Measurements of Solar Vector Magnetic Fields
NASA Technical Reports Server (NTRS)
Hagyard, M. J. (editor)
1985-01-01
Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.
Magnetic vector field tag and seal
Johnston, Roger G.; Garcia, Anthony R.
2004-08-31
One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.
Measuring vector magnetic fields in solar prominences
Suárez, D Orozco; Bueno, J Trujillo
2012-01-01
We present spectropolarimetric observations in the He I 1083.0 nm multiplet of a quiescent, hedgerow solar prominence. The data were taken with the Tenerife Infrared Polarimeter attached to the German Vacuum Tower Telescope at the Observatorio del Teide (Tenerife; Canary Islands; Spain). The observed He I circular and linear polarization signals are dominated by the Zeeman effect and by atomic level polarization and the Hanle effect, respectively. These observables are sensitive to the strength and orientation of the magnetic field vector at each spatial point of the field of view. We determine the magnetic field vector of the prominence by applying the HAZEL inversion code to the observed Stokes profiles. We briefly discuss the retrieved magnetic field vector configuration.
Magnetic field vector retrieval with the Helioseismic and Magnetic Imager
J. M. Borrero; S. Tomczyk; A. Norton; T. Darnell; J. Schou; P. Scherrer; R. Bush; Y. Liu
2006-11-17
We investigate the accuracy to which we can retrieve the solar photospheric magnetic field vector using the Helioseismic and Magnetic Imager (HMI) that will fly onboard of the Solar Dynamics Observatory (SDO) by inverting simulated HMI profiles. The simulated profiles realistically take into account the effects of the photon noise, limited spectral resolution, instrumental polarization modulation, solar p modes and temporal averaging. The accuracy of the determination of the magnetic field vector is studied considering the different operational modes of the instrument.
Vector magnetic fields of Solar Granulation
Jin, Chunlan; Zhao, Meng
2008-01-01
Observations of quiet Sun from the Solar Optical Telescope/Spectro-Polarimeter (SOT/SP) aboard the Hinode spacecraft would reveal the magnetic characters of the solar photosphere. By making use of the deep mode observations of three quiet regions, we have statistically studied the vector magnetic fields of solar granulation. More than 2000 normal granules are manually selected to form a sample. It is recognized that some granules are even darker than the mean photosphere in intensity, and there is a linear correlation between intensity and Doppler velocity in granules. The distributions of longitudinal and transverse apparent magnetic flux densities, Doppler velocity and continuum intensity of granules are obtained, and their unsigned magnetic flux measured. Two approaches are carried out in this study. First we obtained the magnetic properties of granulation by averaging the measurements for all the sampling granules. Secondly, we reconstructed an average granular cell based on a sub-sample, and obtained the...
Mapping the magnetic field vector in a fountain clock
Gertsvolf, Marina; Marmet, Louis
2011-12-15
We show how the mapping of the magnetic field vector components can be achieved in a fountain clock by measuring the Larmor transition frequency in atoms that are used as a spatial probe. We control two vector components of the magnetic field and apply audio frequency magnetic pulses to localize and measure the field vector through Zeeman spectroscopy.
Vector magnetic fields of Solar Granulation
Chunlan Jin; Jingxiu Wang; Meng Zhao
2008-09-05
Observations of quiet Sun from the Solar Optical Telescope/Spectro-Polarimeter (SOT/SP) aboard the Hinode spacecraft would reveal the magnetic characters of the solar photosphere. By making use of the deep mode observations of three quiet regions, we have statistically studied the vector magnetic fields of solar granulation. More than 2000 normal granules are manually selected to form a sample. It is recognized that some granules are even darker than the mean photosphere in intensity, and there is a linear correlation between intensity and Doppler velocity in granules. The distributions of longitudinal and transverse apparent magnetic flux densities, Doppler velocity and continuum intensity of granules are obtained, and their unsigned magnetic flux measured. Two approaches are carried out in this study. First we obtained the magnetic properties of granulation by averaging the measurements for all the sampling granules. Secondly, we reconstructed an average granular cell based on a sub-sample, and obtained the detailed distribution of apparent magnetic flux density within the model granular cell. All the results have been compared with that of inter-granular lanes and a few typical abnormal granules.
Charged and neutral vector meson under magnetic field
Hao Liu; Lang Yu; Mei Huang
2014-08-06
The vector meson $\\rho$ in the presence of external magnetic field has been investigated in the framework of the Nambu--Jona-Lasinio model, where mesons are constructed by infinite sum of quark-loop chains by using random phase approximation. The $\\rho$ meson polarization function is calculated to the leading order of $1/N_c$ expansion. It is found that the constituent quark mass increases with magnetic field, the masses of the neutral vector meson $\\rho^{0}$ with spin component $s_z=0,\\,\\pm1$ and the charged vector meson $\\rho^{\\pm}$ with $s_z=0$ also increases with magnetic field. However, the mass square of the charged vector meson $\\rho^{+}$ ($\\rho^{-}$) with $s_z=+1$ ($s_z=-1$) decreases linearly with magnetic field and drops to zero at the critical magnetic field $e B_c \\simeq 0.2 {\\rm GeV}^2$, which indicates the possible condensation of charged vector meson in the vacuum. This critical magnetic field is much lower than the value $eB_c=0.6 {\\rm GeV}^2$ predicted by a point-like vector meson. We also show that if we use lowest Landau level approximation, the mass of the charged vector meson $\\rho^{\\pm}$ for $s_z=\\pm1$ cannot drop to zero at high magnetic fields.
Charged and neutral vector ? mesons in a magnetic field
NASA Astrophysics Data System (ADS)
Liu, Hao; Yu, Lang; Huang, Mei
2015-01-01
The vector meson ? in the presence of an external magnetic field has been investigated in the framework of the Nambu-Jona-Lasinio model, in which mesons are constructed by the infinite sum of quark-loop chains by using random phase approximation. The quark loop of ? meson polarization function is calculated to the leading order of 1 /Nc expansion by taking the quark propagator in Ritus form as well the Landau level representation. It is found that the constituent quark mass increases with magnetic field, the masses of the neutral vector meson ?0 with spin component sz=0 ,±1 , and the charged vector meson ?± with sz=0 also increases with magnetic field. However, the mass square of the charged vector meson ?+ (?-) with sz=+1 (sz=-1 ) decreases linearly with magnetic field and drops to zero at the critical magnetic field e Bc?0.2 GeV2 , which indicates the possible condensation of a charged vector meson in the vacuum. The value of the critical magnetic field is the same by using the Ritus quark propagator as well the Landau level representation of the quark propagator, which is much lower than the value e Bc?0.6 GeV2 predicted by a pointlike vector meson.
Inferring Lower Boundary Driving Conditions Using Vector Magnetic Field Observations
NASA Technical Reports Server (NTRS)
Schuck, Peter W.; Linton, Mark; Leake, James; MacNeice, Peter; Allred, Joel
2012-01-01
Low-beta coronal MHD simulations of realistic CME events require the detailed specification of the magnetic fields, velocities, densities, temperatures, etc., in the low corona. Presently, the most accurate estimates of solar vector magnetic fields are made in the high-beta photosphere. Several techniques have been developed that provide accurate estimates of the associated photospheric plasma velocities such as the Differential Affine Velocity Estimator for Vector Magnetograms and the Poloidal/Toroidal Decomposition. Nominally, these velocities are consistent with the evolution of the radial magnetic field. To evolve the tangential magnetic field radial gradients must be specified. In addition to estimating the photospheric vector magnetic and velocity fields, a further challenge involves incorporating these fields into an MHD simulation. The simulation boundary must be driven, consistent with the numerical boundary equations, with the goal of accurately reproducing the observed magnetic fields and estimated velocities at some height within the simulation. Even if this goal is achieved, many unanswered questions remain. How can the photospheric magnetic fields and velocities be propagated to the low corona through the transition region? At what cadence must we observe the photosphere to realistically simulate the corona? How do we model the magnetic fields and plasma velocities in the quiet Sun? How sensitive are the solutions to other unknowns that must be specified, such as the global solar magnetic field, and the photospheric temperature and density?
Magnetic field satellite /MAGSAT/ spacecraft vector magnetometer calibration
NASA Technical Reports Server (NTRS)
Hinkal, S. W.
1980-01-01
The low-flying MAGSAT spacecraft, launched October 30, 1979, included a Vector Magnetometer to accurately map the magnitude and direction of the magnetic field of the earth. Calibration of the magnetometer included arc-second precision determination of the relative orientations of the three sensor axes in a coordinate system defined by optical references. This determination began with laboratory measurements of the relative alignments of optical components mounted with the magnetometer. The actual calibration procedure then consisted basically of accurate and repeatable positioning of the Vector Magnetometer within a unique magnetic test facility which nulls the earth's magnetic field, then generates magnetic fields of various orientations and strengths. Analysis of the magnetometer sensor outputs together with the position and alignment data then gave the axes orientations. We used precision theodolites and methods related to surveying techniques to achieve the accurate positioning and optical component alignment measurements. The final calibration accuracy exceeded results previously achieved in the facility.
Determination of coronal magnetic fields from vector magnetograms
NASA Technical Reports Server (NTRS)
Mikic, Zoran
1993-01-01
This report covers technical progress during the second year of the contract entitled 'Determination of Coronal Magnetic Fields from Vector Magnetograms,' NASW-4728, between NASA and Science Applications International Corporation, and covers the period January 1, 1993 to December 31, 1993. Under this contract SAIC has conducted research into the determination of coronal magnetic fields from vector magnetograms, including the development and application of algorithms to determine force-free coronal fields above selected observations of active regions. The contract began on June 30, 1992 and has a completion date of December 31, 1994. This contract is a continuation of work started in a previous contract, NASW-4571, which covered the period November 15, 1990 to December 14, 1991. During this second year we have concentrated on studying additional active regions and in using the estimated coronal magnetic fields to compare to coronal features inferred from observations.
The Height Dependence of the Magnetic Vector Field in Sunspots
NASA Astrophysics Data System (ADS)
Balthasar, H.; Bommier, V.
2009-06-01
A complex active region was observed simultaneously with the solar telescopes VTT and THEMIS on Tenrife in May 2005. Spatial scans across the sunspot group were performed at both telescopes. The full Stokes-vector was recorded in several photospheric spectral lines, i.~e. at the VTT in a group of iron and silicon lines in the near infrared and at THEMIS in iron and chromium lines in the visible. Inversions were carried out independently for the different lines in order to derive the magnetic field strength, its inclination and azimuth together with the temperature stratification. Thus we obtained the three-dimensional structure of the magnetic field. Selected locations in the penumbra and in light bridges were considered in detail. We find a general tendency that the magnetic field is weaker and less inclined in higher layers.
Height variation of the vector magnetic field in solar spicules
Suarez, D Orozco; Bueno, J Trujillo
2015-01-01
Proving the magnetic configuration of solar spicules has hitherto been difficult due to the lack of spatial resolution and image stability during off-limb ground-based observations. We report spectropolarimetric observations of spicules taken in the He I 1083 nm spectral region with the Tenerife Infrared Polarimeter II at the German Vacuum Tower Telescope of the Observatorio del Teide (Tenerife; Canary Islands; Spain). The data provide the variation with geometrical height of the Stokes I, Q, U, and V profiles whose encoded information allows the determination of the magnetic field vector by means of the HAZEL inversion code. The inferred results show that the average magnetic field strength at the base of solar spicules is about 80 gauss and then it decreases rapidly with height to about 30 gauss at a height of 3000 km above the visible solar surface. Moreover, the magnetic field vector is close to vertical at the base of the chromosphere and has mid inclinations (about 50 degree) above 2 Mm height.
Height Variation of the Vector Magnetic Field in Solar Spicules
NASA Astrophysics Data System (ADS)
Orozco Suárez, D.; Asensio Ramos, A.; Trujillo Bueno, J.
2015-04-01
Proving the magnetic configuration of solar spicules has hitherto been difficult due to the lack of spatial resolution and image stability during off-limb ground-based observations. We report spectropolarimetric observations of spicules taken in the He i 1083 nm spectral region with the Tenerife Infrared Polarimeter II at the German Vacuum Tower Telescope of the Observatorio del Teide (Tenerife, Canary Islands, Spain). The data provide the variation with geometrical height of the Stokes I, Q, U, and V profiles, whose encoded information allows the determination of the magnetic field vector by means of the HAZEL inversion code. The inferred results show that the average magnetic field strength at the base of solar spicules is about 80 gauss, and then it decreases rapidly with height to about 30 gauss at a height of 3000 km above the visible solar surface. Moreover, the magnetic field vector is close to vertical at the base of the chromosphere and has mid-inclinations (about 50°) above 2 Mm height.
New insights into chromospheric structures from vector magnetic field measurements
NASA Astrophysics Data System (ADS)
Lagg, A.
During the last decade advances in instrumentation atomic physics and modeling have greatly improved the access to the chromospheric magnetic field vector High sensitivity polarimeters like the Tenerife Infrared Polarimeter TIP2 VTT or the Spectro-Polarimeter for Infrared and Optical Regions SPINOR HAO lead to reliable Zeeman measurements using the He I 10830 nm triplet Theoretical modeling of the Hanle and the Paschen Back effect helped to significantly improve the analysis of polarization measurements in this triplet allowing to directly visualize the magnetic structure of spicules polar prominences and active regions In this presentation I will summarize the results of chromospheric magnetic field measurements using this interesting triplet obtained in the last couple of years and discuss the great potential it has to further uncover the complex structure of the chromosphere
VECTOR MAGNETIC FIELDS OF A SOLAR POLAR REGION
Jin Chunlan; Wang Jingxiu E-mail: wangjx@nao.cas.cn
2011-05-01
We study the vector magnetic fields of a solar polar region (PR) based on Solar Optical Telescope/Spectro-Polarimeter measurements. To better understand the polar magnetic properties, we compare the observed polar field with that in two solar quiet regions at the limb (QRL) and the disk center (QRD), and with that in a region of a low-latitude coronal hole (CHR). The following results are discussed: (1) The average vertical flux density of PR is 16 G, while the average horizontal flux density is 91 G. If we assume that the observed polar field suffers the same amount of limb weakening in polarization measurements as the Sun's quiet region, the average unsigned flux density in the pole would be 54 G, 60% stronger than that in the CHR. (2) The kG field in the PR occupies 6.7% of the region. The magnetic filling factor in the PR is characterized by a two-peak distribution, which appears at a field strength close to 100 G and 1000 G, respectively. (3) For the network elements, a correlation holds between the vertical and horizontal flux densities, suggesting the same physical entity is manifested by the observed stronger vertical and horizontal components. (4) The ratio of the magnetic flux in the minority polarity to that in the dominant polarity is approximately 0.5, implying that only 1/3 of the magnetic flux in the PR opens to the interplanetary space. Exemplified with CHR by a quasi-linear force-free extrapolation of the observed magnetic field, we find that the photospheric open flux is not always associated with strong vertical magnetic elements.
Vector-valued crustal magnetic field estimation using vector Slepian functions
NASA Astrophysics Data System (ADS)
Plattner, A.; Simons, F. J.
2012-12-01
To solve for the terrestrial or a planetary magnetic field from vector-valued measurements made by a satellite, an inversion needs to be performed that correctly maps the noisily and incompletely observed data down to the source level. For the case of the scalar potential, powerful localization techniques have aided in regularizing the ill-posed inverse problem of making global inference from local data, or vice versa. One can use splines, wavelets, cap harmonics, and also Slepian functions, which are optimally concentrated spatio-spectrally with respect to a function-energy norm. The Slepian functions, in particular, have been very useful in gravity geodesy, but also for the study of planetary magnetic fields available as spherical-harmonic potential expansions. It is clear that the benefits of localization are not available to vector data by simply focusing on the vector components individually. Rather, for the most common problems where a potential-description remains adequate, a dedicated function basis needs to be sought that is harmonic, vectorial in nature, bandlimited, and localized to target regions on the surface of the sphere. We have recently developed such a "vectorial spherical Slepian basis", and are thus ready to tackle the study of the satellite geomagnetic inverse problems of the future. In this presentation we apply vector-Slepian functions to the estimation of the vector-valued crustal magnetic field from vector-valued data at satellite altitude. The downward continuation of vector functions that satisfy the source-free assumption can be performed similarly to the scalar downward continuation if the data are described in a suitably transformed vector-spherical harmonic basis. We test our approach with artificial data using different data and noise power spectra and for different target regions. The vector Slepian approach should be beneficial in cases where we either have only local data at satellite altitude but want to obtain as much crustal field information as possible or if we have global data at satellite altitude but want to perform a purely local analysis of the crustal field, as we show by example.
Vector Magnetic Fields and Electric Currents from the Imaging Vector Magnetograph
Jing Li; A. A. van Ballegooijen; Don Mickey
2008-11-01
First, we describe a general procedure to produce high quality vector magnetograms using the Imaging Vector Magnetograph (IVM) at Mees Solar Observatory. At the spatial resolution 2"x2", the Stokes Q,U,V uncertainty reaches 0.001-0.0005 in time-averaged data over 1-hour in the quiet Sun. When vector magnetic fields are inferred from the time-averaged Stokes spectral images of FeI 6302.5A, the resulting uncertainties are on the order of 10 G for the longitudinal fields, 40 G for the transverse field strength and 9 degree for the magnetic azimuth. The magnetic field inversion used in this work is the "Triplet" code, which was developed and implemented in the IVM software package by the late Barry J. LaBonte. The inversion code is described in detail in the Appendix. Second, we solve for the absolute value of the vertical electric current density, |Jz|, accounting for the above IVM problems, for two different active regions. One is a single sunspot region (NOAA 10001 observed on 20 June 2002) while the other is a more complex, quadrupolar region (NOAA10030 observed on 15 July 2002). We use a calculation that does not require disambiguation of 180 degree in the transverse field directions. The |Jz| uncertainty is on the order of 7.0 mA m^-2. The vertical current density increases with increasing vertical magnetic field. The rate of increase is about 1 -2 times as large in the quadrupolar NOAA 10030 region as in the simple NOAA 10001, and it is more spatially variable over NOAA 10030 than over NOAA 10001.
The Magnetic Vector Structure of an Active Region Plage Field
NASA Astrophysics Data System (ADS)
Meling, M. H. M.; Lagg, A.; Solanki, S. K.
2008-09-01
We present scans of the active region plage associated with NOAA 10953, recorded with the Tenerife Infrared Polarimeter 2 (TIP-2) mounted behind the German Vacuum Tower Telescope (VTT) on Tenerife and the SOT-SP instrument on-board the HINODE spacecraft. TIP-2 recorded the full Stokes vector close to the diffraction limit of the telescope over a 20 angstroem wavelength range containing six magnetically sensitive FeI lines in the infrared including the g=3 line FeI 15648.5. With these lines we use the advantage that the Zeeman splitting dominates over the Doppler broadening for kG fields. The iron lines used by HINODE are FeI 6301.501and FeI 6302.494. We analyzed the data by applying a Milne-Eddington type inversion to it. In the context of a two-component model we found a bimodal distribution of field strengths, strong fields whose field strength distribution peaks at 1400 [G] and a weak field distribution, which may be associated with quiet sun regions bordering on the plage.
Vector magnetic field and vector current density in and around the ?-spot NOAA 10808†
NASA Astrophysics Data System (ADS)
Bommier, Véronique; Degl'Innocenti, Egidio Landi; Schmieder, Brigitte; Gelly, Bernard
2011-08-01
The context is that of the so-called ``fundamental ambiguity'' (also azimuth ambiguity, or 180° ambiguity) in magnetic field vector measurements: two field vectors symmetrical with respect to the line-of-sight have the same polarimetric signature, so that they cannot be discriminated. We propose a method to solve this ambiguity by applying the ``simulated annealing'' algorithm to the minimization of the field divergence, added to the longitudinal current absolute value, the line-of-sight derivative of the magnetic field being inferred by the interpretation of the Zeeman effect observed by spectropolarimetry in two lines formed at different depths. We find that the line pair Fe I ? 6301.5 and Fe I ? 6302.5 is appropriate for this purpose. We treat the example case of the ?-spot of NOAA 10808 observed on 13 September 2005 between 14:25 and 15:25 UT with the THEMIS telescope. Besides the magnetic field resolved map, the electric current density vector map is also obtained. A strong horizontal current density flow is found surrounding each spot inside its penumbra, associated to a non-zero Lorentz force centripetal with respect to the spot center (i.e., oriented towards the spot center). The current wrapping direction is found to depend on the spot polarity: clockwise for the positive polarity, counterclockwise for the negative one. This analysis is made possible thanks to the UNNOFIT2 Milne-Eddington inversion code, where the usual theory is generalized to the case of a line (Fe I ? 6301.5) that is not a normal Zeeman triplet line (like Fe I ? 6302.5).
GravitoMagnetic Field in Tensor-Vector-Scalar Theory
Exirifard, Qasem, E-mail: exir@theory.ipm.ac.ir [Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of)
2013-04-01
We study the gravitomagnetism in the TeVeS theory. We compute the gravitomagnetic field that a slow moving mass distribution produces in its Newtonian regime. We report that the consistency between the TeVeS gravitomagnetic field and that predicted by the Einstein-Hilbert theory leads to a relation between the vector and scalar coupling constants of the theory. We translate the Lunar Laser Ranging measurement's data into a constraint on the deviation from this relation.
Kazachenko, Maria D.; Fisher, George H.; Welsch, Brian T.
2014-11-01
Photospheric electric fields, estimated from sequences of vector magnetic field and Doppler measurements, can be used to estimate the flux of magnetic energy (the Poynting flux) into the corona and as time-dependent boundary conditions for dynamic models of the coronal magnetic field. We have modified and extended an existing method to estimate photospheric electric fields that combines a poloidal-toroidal decomposition (PTD) of the evolving magnetic field vector with Doppler and horizontal plasma velocities. Our current, more comprehensive method, which we dub the 'PTD-Doppler-FLCT Ideal' (PDFI) technique, can now incorporate Doppler velocities from non-normal viewing angles. It uses the FISHPACK software package to solve several two-dimensional Poisson equations, a faster and more robust approach than our previous implementations. Here, we describe systematic, quantitative tests of the accuracy and robustness of the PDFI technique using synthetic data from anelastic MHD (ANMHD) simulations, which have been used in similar tests in the past. We find that the PDFI method has less than 1% error in the total Poynting flux and a 10% error in the helicity flux rate at a normal viewing angle (? = 0) and less than 25% and 10% errors, respectively, at large viewing angles (? < 60°). We compare our results with other inversion methods at zero viewing angle and find that our method's estimates of the fluxes of magnetic energy and helicity are comparable to or more accurate than other methods. We also discuss the limitations of the PDFI method and its uncertainties.
NASA Technical Reports Server (NTRS)
Metcalf, Thomas R.
1994-01-01
I present a robust algorithm that resolves the 180-deg ambiguity in measurements of the solar vector magnetic field. The technique simultaneously minimizes both the divergence of the magnetic field and the electric current density using a simulated annealing algorithm. This results in the field orientation with approximately minimum free energy. The technique is well-founded physically and is simple to implement.
Cox, Kevin; Novikova, Irina; Mikhailov, Eugeniy E. [Department of Physics, College of William and Mary, Williamsburg, Virginia 23185 (United States); Yudin, Valery I.; Taichenachev, Alexey V. [Institute of Laser Physics SB RAS, Novosibirsk RU-630090 (Russian Federation); Novosibirsk State Technical University, Novosibirsk RU-630092 (Russian Federation); Novosibirsk State University, Novosibirsk RU-630090 (Russian Federation)
2011-01-15
We study the dependence of electromagnetically induced transparency (EIT) resonance amplitudes on the external magnetic field direction in a linearly polarized bichromatic light (lin||lin) configuration in {sup 87}Rb vapor. We demonstrate that all seven resolvable EIT resonances exhibit maxima or minima at certain orientations of the laser polarization relative to the wave vector and magnetic field. This effect can be used for the development of a high-precision EIT vector magnetometer.
VECTOR TOMOGRAPHY FOR THE CORONAL MAGNETIC FIELD. II. HANLE EFFECT MEASUREMENTS
Kramar, M.; Inhester, B.; Lin, H.; Davila, J. E-mail: Joseph.M.Davila@nasa.gov E-mail: lin@ifa.hawaii.edu
2013-09-20
In this paper, we investigate the feasibility of saturated coronal Hanle effect vector tomography or the application of vector tomographic inversion techniques to reconstruct the three-dimensional magnetic field configuration of the solar corona using linear polarization measurements of coronal emission lines. We applied Hanle effect vector tomographic inversion to artificial data produced from analytical coronal magnetic field models with equatorial and meridional currents and global coronal magnetic field models constructed by extrapolation of real photospheric magnetic field measurements. We tested tomographic inversion with only Stokes Q, U, electron density, and temperature inputs to simulate observations over large limb distances where the Stokes I parameters are difficult to obtain with ground-based coronagraphs. We synthesized the coronal linear polarization maps by inputting realistic noise appropriate for ground-based observations over a period of two weeks into the inversion algorithm. We found that our Hanle effect vector tomographic inversion can partially recover the coronal field with a poloidal field configuration, but that it is insensitive to a corona with a toroidal field. This result demonstrates that Hanle effect vector tomography is an effective tool for studying the solar corona and that it is complementary to Zeeman effect vector tomography for the reconstruction of the coronal magnetic field.
A prototype vector magnetic field monitoring system for a neutron electric dipole moment experiment
N. Nouri; A. Biswas; M. A. Brown; R. Carr; B. Filippone; C. Osthelder; B. Plaster; S. Slutsky; C. Swank
2015-08-17
We present results from a first demonstration of a magnetic field monitoring system for a neutron electric dipole moment experiment. The system is designed to reconstruct the vector components of the magnetic field in the interior measurement region solely from exterior measurements.
A prototype vector magnetic field monitoring system for a neutron electric dipole moment experiment
Nouri, N; Brown, M A; Carr, R; Filippone, B; Osthelder, C; Plaster, B; Slutsky, S; Swank, C
2015-01-01
We present results from a first demonstration of a magnetic field monitoring system for a neutron electric dipole moment experiment. The system is designed to reconstruct the vector components of the magnetic field in the interior measurement region solely from exterior measurements.
NSDL National Science Digital Library
Dray, Tevian
2006-01-01
Vector fields are vectors which change from point to point. A standard example is the velocity of moving air, in other words, wind. For instance, the current wind pattern in the San Francisco area can be found at . This site has a 2-dimensional representation; careful reading of the webpage will tell you at what elevation the wind is shown. How would you represent a vector field in 3 dimensions? What features are important? Some simple examples are shown. Each can be rotated by clicking and dragging with the mouse. Explore!
NASA Technical Reports Server (NTRS)
Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.
2014-01-01
Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.
Vector magnetic field observations with the Haleakala polarimeter
NASA Technical Reports Server (NTRS)
Mickey, D. L.
1985-01-01
Several enhancements were recently made to the Haleakala polarimeter. Linear array detectors provide simultaneous resolution over a 3-A wavelength range, with spectral resolution of 40 mA. Optical fibers are now used to carry the intensity-modulated light from the rotating quarter-wave plate polarimeter to the echelle spectrometer, permitting its removal from the spar to a more stable environment. These changes, together with improved quarter-wave plates, reduced systematic errors to a few parts in 10,000 for routine observations. Examples of Stokes profiles and derived magnetic field maps are presented.
Spatial distribution of cardiac magnetic vector fields acquired from 3120 SQUID positions.
Steinhoff, U; Schnabel, A; Burghoff, M; Freibier, T; Thiel, F; Koch, H; Trahms, L
2004-01-01
An extended measurement of the magnetic vector field of the human heart is presented. It is acquired by sequential recordings, shifting a 16 SQUID vector magnetometer across 195 positions over a healthy subject's thorax. The magnetocardiographic (MCG) signals were synchronized using a simultaneously measured ECG channel. The registration of the field extends over a volume of 1000 mm x 600 mm x 420 mm sampled at 3120 SQUID positions. We present diagrams of the vector amplitude of selected points in 6 planes at increasing distances from the frontal thorax. Each plane contains 76 vector points. Additionally, we measured the vector field at 126 points lateral to the chest. At the edge points of the measurement volume, the absolute value of the magnetic vector signal amplitude exceeds 0.3 pT in all measurement points. The dataset provides an excellent base to study dedicated MCG detection or rejection methods. Examples where rejection of the heart signal is necessary are magnetoencephalography, magnetoneurography and fetal MCG. The knowledge of the spatio-temporal distribution of the magnetic vector field of the heart supports the development and comparison of multi-SQUID systems and will be used to create new MCG interpretation and representation algorithms. PMID:16012615
NASA Technical Reports Server (NTRS)
Bommier, V.
1986-01-01
The Hanle effect is the modification of the linear polarization parameters of a spectral line due to the effect of the magnetic field. It has been successfully applied to the magnetic field vector diagnostic in solar prominences. The magnetic field vector is determined by comparing the measured polarization to the polarization computed, taking into account all the polarizing and depolarizing processes in line formation and the depolarizing effect of the magnetic field. The method was applied to simultaneous polarization measurements in the Helium D3 line and in the hydrogen beta line in 14 prominences. Four polarization parameters are measured, which lead to the determination of the three coordinates of the magnetic field vector and the electron density, owing to the sensitivity of the hydrogen beta line to the non-negligible effect of depolarizing collisions with electrons and protons of the medium. A mean value of 1.3 x 10 to the 10th power cu. cm. is derived in 14 prominences.
NASA Astrophysics Data System (ADS)
Borrero, J. M.; Kobel, P.
2013-02-01
Recent investigations of the magnetic field vector properties in the solar internetwork have provided diverging results. While some works found that the internetwork is mostly pervaded by horizontal magnetic fields, other works argued in favor of an isotropic distribution of the magnetic field vector. Motivated by these seemingly contradictory results and by the fact that most of these works have employed spectropolarimetric data at disk center only, we have revisited this problem employing high-quality data (noise level ? ? 3 × 10-4 in units of the quiet-Sun intensity) at different latitudes recorded with the Hinode/SP instrument. Instead of applying traditional inversion codes of the radiative transfer equation to retrieve the magnetic field vector at each spatial point on the solar surface and studying the resulting distribution of the magnetic field vector, we surmised a theoretical distribution function of the magnetic field vector and used it to obtain the theoretical histograms of the Stokes profiles. These histograms were then compared to the observed ones. Any mismatch between them was ascribed to the theoretical distribution of the magnetic field vector, which was subsequently modified to produce a better fit to the observed histograms. With this method we find that Stokes profiles with signals above 2 × 10-3 (in units of the continuum intensity) cannot be explained by an isotropic distribution of the magnetic field vector. We also find that the differences between the histograms of the Stokes profiles observed at different latitudes cannot be explained in terms of line-of-sight effects. However, they can be explained by a distribution of the magnetic field vector that inherently varies with latitude. We note that these results are based on a series of assumptions that, although briefly discussed in this paper, need to be considered in more detail in the future.
NASA Astrophysics Data System (ADS)
Kramar, Maxim; Lin, Haosheng; Inhester, Bernd; Davila, Joseph
Magnetic fields in the solar corona are the dominant fields that determine the static and dy-namic properties of this outermost region of the solar atmosphere. It is within this tenuous region that the magnetic force dominates the gas pressure. Direct measurement of the coronal magnetic field is one of the most challenging problems in observational solar astronomy. To date, one of the promising measurement methods that have been successfully demonstrated is the spectropolarimetric measurement of the Fe XIII 10747 A forbidden emission line (Lin, Penn Tomczyk 2000; Lin, Kuhn Coulter 2004; Tomczyk et al. 2007) formed due to Hanle and Zeeman effects. However, because coronal measurements are integrated over line-of-site (LOS), it is impossible to derive the configuration of the coronal magnetic field from a single obser-vation (from a single viewing direction). In this paper, we study the sensitivity of the vector tomographic inversion to possible pre-CME coronal magnetic field configurations and number of available observations. We show that the vector tomography techniques based on Hanle and/or Zeeman effect observations has the potential to resolve the 3D coronal non-potential magnetic field structure.
Analyzing digital vector waveforms of 0-3000 Hz magnetic fields for health studies.
Bowman, Joseph D; Miller, Christian K; Krieg, Edward F; Song, Ruiguang
2010-07-01
To improve the assessment of magnetic field exposures for occupational health studies, the Multiwave System III (MW3) was developed to capture personal exposures to the three-dimensional magnetic field vector B(t) in the 0-3000 Hz band. To process hundreds of full-shift MW3 measurements from epidemiologic studies, new computer programs were developed to calculate the magnetic field's physical properties and its interaction with biological systems through various mechanisms (magnetic induction, radical pair interactions, ion resonance, etc.). For automated calculations in the frequency domain, the software uses new algorithms that remove artifacts in the magnetic field's Fourier transform due to electronic noise and the person's motion through perturbations in the geomagnetic field from steel objects. These algorithms correctly removed the Fourier transform artifacts in 92% of samples and have improved the accuracy of frequency-dependent metrics by as much as 3300%. The output of the MwBatch software is a matrix of 41 exposure metrics calculated for each 2/15 s sample combined with 8 summary metrics for the person's full-period exposure, giving 294 summary-exposure metrics for each person monitored. In addition, the MwVisualizer software graphically explores the magnetic field's vector trace, its component waveforms, and the metrics over time. The output was validated against spreadsheet calculations with pilot data. This software successfully analyzed full-shift MW3 monitoring with 507 electric utility workers, comprising over 1 million vector waveforms. The software's output can be used to test hypotheses about magnetic field biology and disease with biophysical models and also assess compliance with exposure limits. PMID:20213671
NASA Technical Reports Server (NTRS)
Ronan, R. S.; Mickey, D. L.; Orrall, F. Q.
1987-01-01
The results of two methods for deriving photospheric vector magnetic fields from the Zeeman effect, as observed in the Fe I line at 6302.5 A at high spectral resolution (45 mA), are compared. The first method does not take magnetooptical effects into account, but determines the vector magnetic field from the integral properties of the Stokes profiles. The second method is an iterative least-squares fitting technique which fits the observed Stokes profiles to the profiles predicted by the Unno-Rachkovsky solution to the radiative transfer equation. For sunspot fields above about 1500 gauss, the two methods are found to agree in derived azimuthal and inclination angles to within about + or - 20 deg.
He I vector magnetic field maps of a sunspot and its superpenumbral fine-structure
Schad, T A; Lin, H; Tritschler, A
2015-01-01
Advanced inversions of high-resolution spectropolarimetric observations of the He I triplet at 1083 nm are used to generate unique maps of the chromospheric magnetic field vector across a sunspot and its superpenumbral canopy. The observations were acquired by the Facility Infrared Spectropolarimeter (FIRS) at the Dunn Solar Telescope (DST) on 29 January 2012. Multiple atmospheric models are employed in the inversions, as superpenumbral Stokes profiles are dominated by atomic-level polarization while sunspot profiles are Zeeman-dominated but also exhibit signatures perhaps induced by symmetry breaking effects of the radiation field incident on the chromospheric material. We derive the equilibrium magnetic structure of a sunspot in the chromosphere, and further show that the superpenumbral magnetic field does not appear finely structured, unlike the observed intensity structure. This suggests fibrils are not concentrations of magnetic flux but rather distinguished by individualized thermalization. We also dire...
B. Plaster
2013-09-22
We propose a new concept for determining the interior magnetic field vector components in neutron electric dipole moment experiments. If a closed three-dimensional boundary surface surrounding the fiducial volume of an experiment can be defined such that its interior encloses no currents or sources of magnetization, each of the interior vector field components and the magnetic scalar potential will satisfy a Laplace equation. Therefore, if either the vector field components or the normal derivative of the scalar potential can be measured on the surface of this boundary, thus defining a Dirichlet or Neumann boundary-value problem, respectively, the interior vector field components or the scalar potential (and, thus, the field components via the gradient of the potential) can be uniquely determined via solution of the Laplace equation. We discuss the applicability of this technique to the determination of the interior magnetic field components during the operating phase of neutron electric dipole moment experiments when it is not, in general, feasible to perform direct in situ measurements of the interior field components. We also study the specifications that a vector field probe must satisfy in order to determine the interior vector field components to a certain precision. The technique we propose here may also be applicable to experiments requiring monitoring of the vector magnetic field components within some closed boundary surface, such as searches for neutron-antineutron oscillations along a flight path or measurements in storage rings of the muon anomalous magnetic moment $g-2$ and the proton electric dipole moment.
He i Vector Magnetic Field Maps of a Sunspot and Its Superpenumbral Fine-Structure
NASA Astrophysics Data System (ADS)
Schad, T. A.; Penn, M. J.; Lin, H.; Tritschler, A.
2015-06-01
Advanced inversions of high-resolution spectropolarimetric observations of the He i triplet at 1083 nm are used to generate unique maps of the chromospheric magnetic field vector across a sunspot and its superpenumbral canopy. The observations were acquired by the Facility Infrared Spectropolarimeter (FIRS) at the Dunn Solar Telescope (DST) on 29 January 2012. Multiple atmospheric models are employed in the inversions because superpenumbral Stokes profiles are dominated by atomic-level polarization, while sunspot profiles are Zeeman-dominated, but also exhibit signatures that might be induced by symmetry-breaking effects of the radiation field incident on the chromospheric material. We derive the equilibrium magnetic structure of a sunspot in the chromosphere and furthermore show that the superpenumbral magnetic field does not appear to be finely structured, unlike the observed intensity structure. This suggests that fibrils are not concentrations of magnetic flux, but are instead distinguished by individualized thermalization. We also directly compare our inverted values with a current-free extrapolation of the chromospheric field. With improved measurements in the future, the average shear angle between the inferred magnetic field and the potential field may offer a means to quantify the non-potentiality of the chromospheric magnetic field to study the onset of explosive solar phenomena.
Stokes profile analysis and vector magnetic fields. I. Inversion of photospheric lines
Skumanich, A.; Lites, B.W.
1987-11-01
Improvements are proposed for the Auer et al. (1977) method for the analytic inversion of Stokes profiles via nonlinear least squares. The introduction of additional physics into the Mueller absorption matrix (by including damping wings and magnetooptical birefringence, and by decoupling the intensity profile from the three-vector polarization profile in the analysis) is found to result in a more robust inversion method, providing more reliable and accurate estimates of sunspot vector magnetic fields without significant loss of economy. The method is applied to sunspot observations obtained with the High Altitude Observatory polarimeter. 29 references.
NASA Technical Reports Server (NTRS)
Balasubramaniam, K. S.; West, E. A.
1991-01-01
The Marshall Space Flight Center (MSFC) vector magnetograph is a tunable filter magnetograph with a bandpass of 125 mA. Results are presented of the inversion of Stokes polarization profiles observed with the MSFC vector magnetograph centered on a sunspot to recover the vector magnetic field parameters and thermodynamic parameters of the spectral line forming region using the Fe I 5250.2 A spectral line using a nonlinear least-squares fitting technique. As a preliminary investigation, it is also shown that the recovered thermodynamic parameters could be better understood if the fitted parameters like Doppler width, opacity ratio, and damping constant were broken down into more basic quantities like temperature, microturbulent velocity, or density parameter.
Thalmann, J. K.; Tiwari, S. K.; Wiegelmann, T.
2013-05-20
Photospheric magnetic vector maps from two different instruments are used to model the nonlinear force-free coronal magnetic field above an active region. We use vector maps inferred from polarization measurements of the Solar Dynamics Observatory/Helioseismic and Magnetic Imager (HMI) and the Solar Optical Telescope's Spectropolarimeter (SP) on board Hinode. Besides basing our model calculations on HMI data, we use both SP data of original resolution and scaled down to the resolution of HMI. This allows us to compare the model results based on data from different instruments and to investigate how a binning of high-resolution data affects the model outcome. The resulting three-dimensional magnetic fields are compared in terms of magnetic energy content and magnetic topology. We find stronger magnetic fields in the SP data, translating into a higher total magnetic energy of the SP models. The net Lorentz forces of the HMI and SP lower boundaries verify their force-free compatibility. We find substantial differences in the absolute estimates of the magnetic field energy but similar relative estimates, e.g., the fraction of excess energy and of the flux shared by distinct areas. The location and extension of neighboring connectivity domains differ and the SP model fields tend to be higher and more vertical. Hence, conclusions about the magnetic connectivity based on force-free field models are to be drawn with caution. We find that the deviations of the model solution when based on the lower-resolution SP data are small compared to the differences of the solutions based on data from different instruments.
Houston, Kevin
Vector fields and classification Kevin Houston Introduction Liftable Vector Fields for Cross Caps Application: V K- equivalence A- versus V K- equivalence Vector fields and classification Kevin Houston School July 2010 #12;Vector fields and classification Kevin Houston Introduction Liftable Vector Fields
The Z3 model of Saturn's magnetic field and the Pioneer 11 vector helium magnetometer observations
NASA Astrophysics Data System (ADS)
Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.
1984-09-01
Magnetic field observations obtained by the Pioneer 11 vector helium magnetometer are compared with the Z3 model magnetic field. These Pioneer 11 observations, obtained at close-in radial distances, constitute an important and independent test of the Z3 zonal harmonic model, which was derived from Voyager 1 and Voyager 2 fluxgate magnetometer observations. Differences between the Pioneer 11 magnetometer and the Z3 model field are found to be small (approximately 1 percent) and quantitatively consistent with the expected instrumental accuracy. A detailed examination of these differences in spacecraft payload coordinates shows that they are uniquely associated with the instrument frame of reference and operation. A much improved fit to the Pioneer 11 observations is obtained by rotation of the instrument coordinate system about the spacecraft spin axis by 1.4 degree. With this adjustment, possibly associated with an instrumental phase lag or roll attitude error, the Pioneer 11 vector helium magnetometer observations are fully consistent with the Voyager Z3 model.
Z3 model of Saturns magnetic field and the Pioneer 11 vector helium magnetometer observations
Connerney, J.E.P.; Acuna, M.H.; Ness, N.F.
1984-05-01
Magnetic field observations obtained by the Pioneer 11 vector helium magnetometer are compared with the Z(sub 3) model magnetic field. These Pioneer 11 observations, obtained at close-in radial distances, constitute an important and independent test of the Z(sub 3) zonal harmonic model, which was derived from Voyager 1 and Voyager 2 fluxgate magnetometer observations. Differences between the Pioneer 11 magnetometer and the Z(sub 3) model field are found to be small (approximately 1%) and quantitatively consistent with the expected instrumental accuracy. A detailed examination of these differences in spacecraft payload coordinates shows that they are uniquely associated with the instrument frame of reference and operation. A much improved fit to the Pioneer 11 observations is obtained by rotation of the instrument coordinate system about the spacecraft spin axis by 1.4 degree. With this adjustment, possibly associated with an instrumental phase lag or roll attitude error, the Pioneer 11 vector helium magnetometer observations are fully consistent with the Voyager Z(sub 3) model.
Schad, T A
2015-01-01
We study 7530 sunspot umbrae and pores measured by the Hinode Spectropolarimeter (SP) between November 2006 and November 2012. We primarily seek confirmation of the long term secular decrease in the mean magnetic field strength of sunspot umbrae found by Penn and Livingston (2011, IAU Symp. 273,126) between 1998 and 2011. The excellent SP photometric properties and full vector magnetic field determinations from full-Stokes Milne-Eddington inversions are used to address the interrelated properties of the magnetic field strength and brightness temperature for all umbral cores. We find non-linear relationships between magnetic field strength and umbral temperature (and continuum contrast), as well as between umbral radius and magnetic field strength. Using disambiguated vector data, we find that the azimuths measured in the umbral cores reflect an organization weakly influenced by Joy's law. The large selection of umbrae displays a log-normal size spectrum similar to earlier solar cycles. Influenced by the ampli...
NASA Astrophysics Data System (ADS)
Kramar, Maxim; Lin, Haosheng; Tomczyk, Steven
2015-08-01
Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal phenomena at all scales. However, due to the low density and opacity of the solar atmosphere, the coronal emission measurements are result of a line-of-sight (LOS) integration through a nonuniform temperature, density and magnetic field distribution. Therefore, except in a few special cases, a direct inference of the 3D coronal magnetic field structure from polarization data is in general not possible. Tomography methods allow to resolve the LOS problem.We will present the global-scale, 3D coronal vector magnetic fields obtained by a vector tomographic inversion technique.The Vector tomographic inversion uses measurements of the Fe XIII 10747 A Hanle effect linear polarization signals by the Coronal Multichannel Polarimeter (CoMP) as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. The 3D electron density and temperature, needed as additional input, have been reconstructed by scalar field tomography method based on STEREO/EUVI data. We will present the 3D coronal vector magnetic field, electron density and temperature resulted from these inversions.While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by MagnetoHydroDynamic (MHD) simulation based on observed photospheric magnetic fields and with 3D coronal density structures obtained by scalar field tomography based on coronal observations. We will discuss the utilities and limitations of the inversion technique, and present ideas for future developments.
Jian-Zu Zhang
2007-11-02
The induced fractional zero-point canonical angular momentum on charged particles by the Aharonov - Bohm (AB) vector potential is realized via modified combined traps. It explores new features for this type of quantum effects: In a limit of vanishing mechanical kinetic energy the AB vector potential alone cannot induce a fractional zero-point canonical angular momentum on charged particles at the quantum mechanical level in the AB magnetic field-free region; But for the case of the AB vector potential with another one of a "spectator" magnetic field the AB vector potential induces a fractional zero-point canonical angular momentum in the same limit. The "spectator" one does not contribute to such a fractional zero-point quantity, but plays essential role in guaranteeing non-trivial dynamics survived in this limit at the quantum mechanical level. These results are significance in investigations of the AB effects and related fields for both theories and experiments.
Solar Flare Prediction Using SDO/HMI Vector Magnetic Field Data with a Machine-learning Algorithm
NASA Astrophysics Data System (ADS)
Bobra, M. G.; Couvidat, S.
2015-01-01
We attempt to forecast M- and X-class solar flares using a machine-learning algorithm, called support vector machine (SVM), and four years of data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space. Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time a large data set of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a database of 2071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters. We then train and test the machine-learning algorithm and we estimate its performances using forecast verification metrics with an emphasis on the true skill statistic (TSS). We obtain relatively high TSS scores and overall predictive abilities. We surmise that this is partly due to fine-tuning the SVM for this purpose and also to an advantageous set of features that can only be calculated from vector magnetic field data. We also apply a feature selection algorithm to determine which of our 25 features are useful for discriminating between flaring and non-flaring active regions and conclude that only a handful are needed for good predictive abilities.
NASA Astrophysics Data System (ADS)
Schad, T. A.
2014-05-01
We study 7530 sunspot umbrae and pores measured by the Hinode Spectropolarimeter (SP) between November 2006 and November 2012. We primarily seek confirmation of the long term secular decrease in the mean magnetic field strength of sunspot umbrae found by Penn and Livingston ( IAU Symp. 273, 126, 2011) between 1998 and 2011. The excellent SP photometric properties and full vector magnetic field determinations from full-Stokes Milne-Eddington inversions are used to address the interrelated properties of the magnetic field strength and brightness temperature for all umbral cores. We find non-linear relationships between magnetic field strength and umbral temperature (and continuum contrast), as well as between umbral radius and magnetic field strength. Using disambiguated vector data, we find that the azimuths measured in the umbral cores reflect an organization weakly influenced by Joy's law. The large selection of umbrae displays a log-normal size spectrum similar to earlier solar cycles. Influenced by the amplitude of the solar cycle and the non-linear relationship between umbral size and core magnetic field strength, the distribution of core magnetic field strengths, fit most effectively with a skew-normal distribution, shows a weak solar cycle dependence. Yet, the mean magnetic field strength does not show a significant long term trend.
NASA Astrophysics Data System (ADS)
Du, Jinsong; Chen, Chao; Lesur, Vincent; Lane, Richard; Wang, Huilin
2015-06-01
We examined the mathematical and computational aspects of the magnetic potential, vector and gradient tensor fields of a tesseroid in a geocentric spherical coordinate system (SCS). This work is relevant for 3-D modelling that is performed with lithospheric vertical scales and global, continent or large regional horizontal scales. The curvature of the Earth is significant at these scales and hence, a SCS is more appropriate than the usual Cartesian coordinate system (CCS). The 3-D arrays of spherical prisms (SP; `tesseroids') can be used to model the response of volumes with variable magnetic properties. Analytical solutions do not exist for these model elements and numerical or mixed numerical and analytical solutions must be employed. We compared various methods for calculating the response in terms of accuracy and computational efficiency. The methods were (1) the spherical coordinate magnetic dipole method (MD), (2) variants of the 3-D Gauss-Legendre quadrature integration method (3-D GLQI) with (i) different numbers of nodes in each of the three directions, and (ii) models where we subdivided each SP into a number of smaller tesseroid volume elements, (3) a procedure that we term revised Gauss-Legendre quadrature integration (3-D RGLQI) where the magnetization direction which is constant in a SCS is assumed to be constant in a CCS and equal to the direction at the geometric centre of each tesseroid, (4) the Taylor's series expansion method (TSE) and (5) the rectangular prism method (RP). In any realistic application, both the accuracy and the computational efficiency factors must be considered to determine the optimum approach to employ. In all instances, accuracy improves with increasing distance from the source. It is higher in the percentage terms for potential than the vector or tensor response. The tensor errors are the largest, but they decrease more quickly with distance from the source. In our comparisons of relative computational efficiency, we found that the magnetic potential takes less time to compute than the vector response, which in turn takes less time to compute than the tensor gradient response. The MD method takes less time to compute than either the TSE or RP methods. The efficiency of the (GLQI and) RGLQI methods depends on the polynomial order, but the response typically takes longer to compute than it does for the other methods. The optimum method is a complex function of the desired accuracy, the size of the volume elements, the element latitude and the distance between the source and the observation. For a model of global extent with typical model element size (e.g. 1 degree horizontally and 10 km radially) and observations at altitudes of 10s to 100s of km, a mixture of methods based on the horizontal separation of the source and observation separation would be the optimum approach. To demonstrate the RGLQI method described within this paper, we applied it to the computation of the response for a global magnetization model for observations at 300 and 30 km altitude.
NASA Astrophysics Data System (ADS)
Silva, Nicolas
2012-09-01
Earlier papers1-3 in this journal have described experiments on measuring the magnetic fields of current-carrying wires and permanent magnets using magnetic field probes of various kinds. This paper explains how to use an iPad and the free app MagnetMeter-3D Vector Magnetometer and Accelerometer4 (compass HD) to measure the magnetic fields.
Luis B. Castro; Edilberto O. Silva
2015-04-09
The quantum dynamics of a spin-1/2 charged particle in the presence of magnetic field is analyzed for the general case where scalar and vector couplings are considered. The energy spectra are explicitly computed for different physical situations, as well as their dependencies on the magnetic field strength, spin projection parameter and vector and scalar coupling constants.
Solar Flare Prediction Using SDO/HMI Vector Magnetic Field Data with a Machine-Learning Algorithm
NASA Astrophysics Data System (ADS)
Bobra, M.; Couvidat, S. P.
2014-12-01
We attempt to forecast M-and X-class solar flares using a machine-learning algorithm, called Support Vector Machine (SVM), and four years of data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space (Schou et al., 2012). Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time such a large dataset of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a database of 2,071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters --- which include the flux, energy, shear, current, helicity, gradient, geometry, and Lorentz force. We then train and test the machine-learning algorithm. Finally, we estimate the performance of this algorithm using forecast verification metrics with an emphasis on the true skill statistic (TSS). Bloomfield et al. (2012) suggest the use of the TSS as it is not sensitive to the class imbalance problem. Indeed, there are many more non-flaring active regions in a given time interval than flaring ones: this class imbalance distorts many performance metrics and renders comparison between various studies somewhat unreliable. We obtain relatively high TSS scores and overall predictive abilities. We surmise that this is partly due to fine-tuning the SVM for this purpose and also to an advantageous set of features that can only be calculated from vector magnetic field data. We also apply a feature selection algorithm to determine which of our 25 features are useful for discriminating between flaring and non-flaring active regions and conclude that only a handful are needed for good predictive abilities.
Gosain, S.; Pevtsov, A. A.; Rudenko, G. V.; Anfinogentov, S. A.
2013-07-20
We use daily full-disk vector magnetograms from Vector Spectromagnetograph on Synoptic Optical Long-term Investigations of the Sun system to synthesize the first Carrington maps of the photospheric vector magnetic field. We describe these maps and make a comparison of the observed radial field with the radial field estimate from line-of-sight magnetograms. Furthermore, we employ these maps to study the hemispheric pattern of current helicity density, H{sub c} , during the rising phase of solar cycle 24. The longitudinal average over the 23 consecutive solar rotations shows a clear signature of the hemispheric helicity rule, i.e., H{sub c} is predominantly negative in the north and positive in the south. Although our data include the early phase of cycle 24, there appears to be no evidence for a possible (systematic) reversal of the hemispheric helicity rule at the beginning of the cycle as predicted by some dynamo models. Furthermore, we compute the hemispheric pattern in active region latitudes (-30 Degree-Sign {<=} {theta} {<=} 30 Degree-Sign ) separately for weak (100 G < |B{sub r} | < 500 G) and strong (|B{sub r} | > 1000 G) radial magnetic fields. We find that while the current helicity of strong fields follows the well-known hemispheric rule (i.e., {theta} {center_dot} H{sub c} < 0), H{sub c} of weak fields exhibits an inverse hemispheric behavior (i.e., {theta} {center_dot} H{sub c} > 0), albeit with large statistical scatter. We discuss two plausible scenarios to explain the opposite hemispheric trend of helicity in weak and strong field regions.
NASA Technical Reports Server (NTRS)
Hewagama, Tilak; Deming, Drake; Jennings, Donald E.; Osherovich, Vladimir; Wiedemann, Gunter; Zipoy, David; Mickey, Donald L.; Garcia, Howard
1993-01-01
Polarimetric observations at 12 microns of two sunpots are reported. The horizontal distribution of parameters such as magnetic field strength, inclination, azimuth, and magnetic field filling factors are presented along with information about the height dependence of the magnetic field strength. Comparisons with contemporary magnetostatic sunspot models are made. The magnetic data are used to estimate the height of 12 micron line formation. From the data, it is concluded that within a stable sunspot there are no regions that are magnetically filamentary, in the sense of containing both strong-field and field-free regions.
Ainsbury, Elizabeth A; Conein, Emma; Henshaw, Denis L
2005-07-01
Elliptically polarized magnetic fields induce higher currents in the body compared with their plane polarized counterparts. This investigation examines the degree of vector ellipticity of extremely low frequency magnetic fields (ELF-MFs) in the home, with regard to the adverse health effects reportedly associated with ELF-MFs, for instance childhood leukaemia. Tri-axial measurements of the magnitude and phase of the 0-3000 Hz magnetic fields, produced by 226 domestic mains-fed appliances of 32 different types, were carried out in 16 homes in Worcestershire in the summer of 2004. Magnetic field strengths were low, with average (RMS) values of 0.03 +/- 0.02 microT across all residences. In contrast, background field ellipticities were high, on average 47 +/- 11%. Microwave and electric ovens produced the highest ellipticities: mean respective values of 21 +/- 21% and 21 +/- 17% were observed 20 cm away from these appliances. There was a negative correlation between field strength and field polarization, which we attribute to the higher relative field contribution close to each individual (single-phase) appliance. The measurements demonstrate that domestic magnetic fields are extremely complex and cannot simply be characterized by traditional measurements such as time-weighted average or peak exposure levels. We conclude that ellipticity should become a relevant metric for future epidemiological studies of health and ELF-MF exposure. PMID:15972990
ERIC Educational Resources Information Center
Curjel, C. R.
1990-01-01
Presented are activities that help students understand the idea of a vector field. Included are definitions, flow lines, tangential and normal components along curves, flux and work, field conservation, and differential equations. (KR)
Obtaining vector magnetic field maps from single-component measurements of geological samples
Andrade Lima, Eduardo
Maxwell's equations can be used to demonstrate that the components of a static magnetic field in a region of space devoid of sources are not independent. This means that magnetometers that measure a single component of the ...
NASA Astrophysics Data System (ADS)
Tivey, Maurice A.; Johnson, H. Paul; Salmi, Marie S.; Hutnak, Michael
2014-10-01
High-resolution, near-bottom vector magnetic data were collected by remotely operated vehicle Jason over the Raven hydrothermal vent field (47°57.3'N 129°5.75'W) located north of Main Endeavour vent field on the Endeavour segment of the Juan de Fuca Ridge. The survey was part of a comprehensive heat flow study of the Raven site using innovative thermal blanket technology to map the heat flux and crustal fluid pathways around a solitary hydrothermal vent field. Raven hydrothermal activity is presently located along the western axial valley wall, while additional inactive hydrothermal deposits are found to the NW on the upper rift valley wall. Magnetic inversion results show discrete areas of reduced magnetization associated with both active and inactive hydrothermal vent deposits that also show high conductive heat flow. Higher spatial variability in the heat flow patterns compared to the magnetization is consistent with the heat flow reflecting the currently active but ephemeral thermal environment of fluid flow, while crustal magnetization is representative of the static time-averaged effect of hydrothermal alteration. A general NW to SE trend in reduced magnetization across the Raven area correlates closely with the distribution of hydrothermal deposits and heat flux patterns and suggests that the fluid circulation system at depth is likely controlled by local crustal structure and magma chamber geometry. Magnetic gradient tensor components computed from vector magnetic data improve the resolution of the magnetic anomaly source and indicate that the hydrothermally altered zone directly beneath the Raven site is approximately 15 × 106 m3 in volume.
Topology-Preserving Diffusion of Divergence-Free Vector Fields and Magnetic Relaxation
NASA Astrophysics Data System (ADS)
Brenier, Yann
2014-09-01
The usual heat equation is not suitable to preserve the topology of divergence-free vector fields, because it destroys their integral line structure. On the contrary, in the fluid mechanics literature, one can find examples of topology-preserving diffusion equations for divergence-free vector fields. They are very degenerate since they admit all stationary solutions to the Euler equations of incompressible fluids as equilibrium points. For them, we provide a suitable concept of "dissipative solutions", which shares common features with both P.-L. Lions's dissipative solutions to the Euler equations and the concept of "curves of maximal slopes", à la De Giorgi, recently used to study the scalar heat equation in very general metric spaces. We show that the initial value problem admits such global solutions, at least in the two space variable case, and they are unique whenever they are smooth.
NASA Technical Reports Server (NTRS)
Demerdash, N. A.; Wang, R.; Secunde, R.
1992-01-01
A 3D finite element (FE) approach was developed and implemented for computation of global magnetic fields in a 14.3 kVA modified Lundell alternator. The essence of the new method is the combined use of magnetic vector and scalar potential formulations in 3D FEs. This approach makes it practical, using state of the art supercomputer resources, to globally analyze magnetic fields and operating performances of rotating machines which have truly 3D magnetic flux patterns. The 3D FE-computed fields and machine inductances as well as various machine performance simulations of the 14.3 kVA machine are presented in this paper and its two companion papers.
Magnetization vector manipulation by electric fields D. Chiba1,2
Cai, Long
fields to control conductivity, a scalar quantity, for information processing. In mag- netic materials,2 is being studied for use in non-volatile magnetic memories3,4 . To make control of magneti- zation fully configuration. Two cleaved, as-grown samples (devices A and B) were processed into a Hall bar geometry along
NASA Astrophysics Data System (ADS)
Hayashi, K.; Hoeksema, J. T.; Liu, Y.; Bobra, M. G.; Sun, X. D.; Norton, A. A.
2015-05-01
Time-dependent three-dimensional magnetohydrodynamics (MHD) simulation modules are implemented at the Joint Science Operation Center (JSOC) of the Solar Dynamics Observatory (SDO). The modules regularly produce three-dimensional data of the time-relaxed minimum-energy state of the solar corona using global solar-surface magnetic-field maps created from Helioseismic and Magnetic Imager (HMI) full-disk magnetogram data. With the assumption of a polytropic gas with specific-heat ratio of 1.05, three types of simulation products are currently generated: i) simulation data with medium spatial resolution using the definitive calibrated synoptic map of the magnetic field with a cadence of one Carrington rotation, ii) data with low spatial resolution using the definitive version of the synchronic frame format of the magnetic field, with a cadence of one day, and iii) low-resolution data using near-real-time (NRT) synchronic format of the magnetic field on a daily basis. The MHD data available in the JSOC database are three-dimensional, covering heliocentric distances from 1.025 to 4.975 solar radii, and contain all eight MHD variables: the plasma density, temperature, and three components of motion velocity, and three components of the magnetic field. This article describes details of the MHD simulations as well as the production of the input magnetic-field maps, and details of the products available at the JSOC database interface. To assess the merits and limits of the model, we show the simulated data in early 2011 and compare with the actual coronal features observed by the Atmospheric Imaging Assembly (AIA) and the near-Earth in-situ data.
Hayashi, Keiji; Liu, Yang; Bobra, Monica G; Sun, Xudong D; Norton, Aimee A
2015-01-01
Time-dependent three-dimensional magnetohydrodynamics (MHD) simulation modules are implemented at the Joint Science Operation Center (JSOC) of Solar Dynamics Observatory (SDO). The modules regularly produce three-dimensional data of the time-relaxed minimum-energy state of the solar corona using global solar-surface magnetic-field maps created from Helioseismic Magnetic Imager (HMI) full-disk magnetogram data. With the assumption of polytropic gas with specific heat ratio of 1.05, three types of simulation products are currently generated: i) simulation data with medium spatial resolution using the definitive calibrated synoptic map of the magnetic field with a cadence of one Carrington rotation, ii) data with low spatial resolution using the definitive version of the synchronic frame format of the magnetic field, with a cadence of one day, and iii) low-resolution data using near-real-time (NRT) synchronic format of the magnetic field on daily basis. The MHD data available in the JSOC database are three-dimen...
Vector magnetic hysteresis of hard superconductors and C. Lopez2
MajÃ³s, Antonio BadÃa
Vector magnetic hysteresis of hard superconductors A. BadiÂ´a1 and C. LoÂ´pez2 1 Departamento de Fi for the magnetization vector of hard superconductors are investigated. The theory is based on the minimization of a cost functional C H(x) which weighs the changes of the magnetic-field vector within the sample. We show that Bean
Mariappan, Leo; Hu, Gang [Department of Biomedical Engineering, University of Minnesota, Minnesota 55455 (United States)] [Department of Biomedical Engineering, University of Minnesota, Minnesota 55455 (United States); He, Bin, E-mail: binhe@umn.edu [Department of Biomedical Engineering, University of Minnesota, Minnesota 55455 and Institute of Engineering in Medicine, University of Minnesota, Minnesota 55455 (United States)] [Department of Biomedical Engineering, University of Minnesota, Minnesota 55455 and Institute of Engineering in Medicine, University of Minnesota, Minnesota 55455 (United States)
2014-02-15
Purpose: Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. Methods: In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. Results: The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ?1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. Conclusions: The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction.
NASA Technical Reports Server (NTRS)
Wang, R.; Demerdash, N. A.
1991-01-01
A method of combined use of magnetic vector potential based finite-element (FE) formulations and magnetic scalar potential (MSP) based formulations for computation of three-dimensional magnetostatic fields is introduced. In this method, the curl-component of the magnetic field intensity is computed by a reduced magnetic vector potential. This field intensity forms the basic of a forcing function for a global magnetic scalar potential solution over the entire volume of the region. This method allows one to include iron portions sandwiched in between conductors within partitioned current-carrying subregions. The method is most suited for large-scale global-type 3-D magnetostatic field computations in electrical devices, and in particular rotating electric machinery.
Schöller, Markus
2015-01-01
In this chapter, we give a brief introduction into the use of the Zeeman effect in astronomy and the general detection of magnetic fields in stars, concentrating on the use of FORS2 for longitudinal magnetic field measurements.
Experiments With Magnetic Vector Potential
ERIC Educational Resources Information Center
Skinner, J. W.
1975-01-01
Describes the experimental apparatus and method for the study of magnetic vector potential (MVP). Includes a discussion of inherent errors in the calculations involved, precision of the results, and further applications of MVP. (GS)
NASA Technical Reports Server (NTRS)
Hagyard, Mona J.; Stark, B. A.; Venkatakrishnan, P.
1998-01-01
A careful analysis of a 6-hour time sequence of vector magnetograms of AR 6659, observed on 1991 June 10 with the MSFC vector magnetograph, has revealed only minor changes in the vector magnetic field azimuths in the vicinity of two M-class flares, and the association of these changes with the flares is not unambiguous. In this paper we present our analysis of the data which includes comparison of vector magnetograms prior to and during the flares, calculation of distributions of the rms variation of the azimuth at each pixel in the field of view of the active region, and examination of the variation with time of the azimuths at every pixel covered by the main flare emissions as observed with the H-alpha telescope coaligned with the vector magnetograph. We also present results of an analysis of evolutionary changes in the azimuth over the field of view of the active region.
NASA Technical Reports Server (NTRS)
Wang, Ren H.
1991-01-01
A method of combined use of magnetic vector potential (MVP) based finite element (FE) formulations and magnetic scalar potential (MSP) based FE formulations for computation of three-dimensional (3D) magnetostatic fields is developed. This combined MVP-MSP 3D-FE method leads to considerable reduction by nearly a factor of 3 in the number of unknowns in comparison to the number of unknowns which must be computed in global MVP based FE solutions. This method allows one to incorporate portions of iron cores sandwiched in between coils (conductors) in current-carrying regions. Thus, it greatly simplifies the geometries of current carrying regions (in comparison with the exclusive MSP based methods) in electric machinery applications. A unique feature of this approach is that the global MSP solution is single valued in nature, that is, no branch cut is needed. This is again a superiority over the exclusive MSP based methods. A Newton-Raphson procedure with a concept of an adaptive relaxation factor was developed and successfully used in solving the 3D-FE problem with magnetic material anisotropy and nonlinearity. Accordingly, this combined MVP-MSP 3D-FE method is most suited for solution of large scale global type magnetic field computations in rotating electric machinery with very complex magnetic circuit geometries, as well as nonlinear and anisotropic material properties.
Two-dimensional magnetostriction under vector magnetic characteristic
NASA Astrophysics Data System (ADS)
Wakabayashi, D.; Enokizono, M.
2015-05-01
This paper presents two-dimensional magnetostriction of electrical steel sheet under vector magnetic characteristic. In conventional measurement method using Single Sheet Tester, the magnetic flux density, the magnetic field strength, and the magnetostriction have been measured in one direction. However, an angle between the magnetic flux density vector and the magnetic field strength vector exists because the magnetic property is vector quantity. An angle between the magnetic flux density vector and the direction of maximum magnetostriction also exists. We developed a new measurement method, which enables measurement of these angles. The vector magnetic characteristic and the two-dimensional magnetostriction have been measured using the new measurement method. The BH and B? curves considering the angles are shown in this paper. The analyzed results considering the angles are also made clear.
Magnetic Fields MAXWELL'S EQUATIONS
Lü, James Jian-Qiang
Magnetic Fields MAXWELL'S EQUATIONS Differential Form 0=· B r JH rr =× t B E -=× r r VECTOR CONDITIONS General Magnetic-Magnetic 0)(n^ 21 =-· BB rr B1n = B2n sJHH rrr =-× )(n^ 21 H1t = H2t FORCEE rrrr r rr )( MATERIALS )1(, )( mom oor HM MHHHB +== +=== rr rrrrr o = 4×10-7 H/m MAGNETIC CIRCUITS
NASA Astrophysics Data System (ADS)
Ilonidis, Stathis; Bobra, Monica G.; Couvidat, Sebastien
2015-04-01
This project is motivated by the need to understand the physical mechanisms that generate solar flares, and assess whether reliable data-driven flare forecasts are possible. We build a flare forecasting model that takes into account the temporal evolution of the active regions and provides improved forecasts for the next 24 hours. We use SDO/HMI vector magnetic field data for all the flaring regions with magnitude M1.0 or higher that have been observed with HMI and several thousand non-flaring regions. Each region is characterized by hundreds of features, including physical properties, such as the current helicity and the Lorentz force, as well as parameters that describe the temporal evolution of these properties over a two-day interval, starting 3 days and ending 1 day before the flare eruption. All of these features were used to train a Support Vector Machine (SVM), which is a supervised machine learning method used in classification problems. The results show that the SVM algorithm can achieve a True Skill Statistic of 0.91, an accuracy of 0.985, and a Heidke skill score of 0.861, improving the results of Bobra and Couvidat (2015).
LABORATORY V MAGNETIC FIELDS AND FORCES
Minnesota, University of
of the magnetic field for various combinations of bar magnets, and to draw vector diagrams (field maps) for eachLABORATORY V MAGNETIC FIELDS AND FORCES Lab V - 1 Magnetism plays a large part in our modern world problems, you will map magnetic fields from different sources and use the magnetic force to deflect
Constitutive equation of magnetic materials and magnetic field analysis
Enokizono, M.; Yuki, K. )
1993-03-01
The conventional field analysis methods neglect the phase relation between the magnetic flux density B and the magnetic field vector H under a rotating field. Magnetic properties have been measured as scalar relationships under an alternating magnetic field, and only the scalar values have been applied to analyze the two-dimensional magnetic field problems. In this paper, the B- and H-values have been measured as vector relationships under the influence of a rotating field, using the two-dimensional magnetic measurement apparatus. The magnetic properties are represented by a tensor expression as a function of magnetic reluctivities. This expression is then applied for the rotating field analysis.
Inflation with massive vector fields
NASA Astrophysics Data System (ADS)
Liu, Junyu; Wang, Yi; Zhou, Siyi
2015-08-01
We investigate the coupling between the inflaton and massive vector fields. All renormalizable couplings with shift symmetry of the inflaton are considered. The massive vector can be decomposed into a scalar mode and a divergence-free vector mode. We show that the former naturally interacts with the inflaton and the latter decouples at tree level. The model in general predicts fNLequil = O(1), while in some regions of the parameter space large non-Gaussianity can arise.
Vector fields in multidimensional cosmology
Boris E. Meierovich
2011-10-06
Vector fields in the expanding Universe are considered within the multidimensional theory of General Relativity. Vector fields in general relativity form a three-parametric variety. Our consideration includes the fields with a nonzero covariant divergence. Depending on the relations between the particular parameters and the symmetry of a problem, the vector fields can be longitudinal and/or transverse, ultrarelativistic (i.e. massless) or nonrelativistic (massive), and so on. The longitudinal and transverse vector fields are considered separately in detail in the background of the de Sitter cosmological metric. In most cases the field equations reduce to Bessel equations, and their temporal evolution is analyzed analytically. The energy-momentum tensor of the most simple zero-mass longitudinal vector fields enters the Einstein equations as an additive to the cosmological constant. In this case the de Sitter metric is the exact solution of the Einstein equations. Hence, the most simple zero-mass longitudinal vector field pretends to be an adequate tool for macroscopic description of dark energy as a source of the expansion of the Universe at a constant rate. The zero-mass vector field does not vanish in the process of expansion. On the contrary, massive fields vanish with time. Though their amplitude is falling down, the massive fields make the expansion accelerated. The macroscopic analysis of vector fields in cosmology gives up the hope that the major puzzle -- attraction between individual objects and expansion of the Universe as a whole -- can be solved within the Einstein's theory of general relativity.
Manipulation of p-wave scattering of cold atoms in low dimensions using the magnetic field vector.
Peng, Shi-Guo; Tan, Shina; Jiang, Kaijun
2014-06-27
It is well known that the magnetic Feshbach resonances of cold atoms are sensitive to the magnitude of the external magnetic field. Much less attention has been paid to the direction of such a field. In this work we calculate the scattering properties of spin polarized fermionic atoms in reduced dimensions, near a p-wave Feshbach resonance. Because of the spatial anisotropy of the p-wave interaction, the scattering has a nontrivial dependence on both the magnitude and the direction of the magnetic field. In addition, we identify an inelastic scattering process which is impossible in the isotropic-interaction model; the rate of this process depends considerably on the direction of the magnetic field. Significantly, an Einstein-Podolsky-Rosen entangled pair of identical fermions may be produced during this inelastic collision. This work opens a new method to manipulate resonant cold atomic interactions. PMID:25014794
NASA Astrophysics Data System (ADS)
Bachmann, G.
1988-01-01
The solar chromosphere in active region BBR 18,474 (July 15-16, 1982) is characterized on the basis of vector magnetograms (in the 525.02-nm line of Fe I) and H-alpha filtergrams obtained at Potsdam using the instruments, techniques and data-reduction procedures described by Bachmann et al. (1975 and 1983) and photoheliograms obtained at Debrecen Observatory. The results are presented graphically and characterized in detail. Transverse magnetic fields of up to 1.4 kG are observed, and the neutral-line filament is found to be located near the minimum field magnitude outside the sunspot group, along the longitudinal-field inversion line inside the sunspot group, and along the direction of the transverse field in the delta area (consistent with strong magnetic-field shear). The flare energy in this active region is attributed to sunspot proper motions.
Vector Fields and Line Integrals
NSDL National Science Digital Library
Knill, Oliver
Created by Oliver Knill and Dale Winter for the Connected Curriculum Project, this module introduces vector fields, the concept of "work," and the line integral. This is one of a much larger set of learning modules hosted by Duke University.
Nature of Electric and Magnetic Fields; How the Fields Transform
Ivezic, Tomislav
2015-01-01
In this paper the proofs are given that the electric and magnetic fields are properly defined vectors on the four-dimensional (4D) spacetime (the 4-vectors in the usual notation) and not the usual 3D fields. Furthermore, the proofs are presented that under the mathematically correct Lorentz transformations (LT), e.g., the electric field vector transforms as any other vector transforms, i.e., again to the electric field vector; there is no mixing with the magnetic field vector B, as in the usual transformations (UT) of the 3D fields. The derivations of the UT from some well-known textbooks are discussed and objected.
Nature of Electric and Magnetic Fields; How the Fields Transform
Tomislav Ivezic
2015-08-10
In this paper the proofs are given that the electric and magnetic fields are properly defined vectors on the four-dimensional (4D) spacetime (the 4-vectors in the usual notation) and not the usual 3D fields. Furthermore, the proofs are presented that under the mathematically correct Lorentz transformations (LT), e.g., the electric field vector transforms as any other vector transforms, i.e., again to the electric field vector; there is no mixing with the magnetic field vector B, as in the usual transformations (UT) of the 3D fields. The derivations of the UT from some well-known textbooks are discussed and objected.
Jiang, Chaowei; Wu, S. T.; Hu, Qiang [Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Feng, Xueshang, E-mail: cwjiang@spaceweather.ac.cn, E-mail: wus@uah.edu, E-mail: qh0001@uah.edu, E-mail: fengx@spaceweather.ac.cn [SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)
2014-05-10
Solar filaments are commonly thought to be supported in magnetic dips, in particular, in those of magnetic flux ropes (FRs). In this Letter, based on the observed photospheric vector magnetogram, we implement a nonlinear force-free field (NLFFF) extrapolation of a coronal magnetic FR that supports a large-scale intermediate filament between an active region and a weak polarity region. This result is a first, in the sense that current NLFFF extrapolations including the presence of FRs are limited to relatively small-scale filaments that are close to sunspots and along main polarity inversion lines (PILs) with strong transverse field and magnetic shear, and the existence of an FR is usually predictable. In contrast, the present filament lies along the weak-field region (photospheric field strength ? 100 G), where the PIL is very fragmented due to small parasitic polarities on both sides of the PIL and the transverse field has a low signal-to-noise ratio. Thus, extrapolating a large-scale FR in such a case represents a far more difficult challenge. We demonstrate that our CESE-MHD-NLFFF code is sufficient for the challenge. The numerically reproduced magnetic dips of the extrapolated FR match observations of the filament and its barbs very well, which strongly supports the FR-dip model for filaments. The filament is stably sustained because the FR is weakly twisted and strongly confined by the overlying closed arcades.
Magnetic nanoparticle motion in external magnetic field
NASA Astrophysics Data System (ADS)
Usov, N. A.; Liubimov, B. Ya
2015-07-01
A set of equations describing the motion of a free magnetic nanoparticle in an external magnetic field in a vacuum, or in a medium with negligibly small friction forces is postulated. The conservation of the total particle momentum, i.e. the sum of the mechanical and the total spin momentum of the nanoparticle is taken into account explicitly. It is shown that for the motion of a nanoparticle in uniform magnetic field there are three different modes of precession of the unit magnetization vector and the director that is parallel the particle easy anisotropy axis. These modes differ significantly in the precession frequency. For the high-frequency mode the director points approximately along the external magnetic field, whereas the frequency and the characteristic relaxation time of the precession of the unit magnetization vector are close to the corresponding values for conventional ferromagnetic resonance. On the other hand, for the low-frequency modes the unit magnetization vector and the director are nearly parallel and rotate in unison around the external magnetic field. The characteristic relaxation time for the low-frequency modes is remarkably long. This means that in a rare assembly of magnetic nanoparticles there is a possibility of additional resonant absorption of the energy of alternating magnetic field at a frequency that is much smaller compared to conventional ferromagnetic resonance frequency. The scattering of a beam of magnetic nanoparticles in a vacuum in a non-uniform external magnetic field is also considered taking into account the precession of the unit magnetization vector and director.
NASA Astrophysics Data System (ADS)
Bommier, V.; Landi Degl'Innocenti, E.; Schmieder, B.; Gelly, B.
2011-04-01
The context is that of the so-called “fundamental ambiguity” (also azimuth ambiguity, or 180° ambiguity) in magnetic field vector measurements: two field vectors symmetrical with respect to the line-of-sight have the same polarimetric signature, so that they cannot be discriminated. We propose a method to solve this ambiguity by applying the “simulated annealing” algorithm to the minimization of the field divergence, added to the longitudinal current absolute value, the line-of-sight derivative of the magnetic field being inferred by the interpretation of the Zeeman effect observed by spectropolarimetry in two lines formed at different depths. We find that the line pair Fe I ? 6301.5 and Fe I ? 6302.5 is appropriate for this purpose. We treat the example case of the ?-spot of NOAA 10808 observed on 13 September 2005 between 14:25 and 15:25 UT with the THEMIS telescope. Besides the magnetic field resolved map, the electric current density vector map is also obtained. A strong horizontal current density flow is found surrounding each spot inside its penumbra, associated to a non-zero Lorentz force centripetal with respect to the spot center (i.e., oriented towards the spot center). The current wrapping direction is found to depend on the spot polarity: clockwise for the positive polarity, counterclockwise for the negative one. This analysis is made possible thanks to the UNNOFIT2 Milne-Eddington inversion code, where the usual theory is generalized to the case of a line Fe I ? 6301.5) that is not a normal Zeeman triplet line (like Fe I ? 6302.5).
NASA Astrophysics Data System (ADS)
Dima, G. I.; Kuhn, J. R.; Mickey, D.
2014-12-01
Measuring the coronal vector magnetic field is still a major challenge in solar physics. This is due to the intrinsic weakness of the field (~4 G at a height of 0.1 Rsun above an active region) and the large thermal broadening of coronal emission lines. Current methods deduce either the direction of the magnetic field or the magnetic flux density. We propose using concurrent linear polarization measurements in the near IR of forbidden and permitted lines to calculate the coronal vector magnetic field. The effect of the magnetic field on the polarization properties of emitted light is encapsulated in the Hanle effect. In the unsaturated Hanle regime both the direction and strength of the magnetic field affect the linear polarization, while for saturated Hanle the polarization is insensitive to the strength of the field. Coronal forbidden lines are always in the saturated Hanle regime so the linear polarization holds no information on the strength of the field. By pairing measurements of both forbidden and permitted lines we would be able to obtain both the direction and strength of the field. The near-IR region of the spectrum offers the opportunity to study this problem from the ground. The FeXIII 1.075 um and SiX 1.431 um forbidden lines are strongly polarizable and are sufficiently bright over a large field of view (out to 1.5 Rsun). Measurements of both these lines can be paired up with the recently observed coronal HeI 1.083 um permitted line. The first data set used to test this technique was taken during the March 29, 2006 total solar eclipse and consisted of near-IR spectra covering the spectral region 0.9-1.8 um, with a field of view of 3 x 3 Rsun. The data revealed unexpectedly strong SiX emission compared to FeXIII. Using the HAO FORWARD suite of codes we produced simulated emission maps from a global HMD model for the day of the eclipse. Comparing the intensity variation of the measurements and the model we predict that SiX emission is more extended for this day that the model would suggest, further supporting the possible usefulness of SiX polarimetry. The development of this method and associated tools will be critical in interpreting the high spectral, spatial and temporal IR measurements that will be possible when the Daniel K. Inouye Solar Telescope (DKIST) is completed in a few years time.
Element-specific vector magnetometry with magnetic circular dichroism
Chakarian, V.; Idzerda, Y.U.; Meigs, G.; Chaban, E.E.; Park, J.; Chen, C.T.
1995-06-12
The use of soft x-ray magnetic circular dichroism in two-dimensional (2D) element-specific vector magnetometry is demonstrated by investigating a thin Fe(001) single-crystal film grown on ZnSe(001). By measuring element-specific magnetic hysteresis curves along directions parallel and perpendicular to an applied magnetic field, the 2D behavior of the in-plane magnetization vector {bold M} is described as a function of the applied magnetic field. The use of this method to obtain element-specific 3D vector magnetometry in magnetic materials that exhibit both in-plane and out-of-plane magnetization is also discussed. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Tomislav Ivezic
2012-11-02
In the first part of this paper we review the fundamental difference between the usual transformations of the three-dimensional (3D) vectors of the electric field $\\mathbf{E}$, the magnetic field $\\mathbf{B}$, the polarization $\\mathbf{P}$, the magnetization $\\mathbf{M}$ and the Lorentz transformations of the 4D geometric quantities, vectors E, B, P, M, with many additional explanations and several new results. In the second part, we have discussed the existence of the electric field vector E outside a stationary superconducting wire with a steady current and also different experiments for the detection of such electric fields. Furthermore, a fundamental prediction of the existence of the external electric field vector E from a stationary permanent magnet is considered. These electric fields are used for the resolution of the "charge-magnet paradox" with 4D geometric quantities for a qualitative explanation of the Aharonov-Bohm effect in terms of fields and not, as usual, in terms of the vector potential and for a qualitative explanation that the particle interference is not a test of a Lorentz-violating model of electrodynamics according to which a magnetic solenoid generates not only a static magnetic field but also a static electric field.
NASA Astrophysics Data System (ADS)
Ivezi?, Tomislav
2013-04-01
In the first part of this paper we review the fundamental difference between the usual transformations of the three-dimensional (3D) vectors of the electric field E, the magnetic field B, the polarization P, the magnetization M and the Lorentz transformations of the 4D geometric quantities, vectors E, B, P, M, with many additional explanations and several new results. In the second part, we have discussed the existence of the electric field vector E outside a stationary superconducting wire with a steady current and also different experiments for the detection of such electric fields. Furthermore, a fundamental prediction of the existence of the external electric field vector E from a stationary permanent magnet is considered. These electric fields are used for the resolution of the "charge-magnet paradox" with 4D geometric quantities for a qualitative explanation of the Aharonov-Bohm effect in terms of fields and not, as usual, in terms of the vector potential and for a qualitative explanation that the particle interference is not a test of a Lorentz-violating model of electrodynamics according to which a magnetic solenoid generates not only a static magnetic field but also a static electric field.
Ivezic, Tomislav
2012-01-01
In the first part of this paper we have reviewed, with many additional explanations and several new results, the existence of the fundamental difference between the usual transformations of the three-dimensional (3D) vectors (3-vectors) of the electric field $\\mathbf{E}$, the magnetic field $% \\mathbf{B}$, the polarization $\\mathbf{P}$, the magnetization $\\mathbf{M}$ and the Lorentz transformations of the 4D geometric quantities, vectors E, B, P, M. In the second part, we have discussed the existence of the "relativistic" electric field vector outside a stationary superconducting wire with a steady current and also different experiments for the detection of such electric fields. Furthermore, a new prediction of the "relativistic" electric fields from a stationary permanent magnet is considered.
Killing Vector Fields and Superharmonic Field Theories
Josua Groeger
2013-01-23
The harmonic action functional allows a natural generalisation to semi-Riemannian supergeometry, referred to as superharmonic action, which resembles the supersymmetric sigma models studied in high energy physics. We show that Killing vector fields are infinitesimal supersymmetries of the superharmonic action and prove three different Noether theorems in this context. En passant, we provide a homogeneous treatment of five characterisations of Killing vector fields on semi-Riemannian supermanifolds, thus filling a gap in the literature.
Manipulation of p-wave scattering of cold atoms in low dimensions using the magnetic field vector
NASA Astrophysics Data System (ADS)
Peng, Shi-Guo; Tan, Shina; Jiang, Kaijun
2014-03-01
It is well known that the magnetic Feshbach resonances of cold atoms are sensitive to the magnitude of the external magnetic field. Much less attention has been paid to the direction of such a field. In this work we calculate the scattering properties of spin polarized fermionic atoms in reduced dimensions, near a p-wave Feshbach resonance. Because of spatial anisotropy of the p-wave interaction, the scattering has nontrivial dependence on both the magnitude and the direction of the magnetic field. In addition, we identify an inelastic scattering process which is impossible in the isotropic-interaction model; the rate of this process depends considerably on the direction of the magnetic field. Significantly, an EPR entangled pair of identical fermions may be produced during this inelastic collision. This work opens a new method to manipulate resonant cold atomic interactions. CPSF (Grant No. 2012M510187), Special Financial Grant from CPSF (Grant No. 2013T60762), the NSFC projects (Grant No. 11004224 and No.11204355) and the NFRP- China (Grant No. 2011CB921601), NSF (Grant No. PHY-1068511), Alfred P. Sloan Foundation
Vector Fields Resembling Dark Energy
NASA Astrophysics Data System (ADS)
Bretón, Nora
We review how vector fields have been introduced to produce inflationary scenarios in early universes and recently they have been invoked to mimick dark energy. These last approaches have been mostly qualitatives, requiring then to be tested with cosmological probes, in order to seriously be considered as one of the possible causes of the present accelerated expansion of the universe.
Representation of magnetic fields in space
NASA Technical Reports Server (NTRS)
Stern, D. P.
1975-01-01
Several methods by which a magnetic field in space can be represented are reviewed with particular attention to problems of the observed geomagnetic field. Time dependence is assumed to be negligible, and five main classes of representation are described by vector potential, scalar potential, orthogonal vectors, Euler potentials, and expanded magnetic field.
The HMI Magnetic Field Pipeline
Jon Todd Hoeksema; Y. Liu; J. Schou; P. Scherrer
2009-01-01
The Helioseismic and Magnetic Imager (HMI) will provide frequent full-disk magnetic field data after launch of the Solar Dynamics Observatory (SDO), currently scheduled for fall 2009. 16 megapixel line-of-sight magnetograms (Blos) will be recorded every 45 seconds. A full set of polarized filtergrams needed to determine the vector magnetic field requires 90 seconds. Quick-look data will be available within a
ESTIMATING ELECTRIC FIELDS FROM VECTOR MAGNETOGRAM SEQUENCES
Fisher, G. H.; Welsch, B. T.; Abbett, W. P.; Bercik, D. J. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States)
2010-05-20
Determining the electric field distribution on the Sun's photosphere is essential for quantitative studies of how energy flows from the Sun's photosphere, through the corona, and into the heliosphere. This electric field also provides valuable input for data-driven models of the solar atmosphere and the Sun-Earth system. We show how observed vector magnetogram time series can be used to estimate the photospheric electric field. Our method uses a 'poloidal-toroidal decomposition' (PTD) of the time derivative of the vector magnetic field. These solutions provide an electric field whose curl obeys all three components of Faraday's Law. The PTD solutions are not unique; the gradient of a scalar potential can be added to the PTD electric field without affecting consistency with Faraday's Law. We then present an iterative technique to determine a potential function consistent with ideal MHD evolution; but this field is also not a unique solution to Faraday's Law. Finally, we explore a variational approach that minimizes an energy functional to determine a unique electric field, a generalization of Longcope's 'Minimum Energy Fit'. The PTD technique, the iterative technique, and the variational technique are used to estimate electric fields from a pair of synthetic vector magnetograms taken from an MHD simulation; and these fields are compared with the simulation's known electric fields. The PTD and iteration techniques compare favorably to results from existing velocity inversion techniques. These three techniques are then applied to a pair of vector magnetograms of solar active region NOAA AR8210, to demonstrate the methods with real data. Careful examination of the results from all three methods indicates that evolution of the magnetic vector by itself does not provide enough information to determine the true electric field in the photosphere. Either more information from other measurements, or physical constraints other than those considered here are necessary to find the true electric field. However, we show it is possible to construct physically reasonable electric field distributions whose curl matches the evolution of all three components of B. We also show that the horizontal and vertical Poynting flux patterns derived from the three techniques are similar to one another for the cases investigated.
NASA Astrophysics Data System (ADS)
Jarvet, Jüri; Allard, Peter; Ehrenberg, Anders; Gräslund, Astrid
1996-04-01
The spectral-density mapping of a13C?-1H?vector of Leu10in the 22-residue peptide hormone motilin [P. Allard, J. Jarvet, A. Ehrenberg, and A. Gräslund,J. Biomol. NMR5,133-146 (1995)] is extended in this paper to three polarizing fields 9.4, 11.7, and 14.1 T in order to improve the accuracy of the calculated spectral-density functionJ(?) and to extend the sampling range up to 750 MHz. The problem with a usually large relative error inJ(?H) is eliminated since the generally more preciseJ(?H- ?C) andJ(?H+ ?C) determined at other fields appear at nearly the same frequencies. The fitting of dynamic models to the points of spectral density was made with error weighting, and the influence ofJ(?H) was found to be negligible. Therefore, the high-frequency part of the spectral-density function is determined essentially without influence from the two transverse-type relaxation rates. In the case of a carbon-proton vector, the relaxation is mainly determined by dipolar interaction and is only weakly influenced by other relaxation mechanisms, which makes it particularly suitable for the spectral-density mapping technique. The measured relaxation rates in the time domain are transformed into the frequency domain by spectral-density mapping, and the slopes in different frequency regions are important parameters when comparing experimental data with theoretical models of motion. Using an adjustable internuclear distancereff, combined with the model-free approach, it is possible to obtain a reasonable fit to measured spectral-density points atJ(0) and aroundJ(?C). At the same time, however, the high-frequency slope of the spectral-density function defined byJ(?H- ?C) andJ(?H+ ?C) could not be reproduced.
3D vector magnetic properties of soft magnetic composite material
NASA Astrophysics Data System (ADS)
Guo, Y. G.; Zhu, J. G.; Lin, Z. W.; Zhong, J. J.
2006-07-01
Even under one-dimensional (1D) alternating or 2D rotating magnetic excitation, a magnetic material shows 3D magnetic property due to the rotation of magnetic domains. Only when the 3D properties are properly considered the understanding and modelling of the magnetisation process can be complete. This paper summarises our work about the investigation on the magnetic properties of soft magnetic composite (SMC) material under 3D vector magnetisations by using a 3D magnetic property tester. The core loss models under 3D flux density vectors are analysed and applied to predict the core losses of a permanent magnet claw pole/transverse flux motor with SMC core.
Composite Vector Particles in External Electromagnetic Fields
Davoudi, Zohreh
2015-01-01
Lattice quantum chromodynamics (QCD) studies of electromagnetic properties of hadrons and light nuclei, such as magnetic moments and polarizabilities, have proven successful with the use of background field methods. With an implementation of nonuniform background electromagnetic fields, properties such as charge radii and higher electromagnetic multipole moments (for states of higher spin) can be additionally obtained. This can be achieved by matching lattice QCD calculations to a corresponding low-energy effective theory that describes the static and quasi-static response of hadrons and nuclei to weak external fields. With particular interest in the case of vector mesons and spin-1 nuclei such as the deuteron, we present an effective field theory of spin-1 particles coupled to external electromagnetic fields. To constrain the charge radius and the electric quadrupole moment of the composite spin-1 field, the single-particle Green's functions in a linearly varying electric field in space are obtained within t...
Chkareuli, J. L. [E. Andronikashvili Institute of Physics, 0177 Tbilisi, Georgia (United States); I. Chavchavadze State University, 0162 Tbilisi (Georgia); Kobakhidze, Archil [E. Andronikashvili Institute of Physics, 0177 Tbilisi (Georgia); School of Physics, University of Melbourne, Victoria 3010 (Australia); Volkas, Raymond R. [School of Physics, University of Melbourne, Victoria 3010 (Australia)
2009-09-15
We argue that spontaneous Lorentz violation may generally lead to metastable domain walls related to the simultaneous violation of some accompanying discrete symmetries. Remarkably, such domain-wall solutions exist for spacelike Lorentz violation and do not exist for the timelike violation. Because a preferred space direction is spontaneously induced, these domain walls have no planar symmetry and produce a peculiar static gravitational field at small distances, while their long-distance gravity appears the same as for regular scalar-field walls. Some possible applications of vector-field domain walls are briefly discussed.
Periodic Orbits of Vector Fields: Computational Challenges
Guckenheimer, John
Periodic Orbits of Vector Fields: Computational Challenges John Guckenheimer Mathematics discipline of science and engineering. Periodic orbits are frequently encountered as trajectories. We use periodic orbits of vector fields. We expect numerical inte- gration algorithms to be reliable
Visualizing vector field topology in fluid flows
NASA Technical Reports Server (NTRS)
Helman, James L.; Hesselink, Lambertus
1991-01-01
Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.
S. Bitchkov; M. Tchadaev; V. Novoselitskiy; G. Prostoloupov; G. Scherbinina
2003-01-01
The essentially new approach is developed for processing potential fields data in the system ``VECTOR''. The approach is based on high sensitivity of vectors of complete horizontal gradient to lateral density variations. The horizontal gradients are calculated by means of a subroutine that constructs triangles using points with the measured values of gravity field (g). The transformations at a level
The magnetic field investigation on Cluster
NASA Astrophysics Data System (ADS)
Balogh, A.; Cowley, S. W. H.; Southwood, D. J.; Musmann, G.; Luhr, H.; Neubauer, F. M.; Glassmeier, K.-H.; Riedler, W.; Heyn, M. F.; Acuna, M. H.
1988-10-01
The magnetic field investigation of the Cluster four-spacecraft mission is designed to provide intercalibrated measurements of the B magnetic field vector. The instrumentation and data processing of the mission are discussed. The instrumentation is identical on the four spacecraft. It consists of two triaxial fluxgate sensors and of a failure tolerant data processing unit. The combined analysis of the four spacecraft data will yield such parameters as the current density vector, wave vectors, and the geometry and structure of discontinuities.
The magnetic field investigation on Cluster
NASA Technical Reports Server (NTRS)
Balogh, A.; Cowley, S. W. H.; Southwood, D. J.; Musmann, G.; Luhr, H.; Neubauer, F. M.; Glassmeier, K.-H.; Riedler, W.; Heyn, M. F.; Acuna, M. H.
1988-01-01
The magnetic field investigation of the Cluster four-spacecraft mission is designed to provide intercalibrated measurements of the B magnetic field vector. The instrumentation and data processing of the mission are discussed. The instrumentation is identical on the four spacecraft. It consists of two triaxial fluxgate sensors and of a failure tolerant data processing unit. The combined analysis of the four spacecraft data will yield such parameters as the current density vector, wave vectors, and the geometry and structure of discontinuities.
Introduction to Vector Field Visualization
NASA Technical Reports Server (NTRS)
Kao, David; Shen, Han-Wei
2010-01-01
Vector field visualization techniques are essential to help us understand the complex dynamics of flow fields. These can be found in a wide range of applications such as study of flows around an aircraft, the blood flow in our heart chambers, ocean circulation models, and severe weather predictions. The vector fields from these various applications can be visually depicted using a number of techniques such as particle traces and advecting textures. In this tutorial, we present several fundamental algorithms in flow visualization including particle integration, particle tracking in time-dependent flows, and seeding strategies. For flows near surfaces, a wide variety of synthetic texture-based algorithms have been developed to depict near-body flow features. The most common approach is based on the Line Integral Convolution (LIC) algorithm. There also exist extensions of LIC to support more flexible texture generations for 3D flow data. This tutorial reviews these algorithms. Tensor fields are found in several real-world applications and also require the aid of visualization to help users understand their data sets. Examples where one can find tensor fields include mechanics to see how material respond to external forces, civil engineering and geomechanics of roads and bridges, and the study of neural pathway via diffusion tensor imaging. This tutorial will provide an overview of the different tensor field visualization techniques, discuss basic tensor decompositions, and go into detail on glyph based methods, deformation based methods, and streamline based methods. Practical examples will be used when presenting the methods; and applications from some case studies will be used as part of the motivation.
Schwarz, Gerald W
2011-01-01
Let V be a G-module where G is a complex reductive group. Let Z:=V//G denote the categorical quotient. One can ask if the Luna stratification of Z is intrinsic. That is, if phi : Z\\to Z is any automorphism, does phi send strata to strata? In a paper of Kuttler and Reichstein the answer was shown to be yes for V a direct sum of sufficiently many copies of a G-module W. We show that the answer is yes for almost all V. The key is to consider the vector fields on Z.
Scalar Representation of Vector and Tensor Fields
Hanyk, Ladislav
Appendix B Scalar Representation of Vector and Tensor Fields A subset of scalar representations of differential operators acting on scalar, vector and secondÂ order tensor fields is derived. Concepts operators grad, div and rot acting on the scalar and vector functions f = f(Â¸ 1 ; Â¸ 2 ; Â¸ 3 ) ; (B.2) u = u
Vector fields and multidimensional integrable hierarchies
Fominov, Yakov
Vector fields and multidimensional integrable hierarchies L.V. Bogdanov in collaboration with S on nonlinear vector Riemann problem 3. General (N+2)-dimensional one-point hierarchy Dunajski system hierarchy.D. Landau ITP RAS, Moscow) Zakharov 70 2 / 26 #12;Introduction Linear operators (Lax pairs) Â vector fields
The MAVEN Magnetic Field Investigation
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.
2014-01-01
The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.
The MAVEN Magnetic Field Investigation
NASA Astrophysics Data System (ADS)
Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.
2015-06-01
The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.
NSDL National Science Digital Library
VU Bioengineering RET Program, School of Engineering,
This lesson introduces students to the effects of magnetic fields in matter addressing permanent magnets, diamagnetism, paramagnetism, ferromagnetism, and magnetization. First students must compare the magnetic field of a solenoid to the magnetic field of a permanent magnet. Students then learn the response of diamagnetic, paramagnetic, and ferromagnetic material to a magnetic field. Now aware of the mechanism causing a solid to respond to a field, students learn how to measure the response by looking at the net magnetic moment per unit volume of the material.
Magnetization strucrure of thermal vent on island arc from vector magnetic anomlies using AUV
NASA Astrophysics Data System (ADS)
Isezaki, N.; Matsuo, J.; Sayanagi, K.
2012-04-01
The geomagnetic anomaly measured by a scalar magnetometer,such as a proton precession magnetometer cannot be defined its direction, then it does not satisfy the Laplace's equation. Therefore physical formula describing the relation between magnetic field and magnetization cannot be established.Because the difference between results obtained from scalar data and from vector data is very significant, we must use vector magnetic field data for magnetization analyses to get the more reliable and exact solutions. The development program of fundamental tools for exploration of deep seabed resources started with the financial support of the Ministry of Education, Culture, Sports, Science & Technology (MEXT) in 2008 and will end in 2012. In this project, we are developing magnetic exploration tools for seabed resources using AUV (Autonomous Underwater Vehicle) and other deep-towed vehicles to measure not the scalar magnetic field but the vector magnetic field in order to estimate magnetization structure below the sea-floor exactly and precisely. We conducted AUV magnetic survey in 2010 at the thermal area called Hakurei deposit in the Bayonnaise submarine caldera at the southern end of Izu island arc, about 400km south of Tokyo. We analyzed the observed vector magnetic fields to get the vector magnetic anomaly Fields using the method of Isezaki(1984). We inverted these vector magnetic anomaly fields to magnetization structure. CONCLUSIONS 1.The scalar magnetic field TIA (Total Intensity Anomaly) has no physical formula describing the relation between M (Magnetization) and TIA because TIA does not satisfy the Laplace's equation. Then it is impossible to estimate M from TIA. 2.Anlyses of M using TIA have been done so far under assumption TIA=PTA (Projected Total Anomay on MF (Main Geomagnetic Field)), however, which caused the analysis error due to ?T= TIA - PTA . 3.We succeeded to measure the vector magnetic anomaly fields using AUV despite the severe magnetic noises around the magnetometer sensors. The method of Isezaki(1984) works good to eliminate these noises. 4.We got the very precise magnetization structure in the Bayonnaise submarine caldera area at the southern end of Izu island arc. We used the prism model which forms the shape of magnetized source body whose top is the sea-floor. The total number od prisms is 1500 making the 3 layers (0-80m, 80-160m, 160- 240m below the sea-floor, 25x20=500 prisms in 1 layer). The 4500 unknowns(3 unknowns, Mx,My,Mz in each prosm) are obtained from 12000 observed vector magnetic anomaly fields by inversion method. 5. The tentative result shows that the 1st and 2nd layers have smaller intensity of magnetization compared to the 3rd layer. The 2nd layer has the smallest of three layers. However the Hakurei deposit area in the 2nd layer has the a little bit greater magnetization than surrounding area which suggests that the Hakurei deposit includes some magnetic minerals. 6.We strongly recommend to carry out the magnetic survey using a three component magnetometer to get TF and TA which have many advantages for magnetic analyses (magnetization, upward continuation etc.) which cannot be done using scalar TIA.
Visualizing Magnetic Field Lines
NSDL National Science Digital Library
VU Bioengineering RET Program, School of Engineering,
In this activity, students take the age old concept of etch-a-sketch a step further. Using iron filings, students begin visualizing magnetic field lines. To do so, students use a compass to read the direction of the magnet's magnetic field. Then, students observe the behavior of iron filings near that magnet as they rotate the filings about the magnet. Finally, students study the behavior of iron filings suspended in mineral oil which displays the magnetic field in three dimensions.
Magnetic field line Hamiltonian
Boozer, A.H.
1985-02-01
The basic properties of the Hamiltonian representation of magnetic fields in canonical form are reviewed. The theory of canonical magnetic perturbation theory is then developed and applied to the time evolution of a magnetic field embedded in a toroidal plasma. Finally, the extension of the energy principle to tearing modes, utilizing the magnetic field line Hamiltonian, is outlined.
Aleksandr A. Ruzmaikin; Dmitrii D. Sokolov; Anvar M. Shukurov
1988-01-01
The current state of the understanding of the magnetic fields of galaxies is reviewed. A simple model of the turbulent dynamo is developed which explains the main observational features of the global magnetic fields of spiral galaxies. The generation of small-scale chaotic magnetic fields in the interstellar medium is also examined. Attention is also given to the role of magnetic
Composite Vector Particles in External Electromagnetic Fields
Zohreh Davoudi; William Detmold
2015-10-08
Lattice quantum chromodynamics (QCD) studies of electromagnetic properties of hadrons and light nuclei, such as magnetic moments and polarizabilities, have proven successful with the use of background field methods. With an implementation of nonuniform background electromagnetic fields, properties such as charge radii and higher electromagnetic multipole moments (for states of higher spin) can be additionally obtained. This can be achieved by matching lattice QCD calculations to a corresponding low-energy effective theory that describes the static and quasi-static response of hadrons and nuclei to weak external fields. With particular interest in the case of vector mesons and spin-1 nuclei such as the deuteron, we present an effective field theory of spin-1 particles coupled to external electromagnetic fields. To constrain the charge radius and the electric quadrupole moment of the composite spin-1 field, the single-particle Green's functions in a linearly varying electric field in space are obtained within the effective theory, providing explicit expressions that can be used to match directly onto lattice QCD correlation functions. The viability of an extraction of the charge radius and the electric quadrupole moment of the deuteron from the upcoming lattice QCD calculations of this nucleus is discussed.
Scalar Representation of Vector and Tensor Fields
Hanyk, Ladislav
Appendix B Scalar Representation of Vector and Tensor Fields A subset of scalar representations of differential operators acting on scalar, vector and second- order tensor fields is derived. Concepts = h1h2h3 , i = 1, 2, 3 . (B.1) The differential operators grad, div and rot acting on the scalar
ECE 390 Electric & Magnetic Fields Catalog Description: Static and quasi-static electric), A. Jander (secondary) Course Content: · Introduction, review of vector analysis · Static electric fields in free space: Coulomb's law, Gauss's law, and electric potential, electric dipole · Static
Electron Paramagnetic Resonance -- Nuclear Magnetic Resonance Three Axis Vector Magnetometer
NASA Astrophysics Data System (ADS)
Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Larsen, Michael; Mirijanian, James
2012-06-01
The Northrop Grumman Corporation is leveraging the technology developed for the Nuclear Magnetic Resonance Gyroscope (NMRG) to build a combined Electron Paramagnetic Resonance -- Nuclear Magnetic Resonance (EPR-NMR) magnetometer. The EPR-NMR approach provides a high bandwidth and high sensitivity simultaneous measurement of all three vector components of the magnetic field averaged over the small volume of the sensor's one vapor cell. This poster will describe the history, operational principles, and design basics of the EPR-NMR magnetometer including an overview of the NSD designs developed and demonstrated to date. General performance results will also be presented.
NASA Astrophysics Data System (ADS)
Schüssler, M.; Murdin, P.
2000-11-01
Electrical currents flowing in the solar plasma generate a magnetic field, which is detected in the SOLAR ATMOSPHERE by spectroscopic and polarization measurements (SOLAR MAGNETIC FIELD: INFERENCE BY POLARIMETRY). The SOLAR WIND carries the magnetic field into interplanetary space where it can be measured directly by instruments on space probes....
Magnetic Fields Analogous to electric field, a magnet
Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University
Magnetic Fields Analogous to electric field, a magnet produces a magnetic field, B Set up a B field two ways: Moving electrically charged particles Current in a wire Intrinsic magnetic field Basic characteristic of elementary particles such as an electron #12;Magnetic Fields Magnetic field lines Direction
LABORATORY VI MAGNETIC FIELDS AND FORCES
Minnesota, University of
Lab VI - 1 LABORATORY VI MAGNETIC FIELDS AND FORCES Magnetism plays a large role in our world for the differences as you go through the problems in this lab. In this set of laboratory problems, you will map motion. PREPARATION: Before coming to lab you should be able to: · Add fields using vector properties
Electricity and Magnetic Fields
NSDL National Science Digital Library
VU Bioengineering RET Program,
The grand challenge for this legacy cycle unit is for students to design a way to help a recycler separate aluminum from steel scrap metal. In previous lessons, they have looked at how magnetism might be utilized. In this lesson, students think about how they might use magnets and how they might confront the problem of turning the magnetic field off. Through the accompanying activity students explore the nature of an electrically induced magnetic field and its applicability to the needed magnet.
NSDL National Science Digital Library
Jeffrey Barker
This demonstration of the magnetic field lines of Earth uses a bar magnet, iron filings, and a compass. The site explains how to measure the magnetic field of the Earth by measuring the direction a compass points from various points on the surface. There is also an explanation of why the north magnetic pole on Earth is actually, by definition, the south pole of a magnet.
Electromagnetic field vector components precise measurements in accelerating structures
M. A. Chernogubovsky; M. F. Vorogushin
1995-01-01
A precise measurement method for resonator electric or magnetic vector components values and their space positions, based on the application of a photosemiconductor plate, is presented. The optical system for the 433 MHz RFQ accelerating structure is realized by means of serial produced micro-alignment telescopes; the method allows one to discriminate the field axis fluctuations at the micron level and
Magnetic Gradiometer and Vector Magnetometer Survey of the Eastern Mediterranean
NASA Astrophysics Data System (ADS)
Granot, R.
2014-12-01
Some of the fundamental tectonic problems of the Eastern Mediterranean remain unresolved due to the extremely thick sedimentary cover (~15 km) and the lack of accurate magnetic anomaly data. We conducted a magnetic survey of the Herodotus and Levant Basins (Eastern Mediterranean) to study the nature and age of the underlying igneous crust. The towed magnetometer array consisted of two Overhauser sensors recording the total magnetic field in a longitudinal gradiometer mode, and a marine vector magnetometer. Accurate navigation together with the gradiometer data allows the separation of the magnetic signature of the lithosphere from the contributions of the external magnetic field and the geomagnetic field. Total field data in the Herodotus Basin reveal a sequence of long-wavelength NE-SW lineated anomalies (~80 nT) suggesting a deep (~20 km) 2D magnetic source layer. Analysis of the vector data shows a steady azimuth of lineations that is generally consistent with the total field anomalies. The sequence of anomalies is rather short and does not allow a unique identification. However, the continuous northward motion of the African Plate during the Paleozoic and Mesozoic result in predictable anomaly skewness patterns for the different time periods. Forward magnetic modeling best fit the observed anomalies when using Early Permian remanence directions. Altogether, these observations and analysis suggest that a Neo-Tethyan Permian oceanic crust underlies the Herodotus Basin. Two short-wavelengths and strong (~400 nT) anomalies are found in the Levant Basin, proposing rather shallow (~7 km) magnetic sources there. These anomalies spatially coincide with Mesozoic uplifted continental structures (Eratosthenes and Jonah Highs).
NASA Technical Reports Server (NTRS)
Howard, R.
1972-01-01
Knowledge on the nature of magnetic fields on the solar surface is reviewed. At least a large part of the magnetic flux in the solar surface is confined to small bundles of lines of force within which the field strength is of the order of 500 gauss. Magnetic fields are closely associated with all types of solar activity. Magnetic flux appears at the surface at the clearly defined birth or regeneration of activity of an active region. As the region ages, the magnetic flux migrates to form large-scale patterns and the polar fields. Some manifestations of the large-scale distribution are discussed.
NSDL National Science Digital Library
Wolfgang Christian
The above animations represent two typical bar magnets each with a North and South pole. The arrows represent the direction of the magnetic field. The color of the arrows represents the magnitude of the field with magnitude increasing as the color changes from blue to green to red to black. You may drag either magnet and double-click anywhere inside the animation to add a magnetic field line, and mouse-down to read the magnitude of the magnetic field at that point.
E&S 2 model for vector magnetic hysteresis property
NASA Astrophysics Data System (ADS)
Shimoji, H.; Enokizono, M.
2003-01-01
This paper presents a new modeling of the vector magnetic property with an integration term. Recently the studies of the two-dimensional magnetic property have made progress rapidly and those achievements have become a center of attraction. The magnetic materials can be measured using the two-dimensional magnetic measuring technique. We enable the magnetic field analysis, which considered the anisotropy, by combining the finite element method and a new E&S 2(Enokizono, Soda and Shimoji) modeling. A good convergence characteristics by using conventional molding was hard to obtain in the calculation process. This new modeling can improve the defect of the E&S modeling. This paper shows the comparison of the experimental results with the calculated results by using the new modeling.
Imaging vector fields using Line Integral Convolution
Cabral, B.; Leedom, L.C.
1993-03-01
Imaging vector fields has applications in science, art, image processing and special effects. An effective new approach is to use linear and curvilinear filtering techniques to locally blur textures along a vector field. This approach builds on several previous texture generation and filtering techniques. It is, however, unique because it is local, one-dimensional and independent of any predefined geometry or texture. The technique is general and capable of imaging arbitrary two- and three-dimensional vector fields. The local one-dimensional nature of the algorithm lends itself to highly parallel and efficient implementations. Furthermore, the curvilinear filter is capable of rendering detail on very intricate vector fields. Combining this technique with other rendering and image processing techniques -- like periodic motion filtering -- results in richly informative and striking images. The technique can also produce novel special effects.
Schep, T.J. [Eindhoven University of Technology (Netherlands)
2004-03-15
Plasmas and magnetic fields are inseparably related in numerous physical circumstances. This is not only the case in natural occurring plasmas like the solar corona and the earth magnetic tail, but also in laboratory plasmas like tokamaks and stellarators.
Magnetic vectoring of magnetically responsive nanoparticles within the murine peritoneum
NASA Astrophysics Data System (ADS)
Klostergaard, Jim; Bankson, James; Auzenne, Edmond; Gibson, Don; Yuill, William; Seeney, Charles E.
2007-04-01
Magnetically responsive nanoparticles (MNPs) might be candidates for pro-drug formulations for intraperitoneal (i.p.) treatment of ovarian cancer. We conducted feasibility experiments in an i.p. human ovarian carcinoma xenograft model to determine whether MNPs can be effectively vectored within this environment. Our initial results based on magnetic resonance imaging (MRI) indicate that i.p.-injected ˜15 nm magnetite-based MNPs can in fact migrate toward NdFeB magnets externally juxtaposed to the peritoneal cavity above the xenografts growing in the anterior abdominal wall. MNP localization to the tumor/peri-tumoral environment occurs. Further development of this MNP pro-drug strategy is underway.
Killing vector fields and harmonic superfield theories
Groeger, Josua, E-mail: groegerj@mathematik.hu-berlin.de [Humboldt-Universität zu Berlin, Institut für Mathematik, Rudower Chaussee 25, 12489 Berlin (Germany)
2014-09-15
The harmonic action functional allows a natural generalisation to semi-Riemannian supergeometry, also referred to as harmonic, which resembles the supersymmetric sigma models studied in high energy physics. We show that Killing vector fields are infinitesimal supersymmetries of this harmonic action and prove three different Noether theorems in this context. En passant, we provide a homogeneous treatment of five characterisations of Killing vector fields on semi-Riemannian supermanifolds, thus filling a gap in the literature.
NASA Astrophysics Data System (ADS)
Beck, Rainer; Wielebinski, Richard
Most of the visible matter in the Universe is ionized so that cosmic magnetic fields are quite easy to generate and, due to the lack of magnetic monopoles, hard to destroy. Magnetic fields have been measured in or around practically all celestial objects, either by in situ measurements of spacecrafts or by the electromagnetic radiation of embedded cosmic rays, gas, or dust. The Earth, the Sun, solar planets, stars, pulsars, the Milky Way, nearby galaxies, more distant (radio) galaxies, quasars, and even intergalactic space in clusters of galaxies have significant magnetic fields, and even larger volumes of the Universe may be permeated by "dark" magnetic fields. Information on cosmic magnetic fields has increased enormously as the result of the rapid development of observational methods, especially in radio astronomy. In the Milky Way, a wealth of magnetic phenomena was discovered, which are only partly related to objects visible in other spectral ranges. The large-scale structure of the Milky Way's magnetic field is still under debate. The available data for external galaxies can well be explained by field amplification and ordering via the dynamo mechanism. The measured field strengths and the similarity of field patterns and flow patterns of the diffuse ionized gas give strong indication that galactic magnetic fields are dynamically important. They may affect the formation of spiral arms, outflows, and the general evolution of galaxies. In spite of our increasing knowledge on magnetic fields, many important questions on the origin and evolution of magnetic fields, their first occurrence in young galaxies, or the existence of large-scale intergalactic fields remained unanswered. The present upgrades of existing instruments and several planned radio astronomy projects have defined cosmic magnetism as one of their key science projects.
NSDL National Science Digital Library
Wolfgang Christian
Clicking on the different links below will produce different magnetic fields in the box above. The wires (perpendicular to the screen) or coils (in and out of the screen) are not visible, but you can determine what they are from the field. You can also click on a point to read off the magnetic field at that place.
Direct magnetic loss analysis by FEM considering vector magnetic properties
Enokizono, M.; Soda, N.
1998-09-01
Improving material characteristics and optimizing designs have been studied from the standpoint of efficiency improvement of electrical machinery and apparatus. Unfortunately, the local magnetic properties in the actual core were still not understood fully. The study of soft magnetic materials commonly used in rotating machines and three-phase transformers is very important for saving energy. This paper deals with analysis by FEM for iron losses considering vector magnetic properties. The authors define the tensor magnetic reluctivity and calculate it from the data measured with two-dimensional measurement method. This numerical method is applied to the direct magnetic loss analysis. As a result, it is shown that the calculated results using the method are in a good agreement with measured ones.
Magnetic Field Problem: Mesuring Current in Wire
NSDL National Science Digital Library
Wolfgang Christian
A wire carrying an unknown current is shown above. An external magnetic field that has constant magnitude and direction is applied to the top half of the simulation (The gray rectangle is at the boundary for your reference). In addition, there is the magnetic field produced by the current in the wire. The direction arrows show the vector sum of these two fields. (The color of the direction arrows represents the magnitude of the field as before.) Observe the force vector and the force/length in the yellow message box in the lower left hand corner.
Ferromagnetic Switching of Knotted Vector Fields in Liquid Crystal Colloids
NASA Astrophysics Data System (ADS)
Zhang, Qiaoxuan; Ackerman, Paul J.; Liu, Qingkun; Smalyukh, Ivan I.
2015-08-01
We experimentally realize polydomain and monodomain chiral ferromagnetic liquid crystal colloids that exhibit solitonic and knotted vector field configurations. Formed by dispersions of ferromagnetic nanoplatelets in chiral nematic liquid crystals, these colloidal ferromagnets exhibit spontaneous long-range alignment of magnetic dipole moments of individual platelets, giving rise to a continuum of the magnetization field M (r ) . Competing effects of surface confinement and chirality prompt spontaneous formation and enable the optical generation of localized twisted solitonic structures with double-twist tubes and torus knots of M (r ) , which exhibit a strong sensitivity to the direction of weak magnetic fields ˜1 mT . Numerical modeling, implemented through free energy minimization to arrive at a field-dependent three-dimensional M (r ) , shows a good agreement with experiments and provides insights into the torus knot topology of observed field configurations and the corresponding physical underpinnings.
Ferromagnetic Switching of Knotted Vector Fields in Liquid Crystal Colloids.
Zhang, Qiaoxuan; Ackerman, Paul J; Liu, Qingkun; Smalyukh, Ivan I
2015-08-28
We experimentally realize polydomain and monodomain chiral ferromagnetic liquid crystal colloids that exhibit solitonic and knotted vector field configurations. Formed by dispersions of ferromagnetic nanoplatelets in chiral nematic liquid crystals, these colloidal ferromagnets exhibit spontaneous long-range alignment of magnetic dipole moments of individual platelets, giving rise to a continuum of the magnetization field M(r). Competing effects of surface confinement and chirality prompt spontaneous formation and enable the optical generation of localized twisted solitonic structures with double-twist tubes and torus knots of M(r), which exhibit a strong sensitivity to the direction of weak magnetic fields ?1??mT. Numerical modeling, implemented through free energy minimization to arrive at a field-dependent three-dimensional M(r), shows a good agreement with experiments and provides insights into the torus knot topology of observed field configurations and the corresponding physical underpinnings. PMID:26371682
Krienin, Frank (Shoreham, NY)
1990-01-01
A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.
A Local Descriptor for Finding Corresponding Points in Vector Fields Liefei Xu and H. Quynh Dinh
Mordohai, Philippos
imaging (e.g., phase-contrast magnetic-resonance angiography captures 3D velocity fields of moving tis to noise due to their statistical nature. Statistics on vector fields from optical flow have been exploredA Local Descriptor for Finding Corresponding Points in Vector Fields Liefei Xu and H. Quynh Dinh
Magnetic Field & Right Hand Rule
Heller, Barbara
Magnetic Field & Right Hand Rule Academic Resource Center #12;Magnetic Fields And Right Hand Rules By: Anthony Ruth #12;Magnetic Fields vs Electric Fields Â· Magnetic fields are similar to electric charges and stationary charges. Â· In addition, magnetic fields create a force only on moving charges
Hessian structures, Euler vector fields, and thermodynamics
M. Á. García-Ariza
2015-06-15
In this paper, it is shown that the underlying geometric structure of thermodynamics is formed by two elements. The first one is a degenerate Hessian structure distinguished by the fact that its potentials are extensive functions. A suitable coordinate-free definition of the latter is presented, relying on a particular vector field which is proposed to be the second ingredient of the geometric structure of thermodynamics. This vector has the form of an Euler vector in certain coordinate charts that somehow generalize those formed by internal energy or entropy and deformation coordinates in the spaces of equilibrium states of thermodynamic systems. Intensive functions and Legendre transforms are reviewed under this approach.
Vector boson mass generation without new fields
Bernd A. Berg
2012-04-21
Previously a model of only vector fields with a local U(2) symmetry was introduced for which one finds a massless U(1) photon and a massive SU(2) vector boson in the lattice regularization. Here it is shown that quantization of its classical continuum action leads to perturbative renormalization difficulties. But, non-perturbative Monte Carlo calculations favor the existence of a quantum continuum limit.
Magnetic field line Hamiltonian
Boozer, A.H.
1984-03-01
The magnetic field line Hamiltonian and the associated canonical form for the magnetic field are important concepts both for understanding toroidal plasma physics and for practical calculations. A number of important properties of the canonical or Hamiltonian representation are derived and their importance is explained.
In situ preparation of magnetic nonviral gene vectors and magnetofection in vitro
NASA Astrophysics Data System (ADS)
Shi, Yunfeng; Zhou, Linzhu; Wang, Ruibin; Pang, Yan; Xiao, Wangchuan; Li, Huiqin; Su, Yue; Wang, Xiaoliang; Zhu, Bangshang; Zhu, Xinyuan; Yan, Deyue; Gu, Hongchen
2010-03-01
Magnetic nonviral gene vectors were in situ prepared in the presence of ferrous salts and hyperbranched poly(ethylenimine)s (HPEI) with different molecular weights. HPEI, one of the most promising nonviral vectors, was not only utilized as the nanoreactor and stabilizer to prepare magnetic nanoparticles, but also skillfully used as a base supplier to avoid introducing alkali hydroxide or ammonia. Magnetic nonviral gene vectors with various magnetite contents and saturation magnetizations were obtained by changing the weight ratio of HPEI to FeSO4·7H2O and the molecular weight of HPEI. MTT assays suggested that the resulting magnetite/HPEI gene vectors had lower cytotoxicity compared with pure HPEI. The magnetite/HPEI nonviral gene vectors were used for magnetofection. It was found that the luciferase expression level mediated by magnetite/HPEI in COS-7 cells under a magnetic gradient field was approximately 13-fold greater than that of standard HPEI transfection.
Magnetic field spectrum at cosmological recombination revisited
Shohei Saga; Kiyotomo Ichiki; Keitaro Takahashi; Naoshi Sugiyama
2015-06-03
If vector type perturbations are present in the primordial plasma before recombination, the generation of magnetic fields is known to be inevitable through the Harrison mechanism. In the context of the standard cosmological perturbation theory, non-linear couplings of first-order scalar perturbations create second-order vector perturbations, which generate magnetic fields. Here we reinvestigate the generation of magnetic fields at second-order in cosmological perturbations on the basis of our previous study, and extend it by newly taking into account the time evolution of purely second-order vector perturbations with a newly developed second-order Boltzmann code. We confirm that the amplitude of magnetic fields from the product-terms of the first-order scalar modes is consistent with the result in our previous study. However, we find, both numerically and analytically, that the magnetic fields from the purely second-order vector perturbations partially cancel out the magnetic fields from one of the product-terms of the first-order scalar modes, in the tight coupling regime in the radiation dominated era. Therefore, the amplitude of the magnetic fields on small scales, $k \\gtrsim 10~h{\\rm Mpc}^{-1}$, is smaller than the previous estimates. The amplitude of the generated magnetic fields at cosmological recombination is about $B_{\\rm rec} =5.0\\times 10^{-24}~{\\rm Gauss}$ on $k = 5.0 \\times 10^{-1}~h{\\rm Mpc}^{-1}$. Finally, we discuss the reason of the discrepancies that exist in estimates of the amplitude of magnetic fields among other authors.
NASA Astrophysics Data System (ADS)
Chu, Peng-Cheng; Wang, Xin; Chen, Lie-Wen; Huang, Mei
2015-01-01
We investigate properties of strange quark matter in the framework of the SU(3) Nambu-Jona-Lasinio model with vector interactions under strong magnetic fields. The effects of vector-isoscalar and vector-isovector interactions on the equation of state of strange quark matter are investigated, and it is found that the equation of state is not sensitive to the vector-isovector interaction; however, a repulsive interaction in the vector-isoscalar channel gives a stiffer equation of state for cold dense quark matter. In the presence of a magnetic field, gluons will be magnetized via quark loops, and the contribution from magnetized gluons to the equation of state is also estimated. The sound velocity square is a quantity to measure the hardness or softness of dense quark matter, and in the Nambu-Jona-Lasinio model without vector interaction at zero magnetic field, the sound velocity square is always less than 1 /3 . It is found that a repulsive vector-isoscalar interaction and a positive pressure contribution from magnetized gluons can enhance the sound velocity square, which can even reach 1. To construct quark magnetars under strong magnetic fields, we consider anisotropic pressures and use a density-dependent magnetic field profile to mimic the magnetic field distribution in a quark star. We also analyze the parameter region for the magnitude of vector-isoscalar interaction and the contribution from magnetized gluons in order to produce two-solar-mass quark magnetars.
Peng-Cheng Chu; Xin Wang; Lie-Wen Chen; Mei Huang
2014-12-16
We investigate properties of strange quark matter in the framework of SU(3) Nambu--Jona-Lasinio(NJL) model with vector interaction under strong magnetic fields. The effects of vector-isoscalar and vector-isovector interaction on the equation of state of strange quark matter are investigated, and it is found that the equation of state is not sensitive to the vector-isovector interaction, however, a repulsive interaction in the vector-isoscalar channel gives a stiffer equation of state for cold dense quark matter. In the presence of magnetic field, gluons will be magnetized via quark loops, and the contribution from magnetized gluons to the equation of state is also estimated. The sound velocity square is a quantity to measure the hardness or softness of dense quark matter, and in the NJL model without vector interaction at zero magnetic field the sound velocity square is always less than 1/3. It is found that a repulsive vector-isoscalar interaction and a positive pressure contribution from magnetized gluons can enhance the sound velocity square, which can even reach 1. To construct quark magnetars under strong magnetic fields, we consider anisotropic pressures and use a density-dependent magnetic field profile to mimic the magnetic field distribution in a quark star. We also analyze the parameter region for the magnitude of vector-isoscalar interaction and the contribution from magnetized gluons in order to produce 2 solar mass quark magnetars.
E. M. de Gouveia Dal Pino
2006-03-02
Most of the visible matter in the Universe is in a plasma state, or more specifically is composed of ionized or partially ionized gas permeated by magnetic fields. Thanks to recent advances on the theory and detection of cosmic magnetic fields there has been a worldwide growing interest in the study of their role on the formation of astrophysical sources and the structuring of the Universe. In this lecture, I will briefly review the importance of the cosmic magnetic fields both from a theoretical and from an observational perspective, particularly focusing on stellar and compact objects, the interstellar medium and star formation regions, and on galaxies, clusters of galaxies, and the primordial Universe.
Detecting Exoplanetary Magnetic Fields
NASA Astrophysics Data System (ADS)
Llama, Joe
2015-01-01
Asymmetries in exoplanet transits are proving to be a useful tool for furthering our understanding of magnetic activity on both stars and planets outside our Solar System.Near-UV observations of the WASP-12 system have revealed asymmetries in the timing of the transit when compared with the optical light curve. A number of possible explanations have been suggested for this variation, including the presence of a magnetospheric bow shock arising from the interaction of the planet's magnetic field with the stellar wind from it's host star. Such observations provide the first method for directly detecting the presence of a magnetic field on exoplanets.The shape and size of such asymmetries is highly dependent on the structure of the host stars magnetic field at the time of observation. This implies we may observe highly varying near-UV transit light curves for the same system. These variations can then be used to learn about the geometry of the host star's magnetic field.In this presentation I will show modelling a bow shock around an exoplanet can help us to not only detect, but also also place constraints on the magnetic field strength of hot Jupiters. For some systems, such as HD 189733, we have maps of the surface magnetic field of the star at various epochs. I will also show how incorporating these maps into a stellar wind model, I can model the formation of a bow shock around the planet and hence demonstrate the variability of the near-UV transits.
Synthesis of magnetic systems producing field with maximal scalar characteristics
Nickolay I. Klevets
2005-01-01
A method of synthesis of the magnetic systems (MSs) consisting of uniformly magnetized blocks is proposed. This method allows to synthesize MSs providing maximum value of any magnetic field scalar characteristic. In particular, it is possible to synthesize the MSs providing the maximum of a field projection on a given vector, a gradient of a field modulus and a gradient
Magnetic fields in spiral galaxies
NASA Astrophysics Data System (ADS)
Chiba, Masashi
The magnetic-field characteristics in spiral galaxies are investigated, with emphasis on the Milky Way. The dynamo theory is considered, and axisymmetric spiral (ASS) and bisymmetric spiral (BSS) magnetic fields are analyzed. Toroidal and poloidal magnetic fields are discussed.
NSDL National Science Digital Library
2012-08-03
This is an activity about electromagnetism. Learners will use a compass to map the magnetic field lines surrounding a coil of wire that is connected to a battery. This activity requires a large coil or spool of wire, a source of electricity such as 3 D-cell batteries or an AC to DC power adapter, alligator-clipped wire, and magnetic compasses. This is the third lesson in the second session of the Exploring Magnetism teachers guide.
Circular Conditional Autoregressive Modeling of Vector Fields.
Modlin, Danny; Fuentes, Montse; Reich, Brian
2012-02-01
As hurricanes approach landfall, there are several hazards for which coastal populations must be prepared. Damaging winds, torrential rains, and tornadoes play havoc with both the coast and inland areas; but, the biggest seaside menace to life and property is the storm surge. Wind fields are used as the primary forcing for the numerical forecasts of the coastal ocean response to hurricane force winds, such as the height of the storm surge and the degree of coastal flooding. Unfortunately, developments in deterministic modeling of these forcings have been hindered by computational expenses. In this paper, we present a multivariate spatial model for vector fields, that we apply to hurricane winds. We parameterize the wind vector at each site in polar coordinates and specify a circular conditional autoregressive (CCAR) model for the vector direction, and a spatial CAR model for speed. We apply our framework for vector fields to hurricane surface wind fields for Hurricane Floyd of 1999 and compare our CCAR model to prior methods that decompose wind speed and direction into its N-S and W-E cardinal components. PMID:24353452
Symmetries of Elko and massive vector fields
Lee, Cheng-Yang
2013-01-01
This thesis studies the symmetries and phenomenologies of the massive vector fields of indefinite spin with both scalar and spin-one degrees of freedom and Elko. The investigation is conducted by using and extending the quantum field theory formalism developed by Wigner and Weinberg. In particular, we explore the possibility that the $W^{\\pm}$ and $Z$ bosons have an additional scalar degree of freedom and show that Elko is a fermionic dark matter candidate. We show that the massive vector fields of indefinite spin are consistent with Poincar\\'{e} symmetry and have physically desirable properties that are absent for their pure spin-one counterpart. Using the new vector fields, the decay of the $W^{\\pm}$ and $Z$ bosons to leptons at tree-level are in agreement with the Standard Model (SM) predictions. For higher order scattering amplitudes, the theory has better convergent behaviour than the intermediate vector boson model and the Fermi theory. Elko has the unusual property that it satisfies the Klein-Gordon bu...
Anisotropic Diffusion in Vector Field Visualization on
Preusser, Tobias
methods as equivalent to special cases or asymptotic limits of the presented new method, respectively. 2, Tobias PreuÃ»er, and Martin Rumpf AbstractÃVector field visualization is an important topic in scientific scale space method for the visualization of complicated flow pattern. The approach is closely related
Flow volumes for interactive vector field visualization
Max, N.; Becker, B.; Crawfis, R.
1993-04-06
Flow volumes are the volumetric equivalent of stream lines. They provide more information about the vector field being visualized than do stream lines or ribbons. Presented is an efficient method for producing flow volumes, composed of transparently rendered tetrahedra, for use in an interactive system. The problems of rendering, subdivision, sorting, rendering artifacts, and user interaction are dealt with.
Vector Field Editing and Periodic Orbit Extraction Using Morse Decomposition
Chen, Guoning
1 Vector Field Editing and Periodic Orbit Extraction Using Morse Decomposition Guoning Chen of vector fields is critical for many visualization and graphics tasks such as vector field visual- ization, fluid simulation, and texture synthesis. The fundamental qualitative structures associated with vector
Magnetosheath magnetic field variability
NASA Technical Reports Server (NTRS)
Sibeck, D. G.
1994-01-01
A case study using simulations IRM and CCE observations demonstrates that transient magnetospheric events correspond to pressure pulses in the magnetosheath, inward bow shock motion, and magnetopause compression. Statistical surveys indicate that the magnetosheath magnetic field orientation rarely remains constant during periods of magnetopause and bow shock motion (both characterized by periods of 1 to 10 min). There is no tendency for bow shock motion to occur for southward interplanetary magnetic field (IMF) orientations.
George Davies; Lawrence M. Widrow
1999-12-14
We demonstrate that the Biermann battery mechanism for the creation of large scale magnetic fields can arise in a simple model protogalaxy. Analytic calculations and numerical simulations follow explicitly the generation of vorticity (and hence magnetic field) at the outward-moving shock that develops as the protogalactic perturbation collapses. Shear angular momentum then distorts this field into a dipole-like configuration. The magnitude of the field created in the fully formed disk galaxy is estimated to be 10^(-17) Gauss, approximately what is needed as a seed for the galactic dynamo.
''Massless'' vector field in de Sitter universe
Garidi, T.; Gazeau, J.-P. [APC, CNRS UMR 7164, Universite Paris Diderot Paris 7, F-75205 Paris Cedex 13 (France); Rouhani, S. [Plasma Physics Research Center, Islamic Azad University, P.O. Box 14835-157, Tehran (Iran, Islamic Republic of); Takook, M. V. [Department of Physics, Razi University, P. O. Box 67155, Kermanshah (Iran, Islamic Republic of)
2008-03-15
We proceed to the quantization of the massless vector field in the de Sitter (dS) space. This work is the natural continuation of a previous article devoted to the quantization of the dS massive vector field [J. P. Gazeau and M. V. Takook, J. Math. Phys. 41, 5920 (2000); T. Garidi et al., ibid. 43, 6379 (2002).] The term ''massless'' is used by reference to conformal invariance and propagation on the dS lightcone whereas ''massive'' refers to those dS fields which unambiguously contract to Minkowskian massive fields at zero curvature. Due to the combined occurrences of gauge invariance and indefinite metric, the covariant quantization of the massless vector field requires an indecomposable representation of the de Sitter group. We work with the gauge fixing corresponding to the simplest Gupta-Bleuler structure. The field operator is defined with the help of coordinate-independent de Sitter waves (the modes). The latter are simple to manipulate and most adapted to group theoretical approaches. The physical states characterized by the divergencelessness condition are, for instance, easy to identify. The whole construction is based on analyticity requirements in the complexified pseudo-Riemannian manifold for the modes and the two-point function.
NASA Technical Reports Server (NTRS)
Smith, E. J.
1995-01-01
The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.
Cosmological magnetic field survival
John D. Barrow; Christos G. Tsagas
2011-04-07
It is widely believed that primordial magnetic fields are dramatically diluted by the expansion of the universe. As a result, cosmological magnetic fields with residual strengths of astrophysical relevance are generally sought by going outside standard cosmology, or by extending conventional electromagnetic theory. Nevertheless, the survival of strong B-fields of primordial origin is possible in spatially open Friedmann universes without changing conventional electromagnetism. The reason is the hyperbolic geometry of these spacetimes, which slows down the adiabatic magnetic decay-rate and leads to their superadiabatic amplification on large scales. So far, the effect has been found to operate on Friedmannian backgrounds containing either radiation or a slow-rolling scalar field. We show here that the superadiabatic amplification of large-scale magnetic fields, generated by quantum fluctuations during inflation, is essentially independent of the type of matter that fills the universe and appears to be a generic feature of open Friedmann spacetimes. We estimate the late-time strength of any residual field in a marginally open universe and show that it can easily meet the requirements for the dynamo generation of the magnetic fields observed in galaxies today.
NASA Astrophysics Data System (ADS)
Berdyugina, Svetlana
2015-08-01
Molecules probe cool matter in the Universe and various astrophysical objects. Their ability to sense magnetic fields provides new insights into magnetic properties of these objects. During the past fifteen years we have carried out a theoretical study of molecular magnetic effects such as the Zeeman, Paschen-Back and Hanle effects and their applications for inferring magnetic structures and spatial inhomogeneities on the Sun, cool stars, brown dwarfs, and exoplanets from molecular spectro-polarimetry (e.g., Berdyugina 2011). Here, we present an overview of this study and compare our theoretical predictions with recent laboratory measurements of magnetic properties of some molecules. We present also a new web-based tool to compute molecular magnetic effects and polarized spectra which is supported by the ERC Advanced Grant HotMol.
On the non-Gaussian correlation of the primordial curvature perturbation with vector fields
Jain, Rajeev Kumar; Sloth, Martin S. E-mail: sloth@cp3.dias.sdu.dk
2013-02-01
We compute the three-point cross-correlation function of the primordial curvature perturbation generated during inflation with two powers of a vector field in a model where conformal invariance is broken by a direct coupling of the vector field with the inflaton. If the vector field is identified with the electromagnetic field, this correlation would be a non-Gaussian signature of primordial magnetic fields generated during inflation. We find that the signal is maximized for the flattened configuration where the wave number of the curvature perturbation is twice that of the vector field and in this limit, the magnetic non-linear parameter becomes as large as |b{sub NL}| ? O(10{sup 3}). In the squeezed limit where the wave number of the curvature perturbation vanishes, our results agree with the magnetic consistency relation derived in arXiv:1207.4187.
Symmetries of Elko and massive vector fields
Cheng-Yang Lee
2013-06-25
This thesis studies the symmetries and phenomenologies of the massive vector fields of indefinite spin with both scalar and spin-one degrees of freedom and Elko. The investigation is conducted by using and extending the quantum field theory formalism developed by Wigner and Weinberg. In particular, we explore the possibility that the W^{\\pm} and Z bosons have an additional scalar degree of freedom and show that Elko is a fermionic dark matter candidate. We show that the massive vector fields of indefinite spin are consistent with Poincare symmetry and have physically desirable properties that are absent for their pure spin-one counterpart. Using the new vector fields, the decay of the W^{\\pm} and Z bosons to leptons at tree-level are in agreement with the Standard Model (SM) predictions. For higher order scattering amplitudes, the theory has better convergent behaviour than the intermediate vector boson model and the Fermi theory. Elko has the unusual property that it satisfies the Klein-Gordon but not the Dirac equation and has mass dimension one instead of three-half. We show that the Elko fields are local only along a preferred axis and that they violate Lorentz symmetry. Motivated by the results obtained by Ahluwalia and Horvath that the Elko spin-sums are covariant under very special relativity (VSR) transformations, we derive the VSR particle states and quantum fields. We show that the VSR particles can only interact with the SM particles through gravity and massive scalar particles thus making them and hence Elko dark matter candidates.
Magnetic Field Measurement System
Kulesza, Joe; Johnson, Eric; Lyndaker, Aaron; Deyhim, Alex; Waterman, Dave; Blomqvist, K. Ingvar; Dunn, Jonathan Hunter
2007-01-19
A magnetic field measurement system was designed, built and installed at MAX Lab, Sweden for the purpose of characterizing the magnetic field produced by Insertion Devices (see Figure 1). The measurement system consists of a large granite beam roughly 2 feet square and 14 feet long that has been polished beyond laboratory grade for flatness and straightness. The granite precision coupled with the design of the carriage yielded minimum position deviations as measured at the probe tip. The Hall probe data collection and compensation technique allows exceptional resolution and range while taking data on the fly to programmable sample spacing. Additional flip coil provides field integral data.
Magnetic Field Problem: Current
NSDL National Science Digital Library
Wolfgang Christian
A cross section of a circular wire loop carrying an unknown current is shown above. The arrows represent the direction of the magnetic field. The color of the arrows represents the magnitude of the field with magnitude increasing as the color changes from blue to green to red to black. You can double-click in the animation to add magnetic field lines, click-drag the center of the loop to reposition it, and click-drag the top or bottom of the loop to change its size.
NASA Technical Reports Server (NTRS)
Ilin, Andrew V.
2006-01-01
The Magnetic Field Solver computer program calculates the magnetic field generated by a group of collinear, cylindrical axisymmetric electromagnet coils. Given the current flowing in, and the number of turns, axial position, and axial and radial dimensions of each coil, the program calculates matrix coefficients for a finite-difference system of equations that approximates a two-dimensional partial differential equation for the magnetic potential contributed by the coil. The program iteratively solves these finite-difference equations by use of the modified incomplete Cholesky preconditioned-conjugate-gradient method. The total magnetic potential as a function of axial (z) and radial (r) position is then calculated as a sum of the magnetic potentials of the individual coils, using a high-accuracy interpolation scheme. Then the r and z components of the magnetic field as functions of r and z are calculated from the total magnetic potential by use of a high-accuracy finite-difference scheme. Notably, for the finite-difference calculations, the program generates nonuniform two-dimensional computational meshes from nonuniform one-dimensional meshes. Each mesh is generated in such a way as to minimize the numerical error for a benchmark one-dimensional magnetostatic problem.
NSDL National Science Digital Library
2012-08-03
In this activity about magnetic fields and their relation to the Sun, learners will simulate sunspots by using iron filings to show magnetic fields around a bar or cow magnet, and draw the magnetic field surrounding two dipole magnets, both in parallel and perpendicular alignments. Finally, learners examine images of sunspots to relate their magnetic field drawings and observations to what is seen on the Sun.
Decay of Resonaces in Strong Magnetic Field
NASA Astrophysics Data System (ADS)
Filip, Peter
2015-08-01
We suggest that decay properties (branching ratios) of hadronic resonances may become modified in strong external magnetic field. The behavior of K±*, K0* vector mesons as well as ?* (1520) and ?0* baryonic states is considered in static fields 1013-1015 T. In particular, n = 0 Landau level energy increase of charged particles in the external magnetic field, and the interaction of hadron magnetic moments with the field is taken into account. We suggest that enhanced yield of dileptons and photons from ?0(770) mesons may occur if strong decay channel ?0 ? ?+?- is significantly suppressed. CP – violating ?+?- decays of pseudoscalar ?c and ?(547) mesons in the magnetic field are discussed, and superpositions of quarkonium states ?c,b and ?c,b(nP) with ?(nS), ?(nS) mesons in the external field are considered.
Predicting the magnetic vectors within coronal mass ejections arriving at Earth
Savani, N P; Szabo, A; Mays, M L; Thompson, B J; Richardson, I G; Evans, R; Pulkkinen, A; Nieves-Chinchilla, T
2015-01-01
The process by which the Sun affects the terrestrial environment on short timescales is predominately driven by the amount of magnetic reconnection between the solar wind and Earth's magnetosphere. Reconnection occurs most efficiently when the solar wind magnetic field has a southward component. The most severe impacts are during the arrival of a coronal mass ejection (CME) when the magnetosphere is both compressed and magnetically connected to the heliospheric environment, leading to disruptions to, for example, power grids and satellite navigation. Unfortunately, forecasting magnetic vectors within coronal mass ejections remains elusive. Here we report how, by combining a statistically robust helicity rule for a CME's solar origin with a simplified flux rope topology the magnetic vectors within the Earth-directed segment of a CME can be predicted. In order to test the validity of this proof-of-concept architecture for estimating the magnetic vectors within CMEs, a total of eight CME events (between 2010 and...
How the geomagnetic field vector reverses polarity
Prevot, M.; Mankinen, E.A.; Gromme, C.S.; Coe, R.S.
1985-01-01
A highly detailed record of both the direction and intensity of the Earth's magnetic field as it reverses has been obtained from a Miocene volcanic sequence. The transitional field is low in intensity and is typically non-axisymmetric. Geomagnetic impulses corresponding to astonishingly high rates of change of the field sometimes occur, suggesting that liquid velocity within the Earth's core increases during geomagnetic reversals. ?? 1985 Nature Publishing Group.
Efficient morse decompositions of vector fields.
Chen, Guoning; Mischaikow, Konstantin; Laramee, Robert S; Zhang, Eugene
2008-01-01
Existing topology-based vector field analysis techniques rely on the ability to extract the individual trajectories such as fixed points, periodic orbits, and separatrices that are sensitive to noise and errors introduced by simulation and interpolation. This can make such vector field analysis unsuitable for rigorous interpretations. We advocate the use of Morse decompositions, which are robust with respect to perturbations, to encode the topological structures of a vector field in the form of a directed graph, called a Morse connection graph (MCG). While an MCG exists for every vector field, it need not be unique. Previous techniques for computing MCG's, while fast, are overly conservative and usually results in MCG's that are too coarse to be useful for the applications. To address this issue, we present a new technique for performing Morse decomposition based on the concept of tau-maps, which typically provides finer MCG's than existing techniques. Furthermore, the choice of tau provides a natural tradeoff between the fineness of the MCG's and the computational costs. We provide efficient implementations of Morse decomposition based on tau-maps, which include the use of forward and backward mapping techniques and an adaptive approach in constructing better approximations of the images of the triangles in the meshes used for simulation.. Furthermore, we propose the use of spatial tau-maps in addition to the original temporal tau-maps. These techniques provide additional trade-offs between the quality of the MCGs and the speed of computation. We demonstrate the utility of our technique with various examples in the plane and on surfaces including engine simulation data sets. PMID:18467759
NASA Astrophysics Data System (ADS)
Johnson, C. L.
2014-12-01
Mercury is the only inner solar system body other than Earth to possess an active core dynamo-driven magnetic field and the only planet with a small, highly dynamic magnetosphere. Measurements made by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft have provided a wealth of data on Mercury's magnetic field environment. Mercury's weak magnetic field was discovered 40 years ago by the Mariner 10 spacecraft, but its large-scale geometry, strength and origin could not be definitively established. MESSENGER data have shown that the field is dynamo-generated and can be described as an offset axisymmetric dipole field (hereafter OAD): the magnetic equator lies ~0.2 RM (RM = 2440 km) north of the geographic equator and the dipole moment is 2.8 x1019 Am2 (~0.03% that of Earth's). The weak internal field and the high, but variable, solar wind ram pressure drive vigorous magnetospheric dynamics and result in an average distance from the planet center to the sub-solar magnetopause of only 1.42 RM. Magnetospheric models developed with MESSENGER data have allowed re-analysis of the Mariner 10 observations, establishing that there has been no measureable secular variation in the internal field over 40 years. Together with spatial power spectra for the OAD, this provides critical constraints for viable dynamo models. Time-varying magnetopause fields induce secondary core fields, the magnitudes of which confirm the core radius estimated from MESSENGER gravity and Earth-based radar data. After accounting for large-scale magnetospheric fields, residual signatures are dominated by additional external fields that are organized in the local time frame and that vary with magnetospheric activity. Birkeland currents have been identified, which likely close in the planetary interior at depths below the base of the crust. Near-periapsis magnetic field measurements at altitudes greater than 200 km have tantalizing hints of crustal fields, but crustal sources cannot be distinguished from core fields, nor cleanly separated from external fields. I will report on recent data acquired at altitudes as low as 25 km that have the potential to resolve these issues. The presence of remanent crustal fields would have profound implications for Mercury's thermal and dynamical histories.
George, Glyn
ENGI 5432 1. Vector Fields and the Gradient Operator Page 1-01 1. Vector Fields and the Gradient Operator In this chapter, a review of vectors from previous courses is followed by the introduction and general orthonormal curvilinear coordinate systems. Conversion of components of vectors between Cartesian
Intermittent Vector Fields: A Challenge for Mathematical Geophysics?
NASA Astrophysics Data System (ADS)
Schertzer, D. J. M.; Tchiguirinskaia, I.
2014-12-01
Geophysical fields display strong intermittency over a wide range of scales. Multifractals has become a standard tool to analyze and simulate this key phenomenon for scalar fields. However, fields of interest, e.g. the velocity and the magnetic fields are vector fields. Some time ago, "Lie cascades" were introduced to deal with such fields by considering exponentiation from a stochastic element of a Lie algebra to its corresponding Lie group of transformations. The concerned transformation corresponds to the fine graining/downscaling of the field to higher and higher resolution. Unfortunately, developments were paused due to the possible large number of degrees of freedom of the latter, in particular with respect to the information that can be easily extracted from a d-dimensional vector field. In short, some physics was missing. In this communication, we point out the interest of the Clifford algebra Clp,q to make concrete progress. Ironically, these algebra were mentioned at once as rather straightforward generalizations of the scalar complex cascades, but they were not investigated. On the contrary, the particular case of the "pseudo-quaternions" l(2,R)=Cl2,0=Cl1,1 has been often used to generate generalized scales to analyse and simulate anistropic scaling (scalar) fields. The latter is in fact illustrative of the basic property of the Clifford algebra Clp,q to be generated by a quadratic form Q whose signature (p,q) is fundamental.
CMB non-gaussianity from vector fields
Peloso, Marco
2014-01-01
The Planck satellite has recently measured the CMB temperature anisotropies with unprecedented accuracy, and it has provided strong bounds on primordial non-gaussianity. Such bounds constrain models of inflation, and mechanisms that produce the primordial perturbations. We discuss the non-gaussian signatures from the interactions of the inflation ? with spin-1 fields. We study the two different cases in which the inflaton is (i) a pseudo-scalar field with a (?)/(fa) F·F interaction with a vector field, and (ii) a scalar field with a f (?)F² interaction. In the first case we obtain the strong limit f{sub a} ? 10¹?GeV on the decay constant. In the second case, specific choices of the function f (?) can lead to a non-gaussianity with a characteristic shape not encountered in standard models of scalar field inflation, and which has also been constrained by Planck.
NASA Astrophysics Data System (ADS)
Leka, K. D.; Barnes, Graham; Gary, G. Allen; Crouch, A. D.; Liu, Y.
2012-02-01
We address points recently discussed in Georgoulis (2011, Solar Phys., doi:10.1007/s11207-011-9819-1) in reference to Leka et al. (2009, Solar Phys. 260, 83). Most importantly, we find that the results of Georgoulis (2011) a conclusion of Leka et al. (2009) that limited spatial resolution and the presence of unresolved magnetic structures can challenge ambiguity-resolution algorithms. Moreover, the findings of both Metcalf et al. (2006, Solar Phys. 237, 267) and Leka et al. (2009b) are confirmed in Georgoulis (2011): a method’s performance can be diminished when the observed field fails to conform to that method’s assumptions. The implication of boundaries in models of solar magnetic structures is discussed; we confirm that the distribution of the field components in the model used in Leka et al. (2009) is closer to what is observed on the Sun than what is proposed in Georgoulis (2011). It is also shown that method does matter with regards to simulating limited spatial resolution and avoiding an inadvertent introduction of bias. Finally, the assignment of categories to data-analysis algorithms is revisited; we argue that assignments are only useful and elucidating when used appropriately.
Magnetic field contribution to the last electron-photon scattering
Massimo Giovannini
2010-07-06
When the cosmic microwave photons scatter electrons just prior to the decoupling of matter and radiation, magnetic fields do contribute to the Stokes matrix as well as to the scalar, vector and tensor components of the transport equations for the brightness perturbations. The magnetized electron-photon scattering is hereby discussed in general terms by including, for the first time, the contribution of magnetic fields with arbitrary direction and in the presence of the scalar, vector and tensor modes of the geometry. The propagation of relic vectors and relic gravitons is discussed for a varying magnetic field orientation and for different photon directions. The source terms of the transport equations in the presence of the relativistic fluctuations of the geometry are also explicitly averaged over the magnetic field orientations and the problem of a consistent account of the small-scale and large-scale magnetic field is briefly outlined.
Lyapunov Guidance Vector Fields for Unmanned Aircraft Applications
Frew, Eric W.
Lyapunov Guidance Vector Fields for Unmanned Aircraft Applications Eric W. Frew, Member, IEEE, Dale implementing Lyapunov vector fields for the guidance of unmanned aircraft. The vector fields yield globally stable tracking of circular loiter patterns. These loiter patterns are used in several unmanned aircraft
Lectures on Vector Fields and the Unity of Mathematics by
in the definition of index and proper vector fields. In section 7 the main equations related to the index Lectures on Vector Fields and the Unity of MathematicsMoivre's Formu* *la or the Pythagorian Theorem. This equation, which we call the Law of Vector Fields
Killing Vector Fields of Standard Static Space-times
Fernando Dobarro; Bulent Unal
2008-01-30
We consider Killing vector fields on standard static space-times and obtain equations for a vector field on a standard static space-time to be Killing. We also provide a characterization of Killing vector fields on standard static space-times with compact Riemannian parts.
CURVATURE MEASURES OF 3D VECTOR FIELDS AND THEIR APPLICATIONS
is of great importance to a wide area of sciences. Especially 3D vector fields appear in real world THEORETICAL BACKGROUND A 3D vector field V shall be defined as a map V : E3 R3 , where E3 denotesCURVATURE MEASURES OF 3D VECTOR FIELDS AND THEIR APPLICATIONS T. Weinkauf H. Theisel Zuse Institute
The Wind Magnetic Field Investigation
NASA Astrophysics Data System (ADS)
Lepping, R. P.; Ac?na, M. H.; Burlaga, L. F.; Farrell, W. M.; Slavin, J. A.; Schatten, K. H.; Mariani, F.; Ness, N. F.; Neubauer, F. M.; Whang, Y. C.; Byrnes, J. B.; Kennon, R. S.; Panetta, P. V.; Scheifele, J.; Worley, E. M.
1995-02-01
The magnetic field experiment on WIND will provide data for studies of a broad range of scales of structures and fluctuation characteristics of the interplanetary magnetic field throughout the mission, and, where appropriate, relate them to the statics and dynamics of the magnetosphere. The basic instrument of the Magnetic Field Investigation (MFI) is a boom-mounted dual triaxial fluxgate magnetometer and associated electronics. The dual configuration provides redundancy and also permits accurate removal of the dipolar portion of the spacecraft magnetic field. The instrument provides (1) near real-time data at nominally one vector per 92 s as key parameter data for broad dissemination, (2) rapid data at 10.9 vectors s-1 for standard analysis, and (3) occasionally, snapshot (SS) memory data and Fast Fourier Transform data (FFT), both based on 44 vectors s-1. These measurements will be precise (0.025%), accurate, ultra-sensitive (0.008 nT/step quantization), and where the sensor noise level is <0.006 nT r.m.s. for 0 10 Hz. The digital processing unit utilizes a 12-bit microprocessor controlled analogue-to-digital converter. The instrument features a very wide dynamic range of measurement capability, from ±4 nT up to ±65 536 nT per axis in eight discrete ranges. (The upper range permits complete testing in the Earth's field.) In the FTT mode power spectral density elements are transmitted to the ground as fast as once every 23 s (high rate), and 2.7 min of SS memory time series data, triggered automatically by pre-set command, requires typically about 5.1 hours for transmission. Standard data products are expected to be the following vector field averages: 0.0227-s (detail data from SS), 0.092 s (‘detail’ in standard mode), 3 s, 1 min, and 1 hour, in both GSE and GSM coordinates, as well as the FFT spectral elements. As has been our team's tradition, high instrument reliability is obtained by the use of fully redundant systems and extremely conservative designs. We plan studies of the solar wind: (1) as a collisionless plasma laboratory, at all time scales, macro, meso and micro, but concentrating on the kinetic scale, the highest time resolution of the instrument (=0.022 s), (2) as a consequence of solar energy and mass output, (3) as an external source of plasma that can couple mass, momentum, and energy to the Earth's magnetosphere, and (4) as it is modified as a consequence of its imbedded field interacting with the moon. Since the GEOTAIL Inboard Magnetometer (GIM), which is similar to the MFI instrument, was developed by members of our team, we provide a brief discussion of GIM related science objectives, along with MFI related science goals.
Heating magnetic fluid with alternating magnetic field
R. E. Rosensweig
2002-01-01
This study develops analytical relationships and computations of power dissipation in magnetic fluid (ferrofluid) subjected to alternating magnetic field. The dissipation results from the orientational relaxation of particles having thermal fluctuations in a viscous medium.
He I Vector Magnetometry of Field-aligned Superpenumbral Fibrils
NASA Astrophysics Data System (ADS)
Schad, T. A.; Penn, M. J.; Lin, H.
2013-05-01
Atomic-level polarization and Zeeman effect diagnostics in the neutral helium triplet at 10830 Å in principle allow full vector magnetometry of fine-scaled chromospheric fibrils. We present high-resolution spectropolarimetric observations of superpenumbral fibrils in the He I triplet with sufficient polarimetric sensitivity to infer their full magnetic field geometry. He I observations from the Facility Infrared Spectropolarimeter are paired with high-resolution observations of the H? 6563 Å and Ca II 8542 Å spectral lines from the Interferometric Bidimensional Spectrometer from the Dunn Solar Telescope in New Mexico. Linear and circular polarization signatures in the He I triplet are measured and described, as well as analyzed with the advanced inversion capability of the "Hanle and Zeeman Light" modeling code. Our analysis provides direct evidence for the often assumed field alignment of fibril structures. The projected angle of the fibrils and the inferred magnetic field geometry align within an error of ±10°. We describe changes in the inclination angle of these features that reflect their connectivity with the photospheric magnetic field. Evidence for an accelerated flow (~40 m s-2) along an individual fibril anchored at its endpoints in the strong sunspot and weaker plage in part supports the magnetic siphon flow mechanism's role in the inverse Evershed effect. However, the connectivity of the outer endpoint of many of the fibrils cannot be established.
The history of polarisation measurements: their role in studies of magnetic fields
NASA Astrophysics Data System (ADS)
Wielebinski, R.
2015-03-01
Radio astronomy gave us new methods to study magnetic fields. Synchrotron radiation, the main cause of comic radio waves, is highly linearly polarised with the `E' vector normal to the magnetic field. The Faraday Effect rotates the `E' vector in thermal regions by the magnetic field in the line of sight. Also the radio Zeeman Effect has been observed.
Magnetic helicity and cosmological magnetic field
V. B. Semikoz; D. D. Sokoloff
2005-04-07
The magnetic helicity has paramount significance in nonlinear saturation of galactic dynamo. We argue that the magnetic helicity conservation is violated at the lepton stage in the evolution of early Universe. As a result, a cosmological magnetic field which can be a seed for the galactic dynamo obtains from the beginning a substantial magnetic helicity which has to be taken into account in the magnetic helicity balance at the later stage of galactic dynamo.
Magnetic space-based field measurements
NASA Technical Reports Server (NTRS)
Langel, R. A.
1981-01-01
Satellite measurements of the geomagnetic field began with the launch of Sputnik 3 in May 1958 and have continued sporadically in the intervening years. A list of spacecraft that have made significant contributions to an understanding of the near-earth geomagnetic field is presented. A new era in near-earth magnetic field measurements began with NASA's launch of Magsat in October 1979. Attention is given to geomagnetic field modeling, crustal magnetic anomaly studies, and investigations of the inner earth. It is concluded that satellite-based magnetic field measurements make global surveys practical for both field modeling and for the mapping of large-scale crustal anomalies. They are the only practical method of accurately modeling the global secular variation. Magsat is providing a significant contribution, both because of the timeliness of the survey and because its vector measurement capability represents an advance in the technology of such measurements.
Bubble Nucleation of Spatial Vector Fields
Ali Masoumi; Xiao Xiao; I-Sheng Yang
2012-12-10
We study domain-walls and bubble nucleation in a non-relativistic vector field theory with different longitudinal and transverse speeds of sound. We describe analytical and numerical methods to calculate the orientation dependent domain-wall tension, $\\sigma(\\theta)$. We then use this tension to calculate the critical bubble shape. The longitudinally oriented domain-wall tends to be the heaviest, and sometime suffers an instability. It can spontaneously break into zigzag segments. In this case, the critical bubble develops kinks, and its energy, and therefore the tunneling rate, scales with the sound speeds very differently than what would be expected for a smooth bubble.
Slow decay of magnetic fields in open Friedmann universes
Barrow, John D.; Tsagas, Christos G.
2008-05-15
Magnetic fields in Friedmann universes can experience superadiabatic growth without departing from conventional electromagnetism. The reason is the relativistic coupling between vector fields and spacetime geometry, which slows down the decay of large-scale magnetic fields in open universes, compared to that seen in perfectly flat models. The result is a large relative gain in magnetic strength that can lead to astrophysically interesting B fields, even if our Universe is only marginally open today.
Primordial magnetic fields at preheating
A. Diaz-Gil; J. Garcia-Bellido; M. Garcia Perez; A. Gonzalez-Arroyo
2007-10-02
Using lattice techniques we investigate the generation of long range cosmological magnetic fields during a cold electroweak transition. We will show how magnetic fields arise, during bubble collisions, in the form of magnetic strings. We conjecture that these magnetic strings originate from the alignment of magnetic dipoles associated with EW sphaleron-like configurations. We also discuss the early thermalisation of photons and the turbulent behaviour of the scalar fields after tachyonic preheating.
Primordial magnetic fields from self-ordering scalar fields
NASA Astrophysics Data System (ADS)
Horiguchi, Kouichirou; Ichiki, Kiyotomo; Sekiguchi, Toyokazu; Sugiyama, Naoshi
2015-04-01
A symmetry-breaking phase transition in the early universe could have led to the formation of cosmic defects. Because these defects dynamically excite not only scalar and tensor type cosmological perturbations but also vector type ones, they may serve as a source of primordial magnetic fields. In this study, we calculate the time evolution and the spectrum of magnetic fields that are generated by a type of cosmic defects, called global textures, using the non-linear sigma (NLSM) model. Based on the standard cosmological perturbation theory, we show, both analytically and numerically, that a vector-mode relative velocity between photon and baryon fluids is induced by textures, which inevitably leads to the generation of magnetic fields over a wide range of scales. We find that the amplitude of the magnetic fields is given by B~10?9((1+z)/103)?2.5(v/mpl)2(k/Mpc?1)3.5/?N Gauss in the radiation dominated era for klesssim 1 Mpc?1, with v being the vacuum expectation value of the O(N) symmetric scalar fields. By extrapolating our numerical result toward smaller scales, we expect that B~ 10?14.5((1+z)/103)1/2(v/mpl)2(k/Mpc?1)1/2/?N Gauss on scales of kgtrsim 1 Mpc?1 at redshift 0zgtrsim 110. This might be a seed of the magnetic fields observed on large scales today.
Radial magnetic field in magnetic confinement device
NASA Astrophysics Data System (ADS)
Xiong, Hao; Liu, Ming-Hai; Chen, Ming; Rao, Bo; Chen, Jie; Chen, Zhao-Quan; Xiao, Jin-Shui; Hu, Xi-Wei
2015-09-01
The intrinsic radial magnetic field (Br) in a tokamak is explored by the solution of the Grad–Shafranov equation in axisymmetric configurations through an expansion of the four terms of the magnetic surfaces. It can be inferred from the simulation results that at the core of the device, the tokamak should possess a three-dimensional magnetic field configuration, which could be reduced to a two-dimensional one when the radial position is greater than 0.6a. The radial magnetic field and the amzimuthal magnetic field have the same order of magnitude at the core of the device. These results can offer a reference for the analysis of the plasma instability, the property of the core plasma, and the magnetic field measurement. Project supported by the Special Domestic Program of ITER, China (Grant No. 2009GB105003).
Magnetic fields, strings and cosmology
Massimo Giovannini
2006-12-14
The main motivations and challenges related with the physics of large-scale magnetic fields are briefly analyzed. The interplay between large-scale magnetic fields and scalar CMB anisotropies is addressed with specific attention on recent progresses.
Full vector low-temperature magnetic measurements of geologic materials
NASA Astrophysics Data System (ADS)
Feinberg, Joshua M.; Solheid, Peter A.; Swanson-Hysell, Nicholas L.; Jackson, Mike J.; Bowles, Julie A.
2015-01-01
magnetic properties of geologic materials offer insights into an enormous range of important geophysical phenomena ranging from inner core dynamics to paleoclimate. Often it is the low-temperature behavior (<300 K) of magnetic minerals that provides the most useful and highest sensitivity information for a given problem. Conventional measurements of low-temperature remanence are typically conducted on instruments that are limited to measuring one single-axis component of the magnetization vector and are optimized for measurements in strong fields. These instrumental limitations have prevented fully optimized applications and have motivated the development of a low-temperature probe that can be used for low-temperature remanence measurements between 17 and 300 K along three orthogonal axes using a standard 2G Enterprises SQuID rock magnetometer. In this contribution, we describe the design and implementation of this instrument and present data from five case studies that demonstrate the probe's considerable potential for future research: a polycrystalline hematite sample, a polycrystalline hematite and magnetite mixture, a single crystal of magnetite, a single crystal of pyrrhotite, and samples of Umkondo Large Igneous Province diabase sills.
NASA Astrophysics Data System (ADS)
Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete
2015-07-01
Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.
Magnetic Field Problem: Current and Magnets
NSDL National Science Digital Library
Wolfgang Christian
The above animations represent two typical bar magnets each with a North and South pole. The arrows represent the direction of the magnetic field. A wire is placed between the magnets and a current that comes out of the page can be turned on.
ContemporaryVMathematicsolume 00, 0000 Spaces of Local Vector Fields
whose relation to configuration spaces was studied by Dusa McDuff, and whose higher dimensional that the assignm* *ent of the transfer to the vector field gives a map from the space of loca* *l vector
Magnetic Field Topology in Jets
NASA Technical Reports Server (NTRS)
Gardiner, T. A.; Frank, A.
2000-01-01
We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.
Low field magnetic resonance imaging
Pines, Alexander (Berkeley, CA); Sakellariou, Dimitrios (Billancourt, FR); Meriles, Carlos A. (Fort Lee, NJ); Trabesinger, Andreas H. (London, GB)
2010-07-13
A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.
Magnetic field switchable dry adhesives.
Krahn, Jeffrey; Bovero, Enrico; Menon, Carlo
2015-02-01
A magnetic field controllable dry adhesive device is manufactured. The normal adhesion force can be increased or decreased depending on the presence of an applied magnetic field. If the magnetic field is present during the entire normal adhesion test cycle which includes both applying a preloading force and measuring the pulloff pressure, a decrease in adhesion is observed when compared to when there is no applied magnetic field. Similarly, if the magnetic field is present only during the preload portion of the normal adhesion test cycle, a decrease in adhesion is observed because of an increased stiffness of the magnetically controlled dry adhesive device. When the applied magnetic field is present during only the pulloff portion of the normal adhesion test cycle, either an increase or a decrease in normal adhesion is observed depending on the direction of the applied magnetic field. PMID:25588470
K. Yokoyama; T. Oka; K. Noto
2012-01-01
This paper proposes an effective magnetizing method in which bulk material is magnetized by field cooling (FC) using a permanent magnet before pulsed-field magnetization (PFM) to improve the efficiency of magnetization. The concept of this method is to form the channel composed of the magnetic field and efficiently penetrate the magnetic flux by PFM of the bulk without heat generation.
Jansson, Ronnie; Farrar, Glennys R.
2012-12-10
With this Letter, we complete our model of the Galactic magnetic field (GMF), by using the WMAP7 22 GHz total synchrotron intensity map and our earlier results to obtain a 13-parameter model of the Galactic random field, and to determine the strength of the striated random field. In combination with our 22-parameter description of the regular GMF, we obtain a very good fit to more than 40,000 extragalactic Faraday rotation measures and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps. The data call for a striated component to the random field whose orientation is aligned with the regular field, having zero mean and rms strength Almost-Equal-To 20% larger than the regular field. A noteworthy feature of the new model is that the regular field has a significant out-of-plane component, which had not been considered earlier. The new GMF model gives a much better description of the totality of data than previous models in the literature.
NASA Astrophysics Data System (ADS)
Jansson, Ronnie; Farrar, Glennys R.
2012-12-01
With this Letter, we complete our model of the Galactic magnetic field (GMF), by using the WMAP7 22 GHz total synchrotron intensity map and our earlier results to obtain a 13-parameter model of the Galactic random field, and to determine the strength of the striated random field. In combination with our 22-parameter description of the regular GMF, we obtain a very good fit to more than 40,000 extragalactic Faraday rotation measures and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps. The data call for a striated component to the random field whose orientation is aligned with the regular field, having zero mean and rms strength ?20% larger than the regular field. A noteworthy feature of the new model is that the regular field has a significant out-of-plane component, which had not been considered earlier. The new GMF model gives a much better description of the totality of data than previous models in the literature.
Three-qubit dynamics of entanglement in magnetic field
E. A. Ivanchenko
2006-10-20
A closed system of the equations for the local Bloch vectors and spin correlation functions is obtained by decomplexification of the Liouville-von Neumann equation for three magnetic qubits with the exchange interaction, that takes place in an arbitrary time-dependent external magnetic field. The numerical comparative analysis of entanglement is carried out depending on initial conditions and the magnetic field modulation. The present study may be useful for analysis of interference experiments and in the field of quantum computing.
Magnetic Fields in Irregular Galaxies
Amanda A. Kepley; Stefanie Muehle; Eric M. Wilcots; John Everett; Ellen Zweibel; Timothy Robishaw; Carl Heiles
2007-08-24
Magnetic fields are an important component of the interstellar medium, especially in low-mass galaxies like irregulars where the magnetic pressure may be significant. However, few irregular galaxies have observed magnetic field structures. Using the VLA, the GBT, and the ATCA, we have observed several irregular galaxies in the radio continuum to determine their magnetic field structures. Here we report on our results for the galaxies NGC 4214 and NGC 1569.
Casimir effect of massive vector fields
NASA Astrophysics Data System (ADS)
Teo, L. P.
2010-11-01
We study the Casimir effect due to a massive vector field in a system of two parallel plates made of real materials, in an arbitrary magnetodielectric background. The plane waves satisfying the Proca equations are classified into transverse modes and longitudinal modes which have different dispersion relations. Transverse modes are further divided into type I and type II corresponding to TE and TM modes in the massless case. For general magnetodielectric media, we argue that the correct boundary conditions are the continuities of H?, ?, A, and ?xAx, where x is the direction normal to the plates. Although there are type I transverse modes that satisfy all the boundary conditions, it is impossible to find type II transverse modes or longitudinal modes that satisfy all the boundary conditions. To circumvent this problem, type II transverse modes and longitudinal modes have to be considered together. We call the contribution to the Casimir energy from type I transverse modes TE contribution, and the contribution from the superposition of type II transverse modes and longitudinal modes TM contribution. Their massless limits give, respectively, the TE and TM contributions to the Casimir energy of a massless vector field. The limit where the plates become perfectly conducting is discussed in detail. For the special case where the background has a unity refractive index, it is shown that the TM contribution to the Casimir energy can be written as a sum of contributions from two different types of modes, corresponding to type II discrete modes and type III continuum modes discussed by Barton and Dombey [G. Barton and N. Dombey, Ann. Phys. (N.Y.)APNYA60003-4916 162, 231 (1985).10.1016/0003-4916(85)90162-9]. For general background, this splitting does not work. The limit where both plates become infinitely permeable and the limit where one plate becomes perfectly conducting and one plate becomes infinitely permeable are also investigated.
Casimir effect of massive vector fields
Teo, L. P. [Department of Applied Mathematics, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan (Malaysia)
2010-11-15
We study the Casimir effect due to a massive vector field in a system of two parallel plates made of real materials, in an arbitrary magnetodielectric background. The plane waves satisfying the Proca equations are classified into transverse modes and longitudinal modes which have different dispersion relations. Transverse modes are further divided into type I and type II corresponding to TE and TM modes in the massless case. For general magnetodielectric media, we argue that the correct boundary conditions are the continuities of H{sub ||}, {phi}, A, and {partial_derivative}{sub x}A{sub x}, where x is the direction normal to the plates. Although there are type I transverse modes that satisfy all the boundary conditions, it is impossible to find type II transverse modes or longitudinal modes that satisfy all the boundary conditions. To circumvent this problem, type II transverse modes and longitudinal modes have to be considered together. We call the contribution to the Casimir energy from type I transverse modes TE contribution, and the contribution from the superposition of type II transverse modes and longitudinal modes TM contribution. Their massless limits give, respectively, the TE and TM contributions to the Casimir energy of a massless vector field. The limit where the plates become perfectly conducting is discussed in detail. For the special case where the background has a unity refractive index, it is shown that the TM contribution to the Casimir energy can be written as a sum of contributions from two different types of modes, corresponding to type II discrete modes and type III continuum modes discussed by Barton and Dombey [G. Barton and N. Dombey, Ann. Phys. (N.Y.) 162, 231 (1985).]. For general background, this splitting does not work. The limit where both plates become infinitely permeable and the limit where one plate becomes perfectly conducting and one plate becomes infinitely permeable are also investigated.
NASA Astrophysics Data System (ADS)
Savani, N. P.; Vourlidas, A.; Szabo, A.; Mays, M. L.; Richardson, I. G.; Thompson, B. J.; Pulkkinen, A.; Evans, R.; Nieves-Chinchilla, T.
2015-06-01
The process by which the Sun affects the terrestrial environment on short timescales is predominately driven by the amount of magnetic reconnection between the solar wind and Earth's magnetosphere. Reconnection occurs most efficiently when the solar wind magnetic field has a southward component. The most severe impacts are during the arrival of a coronal mass ejection (CME) when the magnetosphere is both compressed and magnetically connected to the heliospheric environment. Unfortunately, forecasting magnetic vectors within coronal mass ejections remain elusive. Here we report how, by combining a statistically robust helicity rule for a CME's solar origin with a simplified flux rope topology, the magnetic vectors within the Earth-directed segment of a CME can be predicted. In order to test the validity of this proof-of-concept architecture for estimating the magnetic vectors within CMEs, a total of eight CME events (between 2010 and 2014) have been investigated. With a focus on the large false alarm of January 2014, this work highlights the importance of including the early evolutionary effects of a CME for forecasting purposes. The angular rotation in the predicted magnetic field closely follows the broad rotational structure seen within the in situ data. This time-varying field estimate is implemented into a process to quantitatively predict a time-varying Kp index that is described in detail in paper II. Future statistical work, quantifying the uncertainties in this process, may improve the more heuristic approach used by early forecasting systems.
Reconnection of Magnetic Fields
NASA Technical Reports Server (NTRS)
1984-01-01
Spacecraft observations of steady and nonsteady reconnection at the magnetopause are reviewed. Computer simulations of three-dimensional reconnection in the geomagnetic tail are discussed. Theoretical aspects of the energization of particles in current sheets and of the microprocesses in the diffusion region are presented. Terrella experiments in which magnetospheric reconnection is simulated at both the magnetopause and in the tail are described. The possible role of reconnection in the evolution of solar magnetic fields and solar flares is discussed. A two-dimensional magnetohydrodynamic computer simulation of turbulent reconnection is examined. Results concerning reconnection in Tokamak devices are also presented.
NASA Technical Reports Server (NTRS)
Hildebrand, Roger H.
1988-01-01
The purpose of this paper is to outline the principles governing the use of far-infrared and submillimeter polarimetry to investigate magnetic fields and dust in interstellar clouds. Particular topics of discussion are the alignment of dust grains in dense clouds, the dependence on wavelength of polarization due to emission or to partial absorption by aligned grains, the nature of that dependence for mixtures of grains with different properties, and the problem of distinguishing between (1) the effects of the shapes and dielectric functions of the grains and (2) the degree and direction of their alignment.
NASA Astrophysics Data System (ADS)
Aliev, Farkhad; Francisco Sierra, Juan; Awad, Ahmad; Pryadun, Vladimir; Kakazei, Gleb
2008-03-01
Vector network analyzer (VNA) technique up to 8.5 GHz was applied to measure in-plane dynamic response in Fe/Cr magnetic multilayers and for the in-plane magnetized periodic arrays of Permalloy circular magnetic dots. In the antiferromagnetically coupled [Fe/Cr]n multilayers (n=10,20,40) we have investigated field dependence of the acoustic resonance in a wide range of temperatures between 300K down to 2K both for the low magnetic fields and close to the saturation field. FMR studies of the array of FeNi dots with diameter of 1 micron, the aspect ratio L/R=0.1 and with centre to centre distance varying between 1.2 to 2.5 micron allowed to resolve multiple FMR resonances as a function of magnetic field. We have found the main FMR linewidth to be dependent on the magnetic history. For the magnetic fields below 300 Oe, where magnetic vortex state forms, we have observed the field dependence of the radial modes (fr > 6GHz) to show minima close to the zero magnetic field.
Magnetic field strength of active region filaments
NASA Astrophysics Data System (ADS)
Kuckein, C.; Centeno, R.; Martínez Pillet, V.; Casini, R.; Manso Sainz, R.; Shimizu, T.
2009-07-01
Aims: We study the vector magnetic field of a filament observed over a compact active region neutral line. Methods: Spectropolarimetric data acquired with TIP-II (VTT, Tenerife, Spain) of the 10 830 Å spectral region provide full Stokes vectors that were analyzed using three different methods: magnetograph analysis, Milne-Eddington inversions, and PCA-based atomic polarization inversions. Results: The inferred magnetic field strengths in the filament are around 600-700 G by all these three methods. Longitudinal fields are found in the range of 100-200 G whereas the transverse components become dominant, with fields as high as 500-600 G. We find strong transverse fields near the neutral line also at photospheric levels. Conclusions: Our analysis indicates that strong (higher than 500 G, but below kG) transverse magnetic fields are present in active region filaments. This corresponds to the highest field strengths reliably measured in these structures. The profiles of the helium 10 830 Å lines observed in this active region filament are dominated by the Zeeman effect.
Darboux Integrals for Schrödinger Planar Vector Fields via Darboux Transformations
NASA Astrophysics Data System (ADS)
Acosta-Humánez, Primitivo B.; Pantazi, Chara
2012-07-01
In this paper we study the Darboux transformations of planar vector fields of Schrödinger type. Using the isogaloisian property of Darboux transformation we prove the ''invariance'' of the objects of the ''Darboux theory of integrability''. In particular, we also show how the shape invariance property of the potential is important in order to preserve the structure of the transformed vector field. Finally, as illustration of these results, some examples of planar vector fields coming from supersymmetric quantum mechanics are studied.
A Vector Grouping Algorithm for Liquid Crystal Tensor Field Visualization
Farrell, Paul A.
A Vector Grouping Algorithm for Liquid Crystal Tensor Field Visualization Yang-Ming Zhu, Member is not desirable for liquid crystal systems and proposed a new ap- proach where the vectors are grouped to minimize to study the biaxiality structure near a defect. Keywords: tensor, vector, visualization, liquid crystals
Magnetic Fields: Visible and Permanent.
ERIC Educational Resources Information Center
Winkeljohn, Dorothy R.; Earl, Robert D.
1983-01-01
Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)
Multiscale vector fields for image pattern recognition
NASA Technical Reports Server (NTRS)
Low, Kah-Chan; Coggins, James M.
1990-01-01
A uniform processing framework for low-level vision computing in which a bank of spatial filters maps the image intensity structure at each pixel into an abstract feature space is proposed. Some properties of the filters and the feature space are described. Local orientation is measured by a vector sum in the feature space as follows: each filter's preferred orientation along with the strength of the filter's output determine the orientation and the length of a vector in the feature space; the vectors for all filters are summed to yield a resultant vector for a particular pixel and scale. The orientation of the resultant vector indicates the local orientation, and the magnitude of the vector indicates the strength of the local orientation preference. Limitations of the vector sum method are discussed. Investigations show that the processing framework provides a useful, redundant representation of image structure across orientation and scale.
Tracking Vector Magnetograms with the Magnetic Induction Equation
NASA Technical Reports Server (NTRS)
Schuck, P.
2009-01-01
The differential affine velocity estimator (DAVE) that we developed in 2006 for estimating velocities from line-of-sight magnetograms is modified to directly incorporate horizontal magnetic fields to produce a differential affine velocity estimator for vector magnetograms (DAVE4VM). The DAVE4VM's performance is demonstrated on the synthetic data from the anelastic pseudospectral ANMHD simulations that were used in the recent comparison of velocity inversion techniques by Welsch and coworkers. The DAVE4VM predicts roughly 95% of the helicity rate and 75% of the power transmitted through the simulation slice. Intercomparison between DAVE4VM and DAVE and further analysis of the DAVE method demonstrates that line-of-sight tracking methods capture the shearing motion of magnetic footpoints but are insensitive to flux emergence - the velocities determined from line-of-sight methods are more consistent with horizontal plasma velocities than with flux transport velocities. These results suggest that previous studies that rely on velocities determined from line-of-sight methods such as the DAVE or local correlation tracking may substantially misrepresent the total helicity rates and power through the photosphere.
Tracking Vector Magnetograms with the Magnetic Induction Equation
P. W. Schuck
2008-07-11
The differential affine velocity estimator (DAVE) developed in Schuck (2006) for estimating velocities from line-of-sight magnetograms is modified to directly incorporate horizontal magnetic fields to produce a differential affine velocity estimator for vector magnetograms (DAVE4VM). The DAVE4VM's performance is demonstrated on the synthetic data from the anelastic pseudospectral ANMHD simulations that were used in the recent comparison of velocity inversion techniques by Welsch (2007). The DAVE4VM predicts roughly 95% of the helicity rate and 75% of the power transmitted through the simulation slice. Inter-comparison between DAVE4VM and DAVE and further analysis of the DAVE method demonstrates that line-of-sight tracking methods capture the shearing motion of magnetic footpoints but are insensitive to flux emergence -- the velocities determined from line-of-sight methods are more consistent with horizontal plasma velocities than with flux transport velocities. These results suggest that previous studies that rely on velocities determined from line-of-sight methods such as the DAVE or local correlation tracking may substantially misrepresent the total helicity rates and power through the photosphere.
Tracking Vector Magnetograms with the Magnetic Induction Equation
NASA Astrophysics Data System (ADS)
Schuck, Peter W.
2009-12-01
The differential affine velocity estimator (DAVE) that we developed in 2006 for estimating velocities from line-of-sight magnetograms is modified to directly incorporate horizontal magnetic fields to produce a differential affine velocity estimator for vector magnetograms (DAVE4VM). The DAVE4VM's performance is demonstrated on the synthetic data from the anelastic pseudospectral ANMHD simulations that were used in the recent comparison of velocity inversion techniques by Welsch and coworkers. The DAVE4VM predicts roughly 95% of the helicity rate and 75% of the power transmitted through the simulation slice. Intercomparison between DAVE4VM and DAVE and further analysis of the DAVE method demonstrates that line-of-sight tracking methods capture the shearing motion of magnetic footpoints but are insensitive to flux emergence - the velocities determined from line-of-sight methods are more consistent with horizontal plasma velocities than with flux transport velocities. These results suggest that previous studies that rely on velocities determined from line-of-sight methods such as the DAVE or local correlation tracking may substantially misrepresent the total helicity rates and power through the photosphere.
Early Magnetic Field Observations from HMI
Jon Todd Hoeksema
2010-01-01
The Helioseismic and Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) is beginning to produce a synoptic series of full-disk arc-second resolution magnetograms. Line-of-sight magnetograms are available every 45 seconds and the vector field will be routinely calculated every 12 minutes in automatically identified active region patches. Select quick-look products are available within minutes and definitive science data will
Observations of Magnetic Fields in Galaxies
NASA Astrophysics Data System (ADS)
Beck, Rainer
2005-09-01
Magnetic fields play an important role in galaxies. Interstellar magnetic fields are strongest in massive spiral arms of galaxies (20-30 ?G) and in nuclear starburst regions (up to 100 ?G). Processes related to star formation tangle the field lines, so that little polarization is observed in star-forming regions. The magnetic energy density in the inner disk of galaxies is larger than the thermal energy density, comparable to that of turbulent gas motions, and is dominant in the outer disk. Large-scale spiral patterns of the regular field are observed in grand-design, flocculent and even some irregular galaxies. In grand-design galaxies the regular fields are aligned parallel to the optical spiral arms, with the strongest regular fields (highest polarization) in interarm regions, sometimes forming magnetic spiral arms between the optical arms. Polarized emission at the edges of some galaxies is a tracer of field compression due to interactions between galaxies or to ram pressure by the intergalactic medium. - In barred galaxies the magnetic field is mostly aligned with the gas flow, deflected by shear and compressed in the shock. The regular field is already strong in the ``upstream'' region ahead of the shock. Within the circumnuclear ring the magnetic field is strong, with a regular component of spiral shape. Magnetic stress may drive inflow of gas towards the nucleus. - Faraday rotation of the polarization vectors reveals patterns which are signatures of coherent large-scale fields in galactic disks, probably generated by dynamo action. The majority of field structures in galaxies requires a superposition of several dynamo modes. - In our Milky Way, the structure of the large-scale magnetic field is still unknown. Rotation measure data from pulsars indicate several field reversals, but some of these could be field distortions. Faraday screens offer the new method of tomography of small-scale magnetic structures in the local Milky Way. - Present-day radio polarimetry is limited by sensitivity. The next-generation radio telescope, the Square Kilometer Array (SKA), will be able to reveal the full wealth of magnetic structures in galaxies. Cosmic magnetism is one of the Key Science projects for the SKA.
Thermal vector potential theory of magnon-driven magnetization dynamics
NASA Astrophysics Data System (ADS)
Tatara, Gen
2015-08-01
Thermal vector potential formulation is applied to study the thermal dynamics of magnetic structures for insulating ferromagnets. By separating the variables of the magnetic structure and the magnons, the equation of motion for the structure, including spin-transfer effect because of thermal magnons, is derived for the cases of a domain wall and a vortex. The magnon current is evaluated based on the linear response theory with the thermal vector potential representing the temperature gradient. The velocity of a domain wall when driven by thermal magnons exhibits a strong temperature dependence unlike the case of an electrically driven domain wall in metals.
Magnetic Propeller for Uniform Magnetic Field Levitation
Krinker, Mark
2008-01-01
Three new approaches to generating thrust in uniform magnetic fields are proposed. The first direction is based on employing Lorentz force acting on partial magnetically shielded 8-shaped loop with current in external magnetic field, whereby a net force rather than a torque origins. Another approach, called a Virtual Wire System, is based on creating a magnetic field having an energetic symmetry (a virtual wire), with further superposition of external field. The external field breaks the symmetry causing origination of a net force. Unlike a wire with current, having radial energetic symmetry, the symmetry of the Virtual Wire System is closer to an axial wire. The third approach refers to the first two. It is based on creation of developed surface system, comprising the elements of the first two types. The developed surface approach is a way to drastically increase a thrust-to-weight ratio. The conducted experiments have confirmed feasibility of the proposed approaches.
Photonic Magnetic Field Sensor
NASA Astrophysics Data System (ADS)
Wyntjes, Geert
2002-02-01
Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.
Poynting Vector Flow Analysis for Contactless Energy Transfer in Magnetic Systems
J. A. Brandão Faria
2012-01-01
Most problems related to contactless energy transfer are usually dealt within the framework of transformer theory, employing equivalent electric circuits as a tool for their analysis. Here, however, a physics approach based on the Maxwell equations is followed. Electric and magnetic fields are utilized to evaluate the Poynting vector, which defines the direction and power density carried by the electromagnetic
CMB anisotropies from primordial magnetic field.
NASA Astrophysics Data System (ADS)
Durrer, Ruth; Kahniashvili, Tina
1999-08-01
We investigate microwave background anisotropies in the presence of primordial magnetic fields. We show that a homegeneous field with fixed direction can amplify vector perturbations. We calculate the correlations of Î´Î¤/Ð¢ explicitly and show that a large scale coherent field induces correlations between a_l-1,m and a_l+1,m. We discuss constraints on the amplitude and spectrum of a primordial magnetic field imposed by observations of CMB anisotropies (Durrer,Kahniashvili and Yates,1998). we derive an expression for the angular power spectrum of cosmic microwave background anisotropies due to gravity waves generated by a stochastic magnetic field and compare the result with current observations; we take into account the non-linear nature of the stress energy tensor of the magnetic field.For all most scale invariant spectra,the amplitude of the magnetic field at galactic scales is constrained to be of order 10^-9 Gauss (Durrer,Fereira and KAhniashvili,1999). Acnowledgements.T.K. is thankful to Geneva University hospitality where this work was done.
Orinetation of the Magnetic Fields in Interplanetary Flux Ropes and Solar Filaments
Vasyl B. Yurchyshyn; Haimin Wang; P. R. Goode; Yuanyong Deng
2001-01-01
Coronal mass ejections are often associated with erupting magnetic structures or disappearing filaments. Majority of CMEs headed directly toward the earth are observed at 1AU as magnetic clouds --- region in the solar wind where the magnetic field strength is higher than average and smooth rotation of the magnetic field vectors. The 3D structure of magnetic clouds can be represented
Leptogenesis and primordial magnetic fields
Long, Andrew J.; Sabancilar, Eray; Vachaspati, Tanmay E-mail: eray.sabancilar@asu.edu
2014-02-01
The anomalous conversion of leptons into baryons during leptogenesis is shown to produce a right-handed helical magnetic field; in contrast, the magnetic field produced during electroweak baryogenesis is known to be left-handed. If the cosmological medium is turbulent, the magnetic field evolves to have a present day coherence scale ? 10 pc and field strength ? 10{sup ?18} Gauss. This result is insensitive to the energy scale at which leptogenesis took place. Observations of the amplitude, coherence scale, and helicity of the intergalactic magnetic field promise to provide a powerful probe of physics beyond the Standard Model and the very early universe.
Origin of cosmic magnetic fields
NASA Technical Reports Server (NTRS)
Alfven, H.
1979-01-01
Reasons for describing cosmic hydromagnetic phenomena by introducing electric currents are summarized demonstrating that change from the traditional magnetic field description to a current description provides new aspects of cosmic electrodynamics. It is shown that the kink-instability of electric currents is the basic physical phenomenon responsible for magnetic flux generation in cosmic physics. A model which starts with a poloidal magnetic field is discussed; differential motions change the field configuration so that kinetic energy is transferred into magnetic energy of induced toroidal fields; the currents associated with these become unstable when the toroidal energy exceeds the poloidal energy resulting in an amplification of the original poloidal field.
Fast superconducting magnetic field switch
Goren, Yehuda (Mountain View, CA); Mahale, Narayan K. (The Woodlands, TX)
1996-01-01
The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.
On the Computation of Integral Curves in Adaptive Mesh Refinement Vector Fields
Deines, Eduard; Weber, Gunther H.; Garth, Christoph; Van Straalen, Brian; Borovikov, Sergey; Martin, Daniel F.; Joy, Kenneth I.
2011-06-27
Integral curves, such as streamlines, streaklines, pathlines, and timelines, are an essential tool in the analysis of vector field structures, offering straightforward and intuitive interpretation of visualization results. While such curves have a long-standing tradition in vector field visualization, their application to Adaptive Mesh Refinement (AMR) simulation results poses unique problems. AMR is a highly effective discretization method for a variety of physical simulation problems and has recently been applied to the study of vector fields in flow and magnetohydrodynamic applications. The cell-centered nature of AMR data and discontinuities in the vector field representation arising from AMR level boundaries complicate the application of numerical integration methods to compute integral curves. In this paper, we propose a novel approach to alleviate these problems and show its application to streamline visualization in an AMR model of the magnetic field of the solar system as well as to a simulation of two incompressible viscous vortex rings merging.
Martian external magnetic field proxies
NASA Astrophysics Data System (ADS)
Langlais, Benoit; Civet, Francois
2015-04-01
Mars possesses no dynamic magnetic field of internal origin as it is the case for the Earth or for Mercury. Instead Mars is characterized by an intense and localized magnetic field of crustal origin. This field is the result of past magnetization and demagnetization processes, and reflects its evolution. The Interplanetary Magnetic Field (IMF) interacts with Mars' ionized environment to create an external magnetic field. This external field is weak compared to lithospheric one but very dynamic, and may hamper the detailed analysis of the internal magnetic field at some places or times. Because there are currently no magnetic field measurements made at Mars' surface, it is not possible to directly monitor the external field temporal variability as it is done in Earth's ground magnetic observatories. In this study we examine to indirect ways of quantifying this external field. First we use the Advanced Composition Explorer (ACE) mission which measures the solar wind about one hour upstream of the bow-shock resulting from the interaction between the solar wind and the Earth's internal magnetic field. These measurements are extrapolated to Mars' position taking into account the orbital configurations of the Mars-Earth system and the velocity of particles carrying the IMF. Second we directly use Mars Global Surveyor magnetic field measurements to quantify the level of variability of the external field. We subtract from the measurements the internal field which is otherwise modeled, and bin the residuals first on a spatial and then on a temporal mesh. This allows to compute daily or semi daily index. We present a comparison of these two proxies and demonstrate their complementarity. We also illustrate our analysis by comparing our Martian external field proxies to terrestrial index at epochs of known strong activity. These proxies will especially be useful for upcoming magnetic field measurements made around or at the surface of Mars.
Magnetic field modification of optical magnetic dipoles.
Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David
2015-03-11
Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate. PMID:25646869
Magnetic field contribution to the Lorentz model.
Oughstun, Kurt E; Albanese, Richard A
2006-07-01
The classical Lorentz model of dielectric dispersion is based on the microscopic Lorentz force relation and Newton's second law of motion for an ensemble of harmonically bound electrons. The magnetic field contribution in the Lorentz force relation is neglected because it is typically small in comparison with the electric field contribution. Inclusion of this term leads to a microscopic polarization density that contains both perpendicular and parallel components relative to the plane wave propagation vector. The modified parallel and perpendicular polarizabilities are both nonlinear in the local electric field strength. PMID:16783441
Phillips, J.D.; Nabighian, M.N.; Smith, D.V.; Li, Y.
2007-01-01
The Helbig method for estimating total magnetization directions of compact sources from magnetic vector components is extended so that tensor magnetic gradient components can be used instead. Depths of the compact sources can be estimated using the Euler equation, and their dipole moment magnitudes can be estimated using a least squares fit to the vector component or tensor gradient component data. ?? 2007 Society of Exploration Geophysicists.
Exposure guidelines for magnetic fields
Miller, G.
1987-12-01
The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.
Magnetic-field-dosimetry system
Lemon, D.K.; Skorpik, J.R.; Eick, J.L.
1981-01-21
A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.
Magnetic fields in massive stars
S. Hubrig
2007-03-09
Although indirect evidence for the presence of magnetic fields in high-mass stars is regularly reported in the literature, the detection of these fields remains an extremely challenging observational problem. We review the recent discoveries of magnetic fields in different types of massive stars and briefly discuss strategies for spectropolarimetric observations to be carried out in the future.
Lim, Eun-Kyung; Goode, Philip
2012-01-01
The formation and the temporal evolution of a bipolar moving magnetic feature (MMF) was studied with high spatial and temporal resolution. The photometric properties were observed with the New Solar Telescope at Big Bear Solar Observatory using a broadband TiO filter (705.7 nm), while the magnetic field was analyzed using the spectropolarimetric data obtained by Hinode. For the first time, we observed a bipolar MMF simultaneously in intensity images and magnetic field data, and studied the details of its structure. The vector magnetic field and the Doppler velocity of the MMF were also studied. A bipolar MMF having its positive polarity closer to the negative penumbra formed being accompanied by a bright, filamentary structure in the TiO data connecting the MMF and a dark penumbral filament. A fast downflow (polarity. The vector magnetic field obtained from the full Stokes inversion revealed that a bipolar MMF has a U-shaped magnetic field configuration. Our observation...
Magnetic Fields In Astrophysical Objects
L. J. Silvers
2008-08-11
Magnetic fields are known to reside in many astrophysical objects and are now believed to be crucially important for the creation of phenomena on a wide variety of scales. However, the role of the magnetic field in the bodies that we observe has not always been clear. In certain situations, the importance of a magnetic field has been over looked on the grounds that the large-scale magnetic field was believed to be too weak to play and important role in the dynamics. In this article I discuss some of the recent developments concerning magnetic fields in stars, planets and accretion discs. I choose to emphasise some of the situations where it has been suggested that weak magnetic fields may play a more significant role than previously thought. At the end of the article I list some of the questions to be answered in the future.
Video-rate terahertz electric-field vector imaging
Takai, Mayuko; Takeda, Masatoshi; Sasaki, Manabu; Tachizaki, Takehiro; Yasumatsu, Naoya; Watanabe, Shinichi
2014-10-13
We present an experimental setup to dramatically reduce a measurement time for obtaining spatial distributions of terahertz electric-field (E-field) vectors. The method utilizes the electro-optic sampling, and we use a charge-coupled device to detect a spatial distribution of the probe beam polarization rotation by the E-field-induced Pockels effect in a ?110?-oriented ZnTe crystal. A quick rotation of the ZnTe crystal allows analyzing the terahertz E-field direction at each image position, and the terahertz E-field vector mapping at a fixed position of an optical delay line is achieved within 21 ms. Video-rate mapping of terahertz E-field vectors is likely to be useful for achieving real-time sensing of terahertz vector beams, vector vortices, and surface topography. The method is also useful for a fast polarization analysis of terahertz beams.
NASA Astrophysics Data System (ADS)
Back, Randy; Beckham, J. Regan
2012-10-01
A vertically draining thin ferrofilm under the influence of gravity and a nonuniform magnetic field is considered. It is observed experimentally that the presence of the magnetic field greatly alters the drainage of the film. A mathematical model is developed to describe the behavior. Experiments are conducted for multiple magnetic field configurations. The model is solved for two different sets of boundary conditions and results are compared to experiments. It is shown that the magnetic field structure, the concentration of magnetite in the solution, and the boundary conditions all have noticeable affects on the evolution of the thinning film. Good qualitative agreement between the model and the experiments is observed.
The Curl of a Vector Field: Beyond the Formula
ERIC Educational Resources Information Center
Burch, Kimberly Jordan; Choi, Youngna
2006-01-01
It has been widely acknowledged that there is some discrepancy in the teaching of vector calculus in mathematics courses and other applied fields. The curl of a vector field is one topic many students can calculate without understanding its significance. In this paper, we explain the origin of the curl after presenting the standard mathematical…
Structure of space vector field & inevitability of weather disaster
Meifen Fu; Dafeng Xia; Weican Zhou
2011-01-01
There is a space vector field which structured with the atmospheric wind and direction. In this paper, we define a modular map with the solution curve crossed any point in the vector field. According to the conclusion that Euler's characteristic of spherical surface is equal to 2, it's proved that there exists at least one fixed point in the modular
On the lifting and approximation theorem for nonsmooth vector fields
Bramanti, Marco; Pedroni, Marco
2010-01-01
We prove a version of Rothschild-Stein's theorem of lifting and approximation and some related results in the context of nonsmooth Hormander's vector fields for which the highest order commutators are only Holder continuous. The theory explicitly covers the case of one vector field having weight two while the others have weight one.
Lyapunov Guidance Vector Fields for Unmanned Aircraft Applications
Eric W. Frew; Dale A. Lawrence; Cory Dixon; Jack Elston; William J. Pisano
2007-01-01
This paper presents results implementing Lyapunov vector fields for the guidance of unmanned aircraft. The vector fields yield globally stable tracking of circular loiter patterns. These loiter patterns are used in several unmanned aircraft applications including hierarchical micro air vehicle control for cooperative plume tracking, extremum seeking for electronic chaining, and cooperative tracking of moving targets. Extensions of the basic
IMP F and G phase 1 magnetic field analysis
NASA Technical Reports Server (NTRS)
Mish, W. H.
1972-01-01
The program developed to analyze magnetic field data from the magnetic field experiment flown in IMP F is reported. The analysis converts the raw X, Y, Z sensor data as received on the magnetic field experiment tape into vector measurements of the ambient magnetic field observed by the experiment. These data are computed for four frames of reference -- apparent, payload, solar ecliptic and solar magnetospheric. In addition 20.45 second statistics are computed for the last three coordinate systems. Finally, a summary tape is produced containing detailed data and sequence statistics as well as the output from the autocorrelation computer, trajectory data and identification information.
On the health of a vector field with (R A^2)/6 coupling to gravity
Mindaugas Kar?iauskas; David Lyth
2010-07-08
The coupling (R A^2)/6 of a vector field to gravity was proposed as a mechanism for generating a primordial magnetic field, and more recently as a mechanism for generating a statistically anisotropic contribution to the primordial curvature perturbation. In either case, the vector field's perturbation has both a transverse and a longitudinal component, and the latter has some unusual features which call into question the health of the theory. We calculate for the first time the energy density generated by the longitudinal field perturbations, and go on to argue that the theory may well be healthy in at least some versions.
Magnetic fields around evolved stars
NASA Astrophysics Data System (ADS)
Leal-Ferreira, M.; Vlemmings, W.; Kemball, A.; Amiri, N.; Maercker, M.; Ramstedt, S.; Olofsson, G.
2014-04-01
A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.
Laser fields at flat interfaces: I. Vector potential
NASA Astrophysics Data System (ADS)
Ra?eev, G.
2012-07-01
A model calculating the laser fields at a flat structureless surface taking into account the surface photoelectric effect is presented. The photon is p or transverse magnetic linearly polarized, continuous and its wave length is long, i.e. ?vac ? 12.4 nm. The sharp rise of the electron density at the interface generates an atomic scale spatial dependence of the laser field. In real space and in the temporal gauge, the vector potential A of the laser is obtained as a solution of the classical Ampère-Maxwell and the material equations. The susceptibility is a product of the electron density of the material system with the surface and of the bulk tensor and non-local isotropic (TNLI) polarizability. The electron density is obtained quantum mechanically by solving the Schrödinger equation. The bulk TNLI polarizability including dispersion is calculated from a Drude-Lindhard-Kliewer model. In one dimension perpendicular to the surface the components A_x(z,?) and A_z(z,?) of the vector potential are solutions of the Ampère-Maxwell system of two coupled integro-differential equations. The model, called vector potential from the electron density-coupled integro-differential equations (VPED-CIDE), is used here to obtain the electron escape probability from the power density absorption, the reflectance, the electron density induced by the laser and Feibelman's parameters d? and d?. Some preliminary results on aluminium surfaces are given here and in a companion paper the photoelectron spectra are calculated with results in agreement with the experiment.
Collective excitations in graphene in magnetic field
Pavel A. Andreev
2012-09-19
Collective excitations in graphene monolayer are studied. Equations describing collective properties of electrons in graphene are obtained. The basic ideas of the method of many-particle quantum hydrodynamics are used for the derivation. As starting point of the derivation we use the Dirac equation for massless electrons which is usually used for description of electrons in graphene [D. E. Sheehy and J. Schmalian, Phys. Rev. Lett. 99, 226803 (2007)], where the Coulomb interaction is taken into account. We study dispersion properties of collective excitations by means derived here graphene quantum hydrodynamics equations (GQHD). We consider graphene in the external magnetic field which directed at an angle to the graphene sample. We do it in a linear approximation of the GQHD equations. We observe that the magnetic field directed perpendicular to the graphene plane had no influence on dispersion of the collective excitations. For the magnetic field directed at an angle to the graphene we obtain dependence of wave dispersion on system parameters: strength of magnetic field, wave vector, direction of wave propagation relatively to the magnetic field.
Magnetic response to applied electrostatic field in external magnetic field
NASA Astrophysics Data System (ADS)
Adorno, T. C.; Gitman, D. M.; Shabad, A. E.
2014-04-01
We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics.
Cosmic Magnetic Fields - An Overview
NASA Astrophysics Data System (ADS)
Wielebinski, Richard; Beck, Rainer
Magnetic fields have been known in antiquity. Aristotle attributes the first of what could be called a scientific discussion on magnetism to Thales, who lived from about 625 BC. In China “magnetic carts” were in use to help the Emperor in his journeys of inspection. Plinius comments that in the Asia Minor province of Magnesia shepherds' staffs get at times “glued” to a stone, a alodestone. In Europe the magnetic compass came through the Arab sailors who met the Portuguese explorers. The first scientific treatise on magnetism, “De Magnete”, was published by William Gilbert who in 1600 described his experiments and suggested that the Earth was a huge magnet. Johannes Kepler was a correspondent of Gilbert and at times suggested that planetary motion was due to magnetic forces. Alas, this concept was demolished by Isaac Newton,who seeing the falling apple decided that gravity was enough. This concept of dealing with gravitational forces only remains en vogue even today. The explanations why magnetic effects must be neglected go from “magnetic energy is only 1% of gravitation” to “magnetic fields only complicate the beautiful computer solutions”. What is disregarded is the fact that magnetic effects are very directional(not omni-directional as gravity) and also the fact that magnetic fields are seen every where in our cosmic universe.
Statistical anisotropy of the curvature perturbation from vector field perturbations
Dimopoulos, Konstantinos; Karciauskas, Mindaugas; Lyth, David H.; Rodriguez, Yeinzon E-mail: m.karciauskas@lancaster.ac.uk E-mail: yeinzon.rodriguez@uan.edu.co
2009-05-15
The {delta}N formula for the primordial curvature perturbation {zeta} is extended to include vector as well as scalar fields. Formulas for the tree-level contributions to the spectrum and bispectrum of {zeta} are given, exhibiting statistical anisotropy. The one-loop contribution to the spectrum of {zeta} is also worked out. We then consider the generation of vector field perturbations from the vacuum, including the longitudinal component that will be present if there is no gauge invariance. Finally, the {delta}N formula is applied to the vector curvaton and vector inflation models with the tensor perturbation also evaluated in the latter case.
Statistical anisotropy of the curvature perturbation from vector field perturbations
Dimopoulos, Konstantinos; Rodriguez, Yeinzon
2008-01-01
The \\delta N formula for calculating the primordial curvature perturbation \\zeta is extended to include vector as well as scalar fields. Formulas for the tree-level contributions to the spectrum and bispectrum of \\zeta are given, exhibiting statistical anisotropy. The one-loop contribution to the spectrum of \\zeta is also worked out. The spectra for the vector field perturbations are calculated in the framework of a non-Einstein gravity theory where conformal invariance is broken. The \\delta N formula is then applied to the vector curvaton and vector inflation models.
Vladimir G. Baryshevsky
1999-12-23
It is shown that the T- and P-odd weak interactions yield to the existence of both electric field and magnetic (directed along the electric field) field around an electric charge. Similarly the assotiated magnetic field is directed along the vector of strength of stationary gravitational field.
Origin of cosmic magnetic fields.
Campanelli, Leonardo
2013-08-01
We calculate, in the free Maxwell theory, the renormalized quantum vacuum expectation value of the two-point magnetic correlation function in de Sitter inflation. We find that quantum magnetic fluctuations remain constant during inflation instead of being washed out adiabatically, as usually assumed in the literature. The quantum-to-classical transition of super-Hubble magnetic modes during inflation allow us to treat the magnetic field classically after reheating, when it is coupled to the primeval plasma. The actual magnetic field is scale independent and has an intensity of few×10(-12)??G if the energy scale of inflation is few×10(16)??GeV. Such a field accounts for galactic and galaxy cluster magnetic fields. PMID:23971556
Measurements of magnetic field alignment
Kuchnir, M.; Schmidt, E.E.
1987-11-06
The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.
COMPARISON OF ATMOSPHERIC MOTION VECTORS AND DENSE VECTOR FIELDS CALCULATED FROM MSG IMAGES
Szantai André
COMPARISON OF ATMOSPHERIC MOTION VECTORS AND DENSE VECTOR FIELDS CALCULATED FROM MSG IMAGES André images [Corpetti et al., 2002]. This method has been applied on consecutive MSG images in the thermal at subsatellite point, 15 min standard time interval, 12 channels for MSG satellites). The progress on tracking
Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki
2014-01-21
A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.
Three axis vector magnet set-up for cryogenic scanning probe microscopy.
Galvis, J A; Herrera, E; Guillamón, I; Azpeitia, J; Luccas, R F; Munuera, C; Cuenca, M; Higuera, J A; Díaz, N; Pazos, M; García-Hernandez, M; Buendía, A; Vieira, S; Suderow, H
2015-01-01
We describe a three axis vector magnet system for cryogenic scanning probe microscopy measurements. We discuss the magnet support system and the power supply, consisting of a compact three way 100 A current source. We obtain tilted magnetic fields in all directions with maximum value of 5T along z-axis and of 1.2T for XY-plane magnetic fields. We describe a scanning tunneling microscopy-spectroscopy (STM-STS) set-up, operating in a dilution refrigerator, which includes a new high voltage ultralow noise piezodrive electronics and discuss the noise level due to vibrations. STM images and STS maps show atomic resolution and the tilted vortex lattice at 150 mK in the superconductor ?-Bi2Pd. We observe a strongly elongated hexagonal lattice, which corresponds to the projection of the tilted hexagonal vortex lattice on the surface. We also discuss Magnetic Force Microscopy images in a variable temperature insert. PMID:25638089
An Improved Nuclear Vector Replacement Algorithm for Nuclear Magnetic Resonance Assignment
An Improved Nuclear Vector Replacement Algorithm for Nuclear Magnetic Resonance Assignment to the Nuclear Vector Replacement (NVR) algorithm [24] for high-throughput Nuclear Magnetic Resonance (NMR://www.cs.dartmouth.edu/reports/abstracts/TR2004-494/ Abbreviations used: NMR, nuclear magnetic resonance; NVR, nuclear vector replacement; RDC
Measuring Earth's Local Magnetic Field Using a Helmholtz Coil
NASA Astrophysics Data System (ADS)
Williams, Jonathan E.
2014-04-01
In this paper, I present a low-cost interactive experiment for measuring the strength of Earth's local magnetic field. This activity can be done in most high schools or two-year physics laboratories with limited resources, yet will have a tremendous learning impact. This experiment solidifies the three-dimensional nature of Earth's magnetic field vector and helps reinforce the aspect of the vertical component of Earth's magnetic field. Students should realize that Earth's magnetic field is not fully horizontal (except at the magnetic equator) and that a compass simply indicates the direction of the horizontal component of Earth's magnetic field. A magnetic dip needle compass can be used to determine the angle (known as the "dip angle" or "inclination angle") measured from the direction in which Earth's magnetic field vector points to the horizontal. In this activity, students will be able to determine the horizontal component of the field using a Helmholtz coil and, knowing the dip angle, the Earth's magnetic field strength can be determined.
VECTOR FIELD METRICS BASED ON DISTANCE MEASURES OF FIRST ORDER CRITICAL POINTS
of 2D vector fields. This distance measure forms the foundation of the definition of vector field it into the definition of vector field metrics: vector fields with a similar flow behavior should have a rather smallVECTOR FIELD METRICS BASED ON DISTANCE MEASURES OF FIRST ORDER CRITICAL POINTS H. Theisel T
The Local Stellar Velocity Field via Vector Spherical Harmonics
NASA Technical Reports Server (NTRS)
Markarov, V. V.; Murphy, D. W.
2007-01-01
We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism. We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not corrected for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star. The Oort parameters determined by a straightforward least-squares adjustment in vector spherical harmonics are A=14.0 +/- 1.4, B=13.1 +/- 1.2, K=1.1 +/- 1.8, and C=2.9 +/- 1.4 km s(exp -1) kpc(exp -1). The physical meaning and the implications of these parameters are discussed in the framework of a general linear model of the velocity field. We find a few statistically significant higher degree harmonic terms that do not correspond to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we estimate at approximately -20 km s(exp -1) kpc(exp -1). A similar vertical gradient of rotation velocity has been detected for more distant stars representing the thick disk (z greater than 1 kpc), but here we surmise its existence in the thin disk at z less than 200 pc. The most unexpected and unexplained term within the Ogorodnikov-Milne model is the first-degree magnetic harmonic, representing a rigid rotation of the stellar field about the axis -Y pointing opposite to the direction of rotation. This harmonic comes out with a statistically robust coefficient of 6.2 +/- 0.9 km s(exp -1) kpc(exp -1) and is also present in the velocity field of more distant stars. The ensuing upward vertical motion of stars in the general direction of the Galactic center and the downward motion in the anticenter direction are opposite to the vector field expected from the stationary Galactic warp model.
Survey of the ULF wave Poynting vector near the Earth's magnetic equatorial plane
NASA Astrophysics Data System (ADS)
Hartinger, M.; Moldwin, M.; Takahashi, K.; Bonnell, J. W.; Angelopoulos, V.
2013-12-01
Ultra Low Frequency (ULF) waves transfer energy in the Earth's magnetosphere through a variety of mechanisms that impact the Earth's ionosphere, radiation belts, and other plasma populations. Measurements of the electromagnetic portion of the energy transfer rate are an important source of information for assessing the importance of ULF waves relative to other energy transfer mechanisms and as a diagnostic for studying the behavior of ULF waves. Using THEMIS satellite data, we examine the time averaged electromagnetic energy transfer rate, or Poynting vector, as a function of frequency (3-50 mHz) and region of the magnetosphere. This study extends earlier work focused on narrower frequency ranges or specific regions of the magnetosphere; here, we consider the Pc5 to Pc3 frequency range, all local time sectors, radial distances from 3 to 13 Re, and magnetic latitudes close to the equatorial plane. We measure time averaged Poynting vectors that range from ~10^-11 to 10^-5 W/m^2, with larger Poynting vector magnitudes occurring at larger radial distances and smaller frequencies. In every spatial region and frequency we examined, we found a large degree of scatter in both the Poynting vector magnitude and direction. The Poynting vector tends to be anisotropic at all frequencies, with more energy transferred along rather than across the background magnetic field. This preference for parallel energy transfer near the magnetic equator suggests that the ionosphere is the largest sink of wave energy in the magnetosphere.
Hamann, Bernd
, and we provide the definitions only for this case. Definition 1.1 A planar vector field is a map Ú Ê ¾ Ê ÓÐÐÑ ÒÒ Ù Ú ×º Ù Keywords: vector field, flow, topology, visualization Abstract The topology of vector fields offers a well known way to show a "condensed" view of the stream line behavior of a vector field
Energy momentum flows for the massive vector field
George Horton; Chris Dewdney
2006-09-26
We present a causal trajectory interpretation for the massive vector field, based on the flows of rest energy and a conserved density defined using the time-like eigenvectors and eigenvalues of the stress-energy-momentum tensor. This work extends our previous work which used a similar procedure for the scalar field. The massive, spin-one, complex vector field is discussed in detail and solutions are classified using the Pauli-Lubanski spin vector. The flows of energy-momentum are illustrated in a simple example of standing waves in a plane.
Visualizing Vector Fields Using Line Integral Convolution and Dye Advection
NASA Technical Reports Server (NTRS)
Shen, Han-Wei; Johnson, Christopher R.; Ma, Kwan-Liu
1996-01-01
We present local and global techniques to visualize three-dimensional vector field data. Using the Line Integral Convolution (LIC) method to image the global vector field, our new algorithm allows the user to introduce colored 'dye' into the vector field to highlight local flow features. A fast algorithm is proposed that quickly recomputes the dyed LIC images. In addition, we introduce volume rendering methods that can map the LIC texture on any contour surface and/or translucent region defined by additional scalar quantities, and can follow the advection of colored dye throughout the volume.
Two-dimensional magnetic properties of silicon steel sheet subjected to a rotating field
Enokizono, Masato; Todaka, Takashi; Kanao, Shinichi . Dept. of Electrical and Electronic Engineering); Sievert, J. )
1993-11-01
The evaluation of the magnetic properties of materials is very important in developing highly efficient electrical machines and apparatus. The authors have studied a new concept concerning the rotational magnetic properties which are called two-dimensional rotational magnetic properties. These are measured making use of the vector relation between magnetic field strength H and magnetic flux density B.
NASA Astrophysics Data System (ADS)
Voigt, J.; Knappe-Grüneberg, S.; Gutkelch, D.; Haueisen, J.; Neuber, S.; Schnabel, A.; Burghoff, M.
2015-05-01
Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23 pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.
Vortex Detection in Vector Fields Using Geometric Algebra
Mann, Stephen
. In this paper, we review and compare three methods of finding such a plane: by using the Jacobian of the vector, and tested three swirl-plane estimation methods for use within our algorithm. Our vortex-detection algorithm in a vector field is important, and often critical. For example, in aerodynamics, vortices located in the wake
Measuring the Similarity of Vector Fields Using Global Distributions
Dinh, H. Quynh
Department of Computer Science Stevens Institute of Technology quynh@cs.stevens.edu, lxu1@stevens singularities (critical points where the mag- nitude of the vector vanishes), separatrices emanating from saddle of the Jacobian matrix. There is signif- icant research in the area of vector field analysis and singularity
Information Transfer by Vector Spin Chirality in Finite Magnetic Chains
NASA Astrophysics Data System (ADS)
Menzel, Matthias; Mokrousov, Yuriy; Wieser, Robert; Bickel, Jessica E.; Vedmedenko, Elena; Blügel, Stefan; Heinze, Stefan; von Bergmann, Kirsten; Kubetzka, André; Wiesendanger, Roland
2012-05-01
Vector spin chirality is one of the fundamental characteristics of complex magnets. For a one-dimensional spin-spiral state it can be interpreted as the handedness, or rotational sense of the spiral. Here, using spin-polarized scanning tunneling microscopy, we demonstrate the occurrence of an atomic-scale spin spiral in finite individual bi-atomic Fe chains on the (5×1)-Ir(001) surface. We show that the broken inversion symmetry at the surface promotes one direction of the vector spin chirality, leading to a unique rotational sense of the spiral in all chains. Correspondingly, changes in the spin direction of one chain end can be probed tens of nanometers away, suggesting a new way of transmitting information about the state of magnetic objects on the nanoscale.
Project MAGNET high-level vector survey data reduction
NASA Astrophysics Data System (ADS)
Coleman, Rachel J.
1992-06-01
Since 1951, the U.S. Navy, under its Project MAGNET program, has been continuously collecting vector aeromagnetic survey data to support the U.S. Defense Mapping Agency's world magnetic and charting program. During this forty-year period, a variety of survey platforms and instrumentation configurations have been used. The current Project MAGNET survey platform is a Navy Orion RP-3D aircraft which has been specially modified and specially equipped with a redundant suite of navigational positioning, attitude, and magnetic sensors. A review of the survey data collection procedures and calibration and editing techniques applied to the data generated by this suite of instrumentation will be presented. Among the topics covered will be the determination of its parameters from the low-level calibration maneuvers flown over geomagnetic observatories.
Project MAGNET High-level Vector Survey Data Reduction
NASA Technical Reports Server (NTRS)
Coleman, Rachel J.
1992-01-01
Since 1951, the U.S. Navy, under its Project MAGNET program, has been continuously collecting vector aeromagnetic survey data to support the U.S. Defense Mapping Agency's world magnetic and charting program. During this forty-year period, a variety of survey platforms and instrumentation configurations have been used. The current Project MAGNET survey platform is a Navy Orion RP-3D aircraft which has been specially modified and specially equipped with a redundant suite of navigational positioning, attitude, and magnetic sensors. A review of the survey data collection procedures and calibration and editing techniques applied to the data generated by this suite of instrumentation will be presented. Among the topics covered will be the determination of its parameters from the low-level calibration maneuvers flown over geomagnetic observatories.
Toroidal and poloidal magnetic fields at Venus. Venus Express observations
NASA Astrophysics Data System (ADS)
Dubinin, E.; Fraenz, M.; Woch, J.; Zhang, T. L.; Wei, Y.; Fedorov, A.; Barabash, S.; Lundin, R.
2013-10-01
Magnetic field and plasma measurements carried out onboard Venus Express during solar minimum conditions suggest the existence of two kinds of magnetic field configuration in the Venusian ionosphere. We interpret these as the manifestation of two different types of generation mechanisms for the induced magnetosphere. A different magnetic field topology (toroidal and poloidal) arises if the induced currents are driven either by the solar wind motional electric field or by the Faraday electric field—a conducting ionosphere sees the magnetic field carried by solar wind as a time-varying field. At the dayside, both driving agents produce a similar draping pattern of the magnetic field. However, different magnetic field signatures inherent to both induction mechanisms appear at lower altitudes in the terminator region. The conditions at low solar EUV flux when the ionosphere of Venus becomes magnetized seem to be favorable to distinguish between two different types of the induced fields. We present cases of both types of the magnetic field topology. The cases when the effects of the Faraday induction become well noticeable are especially interesting since they provide us with an example of solar wind interaction with a tiny induced dipole field immersed into the ionosphere. Another interesting case when poloidal magnetic fields are evidently displayed is observed when the IMF vector is almost aligned with the solar wind velocity. In general case, both mechanisms of induction probably complement each other.
A vector oriented control for a magnetically levitated shaft
De Miras, J.; Charara, A.
1998-07-01
Considering the nonlinear model of Active Magnetic Bearings, a new means of nonlinear control is presented which treats variables as rotating vectors in the control plane, specially the unbalance. It became easy to cancel out the effect of this perturbation in a rotating reference. Therefore, the rotor can rotate around any desired point, particularly the geometric center or the center of gravity. Simulations illustrate the efficacy of this control law.
Thermometers in Low Magnetic Fields
NASA Astrophysics Data System (ADS)
Geršak, G.; Beguš, S.
2010-09-01
In this article the effect of low amplitude DC magnetic fields on different types of thermometers is discussed. By means of a precision water-cooled electromagnet, the effect of a magnetic field on platinum resistance thermometers, thermistors, and type T, J, and K thermocouples was investigated, while thermometers were thermally stabilized in thermostatic baths. Four different baths were used for temperatures from 77 K (-196 °C) to 353 K (80 °C): liquid nitrogen bath (nitrogen boiling point at atmospheric pressure), ice-point bath, room-temperature air bath, and hot-water bath. The generated DC magnetic field of high relative precision (2 × 10-4 at 1 T, 4 × 10-5 short-term stability) and high relative uniformity (2 × 10-5 over 1 cm2, 10 mm gap) had a magnetic flux density of 1 T in the center of the gap between the magnet pole caps. The results indicate a magnetic effect of up to 100 mK due to a 1 T magnetic field for the types of thermocouples composed of ferromagnetic materials (Fe, Cr, Ni). For platinum resistance thermometers, thermistors, and non-magnetic type T thermocouples, the detected magnetic effect was weaker, i.e., under 10 mK.
Saturn's Magnetic Field: Modeling and Predictions for Cassini
NASA Astrophysics Data System (ADS)
Burton, M. E.; Smith, E. J.; Dougherty, M. K.
2001-12-01
The Cassini spacecraft is en route to Saturn and will arrive there on July 1 of 2004. Cassini is equipped with both a fluxgate vector magnetometer and a helium magnetometer, which has vector and scalar modes of operation. Fluxgate vector measurements along with scalar measurements made by the helium sensor when Cassini is close to Saturn will be used to accurately determine the magnetic field and its higher order moments (up to fifth order). In preparation for Saturn orbit insertion and a four-year tour with more than seventy orbits, we have reexamined existing magnetic field models and magnetic field data obtained by the Pioneer-11 spacecraft during its brief Saturn flyby in 1979. We predict what might be measured by Cassini both at orbit insertion, when Cassini will come as close as 1.3 Saturn radii, as well as the remainder of the four-year tour.
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.; Acuna, Mario H.; Ness, Norman F.
1992-01-01
A model is given of the planetary magnetic field of Neptune based on a spherical harmonic analysis of the observations obtained by the Voyager 2. Generalized inverse techniques are used to partially solve a severely underdetermined inverse problem, and the resulting model is nonunique since the observations are limited in spatial distribution. Dipole, quadrupole, and octupole coefficients are estimated independently of other terms, and the parameters are shown to be well constrained by the measurement data. The large-scale features of the magnetic field including dipole tilt, offset, and harmonic content are found to characterize a magnetic field that is similar to that of Uranus. The traits of Neptune's magnetic field are theorized to relate to the 'ice' interior of the planet, and the dynamo-field generation reflects this poorly conducting planet.
Magnetic fields and scintillator performance
Green, D.; Ronzhin, A.; Hagopian, V.
1995-06-01
Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University.
AC photovoltaic module magnetic fields
Jennings, C.; Chang, G.J. [Pacific Gas and Electric Co., San Francisco, CA (United States); Reyes, A.B.; Whitaker, C.M. [Endecon Engineering, San Ramon, CA (United States)
1997-12-31
Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.
Observational Test of Coronal Magnetic Field Models I. Comparison with Potential Field Model
Liu, Yu
2007-01-01
Recent advances have made it possible to obtain two-dimensional line-of-sight magnetic field maps of the solar corona from spectropolarimetric observations of the Fe XIII 1075 nm forbidden coronal emission line. Together with the linear polarization measurements that map the azimuthal direction of the coronal magnetic field, these coronal vector magnetograms now allow for direct observational testing of theoretical coronal magnetic field models. This paper presents a study testing the validity of potential-field coronal magnetic field models. We constructed a theoretical coronal magnetic field model of active region AR 10582 observed by the SOLARC coronagraph in 2004 by a global potential field extrapolation of the synoptic map of Carrington Rotation 2014. Synthesized linear and circular polarization maps from thin layers of the coronal magnetic field model above the active region along the line of sight are compared with the observed maps. We found that reasonable agreement occurs from layers located just ab...
The role of vector fields in modified gravity scenarios
Tasinato, Gianmassimo; Koyama, Kazuya; Khosravi, Nima E-mail: kazuya.koyama@port.ac.uk
2013-11-01
Gravitational vector degrees of freedom typically arise in many examples of modified gravity models. We start to systematically explore their role in these scenarios, studying the effects of coupling gravitational vector and scalar degrees of freedom. We focus on set-ups that enjoy a Galilean symmetry in the scalar sector and an Abelian gauge symmetry in the vector sector. These symmetries, together with the requirement that the equations of motion contain at most two space-time derivatives, only allow for a small number of operators in the Lagrangian for the gravitational fields. We investigate the role of gravitational vector fields for two broad classes of phenomena that characterize modified gravity scenarios. The first is self-acceleration: we analyze in general terms the behavior of vector fluctuations around self-accelerating solutions, and show that vanishing kinetic terms of vector fluctuations lead to instabilities on cosmological backgrounds. The second phenomenon is the screening of long range fifth forces by means of Vainshtein mechanism. We show that if gravitational vector fields are appropriately coupled to a spherically symmetric source, they can play an important role for defining the features of the background solution and the scale of the Vainshtein radius. Our general results can be applied to any concrete model of modified gravity, whose low-energy vector and scalar degrees of freedom satisfy the symmetry requirements that we impose.
Huang, Qiu; Peng, Qiyu; Huang, Bin; Cheryauka, Arvi; Gullberg, Grant T.
2008-05-15
The measurement of flow obtained using continuous wave Doppler ultrasound is formulated as a directional projection of a flow vector field. When a continuous ultrasound wave bounces against a flowing particle, a signal is backscattered. This signal obtains a Doppler frequency shift proportional to the speed of the particle along the ultrasound beam. This occurs for each particle along the beam, giving rise to a Doppler velocity spectrum. The first moment of the spectrum provides the directional projection of the flow along theultrasound beam. Signals reflected from points further away from the detector will have lower amplitude than signals reflected from points closer to the detector. The effect is very much akin to that modeled by the attenuated Radon transform in emission computed tomography.A least-squares method was adopted to reconstruct a 2D vector field from directional projection measurements. Attenuated projections of only the longitudinal projections of the vector field were simulated. The components of the vector field were reconstructed using the gradient algorithm to minimize a least-squares criterion. This result was compared with the reconstruction of longitudinal projections of the vector field without attenuation. Ifattenuation is known, the algorithm was able to accurately reconstruct both components of the full vector field from only one set of directional projection measurements. A better reconstruction was obtained with attenuation than without attenuation implying that attenuation provides important information for the reconstruction of flow vector fields.This confirms previous work where we showed that knowledge of the attenuation distribution helps in the reconstruction of MRI diffusion tensor fields from fewer than the required measurements. In the application of ultrasound the attenuation distribution is obtained with pulse wave transmission computed tomography and flow information is obtained with continuous wave Doppler.
Examples of non-conjugated holomorphic vector fields and foliations
NASA Astrophysics Data System (ADS)
Teyssier, Loc
We consider germs of holomorphic vector fields near the origin of C2 with a saddle-node singularity, and the induced singular foliations. In a previous article we described the invariants addressing the analytical classification of these vector fields. They split into three parts: a formal, an orbital and a tangential component. For a fixed formal class, the orbital invariant (associated to the foliation) was obtained by Martinet and Ramis; we give it an integral representation. We then derive examples of non-orbitally conjugated foliations by the use of a "first-step" normal form, whose first-significative jet is an invariant. The tangential invariant also admits an integral representation, hence we derive explicit examples of vector fields, inducing the same foliation, that are not mutually conjugated. In addition, we provide a family of normal forms for vector fields orbitally equivalent to the model of Poincaré-Dulac.
THE LAW OF VECTOR FIELDS Daniel H. Gottlieb
with the same acceleration, or Kepler's * *laws governing the motion of the planets, or the daily movements the mathematical statements of these three classes of phenomena from Newton's Law of Gravity. The mathematical THE LAW OF VECTOR FIELDS Daniel H
Soft Constraints for Vector Field Design Keenan Crane
Grinspun, Eitan
Soft Constraints for Vector Field Design Keenan Crane June 22, 2012 This note describes how to add "soft constraints" to the algorithm described in Crane et al, Trivial Connections on Discrete Surfaces
Streamline embedding for 3D vector field exploration.
Rössl, Christian; Theisel, Holger
2012-03-01
We propose a new technique for visual exploration of streamlines in 3D vector fields. We construct a map from the space of all streamlines to points in IR(n) based on the preservation of the Hausdorff metric in streamline space. The image of a vector field under this map is a set of 2-manifolds in IR(n) with characteristic geometry and topology. Then standard clustering methods applied to the point sets in IR(n) yield a segmentation of the original vector field. Our approach provides a global analysis of 3D vector fields which incorporates the topological segmentation but yields additional information. In addition to a pure segmentation, the established map provides a natural "parametrization” visualized by the manifolds. We test our approach on a number of synthetic and real-world data sets. PMID:21519106
Low-altitude magnetic field measurements by MESSENGER reveal Mercury’s ancient crustal field
NASA Astrophysics Data System (ADS)
Johnson, Catherine L.; Phillips, Roger J.; Purucker, Michael E.; Anderson, Brian J.; Byrne, Paul K.; Denevi, Brett W.; Feinberg, Joshua M.; Hauck, Steven A.; Head, James W.; Korth, Haje; James, Peter B.; Mazarico, Erwan; Neumann, Gregory A.; Philpott, Lydia C.; Siegler, Matthew A.; Tsyganenko, Nikolai A.; Solomon, Sean C.
2015-05-01
Magnetized rocks can record the history of the magnetic field of a planet, a key constraint for understanding its evolution. From orbital vector magnetic field measurements of Mercury taken by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at altitudes below 150 kilometers, we have detected remanent magnetization in Mercury’s crust. We infer a lower bound on the average age of magnetization of 3.7 to 3.9 billion years. Our findings indicate that a global magnetic field driven by dynamo processes in the fluid outer core operated early in Mercury’s history. Ancient field strengths that range from those similar to Mercury’s present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury’s crust inferred from MESSENGER elemental composition data.
Conformal Killing vector fields and a virial theorem
José F. Cariñena; Irina Gheorghiu; Eduardo Martínez; Patrícia Santos
2014-10-08
The virial theorem is formulated both intrinsically and in local coordinates for a Lagrangian system of mechanical type on a Riemann manifold. An import case studied in this paper is that of an affine virial function associated to a vector field on the configuration manifold. The special cases of a virial function associated to a Killing, a homothetic and a conformal Killing vector field are considered and the corresponding virial theorems are established for this type of functions.
Vector Field Visual Data Analysis Technologies for Petascale Computational Science
Garth, Christoph; Deines, Eduard; Joy, Kenneth I.; Bethel, E. Wes; Childs, Hank; Weber, Gunther; Ahern, Sean; Pugmire, Dave; Sanderson, Allen; Johnson, Chris
2009-11-13
State-of-the-art computational science simulations generate large-scale vector field data sets. Visualization and analysis is a key aspect of obtaining insight into these data sets and represents an important challenge. This article discusses possibilities and challenges of modern vector field visualization and focuses on methods and techniques developed in the SciDAC Visualization and Analytics Center for Enabling Technologies (VACET) and deployed in the open-source visualization tool, VisIt.
Invariant random fields in vector bundles and application to cosmology
Malyarenko, Anatoliy
2009-01-01
We develop the theory of invariant random fields in vector bundles. The spectral decomposition of an invariant random field in a homogeneous vector bundle generated by an induced representation of a compact connected Lie group $G$ is obtained. We discuss an application to the theory of cosmic microwave background, where $G=SO(3)$. A theorem about equivalence of two different groups of assumptions in cosmological theories is proved.
Vector Field Induced Chaos in Multi-dimensional Homogeneous Cosmologies
Riccardo Benini; Alexander A. Kirillov; Giovanni Montani
2007-01-16
We show that in multidimensional gravity vector fields completely determine the structure and properties of singularity. It turns out that in the presence of a vector field the oscillatory regime exists for any number of spatial dimensions and for all homogeneous models. We derive the Poincar\\'e return map associated to the Kasner indexes and fix the rules according to which the Kasner vectors rotate. In correspondence to a 4-dimensional space time, the oscillatory regime here constructed overlap the usual Belinski-Khalatnikov-Liftshitz one.
NASA Astrophysics Data System (ADS)
Anber, Mohamed M.; Sorbo, Lorenzo
2006-10-01
There is increasing interest in the role played by pseudo Nambu Goldstone bosons (pNGBs) in the construction of string-inspired models of inflation. In these models the inflaton is expected to be coupled to gauge fields, and will lead to the generation of magnetic fields that can be of cosmological interest. We study the production of such fields mainly focusing on the model of N-flation, where the collective effect of several pNGBs drives inflation. Because the fields produced are maximally helical, inverse cascade processes in the primordial plasma significantly increase their coherence length. We discuss under what conditions inflation driven by pNGBs can account for the cosmological magnetic fields observed. A constraint on the parameters of this class of inflationary scenarios is also derived by requiring that the magnetic field does not backreact on the inflating background.
Measuring Earth's Magnetic Field Simply.
ERIC Educational Resources Information Center
Stewart, Gay B.
2000-01-01
Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)
Magsat: A satellite for measuring near earth magnetic fields
NASA Technical Reports Server (NTRS)
Langel, R. A.; Regan, R. D.; Murphy, J. P.
1977-01-01
Magsat, designed for making measurements of the geomagnetic vector field, is evaluated. For accurate vector measurements the attitude of the fluxgate magnetometer will be determined to about 15 arc-seconds. Expected measurement accuracy will be 6 (gamma) in each component and 3 in magnitude. The Magsat data will be applied to solid earth studies including modeling of the Earth's main magnetic field, delineation of regional magnetic anomalies of crustal origin, and interpretation of those anomalies in terms of geologic and geophysical models. An opportunity will be presented to the scientific community to participate in data use investigations.
Origin of strong magnetic fields.
NASA Technical Reports Server (NTRS)
Canuto, V.; Kumar, S.; Lee, H. J.
1972-01-01
A possible mechanism by which extremely strong magnetic fields in neutron stars and white dwarfs could originate involves the existence of thermodynamic equilibrium states (LOFER states) of an electron gas. The essence of the stability theory of a LOFER state is discussed. The extended electronic system considered is in contact with a thermal bath in the presence of an external magnetic field. It is found that it is not necessary to require absolute stability in order to realize a LOFER state in nature.
Black Holes and Magnetic Fields
Hejda, Filip
2015-01-01
We briefly summarise the basic properties of spacetimes representing rotating, charged black holes in strong axisymmetric magnetic fields. We concentrate on extremal cases, for which the horizon surface gravity vanishes. We investigate their properties by finding simpler spacetimes that exhibit their geometries near degenerate horizons. Employing the simpler geometries obtained by near-horizon limiting description we analyse the Meissner effect of magnetic field expulsion from extremal black holes.
Optical sensor of magnetic fields
Butler, M.A.; Martin, S.J.
1986-03-25
An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.
Costa, Pedro; Menezes, Débora P; Moreira, João; Providência, Constança
2015-01-01
The effect of a strong magnetic field on the location of the critical end point (CEP) in the QCD phase diagram is discussed under different scenarios. In particular, we consider the contribution of the vector interaction and take into account the inverse magnetic catalysis obtained in lattice QCD calculations at zero chemical potential. The discussion is realized within the (2+1) Polyakov--Nambu--Jona-Lasinio model. It is shown that the vector interaction and the magnetic field have opposite competing effects, and that the winning effect depends strongly on the intensity of the magnetic field. The inverse magnetic catalysis at zero chemical potential has two distinct effects for magnetic fields above $\\gtrsim 0.3$ GeV$^2$: it shifts the CEP to lower chemical potentials, hinders the increase of the CEP temperature and prevents a too large increase of the baryonic density at the CEP. For fields $eB<0.1$ GeV$^2$ the competing effects between the vector contribution and the magnetic field can move the CEP to r...
Pedro Costa; Márcio Ferreira; Débora P. Menezes; João Moreira; Constança Providência
2015-08-31
The effect of a strong magnetic field on the location of the critical end point (CEP) in the QCD phase diagram is discussed under different scenarios. In particular, we consider the contribution of the vector interaction and take into account the inverse magnetic catalysis obtained in lattice QCD calculations at zero chemical potential. The discussion is realized within the (2+1) Polyakov--Nambu--Jona-Lasinio model. It is shown that the vector interaction and the magnetic field have opposite competing effects, and that the winning effect depends strongly on the intensity of the magnetic field. The inverse magnetic catalysis at zero chemical potential has two distinct effects for magnetic fields above $\\gtrsim 0.3$ GeV$^2$: it shifts the CEP to lower chemical potentials, hinders the increase of the CEP temperature and prevents a too large increase of the baryonic density at the CEP. For fields $eB<0.1$ GeV$^2$ the competing effects between the vector contribution and the magnetic field can move the CEP to regions of temperature and density in the phase diagram that could be more easily accessible to experiments.
SOLIS/VSM Polar Magnetic Field Data
Bertello, Luca
2015-01-01
The Vector Spectromagnetograph (VSM) instrument on the Synoptic Optical Long-term Investigations of the Sun (SOLIS) telescope is designed to obtain high-quality magnetic field observations in both the photosphere and chromosphere by measuring the Zeeman-induced polarization of spectral lines. With 1$^{\\prime \\prime}$ spatial resolution (1.14$^{\\prime \\prime}$ before 2010) and 0.05\\AA\\ spectral resolution, the VSM provides, among other products, chromospheric full-disk magnetograms using the CaII 854.2 nm spectral line and both photospheric full-disk vector and longitudinal magnetograms using the FeI 630.15 nm line. Here we describe the procedure used to compute daily weighted averages of the photospheric radial polar magnetic field at different latitude bands from SOLIS/VSM longitudinal full-disk observations. Time series of these measurements are publicly available from the SOLIS website at http://solis.nso.edu/0/vsm/vsm\\_plrfield.html. Future plans include the calculation of the mean polar field strength fr...
The scientific case for magnetic field satellites
NASA Technical Reports Server (NTRS)
Backus, George E. (editor); Benton, Edward R.; Harrison, Christopher G. A.; Heirtzler, James R.
1987-01-01
To make full use of modern magnetic data and the paleomagnetic record, we must greatly improve our understanding of how the geodynamo system works. It is clearly nonlinear, probably chaotic, and its dimensionless parameters cannot yet be reproduced on a laboratory scale. It is accessible only to theory and to measurements made at and above the earth's surface. These measurements include essentially all geophysical types. Gravity and seismology give evidence for undulations in the core-mantle boundary (CMB) and for temperature variations in the lower mantle which can affect core convection and hence the dynamo. VLBI measurements of the variations in the Chandler wobble and length of day are affected by, among other things, the electromagnetic and mechanical transfer of angular momentum across the CMB. Finally, measurements of the vector magnetic field, its intensity, or its direction, give the most direct access to the core dynamo and the electrical conductivity of the lower mantle. The 120 gauss coefficients of degrees up to 10 probably come from the core, with only modest interference by mantle conductivity and crustal magnetization. By contrast, only three angular accelerations enter the problem of angular momentum transfer across the CMB. Satellite measurements of the vector magnetic field are uniquely able to provide the spatial coverage required for extrapolation to the CMB, and to isolate and measure certain magnetic signals which to the student of the geodynamo represent noise, but which are of great interest elsewhere in geophysics. Here, these claims are justified and the mission parameters likely to be scientifically most useful for observing the geodynamo system are described.
Primordial Magnetic Fields and Causality
Ruth Durrer; Chiara Caprini
2003-10-29
We discuss the implications of causality on a primordial magnetic field. We show that the residual field on large scales is much more suppressed than usually assumed and that a helical component is even more reduced. Due to this strong suppression, even maximal primordial fields generated at the electroweak phase transition can just marginally seed the fields in clusters, but they cannot leave any detectable imprint on the cosmic microwave background.
Unveiling locally linearly polarized vector fields with broken axial symmetry
Wang Xilin; Lou Kai; Chen Jing; Gu Bing; Li Yongnan; Wang Huitian
2011-06-15
We explore how the focusing of axial-symmetry-broken vector fields is associated with a sector aperture whose apex coincides with the field axis. Its focused field is azimuthally split into a pair of orthogonal right- and left-handed circularly polarized partial rings which are rotated by angles of {+-}{pi}/2 with respect to the input vector field carrying no orbital angular momentum (OAM) and no spin angular momentum (SAM), respectively. Each member of the pair of partial rings carries not only the opposite OAM but also the opposite SAM. We unveil the underlying physics behind such an effect.
Magnetic field induced dynamical chaos
Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra
2013-12-15
In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x–y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.
Modeling and vector control of planar magnetic levitator
Kim, W.; Trumper, D.L.; Lang, J.H.
1998-11-01
The authors designed and implemented a magnetically levitated stage with large planar motion capability. This planar magnetic levitator employs four novel permanent-magnet linear motors. Each motor generates vertical force for suspension against gravity, as well as horizontal force for drive. These linear levitation motors can be used as building blocks in the general class of multi-degree-of-freedom motion stages. In this paper, the authors discuss electromechanical modeling and real-time vector control of such a permanent-magnet levitator. They describe the dynamics in a dq frame introduced to decouple the forces acting on the magnetically levitated moving part, namely, the platen. A transformation similar to the Blondel-Park transformation is derived for commutation of the stator phase currents. The authors provide test results on step responses of the magnetically levitated stage. It shows 5-nm rms positioning noise in x and y, which demonstrates the applicability of such stages in the next-generation photolithography in semiconductor manufacturing.
Magnetic Field Generation in Stars
NASA Astrophysics Data System (ADS)
Ferrario, Lilia; Melatos, Andrew; Zrake, Jonathan
2015-03-01
Enormous progress has been made on observing stellar magnetism in stars from the main sequence (particularly thanks to the MiMeS, MAGORI and BOB surveys) through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence, in the generation and stability of neutron star fields. Independent information on the internal magnetic field of neutron stars will come from future gravitational wave detections. Coherent searches for the Crab pulsar with the Laser Interferometer Gravitational Wave Observatory (LIGO) have already constrained its gravitational wave luminosity to be ?2 % of the observed spin-down luminosity, thus placing a limit of ?1016 G on the internal field. Indirect spin-down limits inferred from recycled pulsars also yield interesting gravitational-wave-related constraints. Thus we may be at the dawn of a new era of exciting discoveries in compact star magnetism driven by the opening of a new, non-electromagnetic observational window. We also review recent advances in the theory and computation of magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo theory. These advances offer insight into the action of stellar dynamos as well as processes which control the diffusive magnetic flux transport in stars.
Magnetic fields in protoplanetary disks
Mark Wardle
2007-08-15
Magnetic fields likely play a key role in the dynamics and evolution of protoplanetary discs. They have the potential to efficiently transport angular momentum by MHD turbulence or via the magnetocentrifugal acceleration of outflows from the disk surface, and magnetically-driven mixing has implications for disk chemistry and evolution of the grain population. However, the weak ionisation of protoplanetary discs means that magnetic fields may not be able to effectively couple to the matter. I present calculations of the ionisation equilibrium and magnetic diffusivity as a function of height from the disk midplane at radii of 1 and 5 AU. Dust grains tend to suppress magnetic coupling by soaking up electrons and ions from the gas phase and reducing the conductivity of the gas by many orders of magnitude. However, once grains have grown to a few microns in size their effect starts to wane and magnetic fields can begin to couple to the gas even at the disk midplane. Because ions are generally decoupled from the magnetic field by neutral collisions while electrons are not, the Hall effect tends to dominate the diffusion of the magnetic field when it is able to partially couple to the gas. For a standard population of 0.1 micron grains the active surface layers have a combined column of about 2 g/cm^2 at 1 AU; by the time grains have aggregated to 3 microns the active surface density is 80 g/cm^2. In the absence of grains, x-rays maintain magnetic coupling to 10% of the disk material at 1 AU (150 g/cm^2). At 5 AU the entire disk thickness becomes active once grains have aggregated to 1 micron in size.
Improved magnetic field analysis of induction motor models
Enokizono, Masato; Sadanaga, Yuichiro
1998-09-01
This paper presents an improved magnetic field analysis for induction motor models. In the analysis with the conventional numerical modeling of magnetic materials, the vector relations between the flux density and the field intensity under a rotating field cannot be expressed exactly. In this paper, the authors derived the tensor magnetic reluctivity from the data measured with two-dimensional measurement method. This expression is applied to analyze a three-phase induction motor model core. The examples show that the calculated results obtained by the new method are different from those of the conventional modeling.
Deep-sea Vector Magnetic Anomalies over the Bayonnaise Knoll Caldera (Izu-Ogasawara Arc) (Invited)
NASA Astrophysics Data System (ADS)
Honsho, C.; Ura, T.; Kim, K.
2013-12-01
The Bayonnaise Knoll caldera is located on the eastern margin of the backarc rift zone of the Izu-Ogasawara island arc. The caldera rim is ~3 km in diameter and 100-200 m high from the caldera floor 840-920 m deep. A large active hydrothermal field associated with sulfide deposit, called the Hakurei site, has been found at the foot of the southeastern caldera wall. We conducted deep-sea magnetic measurements using autonomous underwater vehicles to map ~75 % of an area 3 km by 4 km in the caldera. The magnetic vector field data were collected at 40-150 m altitude along the survey lines spaced 80-200 m apart. We improved the conventional correction method applied for removing the effect of vehicle magnetization, which greatly enhanced the precision of the resulting vector anomalies and allowed us to use the vector anomaly instead of the total intensity anomaly for inversion analysis. The magnetization distribution obtained using the vector anomaly was significantly different from the one obtained using the total intensity anomaly, especially in areas where the survey tracks were widely spaced. The aliasing effect appears in areas of sparse data distribution, and the magnetic field is more correctly calculated from the vector anomaly than the total intensity anomaly. The magnetization distribution in the caldera has two major features: a ~1.5-km wide belt of high magnetization, trending NNW-SSE through the caldera, and a clear low magnetization zone, ~300 m x ~500 m wide, extending over the Hakurei site. The high magnetization belt is considered to reflect basaltic volcanism associated with the backarc rifting that occurred after the formation of the Bayonnaise Knoll. The low magnetization zone is interpreted as the alteration zone resulting from the hydrothermal activity. Several zones of localized high magnetization are recognized within the high magnetization belt, some of them in the caldera wall adjacent to the low magnetization zone of the Hakurei site. We speculate that intensive magma intrusion occurred beneath the caldera wall and has provided the heat to generate hydrothermal fluid, which has been spouting out through the caldera wall faults. The surface expression of the vent field extends beyond the alteration zone inferred from the magnetization distribution, spreading upwards in the caldera wall. High-resolution topography around the Hakurei site indicates that the hydrothermal vents are generally distributed over a landform of slope failure. These observations would imply that hydrothermal fluid rising up in the up-flow zone moves laterally as well when it comes near the seafloor, probably along numerous fractures and fissures in the caldera wall. The distribution of pre-existing faults and fractures may rather control the fluid flow pathways in the shallow part and condition the surface extent of the vent field.
Dispersion of Magnetic Fields in Molecular Clouds. I
Roger H. Hildebrand; Larry Kirby; Jessie L. Dotson; Martin Houde; John E. Vaillancourt
2009-02-03
We describe a method for determining the dispersion of magnetic field vectors about large-scale fields in turbulent molecular clouds. The method is designed to avoid inaccurate estimates of magnetohydrodynamic or turbulent dispersion - and help avoiding inaccurate estimates of field strengths - due to large-scale, non-turbulent field structure when using the well-known method of Chandrasekhar and Fermi. Our method also provides accurate, independent estimates of the turbulent to large-scale magnetic field strength ratio. We discuss applications to the molecular clouds OMC-1, M17, and DR21(Main).
Introduction to power-frequency electric and magnetic fields.
Kaune, W T
1993-01-01
This paper introduces the reader to electric and magnetic fields, particularly those fields produced by electric power systems and other sources using frequencies in the power-frequency range. Electric fields are produced by electric charges; a magnetic field also is produced if these charges are in motion. Electric fields exert forces on other charges; if in motion, these charges will experience magnetic forces. Power-frequency electric and magnetic fields induce electric currents in conducting bodies such as living organisms. The current density vector is used to describe the distribution of current within a body. The surface of the human body is an excellent shield for power-frequency electric fields, but power-frequency magnetic fields penetrate without significant attenuation; the electric fields induced inside the body by either exposure are comparable in magnitude. Electric fields induced inside a human by most environmental electric and magnetic fields appear to be small in magnitude compared to levels naturally occurring in living tissues. Detection of such fields thus would seem to require the existence of unknown biological mechanisms. Complete characterization of a power-frequency field requires measurement of the magnitudes and electrical phases of the fundamental and harmonic amplitudes of its three vector components. Most available instrumentation measures only a small subset, or some weighted average, of these quantities. Hand-held survey meters have been used widely to measure power-frequency electric and magnetic fields. Automated data-acquisition systems have come into use more recently to make electric- and magnetic-field recordings, covering periods of hours to days, in residences and other environments.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8206045
Magnetic fields of the solar system: A comparative planetology toolkit
NASA Astrophysics Data System (ADS)
Nicholas, J. B.; Purucker, M. E.; Johnson, C. L.; Sabaka, T. J.; Olsen, N.; Sun, Z.; Al Asad, M.; Anderson, B. J.; Korth, H.; Slavin, J. A.; Alexeev, I. I.; Belenkaya, E. S.; Phillips, R. J.; Solomon, S. C.; Lillis, R. J.; Langlais, B.; Winslow, R. M.; Russell, C. T.; Dougherty, M. K.; Zuber, M. T.
2011-12-01
Magnetic fields within the solar system provide a strong organizing force for processes active both within a planet or moon, and outside of it. In the interest of stimulating research and education in the field of comparative planetology, we present documented Fortran and MATLAB source codes and benchmarks to the latest models for planets and satellites that host internal magnetic fields. This presentation is made in the context of an interactive website: http://planetary-mag.net. Models are included for Earth (Comprehensive model CM4 of Sabaka et al., 2004, Geophysics J. Int.), Mercury (Anderson et al, 2011, Science), the Moon (Purucker and Nicholas, 2010, JGR), Mars (Lillis et al., 2010, JGR), and the outer planets Jupiter, Saturn, Uranus, and Neptune (Russell and Dougherty, 2010, Space Science Reviews). All models include magnetic fields of internal origin, and fields of external origin are included in the models for Mercury, the Earth, and the Moon. As models evolve, we intend to include magnetic fields of external origin for the other planets and moons. The website allows the user to select a coordinate system, such as planet-centered, heliocentric, or boundary normal, and the location within that coordinate system, and the vector magnetic field due to each of the component source fields at that location is then calculated and presented. Alternatively, the user can input a range as well as a grid spacing, and the vector magnetic field will be calculated for all points on that grid and be made available as a file for downloading.
Magnetic field of Jupiter: A generalized inverse approach
Connerney, J.E.P.
1981-09-01
The estimation of planetary magnetic fields from observations of the magnetic field gathered along a spacecraft flyby trajectory is examined with the aid of generalized inverse techniques, with application to the internal magnetic field of Jupiter. Model non-uniqueness resulting from the limited spatial extent of the observations and noise on the data is explored and quantitative estimates of the model parameter resolution are found. The presence of a substantial magnetic field of external origin due to the currents flowing in the Jovian magnetodisc is found to be an important source of error in estimates of the internal Jovian field, and new models explicitly incorporating these currents are proposed. New internal field models are derived using the vector helium magnetometer observations and the high field fluxgate observations of Pioneer 11, and knowledge of the external current system gained from the Pioneer 10 and Voyagers 1 and 2 encounters.
PROTOSTELLAR DISK FORMATION ENABLED BY WEAK, MISALIGNED MAGNETIC FIELDS
Krumholz, Mark R.; Crutcher, Richard M.; Hull, Charles L. H.
2013-04-10
The gas from which stars form is magnetized, and strong magnetic fields can efficiently transport angular momentum. Most theoretical models of this phenomenon find that it should prevent formation of large (>100 AU), rotationally supported disks around most protostars, even when non-ideal magnetohydrodynamic (MHD) effects that allow the field and gas to decouple are taken into account. Using recent observations of magnetic field strengths and orientations in protostellar cores, we show that this conclusion is incorrect. The distribution of magnetic field strengths is very broad, and alignments between fields and angular momentum vectors within protostellar cores are essentially random. By combining the field strength and misalignment data with MHD simulations showing that disk formation is expected for both weak and misaligned fields, we show that these observations imply that we should expect disk fractions of {approx}10%-50% even when protostars are still deeply embedded in their parent cores, and even if the gas is governed by ideal MHD.
Recurrent structures of the interplanetary magnetic field observed by Ulysses
NASA Technical Reports Server (NTRS)
Erdos, G.; Balogh, A.; Forsyth, R. J.; Smith, E. J.
1995-01-01
Since its launch in October 1990, Ulysses has provided good quality magnetic field data, practically covering the whole time interval until now. We have studied the very long time scale evolution of the interplanetary magnetic field, in particlular, we have search for recurrent disturbances in the magnetic field. The magnetic field vectors have been mapped back to the Sun along Parker spirals, in order to determine the Heliographic longitude of the source regions in the corona. It was found that the position of many high field sources drifts systematically relative to the corona assumed to rotate with the equatorial rotation period of the Sun. The results are compared to similar observations on the eastward drift of magnetic sectors observed after about June 1992. Changes associated with both the declining phase of the solar cycle and the latitudinal excursion of Ulysses are also discussed.
Analysis of recurrent patterns in toroidal magnetic fields.
Sanderson, Allen R; Chen, Guoning; Tricoche, Xavier; Pugmire, David; Kruger, Scott; Breslau, Joshua
2010-01-01
In the development of magnetic confinement fusion which will potentially be a future source for low cost power, physicists must be able to analyze the magnetic field that confines the burning plasma. While the magnetic field can be described as a vector field, traditional techniques for analyzing the field's topology cannot be used because of its Hamiltonian nature. In this paper we describe a technique developed as a collaboration between physicists and computer scientists that determines the topology of a toroidal magnetic field using fieldlines with near minimal lengths. More specifically, we analyze the Poincaré map of the sampled fieldlines in a Poincaré section including identifying critical points and other topological features of interest to physicists. The technique has been deployed into an interactive parallel visualization tool which physicists are using to gain new insight into simulations of magnetically confined burning plasmas. PMID:20975184
Evolution of field line helicity during magnetic reconnection
NASA Astrophysics Data System (ADS)
Russell, A. J. B.; Yeates, A. R.; Hornig, G.; Wilmot-Smith, A. L.
2015-03-01
We investigate the evolution of field line helicity for magnetic fields that connect two boundaries without null points, with emphasis on localized finite-B magnetic reconnection. Total (relative) magnetic helicity is already recognized as an important topological constraint on magnetohydrodynamic processes. Field line helicity offers further advantages because it preserves all topological information and can distinguish between different magnetic fields with the same total helicity. Magnetic reconnection changes field connectivity and field line helicity reflects these changes; the goal of this paper is to characterize that evolution. We start by deriving the evolution equation for field line helicity and examining its terms, also obtaining a simplified form for cases where dynamics are localized within the domain. The main result, which we support using kinematic examples, is that during localized reconnection in a complex magnetic field, the evolution of field line helicity is dominated by a work-like term that is evaluated at the field line endpoints, namely, the scalar product of the generalized field line velocity and the vector potential. Furthermore, the flux integral of this term over certain areas is very small compared to the integral of the unsigned quantity, which indicates that changes of field line helicity happen in a well-organized pairwise manner. It follows that reconnection is very efficient at redistributing helicity in complex magnetic fields despite having little effect on the total helicity.
Gary, S Peter [Los Alamos National Laboratory; Narita, Y [UNIV OF BRAUNSCHWEIG; Glassmeier, K H [UNIV OF BRAUNSCHWEIG; Goldstein, M L [NGSFC; Safraoui, F [NGSFC; Treumann, R A [UNIV. MUNICH
2009-01-01
Using four-point measurements of the CLUSTER spacecraft, the energy distribution of magnetic field fluctuations in the solar wind is determined directly in the three-dimensional wave vector domain in the range 3 x 10{sup -4} rad/km < k < 3 x 10{sup -3} rad/km. The analysis method takes account of a regular tetrahedron configuration of CLUSTER and the Doppler effect. The energy distribution in the flow rest frame is anisotropic, characterized by two distinct extended structures perpendicular to the mean magnetic field and furthermore perpendicular to the flow direction. The three-dimensional distribution is averaged around the direction of the mean magnetic field direction, and then is further reduced to one-dimensional distributions in the wave number domain parallel and perpendicular to the mean magnetic field. The one-dimensional energy spectra are characterized by the power law with the index -5/3 and furthermore very close energy density between parallel and perpendicular directions to the mean magnetic field at the same wave numbers. Though the distributions and the spectra are not covered in a wide range of wave vectors, our measurements suggest that the solar wind fluctuation is anisotropic in the three-dimensional wave vector space. It is, however, rather isotropic when reduced into the parallel and perpendicular wave vector geometries due to the second anisotropy imposed by the flow direction.
Neutral ? meson in a strong magnetic field in the SU(2) lattice gauge theory
NASA Astrophysics Data System (ADS)
Luschevskaya, E. V.; Larina, O. V.
2014-02-01
The correlation functions of vector and pseudoscalar currents have been calculated in the external strong magnetic field in SU(2) lattice gluodynamics. The masses of the neutral ? meson with different spin projections s = 0, ±1 to the axis parallel to the external magnetic field B have been calculated. The ? meson mass with zero spin s = 0 decreases with the growth of the magnetic field and the ? meson masses with s = ±1 increase with the magnetic field.
Magnetic Field Generation in Stars
Ferrario, Lilia; Zrake, Jonathan
2015-01-01
Enormous progress has been made on observing stellar magnetism in stars from the main sequence through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence,in the generation and stability of neutron star fields. Independent information on the internal magnetic field of neutron stars will come from future gravitational wave detections. Thus we maybe at the dawn of a ...
NASA Astrophysics Data System (ADS)
Guo, Y. G.; Zhu, J. G.; Zhong, J. J.
2006-07-01
This paper reports the measurement and modelling of magnetic properties of SOMALOY TM 500, a soft magnetic composite (SMC) material, under different 2D vector magnetisations, such as alternating along one direction, circularly and elliptically rotating in a 2D plane. By using a 2D magnetic property tester, the B- H curves and core losses of the SMC material have been measured with different flux density patterns on a single sheet square sample. The measurements can provide useful information for modelling of the magnetic properties, such as core losses. The core loss models have been successfully applied in the design of rotating electrical machines with SMC core.
NASA Astrophysics Data System (ADS)
Krieg, Todd D.; Salinas, Felipe S.; Narayana, Shalini; Fox, Peter T.; Mogul, David J.
2015-08-01
Objective. Transcranial magnetic stimulation (TMS) represents a powerful technique to noninvasively modulate cortical neurophysiology in the brain. However, the relationship between the magnetic fields created by TMS coils and neuronal activation in the cortex is still not well-understood, making predictable cortical activation by TMS difficult to achieve. Our goal in this study was to investigate the relationship between induced electric fields and cortical activation measured by blood flow response. Particularly, we sought to discover the E-field characteristics that lead to cortical activation. Approach. Subject-specific finite element models (FEMs) of the head and brain were constructed for each of six subjects using magnetic resonance image scans. Positron emission tomography (PET) measured each subject’s cortical response to image-guided robotically-positioned TMS to the primary motor cortex. FEM models that employed the given coil position, orientation, and stimulus intensity in experimental applications of TMS were used to calculate the electric field (E-field) vectors within a region of interest for each subject. TMS-induced E-fields were analyzed to better understand what vector components led to regional cerebral blood flow (CBF) responses recorded by PET. Main results. This study found that decomposing the E-field into orthogonal vector components based on the cortical surface geometry (and hence, cortical neuron directions) led to significant differences between the regions of cortex that were active and nonactive. Specifically, active regions had significantly higher E-field components in the normal inward direction (i.e., parallel to pyramidal neurons in the dendrite-to-axon orientation) and in the tangential direction (i.e., parallel to interneurons) at high gradient. In contrast, nonactive regions had higher E-field vectors in the outward normal direction suggesting inhibitory responses. Significance. These results provide critical new understanding of the factors by which TMS induces cortical activation necessary for predictive and repeatable use of this noninvasive stimulation modality.
Magnetic Fields in Stellar Jets
P. Hartigan; A. Frank; P. Varniere; E. Blackman
2007-02-06
Although several lines of evidence suggest that jets from young stars are driven magnetically from accretion disks, existing observations of field strengths in the bow shocks of these flows imply that magnetic fields play only a minor role in the dynamics at these locations. To investigate this apparent discrepancy we performed numerical simulations of expanding magnetized jets with stochastically variable input velocities with the AstroBEAR MHD code. Because the magnetic field B is proportional to the density n within compression and rarefaction regions, the magnetic signal speed drops in rarefactions and increases in the compressed areas of velocity-variable flows. In contrast, B ~ n^0.5 for a steady-state conical flow with a toroidal field, so the Alfven speed in that case is constant along the entire jet. The simulations show that the combined effects of shocks, rarefactions, and divergent flow cause magnetic fields to scale with density as an intermediate power 1 > p > 0.5. Because p > 0.5, the Alfven speed in rarefactions decreases on average as the jet propagates away from the star. This behavior is extremely important to the flow dynamics because it means that a typical Alfven velocity in the jet close to the star is significantly larger than it is in the rarefactions ahead of bow shocks at larger distances, the one place where the field is a measurable quantity. We find that the observed values of weak fields at large distances are consistent with strong fields required to drive the observed mass loss close to the star. For a typical stellar jet the crossover point inside which velocity perturbations of 30 - 40 km/s no longer produce shocks is ~ 300 AU from the source.
Preparation and characterization of magnetic gene vectors for targeting gene delivery
NASA Astrophysics Data System (ADS)
Zheng, S. W.; Liu, G.; Hong, R. Y.; Li, H. Z.; Li, Y. G.; Wei, D. G.
2012-10-01
The PEI-CMD-MNPs were successfully prepared by the surface modification of magnetic Fe3O4 nanoparticles with carboxymethyl dextran (CMD) and polyethyleneimine (PEI). The PEI-CMD-MNPs polyplexes exhibited a typical superparamagnetic behavior and were well stable over the entire range of pH and NaCl concentration. These PEI-CMD-MNPs were used as magnetic gene vectors for targeting gene delivery. The prepared MNPs at different surface modification stages were characterized using Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), field emissions canning electron microscopy (FE-SEM), powder X-ray diffraction (XRD) and dynamic laser light scattering (DLS) analysis. The magnetic properties were studied by vibrating sample magnetometer (VSM). To evaluate the performance of the magnetic nanoparticles as gene transfer vector, the PEI-CMD-MNPs were used to delivery green fluorescent protein (GFP) gene into BHK21 cells. The expression of GFP gene was detected by fluorescence microscope. DNA-PEI-CMD-MNPs polyplexes absorbed by the cells were also monitored by Magnetic resonance imaging (MRI). The transfection efficiency and gene expression efficiency of that transfected with a magnet were much higher than that of standard transfection.
Computation of Surface Integrals of Curl Vector Fields
ERIC Educational Resources Information Center
Hu, Chenglie
2007-01-01
This article presents a way of computing a surface integral when the vector field of the integrand is a curl field. Presented in some advanced calculus textbooks such as [1], the technique, as the author experienced, is simple and applicable. The computation is based on Stokes' theorem in 3-space calculus, and thus provides not only a means to…
A chargeless complex vector matter field in supersymmetric scenario
L. P. Colatto; A. L. A. Penna
2014-10-14
In this paper we construct and study a formulation of a chargeless complex vector matter field in a supersymmetric framework. To this aim we combine two no-chiral scalar superfields in order to take the vector component field to build the chargeless complex vector superpartner where the respective field strength transforms as matter fields by a global $U(1)$ gauge symmetry. To the aim to deal with consistent terms without breaking the global $U(1)$ symmetry it imposes a choice to the complex combination revealing a kind of symmetry between the choices and eliminate the extra degrees of freedom consistently with the supersymmetry. As the usual case the mass supersymmetric sector contributes as a complement to dynamics of the model. We obtain the equations of motion of the Proca's type field, for the chiral spinor fields and for the scalar field on the mass-shell which show the same mass as expected. This work establishes the firsts steps to extend the analysis of charged massive vector field in a supersymmetric scenario.
On a New 4-Vector Cosmological Field Theory
G. G. Nyambuya
2009-05-05
The original Dirac Equation is modified in the simplest imaginable and most trivial manner to include a universal 4-Vector Cosmological Field term in the space and time dimensions. This cosmological field leads to a modified Dirac Equation capable of explaining why the Universe appears to be made up chiefly of matter. It is seen that this 4-Vector Cosmological Field is actually a particle field and this particle field can possibly be identified with the darkmatter and darkenergy field. Further, this 4-Vector Cosmological Field is seen to give spacetime the desired quantum mechanical properties of randomness. Furthermore, it is seen that in the emergent Universe, the position coordinates of a particle in space -- contrary to the widely accepted belief that the position of a particle in space has no physical significance, we see that that opposite is true - namely that the position of a particle has physical significance. We further note that the 4-Vector Cosmological Field modification to the Dirac Equation leads us to a vacuum model redolent but different from that of Quantum Electrodynamics (QED). This new vacuum model is without virtual particles but darkparticles. We dare to make the suggestion that these darkparticles may possibly explain the current mystery of what really is darkmatter and darkenergy.
Magnetic Fields in Quantum Degenerate Systems and in Vacuum
H. Perez Rojas; E. Rodriguez Querts
2006-12-28
We consider self-magnetization of charged and neutral vector bosons bearing a magnetic moment in a gas and in vacuum. For charged vector bosons (W bosons) a divergence of the magnetization in both the medium and the electroweak vacuum occurs for the critical field B=B_{wc}=m_{w}^{2}/e. For B>B_{wc} the system is unstable. This behavior suggests the occurrence of a phase transition at B=B_{c}, where the field is self-consistently maintained. This mechanism actually prevents $B$ from reaching the critical value B_{c}. For virtual neutral vector bosons bearing an anomalous magnetic moment, the ground state has a similar behavior for B=B_{nbc}=m_{nb}^{2}/q . The magnetization in the medium is associated to a Bose-Einstein condensate and we conjecture a similar condensate occurs also in the case of vacuum. The model is applied to virtual electron-positron pairs bosonization in a magnetic field B \\sim B_{pc}\\lesssim 2m_{e}^{2}/e, where m_e is the electron mass. This would lead also to vacuum self-magnetization in QED, where in both cases the symmetry breaking is due to a condensate of quasi-massless particles.
Exchange coupling in hybrid anisotropy magnetic multilayers quantified by vector magnetometry
NASA Astrophysics Data System (ADS)
Morrison, C.; Miles, J. J.; Anh Nguyen, T. N.; Fang, Y.; Dumas, R. K.; Åkerman, J.; Thomson, T.
2015-05-01
Hybrid anisotropy thin film heterostructures, where layers with perpendicular and in-plane anisotropy are separated by a thin spacer, are novel materials for zero/low field spin torque oscillators and bit patterned media. Here, we report on magnetization reversal and exchange coupling in a archetypal Co/Pd (perpendicular)-NiFe (in-plane) hybrid anisotropy system studied using vector vibrating sample magnetometry. This technique allows us to quantify the magnetization reversal in each individual magnetic layer, and measure of the interlayer exchange as a function of non-magnetic spacer thickness. At large (>1 nm) spacer thicknesses Ruderman-Kittel-Kasuya-Yosida-like exchange dominates, with orange-peel coupling providing a significant contribution only for sub-nm spacer thickness.
Magnetic helicity in magnetohydrodynamic turbulence with a mean magnetic field
Oughton, Sean
Magnetic helicity in magnetohydrodynamic turbulence with a mean magnetic field Troy Stribling The magnetichelicity (H,) of the fluctuating magnetic field is a measure,which has proven important in the de magneticfield H,,, may be definedby Hnl=(a-b), (1) where b is the fluctuating magnetic field, b=V xa defines
Utah, University of
Breslau ¶ Princeton Plasma Physics Laboratory Abstract-- In the development of magnetic confinement fusion Chen Scientific Computing and Imaging Institute, University of Utah Xavier Tricoche, Member, IEEE the magnetic field that confines the burning plasma. While the magnetic field can be described as a vector
Large Solar Flares and Sheared Magnetic Field Configuration
NASA Technical Reports Server (NTRS)
Choudhary, Debi Prasad
2001-01-01
This Comment gives additional information about the nature of flaring locations on the Sun described in the article "Sun unleashes Halloween storm", by R. E. Lopez, et al. What causes the large explosions from solar active regions that unleash huge magnetic storms and adverse space weather? It is now beyond doubt that the magnetic field in solar active regions harbors free energy that is released during these events. Direct measurements of the longitudinal and transverse components of active region magnetic fields with the vector magnetograph at NASA Marshall Space Flight Center (MSFC), taken on a regular basis for the last 30 years, have found key signatures of the locations of powerful flares. A vector magnetograph detects and measures the magnetic shear, which is the deviation of the observed transverse magnetic field direction from the potential field. The sheared locations possess abundant free magnetic energy for solar flares. In addition to active region NOAA 10486, the one that produced the largest flares last October, the NASA/MSFC vector magnetograph has observed several other such complex super active regions, including NOAA 6555 and 6659.
Indoor localization using magnetic fields
NASA Astrophysics Data System (ADS)
Pathapati Subbu, Kalyan Sasidhar
Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing hallways with different kinds of pillars, doors and elevators. All in all, this dissertation contributes the following: 1) provides a framework for understanding the presence of ambient magnetic fields indoors and utilizing them to solve the indoor localization problem; 2) develops an application that is independent of the user and the smart phones and 3) requires no other infrastructure since it is deployed on a device that encapsulates the sensing, computing and inferring functionalities, thereby making it a novel contribution to the mobile and pervasive computing domain.
Black holes and magnetic fields
J. Bicak; V. Karas; T. Ledvinka
2007-04-09
Stationary axisymmetric magnetic fields are expelled from outer horizons of black holes as they become extremal. Extreme black holes exhibit Meissner effect also within exact Einstein--Maxwell theory and in string theories in higher dimensions. Since maximally rotating black holes are expected to be astrophysically most important, the expulsion of the magnetic flux from their horizons represents a potential threat to an electromagnetic mechanism launching the jets at the account of black-hole rotation.
Magnetic Fields in Spiral Galaxies
Beck, Rainer
2015-01-01
Radio synchrotron emission is a powerful tool to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30\\mu G) and in central starburst regions (50-100\\mu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15\\mu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies, and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the interg...
NASA Astrophysics Data System (ADS)
Kim, S.; Lee, S.
2001-12-01
The Ayu Trough is a divergent margin, located at the boundary of the Philippine Sea and the Caroline Plates. Previous attempts to resolve the magnetic lineations of this region using total magnetic field have not been successful because it represents a case of east-west spreading center situated near the magnetic equator. The difficulty is compounded by the fact that the Ayu Trough is an ultra-slow-spreading center, which exhibits a complex history of evolution. As an attempt to get around the inherent ambiguity of total field measurement, a shipboard three-component magnetometer was employed during our recent cruise to the Ayu Trough along with proton precession magnetometer. This study examines the vector magnetic data collected in the south part of the Ayu Trough and compares them with tectonic features identified from other geophysical measurements. First, the magnetic field due to the ship was removed from the measured field. We then subtracted the International Geomagnetic Reference Field and the diurnal variation recorded at Guam observatory from our measurement. The amplitude of the north-south component anomalies is substantially less than that of other anomalies, which suggests that the general strike of magnetic lineations in this region is north-south. The magnetic boundary and their strike were estimated by assuming that the magnetic sources are two-dimensional. On the basis of its tectonic structure and interpretation of the total field anomaly pattern, the Ayu Trough can be divided into two sections with distance from the axis: the exterior (> 100 km from the axis) which shows evidence of rifted margin and the interior (< 100 km from the axis) which exhibits the characteristics of seafloor spreading. The vector magnetic anomaly appears to be useful in determining major boundaries, such as those between the exterior and interior sections in our area. Within the interior section of the Ayu Trough, however, the discrimination of magnetic boundaries was less successful. The lack of consistency of estimated strikes between track lines suggests that the seafloor spreading within the interior section of Ayu Trough did not occur as two-dimensional process, but instead was three-dimensional.
Simulation of Pedestrian Dynamic Using a Vector Floor Field Model
NASA Astrophysics Data System (ADS)
Yang, Jun; Hou, Zhongsheng; Zhan, Minghui
2013-04-01
Simulation of complex scenarios and multi-direction pedestrian flow is a main challenge to microscopic model of pedestrian movement. It is an issue to simulate real pedestrian traffic with great fidelity while keeping its computational cost at an acceptable level. This paper reports on an improved floor field model called vector floor field model to simulate pedestrian flows in some basic scenarios. In this model, vectorization of static floor field and dynamic floor field are used to indicate preference directions and the pedestrian flow tendency, respectively. Pedestrian transition depends on both their preference directions and tendency. The simulations in some basic scenarios are conducted, quantitative comparison to the record of practical experiments and standard floor field model is given as well, and the results indicate the effectivity of this model. An adjusted static vector floor field is also proposed to simulate pedestrian flow in turning scenario. The vector floor field model is also sufficient to simulate some essential features in pedestrian dynamic, such as lane formation. This model can be widely used in the simulation of multi-direction pedestrian at turning, crossing and other junctions.
Magnetic field restructuring associated with two successive solar eruptions
Wang, Rui; Liu, Ying D.; Yang, Zhongwei; Hu, Huidong, E-mail: liuxying@spaceweather.ac.cn [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China)
2014-08-20
We examine two successive flare eruptions (X5.4 and X1.3) on 2012 March 7 in the NOAA active region 11429 and investigate the magnetic field reconfiguration associated with the two eruptions. Using an advanced non-linear force-free field extrapolation method based on the SDO/HMI vector magnetograms, we obtain a stepwise decrease in the magnetic free energy during the eruptions, which is roughly 20%-30% of the energy of the pre-flare phase. We also calculate the magnetic helicity and suggest that the changes of the sign of the helicity injection rate might be associated with the eruptions. Through the investigation of the magnetic field evolution, we find that the appearance of the 'implosion' phenomenon has a strong relationship with the occurrence of the first X-class flare. Meanwhile, the magnetic field changes of the successive eruptions with implosion and without implosion were well observed.
Analysis of Reccurent Patterns in Toroidal Magnetic Fields
Sanderson, Allen [University of Utah; Pugmire, Dave [ORNL
2010-11-01
In the development of magnetic confinement fusion which will be a future source for low cost power, physicists must be able to analyze the magnetic field that confines the burning plasma. While the magnetic field can be described as a series of vectors, traditional techniques for analyzing the field s topology can not be used because of its homoclinic nature. In this paper we describe a technique developed as a collaboration between physicists and computer scientists that determines the topology of a toroidal magnetic field using fieldlines with near minimal lengths. More specifically, we analyze the Poincare map of the sampled fieldlines in a Poincare section including identifying critical points and other topological features of interest to physicists. The technique has been deployed into an interactive parallel visualization tool which physicists are using to gain new insight into simulations of magnetically confined buring plasmas.
The planetary magnetic field and magnetosphere of Jupiter: Pioneer 10
E. J. Smith; L. Davis Jr.; D. E. Jones; P. J. Coleman Jr.; D. S. Colburn; P. Dyal; C. P. Sonett; A. M. A. Frandsen
1974-01-01
Data obtained by the Pioneer 10 vector helium magnetometer are presented along with models of the intrinsic magnetic field of JupiteL and its magnetosphere. Data acquired between 2.84 and 6.0 Rj, where the intensity of the planetary field ranged between 1900 and 18,400 'y, were used to develop a six-parameter eccentric dipole model of the field. The dipole so derived
Generation of helical magnetic fields from inflation
Rajeev Kumar Jain; Ruth Durrer; Lukas Hollenstein
2012-04-11
The generation of helical magnetic fields during single field inflation due to an axial coupling of the electromagnetic field to the inflaton is discussed. We find that such a coupling always leads to a blue spectrum of magnetic fields during slow roll inflation. Though the helical magnetic fields further evolve during the inverse cascade in the radiation era after inflation, we conclude that the magnetic fields generated by such an axial coupling can not lead to observed field strength on cosmologically relevant scales.
Spacecraft attitude determination using the earth's magnetic field
NASA Technical Reports Server (NTRS)
Simpson, David G.
1989-01-01
A method is presented by which the attitude of a low-Earth orbiting spacecraft may be determined using a vector magnetometer, a digital Sun sensor, and a mathematical model of the Earth's magnetic field. The method is currently being implemented for the Solar Maximum Mission spacecraft (as a backup for the failing star trackers) as a way to determine roll gyro drift.
Full-vector archeomagnetic and rock-magnetic results from Portuguese kilns
NASA Astrophysics Data System (ADS)
Gomez-Paccard, Miriam; Tema, Evdokia; McIntosh, Gregg; Letaio, Manuela; Calado, Marco; Botelho, Paulo
2014-05-01
Despite the increase in archeomagnetic studies in the past few years, the number of reliable archeointensity data is still limited. At present Europe is the most widely covered region, although the variation in geomagnetic field intensity is not completely known for the last millennia and the occurrence and behaviour of various rapid geomagnetic field changes is under discussion. In this context, new high-reliable full-geomagnetic field vector determinations from unexplored regions are crucial in order to improve our knowledge of past geomagnetic field changes at regional scales. In Portugal, despite the rich cultural heritage and the abundance of archaeological excavations, archaeomagnetic research is still in its infancy. To our knowledge, up to now the only available directional data obtained from more or less well-dated materials come from the study of a Late Bronze Age vitrified wall close to the city of Serpa, southern Portugal, while only two more studies have been published including archaeointesity results from Portuguese pottery. We present here the first full-vector archeomagnetic results (declination, inclination and intensity) from two kilns excavated at two archaeological sites at Lisboa (Portugal). The first structure corresponds to the Largo das Alcaçarias Islamic pottery production workshop located in the eastern suburb Luxbona (current Alfama) and its abandonment has been dated as the 12th century AD. The second kiln was excavated in the Encosta Santana archeological medieval site and was abandoned during the 12th or 13th centuries AD according to archeological evidence. Detailed archaeomagnetic and rock magnetic studies have been carried out in order to determine the magnetic mineralogy and investigate the thermal stability of the phases carrying the archaeomagnetic signal. Both kilns exhibited thermally stability magnetic phases. The magnetic properties of the Largo kiln are dominated by a mixture of magnetite/cation-substituted magnetite and cation-substituted hematite. Those of the Encosta kiln are dominated by magnetite with limited cation substitution, with hysteresis ratios falling close to the single domain - multidomain unmixing curve of Dunlop. The new archeomagnetic and rock-magnetic data are based on the study of several samples per kiln and the archeointensity determinations were obtained using the Thellier classical method with regular partial thermoremanent magnetization (pTRM) checks and TRM anisotropy and cooling rate corrections. From the laboratory experiments, two new high quality mean intensities are now available for Portugal. The new data are the first full-vector results from Portuguese kilns. They significantly contribute to better understand the secular variation of the Earth's magnetic field in western Europe during the 12-13th centuries AD and can be used as reliable input data for geomagnetic field modelling.
The vector potential and stored energy of thin cosine (n{theta}) helical wiggler magnet
Caspi, S.
1995-12-01
Expressions for pure multipole field components that are present in helical devices have been derived from a current distribution on the surface of an infinitely thin cylinder of radius R. The strength of such magnetic fields varies purely as a Fourier sinusoidal series of the longitudinal coordinate Z in proportion to cos(n{theta}- {omega}{sub m}z), where {omega}{sub m} = (2m-1){pi}/L, L denotes the half-period and m = 1, 2, 3 etc. As an alternative to describing such field components as given by the negative gradient of a scalar potential function (Appendix A), one of course can derive these same fields as the curle of a vector potential function {rvec A}--specifically one for which {nabla} {times} {nabla} {times} {rvec A} = 0 and {nabla}{center_dot}{rvec A} = 0. It is noted that we seek a divergence-free vector that exhibits continuity in any of its components across the interface r = R, a feature that is free of possible concern when applying Stokes` theorem in connection with this form of vector potential. Alternative simpler forms of vector potential, that individually are divergence-free in their respective regions (r < R and r > R), do not exhibit full continuity on r = R and whose curl evaluations provide in these respective regions the correct components of magnetic field are not considered here. Such alternative forms must differ merely by the gradient of scalar functions that with the divergence-free property are required to be ``harmonic`` ({nabla}{sup 2}{Psi} = 0).
Vector Field Design on Surfaces Eugene Zhang, Konstantin Mischaikow and Greg Turk
Mischaikow, Konstantin
Vector Field Design on Surfaces Eugene Zhang, Konstantin Mischaikow and Greg Turk Georgia Institute of Technology Vector field design on surfaces is necessary for many graphics applications: example-based texture contained in the input vector field often cause visual artifacts. In this paper, we present a vector field
Dynamic equations for three different qudits in a magnetic field
E. A. Ivanchenko
2009-04-22
A closed system of equations for the local Bloch vectors and spin correlation functions of three magnetic qudits, which are in an arbitrary, time-dependent, external magnetic field, is obtained using decomplexification of the Liouville-von Neumann equation. The algorithm of the derivation of the dynamic equations is presented. In the basis convenient for the important physical applications structure constants of algebra su(2S+1) are calculated.
Magnetic space-based field measurements
NASA Technical Reports Server (NTRS)
Langel, R. A.
1981-01-01
Because the near Earth magnetic field is a complex combination of fields from outside the Earth of fields from its core and of fields from its crust, measurements from space prove to be the only practical way to obtain timely, global surveys. Due to difficulty in making accurate vector measurements, early satellites such as Sputnik and Vanguard measured only the magnitude survey. The attitude accuracy was 20 arc sec. Both the Earth's core fields and the fields arising from its crust were mapped from satellite data. The standard model of the core consists of a scalar potential represented by a spherical harmonics series. Models of the crustal field are relatively new. Mathematical representation is achieved in localized areas by arrays of dipoles appropriately located in the Earth's crust. Measurements of the Earth's field are used in navigation, to map charged particles in the magnetosphere, to study fluid properties in the Earth's core, to infer conductivity of the upper mantels, and to delineate regional scale geological features.
Agilent FieldFox RF Vector Network
Ravikumar, B.
to the FieldFox at the test ports. Cal Kit T-Calibration Kits or other devices. MicroSD card or USB flash charge status is viewable: In the upper-right corner of the screen. On the battery. To view the LCD
Low-frequency fluctuations in plasma magnetic fields
Cable, S.; Tajima, T.
1992-02-01
It is shown that even a non-magnetized plasma with temperature T sustains zero-frequency magnetic fluctuations in thermal equilibrium. Fluctuations in electric and magnetic fields, as well as in densities, are computed. Four cases are studied: a cold, gaseous, isotropic, non-magnetized plasma; a cold, gaseous plasma in a uniform magnetic field; a warm, gaseous plasma described by kinetic theory; and a degenerate electron plasma. For the simple gaseous plasma, the fluctuation strength of the magnetic field as a function of frequency and wavenumber is calculated with the aid of the fluctuation-dissipation theorem. This calculation is done for both collisional and collisionless plasmas. The magnetic field fluctuation spectrum of each plasma has a large zero-frequency peak. The peak is a Dirac {delta}-function in the collisionless plasma; it is broadened into a Lorentzian curve in the collisional plasma. The plasma causes a low frequency cutoff in the typical black-body radiation spectrum, and the energy under the discovered peak approximates the energy lost in this cutoff. When the imposed magnetic field is weak, the magnetic field were vector fluctuation spectra of the two lowest modes are independent of the strength of the imposed field. Further, these modes contain finite energy even when the imposed field is zero. It is the energy of these modes which forms the non-magnetized zero-frequency peak of the isotropic plasma. In deriving these results, a simple relationship between the dispersion relation and the fluctuation power spectrum of electromagnetic waves if found. The warm plasma is shown, by kinetic theory, to exhibit a zero-frequency peak in its magnetic field fluctuation spectrum as well. For the degenerate plasma, we find that electric field fluctuations and number density fluctuations vanish at zero frequency; however, the magnetic field power spectrum diverges at zero frequency.
Vector wave equation and vector fields in Petrov type N space-times
Düzta?, Koray
2015-01-01
In this work we use Newman Penrose two-spinor formalism to derive decoupled equations for vector fields in Petrov type N space-times. We first evaluate vector wave equation by representing four-vectors by one complex and two real scalars. This approach leads to a decoupled second order differential equation for one of the real scalars if and only if the space-time is of type N. The solution for this scalar can --in principle-- be used to derive decoupled equations for the other scalars. We directly apply the results for the vector wave equation to Proca equation for massive vector fields. We evaluate Maxwell equations in terms of Newman Penrose complex scalars of electromagnetism. We derive a decoupled second order differential equation for $\\phi_0$, valid in type N space-times. Substituting any solution for $\\phi_0$ in Maxwell equations, leads to two first order differential equations for $\\phi_1$. We show that these first order equations identically satisfy integrability conditions. Thus, any solution for $...
Vector wave equation and vector fields in Petrov type N space-times
Koray Düzta?
2015-08-11
In this work we use Newman Penrose two-spinor formalism to derive decoupled equations for vector fields in Petrov type N space-times. We first evaluate vector wave equation by representing four-vectors by one complex and two real scalars. This approach leads to a decoupled second order differential equation for one of the real scalars if and only if the space-time is of type N. The solution for this scalar can --in principle-- be used to derive decoupled equations for the other scalars. We directly apply the results for the vector wave equation to Proca equation for massive vector fields. We evaluate Maxwell equations in terms of Newman Penrose complex scalars of electromagnetism. We derive a decoupled second order differential equation for $\\phi_0$, valid in type N space-times. Substituting any solution for $\\phi_0$ in Maxwell equations, leads to two first order differential equations for $\\phi_1$. We show that these first order equations identically satisfy integrability conditions. Thus, any solution for $\\phi_0$ guarantees the existence of a solution for $\\phi_1$, via either of the first order differential equations.
On hyperbolicity violations in cosmological models with vector fields
Golovnev, Alexey; Klementev, Aleksandr E-mail: sas5292@yandex.ru
2014-02-01
Cosmological models with vector fields received much attention in recent years. Unfortunately, most of them are plagued with severe instabilities or other problems. In particular, it was noted in ref. [1] that the models with a non-linear function of the Maxwellian kinetic term do always imply violations of hyperbolicity somewhere in the phase space. In this work we make this statement more precise in several respects and show that those violations may not be present around spatially homogeneous configurations of the vector field.
Killing Vector Fields in Three Dimensions: A Method to Solve Massive Gravity Field Equations
Gurses, Metin
2010-01-01
Killing vector fields in three dimensions play important role in the construction of the related spacetime geometry. In this work we show that when a three dimensional geometry admits a Killing vector field then the Ricci tensor of the geometry is determined in terms of the Killing vector field and its scalars. In this way we can generate all products and covariant derivatives at any order of the ricci tensor. Using this property we give ways of solving the field equations of Topologically Massive Gravity (TMG) and New Massive Gravity (NMG) introduced recently. In particular when the scalars of the Killing vector field (timelike, spacelike and null cases) are constants then all three dimensional symmetric tensors of the geometry, the ricci and einstein tensors, their covariant derivatives at all orders, their products of all orders are completely determined by the Killing vector field and the metric. Hence the corresponding three dimensional metrics are strong candidates of solving all higher derivative gravi...
Evolution of magnetic field curvature in the Kulsrud-Anderson dynamo theory
Leonid Malyshkin
2001-04-30
We find that in the kinematic limit the ensemble averaged square of the curvature of magnetic field lines is exponentially amplified in time by the turbulent motions in a highly conductive plasma. At the same time, the ensemble averaged curvature vector exponentially decays to zero. Thus, independently of the initial conditions, the fluctuation field becomes very curved, and the curvature vector becomes highly isotropic. Keywords: ISM: magnetic fields, MHD, turbulence, methods: analytical
EXPLORER 10 MAGNETIC FIELD MEASUREMENTS
J. P. Heppner; N. F. Ness; C. S. Scearce; T. L. Skillman
1963-01-01
Magnetic field measurements made by means of Explorer 10 over geocentric ; distances of 1.8 to 42.6R\\/sub e\\/ on March 25experiment on the same satellite are ; referenced in interpretations. The close-in data are consistent with the ; existence of a very weak ring current below 3R\\/sub e\\/ along the trajectory, but ; alternative explanations for the field deviations are
Inverse Magnetic Catalysis in the three-flavor NJL model with axial-vector interaction
Lang Yu; Jos Van Doorsselaere; Mei Huang
2014-12-12
In this paper we explore the chiral phase transition in QCD within the three-flavor Nambu-Jona-Lasinio (NJL) model with a negative coupling constant in the isoscalar axial-vector channel, which is associated with a polarized instanton--anti-instanton molecule background. The QCD phase diagram described in this scenario shows a new first order phase transition around the transition temperature $T_c$ toward a phase without chiral condensates, but with nontrivial dynamic chiral chemical potentials for the light quarks, spontaneously giving rise to local $\\mathcal {CP}$ violation and local chirality imbalance. The corresponding critical temperature $T_{5c}$ for this phase transition decreases with the magnetic field and it gives a natural explanation to the inverse magnetic catalysis effect for light quarks when incorporating a reasonable value of the coupling constant in the isoscalar axial-vector channel. Furthermore, when the isoscalar axial-vector interaction is dominant in light quark sector and suppressed in strange quark sector, it is found that there is no inverse magnetic catalysis for strange quark condensate, which agrees with lattice results.
Jupiter's magnetic field and magnetosphere
NASA Technical Reports Server (NTRS)
Acuna, M. H.; Behannon, K. W.; Connerney, J. E. P.
1983-01-01
Among the planets of the solar system, Jupiter is unique in connection with its size and its large magnetic moment, second only to the sun's. The Jovian magnetic field was first detected indirectly by radio astronomers who postulated its existence to explain observations of nonthermal radio emissions from Jupiter at decimetric and decametric wavelengths. Since the early radio astronomical studies of the Jovian magnetosphere, four spacecraft have flown by the planet at close distances and have provided in situ information about the geometry of the magnetic field and its strength. The Jovian magnetosphere is described in terms of three principal regions. The inner magnetosphere is the region where the magnetic field created by sources internal to the planet dominates. The region in which the equatorial currents flow is denoted as the middle magnetosphere. In the outer magnetosphere, the field has a large southward component and exhibits large temporal and/or spatial variations in magnitude and direction in response to changes in solar wind pressure.
Strangelets under strong magnetic fields
E. Lopez Fune; A. Perez Martinez
2012-03-16
In this thesis is studied three of the fundamental properties of clusters of matter made of quarks u, d and s called strangelets: the energy per baryon, the radius and the electric charge, all in the presence of intense magnetic fields and finite temperature. Two cases will take our attention: unpaired phase strangelets, where there is no restriction to the number of flavors of quarks, and a particular case of the color superconducting phase, where exists a restriction to the quark numbers and an additional energy gap. We study the stability of strangelets, measured by the energy per baryon, to compare later with that of the 56Fe : the most stable isotope known in nature. We employ the Liquid Drop formalism of the Bag Model MIT to describe the interaction between quarks. We conclude that the field effects tend to decrease the energy per baryon of strangelets and temperature produces the opposite effect. It is also shown that strangelets in the color superconducting phase are more stable than those in the unpaired phase for an energy gap of about 100MeV. The radius of strangelets shows an analogous behavior with the baryon number, as that of the nuclei, and shows small variations with the magnetic field and temperature. It is obtained that the presence of magnetic fields modify the values of the electric charge regarding the non-magnetized case, being these higher (lower) for strangelets in the unpaired phase (superconducting).
Crystal field and magnetic properties
NASA Technical Reports Server (NTRS)
Flood, D. J.
1977-01-01
Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.
NASA Astrophysics Data System (ADS)
Chapman, Nicholas L.; Goldsmith, P.; Clemens, D.
2010-01-01
In order to study the role magnetic fields play in molecular clouds and star formation, we present optical and infrared polarization measurements in Taurus. The optical data have been previously published by Heiles (2000), although the infrared data are new. The optical polarization data show a remarkable correlation with our CO maps (Goldsmith et al. 2008), suggesting that the dust, which produces the polarization, and the gas, which has most of the mass, are coupled. With our 12CO and 13CO we are able to make reliable estimates of the cloud density. These densities are necessary for our estimates the plane-of-sky magnetic field strength using both Chandrasekhar-Fermi and the recent method described in Hildebrand et al. (2009). Both methods produce similar estimates for the magnetic field strength, though the Hildebrand results are typically larger. Lastly we compare the polarization percentage and magnetic field strength as a function of column density. This work was supported by the Jet Propulsion Laboratory, California Institute of Technology.
Determination of the Invariant Vector Field in Non-Linear Field
NASA Astrophysics Data System (ADS)
Asano, N.
1989-12-01
An algorism to determine invariant vector field is given for partial different equation in the space of cylindrical function. As applications, one can determine the maximal class of generalized symmetries and Bäck lund transformations formulated in terms of the invariant vector field.
Forces in magnetic fluids subject to stationary magnetic fields
M. d'Aquino; G. Miano; C. Serpico; W. Zamboni; G. Coppola
2003-01-01
The problem of magnetic forces in magnetizable fluids is discussed and classical formulas for volume force density (Kelvin, Helmholtz) are reviewed. The general problem of hydrostatic equilibrium of a magnetic liquid subject to magnetic field is formulated. On the basis of this formulation, the displacement of a linear magnetic fluid subject to the field produced by sheet-shaped coils is numerically
The solar active region magnetic field and energetics
NASA Astrophysics Data System (ADS)
Hu, Qiang; Deng, Na; Choudhary, Debi P.; Dasgupta, B.; Su, Jiangtao
2011-08-01
Motivated by increasingly more advanced solar observations, we recently develop a method of coronal magnetic field extrapolation, especially for an active region (sunspot region). Based on a more complex variational principle, the principle of minimum (energy) dissipation rate (MDR), we adopt and solve a more complex equation governing the coronal magnetic field that is non-force-free in general. We employ the vector magnetograms from multiple instruments, including Hinode, NSO, and HSOS, and particularly observations at both photospheric and chromospheric levels for one active region. We discuss our results in the context of quantitative characterization of active region magnetic energy and magnetic topology. These quantitative analyses aid in better understanding and developing prediction capability of the solar activity that is largely driven by the solar magnetic field.
Separation of magnetic field lines
Boozer, Allen H. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)
2012-11-15
The field lines of magnetic fields that depend on three spatial coordinates are shown to have a fundamentally different behavior from those that depend on two coordinates. Unlike two-coordinate cases, a flux tube in a magnetic field that depends on all three spatial coordinates that has a circular cross section at one location along the tube characteristically has a highly distorted cross section at other locations. In an ideal evolution of a magnetic field, the current densities typically increase. Crudely stated, if the current densities increase by a factor {sigma}, the ratio of the long to the short distance across a cross section of a flux tube characteristically increases by e{sup 2{sigma}}, and the ratio of the longer distance to the initial radius increases as e{sup {sigma}}. Electron inertia prevents a plasma from isolating two magnetic field structures on a distance scale shorter than c/{omega}{sub pe}, which is about 10 cm in the solar corona, and reconnection must be triggered if {sigma} becomes sufficiently large. The radius of the sun, R{sub Circled-Dot-Operator }=7 Multiplication-Sign 10{sup 10}cm is about e{sup 23} times larger, so when {sigma} Greater-Than-Or-Equivalent-To 23, two lines separated by c/{omega}{sub pe} at one location can be separated by the full scale of any magnetic structures in the corona at another. The conditions for achieving a large exponentiation, {sigma}, are derived, and the importance of exponentiation is discussed.
NASA Technical Reports Server (NTRS)
Mullan, D. J.
1974-01-01
The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.
THE LAW OF VECTOR FIELDS Daniel H. Gottlieb
with the same acceleration, or Kepler's laws governing the motion of the planets, or the daily movements the the mathematical statements of these three classes of phenomena from Newton's Law of Gravity. The mathematicalTHE LAW OF VECTOR FIELDS Daniel H. Gottlieb 1. Introduction. When I was 13, the intellectual world
THE LAW OF VECTOR FIELDS Daniel H. Gottlieb
to the Earth with the same acceleration, or Kepler's laws governing the motion of the planets, or the daily the the mathematical statements of these three classes of phenomena from Newton's Law of Gravity. The mathematicalTHE LAW OF VECTOR FIELDS Daniel H. Gottlieb 1. Introduction. When I was 13, the intellectual world
The Multiresolution Gradient Vector Field Skeleton Wooi-Boon Goha,*
Goh, Wooi Boon
The Multiresolution Gradient Vector Field Skeleton Wooi-Boon Goha,* and Kai-Yun Chanb a School@ntu.edu.sg Phone: 65-67904611 Fax: 65-67926559 Abstract Many algorithms suppress skeleton associated with boundary of structural and textural skeletons. The former is associated with the general shape structure and the latter
Online Submission ID: 271 Efficient Morse Decompositions of Vector Fields
Mischaikow, Konstantin
prediction, tsunami and hurricane study, and airplane and automotive design. Existing vector field analysis analysis unsuitable for rigorous interpretations. In this paper, we advocate the use of Morse in Computational Fluid Dynamics (CFD) [13], weather predic- tion, tsunami and hurricane study, and airplane design
Modular vector fields and Batalin-Vilkovisky algebras
Kosmann-Schwarzbach, Yvette
Modular vector fields and Batalin-Vilkovisky algebras Yvette Kosmann-Schwarzbach U.M.R. 7640 du C@math.polytechnique.fr Abstract. We show that a modular class arises from the existence of two gen- erating operators class is well-defined. We give simple proofs of its properties. The modular class of an orientable
Morse theory for vector fields and the Witten Laplacian
Enciso, Alberto; Peralta-Salas, Daniel
2009-05-06
In this paper we informally review some recent developments on the analytical approach to Morse-type inequalities for vector fields. Throughout this work we focus on the main ideas of this approach and emphasize the application of the theory to concrete examples.
Quantitative magnetic field model including magnetospheric ring current
Kosik, J.C. (Centre National d'Etudes Spatiales, Toulouse (France))
1989-09-01
A quantitative model of the magnetic field in the ring current region of Earth's magnetosphere is developed by using poloidal vector fields. The magnetic field is divergence-free by construction. The main features are described by a two-term model, but a third term is necessary to describe the tilt effects. Contour plots of constant {Delta}B are in agreement with magnetometer data. Analytical expressions for the current density are derived, and the contour plots of constant J{sub {phi}} are in topological agreement with those obtained from self-consistent models.
NASA Technical Reports Server (NTRS)
Acuna, M. H.; Ness, N. F.
1976-01-01
The paper is concerned mainly with the intrinsic planetary field which dominates the inner magnetosphere up to a distance of 10 to 12 Jovian radii where other phenomena, such as ring currents and diamagnetic effects of trapped charged particles, become significant. The main magnetic field of Jupiter as determined by in-situ observations by Pioner 10 and 11 is found to be relatively more complex than a simple offset tilted dipole. Deviations from a simple dipole geometry lead to distortions of the charged particle L shells and warping of the magnetic equator. Enhanced absorption effects associated with Io and Amalthea are predicted. The results are consistent with the conclusions derived from extensive radio observations at decimetric and decametric wavelengths for the planetary field.
New circumstellar magnetic field diagnostics
K. H. Nordsieck
2001-06-06
In this paper I will discuss new magnetic field diagnostics and instrumentation for an area of astrophysics where magnetic field observations have been difficult - circumstellar material. Such diagnostics would be particularly relevant to star formation and evolution. Stellar photosphere diagnostics include the Zeeman effect and atomic scattering diagnostics like the Hanle Effect and atomic alignment. The Zeeman Effect is in general not sensitive enough for the field strengths expected for circumstellar material, and it is easily defeated by Doppler broadening in a dynamic envelope. Atomic scattering diagnostics, pioneered recently for the Sun, are promising, but have never been applied outside the Sun. For the study of unresolved envelopes, the Hanle Effect may be applicable particularly in the ultraviolet. A medium resolution UV spectropolarimeter, for instance, would serve for such studies. Atomic alignment effects could utilize a ground-based, high signal-to-noise spectropolarimeter, with profile information from high spectral resolution. I will briefly mention several instrumentation development efforts in these directions.
Primordial Generation of Magnetic Fields
Arun Kumar Pandey; Jitesh R. Bhatt
2015-07-07
We reexamine generation of the primordial magnetic fields, at temperature $T>80$TeV, by applying a consistent kinetic theory framework which is suitably modified to take the quantum anomaly into account. The modified kinetic equation can reproduce the known quantum field theoretic results upto the leading orders. We show that our results qualitatively matches with the earlier results obtained using heuristic arguments. The modified kinetic theory can give the instabilities responsible for generation of the magnetic field due to chiral imbalance in two distinct regimes: a) when the collisions play a dominant role and b) when the primordial plasma can be regarded as collisionless. We argue that the instability developing in the collisional regime can dominate over the instability in the collisionless regime.
NASA Astrophysics Data System (ADS)
Du, J.; Chen, C.; Lesur, V.; Wang, L.
2015-07-01
General expressions of magnetic vector (MV) and magnetic gradient tensor (MGT) in terms of the first- and second-order derivatives of spherical harmonics at different degrees/orders are relatively complicated and singular at the poles. In this paper, we derived alternative non-singular expressions for the MV, the MGT and also the third-order partial derivatives of the magnetic potential field in the local north-oriented reference frame. Using our newly derived formulae, the magnetic potential, vector and gradient tensor fields and also the third-order partial derivatives of the magnetic potential field at an altitude of 300 km are calculated based on a global lithospheric magnetic field model GRIMM_L120 (GFZ Reference Internal Magnetic Model, version 0.0) with spherical harmonic degrees 16-90. The corresponding results at the poles are discussed and the validity of the derived formulas is verified using the Laplace equation of the magnetic potential field.
NASA Astrophysics Data System (ADS)
Popov, Aleksey
2013-04-01
The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws of electromagnetism. According to a rule of the left hand: if the magnetic field in a kernel is directed to drawing, electric current are directed to an axis of rotation of the Earth, - a action of force clockwise (to West). Definition of the force causing drift a kernel according to the law of Ampere F = IBlsin. Powerful force 3,5 × 1012 Nyton, what makes drift of the central part of a kernel of the Earth on 0,2 the longitude in year to West, and also it is engine of the mechanism of movement of slabs together with continents. Movement of a core of the Earth carry out around of a terrestrial axis one circulation in the western direction in 2000 of years. Linear speed of rotation of a kernel concerning a mantle on border the mantle a kernel: V = × 3,471 × 10 = 3,818 × 10 m/s = 33 m/day = 12 km/years. Considering greater viscosity of a mantle, the powerful energy at rotation of a kernel seize a mantle and lithospheric slabs and makes their collisions as a result of which there are earthquakes and volcano. Continents Northern and Southern America every year separate from the Europe and Africa on several centimeters. Atlantic ocean as a result of movement of these slabs with such speed was formed for 200 million years, that in comparison with the age of the Earth - several billions years, not so long time. Drift of a kernel in the western direction is a principal cause of delay of speed of rotation of the Earth. Flow of radial electric currents allot according to the law of Joule - Lenz, the quantity of warmth : Q = I2Rt = IUt, of thermal energy 6,92 × 1017 calories/year. This defines heating of a kernel and the Earth as a whole. In the valley of the median-Atlantic ridge having numerous volcanos, the lava flow constantly thus warm up waters of Atlantic ocean. It is a fact the warm current Gulf Stream. Thawing of a permafrost and ices of Arctic ocean, of glaciers of Greenland and Antarctica is acknowledgement: the warmth of earth defines character of thawing of glaciers and a permafrost. This is a global warming. The version of the author: the period
Bacterial Growth in Weak Magnetic Field
NASA Astrophysics Data System (ADS)
Masood, Samina
2015-03-01
We study the growth of bacteria in a weak magnetic field. Computational analysis of experimental data shows that the growth rate of bacteria is affected by the magnetic field. The effect of magnetic field depends on the strength and type of magnetic field. It also depends on the type of bacteria. We mainly study gram positive and gram negative bacteria of rod type as well as spherical bacteria. Preliminary results show that the weak magnetic field enhances the growth of rod shape gram negative bacteria. Gram positive bacteria can be even killed in the inhomogeneous magnetic field.
Interplanetary Magnetic Field Power Spectrum Variations: A VHO Enabled Study
NASA Astrophysics Data System (ADS)
Szabo, A.; Koval, A.; Merka, J.; Narock, T. W.
2010-12-01
The newly reprocessed high time resolution (11/22 vectors/sec) Wind mission interplanetary magnetic field data and the solar wind key parameter search capability of the Virtual Heliospheric Observatory (VHO) affords an opportunity to study magnetic field power spectral density variations as a function of solar wind conditions. In the reprocessed Wind Magnetic Field Investigation (MFI) data, the spin tone and its harmonics are greatly reduced that allows the meaningful fitting of power spectra to the ~2 Hz limit above which digitization noise becomes apparent. The power spectral density is computed and the spectral index is fitted for the MHD and ion inertial regime separately along with the break point between the two for various solar wind conditions . The time periods of fixed solar wind conditions are obtained from VHO searches that greatly simplify the process. The functional dependence of the ion inertial spectral index and break point on solar wind plasma and magnetic field conditions will be discussed.
?± and ? 0,± mesons in a strong magnetic field on the lattice
NASA Astrophysics Data System (ADS)
Luschevskaya, E. V.; Kochetkov, O. A.; Teryaev, O. V.; Solovjeva, O. E.
2015-05-01
We calculated the correlators of pseudoscalar and vector currents in external strong abelian magnetic field in SU(3) gluodynamics. From the correlation functions, we obtain the ground state energies (masses) of neutral ?0 meson and charged ?± and ?± mesons. The energies of the ?0 meson with nonzero spins increase with the field value. The mass of charged ?± mesons increases with the field. We observe the agreement between Landau level picture and behavior of charged ?± mesons for moderate magnetic fields. There are no evidences in favor of charged vector meson condensation or tachyonic mode existence at large magnetic fields. The g-factor of ?± is estimated in the chiral limit.
Instability of anisotropic cosmological solutions supported by vector fields
Burak Himmetoglu; Carlo R. Contaldi; Marco Peloso
2008-09-17
Models with vector fields acquiring a non-vanishing vacuum expectation value along one spatial direction have been proposed to sustain a prolonged stage of anisotropic accelerated expansion. Such models have been used for realizations of early time inflation, with a possible relation to the large scale CMB anomalies, or of the late time dark energy. We show that, quite generally, the concrete realizations proposed so far are plagued by instabilities (either ghosts, or unstable growth of the linearized perturbations) which can be ultimately related to the longitudinal vector polarization present in them. Phenomenological results based on these models are therefore unreliable.
Instability of anisotropic cosmological solutions supported by vector fields.
Himmetoglu, Burak; Contaldi, Carlo R; Peloso, Marco
2009-03-20
Models with vector fields acquiring a nonvanishing vacuum expectation value along one spatial direction have been proposed to sustain a prolonged stage of anisotropic accelerated expansion. Such models have been used for realizations of early time inflation, with a possible relation to the large scale cosmic microwave background anomalies, or of the late time dark energy. We show that, quite generally, the concrete realizations proposed so far are plagued by instabilities (either ghosts or unstable growth of the linearized perturbations) which can be ultimately related to the longitudinal vector polarization present in them. Phenomenological results based on these models are therefore unreliable. PMID:19392187
Klyatskin, V. I.
2009-12-15
We study integral statistical characteristics of a vector passive tracer (homogeneous at the initial time) in a velocity field that is assumed to be a Gaussian random field homogeneous in space and delta-correlated in time. Such statistical characteristics describe the dynamical system as a whole in the entire space, separating out the field generation processes, which allows us to not digress into details of the dynamics related to the advection of these quantities. The density field gradient (in the general case of a compressible fluid) and the magnetic field vector with its spatial derivatives (in an incompressible fluid) are such a tracer. We study the isotropization in time, helicity, and dissipation of these fields in the absence of molecular diffusion effects. We formulate a method of successive approximations for the variance of the density field and the mean magnetic field energy that allows the solutions valid in the entire time interval to be obtained in the first order in molecular diffusion coefficients.
Helical cosmological magnetic fields from extra-dimensions
NASA Astrophysics Data System (ADS)
Atmjeet, Kumar; Seshadri, T. R.; Subramanian, Kandaswamy
2015-05-01
We study the inflationary generation of helical cosmological magnetic fields in a higher-dimensional generalization of the electromagnetic theory. For this purpose, we also include a parity breaking piece to the electromagnetic action. The evolution of an extra-dimensional scale factor allows the breaking of conformal invariance of the effective electromagnetic action in 1 +3 dimensions required for such generation. Analytical solutions for the vector potential can be obtained in terms of Coulomb wave-functions for some special cases. We also present numerical solutions for the vector potential evolution in more general cases. In the presence of a higher-dimensional cosmological constant there exist solutions for the scale factors in which both normal and extra dimensional space either inflate or deflate simultaneously with the same rate. In such a scenario, with the number of extra dimensions D =4 , a scale invariant spectrum of helical magnetic field is obtained. The net helicity arises, as one helical mode comes to dominate over the other at the superhorizon scales. A magnetic field strength of the order of 10-9 G can be obtained for the inflationary scale H ?1 0-3 Mpl . Weaker fields will be generated for lower scales of inflation. Magnetic fields generated in this model respects the bounds on magnetic fields by Planck and ? -ray observations (i.e., 10-16 G
Lim, Eun-Kyung; Yurchyshyn, Vasyl; Goode, Philip, E-mail: eklim@bbso.njit.edu [Big Bear Solar Observatory, New Jersey Institute of Technology, 40386 North Shore Lane, Big Bear City, CA 92314-9672 (United States)
2012-07-01
The formation and the temporal evolution of a bipolar moving magnetic feature (MMF) was studied with high-spatial and temporal resolution. The photometric properties were observed with the New Solar Telescope at Big Bear Solar Observatory using a broadband TiO filter (705.7 nm), while the magnetic field was analyzed using the spectropolarimetric data obtained by Hinode. For the first time, we observed a bipolar MMF simultaneously in intensity images and magnetic field data, and studied the details of its structure. The vector magnetic field and the Doppler velocity of the MMF were also studied. A bipolar MMF with its positive polarity closer to the negative penumbra formed, accompanied by a bright, filamentary structure in the TiO data connecting the MMF and a dark penumbral filament. A fast downflow ({<=}2 km s{sup -1}) was detected at the positive polarity. The vector magnetic field obtained from the full Stokes inversion revealed that a bipolar MMF has a U-shaped magnetic field configuration. Our observations provide a clear intensity counterpart of the observed MMF in the photosphere, and strong evidence of the connection between the MMF and the penumbral filament as a serpentine field.
NASA Astrophysics Data System (ADS)
Tsunakawa, Hideo; Takahashi, Futoshi; Shimizu, Hisayoshi; Shibuya, Hidetoshi; Matsushima, Masaki
2015-06-01
We have provided preliminary global maps of three components of the lunar magnetic anomaly on the surface applying the surface vector mapping (SVM) method. The data used in the present study consist of about 5 million observations of the lunar magnetic field at 10-45 km altitudes by Kaguya and Lunar Prospector. The lunar magnetic anomalies were mapped at 0.2° equi-distance points on the surface by the SVM method, showing the highest intensity of 718 nT in the Crisium antipodal region. Overall features on the SVM maps indicate that elongating magnetic anomalies are likely to be dominant on the Moon except for the young large basins with the impact demagnetization. Remarkable demagnetization features suggested by previous studies are also recognized at Hertzsprung and Kolorev craters on the farside. These features indicate that demagnetized areas extend to about 1-2 radii of the basins/craters. There are well-isolated central magnetic anomalies at four craters: Leibnitz, Aitken, Jules Verne, and Grimaldi craters. Their magnetic poles through the dipole source approximation suggest occurrence of the polar wander prior to 3.3-3.5 Ga. When compared with high-albedo markings at several magnetic anomalies such as the Reiner Gamma anomalies, three-dimensional structures of the magnetic field on/near the surface are well correlated with high-albedo areas. These results indicate that the global SVM maps are useful for the study of the lunar magnetic anomalies in comparison with various geological and geophysical data.
Multi-Instrumental Vector Magnetic Observations and Techniques for Investigating Auroral Dynamics
NASA Astrophysics Data System (ADS)
Redmon, Robert; Knipp, Delores; Kilcommons, Liam; Richmond, Art; Matsuo, Tomoko; Anderson, Brian; Korth, Haje; Slavin, James; Le, Guan; Wilson, Gordon; Rich, Fred; Denig, William
2014-05-01
Space based magnetometers in highly inclined low earth orbits are essential for characterizing the state of the auroral space environment and the dynamic processes within. This paper demonstrates the utility of data derived from multiple satellites including AMPERE (70 Iridium spacecraft), DMSP (4 spacecraft) and ST5 (3 spacecraft), and the AMIENext technique to investigate periods of interest in 2006 and 2010. A new satellite conjunction-finding technique magnetically maps in situ observations to a common altitude in the APEX coordinate system to assess the spatial and temporal stability and quality of vector magnetic measurements (Knipp et al., 2014). In March of 2006, the ST5 constellation was launched into a pearls-on-a-string configuration. Subsequent data processing produced superb, quality controlled magnetic observations from the 90-day mission (e.g. Slavin et al., 2008, Le et al., 2009; Wang et al., 2009). We present conjunction comparisons between the ST5 and DMSP spacecraft during the ST5 mission lifetime, which was dominated by a series of high-speed solar wind events. In May of 2010, a unipolar Magnetic Cloud passed Earth, providing an opportunity to investigate the magnetopshere-ionosphere coupling response to a slow moving transient followed by higher speed flow. This event included significant, long-lived disturbances in the asymmetric ring current and auroral electrojet (AE) index. Assimilation of space-based magnetic observations via the AMIENext procedure, reveal twisting in the dayside patterns, consistent with the sign changes in IMF By and a highly structured topology as IMF Bz turned northward. We present a detailed comparison between the magnetic observations from DMSP and AMPERE. To aid in investigating the local magnetic field and in providing data to assimilative models, we have also created new datasets in self-describing NASA CDF formats for the DMSP and ST5 vector magnetometers and for the DMSP precipitating ion and electron instruments and we will discuss their availability.
Song, Yongliang
2015-01-01
It is generally believed that the evolution of magnetic helicity has a close relationship with solar activity. Before the launch of SDO, earlier studies have mostly used MDI/SOHO line of sight magnetograms and assumed that magnetic fields are radial when calculating magnetic helicity injection rate from photospheric magnetograms. However, this assumption is not necessarily true. Here we use the vector magnetograms and line of sight magnetograms, both taken by HMI/SDO, to estimate the effects of non-radial magnetic field on measuring magnetic helicity injection rate. We find that: 1) The effect of non-radial magnetic field on estimating tangential velocity is relatively small; 2) On estimating magnetic helicity injection rate, the effect of non-radial magnetic field is strong when active regions are observed near the limb and is relatively small when active regions are close to disk center; 3) The effect of non-radial magnetic field becomes minor if the amount of accumulated magnetic helicity is the only conce...
MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS B. Fornberg,2
Fornberg, Bengt
MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS N. Flyer,1 B Axisymmetric force-free magnetic fields external to a unit sphere are studied as solutions to boundary value to the formation of an azimuthal rope of twisted magnetic field embedded within the global field, and to the energy
Behavioral effects of electric and magnetic fields
NASA Astrophysics Data System (ADS)
Laties, V. G.
1992-04-01
Two sets of behavioral studies were conducted. In the first, three procedures were used to determine how aversive a 100 kV/m 60-Hz electric field is for a rat. Each of the procedures enabled rats to respond in order to reduce exposure to the field. The rats did reduce exposure slightly with one, but not with the other two, whereas they reduced their exposure to moderate illumination in all three procedures. The results show that while the procedures were appropriate for assessing stimulus aversiveness, 100 kV/m is not a generally aversive stimulus for the rat. It was previously reported that immediately after exposure for 30 minutes to a horizontal 60-Hz, 5 x 10(exp -5)T field combined with a total static field of 2.61 x 10(exp -5)T, the rate of lever pressing by rats increased during the DRL component of a multiple fixed ratio, DRL schedule of food reinforcement. This project failed to confirm those observations in an experiment that duplicated the behavioral baseline and the magnetic field exposure conditions, with the exception that the total DC vector was greater in these experiments than it was in others.
Anisotropic Magnetism in Field-Structured Composites
Anderson, Robert A.; Martin, James E.; Odinek, Judy; Venturini, Eugene
1999-06-24
Magnetic field-structured-composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g. rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chain-like particle structures, and a biaxial field produces sheet-like particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCS of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material.
What Are Electric and Magnetic Fields? (EMF)
What are Electric and Magnetic Fields? (EMF) Electric and Magnetic Fields Electricity is an essential part of our lives. Electricity powers all sorts of things around us, from computers to refrigerators ...
Plasma stability in a dipole magnetic field
Simakov, Andrei N., 1974-
2001-01-01
The MHD and kinetic stability of an axially symmetric plasma, confined by a poloidal magnetic field with closed lines, is considered. In such a system the stabilizing effects of plasma compression and magnetic field ...
NASA Astrophysics Data System (ADS)
Anderson, Brian J.; Acuña, Mario H.; Korth, Haje; Slavin, James A.; Uno, Hideharu; Johnson, Catherine L.; Purucker, Michael E.; Solomon, Sean C.; Raines, Jim M.; Zurbuchen, Thomas H.; Gloeckler, George; McNutt, Ralph L.
2010-05-01
The magnetic field strength of Mercury at the planet’s surface is approximately 1% that of Earth’s surface field. This comparatively low field strength presents a number of challenges, both theoretically to understand how it is generated and observationally to distinguish the internal field from that due to the solar wind interaction. Conversely, the small field also means that Mercury offers an important opportunity to advance our understanding both of planetary magnetic field generation and magnetosphere-solar wind interactions. The observations from the Mariner 10 magnetometer in 1974 and 1975, and the MESSENGER Magnetometer and plasma instruments during the probe’s first two flybys of Mercury on 14 January and 6 October 2008, provide the basis for our current knowledge of the internal field. The external field arising from the interaction of the magnetosphere with the solar wind is more prominent near Mercury than for any other magnetized planet in the Solar System, and particular attention is therefore paid to indications in the observations of deficiencies in our understanding of the external field. The second MESSENGER flyby occurred over the opposite hemisphere from the other flybys, and these newest data constrain the tilt of the planetary moment from the planet’s spin axis to be less than 5°. Considered as a dipole field, the moment is in the range 240 to 270 nT- R {M/3}, where R M is Mercury’s radius. Multipole solutions for the planetary field yield a smaller dipole term, 180 to 220 nT- R {M/3}, and higher-order terms that together yield an equatorial surface field from 250 to 290 nT. From the spatial distribution of the fit residuals, the equatorial data are seen to reflect a weaker northward field and a strongly radial field, neither of which can be explained by a centered-dipole matched to the field measured near the pole by Mariner 10. This disparity is a major factor controlling the higher-order terms in the multipole solutions. The residuals are not largest close to the planet, and when considered in magnetospheric coordinates the residuals indicate the presence of a cross-tail current extending to within 0.5 R M altitude on the nightside. A near-tail current with a density of 0.1 ?A/m2 could account for the low field intensities recorded near the equator. In addition, the MESSENGER flybys include the first plasma observations from Mercury and demonstrate that solar wind plasma is present at low altitudes, below 500 km. Although we can be confident in the dipole-only moment estimates, the data in hand remain subject to ambiguities for distinguishing internal from external contributions. The anticipated observations from orbit at Mercury, first from MESSENGER beginning in March 2011 and later from the dual-spacecraft BepiColombo mission, will be essential to elucidate the higher-order structure in the magnetic field of Mercury that will reveal the telltale signatures of the physics responsible for its generation.
Cross correlations from back reaction on stochastic magnetic fields
Kunze, Kerstin E.
2013-02-01
The induction equation induces non trivial correlations between the primordial curvature mode and the magnetic mode which is a non linear effect. Assuming a stochastic, gaussian magnetic field the resulting power spectra determining the two point cross correlation functions between the primordial curvature perturbation and the magnetic energy density contrast as well as the magnetic anisotropic stress are calculated approximately. The corresponding numerical solutions are used to calculate the angular power spectra determining the temperature anisotropies and polarization of the cosmic microwave background, C{sub l}. It is found that the resulting C{sub l} are sub-leading in comparison to those generated by the compensated mode for a magnetic field which only redshifts with the expansion of the universe. The main focus are scalar modes, however, vector modes will also be briefly discussed.
Magnetic properties prediction of NdFeB magnets by using support vector regression
NASA Astrophysics Data System (ADS)
Cheng, Wende
2014-09-01
A novel model using support vector regression (SVR) combined with particle swarm optimization (PSO) was employed to construct mathematical model for prediction of the magnetic properties of the NdFeB magnets. The leave-one-out cross-validation (LOOCV) test results strongly supports that the generalization ability of SVR is high enough. Predicted results show that the mean absolute percentage error for magnetic remanence Br, coercivity Hcj and maximum magnetic energy product (BH)max are 0.53%, 3.90%, 1.73%, and the correlation coefficient (R2) is as high as 0.839, 0.967 and 0.940, respectively. This investigation suggests that the PSO-SVR is not only an effective and practical method to simulate the properties of NdFeB, but also a powerful tool to optimatize designing or controlling the experimental process.
Magnetic field of Jupiter and its interaction with the solar wind
E. J. Smith; L. Jr. Davis; D. E. Jones; D. S. Colburn; P. J. Jr. Coleman; P. Dyal; C. P. Sonett
1974-01-01
Jupiter's magnetic field and its interaction with the magnetized solar ; wind were observed with the Pioneer 10 vector helium magnetometer. The magnetic ; dipole is directed opposite to that of the Earth with a moment of 4.0 gauss R\\/sub ; j\\/ Â³ (R\\/sup , Jupiter radius and an inclination of 15' lying in a system ; III meridian of
Neutral $?$ and $A$ mesons in magnetic field in SU(2) lattice gauge theory
E. V. Luschevskaya; O. V. Larina
2013-08-09
Correlators of vector, axial and pseudoscalar currents have been calculated in external strong magnetic field in SU(2) gluodynamics on the lattice. Neutral $\\rho$ and $A$ meson masses with a zero spin projection to the axis parallel to the external magnetic field $B$ are calculated. The mass of the neutral $\\rho$ meson with zero spin decreases with increasing of the magnetic field for available values of the magnetic field $eB\\lesssim 2-2.5\\, \\Gev^2$, such behavior is necessary for a condensation of $\\rho$ mesons in a strong magnetic field.
Dynamics of molecular superrotors in an external magnetic field
NASA Astrophysics Data System (ADS)
Korobenko, Aleksey; Milner, Valery
2015-08-01
We excite diatomic oxygen and nitrogen to high rotational states with an optical centrifuge and study their dynamics in an external magnetic field. Ion imaging is employed to directly visualize, and follow in time, the rotation plane of the molecular superrotors. The two different mechanisms of interaction between the magnetic field and the molecular angular momentum in paramagnetic oxygen and non-magnetic nitrogen lead to qualitatively different behaviour. In nitrogen, we observe the precession of the molecular angular momentum around the field vector. In oxygen, strong spin–rotation coupling results in faster and richer dynamics, encompassing the splitting of the rotation plane into three separate components. As the centrifuged molecules evolve with no significant dispersion of the molecular wave function, the observed magnetic interaction presents an efficient mechanism for controlling the plane of molecular rotation.
Interaction Forces Between Multiple Bodies in a Magnetic Field
NASA Technical Reports Server (NTRS)
Joffe, Benjamin
1996-01-01
Some of the results from experiments to determine the interaction forces between multiple bodies in a magnetic field are presented in this paper. It is shown how the force values and the force directions depend on the configuration of the bodies, their relative positions to each other, and the vector of the primary magnetic field. A number of efficient new automatic loading and assembly machines, as well as manipulators and robots, have been created based on the relationship between bodies and magnetic fields. A few of these patented magnetic devices are presented. The concepts involved open a new way to design universal grippers for robot and other kinds of mechanisms for the manipulation of objects. Some of these concepts can be used for space applications.
Forced MHD turbulence in a uniform external magnetic field
NASA Technical Reports Server (NTRS)
Hossain, M.; Vahala, G.; Montgomery, D.
1985-01-01
Two-dimensional dissipative MHD turbulence is randomly driven at small spatial scales and is studied by numerical simulation in the presence of a strong uniform external magnetic field. A behavior is observed which is apparently distinct from the inverse cascade which prevails in the absence of an external magnetic field. The magnetic spectrum becomes dominated by the three longest wavelength Alfven waves in the system allowed by the boundary conditions: those which, in a box size of edge 2 pi, have wave numbers (kx' ky) = (1, 1), and (1, -1), where the external magnetic field is in the x direction. At any given instant, one of these three modes dominates the vector potential spectrum, but they do not constitute a resonantly coupled triad. Rather, they are apparently coupled by the smaller-scale turbulence.
NASA Astrophysics Data System (ADS)
MacLeod, C. J.; Tominaga, M.; Tivey, M.; Morris, A.; Shillington, D. J.
2010-12-01
Marine magnetic anomalies are a powerful tool in detecting not only geomagnetic polarity reversals but also lithological boundaries, topographic contrasts, and alteration fronts in the oceanic lithosphere. Recent progress in marine magnetic studies shows that the lower oceanic crust is an integral part of the magnetic source layer and a complete understanding of oceanic crustal magnetization must incorporate knowledge of this lower crust as well as the extrusive upper crust. To fully investigate the possible origins of magnetic anomalies in fast-spreading lower crust, we analyzed high-resolution, near-bottom, 3-component magnetic data acquired at the Hess Deep “tectonic window” by RRS James Cook cruise JC-21. Hess Deep is located at the western tip of the propagation rift of the Cocos-Nazca plate boundary near the East Pacific Rise (2° 15’N, 101° 30’W). Remotely Operated Vehicle (ROV) ISIS collected high-resolution bathymetry and magnetic data as well as seafloor samples to determine the in situ lithology of the Hess Deep crust. Magnetic study is focused on a south-facing slope with the total area of 3 x 1.6 km2. Rock samples indicate that the western part of the slope is primarily composed of gabbros while the eastern part is mainly dikes, although the location of the lithological boundary is ambiguous from the sampling and observations alone. A total of 10 magnetic profiles along the slope were collected by a magnetometer mounted on ISIS. The raw magnetic data were corrected for the ROV motion and external field variations, and then merged with navigation data. We used a geometrical transformation to project the magnetic data into a rotated horizotal scarp face and then calculated the source magnetization distribution, 3D indices and strikes of possible magnetic boundaries using both the total-field Fourier-transform inversion approach and a modified differential vector magnetic analysis respectively. A strong magnetization contrast is found between the western and eastern parts of the slope, which approximately coincides with the distribution pattern of gabbro and dike samples. We suggest that this magnetization contrast images a north-south lithologic boundary, and if so these are the first magnetic profiles that capture the dike-gabbro boundary in fast-spreading lower crust. At moderate angle to the east-west dichotomy in the magnetization contrast are long-wavelength total field anomalies, some of which appear to correlate to an underlying N-S striking, shallowly west-dipping normal faults. The distribution of calculated magnetic strikes can be divided into four different areas with internally consistent magnetic boundary orientations, each of which potentially corresponds to the different combination of strong deformation, rotation, faulting, and alteration. One of these groups at the southeastern corner of the slope has a concentration of 3D indices that along with other observations indicates a potential in situ coherent gabbro body.
Primordial magnetic field limits from cosmological data
Kahniashvili, Tina; Tevzadze, Alexander G.; Sethi, Shiv K.; Pandey, Kanhaiya; Ratra, Bharat
2010-10-15
We study limits on a primordial magnetic field arising from cosmological data, including that from big bang nucleosynthesis, cosmic microwave background polarization plane Faraday rotation limits, and large-scale structure formation. We show that the physically relevant quantity is the value of the effective magnetic field, and limits on it are independent of how the magnetic field was generated.
Magnetic Fields in Nearby Molecular Clouds
Ramaprakash, A. N.
Chapter 7 Magnetic Fields in Nearby Molecular Clouds In Chap. 6, we saw the power of imaging polarimetric techniques in probing the twoÂ dimensional magnetic field patterns associated with Bok globules are attributed to the interaction between gravity, angular momentum and magnetic field (Wardle & KÂ¨onigl, 1993
Magnetic field navigation in an indoor environment
William Storms; Jeremiah Shockley; John Raquet
2010-01-01
This paper describes a method that has been developed to aid an inertial navigation system when GNSS signals are not available, by taking advantage of the uniqueness of magnetic field variations. Most indoor environments have many different features (ferrous structural materials or contents, electrical currents, etc.) which perturb the Earths natural magnetic field. The variations in the magnetic field in
Quark deconfinement and gluon condensate in a weak magnetic field
Ayala, Alejandro; Hernandez, L A; Loewe, M; Rojas, Juan Cristobal; Villavicencio, Cristian
2015-01-01
We study QCD finite energy sum rules (FESR) for the axial-vector current correlator in the presence of a magnetic field, in the weak field limit and at zero temperature. We find that the perturbative QCD as well as the hadronic contribution to the sum rules get explicit magnetic field-dependent corrections and that these in turn induce a magnetic field dependence on the deconfinement phenomenological parameter s_0 and on the gluon condensate. The leading corrections turn out to be quadratic in the field strength. We find from the dimension d=2 first FESR that the magnetic field dependence of s_0 is proportional to the absolute value of the light-quark condensate. Hence, it increases with increasing field strength. This implies that the parameters describing chiral symmetry restoration and deconfinement behave similarly as functions of the magnetic filed. Thus, at zero temperature the magnetic field is a catalysing agent of both chiral symmetry breaking and confinement. From the dimension d=4 second FESR we ob...
Magnetic monopole and the nature of the static magnetic field
Xiuqing Huang
2008-12-10
We investigate the factuality of the hypothetical magnetic monopole and the nature of the static magnetic field. It is shown from many aspects that the concept of the massive magnetic monopoles clearly is physically untrue. We argue that the static magnetic field of a bar magnet, in fact, is the static electric field of the periodically quasi-one-dimensional electric-dipole superlattice, which can be well established in some transition metals with the localized d-electron. This research may shed light on the perfect unification of magnetic and electrical phenomena.
Magnetic nanoparticle and magnetic field assisted siRNA delivery in vitro.
Mykhaylyk, Olga; Sanchez-Antequera, Yolanda; Vlaskou, Dialechti; Cerda, Maria Belen; Bokharaei, Mehrdad; Hammerschmid, Edelburga; Anton, Martina; Plank, Christian
2015-01-01
This chapter describes how to design and conduct experiments to deliver siRNA to adherent cell cultures in vitro by magnetic force-assisted transfection using self-assembled complexes of small interfering RNA (siRNA) and cationic lipids or polymers that are associated with magnetic nanoparticles (MNPs). These magnetic complexes are targeted to the cell surface by the application of a gradient magnetic field. A further development of the magnetic drug-targeting concept is combining it with an ultrasound-triggered delivery using magnetic microbubbles as a carrier for gene or drug delivery. For this purpose, selected MNPs, phospholipids, and siRNAs are assembled in the presence of perfluorocarbon gas into flexible formulations of magnetic lipospheres (microbubbles). Methods are described how to accomplish the synthesis of magnetic nanoparticles for magnetofection and how to test the association of siRNA with the magnetic components of the transfection vector. A simple method is described to evaluate magnetic responsiveness of the magnetic siRNA transfection complexes and estimate the complex loading with magnetic nanoparticles. Procedures are provided for the preparation of magnetic lipoplexes and polyplexes of siRNA as well as magnetic microbubbles for magnetofection and downregulation of the target gene expression analysis with account for the toxicity determined using an MTT-based respiration activity test. A modification of the magnetic transfection triplexes with INF-7, fusogenic peptide, is described resulting in reporter gene silencing improvement in HeLa, Caco-2, and ARPE-19 cells. The methods described can also be useful for screening vector compositions and novel magnetic nanoparticle preparations for optimized siRNA transfection by magnetofection in any cell type. PMID:25319646
MESSENGER Observations of Mercury's Magnetic Field Structure
NASA Astrophysics Data System (ADS)
Johnson, C. L.; Purucker, M. E.; Anderson, B. J.; Winslow, R. M.; Al Asad, M.; Korth, H.; Slavin, J. A.; Alexeev, I. I.; Ritzer, J. A.; Phillips, R. J.; Zuber, M. T.; Solomon, S. C.
2012-03-01
We use orbital magnetic field data from MESSENGER to constrain Mercury's internal dipolar field and large-scale, time-averaged magnetopause and magnetotail fields. We investigate mechanisms that may account for structure in the residual fields.
Magnetic field sources and their threat to magnetic media
NASA Technical Reports Server (NTRS)
Jewell, Steve
1993-01-01
Magnetic storage media (tapes, disks, cards, etc.) may be damaged by external magnetic fields. The potential for such damage has been researched, but no objective standard exists for the protection of such media. This paper summarizes a magnetic storage facility standard, Publication 933, that ensures magnetic protection of data storage media.
Suppression of magnetic relaxation by a transverse alternating magnetic field
Voloshin, I. F.; Kalinov, A. V.; Fisher, L. M. [All-Russia Electrical Engineering Institute (Russian Federation)], E-mail: fisher@vei.ru; Yampol'skii, V. A. [National Academy of Sciences of Ukraine, Institute of Radiophysics and Electronics (Ukraine)], E-mail: yam@vk.kharkov.ua
2007-07-15
The evolution of the spatial distribution of the magnetic induction in a superconductor after the action of the alternating magnetic field perpendicular to the trapped magnetic flux has been analyzed. The observed stabilization of the magnetic induction profile is attributed to the increase in the pinning force, so that the screening current density becomes subcritical. The last statement is corroborated by direct measurements.
Observational Test of Coronal Magnetic Field Models I. Comparison with Potential Field Model
Yu Liu; Haosheng Lin
2008-05-16
Recent advances have made it possible to obtain two-dimensional line-of-sight magnetic field maps of the solar corona from spectropolarimetric observations of the Fe XIII 1075 nm forbidden coronal emission line. Together with the linear polarization measurements that map the azimuthal direction of the coronal magnetic field, these coronal vector magnetograms now allow for direct observational testing of theoretical coronal magnetic field models. This paper presents a study testing the validity of potential-field coronal magnetic field models. We constructed a theoretical coronal magnetic field model of active region AR 10582 observed by the SOLARC coronagraph in 2004 by a global potential field extrapolation of the synoptic map of Carrington Rotation 2014. Synthesized linear and circular polarization maps from thin layers of the coronal magnetic field model above the active region along the line of sight are compared with the observed maps. We found that reasonable agreement occurs from layers located just above the sunspot of AR 10582, near the plane of the sky. This result provides the first observational evidence that potential field extrapolation can yield a reasonable approximation of the magnetic field configuration of the solar corona for simple and stable active regions.
Development of Techniques for Visualization of Scalar and Vector Fields in the Immersive Environment
NASA Technical Reports Server (NTRS)
Bidasaria, Hari B.; Wilson, John W.; Nealy, John E.
2005-01-01
Visualization of scalar and vector fields in the immersive environment (CAVE - Cave Automated Virtual Environment) is important for its application to radiation shielding research at NASA Langley Research Center. A complete methodology and the underlying software for this purpose have been developed. The developed software has been put to use for the visualization of the earth s magnetic field, and in particular for the study of the South Atlantic Anomaly. The methodology has also been put to use for the visualization of geomagnetically trapped protons and electrons within Earth's magnetosphere.
Magsat - A new satellite to survey the earth's magnetic field
NASA Technical Reports Server (NTRS)
Mobley, F. F.; Eckard, L. D.; Fountain, G. H.; Ousley, G. W.
1980-01-01
The Magsat satellite was launched on Oct. 30, 1979 into a sun-synchronous dawn-dusk orbit, of 97 deg inclination, 350 km perigee, and 550 km apogee. It contains a precision vector magnetometer and a cesium-vapor scalar magnetometer at the end of a 6-m long graphite epoxy scissors boom. The magnetometers are accurate to 2 nanotesla. A pair of star cameras are used to define the body orientation to 10 arc sec rms. An 'attitude transfer system' measures the orientation of the magnetometer sensors relative to the star cameras to approximately 5 arc sec rms. The satellite position is determined to 70 meters rms by Doppler tracking. The overall objective is to determine each component of the earth's vector magnetic field to an accuracy of 6 nanotesla rms. The Magsat satellite gathers a complete picture of the earth's magnetic field every 12 hours. The vector components are sampled 16 times per second with a resolution of 0.5 nanotesla. The data will be used by the U.S. Geological Survey to prepare 1980 world magnetic field charts and to detect large-scale magnetic anomalies in the earth's crust for use in planning resource exploration strategy.
Vector field instability and the primordial tensor spectrum
Stefan Eccles; Willy Fischler; Dustin Lorshbough; Benjamin A. Stephens
2015-07-01
It has recently been shown that the presence of a spectator pseudoscalar field, coupled to photons through a Chern-Simons term, can amplify the primordial tensor spectrum without observationally disrupting the primordial scalar spectrum. The amplification occurs due to an instability that develops for the vector fields. We extend previous studies to account for the contribution arising from an inhomogeneous vector background, which emerges as the dominant correction to the primordial tensor spectrum. These semiclassical contributions dominate over the quantum loop contributions and possibly enhance the primordial tensor spectrum such as to have observational effects even though the loop corrections might be undetectable. A similar effect would occur by replacing the visible electromagnetic U(1) by an unbroken dark U(1).
Magnetic field perturbations in the systems where only poloidal magnetic field is present*
1 Magnetic field perturbations in the systems where only poloidal magnetic field is present* D In some plasma confinement systems the confinement is provided by a poloidal magnetic field (no toroidal magnetic field is present). Examples include FRC, levitated dipoles, and long diffuse pinches. We consider
Electric field vector measurements in a surface ionization wave discharge
NASA Astrophysics Data System (ADS)
Goldberg, Benjamin M.; Böhm, Patrick S.; Czarnetzki, Uwe; Adamovich, Igor V.; Lempert, Walter R.
2015-10-01
This work presents the results of time-resolved electric field vector measurements in a short pulse duration (60 ns full width at half maximum), surface ionization wave discharge in hydrogen using a picosecond four-wave mixing technique. Electric field vector components are measured separately, using pump and Stokes beams linearly polarized in the horizontal and vertical planes, and a polarizer placed in front of the infrared detector. The time-resolved electric field vector is measured at three different locations across the discharge gap, and for three different heights above the alumina ceramic dielectric surface, ~100, 600, and 1100 ?m (total of nine different locations). The results show that after breakdown, the discharge develops as an ionization wave propagating along the dielectric surface at an average speed of 1?mm ns?1. The surface ionization wave forms near the high voltage electrode, close to the dielectric surface (~100 ?m). The wave front is characterized by significant overshoot of both vertical and horizontal electric field vector components. Behind the wave front, the vertical field component is rapidly reduced. As the wave propagates along the dielectric surface, it also extends further away from the dielectric surface, up to ~1?mm near the grounded electrode. The horizontal field component behind the wave front remains quite significant, to sustain the electron current toward the high voltage electrode. After the wave reaches the grounded electrode, the horizontal field component experiences a secondary rise in the quasi-dc discharge, where it sustains the current along the near-surface plasma sheet. The measurement results indicate presence of a cathode layer formed near the grounded electrode with significant cathode voltage fall, ?3?kV, due to high current density in the discharge. The peak reduced electric field in the surface ionization wave is 85–95 Td, consistent with dc breakdown field estimated from the Paschen curve for hydrogen. The present set of data on electric field distribution in a surface ionization wave discharge provides an experimental reference for validation of kinetic models and assessing their predictive capability.
Numerical magnetic field analysis and signal processing for fault diagnostics of electrical machines
S. Pöyhönen; M. Negrea; P. Jover; A. Arkkio; H. Hyötyniemi
2003-01-01
Numerical magnetic field analysis is used for predicting the performance of an induction motor and a slip-ring generator having different faults implemented in their structure. Virtual measurement data provided by the numerical magnetic field analysis are analysed using modern signal processing techniques to get a reliable indication of the fault. Support vector machine based classification is applied to fault diagnostics.
Single-point inversion of the coronal magnetic field
Plowman, Joseph
2014-09-01
The Fe XIII 10747 and 10798 Å lines observed in the solar corona are sensitive to the coronal magnetic field in such a way that, in principle, the full vector field at a point on the line of sight can be inferred from their combined polarization signals. This paper presents analytical inversion formulae for the field parameters and analyzes the uncertainty of magnetic field measurements made from such observations, assuming emission dominated by a single region along the line of sight. We consider the case of the current Coronal Multi-channel Polarimeter (CoMP) instrument as well as the future Coronal Solar Magnetism Observatory (COSMO) and Advanced Technology Solar Telescope (ATST) instruments. Uncertainties are estimated with a direct analytic inverse and with a Markov Chain Monte Carlo algorithm. We find that (in effect) two components of the vector field can be recovered with CoMP, and well recovered with COSMO or ATST, but that the third component can only be recovered when the solar magnetic field is strong and optimally oriented.
Relic vector field and CMB large scale anomalies
Chen, Xingang; Wang, Yi E-mail: yw366@cam.ac.uk
2014-10-01
We study the most general effects of relic vector fields on the inflationary background and density perturbations. Such effects are observable if the number of inflationary e-folds is close to the minimum requirement to solve the horizon problem. We show that this can potentially explain two CMB large scale anomalies: the quadrupole-octopole alignment and the quadrupole power suppression. We discuss its effect on the parity anomaly. We also provide analytical template for more detailed data comparison.
Notes on the Topology of Vector Fields and Flows
Frey, Pascal
. The classic example of a vector field in the real world is the velocity of a steady wind. We will draw(x) as representing the velocity of a steady wind at the point x. Then the solution curve x(t) represents the hypo varies with time. The function f(x, t) may be thought of as representing the velocity of the wind
Conversion of magnetic field energy into kinetic energy in the solar wind
NASA Technical Reports Server (NTRS)
Whang, Y. C.
1972-01-01
The outflow of the solar magnetic field energy (the radial component of the Poynting vector) per steradian is inversely proportional to the solar wind velocity. It is a decreasing function of the heliocentric distance. When the magnetic field effect is included in the one-fluid model of the solar wind, the transformation of magnetic field energy into kinetic energy during the expansion process increases the solar wind velocity at 1 AU by 17 percent.
Particle with spin 1 in a magnetic field on the hyperbolic plane H_{2}
E. M. Ovsiyuk; O. V. Veko
2011-10-12
There are constructed exact solutions of the quantum-mechanical equation for a spin S=1 particle in 2-dimensional Riemannian space of constant negative curvature, hyperbolic plane, in presence of an external magnetic field, analogue of the homogeneous magnetic field in the Minkowski space. A generalized formula for energy levels describing quantization of the motion of the vector particle in magnetic field on the 2-dimensional space H_{2} has been found, nonrelativistic and relativistic equations have been solved.
Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization
Doughty, Frank C. (Plano, TX); Spencer, John E. (Plano, TX)
2000-12-19
In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.
Parahydrogen-induced polarization at zero magnetic field
NASA Astrophysics Data System (ADS)
Butler, Mark C.; Kervern, Gwendal; Theis, Thomas; Ledbetter, Micah P.; Ganssle, Paul J.; Blanchard, John W.; Budker, Dmitry; Pines, Alexander
2013-06-01
We use symmetry arguments and simple model systems to describe the conversion of the singlet state of parahydrogen into an oscillating sample magnetization at zero magnetic field. During an initial period of free evolution governed by the scalar-coupling Hamiltonian HJ, the singlet state is converted into scalar spin order involving spins throughout the molecule. A short dc pulse along the z axis rotates the transverse spin components of nuclear species I and S through different angles, converting a portion of the scalar order into vector order. The development of vector order can be described analytically by means of single-transition operators, and it is found to be maximal when the transverse components of I are rotated by an angle of ±?/2 relative to those of S. A period of free evolution follows the pulse, during which the vector order evolves as a set of oscillating coherences. The imaginary parts of the coherences represent spin order that is not directly detectable, while the real parts can be identified with oscillations in the z component of the molecular spin dipole. The dipole oscillations are due to a periodic exchange between Iz and Sz, which have different gyromagnetic ratios. The frequency components of the resulting spectrum are imaginary, since the pulse cannot directly induce magnetization in the sample; it is only during the evolution under HJ that the vector order present at the end of the pulse evolves into detectable magnetization.
Interplanetary magnetic field data book
NASA Technical Reports Server (NTRS)
King, J. H.
1975-01-01
An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.
Petrie, G. J. D. [National Solar Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)
2012-11-01
We analyze the spatial and temporal variations of the abrupt photospheric magnetic changes associated with six major flares using 12 minute, 0.''5 pixel{sup -1} vector magnetograms from NASA's Helioseismic and Magnetic Imager instrument on the Solar Dynamics Observatory satellite. The six major flares occurred near the main magnetic neutral lines of four active regions, NOAA 11158, 11166, 11283, and 11429. During all six flares the neutral-line field vectors became stronger and more horizontal, in each case almost entirely due to strengthening of the horizontal field components parallel to the neutral line. In all six cases the neutral-line pre-flare fields were more vertical than the reference potential fields, and collapsed abruptly and permanently closer to potential-field tilt angles during every flare, implying that the relaxation of magnetic stress associated with non-potential tilt angles plays a major role during major flares. The shear angle with respect to the reference potential field did not show such a pattern, demonstrating that flare processes do not generally relieve magnetic stresses associated with photospheric magnetic shear. The horizontal fields became significantly and permanently more aligned with the neutral line during the four largest flares, suggesting that the collapsing field is on average more aligned with the neutral line than the pre-flare neutral-line field. The vertical Lorentz force had a large, abrupt, permanent downward change during each of the flares, consistent with loop collapse. The horizontal Lorentz force changes acted mostly parallel to the neutral line in opposite directions on each side, a signature of the fields contracting during the flare, pulling the two sides of the neutral line toward each other. The greater effect of the flares on field tilt than on shear may be explained by photospheric line-tying.
NASA Astrophysics Data System (ADS)
N. Kawasaki; Oka, T.; Fukui, S.; Ogawa, J.; Sato, T.; Terasawa, T.; Itoh, Y.
A demagnetized Nd-Fe-B permanent magnet was scanned in the strong magnetic field space just above the magnetic pole containing a HTS bulk magnet which generates the magnetic field 3.4 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. The finite element method was carried out for the static field magnetization of a permanent magnet using a HTS bulk magnet. Previously, our research group experimentally demonstrated the possibility of full magnetization of rare earth permanent magnets with high-performance magnetic properties with use of the static field of HTS bulk magnets. In the present study, however, we succeeded for the first time in visualizing the behavior of the magnetizing field of the bulk magnet during the magnetization process and the shape of the magnetic field inside the body being magnetized. By applying this kind of numerical analysis to the magnetization for planned motor rotors which incorporate rare-earth permanent magnets, we hope to study the fully magnetized regions for the new magnetizing method using bulk magnets and to give motor designing a high degree of freedom.
Magnetic fluid flow phenomena in DC and rotating magnetic fields
Rhodes, Scott E. (Scott Edward), 1981-
2004-01-01
An investigation of magnetic fluid experiments and analysis is presented in three parts: a study of magnetic field induced torques in magnetorheological fluids, a characterization and quantitative measurement of properties ...
Coexistence of Multiple Phases in Magnetized Quark Matter with Vector Repulsion
Denke, Robson Z
2015-01-01
We explore the phase structure of dense magnetized quark matter when a repulsive vector interaction, parametrized by $G_V$, is present. Our results show that for a given magnetic field intensity ($B$) one may find a value of $G_V$ for which quark matter may coexist at three different baryonic density values leading to the appearance of two triple points in the phase diagram which have not been observed before. Another novel result is that at high pressure and low temperature we observe a first order transition which presents a negative slope in the $P-T$ that is reminiscent of the solid-liquid transition line observed within the water phase diagram. These unusual patterns occur for $G_V$ and $B$ values which lie within the range presently considered in many investigations related to the study of magnetars.
Coexistence of Multiple Phases in Magnetized Quark Matter with Vector Repulsion
Robson Z. Denke; Marcus Benghi Pinto
2015-06-17
We explore the phase structure of dense magnetized quark matter when a repulsive vector interaction, parametrized by $G_V$, is present. Our results show that for a given magnetic field intensity ($B$) one may find a value of $G_V$ for which quark matter may coexist at three different baryonic density values leading to the appearance of two triple points in the phase diagram which have not been observed before. Another novel result is that at high pressure and low temperature we observe a first order transition which presents a negative slope in the $P-T$ that is reminiscent of the solid-liquid transition line observed within the water phase diagram. These unusual patterns occur for $G_V$ and $B$ values which lie within the range presently considered in many investigations related to the study of magnetars.
Holography, Fractionalization and Magnetic Fields
NASA Astrophysics Data System (ADS)
Albash, Tameem; Johnson, Clifford V.; McDonald, Scott
Four dimensional gravity with a U(1) gauge field, coupled to various fields in asymptotically anti-de Sitter spacetime, provides a rich arena for the holographic study of the strongly coupled (2+1)-dimensional dynamics of finite density matter charged under a global U(1). As a first step in furthering the study of the properties of fractionalized and partially fractionalized degrees of freedom in the strongly coupled theory, we construct electron star solutions at zero temperature in the presence of a background magnetic field. We work in Einstein-Maxwell-dilaton theory. In all cases we construct, the magnetic source is cloaked by an event horizon. A key ingredient of our solutions is our observation that starting with the standard Landau level structure for the density of states, the electron star limits reduce the charge density and energy density to that of the free fermion result. Using this result we construct three types of solution: One has a star in the infra-red with an electrically neutral horizon, another has a star that begins at an electrically charged event horizon, and another has the star begin a finite distance from an electrically charged horizon.
Measurements of magnetic field sources in schools
Johnson, G.B. (General Electric Co., EPRI High Voltage Transmission Research Center, Lenox, MA (US))
1992-01-01
The Electrical Systems Division of the Electric Power Research Institute (EPRI) has initiated several research projects to investigate magnetic field levels, their characteristics, and their sources. This paper describes measurements of magnetic field sources in schools. Magnetic field measurements were made at four schools in the service areas of two utility companies. Magnetic field measurements included profiles of the magnetic field versus distance near power lines, around the perimeter of the school buildings, and at several locations within each school. Twenty-four hour measurements were also made to record the temporal variation of the magnetic field at several locations at each school. The instrumentation, measurement techniques, and magnetic field sources identified are discussed.
On Killing vector fields of a homogeneous and isotropic universe in closed model
Ruslan Sharipov
2007-08-19
Killing vector fields of a closed homogeneous and isotropic universe are studied. It is shown that in general case there is no time-like Killing vector fields in such a universe. Two exceptional cases are revealed.
Vlasov Equation In Magnetic Field
Biao Wu
1999-09-07
The linearized Vlasov equation for a plasma system in a uniform magnetic field and the corresponding linear Vlasov operator are studied. The spectrum and the corresponding eigenfunctions of the Vlasov operator are found. The spectrum of this operator consists of two parts: one is continuous and real; the other is discrete and complex. Interestingly, the real eigenvalues are infinitely degenerate, which causes difficulty solving this initial value problem by using the conventional eigenfunction expansion method. Finally, the Vlasov equation is solved by the resolvent method.
Quenching of flames by magnetic fields (abstract)
NASA Astrophysics Data System (ADS)
Ueno, S.
1988-11-01
The effects of magnetic fields on combustion of alcohol with the aid of platinum catalysis have been studied to simulate in part the oxidation of organic matter in the living body, and it has been found that the combustion reactions are influenced by magnetic fields. It has also been observed that candle flames are pressed down by magnetic fields of higher intensities when flames are exposed to gradient magnetic fields in a range 20-200 T/m under 0.5-1.4 T. Apart from the combustion experiments, flows of carbon dioxide, oxygen, nitrogen, and argon gases were exposed to magnetic fields up to 2.2 T and 300 T/m. The flows of these gases were blocked or disturbed by the magnetic fields. The purpose of the present study is to clarify the mechanisms for the phenomena observed in the experiments of magnetic effects on combustion and gas flow. An electromagnet with a pair of columnar magnetic poles of which inner sidepieces were hollowed out was used. The magnetic fields of 1.5 T at the brim gave a gradient of 50-100 T/m in the direction perpendicular to the pole axis when the distance of the airgap was in a range 5-10 mm. A candle was burned in the hollowed space between magnetic poles, and candle flames were exposed to magnetic fields. The flames were quenched in a few seconds after the onset of field exposures. Oxygen gas as a paramagnetic molecule can be attracted to the magnetic fields of higher intensities. However, under the intensities of magnetic fields concerned, oxygen gases are not concentrated but are aligned so as to make a ``wall of oxygen'' or an ``air curtain.'' The air curtain, which is also called the ``magnetic curtain,'' blocks air flow into and out of the hollowed space. The interception of oxygen by magnetic curtain quenches flames. The magnetic curtain also presses back flames and other gases.
Magnetic fields from the electroweak phase transition
Tornkvist, O.
1998-02-01
I review some of the mechanisms through which primordial magnetic fields may be created in the electroweak phase transition. I show that no magnetic fields are produced initially from two-bubble collisions in a first-order transition. The initial field produced in a three-bubble collision is computed. The evolution of fields at later times is discussed.
Report of the panel on geopotential fields: Magnetic field, section 9
NASA Technical Reports Server (NTRS)
Achache, Jose J.; Backus, George E.; Benton, Edward R.; Harrison, Christopher G. A.; Langel, Robert A.
1991-01-01
The objective of the NASA Geodynamics program for magnetic field measurements is to study the physical state, processes and evolution of the Earth and its environment via interpretation of measurements of the near Earth magnetic field in conjunction with other geophysical data. The fields measured derive from sources in the core, the lithosphere, the ionosphere, and the magnetosphere. Panel recommendations include initiation of multi-decade long continuous scalar and vector measurements of the Earth's magnetic field by launching a five year satellite mission to measure the field to about 1 nT accuracy, improvement of our resolution of the lithographic component of the field by developing a low altitude satellite mission, and support of theoretical studies and continuing analysis of data to better understand the source physics and improve the modeling capabilities for different source regions.
Modelling of solar magnetic field and prominence structures
NASA Technical Reports Server (NTRS)
Wu, Shi Tsan
1988-01-01
Using plasma theory, the interaction is studied between high frequency and magnetohydrodynamic (MHD) waves from which a set of coupling equations resulted. On the basis of this formalism, the modulation instabilities of an electromagnetic soliton in a current sheet are examined, and it is shown that there is a resistive instability at the onset of the magnetic field reconnection. This mechanism could be used to explain the onset of solar flares and prominences. To improve the resolution of vector magnetic fields at the sun's surface, state-of-the-art optics is examined to improve the design and fabrication of a new spaceborne solar vector magnetograph as part of the SAMEX (Solar Active Measurements Experiment) program.
Magnetic field effects on microwave absorbing materials
NASA Technical Reports Server (NTRS)
Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.
1991-01-01
The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.
NSDL National Science Digital Library
This is an activity about vectors and velocity. It outlines the addition and subtraction of vectors, and introduces the application of trigonometry to describing vectors. The resource is designed to support student analysis of THEMIS (Time History of Events and Macroscale Interactions during Substorms) Magnetometer line-plot data. Learners will complete worksheets consisting of problem sets that allow them to work with vector data in magnetic fields. This is activity 15 from Exploring Magnetism: Earth's Magnetic Personality.
A MATHEMATICAL MODEL FOR AN HOURGLASS MAGNETIC FIELD
Ewertowski, Bartek; Basu, Shantanu, E-mail: basu@uwo.ca [Department of Physics and Astronomy, Western University, London, Ontario N6A 3K7 (Canada)] [Department of Physics and Astronomy, Western University, London, Ontario N6A 3K7 (Canada)
2013-04-10
Starting with a mathematical boundary value problem for the magnetic vector potential in an axisymmetric cylindrical coordinate system, we derive a general solution for any arbitrary current distribution using the method of Green's functions. We use this to derive an analytic form for an hourglass magnetic field pattern created by electrical currents that are concentrated near (but not confined within) the equatorial plane of a cylindrical coordinate system. Our solution is not characterized by a cusp at the equatorial plane, as in previous solutions based on a current sheet. The pattern we derive provides a very good fit to hourglass magnetic field patterns emerging from three-dimensional numerical simulations of core formation, and can in principle be used for source-fitting of observed magnetic hourglass patterns.
The Local Stellar Velocity Field via Vector Spherical Harmonics
NASA Technical Reports Server (NTRS)
Makarov, V. V.; Murphy, D. W.
2007-01-01
We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism.We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) = (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) = (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star...
Deformation of Water by a Magnetic Field
ERIC Educational Resources Information Center
Chen, Zijun; Dahlberg, E. Dan
2011-01-01
After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…
Electromagnetic showers in a strong magnetic field
V. Anguelov; H. Vankov
2000-01-13
We present the results concerning the main shower characteristics in a strong magnetic field obtained through shower simulation. The processes of magnetic bremsstrahlung and pair production were taken into account for values of the parameter $\\chi \\gg 1$. We compare our simulation results with a recently developed cascade theory in a strong magnetic field.
Baking a magnetic-field display
NASA Astrophysics Data System (ADS)
Cavanaugh, Terence; Cavanaugh, Catherine
1998-02-01
Copy machine developer powder is an alternative for creating permanent displays of magnetic fields. A thin layer of developer powder on a sheet of paper placed over a magnet can be baked in the oven, producing a lasting image of a magnetic field.
Baryon onset in a magnetic field
Alexander Haber; Florian Preis; Andreas Schmitt
2014-12-19
The critical baryon chemical potential for the onset of nuclear matter is a function of the vacuum mass and the binding energy. Both quantities are affected by an external magnetic field. We show within two relativistic mean-field models - including magnetic catalysis, but omitting the anomalous magnetic moment - that a magnetic field increases both the vacuum mass and the binding energy. For sufficiently large magnetic fields, the effect on the vacuum mass dominates and as a result the critical baryon chemical potential is increased.
Magnetic field structure in the comet Grigg-Skjellerup pileup region
NASA Astrophysics Data System (ADS)
Israelevich, P. L.; Ershkovich, A. I.; Neubauer, F. M.; Coates, A. J.
1996-05-01
The position of the Giotto spacecraft relative to comet Grigg-Skjellerup is found from the draping geometry based on the vector magnetic field data. It is shown that Giotto passed the cometary nucleus on the nightside. The behavior of the magnetic field vectors exhibits two different types in the pileup region. In the outer pileup region, the magnetic field vectors converge toward the nightside in accordance with the flank draping observed earlier near comet Halley. The existence of the flank draping is a consequence of a three-dimensional plasma flow around the comet: a slippage of magnetic field lines on the flanks of the obstacle results in this effect. Because of this slippage, only a fraction of the incoming magnetic flux takes part in the formation of the magnetic barrier and the magnetic tail, whereas most of the magnetic flux bypasses a comet from both sides. In the inner pileup region, the magnetic field vectors diverge toward the nightside. This effect is attributed to the plasma flow into the cavity behind the obstacle.
Analysis of magnetic field levels at KSC
NASA Technical Reports Server (NTRS)
Christodoulou, Christos G.
1994-01-01
The scope of this work is to evaluate the magnetic field levels of distribution systems and other equipment at Kennedy Space Center (KSC). Magnetic fields levels in several operational areas and various facilities are investigated. Three dimensional mappings and contour are provided along with the measured data. Furthermore, the portion of magnetic fields generated by the 60 Hz fundamental frequency and the portion generated by harmonics are examined. Finally, possible mitigation techniques for attenuating fields from electric panels are discussed.
NASA Astrophysics Data System (ADS)
Antonov, N. V.; Gulitskiy, N. M.
2015-01-01
Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is studied by means of the field-theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form ?? (t -t') /k?d -1 +? , where k?=|k?| and k? is the component of the wave vector, perpendicular to the distinguished direction ("direction of the flow")—the d -dimensional generalization of the ensemble introduced by Avellaneda and Majda [Commun. Math. Phys. 131, 381 (1990), 10.1007/BF02161420]. The stochastic advection-diffusion equation for the transverse (divergence-free) vector field includes, as special cases, the kinematic dynamo model for magnetohydrodynamic turbulence and the linearized Navier-Stokes equation. In contrast to the well-known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale L has a logarithmic behavior: Instead of powerlike corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of L . The key point is that the matrices of scaling dimensions of the relevant families of composite operators appear nilpotent and cannot be diagonalized. The detailed proof of this fact is given for the correlation functions of arbitrary order.
N. V. Antonov; N. M. Gulitskiy
2015-01-21
Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is studied by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form $\\propto \\delta(t-t') / k_{\\bot}^{d-1+\\xi}$, where $k_{\\bot}=|{\\bf k}_{\\bot}|$ and ${\\bf k}_{\\bot}$ is the component of the wave vector, perpendicular to the distinguished direction (`direction of the flow') -- the $d$-dimensional generalization of the ensemble introduced by Avellaneda and Majda [{\\it Commun. Math. Phys.} {\\bf 131}: 381 (1990)]. The stochastic advection-diffusion equation for the transverse (divergence-free) vector field includes, as special cases, the kinematic dynamo model for magnetohydrodynamic turbulence and the linearized Navier--Stokes equation. In contrast to the well known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale $L$ has a logarithmic behavior: instead of power-like corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of $L$. The key point is that the matrices of scaling dimensions of the relevant families of composite operators appear nilpotent and cannot be diagonalized. The detailed proof of this fact is given for correlation functions of arbitrary order.
Magnetic field waves at Uranus
NASA Technical Reports Server (NTRS)
Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.
1994-01-01
The research efforts funded by the Uranus Data Analysis Program (UDAP) grant to the Bartol Research Institute (BRI) involved the study of magnetic field waves associated with the Uranian bow shock. Upstream wave studies are motivated as a study of the physics of collisionless shocks. Collisionless shocks in plasmas are capable of 'reflecting' a fraction of the incoming thermal particle distribution and directing the resulting energetic particle motion back into the upstream region. Once within the upstream region, the backward streaming energetic particles convey information of the approaching shock to the supersonic flow. This particle population is responsible for the generation of upstream magnetic and electrostatic fluctuations known as 'upstream waves', for slowing the incoming wind prior to the formation of the shock ramp, and for heating of the upstream plasma. The waves produced at Uranus not only differed in several regards from the observations at other planetary bow shocks, but also gave new information regarding the nature of the reflected particle populations which were largely unmeasurable by the particle instruments. Four distinct magnetic field wave types were observed upstream of the Uranian bow shock: low-frequency Alfven or fast magnetosonic waves excited by energetic protons originating at or behind the bow shock; whistler wave bursts driven by gyrating ion distributions within the shock ramp; and two whistler wave types simultaneously observed upstream of the flanks of the shock and argued to arise from resonance with energetic electrons. In addition, observations of energetic particle distributions by the LECP experiment, thermal particle populations observed by the PLS experiment, and electron plasma oscillations recorded by the PWS experiment proved instrumental to this study and are included to some degree in the papers and presentations supported by this grant.
Rapid Change of Field Line Connectivity in Stochastic Magnetic Fields
NASA Astrophysics Data System (ADS)
Huang, Yi-Min; Bhattacharjee, A.; Boozer, Allen H.
2013-10-01
Magnetic fields depending on three spatial coordinates generally have the feature that neighboring field lines exponentiate away from each other and become stochastic. Under the condition of large exponentiation, magnetic field line connectivity becomes extremely sensitive to small perturbations. Consequently, small deviations from ideal Ohm's law will violate the ideal magnetohydrodynamic constraint and completely scramble the field line connectivity. This idea of breaking field line connectivity by stochasticity is tested with numerical simulations based on reduced magnetohydrodynamics equations. We employ a simple model starting from a uniform magnetic field in the z direction, and bounded by perfectly conducting planes in z. High order hyper-resistivity is employed as the mechanism of breaking field lines. As magnetic field lines is gradually entangled by the spatially smooth applied force, neighboring field line exponentiation becomes large. Field line connectivity is observed to undergo rapid change on Alfven transit time scales, accompanied by sporadic magnetic energy release.
Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence
Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin
2015-01-01
We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet ? singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature. PMID:25772580
Turbulence with pressure: Anomalous scaling of a passive vector field
NASA Astrophysics Data System (ADS)
Antonov, N. V.; Hnatich, Michal; Honkonen, Juha; Jur?išin, Marian
2003-10-01
The field theoretic renormalization group (RG) and the operator-product expansion are applied to the model of a transverse (divergence-free) vector quantity, passively advected by the “synthetic” turbulent flow with a finite (and not small) correlation time. The vector field is described by the stochastic advection-diffusion equation with the most general form of the inertial nonlinearity; it contains as special cases the kinematic dynamo model, linearized Navier-Stokes (NS) equation, the special model without the stretching term that possesses additional symmetries and has a close formal resemblance with the stochastic NS equation. The statistics of the advecting velocity field is Gaussian, with the energy spectrum E(k)?k1-? and the dispersion law ??k-2+?, k being the momentum (wave number). The inertial-range behavior of the model is described by seven regimes (or universality classes) that correspond to nontrivial fixed points of the RG equations and exhibit anomalous scaling. The corresponding anomalous exponents are associated with the critical dimensions of tensor composite operators built solely of the passive vector field, which allows one to construct a regular perturbation expansion in ? and ?; the actual calculation is performed to the first order (one-loop approximation), including the anisotropic sectors. Universality of the exponents, their (in)dependence on the forcing, effects of the large-scale anisotropy, compressibility, and pressure are discussed. In particular, for all the scaling regimes the exponents obey a hierarchy related to the degree of anisotropy: the more anisotropic is the contribution of a composite operator to a correlation function, the faster it decays in the inertial range. The relevance of these results for the real developed turbulence described by the stochastic NS equation is discussed.
Isoperimetric problems for the helicity of vector fields and the Biot-Savart and curl operators
NASA Astrophysics Data System (ADS)
Cantarella, Jason; DeTurck, Dennis; Gluck, Herman; Teytel, Mikhail
2000-08-01
The helicity of a smooth vector field defined on a domain in three-space is the standard measure of the extent to which the field lines wrap and coil around one another. It plays important roles in fluid mechanics, magnetohydrodynamics, and plasma physics. The isoperimetric problem in this setting is to maximize helicity among all divergence-free vector fields of given energy, defined on and tangent to the boundary of all domains of given volume in three-space. The Biot-Savart operator starts with a divergence-free vector field defined on and tangent to the boundary of a domain in three-space, regards it as a distribution of electric current, and computes its magnetic field. Restricting the magnetic field to the given domain, we modify it by subtracting a gradient vector field so as to keep it divergence-free while making it tangent to the boundary of the domain. The resulting operator, when extended to the L2 completion of this family of vector fields, is compact and self-adjoint, and thus has a largest eigenvalue, whose corresponding eigenfields are smooth by elliptic regularity. The isoperimetric problem for this modified Biot-Savart operator is to maximize its largest eigenvalue among all domains of given volume in three-space. The curl operator, when restricted to the image of the modified Biot-Savart operator, is its inverse, and the isoperimetric problem for this restriction of the curl is to minimize its smallest positive eigenvalue among all domains of given volume in three-space. These three isoperimetric problems are equivalent to one another. In this paper, we will derive the first variation formulas appropriate to these problems, and use them to constrain the nature of any possible solution. For example, suppose that the vector field V, defined on the compact, smoothly bounded domain ?, maximizes helicity among all divergence-free vector fields of given nonzero energy, defined on and tangent to the boundary of all such domains of given volume. We will show that (1) |V| is a nonzero constant on the boundary of each component of ?; (2) all the components of ?? are tori; and (3) the orbits of V are geodesics on ??. Thus, among smooth simply connected domains, none are optimal in the above sense. In principal, one could have a smooth optimal domain in the shape, say, of a solid torus. However, we believe that there are no smooth optimal domains at all, regardless of topological type, and that the true optimizer looks like the singular domain presented in this paper, which we can think of either as an extreme apple, in which the north and south poles have been pressed together, or as an extreme solid torus, in which the hole has been shrunk to a point. A computational search for this singular optimal domain and the helicity-maximizing vector field on it is at present under way, guided by the first variation formulas in this paper.
Killing Vector Fields in Three Dimensions: A Method to Solve Massive Gravity Field Equations
Metin Gurses
2010-07-29
Killing vector fields in three dimensions play important role in the construction of the related spacetime geometry. In this work we show that when a three dimensional geometry admits a Killing vector field then the Ricci tensor of the geometry is determined in terms of the Killing vector field and its scalars. In this way we can generate all products and covariant derivatives at any order of the ricci tensor. Using this property we give ways of solving the field equations of Topologically Massive Gravity (TMG) and New Massive Gravity (NMG) introduced recently. In particular when the scalars of the Killing vector field (timelike, spacelike and null cases) are constants then all three dimensional symmetric tensors of the geometry, the ricci and einstein tensors, their covariant derivatives at all orders, their products of all orders are completely determined by the Killing vector field and the metric. Hence the corresponding three dimensional metrics are strong candidates of solving all higher derivative gravitational field equations in three dimensions.
Killing vector fields in three dimensions: a method to solve massive gravity field equations
NASA Astrophysics Data System (ADS)
Gürses, Metin
2010-10-01
Killing vector fields in three dimensions play an important role in the construction of the related spacetime geometry. In this work we show that when a three-dimensional geometry admits a Killing vector field then the Ricci tensor of the geometry is determined in terms of the Killing vector field and its scalars. In this way we can generate all products and covariant derivatives at any order of the Ricci tensor. Using this property we give ways to solve the field equations of topologically massive gravity (TMG) and new massive gravity (NMG) introduced recently. In particular when the scalars of the Killing vector field (timelike, spacelike and null cases) are constants then all three-dimensional symmetric tensors of the geometry, the Ricci and Einstein tensors, their covariant derivatives at all orders, and their products of all orders are completely determined by the Killing vector field and the metric. Hence, the corresponding three-dimensional metrics are strong candidates for solving all higher derivative gravitational field equations in three dimensions.
Unique topological characterization of braided magnetic fields
Yeates, A. R.; Hornig, G.
2013-01-15
We introduce a topological flux function to quantify the topology of magnetic braids: non-zero, line-tied magnetic fields whose field lines all connect between two boundaries. This scalar function is an ideal invariant defined on a cross-section of the magnetic field, and measures the average poloidal magnetic flux around any given field line, or the average pairwise crossing number between a given field line and all others. Moreover, its integral over the cross-section yields the relative magnetic helicity. Using the fact that the flux function is also an action in the Hamiltonian formulation of the field line equations, we prove that it uniquely characterizes the field line mapping and hence the magnetic topology.
Effects of magnetic fields on combustion (abstract)
NASA Astrophysics Data System (ADS)
Ueno, S.
1990-05-01
We have observed a phenomenon that candle flames are pressed down by magnetic fields. We have also observed that flows of gases such as carbon dioxide and oxygen are blocked by magnetic fields. A model, called a ``magnetic curtain,'' has been introduced to explain these phenomena. The magnetic curtain is a wall of air which is produced by magnetic fields. We have demonstrated an experiment to show that candle flames are quenched by the magnetic curtain. The present study focuses on the mechanism of the phenomena involving quenching of flames using magnetic fields. An electromagnet with a pair of columnar magnetic poles in which inner sidepieces were hollowed out was used first. Magnetic fields of 1.5 T at the brim gave a gradient of 50-300 T/m in the direction perpendicular to the pole axis. Alcohol was burned in the hollowed space between magnetic poles. Gases around flames in the hollowed space were sampled into gas sensors through an inhalation nozzle. Oxygen, carbon dioxide, and carbon monoxide were simultaneously measured during the combustion of methanol and ethanol. During magnetic field exposures, oxygen concentration decreased, whereas concentrations of carbon dioxide and carbon monoxide increased. However, when flames were quenced in a few seconds, oxygen concentration in the hallowed space was not changed, and very little of carbon dioxide and carbon monoxide were produced. The interception of a small amount of oxygen near the surface of the flames may quench flames. Emission spectra of flames of methanol and ethanol were measured before, during, and after magnetic field exposures, using both uniform and gradient magnetic fields. Intensity of the OH radical was not changed by magnetic fields up to 1.6 T, whereas the emission intensity was increased when the product of magnetic fields and the gradient increased.
Magnetic fluid motion in rotating field
NASA Astrophysics Data System (ADS)
Rosensweig, R. E.; Popplewell, J.; Johnston, R. J.
1990-04-01
Through experiment and analysis, tangential free-surface-stress is identified as the dominant mechanism in the coupling of uniform rotary magnetic fields to the spin-up motion of colloidal magnetic fluid.
Bipolar pulse field for magnetic refrigeration
Lubell, M.S.
1994-10-25
A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.
Bipolar pulse field for magnetic refrigeration
Lubell, Martin S. (Oak Ridge, TN)
1994-01-01
A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.
Construction of Solar-Wind-Like Magnetic Fields
NASA Technical Reports Server (NTRS)
Roberts, Dana Aaron
2012-01-01
Fluctuations in the solar wind fields tend to not only have velocities and magnetic fields correlated in the sense consistent with Alfven waves traveling from the Sun, but they also have the magnitude of the magnetic field remarkably constant despite their being broadband. This paper provides, for the first time, a method for constructing fields with nearly constant magnetic field, zero divergence, and with any specified power spectrum for the fluctuations of the components of the field. Every wave vector, k, is associated with two polarizations the relative phases of these can be chosen to minimize the variance of the field magnitude while retaining the\\random character of the fields. The method is applied to a case with one spatial coordinate that demonstrates good agreement with observed time series and power spectra of the magnetic field in the solar wind, as well as with the distribution of the angles of rapid changes (discontinuities), thus showing a deep connection between two seemingly unrelated issues. It is suggested that using this construction will lead to more realistic simulations of solar wind turbulence and of the propagation of energetic particles.
Construction of solar-wind-like magnetic fields.
Roberts, D Aaron
2012-12-01
Fluctuations in the solar wind fields tend to not only have velocities and magnetic fields correlated in the sense consistent with Alfvén waves traveling from the Sun, but they also have the magnitude of the magnetic field remarkably constant despite their being broadband. This Letter provides, for the first time, a method for constructing fields with nearly constant magnetic field, zero divergence, and with any specified power spectrum for the fluctuations of the components of the field. Every wave vector, k, is associated with two polarizations; the relative phases of these can be chosen to minimize the variance of the field magnitude while retaining the "random" character of the fields. The method is applied to a case with one spatial coordinate that demonstrates good agreement with observed time series and power spectra of the magnetic field in the solar wind, as well as with the distribution of the angles of rapid changes ("discontinuities"), thus showing a deep connection between two seemingly unrelated issues. It is suggested that using this construction will lead to more realistic simulations of solar wind turbulence and of the propagation of energetic particles. PMID:23368180
New Synoptic Measurements of Umbral Magnetic Fields
NASA Astrophysics Data System (ADS)
Harvey, J. W.; Hughes, A.; Marble, A.; Livingston, W. C.; Pevtsov, A.; SOLIS Team
2013-07-01
Apparent cyclic and secular changes of sunspot umbral intensities and magnetic field strengths have been reported for many decades. Monthly measurements since 1998 show changes that have been interpreted as a decline in sunspot vigor that, if continued, may lead to very few visible sunspots in forthcoming cycles (Livingston, Penn, and Svalgaard 2012, ApJ 757, L8). This dramatic notion is controversial (e.g. Nagovitsyn, Pevtsov, and Livingston 2012, ApJ 758, L20), and additional observational evidence is needed based on a minimum of interpretational steps and selection effects. The SOLIS vector spectromagnetograph has recorded photospheric spectra around 630.2 nm over the full solar disk daily since late 2003 with spatial and spectral pixel dimensions of about one arc second and 2.3 pm. We fit the unpolarized intensity spectra in sunspots with a simple Zeeman triplet model using a single field strength, which works well if the field strength exceeds about 2 kG and the individual spectra are not affected by strong Doppler and/or Zeeman variations. The derived total field strengths may be compared with independent spectrograph-based measurements from NSO, Hinode/SP, and Mt. Wilson and with filter-based measurements from SoHO/MDI and SDO/HMI. NSO plans to implement this reduction for all suitable archived SOLIS spectra and to continue daily umbral field strength measurements as cycle 24 proceeds. Preliminary comparisons show good agreements in some cases and systematic differences in others.Abstract (2,250 Maximum Characters): Apparent cyclic and secular changes of sunspot umbral intensities and magnetic field strengths have been reported for many decades. Monthly measurements since 1998 show changes that have been interpreted as a decline in sunspot vigor that, if continued, may lead to very few visible sunspots in forthcoming cycles (Livingston, Penn, and Svalgaard 2012, ApJ 757, L8). This dramatic notion is controversial (e.g. Nagovitsyn, Pevtsov, and Livingston 2012, ApJ 758, L20), and additional observational evidence is needed based on a minimum of interpretational steps and selection effects. The SOLIS vector spectromagnetograph has recorded photospheric spectra around 630.2 nm over the full solar disk daily since late 2003 with spatial and spectral pixel dimensions of about one arc second and 2.3 pm. We fit the unpolarized intensity spectra in sunspots with a simple Zeeman triplet model using a single field strength, which works well if the field strength exceeds about 2 kG and the individual spectra are not affected by strong Doppler and/or Zeeman variations. The derived total field strengths may be compared with independent spectrograph-based measurements from NSO, Hinode/SP, and Mt. Wilson and with filter-based measurements from SoHO/MDI and SDO/HMI. NSO plans to implement this reduction for all suitable archived SOLIS spectra and to continue daily umbral field strength measurements as cycle 24 proceeds. Preliminary comparisons show good agreements in some cases and systematic differences in others.
A New Method for Coronal Magnetic Field Reconstruction
NASA Astrophysics Data System (ADS)
Yi, Sibaek; Choe, Gwangson; Lim, Daye
2015-08-01
We present a new, simple, variational method for reconstruction of coronal force-free magnetic fields based on vector magnetogram data. Our method employs vector potentials for magnetic field description in order to ensure the divergence-free condition. As boundary conditions, it only requires the normal components of magnetic field and current density so that the boundary conditions are not over-specified as in many other methods. The boundary normal current distribution is initially fixed once and for all and does not need continual adjustment as in stress-and-relax type methods. We have tested the computational code based on our new method in problems with known solutions and those with actual photospheric data. When solutions are fully given at all boundaries, the accuracy of our method is almost comparable to best performing methods in the market. When magnetic field data are given only at the photospheric boundary, our method excels other methods in most “figures of merit” devised by Schrijver et al. (2006). Furthermore the residual force in the solution is at least an order of magnitude smaller than that of any other method. It can also accommodate the source-surface boundary condition at the top boundary. Our method is expected to contribute to the real time monitoring of the sun required for future space weather forecasts.
Franck-Hertz experiment in magnetic field
Ying Weng; Zi-Hua Weng
2010-10-07
The paper studies the impact of applied magnetic field on the inelastic collisions of electrons with argon atoms. In the electron-argon Franck-Hertz experiment, the influence of applied magnetic field emerges complicated features, and is equivalent to that of the temperature. In case the accelerating electric intensity becomes strong enough, enlarging magnetic flux density will be equivalent to the increasing of oven temperature. When the accelerating electric intensity is very weak and the applied magnetic field occupies a dominant position, enhancing magnetic flux density is identical with the decreasing of oven temperature. And the non-uniform distribution of applied magnetic field has an influence on the inelastic collision as well. The study claims that the influence of magnetic field variation is equivalent to that of temperature variety, and that it leads the electron energy to transfer obviously in the experiment.
Exploring Magnetic Fields in Your Environment
NSDL National Science Digital Library
This is a lesson about measuring magnetic field directions of Earth and in the environment. First, learners go outside, far away from buildings, power lines, or anything electrical or metal, and use compasses to identify magnetic North. Next, they use the compasses to probe whether there are any sources of magnetic fields in the local environment, including around electronic equipment such as a CD player and speakers. This is the first lesson in the second session of the Exploring Magnetism teacher guide.
NASA Astrophysics Data System (ADS)
Zheng, Yangdong; Yoshimura, Satoru; Egawa, Genta; Zheng, Fu; Kinoshita, Yukinori; Saito, Hitoshi
2015-08-01
A pulsed magnetic field magnetic force microscope (PMF-MFM) is developed for evaluation of the magnetic properties of nano-scale materials and devices, as well as the characteristics of MFM tips. We present the setup of the PMF-MFM system, and focus on the evaluation of a FeCo soft magnetic tip by PMF-MFM. We find a new theoretical method to calculate tip magnetization curves (M-H curves) using MFM phase signals. We measure the MFM phase and amplitude signals for the FeCo tip during the presence of the pulsed magnetic fields oriented parallel and antiparallel to the initial tip magnetization direction, and acquire the tip coercivity H c ~ 1.1?kOe. The tip M-H curves are also calculated using the MFM phase signals data. We obtain the basic features of the tip magnetic properties from the tip M-H curves.
Magnetic fields in young supernova remnants
NASA Astrophysics Data System (ADS)
Lou, Yu-Qing
1994-06-01
Magnetic field strengths in several young Type I supernova remnants (SNRs), such as those associated with SN 1572, 1604, 1006, have been previously inferred from radio synchrotron observations to be of the order of approximately 10-4 - 10-3 G, which greatly exceeds the typical magnetic field strength of several microgauss in ambient interstellar media (ISM). Existing radio polarization studies indicate that projected large-scale magnetic fields tend to orient in the radial direction with several percent in excess within shells of these SNRs. We propose in this Letter that magnetic fields in these young SNRs could mainly originate from magnetized envelopes or magnetospheres of their presupernova progenitors, presumably magnetic white dwarfs, and that magnetic fields entrained in stellar ejecta roughly scale as approximately r-1. The inferred excess of radial alignment for magnetic fields in these young SNRs could result from the Rayleigh-Taylor instability and/or the presence of large-scale random helices of magnetic field lines with their axes meandering through the SNR shell. Molecular clouds and clumps of stellar materials surrounding the presupernova progenitor could also produce radial magnetic fields from transverse fields as the SNR expands into the ISM.
Permanent magnet configurations for magnetic-field-enhanced RIE
JEAN-PAUL YONNET; ALAIN PICARD
1990-01-01
Several permanent magnet systems have been developed to enhance the reactive ion etching (RIE) of wafers. A new system, running with rotating bar-shaped magnets, that provides a traveling magnetic field in the wafer area is presented. This configuration is well adapted to obtaining fast and uniform etching
Exploring Vector Fields with Distribution-based Streamline Analysis
Lu, Kewei; Chaudhuri, Abon; Lee, Teng-Yok; Shen, Han-Wei; Wong, Pak C.
2013-02-26
Streamline-based techniques are designed based on the idea that properties of streamlines are indicative of features in the underlying field. In this paper, we show that statistical distributions of measurements along the trajectory of a streamline can be used as a robust and effective descriptor to measure the similarity between streamlines. With the distribution-based approach, we present a framework for interactive exploration of 3D vector fields with streamline query and clustering. Streamline queries allow us to rapidly identify streamlines that share similar geometric features to the target streamline. Streamline clustering allows us to group together streamlines of similar shapes. Based on users selection, different clusters with different features at different levels of detail can be visualized to highlight features in 3D flow fields. We demonstrate the utility of our framework with simulation data sets of varying nature and size.
Statistics of anisotropies in inflation with spectator vector fields
Thorsrud, Mikjel; Mota, David F.; Urban, Federico R. E-mail: furban@ulb.ac.be
2014-04-01
We study the statistics of the primordial power spectrum in models where massless gauge vectors are coupled to the inflaton, paying special attention to observational implications of having fundamental or effective horizons embedded in a bath of infrared fluctuations. As quantum infrared modes cross the horizon, they classicalize and build a background vector field. We find that the vector experiences a statistical precession phenomenon. Implications for primordial correlators and the interpretation thereof are considered. Firstly, we show how in general two, not only one, additional observables, a quadrupole amplitude and an intrinsic shape parameter, are necessary to fully describe the correction to the curvature power spectrum, and develop a unique parametrization for them. Secondly, we show that the observed anisotropic amplitude and the associated preferred direction depend on the volume of the patch being probed. We calculate non-zero priors for the expected deviations between detections based on microwave background data (which probes the entire Hubble patch) and large scale structure (which only probes a fraction of it)
NASA Astrophysics Data System (ADS)
Emmert, J. T.; Richmond, A. D.; Drob, D. P.
2010-08-01
Many structural and dynamical features of the ionized and neutral upper atmosphere are strongly organized by the geomagnetic field, and several magnetic coordinate systems have been developed to exploit this organization. Quasi-Dipole coordinates are appropriate for calculations involving horizontally stratified phenomena like height-integrated currents, electron densities, and thermospheric winds; Modified Apex coordinates are appropriate for calculations involving electric fields and magnetic field-aligned currents. The calculation of these coordinates requires computationally expensive tracing of magnetic field lines to their apexes. Interpolation on a precomputed grid provides faster coordinate conversions, but requires the overhead of a sufficiently fine grid, as well as finite differencing to obtain coordinate base vectors. In this paper, we develop a compact and robust representation of the transformation from geodetic to Quasi-Dipole (QD), Apex, and Modified Apex coordinates, by fitting the QD coordinates to spherical harmonics in geodetic longitude and latitude. With this representation, base vectors may be calculated directly from the expansion coefficients. For an expansion truncated at order 6, the fitted coordinates deviate from the actual coordinates by a maximum of 0.4°, and typically by 0.1°. The largest errors occur in the equatorial Atlantic region. Compared to interpolation on a pre-computed grid, the spherical harmonic representation is much more compact and produces smooth base vectors. An algorithm for efficiently and concurrently computing scalar and vector spherical harmonic functions is provided in the appendix. Computer code for producing the expansion coefficients and evaluating the fitted coordinates and base vectors is included in the auxiliary material.
DC-based magnetic field controller
Kotter, Dale K. (Shelley, ID); Rankin, Richard A. (Ammon, ID); Morgan, John P,. (Idaho Falls, ID)
1994-01-01
A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.
PALEOMAGNETISM Solar nebula magnetic fields recorded
Walsworth, Ronald L.
REPORTS PALEOMAGNETISM Solar nebula magnetic fields recorded in the Semarkona meteorite Roger R. Walsworth,6,7 Aaron T. Kuan9 Magnetic fields are proposed to have played a critical role in some of the most on the intensity of these fields. Here we show that dusty olivine-bearing chondrules from the Semarkona meteorite
Static uniform magnetic fields and amoebae
Berk, S.G.; Srikanth, S.; Mahajan, S.M.; Ventrice, C.A.
1997-03-01
Three species of potentially pathogenic amoebae were exposed to 71 and 106.5 mT from constant homogeneous magnetic fields and examined for inhibition of population growth. The number of amoebae for three species was significantly less than controls after a 72 h exposure to the magnetic fields when the temperature was 20 C or above. Axenic cultures, i.e., cultures grown without bacteria, were significantly affected after only 24 h. In 20 of 21 tests using the three species, the magnetic field significantly inhibited the growth of amoebae. In one test in which the temperature was 20 C for 48 h, exposure to the magnetic field was not inhibitory. Final numbers of magnetic field-exposed amoebae ranged from 9 to 72% lower than the final numbers of unexposed controls, depending on the species. This research may lead to disinfection strategies utilizing magnetic fields for surfaces on which pathogenic amoebae may proliferate.
Cyclicity of a fake saddle inside the quadratic vector fields
NASA Astrophysics Data System (ADS)
De Maesschalck, P.; Rebollo-Perdomo, S.; Torregrosa, J.
2015-01-01
This paper concerns the study of small-amplitude limit cycles that appear in the phase portrait near an unfolded fake saddle singularity. This degenerate singularity is also known as an impassable grain. The canonical form of the unperturbed vector field is like a degenerate flow box. Near the singularity, the phase portrait consists of parallel fibers, all but one of which have no singular points, and at the singular fiber, there is one node. We demonstrate different techniques in order to show that the cyclicity is bigger than or equal to two when the canonical form is quadratic.
2T Physics, Scale Invariance and Topological Vector Fields
W. Chagas-Filho
2007-11-22
We construct, in classical two-time physics, the necessary structure for the most general configuration space formulation of quantum mechanics containing gravity in d+2 dimensions. This structure is composed of a symmetric Riemannian metric tensor and of a vector field that defines a section of a flat U(1) bundle over space-time. This construction is possible because of the existence of a finite local scale invariance of the Hamiltonian and because two-time physics contains, at the classical level, a local generalization of the discrete duality symmetry between position and momentum that underlies the structure of quantum mechanics.
Reconstruction of environment model by using radar vector field histograms
NASA Astrophysics Data System (ADS)
Szyma?ski, Zbigniew; Jankowski, Stanis?aw; Szczyrek, Jan
The paper presents a method of creating an environment model in collision avoidance system for unmanned aerial vehicles (UAV). The environment model is generated by the procedures processing the data from on-board equipment and digital maps. The main sensor that provides information about the current situation around the UAV is a radar obstacle detector. Each detected object is defined by such parameters as distance, speed and the number of radial zone. The method is based on the idea of the certainty grid introduced in vector field histogram method which is used as a probabilistic representation of the obstacles. The tests of developed algorithm were performed in simulated environment.
Artificial magnetic field induced by an evanescent wave.
Mochol, Ma?gorzata; Sacha, Krzysztof
2015-01-01
Cold atomic gases are perfect laboratories for realization of quantum simulators. In order to simulate solid state systems in the presence of magnetic fields special effort has to be made because atoms are charge neutral. There are different methods for realization of artificial magnetic fields, that is the creation of specific conditions so that the motion of neutral particles mimics the dynamics of charged particles in an effective magnetic field. Here, we consider adiabatic motion of atoms in the presence of an evanescent wave. Theoretical description of the adiabatic motion involves artificial vector and scalar potentials related to the Berry phases. Due to the large gradient of the evanescent field amplitude, the potentials can be strong enough to induce measurable effects in cold atomic gases. We show that the resulting artificial magnetic field is able to induce vortices in a Bose-Einstein condensate trapped close to a surface of a prism where the evanescent wave is created. We also analyze motion of an atomic cloud released from a magneto-optical trap that falls down on the surface of the prism. The artificial magnetic field is able to reflect falling atoms that can be observed experimentally. PMID:25567430
Liu, Chang; Liu, Rui; Lee, Jeongwoo; Wiegelmann, Thomas; Jing, Ju; Xu, Yan; Wang, Shuo; Wang, Haimin
2011-01-01
The rapid, irreversible change of the photospheric magnetic field has been recognized as an important element of the solar flare process. This Letter reports such a rapid change of magnetic fields during the 2011 February 13 M6.6 flare in NOAA AR 11158 that we found from the vector magnetograms of the Helioseismic and Magnetic Imager with 12-min cadence. High-resolution magnetograms of Hinode that are available at ~-5.5, -1.5, 1.5, and 4 hrs relative to the flare maximum are used to reconstruct three-dimensional coronal magnetic field under the nonlinear force-free field (NLFFF) assumption. UV and hard X-ray images are also used to illuminate the magnetic field evolution and energy release. The rapid change is mainly detected by HMI in a compact region lying in the center of the magnetic sigmoid, where the mean horizontal field strength exhibited a significant increase by 28%. The region lies between the initial strong UV and hard X-ray sources in the chromosphere, which are cospatial with the central feet of...
Numerical analysis of magnetic field in superconducting magnetic energy storage
Kanamaru, Y. ); Amemiya, Y. )
1991-09-01
This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES for reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method.
Extraterrestrial Magnetic Fields: Achievements and Opportunities
EDWARD J. SMITHAND; Charles Sonett
1976-01-01
The major scientific achievements associated with the measurement of magnetic fields in space over the past decade and a half are reviewed. Aspects of space technology relevant to magnetic-field observations are discussed, including the different types of magnetometers used and how they operate, problems arising from spacecraft-generated magnetic fields and the appropriate countermeasures that have been developed and on-board processing
NASA Astrophysics Data System (ADS)
Sayanagi, K.; Isezaki, N.; Matsuo, J.; Harada, M.; Kasaya, T.
2011-12-01
Geophysical surveys near the seafloor are very effective methods in order to investigate fine structures of the oceanic crust. Such surveys have increased in researches and developments of the seafloor, and will be more and more necessary in the future. For example, seabed resources like hydrothermal deposits have recently focused attention behind the international situation for natural resources like a competition of resources development. In order to estimate accurate abundance of those resources, the above detailed investigations should be needed because of low resolution of geophysical surveys on the sea and low efficiency of exploratory drilling. From such a viewpoint, we have been developing a measurement system for magnetic explorations using an AUV and a deep-tow system. The magnetic exploration system consists of two 3-axis flux-gate magnetometers, one/two Overhauser magnetometer(s), an optical fiber gyro, a main unit (control, communication, recording), and an onboard unit. These devices except for the onboard unit are installed in pressure cases (depth limit: 6000m). Thus this system can measure three components and total intensity of the geomagnetic field in the deep sea. In 2009, the first test of the magnetic exploration system was carried out in the Kumano Basin using AUV Urashima and towing vehicle Yokosuka Deep-Tow during the R/V Yokosuka YK09-09 cruise. In this test, we sank a small magnetic target to the seafloor, and examined how the system worked. As a result, we successfully detected magnetic anomaly of the target to confirm the expected performance of that in the sea. In 2010, the magnetic exploration system was further tested in the Bayonnaise Knoll area both using a titanium towing frame during the R/V Bosei-maru cruise and using AUV Urashima during the R/V Yokosuka YK10-17 cruise. The purpose of these tests was to evaluate the performance of the system in an actual hydrothermal deposit area for practical applications of that. The Bayonnaise Knoll is a submarine caldera with an outer rim of 2.5-3 km and a floor of 840-920 m, which is located in the Izu-Ogasawara arc. A large hydrothermal deposit, Hakurei deposit, lies in the southeast part of the caldera. In the R/V Bosei-maru cruise, we observed three components of magnetic anomalies at depths of 400-570 m along SE-NW and WE tracks across the caldera. In the R/V Yokosuka YK10-17 cruise, we observed three components and total intensity of magnetic anomalies at altitudes of 60-100 m around the Hakurei deposit and at depth of 500 m above the caldera. The analysis of these data is now energetically pushed forward. A 3D gridded data set of the vector magnetic anomaly in the latter cruise was made by solving the Laplace's equation in the areas where observation data were not available, which is the unique procedure for analysis of the vector anomalies. Several magnetization solutions have been so far obtained by successive approximation and inversion methods. We will here present the measurement of the geomagnetic field and analysis of magnetization structure in Bayonnaise Knoll caldera. Note that this study has been supported by the Ministry of Education, Culture, Sports, Science & Technology (MEXT).
Minimizing magnetic fields for precision experiments
Altarev, I; Lins, T; Marino, M G; Nießen, B; Petzoldt, G; Reisner, M; Stuiber, S; Sturm, M; Singh, J T; Taubenheim, B; Rohrer, H K; Schläpfer, U
2015-01-01
An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a linear improvement in the systematic reach and a 40 % improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.
Conducting object in the presence of a variable magnetic field
NASA Astrophysics Data System (ADS)
Savchenko, A. O.; Savchenko, O. Ya.
2015-07-01
A numerical method is proposed to determine vector potential and gradient of scalar potential inside a conductor in the presence of a magnetic field that exhibits harmonic variations with time. The problem is reduced to the solution of the Helmholtz equation in a conducting object under the condition that the normal component of the right-hand side of equation on the conducting surface is zero. An iterative procedure is proposed for the solution of the original problem. First, the surface charge distribution that satisfies the boundary condition for the vector potential on the conducting surface is found, and, then, the next approximation for the vector potential is obtained with the aid of the Poisson equation. The method is illustrated using numerical experiments.