Diagnostics of vector magnetic fields
NASA Technical Reports Server (NTRS)
Stenflo, J. O.
1985-01-01
It is shown that the vector magnetic fields derived from observations with a filter magnetograph will be severely distorted if the spatially unresolved magnetic structure is not properly accounted for. Thus the apparent vector field will appear much more horizontal than it really is, but this distortion is strongly dependent on the area factor and the temperature line weakenings. As the available fluxtube models are not sufficiently well determined, it is not possible to correct the filter magnetograph observations for these effects in a reliable way, although a crude correction is of course much better than no correction at all. The solution to this diagnostic problem is to observe simultaneously in suitable combinations of spectral lines, and/or use Stokes line profiles recorded with very high spectral resolution. The diagnostic power of using a Fourier transform spectrometer for polarimetry is shown and some results from I and V spectra are illustrated. The line asymmetries caused by mass motions inside the fluxtubes adds an extra complication to the diagnostic problem, in particular as there are indications that the motions are nonstationary in nature. The temperature structure appears to be a function of fluxtube diameter, as a clear difference between plage and network fluxtubes was revealed. The divergence of the magnetic field with height plays an essential role in the explanation of the Stokes V asymmetries (in combination with the mass motions). A self consistent treatment of the subarcsec field geometry may be required to allow an accurate derivation of the spatially averaged vector magnetic field from spectrally resolved data.
Measurements of Solar Vector Magnetic Fields
NASA Technical Reports Server (NTRS)
Hagyard, M. J. (Editor)
1985-01-01
Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.
Magnetic vector field tag and seal
Johnston, Roger G.; Garcia, Anthony R.
2004-08-31
One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.
Vector Magnetic Field in Emerging Flux Regions
NASA Astrophysics Data System (ADS)
Schmieder, B.; Pariat, E.
A crucial phase in magnetic flux emergence is the rise of magnetic flux tubes through the solar photosphere, which represents a severe transition between the very different environments of the solar interior and corona. Multi-wavelength observations with Flare Genesis, TRACE, SoHO, and more recently with the vector magnetographs at THEMIS and Hida (DST) led to the following conclusions. The fragmented magnetic field in the emergence region - with dipped field lines or bald patches - is directly related with Ellerman bombs, arch filament systems, and overlying coronal loops. Measurements of vector magnetic fields have given evidence that undulating "serpentine" fields are present while magnetic flux tubes cross the photosphere. See the sketch below, and for more detail see Pariat et al. (2004, 2007); Watanabe et al. (2008):
The significance of vector magnetic field measurements
NASA Technical Reports Server (NTRS)
Hagyard, M. J.
1990-01-01
Observations of four flaring solar active regions, obtained during 1980-1986 with the NASA Marshall vector magnetograph (Hagyard et al., 1982 and 1985), are presented graphically and characterized in detail, with reference to nearly simultaneous Big Bear Solar Observatory and USAF ASW H-alpha images. It is shown that the flares occurred where local photospheric magnetic fields differed most from the potential field, with initial brightening on either side of a magnetic-neutral line near the point of maximum angular shear (rather than that of maximum magnetic-field strength, typically 1 kG or greater). Particular emphasis is placed on the fact that these significant nonpotential features were detected only by measuring all three components of the vector magnetic field.
The vector structure of active magnetic fields
NASA Technical Reports Server (NTRS)
Parker, E. N.
1985-01-01
Observations are needed to show the form of the strains introduced into the fields above the surface of the Sun. The longitudinal component alone does not provide the basic information, so that it has been necessary in the past to use the filamentary structure observed in H sub alpha to supplement the longitudinal information. Vector measurements provide the additional essential information to determine the strains, with the filamentary structure available as a check for consistency. It is to be expected, then, that vector measurements will permit a direct mapping of the strains imposed on the magnetic fields of active regions. It will be interesting to study the relation of those strains to the emergence of magnetic flux, flares, eruptive prominences, etc. In particular we may hope to study the relaxation of the strains via the dynamical nonequilibrium.
DC-magnetic field vector measurement
NASA Technical Reports Server (NTRS)
Schmidt, R.
1981-01-01
A magnetometer experiment was designed to determine the local magnetic field by measuring the total of the Earth's magnetic field and that of an unknown spacecraft. The measured field vector components are available to all onboard experiments via the Spacelab command and data management system. The experiment consists of two parts, an electronic box and the magnetic field sensor. The sensor includes three independent measuring flux-gate magnetometers, each measuring one component. The physical background is the nonlinearity of the B-H curve of a ferrite material. Two coils wound around a ferrite rod are necessary. One of them, a tank coil, pumps the ferrite rod at approximately 20 kilohertz. As a consequence of the nonlinearity, many harmonics can be produced. The second coil (i.e., the detection coil) resonates to the first harmonic. If an unknown dc or low-frequency magnetic field exists, the amplitude of the first harmonic is a measure for the unknown magnetic field. The voltages detected by the sensors are to be digitized and transferred to the command and data management system.
Mapping the magnetic field vector in a fountain clock
Gertsvolf, Marina; Marmet, Louis
2011-12-15
We show how the mapping of the magnetic field vector components can be achieved in a fountain clock by measuring the Larmor transition frequency in atoms that are used as a spatial probe. We control two vector components of the magnetic field and apply audio frequency magnetic pulses to localize and measure the field vector through Zeeman spectroscopy.
Spectral Analysis of Vector Magnetic Field Profiles
NASA Technical Reports Server (NTRS)
Parker, Robert L.; OBrien, Michael S.
1997-01-01
We investigate the power spectra and cross spectra derived from the three components of the vector magnetic field measured on a straight horizontal path above a statistically stationary source. All of these spectra, which can be estimated from the recorded time series, are related to a single two-dimensional power spectral density via integrals that run in the across-track direction in the wavenumber domain. Thus the measured spectra must obey a number of strong constraints: for example, the sum of the two power spectral densities of the two horizontal field components equals the power spectral density of the vertical component at every wavenumber and the phase spectrum between the vertical and along-track components is always pi/2. These constraints provide powerful checks on the quality of the measured data; if they are violated, measurement or environmental noise should be suspected. The noise due to errors of orientation has a clear characteristic; both the power and phase spectra of the components differ from those of crustal signals, which makes orientation noise easy to detect and to quantify. The spectra of the crustal signals can be inverted to obtain information about the cross-track structure of the field. We illustrate these ideas using a high-altitude Project Magnet profile flown in the southeastern Pacific Ocean.
Measuring magnetic field vector by stimulated Raman transitions
NASA Astrophysics Data System (ADS)
Wang, Wenli; Dong, Richang; Wei, Rong; Lin, Jinda; Zou, Fan; Chen, Tingting; Wang, Yuzhu
2016-03-01
We present a method for measuring the magnetic field vector in an atomic fountain by probing the line strength of stimulated Raman transitions. The relative line strength for a Λ-type level system with an existing magnetic field is theoretically analyzed. The magnetic field vector measured by our proposed method is consistent well with that by the traditional bias magnetic field method with an axial resolution of 6.1 mrad and a radial resolution of 0.16 rad. Dependences of the Raman transitions on laser polarization schemes are also analyzed. Our method offers the potential advantages for magnetic field measurement without requiring additional bias fields, beyond the limitation of magnetic field intensity, and extending the spatial measurement range. The proposed method can be widely used for measuring magnetic field vector in other precision measurement fields.
Inferring Lower Boundary Driving Conditions Using Vector Magnetic Field Observations
NASA Technical Reports Server (NTRS)
Schuck, Peter W.; Linton, Mark; Leake, James; MacNeice, Peter; Allred, Joel
2012-01-01
Low-beta coronal MHD simulations of realistic CME events require the detailed specification of the magnetic fields, velocities, densities, temperatures, etc., in the low corona. Presently, the most accurate estimates of solar vector magnetic fields are made in the high-beta photosphere. Several techniques have been developed that provide accurate estimates of the associated photospheric plasma velocities such as the Differential Affine Velocity Estimator for Vector Magnetograms and the Poloidal/Toroidal Decomposition. Nominally, these velocities are consistent with the evolution of the radial magnetic field. To evolve the tangential magnetic field radial gradients must be specified. In addition to estimating the photospheric vector magnetic and velocity fields, a further challenge involves incorporating these fields into an MHD simulation. The simulation boundary must be driven, consistent with the numerical boundary equations, with the goal of accurately reproducing the observed magnetic fields and estimated velocities at some height within the simulation. Even if this goal is achieved, many unanswered questions remain. How can the photospheric magnetic fields and velocities be propagated to the low corona through the transition region? At what cadence must we observe the photosphere to realistically simulate the corona? How do we model the magnetic fields and plasma velocities in the quiet Sun? How sensitive are the solutions to other unknowns that must be specified, such as the global solar magnetic field, and the photospheric temperature and density?
Magnetic-field-compensation optical vector magnetometer.
Papoyan, Aram; Shmavonyan, Svetlana; Khanbekyan, Alen; Khanbekyan, Karen; Marinelli, Carmela; Mariotti, Emilio
2016-02-01
A concept for an optical magnetometer used for the measurement of magnitude and direction of a magnetic field (B-field) in two orthogonal directions is developed based on double scanning of a B-field to compensate the measured field to zero value, which is monitored by a resonant magneto-optical process in an unshielded atomic vapor cell. Implementation of the technique using the nonlinear Hanle effect on the D_{2} line of rubidium demonstrates viability and efficiency of the proposed concept. The ways to enhance characteristics of the suggested technique and optimize its performance, as well as the possible extension to three-axis magnetometry, are discussed. PMID:26836097
Magnetic field satellite /MAGSAT/ spacecraft vector magnetometer calibration
NASA Technical Reports Server (NTRS)
Hinkal, S. W.
1980-01-01
The low-flying MAGSAT spacecraft, launched October 30, 1979, included a Vector Magnetometer to accurately map the magnitude and direction of the magnetic field of the earth. Calibration of the magnetometer included arc-second precision determination of the relative orientations of the three sensor axes in a coordinate system defined by optical references. This determination began with laboratory measurements of the relative alignments of optical components mounted with the magnetometer. The actual calibration procedure then consisted basically of accurate and repeatable positioning of the Vector Magnetometer within a unique magnetic test facility which nulls the earth's magnetic field, then generates magnetic fields of various orientations and strengths. Analysis of the magnetometer sensor outputs together with the position and alignment data then gave the axes orientations. We used precision theodolites and methods related to surveying techniques to achieve the accurate positioning and optical component alignment measurements. The final calibration accuracy exceeded results previously achieved in the facility.
Determination of coronal magnetic fields from vector magnetograms
NASA Technical Reports Server (NTRS)
Mikic, Zoran
1993-01-01
This report covers technical progress during the second year of the contract entitled 'Determination of Coronal Magnetic Fields from Vector Magnetograms,' NASW-4728, between NASA and Science Applications International Corporation, and covers the period January 1, 1993 to December 31, 1993. Under this contract SAIC has conducted research into the determination of coronal magnetic fields from vector magnetograms, including the development and application of algorithms to determine force-free coronal fields above selected observations of active regions. The contract began on June 30, 1992 and has a completion date of December 31, 1994. This contract is a continuation of work started in a previous contract, NASW-4571, which covered the period November 15, 1990 to December 14, 1991. During this second year we have concentrated on studying additional active regions and in using the estimated coronal magnetic fields to compare to coronal features inferred from observations.
Determination of Coronal Magnetic Fields from Vector Magnetograms
NASA Technical Reports Server (NTRS)
Mikic, Zoran
1997-01-01
During the course of the present contract we developed an 'evolutionary technique' for the determination of force-free coronal magnetic fields from vector magnetograph observations. The method can successfully generate nonlinear force- free fields (with non-constant-a) that match vector magnetograms. We demonstrated that it is possible to determine coronal magnetic fields from photospheric measurements, and we applied it to vector magnetograms of active regions. We have also studied theoretical models of coronal fields that lead to disruptions. Specifically, we have demonstrated that the determination of force-free fields from exact boundary data is a well-posed mathematical problem, by verifying that the computed coronal field agrees with an analytic force-free field when boundary data for the analytic field are used; demonstrated that it is possible to determine active-region coronal magnetic fields from photospheric measurements, by computing the coronal field above active region 5747 on 20 October 1989, AR6919 on 15 November 1991, and AR7260 on 18 August 1992, from data taken with the Stokes Polarimeter at Mees Solar Observatory, University of Hawaii; started to analyze active region 7201 on 19 June 1992 using measurements made with the Advanced Stokes Polarimeter at NSO/Sac Peak; investigated the effects of imperfections in the photospheric data on the computed coronal magnetic field; documented the coronal field structure of AR5747 and compared it to the morphology of footpoint emission in a flare, showing that the 'high- pressure' H-alpha footpoints are connected by coronal field lines; shown that the variation of magnetic field strength along current-carrying field lines is significantly different from the variation in a potential field, and that the resulting near-constant area of elementary flux tubes is consistent with observations; begun to develop realistic models of coronal fields which can be used to study flare trigger mechanisms; demonstrated that magnetic nonequilibrium can disrupt sheared coronal arcades, and that helmet streamers can disrupt, leading to coronal mass ejections. Our model has significantly extended the realism with which the coronal magnetic field can be inferred from actual observations. In a subsequent contract awarded by NASA, we have continued to apply and improve the evolutionary technique, to study the physical properties of active regions, and to develop theoretical models of magnetic fields.
Determination of coronal magnetic fields from vector magnetograms
NASA Technical Reports Server (NTRS)
Mikic, Zoran
1992-01-01
The determination of coronal magnetic fields from vector magnetograms, including the development and application of algorithms to determine force-free coronal fields above selected observations of active regions is studied. Two additional active regions were selected and analyzed. The restriction of periodicity in the 3-D code which is used to determine the coronal field was removed giving the new code variable mesh spacing and is thus able to provide a more realistic description of coronal fields. The NOAA active region AR5747 of 20 Oct. 1989 was studied. A brief account of progress during the research performed is reported.
Analysis of the vector magnetic fields of complex sunspots
NASA Technical Reports Server (NTRS)
Patty, S. R.
1981-01-01
An analysis of the vector magnetic field in the delta-configurations of two complex sunspot groups is presented, noting several characteristics identified in the delta-configurations. The observations of regions 2469 (S12E80) and 2470 (S21E83) took place in May, 1980 with a vector magnetograph, verified by optical viewing. Longitudinal magnetic field plots located the delta-configurations in relation to the transverse field neutral line. It is shown that data on the polarization yields qualitative information on the magnetic field strengths, while the azimuth of the transverse field can be obtained from the relative intensities of linear polarization measurements aligned with respect to the magnetograph analyses axis at 0 and 90 deg, and at the plus and minus 45 deg positions. Details of the longitudinal fields are discussed. A strong, sheared transverse field component is found to be a signature of strong delta. A weak delta is accompanied by a weak longitudinal gradient with an unsheared transverse component of variable strength.
Vector magnetic field observations of flux tube emergence
NASA Astrophysics Data System (ADS)
Schmieder, B.; Aulanier, G.; Pariat, E.; Georgoulis, M. K.; Rust, D. M.; Bernasconi, P. N.
2002-10-01
With Flare Genesis Experiment (FGE), a balloon borne Observatory high spatial and temporal resolution vector magnetograms have been obtained in an emerging active region. The comparison of the observations (FGE and TRACE) with a linear force-free field analysis of the region shows where the region is non-force-free. An analysis of the magnetic topology furnishes insights into the existence of "bald patches" regions (BPs are regions where the vector field is tangential to the boundary (photosphere) along an inversion line). Magnetic reconnection is possible and local heating of the chromopshere is predicted near the BPs. Ellerman bombs (EBs) were found to coincide with few BPs computed from a linear force-free extrapolation of the observed longitudinal field. But when the actual observations of transverse fields were used to identify BPs, then the correspondence with EB positions improved significantly. We conclude that linear force-free extrapolations must be done with the true observed vertical fields, which require the measurement of the three components of the magnetic field.
Determination of the coronal magnetic field from vector magnetograph data
NASA Technical Reports Server (NTRS)
Mikic, Zoran
1991-01-01
A new algorithm was developed, tested, and applied to determine coronal magnetic fields above solar active regions. The coronal field above NOAA active region AR5747 was successfully estimated on 20 Oct. 1989 from data taken at the Mees Solar Observatory of the Univ. of Hawaii. It was shown that observational data can be used to obtain realistic estimates of coronal magnetic fields. The model has significantly extended the realism with which the coronal magnetic field can be inferred from observations. The understanding of coronal phenomena will be greatly advanced by a reliable technique, such as the one presented, for deducing the detailed spatial structure of the coronal field. The payoff from major current and proposed NASA observational efforts is heavily dependent on the success with which the coronal field can be inferred from vector magnetograms. In particular, the present inability to reliably obtain the coronal field has been a major obstacle to the theoretical advancement of solar flare theory and prediction. The results have shown that the evolutional algorithm can be used to estimate coronal magnetic fields.
Height Variation of the Vector Magnetic Field in Solar Spicules
NASA Astrophysics Data System (ADS)
Orozco Suárez, D.; Asensio Ramos, A.; Trujillo Bueno, J.
2015-04-01
Proving the magnetic configuration of solar spicules has hitherto been difficult due to the lack of spatial resolution and image stability during off-limb ground-based observations. We report spectropolarimetric observations of spicules taken in the He i 1083 nm spectral region with the Tenerife Infrared Polarimeter II at the German Vacuum Tower Telescope of the Observatorio del Teide (Tenerife, Canary Islands, Spain). The data provide the variation with geometrical height of the Stokes I, Q, U, and V profiles, whose encoded information allows the determination of the magnetic field vector by means of the HAZEL inversion code. The inferred results show that the average magnetic field strength at the base of solar spicules is about 80 gauss, and then it decreases rapidly with height to about 30 gauss at a height of 3000 km above the visible solar surface. Moreover, the magnetic field vector is close to vertical at the base of the chromosphere and has mid-inclinations (about 50°) above 2 Mm height.
Vector-valued crustal magnetic field estimation using vector Slepian functions
NASA Astrophysics Data System (ADS)
Plattner, A.; Simons, F. J.
2012-12-01
To solve for the terrestrial or a planetary magnetic field from vector-valued measurements made by a satellite, an inversion needs to be performed that correctly maps the noisily and incompletely observed data down to the source level. For the case of the scalar potential, powerful localization techniques have aided in regularizing the ill-posed inverse problem of making global inference from local data, or vice versa. One can use splines, wavelets, cap harmonics, and also Slepian functions, which are optimally concentrated spatio-spectrally with respect to a function-energy norm. The Slepian functions, in particular, have been very useful in gravity geodesy, but also for the study of planetary magnetic fields available as spherical-harmonic potential expansions. It is clear that the benefits of localization are not available to vector data by simply focusing on the vector components individually. Rather, for the most common problems where a potential-description remains adequate, a dedicated function basis needs to be sought that is harmonic, vectorial in nature, bandlimited, and localized to target regions on the surface of the sphere. We have recently developed such a "vectorial spherical Slepian basis", and are thus ready to tackle the study of the satellite geomagnetic inverse problems of the future. In this presentation we apply vector-Slepian functions to the estimation of the vector-valued crustal magnetic field from vector-valued data at satellite altitude. The downward continuation of vector functions that satisfy the source-free assumption can be performed similarly to the scalar downward continuation if the data are described in a suitably transformed vector-spherical harmonic basis. We test our approach with artificial data using different data and noise power spectra and for different target regions. The vector Slepian approach should be beneficial in cases where we either have only local data at satellite altitude but want to obtain as much crustal field information as possible or if we have global data at satellite altitude but want to perform a purely local analysis of the crustal field, as we show by example.
Daily Full-Disk SOLIS Inverted Vector Magnetic Field Data
NASA Astrophysics Data System (ADS)
Streander, Kim; Norton, A. A.; SOLIS Team
2009-05-01
Inverted vector magnetic field data from the SOLIS VSM (Synoptic Optical Long-term Investigations of the Sun Vector Spectromagnetograph) instrument are now available at:http://solis.nso.edu/. Both full-disk and smaller field-of-view data containing active regions are available. The inversion is based on the least-squares minimization FORTRAN code developed by the HAO group, initially used with Advanced Stokes Polarimeter data (Skumanich and Lites, 1987; Auer, Heasley and House, 1977). The main code modification is that a scattered light, or quiet-Sun profile, is simulated for every center-to-limb position on the disk. This simulated profile is used as the scattered light profile, instead of an observed profile averaged from pixels with low polarization within a small field of view. The data are inversions of Stokes I, Q, U and V profiles of the Fe I 630.1 and 630.2 nm lines using a Milne-Eddington (ME) model atmosphere. Stokes I, Q, U and V profile weights are 0.01, 1.0, 1.0 and 0.1, respectively. All the Milne-Eddington inverted data are corrected for the 180º ambiguity using the Non-Potential Field Calculation (NPFC) method developed by Manolis Georgoulis (Johns Hopkins). Note that data are only inverted if the observed polarization signal is above a certain threshold.Data are available daily (weather permitting) beginning April 1, 2009 onwards. Also available is a sample of data from March 2008 containing several active regions near the equator.
Force-free coronal magnetic field modeling using vector fields from Hinode and SDO
NASA Astrophysics Data System (ADS)
Thalmann, Julia K.; Tiwari, Sanjiv K.; Wiegelmann, Thomas
2013-04-01
Given the lack of routine direct measurements of the magnetic field in the solar corona, force-free reconstruction methods are a promising tool for the diagnostics of the magnetic structure there. Routine photospheric magnetic field measurements which monitor the temporal evolution of an active region and contain information on the non-potentiality of the field above are used as an input. Based on the assumption that magnetic forces dominate the solar atmosphere, these models allow estimates of the total and free magnetic energy content and the structure of the magnetic field above active regions. The outcome of force-free field modeling strongly depends on the vector magnetic field data used as boundary condition. We compare the model results based on simultaneously observed vector maps from the Helioseismic and Magnetic Imager (HMI) on board Solar Dynamics Observatory and from the Solar Optical Telescope Spectropolarimeter (SP) on board Hinode. We find substantial differences in the absolute estimates of the magnetic field energy but very similar relative estimates, e.g., the fraction of energy to be set free during an eruption or the fraction of flux linking distinct areas within an active region. Our study reveals that only relative estimates of coronal physical quantities from force-free models might be save and conclusions about the magnetic field topology might be drawn with caution.
The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Overview and Performance
NASA Astrophysics Data System (ADS)
Hoeksema, J. Todd; Liu, Yang; Hayashi, Keiji; Sun, Xudong; Schou, Jesper; Couvidat, Sebastien; Norton, Aimee; Bobra, Monica; Centeno, Rebecca; Leka, K. D.; Barnes, Graham; Turmon, Michael
2014-09-01
The Helioseismic and Magnetic Imager (HMI) began near-continuous full-disk solar measurements on 1 May 2010 from the Solar Dynamics Observatory (SDO). An automated processing pipeline keeps pace with observations to produce observable quantities, including the photospheric vector magnetic field, from sequences of filtergrams. The basic vector-field frame list cadence is 135 seconds, but to reduce noise the filtergrams are combined to derive data products every 720 seconds. The primary 720 s observables were released in mid-2010, including Stokes polarization parameters measured at six wavelengths, as well as intensity, Doppler velocity, and the line-of-sight magnetic field. More advanced products, including the full vector magnetic field, are now available. Automatically identified HMI Active Region Patches (HARPs) track the location and shape of magnetic regions throughout their lifetime. The vector field is computed using the Very Fast Inversion of the Stokes Vector (VFISV) code optimized for the HMI pipeline; the remaining 180∘ azimuth ambiguity is resolved with the Minimum Energy (ME0) code. The Milne-Eddington inversion is performed on all full-disk HMI observations. The disambiguation, until recently run only on HARP regions, is now implemented for the full disk. Vector and scalar quantities in the patches are used to derive active region indices potentially useful for forecasting; the data maps and indices are collected in the SHARP data series, hmi.sharp_720s. Definitive SHARP processing is completed only after the region rotates off the visible disk; quick-look products are produced in near real time. Patches are provided in both CCD and heliographic coordinates. HMI provides continuous coverage of the vector field, but has modest spatial, spectral, and temporal resolution. Coupled with limitations of the analysis and interpretation techniques, effects of the orbital velocity, and instrument performance, the resulting measurements have a certain dynamic range and sensitivity and are subject to systematic errors and uncertainties that are characterized in this report.
An Estimation Method of Poynting Vector with Near-Magnetic-Field Measurement
NASA Astrophysics Data System (ADS)
Hirayama, Hiroshi; Kikuma, Nobuyoshi; Sakakibara, Kunio
A new technique to estimate the Poynting vector distribution from near-magnetic-field measurement is proposed. To calculate the Poynting vector, both electric and magnetic field should be known. In the proposed method, only magnetic-field measurement of three orthogonal axes is required. Electric field is estimated from the measured magnetic field by using the Maxwell's equation. The modified Yee cell is employed to estimate electric field from the measured magnetic field. Finally, the Poynting vector is calculated from the measured magnetic field and the estimated electric field. Since the proposed method enables us to understand propagation direction of electro-magnetic energy, it can be utilized to locate an emission source and to investigate a mechanism of undesired emission. Experiments are carried out to discuss the accuracy and to validate practical usefulness.
GravitoMagnetic Field in Tensor-Vector-Scalar Theory
Exirifard, Qasem
2013-04-01
We study the gravitomagnetism in the TeVeS theory. We compute the gravitomagnetic field that a slow moving mass distribution produces in its Newtonian regime. We report that the consistency between the TeVeS gravitomagnetic field and that predicted by the Einstein-Hilbert theory leads to a relation between the vector and scalar coupling constants of the theory. We translate the Lunar Laser Ranging measurement's data into a constraint on the deviation from this relation.
Vector magnetic field changes associated with X-class flares
NASA Technical Reports Server (NTRS)
Wang, Haimin; Ewell, M. W., Jr.; Zirin, H.; Ai, Guoxiang
1994-01-01
We present high-resolution transverse and longitudinal magnetic field measurements bracketing five X-class solar flares. We show that the magnetic shear, defined as the angular difference between the measured field and calculated potential field, actually increases after all of these flares. In each case, the shear is shown to increase along a substantial portion of the magnetic neutral line. For two of the cases, we have excellent time resolution, on the order of several minutes, and we demonstrate that the shear increase is impulsive. We briefly discuss the theoretical implications of our results.
Kazachenko, Maria D.; Fisher, George H.; Welsch, Brian T.
2014-11-01
Photospheric electric fields, estimated from sequences of vector magnetic field and Doppler measurements, can be used to estimate the flux of magnetic energy (the Poynting flux) into the corona and as time-dependent boundary conditions for dynamic models of the coronal magnetic field. We have modified and extended an existing method to estimate photospheric electric fields that combines a poloidal-toroidal decomposition (PTD) of the evolving magnetic field vector with Doppler and horizontal plasma velocities. Our current, more comprehensive method, which we dub the 'PTD-Doppler-FLCT Ideal' (PDFI) technique, can now incorporate Doppler velocities from non-normal viewing angles. It uses the FISHPACK software package to solve several two-dimensional Poisson equations, a faster and more robust approach than our previous implementations. Here, we describe systematic, quantitative tests of the accuracy and robustness of the PDFI technique using synthetic data from anelastic MHD (ANMHD) simulations, which have been used in similar tests in the past. We find that the PDFI method has less than 1% error in the total Poynting flux and a 10% error in the helicity flux rate at a normal viewing angle (θ = 0) and less than 25% and 10% errors, respectively, at large viewing angles (θ < 60°). We compare our results with other inversion methods at zero viewing angle and find that our method's estimates of the fluxes of magnetic energy and helicity are comparable to or more accurate than other methods. We also discuss the limitations of the PDFI method and its uncertainties.
Solar monochromatic images in magneto-sensitive spectral lines and maps of vector magnetic fields
NASA Technical Reports Server (NTRS)
Shihui, Y.; Jiehai, J.; Minhan, J.
1985-01-01
A new method which allows by use of the monochromatic images in some magneto-sensitive spectra line to derive both the magnetic field strength as well as the angle between magnetic field lines and line of sight for various places in solar active regions is described. In this way two dimensional maps of vector magnetic fields may be constructed. This method was applied to some observational material and reasonable results were obtained. In addition, a project for constructing the three dimensional maps of vector magnetic fields was worked out.
NASA Technical Reports Server (NTRS)
Metcalf, Thomas R.
1994-01-01
I present a robust algorithm that resolves the 180-deg ambiguity in measurements of the solar vector magnetic field. The technique simultaneously minimizes both the divergence of the magnetic field and the electric current density using a simulated annealing algorithm. This results in the field orientation with approximately minimum free energy. The technique is well-founded physically and is simple to implement.
Observations of vector magnetic fields in flaring active regions
NASA Technical Reports Server (NTRS)
Chen, Jimin; Wang, Haimin; Zirin, Harold; Ai, Guoxiang
1994-01-01
We present vector magnetograph data of 6 active regions, all of which produced major flares. Of the 20 M-class (or above) flares, 7 satisfy the flare conditions prescribed by Hagyard (high shear and strong transverse fields). Strong photospheric shear, however, is not necessarily a condition for a flare. We find an increase in the shear for two flares, a 6-deg shear increase along the neutral line after a X-2 flare and a 13-deg increase after a M-1.9 flare. For other flares, we did not detect substantial shear changes.
Cox, Kevin; Novikova, Irina; Mikhailov, Eugeniy E.; Yudin, Valery I.; Taichenachev, Alexey V.
2011-01-15
We study the dependence of electromagnetically induced transparency (EIT) resonance amplitudes on the external magnetic field direction in a linearly polarized bichromatic light (lin||lin) configuration in {sup 87}Rb vapor. We demonstrate that all seven resolvable EIT resonances exhibit maxima or minima at certain orientations of the laser polarization relative to the wave vector and magnetic field. This effect can be used for the development of a high-precision EIT vector magnetometer.
The magnetic field vector of the Sun-as-a-star
NASA Astrophysics Data System (ADS)
Vidotto, A. A.
2016-06-01
Direct comparison between stellar and solar magnetic maps is hampered by their dramatic differences in resolution. Here, we present a method to filter out the small-scale component of vector fields, in such a way that comparison between solar and stellar (large-scale) magnetic field vector maps can be directly made. Our approach extends the technique widely used to decompose the radial component of the solar magnetic field to the azimuthal and meridional components as well. For that, we self-consistently decompose the three-components of the vector field using spherical harmonics of different l degrees. By retaining the low l degrees in the decomposition, we are able to calculate the large-scale magnetic field vector. Using a synoptic map of the solar vector field at Carrington Rotation CR2109, we derive the solar magnetic field vector at a similar resolution level as that from stellar magnetic images. We demonstrate that the large-scale field of the Sun is not purely radial, as often assumed - at CR2109, 83 per cent of the magnetic energy is in the radial component, while 10 per cent is in the azimuthal and 7 per cent is in the meridional components. By separating the vector field into poloidal and toroidal components, we show that the solar magnetic energy at CR2109 is mainly (>90 per cent) poloidal. Our description is entirely consistent with the description adopted in several stellar studies. Our formalism can also be used to confront synoptic maps synthesized in numerical simulations of dynamo and magnetic flux transport studies to those derived from stellar observations.
The magnetic field vector of the sun-as-a-star
NASA Astrophysics Data System (ADS)
Vidotto, A. A.
2016-04-01
Direct comparison between stellar and solar magnetic maps are hampered by their dramatic differences in resolution. Here, we present a method to filter out the small-scale component of vector fields, in such a way that comparison between solar and stellar (large-scale) magnetic field vector maps can be directly made. Our approach extends the technique widely used to decompose the radial component of the solar magnetic field to the azimuthal and meridional components as well. For that, we self-consistently decompose the three-components of the vector field using spherical harmonics of different l degrees. By retaining the low l degrees in the decomposition, we are able to calculate the large-scale magnetic field vector. Using a synoptic map of the solar vector field at Carrington Rotation CR2109, we derive the solar magnetic field vector at a similar resolution level as that from stellar magnetic images. We demonstrate that the large-scale field of the Sun is not purely radial, as often assumed - at CR2109, 83% of the magnetic energy is in the radial component, while 10% is in the azimuthal and 7% is in the meridional components. By separating the vector field into poloidal and toroidal components, we show that the solar magnetic energy at CR2109 is mainly (>90%) poloidal. Our description is entirely consistent with the description adopted in several stellar studies. Our formalism can also be used to confront synoptic maps synthesised in numerical simulations of dynamo and magnetic flux transport studies to those derived from stellar observations.
Vector Tomography for the Coronal Magnetic Field. II. Hanle Effect Measurements
NASA Astrophysics Data System (ADS)
Kramar, M.; Inhester, B.; Lin, H.; Davila, J.
2013-09-01
In this paper, we investigate the feasibility of saturated coronal Hanle effect vector tomography or the application of vector tomographic inversion techniques to reconstruct the three-dimensional magnetic field configuration of the solar corona using linear polarization measurements of coronal emission lines. We applied Hanle effect vector tomographic inversion to artificial data produced from analytical coronal magnetic field models with equatorial and meridional currents and global coronal magnetic field models constructed by extrapolation of real photospheric magnetic field measurements. We tested tomographic inversion with only Stokes Q, U, electron density, and temperature inputs to simulate observations over large limb distances where the Stokes I parameters are difficult to obtain with ground-based coronagraphs. We synthesized the coronal linear polarization maps by inputting realistic noise appropriate for ground-based observations over a period of two weeks into the inversion algorithm. We found that our Hanle effect vector tomographic inversion can partially recover the coronal field with a poloidal field configuration, but that it is insensitive to a corona with a toroidal field. This result demonstrates that Hanle effect vector tomography is an effective tool for studying the solar corona and that it is complementary to Zeeman effect vector tomography for the reconstruction of the coronal magnetic field.
VECTOR TOMOGRAPHY FOR THE CORONAL MAGNETIC FIELD. II. HANLE EFFECT MEASUREMENTS
Kramar, M.; Inhester, B.; Lin, H.; Davila, J. E-mail: Joseph.M.Davila@nasa.gov E-mail: lin@ifa.hawaii.edu
2013-09-20
In this paper, we investigate the feasibility of saturated coronal Hanle effect vector tomography or the application of vector tomographic inversion techniques to reconstruct the three-dimensional magnetic field configuration of the solar corona using linear polarization measurements of coronal emission lines. We applied Hanle effect vector tomographic inversion to artificial data produced from analytical coronal magnetic field models with equatorial and meridional currents and global coronal magnetic field models constructed by extrapolation of real photospheric magnetic field measurements. We tested tomographic inversion with only Stokes Q, U, electron density, and temperature inputs to simulate observations over large limb distances where the Stokes I parameters are difficult to obtain with ground-based coronagraphs. We synthesized the coronal linear polarization maps by inputting realistic noise appropriate for ground-based observations over a period of two weeks into the inversion algorithm. We found that our Hanle effect vector tomographic inversion can partially recover the coronal field with a poloidal field configuration, but that it is insensitive to a corona with a toroidal field. This result demonstrates that Hanle effect vector tomography is an effective tool for studying the solar corona and that it is complementary to Zeeman effect vector tomography for the reconstruction of the coronal magnetic field.
A prototype vector magnetic field monitoring system for a neutron electric dipole moment experiment
NASA Astrophysics Data System (ADS)
Nouri, N.; Biswas, A.; Brown, M. A.; Carr, R.; Filippone, B.; Osthelder, C.; Plaster, B.; Slutsky, S.; Swank, C.
2015-12-01
We present results from a first demonstration of a magnetic field monitoring system for a neutron electric dipole moment experiment. The system is designed to reconstruct the vector components of the magnetic field in the interior measurement region solely from exterior measurements.
Evolution of vector magnetic fields and the August 27 1990 X-3 flare
NASA Technical Reports Server (NTRS)
Wang, Haimin
1992-01-01
Vector magnetic fields in an active region of the sun are studied by means of continuous observations of magnetic-field evolution emphasizing magnetic shear build-up. The vector magnetograms are shown to measure magnetic fields correctly based on concurrent observations and a comparison of the transverse field with the H alpha fibril structure. The morphology and velocity pattern are examined, and these data and the shear build-up suggest that the active region's two major footprints are separated by a region with flows, new flux emergence, and several neutral lines. The magnetic shear appears to be caused by the collision and shear motion of two poles of opposite polarities. The transverse field is shown to turn from potential to sheared during the process of flux cancellation, and this effect can be incorporated into existing models of magnetic flux cancellation.
Vector-field classification in magnetic-resonance angiography.
Tovar, M. A.
1998-01-01
Phase-contrast magnetic-resonance angiography (PC MRA) generates images of vascular structures as three-dimensional maps of the blood-flow velocity in a volume of interest. To improve visualization methods for PC MRA, radiologists can benefit from image-processing algorithms that can classify flow and stationary tissue. In this paper, I describe a vector-difference distribution (VDD): a statistical model of noisy PC MRA that allows us to compute a measure of probability of flow for each voxel, based on the expected mixed distribution of flow and background samples. The estimates of flow probability form an image that can be used as a mask with, or as a surrogate for, the standard images for further processing and display. The implementation demonstrates that VDD (1) can classify probabilistically PC MRA images into flow and stationary tissue, and (2) can extract reliably first- and second-order statistical measures for flow and noise (background). A comparison of MIP images with and without a VDD-based probability mask demonstrates a 30-to-56-percent improvement in contrast-to-noise ratio. Images Figure 2 PMID:9929354
Vector magnetic field observations with the Haleakala polarimeter
NASA Technical Reports Server (NTRS)
Mickey, D. L.
1985-01-01
Several enhancements were recently made to the Haleakala polarimeter. Linear array detectors provide simultaneous resolution over a 3-A wavelength range, with spectral resolution of 40 mA. Optical fibers are now used to carry the intensity-modulated light from the rotating quarter-wave plate polarimeter to the echelle spectrometer, permitting its removal from the spar to a more stable environment. These changes, together with improved quarter-wave plates, reduced systematic errors to a few parts in 10,000 for routine observations. Examples of Stokes profiles and derived magnetic field maps are presented.
NASA Technical Reports Server (NTRS)
Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.
2014-01-01
Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.
Flare-related changes in pseudo-vector magnetic field derived from line-of-sight magnetograms
NASA Astrophysics Data System (ADS)
Burtseva, Olga; Gosain, Sanjay; Pevtsov, Alexei A.
2016-05-01
Longitudinal field is a projection of full vector field to the line-of-sight direction. Thus, it is possible to derive some information about the vector field from line-of-sight data in round sunspots, assuming that average properties of vector magnetic field in these sunspots depend mostly on distance from center of sunspot. Under this assumption, one can reconstruct vertical, radial, and tangential components of vector magnetic field using azimuthal averaging. This technique can be useful for investigation of twist and inclination in magnetic field in particular in flaring regions when vector data are not available. In this study we validate the cylindrical symmetry technique on example of a simple round sunspot. Then we attempt to study changes in (pseudo-vector) magnetic fields in isolated and round sunspots associated with flare events using SDO/HMI longitudinal magnetograms. We compare the pseudo-vector results with vector data.
Rippled graphene in an in-plane magnetic field: effects of a random vector potential.
Lundeberg, Mark B; Folk, Joshua A
2010-10-01
We report measurements of the effects of a random vector potential generated by applying an in-plane magnetic field to a graphene flake. Magnetic flux through the ripples cause orbital effects: Phase-coherent weak localization is suppressed, while quasirandom Lorentz forces lead to anisotropic magnetoresistance. Distinct signatures of these two effects enable the ripple size to be characterized. PMID:21230858
NASA Astrophysics Data System (ADS)
Kramar, M.; Lin, H.; Tomczyk, S.
2016-03-01
We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments.
Multiple-quantum vector field imaging by magnetic resonance
NASA Astrophysics Data System (ADS)
Bouchard, Louis-S.; Warren, Warren S.
2005-11-01
We introduce a method for non-invasively mapping fiber orientation in materials and biological tissues using intermolecular multiple-quantum coherences. The nuclear magnetic dipole field of water molecules is configured by a CRAZED sequence to encode spatial distributions of material heterogeneities. At any given point r in space, we obtain the spherical coordinates of fiber orientation ( θ, ϕ) with respect to the external field by comparing three signals ∥ GX∥, ∥ GY∥, and ∥ GZ∥ (modulus), acquired with linear gradients applied along the X, Y, and Z axes, respectively. For homogeneous isotropic materials, a subtraction ∥ GZ∥ - ∥ GX∥ - ∥ GY∥ gives zero. With anisotropic materials, we find an empirical relationship relating ∥ GZ∥ - ∥ GX∥ - ∥ GY∥/(∥ GX∥ + ∥ GY∥ + ∥ GZ∥) to the polar angle θ, while ∥ GX∥ - ∥ GY∥/(∥ GX∥ + ∥ GY∥ + ∥ GZ∥) is related to the azimuthal angle ϕ. Experiments in structured media confirm the structural sensitivity. This technique can probe length scales not accessible by conventional MRI and diffusion tensor imaging.
Calculating Non-Potentiality in Solar Active Regions Using SDO/HMI Vector Magnetic Field Data
NASA Astrophysics Data System (ADS)
Bobra, M.; Hoeksema, J. T.
2010-12-01
Non-potential magnetic fields in solar active regions are thought to be associated with flare occurrence. In this study, we parametrize the non-potentiality of several active regions, using data from the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO), and correlate these parameters with flare occurrence. In particular, we focus on a parameter that we call the Gradient-Weighted Inversion Line Length (GWILL). Using data from SOHO/MDI, Mason et al. found that GWILL generally tends to increase before a solar flare. We investigate whether extending the analysis of Mason et. al. to a three-dimensional field enables us to derive better near real-time indicators of flare occurrence. Before HMI, the availability of vector magnetograms was sparse at best. HMI provides continuous vector magnetogram data at a 12-minute cadence. As such, this study represents the first parametrization of non-potentiality in solar active regions using continuous vector magnetic field data.
Plasma flows and magnetic field vectors in the plasma sheet during substorms
NASA Technical Reports Server (NTRS)
Lui, A. T. Y.; Frank, L. A.; Ackerson, K. L.; Meng, C.-I.; Akasofu, S.-I.
1978-01-01
A detailed study of the plasma flow and the magnetic field vector in the plasma sheet during magnetospheric substorms is made to determine whether plasma flows are field-aligned or crossfield. It is shown that there is generally a large magnetic field-aligned component in the rapid plasma flow observed in the plasma sheet during substorms. In particular, the larger the observed flow speed, the closer the observed flow direction is aligned with the magnetic field line. There is no clear association between the plasma flow direction and the sign of the Bz component of the magnetic field during plasma sheet thinnings at substorms. The rapid plasma flows observed in the magnetotail are predominantly magnetic field-aligned.
Cold quark matter under intense magnetic fields: the role of flavor mixing and vector interactions
NASA Astrophysics Data System (ADS)
Allen, P. G.; Pagura, V.; Scoccola, N. N.
2015-07-01
We study the effect of intense magnetic fields on the phase diagram of cold, strongly interacting matter within the Nambu-Jona-Lasinio model. Model extensions that include flavor mixing effects and vector interactions were analyzed, varying all relevant model parameters in acceptable ranges. Charge neutrality and beta equilibrium effects, which are specially relevant to the study of compact stars, were also considered.
NASA Technical Reports Server (NTRS)
Bommier, V.
1986-01-01
The Hanle effect is the modification of the linear polarization parameters of a spectral line due to the effect of the magnetic field. It has been successfully applied to the magnetic field vector diagnostic in solar prominences. The magnetic field vector is determined by comparing the measured polarization to the polarization computed, taking into account all the polarizing and depolarizing processes in line formation and the depolarizing effect of the magnetic field. The method was applied to simultaneous polarization measurements in the Helium D3 line and in the hydrogen beta line in 14 prominences. Four polarization parameters are measured, which lead to the determination of the three coordinates of the magnetic field vector and the electron density, owing to the sensitivity of the hydrogen beta line to the non-negligible effect of depolarizing collisions with electrons and protons of the medium. A mean value of 1.3 x 10 to the 10th power cu. cm. is derived in 14 prominences.
NASA Technical Reports Server (NTRS)
Ronan, R. S.; Mickey, D. L.; Orrall, F. Q.
1987-01-01
The results of two methods for deriving photospheric vector magnetic fields from the Zeeman effect, as observed in the Fe I line at 6302.5 A at high spectral resolution (45 mA), are compared. The first method does not take magnetooptical effects into account, but determines the vector magnetic field from the integral properties of the Stokes profiles. The second method is an iterative least-squares fitting technique which fits the observed Stokes profiles to the profiles predicted by the Unno-Rachkovsky solution to the radiative transfer equation. For sunspot fields above about 1500 gauss, the two methods are found to agree in derived azimuthal and inclination angles to within about + or - 20 deg.
Magneto-optical effects and the determination of vector magnetic fields from Stokes profiles
NASA Astrophysics Data System (ADS)
Landolfi, M.; Landi Degl'Innocenti, E.
1982-06-01
The influence of magnetooptical effects in analytical solutions of the radiative transfer equations for polarized radiation is studied in terms of the single approximations contained in Unno's (1956) solutions. It is shown that the procedures adopted by Auer et al. (1977) for finding the magnetic field vector from Stokes profile data results in large errors in the magnetic field azimuth due to neglect of the magnetooptical effects. The magnetooptical effects are demonstrated to have a larger influence on the linear polarization profiles than other Stokes parameters.
Stokes profile analysis and vector magnetic fields. I - Inversion of photospheric lines
NASA Astrophysics Data System (ADS)
Skumanich, A.; Lites, B. W.
1987-11-01
The authors consider improvements to the Auer, Heasley, and House method for the analytic inversion of Stokes profiles via nonlinear least squares. In the application of this method to actual sunspot observations, the authors have found that its simplifications often yield erroneous solutions or nonconvergent behavior. By including damping wings and magneto-optical birefringence and by decoupling the intensity profile from the three-vector polarization profile in the analysis, the authors develop a more robust inversion method that provides a more reliable and accurate estimate of sunspot vector magnetic fields without significant loss of economy.
NASA Astrophysics Data System (ADS)
Tadesse, T.; Wiegelmann, T.; Inhester, B.
2009-12-01
Context: Knowledge about the coronal magnetic field is important to the understanding of many phenomena, such as flares and coronal mass ejections. Routine measurements of the solar magnetic field vector are traditionally carried out in the photosphere. We compute the field in the higher layers of the solar atmosphere from the measured photospheric field under the assumption that the corona is force-free. However, those measured data are inconsistent with the above force-free assumption. Therefore, one has to apply some transformations to these data before nonlinear force-free extrapolation codes can be applied. Aims: Extrapolation codes of cartesian geometry for medelling the magnetic field in the corona do not take the curvature of the Sun's surface into account. Here we develop a method for nonlinear force-free coronal magnetic field medelling and preprocessing of photospheric vector magnetograms in spherical geometry using the optimization procedure. Methods: We describe a newly developed code for the extrapolation of nonlinear force-free coronal magnetic fields in spherical coordinates over a restricted area of the Sun. The program uses measured vector magnetograms on the solar photosphere as input and solves the force-free equations in the solar corona. We develop a preprocessing procedure in spherical geometry to drive the observed non-force-free data towards suitable boundary conditions for a force-free extrapolation. Results: We test the code with the help of a semi-analytic solution and assess the quality of our reconstruction qualitatively by magnetic field line plots and quantitatively with a number of comparison metrics for different boundary conditions. The reconstructed fields from the lower boundary data with the weighting function are in good agreement with the original reference fields. We added artificial noise to the boundary conditions and tested the code with and without preprocessing. The preprocessing recovered all main structures of the magnetogram and removed small-scale noise. The main test was to extrapolate from the noisy photospheric vector magnetogram with and without preprocessing. The preprocessing was found to significantly improve the agreement between the extrapolated and the exact field.
He i Vector Magnetic Field Maps of a Sunspot and Its Superpenumbral Fine-Structure
NASA Astrophysics Data System (ADS)
Schad, T. A.; Penn, M. J.; Lin, H.; Tritschler, A.
2015-06-01
Advanced inversions of high-resolution spectropolarimetric observations of the He i triplet at 1083 nm are used to generate unique maps of the chromospheric magnetic field vector across a sunspot and its superpenumbral canopy. The observations were acquired by the Facility Infrared Spectropolarimeter (FIRS) at the Dunn Solar Telescope (DST) on 29 January 2012. Multiple atmospheric models are employed in the inversions because superpenumbral Stokes profiles are dominated by atomic-level polarization, while sunspot profiles are Zeeman-dominated, but also exhibit signatures that might be induced by symmetry-breaking effects of the radiation field incident on the chromospheric material. We derive the equilibrium magnetic structure of a sunspot in the chromosphere and furthermore show that the superpenumbral magnetic field does not appear to be finely structured, unlike the observed intensity structure. This suggests that fibrils are not concentrations of magnetic flux, but are instead distinguished by individualized thermalization. We also directly compare our inverted values with a current-free extrapolation of the chromospheric field. With improved measurements in the future, the average shear angle between the inferred magnetic field and the potential field may offer a means to quantify the non-potentiality of the chromospheric magnetic field to study the onset of explosive solar phenomena.
An Automated Ambiguity-Resolution Code for Hinode/SP Vector Magnetic Field Data
NASA Astrophysics Data System (ADS)
Leka, K. D.; Barnes, G.; Crouch, A.
2009-12-01
A fast, automated algorithm is presented for use in resolving the 180° ambiguity in vector magnetic field data, including those data from Hinode/Spectropolarimeter. The Fortran-based code is loosely based on the Minimum Energy Algorithm, and is distributed to provide ambiguity-resolved data for the general user community. Here we generally describe the released code (available at http://www.cora.nwra.com/AMBIG), examples of its performance and usage for Hinode/SP data.
On parasupersymmetric oscillators and relativistic vector mesons in constant magnetic fields
NASA Technical Reports Server (NTRS)
Debergh, Nathalie; Beckers, Jules
1995-01-01
Johnson-Lippmann considerations on oscillators and their connection with the minimal coupling schemes are visited in order to introduce a new Sakata-Taketani equation describing vector mesons in interaction with a constant magnetic field. This new proposal, based on a specific parasupersymmetric oscillator-like system, is characterized by real energies as opposed to previously pointed out relativistic equations corresponding to this interacting context.
NASA Astrophysics Data System (ADS)
Nouri, Nima; Brown, Michael; Carr, Robert; Filippone, Bradley; Osthelder, Charles; Plaster, Bradley; Slutsky, Simon; Swank, Christopher
2015-10-01
A prototype of a magnetic field monitoring system designed to reconstruct the vector magnetic field components (and, hence, all nine of the ∂Bi / ∂xj field gradients) within the interior measurement fiducial volume solely from external measurements is under development for the SNS neutron EDM experiment. A first-generation room-temperature prototype array has already been tested. A second-generation prototype array consisting of 12 cryogenic-compatible fluxgate magnetometer probes will be deployed within the cold region of the experiment's 1 / 3 -scale cryogenic magnet testing apparatus. We will report progress towards the development of this second-generation prototype. This work was supported in part by the U. S. Department of Energy Office of Nuclear Physics under Award No. DE-FG02-08ER41557.
Differential topology method of identifying 3D null points in solar vector magnetic fields
NASA Astrophysics Data System (ADS)
Zhao, Hui; Wang, Jingxiu; Zhang, Jun; Xiao, Chijie
Employing the Poincaré index of isolated null-point in a vector field, we work out a mathematical method of searching 3D null-points in coronal magnetic fields. After introducing the theory of differential topology, we test the method by using the analytical model of Brown & Priest. The location of null-point identified by our method coincides precisely with the analytical solution. Finally we apply the method to search 3D null-points in coronal magnetic fields reconstructed based on observed magnetograms of two active regions (NOAA AR 10488 and AR 10720). We find that the 3D null-points seem to be a key element to the magnetic topology associated with flare occurrence.
A New Method of Identifying 3D Null Points in Solar Vector Magnetic Fields
NASA Astrophysics Data System (ADS)
Zhao, Hui; Wang, Jing-Xiu; Zhang, Jun; Xiao, Chi-Jie
2005-10-01
Employing the Poincaré index of isolated null-points in a vector field, we worked out a mathematical method of searching for 3D null-points in coronal magnetic fields. After introducing the relevant differential topology, we test the method by using the analytical model of Brown & Priest. The location of null-point identified by our method coincides precisely with the analytical solution. Finally we apply the method to the 3D coronal magnetic fields reconstructed from an observed MDI magnetogram of a super-active region (NOAA 10488). We find that the 3D null-point seems to be a key element in the magnetic topology associated with flare occurrence.
NASA Technical Reports Server (NTRS)
Balasubramaniam, K. S.; West, E. A.
1991-01-01
The Marshall Space Flight Center (MSFC) vector magnetograph is a tunable filter magnetograph with a bandpass of 125 mA. Results are presented of the inversion of Stokes polarization profiles observed with the MSFC vector magnetograph centered on a sunspot to recover the vector magnetic field parameters and thermodynamic parameters of the spectral line forming region using the Fe I 5250.2 A spectral line using a nonlinear least-squares fitting technique. As a preliminary investigation, it is also shown that the recovered thermodynamic parameters could be better understood if the fitted parameters like Doppler width, opacity ratio, and damping constant were broken down into more basic quantities like temperature, microturbulent velocity, or density parameter.
Thalmann, J. K.; Tiwari, S. K.; Wiegelmann, T.
2013-05-20
Photospheric magnetic vector maps from two different instruments are used to model the nonlinear force-free coronal magnetic field above an active region. We use vector maps inferred from polarization measurements of the Solar Dynamics Observatory/Helioseismic and Magnetic Imager (HMI) and the Solar Optical Telescope's Spectropolarimeter (SP) on board Hinode. Besides basing our model calculations on HMI data, we use both SP data of original resolution and scaled down to the resolution of HMI. This allows us to compare the model results based on data from different instruments and to investigate how a binning of high-resolution data affects the model outcome. The resulting three-dimensional magnetic fields are compared in terms of magnetic energy content and magnetic topology. We find stronger magnetic fields in the SP data, translating into a higher total magnetic energy of the SP models. The net Lorentz forces of the HMI and SP lower boundaries verify their force-free compatibility. We find substantial differences in the absolute estimates of the magnetic field energy but similar relative estimates, e.g., the fraction of excess energy and of the flux shared by distinct areas. The location and extension of neighboring connectivity domains differ and the SP model fields tend to be higher and more vertical. Hence, conclusions about the magnetic connectivity based on force-free field models are to be drawn with caution. We find that the deviations of the model solution when based on the lower-resolution SP data are small compared to the differences of the solutions based on data from different instruments.
Vector magnetic field map at the photospheric level below and around a solar filament (neutral line)
NASA Astrophysics Data System (ADS)
Bommier, V.; Rayrole, J.; Eff-Darwich, A.
2005-06-01
We present a vector magnetic field map obtained on 7 December 2003, below and around a filament located not so far from the active region NOAA 517, whose one spot is also found on the map of 240× 340 arcsec. This region was itself located near the disk center, so that the longitudinal (resp. transverse) field is nearly the vertical (resp. horizontal) one. The THEMIS telescope was used in its spectropolarimetric multiline mode MTR ("MulTiRaies"). The noise level is 5-10 Gauss in the longitudinal field and 50-100 Gauss in the transverse field, while the pixel size is 0.45 arcsec. Fundamental ambiguity is not solved, and the atmosphere is assumed to be homogeneous. The magnetic field derivation method described in this paper was validated on eight test points submitted to the UNNOFIT inversion code, and the results are found in agreement within 14% discrepancy. Two main results appear on the map: (i) a strong spatial correlation between the longitudinal and transverse field resulting in an inclined field vector (making a most probable angle of 60° or 120° with the line-of-sight in the filament region); and (ii) homogeneity of the field direction (inclination and azimuth) in the filament region. Parasitic polarities were also detected: first those located at the filament feet, as theoretically expected, on the one hand; and then weak opposite polarity regular patterns that appear between the network field (strong field at the frontiers of supergranules), on the other. The exact superimposition of the magnetic field map derived from the Fe I 6302.5 Å line and of the Hα map, which enabled association of the parasitic polarities with the filament feet, was possible because these two maps were simultaneously obtained, thanks to a unique facility available in the multiline mode of THEMIS.
Photospheric Vector Magnetic Field Evolution of NOAA Active Region 11504 and the Ensuing CME
NASA Astrophysics Data System (ADS)
James, Alexander; Green, Lucie; Valori, Gherardo; van Driel-Gesztelyi, Lidia; Baker, Deborah; Brooks, David; Palmerio, Erika
2016-05-01
Coronal mass ejections (CMEs) are eruptions of billions of tonnes of plasma from the Sun that drive the most severe space weather effects we observe. In order to be able to produce forecasts of space weather with lead times of the order of days, accurate predictions of the occurrence of CMEs must be developed. The eruptive active-region studied in this work (NOAA 11504) is complex, featuring fragmentation of penumbral magnetic field in the days prior to eruption, as well as rotation of the leading sunspot. SDO/HMI vector photospheric magnetic field measurements are utilised alongside SDO/AIA multi-wavelength extreme ultra-violet (EUV) observations to study the dynamics of the photospheric and coronal structures, as well as Hinode/EIS spectroscopic measurements, including elemental composition data. The EUV data show flare ribbons as well as coronal dimmings, which are used to infer the orientation of the erupting flux rope. This flux rope orientation is then compared to in situ measurements of the flux rope. The vector magnetic field data is used to determine the possible contributions the field fragmentation and sunspot rotation may have made to the formation of the flux rope and the triggering of the CME.
NASA Astrophysics Data System (ADS)
Leka, K. D.
1997-07-01
We present observations with the Advanced Stokes Polarimeter of 11 light bridges in sunspots of various ages and sizes, all very close to disk center. Full vector spectropolarimetry and a nonlinear least-squares inversion algorithm allows us to determine not only the vector magnetic field in the bridges and host sunspots but also thermodynamic parameters such as continuum brightness, Doppler shifts, Doppler widths, opacity ratio, and the source function parameters. We can also separate the magnetic and nonmagnetic components of the spectral signal within each resolution element. We find that there is a disruption of the magnetic fields in light bridges, relative both to neighboring umbrae and to normal, undisturbed penumbrae. This change takes the form of lower intrinsic field strength and sparser, more horizontal fields in the bridges relative to umbrae. The magnetic fields in the bridges remain more vertically oriented, however, than those in undisturbed penumbra. There are systematic upflows observed in the bridge plasma relative to the neighboring umbrae, and the evidence points toward a component that is heated and departs from radiative equilibrium. In four cases, we follow a light bridge over several days and find that as the bridges age, they grow wider and brighter, the fields weaken and become sparser, and the heating increases. We also find some evidence that the magnetic field begins to reorganize itself to accommodate the (now) two azimuth centers before there are strong signals of a light bridge in the thermodynamic parameters. This paper presents the first systematic look at sunspot light bridges with full vector polarimetry and thermodynamic determination. The results show that there is an intrusion of field-free, possibly convective material into an otherwise stable, magnetic sunspot. The departure from stability is seen in the magnetic field orientation prior to its appearance in continuum intensity, and the effects of this disruption are evident beyond the immediate umbral intrusion. The results do not unambiguously determine the physical mechanism that makes sunspots disappear. However, it strongly points toward a ropelike magnetic structure through which convection may penetrate when the magnetic fibrils separate or around which field-free plasma may flow. The appearance of field-free heated material is likely an effect, not the cause, of the sunspot light bridges.
Changes in measured vector magnetic fields when transformed into heliographic coordinates
NASA Technical Reports Server (NTRS)
Hagyard, M. J.
1987-01-01
The changes that occur in measured magnetic fields when they are transformed into a heliographic coordinate system are investigated. To carry out this investigation, measurements of the vector magnetic field of an active region that was observed at 1/3 the solar radius from disk center are taken, and the observed field is transformed into heliographic coordinates. Differences in the calculated potential field that occur when the heliographic normal component of the field is used as the boundary condition rather than the observed line-of-sight component are also examined. The results of this analysis show: (1) that the observed fields of sunspots more closely resemble the generally accepted picture of the distribution of umbral fields if they are displayed in heliographic coordinates; (2) that the differences in the potential calculations are less than 200 G in field strength and 20 deg in field azimuth outside sunspots; and (3) that differences in the two potential calculations in the sunspot areas are no more than 400 G in field strength but range from 60 to 80 deg in field azimuth in localized umbral areas.
OBSERVATIONAL EVIDENCE OF CHANGING PHOTOSPHERIC VECTOR MAGNETIC FIELDS ASSOCIATED WITH SOLAR FLARES
Su, J. T.; Jing, J.; Wang, H. M.; Mao, X. J.; Wang, X. F.; Zhang, H. Q.; Deng, Y. Y.; Guo, J.; Wang, G. P.
2011-06-01
Recent observations have provided evidence that the solar photospheric magnetic fields could have rapid and permanent changes in both longitudinal and transverse components associated with major flares. As a result, the Lorentz force (LF) acting on the solar photosphere and solar interior could be perturbed, and the change of LF is always nearly in the downward direction. However, these rapid and permanent changes have not been systematically investigated, yet, using vector magnetograms. In this paper, we analyze photospheric vector magnetograms covering five flares to study the evolution of photospheric magnetic fields. In particular, we investigate two-dimensional spatial distributions of the changing LF. Around the major flaring polarity inversion line, the net change of the LF is directed downward in an area of {approx}10{sup 19} cm{sup 2} for X-class flares. For all events, the white-light observations show that sunspots darken in this location after flares, and magnetic fields become more inclined, which is consistent with the ideas put forward by Hudson et al. and Fisher et al., and observations.
NASA Technical Reports Server (NTRS)
Lites, B. W.; Skumanich, A.
1985-01-01
A method is presented for recovery of the vector magnetic field and thermodynamic parameters from polarization measurement of photospheric line profiles measured with filtergraphs. The method includes magneto-optic effects and may be utilized on data sampled at arbitrary wavelengths within the line profile. The accuracy of this method is explored through inversion of synthetic Stokes profiles subjected to varying levels of random noise, instrumental wave-length resolution, and line profile sampling. The level of error introduced by the systematic effect of profile sampling over a finite fraction of the 5 minute oscillation cycle is also investigated. The results presented here are intended to guide instrumental design and observational procedure.
The Z3 model of Saturns magnetic field and the Pioneer 11 vector helium magnetometer observations
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.
1984-01-01
Magnetic field observations obtained by the Pioneer 11 vector helium magnetometer are compared with the Z(sub 3) model magnetic field. These Pioneer 11 observations, obtained at close-in radial distances, constitute an important and independent test of the Z(sub 3) zonal harmonic model, which was derived from Voyager 1 and Voyager 2 fluxgate magnetometer observations. Differences between the Pioneer 11 magnetometer and the Z(sub 3) model field are found to be small (approximately 1%) and quantitatively consistent with the expected instrumental accuracy. A detailed examination of these differences in spacecraft payload coordinates shows that they are uniquely associated with the instrument frame of reference and operation. A much improved fit to the Pioneer 11 observations is obtained by rotation of the instrument coordinate system about the spacecraft spin axis by 1.4 degree. With this adjustment, possibly associated with an instrumental phase lag or roll attitude error, the Pioneer 11 vector helium magnetometer observations are fully consistent with the Voyager Z(sub 3) model.
The Z3 model of Saturn's magnetic field and the Pioneer 11 vector helium magnetometer observations
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.
1984-01-01
Magnetic field observations obtained by the Pioneer 11 vector helium magnetometer are compared with the Z(sub 3) model magnetic field. These Pioneer 11 observations, obtained at close-in radial distances, constitute an important and independent test of the Z(sub 3) zonal harmonic model, which was derived from Voyager 1 and Voyager 2 fluxgate magnetometer observations. Differences between the Pioneer 11 magnetometer and the Z(sub 3) model field are found to be small (approximately 1 percent) and quantitatively consistent with the expected instrumental accuracy. A detailed examination of these differences in spacecraft payload coordinates shows that they are uniquely associated with the instrument frame of reference and operation. A much improved fit to the Pioneer 11 observations is obtained by rotation of the instrument coordinate system about the spacecraft spin axis by 1.4 degree. With this adjustment, possibly associated with an instrumental phase lag or roll attitude error, the Pioneer 11 vector helium magnetometer observations are fully consistent with the Voyager Z(sub 3) model.
New models of Saturn's magnetic field using Pioneer 11 Vector Helium Magnetometer data
NASA Technical Reports Server (NTRS)
Davis, L., Jr.; Smith, E. J.
1986-01-01
In a reanalysis of the Vector Helium Magnetometer data taken by Pioneer 11 during its Saturn encounter in 1979, using improvements in the data set and in the procedures, studies are made of a variety of models. The best is the P(11)84 model, an axisymmetric spherical harmonic model of Saturn's magnetic field within 8 Saturn radii of the planet. The appropriately weighted root mean square average of the difference between the observed and the modeled field is 1.13 percent. For the Voyager-based Z3 model of Connerney, Acuna, and Ness, this average difference from the Pioneer 11 data is 1.81 percent. The external source currents in the magnetopause, tail, bow shock, and perhaps ring currents vary with time and can only be crudely modeled. An algebraic formula is derived for calculating the L shells on which energetic charged particles drift in axisymmetric fields.
SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM
Bobra, M. G.; Couvidat, S.
2015-01-10
We attempt to forecast M- and X-class solar flares using a machine-learning algorithm, called support vector machine (SVM), and four years of data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space. Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time a large data set of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a database of 2071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters. We then train and test the machine-learning algorithm and we estimate its performances using forecast verification metrics with an emphasis on the true skill statistic (TSS). We obtain relatively high TSS scores and overall predictive abilities. We surmise that this is partly due to fine-tuning the SVM for this purpose and also to an advantageous set of features that can only be calculated from vector magnetic field data. We also apply a feature selection algorithm to determine which of our 25 features are useful for discriminating between flaring and non-flaring active regions and conclude that only a handful are needed for good predictive abilities.
Solar Flare Prediction Using SDO/HMI Vector Magnetic Field Data with a Machine-learning Algorithm
NASA Astrophysics Data System (ADS)
Bobra, M. G.; Couvidat, S.
2015-01-01
We attempt to forecast M- and X-class solar flares using a machine-learning algorithm, called support vector machine (SVM), and four years of data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space. Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time a large data set of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a database of 2071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters. We then train and test the machine-learning algorithm and we estimate its performances using forecast verification metrics with an emphasis on the true skill statistic (TSS). We obtain relatively high TSS scores and overall predictive abilities. We surmise that this is partly due to fine-tuning the SVM for this purpose and also to an advantageous set of features that can only be calculated from vector magnetic field data. We also apply a feature selection algorithm to determine which of our 25 features are useful for discriminating between flaring and non-flaring active regions and conclude that only a handful are needed for good predictive abilities.
Observations of vector magnetic fields with a magneto-optic filter
NASA Technical Reports Server (NTRS)
Cacciani, Alessandro; Varsik, John; Zirin, Harold
1990-01-01
The use of the magnetooptic filter to observe solar magnetic fields in the potassium line at 7699 A is described. The filter has been used in the Big Bear videomagnetograph since October 23. It gives a high sensitivity and dynamic range for longitudnal magnetic fields and enables measurement of transverse magnetic fields using the sigma component. Examples of the observations are presented.
Martin, James E.; Solis, Kyle Jameson
2015-11-09
It has recently been reported that two types of triaxial electric or magnetic fields can drive vorticity in dielectric or magnetic particle suspensions, respectively. The first type-symmetry -- breaking rational fields -- consists of three mutually orthogonal fields, two alternating and one dc, and the second type -- rational triads -- consists of three mutually orthogonal alternating fields. In each case it can be shown through experiment and theory that the fluid vorticity vector is parallel to one of the three field components. For any given set of field frequencies this axis is invariant, but the sign and magnitude of the vorticity (at constant field strength) can be controlled by the phase angles of the alternating components and, at least for some symmetry-breaking rational fields, the direction of the dc field. In short, the locus of possible vorticity vectors is a 1-d set that is symmetric about zero and is along a field direction. In this paper we show that continuous, 3-d control of the vorticity vector is possible by progressively transitioning the field symmetry by applying a dc bias along one of the principal axes. Such biased rational triads are a combination of symmetry-breaking rational fields and rational triads. A surprising aspect of these transitions is that the locus of possible vorticity vectors for any given field bias is extremely complex, encompassing all three spatial dimensions. As a result, the evolution of a vorticity vector as the dc bias is increased is complex, with large components occurring along unexpected directions. More remarkable are the elaborate vorticity vector orbits that occur when one or more of the field frequencies are detuned. As a result, these orbits provide the basis for highly effective mixing strategies wherein the vorticity axis periodically explores a range of orientations and magnitudes.
Martin, James E.; Solis, Kyle Jameson
2015-11-09
It has recently been reported that two types of triaxial electric or magnetic fields can drive vorticity in dielectric or magnetic particle suspensions, respectively. The first type-symmetry -- breaking rational fields -- consists of three mutually orthogonal fields, two alternating and one dc, and the second type -- rational triads -- consists of three mutually orthogonal alternating fields. In each case it can be shown through experiment and theory that the fluid vorticity vector is parallel to one of the three field components. For any given set of field frequencies this axis is invariant, but the sign and magnitude ofmore » the vorticity (at constant field strength) can be controlled by the phase angles of the alternating components and, at least for some symmetry-breaking rational fields, the direction of the dc field. In short, the locus of possible vorticity vectors is a 1-d set that is symmetric about zero and is along a field direction. In this paper we show that continuous, 3-d control of the vorticity vector is possible by progressively transitioning the field symmetry by applying a dc bias along one of the principal axes. Such biased rational triads are a combination of symmetry-breaking rational fields and rational triads. A surprising aspect of these transitions is that the locus of possible vorticity vectors for any given field bias is extremely complex, encompassing all three spatial dimensions. As a result, the evolution of a vorticity vector as the dc bias is increased is complex, with large components occurring along unexpected directions. More remarkable are the elaborate vorticity vector orbits that occur when one or more of the field frequencies are detuned. As a result, these orbits provide the basis for highly effective mixing strategies wherein the vorticity axis periodically explores a range of orientations and magnitudes.« less
Martin, James E; Solis, Kyle J
2016-01-20
It has recently been reported that two types of triaxial electric or magnetic fields can drive vorticity in dielectric or magnetic particle suspensions, respectively. The first type-symmetry-breaking rational fields-consists of three mutually orthogonal fields, two alternating and one dc, and the second type-rational triads-consists of three mutually orthogonal alternating fields. In each case it can be shown through experiment and theory that the fluid vorticity vector is parallel to one of the three field components. For any given set of field frequencies this axis is invariant, but the sign and magnitude of the vorticity (at constant field strength) can be controlled by the phase angles of the alternating components and, at least for some symmetry-breaking rational fields, the direction of the dc field. In short, the locus of possible vorticity vectors is a 1-d set that is symmetric about zero and is along a field direction. In this paper we show that continuous, 3-d control of the vorticity vector is possible by progressively transitioning the field symmetry by applying a dc bias along one of the principal axes. Such biased rational triads are a combination of symmetry-breaking rational fields and rational triads. A surprising aspect of these transitions is that the locus of possible vorticity vectors for any given field bias is extremely complex, encompassing all three spatial dimensions. As a result, the evolution of a vorticity vector as the dc bias is increased is complex, with large components occurring along unexpected directions. More remarkable are the elaborate vorticity vector orbits that occur when one or more of the field frequencies are detuned. These orbits provide the basis for highly effective mixing strategies wherein the vorticity axis periodically explores a range of orientations and magnitudes. PMID:26549438
NASA Astrophysics Data System (ADS)
Du, Jinsong; Chen, Chao; Lesur, Vincent; Lane, Richard; Wang, Huilin
2015-06-01
We examined the mathematical and computational aspects of the magnetic potential, vector and gradient tensor fields of a tesseroid in a geocentric spherical coordinate system (SCS). This work is relevant for 3-D modelling that is performed with lithospheric vertical scales and global, continent or large regional horizontal scales. The curvature of the Earth is significant at these scales and hence, a SCS is more appropriate than the usual Cartesian coordinate system (CCS). The 3-D arrays of spherical prisms (SP; `tesseroids') can be used to model the response of volumes with variable magnetic properties. Analytical solutions do not exist for these model elements and numerical or mixed numerical and analytical solutions must be employed. We compared various methods for calculating the response in terms of accuracy and computational efficiency. The methods were (1) the spherical coordinate magnetic dipole method (MD), (2) variants of the 3-D Gauss-Legendre quadrature integration method (3-D GLQI) with (i) different numbers of nodes in each of the three directions, and (ii) models where we subdivided each SP into a number of smaller tesseroid volume elements, (3) a procedure that we term revised Gauss-Legendre quadrature integration (3-D RGLQI) where the magnetization direction which is constant in a SCS is assumed to be constant in a CCS and equal to the direction at the geometric centre of each tesseroid, (4) the Taylor's series expansion method (TSE) and (5) the rectangular prism method (RP). In any realistic application, both the accuracy and the computational efficiency factors must be considered to determine the optimum approach to employ. In all instances, accuracy improves with increasing distance from the source. It is higher in the percentage terms for potential than the vector or tensor response. The tensor errors are the largest, but they decrease more quickly with distance from the source. In our comparisons of relative computational efficiency, we found that the magnetic potential takes less time to compute than the vector response, which in turn takes less time to compute than the tensor gradient response. The MD method takes less time to compute than either the TSE or RP methods. The efficiency of the (GLQI and) RGLQI methods depends on the polynomial order, but the response typically takes longer to compute than it does for the other methods. The optimum method is a complex function of the desired accuracy, the size of the volume elements, the element latitude and the distance between the source and the observation. For a model of global extent with typical model element size (e.g. 1 degree horizontally and 10 km radially) and observations at altitudes of 10s to 100s of km, a mixture of methods based on the horizontal separation of the source and observation separation would be the optimum approach. To demonstrate the RGLQI method described within this paper, we applied it to the computation of the response for a global magnetization model for observations at 300 and 30 km altitude.
NASA Astrophysics Data System (ADS)
Velasco-Martnez, D.; Ibarra-Sierra, V. G.; Sandoval-Santana, J. C.; Kunold, A.; Cardoso, J. L.
2014-09-01
In this paper we introduce an alternative approach to studying the motion of a planar charged particle subject to a static uniform magnetic field. It is well known that an electric charge under a uniform magnetic field has a planar motion if its initial velocity is perpendicular to the magnetic field. Although some constants of motion (CsM), as the energy and the angular momentum, have been widely discussed for this system, others have been neglected. We find that the angular momentum, the generator of the magnetic translations and the magnetic Laplace-Runge-Lenz vector are CsM for this particular system. We show also that these three quantities form an orthogonal basis of vectors. The present work addresses many aspects of the motion of a charged particle in a magnetic field that should be useful for students and tutors of the classical mechanics courses at the senior undergraduate level.
Flare activity, sunspot motions, and the evolution of vector magnetic fields in Hale region 17244
NASA Technical Reports Server (NTRS)
Neidig, Donald F.; Hagyard, Mona J.; Machado, Marcos E.; Smith, Jesse B., Jr.
1986-01-01
The magnetic and dynamical circumstances leading to the 1B/M4 flare of November 5, 1980 are studied, and a strong association is found between the buildup of magnetic shear and the onset of flare activity within the active region. The development of shear, as observed directly in vector magnetograms, is consistent in detail with the dynamical history of the active region and identifies the precise location of the optical and hard-X-ray kernels of the flare emission.
ERIC Educational Resources Information Center
Curjel, C. R.
1990-01-01
Presented are activities that help students understand the idea of a vector field. Included are definitions, flow lines, tangential and normal components along curves, flux and work, field conservation, and differential equations. (KR)
NASA Astrophysics Data System (ADS)
Ford, Kris; Mair, Lamar; Fisher, Mike; Rowshon Alam, Md.; Juliano, Rudolph; Superfine, Richard
2008-10-01
In order to make non-viral gene delivery a useful tool in the study and treatment of genetic disorders, it is imperative that these methodologies be further refined to yield optimal results. Transfection of magnetic nanoparticles and nanorods are used as non-viral gene vectors to transfect HeLa EGFP-654 cells that stably express a mutated enhanced green fluorescent protein (EGFP) gene. We deliver antisense oligonucleotides to these cells designed to correct the aberrant splicing caused by the mutation in the EGFP gene. We also transfect human bronchial endothelial cells and immortalized WI-38 lung cells with pEGFP-N1 vectors. To achieve this we bind the genes to magnetic nanoparticles and nanorods and introduce magnetic fields to effect transfection. We wish to examine the effects of magnetic fields on the transfection of these particles and the benefits of using alternating (AC) magnetic fields in improving transfection rates over direct (DC) magnetic fields. We specifically look at the frequency dependence of the AC field and particle aspect ratio as it pertains to influencing transfection rate. We posit that the increase in angular momentum brought about by the AC field and the high aspect ratio of the nanorod particles, is vital to generating the force needed to move the particle through the cell membrane.
Gosain, S.; Pevtsov, A. A.; Rudenko, G. V.; Anfinogentov, S. A.
2013-07-20
We use daily full-disk vector magnetograms from Vector Spectromagnetograph on Synoptic Optical Long-term Investigations of the Sun system to synthesize the first Carrington maps of the photospheric vector magnetic field. We describe these maps and make a comparison of the observed radial field with the radial field estimate from line-of-sight magnetograms. Furthermore, we employ these maps to study the hemispheric pattern of current helicity density, H{sub c} , during the rising phase of solar cycle 24. The longitudinal average over the 23 consecutive solar rotations shows a clear signature of the hemispheric helicity rule, i.e., H{sub c} is predominantly negative in the north and positive in the south. Although our data include the early phase of cycle 24, there appears to be no evidence for a possible (systematic) reversal of the hemispheric helicity rule at the beginning of the cycle as predicted by some dynamo models. Furthermore, we compute the hemispheric pattern in active region latitudes (-30 Degree-Sign {<=} {theta} {<=} 30 Degree-Sign ) separately for weak (100 G < |B{sub r} | < 500 G) and strong (|B{sub r} | > 1000 G) radial magnetic fields. We find that while the current helicity of strong fields follows the well-known hemispheric rule (i.e., {theta} {center_dot} H{sub c} < 0), H{sub c} of weak fields exhibits an inverse hemispheric behavior (i.e., {theta} {center_dot} H{sub c} > 0), albeit with large statistical scatter. We discuss two plausible scenarios to explain the opposite hemispheric trend of helicity in weak and strong field regions.
Olmon, Robert L.; Rang, Matthias; Krenz, Peter M.; Lail, Brian A.; Saraf, Laxmikant V.; Boreman, Glenn D.; Raschke, Markus Bernd
2010-10-15
In addition to the electric field E(r), the associated magnetic field H(r) and current density J(r) characterize any electromagnetic device, providing insight into antenna coupling and mutual impedance. We demonstrate the optical analogue of the radio frequency vector network analyzer implemented in interferometric homodyne scattering-type scanning near-field optical microscopy (s-SNOM) for obtaining E(r), H(r), and J(r). The approach is generally applicable and demonstrated for the case of a linear coupled-dipole antenna in the midinfrared. The determination of the underlying 3D vector electric near-field distribution E(r) with nanometer spatial resolution and full phase and amplitude information is enabled by the design of probe tips with selectivity with respect to Ek and E? fabricated by focused ion-beam milling and nano-CVD.
GLOBAL TWIST OF SUNSPOT MAGNETIC FIELDS OBTAINED FROM HIGH-RESOLUTION VECTOR MAGNETOGRAMS
Tiwari, Sanjiv Kumar; Venkatakrishnan, P.; Sankarasubramanian, K. E-mail: pvk@prl.res.in
2009-09-10
The presence of fine structures in sunspot vector magnetic fields has been confirmed from Hinode as well as other earlier observations. We studied 43 sunspots based on the data sets taken from ASP/DLSP, Hinode (SOT/SP), and SVM (USO). In this Letter, (1) we introduce the concept of signed shear angle (SSA) for sunspots and establish its importance for non-force-free fields. (2) We find that the sign of global {alpha} (force-free parameter) is well correlated with that of the global SSA and the photospheric chirality of sunspots. (3) Local {alpha} patches of opposite signs are present in the umbra of each sunspot. The amplitude of the spatial variation of local {alpha} in the umbra is typically of the order of the global {alpha} of the sunspot. (4) We find that the local {alpha} is distributed as alternately positive and negative filaments in the penumbra. The amplitude of azimuthal variation of the local {alpha} in the penumbra is approximately an order of magnitude larger than that in the umbra. The contributions of the local positive and negative currents and {alpha} in the penumbra cancel each other giving almost no contribution for their global values for the whole sunspot. (5) Arc-like structures (partial rings) with a sign opposite to that of the dominant sign of {alpha} of the umbral region are seen at the umbral-penumbral boundaries of some sunspots. (6) Most of the sunspots studied belong to the minimum epoch of the 23rd solar cycle and do not follow the so-called hemispheric helicity rule.
NASA Technical Reports Server (NTRS)
Hewagama, Tilak; Deming, Drake; Jennings, Donald E.; Osherovich, Vladimir; Wiedemann, Gunter; Zipoy, David; Mickey, Donald L.; Garcia, Howard
1993-01-01
Polarimetric observations at 12 microns of two sunpots are reported. The horizontal distribution of parameters such as magnetic field strength, inclination, azimuth, and magnetic field filling factors are presented along with information about the height dependence of the magnetic field strength. Comparisons with contemporary magnetostatic sunspot models are made. The magnetic data are used to estimate the height of 12 micron line formation. From the data, it is concluded that within a stable sunspot there are no regions that are magnetically filamentary, in the sense of containing both strong-field and field-free regions.
The 3D Vector Potential, Magnetic Field and Stored Energy in a Thin cos2 theta Coil Array
Caspi, S.
1997-07-09
The vector potential and the magnetic field have been derived for an arrays of quadrupole magnets with thin Cos(2{theta}) current sheet placed at r = R.{sup bc}. The field strength of each coil within the array, varies purely as a Fourier sinusoidal series of the longidutinal coordinate z in proportion to {omega}{sub m}z, where {omega}{sub m} = (2m-1){pi}/L, L denotes the half-period, and m = 1,2,3 etc. The analysis is based on the expansion of the vector potential in the region external to the windings of a linear 3D quad, and a revision of that expansion by the application of the 'Addition Theorem' from that around the coil center to that around any arbitrary point in space.
Topology-Preserving Diffusion of Divergence-Free Vector Fields and Magnetic Relaxation
NASA Astrophysics Data System (ADS)
Brenier, Yann
2014-09-01
The usual heat equation is not suitable to preserve the topology of divergence-free vector fields, because it destroys their integral line structure. On the contrary, in the fluid mechanics literature, one can find examples of topology-preserving diffusion equations for divergence-free vector fields. They are very degenerate since they admit all stationary solutions to the Euler equations of incompressible fluids as equilibrium points. For them, we provide a suitable concept of "dissipative solutions", which shares common features with both P.-L. Lions's dissipative solutions to the Euler equations and the concept of "curves of maximal slopes", à la De Giorgi, recently used to study the scalar heat equation in very general metric spaces. We show that the initial value problem admits such global solutions, at least in the two space variable case, and they are unique whenever they are smooth.
The photospheric vector magnetic field of a sunspot and its vertical gradient
NASA Technical Reports Server (NTRS)
Hagyard, M. J.; West, E. A.; Tandberg-Hanssen, E.; Smith, J. E.; Henze, W., Jr.; Beckers, J. M.; Bruner, E. C.; Hyder, C. L.; Gurman, J. B.; Shine, R. A.
1981-01-01
The results of direct comparisons of photospheric and transition region line-of-sight field observations of sunspots using the SMM UV spectrometer and polarimeter are reported. The analysis accompanying the data is concentrated on demonstrating that the sunspot concentrated magnetic field extends into the transition region. An observation of a sunspot on Oct. 23, 1980 at the S 18 E 03 location is used as an example. Maximum field strengths ranged from 2030-2240 gauss for large and small umbrae viewed and inclination of the field to the line-of-sight was determined for the photosphere and transition region. The distribution of the magnetic field over the sunspot and variation of the line-of-sight gradient are discussed, as are the magnitudes and gradients of the photospheric field across the penumbral-photospheric boundaries.
NASA Astrophysics Data System (ADS)
Centeno, R.; Schou, J.; Hayashi, K.; Norton, A.; Hoeksema, J. T.; Liu, Y.; Leka, K. D.; Barnes, G.
2014-09-01
The Very Fast Inversion of the Stokes Vector (VFISV) is a Milne-Eddington spectral line inversion code used to determine the magnetic and thermodynamic parameters of the solar photosphere from observations of the Stokes vector in the 6173 Å Fe i line by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We report on the modifications made to the original VFISV inversion code in order to optimize its operation within the HMI data pipeline and provide the smoothest solution in active regions. The changes either sped up the computation or reduced the frequency with which the algorithm failed to converge to a satisfactory solution. Additionally, coding bugs which were detected and fixed in the original VFISV release are reported here.
NASA Technical Reports Server (NTRS)
Demerdash, N. A.; Wang, R.; Secunde, R.
1992-01-01
A 3D finite element (FE) approach was developed and implemented for computation of global magnetic fields in a 14.3 kVA modified Lundell alternator. The essence of the new method is the combined use of magnetic vector and scalar potential formulations in 3D FEs. This approach makes it practical, using state of the art supercomputer resources, to globally analyze magnetic fields and operating performances of rotating machines which have truly 3D magnetic flux patterns. The 3D FE-computed fields and machine inductances as well as various machine performance simulations of the 14.3 kVA machine are presented in this paper and its two companion papers.
NASA Technical Reports Server (NTRS)
Moore, R. L.; Hagyard, M. J.; Davis, J. M.
1987-01-01
The present MSFC Vector Magnetograph has sufficient spatial resolution (2.7 arcsec pixels) and sensitivity to the transverse field (the noise level is about 100 gauss) to map the transverse field in active regions accurately enough to reveal key aspects of the sheared magnetic fields commonly found at flare sites. From the measured shear angle along the polarity inversion line in sites that flared and in other shear sites that didn't flare, evidence is found that a sufficient condition for a flare to occur in 1000 gauss fields in and near sunspots is that both: (1) the maximum shear angle exceed 85 degrees; and (2) the extent of strong shear (shear angle of greater than 80 degrees) exceed 10,000 km.
NASA Astrophysics Data System (ADS)
Hayashi, K.; Hoeksema, J. T.; Liu, Y.; Bobra, M. G.; Sun, X. D.; Norton, A. A.
2015-05-01
Time-dependent three-dimensional magnetohydrodynamics (MHD) simulation modules are implemented at the Joint Science Operation Center (JSOC) of the Solar Dynamics Observatory (SDO). The modules regularly produce three-dimensional data of the time-relaxed minimum-energy state of the solar corona using global solar-surface magnetic-field maps created from Helioseismic and Magnetic Imager (HMI) full-disk magnetogram data. With the assumption of a polytropic gas with specific-heat ratio of 1.05, three types of simulation products are currently generated: i) simulation data with medium spatial resolution using the definitive calibrated synoptic map of the magnetic field with a cadence of one Carrington rotation, ii) data with low spatial resolution using the definitive version of the synchronic frame format of the magnetic field, with a cadence of one day, and iii) low-resolution data using near-real-time (NRT) synchronic format of the magnetic field on a daily basis. The MHD data available in the JSOC database are three-dimensional, covering heliocentric distances from 1.025 to 4.975 solar radii, and contain all eight MHD variables: the plasma density, temperature, and three components of motion velocity, and three components of the magnetic field. This article describes details of the MHD simulations as well as the production of the input magnetic-field maps, and details of the products available at the JSOC database interface. To assess the merits and limits of the model, we show the simulated data in early 2011 and compare with the actual coronal features observed by the Atmospheric Imaging Assembly (AIA) and the near-Earth in-situ data.
Mariappan, Leo; Hu, Gang; He, Bin
2014-01-01
Purpose: Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. Methods: In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. Results: The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ∼1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. Conclusions: The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction. PMID:24506649
Mariappan, Leo; Hu, Gang; He, Bin
2014-02-15
Purpose: Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. Methods: In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. Results: The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ∼1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. Conclusions: The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction.
Mariappan, Leo; Hu, Gang; He, Bin
2014-02-15
Purpose: Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. Methods: In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. Results: The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ?1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. Conclusions: The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction.
NASA Technical Reports Server (NTRS)
Wang, R.; Demerdash, N. A.
1991-01-01
A method of combined use of magnetic vector potential based finite-element (FE) formulations and magnetic scalar potential (MSP) based formulations for computation of three-dimensional magnetostatic fields is introduced. In this method, the curl-component of the magnetic field intensity is computed by a reduced magnetic vector potential. This field intensity forms the basic of a forcing function for a global magnetic scalar potential solution over the entire volume of the region. This method allows one to include iron portions sandwiched in between conductors within partitioned current-carrying subregions. The method is most suited for large-scale global-type 3-D magnetostatic field computations in electrical devices, and in particular rotating electric machinery.
Descriptions of the polarization states of vector processes - Applications to ULF magnetic fields
NASA Technical Reports Server (NTRS)
Samson, J. C.
1973-01-01
In recent years a wide variety of methods has been used to describe the polarization characteristics of ULF (.001 to 1 Hz) magnetic fields. This paper gives a detailed outline of some of the descriptions derived from the spectral matrices of n-variate stochastic processes. The matrices are expanded in three different, standard sets of matrices in order to add some simplification to the interpretation of the polarizations. One set is composed of n-squared trace-orthogonal, hermitean matrices and leads directly to a generalization of the Stokes parameters and the degree of polarization for n-variate processes. The second set is developed from the dyad expansion, which in particular cases is analogous to the spectral decomposition of the matrix. The third set is composed of n commuting idempotent matrices and proves to be the most useful set when the stochastic process is not strictly polarized.
NASA Technical Reports Server (NTRS)
Hagyard, Mona J.; Stark, B. A.; Venkatakrishnan, P.
1998-01-01
A careful analysis of a 6-hour time sequence of vector magnetograms of AR 6659, observed on 1991 June 10 with the MSFC vector magnetograph, has revealed only minor changes in the vector magnetic field azimuths in the vicinity of two M-class flares, and the association of these changes with the flares is not unambiguous. In this paper we present our analysis of the data which includes comparison of vector magnetograms prior to and during the flares, calculation of distributions of the rms variation of the azimuth at each pixel in the field of view of the active region, and examination of the variation with time of the azimuths at every pixel covered by the main flare emissions as observed with the H-alpha telescope coaligned with the vector magnetograph. We also present results of an analysis of evolutionary changes in the azimuth over the field of view of the active region.
Hyperbolic-symmetry vector fields.
Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2015-12-14
We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures. PMID:26699014
NASA Astrophysics Data System (ADS)
Ilonidis, Stathis; Bobra, Monica G.; Couvidat, Sebastien
2015-04-01
This project is motivated by the need to understand the physical mechanisms that generate solar flares, and assess whether reliable data-driven flare forecasts are possible. We build a flare forecasting model that takes into account the temporal evolution of the active regions and provides improved forecasts for the next 24 hours. We use SDO/HMI vector magnetic field data for all the flaring regions with magnitude M1.0 or higher that have been observed with HMI and several thousand non-flaring regions. Each region is characterized by hundreds of features, including physical properties, such as the current helicity and the Lorentz force, as well as parameters that describe the temporal evolution of these properties over a two-day interval, starting 3 days and ending 1 day before the flare eruption. All of these features were used to train a Support Vector Machine (SVM), which is a supervised machine learning method used in classification problems. The results show that the SVM algorithm can achieve a True Skill Statistic of 0.91, an accuracy of 0.985, and a Heidke skill score of 0.861, improving the results of Bobra and Couvidat (2015).
NASA Technical Reports Server (NTRS)
Wang, Ren H.
1991-01-01
A method of combined use of magnetic vector potential (MVP) based finite element (FE) formulations and magnetic scalar potential (MSP) based FE formulations for computation of three-dimensional (3D) magnetostatic fields is developed. This combined MVP-MSP 3D-FE method leads to considerable reduction by nearly a factor of 3 in the number of unknowns in comparison to the number of unknowns which must be computed in global MVP based FE solutions. This method allows one to incorporate portions of iron cores sandwiched in between coils (conductors) in current-carrying regions. Thus, it greatly simplifies the geometries of current carrying regions (in comparison with the exclusive MSP based methods) in electric machinery applications. A unique feature of this approach is that the global MSP solution is single valued in nature, that is, no branch cut is needed. This is again a superiority over the exclusive MSP based methods. A Newton-Raphson procedure with a concept of an adaptive relaxation factor was developed and successfully used in solving the 3D-FE problem with magnetic material anisotropy and nonlinearity. Accordingly, this combined MVP-MSP 3D-FE method is most suited for solution of large scale global type magnetic field computations in rotating electric machinery with very complex magnetic circuit geometries, as well as nonlinear and anisotropic material properties.
NASA Technical Reports Server (NTRS)
Bommier, V.; Leroy, J. L.; Sahal-Brechot, S.
1985-01-01
The Hanle effect method for magnetic field vector diagnostics has now provided results on the magnetic field strength and direction in quiescent prominences, from linear polarization measurements in the He I E sub 3 line, performed at the Pic-du-Midi and at Sacramento Peak. However, there is an inescapable ambiguity in the field vector determination: each polarization measurement provides two field vector solutions symmetrical with respect to the line-of-sight. A statistical analysis capable of solving this ambiguity was applied to the large sample of prominences observed at the Pic-du-Midi (Leroy, et al., 1984); the same method of analysis applied to the prominences observed at Sacramento Peak (Athay, et al., 1983) provides results in agreement on the most probable magnetic structure of prominences; these results are detailed. The statistical results were confirmed on favorable individual cases: for 15 prominences observed at Pic-du-Midi, the two-field vectors are pointing on the same side of the prominence, and the alpha angles are large enough with respect to the measurements and interpretation inaccuracies, so that the field polarity is derived without any ambiguity.
NASA Technical Reports Server (NTRS)
Skumanich, A.; Lites, B. W.
1985-01-01
The least square fitting of Stokes observations of sunspots using a Milne-Eddington-Unno model appears to lead, in many circumstances, to various inconsistencies such as anomalously large doppler widths and, hence, small magnetic fields which are significantly below those inferred solely from the Zeeman splitting in the intensity profile. It is found that the introduction of additional physics into the model such as the inclusion of damping wings and magneto-optic birefrigence significantly improves the fit to Stokes parameters. Model fits excluding the intensity profile, i.e., of both magnitude as well as spectral shape of the polarization parameters alone, suggest that parasitic light in the intensity profile may also be a source of inconsistencies. The consequences of the physical changes on the vector properties of the field derived from the Fe I lambda 6173 line for the 17 November 1975 spot as well as on the thermodynamic state are discussed. A Doppler width delta lambda (D) - 25mA is bound to be consistent with a low spot temperature and microturbulence, and a damping constant of a = 0.2.
NASA Astrophysics Data System (ADS)
Honsho, Chie; Ura, Tamaki; Kim, Kangsoo
2013-10-01
We conducted deep-sea magnetic measurements using autonomous underwater vehicles in the Bayonnaise knoll caldera, the Izu-Ogasawara island arc, which hosts the large Hakurei hydrothermal field. We improved the conventional correction method applied for removing the effect of vehicle magnetization, thus greatly enhancing the precision of the resulting vector anomalies. The magnetization distribution obtained from the vector anomaly data shows a 2 km wide belt of high magnetization, trending NNW-SSE going through the caldera, and a low-magnetization zone 300 m by 500 m in area, extending over the Hakurei site. Comparison between the results obtained using the vector anomaly and the total intensity anomaly shows that the magnetic field is determined more accurately, especially in areas of sparse data distribution, when the vector anomaly rather than the total intensity anomaly is used. We suggest a geologically motivated model that basaltic volcanism associated with the back-arc rifting occurred after the formation of the caldera, resulting in the formation of the high-magnetization belt underneath the silicic caldera. The Hakurei hydrothermal field lies in the intersection of the basaltic volcanism belt and the caldera wall fault, suggesting a mechanism that hot water generated by the heat of the volcanic activity has been spouting out through the caldera wall fault. The deposit apparently extends beyond the low-magnetization zone, climbing up the caldera wall. This may indicate that hot water rising from the deep through the alteration zone is transported laterally when it comes near the seafloor along fissures and fractures in the caldera wall.
Lee, Dukhyung; Kim, Dai-Sik
2016-01-01
We study light scattering off rectangular slot nano antennas on a metal film varying incident polarization and incident angle, to examine which field vector of light is more important: electric vector perpendicular to, versus magnetic vector parallel to the long axis of the rectangle. While vector Babinet's principle would prefer magnetic field along the long axis for optimizing slot antenna function, convention and intuition most often refer to the electric field perpendicular to it. Here, we demonstrate experimentally that in accordance with vector Babinet's principle, the incident magnetic vector parallel to the long axis is the dominant component, with the perpendicular incident electric field making a small contribution of the factor of 1/|ε|, the reciprocal of the absolute value of the dielectric constant of the metal, owing to the non-perfectness of metals at optical frequencies. PMID:26740335
Lee, Dukhyung; Kim, Dai-Sik
2016-01-01
We study light scattering off rectangular slot nano antennas on a metal film varying incident polarization and incident angle, to examine which field vector of light is more important: electric vector perpendicular to, versus magnetic vector parallel to the long axis of the rectangle. While vector Babinet’s principle would prefer magnetic field along the long axis for optimizing slot antenna function, convention and intuition most often refer to the electric field perpendicular to it. Here, we demonstrate experimentally that in accordance with vector Babinet’s principle, the incident magnetic vector parallel to the long axis is the dominant component, with the perpendicular incident electric field making a small contribution of the factor of 1/|ε|, the reciprocal of the absolute value of the dielectric constant of the metal, owing to the non-perfectness of metals at optical frequencies. PMID:26740335
NASA Astrophysics Data System (ADS)
Lee, Dukhyung; Kim, Dai-Sik
2016-01-01
We study light scattering off rectangular slot nano antennas on a metal film varying incident polarization and incident angle, to examine which field vector of light is more important: electric vector perpendicular to, versus magnetic vector parallel to the long axis of the rectangle. While vector Babinet’s principle would prefer magnetic field along the long axis for optimizing slot antenna function, convention and intuition most often refer to the electric field perpendicular to it. Here, we demonstrate experimentally that in accordance with vector Babinet’s principle, the incident magnetic vector parallel to the long axis is the dominant component, with the perpendicular incident electric field making a small contribution of the factor of 1/|ε|, the reciprocal of the absolute value of the dielectric constant of the metal, owing to the non-perfectness of metals at optical frequencies.
NASA Astrophysics Data System (ADS)
Loewenhaupt, M.; Geselbracht, P.; Faulhaber, E.; Rotter, M.; Doerr, M.; Schmalzl, K.; Schneidewind, A.
CeCu2Ge2, the counterpart of the heavy-fermion superconductor CeCu2Si2, exhibits an in-commensurate antiferromagnetically long-range ordered ground state with τ = (0.28 0.28 0.54) below TN = 4.15K. The magnetism is strongly affected by a Kondo screening of the Ce 4f-moments by conduction electrons. The similar energy scale of both, Kondo and exchange interactions, results in a complex magnetic phase diagram and gives rise to potential quantum critical phenomena at very low temperatures. We present elastic neutron diffraction data obtained on a CeCu2Ge2 single crystal employing the cold triple axis spectrometer PANDA at MLZ and the diffractometer D23 at ILL. The field dependence of the magnetic propagation vector was measured at T ≤ 400 mK in the [110]/[001] plane with vertical magnetic fields applied along [1¯10]. We observe a low-field incommensurate magnetic phase AF1, a first order phase transition around 7.8 T with the coexistence of two phases AF1 and AF2 with slightly different propagation vectors, the disappearance of AF1 at 8 T and the existence of AF2 up to 12 T with a possible modification at 10 T. At 12.6 T, yet still well below the value of 26 T of the saturation for magnetic fields in [110] direction, the AF2-type magnetic order is lost and magnetic intensities are not to be found at incommensurate positions in the [110]/[001] plane any more. These new results contradict a previously suggested scenario with a QCP located at 8 T and contribute new information to the B - T phase diagram of CeCu2Ge2 in [110] direction.
NASA Technical Reports Server (NTRS)
Krall, K. R.; Smith, J. B., Jr.; Hagyard, M. J.; West, E. A.; Cummings, N. P.
1982-01-01
Sheared photospheric velocity fields inferred from spot motions for April 5-7, 1980, are compared with both transverse magnetic field orientation changes and with the region's flare history. Rapid spot motions and high inferred velocity shear coincide with increased field alignment along the longitudinal neutral line and with increased flare activity, while a later decrease in velocity shear precedes a more relaxed magnetic configuration and decrease in flare activity. It is estimated that magnetic reconfiguration produced by the relative velocities of the spots could cause storage of about 10 to the 32nd erg/day, while flares occurring during this time expended no more than about 10 to the 31st erg/day.
Jiang, Chaowei; Wu, S. T.; Hu, Qiang; Feng, Xueshang E-mail: wus@uah.edu E-mail: fengx@spaceweather.ac.cn
2014-05-10
Solar filaments are commonly thought to be supported in magnetic dips, in particular, in those of magnetic flux ropes (FRs). In this Letter, based on the observed photospheric vector magnetogram, we implement a nonlinear force-free field (NLFFF) extrapolation of a coronal magnetic FR that supports a large-scale intermediate filament between an active region and a weak polarity region. This result is a first, in the sense that current NLFFF extrapolations including the presence of FRs are limited to relatively small-scale filaments that are close to sunspots and along main polarity inversion lines (PILs) with strong transverse field and magnetic shear, and the existence of an FR is usually predictable. In contrast, the present filament lies along the weak-field region (photospheric field strength ≲ 100 G), where the PIL is very fragmented due to small parasitic polarities on both sides of the PIL and the transverse field has a low signal-to-noise ratio. Thus, extrapolating a large-scale FR in such a case represents a far more difficult challenge. We demonstrate that our CESE-MHD-NLFFF code is sufficient for the challenge. The numerically reproduced magnetic dips of the extrapolated FR match observations of the filament and its barbs very well, which strongly supports the FR-dip model for filaments. The filament is stably sustained because the FR is weakly twisted and strongly confined by the overlying closed arcades.
NASA Astrophysics Data System (ADS)
Dima, G. I.; Kuhn, J. R.; Mickey, D.
2014-12-01
Measuring the coronal vector magnetic field is still a major challenge in solar physics. This is due to the intrinsic weakness of the field (~4 G at a height of 0.1 Rsun above an active region) and the large thermal broadening of coronal emission lines. Current methods deduce either the direction of the magnetic field or the magnetic flux density. We propose using concurrent linear polarization measurements in the near IR of forbidden and permitted lines to calculate the coronal vector magnetic field. The effect of the magnetic field on the polarization properties of emitted light is encapsulated in the Hanle effect. In the unsaturated Hanle regime both the direction and strength of the magnetic field affect the linear polarization, while for saturated Hanle the polarization is insensitive to the strength of the field. Coronal forbidden lines are always in the saturated Hanle regime so the linear polarization holds no information on the strength of the field. By pairing measurements of both forbidden and permitted lines we would be able to obtain both the direction and strength of the field. The near-IR region of the spectrum offers the opportunity to study this problem from the ground. The FeXIII 1.075 um and SiX 1.431 um forbidden lines are strongly polarizable and are sufficiently bright over a large field of view (out to 1.5 Rsun). Measurements of both these lines can be paired up with the recently observed coronal HeI 1.083 um permitted line. The first data set used to test this technique was taken during the March 29, 2006 total solar eclipse and consisted of near-IR spectra covering the spectral region 0.9-1.8 um, with a field of view of 3 x 3 Rsun. The data revealed unexpectedly strong SiX emission compared to FeXIII. Using the HAO FORWARD suite of codes we produced simulated emission maps from a global HMD model for the day of the eclipse. Comparing the intensity variation of the measurements and the model we predict that SiX emission is more extended for this day that the model would suggest, further supporting the possible usefulness of SiX polarimetry. The development of this method and associated tools will be critical in interpreting the high spectral, spatial and temporal IR measurements that will be possible when the Daniel K. Inouye Solar Telescope (DKIST) is completed in a few years time.
Manipulation of p-wave scattering of cold atoms in low dimensions using the magnetic field vector
NASA Astrophysics Data System (ADS)
Peng, Shi-Guo; Tan, Shina; Jiang, Kaijun
2014-03-01
It is well known that the magnetic Feshbach resonances of cold atoms are sensitive to the magnitude of the external magnetic field. Much less attention has been paid to the direction of such a field. In this work we calculate the scattering properties of spin polarized fermionic atoms in reduced dimensions, near a p-wave Feshbach resonance. Because of spatial anisotropy of the p-wave interaction, the scattering has nontrivial dependence on both the magnitude and the direction of the magnetic field. In addition, we identify an inelastic scattering process which is impossible in the isotropic-interaction model; the rate of this process depends considerably on the direction of the magnetic field. Significantly, an EPR entangled pair of identical fermions may be produced during this inelastic collision. This work opens a new method to manipulate resonant cold atomic interactions. CPSF (Grant No. 2012M510187), Special Financial Grant from CPSF (Grant No. 2013T60762), the NSFC projects (Grant No. 11004224 and No.11204355) and the NFRP- China (Grant No. 2011CB921601), NSF (Grant No. PHY-1068511), Alfred P. Sloan Foundation
Magnetic dipole moment of vector mesons
Castro, G. Lopez; Sanchez, G. Toledo
1999-10-25
We analyze the sensitivity to the vector-meson magnetic dipole moment of radiative processes involving the production and decay of vector mesons. These studies assume that vector mesons are stable particles. We then discuss how to incorporate the finite-width effects in the calculations without spoiling the electromagnetic gauge invariance of the scattering amplitudes.
Satellite to study earth's magnetic field
NASA Technical Reports Server (NTRS)
1979-01-01
The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.
Visualizing vector field topology in fluid flows
NASA Technical Reports Server (NTRS)
Helman, James L.; Hesselink, Lambertus
1991-01-01
Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.
Introduction to Vector Field Visualization
NASA Technical Reports Server (NTRS)
Kao, David; Shen, Han-Wei
2010-01-01
Vector field visualization techniques are essential to help us understand the complex dynamics of flow fields. These can be found in a wide range of applications such as study of flows around an aircraft, the blood flow in our heart chambers, ocean circulation models, and severe weather predictions. The vector fields from these various applications can be visually depicted using a number of techniques such as particle traces and advecting textures. In this tutorial, we present several fundamental algorithms in flow visualization including particle integration, particle tracking in time-dependent flows, and seeding strategies. For flows near surfaces, a wide variety of synthetic texture-based algorithms have been developed to depict near-body flow features. The most common approach is based on the Line Integral Convolution (LIC) algorithm. There also exist extensions of LIC to support more flexible texture generations for 3D flow data. This tutorial reviews these algorithms. Tensor fields are found in several real-world applications and also require the aid of visualization to help users understand their data sets. Examples where one can find tensor fields include mechanics to see how material respond to external forces, civil engineering and geomechanics of roads and bridges, and the study of neural pathway via diffusion tensor imaging. This tutorial will provide an overview of the different tensor field visualization techniques, discuss basic tensor decompositions, and go into detail on glyph based methods, deformation based methods, and streamline based methods. Practical examples will be used when presenting the methods; and applications from some case studies will be used as part of the motivation.
Representation of magnetic fields in space
NASA Technical Reports Server (NTRS)
Stern, D. P.
1975-01-01
Several methods by which a magnetic field in space can be represented are reviewed with particular attention to problems of the observed geomagnetic field. Time dependence is assumed to be negligible, and five main classes of representation are described by vector potential, scalar potential, orthogonal vectors, Euler potentials, and expanded magnetic field.
NASA Astrophysics Data System (ADS)
Hayashi, Keiji; Hoeksema, J. T.; Liu, Y.; Sun, X.; Bobra, M.; Norton, A. A.
2013-07-01
We investigate the dynamics of the solar active regions by means of our data-driven time-dependent three-dimensional MHD simulation model using the HMI vector magnetic field data. The simulations start with pre-emergence phase, or very early phase of the active region so that the development of the loop structures and other signatures of the active regions will be traced. We tested several cases, mainly for AR 11158 of Feb. 2011. Either of the plasma motion or electric field, inferred from the DAVE4VM (Schuck, 2008) is given to the solar-surface boundary surface of the simulation box to which the method of projected normal characteristics (Nakagawa et al. 1987; Wu and Wang, 1987) is applied to ensure the numerical stability and consistency in physics. As our first attempt, we choose the ideal MHD equations without any additional terms except gravity. The results of the simulation show that the method can trace some signatures of the solar active regions, such as development of the magnetic-field loop and (nonlinear) twist. Not having all information at the simulation initial time, nor all physics processes on the photosphere, at transition region, and in the solar corona, agreements in plasma quantities with the other observation such as AIA image data are limited. No flare-like eruptions were obtained under a simulation setting we currently test. The temporal sequences of three-component vector data can give good constraints on the MHD simulation studies of the sub-Alfvenic region, though, we will need more observations, and probably assumptions, to fulfill the physics system. The MHD simulation can be a powerful tool to bridge the measurements and observation, helping interpretation and giving requirement.
NASA Astrophysics Data System (ADS)
Cygorek, M.; Tamborenea, P. I.; Axt, V. M.
2016-05-01
Quantum kinetic equations of motion for carrier and impurity spins in paramagnetic II-VI diluted magnetic semiconductors in a k -dependent effective magnetic field are derived, where the carrier-impurity correlations are taken into account. In the Markov limit, rates for the electron-impurity spin transfer can be derived for electron spins parallel and perpendicular to the impurity spins corresponding to measurable decay rates in Kerr experiments in Faraday and Voigt geometry. Our rigorous microscopic quantum kinetic treatment automatically accounts for the fact that, in an individual spin flip-flop scattering process, a spin flip of an electron is necessarily accompanied by a flop of an impurity spin in the opposite direction and the corresponding change of the impurity Zeeman energy influences the final energy of the electron after the scattering event. This shift in the electron energies after a spin flip-flop scattering process, which usually has been overlooked in the literature, turns out to be especially important in the case of extremely diluted magnetic semiconductors in an external magnetic field. As a specific example for a k -dependent effective magnetic field the effects of a Rashba field on the dynamics of the carrier-impurity correlations in a Hg1 -x -yCdyMnxTe quantum well are described. It is found that, although accounting for the Rashba interaction in the dynamics of the correlations leads to a modified k -space dynamics, the time evolution of the total carrier spin is not significantly influenced. Furthermore, a connection between the present theory and the description of collective carrier-impurity precession modes is presented.
Multi-task Vector Field Learning
Lin, Binbin; Yang, Sen; Zhang, Chiyuan; Ye, Jieping; He, Xiaofei
2013-01-01
Multi-task learning (MTL) aims to improve generalization performance by learning multiple related tasks simultaneously and identifying the shared information among tasks. Most of existing MTL methods focus on learning linear models under the supervised setting. We propose a novel semi-supervised and nonlinear approach for MTL using vector fields. A vector field is a smooth mapping from the manifold to the tangent spaces which can be viewed as a directional derivative of functions on the manifold. We argue that vector fields provide a natural way to exploit the geometric structure of data as well as the shared differential structure of tasks, both of which are crucial for semi-supervised multi-task learning. In this paper, we develop multi-task vector field learning (MTVFL) which learns the predictor functions and the vector fields simultaneously. MTVFL has the following key properties. (1) The vector fields MTVFL learns are close to the gradient fields of the predictor functions. (2) Within each task, the vector field is required to be as parallel as possible which is expected to span a low dimensional subspace. (3) The vector fields from all tasks share a low dimensional subspace. We formalize our idea in a regularization framework and also provide a convex relaxation method to solve the original non-convex problem. The experimental results on synthetic and real data demonstrate the effectiveness of our proposed approach. PMID:25332642
The magnetic field investigation on Cluster
NASA Technical Reports Server (NTRS)
Balogh, A.; Cowley, S. W. H.; Southwood, D. J.; Musmann, G.; Luhr, H.; Neubauer, F. M.; Glassmeier, K.-H.; Riedler, W.; Heyn, M. F.; Acuna, M. H.
1988-01-01
The magnetic field investigation of the Cluster four-spacecraft mission is designed to provide intercalibrated measurements of the B magnetic field vector. The instrumentation and data processing of the mission are discussed. The instrumentation is identical on the four spacecraft. It consists of two triaxial fluxgate sensors and of a failure tolerant data processing unit. The combined analysis of the four spacecraft data will yield such parameters as the current density vector, wave vectors, and the geometry and structure of discontinuities.
Interpolation of vector fields from human cardiac DT-MRI
NASA Astrophysics Data System (ADS)
Yang, F.; Zhu, Y. M.; Rapacchi, S.; Luo, J. H.; Robini, M.; Croisille, P.
2011-03-01
There has recently been increased interest in developing tensor data processing methods for the new medical imaging modality referred to as diffusion tensor magnetic resonance imaging (DT-MRI). This paper proposes a method for interpolating the primary vector fields from human cardiac DT-MRI, with the particularity of achieving interpolation and denoising simultaneously. The method consists of localizing the noise-corrupted vectors using the local statistical properties of vector fields, removing the noise-corrupted vectors and reconstructing them by using the thin plate spline (TPS) model, and finally applying global TPS interpolation to increase the resolution in the spatial domain. Experiments on 17 human hearts show that the proposed method allows us to obtain higher resolution while reducing noise, preserving details and improving direction coherence (DC) of vector fields as well as fiber tracking. Moreover, the proposed method perfectly reconstructs azimuth and elevation angle maps.
The MAVEN Magnetic Field Investigation
NASA Astrophysics Data System (ADS)
Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.
2015-12-01
The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.
The MAVEN Magnetic Field Investigation
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.
2014-01-01
The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.
Cairns, I.H.; Gurnett, D.A. )
1991-05-01
The interaction between water outgassed from the space shuttle and the ionospheric plasma leads to production of water ions by charge exchange and an active and complex plasma wave environment for the space shuttle. The authors show that the amplitude and spectral character of some of these waves are controlled by the angle between the magnetic field and the shuttle's velocity vector V{sub T} relative to the ionospheric plasma. When the flow is approximately perpendicular to the magnetic field (V{sub {parallel}}/V{sub T}{approximately}0), large wave amplitudes and characteristic mushroom wave structures are observed, whereas more nearly parallel flows {vert bar}V{parallel}{vert bar} {approximately} V{sub {perpendicular}} are characterized by low wave levels. They show that linear instability theory predicts the growth of Doppler-shifted lower hybrid waves in the observed frequency range when driven by the ring and/or beam distributions of water ions produced by charge exchange in the vicinity of the space shuttle. Two mutually compatible interpretations for the V{sub {parallel}}/V{sub T} effect exist. The first interpretation involves the path lengths available for growth of waves driven by pickup ions varying with the quantity V{sub {parallel}}/V{sub T} and being limited by spatial variations in the water ion distribution. The second interpretation follows directly from the linear theory: decreasing the ring/beam speed V{sub {perpendicular}} of the pickup ions driving the waves (increasing V{sub {parallel}}/V{sub T} results in smaller growth rates), with zero growth rate below some threshold value of V{sub {perpendicular}}.These results have immediate implications for future shuttle missions and orbiting platforms subject to outgassing of water. If these facilities are used for ionospheric plasma studies or active experiments involving plasma waves, the plasma wave background due to pickup ions associated with the orbiter should be minimized.
Magnetization strucrure of thermal vent on island arc from vector magnetic anomlies using AUV
NASA Astrophysics Data System (ADS)
Isezaki, N.; Matsuo, J.; Sayanagi, K.
2012-04-01
The geomagnetic anomaly measured by a scalar magnetometer,such as a proton precession magnetometer cannot be defined its direction, then it does not satisfy the Laplace's equation. Therefore physical formula describing the relation between magnetic field and magnetization cannot be established.Because the difference between results obtained from scalar data and from vector data is very significant, we must use vector magnetic field data for magnetization analyses to get the more reliable and exact solutions. The development program of fundamental tools for exploration of deep seabed resources started with the financial support of the Ministry of Education, Culture, Sports, Science & Technology (MEXT) in 2008 and will end in 2012. In this project, we are developing magnetic exploration tools for seabed resources using AUV (Autonomous Underwater Vehicle) and other deep-towed vehicles to measure not the scalar magnetic field but the vector magnetic field in order to estimate magnetization structure below the sea-floor exactly and precisely. We conducted AUV magnetic survey in 2010 at the thermal area called Hakurei deposit in the Bayonnaise submarine caldera at the southern end of Izu island arc, about 400km south of Tokyo. We analyzed the observed vector magnetic fields to get the vector magnetic anomaly Fields using the method of Isezaki(1984). We inverted these vector magnetic anomaly fields to magnetization structure. CONCLUSIONS 1.The scalar magnetic field TIA (Total Intensity Anomaly) has no physical formula describing the relation between M (Magnetization) and TIA because TIA does not satisfy the Laplace's equation. Then it is impossible to estimate M from TIA. 2.Anlyses of M using TIA have been done so far under assumption TIA=PTA (Projected Total Anomay on MF (Main Geomagnetic Field)), however, which caused the analysis error due to ɛT= TIA - PTA . 3.We succeeded to measure the vector magnetic anomaly fields using AUV despite the severe magnetic noises around the magnetometer sensors. The method of Isezaki(1984) works good to eliminate these noises. 4.We got the very precise magnetization structure in the Bayonnaise submarine caldera area at the southern end of Izu island arc. We used the prism model which forms the shape of magnetized source body whose top is the sea-floor. The total number od prisms is 1500 making the 3 layers (0-80m, 80-160m, 160- 240m below the sea-floor, 25x20=500 prisms in 1 layer). The 4500 unknowns(3 unknowns, Mx,My,Mz in each prosm) are obtained from 12000 observed vector magnetic anomaly fields by inversion method. 5. The tentative result shows that the 1st and 2nd layers have smaller intensity of magnetization compared to the 3rd layer. The 2nd layer has the smallest of three layers. However the Hakurei deposit area in the 2nd layer has the a little bit greater magnetization than surrounding area which suggests that the Hakurei deposit includes some magnetic minerals. 6.We strongly recommend to carry out the magnetic survey using a three component magnetometer to get TF and TA which have many advantages for magnetic analyses (magnetization, upward continuation etc.) which cannot be done using scalar TIA.
Preflare magnetic and velocity fields
NASA Technical Reports Server (NTRS)
Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.
1986-01-01
A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares
Imaging vector fields using Line Integral Convolution
Cabral, B.; Leedom, L.C.
1993-03-01
Imaging vector fields has applications in science, art, image processing and special effects. An effective new approach is to use linear and curvilinear filtering techniques to locally blur textures along a vector field. This approach builds on several previous texture generation and filtering techniques. It is, however, unique because it is local, one-dimensional and independent of any predefined geometry or texture. The technique is general and capable of imaging arbitrary two- and three-dimensional vector fields. The local one-dimensional nature of the algorithm lends itself to highly parallel and efficient implementations. Furthermore, the curvilinear filter is capable of rendering detail on very intricate vector fields. Combining this technique with other rendering and image processing techniques -- like periodic motion filtering -- results in richly informative and striking images. The technique can also produce novel special effects.
Screening vector field modifications of general relativity
NASA Astrophysics Data System (ADS)
Beltrán Jiménez, Jose; Delvas Fróes, André Luís; Mota, David F.
2013-10-01
A screening mechanism for conformal vector-tensor modifications of general relativity is proposed. The conformal factor depends on the norm of the vector field and makes the field to vanish in high dense regions, whereas drives it to a non-null value in low density environments. Such process occurs due to a spontaneous symmetry breaking mechanism and gives rise to both the screening of fifth forces as well as Lorentz violations. The cosmology and local constraints are also computed.
Killing vector fields and harmonic superfield theories
Groeger, Josua
2014-09-15
The harmonic action functional allows a natural generalisation to semi-Riemannian supergeometry, also referred to as harmonic, which resembles the supersymmetric sigma models studied in high energy physics. We show that Killing vector fields are infinitesimal supersymmetries of this harmonic action and prove three different Noether theorems in this context. En passant, we provide a homogeneous treatment of five characterisations of Killing vector fields on semi-Riemannian supermanifolds, thus filling a gap in the literature.
Magsat vector magnetometer calibration using Magsat geomagnetic field measurements
NASA Technical Reports Server (NTRS)
Lancaster, E. R.; Jennings, T.; Morrissey, M.; Langel, R. A.
1980-01-01
From the time of its launch on Oct. 30, 1979 into a nearly polar, Sun synchronous orbit, until it reentered the Earth's atmosphere on June 11, 1980, Magsat measured and transmitted more than three complete sets of global magnetic field data. The data obtained from the mission will be used primarily to compute a currently accurate model of the Earth's main magnetic field, to update and refine world and regional magnetic charts, and to develop a global scalar and vector crustal magnetic anomaly map. The in-flight calibration procecure used for 39 vector magnetometer system parameters is described as well as results obtained from some data sets and the numerical studies designed to evaluate the results.
A Flexible Turbulent Vector Field Generator
NASA Astrophysics Data System (ADS)
Benassi, A.; Davis, A.
2004-12-01
Analysis and generation of turbulent vector fields is a necessity in many areas, such as Atmospheric Science. A candidate model of vector field must be flexible enough to tune some features, such as the spacial distribution of vortices, sinks and sources, according to physical measures. To achieve that goal, we propose a model that depends upon a given matricial function called "topolet" and a law of random vectors family. This model has a hierarchical structure. Its spinal column is a tree: the encoding tree of the domain where the vector field lives. The sets of vortices, sinks and sources are driven by some Bernouilli subtrees, directly giving their fractal dimension. At each node of the tree is attached a rate of energy loose giving the spectral slope. All those quantities are independantly identifiable on the base of mathematical proofs. A primitive version of this model have been proposed for generating clouds.
On regularized reconstruction of vector fields.
Tafti, Pouya Dehghani; Unser, Michael
2011-11-01
In this paper, we give a general characterization of regularization functionals for vector field reconstruction, based on the requirement that the said functionals satisfy certain geometric invariance properties with respect to transformations of the coordinate system. In preparation for our general result, we also address some commonalities of invariant regularization in scalar and vector settings, and give a complete account of invariant regularization for scalar fields, before focusing on their main points of difference, which lead to a distinct class of regularization operators in the vector case. Finally, as an illustration of potential, we formulate and compare quadratic (L(2)) and total-variation-type (L(1)) regularized denoising of vector fields in the proposed framework. PMID:21659026
The polar heliospheric magnetic field
NASA Technical Reports Server (NTRS)
Jokipii, J. R.; Kota, J.
1989-01-01
It is suggested that the polar heliospheric magnetic field, at large heliocentric distances, may deviate considerably from the generally accepted Archimedean spiral. Instead, it is suggested that the large-scale field near the poles may be dominated by randomly-oriented transverse magnetic fields with magnitude much larger than the average spiral. The average vector field is still the spiral, but the average magnitude may be much larger. In addition, the field direction is transverse to the radial direction most of the time instead of being nearly radial. This magnetic-field structure has important consequences for the transport of cosmic rays. Preliminary model calculations suggest changes in the radial gradient of galactic cosmic rays which may improve agreement with observations.
Electron Paramagnetic Resonance -- Nuclear Magnetic Resonance Three Axis Vector Magnetometer
NASA Astrophysics Data System (ADS)
Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Larsen, Michael; Mirijanian, James
2012-06-01
The Northrop Grumman Corporation is leveraging the technology developed for the Nuclear Magnetic Resonance Gyroscope (NMRG) to build a combined Electron Paramagnetic Resonance -- Nuclear Magnetic Resonance (EPR-NMR) magnetometer. The EPR-NMR approach provides a high bandwidth and high sensitivity simultaneous measurement of all three vector components of the magnetic field averaged over the small volume of the sensor's one vapor cell. This poster will describe the history, operational principles, and design basics of the EPR-NMR magnetometer including an overview of the NSD designs developed and demonstrated to date. General performance results will also be presented.
Solar Vector Magnetic Field Research
NASA Astrophysics Data System (ADS)
Rust, David M.
1997-02-01
The principal effort was development and flight of the Flare Genesis Experiment (FGE). The FGE is a balloon borne solar telescope that can provide the sharpest view ever of the evolution of activity on the Sun. The goal of the FGE is to obtain the observations needed for a breakthrough in solar flare research both sooner and at significantly lower cost than either a satellite or adaptive optics can offer. The FGE flight was a historic first. This effort has shown that a meter class solar telescope can take advantage of the modern long duration ballooning program in Antarctica to achieve science goals that are central to solar activity research.
Magnetic Gradiometer and Vector Magnetometer Survey of the Eastern Mediterranean
NASA Astrophysics Data System (ADS)
Granot, R.
2014-12-01
Some of the fundamental tectonic problems of the Eastern Mediterranean remain unresolved due to the extremely thick sedimentary cover (~15 km) and the lack of accurate magnetic anomaly data. We conducted a magnetic survey of the Herodotus and Levant Basins (Eastern Mediterranean) to study the nature and age of the underlying igneous crust. The towed magnetometer array consisted of two Overhauser sensors recording the total magnetic field in a longitudinal gradiometer mode, and a marine vector magnetometer. Accurate navigation together with the gradiometer data allows the separation of the magnetic signature of the lithosphere from the contributions of the external magnetic field and the geomagnetic field. Total field data in the Herodotus Basin reveal a sequence of long-wavelength NE-SW lineated anomalies (~80 nT) suggesting a deep (~20 km) 2D magnetic source layer. Analysis of the vector data shows a steady azimuth of lineations that is generally consistent with the total field anomalies. The sequence of anomalies is rather short and does not allow a unique identification. However, the continuous northward motion of the African Plate during the Paleozoic and Mesozoic result in predictable anomaly skewness patterns for the different time periods. Forward magnetic modeling best fit the observed anomalies when using Early Permian remanence directions. Altogether, these observations and analysis suggest that a Neo-Tethyan Permian oceanic crust underlies the Herodotus Basin. Two short-wavelengths and strong (~400 nT) anomalies are found in the Levant Basin, proposing rather shallow (~7 km) magnetic sources there. These anomalies spatially coincide with Mesozoic uplifted continental structures (Eratosthenes and Jonah Highs).
PREPROCESSING MAGNETIC FIELDS WITH CHROMOSPHERIC LONGITUDINAL FIELDS
Yamamoto, Tetsuya T.; Kusano, K.
2012-06-20
Nonlinear force-free field (NLFFF) extrapolation is a powerful tool for the modeling of the magnetic field in the solar corona. However, since the photospheric magnetic field does not in general satisfy the force-free condition, some kind of processing is required to assimilate data into the model. In this paper, we report the results of new preprocessing for the NLFFF extrapolation. Through this preprocessing, we expect to obtain magnetic field data similar to those in the chromosphere. In our preprocessing, we add a new term concerning chromospheric longitudinal fields into the optimization function proposed by Wiegelmann et al. We perform a parameter survey of six free parameters to find minimum force- and torque-freeness with the simulated-annealing method. Analyzed data are a photospheric vector magnetogram of AR 10953 observed with the Hinode spectropolarimeter and a chromospheric longitudinal magnetogram observed with SOLIS spectropolarimeter. It is found that some preprocessed fields show the smallest force- and torque-freeness and are very similar to the chromospheric longitudinal fields. On the other hand, other preprocessed fields show noisy maps, although the force- and torque-freeness are of the same order. By analyzing preprocessed noisy maps in the wave number space, we found that small and large wave number components balance out on the force-free index. We also discuss our iteration limit of the simulated-annealing method and magnetic structure broadening in the chromosphere.
The optical analogy for vector fields
NASA Technical Reports Server (NTRS)
Parker, E. N. (Editor)
1991-01-01
This paper develops the optical analogy for a general vector field. The optical analogy allows the examination of certain aspects of a vector field that are not otherwise readily accessible. In particular, in the cases of a stationary Eulerian flow v of an ideal fluid and a magnetostatic field B, the vectors v and B have surface loci in common with their curls. The intrinsic discontinuities around local maxima in absolute values of v and B take the form of vortex sheets and current sheets, respectively, the former playing a fundamental role in the development of hydrodyamic turbulence and the latter playing a major role in heating the X-ray coronas of stars and galaxies.
Magnetic vector data from the western Caribbean reveal possible origin
NASA Astrophysics Data System (ADS)
Barckhausen, U.; Engels, U.
2013-12-01
During a cruise with RV Meteor in the spring of 2010, magnetic measurements were carried out in the central and western Caribbean with up to six magnetic sensors deployed at the same time. These were i) a towed gradiometer consisting of two Overhauser sensors, ii) two towed vector magnetometers, and iii) two shipboard oriented vector magnetometers. While the gradiometer data provide total field magnetic anomalies free from external variations, the vector data can be analyzed with different methods in the space and wavenumber domains. In the case of the towed vector data, attitude control is challenging whereas shipboard data require a very thorough compensation for the ship's magnetic field. The data were analyzed with the goal to gain insight into the origin of the basement rocks especially of the western Caribbean. Position and strike direction of magnetic anomalies in the Columbia basin possibly hold the key to distinguish between an origin of the crust in the Pacific ocean and an alternative in situ formation between the Americas. On six long profiles in the Columbia basin and adjacent regions we find consistently strike directions of the magnetic anomalies around N100°E which seems to be incompatible with a Pacific origin of the crust. Three Project Magnet aeromagnetic vector profiles crossing the research area at different angles were analyzed with the same method and yield very similar results. In our interpretation, the crust underlying the Columbia basin formed during the Cretaceous at a roughly E-W trending spreading center between the Americas. Since the crust likely formed during the Cretaceous Superchron (C 34), the strike direction we find in our data probably does not represent typical seafloor spreading anomalies. Instead we believe it is related to changes in the intensity of the Earth's magnetic field which are known to have left correlated traces in oceanic crust formed during this period. The analysis methods we used are sensitive to intensity changes just as well as to polarity changes. We can demonstrate that the data quality is high and that the strike direction signal is clear and well correlated between the different profiles and that it is also consistent between towed, shipboard, and aeromagnetic sensors.
Ferromagnetic Switching of Knotted Vector Fields in Liquid Crystal Colloids.
Zhang, Qiaoxuan; Ackerman, Paul J; Liu, Qingkun; Smalyukh, Ivan I
2015-08-28
We experimentally realize polydomain and monodomain chiral ferromagnetic liquid crystal colloids that exhibit solitonic and knotted vector field configurations. Formed by dispersions of ferromagnetic nanoplatelets in chiral nematic liquid crystals, these colloidal ferromagnets exhibit spontaneous long-range alignment of magnetic dipole moments of individual platelets, giving rise to a continuum of the magnetization field M(r). Competing effects of surface confinement and chirality prompt spontaneous formation and enable the optical generation of localized twisted solitonic structures with double-twist tubes and torus knots of M(r), which exhibit a strong sensitivity to the direction of weak magnetic fields ∼1 mT. Numerical modeling, implemented through free energy minimization to arrive at a field-dependent three-dimensional M(r), shows a good agreement with experiments and provides insights into the torus knot topology of observed field configurations and the corresponding physical underpinnings. PMID:26371682
Ferromagnetic Switching of Knotted Vector Fields in Liquid Crystal Colloids
NASA Astrophysics Data System (ADS)
Zhang, Qiaoxuan; Ackerman, Paul J.; Liu, Qingkun; Smalyukh, Ivan I.
2015-08-01
We experimentally realize polydomain and monodomain chiral ferromagnetic liquid crystal colloids that exhibit solitonic and knotted vector field configurations. Formed by dispersions of ferromagnetic nanoplatelets in chiral nematic liquid crystals, these colloidal ferromagnets exhibit spontaneous long-range alignment of magnetic dipole moments of individual platelets, giving rise to a continuum of the magnetization field M (r ) . Competing effects of surface confinement and chirality prompt spontaneous formation and enable the optical generation of localized twisted solitonic structures with double-twist tubes and torus knots of M (r ) , which exhibit a strong sensitivity to the direction of weak magnetic fields ˜1 mT . Numerical modeling, implemented through free energy minimization to arrive at a field-dependent three-dimensional M (r ) , shows a good agreement with experiments and provides insights into the torus knot topology of observed field configurations and the corresponding physical underpinnings.
Magnetoconvection in sheared magnetic fields
Bian, N. H.; Garcia, O. E.
2008-10-15
The development of magnetoconvection in a sheared magnetic field is investigated. The equilibrium magnetic field B{sub 0} is horizontal and its orientation varies linearly along the vertical axis. Preliminary consideration of the transition from the inertial to the viscous regime of the gravitational resistive interchange instability, reveals that the latter is characterized by the existence of viscoresistive boundary layers of vertical width which scales as Q{sup -1/6}, where Q is the Chandrasekhar number. The situation is analogous to the one encountered in magnetically confined laboratory plasmas, where convective flows are constrained by the magnetic shear to develop in boundary layers located around resonant magnetic surfaces in order to fulfill the 'interchange condition'k{center_dot}B{sub 0}=0, where k is the wave vector of the magnetic perturbation. It follows that when the effect of thermal diffusion is taken into account in the process, convection can only occur above a certain critical value of the Rayleigh number which scales as Q{sup 2/3} for large Q. At the onset, the convection pattern is a superposition of identically thin convective rolls everywhere aligned with the local magnetic field lines and which therefore adopt the magnetic field geometry, a situation also reminiscent of the penumbra of sunspots. Using this degeneracy, equations describing the weakly nonlinear state are obtained and discussed. A reduced magnetohydrodynamic description of magnetoconvection is introduced. Since it is valid for arbitrary magnetic field configurations, it allows a simple extension to the case where there exists an inclination between the direction of gravity and the plane spanned by the equilibrium magnetic field. These reduced magnetohydrodynamic equations are proposed as a powerful tool for further investigations of magnetoconvection in more complex field line geometries.
Another Piece of the Elephant: Chromospheric Vector Field Observations
NASA Astrophysics Data System (ADS)
Leka, K. D.; Metcalf, T. R.; Mickey, D. L.
2005-05-01
As with most solar observational questions, investigating the structure and role of the chromosphere is one of remote sensing: many investigations describing their "piece of the elephant". The goal is, of course, to form a coherent picture of the state of the magnetized plasma which resides there (or passes through). In this presentation, recent efforts to understand the chromospheric magnetic field structure via direct observation, i.e. chromospheric vector magnetograms, will be presented. Since late 2003, the U. Hawai`i/Mees Solar Observatory's Imaging Vector Magnetograph has routinely acquired spectropolarimetry measurements of active regions across the Na-I 589.6nm line; from the polarization at the line's near-wings approximately 0.007nm from line center we deduce the vector magnetic field. The data are specific to active regions, with the focus being the structure, free energy storage and evolution at that low-chromospheric layer. I will present salient aspects of the observed chromospheric magnetic field structure, to compare and contrast with the picture formed by the other methods in this session.
NASA Technical Reports Server (NTRS)
Howard, R.
1972-01-01
Knowledge on the nature of magnetic fields on the solar surface is reviewed. At least a large part of the magnetic flux in the solar surface is confined to small bundles of lines of force within which the field strength is of the order of 500 gauss. Magnetic fields are closely associated with all types of solar activity. Magnetic flux appears at the surface at the clearly defined birth or regeneration of activity of an active region. As the region ages, the magnetic flux migrates to form large-scale patterns and the polar fields. Some manifestations of the large-scale distribution are discussed.
Intense magnetic field phenomena
Weisheit, J.
1994-12-31
This article surveys three of the many challenging problems involving quantum phenomena in plasmas with magnetic fields B in the range 10{sup 8}--10{sup 10} Gauss: magnetic white dwarf stars, spectroscopic effects of motional (v {times} B) electric fields, and statistical models of many-electron atoms in strong B fields. It has proved difficult to make progress in this regime of field strengths, where Coulomb and magnetic interactions are comparable.
The magnetic helicity spectrum from solar vector magnetograms
NASA Astrophysics Data System (ADS)
Brandenburg, Axel; Zhang, Hongqi; Sokoloff, Dmitry
2016-05-01
The gauge-invariant (or relative) magnetic helicity is often measured to characterize the degree of magnetic complexity of active regions. However, magnetic helicity is expected to have different signs on different length scales that can be identified with the large- and small-scale fields used in dynamo theory. To address this, it is important to determine magnetic helicity spectra as functions of wavenumber. These spectra are defined such that the integral over all wavenumbers gives the usual magnetic helicity density in a particular patch of interest. Using vector magnetograms from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory for active region NOAA 11515, which was on the southern hemisphere, we show that the magnetic helicity spectrum has positive sign on scales below 30 Mm, but negative sign on larger scales. This active region was rather complex and its magnetic helicity was within 26% of its theoretical maximum value. This is much more than that of NOAA 11158, which was also rather complex, but only within 5% of its theoretical maximum value. Since the contribution of larger length scales turned out to be important in the case of NOAA 11515, its total magnetic helicity is dominated by the negative values from large length scales, which explains the unusual sign for the southern hemisphere. Measuring magnetic helicity spectra with DKIST may become an important tool to learn about the workings of the underlying dynamo.
Circular Conditional Autoregressive Modeling of Vector Fields*
Modlin, Danny; Fuentes, Montse; Reich, Brian
2013-01-01
As hurricanes approach landfall, there are several hazards for which coastal populations must be prepared. Damaging winds, torrential rains, and tornadoes play havoc with both the coast and inland areas; but, the biggest seaside menace to life and property is the storm surge. Wind fields are used as the primary forcing for the numerical forecasts of the coastal ocean response to hurricane force winds, such as the height of the storm surge and the degree of coastal flooding. Unfortunately, developments in deterministic modeling of these forcings have been hindered by computational expenses. In this paper, we present a multivariate spatial model for vector fields, that we apply to hurricane winds. We parameterize the wind vector at each site in polar coordinates and specify a circular conditional autoregressive (CCAR) model for the vector direction, and a spatial CAR model for speed. We apply our framework for vector fields to hurricane surface wind fields for Hurricane Floyd of 1999 and compare our CCAR model to prior methods that decompose wind speed and direction into its N-S and W-E cardinal components. PMID:24353452
Circular Conditional Autoregressive Modeling of Vector Fields.
Modlin, Danny; Fuentes, Montse; Reich, Brian
2012-02-01
As hurricanes approach landfall, there are several hazards for which coastal populations must be prepared. Damaging winds, torrential rains, and tornadoes play havoc with both the coast and inland areas; but, the biggest seaside menace to life and property is the storm surge. Wind fields are used as the primary forcing for the numerical forecasts of the coastal ocean response to hurricane force winds, such as the height of the storm surge and the degree of coastal flooding. Unfortunately, developments in deterministic modeling of these forcings have been hindered by computational expenses. In this paper, we present a multivariate spatial model for vector fields, that we apply to hurricane winds. We parameterize the wind vector at each site in polar coordinates and specify a circular conditional autoregressive (CCAR) model for the vector direction, and a spatial CAR model for speed. We apply our framework for vector fields to hurricane surface wind fields for Hurricane Floyd of 1999 and compare our CCAR model to prior methods that decompose wind speed and direction into its N-S and W-E cardinal components. PMID:24353452
Direct magnetic loss analysis by FEM considering vector magnetic properties
Enokizono, M.; Soda, N.
1998-09-01
Improving material characteristics and optimizing designs have been studied from the standpoint of efficiency improvement of electrical machinery and apparatus. Unfortunately, the local magnetic properties in the actual core were still not understood fully. The study of soft magnetic materials commonly used in rotating machines and three-phase transformers is very important for saving energy. This paper deals with analysis by FEM for iron losses considering vector magnetic properties. The authors define the tensor magnetic reluctivity and calculate it from the data measured with two-dimensional measurement method. This numerical method is applied to the direct magnetic loss analysis. As a result, it is shown that the calculated results using the method are in a good agreement with measured ones.
NASA Astrophysics Data System (ADS)
Zweibel, Ellen G.
2011-08-01
The origin and evolution of magnetic fields in the Universe is a cosmological problem. Although exotic mechanisms for magneotgenesis cannot be ruled out, galactic magnetic fields could have been seeded by magnetic fields from stars and accretion disks, and must be continuously regenerated due to the ongoing replacement of the interstellar medium. Unlike stellar dynamos, galactic dynamos operate in a multicomponent gas at low collisionality and high magnetic Prandtl number. Their background turbulence is highly compressible, the plasma β ~ 1, and there has been time for only a few large exponentiation times at large scale over cosmic time. Points of similarity include the importance of magnetic buoyancy, the large range of turbulent scales and tiny microscopic scales, and the coupling between the magnetic field and certain properties of the flow. Understanding the origin and maintenance of the large scale galactic magnetic field is the most challenging aspect of the problem.
''Massless'' vector field in de Sitter universe
Garidi, T.; Gazeau, J.-P.; Rouhani, S.; Takook, M. V.
2008-03-15
We proceed to the quantization of the massless vector field in the de Sitter (dS) space. This work is the natural continuation of a previous article devoted to the quantization of the dS massive vector field [J. P. Gazeau and M. V. Takook, J. Math. Phys. 41, 5920 (2000); T. Garidi et al., ibid. 43, 6379 (2002).] The term ''massless'' is used by reference to conformal invariance and propagation on the dS lightcone whereas ''massive'' refers to those dS fields which unambiguously contract to Minkowskian massive fields at zero curvature. Due to the combined occurrences of gauge invariance and indefinite metric, the covariant quantization of the massless vector field requires an indecomposable representation of the de Sitter group. We work with the gauge fixing corresponding to the simplest Gupta-Bleuler structure. The field operator is defined with the help of coordinate-independent de Sitter waves (the modes). The latter are simple to manipulate and most adapted to group theoretical approaches. The physical states characterized by the divergencelessness condition are, for instance, easy to identify. The whole construction is based on analyticity requirements in the complexified pseudo-Riemannian manifold for the modes and the two-point function.
Construction of a 3He magnetic force microscope with a vector magnet
NASA Astrophysics Data System (ADS)
Yang, Jinho; Yang, Ilkyu; Kim, Yun Won; Shin, Dongwoo; Jeong, Juyoung; Wulferding, Dirk; Yeom, Han Woong; Kim, Jeehoon
2016-02-01
We constructed a 3He magnetic force microscope operating at the base temperature of 300 mK under a vector magnetic field of 2-2-9 T in the x-y-z direction. Fiber optic interferometry as a detection scheme is employed in which two home-built fiber walkers are used for the alignment between the cantilever and the optical fiber. The noise level of the laser interferometer is close to its thermodynamic limit. The capabilities of the sub-Kelvin and vector field are demonstrated by imaging the coexistence of magnetism and superconductivity in a ferromagnetic superconductor (ErNi2B2C) at T = 500 mK and by probing a dipole shape of a single Abrikosov vortex with an in-plane tip magnetization.
Construction of a (3)He magnetic force microscope with a vector magnet.
Yang, Jinho; Yang, Ilkyu; Kim, Yun Won; Shin, Dongwoo; Jeong, Juyoung; Wulferding, Dirk; Yeom, Han Woong; Kim, Jeehoon
2016-02-01
We constructed a (3)He magnetic force microscope operating at the base temperature of 300 mK under a vector magnetic field of 2-2-9 T in the x-y-z direction. Fiber optic interferometry as a detection scheme is employed in which two home-built fiber walkers are used for the alignment between the cantilever and the optical fiber. The noise level of the laser interferometer is close to its thermodynamic limit. The capabilities of the sub-Kelvin and vector field are demonstrated by imaging the coexistence of magnetism and superconductivity in a ferromagnetic superconductor (ErNi2B2C) at T = 500 mK and by probing a dipole shape of a single Abrikosov vortex with an in-plane tip magnetization. PMID:26931857
GlyphSea: Visualizing Vector Fields
NASA Astrophysics Data System (ADS)
McQuinn, Emmett; Chourasia, Amit; Schulze, Jürgen P.; Minster, Jean-Bernard
2013-12-01
Understanding vector fields is important in many science and engineering domains. Often glyphs are used to represent vector data as arrows, cones, ellipsoids, and other geometric shapes. When implemented using traditional 3D graphics, these glyphs have drawbacks of being view dependent, orientation ambiguous, and requiring specific geometric resolution. We propose a straightforward new method of procedural dipole texturing of glyph shapes, which overcomes these drawbacks and can enhance existing methods. We demonstrate our method with an interactive application (GlyphSea), which incorporates additional features such as screen space ambient occlusion, glyph displacement, lattices, halos and other contextual visual cues. We also discuss the results and informal feedback from scientists on insights gained by exploring time varying vector datasets in astrophysics and seismology.
Antisymmetric tensor generalizations of affine vector fields
NASA Astrophysics Data System (ADS)
Houri, Tsuyoshi; Morisawa, Yoshiyuki; Tomoda, Kentaro
2016-02-01
Tensor generalizations of affine vector fields called symmetric and antisymmetric affine tensor fields are discussed as symmetry of spacetimes. We review the properties of the symmetric ones, which have been studied in earlier works, and investigate the properties of the antisymmetric ones, which are the main theme in this paper. It is shown that antisymmetric affine tensor fields are closely related to one-lower-rank antisymmetric tensor fields which are parallelly transported along geodesics. It is also shown that the number of linear independent rank-p antisymmetric affine tensor fields in n-dimensions is bounded by (n + 1)!/p!(n - p)!. We also derive the integrability conditions for antisymmetric affine tensor fields. Using the integrability conditions, we discuss the existence of antisymmetric affine tensor fields on various spacetimes.
Constraints on primordial magnetic fields from inflation
NASA Astrophysics Data System (ADS)
Green, Daniel; Kobayashi, Takeshi
2016-03-01
We present generic bounds on magnetic fields produced from cosmic inflation. By investigating field bounds on the vector potential, we constrain both the quantum mechanical production of magnetic fields and their classical growth in a model independent way. For classical growth, we show that only if the reheating temperature is as low as Treh lesssim 102 MeV can magnetic fields of 10-15 G be produced on Mpc scales in the present universe. For purely quantum mechanical scenarios, even stronger constraints are derived. Our bounds on classical and quantum mechanical scenarios apply to generic theories of inflationary magnetogenesis with a two-derivative time kinetic term for the vector potential. In both cases, the magnetic field strength is limited by the gravitational back-reaction of the electric fields that are produced simultaneously. As an example of quantum mechanical scenarios, we construct vector field theories whose time diffeomorphisms are spontaneously broken, and explore magnetic field generation in theories with a variable speed of light. Transitions of quantum vector field fluctuations into classical fluctuations are also analyzed in the examples.
Multifractal vector fields and stochastic Clifford algebra.
Schertzer, Daniel; Tchiguirinskaia, Ioulia
2015-12-01
In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality. PMID:26723166
Multifractal vector fields and stochastic Clifford algebra
Schertzer, Daniel Tchiguirinskaia, Ioulia
2015-12-15
In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.
Multifractal vector fields and stochastic Clifford algebra
NASA Astrophysics Data System (ADS)
Schertzer, Daniel; Tchiguirinskaia, Ioulia
2015-12-01
In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.
Krienin, Frank
1990-01-01
A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.
NASA Astrophysics Data System (ADS)
Florido, E.; Battaner, E.
2010-12-01
Magnetic fields are present in all astrophysical media. However, many models and interpretations of observations often ignore them, because magnetic fields are difficult to handle and because they produce complicated morphological features. Here we will comment on the basic intuitive properties, which even if not completely true, provide a first guiding insight on the physics of a particular astrophysical problem. These magnetic properties are not mathematically demonstrated here. How magnetic fields evolve and how they introduce dynamical effects are considered, also including a short comment on General Relativity Magnetohydrodynamics. In a second part we consider some audacious and speculative matters. They are answers to three questions: a) How draw a cube without lifting the pencil from the paper so that when the pen passes through the same side do in the same direction? B) Are MILAGRO anisotropies miraculous? C) Do cosmic magnetic lenses exist?. The last two questions deal with issues related with the interplay between magnetic fields and cosmic ray propagation.
NASA Astrophysics Data System (ADS)
Beck, Rainer
Magnetic fields are a major agent in the interstellar medium. They contribute significantly to the total pressure which balances the gas disk against gravitation. They affect the gas flows in spiral arms (Gómez and Cox, 2002). The effective sound speed of the gas is increased by the presence of strong fields which reduce the shock strength. The interstellar fields are closely connected to gas clouds. They affect the dynamics of the gas clouds (Elmegreen, 1981; de Avillez and Breitschwerdt, 2004). The stability and evolution of gas clouds are also influenced by magnetic fields, but it is not understood how (Crutcher, 1999; see Chap. 7). Magnetic fields are essential for the onset of star formation as they enable the removal of angular momentum from the protostellar cloud during its collapse (magnetic braking, Mouschovias, 1990). Strong fields may shift the stellar mass spectrum towards the more massive stars (Mestel, 1990). MHD turbulence distributes energy from supernova explosions within the ISM (Subramanian, 1998) and regenerates the field via the dynamo process (Wielebinski, R., Krause, 1993, Beck et al., 1996; Sect. 6). Magnetic reconnection is a possible heating source for the ISM and halo gas (Birk et al., 1998). Magnetic fields also control the density and distribution of cosmic rays in the ISM. A realistic model for any process in the ISM needs basic information about the magnetic field which has to be provided by observations.
CMB non-gaussianity from vector fields
Peloso, Marco
2014-01-01
The Planck satellite has recently measured the CMB temperature anisotropies with unprecedented accuracy, and it has provided strong bounds on primordial non-gaussianity. Such bounds constrain models of inflation, and mechanisms that produce the primordial perturbations. We discuss the non-gaussian signatures from the interactions of the inflation φ with spin-1 fields. We study the two different cases in which the inflaton is (i) a pseudo-scalar field with a (φ)/(fa) F·F interaction with a vector field, and (ii) a scalar field with a f (φ)F² interaction. In the first case we obtain the strong limit f{sub a} ≥ 10¹⁶GeV on the decay constant. In the second case, specific choices of the function f (φ) can lead to a non-gaussianity with a characteristic shape not encountered in standard models of scalar field inflation, and which has also been constrained by Planck.
How the geomagnetic field vector reverses polarity
Prevot, M.; Mankinen, E.A.; Gromme, C.S.; Coe, R.S.
1985-01-01
A highly detailed record of both the direction and intensity of the Earth's magnetic field as it reverses has been obtained from a Miocene volcanic sequence. The transitional field is low in intensity and is typically non-axisymmetric. Geomagnetic impulses corresponding to astonishingly high rates of change of the field sometimes occur, suggesting that liquid velocity within the Earth's core increases during geomagnetic reversals. ?? 1985 Nature Publishing Group.
On the non-Gaussian correlation of the primordial curvature perturbation with vector fields
Jain, Rajeev Kumar; Sloth, Martin S. E-mail: sloth@cp3.dias.sdu.dk
2013-02-01
We compute the three-point cross-correlation function of the primordial curvature perturbation generated during inflation with two powers of a vector field in a model where conformal invariance is broken by a direct coupling of the vector field with the inflaton. If the vector field is identified with the electromagnetic field, this correlation would be a non-Gaussian signature of primordial magnetic fields generated during inflation. We find that the signal is maximized for the flattened configuration where the wave number of the curvature perturbation is twice that of the vector field and in this limit, the magnetic non-linear parameter becomes as large as |b{sub NL}| ∼ O(10{sup 3}). In the squeezed limit where the wave number of the curvature perturbation vanishes, our results agree with the magnetic consistency relation derived in arXiv:1207.4187.
Intermittent Vector Fields: A Challenge for Mathematical Geophysics?
NASA Astrophysics Data System (ADS)
Schertzer, D. J. M.; Tchiguirinskaia, I.
2014-12-01
Geophysical fields display strong intermittency over a wide range of scales. Multifractals has become a standard tool to analyze and simulate this key phenomenon for scalar fields. However, fields of interest, e.g. the velocity and the magnetic fields are vector fields. Some time ago, "Lie cascades" were introduced to deal with such fields by considering exponentiation from a stochastic element of a Lie algebra to its corresponding Lie group of transformations. The concerned transformation corresponds to the fine graining/downscaling of the field to higher and higher resolution. Unfortunately, developments were paused due to the possible large number of degrees of freedom of the latter, in particular with respect to the information that can be easily extracted from a d-dimensional vector field. In short, some physics was missing. In this communication, we point out the interest of the Clifford algebra Clp,q to make concrete progress. Ironically, these algebra were mentioned at once as rather straightforward generalizations of the scalar complex cascades, but they were not investigated. On the contrary, the particular case of the "pseudo-quaternions" l(2,R)=Cl2,0=Cl1,1 has been often used to generate generalized scales to analyse and simulate anistropic scaling (scalar) fields. The latter is in fact illustrative of the basic property of the Clifford algebra Clp,q to be generated by a quadratic form Q whose signature (p,q) is fundamental.
Nonlinear magnetization dynamics under circularly polarized field.
Bertotti, G; Serpico, C; Mayergoyz, I D
2001-01-22
Exact analytical results are presented for the nonlinear large motion of the magnetization vector in a body with uniaxial symmetry subject to a circularly polarized field. The absence of chaos, the existence of pure time-harmonic magnetization modes with no generation of higher-order harmonics, and the existence of quasiperiodic magnetization modes with spontaneous breaking of the rotational symmetry are proven. Application to ferromagnetic resonance and connection with the Stoner-Wohlfarth model are discussed. PMID:11177922
Improved determination of vector lithospheric magnetic anomalies from MAGSAT data
NASA Technical Reports Server (NTRS)
Ravat, Dhananjay
1993-01-01
Scientific contributions made in developing new methods to isolate and map vector magnetic anomalies from measurements made by Magsat are described. In addition to the objective of the proposal, the isolation and mapping of equatorial vector lithospheric Magsat anomalies, isolation of polar ionospheric fields during the period were also studied. Significant progress was also made in isolation of polar delta(Z) component and scalar anomalies as well as integration and synthesis of various techniques of removing equatorial and polar ionospheric effects. The significant contributions of this research are: (1) development of empirical/analytical techniques in modeling ionospheric fields in Magsat data and their removal from uncorrected anomalies to obtain better estimates of lithospheric anomalies (this task was accomplished for equatorial delta(X), delta(Z), and delta(B) component and polar delta(Z) and delta(B) component measurements; (2) integration of important processing techniques developed during the last decade with the newly developed technologies of ionospheric field modeling into an optimum processing scheme; and (3) implementation of the above processing scheme to map the most robust magnetic anomalies of the lithosphere (components as well as scalar).
Xu, Danfeng; Gu, Bing; Rui, Guanghao; Zhan, Qiwen; Cui, Yiping
2016-02-22
We present an arbitrary vector field with hybrid polarization based on the combination of a pair of orthogonal elliptically polarized base vectors on the Poincaré sphere. It is shown that the created vector field is only dependent on the latitude angle 2χ but is independent on the longitude angle 2ψ on the Poincaré sphere. By adjusting the latitude angle 2χ, which is related to two identical waveplates in a common path interferometric arrangement, one could obtain arbitrary type of vector fields. Experimentally, we demonstrate the generation of such kind of vector fields and confirm the distribution of state of polarization by the measurement of Stokes parameters. Besides, we investigate the tight focusing properties of these vector fields. It is found that the additional degree of freedom 2χ provided by arbitrary vector field with hybrid polarization allows one to control the spatial structure of polarization and to engineer the focusing field. PMID:26907066
Polar magnetic field reversal.
NASA Astrophysics Data System (ADS)
Benevolenskaya, E. E.
2006-08-01
The polar magnetic fields on the Sun have been an attractive subject for solar researches since Babcocks measured them in solar cycle 19 (Babcock and Babcock, 1955). One of the remarkable features of the polar magnetic fields is their reversal during the maxima of 11-year sunspot cycles (Babcock and Livingston, 1958; Babcock, 1959). I have present results of the investigations of the polar magnetic field using MDI data. It is found, that the polar magnetic field reversal is detected with SOHO/MDI data for polar region within 78deg - 88deg. The North Pole has changed polarity in CR1975 (April 2001). The South reversed later in CR1980 (September 2001). The total unsigned magnetic flux does not show the dramatic decreasing during the polar reversals due to omnipresent bi-polar small-scale magnetic elements (Severnyi 1965, Lin et al. 1994, Benevolenskaya 2004). The observational and theoretical aspects of the polar magnetic field reversals are discussed. References Babcock, H. W., and Babcock, H. D. 1955, ApJ, 121, 349 Babcock, H. W., Livingston W. C., 1958, Science, 127, 1058 Babcock, H. D., 1959, ApJ, 130, 364 Benevolenskaya, E. E. 2004, Astron. Astrophys., 428, L5 Lin, H., Varsik, J., Zirin, H., 1994, Solar Phys., 155, 243 Severnyi A. B., 1965, Soviet Astron. Letters, 9, 171
The component compensation of geomagnetic field vector measurement system
NASA Astrophysics Data System (ADS)
Pang, Hongfeng; Zhu, Xue Jun; Pan, Mengchun; Zhang, Qi; Wan, Chengbiao; Luo, Shitu; Chen, Jinfei; Li, Ji; Lv, Yunxiao; Chen, Dixiang
2015-05-01
Magnetic field distortion of INS is the major factor influencing the accuracy of geomagnetic field information measurement system. Simulation and experiment results show that traditional scalar compensation methods are disabled for component compensation. A component compensation method is proposed, in which parallelepiped frame and perpendicular platform are used with designed operation process. Comparing with traditional methods, the component compensation method is effective for distortion parameter estimation, and it shows better component compensation performance. Experimental test result demonstrates that distortion field components of INS are suppressed approximately two orders after compensation, and the North, Vertical and East component measurement error of the geomagnetic field are reduced to 2.3%, 3.3% and 4.5% of the former values respectively. Declination error is reduced from 7.074° to 0.331° (4.6% of the former value). This compensation method contributes to the accuracy improvement of geomagnetic field vector measurement system.
Magnetic field dosimeter development
Lemon, D.K.; Skorpik, J.R.; Eick, J.L.
1980-09-01
In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.
Magnetic fields in spiral galaxies
NASA Astrophysics Data System (ADS)
Chiba, Masashi
The magnetic-field characteristics in spiral galaxies are investigated, with emphasis on the Milky Way. The dynamo theory is considered, and axisymmetric spiral (ASS) and bisymmetric spiral (BSS) magnetic fields are analyzed. Toroidal and poloidal magnetic fields are discussed.
NASA Technical Reports Server (NTRS)
Smith, E. J.
1995-01-01
The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.
He I VECTOR MAGNETOMETRY OF FIELD-ALIGNED SUPERPENUMBRAL FIBRILS
Schad, T. A.; Penn, M. J.; Lin, H.
2013-05-10
Atomic-level polarization and Zeeman effect diagnostics in the neutral helium triplet at 10830 A in principle allow full vector magnetometry of fine-scaled chromospheric fibrils. We present high-resolution spectropolarimetric observations of superpenumbral fibrils in the He I triplet with sufficient polarimetric sensitivity to infer their full magnetic field geometry. He I observations from the Facility Infrared Spectropolarimeter are paired with high-resolution observations of the H{alpha} 6563 A and Ca II 8542 A spectral lines from the Interferometric Bidimensional Spectrometer from the Dunn Solar Telescope in New Mexico. Linear and circular polarization signatures in the He I triplet are measured and described, as well as analyzed with the advanced inversion capability of the ''Hanle and Zeeman Light'' modeling code. Our analysis provides direct evidence for the often assumed field alignment of fibril structures. The projected angle of the fibrils and the inferred magnetic field geometry align within an error of {+-}10 Degree-Sign . We describe changes in the inclination angle of these features that reflect their connectivity with the photospheric magnetic field. Evidence for an accelerated flow ({approx}40 m s{sup -2}) along an individual fibril anchored at its endpoints in the strong sunspot and weaker plage in part supports the magnetic siphon flow mechanism's role in the inverse Evershed effect. However, the connectivity of the outer endpoint of many of the fibrils cannot be established.
Magnetic Field Measurement System
Kulesza, Joe; Johnson, Eric; Lyndaker, Aaron; Deyhim, Alex; Waterman, Dave; Blomqvist, K. Ingvar; Dunn, Jonathan Hunter
2007-01-19
A magnetic field measurement system was designed, built and installed at MAX Lab, Sweden for the purpose of characterizing the magnetic field produced by Insertion Devices (see Figure 1). The measurement system consists of a large granite beam roughly 2 feet square and 14 feet long that has been polished beyond laboratory grade for flatness and straightness. The granite precision coupled with the design of the carriage yielded minimum position deviations as measured at the probe tip. The Hall probe data collection and compensation technique allows exceptional resolution and range while taking data on the fly to programmable sample spacing. Additional flip coil provides field integral data.
Ness, N F; Acuña, M H; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M
1989-12-15
The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. The detached bow shock wave in the supersonic solar wind flow was detected upstream at 34.9 Neptune radii (R(N)), and the magnetopause boundary was tentatively identified at 26.5 R(N) near the planet-sun line (1 R(N) = 24,765 kilometers). A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10(-5) gauss) was observed near closest approach, at a distance of 1.18 R(N). The planetary magnetic field between 4 and 15 R(N) can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R(N) and inclined by 47 degrees with respect to the rotation axis. The OTD dipole moment is 0.133 gauss-R(N)(3). Within 4 R(N), the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. The obliquity of Neptune and the phase of its rotation at encounter combined serendipitously so that the spacecraft entered the magnetosphere at a time when the polar cusp region was directed almost precisely sunward. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes in the diurnally varying magnetosphere configuration. In an astrophysical context, the magnetic field of Neptune, like that of Uranus, may be described as that of an "oblique" rotator. PMID:17756002
Spectrally correct finite element operators for electromagnetic vector fields
NASA Astrophysics Data System (ADS)
Pinchuk, A. R.; Crowley, C. W.; Silvester, P. P.; Ferrari, R. L.
1988-04-01
A single finite element formulation using the magnetic (H) field vector directly is proposed for analysis of electromagnetic fields throughout the frequency spectrum. Results for waveguide and cavity analysis, as well as recent solutions to benchmark low-frequency eddy current examples such as the ``Bath cube,'' demonstrate the flexibility of the formulation. Applying earlier finite element methods to vector Helmholtz or diffusion equation problems, various workers have obtained incorrect solutions because the eigenmode spectra of the discrete (finite element) operators for such problems may contain eigenvalues and eigenmodes which do not correspond to modes of the underlying continuum (physical) problem. Such ``spurious'' modes have long been documented in high-frequency modal analysis. They are clearly identified as the cause for error in deterministic problems. Error is avoided by employing finite element operators whose spectra contain no spurious components. Application of the formulation may be limited by computer round-off at matrix assembly which affects solenoidality of magnetic fields in the solutions. Furthermore, the extreme values encountered in low-frequency eddy current analyses lead to ill conditioning and information loss and subsequent unreliability of the solution. These numerical instabilities may be overcome by parametric adjustment of permittivities, or by increased computer word length.
NASA Astrophysics Data System (ADS)
Johnson, C. L.
2014-12-01
Mercury is the only inner solar system body other than Earth to possess an active core dynamo-driven magnetic field and the only planet with a small, highly dynamic magnetosphere. Measurements made by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft have provided a wealth of data on Mercury's magnetic field environment. Mercury's weak magnetic field was discovered 40 years ago by the Mariner 10 spacecraft, but its large-scale geometry, strength and origin could not be definitively established. MESSENGER data have shown that the field is dynamo-generated and can be described as an offset axisymmetric dipole field (hereafter OAD): the magnetic equator lies ~0.2 RM (RM = 2440 km) north of the geographic equator and the dipole moment is 2.8 x1019 Am2 (~0.03% that of Earth's). The weak internal field and the high, but variable, solar wind ram pressure drive vigorous magnetospheric dynamics and result in an average distance from the planet center to the sub-solar magnetopause of only 1.42 RM. Magnetospheric models developed with MESSENGER data have allowed re-analysis of the Mariner 10 observations, establishing that there has been no measureable secular variation in the internal field over 40 years. Together with spatial power spectra for the OAD, this provides critical constraints for viable dynamo models. Time-varying magnetopause fields induce secondary core fields, the magnitudes of which confirm the core radius estimated from MESSENGER gravity and Earth-based radar data. After accounting for large-scale magnetospheric fields, residual signatures are dominated by additional external fields that are organized in the local time frame and that vary with magnetospheric activity. Birkeland currents have been identified, which likely close in the planetary interior at depths below the base of the crust. Near-periapsis magnetic field measurements at altitudes greater than 200 km have tantalizing hints of crustal fields, but crustal sources cannot be distinguished from core fields, nor cleanly separated from external fields. I will report on recent data acquired at altitudes as low as 25 km that have the potential to resolve these issues. The presence of remanent crustal fields would have profound implications for Mercury's thermal and dynamical histories.
Initial geomagnetic field model from Magsat vector data
NASA Technical Reports Server (NTRS)
Langel, R. A.; Mead, G. D.; Lancaster, E. R.; Estes, R. H.; Fabiano, E. B.
1980-01-01
Magsat data from the magnetically quiet days of November 5-6, 1979, were used to derive a thirteenth degree and order spherical harmonic geomagnetic field model, MGST(6/80). The model utilized both scalar and high-accuracy vector data and fit that data with root-mean-square deviations of 8.2, 6.9, 7.6 and 7.4 nT for the scalar magnitude, B(r), B(theta), and B(phi), respectively. The model includes the three first-order coefficients of the external field. Comparison with averaged Dst indicates that zero Dst corresponds with 25 nT of horizontal field from external sources. When compared with earlier models, the earth's dipole moment continues to decrease at a rate of about 26 nT/yr. Evaluation of earlier models with Magsat data shows that the scalar field at the Magsat epoch is best predicted by the POGO(2/72) model but that the WC80, AWC/75 and IGS/75 are better for predicting vector fields.
Eruptive solar magnetic fields
NASA Technical Reports Server (NTRS)
Low, B. C.
1981-01-01
The quasi-steady evolution of solar magnetic fields in response to gradual photospheric changes is considered, with particular attention given to the threshold of a sudden eruption in the solar atmosphere. The formal model of an evolving, force-free field dependent on two Cartesian coordinates is extended to a field which is not force free but in static equilibrium with plasma pressure and gravity. The basic physics is illustrated through the evolution of a loop-shaped electric current sheet enclosing a potential bipolar field with footpoints rooted in the photosphere. A free-boundary problem is posed and then solved for the equilibrium configuration of the current sheet in a hydrostatically supported isothermal atmosphere. As the footpoints move apart to spread a constant photospheric magnetic flux over a larger region, the equilibria available extend the field to increasing heights.
Robust point matching via vector field consensus.
Jiayi Ma; Ji Zhao; Jinwen Tian; Yuille, Alan L; Zhuowen Tu
2014-04-01
In this paper, we propose an efficient algorithm, called vector field consensus, for establishing robust point correspondences between two sets of points. Our algorithm starts by creating a set of putative correspondences which can contain a very large number of false correspondences, or outliers, in addition to a limited number of true correspondences (inliers). Next, we solve for correspondence by interpolating a vector field between the two point sets, which involves estimating a consensus of inlier points whose matching follows a nonparametric geometrical constraint. We formulate this a maximum a posteriori (MAP) estimation of a Bayesian model with hidden/latent variables indicating whether matches in the putative set are outliers or inliers. We impose nonparametric geometrical constraints on the correspondence, as a prior distribution, using Tikhonov regularizers in a reproducing kernel Hilbert space. MAP estimation is performed by the EM algorithm which by also estimating the variance of the prior model (initialized to a large value) is able to obtain good estimates very quickly (e.g., avoiding many of the local minima inherent in this formulation). We illustrate this method on data sets in 2D and 3D and demonstrate that it is robust to a very large number of outliers (even up to 90%). We also show that in the special case where there is an underlying parametric geometrical model (e.g., the epipolar line constraint) that we obtain better results than standard alternatives like RANSAC if a large number of outliers are present. This suggests a two-stage strategy, where we use our nonparametric model to reduce the size of the putative set and then apply a parametric variant of our approach to estimate the geometric parameters. Our algorithm is computationally efficient and we provide code for others to use it. In addition, our approach is general and can be applied to other problems, such as learning with a badly corrupted training data set. PMID:24808341
NASA Astrophysics Data System (ADS)
Beck, Rainer
The origin and evolution of cosmic magnetic fields, their strength and structure in intergalactic space, their first occurrence in young galaxies, and their dynamical importance for galaxy evolution remain widely unknown. Radio synchrotron emission, its polarization and its Faraday rotation are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized radio synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 μG) and in central starburst regions (50-100 μG). Such fields are dynamically important; they can affect gas flows and drive gas inflows in central regions. Polarized radio emission traces ordered fields which can be regular or anisotropic turbulent, generated from isotropic turbulent fields by compression or shear. The strongest ordered fields of 10-15 μG strength are generally found in interarm regions and follow the orientation of adjacent gas spiral arms. In galaxies with strong density waves, ordered (anisotropic turbulent) fields are also observed at the inner edges of the spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies, and in central regions of starburst galaxies. Ordered fields in interacting galaxies have asymmetric distributions and are an excellent tracer of past interactions between galaxies or with the intergalactic medium. Irregular galaxies host isotropic turbulent fields often of similar strength as in spiral galaxies, but only weak ordered fields. Faraday rotation measures (RM) of the diffuse polarized radio emission from the disks of several galaxies reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by a mean-field α -Ω dynamo. So far no indications were found in external galaxies of large-scale field reversals, like the one in the Milky Way. Ordered magnetic fields are also observed in radio halos around edge-on galaxies out to large distances from the plane, with X-shaped patterns. In the outflow cone above a starburst region of NGC 253, RM data indicate a helical magnetic field.
An Extraordinary Magnetic Field Map of Mars
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.; Mitchell, D. L.; Lin, R. P.
2004-01-01
The Mars Global Surveyor spacecraft has completed two Mars years in nearly circular polar orbit at a nominal altitude of 400 km. The Mars crust is at least an order of magnitude more intensely magnetized than that of the Earth [1], and intriguing in both its global distribution and geometric properties [2,3]. Measurements of the vector magnetic field have been used to map the magnetic field of crustal origin to high accuracy [4]. We present here a new map of the magnetic field with an order of magnitude increased sensitivity to crustal magnetization. The map is assembled from > 2 full years of MGS night-side observations, and uses along-track filtering to greatly reduce noise due to external field variations.
Multiscale vector fields for image pattern recognition
NASA Technical Reports Server (NTRS)
Low, Kah-Chan; Coggins, James M.
1990-01-01
A uniform processing framework for low-level vision computing in which a bank of spatial filters maps the image intensity structure at each pixel into an abstract feature space is proposed. Some properties of the filters and the feature space are described. Local orientation is measured by a vector sum in the feature space as follows: each filter's preferred orientation along with the strength of the filter's output determine the orientation and the length of a vector in the feature space; the vectors for all filters are summed to yield a resultant vector for a particular pixel and scale. The orientation of the resultant vector indicates the local orientation, and the magnitude of the vector indicates the strength of the local orientation preference. Limitations of the vector sum method are discussed. Investigations show that the processing framework provides a useful, redundant representation of image structure across orientation and scale.
High field superconducting magnets
NASA Technical Reports Server (NTRS)
Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)
2011-01-01
A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.
An evaluation of Tsyganenko magnetic field model
Fairfield, D.H. )
1991-02-01
A long-standing goal of magnetospheric physics has been to produce a model of the Earth's magnetic field that can accurately predict the field vector at all locations within the magnetosphere for all dipole tilt angles and for various solar wind or magnetic activity conditions. A number of models make such predictions, but some only for limited spatial regions, some only for zero tilt angle, and some only for arbitrary conditions. No models depend explicitly on solar wind conditions. A data set of more than 22,000 vector averages of the magnetosphere magnetic field over 0.5 R{sub E} regions is used to evaluate Tsyganenko's 1982 and 1987 magnetospheric magnetic field models. The magnetic field predicted by the model in various regions is compared to observations to find systematic discrepancies which future models might address. While agreement is generally good, discrepancies are noted which include: (1) a lack of adequate field line stretching in the tail and ring current regions; (2) an inability to predict weak enough fields in the polar cusps; and (3) a deficiency of Kp as a predictor of the field configuration.
The Heliospheric Magnetic Field
NASA Astrophysics Data System (ADS)
Balogh, André; Erdõs, Géza
2013-06-01
The Heliospheric Magnetic Field (HMF) is the physical framework in which energetic particles and cosmic rays propagate. Changes in the large scale structure of the magnetic field lead to short- and long term changes in cosmic ray intensities, in particular in anti-phase with solar activity. The origin of the HMF in the corona is well understood and inner heliospheric observations can generally be linked to their coronal sources. The structure of heliospheric magnetic polarities and the heliospheric current sheet separating the dominant solar polarities are reviewed here over longer than a solar cycle, using the three dimensional heliospheric observations by Ulysses. The dynamics of the HMF around solar minimum activity is reviewed and the development of stream interaction regions following the stable flow patterns of fast and slow solar wind in the inner heliosphere is described. The complex dynamics that affects the evolution of the stream interaction regions leads to a more chaotic structure of the HMF in the outer heliosphere is described and discussed on the basis of the Voyager observations. Around solar maximum, solar activity is dominated by frequent transients, resulting in the interplanetary counterparts of Coronal Mass Ejections (ICMEs). These produce a complex aperiodic pattern of structures in the inner heliosphere, at all heliolatitudes. These structures continue to interact and evolve as they travel to the outer heliosphere. However, linking the observations in the inner and outer heliospheres is possible in the case of the largest solar transients that, despite their evolutions, remain recognizably large structures and lead to the formation of Merged Interaction Regions (MIRs) that may well form a quasi-spherical, "global" shell of enhanced magnetic fields around the Sun at large distances. For the transport of energetic particles and cosmic rays, the fluctuations in the magnetic field and their description in alternative turbulent models remains a very important research topic. These are also briefly reviewed in this paper.
Magnetic space-based field measurements
NASA Technical Reports Server (NTRS)
Langel, R. A.
1981-01-01
Satellite measurements of the geomagnetic field began with the launch of Sputnik 3 in May 1958 and have continued sporadically in the intervening years. A list of spacecraft that have made significant contributions to an understanding of the near-earth geomagnetic field is presented. A new era in near-earth magnetic field measurements began with NASA's launch of Magsat in October 1979. Attention is given to geomagnetic field modeling, crustal magnetic anomaly studies, and investigations of the inner earth. It is concluded that satellite-based magnetic field measurements make global surveys practical for both field modeling and for the mapping of large-scale crustal anomalies. They are the only practical method of accurately modeling the global secular variation. Magsat is providing a significant contribution, both because of the timeliness of the survey and because its vector measurement capability represents an advance in the technology of such measurements.
The history of polarisation measurements: their role in studies of magnetic fields
NASA Astrophysics Data System (ADS)
Wielebinski, R.
2015-03-01
Radio astronomy gave us new methods to study magnetic fields. Synchrotron radiation, the main cause of comic radio waves, is highly linearly polarised with the `E' vector normal to the magnetic field. The Faraday Effect rotates the `E' vector in thermal regions by the magnetic field in the line of sight. Also the radio Zeeman Effect has been observed.
Modeling solar force-free magnetic fields
NASA Astrophysics Data System (ADS)
Low, B. C.; Lou, Y. Q.
1990-03-01
A class of nonlinear force-free magnetic fields is presented, described in terms of the solutions to a second-order, nonlinear ordinary differential equation. These magnetic fields are three-dimensional, filling the infinite half-space above a plane where the lines of force are anchored. They model the magnetic fields of the sun over active regions with a striking geometric realism. The total energy and the free energy associated with the electric current are finite and can be calculated directly from the magnetic field at the plane boundary using the virial theorem. In the study of solar magnetic fields with data from vector magnetographs, there is a long-standing interest in devising algorithms to extrapolate for the force-free magnetic field in a given domain from prescribed field values at the boundary. The closed-form magnetic fields of this paper open up an opportunity for testing the reliability and accuracy of algorithms that claim the capability of performing this extrapolation. The extrapolation procedure as an ill-posed mathematical problem is discussed.
Magnetization dynamics using ultrashort magnetic field pulses
NASA Astrophysics Data System (ADS)
Tudosa, Ioan
Very short and well shaped magnetic field pulses can be generated using ultra-relativistic electron bunches at Stanford Linear Accelerator. These fields of several Tesla with duration of several picoseconds are used to study the response of magnetic materials to a very short excitation. Precession of a magnetic moment by 90 degrees in a field of 1 Tesla takes about 10 picoseconds, so we explore the range of fast switching of the magnetization by precession. Our experiments are in a region of magnetic excitation that is not yet accessible by other methods. The current table top experiments can generate fields longer than 100 ps and with strength of 0.1 Tesla only. Two types of magnetic were used, magnetic recording media and model magnetic thin films. Information about the magnetization dynamics is extracted from the magnetic patterns generated by the magnetic field. The shape and size of these patterns are influenced by the dissipation of angular momentum involved in the switching process. The high-density recording media, both in-plane and perpendicular type, shows a pattern which indicates a high spin momentum dissipation. The perpendicular magnetic recording media was exposed to multiple magnetic field pulses. We observed an extended transition region between switched and non-switched areas indicating a stochastic switching behavior that cannot be explained by thermal fluctuations. The model films consist of very thin crystalline Fe films on GaAs. Even with these model films we see an enhanced dissipation compared to ferromagnetic resonance studies. The magnetic patterns show that damping increases with time and it is not a constant as usually assumed in the equation describing the magnetization dynamics. The simulation using the theory of spin-wave scattering explains only half of the observed damping. An important feature of this theory is that the spin dissipation is time dependent and depends on the large angle between the magnetization and the magnetic field.
Video-rate terahertz electric-field vector imaging
Takai, Mayuko; Takeda, Masatoshi; Sasaki, Manabu; Tachizaki, Takehiro; Yasumatsu, Naoya; Watanabe, Shinichi
2014-10-13
We present an experimental setup to dramatically reduce a measurement time for obtaining spatial distributions of terahertz electric-field (E-field) vectors. The method utilizes the electro-optic sampling, and we use a charge-coupled device to detect a spatial distribution of the probe beam polarization rotation by the E-field-induced Pockels effect in a 〈110〉-oriented ZnTe crystal. A quick rotation of the ZnTe crystal allows analyzing the terahertz E-field direction at each image position, and the terahertz E-field vector mapping at a fixed position of an optical delay line is achieved within 21 ms. Video-rate mapping of terahertz E-field vectors is likely to be useful for achieving real-time sensing of terahertz vector beams, vector vortices, and surface topography. The method is also useful for a fast polarization analysis of terahertz beams.
Slow decay of magnetic fields in open Friedmann universes
Barrow, John D.; Tsagas, Christos G.
2008-05-15
Magnetic fields in Friedmann universes can experience superadiabatic growth without departing from conventional electromagnetism. The reason is the relativistic coupling between vector fields and spacetime geometry, which slows down the decay of large-scale magnetic fields in open universes, compared to that seen in perfectly flat models. The result is a large relative gain in magnetic strength that can lead to astrophysically interesting B fields, even if our Universe is only marginally open today.
Complete algebraic vector fields on affine surfaces-Part II
NASA Astrophysics Data System (ADS)
Rebelo, Julio C.
In this work we finish off the classification of meromorphic semi-complete vector fields announced in Rebelo [J. Geom. Anal 13(4) (2003) 669-696]. As an application of our results, we give a simple and more geometric proof of the classification of complete polynomial vector fields on C2 recently obtained through the works of Brunella and McQuillan.
The Curl of a Vector Field: Beyond the Formula
ERIC Educational Resources Information Center
Burch, Kimberly Jordan; Choi, Youngna
2006-01-01
It has been widely acknowledged that there is some discrepancy in the teaching of vector calculus in mathematics courses and other applied fields. The curl of a vector field is one topic many students can calculate without understanding its significance. In this paper, we explain the origin of the curl after presenting the standard mathematical…
On the Computation of Integral Curves in Adaptive Mesh Refinement Vector Fields
Deines, Eduard; Weber, Gunther H.; Garth, Christoph; Van Straalen, Brian; Borovikov, Sergey; Martin, Daniel F.; Joy, Kenneth I.
2011-06-27
Integral curves, such as streamlines, streaklines, pathlines, and timelines, are an essential tool in the analysis of vector field structures, offering straightforward and intuitive interpretation of visualization results. While such curves have a long-standing tradition in vector field visualization, their application to Adaptive Mesh Refinement (AMR) simulation results poses unique problems. AMR is a highly effective discretization method for a variety of physical simulation problems and has recently been applied to the study of vector fields in flow and magnetohydrodynamic applications. The cell-centered nature of AMR data and discontinuities in the vector field representation arising from AMR level boundaries complicate the application of numerical integration methods to compute integral curves. In this paper, we propose a novel approach to alleviate these problems and show its application to streamline visualization in an AMR model of the magnetic field of the solar system as well as to a simulation of two incompressible viscous vortex rings merging.
Design of 2D time-varying vector fields.
Chen, Guoning; Kwatra, Vivek; Wei, Li-Yi; Hansen, Charles D; Zhang, Eugene
2012-10-01
Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects. PMID:22201068
The Vector Field Proton Magnetometer for IGY Satellite Ground Stations
NASA Technical Reports Server (NTRS)
Shapiro, I. R.; Stolarik, J. D.; Heppner, J. P.
1960-01-01
The application of homogeneous-bias fields to a proton precessional magnetometer allows the measurement of the vector field by measuring the absolute scalar field F, declination variations (Delta)D, and inclination variations (Delta)I. The absolute scalar field can be measured to an accuracy of +/- 1 gamma and absolute declination and inclination to an accuracy of +/- 2 minutes. This paper describes a vector proton magnetometer that has been in operation at nine Minitrack stations since the spring of 1958.
Jansson, Ronnie; Farrar, Glennys R.
2012-12-10
With this Letter, we complete our model of the Galactic magnetic field (GMF), by using the WMAP7 22 GHz total synchrotron intensity map and our earlier results to obtain a 13-parameter model of the Galactic random field, and to determine the strength of the striated random field. In combination with our 22-parameter description of the regular GMF, we obtain a very good fit to more than 40,000 extragalactic Faraday rotation measures and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps. The data call for a striated component to the random field whose orientation is aligned with the regular field, having zero mean and rms strength Almost-Equal-To 20% larger than the regular field. A noteworthy feature of the new model is that the regular field has a significant out-of-plane component, which had not been considered earlier. The new GMF model gives a much better description of the totality of data than previous models in the literature.
Radial magnetic field in magnetic confinement device
NASA Astrophysics Data System (ADS)
Xiong, Hao; Liu, Ming-Hai; Chen, Ming; Rao, Bo; Chen, Jie; Chen, Zhao-Quan; Xiao, Jin-Shui; Hu, Xi-Wei
2015-09-01
The intrinsic radial magnetic field (Br) in a tokamak is explored by the solution of the Grad-Shafranov equation in axisymmetric configurations through an expansion of the four terms of the magnetic surfaces. It can be inferred from the simulation results that at the core of the device, the tokamak should possess a three-dimensional magnetic field configuration, which could be reduced to a two-dimensional one when the radial position is greater than 0.6a. The radial magnetic field and the amzimuthal magnetic field have the same order of magnitude at the core of the device. These results can offer a reference for the analysis of the plasma instability, the property of the core plasma, and the magnetic field measurement. Project supported by the Special Domestic Program of ITER, China (Grant No. 2009GB105003).
NASA Astrophysics Data System (ADS)
Campanelli, Leonardo
2016-03-01
We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today. Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic mode with wave number k evolves, after inflation, according to the values of k ηe , nk , and Ωk , where ηe is the conformal time at the end of inflation, nk is the number density spectrum of inflation-produced photons, and Ωk is the phase difference between the two Bogoliubov coefficients which characterize the state of that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that nk-1≪|k ηe|≪1 , and three evolutionary scenarios are possible: (i) |Ωk∓π |=O (1 ) , in which case the evolution of the magnetic spectrum Bk(η ) is adiabatic, a2Bk(η )=const , with a being the expansion parameter; (ii) |Ωk∓π |≪|k ηe| , in which case the evolution is superadiabatic, a2Bk(η )∝η ; (iii) |k ηe|≪|Ωk∓π |≪1 or |k ηe|˜|Ωk∓π |≪1 , in which case an early phase of adiabatic evolution is followed, after a time η⋆˜|Ωk∓π |/k , by a superadiabatic evolution. Once a given mode reenters the horizon, it remains frozen into the plasma and then evolves adiabatically till today. As a corollary of our results, we find that inflation-generated magnetic fields evolve adiabatically on all scales and for all times in conformal-invariant free Maxwell theory, while they evolve superadiabatically after inflation on superhorizon scales in the nonconformal-invariant Ratra model, where the inflaton is kinematically coupled to the electromagnetic field. The latter result supports and, somehow, clarifies our recent claim that the Ratra model can account for the presence of cosmic magnetic fields without suffering from both backreaction and strong-coupling problems.
Statistical anisotropy of the curvature perturbation from vector field perturbations
Dimopoulos, Konstantinos; Karciauskas, Mindaugas; Lyth, David H.; Rodriguez, Yeinzon E-mail: m.karciauskas@lancaster.ac.uk E-mail: yeinzon.rodriguez@uan.edu.co
2009-05-15
The {delta}N formula for the primordial curvature perturbation {zeta} is extended to include vector as well as scalar fields. Formulas for the tree-level contributions to the spectrum and bispectrum of {zeta} are given, exhibiting statistical anisotropy. The one-loop contribution to the spectrum of {zeta} is also worked out. We then consider the generation of vector field perturbations from the vacuum, including the longitudinal component that will be present if there is no gauge invariance. Finally, the {delta}N formula is applied to the vector curvaton and vector inflation models with the tensor perturbation also evaluated in the latter case.
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Robinson, R. S.; Etters, R. D.
1982-01-01
A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.
Low field magnetic resonance imaging
Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.
2010-07-13
A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.
Thermal vector potential theory of magnon-driven magnetization dynamics
NASA Astrophysics Data System (ADS)
Tatara, Gen
2015-08-01
Thermal vector potential formulation is applied to study the thermal dynamics of magnetic structures for insulating ferromagnets. By separating the variables of the magnetic structure and the magnons, the equation of motion for the structure, including spin-transfer effect because of thermal magnons, is derived for the cases of a domain wall and a vortex. The magnon current is evaluated based on the linear response theory with the thermal vector potential representing the temperature gradient. The velocity of a domain wall when driven by thermal magnons exhibits a strong temperature dependence unlike the case of an electrically driven domain wall in metals.
Tracking Vector Magnetograms with the Magnetic Induction Equation
NASA Technical Reports Server (NTRS)
Schuck, P.
2009-01-01
The differential affine velocity estimator (DAVE) that we developed in 2006 for estimating velocities from line-of-sight magnetograms is modified to directly incorporate horizontal magnetic fields to produce a differential affine velocity estimator for vector magnetograms (DAVE4VM). The DAVE4VM's performance is demonstrated on the synthetic data from the anelastic pseudospectral ANMHD simulations that were used in the recent comparison of velocity inversion techniques by Welsch and coworkers. The DAVE4VM predicts roughly 95% of the helicity rate and 75% of the power transmitted through the simulation slice. Intercomparison between DAVE4VM and DAVE and further analysis of the DAVE method demonstrates that line-of-sight tracking methods capture the shearing motion of magnetic footpoints but are insensitive to flux emergence - the velocities determined from line-of-sight methods are more consistent with horizontal plasma velocities than with flux transport velocities. These results suggest that previous studies that rely on velocities determined from line-of-sight methods such as the DAVE or local correlation tracking may substantially misrepresent the total helicity rates and power through the photosphere.
NASA Astrophysics Data System (ADS)
Savani, N. P.; Vourlidas, A.; Szabo, A.; Mays, M. L.; Richardson, I. G.; Thompson, B. J.; Pulkkinen, A.; Evans, R.; Nieves-Chinchilla, T.
2015-06-01
The process by which the Sun affects the terrestrial environment on short timescales is predominately driven by the amount of magnetic reconnection between the solar wind and Earth's magnetosphere. Reconnection occurs most efficiently when the solar wind magnetic field has a southward component. The most severe impacts are during the arrival of a coronal mass ejection (CME) when the magnetosphere is both compressed and magnetically connected to the heliospheric environment. Unfortunately, forecasting magnetic vectors within coronal mass ejections remain elusive. Here we report how, by combining a statistically robust helicity rule for a CME's solar origin with a simplified flux rope topology, the magnetic vectors within the Earth-directed segment of a CME can be predicted. In order to test the validity of this proof-of-concept architecture for estimating the magnetic vectors within CMEs, a total of eight CME events (between 2010 and 2014) have been investigated. With a focus on the large false alarm of January 2014, this work highlights the importance of including the early evolutionary effects of a CME for forecasting purposes. The angular rotation in the predicted magnetic field closely follows the broad rotational structure seen within the in situ data. This time-varying field estimate is implemented into a process to quantitatively predict a time-varying Kp index that is described in detail in paper II. Future statistical work, quantifying the uncertainties in this process, may improve the more heuristic approach used by early forecasting systems.
NASA Technical Reports Server (NTRS)
Galliher, S. C.; Mayhew, M. A.
1982-01-01
Magnetic anomaly component data measured by Magsat is compared with synthetic anomaly component fields arising from an equivalent source dipole array at the earth's surface generated from total field anomaly data alone. It is found that the synthetic components fit the component data regardless of the dipole orientation assigned to the equivalent sources and of the dipole spacing. Tentative conclusions are: (1) over the U.S., vector anomaly fields can be determined to the accuracy of the measurements from the total field anomaly data alone; and (2) the equivalent source technique is not useful for determining the direction of large-scale crustal magnetization.
NASA Astrophysics Data System (ADS)
Kong, Seong Deok
Hollow-sphere nanocapsules containing intentionally trapped magnetic nanoparticles and defined anticancer drugs provide a powerful magnetic vector under moderate gradient magnetic fields, and enable the nanocapsules to penetrate into the midst of tumors and allow a controlled on-off switchable release of the anticancer drug cargo by remotely applied Radio Frequency (RF) magnetic field. This imageable smart drug delivery system is compact because the drug molecules and magnetic nanoparticles can all be self-contained within 80~150 nm capsules. In vitro as well as in vivo results indicate that the nanocapsules are effective in reducing tumor cell growth. In Chapter 1, the concept of Drug Delivery Systems (DDSs) and the impact of nanotechnology on Drug Delivery Systems were introduced. Triggered drug release using magnetothermally-responsive nanomaterials, magnetic nanoparticles for nanomedicine, and ordered mesoporous materials in the context of Drug Delivery System were discussed. In Chapter 2, creation of remotely controllable, On-Off switchable drug release methodology was described. In this thesis work, triggerable nanocapsules which contain magnetic nanoparticles responsive to external radio frequency (RF) magnetic field have been successfully created. This is in contrast to the regular hollow nanospheres for slow passive release of drugs. The new nanocapsule material consists of bio-inert, bio-compatible or bio-degradable material that we can be selected from a variety of materials depending on specific medical applications. In Chapter 3, study and utilization of magnetic vector for guided tumor penetration was discussed. In the presence of a moderate gradient magnetic field, a powerful magnetic vector is created that allows these nanocapsules to cross cell membranes or blood-tissue barriers and penetrate into the midst of tumors, thus overcoming the well-known problem of limited access of anti-cancer drugs to cancer cells in the interior of a tumor tissue. In Chapter 4, potential applications to Blood-Brain-Barrier (BBB) crossing and other therapeutics was described. In Chapter 5, the study was summarized and concluded.
Vector field editing and periodic orbit extraction using Morse decomposition.
Chen, Guoning; Mischaikow, Konstantin; Laramee, Robert S; Pilarczyk, Pawel; Zhang, Eugene
2007-01-01
Design and control of vector fields is critical for many visualization and graphics tasks such as vector field visualization, fluid simulation, and texture synthesis. The fundamental qualitative structures associated with vector fields are fixed points, periodic orbits, and separatrices. In this paper, we provide a new technique that allows for the systematic creation and cancellation of fixed points and periodic orbits. This technique enables vector field design and editing on the plane and surfaces with desired qualitative properties. The technique is based on Conley theory, which provides a unified framework that supports the cancellation of fixed points and periodic orbits. We also introduce a novel periodic orbit extraction and visualization algorithm that detects, for the first time, periodic orbits on surfaces. Furthermore, we describe the application of our periodic orbit detection and vector field simplification algorithms to engine simulation data demonstrating the utility of the approach. We apply our design system to vector field visualization by creating data sets containing periodic orbits. This helps us understand the effectiveness of existing visualization techniques. Finally, we propose a new streamline-based technique that allows vector field topology to be easily identified. PMID:17495336
Polar Magnetic Field Experiment
NASA Technical Reports Server (NTRS)
Russell, C. T.
1999-01-01
This grant covers the initial data reduction and analysis of the magnetic field measurements of the Polar spacecraft. At this writing data for the first three years of the mission have been processed and deposited in the key parameter database. These data are also available in a variety of time resolutions and coordinate systems via a webserver at UCLA that provides both plots and digital data. The flight software has twice been reprogrammed: once to remove a glitch in the data where there were rare collisions between commands in the central processing unit and once to provide burst mode data at 100 samples per second on a regular basis. The instrument continues to function as described in the instrument paper (1.1 in the bibliography attached below). The early observations were compared with observations on the same field lines at lower altitude. The polar magnetic measurements also proved to be most useful for testing the accuracy of MHD models. WE also made important contributions to study of waves and turbulence.
Photonic Magnetic Field Sensor
NASA Astrophysics Data System (ADS)
Wyntjes, Geert
2002-02-01
Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.
Phillips, J.D.; Nabighian, M.N.; Smith, D.V.; Li, Y.
2007-01-01
The Helbig method for estimating total magnetization directions of compact sources from magnetic vector components is extended so that tensor magnetic gradient components can be used instead. Depths of the compact sources can be estimated using the Euler equation, and their dipole moment magnitudes can be estimated using a least squares fit to the vector component or tensor gradient component data. ?? 2007 Society of Exploration Geophysicists.
On parameter space of complex polynomial vector fields in C
NASA Astrophysics Data System (ADS)
Dias, Kealey; Tan, Lei
2016-01-01
The space Ξd of degree d single-variable monic and centered complex polynomial vector fields can be decomposed into loci in which the vector fields have the same topological structure. This paper analyzes the geometric structure of these loci and describes some bifurcations. In particular, it is proved that new homoclinic separatrices can form under small perturbation. By an example, we show that this decomposition of parameter space by combinatorial data is not a cell decomposition. The appendix to this article, joint work with Tan Lei, shows that landing separatrices are stable under small perturbation of the vector field if the multiplicities of the equilibrium points are preserved.
Visualizing Vector Fields Using Line Integral Convolution and Dye Advection
NASA Technical Reports Server (NTRS)
Shen, Han-Wei; Johnson, Christopher R.; Ma, Kwan-Liu
1996-01-01
We present local and global techniques to visualize three-dimensional vector field data. Using the Line Integral Convolution (LIC) method to image the global vector field, our new algorithm allows the user to introduce colored 'dye' into the vector field to highlight local flow features. A fast algorithm is proposed that quickly recomputes the dyed LIC images. In addition, we introduce volume rendering methods that can map the LIC texture on any contour surface and/or translucent region defined by additional scalar quantities, and can follow the advection of colored dye throughout the volume.
The Local Stellar Velocity Field via Vector Spherical Harmonics
NASA Technical Reports Server (NTRS)
Markarov, V. V.; Murphy, D. W.
2007-01-01
We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism. We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not corrected for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star. The Oort parameters determined by a straightforward least-squares adjustment in vector spherical harmonics are A=14.0 +/- 1.4, B=13.1 +/- 1.2, K=1.1 +/- 1.8, and C=2.9 +/- 1.4 km s(exp -1) kpc(exp -1). The physical meaning and the implications of these parameters are discussed in the framework of a general linear model of the velocity field. We find a few statistically significant higher degree harmonic terms that do not correspond to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we estimate at approximately -20 km s(exp -1) kpc(exp -1). A similar vertical gradient of rotation velocity has been detected for more distant stars representing the thick disk (z greater than 1 kpc), but here we surmise its existence in the thin disk at z less than 200 pc. The most unexpected and unexplained term within the Ogorodnikov-Milne model is the first-degree magnetic harmonic, representing a rigid rotation of the stellar field about the axis -Y pointing opposite to the direction of rotation. This harmonic comes out with a statistically robust coefficient of 6.2 +/- 0.9 km s(exp -1) kpc(exp -1) and is also present in the velocity field of more distant stars. The ensuing upward vertical motion of stars in the general direction of the Galactic center and the downward motion in the anticenter direction are opposite to the vector field expected from the stationary Galactic warp model.
Analytical study of the magnetic field generated by multipolar magnetic configuration
NASA Astrophysics Data System (ADS)
Murillo Acevedo, M. T.; Dugar-Zhabon, V. D.; Otero, O.
2016-02-01
The magneto-statics field from a parallelepiped magnet which can turn around an axis, is the first step to find the whole magnetic field in a multipolar configuration. This configuration is present in the ion sources, which are heated by electron cyclotron resonance. We present the analytic formulas to calculate this magnetic field outside the volume of the magnet. To model the magnet, we considered a constant magnetization vector inside of magnet volume. Therefore, the magnetic scalar potential method can be used. We present the results by a hexapolar system. Their magnetic field components are calculated on confinement region, several graphics are shown with directions and magnitude's gradients of the magnetic field to help understand better the confinement system. Our results are confronted with experimental ones. These formulas are very useful in research of plasma magnetic confinement in ion sources through computational simulations.
Magnetic Fields: Visible and Permanent.
ERIC Educational Resources Information Center
Winkeljohn, Dorothy R.; Earl, Robert D.
1983-01-01
Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)
Visualization of 3 Dimensional Seismic Vector Fields
NASA Astrophysics Data System (ADS)
McQuinn, E.; Chourasia, A.; Minster, J. H.; Schulze, J.
2009-12-01
Earthquake simulations produce vast amounts of surface and volumetric temporal data. We have implemented methods to visualize scalar and vector data that allows comprehension of the large amount of information. We leverage advances in graphics processors to draw oriented and textured geometry interactively. We have developed four glyphs to depict the underlying vector data: spheres, ellipsoids, lines, and voxels. The glyphs can be switched interactively and offer multiple visual representations where each glyph enhances different underlying property. Additionally, we have developed highlighting mechanisms to enhance comprehension of direction of vector data. For instance, a sphere would ordinarily not provide directional cues but with our method of highlight the sphere can indicate the direction. We have also developed interactively tunable methods to resolve occlusion of volumetric data. We present multimodal visual representations that provide an array of interactive and flexible visualization techniques to the scientists for scientific investigation through visualization. The visualization tool can be run on a laptop, desktop or virtual reality (VR) environment. We are leveraging one such state-of-the-art system called “StarCAVE”. The StarCAVE surrounds the user with seamless, immersive and stereoscopic virtual environment. This VR environment provides the capability to view the volumetric data from inside the volume in an immersive manner, which is similar to witnessing the earthquake event from inside earth from any vantage point. Interactive visualization of the Terashake simulation allows scientists to flexibly explore existing data intuitively. This is a crop of the Terashake simulation containing the San Andreas near San Bernadino. Color represents velocity magnitude, while direction is that of the displacement vector.
Magnetization curves and probability angular distribution of the magnetization vector in Er2Fe14Si3
NASA Astrophysics Data System (ADS)
Sobh, Hala A.; Aly, Samy H.; Shabara, Reham M.; Yehia, Sherif
2016-01-01
Specific magnetic and magneto-thermal properties of Er2Fe14Si3, in the temperature range of 80-300 K, have been investigated using basic laws of classical statistical mechanics in a simple model. In this model, the constructed partition function was used to derive, and therefore calculate the temperature and/or field dependence of a host of physical properties. Examples of these properties are: the magnetization, magnetic heat capacity, magnetic susceptibility, probability angular distribution of the magnetization vector, and the associated angular dependence of energy. We highlight a correlation between the energy of the system, its magnetization behavior and the angular location of the magnetization vector. Our results show that Er2Fe14Si3 is an easy-axis system in the temperature range 80-114 K, but switches to an easy-plane system at T≥114 K. This transition is also supported by both of the temperature dependence of the magnetic heat capacity, which develops a peak at a temperature ~114 K, and the probability landscape which shows, in zero magnetic field, a prominent peak in the basal plane at T=113.5 K.
The role of vector fields in modified gravity scenarios
Tasinato, Gianmassimo; Koyama, Kazuya; Khosravi, Nima E-mail: kazuya.koyama@port.ac.uk
2013-11-01
Gravitational vector degrees of freedom typically arise in many examples of modified gravity models. We start to systematically explore their role in these scenarios, studying the effects of coupling gravitational vector and scalar degrees of freedom. We focus on set-ups that enjoy a Galilean symmetry in the scalar sector and an Abelian gauge symmetry in the vector sector. These symmetries, together with the requirement that the equations of motion contain at most two space-time derivatives, only allow for a small number of operators in the Lagrangian for the gravitational fields. We investigate the role of gravitational vector fields for two broad classes of phenomena that characterize modified gravity scenarios. The first is self-acceleration: we analyze in general terms the behavior of vector fluctuations around self-accelerating solutions, and show that vanishing kinetic terms of vector fluctuations lead to instabilities on cosmological backgrounds. The second phenomenon is the screening of long range fifth forces by means of Vainshtein mechanism. We show that if gravitational vector fields are appropriately coupled to a spherically symmetric source, they can play an important role for defining the features of the background solution and the scale of the Vainshtein radius. Our general results can be applied to any concrete model of modified gravity, whose low-energy vector and scalar degrees of freedom satisfy the symmetry requirements that we impose.
The magnetic field of a permanent hollow cylindrical magnet
NASA Astrophysics Data System (ADS)
Reich, Felix A.; Stahn, Oliver; Müller, Wolfgang H.
2015-12-01
Based on the rational version of Muc(AXWELL)'s equations according to Tuc(RUESDELL) and Tuc(OUPIN) or KOVETZ, cf. (Kovetz in Electromagnetic theory, Oxford University Press, Oxford, 2000; Truesdell and Toupin in Handbuch der Physik, Bd. III/1, Springer, Berlin, pp 226-793; appendix, pp 794-858, 2000), we present, for stationary processes, a closed-form solution for the magnetic flux density of a hollow cylindrical magnet. Its magnetization is constant in axial direction. We consider Muc(AXWELL)'s equations in regular and singular points that are obtained by rational electrodynamics, adapted to stationary processes. The magnetic flux density is calculated analytically by means of a vector potential. We obtain a solution in terms of complete elliptic integrals. Therefore, numerical evaluation can be performed in a computationally efficient manner. The solution is written in dimensionless form and can easily be applied to cylinders of arbitrary shape. The relation between the magnetic flux density and the magnetic field is linear, and an explicit relation for the field is presented. With a slight modification the result can be used to obtain the field of a solid cylindrical magnet. The mathematical structure of the solution and, in particular, singularities are discussed.
Huang, Qiu; Peng, Qiyu; Huang, Bin; Cheryauka, Arvi; Gullberg, Grant T.
2008-05-15
The measurement of flow obtained using continuous wave Doppler ultrasound is formulated as a directional projection of a flow vector field. When a continuous ultrasound wave bounces against a flowing particle, a signal is backscattered. This signal obtains a Doppler frequency shift proportional to the speed of the particle along the ultrasound beam. This occurs for each particle along the beam, giving rise to a Doppler velocity spectrum. The first moment of the spectrum provides the directional projection of the flow along theultrasound beam. Signals reflected from points further away from the detector will have lower amplitude than signals reflected from points closer to the detector. The effect is very much akin to that modeled by the attenuated Radon transform in emission computed tomography.A least-squares method was adopted to reconstruct a 2D vector field from directional projection measurements. Attenuated projections of only the longitudinal projections of the vector field were simulated. The components of the vector field were reconstructed using the gradient algorithm to minimize a least-squares criterion. This result was compared with the reconstruction of longitudinal projections of the vector field without attenuation. Ifattenuation is known, the algorithm was able to accurately reconstruct both components of the full vector field from only one set of directional projection measurements. A better reconstruction was obtained with attenuation than without attenuation implying that attenuation provides important information for the reconstruction of flow vector fields.This confirms previous work where we showed that knowledge of the attenuation distribution helps in the reconstruction of MRI diffusion tensor fields from fewer than the required measurements. In the application of ultrasound the attenuation distribution is obtained with pulse wave transmission computed tomography and flow information is obtained with continuous wave Doppler.
Reconnection of Magnetic Fields
NASA Astrophysics Data System (ADS)
Birn, J.; Priest, E. R.
2007-01-01
Preface; Part I. Introduction: 1.1 The Sun E. R. Priest; 1.2 Earth's magnetosphere J. Birn; Part II. Basic Theory of MHD Reconnection: 2.1 Classical theory of two-dimensional reconnection T. G. Forbes; 2.2 Fundamental concepts G. Hornig; 2.3 Three-dimensional reconnection in the absence of magnetic null points G. Hornig; 2.4 Three-dimensional reconnection at magnetic null points D. Pontin; 2.5 Three-dimensional flux tube reconnection M. Linton; Part III. Basic Theory of Collisionless Reconnection: 3.1 Fundamentals of collisionless reconnection J. Drake; 3.2 Diffusion region physics M. Hesse; 3.3 Onset of magnetic reconnection P. Pritchett; 3.4 Hall-MHD reconnection A. Bhattacharjee and J. Dorelli; 3.5 Role of current-aligned instabilities J. Büchner and W. Daughton; 3.6 Nonthermal particle acceleration M. Hoshino; Part IV. Reconnection in the Magnetosphere: 4.1 Reconnection at the magnetopause: concepts and models J. G. Dorelli and A. Bhattacharjee; 4.2 Observations of magnetopause reconnection K.-H. Trattner; 4.3 On the stability of the magnetotail K. Schindler; 4.4 Simulations of reconnection in the magnetotail J. Birn; 4.5 Observations of tail reconnection W. Baumjohann and R. Nakamura; 4.6 Remote sensing of reconnection M. Freeman; Part V. Reconnection in the Sun's Atmosphere: 5.1 Coronal heating E. R. Priest; 5.2 Separator reconnection D. Longcope; 5.3 Pinching of coronal fields V. Titov; 5.4 Numerical experiments on coronal heating K. Galsgaard; 5.5 Solar flares K. Kusano; 5.6 Particle acceleration in flares: theory T. Neukirch; 5.7 Fast particles in flares: observations L. Fletcher; 6. Open problems J. Birn and E. R. Priest; Bibliography; Index.
Leptogenesis and primordial magnetic fields
Long, Andrew J.; Sabancilar, Eray; Vachaspati, Tanmay E-mail: eray.sabancilar@asu.edu
2014-02-01
The anomalous conversion of leptons into baryons during leptogenesis is shown to produce a right-handed helical magnetic field; in contrast, the magnetic field produced during electroweak baryogenesis is known to be left-handed. If the cosmological medium is turbulent, the magnetic field evolves to have a present day coherence scale ∼ 10 pc and field strength ∼ 10{sup −18} Gauss. This result is insensitive to the energy scale at which leptogenesis took place. Observations of the amplitude, coherence scale, and helicity of the intergalactic magnetic field promise to provide a powerful probe of physics beyond the Standard Model and the very early universe.
Observations of galactic magnetic fields
NASA Astrophysics Data System (ADS)
Beck, Rainer
Magnetic fields are enchored in gas clouds. Field lines are tangled in spiral arms, but highly regular between the arms. The similarity of pitch angles between gaseous and magnetic arms suggests a coupling between the density wave and the magnetic wave. Observations of large-scale patterns in Faraday rotation favour a dynamo origin of the regular fields. Fields in barred galaxies do not reveal the strong shearing shocks observed in the cold gas, but swing smoothly from the upstream region into the bar. Magnetic fields are important for the dynamcis of gas clouds, for the formation of spiral structures, bars and halos, and for mass and angular momentum transport in central regions.
Fast superconducting magnetic field switch
Goren, Yehuda; Mahale, Narayan K.
1996-01-01
The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.
Fast superconducting magnetic field switch
Goren, Y.; Mahale, N.K.
1996-08-06
The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.
Martian external magnetic field proxies
NASA Astrophysics Data System (ADS)
Langlais, Benoit; Civet, Francois
2015-04-01
Mars possesses no dynamic magnetic field of internal origin as it is the case for the Earth or for Mercury. Instead Mars is characterized by an intense and localized magnetic field of crustal origin. This field is the result of past magnetization and demagnetization processes, and reflects its evolution. The Interplanetary Magnetic Field (IMF) interacts with Mars' ionized environment to create an external magnetic field. This external field is weak compared to lithospheric one but very dynamic, and may hamper the detailed analysis of the internal magnetic field at some places or times. Because there are currently no magnetic field measurements made at Mars' surface, it is not possible to directly monitor the external field temporal variability as it is done in Earth's ground magnetic observatories. In this study we examine to indirect ways of quantifying this external field. First we use the Advanced Composition Explorer (ACE) mission which measures the solar wind about one hour upstream of the bow-shock resulting from the interaction between the solar wind and the Earth's internal magnetic field. These measurements are extrapolated to Mars' position taking into account the orbital configurations of the Mars-Earth system and the velocity of particles carrying the IMF. Second we directly use Mars Global Surveyor magnetic field measurements to quantify the level of variability of the external field. We subtract from the measurements the internal field which is otherwise modeled, and bin the residuals first on a spatial and then on a temporal mesh. This allows to compute daily or semi daily index. We present a comparison of these two proxies and demonstrate their complementarity. We also illustrate our analysis by comparing our Martian external field proxies to terrestrial index at epochs of known strong activity. These proxies will especially be useful for upcoming magnetic field measurements made around or at the surface of Mars.
Evolution of twisted magnetic fields
Zweibel, E.G.; Boozer, A.H.
1985-02-01
The magnetic field of the solar corona evolves quasistatically in response to slowly changing photospheric boundary conditions. The magnetic topology is preserved by the low resistivity of the solar atmosphere. We show that a magnetic flux coordinate system simplifies the problem of calculating field evolution with invariant topology. As an example, we calculate the equilibrium of a thin magnetic flux tube with small twist per unit length.
Inflation with a massive vector field nonminimally coupled to gravity
NASA Astrophysics Data System (ADS)
Bertolami, O.; Bessa, V.; Páramos, J.
2016-03-01
We study the possibility that inflation is driven by a massive vector field with S O (3 ) global symmetry nonminimally coupled to gravity. From an E3-invariant Robertson-Walker metric we propose an Ansatz for the vector field, allowing us to study the evolution of the system. We study the behavior of the equations of motion using the methods of the theory of dynamical systems and find exponential inflationary regimes.
Vector Field Visual Data Analysis Technologies for Petascale Computational Science
Garth, Christoph; Deines, Eduard; Joy, Kenneth I.; Bethel, E. Wes; Childs, Hank; Weber, Gunther; Ahern, Sean; Pugmire, Dave; Sanderson, Allen; Johnson, Chris
2009-11-13
State-of-the-art computational science simulations generate large-scale vector field data sets. Visualization and analysis is a key aspect of obtaining insight into these data sets and represents an important challenge. This article discusses possibilities and challenges of modern vector field visualization and focuses on methods and techniques developed in the SciDAC Visualization and Analytics Center for Enabling Technologies (VACET) and deployed in the open-source visualization tool, VisIt.
Wave-vector dependence of magnetic-turbulence spectra in the solar wind.
Narita, Y; Glassmeier, K-H; Sahraoui, F; Goldstein, M L
2010-04-30
Using four-point measurements of the Cluster spacecraft, the energy distribution was determined for magnetic field fluctuations in the solar wind directly in the three-dimensional wave-vector domain in the range |k|
Exposure guidelines for magnetic fields
Miller, G.
1987-12-01
The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.
Some Structural Properties of Solar Magnetic Fields
NASA Astrophysics Data System (ADS)
Ioshpa, B.; Mogilevskii, E.; Obridko, V.
2007-05-01
We discuss some results of the study of spatial characteristics of solar magnetic fields. The analysis is based on the magnetic field data obtained with a new spectromagnetograph installed on the IZMIRAN Tower Telescope (Fe I 6302.5 Å) (Kozhevatov et al., 2002), the data of the MSFC solar vector magnetograph (Fe I 5250.2 Å) and the data of longitudinal magnetic 96 m daily maps of SOHO/MDI magnetograph (Ni I 6768 Å) downloaded through Internet. Our study was directed in some different ways: the fractal properties of sunspots; fractal properties of space distribution of the magnetic fields along great distances comparable with the size of active regions or active complexes; fractal properties of active and quiet regions as global entities. To do it we used some different methods, particularly, the well known method using the relation between the area and the perimeter of magnetic field lines (see (Feder, 1988; Meunier, 1999; Nesme-Ribes at al., 1996; Balke et al., 1993)) and technique developed by Higuchi (1988), who applied it to the investigation of long time series. Note also that magnetic structure in terms of the fractal models was developed earlier in (Zelenyi & Milovanov, 1991; Milovanov & Zelenyi, 1993; Mogilevskii, 1994; Mogilevskii, 2001; Abramenko et al., 2002; Abramenko, 2005; Salakhudinova & Golovko, 2005). The main results are: 1. Fractal analysis of sunspot magnetic field indicated the existence of three families of self-similar contour lines roughly belonging to the umbra, penumbra and the ambient photosphere correspondingly. The greatest fractal dimension corresponds to the regions of weakest fields (ambient photosphere), the least one corresponds to the intermediate region (penumbra). 2. More detailed analysis shows that the fractal coefficient has a maximum (about 1.50) near the umbra--penumbra interface. 3. The global fractal numbers of space distribution of magnetic field on solar surface is closely connected with the mean absolute values of the longitudinal magnetic field for this surface. The fractal numbers diminish with the rising of mean magnetic field (from values about 2.0 for the relatively quiet region to 1- 1.2 for very active regions). 4. The dependences of fractal numbers of the space distribution of longitudinal and transversal fields versus mean longitudinal field are similar by their character but the fractal values for transversal field are higher than the corresponding factor values for longitudinal field by factor about 1.5. This means that the distribution of transversal field along the space is more chaotic than the distribution of longitudinal field.
Magnetic field modification of optical magnetic dipoles.
Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David
2015-03-11
Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate. PMID:25646869
Animation of orthogonal texture patterns for vector field visualization.
Bachthaler, Sven; Weiskopf, Daniel
2008-01-01
This paper introduces orthogonal vector field visualization on 2D manifolds: a representation by lines that are perpendicular to the input vector field. Line patterns are generated by line integral convolution (LIC). This visualization is combined with animation based on motion along the vector field. This decoupling of the line direction from the direction of animation allows us to choose the spatial frequencies along the direction of motion independently from the length scales along the LIC line patterns. Vision research indicates that local motion detectors are tuned to certain spatial frequencies of textures, and the above decoupling enables us to generate spatial frequencies optimized for motion perception. Furthermore, we introduce a combined visualization that employs orthogonal LIC patterns together with conventional, tangential streamline LIC patterns in order to benefit from the advantages of these two visualization approaches. In addition, a filtering process is described to achieve a consistent and temporally coherent animation of orthogonal vector field visualization. Different filter kernels and filter methods are compared and discussed in terms of visualization quality and speed. We present respective visualization algorithms for 2D planar vector fields and tangential vector fields on curved surfaces, and demonstrate that those algorithms lend themselves to efficient and interactive GPU implementations. PMID:18467751
Robust Morse decompositions of piecewise constant vector fields.
Szymczak, Andrzej; Zhang, Eugene
2012-06-01
In this paper, we introduce a new approach to computing a Morse decomposition of a vector field on a triangulated manifold surface. The basic idea is to convert the input vector field to a piecewise constant (PC) vector field, whose trajectories can be computed using simple geometric rules. To overcome the intrinsic difficulty in PC vector fields (in particular, discontinuity along mesh edges), we borrow results from the theory of differential inclusions. The input vector field and its PC variant have similar Morse decompositions. We introduce a robust and efficient algorithm to compute Morse decompositions of a PC vector field. Our approach provides subtriangle precision for Morse sets. In addition, we describe a Morse set classification framework which we use to color code the Morse sets in order to enhance the visualization. We demonstrate the benefits of our approach with three well-known simulation data sets, for which our method has produced Morse decompositions that are similar to or finer than those obtained using existing techniques, and is over an order of magnitude faster. PMID:21747131
Magnetic-field-dosimetry system
Lemon, D.K.; Skorpik, J.R.; Eick, J.L.
1981-01-21
A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.
NASA Astrophysics Data System (ADS)
Gu, Bing; Wu, Jia-Lu; Pan, Yang; Cui, Yiping
2013-11-01
We demonstrate that the optical bottle-shaped fields can be controllably generated by the focused spatial-variant linearly polarized vector beams. Based on the vectorial Rayleigh-Sommerfeld formulas under the paraxial approximation, we present theoretically the analytical expression for the focused field of the vector beam and predict the evolution of the sate of polarization (SoP) in the focal region. Experimentally, we observe the vector bottle-shaped field that is in agreement with the numerical simulations. In particular, we validate that both the SoP and the size of the optical bottle field are manipulated easily by varying the azimuthal topological charge and the radial mode index.
The Sun's global magnetic field.
Mackay, Duncan H
2012-07-13
Our present-day understanding of solar and stellar magnetic fields is discussed from both an observational and theoretical viewpoint. To begin with, observations of the Sun's large-scale magnetic field are described, along with recent advances in measuring the spatial distribution of magnetic fields on other stars. Following this, magnetic flux transport models used to simulate photospheric magnetic fields and the wide variety of techniques used to deduce global coronal magnetic fields are considered. The application and comparison of these models to the Sun's open flux, hemispheric pattern of solar filaments and coronal mass ejections are then discussed. Finally, recent developments in the construction of steady-state global magnetohydrodynamic models are considered, along with key areas of future research. PMID:22665897
Vestibular stimulation by magnetic fields.
Ward, Bryan K; Roberts, Dale C; Della Santina, Charles C; Carey, John P; Zee, David S
2015-04-01
Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging studies, these reports have become more common. It was recently learned that humans, mice, and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662
Vestibular stimulation by magnetic fields
Ward, Bryan K.; Roberts, Dale C.; Della Santina, Charles C.; Carey, John P.; Zee, David S.
2015-01-01
Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging (MRI) studies, these reports have become more common. It was recently learned that humans, mice and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662
Magnetic fields around evolved stars
NASA Astrophysics Data System (ADS)
Leal-Ferreira, M.; Vlemmings, W.; Kemball, A.; Amiri, N.; Maercker, M.; Ramstedt, S.; Olofsson, G.
2014-04-01
A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.
Vector field models of inflation and dark energy
Koivisto, Tomi; Mota, David F E-mail: D.Mota@thphys.uni-heidelberg.de
2008-08-15
We consider several new classes of viable vector field alternatives to the inflaton and quintessence scalar fields. Spatial vector fields are shown to be compatible with the cosmological anisotropy bounds if only slightly displaced from the potential minimum while dominant, or if driving an anisotropic expansion with nearly vanishing quadrupole today. The Bianchi I model with a spatial field and an isotropic fluid is studied as a dynamical system, and scaling solutions of several types are found. On the other hand, time-like fields are automatically compatible with large-scale isotropy. We show that they can be dynamically important if non-minimal gravity couplings are taken into account. We reconstruct as an example a vector-Gauss-Bonnet model which generates the concordance model acceleration at late times and supports an inflationary epoch at high curvatures. The evolution of the vortical perturbations in such models is computed.
Magnetic response to applied electrostatic field in external magnetic field
NASA Astrophysics Data System (ADS)
Adorno, T. C.; Gitman, D. M.; Shabad, A. E.
2014-04-01
We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics.
IMP F and G phase 1 magnetic field analysis
NASA Technical Reports Server (NTRS)
Mish, W. H.
1972-01-01
The program developed to analyze magnetic field data from the magnetic field experiment flown in IMP F is reported. The analysis converts the raw X, Y, Z sensor data as received on the magnetic field experiment tape into vector measurements of the ambient magnetic field observed by the experiment. These data are computed for four frames of reference -- apparent, payload, solar ecliptic and solar magnetospheric. In addition 20.45 second statistics are computed for the last three coordinate systems. Finally, a summary tape is produced containing detailed data and sequence statistics as well as the output from the autocorrelation computer, trajectory data and identification information.
Theory of fossil magnetic field
NASA Astrophysics Data System (ADS)
Dudorov, Alexander E.; Khaibrakhmanov, Sergey A.
2015-02-01
Theory of fossil magnetic field is based on the observations, analytical estimations and numerical simulations of magnetic flux evolution during star formation in the magnetized cores of molecular clouds. Basic goals, main features of the theory and manifestations of MHD effects in young stellar objects are discussed.
Survey of the ULF wave Poynting vector near the Earth's magnetic equatorial plane
NASA Astrophysics Data System (ADS)
Hartinger, M. D.; Moldwin, M. B.; Takahashi, K.; Bonnell, J. W.; Angelopoulos, V.
2013-10-01
Ultralow frequency (ULF) waves transfer energy in the Earth's magnetosphere through a variety of mechanisms that impact the Earth's ionosphere, radiation belts, and other plasma populations. Measurements of the electromagnetic portion of the energy transfer rate are an important source of information for assessing the importance of ULF waves relative to other energy transfer mechanisms as well as a diagnostic for studying the behavior of ULF waves. Using Time History of Events and Macroscale Interactions during Substorms satellite data, we examine the time‒averaged electromagnetic energy transfer rate, or Poynting vector, as a function of frequency and region of the magnetosphere; for this study, we focus on the direction and rate of energy transfer relative to the background magnetic field, comparing perpendicular and parallel transfer rates. This study extends earlier studies of the ULF wave Poynting vector that focused on narrower frequency ranges or specific regions of the magnetosphere; here we consider the 3-50 mHz frequency range, all local time sectors, radial distances from 3 to 13 Re, and magnetic latitudes close to the equatorial plane. We measure time‒averaged Poynting vectors that range from 10-11 to 10-5 W/m2 , with larger Poynting vector magnitudes occurring at larger radial distances and smaller frequencies. In every spatial region and frequency we examined, we found a large degree of scatter in both the Poynting vector magnitude and direction. The Poynting vector tends to be anisotropic at all frequencies, with more energy transferred along rather than across the background magnetic field. This preference for parallel energy transfer near the magnetic equator suggests that Joule dissipation in the ionosphere and the acceleration of auroral electrons are the largest sinks of ULF wave energy in the magnetosphere.
Three axis vector magnet set-up for cryogenic scanning probe microscopy
Galvis, J. A.; Herrera, E.; Buendía, A.; Guillamón, I.; Vieira, S.; Suderow, H.; Azpeitia, J.; Luccas, R. F.; Munuera, C.; García-Hernandez, M.; and others
2015-01-15
We describe a three axis vector magnet system for cryogenic scanning probe microscopy measurements. We discuss the magnet support system and the power supply, consisting of a compact three way 100 A current source. We obtain tilted magnetic fields in all directions with maximum value of 5T along z-axis and of 1.2T for XY-plane magnetic fields. We describe a scanning tunneling microscopy-spectroscopy (STM-STS) set-up, operating in a dilution refrigerator, which includes a new high voltage ultralow noise piezodrive electronics and discuss the noise level due to vibrations. STM images and STS maps show atomic resolution and the tilted vortex lattice at 150 mK in the superconductor β-Bi{sub 2}Pd. We observe a strongly elongated hexagonal lattice, which corresponds to the projection of the tilted hexagonal vortex lattice on the surface. We also discuss Magnetic Force Microscopy images in a variable temperature insert.
Survey of the ULF wave Poynting vector near the Earth's magnetic equatorial plane
NASA Astrophysics Data System (ADS)
Hartinger, M.; Moldwin, M.; Takahashi, K.; Bonnell, J. W.; Angelopoulos, V.
2013-12-01
Ultra Low Frequency (ULF) waves transfer energy in the Earth's magnetosphere through a variety of mechanisms that impact the Earth's ionosphere, radiation belts, and other plasma populations. Measurements of the electromagnetic portion of the energy transfer rate are an important source of information for assessing the importance of ULF waves relative to other energy transfer mechanisms and as a diagnostic for studying the behavior of ULF waves. Using THEMIS satellite data, we examine the time averaged electromagnetic energy transfer rate, or Poynting vector, as a function of frequency (3-50 mHz) and region of the magnetosphere. This study extends earlier work focused on narrower frequency ranges or specific regions of the magnetosphere; here, we consider the Pc5 to Pc3 frequency range, all local time sectors, radial distances from 3 to 13 Re, and magnetic latitudes close to the equatorial plane. We measure time averaged Poynting vectors that range from ~10^-11 to 10^-5 W/m^2, with larger Poynting vector magnitudes occurring at larger radial distances and smaller frequencies. In every spatial region and frequency we examined, we found a large degree of scatter in both the Poynting vector magnitude and direction. The Poynting vector tends to be anisotropic at all frequencies, with more energy transferred along rather than across the background magnetic field. This preference for parallel energy transfer near the magnetic equator suggests that the ionosphere is the largest sink of wave energy in the magnetosphere.
Higher topological invariants of magnetic field lines: observational aspects
NASA Astrophysics Data System (ADS)
Illarionov, Egor; Smirnov, Alexander; Georgoulis, Manolis K.; Sokoloff, Dmitry; Akhmet'ev, Peter
Topology of magnetic field lines is directly involved in magnetohydrodynamic (MHD) theorems and equations. Being an invariant of motion in ideal MHD conditions, the magnetic field-line topology is a natural obstacle to the relaxation of magnetic field into a current-free (potential) field and contrariwise limits a dynamo generation. Usage of these conservational laws and writing of numerical relations require a quantification of topology. One of the simplest existing measures of magnetic topology is the mutual magnetic helicity, that expresses the combined action of interaction and linkage between different magnetic field lines. For practical purposes there exists the revised concept of relative magnetic helicity, that allows to estimate the complexity of field-line topology in case of open volume, i.e. when magnetic lines cross the boundaries of given 3D region. At the same time this concept remains a simple interpretation of linkage number in terms of individual lines. Our point however is that magnetic helicity is far from being unique or comprehensive quantification of magnetic field-line topology. To improve the situation we introduce a set of higher invariants which extends the idea of relative helicity and provides a new means to describe the magnetic field-line topology. To practically study the possibility of implementation of higher topological invariants we reconstruct several moments of mutual helicity from observed solar vector magnetograms with extrapolated magnetic field above the photosphere and discuss to what extent such knowledge could be instructive for understanding of the solar magnetic field evolution.
Project MAGNET High-level Vector Survey Data Reduction
NASA Technical Reports Server (NTRS)
Coleman, Rachel J.
1992-01-01
Since 1951, the U.S. Navy, under its Project MAGNET program, has been continuously collecting vector aeromagnetic survey data to support the U.S. Defense Mapping Agency's world magnetic and charting program. During this forty-year period, a variety of survey platforms and instrumentation configurations have been used. The current Project MAGNET survey platform is a Navy Orion RP-3D aircraft which has been specially modified and specially equipped with a redundant suite of navigational positioning, attitude, and magnetic sensors. A review of the survey data collection procedures and calibration and editing techniques applied to the data generated by this suite of instrumentation will be presented. Among the topics covered will be the determination of its parameters from the low-level calibration maneuvers flown over geomagnetic observatories.
Origin of cosmic magnetic fields.
Campanelli, Leonardo
2013-08-01
We calculate, in the free Maxwell theory, the renormalized quantum vacuum expectation value of the two-point magnetic correlation function in de Sitter inflation. We find that quantum magnetic fluctuations remain constant during inflation instead of being washed out adiabatically, as usually assumed in the literature. The quantum-to-classical transition of super-Hubble magnetic modes during inflation allow us to treat the magnetic field classically after reheating, when it is coupled to the primeval plasma. The actual magnetic field is scale independent and has an intensity of few×10(-12) G if the energy scale of inflation is few×10(16) GeV. Such a field accounts for galactic and galaxy cluster magnetic fields. PMID:23971556
The Capacitive Magnetic Field Sensor
NASA Astrophysics Data System (ADS)
Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.
2016-01-01
The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 < Ø < 56, 45 < Ø < 50, 40 < Ø < 45 and Ø < 40micron of nanocrystalline alloy of brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.
Measurements of magnetic field alignment
Kuchnir, M.; Schmidt, E.E.
1987-11-06
The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.
Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki
2014-01-21
A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.
Zhou, Yangbo; Tang, Zhaomin; Shi, Chunli; Shi, Shuai; Qian, Zhiyong; Zhou, Shaobing
2012-11-01
Polyethylenimine (PEI) functionalized magnetic nanoparticles were synthesized as a potential non-viral vector for gene delivery. The nanoparticles could provide the magnetic-targeting, and the cationic polymer PEI could condense DNA and avoid in vitro barriers. The magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, dynamic light scattering measurements, transmission electron microscopy, vibrating sample magnetometer and atomic force microscopy. Agarose gel electrophoresis was used to asses DNA binding and perform a DNase I protection assay. The Alamar blue assay was used to evaluate negative effects on the metabolic activity of cells incubated with PEI modified magnetic nanoparticles and their complexes with DNA both in the presence or absence of an external magnetic field. Flow cytometry and fluorescent microscopy were also performed to investigate the transfection efficiency of the DNA-loaded magnetic nanoparticles in A549 and B16-F10 tumor cells with (+M) or without (-M) the magnetic field. The in vitro transfection efficiency of magnetic nanoparticles was improved obviously in a permanent magnetic field. Therefore, the magnetic nanoparticles show considerable potential as nanocarriers for gene delivery. PMID:22826003
Magnetic fields in young galaxies
NASA Astrophysics Data System (ADS)
Nordlund, Åke; Rögnvaldsson, Örnólfur
We have studied the fate of initial magnetic fields in the hot halo gas out of which the visible parts of galaxies form, using three-dimensional numerical MHD-experiments. The halo gas undergoes compression by several orders of magnitude in the subsonic cooling flow that forms the cold disk. The magnetic field is carried along and is amplified considerably in the process, reaching μG levels for reasonable values of the initial ratio of magnetic to thermal energy density.
Vector optical fields broken in the spatial frequency domain
NASA Astrophysics Data System (ADS)
Gao, Xu-Zhen; Pan, Yue; Li, Si-Min; Wang, Dan; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2016-03-01
We theoretically and experimentally explore the redistribution of polarization states and orbital angular momentum (OAM) in the output plane, induced by the symmetry breaking in the spatial frequency domain. When the vector fields are obstructed by sector-shaped filters in the spatial frequency domain, the local polarization states in the output plane undergo an abrupt transition from linear to circular polarization. The results reveal the polarization-dependent splitting and the appearance of a series of opposite OAMs in the output plane. We also find the self-healing effect of the vector fields broken in the spatial frequency domain and further explore its potential application. If the vector optical fields are used for information transferring or for imaging, even if the optical field carrying the information or image is partially blocked, the complete information or image can still be obtained, implying that which may increase the robustness of the information transferring and the imaging.
NASA Astrophysics Data System (ADS)
Sheykina, Nadiia; Bogatina, Nina
The following variants of roots location relatively to static and alternative components of magnetic field were studied. At first variant the static magnetic field was directed parallel to the gravitation vector, the alternative magnetic field was directed perpendicular to static one; roots were directed perpendicular to both two fields’ components and gravitation vector. At the variant the negative gravitropysm for cress roots was observed. At second variant the static magnetic field was directed parallel to the gravitation vector, the alternative magnetic field was directed perpendicular to static one; roots were directed parallel to alternative magnetic field. At third variant the alternative magnetic field was directed parallel to the gravitation vector, the static magnetic field was directed perpendicular to the gravitation vector, roots were directed perpendicular to both two fields components and gravitation vector; At forth variant the alternative magnetic field was directed parallel to the gravitation vector, the static magnetic field was directed perpendicular to the gravitation vector, roots were directed parallel to static magnetic field. In all cases studied the alternative magnetic field frequency was equal to Ca ions cyclotron frequency. In 2, 3 and 4 variants gravitropism was positive. But the gravitropic reaction speeds were different. In second and forth variants the gravitropic reaction speed in error limits coincided with the gravitropic reaction speed under Earth’s conditions. At third variant the gravitropic reaction speed was slowed essentially.
Cosmic Magnetic Fields - An Overview
NASA Astrophysics Data System (ADS)
Wielebinski, Richard; Beck, Rainer
Magnetic fields have been known in antiquity. Aristotle attributes the first of what could be called a scientific discussion on magnetism to Thales, who lived from about 625 BC. In China “magnetic carts” were in use to help the Emperor in his journeys of inspection. Plinius comments that in the Asia Minor province of Magnesia shepherds' staffs get at times “glued” to a stone, a alodestone. In Europe the magnetic compass came through the Arab sailors who met the Portuguese explorers. The first scientific treatise on magnetism, “De Magnete”, was published by William Gilbert who in 1600 described his experiments and suggested that the Earth was a huge magnet. Johannes Kepler was a correspondent of Gilbert and at times suggested that planetary motion was due to magnetic forces. Alas, this concept was demolished by Isaac Newton,who seeing the falling apple decided that gravity was enough. This concept of dealing with gravitational forces only remains en vogue even today. The explanations why magnetic effects must be neglected go from “magnetic energy is only 1% of gravitation” to “magnetic fields only complicate the beautiful computer solutions”. What is disregarded is the fact that magnetic effects are very directional(not omni-directional as gravity) and also the fact that magnetic fields are seen every where in our cosmic universe.
Computation of Surface Integrals of Curl Vector Fields
ERIC Educational Resources Information Center
Hu, Chenglie
2007-01-01
This article presents a way of computing a surface integral when the vector field of the integrand is a curl field. Presented in some advanced calculus textbooks such as [1], the technique, as the author experienced, is simple and applicable. The computation is based on Stokes' theorem in 3-space calculus, and thus provides not only a means to…
Mariappan, Leo; He, Bin
2013-01-01
Magneto acoustic tomography with magnetic induction (MAT-MI) is a technique proposed to reconstruct the conductivity distribution in biological tissue at ultrasound imaging resolution. A magnetic pulse is used to generate eddy currents in the object, which in the presence of a static magnetic field induces Lorentz force based acoustic waves in the medium. This time resolved acoustic waves are collected with ultrasound transducers and, in the present work, these are used to reconstruct the current source which gives rise to the MAT-MI acoustic signal using vector imaging point spread functions. The reconstructed source is then used to estimate the conductivity distribution of the object. Computer simulations and phantom experiments are performed to demonstrate conductivity reconstruction through vector source imaging in a circular scanning geometry with a limited bandwidth finite size piston transducer. The results demonstrate that the MAT-MI approach is capable of conductivity reconstruction in a physical setting. PMID:23322761
Voigt, J.; Knappe-Grüneberg, S.; Gutkelch, D.; Neuber, S.; Schnabel, A.; Burghoff, M.; Haueisen, J.
2015-05-15
Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23 pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.
Measuring Earth's Local Magnetic Field Using a Helmholtz Coil
NASA Astrophysics Data System (ADS)
Williams, Jonathan E.
2014-04-01
In this paper, I present a low-cost interactive experiment for measuring the strength of Earth's local magnetic field. This activity can be done in most high schools or two-year physics laboratories with limited resources, yet will have a tremendous learning impact. This experiment solidifies the three-dimensional nature of Earth's magnetic field vector and helps reinforce the aspect of the vertical component of Earth's magnetic field. Students should realize that Earth's magnetic field is not fully horizontal (except at the magnetic equator) and that a compass simply indicates the direction of the horizontal component of Earth's magnetic field. A magnetic dip needle compass can be used to determine the angle (known as the "dip angle" or "inclination angle") measured from the direction in which Earth's magnetic field vector points to the horizontal. In this activity, students will be able to determine the horizontal component of the field using a Helmholtz coil and, knowing the dip angle, the Earth's magnetic field strength can be determined.
NASA Astrophysics Data System (ADS)
Krieg, Todd D.; Salinas, Felipe S.; Narayana, Shalini; Fox, Peter T.; Mogul, David J.
2015-08-01
Objective. Transcranial magnetic stimulation (TMS) represents a powerful technique to noninvasively modulate cortical neurophysiology in the brain. However, the relationship between the magnetic fields created by TMS coils and neuronal activation in the cortex is still not well-understood, making predictable cortical activation by TMS difficult to achieve. Our goal in this study was to investigate the relationship between induced electric fields and cortical activation measured by blood flow response. Particularly, we sought to discover the E-field characteristics that lead to cortical activation. Approach. Subject-specific finite element models (FEMs) of the head and brain were constructed for each of six subjects using magnetic resonance image scans. Positron emission tomography (PET) measured each subject’s cortical response to image-guided robotically-positioned TMS to the primary motor cortex. FEM models that employed the given coil position, orientation, and stimulus intensity in experimental applications of TMS were used to calculate the electric field (E-field) vectors within a region of interest for each subject. TMS-induced E-fields were analyzed to better understand what vector components led to regional cerebral blood flow (CBF) responses recorded by PET. Main results. This study found that decomposing the E-field into orthogonal vector components based on the cortical surface geometry (and hence, cortical neuron directions) led to significant differences between the regions of cortex that were active and nonactive. Specifically, active regions had significantly higher E-field components in the normal inward direction (i.e., parallel to pyramidal neurons in the dendrite-to-axon orientation) and in the tangential direction (i.e., parallel to interneurons) at high gradient. In contrast, nonactive regions had higher E-field vectors in the outward normal direction suggesting inhibitory responses. Significance. These results provide critical new understanding of the factors by which TMS induces cortical activation necessary for predictive and repeatable use of this noninvasive stimulation modality.
Generalized Proca action for an Abelian vector field
NASA Astrophysics Data System (ADS)
Allys, Erwan; Peter, Patrick; Rodríguez, Yeinzon
2016-02-01
We revisit the most general theory for a massive vector field with derivative self-interactions, extending previous works on the subject to account for terms having trivial total derivative interactions for the longitudinal mode. In the flat spacetime (Minkowski) case, we obtain all the possible terms containing products of up to five first-order derivatives of the vector field, and provide a conjecture about higher-order terms. Rendering the metric dynamical, we covariantize the results and add all possible terms implying curvature.
The handedness of Lissajous singularities in polychromatic vector optical fields
NASA Astrophysics Data System (ADS)
Chen, Haitao; Huang, Weigang; Gao, Zenghui; Wang, Wanqing
2016-05-01
Starting from the basic definition, the explicit expression for the handedness of Lissajous singularities in polychromatic vector optical fields is derived, which is illustrated and used to study the handedness of Lissajous singularities in free space and propagation through an astigmatic lens. It is found that the handedness is not only related to the Stokes parameters S3i (i = 1, 2, ……, n) of constituting components of the polychromatic vector electric field, but also to their frequencies and the amplitude factors.
On hyperbolicity violations in cosmological models with vector fields
Golovnev, Alexey; Klementev, Aleksandr E-mail: sas5292@yandex.ru
2014-02-01
Cosmological models with vector fields received much attention in recent years. Unfortunately, most of them are plagued with severe instabilities or other problems. In particular, it was noted in ref. [1] that the models with a non-linear function of the Maxwellian kinetic term do always imply violations of hyperbolicity somewhere in the phase space. In this work we make this statement more precise in several respects and show that those violations may not be present around spatially homogeneous configurations of the vector field.
Preface: Cosmic magnetic fields
NASA Astrophysics Data System (ADS)
Kosovichev, Alexander
2015-02-01
Recent advances in observations and modeling have opened new perspectives for the understanding of fundamental dynamical processes of cosmic magnetism, and associated magnetic activity on the Sun, stars and galaxies. The goal of the Special Issue is to discuss the progress in solar physics and astrophysics, similarities and differences in phenomenology and physics of magnetic phenomena on the Sun and other stars. Space observatories, ground-based telescopes, and new observational methods have provided tremendous amount of data that need to be analyzed and understood. The solar observations discovered multi-scale organization of solar activity, dramatically changing current paradigms of solar variability. On the other side, stellar observations discovered new regimes of dynamics and magnetism that are different from the corresponding solar phenomena, but described by the same physics. Stars represent an astrophysical laboratory for studying the dynamical, magnetic and radiation processes across a broad range of stellar masses and ages. These studies allow us to look at the origin and evolution of our Sun, whereas detailed investigations of the solar magnetism give us a fundamental basis for interpretation and understanding of unresolved stellar data.
Rotating superconductor magnet for producing rotating lobed magnetic field lines
Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.
1978-01-01
This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.; Acuna, Mario H.; Ness, Norman F.
1992-01-01
A model is given of the planetary magnetic field of Neptune based on a spherical harmonic analysis of the observations obtained by the Voyager 2. Generalized inverse techniques are used to partially solve a severely underdetermined inverse problem, and the resulting model is nonunique since the observations are limited in spatial distribution. Dipole, quadrupole, and octupole coefficients are estimated independently of other terms, and the parameters are shown to be well constrained by the measurement data. The large-scale features of the magnetic field including dipole tilt, offset, and harmonic content are found to characterize a magnetic field that is similar to that of Uranus. The traits of Neptune's magnetic field are theorized to relate to the 'ice' interior of the planet, and the dynamo-field generation reflects this poorly conducting planet.
NASA Astrophysics Data System (ADS)
Turolla, Roberto; Esposito, Paolo
2013-11-01
It is now widely accepted that soft gamma repeaters and anomalous X-ray pulsars are the observational manifestations of magnetars, i.e. sources powered by their own magnetic energy. This view was supported by the fact that these "magnetar candidates" exhibited, without exception, a surface dipole magnetic field (as inferred from the spin-down rate) in excess of the electron critical field (≃ 4.4×1013 G). The recent discovery of fully qualified magnetars, SGR 0418+5729 and Swift J1822.3-1606, with dipole magnetic field well in the range of ordinary radio pulsars posed a challenge to the standard picture, showing that a very strong field is not necessary for the onset of magnetar activity (chiefly bursts and outbursts). Here we summarize the observational status of the low-magnetic-field magnetars and discuss their properties in the context of the mainstream magnetar model and its main alternatives.
Magnetic Field of Strange Dwarfs
NASA Astrophysics Data System (ADS)
Baghdasaryan, D. S.
2016-03-01
The generation of a magnetic field in a strange quark star owing to differential rotation of the superfluid and superconducting quark core relative to the normal electron-nuclear crust of the star is examined. The maximum possible magnetic field on the surface is estimated for various models of strange dwarfs. Depending on the configuration parameters, i.e., the mass M and radius R of the star, a range of 103-105 G is found. These values of the magnetic field may be an additional condition for identification of strange dwarfs among the extensive class of observed white dwarfs.
AC photovoltaic module magnetic fields
Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.
1997-12-31
Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.
Vector field statistical analysis of kinematic and force trajectories.
Pataky, Todd C; Robinson, Mark A; Vanrenterghem, Jos
2013-09-27
When investigating the dynamics of three-dimensional multi-body biomechanical systems it is often difficult to derive spatiotemporally directed predictions regarding experimentally induced effects. A paradigm of 'non-directed' hypothesis testing has emerged in the literature as a result. Non-directed analyses typically consist of ad hoc scalar extraction, an approach which substantially simplifies the original, highly multivariate datasets (many time points, many vector components). This paper describes a commensurately multivariate method as an alternative to scalar extraction. The method, called 'statistical parametric mapping' (SPM), uses random field theory to objectively identify field regions which co-vary significantly with the experimental design. We compared SPM to scalar extraction by re-analyzing three publicly available datasets: 3D knee kinematics, a ten-muscle force system, and 3D ground reaction forces. Scalar extraction was found to bias the analyses of all three datasets by failing to consider sufficient portions of the dataset, and/or by failing to consider covariance amongst vector components. SPM overcame both problems by conducting hypothesis testing at the (massively multivariate) vector trajectory level, with random field corrections simultaneously accounting for temporal correlation and vector covariance. While SPM has been widely demonstrated to be effective for analyzing 3D scalar fields, the current results are the first to demonstrate its effectiveness for 1D vector field analysis. It was concluded that SPM offers a generalized, statistically comprehensive solution to scalar extraction's over-simplification of vector trajectories, thereby making it useful for objectively guiding analyses of complex biomechanical systems. PMID:23948374
Modeling and vector control of planar magnetic levitator
Kim, W.; Trumper, D.L.; Lang, J.H.
1998-11-01
The authors designed and implemented a magnetically levitated stage with large planar motion capability. This planar magnetic levitator employs four novel permanent-magnet linear motors. Each motor generates vertical force for suspension against gravity, as well as horizontal force for drive. These linear levitation motors can be used as building blocks in the general class of multi-degree-of-freedom motion stages. In this paper, the authors discuss electromechanical modeling and real-time vector control of such a permanent-magnet levitator. They describe the dynamics in a dq frame introduced to decouple the forces acting on the magnetically levitated moving part, namely, the platen. A transformation similar to the Blondel-Park transformation is derived for commutation of the stator phase currents. The authors provide test results on step responses of the magnetically levitated stage. It shows 5-nm rms positioning noise in x and y, which demonstrates the applicability of such stages in the next-generation photolithography in semiconductor manufacturing.
Magnetic Field Generation in Stars
NASA Astrophysics Data System (ADS)
Ferrario, Lilia; Melatos, Andrew; Zrake, Jonathan
2015-10-01
Enormous progress has been made on observing stellar magnetism in stars from the main sequence (particularly thanks to the MiMeS, MAGORI and BOB surveys) through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence, in the generation and stability of neutron star fields.
Evolution of magnetic field inclination in a forming penumbra
NASA Astrophysics Data System (ADS)
Jurčák, Jan; Bello González, Nazaret; Schlichenmaier, Rolf; Rezaei, Reza
2014-12-01
As a sunspot penumbra forms, the magnetic field vector at the outer boundary of the protospot undergoes a transformation. We study the changes of the magnetic field vector at this boundary as a penumbral segment forms. We analyze a set of spectropolarimetric maps covering 2 hr during the formation of a sunspot in NOAA 11024. The data were recorded with the GFPI instrument attached to the German VTT. We observe a stationary umbra/quiet Sun boundary, where the magnetic field becomes more horizontal with time. The magnetic field inclination increases by 5°, reaching a maximum value of about 59°. The maximum inclination coincides with the onset of filament formation. In time, the penumbra filaments become longer and the penumbral bright grains protrude into the umbra, where the magnetic field is stronger and more vertical. Consequently, we observe a decrease in the magnetic field inclination at the boundary as the penumbra grows. In summary, in order to initiate the formation of the penumbra, the magnetic field at the umbral (protospot) boundary becomes more inclined. As the penumbra grows, the umbra/penumbra boundary migrates inwards, and at this boundary the magnetic field turns more vertical again, while it remains inclined in the outer penumbra.
Properties of the Acoustic Vector Field in Underwater Waveguides
NASA Astrophysics Data System (ADS)
Dall'Osto, David R.
This thesis focuses on the description and measurement of the underwater acoustic field, based on vector properties of acoustic particle velocity. The specific goal is to interpret vector sensor measurements in underwater waveguides, in particular those measurements made in littoral (shallow) waters. To that end, theoretical models, which include the effects of reflections from the waveguide boundaries, are developed for the acoustic intensity, i.e. the product of acoustic pressure and acoustic particle velocity. Vector properties of acoustic intensity are shown to correspond to a non-dimensional vector property of acoustic particle velocity, its degree of circularity, which describes the trajectory of particle motion. Both experimental measurements and simulations of this non-dimensional vector property are used to analyze characteristics of sound propagation in underwater waveguides. Two measurement techniques are utilized in the experiments described in this thesis. In the first, particle velocity is obtained indirectly by time integration of the measured pressure gradient between two closely spaced (with respect to an acoustic wavelength) conventional pressure sensitive hydrophones. This method was used in ocean experiments conducted with vertical line arrays of hydrophones. In the second technique, particle velocity is measured directly by time integration of the signal generated by an accelerometer. An additional pressure measurement from a co-located hydrophone forms what is known as a "combined sensor" in the Russian literature, which allows for estimation of the vector acoustic intensity. This method was utilized mainly in laboratory experiments.
Johnson, Catherine L; Phillips, Roger J; Purucker, Michael E; Anderson, Brian J; Byrne, Paul K; Denevi, Brett W; Feinberg, Joshua M; Hauck, Steven A; Head, James W; Korth, Haje; James, Peter B; Mazarico, Erwan; Neumann, Gregory A; Philpott, Lydia C; Siegler, Matthew A; Tsyganenko, Nikolai A; Solomon, Sean C
2015-05-22
Magnetized rocks can record the history of the magnetic field of a planet, a key constraint for understanding its evolution. From orbital vector magnetic field measurements of Mercury taken by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at altitudes below 150 kilometers, we have detected remanent magnetization in Mercury's crust. We infer a lower bound on the average age of magnetization of 3.7 to 3.9 billion years. Our findings indicate that a global magnetic field driven by dynamo processes in the fluid outer core operated early in Mercury's history. Ancient field strengths that range from those similar to Mercury's present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury's crust inferred from MESSENGER elemental composition data. PMID:25953822
NASA Astrophysics Data System (ADS)
Costa, Pedro; Ferreira, Márcio; Menezes, Débora P.; Moreira, João; Providência, Constança
2015-08-01
The effect of a strong magnetic field on the location of the critical end point (CEP) in the QCD phase diagram is discussed under different scenarios. In particular, we consider the contribution of the vector interaction and take into account the inverse magnetic catalysis obtained in lattice QCD calculations at zero chemical potential. The discussion is realized within the (2 +1 ) Polyakov-Nambu-Jona-Lasinio model. It is shown that the vector interaction and the magnetic field have opposite competing effects, and that the winning effect depends strongly on the intensity of the magnetic field. The inverse magnetic catalysis at zero chemical potential has two distinct effects for magnetic fields above ≳0.3 GeV2: it shifts the CEP to lower chemical potentials, hinders the increase of the CEP temperature and prevents a too large increase of the baryonic density at the CEP. For fields e B <0.1 GeV2 the competing effects between the vector contribution and the magnetic field can move the CEP to regions of temperature and density in the phase diagram that could be more easily accessible to experiments.
Measuring Earth's Magnetic Field Simply.
ERIC Educational Resources Information Center
Stewart, Gay B.
2000-01-01
Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)
Magnetically-Responsive Nanoparticles for Vectored Delivery of Cancer Therapeutics
NASA Astrophysics Data System (ADS)
Klostergaard, Jim; Bankson, James; Woodward, Wendy; Gibson, Don; Seeney, Charles
2010-12-01
We propose that physical targeting of therapeutics to tumors using magnetically-responsive nanoparticles (MNPs) will enhance intratumoral drug levels compared to free drugs in an effort to overcome tumor resistance. We evaluated the feasibility of magnetic enhancement of tumor extravasation of systemically-administered MNPs in human xenografts implanted in the mammary fatpads of nude mice. Mice with orthotopic tumors were injected systemically with MNPs, with a focused magnetic field juxtaposed over the tumor. Magnetic resonance imaging and scanning electron microscopy both indicated successful tumor localization of MNPs. Next, MNPs were modified with poly-ethylene-glycol (PEG) and their clearance compared by estimating signal attenuation in liver due to iron accumulation. The results suggested that PEG substitution could retard the rate of MNP plasma clearance, which may allow greater magnetically-enhanced tumor localization. We propose that this technology is clinically scalable to many types of both superficial as well as some viscerable tumors with existing magnetic technology.
Morse theory for vector fields and the Witten Laplacian
Enciso, Alberto; Peralta-Salas, Daniel
2009-05-06
In this paper we informally review some recent developments on the analytical approach to Morse-type inequalities for vector fields. Throughout this work we focus on the main ideas of this approach and emphasize the application of the theory to concrete examples.
Magnetic Resonance Imaging of time-varying magnetic fields from therapeutic devices
Hernandez-Garcia, Luis; Bhatia, Vivek; Prem-Kumar, Krishan; Ulfarsson, Magnus
2013-01-01
While magnetic resonance imaging of static magnetic fields generated by external probes has been previously demonstrated, there is an unmet need to image time-varying magnetic fields, such as those generated by transcranial magnetic stimulators or radiofrequency hyperthermia probes. A method to image such time-varying magnetic fields is introduced in this work. This article presents the theory behind the method and provides proof of concept by imaging time-varying magnetic fields generated by a figure-eight coil inside simple phantoms over a range of frequencies and intensities, using a 7T small animal MRI scanner. The method is able to reconstruct the three-dimensional components of the oscillating magnetic field vector. PMID:23355446
NASA Technical Reports Server (NTRS)
Howard, R.
1981-01-01
Synoptic observations of solar magnetic fields are discussed. Seen in long-term averages, the magnetic fields of the Sun show distinctive behavior. The active-region latitudes are characterized by magnetic fields of preceding polarity. The flow of following polarity fields to make up the polar fields is episodic, not continuous. This field motion is a directed poleward flow and is not due to diffusion. The total magnetic flux on the solar surface, which is related linearly to the calcium emission in integrated sunlight, varies from activity minimum to maximum by a factor of 2 or 3. Nearly all this flux is seen at active-region latitudes-only about 1% is at the poles. The total flux of the Sun disappears from the surface at a very rapid rate and is replaced by new flux. All the field and flux patterns that we see originate in active-region latitudes. The polar magnetic fields of the Sun were observed to change polarity recently. The variations of the full-disk solar flux are shown to lead to the proper rotation rate of the Sun, but the phase of the variations is constant for only a year or two at most.
Optical sensor of magnetic fields
Butler, M.A.; Martin, S.J.
1986-03-25
An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.
Deep-sea Vector Magnetic Anomalies over the Bayonnaise Knoll Caldera (Izu-Ogasawara Arc) (Invited)
NASA Astrophysics Data System (ADS)
Honsho, C.; Ura, T.; Kim, K.
2013-12-01
The Bayonnaise Knoll caldera is located on the eastern margin of the backarc rift zone of the Izu-Ogasawara island arc. The caldera rim is ~3 km in diameter and 100-200 m high from the caldera floor 840-920 m deep. A large active hydrothermal field associated with sulfide deposit, called the Hakurei site, has been found at the foot of the southeastern caldera wall. We conducted deep-sea magnetic measurements using autonomous underwater vehicles to map ~75 % of an area 3 km by 4 km in the caldera. The magnetic vector field data were collected at 40-150 m altitude along the survey lines spaced 80-200 m apart. We improved the conventional correction method applied for removing the effect of vehicle magnetization, which greatly enhanced the precision of the resulting vector anomalies and allowed us to use the vector anomaly instead of the total intensity anomaly for inversion analysis. The magnetization distribution obtained using the vector anomaly was significantly different from the one obtained using the total intensity anomaly, especially in areas where the survey tracks were widely spaced. The aliasing effect appears in areas of sparse data distribution, and the magnetic field is more correctly calculated from the vector anomaly than the total intensity anomaly. The magnetization distribution in the caldera has two major features: a ~1.5-km wide belt of high magnetization, trending NNW-SSE through the caldera, and a clear low magnetization zone, ~300 m x ~500 m wide, extending over the Hakurei site. The high magnetization belt is considered to reflect basaltic volcanism associated with the backarc rifting that occurred after the formation of the Bayonnaise Knoll. The low magnetization zone is interpreted as the alteration zone resulting from the hydrothermal activity. Several zones of localized high magnetization are recognized within the high magnetization belt, some of them in the caldera wall adjacent to the low magnetization zone of the Hakurei site. We speculate that intensive magma intrusion occurred beneath the caldera wall and has provided the heat to generate hydrothermal fluid, which has been spouting out through the caldera wall faults. The surface expression of the vent field extends beyond the alteration zone inferred from the magnetization distribution, spreading upwards in the caldera wall. High-resolution topography around the Hakurei site indicates that the hydrothermal vents are generally distributed over a landform of slope failure. These observations would imply that hydrothermal fluid rising up in the up-flow zone moves laterally as well when it comes near the seafloor, probably along numerous fractures and fissures in the caldera wall. The distribution of pre-existing faults and fractures may rather control the fluid flow pathways in the shallow part and condition the surface extent of the vent field.
The scientific case for magnetic field satellites
NASA Technical Reports Server (NTRS)
Backus, George E. (Editor); Benton, Edward R.; Harrison, Christopher G. A.; Heirtzler, James R.
1987-01-01
To make full use of modern magnetic data and the paleomagnetic record, we must greatly improve our understanding of how the geodynamo system works. It is clearly nonlinear, probably chaotic, and its dimensionless parameters cannot yet be reproduced on a laboratory scale. It is accessible only to theory and to measurements made at and above the earth's surface. These measurements include essentially all geophysical types. Gravity and seismology give evidence for undulations in the core-mantle boundary (CMB) and for temperature variations in the lower mantle which can affect core convection and hence the dynamo. VLBI measurements of the variations in the Chandler wobble and length of day are affected by, among other things, the electromagnetic and mechanical transfer of angular momentum across the CMB. Finally, measurements of the vector magnetic field, its intensity, or its direction, give the most direct access to the core dynamo and the electrical conductivity of the lower mantle. The 120 gauss coefficients of degrees up to 10 probably come from the core, with only modest interference by mantle conductivity and crustal magnetization. By contrast, only three angular accelerations enter the problem of angular momentum transfer across the CMB. Satellite measurements of the vector magnetic field are uniquely able to provide the spatial coverage required for extrapolation to the CMB, and to isolate and measure certain magnetic signals which to the student of the geodynamo represent noise, but which are of great interest elsewhere in geophysics. Here, these claims are justified and the mission parameters likely to be scientifically most useful for observing the geodynamo system are described.
NASA Technical Reports Server (NTRS)
Jacobson, Abram R.; Holzworth, Robert H.; Pfaff, Robert; Heelis, Roderick; Colestock, Patrick
2014-01-01
Satellites in the Earth's magnetosphere can be used to record the rich electromagnetic wave activity due to terrestrial lightning, typically up to several tens of kilohertz. With simultaneous recordings of the three components of wave electric field E and of the three components of wave magnetic field B, the entire wavefield, polarization, and wave vector can be specified without any appeal to a priori assumptions about the wave mode and without any reliance on the validity of a dispersion relation. However, some satellites lack such a complete suite of measurements. We develop a method which assumes the theoretical dispersion relation for whistler waves then uses recordings of the three components of wave electric field E but no magnetic components to derive the wave polarization and the wave vector (up to a sign ambiguity on the latter). The method can work only because the dispersion relation, which is assumed, already contains information from the full Maxwell's equations. We illustrate the method with 12-second-duration simultaneous recordings, at 32 kilosample/s (kS, 1000 samples of a digitized signal), of three orthogonal components of wave electric field E from the C/NOFS satellite in low-Earth orbit. Our particular example in this article is shown to contain two broadband whistler features in the range of 4-15 kilohertz, whose wave vectors differ both according to their polar angles from the geomagnetic field B (sub 0) and according to their azimuth around the geomagnetic field B (sub 0).
NASA Astrophysics Data System (ADS)
Jacobson, Abram R.; Holzworth, Robert H.; Pfaff, Robert; Heelis, Roderick; Colestock, Patrick
2014-03-01
Satellites in the Earth's magnetosphere can be used to record the rich electromagnetic wave activity due to terrestrial lightning, typically up to several tens of kilohertz. With simultaneous recordings of the three components of wave electric field E and of the three components of wave magnetic field B, the entire wavefield, polarization, and wave vector can be specified without any appeal to a priori assumptions about the wave mode and without any reliance on the validity of a dispersion relation. However, some satellites lack such a complete suite of measurements. We develop a method which assumes the theoretical dispersion relation for whistler waves then uses recordings of the three components of wave electric field E but no magnetic components to derive the wave polarization and the wave vector (up to a sign ambiguity on the latter). The method can work only because the dispersion relation, which is assumed, already contains information from the full Maxwell's equations. We illustrate the method with 12 s duration simultaneous recordings, at 32 kilosample/s, of three orthogonal components of wave electric field E from the C/NOFS satellite in low-Earth orbit. Our particular example in this article is shown to contain two broadband whistler features in the range of 4-15 kHz, whose wave vectors differ both according to their polar angles from the geomagnetic field B0 and according to their azimuth around the geomagnetic field B0.
Magnetic field induced dynamical chaos
Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra
2013-12-15
In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x–y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.
Magnetic field induced dynamical chaos.
Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra
2013-12-01
In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x-y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples. PMID:24387560
Instability of anisotropic cosmological solutions supported by vector fields.
Himmetoglu, Burak; Contaldi, Carlo R; Peloso, Marco
2009-03-20
Models with vector fields acquiring a nonvanishing vacuum expectation value along one spatial direction have been proposed to sustain a prolonged stage of anisotropic accelerated expansion. Such models have been used for realizations of early time inflation, with a possible relation to the large scale cosmic microwave background anomalies, or of the late time dark energy. We show that, quite generally, the concrete realizations proposed so far are plagued by instabilities (either ghosts or unstable growth of the linearized perturbations) which can be ultimately related to the longitudinal vector polarization present in them. Phenomenological results based on these models are therefore unreliable. PMID:19392187
Gary, S Peter; Narita, Y; Glassmeier, K H; Goldstein, M L; Safraoui, F; Treumann, R A
2009-01-01
Using four-point measurements of the CLUSTER spacecraft, the energy distribution of magnetic field fluctuations in the solar wind is determined directly in the three-dimensional wave vector domain in the range 3 x 10{sup -4} rad/km < k < 3 x 10{sup -3} rad/km. The analysis method takes account of a regular tetrahedron configuration of CLUSTER and the Doppler effect. The energy distribution in the flow rest frame is anisotropic, characterized by two distinct extended structures perpendicular to the mean magnetic field and furthermore perpendicular to the flow direction. The three-dimensional distribution is averaged around the direction of the mean magnetic field direction, and then is further reduced to one-dimensional distributions in the wave number domain parallel and perpendicular to the mean magnetic field. The one-dimensional energy spectra are characterized by the power law with the index -5/3 and furthermore very close energy density between parallel and perpendicular directions to the mean magnetic field at the same wave numbers. Though the distributions and the spectra are not covered in a wide range of wave vectors, our measurements suggest that the solar wind fluctuation is anisotropic in the three-dimensional wave vector space. It is, however, rather isotropic when reduced into the parallel and perpendicular wave vector geometries due to the second anisotropy imposed by the flow direction.
Description of dark energy and dark matter by vector fields
NASA Astrophysics Data System (ADS)
Meierovich, Boris E.
A simple Lagrangian (with squared covariant divergence of a vector field as a kinetic term) turned out an adequate tool for oscopic description of dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Space-like and time-like massive vector fields describe two different forms of dark matter. The space-like field is attractive. It is responsible for the observed plateau in galaxy rotation curves. The time-like massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four-parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the Universe. In particular, the singular "big bang" turns into a regular inflation-like transition from contraction to expansion with accelerated expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the boundary of existence of regular oscillating solutions (in the absence of vector fields). The simplicity of the general covariant expression for the energy-momentum tensor allows analyzing the main properties of the dark sector analytically, avoiding unnecessary model assumptions.
Magnetic fields in spiral galaxies
NASA Astrophysics Data System (ADS)
Beck, Rainer
2015-12-01
Radio synchrotron emission, its polarization and Faraday rotation of the polarization angle are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 \\upmu G) and in central starburst regions (50-100 \\upmu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15 \\upmu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the intergalactic medium.—Faraday rotation measures of the diffuse polarized radio emission from galaxy disks reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by mean-field dynamos. "Magnetic arms" between gaseous spiral arms may also be products of dynamo action, but need a stable spiral pattern to develop. Helically twisted field loops winding around spiral arms were found in two galaxies so far. Large-scale field reversals, like the one found in the Milky Way, could not yet be detected in external galaxies. In radio halos around edge-on galaxies, ordered magnetic fields with X-shaped patterns are observed. The origin and evolution of cosmic magnetic fields, in particular their first occurrence in young galaxies and their dynamical importance during galaxy evolution, will be studied with forthcoming radio telescopes like the Square Kilometre Array.
Off disk-center potential field calculations using vector magnetograms
NASA Technical Reports Server (NTRS)
Venkatakrishnan, P.; Gary, G. Allen
1989-01-01
A potential field calculation for off disk-center vector magnetograms that uses all the three components of the measured field is investigated. There is neither any need for interpolation of grid points between the image plane and the heliographic plane nor for an extension or a truncation to a heliographic rectangle. Hence, the method provides the maximum information content from the photospheric field as well as the most consistent potential field independent of the viewing angle. The introduction of polarimetric noise produces a less tolerant extrapolation procedure than using the line-of-sight extrapolation, but the resultant standard deviation is still small enough for the practical utility of this method.
Magnetic fields in quiescent prominences
NASA Technical Reports Server (NTRS)
Van Ballegooijen, A. A.; Martens, P. C. H.
1990-01-01
The origin of the axial fields in high-latitude quiescent prominences is considered. The fact that almost all quiescent prominences obey the same hemisphere-dependent rule strongly suggests that the solar differential rotation plays an important role in producing the axial fields. However, the observations are inconsistent with the hypothesis that the axial fields are produced by differential rotation acting on an existing coronal magnetic field. Several possible explanations for this discrepancy are considered. The possibility that the sign of the axial field depends on the topology of the magnetic field in which the prominence is embedded is examined, as is the possibility that the neutral line is tilted with respect to the east-west direction, so that differential rotation causes the neutral line also to rotate with time. The possibility that the axial fields of quiescent prominences have their origin below the solar surface is also considered.
Preparation and characterization of magnetic gene vectors for targeting gene delivery
NASA Astrophysics Data System (ADS)
Zheng, S. W.; Liu, G.; Hong, R. Y.; Li, H. Z.; Li, Y. G.; Wei, D. G.
2012-10-01
The PEI-CMD-MNPs were successfully prepared by the surface modification of magnetic Fe3O4 nanoparticles with carboxymethyl dextran (CMD) and polyethyleneimine (PEI). The PEI-CMD-MNPs polyplexes exhibited a typical superparamagnetic behavior and were well stable over the entire range of pH and NaCl concentration. These PEI-CMD-MNPs were used as magnetic gene vectors for targeting gene delivery. The prepared MNPs at different surface modification stages were characterized using Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), field emissions canning electron microscopy (FE-SEM), powder X-ray diffraction (XRD) and dynamic laser light scattering (DLS) analysis. The magnetic properties were studied by vibrating sample magnetometer (VSM). To evaluate the performance of the magnetic nanoparticles as gene transfer vector, the PEI-CMD-MNPs were used to delivery green fluorescent protein (GFP) gene into BHK21 cells. The expression of GFP gene was detected by fluorescence microscope. DNA-PEI-CMD-MNPs polyplexes absorbed by the cells were also monitored by Magnetic resonance imaging (MRI). The transfection efficiency and gene expression efficiency of that transfected with a magnet were much higher than that of standard transfection.
Relation between photospheric flow fields and the magnetic field distribution on the solar surface
Simon, G.W.; Title, A.M.; Topka, K.P.; Tarbell, T.D.; Shine, R.A.
1988-04-01
Using the technique of local correlation tracking on a 28 minute time sequence of white-light images of solar granulation, the horizontal flow field on the solar surface is measured. The time series was obtained by the Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 (Space Shuttle flight 51-F) and is free from atmospheric blurring and distortion. The SOUP flow fields have been compared with carefully aligned magnetograms taken over a nine hour period at the Big Bear Solar Observatory before, during, and after the SOUP images. The flow field and the magnetic field agree in considerable detail: vectors which define the flow of the white-light intensity pattern (granulation) point toward magnetic field regions, magnetic fields surround flow cells, and magnetic features move along the flow arrows. The projected locations of free particles (corks) in the measured flow field congregate at the same locations where the magnetic field is observed. 31 references.
Exchange coupling in hybrid anisotropy magnetic multilayers quantified by vector magnetometry
NASA Astrophysics Data System (ADS)
Morrison, C.; Miles, J. J.; Anh Nguyen, T. N.; Fang, Y.; Dumas, R. K.; kerman, J.; Thomson, T.
2015-05-01
Hybrid anisotropy thin film heterostructures, where layers with perpendicular and in-plane anisotropy are separated by a thin spacer, are novel materials for zero/low field spin torque oscillators and bit patterned media. Here, we report on magnetization reversal and exchange coupling in a archetypal Co/Pd (perpendicular)-NiFe (in-plane) hybrid anisotropy system studied using vector vibrating sample magnetometry. This technique allows us to quantify the magnetization reversal in each individual magnetic layer, and measure of the interlayer exchange as a function of non-magnetic spacer thickness. At large (>1 nm) spacer thicknesses Ruderman-Kittel-Kasuya-Yosida-like exchange dominates, with orange-peel coupling providing a significant contribution only for sub-nm spacer thickness.
Exchange coupling in hybrid anisotropy magnetic multilayers quantified by vector magnetometry
Morrison, C. Miles, J. J.; Thomson, T.; Anh Nguyen, T. N.; Fang, Y.; Dumas, R. K.; Åkerman, J.
2015-05-07
Hybrid anisotropy thin film heterostructures, where layers with perpendicular and in-plane anisotropy are separated by a thin spacer, are novel materials for zero/low field spin torque oscillators and bit patterned media. Here, we report on magnetization reversal and exchange coupling in a archetypal Co/Pd (perpendicular)-NiFe (in-plane) hybrid anisotropy system studied using vector vibrating sample magnetometry. This technique allows us to quantify the magnetization reversal in each individual magnetic layer, and measure of the interlayer exchange as a function of non-magnetic spacer thickness. At large (>1 nm) spacer thicknesses Ruderman-Kittel-Kasuya-Yosida-like exchange dominates, with orange-peel coupling providing a significant contribution only for sub-nm spacer thickness.
NASA Technical Reports Server (NTRS)
Ness, N. F.
1979-01-01
The paper examines the magnetic field observations and their analyses relating to the determination of the Mercury magnetic field. Methods of analyzing data included: (1) comparison of bow shock and magnetopause relative positions at Mercury to the earth, (2) direct spherical harmonic analysis, (3) magnetosphere modeling by an image dipole, and (4) scaling of a mathematical model for the terrestrial magnetosphere. Dipole moments were determined using partial quadrupole and octupole terms to improve the least-square fit of models to observations; analyses by method (2) yield a convergent series of dipole moments values considered to best represent the intrinsic planetary field. Finally, it is suggested that the origin of the magnetic field of Mercury cannot be uniquely determined, but the sources of convective energy may be radiogenic decay and heat release, gravitational settling, and differentiation of processional torques.
Magnetic fields of the solar system: A comparative planetology toolkit
NASA Astrophysics Data System (ADS)
Nicholas, J. B.; Purucker, M. E.; Johnson, C. L.; Sabaka, T. J.; Olsen, N.; Sun, Z.; Al Asad, M.; Anderson, B. J.; Korth, H.; Slavin, J. A.; Alexeev, I. I.; Belenkaya, E. S.; Phillips, R. J.; Solomon, S. C.; Lillis, R. J.; Langlais, B.; Winslow, R. M.; Russell, C. T.; Dougherty, M. K.; Zuber, M. T.
2011-12-01
Magnetic fields within the solar system provide a strong organizing force for processes active both within a planet or moon, and outside of it. In the interest of stimulating research and education in the field of comparative planetology, we present documented Fortran and MATLAB source codes and benchmarks to the latest models for planets and satellites that host internal magnetic fields. This presentation is made in the context of an interactive website: http://planetary-mag.net. Models are included for Earth (Comprehensive model CM4 of Sabaka et al., 2004, Geophysics J. Int.), Mercury (Anderson et al, 2011, Science), the Moon (Purucker and Nicholas, 2010, JGR), Mars (Lillis et al., 2010, JGR), and the outer planets Jupiter, Saturn, Uranus, and Neptune (Russell and Dougherty, 2010, Space Science Reviews). All models include magnetic fields of internal origin, and fields of external origin are included in the models for Mercury, the Earth, and the Moon. As models evolve, we intend to include magnetic fields of external origin for the other planets and moons. The website allows the user to select a coordinate system, such as planet-centered, heliocentric, or boundary normal, and the location within that coordinate system, and the vector magnetic field due to each of the component source fields at that location is then calculated and presented. Alternatively, the user can input a range as well as a grid spacing, and the vector magnetic field will be calculated for all points on that grid and be made available as a file for downloading.
Introduction to power-frequency electric and magnetic fields.
Kaune, W T
1993-01-01
This paper introduces the reader to electric and magnetic fields, particularly those fields produced by electric power systems and other sources using frequencies in the power-frequency range. Electric fields are produced by electric charges; a magnetic field also is produced if these charges are in motion. Electric fields exert forces on other charges; if in motion, these charges will experience magnetic forces. Power-frequency electric and magnetic fields induce electric currents in conducting bodies such as living organisms. The current density vector is used to describe the distribution of current within a body. The surface of the human body is an excellent shield for power-frequency electric fields, but power-frequency magnetic fields penetrate without significant attenuation; the electric fields induced inside the body by either exposure are comparable in magnitude. Electric fields induced inside a human by most environmental electric and magnetic fields appear to be small in magnitude compared to levels naturally occurring in living tissues. Detection of such fields thus would seem to require the existence of unknown biological mechanisms. Complete characterization of a power-frequency field requires measurement of the magnitudes and electrical phases of the fundamental and harmonic amplitudes of its three vector components. Most available instrumentation measures only a small subset, or some weighted average, of these quantities. Hand-held survey meters have been used widely to measure power-frequency electric and magnetic fields. Automated data-acquisition systems have come into use more recently to make electric- and magnetic-field recordings, covering periods of hours to days, in residences and other environments.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8206045
Magnetic field of Jupiter: A generalized inverse approach
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.
1981-01-01
The estimation of planetary magnetic fields from observations of the magnetic field gathered along a spacecraft flyby trajectory is examined with the aid of generalized inverse techniques, with application to the internal magnetic field of Jupiter. Model nonuniqueness resulting from the limited spatial extent of the observations and noise on the data is explored and quantitative estimates of the model parameter resolution are found. The presence of a substantial magnetic field of external origin due to the currents flowing in the Jovian magnetodisc is found to be an important source of error in estimates of the internal Jovian field, and new models explicitly incorporating these currents are proposed. New internal field models are derived using the vector helium magnetometer observations and the high field fluxgate observations of Pioneer 11, and knowledge of the external current system gained from the Pioneer 10 and Voyagers 1 and 2 encounters.
PROTOSTELLAR DISK FORMATION ENABLED BY WEAK, MISALIGNED MAGNETIC FIELDS
Krumholz, Mark R.; Crutcher, Richard M.; Hull, Charles L. H.
2013-04-10
The gas from which stars form is magnetized, and strong magnetic fields can efficiently transport angular momentum. Most theoretical models of this phenomenon find that it should prevent formation of large (>100 AU), rotationally supported disks around most protostars, even when non-ideal magnetohydrodynamic (MHD) effects that allow the field and gas to decouple are taken into account. Using recent observations of magnetic field strengths and orientations in protostellar cores, we show that this conclusion is incorrect. The distribution of magnetic field strengths is very broad, and alignments between fields and angular momentum vectors within protostellar cores are essentially random. By combining the field strength and misalignment data with MHD simulations showing that disk formation is expected for both weak and misaligned fields, we show that these observations imply that we should expect disk fractions of {approx}10%-50% even when protostars are still deeply embedded in their parent cores, and even if the gas is governed by ideal MHD.
Analysis of Recurrent Patterns in Toroidal Magnetic Fields
Tricoche, Xavier; Kruger, Scott E; Breslau, Joshua
2010-01-01
In the development of magnetic confinement fusion which will potentially be a future source for low cost power, physicists must be able to analyze the magnetic field that confines the burning plasma. While the magnetic field can be described as a vector field, traditional techniques for analyzing the field's topology cannot be used because of its Hamiltonian nature. In this paper we describe a technique developed as a collaboration between physicists and computer scientists that determines the topology of a toroidal magnetic field using fieldlines with near minimal lengths. More specifically, we analyze the Poincare map of the sampled fieldlines in a Poincare section including identifying critical points and other topological features of interest to physicists. The technique has been deployed into an interactive parallel visualization tool which physicists are using to gain new insight into simulations of magnetically confined burning plasmas.
Recurrent structures of the interplanetary magnetic field observed by Ulysses
NASA Technical Reports Server (NTRS)
Erdos, G.; Balogh, A.; Forsyth, R. J.; Smith, E. J.
1995-01-01
Since its launch in October 1990, Ulysses has provided good quality magnetic field data, practically covering the whole time interval until now. We have studied the very long time scale evolution of the interplanetary magnetic field, in particlular, we have search for recurrent disturbances in the magnetic field. The magnetic field vectors have been mapped back to the Sun along Parker spirals, in order to determine the Heliographic longitude of the source regions in the corona. It was found that the position of many high field sources drifts systematically relative to the corona assumed to rotate with the equatorial rotation period of the Sun. The results are compared to similar observations on the eastward drift of magnetic sectors observed after about June 1992. Changes associated with both the declining phase of the solar cycle and the latitudinal excursion of Ulysses are also discussed.
Classical and quantum mechanical motion in magnetic fields
NASA Astrophysics Data System (ADS)
Franklin, J.; Cole Newton, K.
2016-04-01
We study the motion of a particle in a particular magnetic field configuration both classically and quantum mechanically. For flux-free radially symmetric magnetic fields defined on circular regions, we establish that particle escape speeds depend, classically, on a gauge-fixed magnetic vector potential, and we demonstrate some trajectories associated with this special type of magnetic field. Then we show that some of the geometric features of the classical trajectory (perpendicular exit from the field region, trapped and escape behavior) are reproduced quantum mechanically, using a numerical method that extends the norm-preserving Crank-Nicolson method to problems involving magnetic fields. While there are similarities between the classical trajectory and the position expectation value of the quantum-mechanical solution, there are also differences, and we demonstrate some of these.
Chromospheric magnetic fields of an active region filament
NASA Astrophysics Data System (ADS)
Xu, Z.; Solanki, S.; Lagg, A.
2012-06-01
Vector magnetic fields of an active region filament are co-spatially and co-temporally mapped in photosphere and upper chromosphere, by using spectro-polarimetric observations made by Tenerife Infrared Polarimeter (TIP II) at the German Vacuum Tower Telescope (VTT). A Zeeman-based ME inversion is performed on the full Stokes vectors of both the photospheric Si I 1082.7 nm and the chromospheric He I 1083.0 nm lines. We found that the strong magnetic fields, with the field strength of 600 - 800 G in the He I line formation height, are not uncommon among AR filaments. But such strong magnetic field is not always found in AR filaments.
Ghost instabilities of cosmological models with vector fields nonminimally coupled to the curvature
Himmetoglu, Burak; Peloso, Marco; Contaldi, Carlo R.
2009-12-15
We prove that many cosmological models characterized by vectors nonminimally coupled to the curvature (such as the Turner-Widrow mechanism for the production of magnetic fields during inflation, and models of vector inflation or vector curvaton) contain ghosts. The ghosts are associated with the longitudinal vector polarization present in these models and are found from studying the sign of the eigenvalues of the kinetic matrix for the physical perturbations. Ghosts introduce two main problems: (1) they make the theories ill defined at the quantum level in the high energy/subhorizon regime (and create serious problems for finding a well-behaved UV completion), and (2) they create an instability already at the linearized level. This happens because the eigenvalue corresponding to the ghost crosses zero during the cosmological evolution. At this point the linearized equations for the perturbations become singular (we show that this happens for all the models mentioned above). We explicitly solve the equations in the simplest cases of a vector without a vacuum expectation value in a Friedmann-Robertson-Walker geometry, and of a vector with a vacuum expectation value plus a cosmological constant, and we show that indeed the solutions of the linearized equations diverge when these equations become singular.
Full-vector archeomagnetic and rock-magnetic results from Portuguese kilns
NASA Astrophysics Data System (ADS)
Gomez-Paccard, Miriam; Tema, Evdokia; McIntosh, Gregg; Letaio, Manuela; Calado, Marco; Botelho, Paulo
2014-05-01
Despite the increase in archeomagnetic studies in the past few years, the number of reliable archeointensity data is still limited. At present Europe is the most widely covered region, although the variation in geomagnetic field intensity is not completely known for the last millennia and the occurrence and behaviour of various rapid geomagnetic field changes is under discussion. In this context, new high-reliable full-geomagnetic field vector determinations from unexplored regions are crucial in order to improve our knowledge of past geomagnetic field changes at regional scales. In Portugal, despite the rich cultural heritage and the abundance of archaeological excavations, archaeomagnetic research is still in its infancy. To our knowledge, up to now the only available directional data obtained from more or less well-dated materials come from the study of a Late Bronze Age vitrified wall close to the city of Serpa, southern Portugal, while only two more studies have been published including archaeointesity results from Portuguese pottery. We present here the first full-vector archeomagnetic results (declination, inclination and intensity) from two kilns excavated at two archaeological sites at Lisboa (Portugal). The first structure corresponds to the Largo das Alcaçarias Islamic pottery production workshop located in the eastern suburb Luxbona (current Alfama) and its abandonment has been dated as the 12th century AD. The second kiln was excavated in the Encosta Santana archeological medieval site and was abandoned during the 12th or 13th centuries AD according to archeological evidence. Detailed archaeomagnetic and rock magnetic studies have been carried out in order to determine the magnetic mineralogy and investigate the thermal stability of the phases carrying the archaeomagnetic signal. Both kilns exhibited thermally stability magnetic phases. The magnetic properties of the Largo kiln are dominated by a mixture of magnetite/cation-substituted magnetite and cation-substituted hematite. Those of the Encosta kiln are dominated by magnetite with limited cation substitution, with hysteresis ratios falling close to the single domain - multidomain unmixing curve of Dunlop. The new archeomagnetic and rock-magnetic data are based on the study of several samples per kiln and the archeointensity determinations were obtained using the Thellier classical method with regular partial thermoremanent magnetization (pTRM) checks and TRM anisotropy and cooling rate corrections. From the laboratory experiments, two new high quality mean intensities are now available for Portugal. The new data are the first full-vector results from Portuguese kilns. They significantly contribute to better understand the secular variation of the Earth's magnetic field in western Europe during the 12-13th centuries AD and can be used as reliable input data for geomagnetic field modelling.
Evolution of field line helicity during magnetic reconnection
Russell, A. J. B. Hornig, G.; Wilmot-Smith, A. L.; Yeates, A. R.
2015-03-15
We investigate the evolution of field line helicity for magnetic fields that connect two boundaries without null points, with emphasis on localized finite-B magnetic reconnection. Total (relative) magnetic helicity is already recognized as an important topological constraint on magnetohydrodynamic processes. Field line helicity offers further advantages because it preserves all topological information and can distinguish between different magnetic fields with the same total helicity. Magnetic reconnection changes field connectivity and field line helicity reflects these changes; the goal of this paper is to characterize that evolution. We start by deriving the evolution equation for field line helicity and examining its terms, also obtaining a simplified form for cases where dynamics are localized within the domain. The main result, which we support using kinematic examples, is that during localized reconnection in a complex magnetic field, the evolution of field line helicity is dominated by a work-like term that is evaluated at the field line endpoints, namely, the scalar product of the generalized field line velocity and the vector potential. Furthermore, the flux integral of this term over certain areas is very small compared to the integral of the unsigned quantity, which indicates that changes of field line helicity happen in a well-organized pairwise manner. It follows that reconnection is very efficient at redistributing helicity in complex magnetic fields despite having little effect on the total helicity.
Solar Polarimetry and Magnetic Field Measurements
NASA Astrophysics Data System (ADS)
del Toro Iniesta, J. C.
2001-05-01
The magnetic nature of most solar (spatially resolved or unresolved) structures is amply recognized. Magnetic fields of the Sun play a paramount rôle in the overall thermodynamic and dynamic state of our star. The main observable manifestation of solar magnetic fields is the polarization of light either through the Zeeman effect on spectral lines or through the Hanle effect (depolarization by very weak magnetic fields of light previously polarized by scattering). Hence, one can easily understand the increasing importance that polarimetry is experimenting continuously in solar physics. Under the title of this contribution a six-hour course was given during the summer school. Clearly, the limited extension allocated for the notes in these proceedings avoids an extensive account of the several topics discussed: 1) a description of light as an electromagnetic wave and the polarization properties of monochromatic, time-harmonic, plane waves; 2) the polarization properties of polychromatic light and, in particular, of quasi-monochromatic light; 3) the transformations of (partially) polarized light by linear optical systems and a description of the ways we measure the Stokes parameters by spatially and/or temporally modulating the polarimetric signal; 4) a discussion on specific problems relevant to solar polarimetry like seeing-induced and instrumental polarization, or modulation and demodulation, along with a brief description of current solar polarimeters; 5) the vector radiative transfer equation for polarized light and its links to the scalar one for unpolarized light, together with a summary of the Zeeman effect and its consequences on line formation in a magnetized stellar atmosphere; 7) an introduction of the paramount astrophysical problem, i.e., that of finding diagnostics that enable the solar physicist to interpret the observables in terms of the solar atmospheric quantities, including a discussion on contribution and response functions; and 8) a brief outline of inversion techniques as a recommended way to infer values of the vector magnetic field and other thermodynamic and dynamic quantities. Since most of the material presented in the lectures can be found in the literature, I decided to focus these pages to those topics that, in my opinion, need a particular stress and/or do not have received much attention in previous reviews or textbooks. These notes have been written with mostly didactical purposes so that, skipping the customary usage, just a few references will be cited within the text. Instead, a classified (and necessarily incomplete) bibliography is recommended at the end.
Orientation and Magnitude of Mars' Magnetic Field
NASA Technical Reports Server (NTRS)
1997-01-01
This image shows the orientation and magnitude of the magnetic field measured by the MGS magnetometer as it sped over the surface of Mars during an early aerobraking pass (Day of the year, 264; 'P6' periapsis pass). At each point along the spacecraft trajectory we've drawn vectors in the direction of the magnetic field measured at that instant; the length of the line is scaled to show the relative magnitude of the field. Imagine traveling along with the MGS spacecraft, holding a string with a magnetized needle on one end: this essentially a compass with a needle that is free to spin in all directions. As you pass over the surface the needle would swing rapidly, first pointing towards the planet and then rotating quickly towards 'up' and back down again. All in a relatively short span of time, say a minute or two, during which time the spacecraft has traveled a couple of hundred miles. You've just passed over one of many 'magnetic anomalies' thus far detected near the surface of Mars. A second major anomaly appears a little later along the spacecraft track, about 1/4 the magnitude of the first - can you find it? The short scale length of the magnetic field signature locates the source near the surface of Mars, perhaps in the crust, a 10 to 75 kilometer thick outer shell of the planet (radius 3397 km).
The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO. JPL is an operating division of California Institute of Technology (Caltech).
Indoor localization using magnetic fields
NASA Astrophysics Data System (ADS)
Pathapati Subbu, Kalyan Sasidhar
Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing hallways with different kinds of pillars, doors and elevators. All in all, this dissertation contributes the following: 1) provides a framework for understanding the presence of ambient magnetic fields indoors and utilizing them to solve the indoor localization problem; 2) develops an application that is independent of the user and the smart phones and 3) requires no other infrastructure since it is deployed on a device that encapsulates the sensing, computing and inferring functionalities, thereby making it a novel contribution to the mobile and pervasive computing domain.
NASA Astrophysics Data System (ADS)
Popov, Aleksey
2013-04-01
The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws of electromagnetism. According to a rule of the left hand: if the magnetic field in a kernel is directed to drawing, electric current are directed to an axis of rotation of the Earth, - a action of force clockwise (to West). Definition of the force causing drift a kernel according to the law of Ampere F = IBlsin. Powerful force 3,5 × 1012 Nyton, what makes drift of the central part of a kernel of the Earth on 0,2 the longitude in year to West, and also it is engine of the mechanism of movement of slabs together with continents. Movement of a core of the Earth carry out around of a terrestrial axis one circulation in the western direction in 2000 of years. Linear speed of rotation of a kernel concerning a mantle on border the mantle a kernel: V = × 3,471 × 10 = 3,818 × 10 m/s = 33 m/day = 12 km/years. Considering greater viscosity of a mantle, the powerful energy at rotation of a kernel seize a mantle and lithospheric slabs and makes their collisions as a result of which there are earthquakes and volcano. Continents Northern and Southern America every year separate from the Europe and Africa on several centimeters. Atlantic ocean as a result of movement of these slabs with such speed was formed for 200 million years, that in comparison with the age of the Earth - several billions years, not so long time. Drift of a kernel in the western direction is a principal cause of delay of speed of rotation of the Earth. Flow of radial electric currents allot according to the law of Joule - Lenz, the quantity of warmth : Q = I2Rt = IUt, of thermal energy 6,92 × 1017 calories/year. This defines heating of a kernel and the Earth as a whole. In the valley of the median-Atlantic ridge having numerous volcanos, the lava flow constantly thus warm up waters of Atlantic ocean. It is a fact the warm current Gulf Stream. Thawing of a permafrost and ices of Arctic ocean, of glaciers of Greenland and Antarctica is acknowledgement: the warmth of earth defines character of thawing of glaciers and a permafrost. This is a global warming. The version of the author: the periods of inversion of a magnetic field of the Earth determine cycles of the Ice Age. At inversions of a magnetic field when B=0, radial electric currents are small or are absent, excretion of thermal energy minimally or an equal to zero,it is the beginning of the cooling the Earth and offensive of the Ice Age. Disappearance warm current Gulf Stream warming the north of the Europe and Canada. Drift of a magnetic dipole of the Earth in a rotation the opposite to rotation of the Earth, is acknowledgement of drift of a kernel of the Earth in a rotation the opposite to rotation of the Earth and is acknowledgement of the theory « the Magnetic field of the Earth ». The author continues to develop the theory « the Magnetic field of the Earth » and invites geophysicists to accept in it participation in it.
Large Solar Flares and Sheared Magnetic Field Configuration
NASA Technical Reports Server (NTRS)
Choudhary, Debi Prasad
2001-01-01
This Comment gives additional information about the nature of flaring locations on the Sun described in the article "Sun unleashes Halloween storm", by R. E. Lopez, et al. What causes the large explosions from solar active regions that unleash huge magnetic storms and adverse space weather? It is now beyond doubt that the magnetic field in solar active regions harbors free energy that is released during these events. Direct measurements of the longitudinal and transverse components of active region magnetic fields with the vector magnetograph at NASA Marshall Space Flight Center (MSFC), taken on a regular basis for the last 30 years, have found key signatures of the locations of powerful flares. A vector magnetograph detects and measures the magnetic shear, which is the deviation of the observed transverse magnetic field direction from the potential field. The sheared locations possess abundant free magnetic energy for solar flares. In addition to active region NOAA 10486, the one that produced the largest flares last October, the NASA/MSFC vector magnetograph has observed several other such complex super active regions, including NOAA 6555 and 6659.
Observations of Mercury's magnetic field
NASA Technical Reports Server (NTRS)
Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.
1975-01-01
Magnetic field data obtained by Mariner 10 during the third and final encounter with the planet Mercury on 16 March 1975 were studied. A well developed bow shock and modest magnetosphere, previously observed at first encounter on 29 March 1974, were again observed. In addition, a much stronger magnetic field near closest approach, 400 gamma versus 98 gamma, was observed at an altitude of 327 km and approximately 70 deg north Mercurian latitude. Spherical harmonic analysis of the data provide an estimate of the centered planetary magnetic dipole of 4.7 x 10 to the 22nd power Gauss/cu cm with the axis tilted 12 deg to the rotation axis and in the same sense as Earth's. The interplanetary field was sufficiently different between first and third encounters that in addition to the very large field magnitude observed, it argues strongly against a complex induction process generating the observed planetary field. While a possibility exists that Mercury possesses a remanent field due to magnetization early in its formation, a present day active dynamo seems to be a more likely candidate for its origin.
NASA Technical Reports Server (NTRS)
Schuler, James J.; Felippa, Carlos A.
1991-01-01
Electromagnetic finite elements are extended based on a variational principle that uses the electromagnetic four potential as primary variable. The variational principle is extended to include the ability to predict a nonlinear current distribution within a conductor. The extension of this theory is first done on a normal conductor and tested on two different problems. In both problems, the geometry remains the same, but the material properties are different. The geometry is that of a 1-D infinite wire. The first problem is merely a linear control case used to validate the new theory. The second problem is made up of linear conductors with varying conductivities. Both problems perform well and predict current densities that are accurate to within a few ten thousandths of a percent of the exact values. The fourth potential is then removed, leaving only the magnetic vector potential, and the variational principle is further extended to predict magnetic potentials, magnetic fields, the number of charge carriers, and the current densities within a superconductor. The new element produces good results for the mean magnetic field, the vector potential, and the number of superconducting charge carriers despite a relatively high system condition number. The element did not perform well in predicting the current density. Numerical problems inherent to this formulation are explored and possible remedies to produce better current predicting finite elements are presented.
Forecasting the magnetic vectors within a CME at L1 by using solar observations.
NASA Astrophysics Data System (ADS)
Savani, N.; Vourlidas, A.; Szabo, A.; Mays, M. L.; Evans, R. M.; Thompson, B. J.; Richardson, I. G.; Pulkkinen, A. A.; Nieves-Chinchilla, T.
2014-12-01
The direction of magnetic vectors within coronal mass ejections has important consequences to forecasting terrestrial behaviour, however forecasting these vectors remains predominately elusive. Here, we report that a simplified system is capable of replicating the broad field rotations seen within flux rope CMEs at L1 monitors. The predictions are performed under three main themes: 1) The majority of the field rotations can be simplified to the constant-alpha force-free (CAFF) flux model first implemented circa 1990. 2) The helicity will follow the Bothmer & Schwenn system that relies on a reliable helicity prediction of active regions during solar cycle. Which has been recently confirmed by Wang [2013 ApJ]. 3) The majority of the distortions, deflections and rotations will have already occurred within coronagraphic field of view, thereby allowing the creation of a projected "volume-of-influence" on the Sun, from which Earth's position relative to the CME can be estimated. This presentation will compare predicted results to the observations from 7 CME events and then estimate the sources of uncertainty. As an example, the difference in robust statistics from 2 solar cycles of CAFF model fittings for the field magnitude will be compared to estimates generated from simulated CME-sheaths within forecasting Enlil runs. The figure displays an example field vector forecast from the techniques employed above.
Galactic and Intergalactic Magnetic Fields
NASA Astrophysics Data System (ADS)
Klein, U.; Fletcher, A.
This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible. In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later chapters address the role of magnetic fields in the evolution of the interstellar medium, galaxies and galaxy clusters. The book is intended for advanced undergraduate and postgraduate students in astronomy and physics and will serve as an entry point for those starting their first research projects in the field.
New techniques in 3D scalar and vector field visualization
Max, N.; Crawfis, R.; Becker, B.
1993-05-05
At Lawrence Livermore National Laboratory (LLNL) we have recently developed several techniques for volume visualization of scalar and vector fields, all of which use back-to-front compositing. The first renders volume density clouds by compositing polyhedral volume cells or their faces. The second is a ``splatting`` scheme which composites textures used to reconstruct the scalar or vector fields. One version calculates the necessary texture values in software, and another takes advantage of hardware texture mapping. The next technique renders contour surface polygons using semi-transparent textures, which adjust appropriately when the surfaces deform in a flow, or change topology. The final one renders the ``flow volume`` of smoke or dye tracer swept out by a fluid flowing through a small generating polygon. All of these techniques are applied to a climate model data set, to visualize cloud density and wind velocity.
Method and means for measuring the anisotropy of a plasma in a magnetic field
Shohet, J.L.; Greene, D.G.S.
1973-10-23
Anisotropy is measured of a free-free-bremsstrahlungradiation-generating plasma in a magnetic field by collimating the free-free bremsstrahlung radiation in a direction normal to the magnetic field and scattering the collimated free- free bremsstrahlung radiation to resolve the radiation into its vector components in a plane parallel to the electric field of the bremsstrahlung radiation. The scattered vector components are counted at particular energy levels in a direction parallel to the magnetic field and also normal to the magnetic field of the plasma to provide a measure of anisotropy of the plasma. (Official Gazette)
Spacecraft attitude determination using the earth's magnetic field
NASA Technical Reports Server (NTRS)
Simpson, David G.
1989-01-01
A method is presented by which the attitude of a low-Earth orbiting spacecraft may be determined using a vector magnetometer, a digital Sun sensor, and a mathematical model of the Earth's magnetic field. The method is currently being implemented for the Solar Maximum Mission spacecraft (as a backup for the failing star trackers) as a way to determine roll gyro drift.
Mars Crustal Magnetic Field Remnants
NASA Technical Reports Server (NTRS)
2001-01-01
The radial magnetic field measured is color coded on a global perspective view that shows measurements derived from spacecraft tracks below 200 km overlain on a monochrome shaded relief map of the topography.
This image shows especially strong Martian magnetic fields in the southern highlands near the Terra Cimmeria and Terra Sirenum regions, centered around 180 degrees longitude from the equator to the pole. It is where magnetic stripes possibly resulting from crustal movement are most prominent. The bands are oriented approximately east - west and are about 100 miles wide and 600 miles long, although the longest band stretches more than 1200 miles.
The false blue and red colors represent invisible magnetic fields in the Martian crust that point in opposite directions. The magnetic fields appear to be organized in bands, with adjacent bands pointing in opposite directions, giving these stripes a striking similarity to patterns seen in the Earth's crust at the mid-oceanic ridges.
These data were compiled by the MGS Magnetometer Team led by Mario Acuna at the Goddard Space Flight Center in Greenbelt, MD.
Holographic dark energy in a vector field cosmology
NASA Astrophysics Data System (ADS)
Sadatian, S. Davood
2015-08-01
We obtain interacting holographic dark energy density in the framework of vector field cosmology (LIV). We consider possible modification of equation of state for the holographic energy density in lorentz invariance violation cosmology. In this case we select Jeans length as the IR cut-off in the holographic model. Then we consider the interaction between holographic energy densities ρΛ and ρm in this framework.
Texture splats for 3D vector and scalar field visualization
Crawfis, R.A.; Max, N.
1993-04-06
Volume Visualization is becoming an important tool for understanding large 3D datasets. A popular technique for volume rendering is known as splatting. With new hardware architectures offering substantial improvements in the performance of rendering texture mapped objects, we present textured splats. An ideal reconstruction function for 3D signals is developed which can be used as a texture map for a splat. Extensions to the basic splatting technique are then developed to additionally represent vector fields.
Bicrossed products induced by Poisson vector fields and their integrability
NASA Astrophysics Data System (ADS)
Djiba, Samson Apourewagne; Wade, Aïssa
2016-01-01
First we show that, associated to any Poisson vector field E on a Poisson manifold (M,π), there is a canonical Lie algebroid structure on the first jet bundle J1M which, depends only on the cohomology class of E. We then introduce the notion of a cosymplectic groupoid and we discuss the integrability of the first jet bundle into a cosymplectic groupoid. Finally, we give applications to Atiyah classes and L∞-algebras.
Relic vector field and CMB large scale anomalies
Chen, Xingang; Wang, Yi E-mail: yw366@cam.ac.uk
2014-10-01
We study the most general effects of relic vector fields on the inflationary background and density perturbations. Such effects are observable if the number of inflationary e-folds is close to the minimum requirement to solve the horizon problem. We show that this can potentially explain two CMB large scale anomalies: the quadrupole-octopole alignment and the quadrupole power suppression. We discuss its effect on the parity anomaly. We also provide analytical template for more detailed data comparison.
The magnetic field of the Milky Way
NASA Astrophysics Data System (ADS)
Reid, Mark J.
Models of the magnetic field configuration of the Milky Way are reviewed. Current analyses of rotation measure data suggest that the Milky Way possesses a bisymmetric-like spiral magnetic field, that field reversals among spiral arms exist, and that the magnetic spiral may not closely match the mass spiral structure. Zeeman measurements of OH masers may provide alternative magnetic field information.
Electric field vector measurements in a surface ionization wave discharge
NASA Astrophysics Data System (ADS)
Goldberg, Benjamin M.; Böhm, Patrick S.; Czarnetzki, Uwe; Adamovich, Igor V.; Lempert, Walter R.
2015-10-01
This work presents the results of time-resolved electric field vector measurements in a short pulse duration (60 ns full width at half maximum), surface ionization wave discharge in hydrogen using a picosecond four-wave mixing technique. Electric field vector components are measured separately, using pump and Stokes beams linearly polarized in the horizontal and vertical planes, and a polarizer placed in front of the infrared detector. The time-resolved electric field vector is measured at three different locations across the discharge gap, and for three different heights above the alumina ceramic dielectric surface, ~100, 600, and 1100 μm (total of nine different locations). The results show that after breakdown, the discharge develops as an ionization wave propagating along the dielectric surface at an average speed of 1 mm ns-1. The surface ionization wave forms near the high voltage electrode, close to the dielectric surface (~100 μm). The wave front is characterized by significant overshoot of both vertical and horizontal electric field vector components. Behind the wave front, the vertical field component is rapidly reduced. As the wave propagates along the dielectric surface, it also extends further away from the dielectric surface, up to ~1 mm near the grounded electrode. The horizontal field component behind the wave front remains quite significant, to sustain the electron current toward the high voltage electrode. After the wave reaches the grounded electrode, the horizontal field component experiences a secondary rise in the quasi-dc discharge, where it sustains the current along the near-surface plasma sheet. The measurement results indicate presence of a cathode layer formed near the grounded electrode with significant cathode voltage fall, ≈3 kV, due to high current density in the discharge. The peak reduced electric field in the surface ionization wave is 85-95 Td, consistent with dc breakdown field estimated from the Paschen curve for hydrogen. The present set of data on electric field distribution in a surface ionization wave discharge provides an experimental reference for validation of kinetic models and assessing their predictive capability.
Dynamic deformation in MR elastomer driven by magnetic field
NASA Astrophysics Data System (ADS)
Zhou, Gang Yi; Jiang, Zhen Yu
2003-08-01
Magnetorheological Elastomer (MRE) is a new class of smart materials, whose modulus can be controlled by applied magnetic field. In this paper, we first show the field-dependent dynamic mechanical properties including shear and stretch of the MRE, cured by ourselves. By white light speckle method for deformation analysis, we present the dynamic deformation progress (the vector diagram of displacement or the whole-field quantitative displacement distribution, at various times) of the MRE and the elastomer-ferromagnetic composite (EFC) while the magnetic field turns on. The real-time deformation progress gives us a deep understanding to MRE and EFC.
A filament supported by different magnetic field configurations
NASA Astrophysics Data System (ADS)
Guo, Y.; Schmieder, B.; Démoulin, P.; Wiegelmann, T.; Aulanier, G.; Török, T.; Bommier, V.
2011-08-01
A nonlinear force-free magnetic field extrapolation of vector magnetogram data obtained by THEMIS/MTR on 2005 May 27 suggests the simultaneous existence of different magnetic configurations within one active region filament: one part of the filament is supported by field line dips within a flux rope, while the other part is located in dips within an arcade structure. Although the axial field chirality (dextral) and the magnetic helicity (negative) are the same along the whole filament, the chiralities of the filament barbs at different sections are opposite, i.e., right-bearing in the flux rope part and left-bearing in the arcade part. This argues against past suggestions that different barb chiralities imply different signs of helicity of the underlying magnetic field. This new finding about the chirality of filaments will be useful to associate eruptive filaments and magnetic cloud using the helicity parameter in the Space Weather Science.
Magnetic field restructuring associated with two successive solar eruptions
Wang, Rui; Liu, Ying D.; Yang, Zhongwei; Hu, Huidong
2014-08-20
We examine two successive flare eruptions (X5.4 and X1.3) on 2012 March 7 in the NOAA active region 11429 and investigate the magnetic field reconfiguration associated with the two eruptions. Using an advanced non-linear force-free field extrapolation method based on the SDO/HMI vector magnetograms, we obtain a stepwise decrease in the magnetic free energy during the eruptions, which is roughly 20%-30% of the energy of the pre-flare phase. We also calculate the magnetic helicity and suggest that the changes of the sign of the helicity injection rate might be associated with the eruptions. Through the investigation of the magnetic field evolution, we find that the appearance of the 'implosion' phenomenon has a strong relationship with the occurrence of the first X-class flare. Meanwhile, the magnetic field changes of the successive eruptions with implosion and without implosion were well observed.
Analysis of Reccurent Patterns in Toroidal Magnetic Fields
Sanderson, Allen; Pugmire, Dave
2010-11-01
In the development of magnetic confinement fusion which will be a future source for low cost power, physicists must be able to analyze the magnetic field that confines the burning plasma. While the magnetic field can be described as a series of vectors, traditional techniques for analyzing the field s topology can not be used because of its homoclinic nature. In this paper we describe a technique developed as a collaboration between physicists and computer scientists that determines the topology of a toroidal magnetic field using fieldlines with near minimal lengths. More specifically, we analyze the Poincare map of the sampled fieldlines in a Poincare section including identifying critical points and other topological features of interest to physicists. The technique has been deployed into an interactive parallel visualization tool which physicists are using to gain new insight into simulations of magnetically confined buring plasmas.
Photospheric and coronal magnetic fields
Sheeley, N.R., Jr. )
1991-01-01
Research on small-scale and large-scale photospheric and coronal magnetic fields during 1987-1990 is reviewed, focusing on observational studies. Particular attention is given to the new techniques, which include the correlation tracking of granules, the use of highly Zeeman-sensitive infrared spectral lines and multiple lines to deduce small-scale field strength, the application of long integration times coupled with good seeing conditions to study weak fields, and the use of high-resolution CCD detectors together with computer image-processing techniques to obtain images with unsurpassed spatial resolution. Synoptic observations of large-scale fields during the sunspot cycle are also discussed. 101 refs.
Nonlinear spin-wave excitations at low magnetic bias fields
NASA Astrophysics Data System (ADS)
Woltersdorf, Georg
We investigate experimentally and theoretically the nonlinear magnetization dynamics in magnetic films at low magnetic bias fields. Nonlinear magnetization dynamics is essential for the operation of numerous spintronic devices ranging from magnetic memory to spin torque microwave generators. Examples are microwave-assisted switching of magnetic structures and the generation of spin currents at low bias fields by high-amplitude ferromagnetic resonance. In the experiments we use X-ray magnetic circular dichroism to determine the number density of excited magnons in magnetically soft Ni80Fe20 thin films. Our data show that the common Suhl instability model of nonlinear ferromagnetic resonance is not adequate for the description of the nonlinear behavior in the low magnetic field limit. Here we derive a model of parametric spin-wave excitation, which correctly predicts nonlinear threshold amplitudes and decay rates at high and at low magnetic bias fields. In fact, a series of critical spin-wave modes with fast oscillations of the amplitude and phase is found, generalizing the theory of parametric spin-wave excitation to large modulation amplitudes. For these modes, we also find pronounced frequency locking effects that may be used for synchronization purposes in magnonic devices. By using this effect, effective spin-wave sources based on parametric spin-wave excitation may be realized. Our results also show that it is not required to invoke a wave vector-dependent damping parameter in the interpretation of nonlinear magnetic resonance experiments performed at low bias fields.
Computation approach for CMB bispectrum from primordial magnetic fields
NASA Astrophysics Data System (ADS)
Shiraishi, Maresuke; Nitta, Daisuke; Yokoyama, Shuichiro; Ichiki, Kiyotomo; Takahashi, Keitaro
2011-06-01
We present a detailed calculation of our previous short paper [M. Shiraishi, D. Nitta, S. Yokoyama, K. Ichiki, and K. Takahashi, Phys. Rev. DPRVDAQ1550-7998 82, 121302 (2010).10.1103/PhysRevD.82.121302] in which we have investigated a constraint on the magnetic field strength through comic microwave background temperature bispectrum of vector modes induced from primordial magnetic fields. By taking into account full angular dependence of the bispectrum with spin spherical harmonics and Wigner symbols, we explicitly show that the cosmic microwave background bispectrum induced from the statistical-isotropic primordial vector fluctuations can be also described as an angle-averaged form in the rotationally invariant way. We also study the cases with different spectral indices of the power spectrum of the primordial magnetic fields.
Absolute magnetic helicity and the cylindrical magnetic field
Low, B. C.
2011-05-15
The different magnetic helicities conserved under conditions of perfect electrical conductivity are expressions of the fundamental property that every evolving fluid surface conserves its net magnetic flux. This basic hydromagnetic point unifies the well known Eulerian helicities with the Lagrangian helicity defined by the conserved fluxes frozen into a prescribed set of disjoint toroidal tubes of fluid flowing as a permanent partition of the entire fluid [B. C. Low, Astrophys. J. 649, 1064 (2006)]. This unifying theory is constructed from first principles, beginning with an analysis of the Eulerian and Lagrangian descriptions of fluids, separating the ideas of fluid and magnetic-flux tubes and removing the complication of the magnetic vector potential's free gauge from the concept of helicity. The analysis prepares for the construction of a conserved Eulerian helicity, without that gauge complication, to describe a 3D anchored flux in an upright cylindrical domain, this helicity called absolute to distinguish it from the well known relative helicity. In a version of the Chandrasekhar-Kendall representation, the evolving field at any instant is a unique superposition of a writhed, untwisted axial flux with a circulating flux of field lines all closed and unlinked within the cylindrical domain. The absolute helicity is then a flux-weighted sum of the writhe of that axial flux and its mutual linkage with the circulating flux. The absolute helicity is also conserved if the frozen-in field and its domain are continuously deformed by changing the separation between the rigid cylinder-ends with no change of cylinder radius. This hitherto intractable cylindrical construction closes a crucial conceptual gap for the fundamentals to be complete at last. The concluding discussion shows the impact of this development on our understanding of helicity, covering (i) the helicities of wholly contained and anchored fields; (ii) the Eulerian and Lagrangian descriptions of field evolution; (iii) twist as a topological property of solenoidal fields versus the linkage properties of open and closed discrete curves treated by Gauss, Caligarneau, Berger, and Prior; and (iv) the change of absolute helicity by resistive diffusion. These are important hydromagnetic properties of twisted magnetic fields in the million-degree hot, highly conducting corona of the Sun.
Magnetic fields around black holes
NASA Astrophysics Data System (ADS)
Garofalo, David A. G.
Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our Newtonian results are excellent approximations for slowly spinning black holes. We proceed to address the issue of the spin dependence of the Blandford & Znajek power. The result we choose to highlight is our finding that given the validity of our assumption for the dynamical behavior of the so-called plunge region in black hole accretors, rotating black holes produce maximum Poynting flux via the Blandford & Znajek process for a black hole spin parameter of about a [approximate] 0.8. This is contrary to the conventional claim that the maximum electromagnetic flux is achieved for highest black hole spin.
Crystal field and magnetic properties
NASA Technical Reports Server (NTRS)
Flood, D. J.
1977-01-01
Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.
Jupiter's magnetic field and magnetosphere
NASA Technical Reports Server (NTRS)
Acuna, M. H.; Behannon, K. W.; Connerney, J. E. P.
1983-01-01
Among the planets of the solar system, Jupiter is unique in connection with its size and its large magnetic moment, second only to the sun's. The Jovian magnetic field was first detected indirectly by radio astronomers who postulated its existence to explain observations of nonthermal radio emissions from Jupiter at decimetric and decametric wavelengths. Since the early radio astronomical studies of the Jovian magnetosphere, four spacecraft have flown by the planet at close distances and have provided in situ information about the geometry of the magnetic field and its strength. The Jovian magnetosphere is described in terms of three principal regions. The inner magnetosphere is the region where the magnetic field created by sources internal to the planet dominates. The region in which the equatorial currents flow is denoted as the middle magnetosphere. In the outer magnetosphere, the field has a large southward component and exhibits large temporal and/or spatial variations in magnitude and direction in response to changes in solar wind pressure.
Low-frequency fluctuations in plasma magnetic fields
Cable, S.; Tajima, T.
1992-02-01
It is shown that even a non-magnetized plasma with temperature T sustains zero-frequency magnetic fluctuations in thermal equilibrium. Fluctuations in electric and magnetic fields, as well as in densities, are computed. Four cases are studied: a cold, gaseous, isotropic, non-magnetized plasma; a cold, gaseous plasma in a uniform magnetic field; a warm, gaseous plasma described by kinetic theory; and a degenerate electron plasma. For the simple gaseous plasma, the fluctuation strength of the magnetic field as a function of frequency and wavenumber is calculated with the aid of the fluctuation-dissipation theorem. This calculation is done for both collisional and collisionless plasmas. The magnetic field fluctuation spectrum of each plasma has a large zero-frequency peak. The peak is a Dirac {delta}-function in the collisionless plasma; it is broadened into a Lorentzian curve in the collisional plasma. The plasma causes a low frequency cutoff in the typical black-body radiation spectrum, and the energy under the discovered peak approximates the energy lost in this cutoff. When the imposed magnetic field is weak, the magnetic field were vector fluctuation spectra of the two lowest modes are independent of the strength of the imposed field. Further, these modes contain finite energy even when the imposed field is zero. It is the energy of these modes which forms the non-magnetized zero-frequency peak of the isotropic plasma. In deriving these results, a simple relationship between the dispersion relation and the fluctuation power spectrum of electromagnetic waves if found. The warm plasma is shown, by kinetic theory, to exhibit a zero-frequency peak in its magnetic field fluctuation spectrum as well. For the degenerate plasma, we find that electric field fluctuations and number density fluctuations vanish at zero frequency; however, the magnetic field power spectrum diverges at zero frequency.
The Local Stellar Velocity Field via Vector Spherical Harmonics
NASA Technical Reports Server (NTRS)
Makarov, V. V.; Murphy, D. W.
2007-01-01
We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism.We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) = (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) = (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star...
Development of Techniques for Visualization of Scalar and Vector Fields in the Immersive Environment
NASA Technical Reports Server (NTRS)
Bidasaria, Hari B.; Wilson, John W.; Nealy, John E.
2005-01-01
Visualization of scalar and vector fields in the immersive environment (CAVE - Cave Automated Virtual Environment) is important for its application to radiation shielding research at NASA Langley Research Center. A complete methodology and the underlying software for this purpose have been developed. The developed software has been put to use for the visualization of the earth s magnetic field, and in particular for the study of the South Atlantic Anomaly. The methodology has also been put to use for the visualization of geomagnetically trapped protons and electrons within Earth's magnetosphere.
Separation of magnetic field lines
Boozer, Allen H.
2012-11-15
The field lines of magnetic fields that depend on three spatial coordinates are shown to have a fundamentally different behavior from those that depend on two coordinates. Unlike two-coordinate cases, a flux tube in a magnetic field that depends on all three spatial coordinates that has a circular cross section at one location along the tube characteristically has a highly distorted cross section at other locations. In an ideal evolution of a magnetic field, the current densities typically increase. Crudely stated, if the current densities increase by a factor {sigma}, the ratio of the long to the short distance across a cross section of a flux tube characteristically increases by e{sup 2{sigma}}, and the ratio of the longer distance to the initial radius increases as e{sup {sigma}}. Electron inertia prevents a plasma from isolating two magnetic field structures on a distance scale shorter than c/{omega}{sub pe}, which is about 10 cm in the solar corona, and reconnection must be triggered if {sigma} becomes sufficiently large. The radius of the sun, R{sub Circled-Dot-Operator }=7 Multiplication-Sign 10{sup 10}cm is about e{sup 23} times larger, so when {sigma} Greater-Than-Or-Equivalent-To 23, two lines separated by c/{omega}{sub pe} at one location can be separated by the full scale of any magnetic structures in the corona at another. The conditions for achieving a large exponentiation, {sigma}, are derived, and the importance of exponentiation is discussed.
Magnetic fields in spiral galaxies
NASA Astrophysics Data System (ADS)
Krause, Marita
2015-03-01
The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).
NASA Technical Reports Server (NTRS)
Mullan, D. J.
1974-01-01
The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.
A survey of long term interplanetary magnetic field variations
NASA Technical Reports Server (NTRS)
King, J. H.
1975-01-01
Interplanetary magnetic field data from 10 IMP, AIMP, and HEOS spacecraft were merged into a composite data set spanning 1963 to 1974. A consideration of the mutual consistency of the individual data sets reveals agreement typically to within 0.2 gamma. Composite data set analysis reveals: (1) whereas the yearly averaged magnitudes of all field vectors show virtually no solar cycle variation, the yearly averaged magnitudes of positive- and negative-polarity field vectors show separate solar cycle variations, consistent with variations in the average azimuthal angles of positive- and negative-polarity field vectors, (2) there is no heliolatitude dependence of long time average field magnitudes, (3) field vectors parallel to the earth-sun line are on the average 1 gamma less in magnitude than field vectors perpendicular to this line, and (4) the heliolatitude-dependent dominant polarity effect exhibits a complex sign reversal in the 1968 to 1971 period and a measure of symmetry in 1972 to 1974 not found in earlier data.
NASA Technical Reports Server (NTRS)
Acuna, M. H.; Ness, N. F.
1976-01-01
The paper is concerned mainly with the intrinsic planetary field which dominates the inner magnetosphere up to a distance of 10 to 12 Jovian radii where other phenomena, such as ring currents and diamagnetic effects of trapped charged particles, become significant. The main magnetic field of Jupiter as determined by in-situ observations by Pioner 10 and 11 is found to be relatively more complex than a simple offset tilted dipole. Deviations from a simple dipole geometry lead to distortions of the charged particle L shells and warping of the magnetic equator. Enhanced absorption effects associated with Io and Amalthea are predicted. The results are consistent with the conclusions derived from extensive radio observations at decimetric and decametric wavelengths for the planetary field.
Multi-Instrumental Vector Magnetic Observations and Techniques for Investigating Auroral Dynamics
NASA Astrophysics Data System (ADS)
Redmon, Robert; Knipp, Delores; Kilcommons, Liam; Richmond, Art; Matsuo, Tomoko; Anderson, Brian; Korth, Haje; Slavin, James; Le, Guan; Wilson, Gordon; Rich, Fred; Denig, William
2014-05-01
Space based magnetometers in highly inclined low earth orbits are essential for characterizing the state of the auroral space environment and the dynamic processes within. This paper demonstrates the utility of data derived from multiple satellites including AMPERE (70 Iridium spacecraft), DMSP (4 spacecraft) and ST5 (3 spacecraft), and the AMIENext technique to investigate periods of interest in 2006 and 2010. A new satellite conjunction-finding technique magnetically maps in situ observations to a common altitude in the APEX coordinate system to assess the spatial and temporal stability and quality of vector magnetic measurements (Knipp et al., 2014). In March of 2006, the ST5 constellation was launched into a pearls-on-a-string configuration. Subsequent data processing produced superb, quality controlled magnetic observations from the 90-day mission (e.g. Slavin et al., 2008, Le et al., 2009; Wang et al., 2009). We present conjunction comparisons between the ST5 and DMSP spacecraft during the ST5 mission lifetime, which was dominated by a series of high-speed solar wind events. In May of 2010, a unipolar Magnetic Cloud passed Earth, providing an opportunity to investigate the magnetopshere-ionosphere coupling response to a slow moving transient followed by higher speed flow. This event included significant, long-lived disturbances in the asymmetric ring current and auroral electrojet (AE) index. Assimilation of space-based magnetic observations via the AMIENext procedure, reveal twisting in the dayside patterns, consistent with the sign changes in IMF By and a highly structured topology as IMF Bz turned northward. We present a detailed comparison between the magnetic observations from DMSP and AMPERE. To aid in investigating the local magnetic field and in providing data to assimilative models, we have also created new datasets in self-describing NASA CDF formats for the DMSP and ST5 vector magnetometers and for the DMSP precipitating ion and electron instruments and we will discuss their availability.
NASA Astrophysics Data System (ADS)
Delyagina, Evgenya; Li, Wenzhong; Schade, Anna; Kuhlo, Anna-L.; Ma, Nan; Steinhoff, Gustav
2010-12-01
Development of novel nonviral vectors remains important task in the gene delivery field due to the high immunogenicity of the viral vectors. Polyethyleneimine (PEI) with molecular weight 25 kDa is one of the most efficient polycations available for nonviral transfection, but its high toxicity remains the crucial problem that restricts its application. PEI with a molecular weight of 600 Da (PEI 600) on the contrary possesses relatively low toxicity, but is not efficient enough. Therefore, PEI 600 was conjugated to magnetic nanoparticles (iron oxide core, streptavidin coated, average effective diameter 200 nm) in order to obtain an efficient agent for nonviral gene delivery. The discovered features of this conjugation were: easiness of preparation, enhancement of transfection efficiency of PEI 600 and moderate cytotoxicity.
NASA Astrophysics Data System (ADS)
Tsunakawa, Hideo; Takahashi, Futoshi; Shimizu, Hisayoshi; Shibuya, Hidetoshi; Matsushima, Masaki
2015-06-01
We have provided preliminary global maps of three components of the lunar magnetic anomaly on the surface applying the surface vector mapping (SVM) method. The data used in the present study consist of about 5 million observations of the lunar magnetic field at 10-45 km altitudes by Kaguya and Lunar Prospector. The lunar magnetic anomalies were mapped at 0.2° equi-distance points on the surface by the SVM method, showing the highest intensity of 718 nT in the Crisium antipodal region. Overall features on the SVM maps indicate that elongating magnetic anomalies are likely to be dominant on the Moon except for the young large basins with the impact demagnetization. Remarkable demagnetization features suggested by previous studies are also recognized at Hertzsprung and Kolorev craters on the farside. These features indicate that demagnetized areas extend to about 1-2 radii of the basins/craters. There are well-isolated central magnetic anomalies at four craters: Leibnitz, Aitken, Jules Verne, and Grimaldi craters. Their magnetic poles through the dipole source approximation suggest occurrence of the polar wander prior to 3.3-3.5 Ga. When compared with high-albedo markings at several magnetic anomalies such as the Reiner Gamma anomalies, three-dimensional structures of the magnetic field on/near the surface are well correlated with high-albedo areas. These results indicate that the global SVM maps are useful for the study of the lunar magnetic anomalies in comparison with various geological and geophysical data.
NASA Astrophysics Data System (ADS)
Kolotov, O. S.; Matyunin, A. V.; Nikoladze, G. M.; Polyakov, P. A.
2015-12-01
The torque acting on the magnetization vector in the course of 90 pulsed magnetization of real garnet ferrite films with in-plane and biaxial anisotropy is calculated by a method in which the operating point trajectory is analyzed. The position of the operating point is described by azimuthal angle ? and torque component T m produced by pulsed magnetizing field H m . The time dependence of resultant torque T ? has a sharply ascending portion, within which the nonlinear magnetization oscillations are excited. Additionally, the shape of the curve T ?( t) within this portion depends on pulse rise time ? f only slightly. These results explain the weak dependence of the magnetization oscillation strength on ? f , which was experimentally found previously. It is shown analytically that when ? f decreases to 2.5-3.0 ns within the initial portion of the curve T ?( t) at ? ? 10, there arises an extra maximum of torque T ?. Simultaneously, an additional voltage peak appears in the initial part of the longitudinal magnetization signal. The appearance of the additional voltage peak is confirmed experimentally.
Statistics of anisotropies in inflation with spectator vector fields
NASA Astrophysics Data System (ADS)
Thorsrud, Mikjel; Urban, Federico R.; Mota, David F.
2014-04-01
We study the statistics of the primordial power spectrum in models where massless gauge vectors are coupled to the inflaton, paying special attention to observational implications of having fundamental or effective horizons embedded in a bath of infrared fluctuations. As quantum infrared modes cross the horizon, they classicalize and build a background vector field. We find that the vector experiences a statistical precession phenomenon. Implications for primordial correlators and the interpretation thereof are considered. Firstly, we show how in general two, not only one, additional observables, a quadrupole amplitude and an intrinsic shape parameter, are necessary to fully describe the correction to the curvature power spectrum, and develop a unique parametrization for them. Secondly, we show that the observed anisotropic amplitude and the associated preferred direction depend on the volume of the patch being probed. We calculate non-zero priors for the expected deviations between detections based on microwave background data (which probes the entire Hubble patch) and large scale structure (which only probes a fraction of it).
Statistics of anisotropies in inflation with spectator vector fields
Thorsrud, Mikjel; Mota, David F.; Urban, Federico R. E-mail: furban@ulb.ac.be
2014-04-01
We study the statistics of the primordial power spectrum in models where massless gauge vectors are coupled to the inflaton, paying special attention to observational implications of having fundamental or effective horizons embedded in a bath of infrared fluctuations. As quantum infrared modes cross the horizon, they classicalize and build a background vector field. We find that the vector experiences a statistical precession phenomenon. Implications for primordial correlators and the interpretation thereof are considered. Firstly, we show how in general two, not only one, additional observables, a quadrupole amplitude and an intrinsic shape parameter, are necessary to fully describe the correction to the curvature power spectrum, and develop a unique parametrization for them. Secondly, we show that the observed anisotropic amplitude and the associated preferred direction depend on the volume of the patch being probed. We calculate non-zero priors for the expected deviations between detections based on microwave background data (which probes the entire Hubble patch) and large scale structure (which only probes a fraction of it)
Eddy currents induced by RF magnetic fields in biological bodies
NASA Astrophysics Data System (ADS)
Lee, Jen-Hwang; Chen, Kun-Mu
A new theoretical method for determining the electric field or the eddy current induced by a uniform RF magnetic field or a beam of RF magnetic field in a biological body of rotational symmetry is presented. The body is subdivided into a number of circular rings with various radii and cross-sectional areas. The induced electric field or eddy current in each ring is then numerically determined on the basis of the theory of vector potential and the moment method. Numerical examples are given, and the results based on the present theory are found to deviate significantly from the often used, quasi-static solutions. An experiment was conducted to measure the electric fields induced by a UHF magnetic field in phantom biological models. The theory was verified by the experiment and the existing theoretical results.
EMDEX (Electric and Magnetic Field Digital EXposure) system manuals
Not Available
1989-10-01
The EPRI Electric and Magnetic Field Digital EXposure (EMDEX) system consists of hardware and software for characterizing electric and magnetic field exposures. The EMDEX meter is a computer-based portable unit that samples, at a user-programmable rate, the three vector components of magnetic flux density, a measure of the average electric field acting on the torso of the wearer (if an optional sensor is worn) and a measure of rotational motion of the meter in the earth's magnetic field. Modules of the DATACALC software package are used to program the EMDEX, retrieve data at the end of a measurement session, analyze EMDEX data, and prepare tabular and graphical data summaries. The User Manual is designed to provide instruction on the use of the exposure system hardware and software. The Technical Reference Manual provides additional, detailed descriptions of the hardware, software and methodologies used in the EMDEX system.
Interplanetary Magnetic Field Power Spectrum Variations: A VHO Enabled Study
NASA Technical Reports Server (NTRS)
Szabo, A.; Koval, A.; Merka, J.; Narock, T.
2011-01-01
The newly reprocessed high time resolution (11/22 vectors/sec) Wind mission interplanetary magnetic field data and the solar wind key parameter search capability of the Virtual Heliospheric Observatory (VHO) affords an opportunity to study magnetic field power spectral density variations as a function of solar wind conditions. In the reprocessed Wind Magnetic Field Investigation (MFI) data, the spin tone and its harmonics are greatly reduced that allows the meaningful fitting of power spectra to the 2 Hz limit above which digitization noise becomes apparent. The power spectral density is computed and the spectral index is fitted for the MHD and ion inertial regime separately along with the break point between the two for various solar wind conditions. The time periods of fixed solar wind conditions are obtained from VHO searches that greatly simplify the process. The functional dependence of the ion inertial spectral index and break point on solar wind plasma and magnetic field conditions will be discussed
Interplanetary Magnetic Field Power Spectrum Variations: A VHO Enabled Study
NASA Technical Reports Server (NTRS)
Szabo, A.; Koval, A.; Merka, J.; Narock, T.
2010-01-01
The newly reprocessed high time resolution (11/22 vectors/sec) Wind mission interplanetary magnetic field data and the solar wind key parameter search capability of the Virtual Heliospheric Observatory (VHO) affords an opportunity to study magnetic field power spectral density variations as a function of solar wind conditions. In the reprocessed Wind Magnetic Field Investigation (MFI) data, the spin tone and its harmonics are greatly reduced that allows the meaningful fitting of power spectra to the approx.2 Hz limit above which digitization noise becomes apparent. The power spectral density is computed and the spectral index is fitted for the MHD and ion inertial regime separately along with the break point between the two for various solar wind conditions . The time periods of fixed solar wind conditions are obtained from VHO searches that greatly simplify the process. The functional dependence of the ion inertial spectral index and break point on solar wind plasma and magnetic field conditions will be discussed
Magnetic properties prediction of NdFeB magnets by using support vector regression
NASA Astrophysics Data System (ADS)
Cheng, Wende
2014-09-01
A novel model using support vector regression (SVR) combined with particle swarm optimization (PSO) was employed to construct mathematical model for prediction of the magnetic properties of the NdFeB magnets. The leave-one-out cross-validation (LOOCV) test results strongly supports that the generalization ability of SVR is high enough. Predicted results show that the mean absolute percentage error for magnetic remanence Br, coercivity Hcj and maximum magnetic energy product (BH)max are 0.53%, 3.90%, 1.73%, and the correlation coefficient (R2) is as high as 0.839, 0.967 and 0.940, respectively. This investigation suggests that the PSO-SVR is not only an effective and practical method to simulate the properties of NdFeB, but also a powerful tool to optimatize designing or controlling the experimental process.
Activity recognition using a mixture of vector fields.
Nascimento, Jacinto C; Figueiredo, Mário A T; Marques, Jorge S
2013-05-01
The analysis of moving objects in image sequences (video) has been one of the major themes in computer vision. In this paper, we focus on video-surveillance tasks; more specifically, we consider pedestrian trajectories and propose modeling them through a small set of motion/vector fields together with a space-varying switching mechanism. Despite the diversity of motion patterns that can occur in a given scene, we show that it is often possible to find a relatively small number of typical behaviors, and model each of these behaviors by a "simple" motion field. We increase the expressiveness of the formulation by allowing the trajectories to switch from one motion field to another, in a space-dependent manner. We present an expectation-maximization algorithm to learn all the parameters of the model, and apply it to trajectory classification tasks. Experiments with both synthetic and real data support the claims about the performance of the proposed approach. PMID:23193235
Exploring Vector Fields with Distribution-based Streamline Analysis
Lu, Kewei; Chaudhuri, Abon; Lee, Teng-Yok; Shen, Han-Wei; Wong, Pak C.
2013-02-26
Streamline-based techniques are designed based on the idea that properties of streamlines are indicative of features in the underlying field. In this paper, we show that statistical distributions of measurements along the trajectory of a streamline can be used as a robust and effective descriptor to measure the similarity between streamlines. With the distribution-based approach, we present a framework for interactive exploration of 3D vector fields with streamline query and clustering. Streamline queries allow us to rapidly identify streamlines that share similar geometric features to the target streamline. Streamline clustering allows us to group together streamlines of similar shapes. Based on users selection, different clusters with different features at different levels of detail can be visualized to highlight features in 3D flow fields. We demonstrate the utility of our framework with simulation data sets of varying nature and size.
NASA Astrophysics Data System (ADS)
Gubler, Philipp; Hattori, Koichi; Lee, Su Houng; Oka, Makoto; Ozaki, Sho; Suzuki, Kei
2016-03-01
We investigate the mass spectra of open heavy flavor mesons in an external constant magnetic field within QCD sum rules. Spectral Ansätze on the phenomenological side are proposed in order to properly take into account mixing effects between the pseudoscalar and vector channels, and the Landau levels of charged mesons. The operator product expansion is implemented up to dimension-5 operators. As a result, we find for neutral D mesons a significant positive mass shift that goes beyond simple mixing effects. In contrast, charged D mesons are further subject to Landau level effects, which together with the mixing effects almost completely saturate the mass shifts obtained in our sum rule analysis.
Gubler, Philipp; Hattori, Koichi; Lee, Su Houng; Oka, Makoto; Ozaki, Sho; Suzuki, Kei
2016-03-15
In this paper, we investigate the mass spectra of open heavy flavor mesons in an external constant magnetic field within QCD sum rules. Spectral Ansatze on the phenomenological side are proposed in order to properly take into account mixing effects between the pseudoscalar and vector channels, and the Landau levels of charged mesons. The operator product expansion is implemented up to dimension-5 operators. As a result, we find for neutral D mesons a significant positive mass shift that goes beyond simple mixing effects. In contrast, charged D mesons are further subject to Landau level effects, which together with the mixingmore » effects almost completely saturate the mass shifts obtained in our sum rule analysis.« less
Bacterial Growth in Weak Magnetic Field
NASA Astrophysics Data System (ADS)
Masood, Samina
2015-03-01
We study the growth of bacteria in a weak magnetic field. Computational analysis of experimental data shows that the growth rate of bacteria is affected by the magnetic field. The effect of magnetic field depends on the strength and type of magnetic field. It also depends on the type of bacteria. We mainly study gram positive and gram negative bacteria of rod type as well as spherical bacteria. Preliminary results show that the weak magnetic field enhances the growth of rod shape gram negative bacteria. Gram positive bacteria can be even killed in the inhomogeneous magnetic field.
A Bayesian hierarchical factorization model for vector fields.
Li, Jun; Tao, Dacheng
2013-11-01
Factorization-based techniques explain arrays of observations using a relatively small number of factors and provide an essential arsenal for multi-dimensional data analysis. Most factorization models are, however, developed on general arrays of scalar values. For a class of practical data arising from observing spatial signals including images, it is desirable for a model to consider general observations, e.g., handling a vector field and non-exchangeable factors, e.g., handling spatial connections between the columns and the rows of the data. In this paper, a probabilistic model for factorization is proposed. We adopt Bayesian hierarchical modeling and treat the factors as latent random variables. A Markov structure is imposed on the distribution of factors to account for the spatial connections. The model is designed to represent vector arrays sampled from fields of continuous domains. Therefore, a tailored observation model is developed to represent the link between the factor product and the data. The proposed technique has been shown effective in analyzing optical flow fields computed on both synthetic images and real-life videoclips. PMID:23893727
Cyclicity of a fake saddle inside the quadratic vector fields
NASA Astrophysics Data System (ADS)
De Maesschalck, P.; Rebollo-Perdomo, S.; Torregrosa, J.
2015-01-01
This paper concerns the study of small-amplitude limit cycles that appear in the phase portrait near an unfolded fake saddle singularity. This degenerate singularity is also known as an impassable grain. The canonical form of the unperturbed vector field is like a degenerate flow box. Near the singularity, the phase portrait consists of parallel fibers, all but one of which have no singular points, and at the singular fiber, there is one node. We demonstrate different techniques in order to show that the cyclicity is bigger than or equal to two when the canonical form is quadratic.
Reconstruction of environment model by using radar vector field histograms
NASA Astrophysics Data System (ADS)
Szymański, Zbigniew; Jankowski, Stanisław; Szczyrek, Jan
The paper presents a method of creating an environment model in collision avoidance system for unmanned aerial vehicles (UAV). The environment model is generated by the procedures processing the data from on-board equipment and digital maps. The main sensor that provides information about the current situation around the UAV is a radar obstacle detector. Each detected object is defined by such parameters as distance, speed and the number of radial zone. The method is based on the idea of the certainty grid introduced in vector field histogram method which is used as a probabilistic representation of the obstacles. The tests of developed algorithm were performed in simulated environment.
2T Physics, Scale Invariance and Topological Vector Fields
NASA Astrophysics Data System (ADS)
Chagas-Filho, W.
2008-06-01
We construct, in classical two-time physics, the necessary structure for the most general configuration space formulation of quantum mechanics containing gravity in d+2 dimensions. This structure is composed of a symmetric Riemannian metric tensor and of a vector field that defines a section of a flat U(1) bundle over space-time. This construction is possible because of the existence of a finite local scale invariance of the Hamiltonian and because two-time physics contains, at the classical level, a local generalization of the discrete duality symmetry between position and momentum that underlies the structure of quantum mechanics.
Explaining Mercury's peculiar magnetic field
NASA Astrophysics Data System (ADS)
Wicht, Johannes; Cao, Hao; Heyner, Daniel; Dietrich, Wieland; Christensen, Ulrich R.
2014-05-01
MESSENGER magnetometer data revealed that Mercury's magnetic field is not only particularly weak but also has a peculiar geometry. The MESSENGER team finds that the location of the magnetic equator always lies significantly north of the geographic equator, is largely independent of the distance to the planet, and also varies only weakly with longitude. The field is best described by an axial dipole that is offset to the north by about 20% of the planetary radius. In terms of classical Gauss coefficients, this translates into a low axial dipole component of g10= -190 nT but a relatively large axial quadrupole contribution that amounts to roughly 40% of this value. The axial octupole is also sizable while higher harmonic contributions are much weaker. Very remarkable is also the fact that the equatorial dipole contribution is very small, consistent with a dipole tilt below 0.8 degree, and this is also true for the other non-axisymmetic field contributions. We analyze several numerical dynamos concerning their capability of explaining Mercury's magnetic field. Classical schemes geared to model the geomagnetic field typically show a much weaker quadrupole component and thus a smaller offset. The onset only becomes larger when the dynamo operates in the multipolar regime at higher Rayleigh numbers. However, since the more complex dynamics generally promotes all higher multipole contributions the location of the magnetic equator varies strongly with longitude and distance to the planet. The situation improves when introducing a stably stratified outer layer in the dynamo region, representing either a rigid FeS layer or a sub-adiabatic core-mantle boundary heat flux. This layer filters out the higher harmonic contributions and the field not only becomes sufficiently weak but also assumes a Mercury like offset geometry during a few percent of the simulation time. To increase the likelihood for the offset configuration, the north-south symmetry must be permanently broken and we explore two scenarios. Increasing the heat flux through the northern hemisphere of the core-mantle boundary is an obvious choice but is not supported by current models for Mercury's mantle. We find that a combination of internal rather than bottom driving and an increased heat flux through the equatorial region of the core-mantle boundary also promotes the required symmetry breaking and results in very Mercury like fields. The reason is that the imposed heat flux pattern, though being equatorially symmetric, lowers the critical Rayleigh number for the onset of equatorially anti-symmetric convection modes. In both scenarios, a stably stratified layer or a feedback coupling to the magnetospheric field is required for lowering the field strength to Mercury-like values.
Antonov, N V; Gulitskiy, N M
2015-01-01
Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is studied by means of the field-theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form ∝δ(t-t')/k(⊥)(d-1+ξ), where k(⊥)=|k(⊥)| and k(⊥) is the component of the wave vector, perpendicular to the distinguished direction ("direction of the flow")--the d-dimensional generalization of the ensemble introduced by Avellaneda and Majda [Commun. Math. Phys. 131, 381 (1990)]. The stochastic advection-diffusion equation for the transverse (divergence-free) vector field includes, as special cases, the kinematic dynamo model for magnetohydrodynamic turbulence and the linearized Navier-Stokes equation. In contrast to the well-known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale L has a logarithmic behavior: Instead of powerlike corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of L. The key point is that the matrices of scaling dimensions of the relevant families of composite operators appear nilpotent and cannot be diagonalized. The detailed proof of this fact is given for the correlation functions of arbitrary order. PMID:25679703
Auroral vector electric field and particle comparisons. II - Electrodynamics of an arc
NASA Technical Reports Server (NTRS)
Evans, D. S.; Maynard, N. C.; Troim, J.; Jacobsen, T.; Egeland, A.
1977-01-01
The paper reports the results of energetic auroral electron and vector electric field measurements taken near and above a discrete auroral form and discusses their electrodynamic implications. Height-integrated Hall and Pedersen conductivities are computed in a quantitative fashion along the rocket payload trajectory. These conductivities, together with the electric fields, are used to describe the local auroral electrojet current system and to demonstrate an inverse relationship between the local electric field intensity and the height-integrated Pedersen conductivity. An analysis is presented of the divergence of both the electric field and the horizontal current as an effort to infer space charge densities and magnetic-field-aligned electrical currents near an auroral arc.
Field errors in superconducting magnets
Barton, M.Q.
1982-01-01
The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence.
Isoperimetric problems for the helicity of vector fields and the Biot-Savart and curl operators
NASA Astrophysics Data System (ADS)
Cantarella, Jason; DeTurck, Dennis; Gluck, Herman; Teytel, Mikhail
2000-08-01
The helicity of a smooth vector field defined on a domain in three-space is the standard measure of the extent to which the field lines wrap and coil around one another. It plays important roles in fluid mechanics, magnetohydrodynamics, and plasma physics. The isoperimetric problem in this setting is to maximize helicity among all divergence-free vector fields of given energy, defined on and tangent to the boundary of all domains of given volume in three-space. The Biot-Savart operator starts with a divergence-free vector field defined on and tangent to the boundary of a domain in three-space, regards it as a distribution of electric current, and computes its magnetic field. Restricting the magnetic field to the given domain, we modify it by subtracting a gradient vector field so as to keep it divergence-free while making it tangent to the boundary of the domain. The resulting operator, when extended to the L2 completion of this family of vector fields, is compact and self-adjoint, and thus has a largest eigenvalue, whose corresponding eigenfields are smooth by elliptic regularity. The isoperimetric problem for this modified Biot-Savart operator is to maximize its largest eigenvalue among all domains of given volume in three-space. The curl operator, when restricted to the image of the modified Biot-Savart operator, is its inverse, and the isoperimetric problem for this restriction of the curl is to minimize its smallest positive eigenvalue among all domains of given volume in three-space. These three isoperimetric problems are equivalent to one another. In this paper, we will derive the first variation formulas appropriate to these problems, and use them to constrain the nature of any possible solution. For example, suppose that the vector field V, defined on the compact, smoothly bounded domain Ω, maximizes helicity among all divergence-free vector fields of given nonzero energy, defined on and tangent to the boundary of all such domains of given volume. We will show that (1) |V| is a nonzero constant on the boundary of each component of Ω; (2) all the components of ∂Ω are tori; and (3) the orbits of V are geodesics on ∂Ω. Thus, among smooth simply connected domains, none are optimal in the above sense. In principal, one could have a smooth optimal domain in the shape, say, of a solid torus. However, we believe that there are no smooth optimal domains at all, regardless of topological type, and that the true optimizer looks like the singular domain presented in this paper, which we can think of either as an extreme apple, in which the north and south poles have been pressed together, or as an extreme solid torus, in which the hole has been shrunk to a point. A computational search for this singular optimal domain and the helicity-maximizing vector field on it is at present under way, guided by the first variation formulas in this paper.
Magnetic fields in irregular galaxies
NASA Astrophysics Data System (ADS)
Chyzy, Krzysztof T.
Radio data of large irregular galaxies reveal some extended synchrotron emission with a substantial degree of polarization. In the case of NGC 4449 strong galaxy-scale regular magnetic fields were found, in spite of the lack of ordered rotation required for the conventional dynamo action. The rigidly rotating large irregular NGC 55 shows vertical polarized spurs connected with a network of ionized gas filaments. Small dwarf irregulars show only isolated polarized spots.
High Steady Magnetic Field Processing of Functional Magnetic Materials
NASA Astrophysics Data System (ADS)
Rivoirard, Sophie
2013-07-01
The materials science community has been enriched for some decades now by the "magneto-science" approach, which consists of applying a magnetic field during material processing. The development of anisotropic properties by applying a steady magnetic field is now a well-established effect in the material processing of magnetic substances, which benefits from the unidirectional and static nature of the field delivered by superconducting magnets. Among other effects, magnetic anisotropy in functional magnetic materials, which arises from the alignment of magnetic moments under external field, can be developed at various structural scales. Magnetic ordering, magnetic patterning, and texturation are at the origin of this anisotropy development. Texture is developed in materials from magnetic orientation due to magnetic forces and torques or from stored energy. In metals and alloys, for instance, this effect can occur either in their liquid state or during solid-state thermomagnetic treatments and can thus impact significantly the material functional magnetic properties. Today's improved superconducting magnet technology allows higher field intensities to be delivered more easily (1 T up to several tens of Teslas) and enables researchers to gather evidence on magnetic field effects that were formerly thought to be negligible. The magneto-thermodynamic effect is one of them and involves the magnetization energy as an additional parameter to tailor microstructures. Control of functional properties can thus result from magnetic monitoring of the phase transformation, and kinetics can be impacted by the magnetic energy contribution.
NASA Astrophysics Data System (ADS)
Vlaskou, Dialechti; Pradhan, Pallab; Bergemann, Christian; Klibanov, Alexander L.; Hensel, Karin; Schmitz, Georg; Plank, Christian; Mykhaylyk, Olga
2010-12-01
Based on the concept of magnetofection, we prepared lipid shell microbubbles loaded with highly positively charged iron oxide magnetic nanoparticles through electrostatic and matrix affinity interactions. These magnetic microbubbles showed strong ultrasound contrast. When the magnetic microbubbles were mixed with plasmid DNA encoding a reporter gene, gene delivery to HeLa cells was achieved only when ultrasound was applied. Gene transfer efficiency strongly depended on the application of a gradient magnetic field. Treatment of HeLa cells with the microbubbles and ultrasound resulted in strong concentration-dependent cytotoxic effects, whereas ultrasound alone, lipid microbubbles alone, magnetic nanoparticles or magnetic microbubbles alone did not significantly affect cell viability. These magnetic microbubbles could be used as magnetically targeted diagnostic agents for real-time ultrasound imaging or for cancer therapy, therapy of vascular thrombosis and gene therapy.
Lim, Eun-Kyung; Yurchyshyn, Vasyl; Goode, Philip
2012-07-01
The formation and the temporal evolution of a bipolar moving magnetic feature (MMF) was studied with high-spatial and temporal resolution. The photometric properties were observed with the New Solar Telescope at Big Bear Solar Observatory using a broadband TiO filter (705.7 nm), while the magnetic field was analyzed using the spectropolarimetric data obtained by Hinode. For the first time, we observed a bipolar MMF simultaneously in intensity images and magnetic field data, and studied the details of its structure. The vector magnetic field and the Doppler velocity of the MMF were also studied. A bipolar MMF with its positive polarity closer to the negative penumbra formed, accompanied by a bright, filamentary structure in the TiO data connecting the MMF and a dark penumbral filament. A fast downflow ({<=}2 km s{sup -1}) was detected at the positive polarity. The vector magnetic field obtained from the full Stokes inversion revealed that a bipolar MMF has a U-shaped magnetic field configuration. Our observations provide a clear intensity counterpart of the observed MMF in the photosphere, and strong evidence of the connection between the MMF and the penumbral filament as a serpentine field.
Dst Estimates from DMSP Magnetic Field Measurements
NASA Astrophysics Data System (ADS)
Burke, W. J.; Wilson, G. R.; Lin, C. S.
2009-12-01
This study explores the feasibility of performing operational estimates of the prompt Dst index using variations in the horizontal component (ΔBH) of the Earth’s magnetic vector detected by DMSP spacecraft while crossing the magnetic equator. Measurements are first compared with predictions of the 2005 International Geomagnetic Reference Field (IGRF) model. Then quiet-time offset baselines are established as functions of longitude for the years 2005 to 2009. Year-to-year progression of these baselines demonstrates the secular variation in the Earth’s main field. Thus, quiet-time baseline calculations for each spacecraft must be updated at regular intervals. Running-averaged values of ΔBH, inferred from magnetometers on DMSP F16 and F17 follow prompt Dst traces during active intervals of the 2005 to 2009 test interval. Stormtime increases in globally-average exospheric temperatures predicted from ΔBH variations are shown to be in reasonable agreement with those inferred from GRACE accelerometer measurements.
Anisotropic Magnetism in Field-Structured Composites
Anderson, Robert A.; Martin, James E.; Odinek, Judy; Venturini, Eugene
1999-06-24
Magnetic field-structured-composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g. rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chain-like particle structures, and a biaxial field produces sheet-like particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCS of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material.
Variability in Martian Magnetic Field Topology
NASA Astrophysics Data System (ADS)
Brain, D. A.; Halekas, J. S.; Eastwood, J. P.; Ulusen, D.; Lillis, R. J.
2014-07-01
We have determined the locations of open and closed magnetic field lines at Mars as a function of four different controlling influences: solar wind magnetic field direction, solar wind pressure, martian season, and solar EUV flux.
Multiresolution and Explicit Methods for Vector Field Analysis and Visualization
NASA Technical Reports Server (NTRS)
Nielson, Gregory M.
1997-01-01
This is a request for a second renewal (3d year of funding) of a research project on the topic of multiresolution and explicit methods for vector field analysis and visualization. In this report, we describe the progress made on this research project during the second year and give a statement of the planned research for the third year. There are two aspects to this research project. The first is concerned with the development of techniques for computing tangent curves for use in visualizing flow fields. The second aspect of the research project is concerned with the development of multiresolution methods for curvilinear grids and their use as tools for visualization, analysis and archiving of flow data. We report on our work on the development of numerical methods for tangent curve computation first.
View-dependent streamlines for 3D vector fields.
Marchesin, Stéphane; Chen, Cheng-Kai; Ho, Chris; Ma, Kwan-Liu
2010-01-01
This paper introduces a new streamline placement and selection algorithm for 3D vector fields. Instead of considering the problem as a simple feature search in data space, we base our work on the observation that most streamline fields generate a lot of self-occlusion which prevents proper visualization. In order to avoid this issue, we approach the problem in a view-dependent fashion and dynamically determine a set of streamlines which contributes to data understanding without cluttering the view. Since our technique couples flow characteristic criteria and view-dependent streamline selection we are able achieve the best of both worlds: relevant flow description and intelligible, uncluttered pictures. We detail an efficient GPU implementation of our algorithm, show comprehensive visual results on multiple datasets and compare our method with existing flow depiction techniques. Our results show that our technique greatly improves the readability of streamline visualizations on different datasets without requiring user intervention. PMID:20975200
Magnetic holes in the solar wind. [(interplanetary magnetic fields)
NASA Technical Reports Server (NTRS)
Turner, J. M.; Burlaga, L. F.; Ness, N. F.; Lemaire, J. F.
1976-01-01
An analysis is presented of high resolution interplanetary magnetic field measurements from the magnetometer on Explorer 43 which showed that low magnetic field intensities in the solar wind at 1 AU occur as distinct depressions or 'holes'. These magnetic holes are new kinetic-scale phenomena, having a characteristic dimension on the order of 20,000 km. They occurred at a rate of 1.5/day in the 18-day time span (March 18 to April 6, 1971) that was analyzed. Most of the magnetic holes are characterized by both a depression in the absolute value of the magnetic field, and a change in the magnetic field direction; some of these are possibly the result of magnetic merging. However, in other cases the magnetic field direction does not change; such holes are not due to magnetic merging, but might be a diamagnetic effect due to localized plasma inhomogeneities.
NASA Astrophysics Data System (ADS)
Leka, K. D.
2012-05-01
Pioneering work by T. R. Metcalf almost two decades ago pointed to the Na 589.6nm D1 line as a contender for providing chromospheric vector magnetic field measurements (using the Zeeman effect). We report here on a systematic examination of what can be expected from Sodium 589.6nm spectropolarimetry, with respects to polarization-signal amplitudes and retrieval, and the implementation of the inversion for this line based on the Jeffries, Lites & Skumanich Weak-Field Approximation algorithm. The analysis is performed using both synthetic data and observations from the Imaging Vector Magnetograph, for which a large dataset of Sodium 589.6nm vector spectropolarimetry exists. The synthetic data are based on a 3-D field extrapolated from photospheric vector magnetograms of two active regions, four distinct model atmospheres coupled with NLTE synthesis of the emergent NaI D1 Stokes polarization spectra, computed for a variety of viewing angles. In this manner, a broad representation of active-region features, field strengths and observing angles are tested using ``hare & hound'' approaches, including evaluating algorithm performance in the presence of noise and instrumental effects. We compare retrieval algorithms for the very weak (as expected) polarization signals, and evaluate the retrieved vector magnetic field at a range of inferred heights. Finally, we provide an example from the IVM and discuss the prospects for obtaining and interpreting chromospheric vector magnetic field maps. Support for this work comes from NASA NAG5-12466, NASA NNH09CE60C, AFOSR F49620-03-C-0019, NSF/NSWP ATM-0519107, NSF/SHINE ATM-0454610, and NSF CRG ATM-0551055.
Magnetic field experiment on the Freja Satellite
NASA Astrophysics Data System (ADS)
Freja Magnetic Field Experiment Team
1994-11-01
Freja is a Swedish scientific satellite mission to study fine scale auroral processes. Launch was October 6, 1992, piggyback on a Chinese Long March 2C, to the present 600×1750 km, 63° inclination orbit. The JHU/APL provided the Magnetic Field Experiment (MFE), which includes a custom APL-designed Forth, language microprocessor. This approach has led to a truly generic and flexible design with adaptability to differing mission requirements and has resulted in the transfer of significant ground analysis to on-board processing. Special attention has been paid to the analog electronic and digital processing design in an effort to lower system noise levels, verified by inflight data showing unprecedented system noise levels for near-Earth magnetic field measurements, approaching the fluxgate sensor levels. The full dynamic range measurements are of the 3-axis Earth's magnetic field taken at 128 vector samples s-1 and digitized to 16 bit, resolution, primarily used to evaluate currents and the main magnetic field of the Earth. Additional 3-axis ‘AC’ channels are bandpass filtered from 1.5 to 128 Hz to remove the main field spin signal, the range is±650 nT. These vector measurements cover Pc waves to ion gyrofrequency magnetic wave signals up to the oxygen gyrofrequency (˜40 Hz). A separate, seventh channel samples the spin axis sensor with a bandpass filter of 1.5 to 256 Hz, the signal of which is fed to a software FFT. This on-board FFT processing covers the local helium gyrofrequencies (˜160 Hz) and is plotted in the Freja Summary Plots (FSPs) along with disturbance fields. First data were received in the U.S. October 16 from Kiruna, Sweden via the Internet and SPAN e-mail networks, and were from an orbit a few hours earlier over Greenland and Sweden. Data files and data products, e.g., FSPs generated at the Kiruna ground station, are communicated in a similar manner through an automatic mail distribution system in Stockholm to PIs and various users. Distributed management of spacecraft operations by the science team is also achieved by this advanced communications system. An exciting new discovery of the field-aligned current systems is the high frequency wave power or structure associated with the various large-scale currents. The spin axis ‘AC’ data and its standard deviation is a measure of this high-frequency component of the Birkeland current regions. The exact response of these channels and filters as well as the physics behind these wave and/or fine-scale current structures accompanying the large-scale currents is being pursued; nevertheless, the association is clear and the results are used for the MFE Birkeland current monitor calculated in the MFE microprocessor. This monitor then sets a trigger when it is greater than a commandable, preset threshold. This ‘event’ flag can be read by the system unit and used to remotely command all instruments into burst mode data taking and local memory storage. In addition,Freja is equipped with a 400 MHz ‘Low Speed Link’ transmitter which transmits spacecraft hcusekeeping that can be received with a low cost, portable receiver. These housekeeping data include the MFE auroral zone current detector; this space weather information indicates the location and strength of ionospheric current systems that directly impact communications, power systems, long distance telephone lines and near-Earth satellite operations. The JHU/APL MFE is a joint effort with NASA/GSFC and was co-sponsored by the Office of Naval Research and NASA/Headquarters in cooperation with the Swedish National Space Board and the Swedish Space Corporation.
Rotating copper plasmoid in external magnetic field
Pandey, Pramod K.; Thareja, Raj K.
2013-02-15
Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.
Interaction Forces Between Multiple Bodies in a Magnetic Field
NASA Technical Reports Server (NTRS)
Joffe, Benjamin
1996-01-01
Some of the results from experiments to determine the interaction forces between multiple bodies in a magnetic field are presented in this paper. It is shown how the force values and the force directions depend on the configuration of the bodies, their relative positions to each other, and the vector of the primary magnetic field. A number of efficient new automatic loading and assembly machines, as well as manipulators and robots, have been created based on the relationship between bodies and magnetic fields. A few of these patented magnetic devices are presented. The concepts involved open a new way to design universal grippers for robot and other kinds of mechanisms for the manipulation of objects. Some of these concepts can be used for space applications.
Magsat - A new satellite to survey the earth's magnetic field
NASA Technical Reports Server (NTRS)
Mobley, F. F.; Eckard, L. D.; Fountain, G. H.; Ousley, G. W.
1980-01-01
The Magsat satellite was launched on Oct. 30, 1979 into a sun-synchronous dawn-dusk orbit, of 97 deg inclination, 350 km perigee, and 550 km apogee. It contains a precision vector magnetometer and a cesium-vapor scalar magnetometer at the end of a 6-m long graphite epoxy scissors boom. The magnetometers are accurate to 2 nanotesla. A pair of star cameras are used to define the body orientation to 10 arc sec rms. An 'attitude transfer system' measures the orientation of the magnetometer sensors relative to the star cameras to approximately 5 arc sec rms. The satellite position is determined to 70 meters rms by Doppler tracking. The overall objective is to determine each component of the earth's vector magnetic field to an accuracy of 6 nanotesla rms. The Magsat satellite gathers a complete picture of the earth's magnetic field every 12 hours. The vector components are sampled 16 times per second with a resolution of 0.5 nanotesla. The data will be used by the U.S. Geological Survey to prepare 1980 world magnetic field charts and to detect large-scale magnetic anomalies in the earth's crust for use in planning resource exploration strategy.
Magnetic field and electric current structure in the chromosphere
NASA Technical Reports Server (NTRS)
Dravins, D.
1974-01-01
The three-dimensional vector magnetic field structure in the chromosphere above an active region is deduced by using high-resolution H-alpha filtergrams together with a simultaneous digital magnetogram. An analog model of the field is made with 400 metal wires representing field lines that outline the H-alpha structure. The height extent of the field is determined from vertical field-gradient observations around sunspots, from observed fibril heights, and from an assumption that the sources of the field are largely local. The computed electric currents (typically 10 mA/sq m) are found to flow in patterns not similar to observed features and not parallel to magnetic fields. Force structures correspond to observed solar features; the dynamics to be expected include: downward motion in bipolar areas in the lower chromosphere, an outflow of the outer chromosphere into the corona with radially outward flow above bipolar plage regions, and motion of arch filament systems.
Penetration of plasma across a magnetic field
NASA Astrophysics Data System (ADS)
Plechaty, C.; Presura, R.; Wright, S.; Neff, S.; Haboub, A.
2009-08-01
Experiments were performed at the Nevada Terawatt Facility to investigate the plasma penetration across an externally applied magnetic field. In experiment, a short-pulse laser ablates a polyethylene laser target, producing a plasma which interacts with an external magnetic field. The mechanism which allows the plasma to penetrate the applied magnetic field in experiment will be discussed.
Superposition of DC magnetic fields by cascading multiple magnets in magnetic loops
NASA Astrophysics Data System (ADS)
Sun, Fei; He, Sailing
2015-09-01
A novel method that can effectively collect the DC magnetic field produced by multiple separated magnets is proposed. With the proposed idea of a magnetic loop, the DC magnetic field produced by these separated magnets can be effectively superimposed together. The separated magnets can be cascaded in series or in parallel. A novel nested magnetic loop is also proposed to achieve a higher DC magnetic field in the common air region without increasing the DC magnetic field in each magnetic loop. The magnetic loop can be made by a magnetic hose, which is designed by transformation optics and can be realized by the combination of super-conductors and ferromagnetic materials.
Magnetic field gradient measurement on magnetic cards using magnetic force microscopy
NASA Astrophysics Data System (ADS)
Lo, C. C. H.; Leib, J.; Jiles, D. C.; Chedister, W. C.
2002-05-01
The magnetic field gradients of magnetic stripe cards, which are developed for classifying magnetic particles used in magnetic particle inspections, have been measured using a magnetic force microscope (MFM). The magnetic force exerted on a MFM probe by the stray field emanating from the card was measured to determine the field gradients. The results are in good agreement with the field gradients estimated from the magnetizing field strengths used in the encoding process.
Petrie, G. J. D.
2012-11-01
We analyze the spatial and temporal variations of the abrupt photospheric magnetic changes associated with six major flares using 12 minute, 0.''5 pixel{sup -1} vector magnetograms from NASA's Helioseismic and Magnetic Imager instrument on the Solar Dynamics Observatory satellite. The six major flares occurred near the main magnetic neutral lines of four active regions, NOAA 11158, 11166, 11283, and 11429. During all six flares the neutral-line field vectors became stronger and more horizontal, in each case almost entirely due to strengthening of the horizontal field components parallel to the neutral line. In all six cases the neutral-line pre-flare fields were more vertical than the reference potential fields, and collapsed abruptly and permanently closer to potential-field tilt angles during every flare, implying that the relaxation of magnetic stress associated with non-potential tilt angles plays a major role during major flares. The shear angle with respect to the reference potential field did not show such a pattern, demonstrating that flare processes do not generally relieve magnetic stresses associated with photospheric magnetic shear. The horizontal fields became significantly and permanently more aligned with the neutral line during the four largest flares, suggesting that the collapsing field is on average more aligned with the neutral line than the pre-flare neutral-line field. The vertical Lorentz force had a large, abrupt, permanent downward change during each of the flares, consistent with loop collapse. The horizontal Lorentz force changes acted mostly parallel to the neutral line in opposite directions on each side, a signature of the fields contracting during the flare, pulling the two sides of the neutral line toward each other. The greater effect of the flares on field tilt than on shear may be explained by photospheric line-tying.
Interplanetary magnetic field data book
NASA Technical Reports Server (NTRS)
King, J. H.
1975-01-01
An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.
The Giotto magnetic field investigation
NASA Technical Reports Server (NTRS)
Neubauer, F. M.; Musmann, G.; Acuna, M. H.; Burlaga, L. F.; Ness, N. F.; Mariani, F.; Wallis, M.; Ungstrup, E.; Schmidt, H.
1983-01-01
The Giotto spacecraft will carry sensors for investigating the interplanetary magnetic field while en route and the interaction between the solar wind magnetoplasma and Halley's Comet neutral gas outflow during close approach. Giotto will carry an outboard biaxial fluxgate system and inboard electronics. The instrumentation draws 1.2 kW and weighs 1.31 kg. Sampling rates will be 28/sec during close encounter, covering selectable ranges from 16 nT to 65,535 nT. In-flight calibration techniques are under development to ensure magnetic cleanliness will be obtained. Measurements are also planned of the inbound bow shock, the magnetosheath and the cometary ionopause. The data will be collected as close as 1000 km from the comet surface.
Bats respond to very weak magnetic fields.
Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang
2015-01-01
How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years. PMID:25922944
Single-point inversion of the coronal magnetic field
Plowman, Joseph
2014-09-01
The Fe XIII 10747 and 10798 Å lines observed in the solar corona are sensitive to the coronal magnetic field in such a way that, in principle, the full vector field at a point on the line of sight can be inferred from their combined polarization signals. This paper presents analytical inversion formulae for the field parameters and analyzes the uncertainty of magnetic field measurements made from such observations, assuming emission dominated by a single region along the line of sight. We consider the case of the current Coronal Multi-channel Polarimeter (CoMP) instrument as well as the future Coronal Solar Magnetism Observatory (COSMO) and Advanced Technology Solar Telescope (ATST) instruments. Uncertainties are estimated with a direct analytic inverse and with a Markov Chain Monte Carlo algorithm. We find that (in effect) two components of the vector field can be recovered with CoMP, and well recovered with COSMO or ATST, but that the third component can only be recovered when the solar magnetic field is strong and optimally oriented.
Safety concerns related to magnetic field exposure.
Silva, Amanda K Andriola; Silva, Erica L; Egito, E Sócrates T; Carriço, Artur S
2006-11-01
The recent development of superconducting magnets has resulted in a huge increase in human exposure to very large static magnetic fields of up to several teslas (T). Considering the rapid advances in applications and the great increases in the strength of magnetic fields used, especially in magnetic resonance imaging, safety concerns about magnetic field exposure have become a key issue. This paper points out some of these safety concerns and gives an overview of the findings about this theme, focusing mainly on mechanisms of magnetic field interaction with living organisms and the consequent effects. PMID:17021785
Reconstruction of 3D Coronal Magnetic Structures from THEMIS/MTR and Hinode/SOT Vector Maps
NASA Astrophysics Data System (ADS)
Schmieder, B.; Guo, Y.; Aulanier, G.; Démoulin, P.; Török, T.; Bommier, V.; Wiegelmann, T.; Gosain, S.
2012-08-01
Coordinated campaigns using THEMIS, Hinode, and other instruments have allowed us to study the magnetic fields of faculae, filaments, and active regions. In a first case, we modelled the 3D magnetic field in a flaring active region with a nonlinear force-free field extrapolation, using magnetic vectors observed by THEMIS/MTR as boundary condition. In order to construct a consistent bottom boundary for the model, we first removed the 180 degree ambiguity of the transverse fields and minimized the force and torque in the observed vector fields. We found a twisted magnetic flux rope, well aligned with the polarity inversion line and a part of an Hα filament, and located where a large flare is initiated about two hours later. In a second case, Hinode/SOT allowed us to detect fine flux concentrations in faculae, while MTR provided us with magnetic information at different levels in the atmosphere. The polarimetry analysis of the MTR and SOT data gave consistent results, using both UNNOFIT and MELANIE inversion codes.
Magnetic nanoparticle and magnetic field assisted siRNA delivery in vitro.
Mykhaylyk, Olga; Sanchez-Antequera, Yolanda; Vlaskou, Dialechti; Cerda, Maria Belen; Bokharaei, Mehrdad; Hammerschmid, Edelburga; Anton, Martina; Plank, Christian
2015-01-01
This chapter describes how to design and conduct experiments to deliver siRNA to adherent cell cultures in vitro by magnetic force-assisted transfection using self-assembled complexes of small interfering RNA (siRNA) and cationic lipids or polymers that are associated with magnetic nanoparticles (MNPs). These magnetic complexes are targeted to the cell surface by the application of a gradient magnetic field. A further development of the magnetic drug-targeting concept is combining it with an ultrasound-triggered delivery using magnetic microbubbles as a carrier for gene or drug delivery. For this purpose, selected MNPs, phospholipids, and siRNAs are assembled in the presence of perfluorocarbon gas into flexible formulations of magnetic lipospheres (microbubbles). Methods are described how to accomplish the synthesis of magnetic nanoparticles for magnetofection and how to test the association of siRNA with the magnetic components of the transfection vector. A simple method is described to evaluate magnetic responsiveness of the magnetic siRNA transfection complexes and estimate the complex loading with magnetic nanoparticles. Procedures are provided for the preparation of magnetic lipoplexes and polyplexes of siRNA as well as magnetic microbubbles for magnetofection and downregulation of the target gene expression analysis with account for the toxicity determined using an MTT-based respiration activity test. A modification of the magnetic transfection triplexes with INF-7, fusogenic peptide, is described resulting in reporter gene silencing improvement in HeLa, Caco-2, and ARPE-19 cells. The methods described can also be useful for screening vector compositions and novel magnetic nanoparticle preparations for optimized siRNA transfection by magnetofection in any cell type. PMID:25319646
Interaction between two magnetic dipoles in a uniform magnetic field
NASA Astrophysics Data System (ADS)
Ku, J. G.; Liu, X. Y.; Chen, H. H.; Deng, R. D.; Yan, Q. X.
2016-02-01
A new formula for the interaction force between two magnetic dipoles in a uniform magnetic field is derived taking their mutual magnetic interaction into consideration and used to simulate their relative motion. Results show that when the angle β between the direction of external magnetic field and the centerline of two magnetic dipoles is 0 ° or 90 °, magnetic dipoles approach each other or move away from each other in a straight line, respectively. And the time required for them to contact each other from the initial position is related to the specific susceptibility and the diameter of magnetic particles, medium viscosity and magnetic field strength. When β is between 0 ° and 90 °, magnetic dipole pair performs approximate elliptical motion, and the motion trajectory is affected by the specific susceptibility, diameter and medium viscosity but not magnetic field strength. However, time required for magnetic dipoles to complete the same motion trajectory is shorter when adopting stronger magnetic field. Moreover, the subsequent motion trajectory of magnetic dipoles is ascertained once the initial position is set in a predetermined motion trajectory. Additionally, magnetic potential energy of magnetic dipole pairs is transformed into kinetic energy and friction energy during the motion.
Derivative self-interactions for a massive vector field
NASA Astrophysics Data System (ADS)
Beltrán Jiménez, Jose; Heisenberg, Lavinia
2016-06-01
In this work we revisit the construction of theories for a massive vector field with derivative self-interactions such that only the 3 desired polarizations corresponding to a Proca field propagate. We start from the decoupling limit by constructing healthy interactions containing second derivatives of the Stueckelberg field with itself and also with the transverse modes. The resulting interactions can then be straightforwardly generalized beyond the decoupling limit. We then proceed to a systematic construction of the interactions by using the Levi-Civita tensors. Both approaches lead to a finite family of allowed derivative self-interactions for the Proca field. This construction allows us to show that some higher order terms recently introduced as new interactions trivialize in 4 dimensions by virtue of the Cayley-Hamilton theorem. Moreover, we discuss how the resulting derivative interactions can be written in a compact determinantal form, which can also be regarded as a generalization of the Born-Infeld lagrangian for electromagnetism. Finally, we generalize our results for a curved background and give the necessary non-minimal couplings guaranteeing that no additional polarizations propagate even in the presence of gravity.
Magnetic field sources and their threat to magnetic media
NASA Technical Reports Server (NTRS)
Jewell, Steve
1993-01-01
Magnetic storage media (tapes, disks, cards, etc.) may be damaged by external magnetic fields. The potential for such damage has been researched, but no objective standard exists for the protection of such media. This paper summarizes a magnetic storage facility standard, Publication 933, that ensures magnetic protection of data storage media.
Suppression of magnetic relaxation by a transverse alternating magnetic field
Voloshin, I. F.; Kalinov, A. V.; Fisher, L. M. Yampol'skii, V. A.
2007-07-15
The evolution of the spatial distribution of the magnetic induction in a superconductor after the action of the alternating magnetic field perpendicular to the trapped magnetic flux has been analyzed. The observed stabilization of the magnetic induction profile is attributed to the increase in the pinning force, so that the screening current density becomes subcritical. The last statement is corroborated by direct measurements.
Vector-valued spherical Slepian functions for lithospheric-field analysis
NASA Astrophysics Data System (ADS)
Plattner, A.; Simons, F. J.
2012-04-01
One of the mission objectives of Swarm is to resolve and model the lithospheric magnetic field with maximal resolution and accuracy, even in the presence of contaminating signals from secondary sources. In addition, and more generally, lithospheric-field data analysis will have to successfully merge information from the global to the regional scale. In the past decade or so, a variety of global-to-regional modeling techniques have come of age that have, however, been met with mixed feelings by the geomagnetics community. In particular, the theory of scalar Slepian functions has been developed for applications mostly in geodesy, but support from within geomagnetism has been tepid. In the Proceedings of the First Swarm International Science Meeting, now six years ago, it was written with reference to Slepian localization analysis that these methods are theoretically powerful but still need to find their way from the applied mathematician's desk to the geophysicist practitioners'. In the intervening six years "these methods" have done just that, and thereby enjoyed much use in a variety of fields: but the root cause of their slow adoption for lithospheric-field analysis had not been remediated. To this date, only the theory of scalar Slepian functions on the sphere has been completely worked out. In this contribution we report on the development, at last, of a complete vectorial spherical Slepian basis, suited for applications specifically of geomagnetic data analysis, representation, and model inversion. We have designed a basis of vector functions on the sphere that are simultaneously bandlimited to a chosen maximum spherical harmonic degree, while optimally focused on an arbitrarily shaped region of interest. The construction of these bases of vector functions is achieved by solving Slepian's spatiospectral optimization problem in the vector case, as has been done before for scalar functions on the sphere. Scalar Slepian functions have proven to be very useful in fields as wide as geodesy, geomagnetism, gravimetry, geodynamics, biomedical science, planetary science and cosmology. We expect the same benefits from our newly designed vector Slepian bases for example in the inversion for crustal magnetization. In this presentation, we discuss our construction in detail, including a treatment of numerical efficiency for a variety of specific scenarios, and discuss the first examples of fully vectorial-field representation and approximation tailored to problems in lithospheric-field analysis.
Nuclear magnetic resonance apparatus for pulsed high magnetic fields.
Meier, Benno; Kohlrautz, Jonas; Haase, Jürgen; Braun, Marco; Wolff-Fabris, Frederik; Kampert, Erik; Herrmannsdörfer, Thomas; Wosnitza, Joachim
2012-08-01
A nuclear magnetic resonance apparatus for experiments in pulsed high magnetic fields is described. The magnetic field pulses created together with various magnet coils determine the requirements such an apparatus has to fulfill to be operated successfully in pulsed fields. Independent of the chosen coil it is desirable to operate the entire experiment at the highest possible bandwidth such that a correspondingly large temporal fraction of the magnetic field pulse can be used to probe a given sample. Our apparatus offers a bandwidth of up to 20 MHz and has been tested successfully at the Hochfeld-Magnetlabor Dresden, even in a very fast dual coil magnet that has produced a peak field of 94.2 T. Using a medium-sized single coil with a significantly slower dependence, it is possible to perform advanced multi-pulse nuclear magnetic resonance experiments. As an example we discuss a Carr-Purcell spin echo sequence at a field of 62 T. PMID:22938280
Modelling of solar magnetic field and prominence structures
NASA Technical Reports Server (NTRS)
Wu, Shi Tsan
1988-01-01
Using plasma theory, the interaction is studied between high frequency and magnetohydrodynamic (MHD) waves from which a set of coupling equations resulted. On the basis of this formalism, the modulation instabilities of an electromagnetic soliton in a current sheet are examined, and it is shown that there is a resistive instability at the onset of the magnetic field reconnection. This mechanism could be used to explain the onset of solar flares and prominences. To improve the resolution of vector magnetic fields at the sun's surface, state-of-the-art optics is examined to improve the design and fabrication of a new spaceborne solar vector magnetograph as part of the SAMEX (Solar Active Measurements Experiment) program.
Tri-Hamiltonian Vector Fields, Spectral Curves and Separation Coordinates
NASA Astrophysics Data System (ADS)
Degiovanni, L.; Magnano, G.
We show that for a class of dynamical systems, Hamiltonian with respect to three distinct Poisson brackets (P0,P1,P2), separation coordinates are provided by the common roots of a set of bivariate polynomials. These polynomials, which generalise those considered by E. Sklyanin in his algebro-geometric approach, are obtained from the knowledge of: (i) a common Casimir function for the two Poisson pencils (P1-λP0) and (P2-μP0) (ii) a suitable set of vector fields, preserving P0 but transversal to its symplectic leaves. The framework is applied to Lax equations with spectral parameter, for which not only it establishes a theoretical link between the separation techniques of Sklyanin and of Magri, but also provides a more efficient ``inverse'' procedure to obtain separation variables, not involving the extraction of roots.
Black holes with a single Killing vector field: black resonators
NASA Astrophysics Data System (ADS)
Dias, Óscar J. C.; Santos, Jorge E.; Way, Benson
2015-12-01
We numerically construct asymptotically anti-de Sitter (AdS) black holes in four dimensions that contain only a single Killing vector field. These solutions, which we coin black resonators, link the superradiant instability of Kerr-AdS to the nonlinear weakly turbulent instability of AdS by connecting the onset of the superradiance instability to smooth, horizonless geometries called geons. Furthermore, they demonstrate non-uniqueness of Kerr-AdS by sharing asymptotic charges. Where black resonators coexist with Kerr-AdS, we find that the black resonators have higher entropy. Nevertheless, we show that black resonators are unstable and comment on the implications for the endpoint of the superradiant instability.
Anisotropic Turbulent Advection of a Passive Vector Field: Effects of the Finite Correlation Time
NASA Astrophysics Data System (ADS)
Antonov, N. V.; Gulitskiy, N. M.
2016-02-01
The turbulent passive advection under the environment (velocity) field with finite correlation time is studied. Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is investigated by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, with finite correlation time and prescribed pair correlation function. The inertial-range behavior of the model is described by two regimes (the limits of vanishing or infinite correlation time) that correspond to nontrivial fixed points of the RG equations and depend on the relation between the exponents in the energy energy spectrum ɛ ∝ k⊥1-ξ and the dispersion law ω ∝ k⊥2-η . The corresponding anomalous exponents are associated with the critical dimensions of tensor composite operators built solely of the passive vector field itself. In contrast to the well-known isotropic Kraichnan model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale L has a logarithmic behavior: instead of power-like corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of L. Due to the presence of the anisotropy in the model, all multiloop diagrams are equal to zero, thus this result is exact.
The synchronous orbit magnetic field data set
NASA Technical Reports Server (NTRS)
Mcpherron, R. L.
1979-01-01
The magnetic field at synchronous orbit is the result of superposition of fields from many sources such as the earth, the magnetopause, the geomagnetic tail, the ring current and field-aligned currents. In addition, seasonal changes in the orientation of the earth's dipole axis causes significant changes in each of the external sources. Main reasons for which the synchronous orbit magnetic field data set is a potentially valuable resource are outlined. The primary reason why synchronous magnetic field data have not been used more extensively in magnetic field modeling is the presence of absolute errors in the measured fields. Nevertheless, there exists a reasonably large collection of synchronous orbit magnetic field data. Some of these data can be useful in quantitative modeling of the earth's magnetic field. A brief description is given of the spacecraft, the magnetometers, the standard graphical data displays, and the digital data files.
Report of the panel on geopotential fields: Magnetic field, section 9
NASA Technical Reports Server (NTRS)
Achache, Jose J.; Backus, George E.; Benton, Edward R.; Harrison, Christopher G. A.; Langel, Robert A.
1991-01-01
The objective of the NASA Geodynamics program for magnetic field measurements is to study the physical state, processes and evolution of the Earth and its environment via interpretation of measurements of the near Earth magnetic field in conjunction with other geophysical data. The fields measured derive from sources in the core, the lithosphere, the ionosphere, and the magnetosphere. Panel recommendations include initiation of multi-decade long continuous scalar and vector measurements of the Earth's magnetic field by launching a five year satellite mission to measure the field to about 1 nT accuracy, improvement of our resolution of the lithographic component of the field by developing a low altitude satellite mission, and support of theoretical studies and continuing analysis of data to better understand the source physics and improve the modeling capabilities for different source regions.
Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization
Doughty, Frank C.; Spencer, John E.
2000-12-19
In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.
Chiral plasmons without magnetic field.
Song, Justin C W; Rudner, Mark S
2016-04-26
Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons-chiral Berry plasmons (CBPs)-for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron-electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands. PMID:27071090
Magnetic Fields in Irregular Galaxies: NGC 4214
NASA Astrophysics Data System (ADS)
Kepley, Amanda A.; Wilcots, E. M.; Robishaw, T.; Heiles, C.; Zweibel, E.
2006-12-01
Magnetic fields are an important component of the interstellar medium of galaxies. They provide support, transfer energy from supernovae, provide a possible heating mechanism, and channel gas flows (Beck 2004). Despite the importance of magnetic fields in the ISM, it is not well known what generates and sustains galactic magnetic fields or how magnetic fields, gas, and stars interact in galaxies. The magnetic fields may be especially important in low-mass galaxies like irregulars where the magnetic pressure may be great enough for the field to be dynamically important. However, only four irregular galaxies besides the LMC and the SMC have observed magnetic field structures. The goal of our project is to significantly increase the number of irregular galaxies with observed magnetic field structure. Here we present preliminary results for one of the galaxies in our sample: NGC 4214. Using the VLA and the GBT, we have obtained 3cm, 6cm, and 20cm radio continuum polarization observations of this well-studied galaxy. Our observations allow us to investigate the effects of NGC 4214's high star formation rate, slow rotation rate, and weak bar on the structure of its magnetic field. We find that NGC 4214's magnetic field has an S-shaped structure, with the central field following the bar and the outer edges curving to follow the shape of the arms. The mechanism for generating these fields is still uncertain. A. Kepley is funded by an NSF Graduate Research Fellowship.
Magnetic field waves at Uranus
NASA Technical Reports Server (NTRS)
Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.
1994-01-01
The research efforts funded by the Uranus Data Analysis Program (UDAP) grant to the Bartol Research Institute (BRI) involved the study of magnetic field waves associated with the Uranian bow shock. Upstream wave studies are motivated as a study of the physics of collisionless shocks. Collisionless shocks in plasmas are capable of 'reflecting' a fraction of the incoming thermal particle distribution and directing the resulting energetic particle motion back into the upstream region. Once within the upstream region, the backward streaming energetic particles convey information of the approaching shock to the supersonic flow. This particle population is responsible for the generation of upstream magnetic and electrostatic fluctuations known as 'upstream waves', for slowing the incoming wind prior to the formation of the shock ramp, and for heating of the upstream plasma. The waves produced at Uranus not only differed in several regards from the observations at other planetary bow shocks, but also gave new information regarding the nature of the reflected particle populations which were largely unmeasurable by the particle instruments. Four distinct magnetic field wave types were observed upstream of the Uranian bow shock: low-frequency Alfven or fast magnetosonic waves excited by energetic protons originating at or behind the bow shock; whistler wave bursts driven by gyrating ion distributions within the shock ramp; and two whistler wave types simultaneously observed upstream of the flanks of the shock and argued to arise from resonance with energetic electrons. In addition, observations of energetic particle distributions by the LECP experiment, thermal particle populations observed by the PLS experiment, and electron plasma oscillations recorded by the PWS experiment proved instrumental to this study and are included to some degree in the papers and presentations supported by this grant.
Magnetic fields from the electroweak phase transition
Tornkvist, O.
1998-02-01
I review some of the mechanisms through which primordial magnetic fields may be created in the electroweak phase transition. I show that no magnetic fields are produced initially from two-bubble collisions in a first-order transition. The initial field produced in a three-bubble collision is computed. The evolution of fields at later times is discussed.
Jurčišinová, E; Jurčišin, M; Zalom, P
2014-04-01
Using the field-theoretic renormalization group technique in the two-loop approximation, the influence of helicity (spatial parity violation) on the turbulent vector Prandtl number is investigated in the model of a passive vector field advected by the turbulent helical environment driven by the stochastic Navier-Stokes equation. It is shown that the presence of helicity in the turbulent environment can significantly decrease the value of the turbulent vector Prandtl number by up to 15% of its nonhelical value. This result is compared to the corresponding results obtained recently for the turbulent Prandtl number of a passively advected scalar quantity as well as for the turbulent magnetic Prandtl number of a weak magnetic field in the framework of the kinematic magnetohydrodynamic turbulence. It is shown that the behavior of the turbulent vector Prandtl number as function of the helicity parameter is much closer to the corresponding behavior of the turbulent Prandtl number of the scalar quantity than to the behavior of the turbulent magnetic Prandtl number. PMID:24827348
A MATHEMATICAL MODEL FOR AN HOURGLASS MAGNETIC FIELD
Ewertowski, Bartek; Basu, Shantanu
2013-04-10
Starting with a mathematical boundary value problem for the magnetic vector potential in an axisymmetric cylindrical coordinate system, we derive a general solution for any arbitrary current distribution using the method of Green's functions. We use this to derive an analytic form for an hourglass magnetic field pattern created by electrical currents that are concentrated near (but not confined within) the equatorial plane of a cylindrical coordinate system. Our solution is not characterized by a cusp at the equatorial plane, as in previous solutions based on a current sheet. The pattern we derive provides a very good fit to hourglass magnetic field patterns emerging from three-dimensional numerical simulations of core formation, and can in principle be used for source-fitting of observed magnetic hourglass patterns.
Magnetic field effects on microwave absorbing materials
NASA Technical Reports Server (NTRS)
Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.
1991-01-01
The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.
ESA's Magnetic Field Mission Swarm
NASA Astrophysics Data System (ADS)
Haagmans, R.; Kern, M.; Plank, G.; Menard, Y.
2008-12-01
Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution. The Mission shall deliver data that allow access to new insights into the Earth system by improving our understanding of the Earth's interior and climate. The mission is nominally scheduled for launch in 2010. After release from a single launcher, a side-by-side flying slowly decaying lower pair of satellites will be released at an initial altitude of about 490 km together with a third satellite that will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations that are required to separate and model various sources of the geomagnetic field. At present the project is in the development phase. The current project status, planned products and performances, and on-going scientific studies will be given special attention during the presentation. There will also be outlook to the next planned Swarm workshop.
Electromagnetic and magnetic vector potential bio-information and water.
Smith, Cyril William
2015-10-01
This work developed over the past 40 years starting from dielectric measurements on enzymes and the subsequent finding that the measurements were affected by electric, magnetic, electromagnetic fields and quantum fields. A request for help in the diagnosis and therapy of chemically sensitive patients who had become sensitive to their electromagnetic environment came in 1982. The same symptoms could be provoked by a chemical or a frequency challenge and this led to an appreciation of the synergy between chemical and frequency environmental sensitivities. Experimental cooperation with theoretical physicist Herbert Fröhlich FRS and others led to an understanding of the physics of coherent water in living systems and a mechanism for the memory of water for coherent frequencies. In a coherent system there are interacting frequencies proportionate to any velocity the system will support, in particular the velocity of light and the velocity of coherence diffusion. Thus, there can be biological interaction between the optical, microwave and ELF spectral regions. Frequency modulation of light scattered by bio-fields and its retention in recorded images is discussed. A 'nil-potent' frequency can erase a frequency signature and thence affect a biological system. Homeopathy is interpreted through the biological effects of coherent frequencies derived from the frequency signature of the 'Mother Tincture' and developed through dilution and succussion. A homeopathic potency has a frequency signature therefore it must be able to have a biological effect. PMID:26678733
Magnetic switching in ultrashort field pulses (abstract)
NASA Astrophysics Data System (ADS)
Back, C. H.; Weller, D.; Heidmann, J.; Mauri, D.; Garwin, E. L.; Siegmann, H. C.
1997-04-01
The Ginzburg-Landau-Lifshitz (GLL) equation, which describes the time dependence of spin precesssion in an external magnetic field1 relates the minimal field required to reverse the magnetization at fixed pulse length to the anisotropy field of the sample.23 We have systematically varied this parameter between 1.3 and about 5.0 T in a series of perpendicularly magnetized Co/Pt multilayer films and studied the magnetization reversal in picosecond in plane field pulses. Such pulses of several Tesla field strength and ultrashort duration were obtained in the final focus test beam section of the Stanford Linear Accelerator Center. The resulting magnetization pattern, which is reminiscent of the field during exposure, is subsequently analyzed with Kerr microscopy2 (see Fig. 1). As a prominent feature, we observe a beam field related switching radius from up to down magnetization which we compare to the theoretically expected field within the GLL formalism.
Deformation of Water by a Magnetic Field
ERIC Educational Resources Information Center
Chen, Zijun; Dahlberg, E. Dan
2011-01-01
After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…
Exploring Magnetic Fields with a Compass
ERIC Educational Resources Information Center
Lunk, Brandon; Beichner, Robert
2011-01-01
A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…
Exploring Magnetic Fields with a Compass
ERIC Educational Resources Information Center
Lunk, Brandon; Beichner, Robert
2011-01-01
A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this
Deformation of Water by a Magnetic Field
ERIC Educational Resources Information Center
Chen, Zijun; Dahlberg, E. Dan
2011-01-01
After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary
[Analysis of peculiarities of magnetic field effect].
Macheret, Ie L; Murashko, N K
2003-01-01
In the article is analyzed the influence of a magnetic field of the Earth on human, state of his health and necessity of magnetic diagnostics. The magnetic fields is an effective preventive and tentative method in case of an early development of diseases. PMID:14723128
Magnetic field effect on charged Brownian swimmers
NASA Astrophysics Data System (ADS)
Sandoval, M.; Velasco, R. M.; Jiménez-Aquino, J. I.
2016-01-01
We calculate the effective diffusion of a spherical self-propelled charged particle swimming at low Reynolds number, and subject to a time-dependent magnetic field and thermal agitation. We find that the presence of an external magnetic field may reduce or enhance (depending on the type of swimming and magnetic field applied) the swimmer's effective diffusion, hence we get another possible strategy to control its displacement. For swimmers performing reciprocal motion, and under an oscillating time-dependent magnetic field, mechanical resonance appears when the swimmer and magnetic frequencies coincide, thus enhancing the particle's effective diffusion. Our analytical results are compared with Brownian Dynamics simulations and we obtain excellent agreement.
Baryon onset in a magnetic field
NASA Astrophysics Data System (ADS)
Haber, Alexander; Preis, Florian; Schmitt, Andreas
2016-01-01
The critical baryon chemical potential for the onset of nuclear matter is a function of the vacuum mass and the binding energy. Both quantities are affected by an external magnetic field. We show within two relativistic mean-field models - including magnetic catalysis, but omitting the anomalous magnetic moment - that a magnetic field increases both the vacuum mass and the binding energy. For sufficiently large magnetic fields, the effect on the vacuum mass dominates and as a result the critical baryon chemical potential is increased.
Magnetic field changes associated with a sub-flare and surge
NASA Technical Reports Server (NTRS)
Hagyard, M. J.; West, E. A.; Smith, J. E.
1993-01-01
A sub-flare and surge were observed on June 13, 1990, with the Marshall Space Flight Center vector magnetograph and coaligned H-alpha telescope. This activity occurred at the site of a parasitic polarity near a large, mature sunspot. Analysis of the vector magnetic field showed that while flux emergence and other field changes occurred sporadically throughout a period of four days, the sub-flare and surge only took place after an increase in magnetic shear in the field of the parasitic polarity. This event also provided an example of relaxation of magnetic shear following the flare and surging.
On the alignment of plasma anisotropies and the magnetic field direction in the solar wind
NASA Technical Reports Server (NTRS)
Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Gosling, J. T.; Ness, N. F.
1977-01-01
One year's Imp 6 solar wind plasma and magnetic field data are examined to determine whether anisotropies in particle velocity distributions are aligned with the measured interplanetary magnetic field vector. Alignment of components in the analysis plane was generally found to be excellent whenever plasma parameter magnitudes were larger than determination uncertainties, although some spread exists (typical rms approximately equal to 10 deg). By assuming cylindrical symmetry about the simultaneously measured magnetic field vector during the 1-year interval under study, three-dimensional values of selected solar wind plasma thermal parameters were constructed from the two-dimensional plasma measurements, and the statistical properties of their distributions have been tabulated.
Analysis of magnetic field levels at KSC
NASA Technical Reports Server (NTRS)
Christodoulou, Christos G.
1994-01-01
The scope of this work is to evaluate the magnetic field levels of distribution systems and other equipment at Kennedy Space Center (KSC). Magnetic fields levels in several operational areas and various facilities are investigated. Three dimensional mappings and contour are provided along with the measured data. Furthermore, the portion of magnetic fields generated by the 60 Hz fundamental frequency and the portion generated by harmonics are examined. Finally, possible mitigation techniques for attenuating fields from electric panels are discussed.
A New Method for Coronal Magnetic Field Reconstruction
NASA Astrophysics Data System (ADS)
Yi, Sibaek; Choe, Gwangson; Lim, Daye
2015-08-01
We present a new, simple, variational method for reconstruction of coronal force-free magnetic fields based on vector magnetogram data. Our method employs vector potentials for magnetic field description in order to ensure the divergence-free condition. As boundary conditions, it only requires the normal components of magnetic field and current density so that the boundary conditions are not over-specified as in many other methods. The boundary normal current distribution is initially fixed once and for all and does not need continual adjustment as in stress-and-relax type methods. We have tested the computational code based on our new method in problems with known solutions and those with actual photospheric data. When solutions are fully given at all boundaries, the accuracy of our method is almost comparable to best performing methods in the market. When magnetic field data are given only at the photospheric boundary, our method excels other methods in most “figures of merit” devised by Schrijver et al. (2006). Furthermore the residual force in the solution is at least an order of magnitude smaller than that of any other method. It can also accommodate the source-surface boundary condition at the top boundary. Our method is expected to contribute to the real time monitoring of the sun required for future space weather forecasts.
Development of marine magnetic vector measurement system using AUV and deep-towed vehicle
NASA Astrophysics Data System (ADS)
Sayanagi, K.; Isezaki, N.; Matsuo, J.; Harada, M.; Kasaya, T.; Nishimura, K.; Baba, H.
2012-04-01
Marine magnetic survey is one of useful methods in order to investigate the nature of the oceanic crust. Most of the data are, however, intensity of the geomagnetic field without its direction. Therefore we cannot properly apply a physical formula describing the relation between magnetic field and magnetization to analyses of the data. With this problem, Isezaki (1986) developed a shipboard three-component magnetometer which measures the geomagnetic vector at the sea. On the other hand, geophysical surveys near the seafloor have been more and more necessary in order to show the details of the oceanic crust. For instance, development of seabed resources like hydrothermal deposits needs higher resolution surveys compared with conventional surveys at the sea for accurate estimation of abundance of the resources. From these viewpoints, we have been developing a measurement system of the deep-sea geomagnetic vector using AUV and deep-towed vehicle. The measurement system consists of two 3-axis flux-gate magnetometers, an Overhauser magnetometer, an optical fiber gyro, a main unit (control, communication, recording), and an onboard unit. These devices except for the onboard unit are installed in pressure cases (depth limit: 6000m). Thus this measurement system can measure three components and intensity of the geomagnetic field in the deep-sea. In 2009, the first test of the measurement system was carried out in the Kumano Basin using AUV Urashima and towing vehicle Yokosuka Deep-Tow during the R/V Yokosuka YK09-09 cruise. In this test, we sank a small magnetic target to the seafloor, and examined how the system worked. As a result, we successfully detected magnetic anomaly of the target to confirm the expected performance of that in the sea. In 2010, the measurement system was tested in the Bayonnaise Knoll area both using a titanium towing frame during the R/V Bosei-maru cruise and using AUV Urashima during the R/V Yokosuka YK10-17 cruise. The purpose of these tests was to evaluate the performance of the system in an actual hydrothermal deposit area for practical applications of that. The Bayonnaise Knoll is a submarine caldera with an outer rim of 2.5-3 km and a floor of 840-920 m, which is located in the Izu-Ogasawara arc. A large hydrothermal deposit, Hakurei deposit lies in the southeast part of the caldera. In the R/V Bosei-maru cruise, we observed three components of magnetic anomalies at depths of 400-570 m along SE-NW and WE tracks across the caldera. In the R/V Yokosuka YK10-17 cruise, we observed three components and intensity of magnetic anomalies at altitudes of 60-100 m around the Hakurei deposit and at depth of 500 m above the caldera. From these tests, we have succeeded in measuring the geomagnetic vector and intensity using the AUV and the deep-towed vehicle, and also have obtained detailed magnetic anomaly in the Hakurei deposit area. We will here present the outlines of the measurement system and the tests in the sea. Note that this study has been supported by the Ministry of Education, Culture, Sports, Science & Technology (MEXT).
Construction of Solar-Wind-Like Magnetic Fields
NASA Technical Reports Server (NTRS)
Roberts, Dana Aaron
2012-01-01
Fluctuations in the solar wind fields tend to not only have velocities and magnetic fields correlated in the sense consistent with Alfven waves traveling from the Sun, but they also have the magnitude of the magnetic field remarkably constant despite their being broadband. This paper provides, for the first time, a method for constructing fields with nearly constant magnetic field, zero divergence, and with any specified power spectrum for the fluctuations of the components of the field. Every wave vector, k, is associated with two polarizations the relative phases of these can be chosen to minimize the variance of the field magnitude while retaining the\\random character of the fields. The method is applied to a case with one spatial coordinate that demonstrates good agreement with observed time series and power spectra of the magnetic field in the solar wind, as well as with the distribution of the angles of rapid changes (discontinuities), thus showing a deep connection between two seemingly unrelated issues. It is suggested that using this construction will lead to more realistic simulations of solar wind turbulence and of the propagation of energetic particles.
Construction of solar-wind-like magnetic fields.
Roberts, D Aaron
2012-12-01
Fluctuations in the solar wind fields tend to not only have velocities and magnetic fields correlated in the sense consistent with Alfvén waves traveling from the Sun, but they also have the magnitude of the magnetic field remarkably constant despite their being broadband. This Letter provides, for the first time, a method for constructing fields with nearly constant magnetic field, zero divergence, and with any specified power spectrum for the fluctuations of the components of the field. Every wave vector, k, is associated with two polarizations; the relative phases of these can be chosen to minimize the variance of the field magnitude while retaining the "random" character of the fields. The method is applied to a case with one spatial coordinate that demonstrates good agreement with observed time series and power spectra of the magnetic field in the solar wind, as well as with the distribution of the angles of rapid changes ("discontinuities"), thus showing a deep connection between two seemingly unrelated issues. It is suggested that using this construction will lead to more realistic simulations of solar wind turbulence and of the propagation of energetic particles. PMID:23368180
Magnetometer measures orthogonal components of magnetic fields
NASA Technical Reports Server (NTRS)
1965-01-01
Driven magnetometer accurately measures the components of a low strength magnetic field in each of three mutually perpendicular directions. To accomplish this, it employs the principle of magnetic resonance in optically pumped rubidium vapor.
Bipolar pulse field for magnetic refrigeration
Lubell, Martin S.
1994-01-01
A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.
Bipolar pulse field for magnetic refrigeration
Lubell, M.S.
1994-10-25
A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.
Application peculiarities of magnetic materials for protection from magnetic fields
NASA Astrophysics Data System (ADS)
Wai, P.; Dmitrenko, V.; Grabchikov, S.; Vlasik, K.; Novikov, A.; Petrenko, D.; Trukhanov, V.; Ulin, S.; Uteshev, Z.; Chernysheva, V.; Shustov, A.
2016-02-01
In different materials for magnetic shields, the maximum permeability is achieved for different values of the magnetic field. This determines the choice of material. So for protection from magnetic fields strength of 10 - 150 A/m it is advisable to apply the amorphous ribbon 84KXCP. For stronger fields (more than 400 A/m) it is recommended to use MFS based on Ni20Fe80. Use of these materials allows creating an effective shield working in a wide range of magnetic field strengths.
Magnetic Field Topology of Sigmoids
NASA Astrophysics Data System (ADS)
Son, J. H.; Canfield, R. C.; Acton, L. W.
2004-12-01
Sigmoids are studied due to their eruptive nature, which affects the Earth and the space atmosphere. The shape of the sigmoid (S-shaped or inverse S-shaped) is an indicator of eruption. The origin of this shape has been the topic of many research papers. One such paper by Fan and Gibson, The Emergence of a Twisted Magnetic Flux Tube Into a Preexisting Coronal Arcade, appeared in 2003. Fan and Gibson argue that a sigmoid with left-handed twist has left-handed writhe, which gives the sigmoid its S-shape and right-handed twist the inverse S-shape. Our study determined that there is no correlation between a sigmoid's handedness and shape as claimed in the paper by Fan and Gibson. Doing a statistical study observing the topology of the sigmoid using the data from Yohkoh Soft X-ray Telescope, we classified each sigmoid by its shape, twist, and magnetic field lines. We found that 23% of our data was right-handed and S-shaped, 33% was left-handed and S-shaped, 22% was right-handed and inverse S-shaped, and 22% was left-handed and inverse-S shaped. Thus, we found no systematic relationship between the handedness and shape of the sigmoid -- in disagreement with Fan and Gibson.
NASA Astrophysics Data System (ADS)
Sayanagi, K.; Isezaki, N.; Matsuo, J.; Harada, M.; Kasaya, T.
2011-12-01
Geophysical surveys near the seafloor are very effective methods in order to investigate fine structures of the oceanic crust. Such surveys have increased in researches and developments of the seafloor, and will be more and more necessary in the future. For example, seabed resources like hydrothermal deposits have recently focused attention behind the international situation for natural resources like a competition of resources development. In order to estimate accurate abundance of those resources, the above detailed investigations should be needed because of low resolution of geophysical surveys on the sea and low efficiency of exploratory drilling. From such a viewpoint, we have been developing a measurement system for magnetic explorations using an AUV and a deep-tow system. The magnetic exploration system consists of two 3-axis flux-gate magnetometers, one/two Overhauser magnetometer(s), an optical fiber gyro, a main unit (control, communication, recording), and an onboard unit. These devices except for the onboard unit are installed in pressure cases (depth limit: 6000m). Thus this system can measure three components and total intensity of the geomagnetic field in the deep sea. In 2009, the first test of the magnetic exploration system was carried out in the Kumano Basin using AUV Urashima and towing vehicle Yokosuka Deep-Tow during the R/V Yokosuka YK09-09 cruise. In this test, we sank a small magnetic target to the seafloor, and examined how the system worked. As a result, we successfully detected magnetic anomaly of the target to confirm the expected performance of that in the sea. In 2010, the magnetic exploration system was further tested in the Bayonnaise Knoll area both using a titanium towing frame during the R/V Bosei-maru cruise and using AUV Urashima during the R/V Yokosuka YK10-17 cruise. The purpose of these tests was to evaluate the performance of the system in an actual hydrothermal deposit area for practical applications of that. The Bayonnaise Knoll is a submarine caldera with an outer rim of 2.5-3 km and a floor of 840-920 m, which is located in the Izu-Ogasawara arc. A large hydrothermal deposit, Hakurei deposit, lies in the southeast part of the caldera. In the R/V Bosei-maru cruise, we observed three components of magnetic anomalies at depths of 400-570 m along SE-NW and WE tracks across the caldera. In the R/V Yokosuka YK10-17 cruise, we observed three components and total intensity of magnetic anomalies at altitudes of 60-100 m around the Hakurei deposit and at depth of 500 m above the caldera. The analysis of these data is now energetically pushed forward. A 3D gridded data set of the vector magnetic anomaly in the latter cruise was made by solving the Laplace's equation in the areas where observation data were not available, which is the unique procedure for analysis of the vector anomalies. Several magnetization solutions have been so far obtained by successive approximation and inversion methods. We will here present the measurement of the geomagnetic field and analysis of magnetization structure in Bayonnaise Knoll caldera. Note that this study has been supported by the Ministry of Education, Culture, Sports, Science & Technology (MEXT).
Magnetic field waves at Uranus
NASA Technical Reports Server (NTRS)
Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.
1991-01-01
The proposed research efforts funded by the UDAP grant to the BRI involve the study of magnetic field waves associated with the Uranian bow shock. This is a collaborative venture bringing together investigators at the BRI, Southwest Research Institute (SwRI), and Goddard Space Flight Center (GSFC). In addition, other collaborations have been formed with investigators granted UDAP funds for similar studies and with investigators affiliated with other Voyager experiments. These investigations and the corresponding collaborations are included in the report. The proposed effort as originally conceived included an examination of waves downstream from the shock within the magnetosheath. However, the observations of unexpected complexity and diversity within the upstream region have necessitated that we confine our efforts to those observations recorded upstream of the bow shock on the inbound and outbound legs of the encounter by the Voyager 2 spacecraft.
Gu, Bing; Xu, Danfeng; Rui, Guanghao; Lian, Meng; Cui, Yiping; Zhan, Qiwen
2015-09-20
Generation of vectorial optical fields with arbitrary polarization distribution is of great interest in areas where exotic optical fields are desired. In this work, we experimentally demonstrate the versatile generation of linearly polarized vector fields, elliptically polarized vector fields, and circularly polarized vortex beams through introducing attenuators in a common-path interferometer. By means of Richards-Wolf vectorial diffraction method, the characteristics of the highly focused elliptically polarized vector fields are studied. The optical force and torque on a dielectric Rayleigh particle produced by these tightly focused vector fields are calculated and exploited for the stable trapping of dielectric Rayleigh particles. It is shown that the additional degree of freedom provided by the elliptically polarized vector field allows one to control the spatial structure of polarization, to engineer the focusing field, and to tailor the optical force and torque on a dielectric Rayleigh particle. PMID:26406514
Semiconductor Crystal Growth in Static and Rotating Magnetic fields
NASA Technical Reports Server (NTRS)
Volz, Martin
2004-01-01
Magnetic fields have been applied during the growth of bulk semiconductor crystals to control the convective flow behavior of the melt. A static magnetic field established Lorentz forces which tend to reduce the convective intensity in the melt. At sufficiently high magnetic field strengths, a boundary layer is established ahead of the solid-liquid interface where mass transport is dominated by diffusion. This can have a significant effect on segregation behavior and can eliminate striations in grown crystals resulting from convective instabilities. Experiments on dilute (Ge:Ga) and solid solution (Ge-Si) semiconductor systems show a transition from a completely mixed convective state to a diffusion-controlled state between 0 and 5 Tesla. In HgCdTe, radial segregation approached the diffusion limited regime and the curvature of the solid-liquid interface was reduced by a factor of 3 during growth in magnetic fields in excess of 0.5 Tesla. Convection can also be controlled during growth at reduced gravitational levels. However, the direction of the residual steady-state acceleration vector can compromise this effect if it cannot be controlled. A magnetic field in reduced gravity can suppress disturbances caused by residual transverse accelerations and by random non-steady accelerations. Indeed, a joint program between NASA and the NHMFL resulted in the construction of a prototype spaceflight magnet for crystal growth applications. An alternative to the suppression of convection by static magnetic fields and reduced gravity is the imposition of controlled steady flow generated by rotating magnetic fields (RMF)'s. The potential benefits of an RMF include homogenization of the melt temperature and concentration distribution, and control of the solid-liquid interface shape. Adjusting the strength and frequency of the applied magnetic field allows tailoring of the resultant flow field. A limitation of RMF's is that they introduce deleterious instabilities above a critical magnetic field value. Growth conditions in which static magnetic fields rotational magnetic fields, and reduced gravitational levels can have a beneficial role will be described.
NASA Astrophysics Data System (ADS)
Hwang, K.; Lynch, K. A.; Carlson, C. W.; Peria, W. J.
2004-12-01
We present an analysis of auroral FAST perpendicular E data using ion distributions in return current regions to study the full DC E vector and potential structures. While the axial boom measurement is available, its interpretation requires careful use and some assumptions. Our new technique provides an independent measure of this axial component. Our new tool extracts two perpendicular components of electric field, using the electric field data from the field instrument for the spin-plane component of E, and the ion drift measurements for the axial DC E. This allows studies of the full perpendicular DC E vector for the first time with FAST data. In addition the new tool transforms from velocity-based coordinates to north-south, east-west coordinates for analyzing the morphology and structure of the auroral return current region more effectively. With more than fifteen return current region crossings collected at FAST altitudes above 3000 km in either the pre-noon dayside or near midnight sector, three quarters of our data show linearly polarized diverging electric field structures. A significant fraction (almost one quarter) show rotational polarity during large field events. For these rotational events, it is probable that the spacecraft was passing through the edge of elongated quasi-static potential structures. They can also be interpreted as a temporal variation. Generally in many orbits, linear and rotational polarity appear together, one followed by the other, which means the potential structure has a wiggled or droopy shape. Statistical comparison shows several differences between these two different polarizations. (1) When a rotational polarity appears, the correspondence between electron characteristic energy and the potential obtained by integrating E weakens. (2) For linear polarization the electric field vector is likely to be almost perpendicular to the magnetic disturbance, while for rotational polarization the E is not perpendicular to delta-B. (3) Both the absolute scale length of the current signature and its size relative to that of the electric field signature are smaller for the linearly polarized cases. With this full DC E vector, we can study various questions including the morphology of auroral return currents and inconsistencies with static return current models. Our tool for extracting this information will be part of the FAST software library.
Liu Chang; Deng Na; Liu Rui; Jing Ju; Xu Yan; Wang Shuo; Wang Haimin; Lee, Jeongwoo; Wiegelmann, Thomas
2012-01-20
The rapid, irreversible change of the photospheric magnetic field has been recognized as an important element of the solar flare process. This Letter reports such a rapid change of magnetic fields during the 2011 February 13 M6.6 flare in NOAA AR 11158 that we found from the vector magnetograms of the Helioseismic and Magnetic Imager (HMI) with 12 minute cadence. High-resolution magnetograms of Hinode that are available at {approx}-5.5, -1.5, 1.5, and 4 hr relative to the flare maximum are used to reconstruct a three-dimensional coronal magnetic field under the nonlinear force-free field (NLFFF) assumption. UV and hard X-ray images are also used to illuminate the magnetic field evolution and energy release. The rapid change is mainly detected by HMI in a compact region lying in the center of the magnetic sigmoid, where the mean horizontal field strength exhibited a significant increase of 28%. The region lies between the initial strong UV and hard X-ray sources in the chromosphere, which are cospatial with the central feet of the sigmoid according to the NLFFF model. The NLFFF model further shows that strong coronal currents are concentrated immediately above the region, and that, more intriguingly, the coronal current system underwent an apparent downward collapse after the sigmoid eruption. These results are discussed in favor of both the tether-cutting reconnection producing the flare and the ensuing implosion of the coronal field resulting from the energy release.
NASA Astrophysics Data System (ADS)
Kother, L. K.; Hammer, M. D.; Finlay, C. C.; Olsen, N.
2014-12-01
We present a technique for modelling the lithospheric magnetic field based on estimation of equivalent potential field sources. As a first demonstration we present an application to magnetic field measurements made by the CHAMP satellite during the period 2009-2010. Three component vector field data are utilized at all latitudes. Estimates of core and large-scale magnetospheric sources are removed from the satellite measurements using the CHAOS-4 model. Quiet-time and night-side data selection criteria are also employed to minimize the influence of the ionospheric field. The model for the remaining lithospheric magnetic field consists of magnetic point sources (monopoles) arranged in an icosahedron grid with an increasing grid resolution towards the airborne survey area. The corresponding source values are estimated using an iteratively reweighted least squares algorithm that includes model regularization (either quadratic or maximum entropy) and Huber weighting. Data error covariance matrices are implemented, accounting for the dependence of data error variances on quasi-dipole latitudes. Results show good consistency with the CM5 and MF7 models for spherical harmonic degrees up to n = 95. Advantages of the equivalent source method include its local nature and the ease of transforming to spherical harmonics when needed. The method can also be applied in local, high resolution, investigations of the lithospheric magnetic field, for example where suitable aeromagnetic data is available. To illustrate this possibility, we present preliminary results from a case study combining satellite measurements and local airborne scalar magnetic measurements of the Norwegian coastline.
Swarm: ESA's Magnetic Field Mission
NASA Astrophysics Data System (ADS)
Drinkwater, M. R.; Haagmans, R.; Floberghagen, R.; Plank, G.; Menard, Y.
2011-12-01
Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in 2012. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of 3 identical satellites. The Mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently approaching the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products to the Swarm user community. The setup of Swarm ground segment and the contents of the data products will be addressed. More information on the Swarm mission can be found at the mission web site (see URL below).
Vector spin modeling for magnetic tunnel junctions with voltage dependent effects
Manipatruni, Sasikanth Nikonov, Dmitri E.; Young, Ian A.
2014-05-07
Integration and co-design of CMOS and spin transfer devices requires accurate vector spin conduction modeling of magnetic tunnel junction (MTJ) devices. A physically realistic model of the MTJ should comprehend the spin torque dynamics of nanomagnet interacting with an injected vector spin current and the voltage dependent spin torque. Vector spin modeling allows for calculation of 3 component spin currents and potentials along with the charge currents/potentials in non-collinear magnetic systems. Here, we show 4-component vector spin conduction modeling of magnetic tunnel junction devices coupled with spin transfer torque in the nanomagnet. Nanomagnet dynamics, voltage dependent spin transport, and thermal noise are comprehended in a self-consistent fashion. We show comparison of the model with experimental magnetoresistance (MR) of MTJs and voltage degradation of MR with voltage. Proposed model enables MTJ circuit design that comprehends voltage dependent spin torque effects, switching error rates, spin degradation, and back hopping effects.
Vector spin modeling for magnetic tunnel junctions with voltage dependent effects
NASA Astrophysics Data System (ADS)
Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A.
2014-05-01
Integration and co-design of CMOS and spin transfer devices requires accurate vector spin conduction modeling of magnetic tunnel junction (MTJ) devices. A physically realistic model of the MTJ should comprehend the spin torque dynamics of nanomagnet interacting with an injected vector spin current and the voltage dependent spin torque. Vector spin modeling allows for calculation of 3 component spin currents and potentials along with the charge currents/potentials in non-collinear magnetic systems. Here, we show 4-component vector spin conduction modeling of magnetic tunnel junction devices coupled with spin transfer torque in the nanomagnet. Nanomagnet dynamics, voltage dependent spin transport, and thermal noise are comprehended in a self-consistent fashion. We show comparison of the model with experimental magnetoresistance (MR) of MTJs and voltage degradation of MR with voltage. Proposed model enables MTJ circuit design that comprehends voltage dependent spin torque effects, switching error rates, spin degradation, and back hopping effects.
Initial Results from the Vector Electric Field Investigation on the C/NOFS Satellite
NASA Technical Reports Server (NTRS)
Pfaff, R.; Rowland, D.; Acuna, M.; Le, G.; Farrell, W.; Holzworth, R.; Wilson, G.; Burke, W.; Freudenreich, H.; Bromund, K.; Liebrecht, C.; Martin, S.; Kujawski, J.; Uribe, P.; Fourre, R.; McCarthy, M.; Maynard, N.; Berthelier, J.-J.; Steigies, C.
2009-01-01
Initial results are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. The VEFI instrument includes a vector DC electric field detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux gate magnetometer, an optical lightning detector, and associated electronics including a burst memory. The DC electric field detector has revealed zonal and meridional electric fields that undergo a diurnal variation, typically displaying eastward and outward-directed fields during the day and westward and downward-directed fields at night. In general, the measured DC electric field amplitudes are in the 0.5-2 mV/m range, corresponding to I3 x B drifts of the order of 30-150 m/s. What is surprising is the high degree of large-scale (10's to 100's of km) structure in the DC electric field, particularly at night, regardless of whether well-defined spread-F plasma density depletions are present. The spread-F density depletions and corresponding electric fields that have been detected thus far have displayed a preponderance to appear between midnight and dawn. Associated with the narrow plasma depletions that are detected are broad spectra of electric field and plasma density irregularities for which a full vector set of measurements is available for detailed study. On some occasions, localized regions of low frequency (< 8 Hz) magnetic field broadband irregularities have been detected, suggestive of filamentary currents, although there is no one-to-one correspondence of these waves with the observed plasma density depletions, at least within the data examined thus far. Finally, the data set includes a wide range of ELF/VLF/HF waves corresponding to a variety of plasma waves, in particular banded ELF hiss, whistlers, and lower hybrid wave turbulence triggered by lightning-induced sferics. The VEFI data set represents a treasure trove of measurements that are germane to numerous fundamental aspects of the electrodynamics and irregularities inherent to the Earth's low latitude ionosphere.
DC-based magnetic field controller
Kotter, D.K.; Rankin, R.A.; Morgan, J.P.
1994-05-31
A magnetic field controller is described for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a Hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage. 1 fig.
DC-based magnetic field controller
Kotter, Dale K.; Rankin, Richard A.; Morgan, John P,.
1994-01-01
A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.
Auroral vector electric field and particle comparisons. 1: Pre-midnight convection topology
NASA Technical Reports Server (NTRS)
Maynard, N. C.; Evans, D. S.; Maehlum, B.; Egeland, A.
1976-01-01
Polar 3 was launched in northern Norway on January 27, 1974. Traversing nearly 3 deg latitude, the rocket crossed over a stable IBC II auroral arc in the positive bay region and continued north to a convection boundary which was identified as the Harang discontinuity. Measurement of the complete electric field vector, of energetic electrons and of the auroral N+2 and OI emissions were used to study the convection topology in the pre-magnetic-midnight region. A strong anticorrelation was observed between the electric field and the precipitating energetic electrons. The inverted V nature of the electron precipitations at the convection boundary, compared with the lack of such structure over the arc which was within the positive bay region, leads to the conclusion that auroral arcs are likely to be associated with inverted V type precipitation only at or poleward of convection boundaries and their eddy structures.
Artificial magnetic field induced by an evanescent wave
Mochol, Małgorzata; Sacha, Krzysztof
2015-01-01
Cold atomic gases are perfect laboratories for realization of quantum simulators. In order to simulate solid state systems in the presence of magnetic fields special effort has to be made because atoms are charge neutral. There are different methods for realization of artificial magnetic fields, that is the creation of specific conditions so that the motion of neutral particles mimics the dynamics of charged particles in an effective magnetic field. Here, we consider adiabatic motion of atoms in the presence of an evanescent wave. Theoretical description of the adiabatic motion involves artificial vector and scalar potentials related to the Berry phases. Due to the large gradient of the evanescent field amplitude, the potentials can be strong enough to induce measurable effects in cold atomic gases. We show that the resulting artificial magnetic field is able to induce vortices in a Bose-Einstein condensate trapped close to a surface of a prism where the evanescent wave is created. We also analyze motion of an atomic cloud released from a magneto-optical trap that falls down on the surface of the prism. The artificial magnetic field is able to reflect falling atoms that can be observed experimentally. PMID:25567430
Helicity of Photospheric Magnetic Fields in Solar Cycle 21
NASA Technical Reports Server (NTRS)
Hagyard, Mona J.; Pevtsov, Alexei A.; Canfield, Richard C.
1998-01-01
Recent analyses of photospheric vector magnetic fields observed during solar cycle 22 have indicated a hemispherical selection rule for magnetic helicity with a predominance of negative (positive) helicity in the northern (southern) hemisphere. Using the extensive data base from the Marshall Space Flight Center's solar vector magnetograph, we have begun a study to derive the helicity for active regions observed during solar cycle 21 and confirm the hemispherical helicity rule for a different solar cycle. In this poster paper, we will present our initial results for several active regions observed in 1980 near the peak of cycle 21, as well as results from analyses designed to test quantitatively the methods used in calculating the helicity.
Magnetic field effects on plasma ionization balance
Weisheit, J.C.
1995-12-31
Magnetic fields give rise to several phenomena that can significantly affect ionization balance in a plasma. Theoretical models commonly used to determine the charge state distribution (viz.,
Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields
NASA Astrophysics Data System (ADS)
Soto-Aquino, D.; Rinaldi, C.
2015-11-01
The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.
Minimizing magnetic fields for precision experiments
NASA Astrophysics Data System (ADS)
Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S.; Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.
2015-06-01
An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.
Minimizing magnetic fields for precision experiments
Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S. Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.
2015-06-21
An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.
Nonhelical inverse transfer of a decaying turbulent magnetic field.
Brandenburg, Axel; Kahniashvili, Tina; Tevzadze, Alexander G
2015-02-20
In the presence of magnetic helicity, inverse transfer from small to large scales is well known in magnetohydrodynamic (MHD) turbulence and has applications in astrophysics, cosmology, and fusion plasmas. Using high resolution direct numerical simulations of magnetically dominated self-similarly decaying MHD turbulence, we report a similar inverse transfer even in the absence of magnetic helicity. We compute for the first time spectral energy transfer rates to show that this inverse transfer is about half as strong as with helicity, but in both cases the magnetic gain at large scales results from velocity at similar scales interacting with smaller-scale magnetic fields. This suggests that both inverse transfers are a consequence of universal mechanisms for magnetically dominated turbulence. Possible explanations include inverse cascading of the mean squared vector potential associated with local near two dimensionality and the shallower k^{2} subinertial range spectrum of kinetic energy forcing the magnetic field with a k^{4} subinertial range to attain larger-scale coherence. The inertial range shows a clear k^{-2} spectrum and is the first example of fully isotropic magnetically dominated MHD turbulence exhibiting weak turbulence scaling. PMID:25763960
Bats Respond to Very Weak Magnetic Fields
Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang
2015-01-01
How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth’s magnetic field strength varied and the polarity reversed tens of times over the past fifty million years. PMID:25922944
Screening magnetic fields by superconductors: A simple model
Caputo, J.-G.; Gozzelino, L.; Laviano, F.; Ghigo, G.; Gerbaldo, R.; Noudem, J.; Thimont, Y.; Bernstein, P.
2013-12-21
We introduce a simple approach to evaluate the magnetic field distribution around superconducting samples, based on the London equations; the elementary variable is the vector potential. This procedure has no adjustable parameters, only the sample geometry and the London length, λ, determine the solution. This approach was validated by comparing the induction field calculated to the one measured above MgB{sub 2} disks of different diameters, at 20 K and for applied fields lower than 0.4 T. The model can be applied if the flux line penetration inside the sample can be neglected when calculating the induction field distribution outside the superconductor. We conclude by showing on a cup-shape geometry how one can design a magnetic shield satisfying a specific constraint.
Measurement of magnetic fields in stars
Landstreet, J.D.
1980-05-01
A review is presented of techniques of measuring magnetic fields in nondegenerate stars. The strengths and limitations of the classical photographic field measurement technique are compared to those of various photoelectric methods developed during the past decade, particularly the Balmer-line Zeeman analyzer technique. The problem of modeling magnetic data to infer the magnetic field geometry of an observed star is discussed. In the few cases where sufficient data are available to test the centered dipole geometry, it is found to be inadequate. It appears that most magnetic stars have field geometries at least as complex as the oblique decentered dipole (or dipole plus parallel linear quadrupole) model.
Quark matter in a strong magnetic field
Chakrabarty, S.
1996-07-01
The effect of a strong magnetic field on the stability and gross properties of bulk as well as quasibulk quark matter is investigated using the conventional MIT bag model. Both the Landau diamagnetism and the paramagnetism of quark matter are studied. How the quark hadron phase transition is affected by the presence of a strong magnetic field is also investigated. The equation of state of strange quark matter changes significantly in a strong magnetic field. It is also shown that the thermal nucleation of quark bubbles in a compact metastable state of neutron matter is completely forbidden in the presence of a strong magnetic field. {copyright} {ital 1996 The American Physical Society.}
Flow Transitions in a Rotating Magnetic Field
NASA Technical Reports Server (NTRS)
Volz, M. P.; Mazuruk, K.
1996-01-01
Critical Rayleigh numbers have been measured in a liquid metal cylinder of finite height in the presence of a rotating magnetic field. Several different stability regimes were observed, which were determined by the values of the Rayleigh and Hartmann numbers. For weak rotating magnetic fields and small Rayleigh numbers, the experimental observations can be explained by the existence of a single non-axisymmetric meridional roll rotating around the cylinder, driven by the azimuthal component of the magnetic field. The measured dependence of rotational velocity on magnetic field strength is consistent with the existence of laminar flow in this regime.
Ferroelectric Cathodes in Transverse Magnetic Fields
Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch
2002-07-29
Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.
Operating a magnetic nozzle helicon thruster with strong magnetic field
NASA Astrophysics Data System (ADS)
Takahashi, Kazunori; Komuro, Atsushi; Ando, Akira
2016-03-01
A pulsed axial magnetic field up to ˜2.8 kG is applied to a 26-mm-inner-diameter helicon plasma thruster immersed in a vacuum chamber, and the thrust is measured using a pendulum target. The pendulum is located 30-cm-downstream of the thruster, and the thruster rf power and argon flow rate are fixed at 1 kW and 70 sccm (which gives a chamber pressure of 0.7 mTorr). The imparted thrust increases as the applied magnetic field is increased and saturates at a maximum value of ˜9.5 mN for magnetic field above ˜2 kG. At the maximum magnetic field, it is demonstrated that the normalized plasma density, and the ion flow energy in the magnetic nozzle, agree within ˜50% and of 10%, respectively, with a one-dimensional model that ignores radial losses from the nozzle. This magnetic nozzle model is combined with a simple global model of the thruster source that incorporates an artificially controlled factor α, to account for radial plasma losses to the walls, where α = 0 and 1 correspond to zero losses and no magnetic field, respectively. Comparison between the experiments and the model implies that the radial losses in the thruster source are experimentally reduced by the applied magnetic field to about 10% of that obtained from the no magnetic field model.
NASA Astrophysics Data System (ADS)
Zheng, Yangdong; Yoshimura, Satoru; Egawa, Genta; Zheng, Fu; Kinoshita, Yukinori; Saito, Hitoshi
2015-08-01
A pulsed magnetic field magnetic force microscope (PMF-MFM) is developed for evaluation of the magnetic properties of nano-scale materials and devices, as well as the characteristics of MFM tips. We present the setup of the PMF-MFM system, and focus on the evaluation of a FeCo soft magnetic tip by PMF-MFM. We find a new theoretical method to calculate tip magnetization curves (M-H curves) using MFM phase signals. We measure the MFM phase and amplitude signals for the FeCo tip during the presence of the pulsed magnetic fields oriented parallel and antiparallel to the initial tip magnetization direction, and acquire the tip coercivity H c ~ 1.1?kOe. The tip M-H curves are also calculated using the MFM phase signals data. We obtain the basic features of the tip magnetic properties from the tip M-H curves.
Magnetized quark matter with a magnetic-field dependent coupling
NASA Astrophysics Data System (ADS)
Li, Chang-Feng; Yang, Li; Wen, Xin-Jian; Peng, Guang-Xiong
2016-03-01
It was recently derived that the QCD running coupling is a function of the magnetic field strength under the strong magnetic field approximation. Inspired by this progress and based on the self-consistent solutions of gap equations, the properties of two-flavor and three-flavor quark matter are studied in the framework of the Nambu-Jona-Lasinio model with a magnetic-field-dependent running coupling. We find that the dynamical quark masses as functions of the magnetic field strength are not monotonous in the fully chirally broken phase. Furthermore, the stability of magnetized quark matter with the running coupling is enhanced by lowering the free energy per baryon, which is expected to be more stable than that of the conventional constant coupling case. It is concluded that the magnetized strange quark matter described by running coupling can be absolutely stable.
Reducing Field Distortion in Magnetic Resonance Imaging
NASA Technical Reports Server (NTRS)
Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob
2010-01-01
A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T
Magnetic field evolution in interacting galaxies
NASA Astrophysics Data System (ADS)
Drzazga, R. T.; Chyży, K. T.; Jurusik, W.; Wiórkiewicz, K.
2011-09-01
Aims: Violent gravitational interactions can change the morphologies of galaxies and, by means of merging, transform them into elliptical galaxies. We aim to investigate how they affect the evolution of galactic magnetic fields. Methods: We selected 16 systems of interacting galaxies with available VLA archive radio data at 4.86 and 1.4 GHz and compared their radio emission and estimated magnetic field strengths with their star-forming activity, far-infrared emission, and the stage of tidal interaction. Results: The estimated mean of total magnetic field strength for our sample of interacting galaxies is 14 ± 5 μG, which is larger than for the non-interacting objects. The field regularity (of 0.27 ± 0.09) is lower than in typical spirals and indicates enhanced production of random magnetic fields in the interacting objects. We find a general evolution of magnetic fields: for weak interactions the strength of magnetic field is almost constant (10-15 μG) as interaction advances, then it increases up to 2× , peaks at the nuclear coalescence (25 μG), and decreases again, down to 5-6 μG, for the post-merger remnants. The main production of magnetic fields in colliding galaxies thus terminates somewhere close to the nuclear coalescence, after which magnetic field diffuses. The magnetic field strength for whole galaxies is weakly affected by the star formation rate (SFR), while the dependence is higher for galactic centres. We show that the morphological distortions visible in the radio total and polarized emission do not depend statistically on the global or local SFRs, while they do increase (especially in the polarization) with the advance of interaction. The constructed radio-far-infrared relations for interacting and non-interacting galaxies display a similar balance between the generation of cosmic rays, magnetic fields, and the production of the thermal energy and dust radiation. Conclusions: The regular magnetic fields are much more sensitive to morphological distortions induced by tidal interactions than are the random fields. As a result the polarized emission could be yet another indicator of an ongoing merging process. The found evolution of magnetic field with advancing interaction would definitely imply a stronger effect of magnetic fields on the galaxy surroundings in the earlier cosmological epochs. The process of strong gravitational interactions can efficiently magnetize the merger's surroundings, having a similar magnetizing effect on intergalactic medium as supernova explosions or galactic winds. If interacting galaxies generate some ultra-high energy cosmic rays (UHECRs), the disk or magnetized outflows can deflect them (up to 23°), and make an association of the observed UHECRs with the sites of their origin very uncertain.
Cosmic Magnetic Fields (IAU S259)
NASA Astrophysics Data System (ADS)
Strassmeier, Klaus G.; Kosovichev, Alexander G.; Beckman, John E.
2009-06-01
Preface K. G. Strassmeier, A. G. Kosovichev and J. E. Beckman; Organising committee; Conference photograph; Conference participants; Session 1. Interstellar magnetic fields, star-forming regions and the Death Valley Takahiro Kudoh and Elisabeta de Gouveia Dal Pino; Session 2. Multi-scale magnetic fields of the Sun; their generation in the interior, and magnetic energy release Nigel O. Weiss; Session 3. Planetary magnetic fields and the formation and evolution of planetary systems and planets; exoplanets Karl-Heinz Glassmeier; Session 4. Stellar magnetic fields: cool and hot stars Swetlana Hubrig; Session 5. From stars to galaxies and the intergalactic space Dimitry Sokoloff and Bryan Gaensler; Session 6. Advances in methods and instrumentation for measuring magnetic fields across all wavelengths and targets Tom Landecker and Klaus G. Strassmeier; Author index; Object index; Subject index.
Low-degree Structure in Mercury's Planetary Magnetic Field
NASA Technical Reports Server (NTRS)
Anderson, Brian J.; Johnson, Catherine L.; Korth, Haje; Winslow, Reka M.; Borovsky, Joseph E.; Purucker, Michael E.; Slavin, James A.; Solomon, Sean C.; Zuber, Maria T.; McNutt, Ralph L. Jr.
2012-01-01
The structure of Mercury's internal magnetic field has been determined from analysis of orbital Magnetometer measurements by the MESSENGER spacecraft. We identified the magnetic equator on 531 low-altitude and 120 high-altitude equator crossings from the zero in the radial cylindrical magnetic field component, Beta (sub rho). The low-altitude crossings are offset 479 +/- 6 km northward, indicating an offset of the planetary dipole. The tilt of the magnetic pole relative to the planetary spin axis is less than 0.8 deg.. The high-altitude crossings yield a northward offset of the magnetic equator of 486 +/- 74 km. A field with only nonzero dipole and octupole coefficients also matches the low-altitude observations but cannot yield off-equatorial Beta (sub rho) = 0 at radial distances greater than 3520 km. We compared offset dipole and other descriptions of the field with vector field observations below 600 km for 13 longitudinally distributed, magnetically quiet orbits. An offset dipole with southward directed moment of 190 nT-R-cube (sub M) yields root-mean-square (RMS) residuals below 14 nT, whereas a field with only dipole and octupole terms tuned to match the polar field and the low-altitude magnetic equator crossings yields RMS residuals up to 68 nT. Attributing the residuals from the offset-dipole field to axial degree 3 and 4 contributions we estimate that the Gauss coefficient magnitudes for the additional terms are less than 4% and 7%, respectively, relative to the dipole. The axial alignment and prominent quadrupole are consistent with a non-convecting layer above a deep dynamo in Mercury's fluid outer core.
Magnetic field optimization of permanent magnet undulators for arbitrary polarization
NASA Astrophysics Data System (ADS)
Bahrdt, J.; Frentrup, W.; Gaupp, A.; Scheer, M.; Englisch, U.
2004-01-01
Techniques for improving the magnetic field quality of APPLE II undulators are discussed. Individual block characterization including the inhomogeneities of the magnetization permits a precise prediction of field integrals as required for sorting. Specific shimming procedures adapted to the magnetic design of APPLE II undulators have to be employed in order to meet the stringent requirements of insertion devices in third generation synchrotron radiation sources as demonstrated for BESSY.
Almost-invariant surfaces for magnetic field-line flows
NASA Astrophysics Data System (ADS)
Hudson, S. R.; Dewar, R. L.
1996-10-01
Two approaches to defining almost-invariant surfaces for magnetic fields with imperfect magnetic surfaces are compared. Both methods are based on treating magnetic field-line flow as a 1½-dimensional Hamiltonian (or Lagrangian) dynamical system. In the quadratic-flux minimizing surface approach, the integral of the square of the action gradient over the toroidal and poloidal angles is minimized, while in the ghost surface approach a gradient flow between a minimax and an action-minimizing orbit is used. In both cases the almost-invariant surface is constructed as a family of periodic pseudo-orbits, and consequently it has a rational rotational transform. The construction of quadratic-flux minimizing surfaces is simple, and easily implemented using a new magnetic field-line tracing method. The construction of ghost surfaces requires the representation of a pseudo field line as an (in principle) infinite-dimensional vector and also is inherently slow for systems near integrability. As a test problem the magnetic field-line Hamiltonian is constructed analytically for a topologically toroidal, non-integrable ABC-flow model, and both types of almost-invariant surface are constructed numerically.
Secondary CMB anisotropies from bulk motions in the presence of stochastic magnetic fields
NASA Astrophysics Data System (ADS)
Kunze, Kerstin E.
2014-05-01
Bulk motions of electrons along the line of sight induce secondary temperature fluctuations in the postdecoupling, reionized Universe. In the presence of a magnetic field not only the scalar mode but also the vector mode act as a source for the bulk motion. The resulting angular power spectrum of temperature anisotropies of the cosmic microwave background is calculated assuming a simple model of reionization. Contributions from the standard adiabatic, curvature mode and a nonhelical magnetic field are included. The contribution due to magnetic fields with field strengths of order nG and negative magnetic spectral indices becomes important for multipoles larger than ℓ˜104.
Cosmic microwave background polarization signals from tangled magnetic fields.
Seshadri, T R; Subramanian, K
2001-09-01
Tangled, primordial cosmic magnetic fields create small rotational velocity perturbations on the last scattering surface of the cosmic microwave background radiation. For fields which redshift to a present value of B0 = 3 x 10(-9) G, these vector modes are shown to generate polarization anisotropies of order 0.1-4 microK on small angular scales (500
Magnetic field decay in model SSC dipoles
Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.
1988-08-01
We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs.
The Evolution of the Earth's Magnetic Field.
ERIC Educational Resources Information Center
Bloxham, Jeremy; Gubbins, David
1989-01-01
Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)
Optical trapping of core-shell magnetic microparticles by cylindrical vector beams
Zhong, Min-Cheng; Gong, Lei; Li, Di; Zhou, Jin-Hua; Wang, Zi-Qiang; Li, Yin-Mei
2014-11-03
Optical trapping of core-shell magnetic microparticles is experimentally demonstrated by using cylindrical vector beams. Second, we investigate the optical trapping efficiencies. The results show that radially and azimuthally polarized beams exhibit higher axial trapping efficiencies than the Gaussian beam. Finally, a trapped particle is manipulated to kill a cancer cell. The results make possible utilizing magnetic particles for optical manipulation, which is an important advantage for magnetic particles as labeling agent in targeted medicine and biological analysis.
Cantilever magnetometry in pulsed magnetic fields
NASA Astrophysics Data System (ADS)
Naughton, M. J.; Ulmet, J. P.; Narjis, A.; Askenazy, S.; Chaparala, M. V.; Hope, A. P.
1997-11-01
The technique of cantilever magnetometry is shown to be functional in pulsed magnetic fields. Employing micromachined single crystal silicon cantilevers and capacitance detection, we demonstrated a utilizable sensitivity to magnetic moment of 2.510-12 Am2 in magnetic fields to 36 T, representing an improvement of more than a factor of 10 over competing technologies. Torque magnetization measurements on microcrystals of anisotropic superconductors are presented as evidence of the feasibility of the technique in long pulse magnets of pulse duration 0.1-1 s.
Current-Produced Magnetic Field Effects on Current Collection
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Stone, N. H.; Whitaker, Ann F. (Technical Monitor)
2002-01-01
Current collection by an infinitely long, conducting cylinder in a magnetized plasma, taking into account the magnetic field of the collected current, is discussed. A region of closed magnetic surfaces disconnects the cylinder from infinity. Due to this, the collected current depends on the ratio between this region and the plasma sheath region and, under some conditions, current reduction arises. The current collection along a realistic "bare wire" space tether is considered. A number of factors are taken into account, including the resistance of the wire and shielding resulting from the current-induced magnetic field produced by current flow in the tether. The plasma density, tether length and radius, the geomagnetic field strength and angle to the orbital velocity vector were all used as parameters in the study. It is shown that magnetic shielding for certain tether system configurations, when combined with particular values of the governing parameters, significantly reduces the collected current. Specifically, it is shown that an electrodynamic tether in the "thruster" mode suffers greater reduction from magnetic shielding than a tether with the same characteristics deployed in the "generator" mode. We find that, for both modes, current-induced magnetic shielding becomes more significant as plasma density and wire radius increase. The same is true for the dependence on the angle of the geomagnetic field to the orbital velocity vector and the motion-induced electric field for the generator mode For the thruster mode, the effect is larger for smaller angles. In both operating modes, the shielding is more important for smaller angles between the tether and magnetic field. In addition to the above dependencies, the effect for the thruster mode essentially depends on the tether length. In general, any parametric change that increases tether current, relative to the strength of the electric field between the tether and the ambient plasma, will increase the shielding effect (thereby reducing overall tether current compared to the case without considering these effects). The effect of the induced magnetic shielding can be significant in some cases.
Vector form factor of the pion in chiral effective field theory
NASA Astrophysics Data System (ADS)
Djukanovic, D.; Gegelia, J.; Keller, A.; Scherer, S.; Tiator, L.
2015-03-01
The vector form factor of the pion is calculated in the framework of chiral effective field theory with vector mesons included as dynamical degrees of freedom. To construct an effective field theory with a consistent power counting, the complex-mass scheme is applied.
Magnetic field evolution of accreting neutron stars
NASA Astrophysics Data System (ADS)
Istomin, Y. N.; Semerikov, I. A.
2016-01-01
The flow of a matter, accreting on to a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of the crust along the magnetic field greatly exceeds the conductivity across the field, so the current penetrates deep into the crust down up to the superconducting core. The magnetic field, generated by the accretion current, increases greatly with the depth of penetration due to the Hall conductivity of the crust is also much larger than the transverse conductivity. As a result, the current begins to flow mainly in the toroidal direction, creating a strong longitudinal magnetic field, far exceeding an initial dipole field. This field exists only in the narrow polar tube of r width, narrowing with the depth, i.e. with increasing of the crust density ρ, r ∝ ρ-1/4. Accordingly, the magnetic field B in the tube increases with the depth, B∝ρ1/2, and reaches the value of about 1017 Gauss in the core. It destroys superconducting vortices in the core of a star in the narrow region of the size of the order of 10 cm. Because of generated density gradient of vortices, they constantly flow into this dead zone and the number of vortices decreases, the magnetic field of a star decreases as well. The attenuation of the magnetic field is exponential, B = B0(1 + t/τ)-1. The characteristic time of decreasing of the magnetic field τ is equal to τ ≃ 103 yr. Thus, the magnetic field of accreted neutron stars decreases to values of 108-109 Gauss during 107-106 yr.
Magnetic fields in Neutron Stars
NASA Astrophysics Data System (ADS)
Viganò, D.; Pons, J. A.; Miralles, J. A.; Rea, N.
2015-05-01
Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.
Magnetic field shielding project. Final report
Fugate, D.; Whittemore, T.R.; Feero, W.E.; Hoburg, J.F.; Olsen, R.G.
1998-11-01
Magnetic field management research at EPRI has had three major components: transmission, distribution, and shielding. Shielding people and equipment from 60-Hz magnetic fields provided a particularly challenging objective. Although much was known and the science was well developed for shielding radio frequency fields, little was known about shielding power frequency fields. EPRI mounted a large research effort that reviewed basic principles; developed theory and practice; performed tests and verifications; and produced software and guides for design of effective shields.
Relaxed plasmas in external magnetic fields
Spies, G.O. ); Li, J. )
1994-09-01
The extension of the theory of relaxed plasmas to external magnetic fields whose field lines intersect the wall is concisely formulated and then applied to the Extrap experiment [J. R. Drake, Plasma Phys. Controlled Fusion [bold 26], 387 (1984)]. It is found that the external octupole field, though not affecting the phenomenon of current saturation, inhibits field reversal at parts of the wall if it is sufficiently strong to generate magnetic x points within the plasma.
Belinsky, Moisey I
2016-05-01
We consider the frustration, magnetochiral correlations, temperature and distortion dependences of the vector and scalar chiralities, magnetization, and orbital angular momentum of the Cu3 and V3 nanomagnets in the rotating magnetic field, as well as the spin chiralities and frustration in the tilted magnetic field, the joint frustrated rotation behavior of the correlated spin chiralities and magnetization. Spin chiralities and magnetization demonstrate strong frustration in the rotating and tilted magnetic fields. An increase of the temperature and trimer distortions results in the reduction of the chiralities and frustration. The equilateral and distorted clusters with large Dzialoshinsky-Moriya (DM) parameters are characterized by the large spin chirality. An increase of the strength of the tilted magnetic field Hζ leads to the inhomogeneous polar rotation of the chirality and magnetization vectors, which depends on the temperature. PMID:27070817