Sample records for vector wind change

  1. Analysis of vector wind change with respect to time for Cape Kennedy, Florida: Wind aloft profile change vs. time, phase 1

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    1977-01-01

    Wind vector change with respect to time at Cape Kennedy, Florida, is examined according to the theory of multivariate normality. The joint distribution of the four variables represented by the components of the wind vector at an initial time and after a specified elapsed time is hypothesized to be quadravariate normal; the fourteen statistics of this distribution, calculated from fifteen years of twice daily Rawinsonde data are presented by monthly reference periods for each month from 0 to 27 km. The hypotheses that the wind component changes with respect to time is univariate normal, the joint distribution of wind component changes is bivariate normal, and the modulus of vector wind change is Rayleigh, has been tested by comparison with observed distributions. Statistics of the conditional bivariate normal distributions of vector wind at a future time given the vector wind at an initial time are derived. Wind changes over time periods from one to five hours, calculated from Jimsphere data, are presented.

  2. Vector wind profile gust model

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    1979-01-01

    Work towards establishing a vector wind profile gust model for the Space Transportation System flight operations and trade studies is reported. To date, all the statistical and computational techniques required were established and partially implemented. An analysis of wind profile gust at Cape Kennedy within the theoretical framework is presented. The variability of theoretical and observed gust magnitude with filter type, altitude, and season is described. Various examples are presented which illustrate agreement between theoretical and observed gust percentiles. The preliminary analysis of the gust data indicates a strong variability with altitude, season, and wavelength regime. An extension of the analyses to include conditional distributions of gust magnitude given gust length, distributions of gust modulus, and phase differences between gust components has begun.

  3. Wind Vectors for Hurricane Erin (WMS)

    NSDL National Science Digital Library

    Eric Sokolowsky

    2004-02-11

    This visualization shows wind vectors for Hurricane Erin on September 10, 2001. Wind direction and speed are represented by the direction and speed of moving arrows, respectively. This animation represents a single measurement taken by the SeaWinds instrument on the QuikSCAT satellite, taken at 14:27:00 UTC on September 10, 2001. The WMS version of this animation which is available through the SVS Image Server (http:--aes.gsfc.nasa.gov) presents this animation with a different timestamp for each frame in order to more easily present the images as an animation. It should be noted that each frame really has a time stamp of 2001-09-10 14:27:00 UTC.

  4. SSM/I and ECMWF Wind Vector Comparison

    NASA Technical Reports Server (NTRS)

    Wentz, Frank J.; Ashcroft, Peter D.

    1996-01-01

    Wentz was the first to convincingly show that satellite microwave radiometers have the potential to measure the oceanic wind vector. The most compelling evidence for this conclusion was the monthly wind vector maps derived solely from a statistical analysis of Special Sensor Microwave Imager (SSM/I) observations. In a qualitative sense, these maps clearly showed the general circulation over the world's oceans. In this report we take a closer look at the SSM/I monthly wind vector maps and compare them to European Center for Medium-Range Weather Forecasts (ECMWF) wind fields. This investigation leads both to an empirical comparison of SSM/I calculated wind vectors with ECMWF wind vectors, and to an examination of possible reasons that the SSM/I calculated wind vector direction would be inherently more reliable at some locations than others.

  5. The winds of change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind-based power generation has been growing steadily in the United States and around the world, and this growth will continue—and accelerate—in the future, as the following background statistics demonstrate. The U.S. wind industry installed 8,358 megawatts (MW) of new wind generating capacity in 20...

  6. Rapid Temporal Changes of Midtropospheric Winds

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.

    1997-01-01

    The statistical distribution of the magnitude of the vector wind change over 0.25-, 1-, 2-. and 4-h periods based on data from October 1995 through March 1996 over central Florida is presented. The wind changes at altitudes from 6 to 17 km were measured using the Kennedy Space Center 50-MHz Doppler radar wind profiler. Quality controlled profiles were produced every 5 min for 112 gates, each representing 150 m in altitude. Gates 28 through 100 were selected for analysis because of their significance to ascending space launch vehicles. The distribution was found to be lognormal. The parameters of the lognormal distribution depend systematically on the time interval. This dependence is consistent with the behavior of structure functions in the f(exp 5/3) spectral regime. There is a small difference between the 1995 data and the 1996 data, which may represent a weak seasonal effect.

  7. Space vector PWM control of dual inverter fed open-end winding induction motor drive

    Microsoft Academic Search

    E. G. Shivakumar; K. Gopakumar; S. K. Sinha; Andrei Pittet; V. T. Ranganathan

    2001-01-01

    A space vector PWM technique is developed based on the combination of space vectors from dual inverters feeding the induction motor from both ends (open-end winding without neutral point). A total of 64 voltage space vector combinations are available for PWM voltage control of the inverter fed machine with open-end winding. A space phasor based PWM scheme is proposed with

  8. Vector Wind Velocity, Speed, and Mode Summaries for the Southeastern U. S.

    SciTech Connect

    WEBER, ALLENH.

    2004-08-18

    This report presents wind speed and direction summaries for a wide area of the Southeastern United States (including EPA Region 4) and portions of the Ohio and Mississippi River Valleys in a monthly time series format that is further broken down for eight hours of the day (01:00, 04:00, 07:00, 10:00, 13:00, 16:00, 19:00, 22:00 EST). The data used for these summaries were obtained from the International Station MeteorologicalClimate Summary (FCCA, 1996), a publicly available source of tabular data from weather stations around the world distributed through the National Climatic Data Center. The advantage of examining the data in the form presented in this report is that it is far easier to examine and understand regional and diurnal weather patterns than would be possible with the tabular data in its original format. The winds presented here can be viewed online in any of three formats through an Internet link. The first format is the traditional wind rose as used in our earlier reports f or 13 stations in the Southeast, c.f., Weber, Buckley, and Parker 2002 and Weber, Buckley, and Kurzeja 2003. The second format is the mode, or most frequent wind direction sector from the wind rose plots (i.e., the longest ''petal'' from the individual station roses). Finally, the third format depicted is the average wind vector. The average wind vector was determined by extracting the wind speed and direction for each of the 16 sectors from a station's wind record and then summing components of these vectors for the month and time of observation. Each station was then plotted on a sequence of maps for the Southeastern U.S. using ArcView software. These maps form a time series in 3-hour increments showing changes in vector wind speed and direction for each month of the year. The complete set of color figures are too numerous to be included in this report, but may be accessed by contacting one of the authors.

  9. Two-component horizontal wind vectors from the Raman-shifted Eye-safe Aerosol Lidar (REAL)

    NASA Astrophysics Data System (ADS)

    Mayor, S. D.

    2012-12-01

    Two-component horizontal wind vectors were calculated by applying a cross-correlation algorithm to square image blocks extracted from consecutive pairs of elastic backscatter lidar scans. The resulting vector components were compared with corresponding horizontal wind components from tower-mounted sonic anemometers located at the center of the image blocks at a range of 1.61 km. 180245 pairs of vectors derived from 75 days of field data collected between 19 March and 11 June 2007 were used in the analysis. Examples of time series comparisons from 4-h periods during light, strong, and changing wind conditions will be presented. The correlation between lidar-derived components and sonic anemometer components changes as a function of the mean backscatter signal-to-noise ratio (SNR) in the block area, maxima of the cross-correlation function (CCF), observed wind speed, and turbulent kinetic energy (TKE). The correlation between the lidar-derived velocity components and sonic anemometer wind components tends to be highest during light wind conditions with low TKE. Although the correlation of high frequency perturbations tends to be poor during windy and turbulent conditions, the technique is capable of sensing the mean flow. Examples of 2-dimensional, 2-component, flow fields will be presented. The NSF/NCAR REAL at California State University Chico. Streamlined flow field from 2-component vectors derived from 2 scans of the REAL and application of the cross-correlation technique. The area of the image spans 4 km by 4 km.

  10. Time changes in gradient and observed winds

    E-print Network

    Carlson, Ronald Dale

    1972-01-01

    and the tangen- tial acceleration. It would be'nice to conclude that any differences between changes in the gradient wind and changes in the actual wind are due to the frictional force and/or tangential acceleration. However, Mantis (1968) points out...

  11. Ocean Surface Vector Wind: Research Challenges and Operational Opportunities

    NASA Technical Reports Server (NTRS)

    Halpern, David

    2012-01-01

    The atmosphere and ocean are joined together over seventy percent of Earth, with ocean surface vector wind (OSVW) stress one of the linkages. Satellite OSVW measurements provide estimates of wind divergence at the bottom of the atmosphere and wind stress curl at the top of the ocean; both variables are critical for weather and climate applications. As is common with satellite measurements, a multitude of OSVW data products exist for each currently operating satellite instrument. In 2012 the Joint Technical Commission on Oceanography and Marine Meteorology (JCOMM) launched an initiative to coordinate production of OSVW data products to maximize the impact and benefit of existing and future OSVW measurements in atmospheric and oceanic applications. This paper describes meteorological and oceanographic requirements for OSVW data products; provides an inventory of unique data products to illustrate that the challenge is not the production of individual data products, but the generation of harmonized datasets for analysis and synthesis of the ensemble of data products; and outlines a vision for JCOMM, in partnership with other international groups, to assemble an international network to share ideas, data, tools, strategies, and deliverables to improve utilization of satellite OSVW data products for research and operational applications.

  12. Single-Vector Calibration of Wind-Tunnel Force Balances

    NASA Technical Reports Server (NTRS)

    Parker, P. A.; DeLoach, R.

    2003-01-01

    An improved method of calibrating a wind-tunnel force balance involves the use of a unique load application system integrated with formal experimental design methodology. The Single-Vector Force Balance Calibration System (SVS) overcomes the productivity and accuracy limitations of prior calibration methods. A force balance is a complex structural spring element instrumented with strain gauges for measuring three orthogonal components of aerodynamic force (normal, axial, and side force) and three orthogonal components of aerodynamic torque (rolling, pitching, and yawing moments). Force balances remain as the state-of-the-art instrument that provide these measurements on a scale model of an aircraft during wind tunnel testing. Ideally, each electrical channel of the balance would respond only to its respective component of load, and it would have no response to other components of load. This is not entirely possible even though balance designs are optimized to minimize these undesirable interaction effects. Ultimately, a calibration experiment is performed to obtain the necessary data to generate a mathematical model and determine the force measurement accuracy. In order to set the independent variables of applied load for the calibration 24 NASA Tech Briefs, October 2003 experiment, a high-precision mechanical system is required. Manual deadweight systems have been in use at Langley Research Center (LaRC) since the 1940s. These simple methodologies produce high confidence results, but the process is mechanically complex and labor-intensive, requiring three to four weeks to complete. Over the past decade, automated balance calibration systems have been developed. In general, these systems were designed to automate the tedious manual calibration process resulting in an even more complex system which deteriorates load application quality. The current calibration approach relies on a one-factor-at-a-time (OFAT) methodology, where each independent variable is incremented individually throughout its full-scale range, while all other variables are held at a constant magnitude. This OFAT approach has been widely accepted because of its inherent simplicity and intuitive appeal to the balance engineer. LaRC has been conducting research in a "modern design of experiments" (MDOE) approach to force balance calibration. Formal experimental design techniques provide an integrated view to the entire calibration process covering all three major aspects of an experiment; the design of the experiment, the execution of the experiment, and the statistical analyses of the data. In order to overcome the weaknesses in the available mechanical systems and to apply formal experimental techniques, a new mechanical system was required. The SVS enables the complete calibration of a six-component force balance with a series of single force vectors.

  13. A Novel Empirical Mode Decomposition With Support Vector Regression for Wind Speed Forecasting.

    PubMed

    Ren, Ye; Suganthan, Ponnuthurai Nagaratnam; Srikanth, Narasimalu

    2014-09-11

    Wind energy is a clean and an abundant renewable energy source. Accurate wind speed forecasting is essential for power dispatch planning, unit commitment decision, maintenance scheduling, and regulation. However, wind is intermittent and wind speed is difficult to predict. This brief proposes a novel wind speed forecasting method by integrating empirical mode decomposition (EMD) and support vector regression (SVR) methods. The EMD is used to decompose the wind speed time series into several intrinsic mode functions (IMFs) and a residue. Subsequently, a vector combining one historical data from each IMF and the residue is generated to train the SVR. The proposed EMD-SVR model is evaluated with a wind speed data set. The proposed EMD-SVR model outperforms several recently reported methods with respect to accuracy or computational complexity. PMID:25222957

  14. Climate Change: Potential Affect on Pesticide Application for Vector Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global climate change has and will in the future contribute to the global burden of vector-borne disease by affecting the spatial and tempral distribution of disease. These changes in disease distributions are a direct result of altering the ecology of immature and adult habitats of insect vectors....

  15. Short-Term Wind Power Prediction Using a Wavelet Support Vector Machine

    Microsoft Academic Search

    Jianwu Zeng; Wei Qiao

    2012-01-01

    This paper proposes a wavelet support vector machine (WSVM)-based model for short-term wind power prediction (WPP). A new wavelet kernel is proposed to improve the generalization ability of the support vector machine (SVM). The proposed kernel has such a general characteristic that some commonly used kernels are its special cases. Simulation studies are carried to validate the proposed model with

  16. Mode changing stability of wind turbine in an integrated wind turbine and rechargeable battery system

    Microsoft Academic Search

    Christine A. Mecklenborg; Dushyant Palejiya; John F. Hall; Dongmei Chen

    2011-01-01

    Power generated by wind turbines changes due to variation in wind speed that is independent of the load power. Rechargeable batteries could be used as a reserve power source to alleviate unbalance between the load power and power generated by wind turbines. A supervisory controller is proposed for an integrated wind turbine-battery system (wind turbine electrically connected to a rechargeable

  17. Measurement of oceanic wind vector using satellite microwave radiometers

    Microsoft Academic Search

    Frank J. Wentz

    1992-01-01

    The possibility of retrieving both wind speed and direction from microwave radiometer measurements of the ocean is studied using Special Sensor Microwave\\/Imager (SSM\\/I) measurements collocated with buoy reports from the National Data Buoy Center (NDBC). A physically based algorithm is used to retrieve the wind speed. The RMS difference between the SSM\\/I and buoy wind speed is 1.6 m\\/s for

  18. Vector Fields

    NSDL National Science Digital Library

    Dray, Tevian

    2006-01-01

    Vector fields are vectors which change from point to point. A standard example is the velocity of moving air, in other words, wind. For instance, the current wind pattern in the San Francisco area can be found at . This site has a 2-dimensional representation; careful reading of the webpage will tell you at what elevation the wind is shown. How would you represent a vector field in 3 dimensions? What features are important? Some simple examples are shown. Each can be rotated by clicking and dragging with the mouse. Explore!

  19. An operational satellite scatterometer for wind vector measurements over the ocean

    NASA Technical Reports Server (NTRS)

    Grantham, W. L.; Bracalente, E. M.; Jones, W. L.; Schrader, J. H.; Schroeder, L. C.; Mitchell, J. L.

    1975-01-01

    Performance requirements and design characteristics of a microwave scatterometer wind sensor for measuring surface winds over the oceans on a global basis are described. Scatterometer specifications are developed from user requirements of wind vector measurement range and accuracy, swath width, resolution cell size and measurement grid spacing. A detailed analysis is performed for a baseline fan-beam scatterometer design, and its performance capabilities for meeting the SeaSat-A user requirements. Various modes of operation are discussed which will allow the resolution of questions concerning the effects of sea state on the scatterometer wind sensing ability and to verify design boundaries of the instrument.

  20. Estimating daily wind speed under climate change

    Microsoft Academic Search

    Istvan Bogardi; Istvan Matyasovzky

    1996-01-01

    A semi-empirical downscaling approach is presented to estimate spatial and temporal statistical properties of local daily mean wind speed under global climate change. The present semi-empirical downscaling method consists of two elements. Since general circulation models (GCMs) are able to reproduce the features of the present atmospheric general circulation quite correctly, the first element represents the large-scale circulation of the

  1. Control strategies for enhanced power smoothing in wind energy systems using a flywheel driven by a vector-controlled induction machine

    Microsoft Academic Search

    Roberto Cárdenas; Rubén Peña; Greg Asher; Jon Clare

    2001-01-01

    This paper presents a novel control strategy for power smoothing in wind energy applications, especially those feeding a stand-alone load. The system is based on a vector-controlled induction machine driving a flywheel and addresses the problem of regulating the DC-link system voltage against both input power surges\\/sags from a wind turbine or sudden changes in load demand. The control is

  2. Global Change and Human Vulnerability to Vector-Borne Diseases

    PubMed Central

    Sutherst, Robert W.

    2004-01-01

    Global change includes climate change and climate variability, land use, water storage and irrigation, human population growth and urbanization, trade and travel, and chemical pollution. Impacts on vector-borne diseases, including malaria, dengue fever, infections by other arboviruses, schistosomiasis, trypanosomiasis, onchocerciasis, and leishmaniasis are reviewed. While climate change is global in nature and poses unknown future risks to humans and natural ecosystems, other local changes are occurring more rapidly on a global scale and are having significant effects on vector-borne diseases. History is invaluable as a pointer to future risks, but direct extrapolation is no longer possible because the climate is changing. Researchers are therefore embracing computer simulation models and global change scenarios to explore the risks. Credible ranking of the extent to which different vector-borne diseases will be affected awaits a rigorous analysis. Adaptation to the changes is threatened by the ongoing loss of drugs and pesticides due to the selection of resistant strains of pathogens and vectors. The vulnerability of communities to the changes in impacts depends on their adaptive capacity, which requires both appropriate technology and responsive public health systems. The availability of resources in turn depends on social stability, economic wealth, and priority allocation of resources to public health. PMID:14726459

  3. Sensorless vector control of induction machines for variable-speed wind energy applications

    Microsoft Academic Search

    Roberto Cárdenas; Rubén Peña

    2004-01-01

    A sensorless vector-control strategy for an induction generator in a grid-connected wind energy conversion system is presented. The sensorless control system is based on a model reference adaptive system (MRAS) observer to estimate the rotational speed. In order to tune the MRAS observer and compensate for the parameter variation and uncertainties, a separate estimation of the speed is obtained from

  4. Vector controlled induction machines for stand-alone wind energy applications

    Microsoft Academic Search

    R. S. Pena; R. J. Cardenas; G. M. Asher; J. C. Clare

    2000-01-01

    This paper describes the system and control structures for vector controlled induction generators used for variable speed, wind energy conversion (WEC) systems. The paper focuses on WEC systems feeding an isolated load or weak grid since for such systems the generated voltage and power flow must be regulated by the WEC system itself and the control structures are not trivial.

  5. A Vector Control for Grid-connected Wind Power Generation with Doubly Fed Induction Generator

    NASA Astrophysics Data System (ADS)

    Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio

    Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation due to high efficiently for wind energy capture. An inverter system is required to control wind turbine speed and power factor in those generators. The inverter rating of the synchronous generator equals to generator rating. However, DFIG has the advantage that the inverter rating is about 25% to the generator rating. The paper describes a vector control of DFIG inter-connected to power line. The performance of proposed vector control is examined using power system simulation software PSCAD/EMTDC for the DFIG inter-connected to 6.6kv distribution line. The results show good dynamic responses and high accuracy to the stator active power control and the stator reactive power control.

  6. Integrating the ASCAT Observations into a Climate Data Record of Ocean Vector Winds

    NASA Astrophysics Data System (ADS)

    Ricciardulli, Lucrezia; Meissner, Thomas; Wentz, Frank

    2013-04-01

    Ocean surface vector winds have been continuously observed from space since 1991, starting with the ERS scatterometer, followed later by a series of other scatterometers. These measurements have been proved extremely useful for improving the skill of numerical weather forecasts. With a timeseries extending now to more than 20 years, these measurements can provide great insight into the climate variability of surface wind patterns. Integrating all the measurements from different sensors into a continuous and accurate timeseries suitable for climate analysis is however a challenging task. An essential requirement for this purpose is the consistency among wind retrievals from different sensors at all wind speed ranges. Here we present our methodology for creating a Climate Data Record of ocean vector winds. We first started with reprocessing the QuikSCAT wind measurements for the whole mission (1999-2009) by using a new Geophysical Model Function (GMF) specifically redeveloped for improving retrievals at high wind speeds. The new GMF Ku-2011 (Ricciardulli and Wentz, 2011) was developed using wind retrievals from the WindSat radiometer as calibration for the scatterometer backscatter ratio. WindSat wind speeds are believed to be accurate for winds up to at least 35 m/s (Meissner and Wentz, 2009). In order to continue the timeseries after the end of the QuikSCAT mission, we focused on developing a new GMF for the European scatterometer ASCAT, which started in 2007 and is planned to continue for several years. The motivation behind redeveloping the GMF, rather than using the operational one, is based on the necessity of a consistent methodology to reduce biases when combining QuikSCAT with ASCAT in a Climate Data Record. The new ASCAT GMF was developed calibrating the backscatter ratio to the wind speeds from the SSM/I and WindSat radiometers. A preliminary version of the RSS ASCAT winds has been recently produced. Here we will discuss the validation of these retrievals versus in situ observations and winds from other satellite missions. Particular emphasis will be on the comparison with the QuikSCAT retrievals during the overlapping period (2007-2009), in terms of overall consistency at all wind speed ranges and careful analysis of any regional bias. One important feature to keep in mind is the temporal gap in the local observing time of the two scatterometers (about 3-4 hours). This temporal gap can give raise to regional biases and diurnal aliasing in the merged timeseries if the diurnal cycle of ocean winds is not properly accounted for. An additional check for consistency and any potential temporal drift in the QuikSCAT and ASCAT timeseries is done by comparing them with the wind speed timeseries from the SSM/I and SSMIS radiometers. Once we ascertain the feasibility of merging QuikSCAT and ASCAT measurements with the required climate-quality accuracy, the Climate Data Record can be extended back in time to 1991 by using the same methodology for the European scatterometers ERS-1 and 2. This intercalibrated data set would then provide two decades of global ocean vector winds, suitable for climate research.

  7. [Vector transmitted diseases and climate changes in Europe].

    PubMed

    Rossati, Antonella; Bargiacchi, Olivia; Kroumova, Vesselina; Garavelli, Pietro Luigi

    2014-09-01

    The increase in temperatures recorded since the mid-nineteenth century is unprecedented in the history of mankind. The consequences of climate changes are numerous and can affect human health through direct (extreme events, natural disasters) or indirect (alteration of the ecosystem) mechanisms. Climate changes have repercussions on ecosystems, agriculture, social conditions, migration, conflicts and the transmission mode of infectious diseases. Vector-borne diseases are infections transmitted by the bite of infected arthropods such as mosquitoes, ticks, triatomines, sand flies and flies. Epidemiological cornerstones of vector-borne diseases are: the ecology and behaviour of the host, the ecology and behaviour of the vector, and the population's degree of immunity. Mosquito vectors related to human diseases mainly belong to the genus Culex, Aedes and Mansonia. Climate changes in Europe have increased the spread of new vectors, such as Aedes albopictus, and in some situations have made it possible to sustain the autochthonous transmission of some diseases (outbreak of Chukungunya virus in northern Italy in 2007, cases of dengue in the South of France and in Croatia). Despite the eradication of malaria from Europe, anopheline carriers are still present, and they may allow the transmission of the disease if the climatic conditions favour the development of the vectors and their contacts with plasmodium carriers. The tick Ixodes ricinus is a vector whose expansion has been documented both in latitude and in altitude in relation to the temperature increase; at the same time the related main viral and bacterial infections have increased. In northern Italy and Germany, the appearance of Leishmaniasis has been associated to climatic conditions that favour the development of the vector Phlebotomus papatasi and the maturation of the parasite within the vector, although the increase of cases of visceral leishmaniasis is also related to host immune factors, particularly immunodepression caused by the human immunodeficiency virus (HIV). Despite the importance of global warming in facilitating the transmission of certain infectious diseases, due consideration must be taken of the role played by other variables, such as the increase in international travel, migration and trade, with the risk of importing parasites and vectors with the goods. In addition, the control of certain infections was possible in the past through improvements in socio-economic conditions of affected populations. However, the reduction in resources allocated to health care has recently led to the re-emergence of diseases that were considered eradicated. PMID:25269959

  8. The influence of small-scale sea surface temperature gradients on surface vector winds and subsequent impacts on oceanic Ekman pumping

    NASA Astrophysics Data System (ADS)

    Hughes, Paul J.

    Satellite observations have revealed a small-scale (< 1000 km) air--sea coupling in regions of strong sea surface temperature (SST) gradients (e.g., fronts, currents, eddies, and tropical instability waves), where the surface wind and wind stress are modified. Surface winds and wind stresses are persistently higher over the warm side of the SST front compared to the cool side, causing perturbations in the dynamically and thermodynamically curl and divergence fields. Capturing this small-scale SST--wind variability is important because it can significantly impact both local and remote (i.e., large scale) oceanic and atmospheric processes. The SST--wind relationship is not well represented in numerical weather prediction (NWP) and climate models, and the relative importance of the physical processes that are proposed to be responsible for this relationship is actively and vehemently debated. This study focuses on the physical mechanisms that are primarily responsible for the SST-induced changes in surface wind and wind stress, and on the physical implication on ocean forcing through Ekman pumping. The roles that SST-induced atmospheric baroclinicity and boundary-layer stability play in modifying the surface vector wind in regions of strong SST gradients are examined with an idealized model. Modeled changes in surface wind speed due to changes in atmospheric boundary-layer stability and baroclinicity are largely between -2.0 and 2.0 m s-1, which is consistent with past observational findings. The baroclinic-related changes in the surface vector wind are found to have a largely linear dependence on the SST gradient, whereas the stability-related changes are highly non-linear. The linearity of the baroclinic impacts matches that of the observed (satellite and in situ) SST--wind relationship. This result suggests that the baroclinic-related mechanism is the leading factor in driving the observed surface wind response to strong open ocean SST fronts on scales greater than 25 km. This study shows that the baroclinic-related changes in Ekman pumping are significant (first-order) over a seasonal (2003 winter season) time scale and that the small-scale impacts are quite important over larger spatial scales. These findings highlight the need to consider the small-scale SST--wind relationship even in coarser resolution model simulation, for which it may be feasible to parameterize because of the linear nature of the baroclinic-related effects.

  9. Angular Distribution of Solar Wind Magnetic Field Vector at 1 Au

    NASA Astrophysics Data System (ADS)

    Xu, F.; Li, G.; Zhao, L.; Zhang, Y.; Khabarova, O.; Miao, B.; le Roux, J.

    2015-03-01

    We study the angular distribution of the solar wind magnetic field vector at 1 AU and its solar cycle dependence using ACE observations. A total of twelve 27.27 day (the duration of a solar rotation) intervals during the solar maximum, the solar minimum, as well as the ascending and descending phases of solar cycle 23 are examined. For all selected intervals, we obtain the angular distribution function {{f}? }(? ), where ? is the angle between the instantaneous solar wind magnetic field vector and the average background magnetic field vector, and ? is the period length for the averaging. Our results show that in all periods {{f}? }(? ) has two populations, one at small angles and one at large angles. We suggest that the second population is due to the presence of current sheets in the solar wind. The solar-cycle dependence of {{f}? }(? ) and a ?-scaling property of the second population of {{f}? }(? ) are discussed. The ? scaling shows a clear dependence on the solar wind type. The implication of {{f}? }(? ) for particle acceleration at interplanetary shocks driven by coronal mass ejections, such as those in solar energetic particle events, is also discussed.

  10. Surface Wind Vector and Rain Rate Observation Capability of Future Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Miller, Timothy; Atlas, Robert; Bailey, M. C.; Black, Peter; El-Nimri, Salem; Hood, Robbie; James, Mark; Johnson, James; Jones, Linwood; Ruf, Christopher; Uhlhorn, Eric

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is the next-generation Stepped Frequency Microwave Radiometer (SFMR), and it will offer the capability of simultaneous wide-swath observations of both extreme ocean surface wind vector and strong precipitation from either aircraft (including UAS) or satellite platforms. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce valid wind observations under hurricane conditions when existing microwave sensors (radiometers or scatterometers) are hindered by precipitation. The SFMR i s a proven aircraft remote sensing system for simultaneously observing extreme ocean surface wind speeds and rain rates, including those of major hurricane intensity. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer technology. The first version of the instrument will be a single polarization system for wind speed and rain rate, with a dual-polarization system to follow for wind vector capability. This sensor will operate over 4-7 GHz (C-band frequencies) where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometers. HIRAD incorporates a unique, technologically advanced array antenna and several other technologies successfully demonstrated by NASA s Instrument Incubator Program. A brassboard (laboratory) version of the instrument has been completed and successfully tested in a test chamber. Development of the aircraft instrument is underway, with flight testing planned for the fall of 2009. Preliminary Observing System Simulation Experiments (OSSEs) show that HIRAD will have a significant positive impact on surface wind analyses as either a new aircraft or satellite sensor. New off-nadir data collected in 2008 by SFMR that affirms the ability of this measurement technique to obtain wind speed data at non-zero incidence angle will be presented, as well as data from the brassboard instrument chamber tests.

  11. Immunology, climate change and vector-borne diseases

    Microsoft Academic Search

    Jonathan A Patz; William K Reisen

    2001-01-01

    Global climate change might expand the distribution of vector-borne pathogens in both time and space, thereby exposing host populations to longer transmission seasons, and immunologically naive populations to newly introduced pathogens. In the African highlands, where cool temperatures limit malaria parasite development, increases in temperature might enhance malaria transmission. St Louis encephalitis viral replication and the length of the transmission

  12. Global climate change and vector-borne diseases

    USGS Publications Warehouse

    Ginsberg, H.S.

    2002-01-01

    Global warming will have different effects on different diseases because of the complex and idiosynchratic interactions between vectors, hosts, and pathogens that influence transmission dynamics of each pathogen. Human activities, including urbanization, rapid global travel, and vector management, have profound effects on disease transmission that can operate on more rapid time scales than does global climate change. The general concern about global warming encouraging the spread of tropical diseases is legitimate, but the effects vary among diseases, and the ecological implications are difficult to predict.

  13. Noise model based ?-support vector regression with its application to short-term wind speed forecasting.

    PubMed

    Hu, Qinghua; Zhang, Shiguang; Xie, Zongxia; Mi, Jusheng; Wan, Jie

    2014-09-01

    Support vector regression (SVR) techniques are aimed at discovering a linear or nonlinear structure hidden in sample data. Most existing regression techniques take the assumption that the error distribution is Gaussian. However, it was observed that the noise in some real-world applications, such as wind power forecasting and direction of the arrival estimation problem, does not satisfy Gaussian distribution, but a beta distribution, Laplacian distribution, or other models. In these cases the current regression techniques are not optimal. According to the Bayesian approach, we derive a general loss function and develop a technique of the uniform model of ?-support vector regression for the general noise model (N-SVR). The Augmented Lagrange Multiplier method is introduced to solve N-SVR. Numerical experiments on artificial data sets, UCI data and short-term wind speed prediction are conducted. The results show the effectiveness of the proposed technique. PMID:24874183

  14. A spaceborne LFM scatterometer for ocean surface wind vector measurement-a time domain approach

    Microsoft Academic Search

    N. S. Pillai; A. M. Jha; TAPAN MISRA

    1988-01-01

    The limitations of the currently used continuous-wave-pulse (CW-pulse) spaceborne scatterometers for wind-vector retrieval are reviewed. The disadvantages due to purely time-domain or frequency-domain (Doppler filtering) approaches are described. To overcome the limitations of these methods, a modified scheme is proposed wherein the pulse transmitted is linearly frequency modulated (LFM) and the processing is carried out in the time domain. This

  15. Effects of Changing Atmospheric Conditions on Wind Turbine Performance (Poster)

    SciTech Connect

    Clifton, A.

    2012-12-01

    Multi-megawatt, utility-scale wind turbines operate in turbulent and dynamic winds that impact turbine performance in ways that are gradually becoming better understood. This poster presents a study made using a turbulent flow field simulator (TurbSim) and a Turbine aeroelastic simulator (FAST) of the response of a generic 1.5 MW wind turbine to changing inflow. The turbine power output is found to be most sensitive to wind speed and turbulence intensity, but the relationship depends on the wind speed with respect to the turbine's rated wind speed. Shear is found to be poorly correlated to power. A machine learning method called 'regression trees' is used to create a simple model of turbine performance that could be used as part of the wind resource assessment process. This study has used simple flow fields and should be extended to more complex flows, and validated with field observations.

  16. Climate change and vector-borne diseases: a regional analysis.

    PubMed Central

    Githeko, A. K.; Lindsay, S. W.; Confalonieri, U. E.; Patz, J. A.

    2000-01-01

    Current evidence suggests that inter-annual and inter-decadal climate variability have a direct influence on the epidemiology of vector-borne diseases. This evidence has been assessed at the continental level in order to determine the possible consequences of the expected future climate change. By 2100 it is estimated that average global temperatures will have risen by 1.0-3.5 degrees C, increasing the likelihood of many vector-borne diseases in new areas. The greatest effect of climate change on transmission is likely to be observed at the extremes of the range of temperatures at which transmission occurs. For many diseases these lie in the range 14-18 degrees C at the lower end and about 35-40 degrees C at the upper end. Malaria and dengue fever are among the most important vector-borne diseases in the tropics and subtropics; Lyme disease is the most common vector-borne disease in the USA and Europe. Encephalitis is also becoming a public health concern. Health risks due to climatic changes will differ between countries that have developed health infrastructures and those that do not. Human settlement patterns in the different regions will influence disease trends. While 70% of the population in South America is urbanized, the proportion in sub-Saharan Africa is less than 45%. Climatic anomalies associated with the El Niño-Southern Oscillation phenomenon and resulting in drought and floods are expected to increase in frequency and intensity. They have been linked to outbreaks of malaria in Africa, Asia and South America. Climate change has far-reaching consequences and touches on all life-support systems. It is therefore a factor that should be placed high among those that affect human health and survival. PMID:11019462

  17. Stator winding fault diagnosis in three-phase synchronous and asynchronous motors, by the extended Park's vector approach

    Microsoft Academic Search

    Sérgio M. A. Cruz; A. J. Marques Cardoso

    2001-01-01

    This paper describes the use of the extended Park's vector approach (EPVA) for diagnosing the occurrence of stator winding faults in operating three-phase synchronous and asynchronous motors. The major theoretical principles related with the EPVA are presented and it is shown how stator winding faults can be effectively diagnosed by the use of this noninvasive approach. Experimental results, obtained in

  18. Stator winding fault diagnosis in three-phase synchronous and asynchronous motors, by the extended Park's vector approach

    Microsoft Academic Search

    S. M. A. Cruz; A. J. Marques Cardoso

    2000-01-01

    This paper describes the use of the extended Park's vector approach (EPVA) for diagnosing the occurrence of stator winding faults in operating three-phase synchronous and asynchronous motors. The major theoretical principles related with the EPVA are presented and it is shown how stator winding faults can be effectively diagnosed by the use of this noninvasive approach. Experimental results, obtained in

  19. Wind shear detection using measurement of aircraft total energy change

    NASA Technical Reports Server (NTRS)

    Joppa, R. G.

    1976-01-01

    Encounters with wind shears are of concern and have caused major accidents, particularly during landing approaches. Changes in the longitudinal component of the wind affect the aircraft by changing its kinetic energy with respect to the air. It is shown that an instrument which will measure and display the rate of change of total energy of the aircraft with respect to the air will give a leading indication of wind shear problems. The concept is outlined and some instrumentation and display considerations are discussed.

  20. The vulnerability of wind power to climate change in Brazil

    Microsoft Academic Search

    André Frossard Pereira de Lucena; Alexandre Salem Szklo; Roberto Schaeffer; Ricardo Marques Dutra

    2010-01-01

    The availability and reliability of wind power depend a great deal on current and future climate conditions, which may vary in light of possible global climate change (GCC). Long-term energy planning, however, does not normally take possible future GCC into consideration, which may turn out to be a risky exercise. In the case of Brazil, the untapped wind power potential

  1. Immunology, climate change and vector-borne diseases.

    PubMed

    Patz, J A; Reisen, W K

    2001-04-01

    Global climate change might expand the distribution of vector-borne pathogens in both time and space, thereby exposing host populations to longer transmission seasons, and immunologically naive populations to newly introduced pathogens. In the African highlands, where cool temperatures limit malaria parasite development, increases in temperature might enhance malaria transmission. St Louis encephalitis viral replication and the length of the transmission season depend upon ambient temperature. Warming temperatures in the American southwest might place at risk migratory, non-immune elderly persons that arrive in early fall to spend the winter. Warm temperatures might intensify or extend the transmission season for dengue fever. Immunologists should examine this interplay between human immunocompetence and vector-borne disease risks in a warmer world. PMID:11274908

  2. The effect of the arbitrary level assignment of satellite cloud motion wind vectors on wind analyses in the pre-thunderstorm environment

    NASA Technical Reports Server (NTRS)

    Peslen, C. A.; Koch, S. E.; Uccellini, L. W.

    1985-01-01

    The impact of satellite-derived cloud motion vectors on SESAME rawinsonde wind fields was studied in two separate cases. The effect of wind and moisture gradients on the arbitrary assignment of the satellite data is assessed to coordinate surfaces in a severe storm environment marked by strong vertical wind shear. Objective analyses of SESAME rawinsonde winds and combined winds are produced and differences between these two analyzed fields are used to make an assessment of coordinate level choice. It is shown that the standard method of arbitrarily assigning wind vectors to a low level coordinate surface yields systematic differences between the rawinsonde and combined wind analyses. Arbitrary assignment of cloud motions to the 0.9 sigma surface produces smaller differences than assignment to the 825 mb pressure surface. Systematic differences occur near moisture discontinuities and in regions of horizontal and vertical wind shears. The differences between the combined and SESAME wind fields are made smallest by vertically interpolating cloud motions to either a pressure or sigma surface.

  3. Wave-vector dependence of magnetic-turbulence spectra in the solar wind.

    PubMed

    Narita, Y; Glassmeier, K-H; Sahraoui, F; Goldstein, M L

    2010-04-30

    Using four-point measurements of the Cluster spacecraft, the energy distribution was determined for magnetic field fluctuations in the solar wind directly in the three-dimensional wave-vector domain in the range |k|vector anisotropy is estimated with respect to directions parallel and perpendicular to the mean magnetic field, and the result suggests the dominance of quasi-two-dimensional turbulence toward smaller spatial scales. PMID:20482101

  4. Using support vector machines for anomalous change detonation

    SciTech Connect

    Theiler, James P [Los Alamos National Laboratory; Steinwart, Ingo [UNIV STUTTGART; Llamocca, Daniel [UNM

    2010-01-01

    We cast anomalous change detection as a binary classification problem, and use a support vector machine (SVM) to build a detector that does not depend on assumptions about the underlying data distribution. To speed up the computation, our SVM is implemented, in part, on a graphical processing unit. Results on real and simulated anomalous changes are used to compare performance to algorithms which effectively assume a Gaussian distribution. In this paper, we investigate the use of support vector machines (SVMs) with radial basis kernels for finding anomalous changes. Compared to typical applications of SVMs, we are operating in a regime of very low false alarm rate. This means that even for relatively large training sets, the data are quite meager in the regime of operational interest. This drives us to use larger training sets, which in turn places more of a computational burden on the SVM. We initially considered three different approaches to to address the need to work in the very low false alarm rate regime. The first is a standard SVM which is trained at one threshold (where more reliable estimates of false alarm rates are possible) and then re-thresholded for the low false alarm rate regime. The second uses the same thresholding approach, but employs a so-called least squares SVM; here a quadratic (instead of a hinge-based) loss function is employed, and for this model, there are good theoretical arguments in favor of adjusting the threshold in a straightforward manner. The third approach employs a weighted support vector machine, where the weights for the two types of errors (false alarm and missed detection) are automatically adjusted to achieve the desired false alarm rate. We have found in previous experiments (not shown here) that the first two types can in some cases work well, while in other cases they do not. This renders both approaches unreliable for automated change detection. By contrast, the third approach reliably produces good results, but at the cost of larger computational requirements caused by the need to estimate very small false alarm rates. To address these computational requirements, we employ a recently developed in-house solver for SVMs that is significantly faster than freely available standard solvers. But these computational issues are secondary to the larger question: do kernelized solutions provide better performance, in terms of detection rates and false alarm rates, than more traditional methods for change detection that effectively assume Gaussian data distributions? To this end, we will compare ROC curves obtained from the SVM with those from chronochrome, covariance equalization, and hyperbolic anomalous change detection.

  5. World Wind Tools Reveal Environmental Change

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Originally developed under NASA's Learning Technologies program as a tool to engage and inspire students, World Wind software was released under the NASA Open Source Agreement license. Honolulu, Hawaii based Intelesense Technologies is one of the companies currently making use of the technology for environmental, public health, and other monitoring applications for nonprofit organizations and Government agencies. The company saved about $1 million in development costs by using the NASA software.

  6. Assessment of NOAA Processed OceanSat-2 Scatterometer Ocean Surface Vector Wind Products

    NASA Astrophysics Data System (ADS)

    Chang, P.; Jelenak, Z.; Soisuvarn, S.

    2011-12-01

    The Indian Space Research Organization (ISRO) launched the Oceansat-2 satellite on 23 September 2009. Oceansat-2 carries a radar scatterometer instrument (OSCAT) capable of measuring ocean surface vector winds (OSVW) and an ocean color monitor (OCM), which will retrieve sea spectral reflectance. Oceansat-2 is ISRO's second in a series of satellites dedicated to ocean research. It will provide continuity to the services and applications of the Oceansat-1 OCM data along with additional data from a Ku-band pencil beam scatterometer. Oceansat-2 is a three-axis, body stabilized spacecraft placed into a near circular sun-synchronous orbit, at an altitude of 720 kilometers (km), with an equatorial crossing time of around 1200 hours. ISRO, the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA) and the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) share the common goal of optimizing the quality and maximizing the utility of the Oceansat-2 data for the benefit of future global and regional scientific and operational applications. NOAA, NASA and EUMETSAT have been collaboratively working with ISRO on the assessment and analysis of OSCAT data to help facilitate continuation of QuikSCAT's decade-long Ku-band scatterometer data record. NOAA's interests are focused on the utilization of OSCAT data to support operational weather forecasting and warning in the marine environment. OSCAT has the potential to significantly mitigate the loss of NASA's QuikSCAT, which has negatively impacted NOAA's marine forecasting and warning services. Since March 2011 NOAA has been receiving near real time OSCAT measurements via EumetSat. NOAA has developed its own OSCAT wind processor. This processor produces ocean surface vector winds with resolution of 25km. Performance of NOAA OSCAT product will and its availability to larger user community will be presented and discussed.

  7. Insights on the OAFlux ocean surface vector wind analysis merged from scatterometers and passive microwave radiometers (1987 onward)

    NASA Astrophysics Data System (ADS)

    Yu, Lisan; Jin, Xiangze

    2014-08-01

    A high-resolution global daily analysis of ocean surface vector winds (1987 onward) was developed by the Objectively Analyzed air-sea Fluxes (OAFlux) project. This study addressed the issues related to the development of the time series through objective synthesis of 12 satellite sensors (two scatterometers and 10 passive microwave radiometers) using a least-variance linear statistical estimation. The issues include the rationale that supports the multisensor synthesis, the methodology and strategy that were developed, the challenges that were encountered, and the comparison of the synthesized daily mean fields with reference to scatterometers and atmospheric reanalyses. The synthesis was established on the bases that the low and moderate winds (<15 m s-1) constitute 98% of global daily wind fields, and they are the range of winds that are retrieved with best quality and consistency by both scatterometers and radiometers. Yet, challenges are presented in situations of synoptic weather systems due mainly to three factors: (i) the lack of radiometer retrievals in rain conditions, (ii) the inability to fill in the data voids caused by eliminating rain-flagged QuikSCAT wind vector cells, and (iii) the persistent differences between QuikSCAT and ASCAT high winds. The study showed that the daily mean surface winds can be confidently constructed from merging scatterometers with radiometers over the global oceans, except for the regions influenced by synoptic weather storms. The uncertainties in present scatterometer and radiometer observations under high winds and rain conditions lead to uncertainties in the synthesized synoptic structures.

  8. Climate change. Climate change and wind intensification in coastal upwelling ecosystems.

    PubMed

    Sydeman, W J; García-Reyes, M; Schoeman, D S; Rykaczewski, R R; Thompson, S A; Black, B A; Bograd, S J

    2014-07-01

    In 1990, Andrew Bakun proposed that increasing greenhouse gas concentrations would force intensification of upwelling-favorable winds in eastern boundary current systems that contribute substantial services to society. Because there is considerable disagreement about whether contemporary wind trends support Bakun's hypothesis, we performed a meta-analysis of the literature on upwelling-favorable wind intensification. The preponderance of published analyses suggests that winds have intensified in the California, Benguela, and Humboldt upwelling systems and weakened in the Iberian system over time scales ranging up to 60 years; wind change is equivocal in the Canary system. Stronger intensification signals are observed at higher latitudes, consistent with the warming pattern associated with climate change. Overall, reported changes in coastal winds, although subtle and spatially variable, support Bakun's hypothesis of upwelling intensification in eastern boundary current systems. PMID:24994651

  9. Large-scale winds in the southern North Sea region: the wind part of the KNMI’14 climate change scenarios

    NASA Astrophysics Data System (ADS)

    Sterl, Andreas; Bakker, Alexander M. R.; van den Brink, Henk W.; Haarsma, Rein; Stepek, Andrew; Wijnant, Ine L.; de Winter, Renske C.

    2015-03-01

    The wind climate and its possible change in a warming world are important topics for many applications, among which are marine and coastal safety and wind energy generation. Therefore, wind is an important variable to investigate for climate change scenarios. In developing the wind part of the KNMI’14 climate change scenarios, output from several model categories have been analysed, ranging from global General Circulation Models via regional climate model (RCMs) to suitably re-sampled RCM output. The main conclusion is that global warming will not change the wind climate over the Netherlands and the North Sea beyond the large range of natural climate variability that has been experienced in the past.

  10. Predicting the effect of climate change on African trypanosomiasis: integrating epidemiology with parasite and vector biology

    Microsoft Academic Search

    S. Moore; S. Shrestha; K. W. Tomlinson; H. Vuong

    2012-01-01

    Climate warming over the next century is expected to have a large impact on the interactions between pathogens and their animal and human hosts. Vector-borne diseases are particularly sensitive to warming because temperature changes can alter vector development rates, shift their geographical distribution and alter transmission dynamics. For this reason, African trypanosomiasis (sleeping sickness), a vector-borne disease of humans and

  11. Vectors

    NSDL National Science Digital Library

    Stern, David P. (David Peter), 1931-

    This web page, authored and curated by David P. Stern, introduces vectors as an extension of numbers having both magnitude and direction. The initial motivation is to describe velocity but the material includes a general discussion of vector algebra and an application to forces for the inclined plane. The page contains links to a related lesson plan and further opportunities to explore vectors. This is part of the extensive web site "From Stargazers to Starships", that uses space exploration and space science to introduce topics in physics and astronomy. Translations in Spanish and French are available.

  12. Methods of Recording Rapid Wind Changes

    NASA Technical Reports Server (NTRS)

    Magnan, A

    1932-01-01

    The purpose of our research was to determine the rapid changes of air currents which impose varying stresses on the wings of airplanes. We attempted to express in figures the turbulence of the air, which perhaps plays some role in the behavior of airplanes in flight, as well as in the realization of certain methods of gliding flight. This is the reason which led us to conceive and develop the experimental equipment (hot-wire anemometer) described herein.

  13. Changing winds cause melting of coastal Antarctic glaciers

    NASA Astrophysics Data System (ADS)

    Palus, Shannon

    2014-11-01

    Anthropogenically induced changes in winds in the Southern Hemisphere are playing a key role in recent warming of subsurface waters around Antarctica, according to a new study by Spence et al. The warming water increases melting of coastal glaciers and thus could affect sea levels in the future.

  14. Heat waves and wind storms in a changing climate

    Microsoft Academic Search

    B. Koffi; S. Goyette; M. Beniston

    2003-01-01

    This work is a contribution to the European PRUDENCE project (Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects) by the University of Fribourg, Switzerland. Its objective is to assess changes in the frequency and intensity of extreme climatic events, in particular wind storms and heat\\/cold waves, from Regional Climate Model (RCM) control (1961-90) and

  15. Secular Changes in Eta Carinae's Wind 1998-2011

    NASA Astrophysics Data System (ADS)

    Mehner, Andrea; Davidson, Kris; Humphreys, Roberta M.; Ishibashi, Kazunori; Martin, John C.; Ruiz, María Teresa; Walter, Frederick M.

    2012-05-01

    Stellar wind-emission features in the spectrum of eta Carinae have decreased by factors of 1.5-3 relative to the continuum within the last 10 years. We investigate a large data set from several instruments (STIS, GMOS, UVES) obtained between 1998 and 2011 and analyze the progression of spectral changes in direct view of the star, in the reflected polar-on spectra at FOS4, and at the Weigelt knots. We find that the spectral changes occurred gradually on a timescale of about 10 years and that they are dependent on the viewing angle. The line strengths declined most in our direct view of the star. About a decade ago, broad stellar wind-emission features were much stronger in our line-of-sight view of the star than at FOS4. After the 2009 event, the wind-emission line strengths are now very similar at both locations. High-excitation He I and N II absorption lines in direct view of the star strengthened gradually. The terminal velocity of Balmer P Cyg absorption lines now appears to be less latitude dependent, and the absorption strength may have weakened at FOS4. Latitude-dependent alterations in the mass-loss rate and the ionization structure of eta Carinae's wind are likely explanations for the observed spectral changes.

  16. Potential contribution of wind energy to climate change mitigation

    NASA Astrophysics Data System (ADS)

    Barthelmie, R. J.; Pryor, S. C.

    2014-08-01

    It is still possible to limit greenhouse gas emissions to avoid the 2 °C warming threshold for dangerous climate change. Here we explore the potential role of expanded wind energy deployment in climate change mitigation efforts. At present, most turbines are located in extra-tropical Asia, Europe and North America, where climate projections indicate continuity of the abundant wind resource during this century. Scenarios from international agencies indicate that this virtually carbon-free source could supply 10-31% of electricity worldwide by 2050 (refs , ). Using these projections within Intergovernmental Panel on Climate Change Representative Concentration Pathway (RCP) climate forcing scenarios, we show that dependent on the precise RCP followed, pursuing a moderate wind energy deployment plan by 2050 delays crossing the 2 °C warming threshold by 1-6 years. Using more aggressive wind turbine deployment strategies delays 2 °C warming by 3-10 years, or in the case of RCP4.5 avoids passing this threshold altogether. To maximize these climate benefits, deployment of non-fossil electricity generation must be coupled with reduced energy use.

  17. SECULAR CHANGES IN ETA CARINAE'S WIND 1998-2011

    SciTech Connect

    Mehner, Andrea [ESO, Alonso de Cordova 3107, Vitacura, Santiago de Chile (Chile); Davidson, Kris; Humphreys, Roberta M. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Ishibashi, Kazunori [Global COE, Division of Particle Physics and Astrophysics, Nagoya University, Nagoya 464-8602 (Japan); Martin, John C. [Department of Physics and Astronomy, University of Illinois Springfield, Springfield, IL 62703 (United States); Ruiz, Maria Teresa [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago de Chile (Chile); Walter, Frederick M. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2012-05-20

    Stellar wind-emission features in the spectrum of eta Carinae have decreased by factors of 1.5-3 relative to the continuum within the last 10 years. We investigate a large data set from several instruments (STIS, GMOS, UVES) obtained between 1998 and 2011 and analyze the progression of spectral changes in direct view of the star, in the reflected polar-on spectra at FOS4, and at the Weigelt knots. We find that the spectral changes occurred gradually on a timescale of about 10 years and that they are dependent on the viewing angle. The line strengths declined most in our direct view of the star. About a decade ago, broad stellar wind-emission features were much stronger in our line-of-sight view of the star than at FOS4. After the 2009 event, the wind-emission line strengths are now very similar at both locations. High-excitation He I and N II absorption lines in direct view of the star strengthened gradually. The terminal velocity of Balmer P Cyg absorption lines now appears to be less latitude dependent, and the absorption strength may have weakened at FOS4. Latitude-dependent alterations in the mass-loss rate and the ionization structure of eta Carinae's wind are likely explanations for the observed spectral changes.

  18. Long-Term Changes in the Equatorial Pacific Trade Winds.

    NASA Astrophysics Data System (ADS)

    Clarke, Allan J.; Lebedev, Anna

    1996-05-01

    Past work has shown that surface zonal equatorial wind stress, zonally integrated from one side of the Pacific to the other, is the key variable for estimating long-term El Niño behavior in the eastern Pacific. The long-term behavior of this key variable is difficult to determine directly because of the paucity of the equatorial wind observations and because of false trends in the wind data introduced by gradual changes in the methods of wind measurement. However, surface pressure data generally does not suffer from these false trends and theory suggests that this key wind variable is linearly related to the difference (p) of surface atmospheric pressure between the eastern and western equatorial Pacific. Detrended COADS pressure in the eastern and western equatorial Pacific and post 1960 detrended equatorial wind stress zonally averaged across the Pacific were used to verify this relationship. Pressure difference and zonally averaged equatorial zonal windstress () were highly correlated (r = 0.90) and the regression also showed that advection of zonal momentum contributes substantially to the momentum balance in the equatorial atmospheric boundary layer. Further, hindcasts of eastern equatorial Pacific sea surface temperature and sea level indicated that from p was more accurate than from winds even since 1960 when wind data were more plentiful. This suggests that the simple pressure difference p is an effective way to monitor both in the past and in the future.Using the p time series as a proxy for zonally integrated wind stress suggests that the equatorial trades strengthened during the early and mid-1930s, weakened from the late 1930s to late 1950s, strengthened during the 1960s, and weakened rapidly since. This pattern is qualitatively consistent with the long record of sea surface temperature measurements at Puerto Chicama (Peru). The more recent rapid weakening is consistent with trends in several physical variables reported previously by others. The long-term changes affect El Niño-La Niña intensity and contribute significantly to sea level rise on the western coast of the Americans. A proxy record of eastern Pacific sea surface temperature from coral suggests that such long-term (decade and longer) weakening and strengthening of the Pacific equatorial trades has occurred before major anthropogenic greenhouse gas release and at least back to 1600 AD.

  19. Effect of wind turbine generator model and siting on wind power changes out of large WECS arrays

    NASA Technical Reports Server (NTRS)

    Schleuter, R. A.; Park, G. L.; Lotfalian, M.; Dorsey, J.; Shayanfar, H.

    1981-01-01

    Methods of reducing the WECS generation change through selection of the wind turbine model for each site, selection of an appropriate siting configuration, and wind array controls are discussed. An analysis of wind generation change from an echelon and a farm for passage of a thunderstorm is presented. Reduction of the wind generation change over ten minutes is shown to reduce the increase in spinning reserve, unloadable generation and load following requirements on unit commitment when significant WECS generation is present and the farm penetration constraint is satisfied. Controls on the blade pitch angle of all wind turbines in an array or a battery control are shown to reduce both the wind generation change out of an array and the effective farm penetration in anticipation of a storm so that the farm penetration constraint may be satisfied.

  20. Method for changing removable bearing for a wind turbine generator

    DOEpatents

    Bagepalli, Bharat Sampathkumaran (Niskayuna, NY); Jansen, Patrick Lee (Scotia, NY); Gadre, Aniruddha Dattatraya (Rexford, NY)

    2008-04-22

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  1. The influence of virus-induced changes in plants on aphid vectors: insights from luteovirus pathosystems.

    PubMed

    Bosque-Pérez, Nilsa A; Eigenbrode, Sanford D

    2011-08-01

    Plant virus infection can alter the suitability of host plants for their aphid vectors. Most reports indicate that virus-infected plants are superior hosts for vectors compared to virus-free plants with respect to vector growth rates, fecundity and longevity. Some aphid vectors respond preferentially to virus-infected plants compared to virus-free ones, while others avoid infected plants that are inferior hosts. Thus, it appears vectors can exploit changes in host plant quality associated with viral infection. Enhanced vector performance and preference for virus-infected plants might also be advantageous for viruses by promoting their spread and possibly enhancing their fitness. Our research has focused on two of the most important luteoviruses that infect wheat (Barley yellow dwarf virus), or potato (Potato leafroll virus), and their respective aphid vectors, the bird-cherry oat aphid, Rhopalosiphum padi, and the green peach aphid, Myzus persicae. The work has demonstrated that virus infection of host plants enhances the life history of vectors. Additionally, it has shown that virus infection alters the concentration and relative composition of volatile organic compounds in host plants, that apterae of each vector species settle preferentially on virus-infected plants, and that such responses are mediated by volatile organic compounds. The findings also indicate that plants respond heterogeneously to viral infection and as a result different plant parts change in attractiveness to vectors during infection and vector responses to virus-infected plants are dynamic. Such dynamic responses could enhance or reduce the probability of virus acquisition by individual aphids searching among plants. Finally, our work indicates that compared to non-viruliferous aphids, viruliferous ones are less or not responsive to virus-induced host plant volatiles. Changes in vector responsiveness to plants after vectors acquire virus could impact virus epidemiology by influencing virus spread. The potential implications of these findings for virus ecology and epidemiology are discussed. PMID:21549769

  2. Host Life History Strategy, Species Diversity, and Habitat Influence Trypanosoma cruzi Vector Infection in Changing Landscapes

    PubMed Central

    Gottdenker, Nicole L.; Chaves, Luis Fernando; Calzada, José E.; Saldaña, Azael; Carroll, C. Ronald

    2012-01-01

    Background Anthropogenic land use may influence transmission of multi-host vector-borne pathogens by changing diversity, relative abundance, and community composition of reservoir hosts. These reservoir hosts may have varying competence for vector-borne pathogens depending on species-specific characteristics, such as life history strategy. The objective of this study is to evaluate how anthropogenic land use change influences blood meal species composition and the effects of changing blood meal species composition on the parasite infection rate of the Chagas disease vector Rhodnius pallescens in Panama. Methodology/Principal Findings R. pallescens vectors (N?=?643) were collected in different habitat types across a gradient of anthropogenic disturbance. Blood meal species in DNA extracted from these vectors was identified in 243 (40.3%) vectors by amplification and sequencing of a vertebrate-specific fragment of the 12SrRNA gene, and T. cruzi vector infection was determined by pcr. Vector infection rate was significantly greater in deforested habitats as compared to contiguous forests. Forty-two different species of blood meal were identified in R. pallescens, and species composition of blood meals varied across habitat types. Mammals (88.3%) dominated R. pallescens blood meals. Xenarthrans (sloths and tamanduas) were the most frequently identified species in blood meals across all habitat types. A regression tree analysis indicated that blood meal species diversity, host life history strategy (measured as rmax, the maximum intrinsic rate of population increase), and habitat type (forest fragments and peridomiciliary sites) were important determinants of vector infection with T. cruzi. The mean intrinsic rate of increase and the skewness and variability of rmax were positively associated with higher vector infection rate at a site. Conclusions/Significance In this study, anthropogenic landscape disturbance increased vector infection with T. cruzi, potentially by changing host community structure to favor hosts that are short-lived with high reproductive rates. Study results apply to potential environmental management strategies for Chagas disease. PMID:23166846

  3. Predicting the effect of climate change on African trypanosomiasis: integrating epidemiology with parasite and vector biology

    PubMed Central

    Moore, Sean; Shrestha, Sourya; Tomlinson, Kyle W.; Vuong, Holly

    2012-01-01

    Climate warming over the next century is expected to have a large impact on the interactions between pathogens and their animal and human hosts. Vector-borne diseases are particularly sensitive to warming because temperature changes can alter vector development rates, shift their geographical distribution and alter transmission dynamics. For this reason, African trypanosomiasis (sleeping sickness), a vector-borne disease of humans and animals, was recently identified as one of the 12 infectious diseases likely to spread owing to climate change. We combine a variety of direct effects of temperature on vector ecology, vector biology and vector–parasite interactions via a disease transmission model and extrapolate the potential compounding effects of projected warming on the epidemiology of African trypanosomiasis. The model predicts that epidemics can occur when mean temperatures are between 20.7°C and 26.1°C. Our model does not predict a large-range expansion, but rather a large shift of up to 60 per cent in the geographical extent of the range. The model also predicts that 46–77 million additional people may be at risk of exposure by 2090. Future research could expand our analysis to include other environmental factors that influence tsetse populations and disease transmission such as humidity, as well as changes to human, livestock and wildlife distributions. The modelling approach presented here provides a framework for using the climate-sensitive aspects of vector and pathogen biology to predict changes in disease prevalence and risk owing to climate change. PMID:22072451

  4. Climate change and vector-borne diseases: a regional analysis

    Microsoft Academic Search

    Andrew K. Githeko; Steve W. Lindsay; Ulisses E. Confalonieri; Jonathan A. Patz

    2000-01-01

    likely to be observed at the extremes of the range of temperatures at which transmission occurs. For many diseases these lie in the range 14-18 o C at the lower end and about 35-40 oC at the upper end. Malaria and dengue fever are among the most important vector-borne diseases in the tropics and subtropics; Lyme disease is the most

  5. Model projected changes of extreme wind events in response to global warming

    Microsoft Academic Search

    G. Gastineau; B. J. Soden

    2009-01-01

    The changes in the frequency of occurrence of extreme wind storm events in response to anthropogenic global warming are explored using a multi-model ensemble of coupled climate model simulations. These changes, diagnosed using several different metrics based on the daily wind fields, indicate that the frequency of the most extreme wind events decreases over the tropics in association with the

  6. Climate Change Influences on Global Distributions of Dengue and Chikungunya Virus Vectors

    E-print Network

    Campbell, Lindsay P.; Luther, Caylor; Moo-Llanes, David; Ramsey, Janine M.; Danis-Lozano, Rogelio; Peterson, A. Townsend

    2014-01-01

    This packet presents raster data files that accompany a manuscript submitted for publication to Philosophical Transactions of the Royal Society, titled “Climate Change Influences on Global Vector Distributions for Dengue and Chikungunya Viruses...

  7. Combining Climatic Projections and Dispersal Ability: A Method for Estimating the Responses of Sandfly Vector Species to Climate Change

    PubMed Central

    Fischer, Dominik; Moeller, Philipp; Thomas, Stephanie M.; Naucke, Torsten J.; Beierkuhnlein, Carl

    2011-01-01

    Background In the Old World, sandfly species of the genus Phlebotomus are known vectors of Leishmania, Bartonella and several viruses. Recent sandfly catches and autochthonous cases of leishmaniasis hint on spreading tendencies of the vectors towards Central Europe. However, studies addressing potential future distribution of sandflies in the light of a changing European climate are missing. Methodology Here, we modelled bioclimatic envelopes using MaxEnt for five species with proven or assumed vector competence for Leishmania infantum, which are either predominantly located in (south-) western (Phlebotomus ariasi, P. mascittii and P. perniciosus) or south-eastern Europe (P. neglectus and P. perfiliewi). The determined bioclimatic envelopes were transferred to two climate change scenarios (A1B and B1) for Central Europe (Austria, Germany and Switzerland) using data of the regional climate model COSMO-CLM. We detected the most likely way of natural dispersal (“least-cost path”) for each species and hence determined the accessibility of potential future climatically suitable habitats by integrating landscape features, projected changes in climatic suitability and wind speed. Results and Relevance Results indicate that the Central European climate will become increasingly suitable especially for those vector species with a current south-western focus of distribution. In general, the highest suitability of Central Europe is projected for all species in the second half of the 21st century, except for P. perfiliewi. Nevertheless, we show that sandflies will hardly be able to occupy their climatically suitable habitats entirely, due to their limited natural dispersal ability. A northward spread of species with south-eastern focus of distribution may be constrained but not completely avoided by the Alps. Our results can be used to install specific monitoring systems to the projected risk zones of potential sandfly establishment. This is urgently needed for adaptation and coping strategies against the emerging spread of sandfly-borne diseases. PMID:22140590

  8. About the correlation between solar micro bursts and the change of the solar wind parameters

    E-print Network

    Juan Carlos Martinez Oliveros; Daniel Ricardo Izquierdo P

    2005-08-02

    The Sun is the closest star to our planet and it is the most studied, perhaps, there exist too much procesess not-understood. One of the solar processes that have a direct interaction with the earth is the solar wind. The solar wind is defined as the plasma expulsed from the solar atmosphere, this wind was cataloged and is considered that have three components: - Passive solar wind: Is the constant component of the solar wind. - Supersonic and quasistady flux. - Sporadic supersonic flux. We present and brief explanation of the Parker's model of the solar wind and a correlation analysis between solar micro radio bursts and the change of the solar wind parameters.

  9. Simulating Population Genetics of Pathogen Vectors in Changing Landscapes: Guidelines and Application with Triatoma brasiliensis

    PubMed Central

    Rebaudo, Francois; Costa, Jane; Almeida, Carlos E.; Silvain, Jean-Francois; Harry, Myriam; Dangles, Olivier

    2014-01-01

    Background Understanding the mechanisms that influence the population dynamics and spatial genetic structure of the vectors of pathogens infecting humans is a central issue in tropical epidemiology. In view of the rapid changes in the features of landscape pathogen vectors live in, this issue requires new methods that consider both natural and human systems and their interactions. In this context, individual-based model (IBM) simulations represent powerful yet poorly developed approaches to explore the response of pathogen vectors in heterogeneous social-ecological systems, especially when field experiments cannot be performed. Methodology/Principal Findings We first present guidelines for the use of a spatially explicit IBM, to simulate population genetics of pathogen vectors in changing landscapes. We then applied our model with Triatoma brasiliensis, originally restricted to sylvatic habitats and now found in peridomestic and domestic habitats, posing as the most important Trypanosoma cruzi vector in Northeastern Brazil. We focused on the effects of vector migration rate, maximum dispersal distance and attraction by domestic habitat on T. brasiliensis population dynamics and spatial genetic structure. Optimized for T. brasiliensis using field data pairwise fixation index (FST) from microsatellite loci, our simulations confirmed the importance of these three variables to understand vector genetic structure at the landscape level. We then ran prospective scenarios accounting for land-use change (deforestation and urbanization), which revealed that human-induced land-use change favored higher genetic diversity among sampling points. Conclusions/Significance Our work shows that mechanistic models may be useful tools to link observed patterns with processes involved in the population genetics of tropical pathogen vectors in heterogeneous social-ecological landscapes. Our hope is that our study may provide a testable and applicable modeling framework to a broad community of epidemiologists for formulating scenarios of landscape change consequences on vector dynamics, with potential implications for their surveillance and control. PMID:25102068

  10. Impact to Space Shuttle Vehicle Trajectory on Day of Launch from change in Low Frequency Winds

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Puperi, Daniel; Leach, Richard

    2007-01-01

    The National Aeronautics and Space Administration's (NASA) Space Shuttle utilizes atmospheric winds on day of launch to develop throttle and steering commands to best optimize vehicle performance while keeping structural loading on the vehicle within limits. The steering commands and resultant trajectory are influenced by both the high and low frequency component of the wind. However, the low frequency component has a greater effect on the ascent design. Change in the low frequency wind content from the time of trajectory design until launch can induce excessive loading on the vehicle. Wind change limits have been derived to protect from launching in an environment where these temporal changes occur. Process of developing wind change limits are discussed followed by an observational study of temporal wind change in low frequency wind profiles at the NASA's Kennedy Space Center area are presented.

  11. RNA-seq analyses of blood-induced changes in gene expression in the mosquito vector species, Aedes aegypti

    Microsoft Academic Search

    Mariangela Bonizzoni; W Augustine Dunn; Corey L Campbell; Ken E Olson; Michelle T Dimon; Osvaldo Marinotti; Anthony A James

    2011-01-01

    BACKGROUND: Hematophagy is a common trait of insect vectors of disease. Extensive genome-wide transcriptional changes occur in mosquitoes after blood meals, and these are related to digestive and reproductive processes, among others. Studies of these changes are expected to reveal molecular targets for novel vector control and pathogen transmission-blocking strategies. The mosquito Aedes aegypti (Diptera, Culicidae), a vector of Dengue

  12. Performance evaluation of space vector modulation controlled inverter fed variable speed wind generator during permanent fault

    Microsoft Academic Search

    S. M. Muyeen; J. Tamura

    2010-01-01

    This paper presents low voltage ride through (LVRT) characteristics analysis of variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG). The VSWT-PMSG is becoming very popular these days in wind power application. In some recent studies, the transient stability and LVRT characteristic of VSWT-PMSG has been reported using different types of symmetrical and unsymmetrical faults. However, this

  13. Climate change effects on Chikungunya transmission in Europe: geospatial analysis of vector’s climatic suitability and virus’ temperature requirements

    PubMed Central

    2013-01-01

    Background Chikungunya was, from the European perspective, considered to be a travel-related tropical mosquito-borne disease prior to the first European outbreak in Northern Italy in 2007. This was followed by cases of autochthonous transmission reported in South-eastern France in 2010. Both events occurred after the introduction, establishment and expansion of the Chikungunya-competent and highly invasive disease vector Aedes albopictus (Asian tiger mosquito) in Europe. In order to assess whether these outbreaks are indicative of the beginning of a trend or one-off events, there is a need to further examine the factors driving the potential transmission of Chikungunya in Europe. The climatic suitability, both now and in the future, is an essential starting point for such an analysis. Methods The climatic suitability for Chikungunya outbreaks was determined by using bioclimatic factors that influence, both vector and, pathogen. Climatic suitability for the European distribution of the vector Aedes albopictus was based upon previous correlative environmental niche models. Climatic risk classes were derived by combining climatic suitability for the vector with known temperature requirements for pathogen transmission, obtained from outbreak regions. In addition, the longest potential intra-annual season for Chikungunya transmission was estimated for regions with expected vector occurrences. In order to analyse spatio-temporal trends for risk exposure and season of transmission in Europe, climate change impacts are projected for three time-frames (2011–2040, 2041–2070 and 2071–2100) and two climate scenarios (A1B and B1) from the Intergovernmental Panel on Climate Change (IPCC). These climatic projections are based on regional climate model COSMO-CLM, which builds on the global model ECHAM5. Results European areas with current and future climatic suitability of Chikungunya transmission are identified. An increase in risk is projected for Western Europe (e.g. France and Benelux-States) in the first half of the 21st century and from mid-century onwards for central parts of Europe (e.g. Germany). Interestingly, the southernmost parts of Europe do not generally provide suitable conditions in these projections. Nevertheless, many Mediterranean regions will persist to be climatically suitable for transmission. Overall, the highest risk of transmission by the end of the 21st century was projected for France, Northern Italy and the Pannonian Basin (East-Central Europe). This general tendency is depicted in both, the A1B and B1 climate change scenarios. Conclusion In order to guide preparedness for further outbreaks, it is crucial to anticipate risk as to identify areas where specific public health measures, such as surveillance and vector control, can be implemented. However, public health practitioners need to be aware that climate is only one factor driving the transmission of vector-borne disease. PMID:24219507

  14. Vector Voyage!

    NSDL National Science Digital Library

    Jeff White

    2004-01-01

    In this activity, students will use vector analysis to understand the concept of dead reckoning. Students will use vectors to plot their course based on a time and speed. They will then correct the positions with vectors representing winds and currents.

  15. Energy Policy 36 (2008) 2333 Change in public attitudes towards a Cornish wind farm

    E-print Network

    Energy Policy 36 (2008) 23­33 Viewpoint Change in public attitudes towards a Cornish wind farm independently conducted polls suggest significant public support for wind energy, there are often objections, this has seen the development of onshore wind energy to meet these targets (Strachan and Lal, 2004

  16. Assessing climate change impacts on the near-term stability of the wind energy

    E-print Network

    Pryor, Sara C.

    Assessing climate change impacts on the near-term stability of the wind energy resource over- ble emissions of carbon dioxide. The wind energy resource is natu- rally a function of the climate, leading some to question the continued viability of the wind energy industry. Here we briefly articulate

  17. Climate change and threat of vector-borne diseases in India: are we prepared?

    Microsoft Academic Search

    Ramesh C. Dhiman; Sharmila Pahwa; G. P. S. Dhillon; Aditya P. Dash

    2010-01-01

    It is unequivocal that climate change is happening and is likely to expand the geographical distribution of several vector-borne\\u000a diseases, including malaria and dengue etc. to higher altitudes and latitudes. India is endemic for six major vector-borne\\u000a diseases (VBD) namely malaria, dengue, chikungunya, filariasis, Japanese encephalitis and visceral leishmaniasis. Over the\\u000a years, there has been reduction in the incidence of

  18. Magnetotail Changes in Relation to the Solar Wind Magnetic Field and Magnetospheric Substorms

    Microsoft Academic Search

    MICHEL P. AUBRYAND; Robert L. McPherron

    1971-01-01

    Substorm activity is known to be associated with changes in the solar wind parameters and the magnetotail configuration. In this paper we investigate whether the magnetotail changes occur only as a consequence of substorms or also as a direct consequence of changes in the solar wind paxameters. Using data from several satellites (Ogo 5, ATS 1, Imp 4, Explorer 33

  19. MONITORING VEGETATION REGENERATION AND DEFORESTATION USING CHANGE VECTOR ANALYSIS: MT. ST. HELENS STUDY AREA

    Microsoft Academic Search

    Kristopher Kuzera

    A sophisticated method for monitoring land-cover change in a highly disturbed landscape involved change vector analysis of multitemporal Kauth-Thomas transformation data. Landsat TM data acquired after the 1980 eruption of Mt. St. Helens (1986 and 1996) were analyzed in this study. Topographic effects from the rugged terrain were removed by regressing a generated hillshade image against each band to estimate

  20. Estimating lower winds aloft at Houston, Texas, using a spatial vector regression technique

    E-print Network

    Zumwalt, James Tweed

    1969-01-01

    'TER III CHAPTER IV CP. APTHR V CHAPTER VI CHAPTER VII INTRODUCTION. BACKGROUND. OBJECTIVFS. DATA. PROCEDURi. . . RESULTS COVi CLUSIOIiIS AND RHCORPIL'IJDATIONS. . . 16 1 Pi 19 21 39 REFERENCES. . . 42 APPHNDIX A DERIVAT10N OI' ELLISON... will be devoted to a survey and discussion of known vector regression techniques. Ellison (1954) developed regression equations for two vector sets. He pointed out that just as the interdependence of two scalar random variables, v and V, may be studied...

  1. Confidence and sensitivity study of the OAFlux multisensor synthesis of the global ocean surface vector wind from 1987 onward

    NASA Astrophysics Data System (ADS)

    Yu, Lisan; Jin, Xiangze

    2014-10-01

    This study presented an uncertainty assessment of the high-resolution global analysis of daily-mean ocean-surface vector winds (1987 onward) by the Objectively Analyzed air-sea Fluxes (OAFlux) project. The time series was synthesized from multiple satellite sensors using a variational approach to find a best fit to input data in a weighted least-squares cost function. The variational framework requires the a priori specification of the weights, or equivalently, the error covariances of input data, which are seldom known. Two key issues were investigated. The first issue examined the specification of the weights for the OAFlux synthesis. This was achieved by designing a set of weight-varying experiments and applying the criteria requiring that the chosen weights should make the best-fit of the cost function be optimal with regard to both input satellite observations and the independent wind time series measurements at 126 buoy locations. The weights thus determined represent an approximation to the error covariances, which inevitably contain a degree of uncertainty. Hence, the second issue addressed the sensitivity of the OAFlux synthesis to the uncertainty in the weight assignments. Weight perturbation experiments were conducted and ensemble statistics were used to estimate the sensitivity. The study showed that the leading sources of uncertainty for the weight selection are high winds (>15 ms-1) and heavy rain, which are the conditions that cause divergence in wind retrievals from different sensors. Future technical advancement made in wind retrieval algorithms would be key to further improvement of the multisensory synthesis in events of severe storms.

  2. Full vector (3-D) inflow simulation in natural and wind farm environments using an expanded version of the SNLWIND (Veers) turbulence code

    SciTech Connect

    Kelley, N.D.

    1992-11-01

    We have recently expanded the numerical turbulence simulation (SNLWIND) developed by Veers [1] to include all three components of the turbulent wind vector. We have also configured the code to simulate the characteristics of turbulent wind fields upwind and downwind of a large wind farm, as well as over uniform, flat terrain. Veers's original method only simulates the longitudinal component of the wind in neutral flow. This paper overviews the development of spectral distribution, spatial coherence, and cross correlation models used to expired the SNLWIND code to include the three components of the turbulent wind over a range of atmospheric stabilities. These models are based on extensive measurements of the turbulence characteristics immediately upwind and downwind of a large wind farm in San Gorgonio Pass, California.

  3. Full vector (3-D) inflow simulation in natural and wind farm environments using an expanded version of the SNLWIND (Veers) turbulence code

    SciTech Connect

    Kelley, N.D.

    1992-11-01

    We have recently expanded the numerical turbulence simulation (SNLWIND) developed by Veers [1] to include all three components of the turbulent wind vector. We have also configured the code to simulate the characteristics of turbulent wind fields upwind and downwind of a large wind farm, as well as over uniform, flat terrain. Veers`s original method only simulates the longitudinal component of the wind in neutral flow. This paper overviews the development of spectral distribution, spatial coherence, and cross correlation models used to expired the SNLWIND code to include the three components of the turbulent wind over a range of atmospheric stabilities. These models are based on extensive measurements of the turbulence characteristics immediately upwind and downwind of a large wind farm in San Gorgonio Pass, California.

  4. Potential climate change impacts on the probability of wind damage in a south Swedish forest

    Microsoft Academic Search

    Kristina Blennow; Mikael Andersson; Johan Bergh; Ola Sallnäs; Erika Olofsson

    2010-01-01

    We estimated how the possible changes in wind climate and state of the forest due to climate change may affect the probability\\u000a of exceeding critical wind speeds expected to cause wind damage within a forest management unit located in Southern Sweden.\\u000a The topography of the management unit was relatively gentle and the forests were dominated by Norway spruce (Picea abies

  5. Things Fall Apart: Topology Change From Winding Tachyons

    SciTech Connect

    Adams, A.

    2005-02-04

    We argue that closed string tachyons drive two spacetime topology changing transitions--loss of genus in a Riemann surface and separation of a Riemann surface into two components. The tachyons of interest are localized versions of Scherk-Schwarz winding string tachyons arising on Riemann surfaces in regions of moduli space where string-scale tubes develop. Spacetime and world-sheet renormalization group analyses provide strong evidence that the decay of these tachyons removes a portion of the spacetime, splitting the tube into two pieces. We address the fate of the gauge fields and charges lost in the process, generalize it to situations with weak flux backgrounds, and use this process to study the type 0 tachyon, providing further evidence that its decay drives the theory sub-critical. Finally, we discuss the time-dependent dynamics of this topology-changing transition and find that it can occur more efficiently than analogous transitions on extended supersymmetric moduli spaces, which are limited by moduli trapping.

  6. Possible Impacts of Climate Change on Wind Gust under Downscaled Future Climate Conditions over Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Shouquan Cheng, Chad; Li, Guilong

    2010-05-01

    The overarching purpose of this study was to project changes in the occurrence frequency and magnitude of future wind gust events under downscaled future climate conditions over Ontario, Canada. Wind gust factors were employed to simulate hourly/daily wind gust based on hourly/daily wind speed. Regression-based downscaling methods were used to downscale future hourly/daily wind speed to each of the 14 selected cities in Ontario for eight GCM models with IPCC SRES A2 and B1 scenarios. The wind gust simulation models were then applied using downscaled future GCM wind speed data to project changes in occurrence frequency and intensity of the future hourly/daily wind gust events. Downscaling transfer functions and wind gust simulation models were validated using a cross-validation scheme and comparing data distributions and extreme-event frequencies derived from downscaled GCM control runs and observations over a comparative time period 1961-2000. The results showed that the models for all variables used in the study performed well. By comparing the current-past averaged conditions, the occurrence frequency and intensity of future wind gust events in the study area are projected to increase. The modeled results from this study found that the frequency and intensity of future wind gust events are projected to significantly increase under a changing climate in this century. This talk will introduce the research project and outline the modeling exercise and verification process. The major findings on future wind gust projections from the study will be summarized in the presentation as well. One of the major conclusions from the study is that the procedures used in the study are useful for climate change impact analysis on future wind gusts. The implication of the significant increases in future wind gust risks would be useful to be considered when revising engineering infrastructure design standards and developing adaptation strategies and policies.

  7. Change-vector analysis in multitemporal space: A tool to detect and categorize land-cover change processes using high temporal-resolution satellite data

    SciTech Connect

    Lambin, E.F. (Joint Research Center, Ispra (Italy). Inst. for Remote Sensing Applications); Strahler, A.H. (Boston Univ., MA (United States). Dept. of Geography)

    1994-05-01

    Analysis of change vectors in the multitemporal space, applied to multitemporal local area coverage imagery obtained by the Advanced Very-High Resolution Radiometer on NOAA-9 and NOAA-11 orbiting platforms, clearly reveals the nature and magnitude of land-cover change in a region of West Africa. The change vector compares the difference in the time-trajectory of a biophysical indicator, such as the normalized difference vegetation index, for two successive time periods, such as hydrological years. In establishing the time-trajectory, the indicator is composited for each pixel in a registered multidate image sequence. The change vector is simply the vector difference between successive time-trajectories, each represented as a vector in a multidimensional measurement space. The length of the change vector indicates the magnitude of the interannual change, while its direction indicates the nature of the change. A principal components analysis of change vectors for a Sudanian-Sahelian region in West Africa shows four major classes of change magnitude and four general contrasting types of change. Scene-specific changes, such as reservoir water level storage changes, are also identified. The technique is easily extended to other biophysical parameters, such as surface temperature, and can incorporate noneuclidean distance measures. Change vector analysis is being developed for application to the land-cover change product to be produced using NASA's Moderate-Resolution Imaging Spectroradiometer instrument, scheduled for flight in 1998 and 2000 on EOS-AM and -PM platforms.

  8. Climate Change and Vector Borne Diseases on NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Cole, Stuart K.; DeYoung, Russell J.; Shepanek, Marc A.; Kamel, Ahmed

    2014-01-01

    Increasing global temperature, weather patterns with above average storm intensities, and higher sea levels have been identified as phenomena associated with global climate change. As a causal system, climate change could contribute to vector borne diseases in humans. Vectors of concern originate from the vicinity of Langley Research Center include mosquitos and ticks that transmit disease that originate regionally, nationwide, or from outside the US. Recognizing changing conditions, vector borne diseases propagate under climate change conditions, and understanding the conditions in which they may exist or propagate, presents opportunities for monitoring their progress and mitigating their potential impacts through communication, continued monitoring, and adaptation. Personnel comprise a direct and fundamental support to NASA mission success, continuous and improved understanding of climatic conditions, and the resulting consequence of disease from these conditions, helps to reduce risk in terrestrial space technologies, ground operations, and space research. This research addresses conditions which are attributed to climatic conditions which promote environmental conditions conducive to the increase of disease vectors. This investigation includes evaluation of local mosquito population count and rainfall data for statistical correlation and identification of planning recommendations unique to LaRC, other NASA Centers to assess adaptation approaches, Center-level planning strategies.

  9. Monte Carlo studies of ocean wind vector measurements by SCATT: Objective criteria and maximum likelihood estimates for removal of aliases, and effects of cell size on accuracy of vector winds

    NASA Technical Reports Server (NTRS)

    Pierson, W. J.

    1982-01-01

    The scatterometer on the National Oceanic Satellite System (NOSS) is studied by means of Monte Carlo techniques so as to determine the effect of two additional antennas for alias (or ambiguity) removal by means of an objective criteria technique and a normalized maximum likelihood estimator. Cells nominally 10 km by 10 km, 10 km by 50 km, and 50 km by 50 km are simulated for winds of 4, 8, 12 and 24 m/s and incidence angles of 29, 39, 47, and 53.5 deg for 15 deg changes in direction. The normalized maximum likelihood estimate (MLE) is correct a large part of the time, but the objective criterion technique is recommended as a reserve, and more quickly computed, procedure. Both methods for alias removal depend on the differences in the present model function at upwind and downwind. For 10 km by 10 km cells, it is found that the MLE method introduces a correlation between wind speed errors and aspect angle (wind direction) errors that can be as high as 0.8 or 0.9 and that the wind direction errors are unacceptably large, compared to those obtained for the SASS for similar assumptions.

  10. Recent tax law changes create new opportunities for leasing wind energy property

    SciTech Connect

    Schutzer, George J.

    2010-01-15

    Recent changes in tax law make leveraged lease transactions far more attractive on paper than they were before the changes. However, changes in the economy and the financial industry and other changes in law counterbalance the favorable tax law changes and make it uncertain whether lease transactions will be used to finance new wind facilities. (author)

  11. The impact of climate change on the U.S. wind energy resource

    SciTech Connect

    Daniel Kirk-Davidoff; Daniel Barrie

    2013-03-19

    The growing need for low-carbon emitting electricity sources has resulted in rapid growth in the wind power industry. The size and steadiness of the offshore wind resource has attracted growing investment in the planning of offshore wind turbine installations. Decisions about the location and character of wind farms should be made with an eye not only to present but also future wind resource, which may change as increasing carbon dioxide forces reductions in the poleward temperature gradient, and thus potentially in the mean tropospheric westerly winds. I propose to use the new North American Regional Climate Change Assessment Program climate projections to estimate the change of the wind power resource under various carbon dioxide loading scenarios and for a range of climate models. We will compare our assessment with both our assessment based on the IPCC AR4 model runs, to explore the extent to which improved model resolution changes the prediction for the wind power resource, and with present day estimates from reanalysis and scatterometer winds.

  12. Space-based surface wind vectors to aid understanding of air-sea interactions

    NASA Astrophysics Data System (ADS)

    Atlas, R.; Bloom, S. C.; Hoffman, R. N.; Ardizzone, J. V.; Brin, G.

    Our understanding and prediction of the large-scale air-sea interactions that are thought to significantly influence both the atmosphere and ocean can be improved by consistent oceanic surface wind data of high quality and high temporal and spatial resolution. Surface wind stress provides the most important forcing of the ocean circulation and the fluxes of heat, moisture, and momentum across the air-sea boundary are important factors in theories of El Nñio-Southern Oscillation (ENSO) and the 50-day oscillation. Unfortunately, an adequate observational data base to perform such studies has been lacking.In this paper, we describe a new and unique ocean surface wind data set derived by combining the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) data with other conventional data, presenting both the methodology and some examples of the results. We are currently using these data in several studies, as discussed in the conclusion, and are preparing a more detailed description of the development and testing of our algorithms. These data are available through the National Aeronautics and Space Administration's Ocean Data System (NODS).

  13. Assessment of changes of vector borne diseases with wetland characteristics using multivariate analysis.

    PubMed

    Sheela, A M; Sarun, S; Justus, J; Vineetha, P; Sheeja, R V

    2015-04-01

    Vector borne diseases are a threat to human health. Little attention has been paid to the prevention of these diseases. We attempted to identify the significant wetland characteristics associated with the spread of chikungunya, dengue fever and malaria in Kerala, a tropical region of South West India using multivariate analyses (hierarchical cluster analysis, factor analysis and multiple regression). High/medium turbid coastal lagoons and inland water-logged wetlands with aquatic vegetation have significant effect on the incidence of chikungunya while dengue influenced by high turbid coastal beaches and malaria by medium turbid coastal beaches. The high turbidity in water is due to the urban waste discharge namely sewage, sullage and garbage from the densely populated cities and towns. The large extent of wetland is low land area favours the occurrence of vector borne diseases. Hence the provision of pollution control measures at source including soil erosion control measures is vital. The identification of vulnerable zones favouring the vector borne diseases will help the authorities to control pollution especially from urban areas and prevent these vector borne diseases. Future research should cover land use cover changes, climatic factors, seasonal variations in weather and pollution factors favouring the occurrence of vector borne diseases. PMID:25412801

  14. Evidence that implicit assumptions of 'no evolution' of disease vectors in changing environments can be violated on a rapid timescale.

    PubMed

    Egizi, Andrea; Fefferman, Nina H; Fonseca, Dina M

    2015-04-01

    Projected impacts of climate change on vector-borne disease dynamics must consider many variables relevant to hosts, vectors and pathogens, including how altered environmental characteristics might affect the spatial distributions of vector species. However, many predictive models for vector distributions consider their habitat requirements to be fixed over relevant time-scales, when they may actually be capable of rapid evolutionary change and even adaptation. We examine the genetic signature of a spatial expansion by an invasive vector into locations with novel temperature conditions compared to its native range as a proxy for how existing vector populations may respond to temporally changing habitat. Specifically, we compare invasions into different climate ranges and characterize the importance of selection from the invaded habitat. We demonstrate that vector species can exhibit evolutionary responses (altered allelic frequencies) to a temperature gradient in as little as 7-10 years even in the presence of high gene flow, and further, that this response varies depending on the strength of selection. We interpret these findings in the context of climate change predictions for vector populations and emphasize the importance of incorporating vector evolution into models of future vector-borne disease dynamics. PMID:25688024

  15. Modeling and space vector control of a novel multilevel matrix converter for variable-speed wind power generators

    NASA Astrophysics Data System (ADS)

    Al-Naseem, Osama Abdulrahman

    A novel multilevel matrix converter is developed to efficiently transfer energy between a three-phase variable-speed generator of a wind turbine and a three-phase ac utility network. Optimizing the energy transfer efficiency at light load is critical in variable-speed wind generators. Laboratory experiment suggests that converter efficiency at light load may be increased via soft-switching and multilevel switching techniques. The new converter includes the advantages of multilevel converters, such as reduced harmonic content, increased power handling capability without additional switching loss, and high efficiency at low machine voltages. It also features the characteristics of conventional matrix converters, such as space vector control and improved efficiency via auxiliary resonant commutation soft-switching techniques. Similar to a conventional matrix converter, the novel multilevel matrix converter uses a nine-switch matrix with four-quadrant switches to connect input phases at one side of the converter with output phases at the other side of the converter. However, the switches of the new converter are configured differently from those used in the conventional matrix converter. Each switch of the new converter is a cell that resembles a full-bridge inverter topology and can assume three voltage levels while used. Semiconductor devices in a switch cell are always clamped to a known constant do voltage of a capacitor. This is a typical characteristic of multilevel converters where device voltage stresses are reduced by clamping the main transistor voltages to low levels. With reduced voltage stresses, switching frequency can be increased to allow for reduced size of filter magnetics. Unlike conventional matrix converter, the multilevel matrix converter uses inductors on both input and output sides of the converter. This symmetry allows for both step up and step down operations. Each switch cell features double the power handling capability compared to the four-quadrant switches used in a conventional matrix converter. This increase in power handling capability is due to the doubling of the number of devices in a multilevel matrix converter switch cell. Scaling up the power handling capability is accomplished by cascading more than one switch cell per branch. Control of the new converter is achieved through space vector modulation in which three-phase ac voltages are transformed to the d-q reference frame and compared with a set of space vectors prior to modulation. Since it has 19683 different switching combinations, control can be difficult and complex. Nevertheless, the multilevel matrix converter has been modeled and controlled through simulation. Simulation results show the possibility of operating the converter to produce the desired voltage waveforms with universal input and output power factors and maintain constant capacitor voltages simultaneously. Also in this dissertation is the derivation of an analytical averaged equivalent circuit model of a PWM converter. This model reveals how dominant loss mechanisms vary with converter operating point. The model is based on the operational characteristics of power diodes and IGBTs. Laboratory experiments support the derived model and confirm that IGBT current tailing and diode reverse-recovery are indeed the most critical losses in a PWM converter. These losses are more significant at light load, hence reducing the energy capture capability of converters used in wind generation. The results suggest that multilevel conversion, which has been employed in the novel multilevel matrix converter, could improve the low-wind converter efficiency.

  16. VOL. 66, NO. 4 (DECEMBER 2013) P. 448458 Changing Daily Wind Speeds on Alaska's North Slope

    E-print Network

    ARCTIC VOL. 66, NO. 4 (DECEMBER 2013) P. 448­458 Changing Daily Wind Speeds on Alaska's North Slope-ecological conditions. Key words: Alaska, bowhead whale, caribou, wind speed, North Slope, social-ecological system collaborated with hunters from the coastal community of Wainwright, Alaska, to document their observations

  17. 18 IEEE power & energy magazine september/october 2010 on the winds of change

    E-print Network

    Dixon, Juan

    18 IEEE power & energy magazine september/october 2010 R on the winds of change impact a much larger area than a coal or a gas power plant to pro- duce a given amount of energy. A wind power.937465 RENEWABLE ENERGY TECHNOL- ogies are being welcomed in many countries worldwide because of their minor

  18. Projecting Wind Energy Potential Under Climate Change with Ensemble of Climate Model Simulations

    NASA Astrophysics Data System (ADS)

    Jain, A.; Shashikanth, K.; Ghosh, S.; Mukherjee, P. P.

    2013-12-01

    Recent years have witnessed an increasing global concern over energy sustainability and security, triggered by a number of issues, such as (though not limited to): fossil fuel depletion, energy resource geopolitics, economic efficiency versus population growth debate, environmental concerns and climate change. Wind energy is a renewable and sustainable form of energy in which wind turbines convert the kinetic energy of wind into electrical energy. Global warming and differential surface heating may significantly impact the wind velocity and hence the wind energy potential. Sustainable design of wind mills requires understanding the impacts of climate change on wind energy potential, which we evaluate here with multiple General Circulation Models (GCMs). GCMs simulate the climate variables globally considering the greenhouse emission scenarios provided as Representation Concentration path ways (RCPs). Here we use new generation climate model outputs obtained from Coupled model Intercomparison Project 5(CMIP5). We first compute the wind energy potential with reanalysis data (NCEP/ NCAR), at a spatial resolution of 2.50, where the gridded data is fitted to Weibull distribution and with the Weibull parameters, the wind energy densities are computed at different grids. The same methodology is then used, to CMIP5 outputs (resultant of U-wind and V-wind) of MRI, CMCC, BCC, CanESM, and INMCM4 for historical runs. This is performed separately for four seasons globally, MAM, JJA, SON and DJF. We observe the muti-model average of wind energy density for historic period has significant bias with respect to that of reanalysis product. Here we develop a quantile based superensemble approach where GCM quantiles corresponding to selected CDF values are regressed to reanalysis data. It is observed that this regression approach takes care of both, bias in GCMs and combination of GCMs. With superensemble, we observe that the historical wind energy density resembles quite well with reanalysis/ observed output. We apply the same for future under RCP scenarios. We observe spatially and temporally varying global change of wind energy density. The underlying assumption is that the regression relationship will also hold good for future. The results highlight the needs to change the design standards of wind mills at different locations, considering climate change and at the same time the requirement of height modifications for existing mills to produce same energy in future.

  19. Wind extremes in the North Sea Basin under climate change: An ensemble study of 12 CMIP5 GCMs

    E-print Network

    Haak, Hein

    Wind extremes in the North Sea Basin under climate change: An ensemble study of 12 CMIP5 GCMs R. C levels and waves are generated by low atmospheric pressure and severe wind speeds during storm events. As a result of the geometry of the North Sea, not only the maximum wind speed is relevant, but also wind

  20. Wind

    NSDL National Science Digital Library

    Iowa Public Television. Explore More Project

    2004-01-01

    What part does the wind play in satisfying energy demands? This informational piece, part of a series about the future of energy, introduces students to wind as an energy source. Here students read about the history, uses, and efficiency of wind power. Information is also provided about benefits, limitations, and geographical considerations of wind power in the United States. Thought-provoking questions afford students chances to reflect on what they've read about the uses of wind power. Supplemental articles and information are available from a sidebar. Three energy-related web links are also provided. Copyright 2005 Eisenhower National Clearinghouse

  1. Community-based dengue vector control: experiences in behavior change in Metropolitan Manila, Philippines

    PubMed Central

    Espino, Fe; Marco, Jesusa; Salazar, Nelia P; Salazar, Ferdinand; Mendoza, Ysadora; Velazco, Aldwin

    2012-01-01

    Dengue is the most important mosquito-borne disease in the Philippines, especially in Metropolitan Manila where communities are socially and economically diverse, and city governments struggle to provide basic services such as continuously available, piped water supply to residents. We examined responses to introducing water container management to control dengue vectors in two diverse communities in Masagana City: Village A (gated community) and Village B (informal settlers community). The roll out of the intervention was carried out by the study team, dengue control personnel and local health workers (BHWs). A behavioural change framework was used to describe the community responses to the introduction of a new vector control intervention - household water container management. Although, the desired outcome was not achieved during the study's timeline, observation on processes of behaviour change underscored the importance of understanding the social nature of the urban communities, often overlooked structures when dengue control program and researchers introduce new dengue control interventions. PMID:23318237

  2. Changes in the Burgers Vector of Perfect Dislocation Loops without Contact with the External Dislocations

    Microsoft Academic Search

    K. Arakawa; M. Hatanaka; E. Kuramoto; K. Ono; H. Mori

    2006-01-01

    We report the observations of a new type of changing process in the Burgers vector of dislocations by in situ transmission electron microscopy. Small interstitial-type perfect dislocation loops in bcc iron with diameters less than approximately 50 nm are transformed from a 1\\/2 loop to another 1\\/2 one or an energetically unfavorable one; furthermore, a loop is transformed to a

  3. Implications of Climate Change for Toxoptera citricida (Kirkaldy), a Disease Vector of Citrus in Florida

    Microsoft Academic Search

    Jawwad A. Qureshi

    \\u000a Increasing temperatures, elevated CO2 levels, and changes in rainfall patterns are predicted to impact plants and insects, both harmful and beneficial. Toxoptera citricida Kirkaldy (Homoptera: Aphididae), commonly known as the brown citrus aphid (BrCA), is a cosmopolitan pest of citrus and a\\u000a highly efficient vector of citrus tristeza virus (CTV). Both the pest and the disease pose a serious threat

  4. Operation of a Wind Turbine-Flywheel Energy Storage System under Conditions of Stochastic Change of Wind Energy

    PubMed Central

    2014-01-01

    The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level. PMID:25215326

  5. Operation of a wind turbine-flywheel energy storage system under conditions of stochastic change of wind energy.

    PubMed

    Tomczewski, Andrzej

    2014-01-01

    The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level. PMID:25215326

  6. 20% Wind Energy - Diversifying Our Energy Portfolio and Addressing Climate Change (Brochure)

    SciTech Connect

    Not Available

    2008-05-01

    This brochure describes the R&D efforts needed for wind energy to meet 20% of the U.S. electrical demand by 2030. In May 2008, DOE published its report, 20% Wind Energy by 2030, which presents an in-depth analysis of the potential for wind energy in the United States and outlines a potential scenario to boost wind electric generation from its current production of 16.8 gigawatts (GW) to 304 GW by 2030. According to the report, achieving 20% wind energy by 2030 could help address climate change by reducing electric sector carbon dioxide (CO2) emissions by 825 million metric tons (20% of the electric utility sector CO2 emissions if no new wind is installed by 2030), and it will enhance our nation's energy security by diversifying our electricity portfolio as wind energy is an indigenous energy source with stable prices not subject to fuel volatility. According to the report, increasing our nation's wind generation could also boost local rural economies and contribute to significant growth in manufacturing and the industry supply chain. Rural economies will benefit from a substantial increase in land use payments, tax benefits and the number of well-paying jobs created by the wind energy manufacturing, construction, and maintenance industries. Although the initial capital costs of implementing the 20% wind scenario would be higher than other generation sources, according to the report, wind energy offers lower ongoing energy costs than conventional generation power plants for operations, maintenance, and fuel. The 20% scenario could require an incremental investment of as little as $43 billion (net present value) more than a base-case no new wind scenario. This would represent less than 0.06 cent (6 one-hundredths of 1 cent) per kilowatt-hour of total generation by 2030, or roughly 50 cents per month per household. The report concludes that while achieving the 20% wind scenario is technically achievable, it will require enhanced transmission infrastructure, streamlined siting and permitting regimes, improved reliability and operability of wind systems, and increased U.S. wind manufacturing capacity. To meet these challenges, the DOE Wind Energy Program will continue to work with industry partners to increase wind energy system reliability and operability and improve manufacturing processes. The program also conducts research to address transmission and grid integration issues, to better understand wind resources, to mitigate siting and environmental issues, to provide information to industry stakeholders and policy makers, and to educate the future generations.

  7. Climate Change, Public Health, and Decision Support: The New Threat of Vector-borne Disease

    NASA Astrophysics Data System (ADS)

    Grant, F.; Kumar, S.

    2011-12-01

    Climate change and vector-borne diseases constitute a massive threat to human development. It will not be enough to cut emissions of greenhouse gases-the tide of the future has already been established. Climate change and vector-borne diseases are already undermining the world's efforts to reduce extreme poverty. It is in the best interests of the world leaders to think in terms of concerted global actions, but adaptation and mitigation must be accomplished within the context of local community conditions, resources, and needs. Failure to act will continue to consign developed countries to completely avoidable health risks and significant expense. Failure to act will also reduce poorest of the world's population-some 2.6 billion people-to a future of diminished opportunity. Northrop Grumman has taken significant steps forward to develop the tools needed to assess climate change impacts on public health, collect relevant data for decision making, model projections at regional and local levels; and, deliver information and knowledge to local and regional stakeholders. Supporting these tools is an advanced enterprise architecture consisting of high performance computing, GIS visualization, and standards-based architecture. To address current deficiencies in local planning and decision making with respect to regional climate change and its effect on human health, our research is focused on performing a dynamical downscaling with the Weather Research and Forecasting (WRF) model to develop decision aids that translate the regional climate data into actionable information for users. For the present climate WRF was forced with the Max Planck Institute European Center/Hamburg Model version 5 (ECHAM5) General Circulation Model 20th century simulation. For the 21th century climate, we used an ECHAM5 simulation with the Special Report on Emissions (SRES) A1B emissions scenario. WRF was run in nested mode at spatial resolution of 108 km, 36 km and 12 km and 28 vertical levels. This model was examined relative to two mosquito vectors, both competent carriers of dengue fever, a viral, vector-borne disease. Models which incorporate public health considerations can enable decision makers to take proactive steps to mitigate the impacts and adapt to the changing environmental conditions. In this paper we provide a snapshot of our climate initiative and some examples relative to our public health practice work in vector-borne diseases to illustrate how integrated decision support could be of assistance to regional and local communities worldwide.

  8. Effect of sudden solar wind dynamic pressure changes at subauroral latitudes: Change in magnetic field

    SciTech Connect

    Le, G.; Russell, C.T.; Petrinec, S.M.; Ginskey, M. (Univ. of California, Los Angeles (United States))

    1993-03-01

    The observations obtained during the International Magnetospheric Study (IMS) from the magnetometers of the IGS network extending from Cambridge, England, to Tromso, Norway, are used to study the response of subauroral current systems to sudden changes in solar wind dynamic pressure. Observations show that the response is very strong at subauroral latitudes. The preliminary response in the H component is a brief, small increase in the dayside moring sector and a decrease in the afternoon and night sectors. The main response in the horizontal field (the H and D components) is toward the pole except in the dayside morning sector. The inferred ionospheric current is mainly a circulatory system flowing counterclockwise when viewed form the north pole everywhere at subauroral latitudes except the dayside morning sector. 29 refs., 12 figs.

  9. OBSERVATIONAL EVIDENCE OF CHANGING PHOTOSPHERIC VECTOR MAGNETIC FIELDS ASSOCIATED WITH SOLAR FLARES

    SciTech Connect

    Su, J. T.; Jing, J.; Wang, H. M. [Space Weather Research Laboratory, New Jersey Institute of Technology, University Heights, Newark, NJ 07102-1982 (United States); Mao, X. J.; Wang, X. F.; Zhang, H. Q.; Deng, Y. Y.; Guo, J.; Wang, G. P., E-mail: sjt@bao.ac.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2011-06-01

    Recent observations have provided evidence that the solar photospheric magnetic fields could have rapid and permanent changes in both longitudinal and transverse components associated with major flares. As a result, the Lorentz force (LF) acting on the solar photosphere and solar interior could be perturbed, and the change of LF is always nearly in the downward direction. However, these rapid and permanent changes have not been systematically investigated, yet, using vector magnetograms. In this paper, we analyze photospheric vector magnetograms covering five flares to study the evolution of photospheric magnetic fields. In particular, we investigate two-dimensional spatial distributions of the changing LF. Around the major flaring polarity inversion line, the net change of the LF is directed downward in an area of {approx}10{sup 19} cm{sup 2} for X-class flares. For all events, the white-light observations show that sunspots darken in this location after flares, and magnetic fields become more inclined, which is consistent with the ideas put forward by Hudson et al. and Fisher et al., and observations.

  10. Analyses of possible changes in intense and extreme wind speeds over northern Europe under climate change scenarios

    Microsoft Academic Search

    S. C. PryorR; R. J. Barthelmie; N. E. Clausen; M. Drews; N. MacKellar; E. Kjellström

    2010-01-01

    Dynamical downscaling of ECHAM5 using HIRHAM5 and RCA3 for a northern European domain focused on Scandinavia indicates sustained\\u000a extreme wind speeds with long recurrence intervals (50 years) and intense winds are not likely to evolve out of the historical\\u000a envelope of variability until the end of C21st. Even then, significant changes are indicated only in the SW of the domain\\u000a and

  11. S. C. Pryor R. J. Barthelmie E. Kjellstro m Potential climate change impact on wind energy resources in northern

    E-print Network

    Pryor, Sara C.

    S. C. Pryor � R. J. Barthelmie � E. Kjellstro¨ m Potential climate change impact on wind energy of climate change on the feasibility and pre- dictability of renewable energy sources including wind energy on near-surface flow and hence wind energy density across northern Europe. It is shown that: Simulated

  12. Correlated solar wind speed, density, and magnetic field changes at J. D. Richardson and C. Wang1

    E-print Network

    Richardson, John

    Correlated solar wind speed, density, and magnetic field changes at Voyager 2 J. D. Richardson December 2003. [1] The character of the solar wind plasma data observed by Voyager 2 recently changed of the solar wind. The model reproduces the basic character (but not the details) of the observations

  13. A change vector analysis technique for monitoring land cover changes in Copsa Mica, Romania, in the period 1985-2011.

    PubMed

    Vorovencii, Iosif

    2014-09-01

    During the communist regime, Romania's planned economy focused exclusively on production neglecting the environment protection. The lack of less polluting production technologies and of environmental protection measures led to excessive pollution in certain industrialized areas. This is the case of the town of Copsa Mica in Sibiu County, which in 1987 was considered one of the most polluted towns in Europe. The present study assesses the change vector analysis (CVA) technique using a Landsat Thematic Mapper (TM) image time series to monitor land cover changes caused by carbon black and heavy metal pollution. CVA was applied to the tasseled cap greenness (TCG) and tasseled cap brightness (TCB) indices, as well as to the Normalized Difference Vegetation Index (NDVI) and bare soil index (BI). Various maps were generated for the periods 1985-1994, 1994-2003, 2003-2011, and 1985-2011, and threshold values were determined for the detection of land cover change/no change. The change direction and magnitude values were cross-tabulated and classified. The technique was assessed based on the change versus no-change error matrix. The results show that in the area of Copsa Mica, land cover changes occurred because of a considerable decrease in the area affected by carbon black and heavy metal pollution. The CVA technique proved efficient in monitoring the land cover changes caused by pollution and especially by carbon black pollution. Soil pollution by heavy metals is reflected in the bare soil surfaces present in the imagery. PMID:24861587

  14. Climate Change and Risk of Leishmaniasis in North America: Predictions from Ecological Niche Models of Vector and Reservoir Species

    Microsoft Academic Search

    Camila González; Ophelia Wang; Stavana E. Strutz; Constantino González-Salazar; Víctor Sánchez-Cordero; Sahotra Sarkar

    2010-01-01

    BackgroundClimate change is increasingly being implicated in species' range shifts throughout the world, including those of important vector and reservoir species for infectious diseases. In North America (México, United States, and Canada), leishmaniasis is a vector-borne disease that is autochthonous in México and Texas and has begun to expand its range northward. Further expansion to the north may be facilitated

  15. Risk maps for range expansion of the Lyme disease vector, Ixodes scapularis, in Canada now and with climate change

    Microsoft Academic Search

    Nicholas H Ogden; Laurie St-Onge; Ian K Barker; Stéphanie Brazeau; Michel Bigras-Poulin; Dominique F Charron; Charles M Francis; Audrey Heagy; L Robbin Lindsay; Abdel Maarouf; Pascal Michel; François Milord; Christopher J O'Callaghan; Louise Trudel; R Alex Thompson

    2008-01-01

    BACKGROUND: Lyme disease is the commonest vector-borne zoonosis in the temperate world, and an emerging infectious disease in Canada due to expansion of the geographic range of the tick vector Ixodes scapularis. Studies suggest that climate change will accelerate Lyme disease emergence by enhancing climatic suitability for I. scapularis. Risk maps will help to meet the public health challenge of

  16. Autonomous Mission Design and Data Fusion: Laying the groundwork for Decadal Mission swath altimetry and ocean vector winds.

    NASA Astrophysics Data System (ADS)

    Howe, B. M.; Arabshahi, P.; Businger, S.; Chao, Y.; Chien, S.; Gray, A.

    2008-12-01

    In the coming decade, the autonomous coordinated utilization of space, atmospheric, surface, and ocean assets, sensor webs, and data will assume more importance, as systems become more complex and tightly integrated, and as the need to know our environment with ever greater accuracy and precision becomes more acute. We have begun to address this issue with a prototype virtual ocean observatory that includes present and future NASA satellite missions (Jason-2 and QuikSCAT; and SWOT [swath altimetry] and XOVWM [ocean vector winds], respectively); atmosphere and ocean models (WRF/LAPS and ROMS, respectively); and in-situ sensors and platforms (underwater gliders). In our prototype system, the goal is to develop the architecture and implementation of the necessary software modules (e.g., automated data fusion/assimilation, and automated planning technology) to achieve adaptive in-situ sampling through feedback from space-based-assets (in this case via the SWOT simulator) thereby contributing to the orbit design during the first, experimental phase (~6-9 months) of the SWOT mission. This work is one step in the process of infusing technology into the development pipeline.

  17. Modelling potential changes in marine biogeochemistry due to large-scale offshore wind farms

    NASA Astrophysics Data System (ADS)

    van der Molen, Johan; Rees, Jon; Limpenny, Sian

    2013-04-01

    Large-scale renewable energy generation by offshore wind farms may lead to changes in marine ecosystem processes through the following mechanism: 1) wind-energy extraction leads to a reduction in local surface wind speeds; 2) these lead to a reduction in the local wind wave height; 3) as a consequence there's a reduction in SPM resuspension and concentrations; 4) this results in an improvement in under-water light regime, which 5) may lead to increased primary production, which subsequently 6) cascades through the ecosystem. A three-dimensional coupled hydrodynamics-biogeochemistry model (GETM_ERSEM) was used to investigate this process for a hypothetical wind farm in the central North Sea, by running a reference scenario and a scenario with a 10% reduction (as was found in a case study of a small farm in Danish waters) in surface wind velocities in the area of the wind farm. The ERSEM model included both pelagic and benthic processes. The results showed that, within the farm area, the physical mechanisms were as expected, but with variations in the magnitude of the response depending on the ecosystem variable or exchange rate between two ecosystem variables (3-28%, depending on variable/rate). Benthic variables tended to be more sensitive to the changes than pelagic variables. Reduced, but noticeable changes also occurred for some variables in a region of up to two farm diameters surrounding the wind farm. An additional model run in which the 10% reduction in surface wind speed was applied only for wind speeds below the generally used threshold of 25 m/s for operational shut-down showed only minor differences from the run in which all wind speeds were reduced. These first results indicate that there is potential for measurable effects of large-scale offshore wind farms on the marine ecosystem, mainly within the farm but for some variables up to two farm diameters away. However, the wave and SPM parameterisations currently used in the model are crude and need to be further tested and refined. Also, potential counter-acting processes such as possible increases in SPM concentrations due to turbulence generated by the wind-turbine foundations may need to be included for more accurate simulations. Moreover, it is unclear to what extent these results would be valid for areas where different hydrodynamic characteristics may predominate, e.g. with summer stratification or strong tidal currents. Finally, an assessment would need to be carried out of how beneficial or detrimental these potential changes might be from various social-economic and ecosystem-management points of view.

  18. Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world.

    PubMed

    Tabachnick, W J

    2010-03-15

    Vector-borne pathogens cause enormous suffering to humans and animals. Many are expanding their range into new areas. Dengue, West Nile and Chikungunya have recently caused substantial human epidemics. Arthropod-borne animal diseases like Bluetongue, Rift Valley fever and African horse sickness pose substantial threats to livestock economies around the world. Climate change can impact the vector-borne disease epidemiology. Changes in climate will influence arthropod vectors, their life cycles and life histories, resulting in changes in both vector and pathogen distribution and changes in the ability of arthropods to transmit pathogens. Climate can affect the way pathogens interact with both the arthropod vector and the human or animal host. Predicting and mitigating the effects of future changes in the environment like climate change on the complex arthropod-pathogen-host epidemiological cycle requires understanding of a variety of complex mechanisms from the molecular to the population level. Although there has been substantial progress on many fronts the challenges to effectively understand and mitigate the impact of potential changes in the environment on vector-borne pathogens are formidable and at an early stage of development. The challenges will be explored using several arthropod-borne pathogen systems as illustration, and potential avenues to meet the challenges will be presented. PMID:20190119

  19. Mars Pathfinder Landing Site: Evidence for a Change in Wind Regime from Lander and Orbiter Data

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Kraft, Michael D.; Kuzmin, Ruslan O.; Bridges, Nathan T.

    2000-01-01

    Surface features related to the wind are observed in the vicinity of the Mars Pathfinder (MPR landing site data from the lander and in data from orbit by the Viking Orbiter and Mars Global Surveyor missions. Features seen from the surface include wind tails associated with small rocks, barchanoid duneforms, ripplelike patterns, and ventifact flutes cut into some rocks. Features seen from orbit include wind tails associated with impact craters, ridges inferred to be duneforms, and modified crater rims interpreted to have been eroded and mantled by windblown material. The orientations of these features show two prevailing directions. One is inferred to represent winds from the northeast, which is consistent with strongest winds predicted by a general circulation model to occur during the Martian northern winter under current conditions. A second wind blowing from the ESE was responsible for modifying the crater rims and cutting some of the ventifacts. The two wind regimes could reflect a change in climate related to Mars' obliquity or some other, unknown factor. Regardless of the cause, the MPF area has been subjected to a complex pattern of winds and supply of small particles, and the original surface formed by sedimentary processes from Tiu and Ares Vallis flooding events has been modified by repeated burial and exhumation.

  20. Robust Projections of Vertical Wind Shear Changes for the 21st Century

    NASA Astrophysics Data System (ADS)

    Vecchi, G. A.; Soden, B. J.

    2006-12-01

    We explore the changes in tropical vertical wind-shear projected for the 21^{st} Century in response to increased CO2, using a set of 21 climate model experiments performed for the IPCC-AR4. Many features of the shear changes are robust across the various models, in particular an increase on wind-shear in the tropical north Atlantic region. This region is the only one in the world exhibiting a robust increase in shear in the local summer season, the models show robust decreases in wind shear over much of the tropical oceans. The increase in Atlantic wind shear appears related to teleconnections from global-warming-induced reduction in the intensity of large-scale atmospheric circulation, which occurs preferentially in the zonally-asymmetric (i.e., Walker) component of the tropical Pacific circulation - i.e. "El Niño-like" atmospheric changes. Although the mechanisms behind the Pacific changes are distinct from those of El Niño (and are reproduced in both mixed-layer and full ocean dynamics coupled climate models), aspects of climate teleconnections resemble those associated with El Niño. The large-scale shears show a pronounced and robust weakening over the Indian and western tropical Pacific Oceans. The magnitude of the ensemble-mean changes is on the order of 0.5-1 m/s per degree warming, and the robust signals are evident in over 18 of the 21 models. In these models, the spatial structure in the changes to the frequency of extremes in tropical daily cyclonic vorticity show relation to the structure of the changes in wind shear. Effort should be undertaken to understand the extent to which these robust changes in large-scale wind shear may impact hurricane activity, and they should be considered in discussions of projected changes to hurricane intensity and frequency.

  1. DOE SBIR Phase II Final Technical Report - Assessing Climate Change Effects on Wind Energy

    SciTech Connect

    Whiteman, Cameron; Capps, Scott

    2014-11-05

    Specialized Vertum Partners software tools were prototyped, tested and commercialized to allow wind energy stakeholders to assess the uncertainties of climate change on wind power production and distribution. This project resulted in three commercially proven products and a marketing tool. The first was a Weather Research and Forecasting Model (WRF) based resource evaluation system. The second was a web-based service providing global 10m wind data from multiple sources to wind industry subscription customers. The third product addressed the needs of our utility clients looking at climate change effects on electricity distribution. For this we collaborated on the Santa Ana Wildfire Threat Index (SAWTi), which was released publicly last quarter. Finally to promote these products and educate potential users we released “Gust or Bust”, a graphic-novel styled marketing publication.

  2. Potential Influence of Climate Change on Vector-Borne and Zoonotic Diseases: A Review and Proposed Research Plan

    PubMed Central

    Mills, James N.; Gage, Kenneth L.; Khan, Ali S.

    2010-01-01

    Background Because of complex interactions of climate variables at the levels of the pathogen, vector, and host, the potential influence of climate change on vector-borne and zoonotic diseases (VBZDs) is poorly understood and difficult to predict. Climate effects on the nonvector-borne zoonotic diseases are especially obscure and have received scant treatment. Objective We described known and potential effects of climate change on VBZDs and proposed specific studies to increase our understanding of these effects. The nonvector-borne zoonotic diseases have received scant treatment and are emphasized in this paper. Data sources and synthesis We used a review of the existing literature and extrapolations from observations of short-term climate variation to suggest potential impacts of climate change on VBZDs. Using public health priorities on climate change, published by the Centers for Disease Control and Prevention, we developed six specific goals for increasing understanding of the interaction between climate and VBZDs and for improving capacity for predicting climate change effects on incidence and distribution of VBZDs. Conclusions Climate change may affect the incidence of VBZDs through its effect on four principal characteristics of host and vector populations that relate to pathogen transmission to humans: geographic distribution, population density, prevalence of infection by zoonotic pathogens, and the pathogen load in individual hosts and vectors. These mechanisms may interact with each other and with other factors such as anthropogenic disturbance to produce varying effects on pathogen transmission within host and vector populations and to humans. Because climate change effects on most VBZDs act through wildlife hosts and vectors, understanding these effects will require multidisciplinary teams to conduct and interpret ecosystem-based studies of VBZD pathogens in host and vector populations and to identify the hosts, vectors, and pathogens with the greatest potential to affect human populations under climate change scenarios. PMID:20576580

  3. Dynamics of Sylvatic Chagas Disease Vectors in Coastal Ecuador Is Driven by Changes in Land Cover

    PubMed Central

    Grijalva, Mario J.; Terán, David; Dangles, Olivier

    2014-01-01

    Background Chagas disease is a serious public health problem in Latin America where about ten million individuals show Trypanosoma cruzi infection. Despite significant success in controlling domiciliated triatomines, sylvatic populations frequently infest houses after insecticide treatment which hampers long term control prospects in vast geographical areas where vectorial transmission is endemic. As a key issue, the spatio-temporal dynamics of sylvatic populations is likely influenced by landscape yet evidence showing this effect is rare. The aim of this work is to examine the role of land cover changes in sylvatic triatomine ecology, based on an exhaustive field survey of pathogens, vectors, hosts, and microhabitat characteristics' dynamics. Methodology and Principal Findings The study was performed in agricultural landscapes of coastal Ecuador as a study model. Over one year, a spatially-randomized sampling design (490 collection points) allowed quantifying triatomine densities in natural, cultivated and domestic habitats. We also assessed infection of the bugs with trypanosomes, documented their microhabitats and potential hosts, and recorded changes in landscape characteristics. In total we collected 886 individuals, mainly represented by nymphal stages of one triatomine species Rhodnius ecuadoriensis. As main results, we found that 1) sylvatic triatomines had very high T. cruzi infection rates (71%) and 2) densities of T. cruzi-infected sylvatic triatomines varied predictably over time due to changes in land cover and occurrence of associated rodent hosts. Conclusion We propose a framework for identifying the factors affecting the yearly distribution of sylvatic T. cruzi vectors. Beyond providing key basic information for the control of human habitat colonization by sylvatic vector populations, our framework highlights the importance of both environmental and sociological factors in shaping the spatio-temporal population dynamics of triatomines. A better understanding of the dynamics of such socio-ecological systems is a crucial, yet poorly considered, issue for the long-term control of Chagas disease. PMID:24968118

  4. Changes in the abundance and distribution of upland breeding birds at an operational wind farm

    Microsoft Academic Search

    David J. T. Douglas; Paul E. Bellamy

    2011-01-01

    Capsule No evidence for sustained declines in abundance or re?distribution of two key upland bird species on a wind farm site in the first three years of operation.Aims To describe changes in the abundance and distribution of birds on an upland wind farm during the first three years of operation.Methods Surveys to map the distribution of breeding birds were conducted

  5. Changes in the Burgers Vector of Perfect Dislocation Loops without Contact with the External Dislocations

    SciTech Connect

    Arakawa, K.; Hatanaka, M.; Mori, H. [Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1, Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Kuramoto, E. [Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Ono, K. [Department of Material Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504 (Japan)

    2006-03-31

    We report the observations of a new type of changing process in the Burgers vector of dislocations by in situ transmission electron microscopy. Small interstitial-type perfect dislocation loops in bcc iron with diameters less than approximately 50 nm are transformed from a 1/2<111> loop to another 1/2<111> one or an energetically unfavorable <100> one; furthermore, a <100> loop is transformed to a 1/2<111> one. These transformations occurred on high-energy electron irradiation or simple heating without contact with external dislocations. The origin of these phenomena is discussed.

  6. Changes in the Burgers vector of perfect dislocation loops without contact with the external dislocations.

    PubMed

    Arakawa, K; Hatanaka, M; Kuramoto, E; Ono, K; Mori, H

    2006-03-31

    We report the observations of a new type of changing process in the Burgers vector of dislocations by in situ transmission electron microscopy. Small interstitial-type perfect dislocation loops in bcc iron with diameters less than approximately 50 nm are transformed from a 1/2<111> loop to another 1/2<111> one or an energetically unfavorable <100> one; furthermore, a <100> loop is transformed to a 1/2<111> one. These transformations occurred on high-energy electron irradiation or simple heating without contact with external dislocations. The origin of these phenomena is discussed. PMID:16605927

  7. Simulation comparison of a decoupled longitudinal control system and a velocity vector control wheel steering system during landings in wind shear

    NASA Technical Reports Server (NTRS)

    Kimball, G., Jr.

    1980-01-01

    A simulator comparison of the velocity vector control wheel steering (VCWS) system and a decoupled longitudinal control system is presented. The piloting task was to use the electronic attitude direction indicator (EADI) to capture and maintain a 3 degree glide slope in the presence of wind shear and to complete the landing using the perspective runway included on the EADI. The decoupled control system used constant prefilter and feedback gains to provide steady state decoupling of flight path angle, pitch angle, and forward velocity. The decoupled control system improved the pilots' ability to control airspeed and flight path angle during the final stages of an approach made in severe wind shear. The system also improved their ability to complete safe landings. The pilots preferred the decoupled control system in severe winds and, on a pilot rating scale, rated the approach and landing task with the decoupled control system as much as 3 to 4 increments better than use of the VCWS system.

  8. Interactions between fire, grazing and climate change at Wind Cave National Park, SD

    Microsoft Academic Search

    Dominique Bachelet; James M Lenihan; Christopher Daly; Ronald P Neilson

    2000-01-01

    Projected changes in global climate have important ramifications for the future of national parks and other reserves set aside to conserve ecological uniqueness. We explored potential implications of climatic changes on lifeform distribution and growth at Wind Cave National Park (WCNP), South Dakota, which lies on a climatically determined ecotone between grassland and forest. Fire, promoted by healthy grasslands, is

  9. A spatially interactive simulation of climate change, harvesting, wind, and tree species migration and

    E-print Network

    Mladenoff, David

    A spatially interactive simulation of climate change, harvesting, wind, and tree species migration and projected changes to forest composition and biomass in northern Wisconsin, USA R O B E R T M . S C H E L L E R and D AV I D J . M L A D E N O F F Department of Forest Ecology and Management, University

  10. Limited change in dune mobility in response to a large decrease in wind power in semi-arid northern China since the 1970s

    USGS Publications Warehouse

    Mason, J.A.; Swinehart, J.B.; Lu, H.; Miao, X.; Cha, P.; Zhou, Y.

    2008-01-01

    The climatic controls on dune mobility, especially the relative importance of wind strength, remain incompletely understood. This is a key research problem in semi-arid northern China, both for interpreting past dune activity as evidence of paleoclimate and for predicting future environmental change. Potential eolian sand transport, which is approximately proportional to wind power above the threshold for sand entrainment, has decreased across much of northern China since the 1970s. Over the same period, effective moisture (ratio of precipitation to potential evapotranspiration) has not changed significantly. This "natural experiment" provides insight on the relative importance of wind power as a control on dune mobility in three dunefields of northern China (Mu Us, Otindag, and Horqin), although poorly understood and potentially large effects of human land use complicate interpretation. Dune forms in these three regions are consistent with sand transport vectors inferred from weather station data, suggesting that wind directions have remained stable and the stations adequately represent winds that shaped the dunes. The predicted effect of weaker winds since the 1970s would be dune stabilization, with lower sand transport rates allowing vegetation cover to expand. Large portions of all three dunefields remained stabilized by vegetation in the 1970s despite high wind power. Since the 1970s, trends in remotely sensed vegetation greenness and change in mobile dune area inferred from sequential Landsat images do indicate widespread dune stabilization in the eastern Mu Us region. On the other hand, expansion of active dunes took place farther west in the Mu Us dunefield and especially in the central Otindag dunefield, with little overall change in two parts of the Horqin dunes. Better ground truth is needed to validate the remote sensing analyses, but results presented here place limits on the relative importance of wind strength as a control on dune mobility in the study areas. High wind power alone does not completely destabilize these dunes. A large decrease in wind power either has little short-term effect on the dunes, or more likely its effect is sufficiently small that it is obscured by human impacts on dune stability in many parts of the study areas. ?? 2008 Elsevier B.V. All rights reserved.

  11. Winds of Change: How Black Holes May Shape Galaxies

    NASA Astrophysics Data System (ADS)

    2010-03-01

    New observations from NASA's Chandra X-ray Observatory provide evidence for powerful winds blowing away from the vicinity of a supermassive black hole in a nearby galaxy. This discovery indicates that "average" supermassive black holes may play an important role in the evolution of the galaxies in which they reside. For years, astronomers have known that a supermassive black hole grows in parallel with its host galaxy. And, it has long been suspected that material blown away from a black hole - as opposed to the fraction of material that falls into it -- alters the evolution of its host galaxy. A key question is whether such "black hole blowback" typically delivers enough power to have a significant impact. Powerful relativistic jets shot away from the biggest supermassive black holes in large, central galaxies in clusters like Perseus are seen to shape their host galaxies, but these are rare. What about less powerful, less focused galaxy-scale winds that should be much more common? "We're more interested here in seeing what an "average"-sized supermassive black hole can do to its galaxy, not the few, really big ones in the biggest galaxies," said Dan Evans of the Massachusetts Institute of Technology who presented these results at the High Energy Astrophysics Division of the American Astronomical Society meeting in Kona, Hawaii. Evans and his colleagues used Chandra for five days to observe NGC 1068, one of the nearest and brightest galaxies containing a rapidly growing supermassive black hole. This black hole is only about twice as massive as the one in the center of our Galaxy, which is considered to be a rather ordinary size. The X-ray images and spectra obtained using Chandra's High Energy Transmission Grating Spectrometer (HETGS) showed that a strong wind is being driven away from the center of NGC 1068 at a rate of about a million miles per hour. This wind is likely generated as surrounding gas is accelerated and heated as it swirls toward the black hole. A portion of the gas is pulled into the black hole, but some of it is blown away. High energy X-rays produced by the gas near the black hole heat the ouflowing gas, causing it to glow at lower X-ray energies. This Chandra study by Evans and his colleagues is much deeper than previous X-ray observations. It allowed them to make a high-definition map of the cone-shaped volume lit up by the black hole and its winds. By combining measurement of the velocity of the clouds with estimates of the density of the gas, Evans and his colleagues showed that each year several times the mass of the Sun is being deposited out to large distances, about 3,000 light years from the black hole. The wind may carry enough energy to heat the surrounding gas and suppress extra star formation. "We have shown that even these middle-of-the-road black holes can pack a punch," said Evans. "I think the upshot is that these black holes are anything but ordinary." Further Chandra HETGS studies of other nearby galaxies will examine the impact of other AGN outflows, leading to improvements in our understanding of the evolution of both galaxies and black holes. "In the future, our own Galaxy's black hole may undergo similar activity, helping to shut down the growth of new stars in the central region of the Milky Way," said Evans. These new results provide a key comparison to previous work performed at Georgia State University and the Catholic University of America with the Hubble Space Telescope's STIS instrument. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov

  12. [Comment on ``Solar wind mechanism suggested for weather and climate change''] Weather and climate changes arising from solar wind effects on thunderstorm electrification

    Microsoft Academic Search

    B. Vonnegut; C. B. Moore

    1995-01-01

    In ``Solar Wind Mechanism Suggested for Weather and Climate Change'' [Eos, August 9,1994], Brian A. Tinsley suggests that solar activity is modulating weather and climate through the effects it produces on the Earth's fair-weather electric field. This may well be true. It is questionable, however, whether the fair-weather electric field is strong enough to cause ice crystal formation in clouds

  13. Past and future wind changes over the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Chavaillaz, Y.; Codron, F.; Kageyama, M.

    2013-12-01

    Mid-latitude westerlies are a major component of the atmospheric circulation, and their response to climate change will determine changes in precipitation, storms, and ocean circulation and CO2 uptake. In this study, we analyse, mainly in terms of jet stream position, the behaviour of the southern westerlies for a future climate, obtained after stabilisation of the RCP4.5 scenario, as well as for the Last Glacial Maximum (LGM, 21 000 yr ago), which is the last past cold extreme with about opposite global temperature change from the future one. We use the models from the CMIP5-PMIP3 archive. The a priori guess would be that the behaviour of the westerly jet stream would be similar when examining its changes from LGM to pre-industrial (PI) con- ditions and from PI to RCP4.5, i.e. in both cases a poleward shift in response to global warming. While this is true for all models in the future case, the LGM shows instead little or inconsistent jet shifts, because of a strong cooling over Antarctica during the LGM. We show that the behavior of the jets in both cases can be quantitatively reproduced using two indices of temperature changes in the Tropics and the high latitudes.

  14. Evaluation of High-Resolution Ocean Surface Vector Winds Measured by QuikSCAT Scatterometer in Coastal Regions

    NASA Technical Reports Server (NTRS)

    Tang, Wenqing; Liu, W. Timothy; Stiles, Bryan W.

    2004-01-01

    The SeaWinds scatterometer onboard QuikSCAT covers approximately 90% of the global ocean under clear and cloudy condition in 24 h, and the standard data product has 25-km spatial resolution. Such spatial resolution is not sufficient to resolve small-scale processes, especially in coastal oceans. Based on range-compressed normalized backscatter and a modified wind retrieval algorithm, a coastal wind dataset at 12.5-km resolution was produced. Even with larger error, the high-resolution winds, in medium to high strength, would still be useful over coastal ocean. Using measurements from moored buoys from the National Buoy Data Center, the high-resolution QuikSCAT wind data are found to have similar accuracy as standard data in the open ocean. The accuracy of both high- and standard-resolution winds, particularly in wind directions, is found to degrade near shore. The increase in error is likely caused by the inadequacy of the geophysical model function/ambiguity removal scheme in addressing coastal conditions and light winds situations. The modified algorithm helps to bring the directional accuracy of the high-resolution winds to the accuracy of the standard-resolution winds in near-shore regions, particularly in the nadir and far zones across the satellite track.

  15. An Ill Wind? Climate Change, Migration, and Health

    PubMed Central

    Barnett, Jon

    2012-01-01

    Background: Climate change is projected to cause substantial increases in population movement in coming decades. Previous research has considered the likely causal influences and magnitude of such movements and the risks to national and international security. There has been little research on the consequences of climate-related migration and the health of people who move. Objectives: In this review, we explore the role that health impacts of climate change may play in population movements and then examine the health implications of three types of movements likely to be induced by climate change: forcible displacement by climate impacts, resettlement schemes, and migration as an adaptive response. Methods: This risk assessment draws on research into the health of refugees, migrants, and people in resettlement schemes as analogs of the likely health consequences of climate-related migration. Some account is taken of the possible modulation of those health risks by climate change. Discussion: Climate-change–related migration is likely to result in adverse health outcomes, both for displaced and for host populations, particularly in situations of forced migration. However, where migration and other mobility are used as adaptive strategies, health risks are likely to be minimized, and in some cases there will be health gains. Conclusions: Purposeful and timely policy interventions can facilitate the mobility of people, enhance well-being, and maximize social and economic development in both places of origin and places of destination. Nevertheless, the anticipated occurrence of substantial relocation of groups and communities will underscore the fundamental seriousness of human-induced climate change. PMID:22266739

  16. Age-related changes in the control of finger force vectors.

    PubMed

    Kapur, Shweta; Zatsiorsky, Vladimir M; Latash, Mark L

    2010-12-01

    We explored changes in finger interaction in the process of healthy aging as a window into neural control strategies of natural movements. In particular, we quantified the amount of force produced by noninstructed fingers in different directions, the amount of force produced by the instructed finger orthogonally to the task direction, and the strength of multifinger synergies stabilizing the total force magnitude and direction during accurate force production. Healthy elderly participants performed accurate isometric force production tasks in five directions by individual fingers and by all four fingers acting together. Their data were compared with a dataset obtained in a similar earlier study of young subjects. Finger force vectors were measured using six-component force/torque sensors. Multifinger synergies were quantified using the framework of the uncontrolled manifold hypothesis. The elderly participants produced lower force magnitudes by noninstructed fingers and higher force magnitudes by instructed fingers in nontask directions. They showed strong synergies stabilizing the magnitude and direction of the total force vector. However, the synergy indexes were significantly lower than those observed in the earlier study of young subjects. The results are consistent with an earlier hypothesis of preferential weakening of intrinsic hand muscles with age. We interpret the findings as a shift in motor control from synergic to element-based, which may be causally linked to the documented progressive neuronal death at different levels of the neural axis. PMID:20829494

  17. Study of light-induced vector changes in the local atomic structure of AsSe glasses by EXAFS

    E-print Network

    Drabold, David

    Study of light-induced vector changes in the local atomic structure of As­Se glasses by EXAFS G changes in the local structure of As­Se glasses using extended X-ray ab- sorption fine structure (EXAFS

  18. Assessing the impact of climate change on vector-borne viruses in the EU through the elicitation of expert opinion

    E-print Network

    Mottram, Nigel

    Assessing the impact of climate change on vector-borne viruses in the EU through the elicitation-borne viruses listed by the World Organization for Animal Health. It was predicted that climate change will increase the risk of incursions of African horse sickness virus (AHSV), Crimean-Congo haemorrhagic fever

  19. Integrated data processing of remotely sensed and vector data for building change detection

    NASA Astrophysics Data System (ADS)

    Sofina, N.; Ehlers, M.; Michel, U.

    2012-10-01

    In recent years natural disasters have had an increasing impact leading to tremendous economic and human losses. Remote sensing technologies are being used more often for rapid detection and visualization of changes in the affected areas, providing essential information for damage assessment, planning and coordination of recovery activities. This study presents a GIS-based approach for the detection of damaged buildings. The methodology is based on the integrated analysis of vector data containing information about the original urban layout and remotely sensed images obtained after a catastrophic event. For the classification of building integrity a new `Detected Part of Contour' (DPC) feature was developed. The DPC feature defines a part of the building contour that can be detected in the related remotely sensed image. It reaches maximum value (100%) if the investigated building contour is intact. Next, several features based on the analysis of textural information of the remotely sensed image are considered. Finally, a binary classification of building conditions concludes the change detection analysis. The proposed method was applied to the 2010 earthquake in Qinghai (China). The results indicate that a GIS-based analysis can markedly improve the accuracy of change detection analysis. The proposed methodology has been developed solely within the Open Source Software environment (GRASS GIS, Python, Orange). The employment of Open Source Software provides the way for an innovative, flexible and costeffective implementation of change detection operations.

  20. Estimated Effects of Projected Climate Change on the Basic Reproductive Number of the Lyme Disease Vector Ixodes scapularis

    PubMed Central

    Radojevic´, Milka; Wu, Xiaotian; Duvvuri, Venkata R.; Leighton, Patrick A.; Wu, Jianhong

    2014-01-01

    Background: The extent to which climate change may affect human health by increasing risk from vector-borne diseases has been under considerable debate. Objectives: We quantified potential effects of future climate change on the basic reproduction number (R0) of the tick vector of Lyme disease, Ixodes scapularis, and explored their importance for Lyme disease risk, and for vector-borne diseases in general. Methods: We applied observed temperature data for North America and projected temperatures using regional climate models to drive an I. scapularis population model to hindcast recent, and project future, effects of climate warming on R0. Modeled R0 increases were compared with R0 ranges for pathogens and parasites associated with variations in key ecological and epidemiological factors (obtained by literature review) to assess their epidemiological importance. Results: R0 for I. scapularis in North America increased during the years 1971–2010 in spatio-temporal patterns consistent with observations. Increased temperatures due to projected climate change increased R0 by factors (2–5 times in Canada and 1.5–2 times in the United States), comparable to observed ranges of R0 for pathogens and parasites due to variations in strains, geographic locations, epidemics, host and vector densities, and control efforts. Conclusions: Climate warming may have co-driven the emergence of Lyme disease in northeastern North America, and in the future may drive substantial disease spread into new geographic regions and increase tick-borne disease risk where climate is currently suitable. Our findings highlight the potential for climate change to have profound effects on vectors and vector-borne diseases, and the need to refocus efforts to understand these effects. Citation: Ogden NH, Radojevi? M, Wu X, Duvvuri VR, Leighton PA, Wu J. 2014. Estimated effects of projected climate change on the basic reproductive number of the Lyme disease vector Ixodes scapularis. Environ Health Perspect 122:631–638;?http://dx.doi.org/10.1289/ehp.1307799 PMID:24627295

  1. Climate change influences on global distributions of dengue and chikungunya virus vectors.

    PubMed

    Campbell, Lindsay P; Luther, Caylor; Moo-Llanes, David; Ramsey, Janine M; Danis-Lozano, Rogelio; Peterson, A Townsend

    2015-04-01

    Numerous recent studies have illuminated global distributions of human cases of dengue and other mosquito-transmitted diseases, yet the potential distributions of key vector species have not been incorporated integrally into those mapping efforts. Projections onto future conditions to illuminate potential distributional shifts in coming decades are similarly lacking, at least outside Europe. This study examined the global potential distributions of Aedes aegypti and Aedes albopictus in relation to climatic variation worldwide to develop ecological niche models that, in turn, allowed anticipation of possible changes in distributional patterns into the future. Results indicated complex global rearrangements of potential distributional areas, which-given the impressive dispersal abilities of these two species-are likely to translate into actual distributional shifts. This exercise also signalled a crucial priority: digitization and sharing of existing distributional data so that models of this sort can be developed more rigorously, as present availability of such data is fragmentary and woefully incomplete. PMID:25688023

  2. Short Term Wind Forecasting for Sites with Abrupt Roughness and Thermal Changes

    NASA Astrophysics Data System (ADS)

    Liu, H.; Taylor, P. A.; Weng, W.; Salmon, J. R.

    2008-12-01

    With the increasing penetration of wind power to the electrical grid, the importance of short-term wind energy forecasting from hours to 2-3 days ahead has been recognized. Typically, the outputs of Numerical Weather Prediction (NWP) models are used to drive the forecasting system with forecast horizons of a few hours. We are studying the coupling of the local-scale models with North America regional NWP models such as GEM and NAM and nested meso-scale models for site specific wind and wind energy forecasting for wind farms near abrupt roughness and thermal changes. The goal is for real-time wind forecasts from 1 hour to 48 hours and comparison with field measurements at one or more sites in southern Ontario. Local, site specific, winds are affected on a local scale by a variety of factors. These include topography, on a range of scales, surface roughness and its spatial variation, surface temperatures or thermal properties and wakes behind surface mounted obstacles. On the meso-scale, effects such as sea or lake breezes and channelling effects are important factors. These local effects are generally not properly represented in meso-scale models, with a resolution of order 2-10 km. We will use various methods to simulate these local effects in our forecasting system. These include numerical vertical and horizontal interpolations and the use of models of flow in complex terrain. The results will be examined using the Mean Absolute Error and Root Mean Squared Error (RMSE). A decomposition of RMSE into amplitude and phase error will assist in identifying the forecasting errors and selecting MOS procedures for improving the forecasting. A comparison between the forecasted and measured wind speed at 80-m, the typical turbine hub height, shows encouraging results.

  3. Winds of Change: Charting the Course for IT in the Twenty-First Century

    ERIC Educational Resources Information Center

    Hawkins, Brian L.

    2007-01-01

    In the spring of 2005, the author, the retiring president of EDUCAUSE, was asked to be the keynote speaker at the EDUCAUSE Western Regional Conference. The conference theme was "Winds of Change: Charting the Course for Technology in Challenging Times." What that brought to his mind was the era of the great sailing ships of the eighteenth and…

  4. Native American Support Programs Task Force Changing Winds: Service to Native American Students

    E-print Network

    Dyer, Bill

    Native American Support Programs Task Force Changing Winds: Service to Native American Students and Communities in Montana Final Report of the MSU Native American Support Programs Task Force Submitted To Shelly Hogan #12;Native American Support Programs Task Force Contents EXECUTIVE SUMMARY

  5. Wind-tunnel investigation of the powered low-speed longitudinal aerodynamics of the Vectored-Engine-Over (VEO) wing fighter configuration

    NASA Technical Reports Server (NTRS)

    Paulson, J. W.; Whitten, P. D.; Stumpfl, S. C.

    1982-01-01

    A wind-tunnel investigation incorporating both static and wind-on testing was conducted in the Langley 4- by 7-Meter Tunnel to determine the effects of vectored thrust along with spanwise blowing on the low-speed aerodynamics of an advanced fighter configuration. Data were obtained over a large range of thrust coefficients corresponding to takeoff and landing thrust settings for many nozzle configurations. The complete set of static thrust data and the complete set of longitudinal aerodynamic data obtained in the investigation are presented. These data are intended for reference purposes and, therefore, are presented without analysis or comment. The analysis of the thrust-induced effects found in the investigation are not discussed.

  6. Cytoplasmic pH dynamics in maize pulvinal cells induced by gravity vector changes

    NASA Technical Reports Server (NTRS)

    Johannes, E.; Collings, D. A.; Rink, J. C.; Allen, N. S.; Brown, C. S. (Principal Investigator)

    2001-01-01

    In maize (Zea mays) and other grasses, changes in orientation of stems are perceived by pulvinal tissue, which responds to the stimulus by differential growth resulting in upward bending of the stem. The amyloplast-containing bundle sheath cells are the sites of gravity perception, although the initial steps of gravity perception and transmission remain unclear. In columella cells of Arabidopsis roots, we previously found that cytoplasmic pH (pH(c)) is a mediator in early gravitropic signaling (A.C. Scott, N.S. Allen [1999] Plant Physiol 121: 1291-1298). The question arises whether pH(c) has a more general role in signaling gravity vector changes. Using confocal ratiometric imaging and the fluorescent pH indicator carboxy seminaphtorhodafluor acetoxymethyl ester acetate, we measured pH(c) in the cells composing the maize pulvinus. When stem slices were gravistimulated and imaged on a horizontally mounted confocal microscope, pH(c) changes were only apparent within the bundle sheath cells, and not in the parenchyma cells. After turning, cytoplasmic acidification was observed at the sides of the cells, whereas the cytoplasm at the base of the cells where plastids slowly accumulated became more basic. These changes were most apparent in cells exhibiting net amyloplast sedimentation. Parenchyma cells and isolated bundle sheath cells did not show any gravity-induced pH(c) changes although all cell types responded to external stimuli in the predicted way: Propionic acid and auxin treatments induced acidification, whereas raising the external pH caused alkalinization. The results suggest that pH(c) has an important role in the early signaling pathways of maize stem gravitropism.

  7. [Impact of changes in the environment on vector-transmitted diseases].

    PubMed

    Mouchet, J; Carnevale, P

    1997-01-01

    We have defined the relationship between infectious diseases and environmental conditions and considered the development of this relationship to its current situation, where human intervention is occurring more often and is becoming more aggressive. The increase in the transport of freight and passengers by air has allowed parasite vectors to spread quickly and easily over large distances. Every country can now be reached from any other country within a couple of days. Usually, foreign species are unable to establish themselves and to persist in the new environment; but the recent arrival of Aedes albopictus in Albania, Italy and the Americas is a cause for concern. Demographic pressure has increased the need for land and the exploitation of new areas leads to large changes in the vegetation. The classic example of this man-made damage is the destruction of tropical forest in Western Africa, but the destruction of herbaceous vegetation, such as papyrus, in East Africa, could also have serious epidemiological consequences. Streams and rivers have been managed for power production and irrigation. The use of dams, both large and small, and the culture of rice in paddy-fields produces large expanses of water which are suitable breeding grounds for mosquitoes and snails, the vectors of human diseases such as malaria and schistosomiasis in sub-Saharan Africa. They are, however, of lesser importance in Asia and the Americas. Urbanization imposes a set of very similar structures on a specific rural environment. The effect of these two factors on each other determines the pathologies associated with each town. The suburban area is a specific environment where both urban and rural diseases occur and are made worse by poor hygiene conditions (waste, sewage, etc.). However, not all man-made changes to the environment cause a deterioration in public health. Urban and agricultural development projects must consider these issues and should use medical and environmental studies to avoid causing epidemic-prone conditions or spreading endemic diseases. Currently, most studies are limited to listing the specific diseases in the target area and very few attempt to assess the possible consequences of changing the environment. Forecasting the consequences of changes in environmental management is of great importance, but it requires the development of multi-disciplinary teams in the field who must be involved in the planning and implementation of the projects. PMID:9410453

  8. Climate Change, Vector-borne Disease and Interdisciplinary Research: Social Science Perspectives on an Environment and Health Controversy

    Microsoft Academic Search

    Ben W. Brisbois; S. Harris Ali

    Over the last two decades, the science of climate change’s theoretical impacts on vector-borne disease has generated controversy\\u000a related to its methodological validity and relevance to disease control policy. Critical social science analysis, drawing\\u000a on science and technology studies and the sociology of social movements, demonstrates consistency between this controversy\\u000a and the theory that climate change is serving as a

  9. SeaWinds Scatterometer Wind Vector Retrievals Within Hurricanes Using AMSR and NEXRAD to Perform Corrections for Precipitation Effects: Comparison of AMSR and NEXRAD Retrievals of Rain

    NASA Technical Reports Server (NTRS)

    Weissman, David E.; Hristova-Veleva, Svetla; Callahan, Philip

    2006-01-01

    The opportunity provided by satellite scatterometers to measure ocean surface winds in strong storms and hurricanes is diminished by the errors in the received backscatter (SIGMA-0) caused by the attenuation, scattering and surface roughening produced by heavy rain. Providing a good rain correction is a very challenging problem, particularly at Ku band (13.4 GHz) where rain effects are strong. Corrections to the scatterometer measurements of ocean surface winds can be pursued with either of two different methods: empirical or physical modeling. The latter method is employed in this study because of the availability of near simultaneous and collocated measurements provided by the MIDORI-II suite of instruments. The AMSR was designed to measure atmospheric water-related parameters on a spatial scale comparable to the SeaWinds scatterometer. These quantities can be converted into volumetric attenuation and scattering at the Ku-band frequency of SeaWinds. Optimal estimates of the volume backscatter and attenuation require a knowledge of the three dimensional distribution of reflectivity on a scale comparable to that of the precipitation. Studies selected near the US coastline enable the much higher resolution NEXRAD reflectivity measurements evaluate the AMSR estimates. We are also conducting research into the effects of different beam geometries and nonuniform beamfilling of precipitation within the field-of-view of the AMSR and the scatterometer. Furthermore, both AMSR and NEXRAD estimates of atmospheric correction can be used to produce corrected SIGMA-0s, which are then input to the JPL wind retrieval algorithm.

  10. Catastrophic wind damage to North American forests and the potential impact of climate change.

    PubMed

    Peterson, C J

    2000-11-15

    Catastrophic winds from tornadoes and downbursts are a major cause of natural disturbance in forests of eastern North America, accounting for thousands of hectares of disturbed area annually. Wind disturbance shows substantial regional variation, decreasing from the mid-west to the east and from the south-east to New England. In terms of the relative importance among these types of storms, more forest damage results from tornadoes in the south-east and mid-west, while downbursts are the most important type of wind disturbance in the Great Lakes area. Downbursts vary widely in size, but large ones can damage thousands of hectares, while tornadoes are much smaller, seldom affecting more than several hundred hectares. Tornadoes cause the most severe wind disturbances. Site characteristics such as physiography, soil moisture, and soil depth; stand characteristics like density and canopy roughness; and tree characteristics such as size, species, rooting depth, and wood strength, are the factors most recognized as influencing damage patterns. The consequences of wind damage to forests, such as change in environmental conditions, density, size structure, species composition, and successional status, occur on both immediate (hours-to-days) and long-term (months-to-decades) time scales. Most wind disturbances result in the post-disturbance vegetation being comprised of surviving canopy trees, and varying amounts of sprouts, released understory stems, and new seedlings. Stand size structure is usually reduced, and successional status of a forest is often advanced. Diversity can be either increased or decreased, depending on the measure of abundance used to calculate diversity. Because tornadoes and downbursts are in part products of thermodynamic climatic circumstances, they may be affected by anticipated changes in climatic conditions as the 21st century progresses. However, the current understanding of tornado and downburst formation from supercell storms is very incomplete, and climate-change model predictions sufficiently coarse, that predictions of changes in frequency, size, intensity, or timing of these extreme events must be regarded as highly uncertain. Moreover, retrospective approaches that employ tree demography and dendrochronology require prohibitively large sample sizes to resolve details of the relationship between climate fluctuations and characteristics of these storms. To improve predictions of changes in the climatology of these storms, we need improved understanding of the genesis of tornadoes and downbursts within thunderstorms, and greater resolution in global climate models. To improve coping strategies, forest scientists can contribute by giving more attention to how various silvicultural actions influence stand and tree vulnerability. Finally, increased focus on the dynamics of forest recovery and regrowth may suggest management actions that can facilitate desired objectives after one of these unpredictable wind disturbances. PMID:11087033

  11. ERS-1 scatterometer calibration and validation activities at ECMWF. B: From radar backscatter characteristics to wind vector solutions

    NASA Technical Reports Server (NTRS)

    Stoffelen, AD; Anderson, David L. T.; Woiceshyn, Peter M.

    1992-01-01

    Calibration and validation activities for the ERS-1 scatterometer were carried out at ECMWF (European Center for Medium range Weather Forecast) complementary to the 'Haltenbanken' field campaign off the coast of Norway. At a Numerical Weather Prediction (NWP) center a wealth of verifying data is available both in time and space. This data is used to redefine the wind retrieval procedure given the instrumental characteristics. It was found that a maximum likelihood estimation procedure to obtain the coefficients of a reformulated sigma deg to wind relationship should use radar measurements in logarithmic rather than physical space, and use winds as the wind components rather than wind speed and direction. Doing this, a much more accurate transfer function than the one currently operated by ESA was derived. Sigma deg measurement space shows no signature of a separation in an upwind solution cone and a downwind solution cone. As such signature was anticipated in ESA's wind direction ambiguity removal algorithm, reconsideration of the procedure is necessary. Despite the fact that revisions have to be made in the process of wind retrieval; a grid potential is shown for scatterometry in meteorology and climatology.

  12. Winds

    NSDL National Science Digital Library

    2012-08-03

    In this problem-based learning (PBL) scenario, students prepare a presentation for investors showing how their fishing company has a significant advantage because it locates upwelling zones and fishing areas using TRMM (Tropical Rainfall Measuring Mission) and other satellite data. Prior to launching the PBL, students learn about wind: the topics of air pressure, coriolis effect, upwelling and the role of differential heating on the atmosphere are explored in classroom demonstrations. Materials required include a beaker, coffee grounds, drinking straw, balloon, flashlight, and turntable. The resource includes teacher background information, glossary, assessment rubric, and an appendix introducing problem-based learning.

  13. Zoom in at African country level: potential climate induced changes in areas of suitability for survival of malaria vectors

    PubMed Central

    2014-01-01

    Background Predicting anopheles vectors’ population densities and boundary shifts is crucial in preparing for malaria risks and unanticipated outbreaks. Although shifts in the distribution and boundaries of the major malaria vectors (Anopheles gambiae s.s. and An. arabiensis) across Africa have been predicted, quantified areas of absolute change in zone of suitability for their survival have not been defined. In this study, we have quantified areas of absolute change conducive for the establishment and survival of these vectors, per African country, under two climate change scenarios and based on our findings, highlight practical measures for effective malaria control in the face of changing climatic patterns. Methods We developed a model using CLIMEX simulation platform to estimate the potential geographical distribution and seasonal abundance of these malaria vectors in relation to climatic factors (temperature, rainfall and relative humidity). The model yielded an eco-climatic index (EI) describing the total favourable geographical locations for the species. The EI values were classified and exported to a GIS package. Using ArcGIS, the EI shape points were clipped to the extent of Africa and then converted to a raster layer using Inverse Distance Weighted (IDW) interpolation method. Generated maps were then transformed into polygon-based geo-referenced data set and their areas computed and expressed in square kilometers (km2). Results Five classes of EI were derived indicating the level of survivorship of these malaria vectors. The proportion of areas increasing or decreasing in level of survival of these malaria vectors will be more pronounced in eastern and southern African countries than those in western Africa. Angola, Ethiopia, Kenya, Mozambique, Tanzania, South Africa and Zambia appear most likely to be affected in terms of absolute change of malaria vectors suitability zones under the selected climate change scenarios. Conclusion The potential shifts of these malaria vectors have implications for human exposure to malaria, as recrudescence of the disease is likely to be recorded in several new areas and regions. Therefore, the need to develop, compile and share malaria preventive measures, which can be adapted to different climatic scenarios, remains crucial. PMID:24885061

  14. Assessing the impact of climate change on vector-borne viruses in the EU through the elicitation of expert opinion

    Microsoft Academic Search

    A. B R O UW; V. R AMNIAL; L. KELLY; R. K O S M ID

    SUMMARY Expert opinion was elicited to undertake a qualitative risk assessment to estimate the current and future risks to the European Union (EU) from five vector-borne viruses listed by the World Organization for Animal Health. It was predicted that climate change will increase the risk of incursions of African horse sickness virus (AHSV), Crimean-Congo haemorrhagic fever virus (CCHFV) and Rift

  15. Q-Winds satellite hurricane wind retrievals and H*Wind comparisons

    E-print Network

    Hennon, Christopher C.

    1 Q-Winds satellite hurricane wind retrievals and H*Wind comparisons Pet Laupattarakasem and W This paper presents a new hurricane ocean vector wind (OVW) product known as Q-Winds produced from the SeaWinds for tropical cyclones. SeaWinds OVW retrievals are presented for ten hurricane passes with near

  16. Recent changes in measured wind in the NE Atlantic and variability of correlation with NAO

    NASA Astrophysics Data System (ADS)

    Pirazzoli, P. A.; Tomasin, A.; Ullmann, A.

    2010-10-01

    The paper deals with wind measurements, recorded since the 1950s, at twelve meteorological stations along a transect near the westernmost European border, between 64° and 44° N. Extreme wind speed tends to decrease sharply near the northern boundary (at Reykjavick), near the middle of the study area (at Shannon and Valentia) and near the southern boundary (at Brest and Cap Ferret), to increase at Thorshavn, with less significant trends at the other stations. Average wind speeds confirm the above tendencies, with an additional increasing speed at Lerwick, Kirkwall, Malin Head, Belle-Ile and Cap Ferret. To compare changes in wind activity, the data have been subdivided into three periods: until 1975, 1976-1992 and 1993-2008. Frequencies have been computed also for the "winter" (October to March) period, per quadrants, and for occurrences exceeding the speed of 15 m s-1. At Reykjavick a recent increase in the frequency of strong winds has occurred from various directions. Between 62° N (Thorshavn) and 59° N (Kirkwall) strong wind has been increasing since 1975. Minor changes can be observed at Stornoway, whereas at Malin Head the greatest increase for southerlies and westerlies is observed during the 1976-1992 period. At Belmullet, the frequency of strong southerlies has almost doubled since 1992, while at Shannon and Valentia it remains quite low. Finally at Brest and Belle-Ile, westerlies are predominant among winds >15 m s-1. Important changes in time and latitude appear in the correlation with the NAO (North Atlantic Oscillation) index. The highest correlation coefficients, calculated with monthly or seasonal means between the early 1950s and 1975, are observed from between 58° N (Stornoway) and Iceland, whereas low positive coefficients are reported more south. During the period 1976-1992, when increasing NAO index is predominant, positive correlation improves southwards as far as 54° (Belmullet) with some improvement also at Shannon and Valentia, while it remains low or even negative near the French Atlantic coast. Finally in the 1993-2008 period, correlation improves for all the stations south of 54° N (Belmullet), while it weakens more north.

  17. A multi-model ensemble approach for assessment of climate change impact on surface winds in France

    Microsoft Academic Search

    Julien Najac; Julien Boé; Laurent Terray

    2009-01-01

    Statistical downscaling of 14 coupled atmosphere-ocean general circulation models (AOGCM) is presented to assess potential\\u000a changes of the 10 m wind speeds in France. First, a statistical downscaling method is introduced to estimate daily mean 10 m\\u000a wind speed at specific sites using general circulation model output. Daily 850 hPa wind field has been selected as the large\\u000a scale circulation predictor. The method

  18. Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants

    PubMed Central

    Friedman, Jannice; Barrett, Spencer C. H.

    2009-01-01

    Background The rich literature that characterizes the field of pollination biology has focused largely on animal-pollinated plants. At least 10 % of angiosperms are wind pollinated, and this mode of pollination has evolved on multiple occasions among unrelated lineages, and hence this discrepancy in research interest is surprising. Here, the evolution and functional ecology of pollination and mating in wind-pollinated plants are discussed, a theoretical framework for modelling the selection of wind pollination is outlined, and pollen capture and the occurrence of pollen limitation in diverse wind-pollinated herbs are investigated experimentally. Scope and Conclusions Wind pollination may commonly evolve to provide reproductive assurance when pollinators are scarce. Evidence is presented that pollen limitation in wind-pollinated plants may not be as common as it is in animal-pollinated species. The studies of pollen capture in wind-pollinated herbs demonstrate that pollen transfer efficiency is not substantially lower than in animal-pollinated plants as is often assumed. These findings challenge the explanation that the evolution of few ovules in wind-pollinated flowers is associated with low pollen loads. Floral and inflorescence architecture is crucial to pollination and mating because of the aerodynamics of wind pollination. Evidence is provided for the importance of plant height, floral position, and stamen and stigma characteristics in promoting effective pollen dispersal and capture. Finally, it is proposed that geitonogamous selfing may alleviate pollen limitation in many wind-pollinated plants with unisexual flowers. PMID:19218583

  19. Climate change, vector-borne disease and interdisciplinary research: social science perspectives on an environment and health controversy.

    PubMed

    Brisbois, Ben W; Ali, S Harris

    2010-12-01

    Over the last two decades, the science of climate change's theoretical impacts on vector-borne disease has generated controversy related to its methodological validity and relevance to disease control policy. Critical social science analysis, drawing on science and technology studies and the sociology of social movements, demonstrates consistency between this controversy and the theory that climate change is serving as a collective action frame for some health researchers. Within this frame, vector-borne disease data are interpreted as a symptom of climate change, with the need for further interdisiplinary research put forth as the logical and necessary next step. Reaction to this tendency on the part of a handful of vector-borne disease specialists exhibits characteristics of academic boundary work aimed at preserving the integrity of existing disciplinary boundaries. Possible reasons for this conflict include the leadership role for health professionals and disciplines in the envisioned interdiscipline, and disagreements over the appropriate scale of interventions to control vector-borne diseases. Analysis of the competing frames in this controversy also allows identification of excluded voices and themes, such as international political economic explanations for the health problems in question. A logical conclusion of this analysis, therefore, is the need for critical reflection on environment and health research and policy to achieve integration with considerations of global health equity. PMID:21125310

  20. Improving the textural characterization of trabecular bone structure to quantify its changes: the locally adapted scaling vector method

    NASA Astrophysics Data System (ADS)

    Raeth, Christoph W.; Mueller, Dirk; Boehm, Holger F.; Rummeny, Ernst J.; Link, Thomas M.; Monetti, Roberto

    2005-04-01

    We extend the recently introduced scaling vector method (SVM) to improve the textural characterization of oriented trabecular bone structures in the context of osteoporosis. Using the concept of scaling vectors one obtains non-linear structural information from data sets, which can account for global anisotropies. In this work we present a method which allows us to determine the local directionalities in images by using scaling vectors. Thus it becomes possible to better account for local anisotropies and to implement this knowledge in the calculation of the scaling properties of the image. By applying this adaptive technique, a refined quantification of the image structure is possible: we test and evaluate our new method using realistic two-dimensional simulations of bone structures, which model the effect of osteoblasts and osteoclasts on the local change of relative bone density. The partial differential equations involved in the model are solved numerically using cellular automata (CA). Different realizations with slightly varying control parameters are considered. Our results show that even small changes in the trabecular structures, which are induced by variation of a control parameters of the system, become discernible by applying the locally adapted scaling vector method. The results are superior to those obtained by isotropic and/or bulk measures. These findings may be especially important for monitoring the treatment of patients, where the early recognition of (drug-induced) changes in the trabecular structure is crucial.

  1. A parametric study of the behavior of the angular momentum vector during spin rate changes of rigid-body spacecraft

    NASA Astrophysics Data System (ADS)

    Longuski, J. M.; Kia, T.

    1984-06-01

    During a spin-up or spin-down maneuver of a spinning spacecraft, it is usual to have not only a constant body-fixed torque about the desired spin axis, but also small undesired constant torques about the transverse axes. This causes the orientation of the angular momentum vector to change in inertial space. Since an analytic solution is available for the angular momentum vector as a function of time, this behavior can be studied for large variations of the dynamic parameters, such as the initial spin rate, the inertial properties and the torques. As an example, the spin-up and spin-down maneuvers of the Galileo spacecraft was studied and as a result, very simple heuristic solutions were discovered which provide very good approximations to the parametric behavior of the angular momentum vector orientation.

  2. Climate variability and change in the United States: potential impacts on vector- and rodent-borne diseases.

    PubMed Central

    Gubler, D J; Reiter, P; Ebi, K L; Yap, W; Nasci, R; Patz, J A

    2001-01-01

    Diseases such as plague, typhus, malaria, yellow fever, and dengue fever, transmitted between humans by blood-feeding arthropods, were once common in the United States. Many of these diseases are no longer present, mainly because of changes in land use, agricultural methods, residential patterns, human behavior, and vector control. However, diseases that may be transmitted to humans from wild birds or mammals (zoonoses) continue to circulate in nature in many parts of the country. Most vector-borne diseases exhibit a distinct seasonal pattern, which clearly suggests that they are weather sensitive. Rainfall, temperature, and other weather variables affect in many ways both the vectors and the pathogens they transmit. For example, high temperatures can increase or reduce survival rate, depending on the vector, its behavior, ecology, and many other factors. Thus, the probability of transmission may or may not be increased by higher temperatures. The tremendous growth in international travel increases the risk of importation of vector-borne diseases, some of which can be transmitted locally under suitable circumstances at the right time of the year. But demographic and sociologic factors also play a critical role in determining disease incidence, and it is unlikely that these diseases will cause major epidemics in the United States if the public health infrastructure is maintained and improved. PMID:11359689

  3. Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau.

    PubMed

    Munson, Seth M; Belnap, Jayne; Okin, Gregory S

    2011-03-01

    Projected increases in aridity throughout the southwestern United States due to anthropogenic climate change will likely cause reductions in perennial vegetation cover, which leaves soil surfaces exposed to erosion. Accelerated rates of dust emission from wind erosion have large implications for ecosystems and human well-being, yet there is poor understanding of the sources and magnitude of dust emission in a hotter and drier climate. Here we use a two-stage approach to compare the susceptibility of grasslands and three different shrublands to wind erosion on the Colorado Plateau and demonstrate how climate can indirectly moderate the magnitude of aeolian sediment flux through different responses of dominant plants in these communities. First, using results from 20 y of vegetation monitoring, we found perennial grass cover in grasslands declined with increasing mean annual temperature in the previous year, whereas shrub cover in shrublands either showed no change or declined as temperature increased, depending on the species. Second, we used these vegetation monitoring results and measurements of soil stability as inputs into a field-validated wind erosion model and found that declines in perennial vegetation cover coupled with disturbance to biological soil crust resulted in an exponential increase in modeled aeolian sediment flux. Thus the effects of increased temperature on perennial plant cover and the correlation of declining plant cover with increased aeolian flux strongly suggest that sustained drought conditions across the southwest will accelerate the likelihood of dust production in the future on disturbed soil surfaces. PMID:21368143

  4. Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau

    USGS Publications Warehouse

    Munson, S.M.; Belnap, J.; Okin, G.S.

    2011-01-01

    Projected increases in aridity throughout the southwestern United States due to anthropogenic climate change will likely cause reductions in perennial vegetation cover, which leaves soil surfaces exposed to erosion. Accelerated rates of dust emission from wind erosion have large implications for ecosystems and human well-being, yet there is poor understanding of the sources and magnitude of dust emission in a hotter and drier climate. Here we use a two-stage approach to compare the susceptibility of grasslands and three different shrublands to wind erosion on the Colorado Plateau and demonstrate how climate can indirectly moderate the magnitude of aeolian sediment flux through different responses of dominant plants in these communities. First, using results from 20 y of vegetation monitoring, we found perennial grass cover in grasslands declined with increasing mean annual temperature in the previous year, whereas shrub cover in shrublands either showed no change or declined as temperature increased, depending on the species. Second, we used these vegetation monitoring results and measurements of soil stability as inputs into a field-validated wind erosion model and found that declines in perennial vegetation cover coupled with disturbance to biological soil crust resulted in an exponential increase in modeled aeolian sediment flux. Thus the effects of increased temperature on perennial plant cover and the correlation of declining plant cover with increased aeolian flux strongly suggest that sustained drought conditions across the southwest will accelerate the likelihood of dust production in the future on disturbed soil surfaces.

  5. Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau

    PubMed Central

    Munson, Seth M.; Belnap, Jayne; Okin, Gregory S.

    2011-01-01

    Projected increases in aridity throughout the southwestern United States due to anthropogenic climate change will likely cause reductions in perennial vegetation cover, which leaves soil surfaces exposed to erosion. Accelerated rates of dust emission from wind erosion have large implications for ecosystems and human well-being, yet there is poor understanding of the sources and magnitude of dust emission in a hotter and drier climate. Here we use a two-stage approach to compare the susceptibility of grasslands and three different shrublands to wind erosion on the Colorado Plateau and demonstrate how climate can indirectly moderate the magnitude of aeolian sediment flux through different responses of dominant plants in these communities. First, using results from 20 y of vegetation monitoring, we found perennial grass cover in grasslands declined with increasing mean annual temperature in the previous year, whereas shrub cover in shrublands either showed no change or declined as temperature increased, depending on the species. Second, we used these vegetation monitoring results and measurements of soil stability as inputs into a field-validated wind erosion model and found that declines in perennial vegetation cover coupled with disturbance to biological soil crust resulted in an exponential increase in modeled aeolian sediment flux. Thus the effects of increased temperature on perennial plant cover and the correlation of declining plant cover with increased aeolian flux strongly suggest that sustained drought conditions across the southwest will accelerate the likelihood of dust production in the future on disturbed soil surfaces. PMID:21368143

  6. Spatial Orientation and Balance Control Changes Induced by Altered Gravito-Inertial Force Vectors

    NASA Technical Reports Server (NTRS)

    Kaufman, Galen D.; Wood, Scott J.; Gianna, Claire C.; Black, F. Owen; Paloski, William H.; Dawson, David L. (Technical Monitor)

    1999-01-01

    Seventeen healthy and eight vestibular deficient subjects were exposed to an interaural centripetal acceleration of 1 G (resultant 45 deg roll tilt of 1.4 G) on a 0.8 meter radius centrifuge for a period of 90 minutes in the dark. The subjects sat with head fixed upright, except every 4 of 10 minutes when instructed to rotate their head so that their nose and eyes pointed towards a visual point switched on every 3 to 5 seconds at random places (within +/- 30 deg) in the Earth horizontal plane. Motion sickness caused some subjects to limit their head movements during significant portions of the 90 minute period, and led three normal subjects to stop the test earlier. Eye movements, including directed saccades for subjective Earth- and head-referenced planes, were recorded before, during, and immediately after centrifugation using electro-oculography. Postural stability measurements were made before and within ten minutes after centrifugation. In normal subjects, postural sway and multisegment body kinematics were gathered during an eyes-closed head movement cadence (sway-referenced support platform), and in response to translational/rotational platform perturbations. A significant increase in postural sway, segmental motion amplitude and hip frequency was observed after centrifugation. This effect was short-lived, with a recovery time of several postural test trials. There were also asymmetries in the direction of post-centrifugation center of sway and head tilt which depended on the subject's orientation during the centrifugation adaptation period (left ear or right ear out). To delineate the effect of the magnitude of the gravito-inertial vector versus its direction during the adaptive centrifugation period, we tilted eight normal subjects in the roll axis at a 45 deg angle in the dark for 90 minutes without rotational motion. Their postural responses did not change following the period of tilt. Based on verbal reports, normal subjects overestimated roll-tilt during 90 minutes of both tilt and centrifugation stimuli. Subjective estimates of head-horizontal, provided by directed saccades, revealed significant errors after approximately 30 minutes that tended to increase only in the group who underwent centrifugation. Immediately after centrifugation, subjects reported feeling tilted on average 10 degrees in the opposite direction, which was in agreement with the direction of their earth-directed saccades. In vestibular deficient (VD) subjects, postural sway was measured using a sway-referenced or earth-fixed support surface, and with or without a head movement sequence. 'Me protocol was selected for each patient during baseline testing, and corresponded to the most challenging condition in which the patient was able to maintain balance with eyes closed. Bilaterally VD subjects showed no postural decrement after centrifugation, while unilateral VD subjects had varying degrees of decrement. Unilateral VD subjects were tested twice; they underwent centrifugation both with right ear out and left ear out. Their post-centrifuation center of sway shifted at right angles depending on the centrifuge GIF orientation. Bilateral VD subjects bad shifts as well, but no consistent directional trend. VD subjects underestimated roll-tilt during centrifugation, These results suggest that orientation of the gravito-inertial vector and its magnitude arc both used by the central nervous system for calibration of multiple orientation systems. A change in the background gravito-inertial force (otolith input) can rapidly initiate postural and perceptual adaptation in several sensorimotor systems, independent of a structured visual surround.

  7. Response of the bird cherry-oat aphid ( Rhopalosiphum padi) to climate change in relation to its pest status, vectoring potential and function in a crop–vector–virus pathosystem

    Microsoft Academic Search

    K. J. Finlay; J. E. Luck

    Global climate change threatens world food production via direct effects on plant growth and alterations to pest and pathogen prevalence and distribution. Complex relationships between host plant, pest, pathogen and environment create uncertainty particularly involving vector-borne diseases. We attempt to improve the understanding of the effects of climate change via a detailed review of one crop–vector–pathogen system.The bird cherry-oat aphid,

  8. Changing patterns of West Nile virus transmission: altered vector competence and host susceptibility

    PubMed Central

    Brault, Aaron C.

    2009-01-01

    West Nile virus (WNV) is a flavivirus (Flaviviridae) transmitted between Culex spp. mosquitoes and avian hosts. The virus has dramatically expanded its geographic range in the past ten years. Increases in global commerce, climate change, ecological factors and the emergence of novel viral genotypes likely play significant roles in the emergence of this virus; however, the exact mechanism and relative importance of each is uncertain. Previously WNV was primarily associated with febrile illness of children in endemic areas, but it was identified as a cause of neurological disease in humans in 1994. This modulation in disease presentation could be the result of the emergence of a more virulent genotype as well as the progression of the virus into areas in which the age structure of immunologically naïve individuals makes them more susceptible to severe neurological disease. Since its introduction to North America in 1999, a novel WNV genotype has been identified that has been demonstrated to disseminate more rapidly and with greater efficiency at elevated temperatures than the originally introduced strain, indicating the potential importance of temperature as a selective criteria for the emergence of WNV genotypes with increased vectorial capacity. Even prior to the North American introduction, a mutation associated with increased replication in avian hosts, identified to be under adaptive evolutionary pressure, has been identified, indicating that adaptation for increased replication within vertebrate hosts could play a role in increased transmission efficiency. Although stable in its evolutionary structure, WNV has demonstrated the capacity for rapidly adapting to both vertebrate hosts and invertebrate vectors and will likely continue to exploit novel ecological niches as it adapts to novel transmission foci. PMID:19406093

  9. Centennial changes in North Pacific anoxia linked to tropical trade winds

    USGS Publications Warehouse

    Deutsch, Curtis; Berelson, William; Thunell, Robert; Weber, Thomas; Tems, Caitlin; McManus, James; Crusius, John; Ito, Taka; Baumgartner, Timothy; Ferreira, Vicente; Mey, Jacob; van Geen, Alexander

    2014-01-01

    Climate warming is expected to reduce oxygen (O2) supply to the ocean and expand its oxygen minimum zones (OMZs). We reconstructed variations in the extent of North Pacific anoxia since 1850 using a geochemical proxy for denitrification (?15N) from multiple sediment cores. Increasing ?15N since ~1990 records an expansion of anoxia, consistent with observed O2 trends. However, this was preceded by a longer declining ?15N trend that implies that the anoxic zone was shrinking for most of the 20th century. Both periods can be explained by changes in winds over the tropical Pacific that drive upwelling, biological productivity, and O2 demand within the OMZ. If equatorial Pacific winds resume their predicted weakening trend, the ocean’s largest anoxic zone will contract despite a global O2 decline.

  10. Oceanography. Centennial changes in North Pacific anoxia linked to tropical trade winds.

    PubMed

    Deutsch, Curtis; Berelson, William; Thunell, Robert; Weber, Thomas; Tems, Caitlin; McManus, James; Crusius, John; Ito, Taka; Baumgartner, Timothy; Ferreira, Vicente; Mey, Jacob; van Geen, Alexander

    2014-08-01

    Climate warming is expected to reduce oxygen (O2) supply to the ocean and expand its oxygen minimum zones (OMZs). We reconstructed variations in the extent of North Pacific anoxia since 1850 using a geochemical proxy for denitrification (?(15)N) from multiple sediment cores. Increasing ?(15)N since ~1990 records an expansion of anoxia, consistent with observed O2 trends. However, this was preceded by a longer declining ?(15)N trend that implies that the anoxic zone was shrinking for most of the 20th century. Both periods can be explained by changes in winds over the tropical Pacific that drive upwelling, biological productivity, and O2 demand within the OMZ. If equatorial Pacific winds resume their predicted weakening trend, the ocean's largest anoxic zone will contract despite a global O2 decline. PMID:25104384

  11. Low-speed wind-tunnel tests of a large scale blended arrow advanced supersonic transport model having variable cycle engines and vectoring exhaust nozzles

    NASA Technical Reports Server (NTRS)

    Parlett, L. P.; Shivers, J. P.

    1976-01-01

    A low-speed wind-tunnel investigation was conducted in a full-scale tunnel to determine the performance and static stability and control characteristics of a large-scale model of a blended-arrow advanced supersonic transport configuration incorporating variable-cycle engines and vectoring exhaust nozzles. Configuration variables tested included: (1) engine mode (cruise or low-speed), (2) engine exit nozzle deflection, (3) leading-edge flap geometry, and (4) trailing-edge flap deflection. Test variables included values of C sub micron from 0 to 0.38, values of angle of attack from -10 degrees to 30 degrees, values of angle of sideslip, from -5 degrees to 5 degrees, and values of Reynolds number, from 3.5 million to 6.8 million.

  12. Wind power: Addressing wildlife impacts, assessing effects on tourism, and examining the link between climate change perceptions and support

    NASA Astrophysics Data System (ADS)

    Lilley, Meredith Blaydes

    As the world's most rapidly growing source of energy, wind power has vast potential for mitigating climate change and advancing global environmental sustainability. Yet, the challenges facing wind energy remain both complex and substantial. Two such challenges are: 1) wildlife impacts; and 2) perceived negative effects on tourism. This dissertation examines these challenges in a multi-paper format, and also investigates the role that climate change perceptions play in garnering public support for wind power. The first paper assesses optimal approaches for addressing wind power's wildlife impacts. Comparative analysis reveals that avian mortality from turbines ranks far behind avian mortality from a number of other anthropogenic sources. Additionally, although bats have recently emerged as more vulnerable to wind turbines than birds, they are generally less federally protected. The Migratory Bird Treaty Act (MBTA) protects over 800 bird species, regardless of their threatened or endangered status. Moreover, it criminalizes the incidental take of birds without a permit and simultaneously grants no permits for such incidental take, thereby creating a legal conundrum for the wind industry. An examination of the legislative and case history of the MBTA, however, reveals that wind operators are not likely to be prosecuted for incidental take if they cooperate with the U.S. Fish & Wildlife Service (FWS) and take reasonable steps to reduce siting and operational impacts. Furthermore, this study's analysis reveals modest wildlife impacts from wind power, in comparison with numerous other energy sources. Scientific-research, legal, and policy recommendations are provided to update the present legal and regulatory regime under the MBTA and to minimize avian and bat impacts. For instance, FWS should: establish comprehensive federal guidelines for wind facility siting, permitting, monitoring, and mitigation; and promulgate regulations under the MBTA for the issuance of incidental take permits at wind facilities. Equal protections for bats are also recommended. In examining the potential effect of offshore wind power on coastal tourism, the second paper reports the findings of a summer 2007 survey of over 1,000 out-of-state tourists at Delaware beaches. Randomly sampled beachgoers were shown photo-simulations of wind turbines at increasing distances from shore and asked how each simulation would affect visitation. With wind turbines located six miles offshore, approximately one-quarter would switch to a different beach. This stated avoidance, however, diminishes with increasing wind project distance from shore. Additionally, stated avoidance of a beach with turbines six miles offshore is exceeded by: avoidance of a beach with an equidistant, inland, fossil fuel power plant; attraction to a beach in order to see turbines six miles offshore; and the likelihood of paying for an offshore wind boat tour. Further, logistic regression modeling reveals that neither trip cost nor income significantly influences the likelihood of visiting a beach with offshore wind. These findings suggest that to limit beach avoidance, offshore wind developers could site wind facilities further from shore, particularly in areas with high recreational use. Moreover, with wind turbines six miles offshore serving more as an attraction than as a deterrent, offshore wind development may, in fact, bolster local tourism revenues. The third study examines public perceptions of climate change and the link between those perceptions and support for wind power, both in general and with respect to specific offshore sites. Analyzing data from five surveys, this research uncovers low climate awareness and concern levels overall. Respondents demonstrate a poor understanding of climate change impacts and of how to effectively address climate change. In accordance with the New Ecological Paradigm, still fewer are concerned about climate change. The issue ranks 6th in Delaware and 8th in Cape Cod as a reason for local project support, behind such issues as energy independence

  13. Responses of Wind Erosion to Climate-Induced Vegetation Changes on the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Munson, S. M.; Belnap, J.; Okin, G. S.

    2012-12-01

    Projected increases in aridity throughout the southwestern United States due to anthropogenic climate change will likely cause reductions in perennial vegetation cover, which leaves soil surfaces exposed to erosion. Accelerated rates of dust emission from wind erosion have large implications for ecosystems and human well-being, yet there is poor understanding of the sources and magnitude of dust emission in a hotter and drier climate. Here we use a two-stage approach to compare the susceptibility of grasslands and three different shrublands to wind erosion on the Colorado Plateau and demonstrate how climate can indirectly moderate the magnitude of aeolian sediment flux through different responses of dominant plants in these communities. First, using results from 20 years of vegetation monitoring, we found perennial grass cover in grasslands declined with increasing mean annual temperature in the previous year, whereas shrub cover in shrublands either showed no change or declined as temperature increased, depending on the species. Second, we used these vegetation monitoring results and measurements of soil stability as inputs into a field-validated wind erosion model and found that declines in perennial vegetation cover coupled with disturbance to biological soil crust resulted in an exponential increase in modeled aeolian sediment flux. Thus the effects of increased temperature on perennial plant cover and the correlation of declining plant cover with increased aeolian flux strongly suggest that sustained drought conditions across the southwest will accelerate the likelihood of dust production in the future on disturbed soil surfaces.; Perennial grasses and all perennial vegetation canopy cover (top panel) and modeled aeolian sediment flux (bottom panel) at five wind speeds (15.0, 17.5, 20.0, 22.5, and 25.0 ms-1) in relationship to mean annual temperature in the previous year in perennial grasslands across the Colorado Plateau, USA.

  14. Navigational Vectors

    NSDL National Science Digital Library

    2008-12-10

    This is a high school instructional unit that features nine lessons relating to vectors. Students build understanding of vector properties as they learn airplane navigation. Problem-based learning activities include reading real-time weather maps, tracking airplanes flying in U.S. skies, calculating vector components, analyzing effects of wind velocity, and completing training segments similar to a private pilot certification program. Participants have access to help from experts at the Polaris Career Center. Comprehensive teacher guides, student guides, reference materials, and assessments are included. This resource was developed by the Center for Innovation in Science and Engineering Education (CIESE). Participation is cost-free; additional options are available for registered users.

  15. Effect of sudden solar wind dynamic pressure changes at subauroral latitudes: Time rate of change of magnetic field

    SciTech Connect

    Le, G.; Russell, C.T. (Univ. of California, Los Angeles (United States))

    1993-01-08

    The observations obtained during the IMS from the IGS magnetometer chain extending from Cambridge, England, to Tromso, Norway were used to study the time rate of change of the magnetic field at subauroral latitudes at the time of interplanetary shock passages. The time rate of change of the H component maximizes in the high latitude dayside sector. For these typical interplanetary shocks, the dayside value of time rate of change can be as high as - 3 nT/sec at Tromso and - 1 nT/sec at York. The time rate of change in the dayside roughly depends on the change of square root of solar wind dynamic pressure. The largest of these time rates of change are similar to but slightly smaller than those known to cause disruptive disturbances in power distribution and communication systems. Thus, the daytime effects of sudden impulses may be equal to or greater than the nighttime effects associated with substorms as measured by their impact on terrestrial systems. 24 refs., 3 figs.

  16. Mars Pathfinder Landing Site: Evidence for a Change in Wind Regime and Climate from Lander and Orbiter Data

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Kraft, M. D.; Kuzmin, R. O.; Bridges, N. T.

    1999-01-01

    Surface features related to the wind are observed in data from the Mars Pathfinder lander and from orbit by the Viking Orbiter and Mars Global Surveyor missions. Features seen from the surface include wind tails associated with small rocks, barchanoid duneforms, ripplelike patterns, and ventifact flutes cut into some rocks. Features seen from orbit include wind tails associated with impact craters, ridges inferred to be duneforms, and modified crater rims interpreted to have been eroded and mantled by windblown material. The orientations of these features show two prevailing directions, one inferred to represent winds from the northeast which is consistent with strongest winds predicted by a general circulation model to occur during the Martian northern winter under current conditions, and a second wind pattern oriented approx. 90 degrees to the first. This latter wind could be from the W-NW or from the E-SE and was responsible for cutting the ventifacts and modifying the crater rims. The two wind regimes could reflect a change in climate related to Mars' obliquity or some other, unknown factor. Regardless of the cause, the MPF area has been subjected to a complex pattern of winds and supply of small particles, in which the original surface formed by sedimentary processes from Tiu and Ares Vallis events has been modified by repeated burial and exhumation.

  17. Wind Disturbance Produced Changes in Tree Species Assemblage in the Peruvian Amazon

    NASA Astrophysics Data System (ADS)

    Rifai, S. W.; Chambers, J. Q.; Negron Juarez, R. I.; Ramirez, F.; Tello, R.; Alegria Muñoz, W.

    2010-12-01

    Wind disturbance has been a frequently overlooked abiotic cause of mass tree mortality in the Amazon basin. In the Peruvian Amazon these wind disturbances are produced by meteorological events such as convective systems. Downbursts for example produce short term descendent wind speeds that can be in excess of 30 m s-1. These are capable of producing tree blowdowns which have been reported to be as large as 33 km2 in the Amazon basin. We used the chronosequence of Landsat Satellite imagery to find and locate where these blowdowns have occurred in the Loreto region of the Peruvian Amazon. Spectral Mixture Analysis was used to estimate the proportion landcover of green vegetation, non-photosynthetic vegetation (NPV), soil and shade in each pixel. The change in NPV was calculated by subtracting the NPV signal in the Landsat image prior to the blowdown occurrence, from the image following the disturbance. Our prior research has established a linear relationship between tree mortality and change in NPV. It is hypothesized that these mass tree mortality events result in changes in the tree species assemblage of affected forests. Here we present preliminary tree species assemblage data from two sites in the Peruvian Amazon near Iquitos, Peru. The site (ALP) at the Allpahuayo Mishana reserve (3.945 S, 73.455 W) is 30 km south of Iquitos, Peru, and hosts the remnants of a 50 ha blowdown that occurred in either 1992 or 1993. Another site (NAPO) on the Napo river about 60 km north of Iquitos, is the location of an approximately 300 ha blowdown that occurred in 1998. At each site, a 3000 m x 10 m transect encompassing non disturbed and disturbed areas was installed, and trees greater than 10 cm diameter at breast height were measured for diameter, height and were identified to the species. Stem density of trees with diameter at breast height > 10 cm, and tree height appear to be similar both inside and outside the blowdown affected areas of the forests at both sites. At the ALP and NAPO sites the most dramatic change in the tree species assemblage has been a three and an eleven fold increase in the pioneer tree family, Cecropiaceae, respectively. This preliminary data suggests that wind disturbance is capable of producing large shifts in the tree species assemblage of affected Amazon forests.

  18. Detection and Monitoring of Spatio-temporal Change in the Distribution of Mosquito Vector Populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mosquitoes transmit blood-borne disease agents that cause morbidity and mortality in human and animal populations. Preemption of epidemics/epizootics of mosquito-borne disease is predicated on the timely and effective application of vector control. Such timing is decided on the basis of adult mosq...

  19. Assessment of change in hydration in women during pregnancy and postpartum with bioelectrical impedance vectors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increases in total body water (TBW) are typical of late-stage pregnancy. Because excessive TBW expansion or contraction can lead to adverse outcomes, a safe non-invasive method for routine assessment of TBW would be useful clinically. Impedance vectors are derived from resistance (R) and reactance...

  20. Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets

    NASA Technical Reports Server (NTRS)

    Malaspina, David M.; Newman, David L.; Wilson, Lynn Bruce; Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris

    2013-01-01

    A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e.g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection.

  1. Wind Tunnel Test of an RPV with Shape-Change Control Effector and Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Cabell, Randolph H.; Sloan, Adam R.; Barnwell, William G.; Lion, S. Todd; Hautamaki, Bret A.

    2004-01-01

    A variety of novel control effector concepts have recently emerged that may enable new approaches to flight control. In particular, the potential exists to shift the composition of the typical aircraft control effector suite from a small number of high authority, specialized devices (rudder, aileron, elevator, flaps), toward larger numbers of smaller, less specialized, distributed device arrays. The concept envisions effector and sensor networks composed of relatively small high-bandwidth devices able to simultaneously perform a variety of control functions using feedback from disparate data sources. To investigate this concept, a remotely piloted flight vehicle has been equipped with an array of 24 trailing edge shape-change effectors and associated pressure measurements. The vehicle, called the Multifunctional Effector and Sensor Array (MESA) testbed, was recently tested in NASA Langley's 12-ft Low Speed wind tunnel to characterize its stability properties, control authorities, and distributed pressure sensitivities for use in a dynamic simulation prior to flight testing. Another objective was to implement and evaluate a scheme for actively controlling the spanwise pressure distribution using the shape-change array. This report describes the MESA testbed, design of the pressure distribution controller, and results of the wind tunnel test.

  2. Global Climate Change and Its Potential Impact on Disease Transmission by Salinity-Tolerant Mosquito Vectors in Coastal Zones

    PubMed Central

    Ramasamy, Ranjan; Surendran, Sinnathamby Noble

    2012-01-01

    Global climate change can potentially increase the transmission of mosquito vector-borne diseases such as malaria, lymphatic filariasis, and dengue in many parts of the world. These predictions are based on the effects of changing temperature, rainfall, and humidity on mosquito breeding and survival, the more rapid development of ingested pathogens in mosquitoes and the more frequent blood feeds at moderately higher ambient temperatures. An expansion of saline and brackish water bodies (water with <0.5?ppt or parts per thousand, 0.5–30?ppt and >30?ppt salt are termed fresh, brackish, and saline respectively) will also take place as a result of global warming causing a rise in sea levels in coastal zones. Its possible impact on the transmission of mosquito-borne diseases has, however, not been adequately appreciated. The relevant impacts of global climate change on the transmission of mosquito-borne diseases in coastal zones are discussed with reference to the Ross–McDonald equation and modeling studies. Evidence is presented to show that an expansion of brackish water bodies in coastal zones can increase the densities of salinity-tolerant mosquitoes like Anopheles sundaicus and Culex sitiens, and lead to the adaptation of fresh water mosquito vectors like Anopheles culicifacies, Anopheles stephensi, Aedes aegypti, and Aedes albopictus to salinity. Rising sea levels may therefore act synergistically with global climate change to increase the transmission of mosquito-borne diseases in coastal zones. Greater attention therefore needs to be devoted to monitoring disease incidence and preimaginal development of vector mosquitoes in artificial and natural coastal brackish/saline habitats. It is important that national and international health agencies are aware of the increased risk of mosquito-borne diseases in coastal zones and develop preventive and mitigating strategies. Application of appropriate counter measures can greatly reduce the potential for increased coastal transmission of mosquito-borne diseases consequent to climate change and a rise in sea levels. It is proposed that the Jaffna peninsula in Sri Lanka may be a useful case study for the impact of rising sea levels on mosquito vectors in tropical coasts. PMID:22723781

  3. Do changes in the size of mud flocs affect the acoustic backscatter values recorded by a Vector ADV?

    NASA Astrophysics Data System (ADS)

    Rouhnia, Mohamad; Keyvani, Ali; Strom, Kyle

    2014-08-01

    A series of experiments were conducted to examine the effect of mud floc growth on the acoustic back-scatter signal recorded by a Nortek Vector acoustic Doppler velocimeter (ADV). Several studies have shown that calibration equations can be developed to link the backscatter strength with average suspended sediment concentration (SSC) when the sediment particle size distribution remains constant. However, when mud is present, the process of flocculation can alter the suspended particle size distribution. Past studies have shown that it is still unclear as to the degree of dependence of the calibration equation on changes in floc size. Part of the ambiguity lies in the fact that flocs can be porous and rather loosely packed and therefore will not scatter sound waves as a solid particle would. In addition, direct, detailed measurements of floc size have not accompanied experiments examining the dependence of ADV backscatter and suspended sediment concentration. In this set of experiments, direct measurement of the floc size distribution is made with time in a mixing chamber using a floc camera system. A Vector ADV and an OBS are also placed within the tank to measure acoustic backscatter and SSC as the flocs change size with time; concentration in the experiments ranges from 15 to 90 mg/l. Results showed that the growth of mud flocs did influence the SNR recorded by the Vector ADV, and that the sensitivity of the SNR signal to changes in floc size was higher for flocs with diameters less than ?80 ?m (it kr=1 at a diameter of 80 ?m). The response of SNR to changes in floc size and SSC was modeled with a modified sonar equation. If properly calibrated, the model was able to capture the functional behavior of SNR with changes in floc size and concentration. Values of the calibration coefficients showed that while changes in floc diameter up to about 80 ?m did alter the SNR, the change was less than what would be expected from a similar change in the size of solid scatterers.

  4. Solar cycle changes in the geo-effectiveness of small-scale solar wind turbulence measured by Wind and ACE at 1 AU

    NASA Astrophysics Data System (ADS)

    Parkinson, M. L.; Healey, R. C.; Dyson, P. L.

    2007-06-01

    Multi-scale structure of the solar wind in the ecliptic at 1 AU undergoes significant evolution with the phase of the solar cycle. Wind spacecraft measurements during 1995 to 1998 and ACE spacecraft measurements during 1997 to 2005 were used to characterise the evolution of small-scale (~1 min to 2 h) fluctuations in the solar wind speed vsw, magnetic energy density B2, and solar wind ? parameter, in the context of large-scale (~1 day to years) variations. The large-scale variation in ? most resembled large-scale variations in B2. The probability density of large fluctuations in ? and B2 both had strong minima during 1995, a familiar signature of solar minimum. Generalized Structure Function (GSF) analysis was used to estimate inertial range scaling exponents aGSF and their evolution throughout 1995 to 2005. For the entire data set, the weighted average scaling exponent for small-scale fluctuations in vsw was aGSF=0.284±0.001, a value characteristic of intermittent MHD turbulence (>1/4), whereas the scaling exponents for corresponding fluctuations in B2 and ? were aGSF=0.395±0.001 and 0.334±0.001, respectively. These values are between the range expected for Gaussian fluctuations (1/2) and Kolmogorov turbulence (1/3). However, the scaling exponent for ? changed from a Gaussian-Kolmogorov value of 0.373±0.005 during 1997 (end of solar minimum) to an MHD turbulence value of 0.247±0.004 during 2003 (recurrent fast streams). Changes in the characteristics of solar wind turbulence may be reproducible from one solar cycle to the next.

  5. The Structural Changes of Tropical Cyclones Upon Interaction with Vertical Wind Shear

    NASA Technical Reports Server (NTRS)

    Ritchie, Elizabeth A.

    2003-01-01

    The Fourth Convection and Moisture Experiment (CAMEX-4) provided a unique opportunity to observe the distributions and document the roles of important atmospheric factors that impact the development of the core asymmetries and core structural changes of tropical cyclones embedded in vertical wind shear. The state-of-the-art instruments flown on the NASA DC-8 and ER-2, in addition to those on the NOAA aircraft, provided a unique set of observations that documented the core structure throughout the depth of the tropical cyclone. These data have been used to conduct a combined observational and modeling study using a state-of-the-art, high- resolution mesoscale model to examine the role of the environmental vertical wind shear in producing tropical cyclone core asymmetries, and the effects on the structure and intensity of tropical cyclones.The scientific objectives of this study were to obtain in situ measurements that would allow documentation of the physical mechanisms that influence the development of the asymmetric convection and its effect on the core structure of the tropical cyclone.

  6. Modeling flow over roughness changes and applications to wind energy for sites on the Great Lakes (Invited)

    NASA Astrophysics Data System (ADS)

    Taylor, P. A.; Salmon, J.; Weng, W.

    2010-12-01

    The wind energy resource offshore is not well understood in the Great Lakes area. This is unfortunate as potential offshore wind farm sites are attracting great interest. In an effort to improve our knowledge of the offshore resource, data are now being collected in specific locations. Preferred Great Lakes wind farm sites are in relatively shallow water reasonably close to shore. Airflow over these sites will often be within a transition zone as air flows from a rough land surface to a smoother lake surface. There will also often be changes in the thermal stratification of the air column within this Internal Boundary Layer (IBL). For long fetches and heights of order 100m we can formulate and solve the Reynolds averaged Navier-Stokes equations. We make boundary-layer approximations for pressure and assume that along-wind diffusion is minimal. Effects of gentle terrain can be added separately. Results suggest that relatively long fetches of order 100 km are required before winds at 100m fully adjust to the smoother lake surface. Over Lakes Erie and Ontario winds are frequently from the 180-270 degree quadrant and this suggests that the wind resource should be better in the northern (Canadian) half of these lakes. We illustrate this with energy density plots for locations near lakes Erie and Ontario.

  7. Monitoring vegetation dynamics by coupling linear trend analysis with change vector analysis: a case study in the Xilingol steppe in northern China

    Microsoft Academic Search

    Yuanyuan Zhao; Chunyang He; Qiaofeng Zhang

    2012-01-01

    Timely and accurate monitoring of grassland vegetation dynamics is essential for sustainable grassland management in China. We coupled linear trend analysis (LTA) with change vector analysis (CVA) to improve the effectiveness of grassland monitoring. LTA was used to detect continuous inter-annual vegetation trends to identify significant change trend regions (SCTRs) in location and significant change trend periods (SCTPs) in time.

  8. Monitoring vegetation dynamics by coupling linear trend analysis with change vector analysis: a case study in the Xilingol steppe in northern China

    Microsoft Academic Search

    Yuanyuan Zhao; Chunyang He; Qiaofeng Zhang

    2011-01-01

    Timely and accurate monitoring of grassland vegetation dynamics is essential for sustainable grassland management in China. We coupled linear trend analysis (LTA) with change vector analysis (CVA) to improve the effectiveness of grassland monitoring. LTA was used to detect continuous inter-annual vegetation trends to identify significant change trend regions (SCTRs) in location and significant change trend periods (SCTPs) in time.

  9. Impact of WRF Physics and Grid Resolution on Low-level Wind Prediction: Towards the Assessment of Climate Change Impact on Future Wind Power

    SciTech Connect

    Chin, H S; Glascoe, L; Lundquist, J; Wharton, S

    2010-02-24

    The Weather Research and Forecast (WRF) model is used in short-range simulations to explore the sensitivity of model physics and horizontal grid resolution. We choose five events with the clear-sky conditions to study the impact of different planetary boundary layer (PBL), surface and soil-layer physics on low-level wind forecast for two wind farms; one in California (CA) and the other in Texas (TX). Short-range simulations are validated with field measurements. Results indicate that the forecast error of the CA case decreases with increasing grid resolution due to the improved representation of valley winds. Besides, the model physics configuration has a significant impact on the forecast error at this location. In contrast, the forecast error of the TX case exhibits little dependence on grid resolution and is relatively independent of physics configuration. Therefore, the occurrence frequency of lowest root mean square errors (RMSEs) at this location is used to determine an optimal model configuration for subsequent decade-scale regional climate model (RCM) simulations. In this study, we perform two sets of 20-year RCM simulations using the data from the NCAR Global Climate Model (GCM) simulations; one set models the present climate and the other simulates the future climate. These RCM simulations will be used to assess the impact of climate change on future wind energy.

  10. Observational Evidence of Changing Photospheric Vector Magnetic Fields Associated with Solar Flares

    E-print Network

    . 2002; Wang et al. 2002, 2004a; Yurchyshyn et al. 2004; Wang 2006), white-light (WL) structure changes, substantial changes are found in the longitudinal magnetic fields associated with decaying penumbrae and darkened umbrae at the flaring PIL (Liu et al. 2005) suggesting that changes of the sunspot WL structure

  11. Potential effects of climate change on distribution and activity of insect vectors of grapevine pathogens

    Microsoft Academic Search

    Élisabeth BOUDON-PADIEU; Michael MAIXNER

    The impact of changing climatic conditions on viticulture is currently mainly discussed with respect to alterations in grape physiology, adaptation of cultivars and cultural practice. However, pests and diseases of grapevine are influenced by changing climate, too. They are affected either directly through impacts on their life history and epidemiology or indirectly by changes of grapevine physiology and phenology. This

  12. Incidence of Vector-borne Disease and Climate Change: A Study in Semi-arid Algeria

    NASA Astrophysics Data System (ADS)

    Blakey, T.; Bounoua, L.

    2012-12-01

    Leishmaniases are among the most important emerging and resurging vector-borne diseases, second only to malaria in terms of the number of affected people. Leishmaniases are endemic in 88 countries worldwide and threaten about 350 million people (WHO, 2007). Since the first reported case of zoonotic cutaneous leishmaniasis (ZCL) in Saida, Algeria in 1991, 1,275 cases have been recorded (Makhlouf & Houti, 2010) with the vast majority of study-area cases (99%) reported between the years of 2000 and 2009. An investigation of potential climatic indicators for the apparent shift in disease prevalence was conducted by comparing anomalies in the climate data specific to the local pathogen cycle. It was determined that long term climate trends have resulted in conditions that promote the prevalence of ZCL. Increased precipitation have resulted in greater vegetation and promoted host and vector population growth through a trophic cascade. Increased minimum temperatures have lengthened the annual duration of sandfly activity. Short term variations in maximum temperatures, however show a correlation with disease suppression in the subsequent years. These findings indicate a potential to forecast the risk of ZCL infection through models of the trophic cascade and sandfly population growth.

  13. Impact of climate change upon vector born diseases in Europe and Africa using ENSEMBLES Regional Climate Models

    NASA Astrophysics Data System (ADS)

    Caminade, Cyril; Morse, Andy

    2010-05-01

    Climate variability is an important component in determining the incidence of a number of diseases with significant human/animal health and socioeconomic impacts. The most important diseases affecting health are vector-borne, such as malaria, Rift Valley Fever and including those that are tick borne, with over 3 billion of the world population at risk. Malaria alone is responsible for at least one million deaths annually, with 80% of malaria deaths occurring in sub-Saharan Africa. The climate has a large impact upon the incidence of vector-borne diseases; directly via the development rates and survival of both the pathogen and the vector, and indirectly through changes in the environmental conditions. A large ensemble of regional climate model simulations has been produced within the ENSEMBLES project framework for both the European and African continent. This work will present recent progress in human and animal disease modelling, based on high resolution climate observations and regional climate simulations. Preliminary results will be given as an illustration, including the impact of climate change upon bluetongue (disease affecting the cattle) over Europe and upon malaria and Rift Valley Fever over Africa. Malaria scenarios based on RCM ensemble simulations have been produced for West Africa. These simulations have been carried out using the Liverpool Malaria Model. Future projections highlight that the malaria incidence decreases at the northern edge of the Sahel and that the epidemic belt is shifted southward in autumn. This could lead to significant public health problems in the future as the demography is expected to dramatically rise over Africa for the 21st century.

  14. Changes in fluxes of heat, H2O, CO2 caused by a large wind farm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Crop Wind Energy Experiment (CWEX) provides a platform to investigate the effect of wind turbines and large wind farms on surface fluxes of momentum, heat, moisture and carbon dioxide (CO2). In 2010 and 2011, eddy covariance flux stations were installed between two lines of turbines at the south...

  15. CHANGES OF SYSTEM OPERATION COSTS DUE TO LARGE-SCALE WIND INTEGRATION

    E-print Network

    for grid integration of wind power on European level. Description (max. 400 words) Within the European and the electricity market. In order to cope with the fluctuations in the wind power production, other units frequent operation of the power plants in less efficient part-load operation. Hence, large-scale wind power

  16. Wind extremes in the North Sea basin under climate change: an ensemble study of 12 CMIP5 GCMs

    NASA Astrophysics Data System (ADS)

    de Winter, R.; Ruessink, G.; Sterl, A.

    2012-12-01

    Coastal safety may be influenced by climate change, as changes in extreme surge levels and wave extremes may increase the vulnerability of dunes and other coastal defenses. In the North Sea, an area already prone to severe flooding, these high surge levels and waves are generated by severe wind speeds during storm events. As a result of the geometry of the North Sea, not only the maximum wind speed is relevant, but also wind direction. Analyzing changes in a changing climate implies that several uncertainties need to be taken into account. First, there is the uncertainty in climate experiments, which represents the possible development of the emission of greenhouse gases. Second, there is uncertainty between the climate models that are used to analyze the effect of different climate experiments. The third uncertainty is the natural variability of the climate. When this system variability is large, small trends will be difficult to detect. The natural variability results in statistical uncertainty, especially for events with high return values. We addressed the first two types of uncertainties for extreme wind conditions in the North Sea using 12 CMIP5 GCMs. To evaluate the differences between the climate experiments, two climate experiments (rcp4.5 and rcp8.5) from 2050-2100 are compared with historical runs, running from 1950-2000. Rcp4.5 is considered to be a middle climate experiment and rcp8.5 represents high-end climate scenarios. The projections of the 12 GCMs for a given scenario illustrate model uncertainty. We focus on the North Sea basin, because changes in wind conditions could have a large impact on safety of the densely populated North Sea coast, an area that has already a high exposure to flooding. Our results show that, consistent with ERA-Interim results, the annual maximum wind speed in the historical run demonstrates large interannual variability. For the North Sea, the annual maximum wind speed is not projected to change in either rcp4.5 or rcp8.5. In fact, the differences in the 12 GCMs are larger than the difference between the three experiments. Furthermore, our results show that, the variation in direction of annual maximum wind speed is large and this precludes a firm statement on climate-change induced changes in these directions. Nonetheless, most models indicate a decrease in annual maximum wind speed from south-eastern directions and an increase from south-western and western directions. This might be caused by a poleward shift of the storm track. The amount of wind from north-west and north-north-west, wind directions that are responsible for the development of extreme storm surges in the southern part of the North Sea, are not projected to change. However, North Sea coasts that have the longest fetch for western direction, e.g. the German Bight, may encounter more often high storm surge levels and extreme waves when the annual maximum wind will indeed be more often from western direction.

  17. Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission.

    PubMed

    Parham, Paul E; Waldock, Joanna; Christophides, George K; Hemming, Deborah; Agusto, Folashade; Evans, Katherine J; Fefferman, Nina; Gaff, Holly; Gumel, Abba; LaDeau, Shannon; Lenhart, Suzanne; Mickens, Ronald E; Naumova, Elena N; Ostfeld, Richard S; Ready, Paul D; Thomas, Matthew B; Velasco-Hernandez, Jorge; Michael, Edwin

    2015-04-01

    Arguably one of the most important effects of climate change is the potential impact on human health. While this is likely to take many forms, the implications for future transmission of vector-borne diseases (VBDs), given their ongoing contribution to global disease burden, are both extremely important and highly uncertain. In part, this is owing not only to data limitations and methodological challenges when integrating climate-driven VBD models and climate change projections, but also, perhaps most crucially, to the multitude of epidemiological, ecological and socio-economic factors that drive VBD transmission, and this complexity has generated considerable debate over the past 10-15 years. In this review, we seek to elucidate current knowledge around this topic, identify key themes and uncertainties, evaluate ongoing challenges and open research questions and, crucially, offer some solutions for the field. Although many of these challenges are ubiquitous across multiple VBDs, more specific issues also arise in different vector-pathogen systems. PMID:25688012

  18. Potential impacts of climate change on the ecology of dengue and its mosquito vector the Asian tiger mosquito (Aedes albopictus)

    NASA Astrophysics Data System (ADS)

    Erickson, R. A.; Hayhoe, K.; Presley, S. M.; Allen, L. J. S.; Long, K. R.; Cox, S. B.

    2012-09-01

    Shifts in temperature and precipitation patterns caused by global climate change may have profound impacts on the ecology of certain infectious diseases. We examine the potential impacts of climate change on the transmission and maintenance dynamics of dengue, a resurging mosquito-vectored infectious disease. In particular, we project changes in dengue season length for three cities: Atlanta, GA; Chicago, IL and Lubbock, TX. These cities are located on the edges of the range of the Asian tiger mosquito within the United States of America and were chosen as test cases. We use a disease model that explicitly incorporates mosquito population dynamics and high-resolution climate projections. Based on projected changes under the Special Report on Emissions Scenarios (SRES) A1fi (higher) and B1 (lower) emission scenarios as simulated by four global climate models, we found that the projected warming shortened mosquito lifespan, which in turn decreased the potential dengue season. These results illustrate the difficulty in predicting how climate change may alter complex systems.

  19. Ligand-induced conformational change of a protein reproduced by a linear combination of displacement vectors obtained from normal mode analysis.

    PubMed

    Wako, Hiroshi; Endo, Shigeru

    2011-12-01

    The conformational change of a protein upon ligand binding was examined by normal mode analysis (NMA) based on an elastic-network model (ENM) for a full-atom system using dihedral angles as independent variables. Specifically, we investigated the extent to which conformational change vectors of atoms from an apo form to a holo form of a protein can be represented by a linear combination of the displacement vectors of atoms in the apo form calculated for the lowest-frequency m normal modes (m=1, 2,…, 20). In this analysis, the latter vectors were best fitted to the former ones by the least-squares method. Twenty-two paired proteins in the holo and apo forms, including three dimer pairs, were examined. The results showed that, in most cases, the conformational change vectors were reproduced well by a linear combination of the displacement vectors of a small number of low-frequency normal modes. The conformational change around an active site was reproduced as well as the entire conformational change, except for some proteins that only undergo significant conformational changes around active sites. The weighting factors for 20 normal modes optimized by the least-squares fitting characterize the conformational changes upon ligand binding for these proteins. The conformational changes sampled around the apo form of a protein by the linear combination of the displacement vectors obtained by ENM-based NMA may help solve the flexible-docking problem of a protein with another molecule because the results presented herein suggest that they have a relatively high probability of being involved in an actual conformational change. PMID:21807453

  20. A Simplified Morphing Blade for Horizontal Axis Wind Turbines

    E-print Network

    Boyer, Edmond

    salinas@hotmail.com The aim of designing wind turbine blades is to improve the power capture ability speed vr Relative wind speed vre Reference wind speed vci Cut-in wind speed vco Cut-out wind speed Produced Power of wind turbine rotor x Vector of the decision variables p Vector of the design parameters r

  1. THE ABRUPT CHANGES IN THE PHOTOSPHERIC MAGNETIC AND LORENTZ FORCE VECTORS DURING SIX MAJOR NEUTRAL-LINE FLARES

    SciTech Connect

    Petrie, G. J. D. [National Solar Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2012-11-01

    We analyze the spatial and temporal variations of the abrupt photospheric magnetic changes associated with six major flares using 12 minute, 0.''5 pixel{sup -1} vector magnetograms from NASA's Helioseismic and Magnetic Imager instrument on the Solar Dynamics Observatory satellite. The six major flares occurred near the main magnetic neutral lines of four active regions, NOAA 11158, 11166, 11283, and 11429. During all six flares the neutral-line field vectors became stronger and more horizontal, in each case almost entirely due to strengthening of the horizontal field components parallel to the neutral line. In all six cases the neutral-line pre-flare fields were more vertical than the reference potential fields, and collapsed abruptly and permanently closer to potential-field tilt angles during every flare, implying that the relaxation of magnetic stress associated with non-potential tilt angles plays a major role during major flares. The shear angle with respect to the reference potential field did not show such a pattern, demonstrating that flare processes do not generally relieve magnetic stresses associated with photospheric magnetic shear. The horizontal fields became significantly and permanently more aligned with the neutral line during the four largest flares, suggesting that the collapsing field is on average more aligned with the neutral line than the pre-flare neutral-line field. The vertical Lorentz force had a large, abrupt, permanent downward change during each of the flares, consistent with loop collapse. The horizontal Lorentz force changes acted mostly parallel to the neutral line in opposite directions on each side, a signature of the fields contracting during the flare, pulling the two sides of the neutral line toward each other. The greater effect of the flares on field tilt than on shear may be explained by photospheric line-tying.

  2. The Abrupt Changes in the Photospheric Magnetic and Lorentz Force Vectors during Six Major Neutral-line Flares

    NASA Astrophysics Data System (ADS)

    Petrie, G. J. D.

    2012-11-01

    We analyze the spatial and temporal variations of the abrupt photospheric magnetic changes associated with six major flares using 12 minute, 0farcs5 pixel-1 vector magnetograms from NASA's Helioseismic and Magnetic Imager instrument on the Solar Dynamics Observatory satellite. The six major flares occurred near the main magnetic neutral lines of four active regions, NOAA 11158, 11166, 11283, and 11429. During all six flares the neutral-line field vectors became stronger and more horizontal, in each case almost entirely due to strengthening of the horizontal field components parallel to the neutral line. In all six cases the neutral-line pre-flare fields were more vertical than the reference potential fields, and collapsed abruptly and permanently closer to potential-field tilt angles during every flare, implying that the relaxation of magnetic stress associated with non-potential tilt angles plays a major role during major flares. The shear angle with respect to the reference potential field did not show such a pattern, demonstrating that flare processes do not generally relieve magnetic stresses associated with photospheric magnetic shear. The horizontal fields became significantly and permanently more aligned with the neutral line during the four largest flares, suggesting that the collapsing field is on average more aligned with the neutral line than the pre-flare neutral-line field. The vertical Lorentz force had a large, abrupt, permanent downward change during each of the flares, consistent with loop collapse. The horizontal Lorentz force changes acted mostly parallel to the neutral line in opposite directions on each side, a signature of the fields contracting during the flare, pulling the two sides of the neutral line toward each other. The greater effect of the flares on field tilt than on shear may be explained by photospheric line-tying.

  3. Kinetic Monte Carlo studies of the effects of Burgers vector changes on the reaction kinetics of one-dimensionally gliding interstitial clusters

    Microsoft Academic Search

    Howard L. Heinisch; Bachu N. Singh; Stanislav I. Golubov

    2000-01-01

    Kinetic Monte Carlo simulations of one-dimensionally diffusing interstitial clusters (dislocation loops) are used to gain insight into their role in microstructure evolution under irradiation. The simulations investigate the changes in reaction kinetics of these defects as a function of changes in the Burgers vector and variation in the size and density of randomly or periodically distributed sinks. In this paper

  4. Potential impacts of topography and prevailing wind direction on future precipitation changes in Japan

    NASA Astrophysics Data System (ADS)

    Tsunematsu, N.; Dairaku, K.; Hirano, J.

    2013-12-01

    To investigate future changes in summertime precipitation amounts over the Japanese islands and their relations to the topographical heights, this study analyzed 20 km horizontal grid-spacing regional climate model downscalings of MIROC3.2-hires 20C3M and SRES-A1B scenario data for the periods of 1981-2000 and 2081-2100. Results indicate the remarkable increases in June-July-August mean daily precipitation in the west and south sides (windward sides) of the mountainous regions, especially in western Japan where heavy rainfall is frequently observed in the recent climate. The remarkable increases in summertime precipitation are likely to occur not only in high altitude areas but also at low altitudes. The occurrence frequencies of precipitation greater than 100 mm/day would also increase in such areas. The intensification of southwesterly moist air flows in the lower troposphere is considered to be one of the main causes of those precipitation changes because the intensified southwesterly moist air flows impinging on the western and southern slopes of the mountains can generate stronger upslope flows and well-developed clouds, leading to increased precipitation. Also, the results show that future precipitation changes in the lee sides of the mountainous regions (e.g., the Tokyo metropolitan area) would be comparatively small. These results indicate large influences of topography and prevailing wind direction on future precipitation changes. Acknowledgments: This study was conducted as part of the research subject "Vulnerability and Adaptation to Climate Change in Water Hazard Assessed Using Regional Climate Scenarios in the Tokyo Region' (National Research Institute for Earth Science and Disaster Prevention; PI: Koji Dairaku) of Research Program on Climate Change Adaptation (RECCA) and was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan. We thank the regional climate modeling groups (MRI/NIED/Univ. Tsukuba) for producing and making available their model output. Their work was supported by the Environment Research and Technology Development Fund (S5-3) of the Ministry of the Environment, Japan.

  5. Land-Based Wind Potential Changes in the Southeastern United States (Presentation)

    SciTech Connect

    Roberts, J. O.

    2013-09-01

    Recent advancements in utility-scale wind turbine technology and pricing have vastly increased the potential land area where turbines can be deployed in the United States. This presentation quantifies the new developable land potential (e.g., capacity curves), visually identifies new areas for possible development (e.g., new wind resource maps), and begins to address deployment barriers to wind in new areas for modern and future turbine technology.

  6. Reconstructing Holocene changes in the Southern Hemisphere westerly winds: Integrating modern processes and paleoclimate data from New Zealand's southern fjords

    NASA Astrophysics Data System (ADS)

    Hinojosa, J.; Moy, C. M.; Wilson, G. S.; Stirling, C. H.

    2013-12-01

    The Southern Hemisphere westerly winds are an important component of the global carbon cycle due to their influence on Southern Ocean CO2 flux. In addition, the winds influence mid-latitude storm tracks, thereby controlling moisture balance over much of New Zealand's South Island and other Southern Hemisphere regions. Fiordland, New Zealand is an ideal locale to investigate Holocene changes in westerly wind behavior: It sits at the northern margin of the wind field maximum, is sensitive to latitudinal and strength fluctuations of the winds, and is the location of numerous fjord sub-basins with high sedimentation rates (up to 3 mm/yr). Due to the strong positive relationship between wind speed and regional rainfall, reconstructions of past precipitation and fjord circulation can inform us of past westerly wind behavior. These processes can be observed through changes in the rate of organic carbon delivery from land: When precipitation is high, more terrestrial organic carbon is delivered to the fjords, while low precipitation shifts the balance toward accumulation of marine organic carbon. An important first step towards reconstructing past westerly wind variability is to characterize the distribution and cycling of carbon throughout different depositional settings in the fjords to determine the optimal location for the development of paleoclimate records. Here, we present a geochemical characterization of surface sediments and the water column throughout the region and apply this understanding to sediment cores. During three field seasons in 2012 and 2013, we collected surface sediments, particulate organic matter, and piston cores from 10 different fjords spanning 44-46° S. Our results suggest that organic carbon in the fjord basins largely follows a two-end-member mixing model, drawing from marine and terrestrial end-member sources. We see consistent down-fjord trends in carbon and nitrogen concentrations and isotopes measured from surface sediments and particulate organic matter. Terrestrial organic carbon dominates toward the head of each fjord and marine organic content increases moving toward the mouth, and the consistency of this relationship allows us to compare downcore results from different basins. We will apply our modern-process framework to several cores that span the last 4,000 years and discuss the implications for late Holocene westerly wind variability in this understudied but important region.

  7. Late-glacial to holocene changes in winds, upwelling, and seasonal production of the northern California current system

    USGS Publications Warehouse

    Sancetta, C.; Lyle, M.; Heusser, L.; Zahn, R.; Bradbury, J.P.

    1992-01-01

    A core 120 km off the coast of southern Oregon was examined for changes in lithology, diatoms, and pollen over the past 30,000 yr. Primary production during the late Pleistocene was about half that of the Holocene. Evidence from diatoms and pollen indicates that summer upwelling was much weaker, implying an absence of strong northerly winds. Early Pliocene diatoms found throughout the late Pleistocene section were probably derived from diatomites east of the Cascades and provide evidence for strong easterly winds over a dry continental interior. The findings verify predictions of a climate model based on glacial maximum conditions. There is no compelling evidence for a climatic reversal corresponding to the European Younger Dryas chron. During the early Holocene (9000-7000 yr B.P.) there may have been years when winds were insufficiently strong to support upwelling, so that warm stratified waters lay closer to the coast. ?? 1992.

  8. Population Genetics of Two Key Mosquito Vectors of Rift Valley Fever Virus Reveals New Insights into the Changing Disease Outbreak Patterns in Kenya

    PubMed Central

    Tchouassi, David P.; Bastos, Armanda D. S.; Sole, Catherine L.; Diallo, Mawlouth; Lutomiah, Joel; Mutisya, James; Mulwa, Francis; Borgemeister, Christian; Sang, Rosemary; Torto, Baldwyn

    2014-01-01

    Rift Valley fever (RVF) outbreaks in Kenya have increased in frequency and range to include northeastern Kenya where viruses are increasingly being isolated from known (Aedes mcintoshi) and newly-associated (Ae. ochraceus) vectors. The factors contributing to these changing outbreak patterns are unclear and the population genetic structure of key vectors and/or specific virus-vector associations, in particular, are under-studied. By conducting mitochondrial and nuclear DNA analyses on >220 Kenyan specimens of Ae. mcintoshi and Ae. ochraceus, we uncovered high levels of vector complexity which may partly explain the disease outbreak pattern. Results indicate that Ae. mcintoshi consists of a species complex with one of the member species being unique to the newly-established RVF outbreak-prone northeastern region of Kenya, whereas Ae. ochraceus is a homogeneous population that appears to be undergoing expansion. Characterization of specimens from a RVF-prone site in Senegal, where Ae. ochraceus is a primary vector, revealed direct genetic links between the two Ae. ochraceus populations from both countries. Our data strongly suggest that unlike Ae. mcintoshi, Ae. ochraceus appears to be a relatively recent, single 'introduction' into Kenya. These results, together with increasing isolations from this vector, indicate that Ae. ochraceus will likely be of greater epidemiological importance in future RVF outbreaks in Kenya. Furthermore, the overall vector complexity calls into question the feasibility of mosquito population control approaches reliant on genetic modification. PMID:25474018

  9. Population genetics of two key mosquito vectors of rift valley Fever virus reveals new insights into the changing disease outbreak patterns in kenya.

    PubMed

    Tchouassi, David P; Bastos, Armanda D S; Sole, Catherine L; Diallo, Mawlouth; Lutomiah, Joel; Mutisya, James; Mulwa, Francis; Borgemeister, Christian; Sang, Rosemary; Torto, Baldwyn

    2014-12-01

    Rift Valley fever (RVF) outbreaks in Kenya have increased in frequency and range to include northeastern Kenya where viruses are increasingly being isolated from known (Aedes mcintoshi) and newly-associated (Ae. ochraceus) vectors. The factors contributing to these changing outbreak patterns are unclear and the population genetic structure of key vectors and/or specific virus-vector associations, in particular, are under-studied. By conducting mitochondrial and nuclear DNA analyses on >220 Kenyan specimens of Ae. mcintoshi and Ae. ochraceus, we uncovered high levels of vector complexity which may partly explain the disease outbreak pattern. Results indicate that Ae. mcintoshi consists of a species complex with one of the member species being unique to the newly-established RVF outbreak-prone northeastern region of Kenya, whereas Ae. ochraceus is a homogeneous population that appears to be undergoing expansion. Characterization of specimens from a RVF-prone site in Senegal, where Ae. ochraceus is a primary vector, revealed direct genetic links between the two Ae. ochraceus populations from both countries. Our data strongly suggest that unlike Ae. mcintoshi, Ae. ochraceus appears to be a relatively recent, single 'introduction' into Kenya. These results, together with increasing isolations from this vector, indicate that Ae. ochraceus will likely be of greater epidemiological importance in future RVF outbreaks in Kenya. Furthermore, the overall vector complexity calls into question the feasibility of mosquito population control approaches reliant on genetic modification. PMID:25474018

  10. Statistical-dynamical downscaling for wind energy potentials: Evaluation and applications to decadal hindcasts and climate change projections

    NASA Astrophysics Data System (ADS)

    Pinto, Joaquim G.; Reyers, Mark; Mömken, Julia

    2014-05-01

    A statistical-dynamical downscaling (SDD) approach for the regionalisation of wind energy output (Eout) over Europe with special focus on Germany is proposed. SDD uses an extended circulation weather type (CWT) analysis on global daily MSLP fields with the central point being located over Germany. 77 weather classes based on the associated circulation weather type and the intensity of the geostrophic flow are identified. Representatives of these classes are dynamical downscaled with the regional climate model COSMO-CLM. By using weather class frequencies of different datasets the simulated representatives are recombined to probability density functions (PDFs) of near-surface wind speed and finally to Eout of a sample wind turbine for present and future climate. This is performed for reanalysis, decadal hindcasts and long-term future projections. For evaluation purposes results of SDD are compared to wind observations and to simulated Eout of purely dynamical downscaling (DD) methods. For the present climate SDD is able to simulate realistic PDFs of 10m-wind speed for most stations in Germany. The resulting spatial Eout patterns are similar to DD simulated Eout. In terms of decadal hindcasts results of SDD are similar to DD simulated Eout over Germany, Poland, Czech Republic, and Benelux, for which high correlations between annual Eout timeseries of SDD and DD are detected for selected hindcasts. Lower correlation is found for other European countries. It is demonstrated that SDD can be used to downscale the full ensemble of the MPI-ESM decadal prediction system. Long-term climate change projections in SRES scenarios of ECHAM5/MPI-OM as obtained by SDD agree well to results of other studies using DD methods, with increasing Eout over Northern Europe and a negative trend over Southern Europe. Despite some biases it is concluded that SDD is an adequate tool to assess regional wind energy changes in large model ensembles.

  11. Influence on the hydrodynamic performance of a variable vector propeller of different rules of pitch angle change

    NASA Astrophysics Data System (ADS)

    Chang, Xin; Zou, Jing-Xiang; Huang, Sheng; Guo, Chun-Yu

    2007-12-01

    To design a more effective blade pitch adjustment mechanism, research was done on changes to the hydrodynamic characteristics of VVPs (Variable Vector Propeller) caused by different rules for changing pitch angle. A mathematical method for predicting the hydrodynamic characteristics of a VVP under unsteady conditions is presented based on the panel method. Mathematical models for evaluation based on potential flow theory and the Green theorem are also presented. The hydrodynamic characteristics are numerically predicted. To avoid gaps between panels, hyperboloidal quadrilateral panels were used. The pressure Kutta condition on the trailing edge of the VVP blade was satisfied by the Newton-Raphson iterative procedure. The influence coefficients of the panels were calculated by Morino’s analytical formulations to improve numerical calculation speed, and the method developed by Yanagizawa was used to eliminate the point singularity on derivation calculus while determining the velocities on propeller surfaces. The calculation results show that it’s best for the hydrodynamic characteristics of the VVP that pitch angle changes follow the sine rule.

  12. Solar wind disturbance changes between L1 and Earth's magnetosphere: Modeled series at L1 and real events

    NASA Astrophysics Data System (ADS)

    Papitashvili, V.; Kabin, K.

    2008-12-01

    While modeling the solar wind interaction with the Earth's magnetic dipole, most of the existing MHD codes set initial boundary conditions at ~35 Earth radii upstream. These modeling results are often compared with measurements taken by various spacecraft located at the Lagrangian L1 point and flown within the Earth's magnetosphere at high and low orbits, and the ground-based observations. At the same time, a number of experimental magnetospheric and space weather models utilize the L1 observations as input parameters. These discrepancies in the outer boundary conditions may cause misinterpretation of the MHD & experimental modeling results and real observations across various domains. Although numerous techniques were developed for processing the solar wind plasma over ~200 Re between L1 and Earth (from simple ballistics to minimum-variance methods), none of these techniques help when the slower and faster plasma packets intersperse, causing various SW and IMF discontinuities heavily interact with each other on their way to Earth. In this study, we attempted to understand through the MHD modeling how the pulsing (i.e., slowing/accelerating) solar wind flow changes along the way from L1 to Earth, and compare these modeling results with a few real events measured by the ACE-WIND spacecraft pair during the intervals of minimal spacecraft transverse separation. Our results might help in better understanding how the L1 solar wind data should be used in the current techniques for space weather specification and forecasting.

  13. Responding to a Changing Energy Industry : 2007 Wind Energy Business Plan

    E-print Network

    Jacobson, Ryan J.

    2007-12-14

    This EMGT 835 project is a wind energy business plan for Midwest Engineering, an engineering and construction company active in the energy sector. This plan was created to develop a roadmap for the company to increase its market share in wind...

  14. Modelling the reorientation of sea-ice faults as the wind changes direction

    E-print Network

    Feltham, Daniel

    , tensile and shear deformation. A constant wind-stress gradient is applied until the initially frozen ice of their length by a particular fraction, the ice pack deformation is neglected and the wind stress is rotated and others (2004) used a discrete-element model to study sea-ice fracture due to different imposed patterns

  15. Catastrophic wind damage to North American forests and the potential impact of climate change

    Microsoft Academic Search

    Chris J Peterson

    2000-01-01

    Catastrophic winds from tornadoes and downbursts are a major cause of natural disturbance in forests of eastern North America, accounting for thousands of hectares of disturbed area annually. Wind disturbance shows substantial regional variation, decreasing from the mid-west to the east and from the south-east to New England. In terms of the relative importance among these types of storms, more

  16. Wind-driven changes in Southern Ocean residual circulation, ocean carbon reservoirs and atmospheric CO2

    E-print Network

    Williams, Ric

    shift shoals dense isopycnals that out- crop in the Southern Ocean and reduces the biogenic car- bon CO2: stronger or northward-shifted wes- terly winds in the Southern Hemisphere result in increased atmo- spheric pCO2 by *20 latm; weaker or southward-shifted winds lead to the opposing result

  17. The trophic responses of two different rodent-vector-plague systems to climate change.

    PubMed

    Xu, Lei; Schmid, Boris V; Liu, Jun; Si, Xiaoyan; Stenseth, Nils Chr; Zhang, Zhibin

    2015-02-01

    Plague, the causative agent of three devastating pandemics in history, is currently a re-emerging disease, probably due to climate change and other anthropogenic changes. Without understanding the response of plague systems to anthropogenic or climate changes in their trophic web, it is unfeasible to effectively predict years with high risks of plague outbreak, hampering our ability for effective prevention and control of the disease. Here, by using surveillance data, we apply structural equation modelling to reveal the drivers of plague prevalence in two very different rodent systems: those of the solitary Daurian ground squirrel and the social Mongolian gerbil. We show that plague prevalence in the Daurian ground squirrel is not detectably related to its trophic web, and that therefore surveillance efforts should focus on detecting plague directly in this ecosystem. On the other hand, plague in the Mongolian gerbil is strongly embedded in a complex, yet understandable trophic web of climate, vegetation, and rodent and flea densities, making the ecosystem suitable for more sophisticated low-cost surveillance practices, such as remote sensing. As for the trophic webs of the two rodent species, we find that increased vegetation is positively associated with higher temperatures and precipitation for both ecosystems. We furthermore find a positive association between vegetation and ground squirrel density, yet a negative association between vegetation and gerbil density. Our study thus shows how past surveillance records can be used to design and improve existing plague prevention and control measures, by tailoring them to individual plague foci. Such measures are indeed highly needed under present conditions with prevailing climate change. PMID:25540277

  18. A Change of Inertia-Supporting the Thrust Vector Control of the Space Launch System

    NASA Technical Reports Server (NTRS)

    Dziubanek, Adam J.

    2012-01-01

    The Space Launch System (SLS) is America's next launch vehicle. To utilize the vehicle more economically, heritage hardware from the Space Transportation System (STS) will be used when possible. The Solid Rocket Booster (SRB) actuators could possibly be used in the core stage of the SLS. The dynamic characteristics of the SRB actuator will need to be tested on an Inertia Load Stand (ILS) that has been converted to Space Shuttle Main Engine (SSME). The inertia on the pendulum of the ILS will need to be changed to match the SSME inertia. In this testing environment an SRB actuator can be tested with the equivalent resistence of an SSME.

  19. Using Eulerian and Lagrangian Approaches to Investigate Wind-Driven Changes in the Southern Ocean Abyssal Circulation

    NASA Astrophysics Data System (ADS)

    Spence, Paul; van Sebille, Erik; Saenko, Oleg; England, Matthew

    2014-05-01

    This study uses a global ocean eddy-permitting climate model to explore the export of abyssal water from the Southern Ocean and its sensitivity to projected twenty-first-century poleward-intensifying Southern Ocean wind stress. The authors investigate the abyssal flow pathways and transport using a combination of Lagrangian and Eulerian techniques. In an Eulerian format, the equator- and poleward flows within similar abyssal density classes are increased by the wind stress changes, making it difficult to explicitly diagnose changes in the abyssal export in a meridional overturning circulation framework. Lagrangian particle analyses are used to identify the major export pathways of Southern Ocean abyssal waters and reveal an increase in the number of particles exported to the subtropics from source regions around Antarctica in response to the wind forcing. Both the Lagrangian particle and Eulerian analyses identify transients as playing a key role in the abyssal export of water from the Southern Ocean. Wind-driven modifications to the potential energy component of the vorticity balance in the abyss are also found to impact the Southern Ocean barotropic circulation.

  20. Relative Velocity and Vectors

    NSDL National Science Digital Library

    Weaver, David

    This activity is designed to enhance student comprehension of air and wind velocity, through the use of real time flight data. Students will read about relative velocity, complete a work sheet on vectors, and then gather and analyze real world data. All of the materials, including links to sites for data collection, are provided in this learning object. After completing the activity, students will be able to define relative velocity, add and subtract vectors, and determine aircraft speed using raw data.

  1. Analysis of Change in the Wind Speed Ratio according to Apartment Layout and Solutions

    PubMed Central

    Hyung, Won-gil; Kim, Young-Moon; You, Ki-Pyo

    2014-01-01

    Apartment complexes in various forms are built in downtown areas. The arrangement of an apartment complex has great influence on the wind flow inside it. There are issues of residents' walking due to gust occurrence within apartment complexes, problems with pollutant emission due to airflow congestion, and heat island and cool island phenomena in apartment complexes. Currently, the forms of internal arrangements of apartment complexes are divided into the flat type and the tower type. In the present study, a wind tunnel experiment and computational fluid dynamics (CFD) simulation were performed with respect to internal wind flows in different apartment arrangement forms. Findings of the wind tunnel experiment showed that the internal form and arrangement of an apartment complex had significant influence on its internal airflow. The wind velocity of the buildings increased by 80% at maximum due to the proximity effects between the buildings. The CFD simulation for relaxing such wind flows indicated that the wind velocity reduced by 40% or more at maximum when the paths between the lateral sides of the buildings were extended. PMID:24688430

  2. Time-course changes in left ventricular myocardial deformation in STZ-induced rabbits on velocity vector imaging

    PubMed Central

    2014-01-01

    Objectives To clarify the time-course changes in left ventricular myocardial deformation using velocity vector imaging and to provide insights into our understanding of the cardiac pathophysiology in diabetes mellitus. Methods Thirty New Zealand white rabbits were randomly divided into either the control group (n?=?10) or the diabetes mellitus (DM) group (induced with STZ, n?=?20). For the myocardial deformation studies, echocardiography and syngo-vector velocity imaging (VVI) were performed at baseline and after 2, 4, 8, and 12 weeks in all of the rabbits. The left ventricular (LV) global longitudinal and circumferential strain and strain rate were measured. For histomorphological study of the heart structure, 2 of the STZ-induced rabbits were killed at 2, 4, 8, and 12 weeks. Routine hematoxylin and eosin staining was performed. Results At 2 weeks, the global longitudinal strain (GLS), systolic strain rate (GLSRs), and diastolic strain rate (GLSRd) were significantly lower in the DM group compared with the control group (-18.16% versus -24.00%, -1.86 s-1 versus -2.49 s-1, 1.93 s-1 versus 2.42 s-1, respectively, P?

  3. The Impacts of Land Use Change on Malaria Vector Abundance in a Water-Limited Highland Region of Ethiopia

    NASA Astrophysics Data System (ADS)

    Stryker, J.; Bomblies, A.

    2012-12-01

    Changes in land use and climate are expected to alter risk of malaria transmission in areas where rainfall limits vector abundance. We use a coupled hydrology-entomology model to investigate the effects of land use change on hydrological processes impacting mosquito abundance in a highland village of Ethiopia. Land use affects partitioning of rainfall into infiltration and runoff that reaches small-scale topographic depressions, which constitute the primary breeding habitat of Anopheles arabiensis mosquitoes. A physically-based hydrology model isolates hydrological mechanisms by which land use impacts pool formation and persistence, and an agent-based entomology model evaluates the response of mosquito populations. This approach reproduced observed interannual variability in mosquito abundance between the 2009 and 2010 wet seasons. Several scenarios of land cover were then evaluated using the calibrated, field-validated model. Model results show variation in pool persistence and depth, as well as in mosquito abundance, due to land use changes alone. The model showed particular sensitivity to surface roughness, but also to root zone uptake. Scenarios in which land use was modified from agriculture to forest generally resulted in lowest mosquito abundance predictions; classification of the entire domain as rainforest produced a 34% decrease in abundance compared to 2010 results. This study also showed that in addition to vegetation type, spatial proximity of land use change to habitat locations has an impact on mosquito abundance. This modeling approach can be applied to assess impacts of climate and land use conditions that fall outside of the range of previously observed variability.

  4. Climate change and vector-borne diseases: what are the implications for public health research and policy?

    PubMed

    Campbell-Lendrum, Diarmid; Manga, Lucien; Bagayoko, Magaran; Sommerfeld, Johannes

    2015-04-01

    Vector-borne diseases continue to contribute significantly to the global burden of disease, and cause epidemics that disrupt health security and cause wider socioeconomic impacts around the world. All are sensitive in different ways to weather and climate conditions, so that the ongoing trends of increasing temperature and more variable weather threaten to undermine recent global progress against these diseases. Here, we review the current state of the global public health effort to address this challenge, and outline related initiatives by the World Health Organization (WHO) and its partners. Much of the debate to date has centred on attribution of past changes in disease rates to climate change, and the use of scenario-based models to project future changes in risk for specific diseases. While these can give useful indications, the unavoidable uncertainty in such analyses, and contingency on other socioeconomic and public health determinants in the past or future, limit their utility as decision-support tools. For operational health agencies, the most pressing need is the strengthening of current disease control efforts to bring down current disease rates and manage short-term climate risks, which will, in turn, increase resilience to long-term climate change. The WHO and partner agencies are working through a range of programmes to (i) ensure political support and financial investment in preventive and curative interventions to bring down current disease burdens; (ii) promote a comprehensive approach to climate risk management; (iii) support applied research, through definition of global and regional research agendas, and targeted research initiatives on priority diseases and population groups. PMID:25688013

  5. Transient and Steady-State Simulation Study of Decoupled d-q Vector Control in PWM Converter of Variable Speed Wind Turbines

    Microsoft Academic Search

    Shuhui LiandTimothy; T. A. Haskew

    2007-01-01

    Variable-speed wind turbines are attractive to the high performance and are commonly used by the wind turbine industry today. They are based on variable-speed operation with pitch control using either a direct driven synchronous generator (without gearbox) or a doubly-fed induction generator. For both, there is an AC\\/DC\\/AC PWM converter that is used for wind turbine control and grid interface.

  6. Rapid changes in mixed layer stratification driven by submesoscale instabilities and winds

    E-print Network

    Ferrari, Raffaele

    Submesoscale eddies generated by baroclinic instability of upper ocean fronts lead to rapid restratification of the mixed layer on a time scale of days. This restratification can be opposed by a down-front wind stress ...

  7. Changing Snow Cover and Stream Discharge in the Western United States - Wind River Range, Wyoming

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Barton, Jonathan S.; Riggs, George A.

    2011-01-01

    Earlier onset of springtime weather has been documented in the western United States over at least the last 50 years. Because the majority (>70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack has important implications for the management of water resources. We studied ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover products, 40 years of stream discharge and meteorological station data and 30 years of snow-water equivalent (SWE) SNOw Telemetry (SNOTEL) data in the Wind River Range (WRR), Wyoming. Results show increasing air temperatures for.the 40-year study period. Discharge from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades. Changes in streamflow may be related to increasing air temperatures which are probably contributing to a reduction in snow cover, although no trend of either increasingly lower streamflow or earlier snowmelt was observed within the decade of the 2000s. And SWE on 1 April does not show an expected downward trend from 1980 to 2009. The extent of snow cover derived from the lowest-elevation zone of the WRR study area is strongly correlated (r=0.91) with stream discharge on 1 May during the decade of the 2000s. The strong relationship between snow cover and streamflow indicates that MODIS snow-cover maps can be used to improve management of water resources in the drought-prone western U.S.

  8. Abstract--A bi-objective optimization model of power and power changes generated by a wind turbine is discussed in this

    E-print Network

    Kusiak, Andrew

    1 Abstract--A bi-objective optimization model of power and power changes generated by a wind theory is introduced. Data-mining algorithms were used to identify the model of power generation from prediction, power ramp rate, data mining, wind turbine operation strategy, generator torque, blade pitch

  9. Wind Engineering

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Dr. Jack Cermak, Director of Fluid Dynamics and Diffusion Laboratory, developed the first wind tunnel to simulate the changing temperatures, directions and velocities of natural winds. In this work, Cermak benefited from NASA technology related to what is known as the atmospheric boundary layer (ABL).

  10. Changing vessel routes could significantly reduce the cost of future offshore wind projects.

    PubMed

    Samoteskul, Kateryna; Firestone, Jeremy; Corbett, James; Callahan, John

    2014-08-01

    With the recent emphasis on offshore wind energy Coastal and Marine Spatial Planning (CMSP) has become one of the main frameworks used to plan and manage the increasingly complex web of ocean and coastal uses. As wind development becomes more prevalent, existing users of the ocean space, such as commercial shippers, will be compelled to share their historically open-access waters with these projects. Here, we demonstrate the utility of using cost-effectiveness analysis (CEA) to support siting decisions within a CMSP framework. In this study, we assume that large-scale offshore wind development will take place in the US Mid-Atlantic within the next decades. We then evaluate whether building projects nearshore or far from shore would be more cost-effective. Building projects nearshore is assumed to require rerouting of the commercial vessel traffic traveling between the US Mid-Atlantic ports by an average of 18.5 km per trip. We focus on less than 1500 transits by large deep-draft vessels. We estimate that over 29 years of the study, commercial shippers would incur an additional $0.2 billion (in 2012$) in direct and indirect costs. Building wind projects closer to shore where vessels used to transit would generate approximately $13.4 billion (in 2012$) in savings. Considering the large cost savings, modifying areas where vessels transit needs to be included in the portfolio of policies used to support the growth of the offshore wind industry in the US. PMID:24794388

  11. Winds of change: How will windstorms and forest harvesting affect C cycling in northern MN under different climate scenarios?

    NASA Astrophysics Data System (ADS)

    Lucash, M. S.; Scheller, R. M.; Gustafson, E.; Sturtevant, B.

    2013-12-01

    Forest managers struggle to manage timber resources while integrating the complex interactions that exist among disturbances with the novel conditions produced by a changing climate. To help forest managers better integrate climate change and disturbance projections into their forest management plans, we are using a forest landscape disturbance and succession model (LANDIS-II, Century extension) to project carbon sequestration in northern Minnesota under multiple climate change, management and disturbance scenarios. The model was calibrated and validated using empirical estimates of aboveground productivity and net ecosystem exchange. Our simulations suggest that windstorms will decrease tree biomass and soil organic matter and will increase dead C, resulting in an overall decrease in total C and C sink strength under the GFDL A1FI climate scenario. However the direct effects of climate change on C via altered production and heterotrophic respiration were larger than the impacts of wind. In contrast, forest harvesting will remain the dominant determinant of C dynamics under A1FI, even under management scenarios of more selective logging and longer rotation periods. Recovery from historic (late 1800s and early 1900s) disturbance - clearcut logging and wildfire - remain an important, though declining, driver of long-term C dynamics. Our research results will inform regional planning efforts and help forest managers evaluate the relative importance of disturbances (e.g. wind) and forest harvesting under a changing climate.

  12. Spatial and temporal changes in Lutzomyia longipalpis abundance, a Leishmania infantum vector in an urban area in northeastern Argentina

    PubMed Central

    Fernández, María Soledad; Santini, María Soledad; Cavia, Regino; Sandoval, Adolfo Enrique; Pérez, Adriana Alicia; Acardi, Soraya; Salomón, Oscar Daniel

    2013-01-01

    This study aimed to analyse changes in the spatial distribution of Lutzomyia longipalpis in Posadas, an urban area located in northeastern Argentina. Data were obtained during the summer of 2007 and 2009 through two entomological surveys of peridomiciles distributed around the city. The abundance distribution pattern for 2009 was computed and compared with the previous pattern obtained in 2007, when the first human visceral leishmaniasis cases were reported in the city. Vector abundance was also examined in relation to micro and macrohabitat characteristics. In 2007 and 2009, Lu. longipalpis was distributed among 41.5% and 31% of the households in the study area, respectively. In both years, the abundance rates at most of the trapping sites were below 30 Lu. longipalpis per trap per night; however, for areas exhibiting 30-60 Lu. longipalpis and more than 60 Lu. longipalpis, the areas increased in both size and number from 2007-2009. Lu. longipalpis was more abundant in areas with a higher tree and bush cover (a macrohabitat characteristic) and in peridomiciles with accumulated unused material (a microhabitat characteristic). These results will help to prioritise and focus control efforts by defining which peridomiciles display a potentially high abundance of Lu. longipalpis. PMID:24271040

  13. Climate change projected fire weather sensitivity: CaliforniaSanta Ana wind occurrence

    SciTech Connect

    Miller, Norman L.; Schlegel, Nicole J.

    2006-01-01

    A new methodbased on global climate model pressuregradients was developed for identifying coastal high-wind fire weatherconditions, such as the Santa Ana Occurrence (SAO). Application of thismethod for determining southern California Santa Ana wind occurrenceresulted in a good correlation between derived large-scale SAOs andobserved offshore winds during periods of low humidity. The projectedchange in the number of SAOs was analyzed using two global climatemodels, one a low temperature sensitivity and the other amiddle-temperature sensitivity, both forced with low and high emissionscenarios, for three future time periods. This initial analysis showsconsistent shifts in SAO events from earlier (September-October) to later(November-December) in the season, suggesting that SAOs may significantlyincrease the extent of California coastal areas burned by wildfires, lossof life, and property.

  14. A `low-level' explanation for the recent large warming trend over the western Antarctic Peninsula involving blocked winds and changes in

    E-print Network

    Hunt, Julian

    involving blocked winds and changes in zonal circulation A. Orr,1 D. Cresswell,1 G. J. Marshall,2 J. C. R. Cresswell, G. J. Marshall, J. C. R. Hunt, J. Sommeria, C. G. Wang, and M. Light (2004), A `low

  15. Vector reconstruction from firing rates

    Microsoft Academic Search

    Emilio Salinas; L. F. Abbott

    1994-01-01

    In a number of systems including wind detection in the cricket, visual motion perception and coding of arm movement direction in the monkey and place cell response to position in the rat hippocampus, firing rates in a population of tuned neurons are correlated with a vector quantity. We examine and compare several methods that allow the coded vector to be

  16. Spatially-Explicit Simulation Modeling of Ecological Response to Climate Change: Methodological Considerations in Predicting Shifting Population Dynamics of Infectious Disease Vectors

    PubMed Central

    Dhingra, Radhika; Jimenez, Violeta; Chang, Howard H.; Gambhir, Manoj; Fu, Joshua S.; Liu, Yang; Remais, Justin V.

    2014-01-01

    Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the population dynamics of Ixodes scapularis, the Lyme disease vector, using a temperature-forced population model simulated across a grid of 4 × 4 km cells covering the eastern United States, using both modeled (Weather Research and Forecasting (WRF) 3.2.1) baseline/current (2001–2004) and projected (Representative Concentration Pathway (RCP) 4.5 and RCP 8.5; 2057–2059) climate data. Ten dynamic population features (DPFs) were derived from simulated populations and analyzed spatially to characterize the regional population response to current and future climate across the domain. Each DPF under the current climate was assessed for its ability to discriminate observed Lyme disease risk and known vector presence/absence, using data from the US Centers for Disease Control and Prevention. Peak vector population and month of peak vector population were the DPFs that performed best as predictors of current Lyme disease risk. When examined under baseline and projected climate scenarios, the spatial and temporal distributions of DPFs shift and the seasonal cycle of key questing life stages is compressed under some scenarios. Our results demonstrate the utility of spatial characterization, analysis and visualization of dynamic population responses—including altered phenology—of disease vectors to altered climate. PMID:24772388

  17. Spatially-Explicit Simulation Modeling of Ecological Response to Climate Change: Methodological Considerations in Predicting Shifting Population Dynamics of Infectious Disease Vectors.

    PubMed

    Dhingra, Radhika; Jimenez, Violeta; Chang, Howard H; Gambhir, Manoj; Fu, Joshua S; Liu, Yang; Remais, Justin V

    2013-09-01

    Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the population dynamics of Ixodes scapularis, the Lyme disease vector, using a temperature-forced population model simulated across a grid of 4 × 4 km cells covering the eastern United States, using both modeled (Weather Research and Forecasting (WRF) 3.2.1) baseline/current (2001-2004) and projected (Representative Concentration Pathway (RCP) 4.5 and RCP 8.5; 2057-2059) climate data. Ten dynamic population features (DPFs) were derived from simulated populations and analyzed spatially to characterize the regional population response to current and future climate across the domain. Each DPF under the current climate was assessed for its ability to discriminate observed Lyme disease risk and known vector presence/absence, using data from the US Centers for Disease Control and Prevention. Peak vector population and month of peak vector population were the DPFs that performed best as predictors of current Lyme disease risk. When examined under baseline and projected climate scenarios, the spatial and temporal distributions of DPFs shift and the seasonal cycle of key questing life stages is compressed under some scenarios. Our results demonstrate the utility of spatial characterization, analysis and visualization of dynamic population responses-including altered phenology-of disease vectors to altered climate. PMID:24772388

  18. Analysis of Unit-Level Changes in Operations with Increased SPP Wind from EPRI/LCG Balancing Study

    SciTech Connect

    Hadley, Stanton W [ORNL

    2012-01-01

    Wind power development in the United States is outpacing previous estimates for many regions, particularly those with good wind resources. The pace of wind power deployment may soon outstrip regional capabilities to provide transmission and integration services to achieve the most economic power system operation. Conversely, regions such as the Southeastern United States do not have good wind resources and will have difficulty meeting proposed federal Renewable Portfolio Standards with local supply. There is a growing need to explore innovative solutions for collaborating between regions to achieve the least cost solution for meeting such a renewable energy mandate. The Department of Energy funded the project 'Integrating Midwest Wind Energy into Southeast Electricity Markets' to be led by EPRI in coordination with the main authorities for the regions: SPP, Entergy, TVA, Southern Company and OPC. EPRI utilized several subcontractors for the project including LCG, the developers of the model UPLAN. The study aims to evaluate the operating cost benefits of coordination of scheduling and balancing for Southwest Power Pool (SPP) wind transfers to Southeastern Electric Reliability Council (SERC) Balancing Authorities (BAs). The primary objective of this project is to analyze the benefits of regional cooperation for integrating mid-western wind energy into southeast electricity markets. Scenarios were defined, modeled and investigated to address production variability and uncertainty and the associated balancing of large quantities of wind power in SPP and delivery to energy markets in the southern regions of the SERC. DOE funded Oak Ridge National Laboratory to provide additional support to the project, including a review of results and any side analysis that may provide additional insight. This report is a unit-by-unit analysis of changes in operations due to the different scenarios used in the overall study. It focuses on the change in capacity factors and the number of start-ups required for each unit since those criteria summarize key aspects of plant operations, how often are they called upon and how much do they operate. The primary analysis of the overall project is based on security-constrained unit commitment (SCUC) and economic dispatch (SCED) simulations of the SPP-SERC regions as modeled for the year 2022. The SCUC/SCED models utilized for the project were developed through extensive consultation with the project utility partners, to ensure the various regions and operational practices are represented as best as possible in the model. SPP, Entergy, Oglethorpe Power Company (OPC), Southern Company, and the Tennessee Valley Authority (TVA) actively participated in the project providing input data for the models and review of simulation results and conclusions. While other SERC utility systems are modeled, the listed SERC utilities were explicitly included as active participants in the project due to the size of their load and relative proximity to SPP for importing wind energy.

  19. Impacts of the Changing Seasonality of Wind-driven Mixing on the Arctic System

    NASA Astrophysics Data System (ADS)

    Rainville, L.; Woodgate, R. A.; Overland, J. E.; Mahadevan, A.; Matrai, P. A.; Wang, M.

    2011-12-01

    The Arctic Ocean has been traditionally described as an ocean with low variability and weak turbulence levels. Many years of observations from ice camps and ice-based instruments have shown that the sea-ice cover effectively isolates the water column from direct wind forcing and damps the existing motions, resulting in relativily small upper ocean variability. Under the ice, direct and indirect estimates across the Arctic basins confirmed that turbulent vertical mixing does not play a significant role in the general distribution of oceanic properties and for the evolution of Arctic water masses. However, as the sea-ice cover continues to decreases in the summer, the Arctic Ocean is now subject to more direct wind forcing which generate large inertial motions in the surface mixed layer and in water column. During ice-free periods, wind-driven inertial motions and mixing are important both on the shelves and over the deep basins. Wind forcing is responsible for deepening the mixed layer - as in lower latitudes, and for enhanced mixing throughout the water column. We discuss some potential impacts of this enhanced mixing on Arctic ecosystem and heat/freshwater balances.

  20. The changing wind structure of the WR/LBV star in HD 5980

    NASA Astrophysics Data System (ADS)

    Koenigsberger, Gloria

    2013-10-01

    HD 5980 is an extraordinary system of massive stars that is located in the Small Magellanic Cloud. It contains an eclipsing binary {P=19.3 d} consisting of a luminous blue variable {LBV} and its Wolf-Rayet {WR} companion. The LBV underwent a major eruptive event in 1994 during which its bolometric luminosity increased by a factor of 5 and it is currently approaching its minimum state of activity. The primary objective of this proposal is to determine the wind velocity and mass-loss rate of the LBV in its current state. With these observations and our earlier observations and analyses, HD 5980 offers the unprecedented opportunity of deriving all the fundamental parameters of an LBV system throughout its activity cycle, parameters which are required in order to constrain the sources of the instabilities that lead to the eruptive phenomena. To accomplish these goals, we request 2 HST orbits to observe HD 5980 with STIS in order to obtain one set of FUV MAMA and CCD spectra at the eclipse, when the LBV occults its WR companion.The study of HD 5980 and the UV spectrum that we propose to acquire are relevant to a broad range of problems including wind-wind collision phenomena, the formation of circumstellar structures powered by stellar winds and the evolution of supernova progenitors.

  1. A Marine Radar Wind Sensor

    Microsoft Academic Search

    Heiko Dankert; Jochen Horstmann

    2007-01-01

    A new method for retrieving the wind vector from radar-image sequences is presented. This method, called WiRAR, uses a marine X-band radar to analyze the backscatter of the ocean surface in space and time with respect to surface winds. Wind direction is found using wind-induced streaks, which are very well aligned with the mean surface wind direction and have a

  2. First US-China Joint Ground Based Fabry-Perot Interferometer Observations of Longitudinal Variations in the Thermospheric Winds due to Geomagnetic Latitude Changes

    NASA Astrophysics Data System (ADS)

    Wu, Qian; Wang, Jing-Song; Xu, Jiyao; Yuan, Wei; Li, Tao; Zhang, Xiaoxin; Huang, C.

    For the first time, three Fabry-Perot interferometers from US (Boulder, 40N, 115W, 49N MLAT) and China (Xinglong, 40N,115E, 34N, MLAT; Kelan, 39N, 112E, 33N MLAT) were used to examine the longitudinal variations in the thermospheric winds due to the geomagnetic latitude differences between the American and Asian sectors. Two cases studies were made. During a case of quiet geomagnetic condition, the meridional winds were very similar at the US and Chinese stations. The meridional winds at Boulder reached most equatorward wind after midnight, whereas in China, the largest equatorward winds are found near midnight. The Boulder zonal winds turned westward earlier in the morning hours and had larger diurnal variations because of its higher magnetic latitude. During the case of moderated active geomagnetic condition, the meridional winds were still similar in the two continents. Boulder zonal winds had much large diurnal variation compared to the geomagnetically quiet condition. NCAR TIEGCM simulations show a very good agreement with observation for the meridional winds. The simulated zonal winds have noticeable differences with observation but the general tendencies in longitudinal variations are correct. The model output shows the ion drift is not directly responsible for the longitudinal variations in the winds. The pressure gradient has more direct effect on the longitudinal changes in the winds. The simulation results also show larger diurnal variations at higher geomagnetic latitudes due to the influence of the auroral oval heating. No nonmigrating tide effects were seen in the two cases both near the fall equinox in Oct 2012.

  3. Kinetic Monte Carlo studies of the effects of Burgers Vector Changes on the Reaction Kinetics of One-Dimensionally Gliding Interstitial Clusters

    SciTech Connect

    Heinisch, Howard L.; Singh, Bachu N.; Golubov, Stanislav I.

    2000-01-01

    Kinetic Monte Carlo simulations of one-dimensionally diffusing interstitial clusters (dislocation loops) are used to gain insight into their role in microstructure evolution under irradiation. The simulations investigate the changes in reaction kinetics of these defects as a function of changes in the Burgers vector and variation in the size and density of randomly or periodically distributed sinks. In this paper we report on several kinetic Monte Carlo studies intended to elucidate the effects of mixed 1-D/3-D migration relative to pure 3-D and pure 1-D migration. We have investigated the effects of variation of the average distance traveled between Burgers vector changes (L) on the absorption of individual defects into absorbers of varying size and varying concentration, as well as the effects of variatioin in (L) on the time dependence of absorption of a collection of defects into an array of absorbers. Significant effects of Burgers vector changes on the reaction kinetics of the diffusing interstitial clusters are clearly demonstrated. Even when (L) is larger relative to the size and spacing of microstructural features, significant effects of mixed 1-D/3-D migration on reaction kinetics are evident.

  4. The influence of changes in wind patterns on the areal extension of surface cyanobacterial blooms in a large shallow lake in China.

    PubMed

    Wu, Tingfeng; Qin, Boqiang; Brookes, Justin D; Shi, Kun; Zhu, Guangwei; Zhu, Mengyuan; Yan, Wenming; Wang, Zhen

    2015-06-15

    It has been hypothesized that climate change will induce the areal extension of cyanobacterial blooms. However, this hypothesis lacks field-based observation. In the present study both long-term historical data and short-term field measurement were used to identify the importance of changes in wind patterns on the cyanobacterial bloom in Lake Taihu (China), a large, shallow, eutrophic lake located in a subtropical zone. The cyanobacterial bloom mainly composed of Microcystis spp. recurred frequently throughout the year. The regression analysis of multi-year satellite image data extracted by the Floating Algae Index revealed that both the annual mean monthly maximum cyanobacterial bloom area (MMCBA) increased year by year from 2000 to 2011, while the contemporaneous cyanobacterial biomass showed no significant change. However, the correlation analysis shows that MMCBA was negatively correlated with wind speed. Our short-term field measurements indicated that the influence of wind on surface cyanobacterial blooms is that the Chlorophyll-a (Chla) concentration is fully mixing throughout the water column when the wind speed exceed 7ms(-1). At lower wind speeds, there was vertical stratification of Chla with high surface concentrations and an increase in bloom area. The regression analysis of wind speed indicates that the climate has changed over the last decade. Lake Taihu has become increasingly calm, with the decrease of strong wind frequency between 2000 and 2011, corresponding to the increase in the MMCBA over time. Therefore, we conclude that changes in wind patterns related to climate change have favored the increase of cyanobacterial blooms in Lake Taihu. PMID:25747360

  5. Migrating swans profit from favourable changes in wind conditions at low altitude

    Microsoft Academic Search

    Marcel Klaassen; Jan H. Beekman; Jari Kontiokorpi; Roef J. W. Mulder; Bart A. Nolet

    2004-01-01

    Because energy reserves limit flight range, wind assistance may be of crucial importance for migratory birds. We tracked eight Bewick’s swans Cygnus columbianus bewickii, using 95-g satellite transmitters with altimeters and activity sensors, during their spring migration from Denmark to northern Russia in 1996. During the 82 occasions where a swan’s location was recorded in flight, average flight altitude was

  6. Response of the Earth's Magnetosphere to Changes in the Solar Wind

    NASA Technical Reports Server (NTRS)

    McPherron, Robert L.; Weygand, James M.; Hsu, Tung-Shin

    2007-01-01

    The solar wind couples to the magnetosphere via dynamic pressure and electric field. Pressure establishes the size and shape of the system, while the electric field transfers energy, mass, and momentum to the magnetosphere. When the interplanetary magnetic field (IMF) is antiparallel to the dayside magnetic field, magnetic reconnection connects the IMF to the dipole field. Solar wind transport of the newly opened field lines to the nightside creates an internal convection system. These open field lines must ultimately be closed by reconnection on the nightside. For many decades, it was thought that a magnetospheric substorm was the process for accomplishing this and that all magnetic activity was a consequence of substorms. It is now recognized that there are a variety of modes of response of the magnetosphere to the solar wind. In this paper, we briefly describe these modes and the conditions under which they occur. They include substorms, pseudo-breakups, poleward boundary intensifications (PBI), steady magnetospheric convection (SMC), sawtooth injection events, magnetic storms, high-intensity long-duration continuous AE activities (HILDCAAs), and storm-time activations. There are numerous explanations for these different phenomena, some of which do not involve magnetic reconnection. However, we speculate that it is possible to interpret each mode in terms of differences in the way magnetic reconnection occurs on the nightside.

  7. Ionospheric traveling convection vortices observed near the polar cleft: A triggered response to sudden changes in the solar wind

    SciTech Connect

    Friis-Christensen, E.; McHenry, M.A.; Clauer, C.R.; Vennerstroem, S.

    1988-03-01

    Analysis of 20-second resolution magnetometer data from an array of temporary stations operated around Soendre Stroemfjord, Greenland during the summer of 1986 shows the signatures of localized ionospheric traveling convection vortices. An example of an isolated event of this kind observed near 08 local time is presented in detail. This event consists of a twin vortex pattern of convection consistent with the presence of two field-aligned current filaments separated by about 600 km in the east-west direction. This system of current is observed to move westward (tailward) past the array of stations at about 4 km/sec. The event is associated with relative quiet time ionospheric convection and occurs during an interval of northward IMF. It is, however, associated with a large fluctuation in both the Z and Y components of the IMF and with a large sudden decrease in the solar wind number density. The propagation of the system is inconsistent with existing models of FTE current systems, but nevertheless appears to be related to a readjustment of the magnetopause boundary to a sudden change in the solar wind dynamic pressure and/or to a change in reconnection brought about by a sudden reorientation of the IMF. copyright American Geophysical Union 1988

  8. Ionospheric traveling convection vortices observed near the polar cleft - A triggered response to sudden changes in the solar wind

    NASA Technical Reports Server (NTRS)

    Friis-Christensen, E.; Vennerstrom, S.; Mchenry, M. A.; Clauer, C. R.

    1988-01-01

    Analysis of 20-second resolution magnetometer data from an array of temporary stations operated around Sondre Stromfjord, Greenland, during the summer of 1986 shows the signatures of localized ionospheric traveling convection vortices. An example of an isolated event of this kind observed near 08 local time is presented in detail. This event consists of a twin vortex pattern of convection consistent with the presence of two field-aligned current filaments separated by about 600 km in the east-west direction. This system of currents is observed to move westward (tailward) past the array of stations at about 4 km/sec. The event is associated with relative quiet time ionospheric convection and occurs during an interval of northward IMF. It is, however, associated with a large fluctuation in both the Z and Y components of the IMF and with a large sudden decrease in the solar wind number density. The propagation of the system is inconsistent with existing models of FTE current systems, but nevertheless appears to be related to a readjustment of the magnetopause boundary to a sudden change in the solar wind dynamic pressure and/or to a change in reconnection brought about by a sudden reorientation of the IMF.

  9. The impact of climate change on the geographical distribution of two vectors of Chagas disease: implications for the force of infection.

    PubMed

    Medone, Paula; Ceccarelli, Soledad; Parham, Paul E; Figuera, Andreína; Rabinovich, Jorge E

    2015-04-01

    Chagas disease, caused by the parasite Trypanosoma cruzi, is the most important vector-borne disease in Latin America. The vectors are insects belonging to the Triatominae (Hemiptera, Reduviidae), and are widely distributed in the Americas. Here, we assess the implications of climatic projections for 2050 on the geographical footprint of two of the main Chagas disease vectors: Rhodnius prolixus (tropical species) and Triatoma infestans (temperate species). We estimated the epidemiological implications of current to future transitions in the climatic niche in terms of changes in the force of infection (FOI) on the rural population of two countries: Venezuela (tropical) and Argentina (temperate). The climatic projections for 2050 showed heterogeneous impact on the climatic niches of both vector species, with a decreasing trend of suitability of areas that are currently at high-to-moderate transmission risk. Consequently, climatic projections affected differently the FOI for Chagas disease in Venezuela and Argentina. Despite the heterogeneous results, our main conclusions point out a decreasing trend in the number of new cases of Tr. cruzi human infections per year between current and future conditions using a climatic niche approach. PMID:25688019

  10. Structural changes of the follicular cells during developmental stages of the malaria vector mosquitoes Anopheles pharoensis (Diptera: Culicidae) in Egypt.

    PubMed

    Yamany, Abeer S; Adham, Fatma K; Mehlhorn, Heinz

    2014-11-01

    The structure modulation of follicular cells and the ovarian changes during fourth larval instar and pupal stage of the malaria vector mosquitoes Anopheles pharoensis Theobald were investigated using the light and electron microscopy. The generative organs consist of a pair of polytrophic ovaries (OV), which are oblong, spindle-shaped bodies, lying dorsolaterally and occupying the region from the mid-fifth to the mid-sixth abdominal segment in the fourth larval instar, while in the pupal stage, each ovary (OV) is situated in the haemocoel of the sixth abdominal segment. It is an oblong body slightly larger in diameter; the lumen of the calyx becomes wider and central, and the pedicel (P) consists of one row of compact discoidal cells; meanwhile, in the fourth larval instar, the pedicel is without a lumen and consists of two rows of discoidal cells which are arranged as a short column between the follicle and calyx. The mean volume of the follicle in the fourth larval instar is 9.078?±?3.0178 ?m(3), meanwhile in the pupal stage being 12.051?±?2.427 ?m(3). The germarium (G) decreases in size in the pupal stage and contains a group of cells from which the oogonia differentiate, follicular cells which are similar to trophocytes, undifferentiated into one oocyte (O), which will develop into an egg and it is statistically the smallest one measured (0.058?±?0.0041 ?m(3), 0.303?±?0.0086 ?m(3)) in fourth larval instar and pupal stage, respectively as compared to the others within the follicle which will be accompanied as nurse cells (NC). The follicle is enclosed by a mononuclear flattened cells (follicular membrane), which have distinct boundaries. The vitellarium is differentiated into primary (F1) and secondary follicles (F2) in the pupal stage. The Golgi apparatus (GA) appears as discrete bits which are restricted to the perinuclear zone. The mitochondria (M) in the fourth larval instar are in the form of granules and short rods. They are perinuclearly distributed, forming a ring that surrounds the comparatively large nucleus. In the pupal stage, a similar condition to that described for the larva is observed, but with an increase in size and numbers, due to breaking up of rods into granules. PMID:25241910

  11. Lentivirus vector-mediated mitofusin-2 overexpression in rat ovary changes endocrine function and promotes follicular development in vivo.

    PubMed

    Hu, Xiaojing; Lei, Xiubing; Wang, Jidong; Pan, Hongjuan; Li, Cong; Yao, Zhenwei

    2014-09-01

    The aim of the present study was to evaluate the expression and effect of rat mitofusin-2 (rMfn2) in the ovaries and other organs in rats. Rat models were developed by the intraovarian microinjection of an rMfn2-overexpressing lentiviral vector. Lenti-green fluorescent protein (GFP)-rMfn2 was microinjected into rat ovaries at a dosage of 2×10(6) tuberculin units virosome (n=25) and lenti-GFP was microinjected as a control (n=25). The expression of rMfn2 in the ovaries and other tissues was observed by fluorescence microscopy on days 7, 15, 30, 45 and 60 after the microinjection (n=5/day from each group). The serum levels of estradiol (E2), progesterone (P), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were determined by radioimmunoassay. Western blotting was used for the quantitative analysis of the expression of rMfn2 and the progesterone receptor (PR), estradiol receptor (ER), luteinizing hormone receptor (LHR) and follicle-stimulating hormone receptor (FSHR). The expression of rMfn2 was detected on day 7 after infection, increased with time and was maintained efficiently until day 60. In addition, rMfn2 was highly expressed in the fallopian tubes, uterus, cardiac muscle, liver and kidney, but expressed at a low level in adipose tissue. The serum levels of E2 and P in the model group were significantly increased compared with those in the control group, whereas the FSH and LH levels showed no significant difference between groups. The expression levels of the ER and PR in the model group were higher than those in the control group; however, no significant difference was observed between groups for the expression levels of LHR and FSHR. These findings suggest that the intraovarian microinjection of lenti-GFP-rMfn2 resulted in a significant time-dependent overexpression of rMfn2 in various organs, and that rMfn2 overexpression in rat ovaries changed the endocrine function and promoted follicular development. PMID:25120590

  12. The effects of changing winds and temperatures on the oceanography of the Ross Sea in the 21st century

    NASA Astrophysics Data System (ADS)

    Smith, Walker O.; Dinniman, Michael S.; Hofmann, Eileen E.; Klinck, John M.

    2014-03-01

    The Ross Sea is critically important in regulating Antarctic sea ice and is biologically productive, which makes changes in the region's physical environment of global concern. We examined the effects of projected changes in atmospheric temperatures and winds on aspects of the ocean circulation likely important to primary production using a high-resolution sea ice-ocean-ice shelf model of the Ross Sea. The modeled summer sea-ice concentrations decreased by 56% by 2050 and 78% by 2100. The duration of shallow mixed layers over the continental shelf increased by 8.5 and 19.2 days in 2050 and 2100, and the mean summer mixed layer depths decreased by 12 and 44%. These results suggest that the annual phytoplankton production in the future will increase and become more diatomaceous. Other components of the Ross Sea food web will likely be severely disrupted, creating significant but unpredictable impacts on the ocean's most pristine ecosystem.

  13. Late Holocene changes in precipitation in northwest Tasmania and their potential links to shifts in the Southern Hemisphere westerly winds

    NASA Astrophysics Data System (ADS)

    Saunders, K. M.; Kamenik, C.; Hodgson, D. A.; Hunziker, S.; Siffert, L.; Fischer, D.; Fujak, M.; Gibson, J. A. E.; Grosjean, M.

    2012-07-01

    Accurate projections of future climate changes in regions susceptible to drought depend on a good understanding of past climate changes and the processes driving them. In the absence of longer term instrumental data, paleoclimate data are needed. In this study we develop a precipitation reconstruction for Rebecca Lagoon (41°11'S, 144°41'E), northwest Tasmania. First, the relationship between scanning reflectance spectroscopy measurements of sediment cores in the visible spectrum (380-730 nm) and instrumental precipitation record (1912-2009) was used to develop a model to reconstruct precipitation back in time. Results showed that the ratio of reflectance between 660 and 670 nm (i.e., reflectance at 660 nm/reflectance at 670 nm; a measure of pigment diagenesis) was significantly related to annual precipitation. A calibration model was developed (R = - 0.56, pauto < 0.001, RMSEP = 43.0 mm yr- 1, 5 year triangular filtered data, calibration period 1912-2009). Second, this calibration-in-time model was used to reconstruct late Holocene precipitation changes over the last ~ 3000 years. This showed relatively dry conditions from ca. 3100-2800 cal yr BP, wet conditions from ca. 2800-2400 cal yr BP, dry conditions from ca. 2400-2000 calyr BP, and variable conditions after this. Relatively wet conditions occurred from ca. 500 cal yr BP to the late AD 1800 s (ca. 50 cal. yr BP). The precipitation reconstruction indicates that conditions were relatively dry for the 20th century compared to the last ~ 3000 years. In particular, the dry period measured in recent decades is one of the most intense in at least the last 500 years. As precipitation in this region is primarily driven by the Southern Hemisphere westerly winds, these changes are discussed in terms of shifts in westerly wind strength and/or position.

  14. Impact of land use change on wind erosion and dust emission: scenarios from the central US

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There will be significant changes in land cover and land use throughout the central United States in the coming years, particularly as a result of climate change, changes in US rangeland/farm policy, and increasing exploitation of land-intensive sustainable energy sources. The purpose of this study ...

  15. Quadraphonic Wind

    NSDL National Science Digital Library

    National Weather Service

    2012-12-18

    In this activity, learners discover how the extent of various wind speeds changes in each of the four quadrants around a hurricane. Learners use data from the 'present' location of Hurricane Bill (2009) to plot the distance of various wind speeds that extend from the center of the storm. This resource includes brief background information about hurricanes and forecasting as well as an explanation of the Hurricane Bill data used in this activity and how small increases in wind speed can cause increased potential for damage.

  16. A Wind and Rain Backscatter Model Derived From AMSR and SeaWinds Data

    Microsoft Academic Search

    Seth N. Nielsen; David G. Long

    2009-01-01

    The SeaWinds scatterometer was originally designed to measure wind vectors over the ocean by exploiting the relationship between wind-induced surface roughening and the normalized radar backscatter cross section. Rain can degrade scatterometer wind estimation; however, the simultaneous wind\\/rain (SWR) algorithm was developed to enable SeaWinds to simultaneously retrieve wind and rain rate data. This algorithm is based on colocating data

  17. Thermal and Pressure Characterization of a Wind Tunnel Force Balance Using the Single Vector System. Experimental Design and Analysis Approach to Model Pressure and Temperature Effects in Hypersonic Wind Tunnel Research

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.; Commo, Sean A.; Johnson, Thomas H.; Parker, Peter A,

    2011-01-01

    Wind tunnel research at NASA Langley Research Center s 31-inch Mach 10 hypersonic facility utilized a 5-component force balance, which provided a pressurized flow-thru capability to the test article. The goal of the research was to determine the interaction effects between the free-stream flow and the exit flow from the reaction control system on the Mars Science Laboratory aeroshell during planetary entry. In the wind tunnel, the balance was exposed to aerodynamic forces and moments, steady-state and transient thermal gradients, and various internal balance cavity pressures. Historically, these effects on force measurement accuracy have not been fully characterized due to limitations in the calibration apparatus. A statistically designed experiment was developed to adequately characterize the behavior of the balance over the expected wind tunnel operating ranges (forces/moments, temperatures, and pressures). The experimental design was based on a Taylor-series expansion in the seven factors for the mathematical models. Model inversion was required to calculate the aerodynamic forces and moments as a function of the strain-gage readings. Details regarding transducer on-board compensation techniques, experimental design development, mathematical modeling, and wind tunnel data reduction are included in this paper.

  18. Virus-mediated chemical changes in rice plants impact the relationship between non-vector planthopper Nilaparvata lugens Stål and its egg parasitoid Anagrus nilaparvatae Pang et Wang.

    PubMed

    He, Xiaochan; Xu, Hongxing; Gao, Guanchun; Zhou, Xiaojun; Zheng, Xusong; Sun, Yujian; Yang, Yajun; Tian, Junce; Lu, Zhongxian

    2014-01-01

    In order to clarify the impacts of southern rice black-streaked dwarf virus (SRBSDV) infection on rice plants, rice planthoppers and natural enemies, differences in nutrients and volatile secondary metabolites between infected and healthy rice plants were examined. Furthermore, the impacts of virus-mediated changes in plants on the population growth of non-vector brown planthopper (BPH), Nilaparvata lugens, and the selectivity and parasitic capability of planthopper egg parasitoid Anagrus nilaparvatae were studied. The results showed that rice plants had no significant changes in amino acid and soluble sugar contents after SRBSDV infection, and SRBSDV-infected plants had no significant effect on population growth of non-vector BPH. A. nilaparvatae preferred BPH eggs both in infected and healthy rice plants, and tended to parasitize eggs on infected plants, but it had no significant preference for infected plants or healthy plants. GC-MS analysis showed that tridecylic aldehyde occurred only in rice plants infected with SRBSDV, whereas octanal, undecane, methyl salicylate and hexadecane occurred only in healthy rice plants. However, in tests of behavioral responses to these five volatile substances using a Y-tube olfactometer, A. nilaparvatae did not show obvious selectivity between single volatile substances at different concentrations and liquid paraffin in the control group. The parasitic capability of A. nilaparvatae did not differ between SRBSDV-infected plants and healthy plant seedlings. The results suggested that SRBSDV-infected plants have no significant impacts on the non-vector planthopper and its egg parasitoid, A. nilaparvatae. PMID:25141278

  19. Virus-Mediated Chemical Changes in Rice Plants Impact the Relationship between Non-Vector Planthopper Nilaparvata lugens Stål and Its Egg Parasitoid Anagrus nilaparvatae Pang et Wang

    PubMed Central

    Gao, Guanchun; Zhou, Xiaojun; Zheng, Xusong; Sun, Yujian; Yang, Yajun; Tian, Junce; Lu, Zhongxian

    2014-01-01

    In order to clarify the impacts of southern rice black-streaked dwarf virus (SRBSDV) infection on rice plants, rice planthoppers and natural enemies, differences in nutrients and volatile secondary metabolites between infected and healthy rice plants were examined. Furthermore, the impacts of virus-mediated changes in plants on the population growth of non-vector brown planthopper (BPH), Nilaparvata lugens, and the selectivity and parasitic capability of planthopper egg parasitoid Anagrus nilaparvatae were studied. The results showed that rice plants had no significant changes in amino acid and soluble sugar contents after SRBSDV infection, and SRBSDV-infected plants had no significant effect on population growth of non-vector BPH. A. nilaparvatae preferred BPH eggs both in infected and healthy rice plants, and tended to parasitize eggs on infected plants, but it had no significant preference for infected plants or healthy plants. GC-MS analysis showed that tridecylic aldehyde occurred only in rice plants infected with SRBSDV, whereas octanal, undecane, methyl salicylate and hexadecane occurred only in healthy rice plants. However, in tests of behavioral responses to these five volatile substances using a Y-tube olfactometer, A. nilaparvatae did not show obvious selectivity between single volatile substances at different concentrations and liquid paraffin in the control group. The parasitic capability of A. nilaparvatae did not differ between SRBSDV-infected plants and healthy plant seedlings. The results suggested that SRBSDV-infected plants have no significant impacts on the non-vector planthopper and its egg parasitoid, A. nilaparvatae. PMID:25141278

  20. Decades-long changes of the interstellar wind through our solar system.

    PubMed

    Frisch, P C; Bzowski, M; Livadiotis, G; McComas, D J; Moebius, E; Mueller, H-R; Pryor, W R; Schwadron, N A; Sokó?, J M; Vallerga, J V; Ajello, J M

    2013-09-01

    The journey of the Sun through the dynamically active local interstellar medium creates an evolving heliosphere environment. This motion drives a wind of interstellar material through the heliosphere that has been measured with Earth-orbiting and interplanetary spacecraft for 40 years. Recent results obtained by NASA's Interstellar Boundary Explorer mission during 2009-2010 suggest that neutral interstellar atoms flow into the solar system from a different direction than found previously. These prior measurements represent data collected from Ulysses and other spacecraft during 1992-2002 and a variety of older measurements acquired during 1972-1978. Consideration of all data types and their published results and uncertainties, over the three epochs of observations, indicates that the trend for the interstellar flow ecliptic longitude to increase linearly with time is statistically significant. PMID:24009386

  1. Fractional Factorial Experiment Designs to Minimize Configuration Changes in Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard; Cler, Daniel L.; Graham, Albert B.

    2002-01-01

    This paper serves as a tutorial to introduce the wind tunnel research community to configuration experiment designs that can satisfy resource constraints in a configuration study involving several variables, without arbitrarily eliminating any of them from the experiment initially. The special case of a configuration study featuring variables at two levels is examined in detail. This is the type of study in which each configuration variable has two natural states - 'on or off', 'deployed or not deployed', 'low or high', and so forth. The basic principles are illustrated by results obtained in configuration studies conducted in the Langley National Transonic Facility and in the ViGYAN Low Speed Tunnel in Hampton, Virginia. The crucial role of interactions among configuration variables is highlighted with an illustration of difficulties that can be encountered when they are not properly taken into account.

  2. A Spatio-temporal Description of the Abrupt Changes in the Photospheric Magnetic and Lorentz-Force Vectors During the 15 February 2011 X2.2 Flare

    NASA Astrophysics Data System (ADS)

    Petrie, G. J. D.

    2013-10-01

    The active region NOAA 11158 produced the first X-class flare of Solar Cycle 24, an X2.2 flare at 01:44 UT on 15 February 2011. The Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO) satellite produces 12-minute, 0.5'' pixel-1 vector magnetograms. Here we analyze a series of these data covering a 12-hour interval centered at the time of this flare. We describe the spatial distributions of the photospheric magnetic changes associated with the flare, including the abrupt changes in the field vector, vertical electric current and Lorentz-force vector acting on the solar interior. We also describe these parameters' temporal evolution. The abrupt magnetic changes were concentrated near the neutral line and in two neighboring sunspots. Near the neutral line, the field vectors became stronger and more horizontal during the flare and the shear increased. This was due to an increase in strength of the horizontal field components near the neutral line, most significant in the horizontal component parallel to the neutral line but the perpendicular component also increased in strength. The vertical component did not show a significant, permanent overall change at the neutral line. The increase in field strength at the neutral line was accompanied by a compensating decrease in field strength in the surrounding volume. In the two sunspots near the neutral line the integrated azimuthal field abruptly decreased during the flare but this change was permanent in only one of the spots. There was a large, abrupt, downward vertical Lorentz-force change acting on the solar interior during the flare, consistent with results of past analyses and recent theoretical work. The horizontal Lorentz force acted in opposite directions along each side of neutral line, with the two sunspots at each end subject to abrupt torsional forces relaxing their magnetic twist. These shearing forces were consistent with a contraction of field and decrease of shear near the neutral line, whereas the field itself became more sheared as a result of the field collapsing towards the neutral line from the surrounding volume. The Lorentz forces acting on the atmospheric volume above the photosphere were equal and opposite.

  3. Short-Term Wind Power Forecasts using Doppler Lidar

    NASA Astrophysics Data System (ADS)

    Magerman, Beth

    With a ground-based Doppler lidar on the upwind side of a wind farm in the Tehachapi Pass of California, radial wind velocity measurements were collected for repeating sector sweeps, scanning up to 10 kilometers away. This region consisted of complex terrain, with the scans made between mountains. The dataset was utilized for techniques being studied for short-term forecasting of wind power by correlating changes in energy content and of turbulence intensity by tracking spatial variance, in the wind ahead of a wind farm. A ramp event was also captured and its propagation was tracked. Orthogonal horizontal wind vectors were retrieved from the radial velocity using a sector Velocity Azimuth Display method. Streamlines were plotted to determine the potential sites for a correlation of upstream wind speed with wind speed at downstream locations near the wind farm. A "virtual wind turbine" was "placed" in locations along the streamline by using the time-series velocity data at the location as the input to a modeled wind turbine, to determine the extractable energy content at that location. The relationship between this time-dependent energy content upstream and near the wind farm was studied. By correlating the energy content with each upstream location based on a time shift estimated according to advection at the mean wind speed, several fits were evaluated. A prediction of the downstream energy content was produced by shifting the power output in time and applying the best-fit function. This method made predictions of the power near the wind farm several minutes in advance. Predictions were also made up to an hour in advance for a large ramp event. The Magnitude Absolute Error and Standard Deviation are presented for the predictions based on each selected upstream location.

  4. The winds of change: students' comfort level in different learning environments

    Microsoft Academic Search

    Kathy Lynch; Selby Markham

    2003-01-01

    The information technology workforce now more than ever requires graduates to be ready to 'produce' the instant they 'hit the ground'. The core discipline knowledge and skills haven't changed dramatically over the years, but the 'soft skills' have changed and have become more important than ever. Undergraduate information technology degree must prepare graduates for the workforce, and not just transmit

  5. Coherent Doppler Lidar for Boundary Layer Studies and Wind Energy

    NASA Astrophysics Data System (ADS)

    Choukulkar, Aditya

    This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified technique results in significant improvement in velocity retrieval accuracy. These modifications include changes to innovation covariance portioning, covariance binning, and analysis increment calculation. It is observed that the modified technique is able to make retrievals with better accuracy, preserves local information better, and compares well with tower measurements. In order to study the error of representativeness and vector retrieval error, a lidar simulator was constructed. Using the lidar simulator a thorough sensitivity analysis of the lidar measurement process and vector retrieval is carried out. The error of representativeness as a function of scales of motion and sensitivity of vector retrieval to look angle is quantified. Using the modified OI technique, study of nocturnal flow in Owens' Valley, CA was carried out to identify and understand uncharacteristic events on the night of March 27th 2006. Observations from 1030 UTC to 1230 UTC (0230 hr local time to 0430 hr local time) on March 27 2006 are presented. Lidar observations show complex and uncharacteristic flows such as sudden bursts of westerly cross-valley wind mixing with the dominant up-valley wind. Model results from Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS RTM) and other in-situ instrumentations are used to corroborate and complement these observations. The modified OI technique is used to identify uncharacteristic and extreme flow events at a wind development site. Estimates of turbulence and shear from this technique are compared to tower measurements. A formulation for equivalent wind speed in the presence of variations in wind speed and direction, combined with shear is developed and used to determine wind energy content in presence of turbulence.

  6. Dissipation in Pulsar Winds

    E-print Network

    J. G. Kirk

    2005-04-19

    I review the constraints placed on relativistic pulsar winds by comparing optical and X-ray images of the inner Crab Nebula on the one hand with two-dimensional MHD simulations on the other. The various proposals in the literature for achieving the low magnetisation required at the inner edge of the Nebula, are then discussed, emphasising that of dissipation in the striped-wind picture. The possibility of direct observation of the wind is examined. Based on the predicted orientation of the polarisation vector, I outline a new argument suggesting that the off-pulse component of the optical emission of the Crab pulsar originates in the wind.

  7. Vectorized Monte Carlo

    SciTech Connect

    Brown, F.B.

    1981-01-01

    Examination of the global algorithms and local kernels of conventional general-purpose Monte Carlo codes shows that multigroup Monte Carlo methods have sufficient structure to permit efficient vectorization. A structured multigroup Monte Carlo algorithm for vector computers is developed in which many particle events are treated at once on a cell-by-cell basis. Vectorization of kernels for tracking and variance reduction is described, and a new method for discrete sampling is developed to facilitate the vectorization of collision analysis. To demonstrate the potential of the new method, a vectorized Monte Carlo code for multigroup radiation transport analysis was developed. This code incorporates many features of conventional general-purpose production codes, including general geometry, splitting and Russian roulette, survival biasing, variance estimation via batching, a number of cutoffs, and generalized tallies of collision, tracklength, and surface crossing estimators with response functions. Predictions of vectorized performance characteristics for the CYBER-205 were made using emulated coding and a dynamic model of vector instruction timing. Computation rates were examined for a variety of test problems to determine sensitivities to batch size and vector lengths. Significant speedups are predicted for even a few hundred particles per batch, and asymptotic speedups by about 40 over equivalent Amdahl 470V/8 scalar codes arepredicted for a few thousand particles per batch. The principal conclusion is that vectorization of a general-purpose multigroup Monte Carlo code is well worth the significant effort required for stylized coding and major algorithmic changes.

  8. The Effects of Climate Change and Globalization on Mosquito Vectors: Evidence from Jeju Island, South Korea on the Potential for Asian Tiger Mosquito (Aedes albopictus) Influxes and Survival from Vietnam Rather Than Japan

    PubMed Central

    Jeong, Ji Yeon; Yoo, Seung Jin; Koh, Young-Sang; Lee, Seogjae; Heo, Sang Taek; Seong, Seung-Yong; Lee, Keun Hwa

    2013-01-01

    Background Climate change affects the survival and transmission of arthropod vectors as well as the development rates of vector-borne pathogens. Increased international travel is also an important factor in the spread of vector-borne diseases (VBDs) such as dengue, West Nile, yellow fever, chikungunya, and malaria. Dengue is the most important vector-borne viral disease. An estimated 2.5 billion people are at risk of infection in the world and there are approximately 50 million dengue infections and an estimated 500,000 individuals are hospitalized with dengue haemorrhagic fever annually. The Asian tiger mosquito (Aedes albopictus) is one of the vectors of dengue virus, and populations already exist on Jeju Island, South Korea. Currently, colder winter temperatures kill off Asian tiger mosquito populations and there is no evidence of the mosquitos being vectors for the dengue virus in this location. However, dengue virus-bearing mosquito vectors can inflow to Jeju Island from endemic area such as Vietnam by increased international travel, and this mosquito vector's survival during colder winter months will likely occur due to the effects of climate change. Methods and Results In this section, we show the geographical distribution of medically important mosquito vectors such as Ae. albopictus, a vector of both dengue and chikungunya viruses; Culex pipiens, a vector of West Nile virus; and Anopheles sinensis, a vector of Plasmodium vivax, within Jeju Island, South Korea. We found a significant association between the mean temperature, amount of precipitation, and density of mosquitoes. The phylogenetic analyses show that an Ae. albopictus, collected in southern area of Jeju Island, was identical to specimens found in Ho Chi Minh, Vietnam, and not Nagasaki, Japan. Conclusion Our results suggest that mosquito vectors or virus-bearing vectors can transmit from epidemic regions of Southeast Asia to Jeju Island and can survive during colder winter months. Therefore, Jeju Island is no longer safe from vector borne diseases (VBDs) due to the effects of globalization and climate change, and we should immediately monitor regional climate change to identify newly emerging VBDs. PMID:23894312

  9. The Winds of Change: Thomas Kuhn and the Revolution in the Teaching of Writing.

    ERIC Educational Resources Information Center

    Hairston, Maxine

    1982-01-01

    Uses Thomas Kuhn's hypothesis on paradigm shifts--changes in a discipline from established models to newer ones--to examine the developing shift in writing instruction from the product-oriented to the process-oriented model. (RL)

  10. Short Time Scale Changes in Underwater Irradiance in a Wind-exposed Lagoon (Vaccarès Lagoon, France): Efficiency of Infrequent Field Measurements of Water Turbidity or Weather Data to Predict Irradiance in the Water Column

    Microsoft Academic Search

    Damien Banas; Patrick Grillas; Isabelle Auby; François Lescuyer; Eric Coulet; Jean-Claude Moreteau; Bertrand Millet

    2005-01-01

    High frequency water sampling in the wind-exposed Vaccarès lagoon revealed frequent and rapid changes in suspended solid (SS) concentrations in the water column. SS concentrations, sometimes higher than 800 mg l?1, were significantly correlated with antecedent wind conditions. Mean wind velocity during the 5–33 h before water sampling or maximal wind velocity during the previous 8.5–22 h were good predictors of SS concentrations

  11. Changes in the Observing System Contributing To Perceived Changes in Large Scale Circulation

    NASA Astrophysics Data System (ADS)

    Bourassa, M. A.

    2012-12-01

    Ocean surface wind observations have transitioned from purely in situ systems to satellite dominated systems. Reanalyses treat satellite winds as physically identical to in situ winds (albeit with different error characteristics). However, there are systematic differences between satellite and in situ winds. Prior work has shown that this wind observing system change causes trends in latent heat flux that are consistent with trends in analyses, both in spatial pattern and magnitude. These physical differences have also been confirmed in comparisons of research vessel and scatterometer winds (May and Bourassa, 2011), and have been shown to be quite large on weather time scales (Kara et al. 2007). For the published example for 0Z on January 1, 2005, the change in wind shear (U10 - Usfc) was modified by from -15% to +10%, and the monthly average was changed by from -10% to +5%. The differences do to waves and currents are examined herein. The vector differences in seasonal averages are determined from the modern data record, and used to infer systematic changes from the purely in situ system to a satellite-based system. These differences are examined in terms of biases to long term changes in Walker circulation and Hadley circulation. While the changes in wind speed are small compared to the wind speed, they are substantial in comparison to long term trends.

  12. Holocene changes in a park-forest vegetation mosaic in the Wind River Range, Wyoming

    SciTech Connect

    Lynch, E.A. (Univ. of Minnesota, St. Paul, MN (United States))

    1994-06-01

    The modern mod-elevation vegetation of the Rocky Mountains is a mosaic of conifer forests and open parks dominated by sagebrush (Artemisia spp.), grasses, and other herbs. It is not known how this pattern originated or how sensitive the balance between forest and park is to disturbance. Using pollen from sediments of five small ponds in Fish Creek Park, WY (elev. 2700 m), I reconstructed the last 8000 yrs of changes in the park-forest mosaic in an are about 16 km[sup 2]. Surface samples collected from 52 ponds in the Fish Creek Park area and from forest and park sites in Wyoming and Colorado indicate that park and forest pollen assemblages can be distinguished using multivariate statistical methods and conifer:herb pollen ratios. Fossil pollen from the five sediment cores shows that the distribution of the two vegetation types on the landscape has changed through the Holocene, and that the changes in vegetation are gradual. Past changes from park to forest have apparently occurred much more slowly than changes from forest to park, suggesting that areas subjected to recent clearcutting may remain unforested for centuries.

  13. Charm changing weak hadronic decays of triplet (C=1) baryons emitting axial-vector mesons including factorizable and pole contributions

    SciTech Connect

    Sharma, Arvind; Verma, R. C. [Department of Physics, College of Engineering and Management, Kapurthala-144601 (India); Department of Physics, Punjabi University, Patiala-147002 (India)

    2009-11-01

    We investigate the weak nonleptonic decays of {lambda}{sub c}{sup +}, {xi}{sub c}{sup +}, and {xi}{sub c}{sup 0} into the octet baryons (J{sup P}=1/2{sup +}) and axial-vector mesons (J{sup P}=1{sup +}) employing the factorization scheme for W-emission diagrams and the pole model for W-exchange contributions. Determining the baryon-baryon transition form factors in the nonrelativistic quark model and incorporating the constraints of heavy quark symmetry, we predict their branching ratios and asymmetry parameters.

  14. The National assessment of shoreline shange—A GIS compilation of vector shorelines and associated shoreline change data for the Pacific Northwest coast

    USGS Publications Warehouse

    Kratzmann, Meredith; Himmelstoss, Emily A.; Ruggiero, Peter; Thieler, E. Robert; Reid, David

    2013-01-01

    Sandy ocean beaches are a popular recreational destination and are often surrounded by communities that consist of valuable real estate. Development along sandy coastal areas is increasing despite the fact that coastal infrastructure may be repeatedly subjected to flooding and erosion. As a result, the demand for accurate information regarding past and present shoreline changes is increasing. Investigators with the U.S. Geological Survey's National Assessment of Shoreline Change Project have compiled a comprehensive database of digital vector shorelines and rates of shoreline change for the Pacific Northwest coast including the states of Washington and Oregon. No widely accepted standard for analyzing shoreline change currently exists. Current measurement and methods for calculating rates of change vary from study to study, precluding the combination of study results into statewide or regional assessments. The impetus behind the national assessment was to develop a standardized method that is consistent from coast to coast for measuring changes in shoreline position. The goal was to facilitate the process of periodically and systematically updating the measurements in an internally consistent manner. A detailed report on shoreline change for the Pacific Northwest coast that contains a discussion of the data presented here is available and cited in the Geospatial Data section of this report.

  15. Changes in the High-Latitude Topside Ionospheric Vertical Electron-Density Profiles in Response to Solar-Wind Perturbations During Large Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir; Truhlik, Vladimir; Wang, Yongli; Arbacher, Becca

    2011-01-01

    The latest results from an investigation to establish links between solar-wind and topside-ionospheric parameters will be presented including a case where high-latitude topside electron-density Ne(h) profiles indicated dramatic rapid changes in the scale height during the main phase of a large magnetic storm (Dst < -200 nT). These scale-height changes suggest a large heat input to the topside ionosphere at this time. The topside profiles were derived from ISIS-1 digital ionograms obtained from the NASA Space Physics Data Facility (SPDF) Coordinated Data Analysis Web (CDA Web). Solar-wind data obtained from the NASA OMNIWeb database indicated that the magnetic storm was due to a magnetic cloud. This event is one of several large magnetic storms being investigated during the interval from 1965 to 1984 when both solar-wind and digital topside ionograms, from either Alouette-2, ISIS-1, or ISIS-2, are potentially available.

  16. Winds of Change: Latinos in the Heartland and the Nation. JSRI Statistical Brief No. 5.

    ERIC Educational Resources Information Center

    Aponte, Robert; Siles, Marcelo E.

    This statistical brief provides a follow-up assessment of the changing demographic and economic landscape of the Midwest between 1980 and 1990. Latino population growth in the Midwest during the 1980s was modest, but since the region's other groups experienced minimal or negative growth, Latino growth accounted for over half the Midwest's total…

  17. The Winds of Change in Russian Higher Education: Is the East Moving West?

    ERIC Educational Resources Information Center

    Timoshenko, Konstantin

    2011-01-01

    In the last 30 years, major changes have taken place in the public sector worldwide under the rubric of New Public Management [NPM]. The education sector is perhaps one of the key areas drawing an intense interest and discussion in the wake of NPM. The Russian State seems to be no longer an exception to this global trend. In line with this, the…

  18. Wind turbine

    DOEpatents

    Cheney, Jr., Marvin C. (Glastonbury, CT)

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  19. Rice stripe virus affects the viability of its vector offspring by changing developmental gene expression in embryos

    PubMed Central

    Li, Shuo; Wang, Shijuan; Wang, Xi; Li, Xiaoli; Zi, Jinyan; Ge, Shangshu; Cheng, Zhaobang; Zhou, Tong; Ji, Yinghua; Deng, Jinhua; Wong, Sek-Man; Zhou, Yijun

    2015-01-01

    Plant viruses may affect the viability and development process of their herbivore vectors. Small brown planthopper (SBPH) is main vector of Rice stripe virus (RSV), which causes serious rice stripe disease. Here, we reported the effects of RSV on SBPH offspring by crossing experiments between viruliferous and non-viruliferous strains. The life parameters of offspring from different cross combinations were compared. The hatchability of F1 progeny from viruliferous parents decreased significantly, and viruliferous rate was completely controlled by viruliferous maternal parent. To better elucidate the underlying biological mechanisms, the morphology of eggs, viral propagation and distribution in the eggs and expression profile of embryonic development genes were investigated. The results indicated that RSV replicated and accumulated in SBPH eggs resulting in developmental stunt or delay of partial eggs; in addition, RSV was only able to infect ovum but not sperm. According to the expression profile, expression of 13 developmental genes was regulated in the eggs from viruliferous parents, in which two important regulatory genes (Ls-Dorsal and Ls-CPO) were most significantly down-regulated. In general, RSV exerts an adverse effect on SBPH, which is unfavourable for the expansion of viruliferous populations. The viewpoint is also supported by systematic monitoring of SBPH viruliferous rate. PMID:25601039

  20. Rice stripe virus affects the viability of its vector offspring by changing developmental gene expression in embryos.

    PubMed

    Li, Shuo; Wang, Shijuan; Wang, Xi; Li, Xiaoli; Zi, Jinyan; Ge, Shangshu; Cheng, Zhaobang; Zhou, Tong; Ji, Yinghua; Deng, Jinhua; Wong, Sek-Man; Zhou, Yijun

    2015-01-01

    Plant viruses may affect the viability and development process of their herbivore vectors. Small brown planthopper (SBPH) is main vector of Rice stripe virus (RSV), which causes serious rice stripe disease. Here, we reported the effects of RSV on SBPH offspring by crossing experiments between viruliferous and non-viruliferous strains. The life parameters of offspring from different cross combinations were compared. The hatchability of F1 progeny from viruliferous parents decreased significantly, and viruliferous rate was completely controlled by viruliferous maternal parent. To better elucidate the underlying biological mechanisms, the morphology of eggs, viral propagation and distribution in the eggs and expression profile of embryonic development genes were investigated. The results indicated that RSV replicated and accumulated in SBPH eggs resulting in developmental stunt or delay of partial eggs; in addition, RSV was only able to infect ovum but not sperm. According to the expression profile, expression of 13 developmental genes was regulated in the eggs from viruliferous parents, in which two important regulatory genes (Ls-Dorsal and Ls-CPO) were most significantly down-regulated. In general, RSV exerts an adverse effect on SBPH, which is unfavourable for the expansion of viruliferous populations. The viewpoint is also supported by systematic monitoring of SBPH viruliferous rate. PMID:25601039

  1. Direct active and reactive power control of DFIG for wind energy generation

    Microsoft Academic Search

    Lie Xu; Phillip Cartwright

    2006-01-01

    This paper presents a new direct power control (DPC) strategy for a doubly fed induction generator (DFIG)-based wind energy generation system. The strategy is based on the direct control of stator active and reactive power by selecting appropriate voltage vectors on the rotor side. It is found that the initial rotor flux has no impact on the changes of the

  2. Microenvironmental changes and plant responses due to shading and wind deflectio by solar collectors: a simulation study

    SciTech Connect

    Patten, D.T.; Smith, S.D.

    1980-11-01

    The potential microenvironmental changes at the ground surface beneath arrays of solar mirrors or collectors were investigated in a Sonoran Desert ecosystem, utilizing a simulated array of plywood panels. The simulated array consisted of twelve panels designed to exhibit a similar shape, tilt, and spacing as is expected to occur in heliostat fields of solar thermal facilities or in arrays of photovoltaic collectors. The experimental design in the study was based on comparing two microsites in the simulated array versus the open desert. Presence of the panels results in up to a 90% reduction in solar radiance during the midday period, with microsites beneath each panel receiving about 14% of the open desert irradiance over the whole day. The array of panels also effected a 14% to 60% reduction in monthly accumulated wind flow in the center of the array. The combination of reduced radiant energy input and wind deflection resulted in significantly reduced surface and soil temperatures in the heavily shaded sites, and moderately reduced surface and soil temperatures in the sunny microsites. Plant responses to a cooler, moister environment were: (1) higher diversity and survival of winter spring annuals; (2) proliferation of C/sub 3/ annuals in the summer flora versus the more typical C/sub 4/ annuals in the open; (3) greater new shoot production of shrubs; (4) greater gross photosynthesis and stomatal conductance of the two shrub species in the warm dry season, but not in the cool wet season; (5) increased leaf retention and reduction in the typical leaf polymorphic character into the dry season of the drought deciduous Ambrosia deltoidea; and, (6) invasion of the heavily shaded areas of the array by a pseudo-riparian species, Baccharis sarothroides. (WHK)

  3. Titan’s Rotation Reveals an Internal Ocean and Changing Zonal Winds

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Stiles, Bryan W.; Kirk, Randolph L.; Allison, Michael D.; Persi del Marmo, Paolo; Iess, Luciano; Lunine, Jonathan I.; Ostro, Steven J.; Hensley, Scott

    2008-03-01

    Cassini radar observations of Saturn’s moon Titan over several years show that its rotational period is changing and is different from its orbital period. The present-day rotation period difference from synchronous spin leads to a shift of ~0.36° per year in apparent longitude and is consistent with seasonal exchange of angular momentum between the surface and Titan’s dense superrotating atmosphere, but only if Titan’s crust is decoupled from the core by an internal water ocean like that on Europa.

  4. How do cosmic rays change their energy in the solar wind?

    NASA Technical Reports Server (NTRS)

    Jones, F. C.

    1983-01-01

    The diffusion-convection (modulation) equation is derived directly from the Boltzmann equation on the basis of a minimum number of assumptions concerning the scattering process, among which are: (1) that the scattered particles undergo no energy change, and (2) that isotropy is an equilibrium state. It is noted that, in the event that the background plasma contains a magnetic field and the flow speeds of the plasma and scattering centers are different, additional terms arise that will modify the equations. If, moreover, the scatterers have individual motions relative to their average flow, the second-order Fermi acceleration term will appear.

  5. Stochastic Dynamics of Sea Surface Winds Adam Hugh Monahan

    E-print Network

    Monahan, Adam Hugh

    Stochastic Dynamics of Sea Surface Winds Adam Hugh Monahan School of Earth and Ocean Sciences The probability distribution of sea surface winds (both vector winds and wind speed) is considered. The observed moment fields, estimated from SeaWinds scatterometer data, are shown to be characterised by non

  6. Wind Tubes

    NSDL National Science Digital Library

    Exploratorium

    2012-12-14

    In this activity, learners create and experiment with wind tubes. These tubes are a playful and inventive way to explore the effect that moving air has on objects. Construction uses everyday materials such as a fan and embroidery hoops. It’s fun to make things fly out of or float in the tubes, and to adjust the tubes to change the way the objects fly. The activity requires a significant amount of time and resources to build and may require adult help in construction. Experimentation with the wind tubes is engaging for a wide age range of learners.

  7. Vector quantization

    Microsoft Academic Search

    Robert M. Gray

    1984-01-01

    A vector quantizer is a system for mapping a sequence of continuous or discrete vectors into a digital sequence suitable for communication over or storage in a digital channel. The goal of such a system is data compression: to reduce the bit rate so as to minimize communication channel capacity or digital storage memory requirements while maintaining the necessary fidelity

  8. A Marine-Radar Wind Sensor

    Microsoft Academic Search

    Heiko Dankert; Jochen Horstmann

    2006-01-01

    A method, called WiRAR, is developed to measure the wind vector using a marine X-band radar as sensor. WiRAR extracts local wind directions from wind induced streaks, which are visible in radar images at scales above 50 m. It is shown that the streaks are very well aligned with the mean surface wind directions. Wind speeds are derived with WiRAR

  9. Winds of change: growing demands for transparency in the relationship between doctors and the pharmaceutical industry.

    PubMed

    Mitchell, Philip B

    2009-09-01

    The relationship between medicine and the pharmaceutical industry in the United States is undergoing rapid and momentous change; US Senator Grassley has alleged inadequate disclosure of earnings from industry and lack of acknowledgement of conflicts of interest by leading academics. This article is based on the premise that it is not the relationship per se that is the problem, but rather how that relationship is enacted. The influential 2008 report of the Association of American Medical Colleges (AAMC) has provided detailed recommendations on appropriate interactions between academic physicians and industry (eg, proscribing receipt of gifts including travel support, and proscribing speaking at industry-sponsored educational programs). Contrary to expectations, there has been widespread acceptance of such guidelines. In Australia, details of all industry-sponsored educational events are now listed on the Medicines Australia website. Australian doctors have no alternative but to drastically improve the transparency of their interactions with industry, both in terms of the remuneration received and disclosure of potential conflicts of interest. Australian universities should seriously consider developing recommendations similar to those of the AAMC. PMID:19740050

  10. Impact of environmental changes and human-related factors on the potential malaria vector, Anopheles labranchiae (Diptera: Culicidae), in Maremma, Central Italy.

    PubMed

    Boccolini, D; Toma, L; Di Luca, M; Severini, F; Cocchi, M; Bella, A; Massa, A; Mancini Barbieri, F; Bongiorno, G; Angeli, L; Pontuale, G; Raffaelli, I; Fausto, A M; Tamburro, A; Romi, R

    2012-07-01

    The Maremma Plain (central Italy) was hyper-endemic for malaria until the mid-20th century, when a national campaign for malaria elimination drastically reduced the presence of the main vector Anopheles labranchiae Falleroni. However, the introduction of rice cultivation over 30 yr ago has led to an increase in the An. labranchiae population and concern over possible malaria reemergence. We studied the impact of anthropogenic environmental changes on the abundance and distribution of An. labranchiae in Maremma, focusing on rice fields, the main breeding sites. Adults and larvae were collected in three main areas with diverse ecological characteristics. Data were collected on human activity, land use, and seasonal climatic and demographic variations. We also interviewed residents and tourists regarding their knowledge of malaria. Our findings showed that the most important environmental changes have occurred along the coast; An. labranchiae foci are present throughout the area, with massive reproduction strictly related to rice cultivation in coastal areas. Although the abundance of this species has drastically decreased over the past 30 yr, it remains high and, together with climatic conditions and the potential introduction of gametocyte carriers, it may represent a threat for the occurrence of autochthonous malaria cases. Our findings suggest the need for the continuous monitoring of An. labranchiae in the study area. In addition to entomological surveillance, more detailed knowledge of human-induced environmental changes is needed, so as to have a more complete database that can be used for vector-control plans and for properly managing emergencies related to autochthonous introduced cases. PMID:22897043

  11. Wind farm and solar park effects on plant-soil carbon cycling: uncertain impacts of changes in ground-level microclimate.

    PubMed

    Armstrong, Alona; Waldron, Susan; Whitaker, Jeanette; Ostle, Nicholas J

    2014-06-01

    Global energy demand is increasing as greenhouse gas driven climate change progresses, making renewable energy sources critical to future sustainable power provision. Land-based wind and solar electricity generation technologies are rapidly expanding, yet our understanding of their operational effects on biological carbon cycling in hosting ecosystems is limited. Wind turbines and photovoltaic panels can significantly change local ground-level climate by a magnitude that could affect the fundamental plant-soil processes that govern carbon dynamics. We believe that understanding the possible effects of changes in ground-level microclimates on these phenomena is crucial to reducing uncertainty of the true renewable energy carbon cost and to maximize beneficial effects. In this Opinions article, we examine the potential for the microclimatic effects of these land-based renewable energy sources to alter plant-soil carbon cycling, hypothesize likely effects and identify critical knowledge gaps for future carbon research. PMID:24132939

  12. Wind farm and solar park effects on plant–soil carbon cycling: uncertain impacts of changes in ground-level microclimate

    PubMed Central

    Armstrong, Alona; Waldron, Susan; Whitaker, Jeanette; Ostle, Nicholas J

    2014-01-01

    Global energy demand is increasing as greenhouse gas driven climate change progresses, making renewable energy sources critical to future sustainable power provision. Land-based wind and solar electricity generation technologies are rapidly expanding, yet our understanding of their operational effects on biological carbon cycling in hosting ecosystems is limited. Wind turbines and photovoltaic panels can significantly change local ground-level climate by a magnitude that could affect the fundamental plant–soil processes that govern carbon dynamics. We believe that understanding the possible effects of changes in ground-level microclimates on these phenomena is crucial to reducing uncertainty of the true renewable energy carbon cost and to maximize beneficial effects. In this Opinions article, we examine the potential for the microclimatic effects of these land-based renewable energy sources to alter plant–soil carbon cycling, hypothesize likely effects and identify critical knowledge gaps for future carbon research. PMID:24132939

  13. Spatial modelling of the potential temperature-dependent transmission of vector-associated diseases in the face of climate change: main results and recommendations from a pilot study in Lower Saxony (Germany)

    Microsoft Academic Search

    Winfried Schröder; Gunther Schmidt

    2008-01-01

    The sustained climate change is going to modify the geographic distribution, the seasonal transmission gate and the intensity\\u000a of the transmission of vector-borne diseases such as malaria or the bluetongue disease. These diseases occur nowadays at higher\\u000a latitudes or altitudes. A further rise in ambient temperature and rainfall will extend the duration of the season in which\\u000a mosquito vectors are

  14. The Pollination of Trimenia moorei (Trimeniaceae): Floral Volatiles, Insect/Wind Pollen Vectors and Stigmatic Self?incompatibility in a Basal Angiosperm

    PubMed Central

    BERNHARDT, PETER; SAGE, TAMMY; WESTON, PETER; AZUMA, HIROSHI; LAM, MATHEW; THIEN, LEONARD B.; BRUHL, JEREMY

    2003-01-01

    Trimenia moorei (Oliv.) Philipson is an andromonoecious liane with >0·40 of the total flower buds maturing as bisexual flowers. Male and bisexual flowers are strongly scented with pollen, anther sacs and receptacle scars testing positively for volatile emissions. Scent analyses detect over 20 components. The major fatty acid derivative is 8?heptadecene, and 2?phenylethanol dominates the benzenoids. While hover?flies in the genera Melangyna and Triglyphus contact the stigma with their probosces, the stigma secretes no free?flowing, edible fluids. Copious pollen is the only edible reward consumed by hover?flies (Syprhidae), sawflies (Pergidae) and bees in the families Apidae, Colletidae and Halictidae. All these insects carried pollen of T. moorei on their heads, legs and thoraces and female bees in the genera Apis, Exoneura, Leioproctus and Lasioglossum stored pollen on their hind legs. Pollen traps also indicate that pollen is shed directly into the air, permitting wind pollination. When bisexual flower buds are bagged (isolated from insect foragers) on the liane then subjected to a series of hand?pollination experiments after perianth segments open, the structural analyses of pollen–carpel interactions indicate that T. moorei has a trichome?rich dry?type stigma with an early?acting self?incompatibility (SI) system. Bicellular pollen grains deposited on stigmas belonging to the same plant germinate but fail to penetrate intercellular spaces, while grains deposited following cross?pollination reach the ovule within 24 h. Fluorescence analyses of 76 carpels collected at random from unbagged (open?pollinated) flowers on five plants indicates that at least 64 % of carpels are cross?pollinated in situ. Trimenia moorei is the first species within the ANITA group, and second within reilictual?basal angiosperm lineages, to exhibit stigmatic SI in combination with dry?type stigma and bicellular pollen, a condition once considered to be atypical for angiosperms as a whole but now known to be present in numerous taxa. PMID:12930730

  15. Optimization of satellite coverage in observing cause and effect changes in the ionosphere, magnetosphere, and solar wind. Master's thesis

    SciTech Connect

    Loveless, M.J.

    1993-06-01

    Disturbances in the ionosphere sometimes cause adverse effects to communications systems, power grids, etc. on the earth. Currently, very little, if any, lead time is given to warn of an impending problem. If a forecast could be made of ionospheric occurrences, some lead time may be given to appropriate agencies and equipment may be saved. Most changes that occur in the ionosphere are a result of interaction of energy, currents, etc. between the magnetosphere and/or solar wind. Before a forecast can be made, however, improvement of ionospheric models currently in use need to be made. The models currently depict features in various regions of the ionosphere but not always where these features are actually observed. So an improvement to the model is needed to create an accurate baseline condition, or in other words an accurate depiction of the current ionosphere. Models could be improved by inputting real-time data from the ionosphere into the model. This data would come from satellites and/or ground-based stations.

  16. A piecewise linear model for detecting climatic trends and their structural changes with application to mesosphere/lower thermosphere winds over Collm, Germany

    NASA Astrophysics Data System (ADS)

    Liu, R. Q.; Jacobi, Ch.; Hoffmann, P.; Stober, G.; Merzlyakov, E. G.

    2010-11-01

    A piecewise linear model is developed to detect climatic trends and their structural changes in time series with a priori unknown number and positions of breakpoints (BPs). The departure (i.e., the initial noise term) of trends from time series is allowed to be interpreted by the first- and second-order autoregressive models. The goodness of fit of candidate models, if the residuals are accepted as normally distributed white noise, is evaluated using the Schwarz Bayesian Information Criterion (BIC). The uncertainties of all trend parameters are estimated using the Monte-Carlo method. The model is applied to the mesosphere and lower thermosphere (MLT) winds obtained at Collm, Germany, during 1960-2007. A persistent increase after ˜1980 of the zonal prevailing wind is observed in all seasons and hence in the zonal annual mean based on the primary models. Trends of the meridional prevailing wind are different for different seasons. Several major trend BPs are identified in the annual mean zonal and meridional winds according to BIC. However, in view of the large wind variability before the late 1970s, alternative models are considered. This provides four additional minor breaks. In some cases, the initial noise must be further interpreted by autoregressive models, suggesting that other unidentified factors may also play a role.

  17. Implications of global change and climate variability for vector-borne diseases: generic approaches to impact assessments.

    PubMed

    Sutherst, R W

    1998-06-01

    Global change is pervasive and occurring at a dramatic rate. It involves changes in land use, vegetation cover, species translocations and even the climate of the planet. The consequences for the biosphere are uncertain. Past research emphasis has been on the science of climate change as the major driver of policy. The present priority in the global-change community is to define the likely nature and extent of those impacts on biodiversity and the functioning of ecosystems. In addition, increasing consideration is now being given to adaptation measures. The way in which that is being initiated is to develop adaptation measures to respond to medium-term climate variability in the form of altered El Nino and similar cycles, and changes in the frequency of extreme events. Given the large number of stakeholders in agriculture, human health and environment, there is a need for great efficiencies if the scientific community is going to be able to respond in a meaningful way with foreseeable resources. The plethora of problems means that generic approaches are needed. The present situation, with parasitologists each doing their own thing in terms of developing and using software tools, is like the tower of Babel. Parasitologists need common tools and languages to facilitate communication and collaboration. Advances in computing, with object-oriented programming languages and seamless exchange of information between different packages and platforms, are providing some exciting opportunities to overcome these problems. PMID:9673872

  18. Hot gas ingestion test results of a two-poster vectored thrust concept with flow visualization in the NASA Lewis 9- x 15-foot low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.; Neiner, George; Bencic, Timothy J.; Flood, Joseph D.; Amuedo, Kurt C.; Strock, Thomas W.

    1990-01-01

    A 9.2 percent scale Short Takeoff and Vertical Landing (STOVL) hot gas ingestion model was designed and built by McDonnell Douglas Corporation (MCAIR) and tested in the Lewis Research Center 9 x 15 foot Low Speed Wind Tunnel (LSWT). Hot gas ingestion, the entrainment of heated engine exhaust into the inlet flow field, is a key development issure for advanced short takeoff and vertical landing aircraft. Flow visualization from the Phase 1 test program, which evaluated the hot ingestion phenomena and control techniques, is covered. The Phase 2 test program evaluated the hot gas ingestion phenomena at higher temperatures and used a laser sheet to investigate the flow field. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/life improvement devices (LIDs) which reduced the hot gas ingestion. The model support system had four degrees of freedom - pitch, roll, yaw, and vertical height variation. The model support system also provided heated high-pressure air for nozzle flow and a suction system exhaust for inlet flow. The test was conducted at full scale nozzle pressure ratios and inlet Mach numbers. Test and data analysis results from Phase 2 and flow visualization from both Phase 1 and 2 are documented. A description of the model and facility modifications is also provided. Headwind velocity was varied from 10 to 23 kn. Results are presented over a range of nozzle pressure ratios at a 10 kn headwind velocity. The Phase 2 program was conducted at exhaust nozzle temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. The results reported are for nozzle exhaust temperatures up to 1160 R. These results will contain the compressor face pressure and temperature distortions, the total pressure recovery, the inlet temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane contours, the model airframe heating, and the location of the ground flow separation.

  19. Three-Dimensional Wind Profiling of Offshore Wind Energy Areas With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Beyon, Jeffrey Y.; Cowen, Larry J.; Kavaya, Michael J.; Grant, Michael S.

    2014-01-01

    A technique has been developed for imaging the wind field over offshore areas being considered for wind farming. This is accomplished with an eye-safe 2-micrometer wavelength coherent Doppler lidar installed in an aircraft. By raster scanning the aircraft over the wind energy area (WEA), a three-dimensional map of the wind vector can be made. This technique was evaluated in 11 flights over the Virginia and Maryland offshore WEAs. Heights above the ocean surface planned for wind turbines are shown to be within the marine boundary layer, and the wind vector is seen to show variation across the geographical area of interest at turbine heights.

  20. Three-dimensional wind profiling of offshore wind energy areas with airborne Doppler lidar

    NASA Astrophysics Data System (ADS)

    Koch, Grady J.; Beyon, Jeffrey Y.; Cowen, Larry J.; Kavaya, Michael J.; Grant, Michael S.

    2014-01-01

    A technique has been developed for imaging the wind field over offshore areas being considered for wind farming. This is accomplished with an eye-safe 2-?m wavelength coherent Doppler lidar installed in an aircraft. By raster scanning the aircraft over the wind energy area (WEA), a three-dimensional map of the wind vector can be made. This technique was evaluated in 11 flights over the Virginia and Maryland offshore WEAs. Heights above the ocean surface planned for wind turbines are shown to be within the marine boundary layer, and the wind vector is seen to show variation across the geographical area of interest at turbine heights.

  1. Cloning vector

    DOEpatents

    Guilfoyle, Richard A. (Madison, WI); Smith, Lloyd M. (Madison, WI)

    1994-01-01

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site.

  2. Cloning vector

    DOEpatents

    Guilfoyle, R.A.; Smith, L.M.

    1994-12-27

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site. 2 figures.

  3. Changes in water and wind resources across the central and northeastern U.S. 2060-2010 in 24 km WRF downscale climate simulations

    NASA Astrophysics Data System (ADS)

    Birkel, S. D.; Maasch, K. A.; Oglesby, R. J.; Fulginiti, L.; Trindade, F.; Hays, C.

    2012-12-01

    GCM ensembles for the IPCC AR4 indicate that by 2060 water and wind resources will change appreciably over the central and northeastern U.S. In order to investigate these possible changes on a scale relevant for agriculture and offshore wind-power planners, we produced 24 km downscale simulations using the Weather Research and Forecasting (WRF) model. Our simulations span the years 2006-2010 and 2056-2060 with boundary conditions supplied by CCSM4 (IPCC emissions scenario RCP 8.5). By calculating the difference between the simulated time periods we find: 1) ~10% decrease in total annual precipitation across the southern half of the Ogallala aquifer in the central U.S., and ~10% increase across the northeastern states; and 2) Minimal change in annual-average 10-meter wind strength across the study areas, but with significant changes seasonal values. Interrogation of the simulation results is ongoing, and a complete synthesis will be presented at the annual meeting.

  4. Solar Wind Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

  5. Equivalent Vectors

    ERIC Educational Resources Information Center

    Levine, Robert

    2004-01-01

    The cross-product is a mathematical operation that is performed between two 3-dimensional vectors. The result is a vector that is orthogonal or perpendicular to both of them. Learning about this for the first time while taking Calculus-III, the class was taught that if AxB = AxC, it does not necessarily follow that B = C. This seemed baffling. The…

  6. Molecular and macromolecular alterations of recombinant adenoviral vectors do not resolve changes in hepatic drug metabolism during infection

    Microsoft Academic Search

    Shellie M. Callahan; Piyanuch Wonganan; Maria A. Croyle

    2008-01-01

    In this report we test the hypothesis that long-term virus-induced alterations in CYP occur from changes initiated by the virus that may not be related to the immune response. Enzyme activity, protein expression and mRNA of CYP3A2, a correlate of human CYP3A4, and CYP2C11, responsive to inflammatory mediators, were assessed 0.25, 1, 4, and 14 days after administration of several

  7. Climate change and the potential for range expansion of the Lyme disease vector Ixodes scapularis in Canada

    Microsoft Academic Search

    N. H. Ogden; A. Maarouf; I. K. Barker; M. Bigras-Poulin; L. R. Lindsay; M. G. Morshed; C. J. O'Callaghan; F. Ramay; D. Waltner-Toews; D. F. Charron

    2005-01-01

    We used an Ixodes scapularis population model to investigate potential northward spread of the tick associated with climate change. Annual degree-days O0 8C limits for I. scapularis establishment, obtained from tick population model simulations, were mapped using temperatures projected for the 2020s, 2050s and 2080s by two Global Climate Models (the Canadian CGCM2 and the UK HadCM3) for two greenhouse

  8. Wind speed forecasting for wind energy applications

    NASA Astrophysics Data System (ADS)

    Liu, Hong

    With more wind energy being integrated into our grid systems, forecasting wind energy has become a necessity for all market participants. Recognizing the market demands, a physical approach to site-specific hub-height wind speed forecasting system has been developed. This system is driven by the outputs from the Canadian Global Environmental Multiscale (GEM) model. A simple interpolation approach benchmarks the forecasting accuracy inherited from GEM. Local, site specific winds are affected on a local scale by a variety of factors including representation of the land surface and local boundary-layer process over heterogeneous terrain which have been a continuing challenge in NWP models like GEM with typical horizontal resolution of order 15-km. In order to resolve these small scale effects, a wind energy industry standard model, WAsP, is coupled with GEM to improve the forecast. Coupling the WAsP model with GEM improves the overall forecasts, but remains unsatisfactory for forecasting winds with abrupt surface condition changes. Subsequently in this study, a new coupler that uses a 2-D RANS model of boundary-layer flow over surface condition changes with improved physics has been developed to further improve the forecasts when winds coming from a water surface to land experience abrupt changes in surface conditions. It has been demonstrated that using vertically averaged wind speeds to represent geostrophic winds for input into the micro-scale models could reduce forecast errors. The hub-height wind speed forecasts could be further improved using a linear MOS approach. The forecasting system has been evaluated, using a wind energy standard evaluation matrix, against data from an 80-m mast located near the north shore of Lake Erie. Coupling with GEM-LAM and a power conversion model using a theoretical power curve have also been investigated. For hub-height wind speeds GEM appears to perform better with a 15-Ian grid than the high resolution GEM-2.5Ian version at the validation site.

  9. Effects of sea state on offshore wind resourcing in Florida

    NASA Astrophysics Data System (ADS)

    Collier, Cristina

    Offshore resource assessment relies on estimating wind speeds at turbine hub height using observations typically made at substantially lower height. The methods used to adjust from observed wind speeds to hub height can impact resource estimation. The importance of directional sea state is examined, both as seasonal averages and as a function of the diurnal cycle. A General Electric 3.6 MW offshore turbine is used as a model for a power production. Including sea state increases or decreases seasonally averaged power production by roughly 1%, which is found to be an economically significant change. These changes occur because the sea state modifies the wind shear (vector wind difference between the buoy height and the moving surface) and therefore the extrapolation from the observation to hub height is affected. These seemingly small differences in capacity can alter profits by millions of dollars depending upon the size of the farm and fluctuations in price per kWh throughout the year. A 2% change in capacity factor can lead to a 10 million dollar difference from total kWh produced from a wind farm of 100 3.6MW turbines. These economic impacts can be a deciding factor in determining whether a resource is viable for development. Modification of power output due to sea states are shown for seasonal and diurnal time scales. Three regions are examined herein: West Florida, East Florida, and Nantucket Sound. The average capacity after sea state is included suggests areas around Florida could provide substantial amounts of wind power throughout three-fourths of the calendar year. At certain times of day winter average produced capacity factors in West Florida can be up to 45% more than in summer when sea state is included. Nantucket Sound capacity factors are calculated for comparison to a region near a planned United States offshore wind farm. This study provides evidence to suggest including sea state in offshore wind resource assessment causes economically significant differences for offshore wind power siting.

  10. Cross-border transfer of climate change mitigation technologies : the case of wind energy from Denmark and Germany to India

    E-print Network

    Mizuno, Emi, Ph. D. Massachusetts Institute of Technology

    2007-01-01

    This research investigated the causal factors and processes of international development and diffusion of wind energy technology by examining private sector cross-border technology transfer from Denmark and Germany to India ...

  11. Satellite-derived sea surface height and sea surface wind data fusion for spilled oil tracking

    NASA Astrophysics Data System (ADS)

    Kozai, K.

    Data fusion is defined as a framework with the purpose of obtaining information of 'greater quality'. Within the framework tools are expressed for the alliance of data originating from different sources. The exact definition of 'greater quality' is stated in this context as more reliable prediction for the trajectory of spilled oil from two different microwave sensor data, namely ERS-2 altimeter and ADEOS/NSCAT scatterometer data. An example is presented in the case of trajectory of bow section and associated oil upwelling from the sunken tanker Nakhodka occurred from January to June in 1997 in Japan Sea. Spill distance is defined as a horizontal distance from the oil upwelling point to the location of sunken Nakhodka and a spill direction is defined as an angle made by the geographic north and the line corresponding to the spill distance. Geostrophic current vectors are derived from ERS-2 altimeter and wind-induced current vectors are derived from ADEOS/NSCAT scatterometer data. These two different satellite-derived vectors are 'fused' together in the surface current model to estimate and evaluate the trajectory of bow section and associated oil upwelling from the sunken tanker Nakhodka. Result of comparison between the estimated and the observed trajectory of bow section indicates that the estimated trajectory is agreed well with the observed one in the first half of drift period, while in the latter half of drift period the estimated trajectory is not agreed well with the observed one, which may be attributable to changes of wind directions within 24 hours from the satellite overpasses. Moreover the comparison between spill vector and 'fused' surface current vector shows the good correspondence in terms of direction when in situ wind accelerates the surface current vector, while the comparison between the twos shows the bad correspondence when the temporal changes of wind vector occurs.

  12. Circular Conditional Autoregressive Modeling of Vector Fields*

    PubMed Central

    Modlin, Danny; Fuentes, Montse; Reich, Brian

    2013-01-01

    As hurricanes approach landfall, there are several hazards for which coastal populations must be prepared. Damaging winds, torrential rains, and tornadoes play havoc with both the coast and inland areas; but, the biggest seaside menace to life and property is the storm surge. Wind fields are used as the primary forcing for the numerical forecasts of the coastal ocean response to hurricane force winds, such as the height of the storm surge and the degree of coastal flooding. Unfortunately, developments in deterministic modeling of these forcings have been hindered by computational expenses. In this paper, we present a multivariate spatial model for vector fields, that we apply to hurricane winds. We parameterize the wind vector at each site in polar coordinates and specify a circular conditional autoregressive (CCAR) model for the vector direction, and a spatial CAR model for speed. We apply our framework for vector fields to hurricane surface wind fields for Hurricane Floyd of 1999 and compare our CCAR model to prior methods that decompose wind speed and direction into its N-S and W-E cardinal components. PMID:24353452

  13. Reciprocal Vectors

    NASA Astrophysics Data System (ADS)

    Vogt, Joachim; Paschmann, Gotz; Chanteur, Gérard

    Reciprocal vectors and barycentric coordinates are well-established concepts in various scientific fields, where lattices and grids are essential, e.g., in solid state physics, crystallography, in the numerical analysis of partial differential equations using finite elements, and also in computer graphics and visualisation. In preparation of the Cluster mission, Chanteur [1998] in Chapter 14 of ISSI SR-001 adopted reciprocal vectors to construct estimators for spatial derivatives from four-point measurements, to perform error analysis, and to write down the spatial aliasing condition for four-point wave analysis techniques in a very transparent form. Reciprocal vectors also entered the study on the ac- curacy of plasma moment derivatives, described in Chapter 17 of ISSI SR-001 [Vogt and Paschmann, 1998]. As will be shown below, by using the least squares approach presented in Chapter 12 of ISSI SR-001 [Harvey, 1998], reciprocal vectors are a convenient means in discontinuity analysis to express boundary parameters in terms of crossing times. This chapter is intended to provide a conceptual introduction to reciprocal vectors, and to emphasise their importance for the analysis of data from the Cluster spacecraft mission. It is organised as follows: The crossing times approach to boundary analysis is presented in Section 4.2 as a way to motivate the use of reciprocal vectors; some of their most important properties are briefly addressed in Section 4.3; then Section 4.4 deals with various aspects of the spatial gradient reconstruction problem; magnetic curvature estimation is reviewed in Section 4.5, while Section 4.6 contains a discussion on the errors of boundary analysis and curvature estimation. Finally, in Section 4.7 we suggest a way to generalise the reciprocal vector concept to cases where the number of spacecraft, N, is not four.

  14. An oilspill trajectory analysis model with a variable wind deflection angle

    USGS Publications Warehouse

    Samuels, W.B.; Huang, N.E.; Amstutz, D.E.

    1982-01-01

    The oilspill trajectory movement algorithm consists of a vector sum of the surface drift component due to wind and the surface current component. In the U.S. Geological Survey oilspill trajectory analysis model, the surface drift component is assumed to be 3.5% of the wind speed and is rotated 20 degrees clockwise to account for Coriolis effects in the Northern Hemisphere. Field and laboratory data suggest, however, that the deflection angle of the surface drift current can be highly variable. An empirical formula, based on field observations and theoretical arguments relating wind speed to deflection angle, was used to calculate a new deflection angle at each time step in the model. Comparisons of oilspill contact probabilities to coastal areas calculated for constant and variable deflection angles showed that the model is insensitive to this changing angle at low wind speeds. At high wind speeds, some statistically significant differences in contact probabilities did appear. ?? 1982.

  15. The interacting winds of Eta Carinae: Observed forbidden line changes and the Forbidden Blue(-Shifted) Crab

    NASA Astrophysics Data System (ADS)

    Gull, Theodore R.; Madura, Thomas; Corcoran, Michael F.; Teodoro, Mairan; Richardson, Noel; Hamaguchi, Kenji; Groh, Jose H.; Hillier, Desmond John; Damineli, Augusto; Weigelt, Gerd

    2015-01-01

    The massive binary, Eta Carinae (EC), produces such massive winds that strong forbidden line emission of singly- and doubly-ionized iron traces wind-wind interactions from the current cycle plus fossil interactions from one, two and three 5.54-year cycles ago.With an eccentricity of >0.9, the >90 solar mass primary (EC-A) and >30 solar mass secondary (EC-B) approach to within 1.5 AU during periastron and recede to nearly 30 AU across apastron. The wind-wind structures move outward driven by the 420 km/s primary wind interacting with the ~3000 km/s secondary wind yielding partially-accelerated compressed primary wind shells that are excited by mid-UV from EC-A and in limited lines of sight, FUV from EC-B.These structures are spectroscopically and spatially resolved by HST's Space Telescope Imaging Spectrograph. At critical binary phases, we have mapped the central 2'x2' region in the light of [Fe III] and [Fe II] with spatial resolution of 0.12' and velocity resolution of 40 km/s.1) The bulk of forbidden emission originates from the large cavity northwest of EC and is due to ionization of massive ejecta from the 1840s and 1890s eruptions. The brightest clumps are the Weigelt Blobs C and D, but there are additionally multiple, fainter emission clumps. Weigelt B appears to have faded.2) Three concentric, red-shifted [FeII] arcs expand at ~470 km/s excited by mid-UV of EC-A.3) The structure of primarily blue-shifted [Fe III] emission resembles a Maryland Blue Crab. The claws appear at the early stages of the high-excitation recovery from the periastron passage, expand at radial velocities exceeding the primary wind terminal velocity, 420 km/s and fade as the binary system approaches periastron with the primary wind enveloping the FUV radiation from EC-B.4) All [Fe III] emission faded by late June 2014 and disappeared by August 2, 2014, the beginning of periastron passage.Comparisons to HST/STIS observations between 1998 to 2004.3 indicate long-term fading of [Fe II]. Likewise, Na D emission has faded. 3D hydro/radiative models suggest a small decrease (< factor of 2) in primary mass loss rate to be the cause.

  16. Harnessing Wind

    NSDL National Science Digital Library

    2014-09-18

    Students are introduced to the ways that engineers study and harness the wind. They learn about the different kinds of winds and how to measure wind direction. In addition, they learn how air pressure creates winds and how engineers design and test wind turbines to harness renewable wind energy.

  17. Vector carpets

    SciTech Connect

    Dovey, D.

    1995-03-22

    Previous papers have described a general method for visualizing vector fields that involves drawing many small ``glyphs`` to represent the field. This paper shows how to improve the speed of the algorithm by utilizing hardware support for line drawing and extends the technique from regular to unstructured grids. The new approach can be used to visualize vector fields at arbitrary surfaces within regular and unstructured grids. Applications of the algorithm include interactive visualization of transient electromagnetic fields and visualization of velocity fields in fluid flow problems.

  18. Aerodynamics of thrust vectoring

    NASA Technical Reports Server (NTRS)

    Tseng, J. B.; Lan, C. Edward

    1989-01-01

    Thrust vectoring as a means to enhance maneuverability and aerodynamic performane of a tactical aircraft is discussed. This concept usually involves the installation of a multifunction nozzle. With the nozzle, the engine thrust can be changed in direction without changing the attitude of the aircraft. Change in the direction of thrust induces a significant change in the aerodynamic forces on the aircraft. Therefore, this device can be used for lift-augmenting as well as stability and control purposes. When the thrust is deflected in the longitudinal direction, the lift force and the pitching stability can be manipulated, while the yawing stability can be controlled by directing the thrust in the lateral direction.

  19. Winds of Change: The Physics of Accretion, Ejection, and X-ray Variability in GRS1915+105

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph

    2013-04-01

    In the last twenty years, even as multiwavelength observations of black hole X-ray binaries have led to major advances, the microquasar GRS 1915+105 has continually challenged our understanding of the physics of accretion and ejection. With its relativistic jets, ionized winds, and myriad states of rapid, extreme variability, this remarkable black hole has been alternately seen as the black sheep of X-ray binaries and a Rosetta stone for black hole astrophysics. In this talk, I will present our efforts to use a decade of high-resolution X-ray spectroscopy of GRS 1915+105 to shed light on the processes that regulate its erratic behavior. I will highlight in particular the role of accretion disk winds on time scales ranging from seconds to years. Drawing on recent results, I will discuss the broader implications of these massive winds for the physics of inflows and outflows around black holes.

  20. THE WAVENUMBER SPECTRA OF SCATTEROMETER-DERIVED WINDS

    E-print Network

    Long, David G.

    THE WAVENUMBER SPECTRA OF SCATTEROMETER-DERIVED WINDS D. G . Long and D. D. Luke Electrical Spaceborne scatterometers are the only proven method for global all-weather measurement of vector winds/seainteraction where the time variability of the surface wind field and the wind stress curl drive the ocean; hence

  1. Advances in Microwave Remote Sensing: Ocean Wind Speed and Direction

    NSDL National Science Digital Library

    2014-09-14

    This Webcast covers the ocean surface wind retrieval process, the basics of microwave polarization as it relates to wind retrievals, and several operational examples. Information on the development of microwave sensors used to retrieve ocean surface wind speed and the ocean surface wind vector (speed and direction) is also included.

  2. Pipeline vectorization

    Microsoft Academic Search

    Markus Weinhardt; Wayne Luk

    2001-01-01

    This paper presents pipeline vectorization, amethod for synthesizing hardware pipelines based on softwarevectorizing compilers. The method improves eciencyand ease of development of hardware designs, particularlyfor users with little electronics design experience. We proposeseveral loop transformations to customize pipelinesto meet hardware resource constraints, while maximizingavailable parallelism. For run-time recongurable systems,we apply hardware specialization to increase...

  3. Inertial response from wind turbines

    NASA Astrophysics Data System (ADS)

    Moore, Ian F.

    Wind power is an essential part of the strategy to address challenges facing the energy sector. Operation of the electricity network in 2020 will require higher levels of response and reserve from generation. The provision of inertial response from wind turbines was investigated. A model was developed for the simulation of frequency on the mainland UK system, including a simplified model for a synchronous generator to represent Full Power Converter turbines. Two different methods of inertia response, the step method and the inertia coupling method, were modelled and introduced into the turbine torque speed control. Simulations illustrated the effects on primary frequency control for a high penetration of wind turbines. Results are shown for different demand levels with generation losses of 1320GW and 1800GW. A comparison of the inertia functions is included and the effect of wind speed and the constant speed region of the maximum power extraction curve. For the scenarios modelled only a small change in turbine output was required for inertia response (0.02p.u). Without inertia response a large increase in synchronous plant response was needed. A test rig was constructed consisting of a Full Power Converter bridge and a synchronous generator driven by a dc machine. Power converters were designed and constructed by the candidate. Vector control of both the generator converter and grid converter was implemented on a dedicated control platform. The inertia coupling function was implemented and a test frequency deviation injected to represent a load generation imbalance. Results compared closely to those from the model and demonstrated the capability to closely couple turbine speed to system frequency with adjustment of the response via a filter if desired. The experimental work confirmed the adequacy of the simplified generator model and further confirmed the possibility of using inertia response. The inertia coupling function was considered suitable for use for the UK system.

  4. DSCOVR High Time Resolution Solar Wind Measurements

    NASA Technical Reports Server (NTRS)

    Szabo, Adam

    2012-01-01

    The Deep Space Climate Observatory (DSCOVR), previously known as Triana, spacecraft is expected to be launched in late 2014. It will carry a fluxgate magnetometer, Faraday Cup solar wind detector and a top-hat electron electrostatic analyzer. The Faraday Cup will provide an unprecedented 10 vectors/sec time resolution measurement of the solar wind proton and alpha reduced distribution functions. Coupled with the 40 vector/sec vector magnetometer measurements, the identification of specific wave modes in the solar wind will be possible for the first time. The science objectives and data products of the mission will be discussed.

  5. DSCOVR High Time Resolution Solar Wind Measurements

    NASA Astrophysics Data System (ADS)

    Szabo, A.

    2012-12-01

    The Deep Space Climate Observatory (DSCOVR), previously known as Triana, spacecraft is expected to be launched in late 2014. It will carry a fluxgate magnetometer, Faraday Cup solar wind detector and a top-hat electron electrostatic analyzer. The Faraday Cup will provide an unprecedented 10 vectors/sec time resolution measurement of the solar wind proton and alpha reduced distribution functions. Coupled with the 40 vector/sec vector magnetometer measurements, the identification of specific wave modes in the solar wind will be possible for the first time. The science objectives and data products of the mission will be discussed.

  6. Wind-Tunnel Investigations on a Changed Mustang Profile with Nose Flap Force and Pressure-Distribution Measurements

    NASA Technical Reports Server (NTRS)

    Krueger, W.

    1947-01-01

    Measurements are described which were taken in the large wind tunnel of the AVA on a rectangular wing "Mustang 2" with nose flap of a chord of 10 percent. Besides force measurements the results of pressure-distribution measurements are given and compared with those on the same profile "without" nose flap.

  7. Comparison of dayside and nightside reconnection changes resulting from a sudden enhancement in solar wind dynamic pressure

    NASA Astrophysics Data System (ADS)

    Boudouridis, A.; Zesta, E.; Lyons, L. R.; Ruohoniemi, J. M.; Lummerzheim, D.; Anderson, P. C.

    2007-12-01

    Magnetic reconnection at the dayside magnetopause is the main process by which mass, energy, and momentum from the solar wind enter the terrestrial magnetosphere. Magnetic reconnection at the nightside energizes magnetotail plasma and closes the lobe open flux, thus completing the cycle that initiates and sustains magnetospheric convection. Understanding the drivers of reconnection and convection in the magnetosphere is one of the primary goals of magnetospheric physics. It has long been recognized that the Interplanetary Magnetic Field (IMF) is the most influential factor in initiation of reconnection and convection in the magnetosphere. Recent evidence has shown that the solar wind dynamic pressure plays also an important role in enhancing both dayside and nightside reconnection, and driving enhanced ionospheric convection. Super Dual Auroral Radar Network (SuperDARN) observations show that solar wind pressure fronts induce significantly enhanced ionospheric convection in the dayside ionosphere. In parallel, Defense Meteorological Satellite Program (DMSP) precipitating particle measurements and POLAR Ultra-Violet Imager (UVI) images have demonstrated that sudden solar wind pressure increases also significantly affect the size of the polar cap. The polar cap is observed to shrink after an increase in solar wind pressure, especially on the nightside, suggesting an enhancement of magnetotail reconnection. MHD models of the interaction of the magnetosphere with solar wind pressure fronts have managed to reproduce the enhancement of dayside reconnection, but have failed so far to account for the observed closing of the polar cap on the nightside and the suggested magnetotail reconnection increase. We use SuperDARN observations of ionospheric convection within both the dayside and nightside polar ionosphere, including near the magnetic separatrix, to evaluate the relative strengths of the observed dayside and nightside reconnection enhancements after an abrupt increase in solar wind dynamic pressure. We show that enhancements of both dayside and nightside convection occur after an increase in pressure, suggesting an increased reconnection rate on both sides of the ionosphere. We discuss these results in terms of a competition between dayside and nightside reconnection in the determination of the size of the polar cap and possibly their effect on the transpolar potential.

  8. Amazonian malaria: Asymptomatic human reservoirs, diagnostic challenges, environmentally-driven changes in mosquito vector populations, and the mandate for sustainable control strategies

    PubMed Central

    da Silva-Nunes, Mônica; Moreno, Marta; Conn, Jan E.; Gamboa, Dionicia; Abeles, Shira; Vinetz, Joseph M.; Ferreira, Marcelo U.

    2012-01-01

    Across the Americas and the Caribbean, nearly 561,000 slide-confirmed malaria infections were reported officially in 2008. The nine Amazonian countries accounted for 89% of these infections; Brazil and Peru alone contributed 56% and 7% of them, respectively. Local populations of the relatively neglected parasite P. vivax, which currently accounts for 77% of the regional malaria burden, are extremely diverse genetically and geographically structured. At a time when malaria elimination is placed on the public health agenda of several endemic countries, it remains unclear why malaria proved so difficult to control in areas of relatively low levels of transmission such as the Amazon Basin. We hypothesize that asymptomatic parasite carriage and massive environmental changes that affect vector abundance and behavior are major contributors to malaria transmission in epidemiologically diverse areas across the Amazon Basin. Here we review available data supporting this hypothesis and discuss their implications for current and future malaria intervention policies in the region. Given that locally generated scientific evidence is urgently required to support malaria control interventions in Amazonia, we briefly describe the aims of our current field-oriented malaria research in rural villages and gold-mining enclaves in Peru and a recently opened agricultural settlement in Brazil. PMID:22015425

  9. Wind direction variability in Afternoon and Sunset Turbulence

    NASA Astrophysics Data System (ADS)

    Nilsson, Erik; Lothon, Marie; Lohou, Fabienne; Mahrt, Larry

    2014-05-01

    Understanding wind direction (WD) variability better is important for several reasons. Air pollution models need information about how variable wind direction is in different conditions (Davies and Thomson 1999). Accurate predictions of dispersion are important for human health and safety and allow for adaptation planning (Nagle et al. 2011). Other applications include horizontal diffusion, efficiency and fatigue of wind machines and air-sea interaction (Mahrt 2011). Most studies of wind direction variability have focused on nocturnal conditions because of greater variability in light winds. Modelling WD variability in transition periods when both mean wind speed and variance of the wind components are in a state of change can, however, also be very challenging and has not been the focus of earlier studies. The evening transitioning to the nocturnal boundary layer can play an important role in the diffusion process of pollutants and scalars emitted at surface and transported within the atmosphere. The Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign that took place in southern France in June and July 2011 focused on the decaying turbulence of the late afternoon boundary layer and related issues (Lothon et al. 2012). We analyse field measurements from BLLAST to investigate WD variability in the evening transition period. Standard deviations of horizontal wind direction fluctuations in the lowest 60 m of the boundary layer have been examined for dependence on mean wind speed, higher order moments and averaging time. Measurement results are interpreted using measured and idealized probability density functions of horizontal wind vectors. These are also used to develop analytical functions describing how WD variability depends on wind speed, variance and other controlling factors in the atmospheric boundary layer. References: Davies B.M., Thomson D.J., 1999. Comparison of some parameterizations of wind direction variability with observations, Atmospheric Enviroment 33, 4909-4917. Lothon M. et al., 2012. The Boundary-Layer Late Afternoon and Sunset Turbulence field experiment, Proc. of the 20th Symposium on Boundary-Layers and Turbulence, 7-13 July, Boston, MA, USA. Mahrt L., 2011. Surface Wind Direction Variability, Journal of Applied Meteorology and Climatology 50. 144-152. Nagle J.C., 2011. Adapting to Pollution, Research Roundtable on Climate Change, Adaptation, and Enviromental Law, Northwestern Law Searle Center, Legal and Regulatory Studies 7-18 April, IL, USA.

  10. Bottom-current and wind-pattern changes as indicated by Late Glacial and Holocene sediments from western Lake Geneva (Switzerland)

    USGS Publications Warehouse

    Girardclos, S.; Baster, I.; Wildi, W.; Pugin, A.; Rachoud-Schneider, A. -M.

    2003-01-01

    The Late-Glacial and Holocene sedimentary history of the Hauts-Monts area (western Lake Geneva, Switzerland) is reconstructed combining high resolution seismic stratigraphy and well-dated sedimentary cores. Six reflections and seismic units are defined and represented by individual isopach maps, which are further combined to obtain a three-dimensional age-depth model. Slumps, blank areas and various geometries are identified using these seismic data. The sediment depositional areas have substantially changed throughout the lake during the end of the Late-Glacial and the Holocene. These changes are interpreted as the result of variations in the intensity of deep lake currents and the frequency of strong winds determining the distribution of sediment input from the Versoix River and from reworking of previously deposited sediments within the lacustrine basin. The identified changes in sediment distribution allowed us to reconstruct the lake's deep-current history and the evolution of dominant strong wind regimes from the Preboreal to present times.

  11. Wind tunnel study on wind and turbulence intensity profiles in wind turbine wake

    NASA Astrophysics Data System (ADS)

    Maeda, Takao; Kamada, Yasunari; Murata, Junsuke; Yonekura, Sayaka; Ito, Takafumi; Okawa, Atsushi; Kogaki, Tetsuya

    2011-06-01

    In recent years, there has been a rapid development of the wind farms in Japan. It becomes very important to investigate the wind turbine arrangement in wind farm, in order that the wake of one wind turbine does not to interfere with the flow in other wind turbines. In such a case, in order to achieve the highest possible efficiency from the wind, and to install as many as possible wind turbines within a limited area, it becomes a necessity to study the mutual interference of the wake developed by wind turbines. However, there is no report related to the effect of the turbulence intensity of the external flow on the wake behind a wind turbine generated in the wind tunnel. In this paper, the measurement results of the averaged wind profile and turbulence intensity profile in the wake in the wind tunnel are shown when the turbulence intensity of the external wind was changed. The wind tunnel experiment is performed with 500mm-diameter two-bladed horizontal axis wind turbine and the wind velocity in wake is measured by an I-type hot wire probe. As a result, it is clarified that high turbulence intensities enable to the entrainment of the main flow and the wake and to recover quickly the velocity in the wake.

  12. Seasonal changes in estuarine dissolved organic matter due to variable flushing time and wind-driven mixing events

    NASA Astrophysics Data System (ADS)

    Dixon, Jennifer L.; Osburn, Christopher L.; Paerl, Hans W.; Peierls, Benjamin L.

    2014-12-01

    This study examined the seasonality of dissolved organic matter (DOM) sources and transformations within the Neuse River estuary (NRE) in eastern North Carolina between March 2010 and February 2011. During this time, monthly surface and bottom water samples were collected along the longitudinal axis of the NRE, ranging from freshwater to mesohaline segments. The monthly mean of all surface and bottom measurements made on collected samples was used to clarify larger physical mixing controls in the estuary as a whole. By comparing monthly mean trends in DOM and chromophoric dissolved organic matter (CDOM) properties in surface and bottom waters during varying hydrological conditions, we found that DOM and CDOM quality in the NRE is controlled by a combination of discharge, wind speed, and wind direction. The quality of DOM was assessed using C:N ratios, specific ultraviolet absorption at 254 nm (SUVA254), the absorption spectral slope ratio (SR), and the humification (HIX) and biological (BIX) indices from fluorescence. The NRE reflects allochthonous sources when discharge and flushing time are elevated at which times SUVA254 and HIX increased relative to base flow. During periods of reduced discharge and long flushing times in the estuary, extensive autochthonous production modifies the quality of the DOM pool in the NRE. This was evidenced by falling C:N values, and higher BIX and SR values. Lastly, a combination of increased wind speed and shifts in wind direction resulted in benthic resuspension events of degraded, planktonic OM. Thus, the mean DOM characteristics in this shallow micro-tidal estuary can be rapidly altered during episodic mixing events on timescales of a few weeks.

  13. Emotional tone of ontario newspaper articles on the health effects of industrial wind turbines before and after policy change.

    PubMed

    Deignan, Benjamin; Hoffman-Goetz, Laurie

    2015-05-01

    Newspapers are often a primary source of health information for the public about emerging technologies. Information in newspapers can amplify or attenuate readers' perceptions of health risk depending on how it is presented. Five geographically distinct wind energy installations in Ontario, Canada were identified, and newspapers published in their surrounding communities were systematically searched for articles on health effects from industrial wind turbines from May 2007 to April 2011. The authors retrieved 421 articles from 13 community, 2 provincial, and 2 national newspapers. To measure the emotional tone of the articles, the authors used a list of negative and positive words, informed from previous studies as well as from a random sample of newspaper articles included in this study. The majority of newspaper articles (64.6%, n = 272) emphasized negative rather than positive/neutral tone, with community newspapers publishing a higher proportion of negative articles than provincial or national newspapers, ?(2)(2) = 15.1, p < .001. Articles were more likely to be negative when published 2 years after compared with 2 years before provincial legislation to reduce dependence on fossil fuels (the Green Energy Act), ?(2)(3) = 9.7, p < .05. Repeated public exposure to negative newspaper content may heighten readers' health risk perceptions about wind energy. PMID:25806896

  14. Changes in Sea-Level Pressure over South Korea Associated with High-Speed Solar Wind Events

    E-print Network

    Cho, Il-Hyun; Marubashi, Katsuhide; Kim, Yeon-Han; Park, Young-Deuk; Chang, Heon-Young

    2011-01-01

    We explore a possibility that the daily sea-level pressure (SLP) over South Korea responds to the high-speed solar wind event. This is of interest in two aspects: First, if there is a statistical association this can be another piece of evidence showing that various meteorological observables indeed respond to variations in the interplanetary environment. Second, this can be a very crucial observational constraint since most models proposed so far are expected to preferentially work in higher latitude regions than the low latitude region studied here. We have examined daily solar wind speed ${\\rm V}$, daily SLP difference ${\\rm \\Delta SLP}$, and daily ${\\rm \\log(BV^{2})}$ using the superposed epoch analysis in which the key date is set such that the daily solar wind speed exceeds 800 ${\\rm kms^{-1}}$. We find that the daily ${\\rm \\Delta SLP}$ averaged out of 12 events reaches its peak at day +1 and gradually decreases back to its normal level. The amount of positive deviation of ${\\rm \\Delta SLP}$ is +2.5 hPa...

  15. Solar wind and the motion of dust grains

    NASA Astrophysics Data System (ADS)

    Kla?ka, J.; Petržala, J.; Pástor, P.; Kómar, L.

    2012-04-01

    In this paper, we investigate the action of solar wind on an arbitrarily shaped interplanetary dust particle. The final relativistically covariant equation of motion of the particle also contains the change of the particle's mass. The non-radial solar wind velocity vector is also included. The covariant equation of motion reduces to the Poynting-Robertson effect in the limiting case when a spherical particle is treated, when the speed of the incident solar wind corpuscles tends to the speed of light and when the corpuscles spread radially from the Sun. The results of quantum mechanics have to be incorporated into the physical considerations, in order to obtain the limiting case. If the solar wind affects the motion of a spherical interplanetary dust particle, then ?. Here, p'in and p'out are the incoming and outgoing radiation momenta (per unit time), respectively, measured in the proper frame of reference of the particle, and ? and ? are the solar wind pressure and the total scattering cross-sections, respectively. An analytical solution of the derived equation of motion yields a qualitative behaviour consistent with numerical calculations. This also holds if we consider a decrease of the particle's mass. Using numerical integration of the derived equation of motion, we confirm our analytical result that the non-radial solar wind (with a constant value of angle between the radial direction and the direction of the solar wind velocity) causes outspiralling of the dust particle from the Sun for large values of the particle's semimajor axis. The non-radial solar wind also increases the time the particle spirals towards the Sun. If we consider the periodical variability of the solar wind with the solar cycle, then there are resonances between the particle's orbital period and the period of the solar cycle.

  16. WIND-DRIVEN RAINSPLASH EROSION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In wind-driven rains, variations in raindrop trajectory and frequency are highly expected due to the changes in the angle of raindrop incidence. This paper presents experimental data obtained on the effects of horizontal wind velocity on physical raindrop impact and rainsplash detachment. In a wind ...

  17. Dengue Vectors and their Spatial Distribution

    PubMed Central

    Higa, Yukiko

    2011-01-01

    The distribution of dengue vectors, Ae. aegypti and Ae. albopictus, is affected by climatic factors. In addition, since their life cycles are well adapted to the human environment, environmental changes resulting from human activity such as urbanization exert a great impact on vector distribution. The different responses of Ae. aegypti and Ae albopictus to various environments result in a difference in spatial distribution along north-south and urban-rural gradients, and between the indoors and outdoors. In the north-south gradient, climate associated with survival is an important factor in spatial distribution. In the urban-rural gradient, different distribution reflects a difference in adult niches and is modified by geographic and human factors. The direct response of the two species to the environment around houses is related to different spatial distribution indoors and outdoors. Dengue viruses circulate mainly between human and vector mosquitoes, and the vector presence is a limiting factor of transmission. Therefore, spatial distribution of dengue vectors is a significant concern in the epidemiology of the disease. Current technologies such as GIS, satellite imagery and statistical models allow researchers to predict the spatial distribution of vectors in the changing environment. Although it is difficult to confirm the actual effect of environmental and climate changes on vector abundance and vector-borne diseases, environmental changes caused by humans and human behavioral changes due to climate change can be expected to exert an impact on dengue vectors. Longitudinal monitoring of dengue vectors and viruses is therefore necessary. PMID:22500133

  18. Reproductive allocation in plants as affected by elevated carbon dioxide and other environmental changes: a synthesis using meta-analysis and graphical vector analysis.

    PubMed

    Wang, Xianzhong; Taub, Daniel R; Jablonski, Leanne M

    2015-04-01

    Reproduction is an important life history trait that strongly affects dynamics of plant populations. Although it has been well documented that elevated carbon dioxide (CO2) in the atmosphere greatly enhances biomass production in plants, the overall effect of elevated CO2 on reproductive allocation (RA), i.e., the proportion of biomass allocated to reproductive structures, is little understood. We combined meta-analysis with graphical vector analysis to examine the overall effect of elevated CO2 on RA and how other environmental factors, such as low nutrients, drought and elevated atmospheric ozone (O3), interacted with elevated CO2 in affecting RA in herbaceous plants. Averaged across all species of different functional groups and environmental conditions, elevated CO2 had little effect on RA (-0.9 %). RA in plants of different reproductive strategies and functional groups, however, differed in response to elevated CO2. For example, RA in iteroparous wild species decreased by 8 %, while RA in iteroparous crops increased significantly (+14 %) at elevated CO2. RA was unaffected by CO2 in plants grown with no stress or in low-nutrient soils. RA decreased at elevated CO2 and elevated O3, but increased in response to elevated CO2 in drought-stressed plants, suggesting that elevated CO2 could ameliorate the adverse effect of drought on crop production to some extent. Our results demonstrate that elevated CO2 and other global environmental changes have the potential to greatly alter plant community composition through differential effects on RA of different plant species and thus affect the dynamics of natural and agricultural ecosystems in the future. PMID:25537120

  19. Quantifying the respective contribution of wind stress and diabatic forcing to decadal temperature changes and regional sea level trends over 1993-2010 based on ECCO solutions

    NASA Astrophysics Data System (ADS)

    Llovel, W.; Fukumori, I.; Wang, O.

    2013-12-01

    Since 1993 and based on satellite altimetry data, sea level trends display a large regional variability. Some regions experience a sea level rise (e.g., the west tropical Pacific Ocean, the subpolar north Atlantic Ocean...) whereas other regions experience a drop (e.g., the east tropical Pacific Ocean, golf of Alaska...). Those sea level trends appear to be steric in nature. Moreover, steric changes appear to be mainly thermosteric, although halosteric effects can reduce or enhance thermosteric changes in some specific regions (Stammer et al., 2013). Understanding and quantifying the processes involved in regional sea level changes are important tasks to better constrain and ascertain the physical processes involved in regional sea level changes and then, to improve predictions to anticipate potential impacts. In this study, we analyze the ocean heat content change and its origin by analyzing Estimating the Circulation and Climate of the Ocean estimates (ECCO, Wunsch et al., 2009). We run numerical experiments to estimate and quantify the respective contribution of each atmospheric forcing (e.g., wind stress and diabatic forcing) to heat content change and regional sea level trends.

  20. SEERISK concept: Dealing with climate change related hazards in southeast Europe: A common methodology for risk assessment and mapping focusing on floods, drought, winds, heat wave and wildfire.

    NASA Astrophysics Data System (ADS)

    Papathoma-Koehle, Maria; Promper, Catrin; Glade, Thomas

    2014-05-01

    Southeast Europe is a region that suffers often from natural hazards and has experienced significant losses in the recent past due to extreme weather conditions and their side-effects (cold and heat waves, extreme precipitation leading to floods / flash floods, thunderstorms, extreme winds, drought and wildfires). SEERISK ("Joint Disaster Management Risk Assessment and Preparedness in the Danube macro-region") is a European funded SEE (Southeast Europe) project that aims at the harmonisation and consistency among risk assessment practices undertaken by the partner countries at various levels regarding climate change related disasters. A common methodology for risk assessment has been developed that offers alternatives in order to tackle the problem of limited data. The methodology proposes alternative steps for hazard and vulnerability assessment that, according to the data availability, range from detailed modelling to expert judgement. In the present study the common methodology has been adapted for five hazard types (floods, drought, winds, heat wave and wildfire) that are expected to be affected by climate change in the future and are relevant for the specific study areas. The last step will be the application of the methodology in six different case studies in Hungary, Romania, Bosnia, Bulgaria, Slovakia and Serbia followed by field exercises.

  1. Heat transfer phase change paint test (OH-42) of a Rockwell International SSV orbiter in the NASA/LRC Mach 8 variable density wind tunnel

    NASA Technical Reports Server (NTRS)

    Jones, R.; Creel, T. R., Jr.; Lawing, P.; Quan, M.; Dye, W.; Cummings, J.; Gorowitz, H.; Craig, C.; Rich, G.

    1973-01-01

    Phase change paint tests of a Rockwell International .00593-scale space shuttle orbiter were conducted in the Langley Research Center's Variable Density Wind Tunnel. The test objectives were to determine the effects of various wing/underbody configurations on the aerodynamic heating rates and boundary layer transition during simulated entry conditions. Several models were constructed. Each varied from the other in either wing cuff radius, airfoil thickness, or wing-fuselage underbody blending. Two ventral fins were glued to the fuselage underside of one model to test the interference heating effects. Simulated Mach 8 entry data were obtained for each configuration at angles of attack ranging from 25 to 40 deg, and a Reynolds number variation of one million to eight million. Elevon, bodyflap, and rudder flare deflections were tested. Oil flow visualization and Schlieren photographs were obtained to aid in reducing the phase change paint data as well as to observe the flow patterns peculiar to each configuration.

  2. Results of phase change paint tests of 0.040 scale 50% forebody models (82-0) of the space shuttle orbiter in the AEDC VKF B hypersonic wind tunnel (OH75)

    NASA Technical Reports Server (NTRS)

    Dye, W. H.

    1976-01-01

    Post-test information and data are presented from phase change paint, aerodynamic heating wind tunnel tests of a Rockwell International space shuttle orbiter forebody model. These tests were conducted in the Arnold Engineering and Development Center von Karman Facility Tunnel B Hypersonic Wind Tunnel. The purpose of these tests was to determine the effect of simulated orbiter protuberances and penetrations (including RCS nozzles) on aerodynamic heating rates during simulated entry conditions.

  3. Wild Wind

    NSDL National Science Digital Library

    2014-09-18

    Students learn the difference between global, prevailing and local winds. They make wind vanes out of paper, straws and soda bottles and use them to measure wind direction over time. They analyze their data to draw conclusions about the local prevailing winds.

  4. Meteorology (Wind)

    Atmospheric Science Data Center

    2014-09-25

    Wind speed at 50 m (m/s) The average and percent difference minimum and ... are given.   Percent of time for ranges of wind speed at 50 m (percent) Percentage [frequency] of time that wind ... be adjusted to heights from 10 to 300 meters using the Gipe power law. Wind speeds may be adjusted for different terrain by selecting from ...

  5. Hanford Site peak gust wind speeds

    SciTech Connect

    Ramsdell, J.V.

    1998-09-29

    Peak gust wind data collected at the Hanford Site since 1945 are analyzed to estimate maximum wind speeds for use in structural design. The results are compared with design wind speeds proposed for the Hanford Site. These comparisons indicate that design wind speeds contained in a January 1998 advisory changing DOE-STD-1020-94 are excessive for the Hanford Site and that the design wind speeds in effect prior to the changes are still appropriate for the Hanford Site.

  6. Winding for the wind

    NASA Technical Reports Server (NTRS)

    Weingart, O.

    1981-01-01

    The mechanical properties and construction of epoxy-impregnated fiber-glass blades for wind turbines are discussed, along with descriptions of blades for the Mod 0A and Mod 5A WECS and design goals for a 4 kW WECS. Multicell structure combined with transverse filament tape winding reduces labor and material costs, while placing a high percentage of 0 deg fibers spanwise in the blades yields improved strength and elastic properties. The longitudinal, transverse, and shear modulus are shown to resist stresses exceeding the 50 lb/sq ft requirements, with constant stress resistance expected until fatigue failure is approached. Regression analysis indicates a fatigue life of 400 million operating cycles. The small WECS under prototype development features composite blades, nacelle, and tower. Rated at 5.7 kW in a 15 mph wind, the machine operates over a speed range of 9-53.9 mph and is expected to produce 16,200 kWh annually in a 10 mph average wind measured at 30 ft.

  7. Winding for the wind

    NASA Astrophysics Data System (ADS)

    Weingart, O.

    The mechanical properties and construction of epoxy-impregnated fiber-glass blades for wind turbines are discussed, along with descriptions of blades for the Mod 0A and Mod 5A WECS and design goals for a 4 kW WECS. Multicell structure combined with transverse filament tape winding reduces labor and material costs, while placing a high percentage of 0 deg fibers spanwise in the blades yields improved strength and elastic properties. The longitudinal, transverse, and shear modulus are shown to resist stresses exceeding the 50 lb/sq ft requirements, with constant stress resistance expected until fatigue failure is approached. Regression analysis indicates a fatigue life of 400 million operating cycles. The small WECS under prototype development features composite blades, nacelle, and tower. Rated at 5.7 kW in a 15 mph wind, the machine operates over a speed range of 9-53.9 mph and is expected to produce 16,200 kWh annually in a 10 mph average wind measured at 30 ft.

  8. Developing and Testing Wind Velocity Retrieval Algorithms for Doppler Wind Lidar

    NASA Astrophysics Data System (ADS)

    Wang, H.; Barthelmie, R. J.; Clifton, A.; Capaldo, N.; Pryor, S. C.

    2013-12-01

    A 3-dimensional wind lidar is being evaluated at the National Wind Technology Center (NWTC) for its applications in wind energy. The focus of the work described here is to develop algorithms that can increase data availability and accuracy in estimating wind velocity from the line of sight (los) velocity (Vlos) from Plan Position Indicator (PPI) scans. The common algorithm (AL0) starts by removing Vlos estimates that have low signal-to-noise ratio (SNR). Then, assuming a horizontally homogeneous wind field and zero vertical wind speed (w), the wind velocity is estimated by application of ordinary least square (OLS) fitting, and the results are averaged to produce the 10-minute mean wind velocity (scalar averaging) at each range-gate position. This approach has uncertainties because: (1) SNR is robust but conservative for quality control and use of any SNR threshold may result in exclusion of valid Vlos values causing low data availability. (2) While 10-minute mean w = 0 is typically valid, assuming zero w for each individual Vlos field may introduce biases. (3) The variance of Vlos changes with azimuth angle as it is the projection of the variance of the wind vector on the los. This violates the equal variance assumption in OLS fitting. The two new algorithms are developed to increase data availability and the accuracy of 10-minute mean wind velocities. Both algorithms assume that the wind velocity is normally distributed and use the maximum likelihood estimator for which the variance of Vlos changes with azimuth angle. The first algorithm (AL1) uses the 10-minute mean Vlos to estimate the 10-minute mean wind velocity. In comparison to scalar averaging, AL1 can reduce the variation in Vlos and the assumption of w = 0 is more likely to be valid. To increase data availability, Vlos with low SNR is retained if its difference from the mean is smaller than three times the standard deviation of Vlos. The second algorithm (AL2) uses the median of Vlos over 10 minutes (as opposed to the mean value as in AL1). For a normal distribution, the sample median is a robust estimate of the mean and is insensitive to outliers (e.g. incorrect measurements associated with low SNR). Thus, using the sample median allows for the use of Vlos with very low SNR and eventually increase data availability for AL2. A preliminary analysis of lidar data collected during February 15 to 26, 2013 shows that AL2 out-performs AL0 and AL1 when the resulting wind speed estimates are compared with independent data from a sonic anemometer (Table 1). Work is underway to test the performance of the three algorithms using a dataset of several months collected during spring/summer 2013 at NWTC, and the errors/uncertainties of each approach will be quantified in terms of their relationships with atmospheric conditions, such as wind shear and atmospheric stability, using the data from instrumentation deployed on the NWTC meteorological towers.Table 1 Summary of performance of the three lidar wind retrieval algorithms

  9. Winds of Change: Expanding the Frontiers of Flight. Langley Research Center's 75 Years of Accomplishment, 1917-1992

    NASA Technical Reports Server (NTRS)

    Schultz, James

    1992-01-01

    This commemorative volume highlights in pictures and text seventy five years of accomplishments of the Langley Research Center. The introductory matter features wind tunnels and their contribution to the development of aeronautics. A chronological survey details four different periods in Langley's history. The first period, 1917-1939, is subtitled 'Perfecting the Plane' which details Langley's contribution to early aeronautics with examples from specific aircraft. The second period, 1940-1957, focuses on the development of military aircraft during and after World War II. The third period, 1958-1969, tells the story of Langley's involvement with NASA and the satellite and Apollo era. The fourth period, entitled 'Charting New Courses: 1970-1992 and Beyond', treats various new topics from aerospace planes to Mars landing, as well as older topics such as the Space Shuttle and research spinoffs.

  10. Saturn’s Zonal Winds at Cloud Level between 2004-2013 from Cassini ISS Images

    NASA Astrophysics Data System (ADS)

    Blalock, John J.; Sayanagi, Kunio M.; Dyudina, Ulyana A.; Ewald, Shawn P.; Ingersoll , Andrew P.

    2014-11-01

    We examine images of Saturn returned by Cassini orbiter’s Imaging Science Subsystem (ISS) camera between 2004 to 2013 to analyze the temporal evolution of the zonal mean wind speed as a function of latitude. Our study primarily examines the images captured in the 752-nm continuum band using the CB2 filter. Images captured using the CB2 filter sense the upper troposphere of Saturn between 350 mbar and 500 mbar (Pérez-Hoyos and Sánchez-Lavega, 2006; Sánchez-Lavega et al, 2006; García-Melendo et al, 2009). We measure the wind speed using a two-dimensional Correlation Imaging Velocimetry (CIV) technique. The wind vectors are computed using pairs of images separated in time by up to two planetary rotations, and binned in latitude to determine the zonal mean wind profile, which typically covers a limited range of latitude. To achieve pole-to-pole coverage, we systematically merge all the wind measurements during each of the calendar years in order to compile a yearly, near-global record of Saturn's zonal wind structure. Using our wind measurements, we analyze the temporal evolution of the zonal wind. We specifically focus on changes in the wind profile after the 2009 equinox; we predict that changes in the insolation pattern caused by the shifting ring shadows affect the horizontal temperature gradient, and change the zonal mean wind through the thermal wind relationship. Furthermore, we also extend the zonal wind analysis by Sayanagi et al (2013), who detected changes in the zonal wind related to the Great Storm of 2010-2011, to study the subsequent evolution of the region affected by the storm. We compare our results with previously published zonal wind profiles obtained from Voyager 1 and 2 (Sánchez-Lavega et al, 2000) and Cassini (García-Melendo et al, 2011). Out study is supported by the Cassini Project, and our investigation is funded by NASA Outer Planets Research Program grant NNX12AR38G and NSF Astronomy and Astrophysics grant 1212216 to KMS.

  11. Solar wind eddies and the heliospheric current sheet

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Mccomas, D. J.; Bame, S. J.; Goldstein, B. E.

    1995-01-01

    Ulysses has collected data between 1 and 5 AU during, and just following solar maximum, when the heliospheric current sheet (HCS) can be thought of as reaching its maximum tilt and being subject to the maximum amount of turbulence in the solar wind. The Ulysses solar wind plasma instrument measures the vector velocity and can be used to estimate the flow speed and direction in turbulent 'eddies' in the solar wind that are a fraction of an astronomical unit in size and last (have either a turnover or dynamical interaction time of) several hours to more than a day. Here, in a simple exercise, these solar wind eddies at the HCS are characterized using Ulysses data. This character is then used to define a model flow field with eddies that is imposed on an ideal HCS to estimate how the HCS will be deformed by the flow. This model inherently results in the complexity of the HCS increasing with heliocentric distance, but the result is a measure of the degree to which the observed change in complexity is a measure of the importance of solar wind flows in deforming the HCS. By comparison with randomly selected intervals not located on the HCS, it appears that eddies on the HCS are similar to those elsewhere at this time during the solar cycle, as is the resultant deformation of the interplanetary magnetic field (IMF). The IMF deformation is analogous to what is often termed the 'random walk' of interplanetary magnetic field lines.

  12. Wind measurements for non-uniform wind fields from spaceborne scatterometers

    NASA Technical Reports Server (NTRS)

    Chi, Chong-Yung; Li, Fuk K.

    1987-01-01

    Radar backscattering coefficient measurements by spaceborne scatterometers are presently simulated for the case of nonuniform wind fields, by means of a detailed numerical integration of the radar equation. The winds thus estimated are then compared with a nominal field which is defined as the average wind vector over the wind cell. The simulation results obtained for the NASA scatterometer are presented for cases of random wind fields whose spectra are consistent with the Seasat scatterometer sea surface wind spectrum. When the nonuniformity is small, system noise dominates the wind error; wind error degradation is therefore small for both perfect and imperfect coregistration cases. When it is relatively large, however, the wind error degradation persistently increases for both perfect and imperfect coregistrations.

  13. Chikungunya Virus–Vector Interactions

    PubMed Central

    Coffey, Lark L.; Failloux, Anna-Bella; Weaver, Scott C.

    2014-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes chikungunya fever, a severe, debilitating disease that often produces chronic arthralgia. Since 2004, CHIKV has emerged in Africa, Indian Ocean islands, Asia, Europe, and the Americas, causing millions of human infections. Central to understanding CHIKV emergence is knowledge of the natural ecology of transmission and vector infection dynamics. This review presents current understanding of CHIKV infection dynamics in mosquito vectors and its relationship to human disease emergence. The following topics are reviewed: CHIKV infection and vector life history traits including transmission cycles, genetic origins, distribution, emergence and spread, dispersal, vector competence, vector immunity and microbial interactions, and co-infection by CHIKV and other arboviruses. The genetics of vector susceptibility and host range changes, population heterogeneity and selection for the fittest viral genomes, dual host cycling and its impact on CHIKV adaptation, viral bottlenecks and intrahost diversity, and adaptive constraints on CHIKV evolution are also discussed. The potential for CHIKV re-emergence and expansion into new areas and prospects for prevention via vector control are also briefly reviewed. PMID:25421891

  14. Wind Streaks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 12 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    Windstreaks are features caused by the interaction of wind and topographic landforms. The raised rims and bowls of impact craters causes a complex interaction such that the wind vortex in the lee of the crater can both scour away the surface dust and deposit it back in the center of the lee. If you look closely, you will see evidence of this in a darker 'rim' enclosing a brighter interior.

    Image information: VIS instrument. Latitude 6.9, Longitude 69.4 East (290.6 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. SWE, a comprehensive plasma instrument for the WIND spacecraft

    Microsoft Academic Search

    K. W. Ogilvie; D. J. Chornay; R. J. Fritzenreiter; F. Hunsaker; J. Keller; J. Lobell; G. Miller; J. D. Scudder; E. C. Sittler; R. B. Torbert; D. Bodet; G. Needell; A. J. Lazarus; J. T. Steinberg; J. H. Tappan; A. Mavretic; E. Gergin

    1995-01-01

    The Solar Wind Experiment (SWE) on the WIND spacecraft is a comprehensive, integrated set of sensors which is designed to investigate outstanding problems in solar wind physics. It consists of two Faraday cup (FC) sensors; a vector electron and ion spectrometer (VEIS); a strahl sensor, which is especially configured to study the electron ‘strahl’ close to the magnetic field direction;

  16. Extreme Wind Velocity Measurement System

    NASA Technical Reports Server (NTRS)

    Zysko, Jan A. (Inventor); Starr, Stanley O. (Inventor)

    2002-01-01

    A wind velocity measurement system employs two different principles of physics to measure wind speed: (1) the aerodynamic force imparted to a low profile, rigidly mounted cylindrical rod, and (2) the vibrating frequency of the rod as vortices are shed from the rod's cylindrical surface. A set of strain gages is used as a common sensor for both measurements, and these provide force measurements imparted by the wind on the rod. The signals generated by the strain gages are fed to processing circuitry that calculates the wind speed and direction from the signals. The force measurement is proportional to the square of the wind speed. Since it is a vector quantity, it can also be used to derive wind direction. The vortex shedding frequency is a scalar quantity and is linearly proportional to wind speed. This frequency can be calculated by analyzing the force measurements generated by the strain gages over time. Both of the wind velocity calculations can be advantageously used by the processing circuitry to generate an accurate wind velocity reading.

  17. Adiabatic and nonadiabatic responses of the radiation belt relativistic electrons to the external changes in solar wind dynamic pressure and interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Li, L.

    2013-12-01

    By removing the influences of 'magnetopause shadowing' (r0>6.6RE) and geomagnetic activities, we investigated statistically the responses of magnetic field and relativistic (>0.5MeV) electrons at geosynchronous orbit to 201 interplanetary perturbations during 6 years from 2003 (solar maximum) to 2008 (solar minimum). The statistical results indicate that during geomagnetically quiet times (HSYM ?-30nT, and AE<200nT), ~47.3% changes in the geosynchronous magnetic field and relativistic electron fluxes are caused by the combined actions of the enhancement of solar wind dynamic pressure (Pd) and the southward turning of interplanetary magnetic field (IMF) (?Pd>0.4 nPa, and IMF Bz<0 nT), and only ~18.4% changes are due to single dynamic pressure increase (?Pd >0.4 nPa, but IMF Bz>0 nT), and ~34.3% changes are due to single southward turning of IMF (IMF Bz<0 nT, but |?Pd|<0.4 nPa). Although the responses of magnetic field and relativistic electrons to the southward turning of IMF are weaker than their responses to the dynamic pressure increase, the southward turning of IMF can cause the dawn-dusk asymmetric perturbations that the magnetic field and the relativistic electrons tend to increase on the dawnside (LT~00:00-12:00) but decrease on the duskside (LT~13:00-23:00). Furthermore, the variation of relativistic electron fluxes is adiabatically controlled by the magnitude and elevation angle changes of magnetic field during the single IMF southward turnings. However, the variation of relativistic electron fluxes is independent of the change in magnetic field in some compression regions during the enhancement of solar wind dynamic pressure (including the single pressure increases and the combined external perturbations), indicating that nonadiabatic dynamic processes of relativistic electrons occur there. Acknowledgments. This work is supported by NSFC (grants 41074119 and 40604018). Liuyuan Li is grateful to the staffs working for the data from GOES 8-12 satellites and OMNI database in CDAWeb.

  18. Late Holocene changes in precipitation in northwest Tasmania and their potential links to shifts in the Southern Hemisphere westerly winds

    E-print Network

    Wehrli, Bernhard

    Late Holocene changes in precipitation in northwest Tasmania and their potential links to shifts for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7000, Australia c British), northwest Tasmania. First, the relationship between scanning reflectance spectroscopy measurements

  19. The Solar Wind

    NASA Technical Reports Server (NTRS)

    Goldstein, B. E.

    1998-01-01

    The first evidence of the solar wind was provided through observations of comet tail deflections by L. Biermann in 1951. A cometary ion tail is oriented along the difference between the cometary and solar wind velocities, whereas the dust tail is in the antisunward direction; the ion tail directions demonstrated the existence of an outflow of ionized gas from the Sun (the solar wind) and allowed estimates of solar wind speed. Spacecraft observations have now established that at 1 AU the solar wind has a typical ion number density of about 7 /cc and is composed by number of about 95% protons and 5% Helium, with other minor ions also present. The solar wind as observed at 1 AU in the ecliptic has speeds typically in the range 300-700 km/ s. At such speeds ions travel from the Sun to 1 AU in from 2.5 to 6 days. The impact of the solar wind on planets with magnetic fields (Earth, Jupiter, Saturn, Uranus, Neptune) causes phenomena such as magnetospheres, aurorae, and geomagnetic storms, whereas at objects lacking magnetospheres (Mars, Venus, comets), atmospheric neutrals undergo charge exchange and are picked up by the solar wind flow. The solar wind also shields the Earth from low energy cosmic rays, and is responsible for the existence of the anomalous component of the cosmic rays a low energy component that is created locally rather than in the galaxy. Presented here is a brief introduction to the solar wind and a description of some current topics of research. Solar wind properties vary a great deal due to the changing magnetic structure on the Sun.

  20. Vectors: Tip to Tail

    NSDL National Science Digital Library

    Sharon Linamen

    2012-07-23

    In this lesson students will learn the characteristics and appropriate use of vectors. They will find the magnitude and direction of vectors, they will add and subtract vectors and use an interactive website to practice what they have learned.

  1. A Stochastic Unit-Commitment Model to Estimate the Costs of Changing Power Plant Operation under High Amounts of Intermittent Wind Power

    E-print Network

    High Amounts of Intermittent Wind Power Integration Meibom, P.1 , Brand, H.2 , Barth, R.2 and Weber, C in several European countries. The introduction of substantial amounts of wind power in a liberalized production costs of wind power are very low, and larger amounts of frequency-responding spinning as well

  2. Wind Turbine

    USGS Multimedia Gallery

    The species of bats that are most susceptible to wind turbines all roost in trees throughout the year, leading some scientists to speculate that they may be visually mistaking wind turbines for trees in which to roost....

  3. Wind Energy

    NSDL National Science Digital Library

    2014-09-18

    Students learn about wind energy by making a pinwheel to model a wind turbine. Just like engineers, they decide where and how their turbine works best by testing it in different areas of the playground.

  4. Toasty Wind

    NSDL National Science Digital Library

    National Weather Service

    2012-07-24

    In this quick activity, learners use a toaster to investigate the source for the Earth's wind. Learners hold a pinwheel above a toaster to discover that rising heat causes wind. Use this activity to introduce learners to the process of convection as a source for wind. This resource also explains how convection causes thunderstorms and lists important thunderstorm safety tips.

  5. Wind Whispers

    NSDL National Science Digital Library

    The Advanced Technology Environmental and Energy Center (ATEEC) provides this presentation on the career and technical aspects of wind energy. In addition to discussing careers in wind, the presentation covers the siting of wind turbines and some electricity basics. Users must download this resource for viewing, which requires a free log-in. There is no cost to download the item.

  6. Vectoring: Steering a Plane

    NSDL National Science Digital Library

    2011-08-20

    In this two part activity, learners work in pairs or individually to discover how vectoring the thrust from a jet engine affects movement of an airplane. In part one, learners construct an F-15 ACTIVE model with a balloon engine. In part two, learners conduct a series of experiments by changing the angle of the straw to control the direction of the thrust. This activity emphasizes the scientific method including prediction, observation, data collection, and analysis. This lesson plan includes background information, an extension and a sample worksheet.

  7. Efficient transfer of base changes from a vector to the rice genome by homologous recombination: involvement of heteroduplex formation and mismatch correction

    Microsoft Academic Search

    Yasuyo Johzuka-Hisatomi; Rie Terada; Shigeru Iida

    2008-01-01

    Gene targeting refers to the alteration of a specific DNA sequence in an endogenous gene at its original locus in the genome by homologous recombination. Through a gene-targeting procedure with positive- negative selection, we previously reported the generation of fertile transgenic rice plants with a positive marker inserted into the Adh2 gene by using an Agrobacterium-mediated transformation vector containing the

  8. Association of Anthropogenic Land Use Change and Increased Abundance of the Chagas Disease Vector Rhodnius pallescens in a Rural Landscape of Panama

    PubMed Central

    Gottdenker, Nicole L.; Calzada, José E.; Saldaña, Azäel; Carroll, C. Ronald

    2011-01-01

    Anthropogenic disturbance is associated with increased vector-borne infectious disease transmission in wildlife, domestic animals, and humans. The objective of this study was to evaluate how disturbance of a tropical forest landscape impacts abundance of the triatomine bug Rhodnius pallescens, a vector of Chagas disease, in the region of the Panama Canal in Panama. Rhodnius pallescens was collected (n = 1,186) from its primary habitat, the palm Attalea butyracea, in five habitat types reflecting a gradient of anthropogenic disturbance. There was a high proportion of palms infested with R. pallescens across all habitat types (range = 77.1–91.4%). Results show that disturbed habitats are associated with increased vector abundance compared with relatively undisturbed habitats. Bugs collected in disturbed sites, although in higher abundance, tended to be in poor body condition compared with bugs captured in protected forest sites. Abundance data suggests that forest remnants may be sources for R. pallescens populations within highly disturbed areas of the landscape. PMID:21212205

  9. Microenvironmental changes and plant responses due to shading and wind deflectio by solar collectors: a simulation study

    Microsoft Academic Search

    D. T. Patten; S. D. Smith

    1980-01-01

    The potential microenvironmental changes at the ground surface beneath arrays of solar mirrors or collectors were investigated in a Sonoran Desert ecosystem, utilizing a simulated array of plywood panels. The simulated array consisted of twelve panels designed to exhibit a similar shape, tilt, and spacing as is expected to occur in heliostat fields of solar thermal facilities or in arrays

  10. The effect of sensor sheltering and averaging techniques on wind measurements at the Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.

    1995-01-01

    This document presents results of a field study of the effect of sheltering of wind sensors by nearby foliage on the validity of wind measurements at the Space Shuttle Landing Facility (SLF). Standard measurements are made at one second intervals from 30-feet (9.1-m) towers located 500 feet (152 m) from the SLF centerline. The centerline winds are not exactly the same as those measured by the towers. A companion study, Merceret (1995), quantifies the differences as a function of statistics of the observed winds and distance between the measurements and points of interest. This work examines the effect of nearby foliage on the accuracy of the measurements made by any one sensor, and the effects of averaging on interpretation of the measurements. The field program used logarithmically spaced portable wind towers to measure wind speed and direction over a range of conditions as a function of distance from the obstructing foliage. Appropriate statistics were computed. The results suggest that accurate measurements require foliage be cut back to OFCM standards. Analysis of averaging techniques showed that there is no significant difference between vector and scalar averages. Longer averaging periods reduce measurement error but do not otherwise change the measurement in reasonably steady flow regimes. In rapidly changing conditions, shorter averaging periods may be required to capture trends.

  11. Forecasting Evaluation of WindSat in the Coastal Environment

    NASA Technical Reports Server (NTRS)

    Lee, Thomas F.; Bettenhausen, Mike H.; Hawkins, Jeffrey D.; Richardson, Kim; Jedlovec, Gary; Smith, Matt

    2012-01-01

    WindSat has demonstrated that measurements from polarimetric space-based microwave radiometers can be used to retrieve global ocean surface vector winds. Since the date of launch in 2003, substantial incremental improvements have been made to WindSat data processing, calibration, and retrieval algorithms. The retrievals now have higher resolution, improved wind vector ambiguity removal, and enhanced capability to represent high winds. Utilization of WindSat retrievals (wind vectors, total precipitable water, rainrate and sea surface temperature) will be demonstrated in the context of operational weather forecasting applications, especially the monitoring of topographically-forced winds. Examples will be presented from various parts of the world, including inland seas, midlatitude oceans, the tropics, and the United States. We will illustrate retrievals in extreme high- and extreme low-wind regimes, both of which can be problematic. Rain contamination will be addressed. We will include a comparison of WindSat vector maps to corresponding maps from the QuikScat scatterometer. We will discuss how near-realtime data from WindSat is being transitioned to specific offices within the National Weather Service.

  12. Balance of Forces with the Wind (title provided or enhanced by cataloger)

    NSDL National Science Digital Library

    Steve Ackerman

    This applet tests the balance of the frictional, pressure gradient, and Coriolis forces with the wind. The applet displays vectors for these forces and the wind as the latitude, friction (drag), and pressure gradient are adjusted.

  13. Long-Term Wind Power Variability

    SciTech Connect

    Wan, Y. H.

    2012-01-01

    The National Renewable Energy Laboratory started collecting wind power data from large commercial wind power plants (WPPs) in southwest Minnesota with dedicated dataloggers and communication links in the spring of 2000. Over the years, additional WPPs in other areas were added to and removed from the data collection effort. The longest data stream of actual wind plant output is more than 10 years. The resulting data have been used to analyze wind power fluctuations, frequency distribution of changes, the effects of spatial diversity, and wind power ancillary services. This report uses the multi-year wind power data to examine long-term wind power variability.

  14. (^-L_n,g)-spaces. Length of a vector field and the angle between two vector fields

    E-print Network

    S. Manoff

    2000-02-22

    The notions of length of a vector field and cosine of the angle between two vector fields over a differentiable manifold with contravariant and covariant affine connections and metrics are introduced and considered. The change of the length of a vector field and of the angle between two vector fields along a contravariant vector field are found. The introduced notions are necessary for investigations of different types of transports over a manifold of the above mentioned type.

  15. Wind Turbines Adaptation to the Variability of the Wind Field

    NASA Astrophysics Data System (ADS)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    WIND TURBINES ADAPTATION TO THE VARIABILITY OF THE WIND FIELD The subject of our scientific research is wind power turbines (WPT) with the horizontal axis which were now common in the world. Efficient wind turbines work is largely determined by non-stationarity of the wind field, expressed in its gustiness, the presence of vertical and horizontal shifts of wind speed and direction. At critical values of the wind parameters WPT has aerodynamic and mechanical overload, leading to breakdowns, premature wear and reduce the life of the wind turbine. To prevent accidents at the peak values of wind speed it is used the regulatory system of windwheels. WPT control systems provide a process orientation of the wind turbine rotor axis in the line of the mean wind. Wind turbines are also equipped with braking device used to protect against breakdowns when a significant increase in the wind. In general, all these methods of regulation are not always effective. Thus, in practice there may be situations when the wind speed is many times greater than the stated limit. For example, if there are microbursts in the atmospheric boundary layer, low-level wind shears caused by its gust front, storms, etc. It is required for a wind power turbine adaptation to intensive short-term wind impulses and considerable vertical wind shifts that the data about them shall be obtained ahead of time. To do this it is necessary to have the information on the real structure of the wind field in the area of the blade sweep for the minimum range against the wind that is determined by the mean speed and the system action time. The implementation of acoustic and laser traditional wind sounding systems is limited by ambient acoustic noise, by heavy rain, snowfall and by fog. There are free of these disadvantages the inclined radioacoustic sounding (IRASS) technique which works for a system of remote detection and control of wind gusts. IRASS technique is realized as low-potential Doppler pulse radar including combined RF-acoustic antenna installed coaxially with the gondola of the wind power turbine. The work of the technique is synchronized with rotation of blades to eliminate their shielding action. Dangerous in terms of dynamic strength is the wind load pulse, the rise time which is comparable with the period of the natural frequency of the wind turbine elements (blade, tower, rotor, etc.). The amplitude decay of resonant vibrations at critical values of the speed of rotation can be realized through the use of mechanical elastic supports with nonlinear artificial dampers. They have a high coefficient of resistance, but may cause self-excited oscillations. We propose the way to deal with raised vibration of wind turbine elements at the expense of short-term increase of damping in the range of critical rotary axis speeds or during impulsive effects of wind loadings (wind gusts). This is possible through the use of non-linear electromagnetic dampers or active magnetic bearings. Their feature is the possibility of varying the mechanical stiffness and damping properties by changing the electrical parameters of electromagnets. The controlling of these parameters is carried out by the control system (CS) with the information feedback on the spatial-temporal structure of the wind field obtained from IRASS. In the composition of the CS can also be included the rotational speed sensor of the WPT rotor. This approach to the adaptation of wind turbines will allow to reduce vibration and to perform early compensation of the load on their components, which arise under the wind gusts. In addition, corrections about the wind field obtained with IRASS, would increase the mean power of WPT.

  16. Tropical Winds in the Stratosphere from HRDI (1991-1996)

    NSDL National Science Digital Library

    Greg Shirah

    1999-04-09

    The High Resolution Doppler Interferometer (HRDI) measures winds in both the stratosphere and mesosphere. The tropical winds in the stratosphere undergo a slow two year variation called the quasibianunual oscillation. This oscillation controls mixing throughout the stratosphere and HRDI has given us much detail on wind changes associated with this oscillation. The animation indicates the line of zero wind speed in the zonal tropical winds, the height at which the winds change from eastward to westward.

  17. Wind Power: Creating a Wind Generator

    NSDL National Science Digital Library

    Demetrius Lutz

    2012-01-01

    This lesson challenges groups of learners to design and construct a wind generator with the most electrical output. The lesson focuses on the engineering design process and how it is used to identify a question (solve a problem), develop a design or change a design, test that design, observe and collect data, analyze that data, and finally, form a conclusion that can inform another round of design. In this activity, learners attempt to maximize the voltage obtained from a wind-driven turbine by conducting several experimental designs.

  18. Emerging Vector-Borne Diseases – Incidence through Vectors

    PubMed Central

    Savi?, Sara; Vidi?, Branka; Grgi?, Zivoslav; Potkonjak, Aleksandar; Spasojevic, Ljubica

    2014-01-01

    Vector-borne diseases use to be a major public health concern only in tropical and subtropical areas, but today they are an emerging threat for the continental and developed countries also. Nowadays, in intercontinental countries, there is a struggle with emerging diseases, which have found their way to appear through vectors. Vector-borne zoonotic diseases occur when vectors, animal hosts, climate conditions, pathogens, and susceptible human population exist at the same time, at the same place. Global climate change is predicted to lead to an increase in vector-borne infectious diseases and disease outbreaks. It could affect the range and population of pathogens, host and vectors, transmission season, etc. Reliable surveillance for diseases that are most likely to emerge is required. Canine vector-borne diseases represent a complex group of diseases including anaplasmosis, babesiosis, bartonellosis, borreliosis, dirofilariosis, ehrlichiosis, and leishmaniosis. Some of these diseases cause serious clinical symptoms in dogs and some of them have a zoonotic potential with an effect to public health. It is expected from veterinarians in coordination with medical doctors to play a fundamental role at primarily prevention and then treatment of vector-borne diseases in dogs. The One Health concept has to be integrated into the struggle against emerging diseases. During a 4-year period, from 2009 to 2013, a total number of 551 dog samples were analyzed for vector-borne diseases (borreliosis, babesiosis, ehrlichiosis, anaplasmosis, dirofilariosis, and leishmaniasis) in routine laboratory work. The analysis was done by serological tests – ELISA for borreliosis, dirofilariosis, and leishmaniasis, modified Knott test for dirofilariosis, and blood smear for babesiosis, ehrlichiosis, and anaplasmosis. This number of samples represented 75% of total number of samples that were sent for analysis for different diseases in dogs. Annually, on average more then half of the samples brought to the laboratory to analysis for different infectious diseases are analyzed for vector-borne diseases. In the region of Vojvodina (northern part of Serbia), the following vector-borne infectious diseases have been found in dogs so far borreliosis, babesiosis, dirofilariosis, leishmaniasis, and anaplasmosis. PMID:25520951

  19. AN ANALYSIS OF SEAWINDS SIMULTANEOUS WIND/RAIN RETRIEVAL IN SEVERE WEATHER EVENTS

    E-print Network

    Long, David G.

    backscatter to a geophysical model function. However, SeaWinds measurements are also sensitive to rain both wind vectors and rain rates for a given ocean area. Instantaneous results of simultaneous wind/rain con- struction of a model to simulate variability in the SeaWinds rain estimates. The model is used

  20. Rotations with Rodrigues' Vector

    ERIC Educational Resources Information Center

    Pina, E.

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…

  1. Vector-Borne Diseases

    NSDL National Science Digital Library

    Harvey Artsob

    This online encyclopedia article discusses vector-borne diseases. It defines vectors as the transmitters of disease-causing organisms that carry the pathogens from one host to another. The article reviews the biological range of vectors, the transmission and types of vector-borne diseases, patterns of occurrence and existing control measures.

  2. Tropospheric Wind Measurements from Space: The SPARCLE Mission and Beyond

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Emmitt, G. David

    1998-01-01

    For over 20 years researchers have been investigating the feasibility of profiling tropospheric vector wind velocity from space with a pulsed Doppler lidar. Efforts have included theoretical development, system and mission studies, technology development, and ground-based and airborne measurements. Now NASA plans to take the next logical step towards enabling operational global tropospheric wind profiles by demonstrating horizontal wind measurements from the Space Shuttle in early 2001 using a coherent Doppler wind lidar system.

  3. Automated mesoscale winds determined from satellite imagery

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A new automated technique for extracting mesoscale fields from GOES visible/infrared satellite imagery was developed. Quality control parameters were defined to allow objective editing of the wind fields. The system can produce equivalent or superior cloud wind estimates compared to the time consuming manual methods used on various interactive meteorological processing systems. Analysis of automated mesoscale cloud wind for a test case yields an estimated random error value one meter per second and produces both regional and mesoscale vector wind field structure and divergence patterns that are consistent in time and highly correlated with subsequent severe thunderstorm development.

  4. Vector Interpolative Logic

    E-print Network

    Dragan Radojevi?; Zvonko Mari?

    Abstract: Vector interpolative logic (I-logic) is a consistent generalization of vector classical logic, so that the components of analyzed I-logic vectors have values from the real interval [0, 1]. All laws of classical logic and as a consequence, vector classical logic too, are preserved in the vector I- logic. This result is not possible in the frame of conventional fuzzy and/or MV- logic approaches.

  5. Vector Lane Threading

    Microsoft Academic Search

    Suzanne Rivoire; Rebecca Schultz; Tomofumi Okuda; Christos Kozyrakis

    2006-01-01

    Multi-lane vector processors achieve excellent computa- tional throughput for programs with high data-level paral- lelism (DLP). However, application phases without signif- icant DLP are unable to fully utilize the datapaths in the vector lanes. In this paper, we propose vector lane thread- ing (VLT), an architectural enhancement that allows idle vector lanes to run short-vector or scalar threads. VLT- enhanced

  6. A Multithreaded Vector Coprocessor

    Microsoft Academic Search

    Bernard Goossens

    1997-01-01

    A multithreaded vector co-processor design is described. It is intended to be placed with its private vector memory, on an expansion board, linked to the scalar processor and its cache-based memory hierarchy. The vector co-processor can run up to 8 vector tasks (threads) in parallel. Vector registers can be accessed either as independent sets of scalar values or as array

  7. Wind/Hybrid Electricity Applications

    SciTech Connect

    McDaniel, Lori

    2001-03-31

    Wind energy is widely recognized as the most efficient and cost effective form of new renewable energy available in the Midwest. New utility-scale wind farms (arrays of large turbines in high wind areas producing sufficient energy to serve thousands of homes) rival the cost of building new conventional forms of combustion energy plants, gas, diesel and coal power plants. Wind energy is not subject to the inflationary cost of fossil fuels. Wind energy can also be very attractive to residential and commercial electric customers in high wind areas who would like to be more self-sufficient for their energy needs. And wind energy is friendly to the environment at a time when there is increasing concern about pollution and climate change. However, wind energy is an intermittent source of power. Most wind turbines start producing small amounts of electricity at about 8-10 mph (4 meters per second) of wind speed. The turbine does not reach its rated output until the wind reaches about 26-28 mph (12 m/s). So what do you do for power when the output of the wind turbine is not sufficient to meet the demand for energy? This paper will discuss wind hybrid technology options that mix wind with other power sources and storage devices to help solve this problem. This will be done on a variety of scales on the impact of wind energy on the utility system as a whole, and on the commercial and small-scale residential applications. The average cost and cost-benefit of each application along with references to manufacturers will be given. Emerging technologies that promise to shape the future of renewable energy will be explored as well.

  8. Electric car with solar and wind energy may change the environment and economy: A tool for utilizing the renewable energy resource

    NASA Astrophysics Data System (ADS)

    Liu, Quanhua

    2014-01-01

    Energy and environmental issues are among the most important problems of public concern. Wind and solar energy may be one of the alternative solutions to overcome energy shortage and to reduce greenhouse gaseous emission. Using electric cars in cities can significantly improve the air quality there. Through our analyses and modeling on the basis of the National Centers for Environment Prediction data we confirm that the amount of usable solar and wind energy far exceeds the world's total energy demand, considering the feasibility of the technology being used. Storing the surplus solar and wind energy and then releasing this surplus on demand is an important approach to maintaining uninterrupted solar- and wind-generated electricity. This approach requires us to be aware of the available solar and wind energy in advance in order to manage their storage. Solar and wind energy depends on weather conditions and we know weather forecasting. This implies that solar and wind energy is predictable. In this article, we demonstrate how solar and wind energy can be forecasted. We provide a web tool that can be used by all to arrive at solar and wind energy amount at any location in the world. The tool is available at http://www.renewableenergyst.org. The website also provides additional information on renewable energy, which is useful to a wide range of audiences, including students, educators, and the general public.

  9. Wind Dynamics and Forests

    NSDL National Science Digital Library

    In this activity, students will set up a model forest using plastic bottles to observe changes caused by differences in wind speed and forest density. An extension to the activity will allow students to explore the concept of evapotranspiration. From this activity students will understand that living organisms in an ecosystem can have profound effects upon the local atmosphere, changes in vegetation can have profound effects upon wind speed, and models are useful to researchers in understanding the shaping of ecosystems. The teacher's guide contains detailed background material, learning goals, alignment to national standards, grade level/time, details on materials and preparation, procedure, assessment ideas, and modifications for alternative learners.

  10. Wind Generator

    NSDL National Science Digital Library

    The Concord Consortium

    2012-05-21

    Windmills have been used for hundreds of years to collect energy from the wind in order to pump water, grind grain, and more recently generate electricity. There are many possible designs for the blades of a wind generator and engineers are always trying new ones. Design and test your own wind generator, then try to improve it by running a small electric motor connected to a voltage sensor.

  11. Seasonal Changes in Estuarine Dissolved Organic Matter Due to Variations in Discharge, Flushing Times and Wind-driven Mixing Events

    NASA Astrophysics Data System (ADS)

    Dixon, Jennifer Louise

    Estuaries are highly productive habitats that transport and transform organic matter (OM), experience large changes in ionic composition and act as a transition zone between terrestrial and marine environments (Paerl et al. 1998; Markager et al. 2011; Osburn et al. 2012). OM source and matrix effects (such as salinity and pH) influence the chemical structure of DOM in estuaries and therefore affect its bioavailability, photo-reactivity, and its overall fate in these systems (Jaffe et al. 2004; Boyd et al. 2010; Pace et al. 2012; Osburn et al. 2012; Cawley et al. 2013). Within estuaries, dissolved organic matter (DOM) is a heterogeneous mixture of aromatic and aliphatic compounds, and its composition in aquatic systems varies spatially and temporally with source (Bauer and Bianchi 2011). However, the main source of DOM in estuaries, rivers and other aquatic systems, originates from vascular plant detritus, soil humus, older fossil (i.e., petrogenic) organic carbon, black carbon, marine OM and in situ production (Hedges 2002; Houghton 2007; Bauer and Bianchi 2011). Chromophoric dissolved organic matter (CDOM), the light absorbing fraction of DOM, can be characterized using optical methods such as absorption and fluorescence spectroscopy (e.g. Coble, 1996; Stedmon and Markager, 2003). By analyzing the spatial and temporal variability of DOM and CDOM within estuaries, information pertaining to OM source and fate across the freshwater-marine continuum can be obtained. These methods offer an inexpensive, non-destructive means for obtaining sensitive measurements of a diverse group of organic compounds. By using this technology to analyze the spatial and temporal variability of CDOM within estuaries, information pertaining to OM source and fate across the freshwater-marine continuum can be obtained (Fellman et al. 2011; Osburn et al. 2012; Murphy et al. 2014). Chemical biomarkers are also routinely used to identify DOM sources in coastal waters. Examples are carbon stable isotopes (Bauer, 2002) and lignin (e.g., Benner and Opsahl, 2001; Harvey and Mannino, 2001). Marine DOM derived from phytoplankton typically has carbon stable isotope (delta13C) values that range from --20 to --22‰, while terrestrial DOM derived from C3 land plants typically have delta13C values that range from --26 to --28‰ (Bauer, 2002). Lignin is an important component of vascular plants, thus making it a unique geochemical biomarker, which can be used to trace the fate of terrestrial DOM in coastal seawater (e.g., Hernes and Benner, 2003; Walker et al. 2009; Osburn and Stedmon, 2011). Further, the ratios of the different phenolic compounds derived from the oxidation of lignin can be used to distinguish between plant sources (e.g. angiosperm vs. gymnosperm, or woody vs. non-woody tissue) and the extent of exposure to degradation (Hedges et al. 1988). The highly productive, eutrophic waters of the Neuse River Estuary (NRE), in eastern North Carolina, USA, serve as a transition zone for terrigenous DOM between the head of the Neuse River and Pamlico Sound. Previous studies have determined that the NRE is dominated by inputs from riverine discharge, yet very clear shifts in DOM quality are apparent as discharge varied (Paerl et al. 1998; Osburn et al. 2012). Furthermore, flushing times within the NRE will aid in determining whether DOM is primarily autochthonous or allochthonous and if it is processed internally or transported downstream to the Pamlico Sound (Paerl et al. 1998; Mari et al. 2007, Peierls et al. 2012). Therefore, the main sources of DOM and its composition can change throughout an estuary depending on the hydrodynamic conditions. For example, increases in flushing time may allow for the accumulation of autochthonous DOM because of (1) planktonic communities within the water column having more time to utilize nutrients within the system, resulting in phytoplankton blooms and (2) lower inputs of allochthonous OM from the NRE's watershed (Dixon et al. accepted). Therefore, the main sources of DOM and its composition can change throughout an est

  12. Storminess variation at Skagen, northern Denmark since AD 1860: Relations to climate change and implications for coastal dunes

    NASA Astrophysics Data System (ADS)

    Clemmensen, Lars B.; Hansen, Kristian W. T.; Kroon, Aart

    2014-12-01

    Systematic observations of wind speed and direction have been collected at Skagen Fyr (Skagen Lighthouse), northern Denmark from December 1860 to August 2012. Wind speed and wind direction are analyzed based on two data sets given in Beaufort and m/s respectively and based on these data storminess variation is analyzed. Changes in wind climate during this time interval cover the final phase of the relatively cold Little Ice Age and the following warming since the late 19th century. Since the end of the Little Ice Age the wind pattern has clearly changed in terms of both strength and direction. Between 1860 and 1875 storminess (wind events exceeding Beaufort 8) is extremely high, but since then storminess decreases. Around 1870 the annual drift potential (DP) is also extremely high and reaches up to 9600 vector units (VU); since 1980 DP levels are below 3000 VU and decreasing. Resultant drift direction (RDD) is towards the east or east-north-east until about 1960 when it steadily becomes more and more northerly. Most storms occur during autumn and early winter. Summers are less stormy but characterized by unidirectional winds. Since the end of the Little Ice Age most inland parabolic dunes on Skagen Odde have undergone a general stabilization. This shift in dune dynamics is primarily related to continued dune management, but the change in wind climate including an overall decrease in storminess (including a marked decrease in summer storminess) and an increase in southerly and south-westerly winds probably contribute to dune stabilization.

  13. VisibleWind: wind profile measurements at low altitude

    NASA Astrophysics Data System (ADS)

    Wilkerson, Tom; Bradford, Bill; Marchant, Alan; Apedaile, Tom; Wright, Cordell

    2009-09-01

    VisibleWindTM is developing an inexpensive rapid response system, for accurately characterizing wind shear and small scale wind phenomena in the boundary layer and for prospecting suitable locations for wind power turbines. The ValidWind system can also collect reliable "ground truth" for other remote wind sensors. The system employs small (0.25 m dia.) lightweight balloons and a tracker consisting of an Impulse 200 XL laser rangefinder coupled to a PC for automated data recording. Experiments on balloon trajectories demonstrate that the laser detection of range (+/- 0.5 m), together with measured azimuth and altitude, is an inexpensive, convenient, and capable alternative to other wind tracking methods. The maximum detection range has been increased to 2200 meters using micro-corner-cube retroreflector tape on balloons. Low power LEDs enable nighttime tracking. To avoid large balloon gyrations about the mean trajectory, we use balloons having low ascent rates and subcritical Reynolds numbers. Trajectory points are typically recorded every 4 - 7 seconds. Atmospheric features observed under conditions of inversions or "light and variable winds" include abrupt onsets of shear at altitudes of 100-250 m, velocity changes of order 1-3 m/s within layers of 10-20 m thickness, and veering of the wind direction by 180 degrees or more as altitude increases from 300 to 500 m. We have previously reported comparisons of balloon-based wind profiles with the output of a co-located sodar. Even with the Impulse rangefinder, our system still requires a "man in the loop" to track the balloon. A future system enhancement will automate balloon tracking, so that laser returns are obtained automatically at 1 Hz. While balloon measurements of large-scale, high altitude wind profiles are well known, this novel measurement system provides high-resolution, real-time characterization of the fluctuating local wind fields at the bottom of the boundary layer where wind power turbines and other remote wind sensors must operate.

  14. Forecasting Caspian Sea level changes using satellite altimetry data (June 1992-December 2013) based on evolutionary support vector regression algorithms and gene expression programming

    NASA Astrophysics Data System (ADS)

    Imani, Moslem; You, Rey-Jer; Kuo, Chung-Yen

    2014-10-01

    Sea level forecasting at various time intervals is of great importance in water supply management. Evolutionary artificial intelligence (AI) approaches have been accepted as an appropriate tool for modeling complex nonlinear phenomena in water bodies. In the study, we investigated the ability of two AI techniques: support vector machine (SVM), which is mathematically well-founded and provides new insights into function approximation, and gene expression programming (GEP), which is used to forecast Caspian Sea level anomalies using satellite altimetry observations from June 1992 to December 2013. SVM demonstrates the best performance in predicting Caspian Sea level anomalies, given the minimum root mean square error (RMSE = 0.035) and maximum coefficient of determination (R2 = 0.96) during the prediction periods. A comparison between the proposed AI approaches and the cascade correlation neural network (CCNN) model also shows the superiority of the GEP and SVM models over the CCNN.

  15. 2008 WIND TECHNOLOGIES MARKET REPORT

    Microsoft Academic Search

    Ryan H. Wiser; Mark Bolinger; G. Barbose; A. Mills; A. Rosa; K. Porter; S. Fink; S. Tegen; W. Musial; F. Oteri; D. Heimiller; B. Rberts; K. Belyeu; R. Stimmel

    2009-01-01

    The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid

  16. Wind turbine rotor control system

    Microsoft Academic Search

    C. Coleman; H. D. Currin

    1984-01-01

    In a pitch control system for a wind turbine, a mechanical control system changes pitch angle of the rotor blades collectively in response to blade pitch moment. The control system is designed to be used with a downwind constant speed two-bladed horizontal axis teetering hub wind turbine. Pitch placement controls torque for a synchronous alternator connected to the electrical power

  17. Solar wind stagnation near comets

    Microsoft Academic Search

    A. A. Galeev; T. E. Cravens; T. I. Gombosi

    1985-01-01

    The nature of the solar wind flow near comets is examined analytically in this paper. In particular, typical values for the stagnation pressure and magnetic barrier strength are estimated, taking into account magnetic field line tension and change-exchange cooling of the mass-loaded solar wind. A knowledge of the strength of the magnetic barrier is required in order to determine the

  18. Stage-specific binding of Leishmania donovani to the sand fly vector midgut is regulated by conformational changes in the abundant surface lipophosphoglycan.

    PubMed

    Sacks, D L; Pimenta, P F; McConville, M J; Schneider, P; Turco, S J

    1995-02-01

    The life cycle of Leishmania parasites within the sand fly vector includes the development of extracellular promastigotes from a noninfective, procyclic stage into an infective, metacyclic stage that is uniquely adapted for transmission by the fly and survival in the vertebrate host. These adaptations were explored in the context of the structure and function of the abundant surface lipophosphoglycan (LPG) on Leishmania donovani promastigotes. During metacyclogenesis, the salient structural feature of L. donovani LPG is conserved, involving expression of a phosphoglycan chain made up of unsubstituted disaccharide-phosphate repeats. Two important developmental modifications were also observed. First, the size of the molecule is substantially increased because of a twofold increase in the number of phosphorylated disaccharide repeat units expressed. Second, there is a concomitant decrease in the presentation of terminally exposed sugars. This later property was indicated by the reduced accessibility of terminal galactose residues to galactose oxidase and the loss of binding by the lectins, peanut agglutinin, and concanavalin A, to metacyclic LPG in vivo and in vitro. The loss of lectin binding was not due to downregulation of the capping oligosaccharides as the same beta-linked galactose or alpha-linked mannose-terminating oligosaccharides were present in both procyclic and metacyclic promastigotes. The capping sugars on procyclic LPG were found to mediate procyclic attachment to the sand fly midgut, whereas these same sugars on metacyclic LPG failed to mediate metacyclic binding. And whereas intact metacyclic LPG did not inhibit procyclic attachment, depolymerized LPG inhibited as well as procyclic LPG, demonstrating that the ligands are normally buried. The masking of the terminal sugars is attributed to folding and clustering of the extended phosphoglycan chains, which form densely distributed particulate structures visible on fracture-flip preparations of the metacyclic surface. The exposure and subsequent masking of the terminal capping sugars explains the stage specificity of promastigote attachment to and release from the vector midgut, which are key events in the development of transmissible infections in the fly. PMID:7836922

  19. Evaluation of High Wind Speed Observations from Spaceborne and Airborne Ocean Wind Measurement Systems

    NASA Astrophysics Data System (ADS)

    Jelenak, Zorana; Chang, Paul; Soisuvarn, Seubsom; Alsweiss, Suleiman

    2013-04-01

    It is very difficult to obtain high quality in-situ wind data in the high wind speed regimes (>17m/s). Winds measured by moored small-hulled buoys become increasingly low biased as wind speeds exceed 20 m/s. Ordinary ship reported winds are of poor quality in this high wind speed range, and the better-equipped research vessels rarely sample this wind regime. Finally, marine wind fields produced by numerical weather prediction (NWP) models, including even the products of the newer "reanalysis" projects, are notoriously biased low in severe storms. The best-suited candidates to assess the performance of new wind measurements are actually other spaceborne and airborne ocean wind vector instruments (such as ASCAT and WindSat) provided their performance in high wind speed regimes are well understood. The Indian Space Research Organization (ISRO) launched the OceanSat-2 satellite on 23 September 2009. Oceansat-2 is ISRO's second in a series of satellites dedicated to ocean research. OceanSat-2 carries a microwave radar scatterometer (OSCAT) capable of measuring the ocean surface vector winds. The OSCAT operates at Ku-band (13.515 GHz) scanning the earth surface conically at 20.5 rpm using dual-polarized pencil beams with an incidence angle 48.9 degree for the horizontally polarized (H-pol) beam and 57.6 degree for the vertically polarized (V-pol) beam resulting in a swath width of 1840 km. The orbit characteristics provide global ocean coverage wind retrievals within 29 orbits or 2 days. In the paper we will present validation of high wind estimates from OSCAT measurements processed by NOAA.

  20. Methods and apparatus for reducing peak wind turbine loads

    DOEpatents

    Moroz, Emilian Mieczyslaw

    2007-02-13

    A method for reducing peak loads of wind turbines in a changing wind environment includes measuring or estimating an instantaneous wind speed and direction at the wind turbine and determining a yaw error of the wind turbine relative to the measured instantaneous wind direction. The method further includes comparing the yaw error to a yaw error trigger that has different values at different wind speeds and shutting down the wind turbine when the yaw error exceeds the yaw error trigger corresponding to the measured or estimated instantaneous wind speed.

  1. Wind energy.

    PubMed

    Leithead, W E

    2007-04-15

    From its rebirth in the early 1980s, the rate of development of wind energy has been dramatic. Today, other than hydropower, it is the most important of the renewable sources of power. The UK Government and the EU Commission have adopted targets for renewable energy generation of 10 and 12% of consumption, respectively. Much of this, by necessity, must be met by wind energy. The US Department of Energy has set a goal of 6% of electricity supply from wind energy by 2020. For this potential to be fully realized, several aspects, related to public acceptance, and technical issues, related to the expected increase in penetration on the electricity network and the current drive towards larger wind turbines, need to be resolved. Nevertheless, these challenges will be met and wind energy will, very likely, become increasingly important over the next two decades. An overview of the technology is presented. PMID:17272245

  2. Moist wind relationships

    NASA Technical Reports Server (NTRS)

    Raymond, William H.

    1993-01-01

    Equations describing the temporal and spatial behavior of the kinematic moisture and heat flux are introduced. In these nonlinear equations, the contribution by diabatic processes to the large-scale flux is composed of two parts. One part is associated with a Rayleigh damping term, while the other arises from temporal and spatial changes in the pressure gradient term. The influence of diabatic processes on the large-scale moisture fluxes depends greatly on the degree of balance between forcing and damping terms in the governing equations. The existence of a near balance requires a reduction in the large-scale horizontal geostrophic wind speed. From a scale analysis of the moisture flux equations it is argued that reductions in the large-scale horizontal wind speed, observed within major cumulus cloud systems, help conserve large-scale moisture fluxes. The deviation of the wind from geostrophic conditions is easily estimated. This wind modification induces secondary vertical circulations that contribute to the convergence, creating or supporting long-lived mesoscale flows. In the tropics the wind modification has an antitriptic relationship. These diagnostic findings suggest possible modifications to the wind field in the application of cumulus parameterization, and may be important in diabatic initialization of numerical weather prediction models.

  3. Moist wind relationships

    NASA Technical Reports Server (NTRS)

    Raymond, William H.

    1990-01-01

    The equations describing the temporal and spatial behavior of the kinematic moisture and heat flux are described. In these nonlinear equations, the contribution by diabatic processes to the large-scale flux is composed of two parts. One part is associated with a Rayleigh damping term while the other arises from temporal and spatial changes in the pressure gradient term. It was found that the influence of diabatic processes on large-scale moisture fluxes depends greatly on the degree of balance between forcing and damping terms in the governing kinematic flux equations. The existence of a near balance requires a reduction in the large-scale horizontal geostrophic wind speed. Based on an examination of the moisture flux equations, it is argued that reductions in the large-scale horizontal wind speed observed within major cumulus cloud systems help conserve large-scale moisture fluxes. The deviation of the wind from geostrophic conditions is easily estimated for a near balanced state. This wind modification induces secondary vertical circulations that contribute to convergence, creating or supporting long-lived mesoscale flows. We believe this process to be a major supporter of the mesoscale circulations observed in severe storms and squall lines. In the tropics the wind modification has an antitriptic relationship. These diagnostic findings suggest possible modifications to the wind field in the application of a cumulus parameterization, and may be important in diabatic initialization of numerical weather prediction models.

  4. Operational behavior of a double-fed permanent magnet generator for wind turbines

    E-print Network

    Reddy, Sivananda Kumjula

    2005-01-01

    Greater efficiency in wind turbine systems is achieved by allowing the rotor to change its rate of rotation as the wind speed changes. The wind turbine system is decoupled from the utility grid and a variable speed operation ...

  5. Examining the Variability of Wind Power Output in the Regulation Time Frame: Preprint

    SciTech Connect

    Hodge, B. M.; Shedd, S.; Florita, A.

    2012-08-01

    This work examines the distribution of changes in wind power for different time scales in the regulation time frame as well as the correlation of changes in power output for individual wind turbines in a wind plant.

  6. Malaria Vector Species

    NSDL National Science Digital Library

    0000-00-00

    A sub-page of the extremely informative VectorBase. This is a worldwide listing of malaria vectors divided into 12 geographic regions following the 1957 classic The Epidemiology and Control of Malaria by MacDonald.

  7. Understanding Singular Vectors

    ERIC Educational Resources Information Center

    James, David; Botteron, Cynthia

    2013-01-01

    matrix yields a surprisingly simple, heuristical approximation to its singular vectors. There are correspondingly good approximations to the singular values. Such rules of thumb provide an intuitive interpretation of the singular vectors that helps explain why the SVD is so…

  8. Assessing the performance of Intergovernmental Panel on Climate Change AR5 climate models in simulating and projecting wind speeds over China

    NASA Astrophysics Data System (ADS)

    Chen, Lian; Pryor, S. C.; Li, Dongliang

    2012-12-01

    The ability of nine current generation (Coupled Model Intercomparison Project Phase 5, CMIP-5) coupled atmosphere-ocean general circulation models (AOGCMs) to accurately simulate the near-surface wind climate over China is evaluated by comparing output from the historical period (1971-2005) with an observational data set and reanalysis output. Results suggest the AOGCMs show substantial positive bias in the mean 10 m wind speed relative to observations and the ERA-40, National Centers for Environmental Prediction-Department of Energy, and National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis. Given that the models generally produce the upper level geopotential height gradients comparatively well, it is postulated that one major reason for the discrepancy between observed and modeled wind fields is the surface characterization used in the AOGCMs. All models exhibit lower interannual variability than reanalysis data and observations, and none of the models reproduce the recent decline in wind speed that is manifest in the near-surface observations. The wind speed of individual model runs during the historical period does not exhibit much influence from the initial atmospheric conditions. The output for the current century from seven of the AOGCMs is examined relative to the historical wind climate. The results indicate that spatial fields of wind speed at the end of the 21st century are very similar to those of the last 35 years with comparatively little response to the precise representative concentration pathway scenario applied.

  9. Vector Piezoresponse Force Microscopy

    Microsoft Academic Search

    Sergei V. Kalinin; Brian J. Rodriguez; Stephen Jesse; Junsoo Shin; Arthur P. Baddorf; Pradyumna Gupta; Himanshu Jain; David B. Williams; Alexei Gruverman

    2006-01-01

    A novel approach for nanoscale imaging and characterization of the orientation dependence of electromechanical properties---vector piezoresponse force microscopy (Vector PFM)---is described. The relationship between local electromechanical response, polarization, piezoelectric constants, and crystallographic orientation is analyzed in detail. The image formation mechanism in vector PFM is discussed. Conditions for complete three-dimensional (3D) reconstruction of the electromechanical response vector and evaluation of

  10. Quality and Control of Water Vapor Winds

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Atkinson, Robert J.

    1996-01-01

    Water vapor imagery from the geostationary satellites such as GOES, Meteosat, and GMS provides synoptic views of dynamical events on a continual basis. Because the imagery represents a non-linear combination of mid- and upper-tropospheric thermodynamic parameters (three-dimensional variations in temperature and humidity), video loops of these image products provide enlightening views of regional flow fields, the movement of tropical and extratropical storm systems, the transfer of moisture between hemispheres and from the tropics to the mid- latitudes, and the dominance of high pressure systems over particular regions of the Earth. Despite the obvious larger scale features, the water vapor imagery contains significant image variability down to the single 8 km GOES pixel. These features can be quantitatively identified and tracked from one time to the next using various image processing techniques. Merrill et al. (1991), Hayden and Schmidt (1992), and Laurent (1993) have documented the operational procedures and capabilities of NOAA and ESOC to produce cloud and water vapor winds. These techniques employ standard correlation and template matching approaches to wind tracking and use qualitative and quantitative procedures to eliminate bad wind vectors from the wind data set. Techniques have also been developed to improve the quality of the operational winds though robust editing procedures (Hayden and Veldon 1991). These quality and control approaches have limitations, are often subjective, and constrain wind variability to be consistent with model derived wind fields. This paper describes research focused on the refinement of objective quality and control parameters for water vapor wind vector data sets. New quality and control measures are developed and employed to provide a more robust wind data set for climate analysis, data assimilation studies, as well as operational weather forecasting. The parameters are applicable to cloud-tracked winds as well with minor modifications. The improvement in winds through use of these new quality and control parameters is measured without the use of rawinsonde or modeled wind field data and compared with other approaches.

  11. The Geometry of Vectors and Matrices: Eigenvalues and Eigenvectors

    E-print Network

    Walsh, Bruce

    Appendix 4 The Geometry of Vectors and Matrices: Eigenvalues and Eigenvectors An unspeakable horror vector into another by a change in geometry (rotation and scaling).Theeigenvaluesandtheirassociatedeigenvectorsofamatrixdescribethegeometry of the transformation associated with that matrix. THE GEOMETRY OF VECTORS AND MATRICES There are numerous excellent

  12. Vector Microprocessors Krste Asanovic

    E-print Network

    Asanoviæ, Krste

    Vector Microprocessors by Krste Asanovi´c B.A. (University of Cambridge) 1987 A dissertation 1998 #12;Vector Microprocessors Copyright 1998 by Krste Asanovi´c #12;1 Abstract Vector Microprocessors microprocessor imple- mentations targeting a much broader range of applications. I present the design

  13. Support vector domain description

    Microsoft Academic Search

    David M. J. Tax; Robert P. W. Duin

    1999-01-01

    This paper shows the use of a data domain description method, inspired by the support vector machine by Vapnik, called the support vector domain description (SVDD). This data description can be used for novelty or outlier de- tection. A spherically shaped decision boundary around a set of objects is constructed by a set of support vectors describing the sphere boundary.

  14. Nonviral Vector Systems

    Microsoft Academic Search

    Pui-yan Lee; Leaf Huang

    Gene therapy requires efficient vectors for delivering therapeutic genes. Advances in developments of nonviral vectors have\\u000a been established for improving the efficiency of gene delivery. This chapter describes different nonviral methods as well\\u000a as their applications. Some new directions in developing nonviral vectors are also discussed.

  15. Rhotrix Vector Spaces

    ERIC Educational Resources Information Center

    Aminu, Abdulhadi

    2010-01-01

    By rhotrix we understand an object that lies in some way between (n x n)-dimensional matrices and (2n - 1) x (2n - 1)-dimensional matrices. Representation of vectors in rhotrices is different from the representation of vectors in matrices. A number of vector spaces in matrices and their properties are known. On the other hand, little seems to be…

  16. Winds influence Bering Shelf circulation

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-05-01

    Circulation over the Bering Sea shelf and between the shelf and the adjacent deep basin affects the ecosystem through nutrient exchange, egg and larvae dispersal, and changes in temperature and salinity. Using numerical models and observations, Danielson et al. present a new simple framework showing how circulation on the Bering shelf varies with wind forcing. They f n d two primary modes of wind forcing, and changes in wind direction tend to reverse the flow around the shelf. Northwesterly winds, which are more common, promote off-shelf transport along the majority of the continental slope, while southeasterly winds, which are less frequent, are associated with greater on-shelf transport. The study improves overall understanding of the Bering shelf circulation. (Geophysical Research Letters, doi:10.1029/2012GL051231, 2012)

  17. Reminiscences on the study of wind waves.

    PubMed

    Mitsuyasu, Hisashi

    2015-01-01

    The wind blowing over sea surface generates tiny wind waves. They develop with time and space absorbing wind energy, and become huge wind waves usually referred to ocean surface waves. The wind waves cause not only serious sea disasters but also take important roles in the local and global climate changes by affecting the fluxes of momentum, heat and gases (e.g. CO2) through the air-sea boundary. The present paper reviews the selected studies on wind waves conducted by our group in the Research Institute for Applied Mechanics (RIAM), Kyushu University. The themes discussed are interactions between water waves and winds, the energy spectrum of wind waves, nonlinear properties of wind waves, and the effects of surfactant on some air-sea interaction phenomena. PMID:25864467

  18. Ultra High Resolution Wind Retrieval for SeaWinds David G. Long, Jeremy B. Luke and William Plant

    E-print Network

    Long, David G.

    . This imagery is now being operationally used to im- prove hurricane and severe storm tracking [4]. The high reconstruction of finer scale backscatter values which can then be used to estimate the near- surface wind vector

  19. Wind Energy Leasing Handbook

    E-print Network

    Balasundaram, Balabhaskar "Baski"

    Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

  20. Global Winds

    NSDL National Science Digital Library

    2012-08-03

    On this worksheet, students examine a diagram of global winds and learn the position of the prevailing westerlies, the polar easterlies, the trade winds, the horse latitudes and the doldrums, and that together, the uneven heating of the planet by the Sun and the Coriolis Effect are responsible for the global wind belts. The resource is part of the teacher's guide accompanying the video, NASA Why Files: The Case of the Mysterious Red Light. Lesson objectives supported by the video, additional resources, teaching tips and an answer sheet are included in the teacher's guide.

  1. Stellar Winds

    NASA Astrophysics Data System (ADS)

    Owocki, Stan

    A "stellar wind" is the continuous, supersonic outflow of matter from the surface layers of a star. Our sun has a solar wind, driven by the gas-pressure expansion of the hot (T > 106 K) solar corona. It can be studied through direct in situ measurement by interplanetary spacecraft; but analogous coronal winds in more distant solar-type stars are so tenuous and transparent that that they are difficult to detect directly. Many more luminous stars have winds that are dense enough to be opaque at certain wavelengths of the star's radiation, making it possible to study their wind outflows remotely through careful interpretation of the observed stellar spectra. Red giant stars show slow, dense winds that may be driven by the pressure from magnetohydrodyanmic waves. As stars with initial mass up to 8 M ? evolve toward the Asymptotic Giant Branch (AGB), a combination of stellar pulsations and radiative scattering off dust can culminate in "superwinds" that strip away the entire stellar envelope, leaving behind a hot white dwarf stellar core with less than the Chandrasekhar mass of ˜ ?? 1. 4M ?. The winds of hot, luminous, massive stars are driven by line-scattering of stellar radiation, but such massive stars can also exhibit superwind episodes, either as Red Supergiants or Luminous Blue Variable stars. The combined wind and superwind mass loss can strip the star's hydrogen envelope, leaving behind a Wolf-Rayet star composed of the products of earlier nuclear burning via the CNO cycle. In addition to such direct effects on a star's own evolution, stellar winds can be a substantial source of mass, momentum, and energy to the interstellar medium, blowing open large cavities or "bubbles" in this ISM, seeding it with nuclear processed material, and even helping trigger the formation of new stars, and influencing their eventual fate as white dwarves or core-collapse supernovae. This chapter reviews the properties of such stellar winds, with an emphasis on the various dynamical driving processes and what they imply for key wind parameters like the wind flow speed and mass loss rate.

  2. Wind Tunnel

    NSDL National Science Digital Library

    Lawrence Hall of Science

    2009-01-01

    Scientists use enormous wind tunnels to test the design of planes, helicopters, even the Space Shuttle. In this simulation activity, learners create a miniature wind tunnel test by blowing air with a fan or blow dryer through a large tube, then flying paper airplanes, helicopters and other folded paper models in the "wind." Unless the source of the air is a fan that stands on its own, for example, more than one person will be needed to do the activity.This activity can be combined with the Helicopter Twirl, Parachute Drop and Boomerang activities, also found on the Lawrence Hall of Science Kids Site.

  3. Heat transfer phase change paint tests of 0.0175-scale models (nos. 21-0 and 46-0) of the Rockwell International space shuttle orbiter in the AEDC tunnel B hypersonic wind tunnel (test OH25A)

    NASA Technical Reports Server (NTRS)

    Dye, W. H.

    1975-01-01

    Tests were conducted in a hypersonic wind tunnel using various truncated space shuttle orbiter configurations in an attempt to establish the optimum model size for other tests examining body shock-wing leading edge interference effects. The tests were conducted at Mach number 8 using the phase change paint technique. A test description, tabulated data, and tracings of isotherms made from photographs taken during the test are presented.

  4. Large wind disturbance in the Boundary Waters Canoe Area Wilderness. Forest dynamics and development changes associated with the July 4th 1999 blowdown

    Microsoft Academic Search

    Roy Lawrence Rich

    2005-01-01

    The July 4, 1999 blowdown damaged 193,000 ha of near-boreal forest within the BWCAW. This storm created a gradient of wind disturbance severity overlaying a mosaic different-age, fire-origin stands. Wind disturbance has been largely overlooked in boreal forests where the predominant natural disturbance regime consists of crown and ground fires occurring at intervals shorter than the lifespan of dominant canopy

  5. Rotations with Rodrigues' vector

    NASA Astrophysics Data System (ADS)

    Piña, E.

    2011-09-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears to be a fundamental matrix that is used to express the components of the angular velocity, the rotation matrix and the angular momentum vector. The Hamiltonian formalism of rotational dynamics in terms of this vector uses the same matrix. The quantization of the rotational dynamics is performed with simple rules if one uses Rodrigues' vector and similar formal expressions for the quantum operators that mimic the Hamiltonian classical dynamics.

  6. Wind Story

    NSDL National Science Digital Library

    WPSU (Penn State University broadcast station)

    This animation presents the characteristics of wind power as a source of clean energy. The force of moving air generates electricity, by rotating blades around a rotor. The motion of the rotor turns a driveshaft that drives an electric generator.

  7. Wind Surge

    NSDL National Science Digital Library

    Robert A. Dalrymple

    This site features an interactive applet from the University of Delaware. The applet illustrates the way water can pile up against the downwind side (of a basin) due to stresses exerted on the surface by strong wind.

  8. Wind Landforms

    NSDL National Science Digital Library

    Lisa Tranel

    In this assignment, students evaluate depositional and erosional landforms created by wind processes. This exercise looks at sand dune and yardang features using satellite images and topographic maps in an online GIS.

  9. Deviations from the ideal wind: Local and zonal-mean perspectives

    NASA Astrophysics Data System (ADS)

    Gaßmann, Almut

    2014-05-01

    This contribution introduces the non-ideal wind as the deviation from a general local wind balance, the ideal wind. The ideal wind is directed along intersection lines of Bernoulli function and potential temperature surfaces. In climatological steady state, the ideal mass flux cannot participate in net mass fluxes, because the mean position of the mentioned intersection lines does not change. A conceptional proximity of the zonal-mean non-ideal wind and the residual wind as occurring in the transformed Eulerian mean (TEM) equations suggests itself. The zonal- and time-mean non-ideal wind is compared to the residual wind for the Held-Suarez test case. Similarities occur for the meridional components in the zone of Rossby wave breaking in the upper troposphere equatorward of the jet. The vertical components are similar, too. However, the vertical non-ideal wind is much stronger in the baroclinic zone. This is due to the missing vertical eddy flux of Ertel's potential vorticity (EPV) in the TEM equations. The largest differences are to be found in the boundary layer, where the non-ideal wind exhibits typical pattern of Ekman dynamics. Instantaneous non-ideal wind vectors demonstrate mass-inflow for lows and mass-outflow for highs in the boundary layer. A significant non-ideal meridional wind is associated with a filamentation of EPV in the zone of Rossby wave breaking in about 300 hPa. Strong gradients of EPV act as a transport barrier. The dynamical state index (DSI) introduced by Weber and Nevir (2008) in order to identify extreme weather events acts as a source for the divergence of the non-ideal mass flux. Hence, the DSI and the non-ideal wind could provide useful diagnostics to charaterize atmospheric dynamics from a local, zonal-mean, and time-mean perspective. Reference WEBER, T., P. NÉVIR, 2008: Storm tracks and cyclone development using the theoretical concept of the Dy- namic State Index DSI. - Tellus 60A, 1-10.

  10. Implications of climate change on the distribution of the tick vector Ixodes scapularis and risk for Lyme disease in the Texas-Mexico transboundary region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disease risk maps are important tools that help ascertain the likelihood of exposure to specific infectious agents. Understanding how climate change may affect the suitability of habitats for ticks will improve the accuracy of risk maps of tick-borne pathogen transmission in humans and domestic anim...

  11. Probabilistic Path Planning of Montgolfier Balloons in Strong, Uncertain Wind Fields

    NASA Technical Reports Server (NTRS)

    Wolf, Michael; Blackmore, James C.; Kuwata, Yoshiaki

    2011-01-01

    Lighter-than-air vehicles such as hot-air balloons have been proposed for exploring Saturn s moon Titan, as well as other bodies with significant atmospheres. For these vehicles to navigate effectively, it is critical to incorporate the effects of surrounding wind fields, especially as these winds will likely be strong relative to the control authority of the vehicle. Predictive models of these wind fields are available, and previous research has considered problems of planning paths subject to these predicted forces. However, such previous work has considered the wind fields as known a priori, whereas in practical applications, the actual wind vector field is not known exactly and may deviate significantly from the wind velocities estimated by the model. A probabilistic 3D path-planning algorithm was developed for balloons to use uncertain wind models to generate time-efficient paths. The nominal goal of the algorithm is to determine what altitude and what horizontal actuation, if any is available on the vehicle, to use to reach a particular goal location in the least expected time, utilizing advantageous winds. The solution also enables one to quickly evaluate the expected time-to-goal from any other location and to avoid regions of large uncertainty. This method is designed for balloons in wind fields but may be generalized for any buoyant vehicle operating in a vector field. To prepare the planning problem, the uncertainty in the wind field is modeled. Then, the problem of reaching a particular goal location is formulated as a Markov decision process (MDP) using a discretized space approach. Solving the MDP provides a policy of what actuation option (how much buoyancy change and, if applicable, horizontal actuation) should be selected at any given location to minimize the expected time-to-goal. The results provide expected time-to-goal values from any given location on the globe in addition to the action policy. This stochastic approach can also provide insights not accessible by deterministic methods; for example, one can evaluate variability and risk associated with different scenarios, rather than only viewing the expected outcome.

  12. Ultrasonic Dynamic Vector Stress Sensor

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.; Froggatt, Mark

    1992-01-01

    Stress inferred from measurements in specimens rather than in bonded gauges. Ultrasonic dynamic vector stress sensor (UDVSS) measures changes in dynamic directional stress occurring in material or structure at location touched by device when material or structure put under cyclic load. Includes phase-locked loop, synchronous amplifier, and contact probe. Useful among manufacturers of aerospace and automotive structures for stress testing and evaluation of designs.

  13. A Benchmark for Cloud Tracking Wind Measurements

    NASA Astrophysics Data System (ADS)

    Sayanagi, K. M.; Mitchell, J.; Ingersoll, A. P.; Ewald, S. P.; Marcus, P. S.; de Pater, I.; Wong, M. H.; Choi, D. S.; Sussman, M.; Ogohara, K.; Imamura, T.; Kouyama, T.; Takagi, M.; Satoh, N.; Del Genio, A. D.; Barbara, J.; Sanchez-Lavega, A.; Hueso, R.; García-Melendo, E.; Simon-Miller, A. A.

    2010-12-01

    Cloud tracking has been the primary method of measuring wind speeds in planetary atmospheres through Earth- and space- based remote sensing. Latest developments of automated feature tracking software are able to harvest thousands of wind vectors out of a sequence of high-resolution images acquired with an appropriate temporal separation. However, unlike satellite-based cloud-tracking measurements of Earth, these planetary measurements cannot easily be validated against in-situ data, which makes the interpretation difficult when different cloud-tracking schemes do not agree on their results. To address the issue of data validation, we run multiple automated cloud-tracking software independently developed at multiple institutions on synthetic wind data generated using a General Circulation Model. Our simulations calculate the advection of tracer distributions to represent cloud motions as done by Sayanagi and Showman (2007, Icarus 187, p520-539). The motions of tracers are measured using cloud-tracking software to derive wind vector fields, which will be compared against the model "truth." We test the performance of cloud-tracking software for different wind scenarios. Our first test wind field contains a simple zonal jet. The second test scenario is a large vortex like Jupiter’s Great Red Spot. The third test case has waves propagating alongside a zonal jet. We compare the results returned from different cloud-tracking schemes and discuss what approaches work better at measuring winds. In addition to verifying the wind vector field measurements, we also address the accuracy and validity of eddy momentum flux measurements by tracking clouds. The difficulties of such measurements are discussed by Salyk et al. (2006, Icarus 185, p430-442), and we re-examine the issue using our synthetic wind data. From our experiments, we aim to establish a standard benchmark of cloud tracking measurements for planetary mission applications.

  14. Solar imaging vector magnetograph

    NASA Technical Reports Server (NTRS)

    Canfield, Richard C.

    1993-01-01

    This report describes an instrument which has been constructed at the University of Hawaii to make observations of the magnetic field in solar active regions. Detailed knowledge of active region magnetic structures is crucial to understanding many solar phenomena, because the magnetic field both defines the morphology of structures seen in the solar atmosphere and is the apparent energy source for solar flares. The new vector magnetograph was conceived in response to a perceived discrepancy between the capabilities of X ray imaging telescopes to be operating during the current solar maximum and those of existing magnetographs. There were no space-based magnetographs planned for this period; the existing ground-based instruments variously suffered from lack of sensitivity, poor time resolution, inadequate spatial resolution or unreliable sites. Yet the studies of flares and their relationship to the solar corona planned for the 1991-1994 maximum absolutely required high quality vector magnetic field measurements. By 'vector' measurements we mean that the observation attempts to deduce the complete strength and direction of the field at the measurement site, rather than just the line of sight component as obtained by a traditional longitudinal magnetograph. Knowledge of the vector field permits one to calculate photospheric electric currents, which might play a part in heating the corona, and to calculate energy stored in coronal magnetic fields as the result of such currents. Information about the strength and direction of magnetic fields in the solar atmosphere can be obtained in a number of ways, but quantitative data is best obtained by observing Zeeman-effect polarization in solar spectral lines. The technique requires measuring the complete state of polarization at one or more wavelengths within a magnetically sensitive line of the solar spectrum. This measurement must be done for each independent spatial point for which one wants magnetic field data. All the measurements need to be done in a time short compared to the time scale for changes of the solar features being observed. Were it possible, one would want to record all the needed data simultaneously, since temporal variation of atmospheric seeing degrades both the image and the polarization sensitivity. Since the measurements must span four dimensions, two spatial plus polarization and wavelength, we had some freedom to design the instrument to favor some dimensions over others in terms of simultaneity. Our earlier instrument, the Haleakala Stokes Polarimeter, records a range of wavelengths spanning two spectral lines in each reading, but requires two seconds to determine the polarization state and obtains spatial information only by assembling a long sequence of measurements at single locations on the sun. The new instrument sacrifices spectral detail and accuracy in favor of greatly improved imaging characteristics. The scientific goals for this instrument were to measure surface magnetic fields with enough accuracy to permit calculations of photospheric currents, but with a field of view covering an entire typical active region, high spatial resolution, and a fast enough temporal cadence for detecting flare-associated changes in magnetic structures.

  15. Viral Vector Induction of CREB Expression in the Periaqueductal Gray Induces a Predator Stress-Like Pattern of Changes in pCREB Expression, Neuroplasticity, and Anxiety in Rodents

    PubMed Central

    Adamec, Robert; Berton, Olivier; Abdul Razek, Waleed

    2009-01-01

    Predator stress is lastingly anxiogenic. Phosphorylation of CREB to pCREB (phosphorylated cyclic AMP response element binding protein) is increased after predator stress in fear circuitry, including in the right lateral column of the PAG (periaqueductal gray). Predator stress also potentiates right but not left CeA-PAG (central amygdala-PAG) transmission up to 12 days after stress. The present study explored the functional significance of pCREB changes by increasing CREB expression in non-predator stressed rats through viral vectoring, and assessing the behavioral, electrophysiological and pCREB expression changes in comparison with handled and predator stressed controls. Increasing CREB expression in right PAG was anxiogenic in the elevated plus maze, had no effect on risk assessment, and increased acoustic startle response while delaying startle habituation. Potentiation of the right but not left CeA-PAG pathway was also observed. pCREB expression was slightly elevated in the right lateral column of the PAG, while the dorsal and ventral columns were not affected. The findings of this study suggest that by increasing CREB and pCREB in the right lateral PAG, it is possible to produce rats that exhibit behavioral, brain, and molecular changes that closely resemble those seen in predator stressed rats. PMID:19360104

  16. Understanding Inertial and Frequency Response of Wind Power Plants: Preprint

    SciTech Connect

    Muljadi, E.; Gevorgian, V.; Singh, M.; Santoso, S.

    2012-07-01

    The objective of this paper is to analyze and quantify the inertia and frequency responses of wind power plants with different wind turbine technologies (particularly those of fixed speed, variable slip with rotor-resistance controls, and variable speed with vector controls).

  17. Mechanics of interrill erosion with wind-driven rain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The vector physics of wind-driven rain (WDR) differs from that of wind-free rain, and the interrill soil detachment equations in the Water Erosion Prediction Project (WEPP) model were not originally developed to deal with this phenomenon. This article provides an evaluation of the performance of the...

  18. Cloud-tracked Winds for the First MGS Mapping Year

    Microsoft Academic Search

    H. Wang; A. Ingersoll

    2003-01-01

    We have measured winds using cloud motion in consecutive Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) wide angle global map swaths taken during the first mapping year (Ls 135° -360° -111° ). We present a total of ˜11,200 wind vectors collected in the north polar region during Ls 135° -195° (late summer\\/early fall) and Ls 20° -55° (mid spring),

  19. FIV vector systems.

    PubMed

    Sauter, S L; Gasmi, M

    2001-11-01

    Why is feline immunodeficiency virus (FIV) such an appealing candidate for gene therapy vector development? Phylogenetic analysis suggests FIV is only distantly related to the primate lentiviruses, and despite repeated exposure, neither seroconversion nor other detectable evidence of human infection occurs. FIV naturally infects diverse Felidae worldwide, including the domestic cat. Here, the disease progression parallels the immunodeficiency caused by HIV, and for that reason, FIV and the cat provide an excellent model for anti-virals and AIDS vaccine research. Simple genome organization also facilitates vector development and analysis: FIV has only three accessory/regulatory proteins. To overcome FIV's cat-specific tropism, feline vectors are equipped with hybrid LTRs, since the FIV LTR shows low activity in human cells. Recombinant FIV vectors generate titers comparable to other lentiviral systems, are capable of incorporating heterologous envelopes and efficiently transduce dividing and nondividing cells in the presence and absence of the accessory proteins in vitro. Compared to HIV vectors, FIV vector development is still in its infancy, but initial in vivo data in various species and tissues indicate long-term gene expression at therapeutic levels, and thus FIV vectors hold great promise. Future efficacy studies in animal models and primates will determine the FIV vectors' suitability for gene therapy. The design of recombinant FIV vectors incorporates safety features described for primate lentiviral vectors with the benefit that biosafety testing of FIV vectors can occur in the natural host. Currently, FIV vectors are generated in a transient fashion, but the availability of a stable producer system amenable to better characterization and scale-up will considerably increase the potential for use of FIV vectors in the clinic. PMID:12465464

  20. Wind for Schools (Poster)

    Microsoft Academic Search

    Baring-Gould

    2010-01-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community

  1. Wind speed PDF classification using Dirichlet mixtures Rudy CALIF1

    E-print Network

    Paris-Sud XI, Université de

    Wind speed PDF classification using Dirichlet mixtures Rudy CALIF1 , Richard EMILION2 , Ted'Orléans), UMR CNRS 6628 Université d'Orléans, France. Abstract: Wind energy production is very sensitive to instantaneous wind speed fluctuations. Thus rapid variation of wind speed due to changes in the local

  2. Using Kites to Illustrate Some Features of Boundary Layer Winds.

    ERIC Educational Resources Information Center

    Tuller, Stanton E.

    1983-01-01

    Kites allow teachers to illustrate wind patterns by calling on past experience and by present demonstration. Features of the wind illustrated by kites--the effect of surface friction on wind speed, change of wind direction with elevation, gust and lull sequence, and atmospheric stability and turbulence type--are discussed. (SR)

  3. Impact of Anthropogenic Environmental Alterations on Vector-Borne Diseases

    PubMed Central

    Vora, Neil

    2008-01-01

    The spread of infectious vector-borne diseases involves at least 3 organisms: a parasite, a vector, and a host. Alterations to the natural environment may change the context within which these entities interact, thus potentially affecting vector-borne disease epidemiology. In this review, examples are presented in which human-driven ecological changes may be contributing to the spread of vector-borne diseases. Such changes include deforestation, agriculture and animal husbandry, water control projects, urbanization, loss of biodiversity, introduction of alien species, and climate change. The global environment is currently being degraded at an alarming pace, potentially placing human populations at increasing risk for unnecessary and preventable outbreaks of vector-borne diseases. Further research is needed to improve our ability to predict and prevent emergence and reemergence of vector-borne diseases from environmental alterations. PMID:19099032

  4. Advanced algorithms for QuikScat and SeaWinds\\/AMSR

    Microsoft Academic Search

    Frank J. Wentz; Deborah K. Smith; Carl A. Mears; Chelle L. Gentemann

    2001-01-01

    QuikScat is providing scientists and weather forecasters with an unprecedented view of ocean winds at a 25-km resolution. With a typical accuracy of 1 m\\/s in speed and 15° in direction, the retrieved wind vectors are being used for a number of important oceanographic and air\\/sea interaction studies. We present work on a QuikScat wind-vector retrieval algorithm that contains a

  5. Three-dimensional elastic lidar winds

    SciTech Connect

    Buttler, W.T.

    1996-07-01

    Maximum cross-correlation techniques have been used with satellite data to estimate winds and sea surface velocities for several years. Los Alamos National Laboratory (LANL) is currently using a variation of the basic maximum cross-correlation technique, coupled with a deterministic application of a vector median filter, to measure transverse winds as a function of range and altitude from incoherent elastic backscatter lidar data taken throughout large volumes within the atmospheric boundary layer. Hourly representations of three- dimensional wind fields, derived from elastic lidar data taken during an air-quality study performed in a region of complex terrain near Sunland Park, New Mexico, are presented and compared with results from an Environmental Protection Agency (EPA) approved laser doppler velocimeter. The wind fields showed persistent large scale eddies as well as general terrain following winds in the Rio Grande valley.

  6. Branchless vectorized median filtering

    Microsoft Academic Search

    M. Kachelriess

    2009-01-01

    Median filtering is an important tool in signal or image processing. Based on the vector capabilities of modern hardware, which allows for vectorized min, max and mask operations, we provide a median algorithm of complexity O(NM) that is both branchless and vectorized. In contrast to conventional fast median filters, whose run-time is data-dependent and that can operate only on scalar

  7. The Biology and Control of Leishmaniasis Vectors

    PubMed Central

    Claborn, David M

    2010-01-01

    Vector control remains a key component of many anti-leishmaniasis programs and probably will remain so until an effective vaccine becomes available. Technologies similar to those used for control of adult mosquitoes, specifically interior residual sprays and insecticide-treated nets, are currently at the forefront as disease control measures. This article provides a review of literature on the biology and control of sand fly vectors of leishmaniasis in the context of changing disease risks and the realities of modern vector control. The Literature Retrieval System of the Armed Forces Pest Management Board, Washington, DC, was the primary search engine used to review the literature. PMID:20606968

  8. Insitu aircraft verification of the quality of satellite cloud winds over oceanic regions

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Skillman, W. C.

    1979-01-01

    A five year aircraft experiment to verify the quality of satellite cloud winds over oceans using in situ aircraft inertial navigation system wind measurements is presented. The final results show that satellite measured cumulus cloud motions are very good estimators of the cloud base wind for trade wind and subtropical high regions. The average magnitude of the vector differences between the cloud motion and the cloud base wind is given. For cumulus clouds near frontal regions, the cloud motion agreed best with the mean cloud layer wind. For a very limited sample, cirrus cloud motions also most closely followed the mean wind in the cloud layer.

  9. Construction of Solar-Wind-Like Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Roberts, Dana Aaron

    2012-01-01

    Fluctuations in the solar wind fields tend to not only have velocities and magnetic fields correlated in the sense consistent with Alfven waves traveling from the Sun, but they also have the magnitude of the magnetic field remarkably constant despite their being broadband. This paper provides, for the first time, a method for constructing fields with nearly constant magnetic field, zero divergence, and with any specified power spectrum for the fluctuations of the components of the field. Every wave vector, k, is associated with two polarizations the relative phases of these can be chosen to minimize the variance of the field magnitude while retaining the\\random character of the fields. The method is applied to a case with one spatial coordinate that demonstrates good agreement with observed time series and power spectra of the magnetic field in the solar wind, as well as with the distribution of the angles of rapid changes (discontinuities), thus showing a deep connection between two seemingly unrelated issues. It is suggested that using this construction will lead to more realistic simulations of solar wind turbulence and of the propagation of energetic particles.

  10. Doppler Lidar for Wind Measurements on Venus

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Emmitt, George D.; Yu, Jirong; Kavaya, Michael J.

    2010-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. This lidar system was recently deployed at Howard University facility in Beltsville, Mary-land, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other sensors will be presented. A simulation and data product for wind measurement at Venus will be presented.

  11. Quantum mechanics without state vectors

    NASA Astrophysics Data System (ADS)

    Weinberg, Steven

    2014-10-01

    Because the state vectors of isolated systems can be changed in entangled states by processes in other isolated systems, keeping only the density matrix fixed, it is proposed to give up the description of physical states in terms of ensembles of state vectors with various probabilities, relying only on density matrices. The density matrix is defined here by the formula giving the mean values of physical quantities, which implies the same properties as the usual definition in terms of state vectors and their probabilities. This change in the description of physical states opens up a large variety of new ways that the density matrix may transform under various symmetries, different from the unitary transformations of ordinary quantum mechanics. Such new transformation properties have been explored before, but so far only for the symmetry of time translations into the future, treated as a semigroup. Here, new transformation properties are studied for general symmetry transformations forming groups, not just semigroups. Arguments that such symmetries should act on the density matrix as in ordinary quantum mechanics are presented, but all of these arguments are found to be inconclusive.

  12. 2008 WIND TECHNOLOGIES MARKET REPORT

    SciTech Connect

    Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

    2009-07-15

    The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the domestic wind power market, including federal and state policy drivers, transmission issues, and grid integration. Finally, the report concludes with a preview of possible near- to medium-term market developments. This version of the Annual Report updates data presented in the previous editions, while highlighting key trends and important new developments from 2008. New to this edition is an executive summary of the report and an expanded final section on near- to medium-term market development. The report concentrates on larger-scale wind applications, defined here as individual turbines or projects that exceed 50 kW in size. The U.S. wind power sector is multifaceted, however, and also includes smaller, customer-sited wind turbines used to power the needs of residences, farms, and businesses. Data on these applications are not the focus of this report, though a brief discussion on Distributed Wind Power is provided on page 4. Much of the data included in this report were compiled by Berkeley Lab, and come from a variety of sources, including the American Wind Energy Association (AWEA), the Energy Information Administration (EIA), and the Federal Energy Regulatory Commission (FERC). The Appendix provides a summary of the many data sources used in the report. Data on 2008 wind capacity additions in the United States are based on information provided by AWEA; some minor adjustments to those data may be expected. In other cases, the data shown here represent only a sample of actual wind projects installed in the United States; furthermore, the data vary in quality. As such, emphasis should be placed on overall trends, rather than on individual data points. Finally, each section of this document focuses on historical market information, with an emphasis on 2008; with the exception of the final section, the report does not seek to forecast future trends.

  13. Implications of climate change on the distribution of the tick vector Ixodes scapularis and risk for Lyme disease in the Texas-Mexico transboundary region

    PubMed Central

    2014-01-01

    Background Disease risk maps are important tools that help ascertain the likelihood of exposure to specific infectious agents. Understanding how climate change may affect the suitability of habitats for ticks will improve the accuracy of risk maps of tick-borne pathogen transmission in humans and domestic animal populations. Lyme disease (LD) is the most prevalent arthropod borne disease in the US and Europe. The bacterium Borrelia burgdorferi causes LD and it is transmitted to humans and other mammalian hosts through the bite of infected Ixodes ticks. LD risk maps in the transboundary region between the U.S. and Mexico are lacking. Moreover, none of the published studies that evaluated the effect of climate change in the spatial and temporal distribution of I. scapularis have focused on this region. Methods The area of study included Texas and a portion of northeast Mexico. This area is referred herein as the Texas-Mexico transboundary region. Tick samples were obtained from various vertebrate hosts in the region under study. Ticks identified as I. scapularis were processed to obtain DNA and to determine if they were infected with B. burgdorferi using PCR. A maximum entropy approach (MAXENT) was used to forecast the present and future (2050) distribution of B. burgdorferi-infected I. scapularis in the Texas-Mexico transboundary region by correlating geographic data with climatic variables. Results Of the 1235 tick samples collected, 109 were identified as I. scapularis. Infection with B. burgdorferi was detected in 45% of the I. scapularis ticks collected. The model presented here indicates a wide distribution for I. scapularis, with higher probability of occurrence along the Gulf of Mexico coast. Results of the modeling approach applied predict that habitat suitable for the distribution of I. scapularis in the Texas-Mexico transboundary region will remain relatively stable until 2050. Conclusions The Texas-Mexico transboundary region appears to be part of a continuum in the pathogenic landscape of LD. Forecasting based on climate trends provides a tool to adapt strategies in the near future to mitigate the impact of LD related to its distribution and risk for transmission to human populations in the Mexico-US transboundary region. PMID:24766735

  14. Improved diagnostic model for estimating wind energy

    SciTech Connect

    Endlich, R.M.; Lee, J.D.

    1983-03-01

    Because wind data are available only at scattered locations, a quantitative method is needed to estimate the wind resource at specific sites where wind energy generation may be economically feasible. This report describes a computer model that makes such estimates. The model uses standard weather reports and terrain heights in deriving wind estimates; the method of computation has been changed from what has been used previously. The performance of the current model is compared with that of the earlier version at three sites; estimates of wind energy at four new sites are also presented.

  15. 2009 Wind Technologies Market Report

    SciTech Connect

    Wiser, R.; Bolinger, M.

    2010-08-01

    The U.S. wind power industry experienced yet another record year in 2009, once again surpassing even optimistic growth projections from years past. At the same time, 2009 was a year of upheaval, with the global financial crisis impacting the wind power industry and with federal policy changes enacted to push the industry toward continued aggressive expansion. The year 2010, meanwhile, is anticipated to be one of some retrenchment, with expectations for fewer wind power capacity additions than seen in 2009. The rapid pace of development and change within the industry has made it difficult to keep up with trends in the marketplace, yet the need for timely, objective information on the industry and its progress has never been greater. This report - the fourth in an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the United States wind power market, with a particular focus on 2009.

  16. Wind energy systems

    NASA Technical Reports Server (NTRS)

    Stewart, H. J.

    1978-01-01

    A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.

  17. Wind tunnel investigation on wind turbine wakes and wind farms

    NASA Astrophysics Data System (ADS)

    Iungo, G. V.; Coëffé, J.; Porté-Agel, F.

    2012-04-01

    The interaction between atmospheric boundary layer and wind farms leads to flow modifications, which need to be deeply characterized in order to relate them to wind farm performance. The wake flow produced from a wind farm is the result of a strong interaction between multiple turbine wakes, so that the wind farm configuration turns out to be one of the dominant features to enhance power production. For the present work a wind tunnel investigation was carried out with hot-wire anemometry and velocity measurements performed with multi-hole pressure probes. The tested wind farms consist of miniature three-bladed wind turbine models. Preliminarily, the wake flow generated from a single wind turbine is surveyed, which is characterized by a strong velocity defect lying in proximity of the wind turbine hub height. The wake gradually recovers by moving downstream; the characteristics of the incoming boundary layer and wind turbulence intensity can strongly affect the wake recovery, and thus performance of following wind turbines. An increased turbulence level is typically detected downstream of each wind turbine for heights comparable to the wind turbine blade top-tip. These wake flow fluctuations produce increased fatigue loads on the following wind turbines within a wind farm, which could represent a significant hazard for real wind turbines. Dynamics of vorticity structures present in wind turbine wakes are also investigated; particular attention is paid to the downstream evolution of the tip helicoidal vortices and to oscillations of the hub vortex. The effect of wind farm layout on power production is deeply investigated. Particular emphasis is placed on studying how the flow adjusts as it moves inside the wind farm and can affect the power production. Aligned and staggered wind farm configurations are analysed, also with varying separation distances in the streamwise and spanwise directions. The present experimental results are being used to test and guide the development of improved parameterizations of wind turbines in high-resolution numerical models, such as large-eddy simulations (LES).

  18. Solar wind stagnation near comets

    NASA Technical Reports Server (NTRS)

    Galeev, A. A.; Cravens, T. E.; Gombosi, T. I.

    1985-01-01

    The nature of the solar wind flow near comets is examined analytically in this paper. In particular, typical values for the stagnation pressure and magnetic barrier strength are estimated, taking into account magnetic field line tension and change-exchange cooling of the mass-loaded solar wind. A knowledge of the strength of the magnetic barrier is required in order to determine the location of the ionopause surface which separates the contaminated solar wind plasma from the outflowing plasma of the cometary ionosphere.

  19. Time series changes in sea-surface temperature, chlorophyll a, nutrients, and sea-wind in the East/Japan Sea on the left- and right-hand sides of typhoon shanshan's track

    NASA Astrophysics Data System (ADS)

    Lee, Chung Il; Park, Mi-Ok

    2010-12-01

    Time series changes in sea surface temperature (SST), chlorophyll a (Chl a), nutrients (PO4, NO3), and sea winds, which correlated with the passage of Typhoon Shanshan in the East/Japan Sea (EJS), are illustrated using satellite data for Chl a, SST, sea winds, and in situ data for nutrients and water temperature. The sea-surface cooling (SSC) effect by the passage of the typhoon was higher at stations nearer to the center compared to stations further from the center. The SSC effect at stations in the colder water region (on the left side of the typhoon's track) was higher than at stations in the Tsushima Warm Current region (on the right side of the typhoon). The SSC effect continued for approximately 10 days after the passage of the typhoon. The Chl a concentration at all stations increased after the passage of the typhoon. This increase continued for a period of approximately 10 days, but the duration period at each station varied with distance from the typhoon center. Changes in Chl concentrations at stations within a 2° distance on both sides from the typhoon's center were higher than that at other stations. The changes in Chl a by the passage of the typhoon were measured at approximately 0.3-1.0 mg/m3 along the moving path of the typhoon. Phosphate and nitrate changes were inversely correlated with the water temperature changes; the nutrient concentration increased with the passage of the typhoon. Like the changes in SST, changes in nutrient concentrations on the left side of the typhoon's track were higher compared to those at the center and the right side.

  20. Support Vector Data Description

    Microsoft Academic Search

    David M. J. Tax; Robert P. W. Duin

    2004-01-01

    Data domain description concerns the characterization of a data set. A good description covers all target data but includes no superfluous space. The boundary of a dataset can be used to detect novel data or outliers. We will present the Support Vector Data Description (SVDD) which is inspired by the Support Vector Classifier. It obtains a spherically shaped boundary around

  1. Exploring acceleration through vectors

    NSDL National Science Digital Library

    This in class worksheet is designed to get students to think about and manipulate different accelerations in their head. Students work together with written descriptions of velocity and acceleration and draw the vectors in part one, and then turn that around in part two where they write descriptions of a car's motion based on the vector pictures they are given.

  2. Effects of wind direction and wind farm layout on turbine wakes and power losses in wind farms: An LES study

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Ting; Porté-Agel, Fernando

    2014-05-01

    A recently-developed large-eddy simulation (LES) framework is validated and used to investigate the effects of wind direction and wind farm layout on the turbine wakes and power losses in wind farms. The subgrid-scale (SGS) turbulent stress is parameterized using a tuning-free Lagrangian scale-dependent dynamic SGS model. The turbine-induced forces are computed using a dynamic actuator-disk model with rotation (ADM-R), which couples blade-element theory with a turbine-specific relation between the blade angular velocity and the shaft torque to compute simultaneously turbine angular velocity and power output. Here, we choose the Horns Rev offshore wind farm as a case study for model validation. A series of simulations are performed for a wide range of wind direction angles. Results from the simulations are in good agreement with observed power data from the Horns Rev wind farm, and show a strong impact of wind direction on the farm power production and the spatial distribution of turbine-wake characteristics (e.g., velocity deficit and turbulence intensity). This can be explained by the fact that changing the wind angle can be viewed as changing the wind farm layout relative to the incoming wind, while keeping the same wind turbine density. To further investigate the effect of wind farm layout on the flow and the power extracted by the farm, simulations of wind farms with different circular and elliptic layouts are performed to compare with the results of the Horns Rev wind farm simulations. The results show that the proposed layouts not only provide more stable power output with different wind directions, but also enhance the performance of the total farm power production.

  3. Gap Winds

    NSDL National Science Digital Library

    2014-09-14

    This module provides a basic understanding of why gap winds occur, their typical structures, and how gap wind strength and extent are controlled by larger-scale, or synoptic, conditions. You will learn about a number of important gap flows in coastal regions around the world, with special attention given to comprehensively documented gap wind cases in the Strait of Juan de Fuca and the Columbia River Gorge. Basic techniques for evaluating and predicting gap flows are presented. The module reviews the capabilities and limitations of the current generation of mesoscale models in producing realistic gap winds. By the end of this module, you should have sufficient background to diagnose and forecast gap flows around the world, and to use this knowledge to understand their implications for operational decisions. Other features in this module include a concise summary for quick reference and a final exam to test your knowledge. Like other modules in the Mesoscale Meteorology Primer, this module comes with audio narration, rich graphics, and a companion print version.

  4. Wind Chimes

    NSDL National Science Digital Library

    K-12 Outreach Office,

    Students are challenged to design and build wind chimes using their knowledge of physics and sound waves, and under given constraints such as weight, cost and number of musical notes it must generate. They make mathematical computations to determine the pipe lengths.

  5. 2008 Wind Technologies Market Report

    SciTech Connect

    Wiser, R.; Bolinger, M.

    2009-07-01

    The U.S. wind industry experienced a banner year in 2008, once again surpassing even optimistic growth projections from years past. At the same time, the past year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with significant federal policy changes enacted to push the industry toward continued aggressive expansion. This report examines key trends.

  6. Vector generator scan converter

    DOEpatents

    Moore, J.M.; Leighton, J.F.

    1988-02-05

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  7. Acoustic vector solitons.

    PubMed

    Adamashvili, G T

    2012-06-01

    A theory of an acoustic vector soliton of self-induced transparency is constructed. By using the perturbative reduction method the magnetic Bloch equations and the equation of motion for the displacement field for the small area pulse are reduced to a system of two coupled nonlinear Schrödinger equations. The shape of an acoustic vector soliton with the sum and difference of the frequencies is presented. Explicit analytical expressions for the parameters of an acoustic vector soliton are obtained as well as simulations of an acoustic vector soliton presented with realistic parameters which can be reached in experiments. It is shown that the vector soliton in the special case can be reduced to the breather solution, and these nonlinear waves have different profiles. PMID:23005248

  8. Vector theories in cosmology

    SciTech Connect

    Esposito-Farese, Gilles; Pitrou, Cyril; Uzan, Jean-Philippe [GRECO, Institut d'Astrophysique de Paris, UMR 7095-CNRS, Universite Pierre et Marie Curie-Paris 6, 98bis boulevard Arago, F-75014 Paris (France); Institute of Cosmology and Gravitation, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom); GRECO, Institut d'Astrophysique de Paris, UMR 7095-CNRS, Universite Pierre et Marie Curie-Paris 6, 98bis boulevard Arago, F-75014 Paris (France) and Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa)

    2010-03-15

    This article provides a general study of the Hamiltonian stability and the hyperbolicity of vector field models involving both a general function of the Faraday tensor and its dual, f(F{sup 2},FF-tilde), as well as a Proca potential for the vector field, V(A{sup 2}). In particular it is demonstrated that theories involving only f(F{sup 2}) do not satisfy the hyperbolicity conditions. It is then shown that in this class of models, the cosmological dynamics always dilutes the vector field. In the case of a nonminimal coupling to gravity, it is established that theories involving Rf(A{sup 2}) or Rf(F{sup 2}) are generically pathologic. To finish, we exhibit a model where the vector field is not diluted during the cosmological evolution, because of a nonminimal vector field-curvature coupling which maintains second-order field equations. The relevance of such models for cosmology is discussed.

  9. Vector generator scan converter

    DOEpatents

    Moore, James M. (Livermore, CA); Leighton, James F. (Livermore, CA)

    1990-01-01

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  10. Intracellular trafficking of nonviral vectors

    Microsoft Academic Search

    L K Medina-Kauwe; J Xie; S Hamm-Alvarez

    2005-01-01

    Nonviral vectors continue to be attractive alternatives to viruses due to their low toxicity and immunogenicity, lack of pathogenicity, and ease of pharmacologic production. However, nonviral vectors also continue to suffer from relatively low levels of gene transfer compared to viruses, thus the drive to improve these vectors continues. Many studies on vector–cell interactions have reported that nonviral vectors bind

  11. Study and simulation of space vector PWM control of double-star induction motors

    Microsoft Academic Search

    D. Hadiouche; H. Razik; A. Rezzoug

    2000-01-01

    This paper deals with a comparison between different structures of double-star induction motors (DSIMs), controlled by space vector PWM. The modelling of the DSIM is made using an arbitrary shift angle between the two three-phase windings. A new transformation matrix is proposed to develop a suitable dynamic model and to elaborate the space vector PWM control strategy for different values

  12. Pollination of Australian Macrozamia cycads (Zamiaceae): effectiveness and behavior of specialist vectors in a dependent mutualism

    Microsoft Academic Search

    L. IRENE TERRY; GIMME H. WALTER; JOHN S. DONALDSON; ELIZABETH SNOW; PAUL I. FORSTER; PETER J. MACHIN

    2005-01-01

    Complementary field and laboratory tests confirmed and quantified the pollination abilities ofTranes sp. weevils and Cycadothrips chadwicki thrips, specialist insects of their respective cycad hosts, Macrozamia machinii and M. lucida. No agamospermous seeds were produced when both wind and insects were excluded from female cones; and the exclusion of wind-vectored pollen alone did not eliminate seed set, because insects were

  13. Numerical investigation of wind turbine and wind farm aerodynamics

    NASA Astrophysics Data System (ADS)

    Selvaraj, Suganthi

    A numerical method based on the solution of Reynolds Averaged Navier Stokes equations and actuator disk representation of turbine rotor is developed and implemented in the OpenFOAM software suite for aerodynamic analysis of horizontal axis wind turbines (HAWT). The method and the implementation are validated against the 1-D momentum theory, the blade element momentum theory and against experimental data. The model is used for analyzing aerodynamics of a novel dual rotor wind turbine concept and wind farms. Horizontal axis wind turbines suffer from aerodynamic inefficiencies in the blade root region (near the hub) due to several non-aerodynamic constraints (e.g., manufacturing, transportation, cost, etc.). A new dual-rotor wind turbine (DRWT) concept is proposed that aims at mitigating these losses. A DRWT is designed using an existing turbine rotor for the main rotor (Risoe turbine and NREL 5 MW turbine), while the secondary rotor is designed using a high lift to drag ratio airfoil (the DU 96 airfoil from TU Delft). The numerical aerodynamic analysis method developed as a part of this thesis is used to optimize the design. The new DRWT design gives an improvement of about 7% in aerodynamic efficiency over the single rotor turbine. Wind turbines are typically deployed in clusters called wind farms. HAWTs also suffer from aerodynamic losses in a wind farm due to interactions with wind turbine wakes. An interesting mesoscale meteorological phenomenon called "surface flow convergence" believed to be caused by wind turbine arrays is investigated using the numerical method developed here. This phenomenon is believed to be caused by the pressure gradient set up by wind turbines operating in close proximity in a farm. A conceptual/hypothetical wind farm simulation validates the hypothesis that a pressure gradient is setup in wind farms due to turbines and that it can cause flow veering of the order of 10 degrees. Simulations of a real wind farm (Story County) are also conducted which give qualitatively correct flow direction change, however quantitative agreement with data is only moderately acceptable.

  14. X-ray observations of massive colliding wind binaries

    Microsoft Academic Search

    Michael F. Corcoran

    2003-01-01

    Massive stars in binary systems can generate X-ray emission in the region between the two stars where stellar winds collide. Colliding wind X-ray emission acts as an in-situ probe of important wind parameters like mass-loss rates, chemical abundances, wind velocities, and possibly magnetic field strengths. Variations in observed colliding-wind X-ray emission can be produced by the changing line-of-sight to the

  15. WIND ENERGY Wind Energ. (2014)

    E-print Network

    turbine and turbulence simulator (WiTTS hereafter). WiTTS uses a scale-dependent Lagrangian dynamical model of the sub-grid shear stress and actuator lines to simulate the effects of the rotating blades. WiTTS in the near wake. In conclusion, WiTTS performs satisfactorily in the rotor region of wind turbine wakes under

  16. WIND ENERGY Wind Energ. (2014)

    E-print Network

    Peinke, Joachim

    2014-01-01

    loads from the wind inflow through rotor aerodynamics, drive train and power electronics is still not fully understood. In this paper, we focus on the local aerodynamic forces at the rotor blade, which stem of their dynamics. Unsteady aerodynamic loads stimulate structural vibrations that can contribute to fatigue

  17. Climate Change: Basic Information

    MedlinePLUS

    ... change includes major changes in temperature, precipitation, or wind patterns, among other effects, that occur over several ... changes that can affect our water supplies, agriculture, power and transportation systems, the natural environment, and even ...

  18. Three-Dimensional Venturi Sensor for Measuring Extreme Winds

    NASA Technical Reports Server (NTRS)

    Zysko, Jan A.; Perotti, Jose M.; Amis, Christopher; Randazzo, John; Blalock, Norman; Eckhoff, Anthony

    2003-01-01

    A three-dimensional (3D) Venturi sensor is being developed as a compact, rugged means of measuring wind vectors having magnitudes of as much as 300 mph (134 m/s). This sensor also incorporates auxiliary sensors for measuring temperature from -40 to +120 F (-40 to +49 C), relative humidity from 0 to 100 percent, and atmospheric pressure from 846 to 1,084 millibar (85 to 108 kPa). Conventional cup-and-vane anemometers are highly susceptible to damage by both high wind forces and debris, due to their moving parts and large profiles. In addition, they exhibit slow recovery times contributing to an inaccurately high average-speed reading. Ultrasonic and hot-wire anemometers overcome some of the disadvantages of the cup and-vane anemometers, but they have other disadvantageous features, including limited dynamic range and susceptibility to errors caused by external acoustic noise and rain. In contrast, the novel 3D Venturi sensor is less vulnerable to wind damage because of its smaller profile and ruggedness. Since the sensor has no moving parts, it provides increased reliability and lower maintenance costs. It has faster response and recovery times to changing wind conditions than traditional systems. In addition, it offers wide dynamic range and is expected to be relatively insensitive to rain and acoustic energy. The Venturi effect in this sensor is achieved by the mirrored double-inflection curve, which is then rotated 360 to create the desired detection surfaces. The curve is optimized to provide a good balance of pressure difference between sensor ports and overall maximum fluid velocity while in the shape. Four posts are used to separate the two shapes, and their size and location were chosen to minimize effects on the pressure measurements. The 3D Venturi sensor has smart software algorithms to map the wind pressure exerted on the surfaces of the design. Using Bernoulli's equation, the speed of the wind is calculated from the differences among the pressure readings at the various ports. The direction of the wind is calculated from the spatial distribution and magnitude of the pressure readings. All of the pressure port sizes and locations have been optimized to minimize measurement errors and to reside in areas demonstrating a stable pressure reading proportional to the velocity range.

  19. Changes in species richness and spatial distribution of mosquitoes (Diptera: Culicidae) inferred from museum specimen records and a recent inventory: a case study from Belgium suggests recent expanded distribution of arbovirus and malaria vectors.

    PubMed

    Dekoninck, W; Hendrickx, F; Versteirt, V; Coosemans, M; De Clercq, E M; Hendrickx, G; Hance, T; Grootaert, P

    2013-03-01

    Mosquito (Diptera: Culicidae) distribution data from a recent inventory of native and invading mosquito species in Belgium were compared with historical data from the period 1900-1960 that were retrieved from a revision of the Belgian Culicidae collection at the Royal Belgian Institute of Natural Sciences. Both data sets were used to investigate trends in mosquito species richness in several regions in Belgium. The relative change in distribution area of mosquito species was particularly important for species that use waste waters and used tires as larval habitats and species that recently shifted their larval habitat to artificial larval habitats. More importantly, several of these species are known as vectors of arboviruses and Plasmodium sp. and the apparent habitat shift of some of them brought these species in proximity to humans. Similar studies comparing current mosquito richness with former distribution data retrieved from voucher specimens from collections is therefore encouraged because they can generate important information concerning health risk assessment at both regional and national scale. PMID:23540109

  20. Quadratic exponential vectors

    SciTech Connect

    Accardi, Luigi; Dhahri, Ameur [Volterra Center, University of Roma Tor Vergata, Via Columbia 2, 00133 Roma (Italy)

    2009-12-15

    We give a necessary and sufficient condition for the existence of a quadratic exponential vector with test function in L{sup 2}(R{sup d}) intersection L{sup {infinity}}(R{sup d}). We prove the linear independence and totality, in the quadratic Fock space, of these vectors. Using a technique different from the one used by Accardi et al. [Quantum Probability and Infinite Dimensional Analysis, Vol. 25, p. 262, (2009)], we also extend, to a more general class of test functions, the explicit form of the scalar product between two such vectors.

  1. Wind shear near the ground and aircraft operations.

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.

    1972-01-01

    The variance of wind shear in the first 150-200 m of the atmosphere is a function of the direction of the mean wind relative to the flight path, the zenith angle of the flight path, the standard deviation of the three components of the turbulence velocity vector, the surface friction velocity, the stability properties of the atmospheric boundary layer, and the heights above natural grade of the beginning and end points of the portion of the flight path over which the shear is to be calculated. The results are applied by calculating wind shear for various risks of occurrence assuming wind shear is a Gaussian process, and it is shown that turbulence produces significantly large dispersions in wind shear about the mean wind shear. The results are interpreted in terms of the ICAO interim shear criteria for reporting wind shear in qualitative terms.

  2. Measuring surface wind direction by monostatic HF ground-wave radar at the eastern China Sea

    Microsoft Academic Search

    Weimin Huang; Eric Gill; Shicai Wu; Biyang Wen; Zijie Yang; Jiechang Hou

    2004-01-01

    The extraction of full wind vectors from data obtained by single-site (monostatic) high-frequency ground-wave radar (HFGWR) is an ongoing challenge because of the inherent directional ambiguities. Here, a new algorithm for resolving the ambiguity of wind direction from monostatic data is presented. The true wind direction is determined by minimizing the sum of the difference among three wind directions derived

  3. National-Scale Wind Resource Assessment for Power Generation (Presentation)

    SciTech Connect

    Baring-Gould, E. I.

    2013-08-01

    This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

  4. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  5. 78 FR 29364 - Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ...Exelon Wind 9, LLC, Exelon Wind 10, LLC, Exelon Wind 11, LLC, High Plains Wind Power, LLC v. Xcel Energy Services, Inc., Southwestern...LLC, Exelon Wind 11, LLC, and High Plains Wind Power, LLC (Complainants) filed a formal...

  6. Targeted adenoviral vectors

    NASA Astrophysics Data System (ADS)

    Douglas, Joanne T.

    The practical implementation of gene therapy in the clinical setting mandates gene delivery vehicles, or vectors, capable of efficient gene delivery selectively to the target disease cells. The utility of adenoviral vectors for gene therapy is restricted by their dependence on the native adenoviral primary cellular receptor for cell entry. Therefore, a number of strategies have been developed to allow CAR-independent infection of specific cell types, including the use of bispecific conjugates and genetic modifications to the adenoviral capsid proteins, in particular the fibre protein. These targeted adenoviral vectors have demonstrated efficient gene transfer in vitro , correlating with a therapeutic benefit in preclinical animal models. Such vectors are predicted to possess enhanced efficacy in human clinical studies, although anatomical barriers to their use must be circumvented.

  7. Light Vector Mesons

    E-print Network

    Alexander Milov

    2008-12-21

    This article reviews the current status of experimental results obtained in the measurement of light vector mesons produced in proton-proton and heavy ion collisions at different energies. The review is focused on two phenomena related to the light vector mesons; the modification of the spectral shape in search of Chiral symmetry restoration and suppression of the meson production in heavy ion collisions. The experimental results show that the spectral shape of light vector mesons are modified compared to the parameters measured in vacuum. The nature and the magnitude of the modification depends on the energy density of the media in which they are produced. The suppression patterns of light vector mesons are different from the measurements of other mesons and baryons. The mechanisms responsible for the suppression of the mesons are not yet understood. Systematic comparison of existing experimental results points to the missing data which may help to resolve the problem.

  8. Poynting-vector filter

    DOEpatents

    Carrigan, Charles R. (Tracy, CA)

    2011-08-02

    A determination is made of frequency components associated with a particular bearing or location resulting from sources emitting electromagnetic-wave energy for which a Poynting-Vector can be defined. The broadband frequency components associated with a specific direction or location of interest are isolated from other components in the power spectrum that are not associated with the direction or location of interest. The collection of pointing vectors can be used to characterize the source.

  9. Vectorized Finite State Automata

    Microsoft Academic Search

    András Kornai

    . We present a technique of finite state parsingbased on vectorization and describe the application of thistechnique to a well-known problem of natural language processing,that of extracting relational information from Englishtext. We define Vectorized Finite State Automata, the theoreticalmodel behind the applied system, and discuss theirsignificance.0 IntroductionOne of the persistent problems in building finite automata onthe large scale required by

  10. Ekman heat flux variability from four wind sources

    NASA Astrophysics Data System (ADS)

    Sato, O. T.; Polito, P. S.

    2002-12-01

    The variability in the Ekman heat flux estimated from four different sources of wind is examined. The wind vectors are obtained from the European Remote Sensing (ERS), Quikscat, the Special Sensor Microwave Imager (SSM/I-Atlas) satellites, and from the National Centers for Environmental Prediction (NCEP) model. The temperature in the Ekman layer is estimated by combining the Reynolds sea surface temperature and climatological sub--surface profiles. Except for the Quikscat which span the period between 1999 and 2002, the data sets range a period over 10 years. The annual mean of the meridional Ekman heat flux (EHF) is consistently smaller when estimated with the ERS data. The NCEP tends to get larger values for the North Atlantic while the Quikscat is the largest for the North Pacific. The EHF has a better agreement at sub--tropical latitudes while the largest differences are found near the equator. To investigate the spatial variability of EHF we use a series of 2D finite impulse response filters. We quantify the role of several regions of the frequency-zonal wave number spectrum of the wind in establishing the observed Ekman heat flux. The mean component of the EHF, which keeps all the variability from the temperature field, is much higher in the low latitudes in the Atlantic. The relative variance of the mean component to the total EHF reaches up to 60% in the Atlantic while in the Pacific it explains only 30% of variance. The contribution to the variability of several bands of planetary westward propagating waves is larger in the Pacific and Indian Oceans while in the Atlantic it can explain at most 20% of the total variance. All wind sources show a change in the variability regime around 15° of latitude with lower frequencies prevailing over meso and small--scale variability within the tropics.

  11. Deceleration of the solar wind upstream from the earth's bow shock and the origin of diffuse upstream ions

    NASA Technical Reports Server (NTRS)

    Bame, S. J.; Asbridge, J. R.; Feldman, W. C.; Gosling, J. T.; Paschmann, G.; Skopke, N.

    1980-01-01

    Observations with the Los Alamos Scientific Laboratory/Max-Planck-Institut crossed-fan solar wind ion experiment on ISEE I reveal that the solar wind is decelerated and deflected away from the direction of the earth's bow shock as it enters that portion of the upstream region populated by diffuse bow shock ions and long-period (10-60 s) waves. Typically, the average directed velocity vector changes by 7-10 km/s as it enters the wave region. At times, average speed changes as large as 25-40 km/s are observed. Superposed upon these changes in average flow speed are large amplitude (+ or - 15) fluctuations in flow speed associated with the waves themselves. The observations suggest that the solar wind deceleration is the result of momentum transfer from reflected bow shock ions to the wind via the long-period waves as the reflected ion beams go unstable. The broad angular distributions of the diffuse ions thus appear to be produced as a consequence of the disruption of reflected ion beams.

  12. Simulation of wind performance in tropical cyclone for China's future dual-frequency wind field radar

    NASA Astrophysics Data System (ADS)

    Dou, Fangli; Yin, Honggang; Gu, Songyan

    2014-11-01

    Ocean surface wind vectors (OVW) from scatterometers have been proved to be of great benefit to marine weather analysis and numerical model prediction. Conventional single-frequency scatterometers are capable to measure substantially accurate wind fields in clear atmospheric conditions, whereas winds obtained in marine extreme weather conditions are not so satisfying due to the high wind speed saturation effect and the rain perturbation. Therefore, a dualfrequency wind field measuring radar (WIFIR) to be onboard FengYun-3E is being predesigned to obtain relatively accurate wind fields in all weather conditions, which will compensate for the single-frequency shortcomings. The purpose of this study was to investigate the potential ability of WIFIR to measure OVW in tropical cyclones. A high-fidelity forward model was developed to simulate the sea surface normalize radar cross sections (NRCS) measured by WIFIR. The wind and rain rate fields used to drive the model are generated by UWNMS cloud model for Hurricane Ivan in 2004. High-wind GMFs and a theoretical rain model, which includes attenuation and volume scattering effect, have been utilized to describe the forward model. Based on the simulation results, the impact of rain on radar measurements and a dual-frequency retrieval algorithm were studied. The dual-frequency method was shown to have the ability to obtain information of rain rates up to 30mm/hr, and acquire more accurate wind vectors than single-frequency measurements. This method will be more effective to improve wind retrieval accuracy in tropical cyclones with the synchronous observation of microwave humidity sounder (MWHS) aboard FY-3 satellite.

  13. Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight

    USGS Publications Warehouse

    Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf; Griffin, Larry; Reese, Eileen C.; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y.; Newman, Scott H.; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2013-01-01

    Background: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction) throughout a bird's journey. Results: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight. Conclusions: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of scaling effects must be considered and implemented in developing sampling regimes and data analysis.

  14. Comparisons of ocean scatterometer and anemometer winds off the southwestern Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Sánchez, Ricardo F.; Relvas, Paulo; Pires, Henrique O.

    2007-01-01

    A set of 25-km QuikSCAT wind measurements have been compared with 10-m winds from anemometer stations in the southwestern Iberian Peninsula. Comparisons were made for anemometer observations co-located in time to the QuikSCAT pass and scatterometer vectors with direction differences not exceeding a fixed directional threshold co-located in space within a number of spatial co-location radii. Low-pass filtering of the anemometer winds improves vector correlations but reduces the data quality as the wind speed difference and its rms are sharply magnified. The information provided by both measurements agrees over a zone-dependent area of variable extent surrounding each of the stations. West of Cape St. Vincent anemometer winds are largely coherent with ocean winds over distances greater than 150 km from the stations, whereas anemometer winds acquired in the Gulf of Cádiz represent ocean winds over a much more confined nearby ocean sector west of the cape. As a result, anemometer stations west of 7?W fail at representing ocean winds in the eastern Gulf of Cádiz, and vice versa. Based on the temporal and spatial variations of the wind field a 'frozen-field' coinciding with the areas of maximum correlation is noted. Since these regions appear spatially constrained by the coastline features, sharp spatial heterogeneity of ocean winds is inferred. Part of it is attributed to coastal effects associated with Cape St. Vincent while a secondary source of discrepancy is due to coastal rectification and land effects. As for the vector correlations, dissimilar vector responses emerge for the comparisons with wind data from each of the anemometer stations. At Sagres and Cádiz the winds exhibit speed and direction differences (and rms) of the same order of magnitude as aimed at by QuikSCAT mission requirements. Contrarily, the Sines and Faro station data exhibit large deviations from the scatterometer ocean winds, as a result of stronger land and coastal effects taking place at these sites. Based on these results we conclude that anemometer wind vectors can be used for descriptive purposes of the nearby ocean winds although the underlying underestimation of ocean wind speeds must be accounted for when evaluating the Ekman transport or forcing ocean models with anemometer wind data. Where QuikSCAT wind retrievals of quality are able to resolve the spatial and temporal scales of the wind forcing relevant to the ocean circulation, these provide region-independent and more robust estimates of the ocean winds than low-pass filtered in situ wind measurements obtained at coastal locations.

  15. Temporal response of the polar troposphere and stratosphere to changes in the global atmospheric electric circuit associated with solar wind variability

    NASA Astrophysics Data System (ADS)

    Lam, Mai Mai; Chisham, Gareth; Freeman, Mervyn P.

    2014-05-01

    The surface meteorological response in the polar regions to fluctuations in the dawn-to-dusk interplanetary magnetic field (IMF) component, By, indicates that a coupling between the Sun and Earth's weather occurs via the global atmospheric electric circuit (GEC). In particular, the difference between the mean surface pressures during times of high positive and high negative IMF By is 1 - 2 hPa in Antarctica and occurs on a relatively fast timescale compared to other proposed Sun-weather connections. Specifically, the observed time lag between the solar wind perturbation of the ionosphere-to-ground electric potential (and hence the vertical fair-weather current) and the ground level response is up to about 1 day. Here we extend this result and present further evidence that a solar wind-lower atmosphere coupling occurs via the GEC throughout the troposphere which in turn affects the stratosphere. We do this using NCEP/NCAR reanalysis data to determine the time lag of the peak correlation between IMF By and geopotential height for different pressure levels in the troposphere and stratosphere. In Antarctica, there is a statistically-significant correlation between IMF By and geopotential height within the troposphere, but not within the stratosphere. The peak in the correlation is observed at higher time lags in the upper troposphere (2 - 4 days) than in the lower troposphere (0 - 1 day). The amplitude of the correlation has a periodicity of about 27 days, associated with the effect of the rotation of the Sun on the periodicity of the solar wind magnetic field at Earth. In the Arctic, the time lag between IMF By and the meteorological response is significant and similar at different pressure levels in the troposphere and is about 0 - 1 day. A significant response is seen in the stratosphere with a time lag of about 10 days. We interpret the existence of a time lag of less than a few days in the troposphere as evidence in support of a mechanism involving the action of the GEC on cloud physics within a part of the troposphere. The increase in the time lag with increasing altitude is suggestive of an upward propagation of the influence of the solar-wind-induced variability in the lower troposphere, by conventional meteorological processes. This is in contrast to the apparent downward propagation of meteorological effects to the lower troposphere from the stratosphere due to other mechanisms associated with solar variability, involving ultra-violet radiation or energetic particle precipitation.

  16. Careers in Wind Energy

    ERIC Educational Resources Information Center

    Liming, Drew; Hamilton, James

    2011-01-01

    As a common form of renewable energy, wind power is generating more than just electricity. It is increasingly generating jobs for workers in many different occupations. Many workers are employed on wind farms: areas where groups of wind turbines produce electricity from wind power. Wind farms are frequently located in the midwestern, western, and…

  17. Prospecting for Wind

    ERIC Educational Resources Information Center

    Swapp, Andy; Schreuders, Paul; Reeve, Edward

    2011-01-01

    Many people use wind to help meet their needs. Over the years, people have been able to harness or capture the wind in many different ways. More recently, people have seen the rebirth of electricity-generating wind turbines. Thus, the age-old argument about technology being either good or bad can also be applied to the wind. The wind can be a…

  18. Satellite Winds

    NSDL National Science Digital Library

    2012-08-03

    In this online, interactive module, students learn about the using successive satellite observations of clouds to determine wind direction and speed. The module is part of an online course for grades 7-12 in satellite meteorology, which includes 10 interactive modules. The site also includes lesson plans developed by teachers and links to related resources. Each module is designed to serve as a stand-alone lesson, however, a sequential approach is recommended. Designed to challenge students through the end of 12th grade, middle school teachers and students may choose to skim or skip a few sections.

  19. Windy Wind

    NSDL National Science Digital Library

    2012-08-03

    In this demonstration, students learn that air flows from a high-pressure area to a low pressure area, and greater the differences between pressure areas, the greater the wind speed. The demonstration uses an apparatus made from two 2L beverage bottles, plastic tubing, food coloring, clay and water. The resource is part of the teacher's guide accompanying the video, NASA SCI Files: The Case of the Phenomenal Weather. Lesson objectives supported by the video, additional resources, teaching tips and an answer sheet are included in the teacher's guide.

  20. Are local wind power resources well estimated?

    NASA Astrophysics Data System (ADS)

    Lundtang Petersen, Erik; Troen, Ib; Jørgensen, Hans E.; Mann, Jakob

    2013-03-01

    Planning and financing of wind power installations require very importantly accurate resource estimation in addition to a number of other considerations relating to environment and economy. Furthermore, individual wind energy installations cannot in general be seen in isolation. It is well known that the spacing of turbines in wind farms is critical for maximum power production. It is also well established that the collective effect of wind turbines in large wind farms or of several wind farms can limit the wind power extraction downwind. This has been documented by many years of production statistics. For the very large, regional sized wind farms, a number of numerical studies have pointed to additional adverse changes to the regional wind climate, most recently by the detailed studies of Adams and Keith [1]. They show that the geophysical limit to wind power production is likely to be lower than previously estimated. Although this problem is of far future concern, it has to be considered seriously. In their paper they estimate that a wind farm larger than 100 km2 is limited to about 1 W m-2. However, a 20 km2 off shore farm, Horns Rev 1, has in the last five years produced 3.98 W m-2 [5]. In that light it is highly unlikely that the effects pointed out by [1] will pose any immediate threat to wind energy in coming decades. Today a number of well-established mesoscale and microscale models exist for estimating wind resources and design parameters and in many cases they work well. This is especially true if good local data are available for calibrating the models or for their validation. The wind energy industry is still troubled by many projects showing considerable negative discrepancies between calculated and actually experienced production numbers and operating conditions. Therefore it has been decided on a European Union level to launch a project, 'The New European Wind Atlas', aiming at reducing overall uncertainties in determining wind conditions. The project is structured around three areas of work, to be implemented in parallel. Creation and publication of a European wind atlas in electronic form [2], which will include the underlying data and a new EU wind climate database which will as a minimum include: wind resources and their associated uncertainty; extreme wind and uncertainty; turbulence characteristics; adverse weather conditions such as heavy icing, electrical storms and so on together with the probability of occurrence; the level of predictability for short-term forecasting and assessment of uncertainties; guidelines and best practices for the use of data especially for micro-siting. Development of dynamical downscaling methodologies and open-source models validated through measurement campaigns, to enable the provision of accurate wind resource and external wind load climatology and short-term prediction at high spatial resolution and covering Europe. The developed downscaling methodologies and models will be fully documented and made publicly available and will be used to produce overview maps of wind resources and other relevant data at several heights and at high horizontal resolution. Measurement campaigns to validate the model chain used in the wind atlas. At least five coordinated measurement campaigns will be undertaken and will cover complex terrains (mountains and forests), offshore, large changes in surface characteristics (roughness change) and cold climates. One of the great challenges to the project is the application of mesoscale models for wind resource calculation, which is by no means a simple matter [3]. The project will use global reanalysis data as boundary conditions. These datasets, which are time series of the large-scale meteorological situation covering decades, have been created by assimilation of measurement data from around the globe in a dynamical consistent fashion using large-scale numerical models. For wind energy, the application of the reanalysis datasets is as a long record of the large-scale wind conditions. The large-scale reanalyses are performed in only a few glo