang, Nipaporn; Bentley, Brooke; Taylor, Sherry L; Moral, Luis; Yan, Wei

    2014-02-01

    Chemo/radiotherapies are the most common adjuvant modality treated for patients with glioblastoma (GBM) following surgery. However, the overall therapeutic benefits are still uncertain, as the mortality remains high. Elevated expression of YKL-40 in GBM was correlated with increases in mural cell-associated vessel coverage, stability and density, and decreases in vessel permeability and disease survival. To explore the potential role of YKL-40 in mural cell-mediated tumor vascularization, we employed an anti-YKL-40 neutralizing antibody (mAY) and ionizing irradiation (IR) in xenografted brain tumor models. Although single treatment with mAY or IR partially increased mouse survival, their combination led to dramatic inhibition in tumor growth and increases in mouse survival. mAY blocked mural cell-mediated vascular stability, integrity and angiogenesis; whereas IR merely promoted tumor cell and vascular cell apoptosis. Vascular radioresistance is at least partially attributed to expression of YKL-40 in mural cells. These divergent effects were also recapitulated in cultured systems using endothelial cells and mural cells differentiated from glioblastoma stem-like cells (GSCs). Dysfunction of intercellular contact N-cadherin was found to mediate mAY-inhibited vascularization. Collectively, the data suggest that the conjunction therapy with mAY and IR synergistically inhibit tumor vascularization and progression. The evidence may shed light on a new adjuvant therapy in clinic. PMID:24282289

  3. Experimental Branch Retinal Vein Occlusion Induces Upstream Pericyte Loss and Vascular Destabilization

    PubMed Central

    Dominguez, Elisa; Raoul, William; Calippe, Bertrand; Sahel, José-Alain; Guillonneau, Xavier; Paques, Michel; Sennlaub, Florian

    2015-01-01

    Aims Branch retinal vein occlusion (BRVO) leads to extensive vascular remodeling and is important cause of visual impairment. Although the vascular morphological changes following experimental vein occlusion have been described in a variety of models using angiography, the underlying cellular events are ill defined. Methods and Results We here show that laser-induced experimental BRVO in mice leads to a wave of TUNEL-positive endothelial cell (EC) apoptosis in the upstream vascular network associated with a transient edema and hemorrhages. Subsequently, we observe an induction of EC proliferation within the dilated vein and capillaries, detected by EdU incorporation, and the edema resolves. However, the pericytes of the upstream capillaries are severely reduced, which was associated with continuing EC apoptosis and proliferation. The vascular remodeling was associated with increased expression of TGFβ, TSP-1, but also FGF2 expression. Exposure of the experimental animals to hypoxia, when pericyte (PC) dropout had occurred, led to a dramatic increase in endothelial cell proliferation, confirming the vascular instability induced by the experimental BRVO. Conclusion Experimental BRVO leads to acute endothelial cells apoptosis and increased permeability. Subsequently the upstream vascular network remains destabilized, characterized by pericyte dropout, un-physiologically high endothelial cells turnover and sensitivity to hypoxia. These early changes might pave the way for capillary loss and subsequent chronic ischemia and edema that characterize the late stage disease. PMID:26208283

  4. The long noncoding RNA TUG1 regulates blood-tumor barrier permeability by targeting miR-144

    PubMed Central

    Cai, Heng; Xue, Yixue; Wang, Ping; Wang, Zhenhua; Li, Zhen; Hu, Yi; Li, Zhiqing; Shang, Xiuli; Liu, Yunhui

    2015-01-01

    Blood-tumor barrier (BTB) limits the delivery of chemotherapeutic agent to brain tumor tissues. Long non-coding RNAs (lncRNAs) have been shown to play critical regulatory roles in various biologic processes of tumors. However, the role of lncRNAs in BTB permeability is unclear. LncRNA TUG1 (taurine upregulated gene 1) was highly expressed in glioma vascular endothelial cells from glioma tissues. It also upregulated in glioma co-cultured endothelial cells (GEC) from BTB model in vitro. Knockdown of TUG1 increased BTB permeability, and meanwhile down-regulated the expression of the tight junction proteins ZO-1, occludin, and claudin-5. Both bioinformatics and luciferase reporter assays demonstrated that TUG1 influenced BTB permeability via binding to miR-144. Furthermore, Knockdown of TUG1 also down-regulated Heat shock transcription factor 2 (HSF2), a transcription factor of the heat shock transcription factor family, which was defined as a direct and functional downstream target of miR-144. HSF2 up-regulated the promoter activities and interacted with the promoters of ZO-1, occludin, and claudin-5 in GECs. In conclusion, our results indicate that knockdown of TUG1 increased BTB permeability via binding to miR-144 and then reducing EC tight junction protein expression by targeting HSF2. Thus, TUG1 may represent a useful future therapeutic target for enhancing BTB permeability. PMID:26078353

  5. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling

    PubMed Central

    Apopa, Patrick L; Qian, Yong; Shao, Rong; Guo, Nancy Lan; Schwegler-Berry, Diane; Pacurari, Maricica; Porter, Dale; Shi, Xianglin; Vallyathan, Val; Castranova, Vincent; Flynn, Daniel C

    2009-01-01

    Background Engineered iron nanoparticles are being explored for the development of biomedical applications and many other industry purposes. However, to date little is known concerning the precise mechanisms of translocation of iron nanoparticles into targeted tissues and organs from blood circulation, as well as the underlying implications of potential harmful health effects in human. Results The confocal microscopy imaging analysis demonstrates that exposure to engineered iron nanoparticles induces an increase in cell permeability in human microvascular endothelial cells. Our studies further reveal iron nanoparticles enhance the permeability through the production of reactive oxygen species (ROS) and the stabilization of microtubules. We also showed Akt/GSK-3? signaling pathways are involved in iron nanoparticle-induced cell permeability. The inhibition of ROS demonstrate ROS play a major role in regulating Akt/GSK-3? mediated cell permeability upon iron nanoparticle exposure. These results provide new insights into the bioreactivity of engineered iron nanoparticles which can inform potential applications in medical imaging or drug delivery. Conclusion Our results indicate that exposure to iron nanoparticles induces an increase in endothelial cell permeability through ROS oxidative stress-modulated microtubule remodeling. The findings from this study provide new understandings on the effects of nanoparticles on vascular transport of macromolecules and drugs. PMID:19134195

  6. The long noncoding RNA TUG1 regulates blood-tumor barrier permeability by targeting miR-144.

    PubMed

    Cai, Heng; Xue, Yixue; Wang, Ping; Wang, Zhenhua; Li, Zhen; Hu, Yi; Li, Zhiqing; Shang, Xiuli; Liu, Yunhui

    2015-08-14

    Blood-tumor barrier (BTB) limits the delivery of chemotherapeutic agent to brain tumor tissues. Long non-coding RNAs (lncRNAs) have been shown to play critical regulatory roles in various biologic processes of tumors. However, the role of lncRNAs in BTB permeability is unclear. LncRNA TUG1 (taurine upregulated gene 1) was highly expressed in glioma vascular endothelial cells from glioma tissues. It also upregulated in glioma co-cultured endothelial cells (GEC) from BTB model in vitro. Knockdown of TUG1 increased BTB permeability, and meanwhile down-regulated the expression of the tight junction proteins ZO-1, occludin, and claudin-5. Both bioinformatics and luciferase reporter assays demonstrated that TUG1 influenced BTB permeability via binding to miR-144. Furthermore, Knockdown of TUG1 also down-regulated Heat shock transcription factor 2 (HSF2), a transcription factor of the heat shock transcription factor family, which was defined as a direct and functional downstream target of miR-144. HSF2 up-regulated the promoter activities and interacted with the promoters of ZO-1, occludin, and claudin-5 in GECs. In conclusion, our results indicate that knockdown of TUG1 increased BTB permeability via binding to miR-144 and then reducing EC tight junction protein expression by targeting HSF2. Thus, TUG1 may represent a useful future therapeutic target for enhancing BTB permeability. PMID:26078353

  7. Predicting the permeability of sediments entering subduction zones

    NASA Astrophysics Data System (ADS)

    Daigle, Hugh; Screaton, Elizabeth J.

    2015-07-01

    Using end-member permeabilities defined by a worldwide compilation of sediment permeabilities at convergent margins, we compare permeability predictions using a geometric mean and a two-component effective medium theory (EMT). Our implementation of EMT includes a threshold fraction of the high-permeability component that determines whether flow occurs dominantly in the high- or low-permeability component. We find that this threshold fraction in most cases is equal to the silt + sand-sized fraction of the sediment. This suggests that sediments undergoing primary consolidation tend to exhibit flow equally distributed between the high- and low-permeability components. We show that the EMT method predicts permeability better than the weighted geometric mean of the end-member values for clay fractions <0.6. This work provides insight into the microstructural controls on permeability in subducting sediments and valuable guidance for locations which lack site-specific permeability results but have available grain-size information.

  8. [Cause and significance of increased endothelial permeability in the development of arteriosclerosis].

    PubMed

    Herrmann, W; Massmann, J

    1976-09-15

    The above survey described the physiological and pathological transport of molecules through the arterial endothelium. The barrier function of the endothelium can be interrupted by the humoral substances and such ones be longing to the vascular wall as well as by haemodynamic stress. With the intercellular junctions being opened by destruction or contraction of the endothelium, macromolecular plasma constituents get into the subendothelium where they are retained. By this retentive effect an increased endothelial permeability causes, even with physiological plasma-lipid concentrations, an accumulation of lipoproteins and other large plasma particles in the intima and upper media. The continuous plasma insudation consequently leads to the formation of an intimal regneration tissue, the intimal proliferation. Under the conditions of pathological plasma-lipid concentrations there is to be noticed an acceleration of regeneration processes. Though the new experimental results characterize the endothelial alteration as an initial process, the individual reaction of the vascular wall forms the biochemical and structural correlate of arteriosclerosis. From the results described it can be concluded that the inhibition of permeability disturbances and the involved proliferation processes of the arterial wall as well as the prevention of a hyperlipoproteinaemia are a causative therapeutical basis of prophylaxis and metaphylaxis of arteriosclerosis. PMID:795176

  9. Proteomics-Based Metabolic Modeling Reveals That Fatty Acid Oxidation (FAO) Controls Endothelial Cell (EC) Permeability*

    PubMed Central

    Patella, Francesca; Schug, Zachary T.; Persi, Erez; Neilson, Lisa J.; Erami, Zahra; Avanzato, Daniele; Maione, Federica; Hernandez-Fernaud, Juan R.; Mackay, Gillian; Zheng, Liang; Reid, Steven; Frezza, Christian; Giraudo, Enrico; Fiorio Pla, Alessandra; Anderson, Kurt; Ruppin, Eytan; Gottlieb, Eyal; Zanivan, Sara

    2015-01-01

    Endothelial cells (ECs) play a key role to maintain the functionality of blood vessels. Altered EC permeability causes severe impairment in vessel stability and is a hallmark of pathologies such as cancer and thrombosis. Integrating label-free quantitative proteomics data into genome-wide metabolic modeling, we built up a model that predicts the metabolic fluxes in ECs when cultured on a tridimensional matrix and organize into a vascular-like network. We discovered how fatty acid oxidation increases when ECs are assembled into a fully formed network that can be disrupted by inhibiting CPT1A, the fatty acid oxidation rate-limiting enzyme. Acute CPT1A inhibition reduces cellular ATP levels and oxygen consumption, which are restored by replenishing the tricarboxylic acid cycle. Remarkably, global phosphoproteomic changes measured upon acute CPT1A inhibition pinpointed altered calcium signaling. Indeed, CPT1A inhibition increases intracellular calcium oscillations. Finally, inhibiting CPT1A induces hyperpermeability in vitro and leakage of blood vessel in vivo, which were restored blocking calcium influx or replenishing the tricarboxylic acid cycle. Fatty acid oxidation emerges as central regulator of endothelial functions and blood vessel stability and druggable pathway to control pathological vascular permeability. PMID:25573745

  10. Proteomics-based metabolic modeling reveals that fatty acid oxidation (FAO) controls endothelial cell (EC) permeability.

    PubMed

    Patella, Francesca; Schug, Zachary T; Persi, Erez; Neilson, Lisa J; Erami, Zahra; Avanzato, Daniele; Maione, Federica; Hernandez-Fernaud, Juan R; Mackay, Gillian; Zheng, Liang; Reid, Steven; Frezza, Christian; Giraudo, Enrico; Fiorio Pla, Alessandra; Anderson, Kurt; Ruppin, Eytan; Gottlieb, Eyal; Zanivan, Sara

    2015-03-01

    Endothelial cells (ECs) play a key role to maintain the functionality of blood vessels. Altered EC permeability causes severe impairment in vessel stability and is a hallmark of pathologies such as cancer and thrombosis. Integrating label-free quantitative proteomics data into genome-wide metabolic modeling, we built up a model that predicts the metabolic fluxes in ECs when cultured on a tridimensional matrix and organize into a vascular-like network. We discovered how fatty acid oxidation increases when ECs are assembled into a fully formed network that can be disrupted by inhibiting CPT1A, the fatty acid oxidation rate-limiting enzyme. Acute CPT1A inhibition reduces cellular ATP levels and oxygen consumption, which are restored by replenishing the tricarboxylic acid cycle. Remarkably, global phosphoproteomic changes measured upon acute CPT1A inhibition pinpointed altered calcium signaling. Indeed, CPT1A inhibition increases intracellular calcium oscillations. Finally, inhibiting CPT1A induces hyperpermeability in vitro and leakage of blood vessel in vivo, which were restored blocking calcium influx or replenishing the tricarboxylic acid cycle. Fatty acid oxidation emerges as central regulator of endothelial functions and blood vessel stability and druggable pathway to control pathological vascular permeability. PMID:25573745

  11. High-permeability criterion for BCS classification: segmental/pH dependent permeability considerations.

    PubMed

    Dahan, Arik; Miller, Jonathan M; Hilfinger, John M; Yamashita, Shinji; Yu, Lawrence X; Lennernäs, Hans; Amidon, Gordon L

    2010-10-01

    The FDA classifies a drug substance as high-permeability when the fraction of dose absorbed (F(abs)) in humans is 90% or higher. This direct correlation between human permeability and F(abs) has been recently controversial, since the β-blocker sotalol showed high F(abs) (90%) and low Caco-2 permeability. The purpose of this study was to investigate the scientific basis for this disparity between permeability and F(abs). The effective permeabilities (P(eff)) of sotalol and metoprolol, a FDA standard for the low/high P(eff) class boundary, were investigated in the rat perfusion model, in three different intestinal segments with pHs corresponding to the physiological pH in each region: (1) proximal jejunum, pH 6.5; (2) mid small intestine, pH 7.0; and (3) distal ileum, pH 7.5. Both metoprolol and sotalol showed pH-dependent permeability, with higher P(eff) at higher pH. At any given pH, sotalol showed lower permeability than metoprolol; however, the permeability of sotalol determined at pH 7.5 exceeded/matched metoprolol's at pH 6.5 and 7.0, respectively. Physicochemical analysis based on ionization, pK(a) and partitioning of these drugs predicted the same trend and clarified the mechanism behind these observed results. Experimental octanol-buffer partitioning experiments confirmed the theoretical curves. An oral dose of metoprolol has been reported to be completely absorbed in the upper small intestine; it follows, hence, that metoprolol's P(eff) value at pH 7.5 is not likely physiologically relevant for an immediate release dosage form, and the permeability at pH 6.5 represents the actual relevant value for the low/high permeability class boundary. Although sotalol's permeability is low at pH 6.5 and 7.0, at pH 7.5 it exceeds/matches the threshold of metoprolol at pH 6.5 and 7.0, most likely responsible for its high F(abs). In conclusion, we have shown that, in fact, there is no discrepancy between P(eff) and F(abs) in sotalol's absorption; the data emphasize that, if a compound has high fraction of dose absorbed, it will have high-permeability, not necessarily in the jejunum, but at some point along the relevant intestinal regions. PMID:20701326

  12. Dysfunction of vascular smooth muscle and vascular remodeling by simvastatin.

    PubMed

    Kang, Seojin; Woo, Hyang-Hwa; Kim, Keunyoung; Lim, Kyung-Min; Noh, Ji-Yoon; Lee, Moo-Yeol; Bae, Young Min; Bae, Ok-Nam; Chung, Jin-Ho

    2014-04-01

    Statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, are widely prescribed for hypercholesterolemia. With the increasing use of statins, numerous reports demonstrated that statins can cause damage to skeletal muscles. However, the toxicities of statins on vascular smooth muscle, which are essential to cardiovascular homeostasis, have not been previously described. Here, we examined the effects of simvastatin on the contractile function and the integrity of vascular smooth muscle in isolated rat thoracic aortic rings, primary cultured vascular smooth muscle cells (VSMCs) in vitro and rats in vivo. In aortic rings, simvastatin suppressed the normal agonist-induced contractile responses in time- and concentration-dependent manners (0.86 g ± 0.11 at 10 μM simvastatin for 24 h compared with 1.89 g ± 0.11 at control). The suppression persisted in the endothelium-denuded aortic rings and was irreversible even after wash-out of simvastatin. Simvastatin suppressed the contraction induced by Bay K8644, an activator of voltage-operated Ca²⁺ channel (VOCC) in rat aortic rings and abolished agonist-induced intracellular Ca²⁺ increase in VSMCs. The simvastatin-induced contractile dysfunction was reversed by the supplementation of mevalonate and geranylgeranylpyrophosphate, precursors for protein isoprenylation. Consistently, activation of RhoA, a representative isoprenylated protein, was disrupted by simvastatin in VSMCs and RhoA-mediated phosphorylation of MYPT1 and CPI-17, and tonic tension were also suppressed. Notably, prolonged treatment of simvastatin up to 48 h induced apoptosis of vascular smooth muscle in aortic rings. Most importantly, simvastatin treatment in vivo significantly attenuated the agonist-induced vasoconstriction in rats ex vivo and induced a decrease in luminal area of the vascular wall. Collectively, these results demonstrate that simvastatin can impair the normal vascular contractility by disturbing Ca²⁺ influx and RhoA activity, ultimately leading to apoptosis and structural remodeling. PMID:24449418

  13. Graphical Drop Caps Indexing

    NASA Astrophysics Data System (ADS)

    Chouaib, Hassan; Cloppet