Sample records for vehicle design

  1. EOD Vehicle Conceptual Design Study

    Microsoft Academic Search

    K. Rogers; G. Bane; W. Laing

    1982-01-01

    A conceptual design study of a tethered undersea remotely operated vehicle (ROV) has been made for the U.S. Naval Explosive Ordnance Disposal (EOD) Technology Center. The conceptual design vehicle is designated ROV-EOD. The purpose of the vehicle is to locate, identify and neutralize suspected ordnance on the ocean floor, normally at or near harbors; thus relieving divers of a very

  2. Advanced concepts in electric vehicle design

    Microsoft Academic Search

    Hiroshi Shimizu; Junji Harada; Colby Bland; Kiyomoto Kawakami; Lam Chan

    1997-01-01

    In 1994, the Eco-Vehicle Project was begun to develop an electric vehicle (EV) using a ground-up design approach that incorporates unique designs specific to an EV. The Eco-Vehicle will be a high-performance, but ultrasmall, battery-powered vehicle. New designs for the Eco-Vehicle include an in-wheel motor drive system, a hollow load floor which will house the batteries, and a new battery

  3. Launch vehicle systems design analysis

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Verderaime, V.

    1993-01-01

    Current launch vehicle design emphasis is on low life-cycle cost. This paper applies total quality management (TQM) principles to a conventional systems design analysis process to provide low-cost, high-reliability designs. Suggested TQM techniques include Steward's systems information flow matrix method, quality leverage principle, quality through robustness and function deployment, Pareto's principle, Pugh's selection and enhancement criteria, and other design process procedures. TQM quality performance at least-cost can be realized through competent concurrent engineering teams and brilliance of their technical leadership.

  4. Modeling Languages Refine Vehicle Design

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Cincinnati, Ohio s TechnoSoft Inc. is a leading provider of object-oriented modeling and simulation technology used for commercial and defense applications. With funding from Small Business Innovation Research (SBIR) contracts issued by Langley Research Center, the company continued development on its adaptive modeling language, or AML, originally created for the U.S. Air Force. TechnoSoft then created what is now known as its Integrated Design and Engineering Analysis Environment, or IDEA, which can be used to design a variety of vehicles and machinery. IDEA's customers include clients in green industries, such as designers for power plant exhaust filtration systems and wind turbines.

  5. Conceptual design for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Gratzer, Louis B.

    1989-01-01

    The designers of aircraft and more recently, aerospace vehicles have always struggled with the problems of evolving their designs to produce a machine which would perform its assigned task(s) in some optimum fashion. Almost invariably this involved dealing with more variables and constraints than could be handled in any computationally feasible way. With the advent of the electronic digital computer, the possibilities for introducing more variable and constraints into the initial design process led to greater expectations for improvement in vehicle (system) efficiency. The creation of the large scale systems necessary to achieve optimum designs has, for many reason, proved to be difficult. From a technical standpoint, significant problems arise in the development of satisfactory algorithms for processing of data from the various technical disciplines in a way that would be compatible with the complex optimization function. Also, the creation of effective optimization routines for multi-variable and constraint situations which could lead to consistent results has lagged. The current capability for carrying out the conceptual design of an aircraft on an interdisciplinary bases was evaluated to determine the need for extending this capability, and if necessary, to recommend means by which this could be carried out. Based on a review of available documentation and individual consultations, it appears that there is extensive interest at Langley Research Center as well as in the aerospace community in providing a higher level of capability that meets the technical challenges. By implication, the current design capability is inadequate and it does not operate in a way that allows the various technical disciplines to participate and cooperately interact in the design process. Based on this assessment, it was concluded that substantial effort should be devoted to developing a computer-based conceptual design system that would provide the capability needed for the near-term as well as framework for development of more advanced methods to serve future needs.

  6. Biocular vehicle display optical designs

    NASA Astrophysics Data System (ADS)

    Chu, H.; Carter, Tom

    2012-06-01

    Biocular vehicle display optics is a fast collimating lens (f / # < 0.9) that presents the image of the display at infinity to both eyes of the viewer. Each eye captures the scene independently and the brain merges the two images into one through the overlapping portions of the images. With the recent conversion from analog CRT based displays to lighter, more compact active-matrix organic light-emitting diodes (AMOLED) digital image sources, display optical designs have evolved to take advantage of the higher resolution AMOLED image sources. To maximize the field of view of the display optics and fully resolve the smaller pixels, the digital image source is pre-magnified by relay optics or a coherent taper fiber optics plate. Coherent taper fiber optics plates are used extensively to: 1. Convert plano focal planes to spherical focal planes in order to eliminate Petzval field curvature. This elimination enables faster lens speed and/or larger field of view of eye pieces, display optics. 2. Provide pre-magnification to lighten the work load of the optics to further increase the numerical aperture and/or field of view. 3. Improve light flux collection efficiency and field of view by collecting all the light emitted by the image source and guiding imaging light bundles toward the lens aperture stop. 4. Reduce complexity of the optical design and overall packaging volume by replacing pre-magnification optics with a compact taper fiber optics plate. This paper will review and compare the performance of biocular vehicle display designs without and with taper fiber optics plate.

  7. Advanced control design for hybrid turboelectric vehicle

    Microsoft Academic Search

    Joseph Abban; Johnesta Norvell; James A. Momoh

    1995-01-01

    The new environment standards are a challenge and opportunity for industry and government who manufacture and operate urban mass transient vehicles. A research investigation to provide control scheme for efficient power management of the vehicle is in progress. Different design requirements using functional analysis and trade studies of alternate power sources and controls have been performed. The design issues include

  8. Vehicle systems design optimization study

    NASA Technical Reports Server (NTRS)

    Gilmour, J. L.

    1980-01-01

    The optimum vehicle configuration and component locations are determined for an electric drive vehicle based on using the basic structure of a current production subcompact vehicle. The optimization of an electric vehicle layout requires a weight distribution in the range of 53/47 to 62/38 in order to assure dynamic handling characteristics comparable to current internal combustion engine vehicles. Necessary modification of the base vehicle can be accomplished without major modification of the structure or running gear. As long as batteries are as heavy and require as much space as they currently do, they must be divided into two packages, one at front under the hood and a second at the rear under the cargo area, in order to achieve the desired weight distribution. The weight distribution criteria requires the placement of batteries at the front of the vehicle even when the central tunnel is used for the location of some batteries. The optimum layout has a front motor and front wheel drive. This configuration provides the optimum vehicle dynamic handling characteristics and the maximum passenger and cargo space for a given size vehicle.

  9. Basic Utility Vehicle Design Competition

    ERIC Educational Resources Information Center

    Reese, Susan

    2004-01-01

    What would you describe as a "car for humanity?" The Institute for Affordable Transportation (IAT) sees it as a simple vehicle that can be assembled almost anywhere by almost anyone to meet everyday needs and is a vehicle that can change lives for the working poor in Third World countries.

  10. Lunar NTR vehicle design and operations study

    NASA Technical Reports Server (NTRS)

    Hodge, John

    1993-01-01

    The results of a lunar nuclear thermal rocket (NTR) vehicle design and operations study are presented in text and graphic form. The objectives of the study were to evaluate the potential applications of a specific NTR design to past and current (First Lunar Outpost) mission profiles for piloted and cargo lunar missions, and to assess the applicability of utilizing lunar vehicle design concepts for Mars missions.

  11. Advances in fuel cell vehicle design

    NASA Astrophysics Data System (ADS)

    Bauman, Jennifer

    Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied to any system utilizing the novel battery-ultracapacitor energy storage system and is not limited in application to only fuel cell vehicles. With regards to DC/DC converters, it is important to design efficient and light-weight converters for use in fuel cell and other electric vehicles to improve overall vehicle fuel economy. Thus, this research presents a novel soft-switching method, the capacitor-switched regenerative snubber, for the high-power DC/DC boost converters commonly used in fuel cell vehicles. This circuit is shown to increase the efficiency and reduce the overall mass of the DC/DC boost converter.

  12. Design of a minimalist autonomous robotic vehicle

    E-print Network

    Spadafora, Mark (Mark A.)

    2008-01-01

    The purpose of this thesis is to investigate design alternatives for the creation of a minimalist autonomous robotic vehicle, based on the Ford Escape. The work builds on prior work performed by the MIT DARPA Urban Challenge ...

  13. Automated mixed traffic vehicle design AMTV 2

    NASA Technical Reports Server (NTRS)

    Johnston, A. R.; Marks, R. A.; Cassell, P. L.

    1982-01-01

    The design of an improved and enclosed Automated Mixed Traffic Transit (AMTT) vehicle is described. AMTT is an innovative concept for low-speed tram-type transit in which suitable vehicles are equipped with sensors and controls to permit them to operate in an automated mode on existing road or walkway surfaces. The vehicle chassis and body design are presented in terms of sketches and photographs. The functional design of the sensing and control system is presented, and modifications which could be made to the baseline design for improved performance, in particular to incorporate a 20-mph capability, are also discussed. The vehicle system is described at the block-diagram-level of detail. Specifications and parameter values are given where available.

  14. Design innovations in electric and hybrid electric vehicles

    SciTech Connect

    NONE

    1995-12-31

    Contents include: Design and analysis of a hybrid electric vehicle chassis; A hybrid vehicle evaluation code and its application to vehicle design; Controlling a CVT-equipped hybrid car; Computerized speed control of electric vehicles; A comparison of modeled and measured energy use in hybrid electric vehicles; and more.

  15. Design rationale for a remote work vehicle

    Microsoft Academic Search

    1986-01-01

    The remote work vehicle (RWV) is a mobile, teleoperated, electrohydraulic robot designed for aggressive, radiological decontamination work. The RWV performs tasks such as washdown, sampling, material packaging and transport, surfacing, and demolition. This paper discusses the design rationale that shaped the development of the RWV with respect to capability, reliability, operability, decontaminability, extensibility, and maintainability. To meet an important subset

  16. Optimized design of an unmanned surface vehicle

    Microsoft Academic Search

    V. Kanakakis; P. Spanoudakis; N. Tsourveloudis

    2009-01-01

    A multi-role unmanned surface vehicle (USV) has been recently designed at the Technical University of Crete. This paper highlights the methodology used for the optimized design. A market research was initially performed so as to evaluate the global USV's market. Based on the relevant market findings, certain characteristics and performance specifications were set. An iterative genetic algorithm process was utilized

  17. Road Vehicle Suspension System Design - a review

    Microsoft Academic Search

    R. S. SHARP; D. A. CROLLA

    1987-01-01

    Based mainly on English language literature, information relating to the design of automobile suspension systems for ride comfort and control of wheel load variations for frequencies below body structure resonances is reviewed. The information is interpreted in the context of vehicles which travel through a wide speed range on roads of markedly differing quality, which do so carrying different loads

  18. Human Factors in space vehicle design

    NASA Astrophysics Data System (ADS)

    Holden, Kritina L.; Boyer, Jennifer L.; Ezer, Neta; Holubec, Keith; Sándor, Anikó; Stephens, John-Paul

    2013-11-01

    Proper consideration of human needs in the design of space vehicles results in a safe and productive environment for crewmembers. This is particularly important for crew interfaces that are used during ascent and entry due to the demanding environmental conditions. The involvement of Human Factors (HF) engineers in the design and evaluation process ensures that Human-Systems Integration (HSI) begins early, and continues throughout the lifecycle of a vehicle. This paper highlights various aspects of the HSI process: establishment of HSI standards, the use of research to develop and refine challenging requirements and verification methods, partnering with research projects to drive evidence-based designs, and the value of applying HF methods and principles to design.

  19. Improving Conceptual Design for Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    1998-01-01

    This report summarizes activities performed during the second year of a three year cooperative agreement between NASA - Langley Research Center and Georgia Tech. Year 1 of the project resulted in the creation of a new Cost and Business Assessment Model (CABAM) for estimating the economic performance of advanced reusable launch vehicles including non-recurring costs, recurring costs, and revenue. The current year (second year) activities were focused on the evaluation of automated, collaborative design frameworks (computation architectures or computational frameworks) for automating the design process in advanced space vehicle design. Consistent with NASA's new thrust area in developing and understanding Intelligent Synthesis Environments (ISE), the goals of this year's research efforts were to develop and apply computer integration techniques and near-term computational frameworks for conducting advanced space vehicle design. NASA - Langley (VAB) has taken a lead role in developing a web-based computing architectures within which the designer can interact with disciplinary analysis tools through a flexible web interface. The advantages of this approach are, 1) flexible access to the designer interface through a simple web browser (e.g. Netscape Navigator), 2) ability to include existing 'legacy' codes, and 3) ability to include distributed analysis tools running on remote computers. To date, VAB's internal emphasis has been on developing this test system for the planetary entry mission under the joint Integrated Design System (IDS) program with NASA - Ames and JPL. Georgia Tech's complementary goals this year were to: 1) Examine an alternate 'custom' computational architecture for the three-discipline IDS planetary entry problem to assess the advantages and disadvantages relative to the web-based approach.and 2) Develop and examine a web-based interface and framework for a typical launch vehicle design problem.

  20. HIFiRE-5 Flight Vehicle Design

    NASA Technical Reports Server (NTRS)

    Kimmel, Roger L.; Adamczak, David; Berger, Karen; Choudhari, Meelan

    2010-01-01

    The Hypersonic International Flight Research Experimentation (HIFiRE) program is a hypersonic flight test program executed by the Air Force Research Laboratories (AFRL) and Australian Defence Science and Technology Organization (DSTO). HIFiRE flight 5 is devoted to measuring transition on a three-dimensional body. This paper summarizes payload configuration, trajectory, vehicle stability limits and roughness tolerances. Results show that the proposed configuration is suitable for testing transition on a three-dimensional body. Transition is predicted to occur within the test window, and a design has been developed that will allow the vehicle to be manufactured within prescribed roughness tolerances

  1. Space Vehicle Terrestrial Environment Design Requirements Guidelines

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Keller, Vernon W.; Vaughan, William W.

    2006-01-01

    The terrestrial environment is an important driver of space vehicle structural, control, and thermal system design. NASA is currently in the process of producing an update to an earlier Terrestrial Environment Guidelines for Aerospace Vehicle Design and Development Handbook. This paper addresses the contents of this updated handbook, with special emphasis on new material being included in the areas of atmospheric thermodynamic models, wind dynamics, atmospheric composition, atmospheric electricity, cloud phenomena, atmospheric extremes, and sea state. In addition, the respective engineering design elements are discussed relative to terrestrial environment inputs that require consideration. Specific lessons learned that have contributed to the advancements made in the application and awareness of terrestrial environment inputs for aerospace engineering applications are presented.

  2. Dynamic issues in launch vehicle design

    NASA Technical Reports Server (NTRS)

    Ryan, Robert S.; Jewell, Ronald E.

    1993-01-01

    Launch vehicles, in general, have been defined using performance requirements and generic payload characteristics which dictated the propulsion system and the payload carrier. The vehicle concept is then selected using these requirements in conjunction with basic criteria and standards. During the design phase, the selected concept must be modified in order to cope with the numerous dynamic and other problems that occur during design and development. This is costly and is, to some extent, unnecessary. The purpose of this paper is to propose an approach for bringing the dynamic issues into focus during concept selection, where the greatest payoff exists. Delaying consideration of the issues to the design phases creates many problems, not the least of which are the impacts levied against the payload community. Volumes of information exist from prior programs on these dynamic issues and serve as the guidelines for this paper.

  3. Editors’ perspectives: road vehicle suspension design, dynamics, and control

    Microsoft Academic Search

    Dongpu Cao; Xubin Song; Mehdi Ahmadian

    2011-01-01

    This paper provides an overview of the latest advances in road vehicle suspension design, dynamics, and control, together with the authors’ perspectives, in the context of vehicle ride, handling, and stability. The general aspects of road vehicle suspension dynamics and design are discussed, followed by descriptions of road-roughness excitations with a particular emphasis on road potholes. Passive suspension system designs

  4. Hypersonic drone vehicle design: A multidisciplinary experience

    NASA Technical Reports Server (NTRS)

    1988-01-01

    UCLA's Advanced Aeronautic Design group focussed their efforts on design problems of an unmanned hypersonic vehicle. It is felt that a scaled hypersonic drone is necesary to bridge the gap between present theory on hypersonics and the future reality of the National Aerospace Plane (NASP) for two reasons: (1) to fulfill a need for experimental data in the hypersonic regime, and (2) to provide a testbed for the scramjet engine which is to be the primary mode of propulsion for the NASP. The group concentrated on three areas of great concern to NASP design: propulsion, thermal management, and flight systems. Problem solving in these areas was directed toward design of the drone with the idea that the same design techniques could be applied to the NASP. A 70 deg swept double-delta wing configuration, developed in the 70's at the NASA Langley, was chosen as the aerodynamic and geometric model for the drone. This vehicle would be air launched from a B-1 at Mach 0.8 and 48,000 feet, rocket boosted by two internal engines to Mach 10 and 100,000 feet, and allowed to cruise under power of the scramjet engine until burnout. It would then return to base for an unpowered landing. Preliminary energy calculations based on flight requirements give the drone a gross launch weight of 134,000 pounds and an overall length of 85 feet.

  5. Winged cargo return vehicle conceptual design

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA is committed to placing a permanent space station in Earth orbit in the 1990's. Space Station Freedom (SSF) will be located in a 220 n.m. orbit at 28.5 degrees inclination. The Winged Cargo Return Vehicle's (CRV) primary mission is to support SSF crew by flying regular resupply missions. The winged CRV is designed to be reusable, dry land recoverable, and unmanned. The CRV will be launched inline on three liquid hydrogen/oxygen rocket boosters with a payload capacity of 113,000 lbs. The three boosters will take the CRV to an orbit of 50 by 110 n.m. From this altitude the orbital manuevering engine will place the vehicle in synchronous orbit with the space station. The winged CRV will deliver cargo modules to the space station by direct docking or by remaining outside the SSF command zone and using the Orbital Maneuvering Vehicle (OMV) to transfer cargo. After unloading/loading, the CRV will deorbit and fly back to Kennedy Space Center. The CRV has a wing span of 57.8 feet, a length of 76.0 feet, and a dry weight of 61.5 klb. The cargo capacity of the vehicle is 44.4 klb. The vehicle has a lift-drag ratio of 1.28 (hypersonic) and 6.0 (subsonic), resulting in a 1351 n.m. cross range. The overall mission length ranges between 18.8 and 80.5 hr. The operational period will be the years 2000 to 2020.

  6. Strategies in electric and hybrid vehicle design

    SciTech Connect

    NONE

    1996-09-01

    This SAE special publication, Strategies in Electric and Hybrid Vehicle Design (SP-1156), is a collection of papers presented for sessions at the 1996 SAE International Congress and Exposition, co-organized by the Advanced Powerplant Committee/Powerplant Activity and the Electric Vehicle Committee/Passenger Car Activity. One session, Engine and Fuel Technology for Hybrid Vehicles, focuses on engine and fuel strategies for fuel efficient, low emission hybrid vehicles. Hybrids employing either mechanical energy storage or electrical energy sources are covered. Longer-range concepts employing novel engines and hydrogen and compressed natural gas alternative fuels are also discussed. The reader will find that hybrid strategies taken by European, Japanese, and North American developers differ. While technology is evolving rapidly, it is clear that the definitive hybrid strategy has not yet been developed. Strategies covered in the above session can be divided into three general classifications: series, parallel, and dual system (combined series-parallel). Each strategy places different demands on the engine. Typically, parallel operation, favored by the Europeans, has the advantage that the operation of the internal combustion (IC) engine is just as efficient as the operation of a conventional vehicle. However, the IC engine in a parallel arrangement must content with transients. Controlling a parallel hybrid is critical, because each power source can provide traction to the wheels independent of the other system. Series operation has the advantage of allowing the engine to operate at a constant speed in the vicinity of its optimum (inter terms of efficiency and emissions) operating point. However, the series configuration has an efficiency penalty, as energy must be converted several times. Dual systems appear promising because they have the advantages of both the parallel and series systems.

  7. Design Methodology for Unmannded Aerial Vehicle (UAV) Team Coordination

    E-print Network

    Cummings, Mary "Missy"

    1 Design Methodology for Unmannded Aerial Vehicle (UAV) Team Coordination F.B. da Silva S.D. Scott-mail: halab@mit.edu #12;2 Design Methodology for Unmannded Aerial Vehicle (UAV) Team Coordination by F.B. da Silva, S.D. Scott, and M.L. Cummings Executive Summary Unmanned Aerial Vehicle (UAV) systems, despite

  8. Vehicle following controller design for autonomous intelligent vehicles

    NASA Technical Reports Server (NTRS)

    Chien, C. C.; Lai, M. C.; Mayr, R.

    1994-01-01

    A new vehicle following controller is proposed for autonomous intelligent vehicles. The proposed vehicle following controller not only provides smooth transient maneuvers for unavoidable nonzero initial conditions but also guarantees the asymptotic platoon stability without the availability of feedforward information. Furthermore, the achieved asymptotic platoon stability is shown to be robust to sensor delays and an upper bound for the allowable sensor delays is also provided in this paper.

  9. Avionics systems design for cooperative unmanned air and ground vehicles

    E-print Network

    Omelchenko, Alexander, 1968-

    2004-01-01

    This thesis summarizes the results of the design of avionics systems intended for use onboard unmanned air and ground vehicles, that are parts of a multi-vehicle system whose primary mission objective is to provide up-close ...

  10. Aerospace vehicle design, spacecraft section. Volume 1

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The objective was to create a manned Martian aircraft which can perform: scientific surveys of particular sites distant from the base; a deployment of scientific instrument packages by air drop that land rovers cannot accomplish; and rescue operations. Designing the airfoil requires a wing which can operate within the low Reynolds numbers apparent on Mars. The airfoil, NASA NLF(1)-1015 was chosen. The design of the aircraft is comparable to a P-38 military aircraft. The aircraft uses fuel cells to power the two propellers. A rocket-assisted takeoff is necessary to enable Romulus to liftoff. Although the design and creation of Romulus would be an expensive adventure, such a vehicle could be most useful in evaluating the Mars surface and in creating a habitat for mankind.

  11. Wooden Spaceships: Human-Centered Vehicle Design for Space

    NASA Technical Reports Server (NTRS)

    Twyford, Evan

    2009-01-01

    Presentation will focus on creative human centered design solutions in relation to manned space vehicle design and development in the NASA culture. We will talk about design process, iterative prototyping, mockup building and user testing and evaluation. We will take an inside look at how new space vehicle concepts are developed and designed for real life exploration scenarios.

  12. Advances in fuel cell vehicle design

    Microsoft Academic Search

    Jennifer Bauman

    2008-01-01

    Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some

  13. Design of Flight Vehicle Management Systems

    NASA Technical Reports Server (NTRS)

    Meyer, George; Aiken, Edwin W. (Technical Monitor)

    1994-01-01

    As the operation of large systems becomes ever more dependent on extensive automation, the need for an effective solution to the problem of design and validation of the underlying software becomes more critical. Large systems possess much detailed structure, typically hierarchical, and they are hybrid. Information processing at the top of the hierarchy is by means of formal logic and sentences; on the bottom it is by means of simple scalar differential equations and functions of time; and in the middle it is by an interacting mix of nonlinear multi-axis differential equations and automata, and functions of time and discrete events. The lecture will address the overall problem as it relates to flight vehicle management, describe the middle level, and offer a design approach that is based on Differential Geometry and Discrete Event Dynamic Systems Theory.

  14. Specification and design of coordinated motions for autonomous vehicles1

    E-print Network

    Sontag, Eduardo

    Specification and design of coordinated motions for autonomous vehicles1 Jo~ao Borges de Sousa2 in a near future, by networked vehicles and systems are presented. It is shown that, at the heart of those of multiple vehicles and systems is proposed, and related to recent developments in control, compu- tation

  15. DESIGNING AND IMPLEMENTING COLLABORATIVE BEHAVIORS FOR AUTONOMOUS UNDERWATER VEHICLES

    E-print Network

    Idaho, University of

    DESIGNING AND IMPLEMENTING COLLABORATIVE BEHAVIORS FOR AUTONOMOUS UNDERWATER VEHICLES Thomas Bean of the autonomous underwater vehicle (AUV) research efforts at the University of Idaho, with a focus is to help the Navy develop a systematic method to search for mines. The vehicle hardware most closely

  16. Mechatronic design and control of hybrid electric vehicles

    Microsoft Academic Search

    Bernd M. Baumann; Gregory Washington; Bradley C. Glenn; Giorgio Rizzoni

    2000-01-01

    The work in this paper presents techniques for design, development, and control of hybrid electric vehicles (HEV). Toward these ends, four issues are explored. First, the development of HEV is presented. This synopsis includes a novel definition of degree of hybridization for automotive vehicles. Second, a load-leveling vehicle operation strategy is developed. In order to accomplish the strategy, a fuzzy

  17. Online Mechanism Design for Electric Vehicle Charging Enrico H. Gerding

    E-print Network

    Chen, Yiling

    Online Mechanism Design for Electric Vehicle Charging Enrico H. Gerding eg@ecs.soton.ac.uk Valentin electric vehicles are expected to place a consid- erable strain on local electricity distribution networks mechanisms are evaluated in depth, using data from a real-world trial of electric vehicles in the UK

  18. Computational Aerothermodynamic Design Issues for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Weilmuenster, K. James; Hamilton, H. Harris, II; Olynick, David R.; Venkatapathy, Ethiraj

    1997-01-01

    A brief review of the evolutionary progress in computational aerothermodynamics is presented. The current status of computational aerothermodynamics is then discussed, with emphasis on its capabilities and limitations for contributions to the design process of hypersonic vehicles. Some topics to be highlighted include: (1) aerodynamic coefficient predictions with emphasis on high temperature gas effects; (2) surface heating and temperature predictions for thermal protection system (TPS) design in a high temperature, thermochemical nonequilibrium environment; (3) methods for extracting and extending computational fluid dynamic (CFD) solutions for efficient utilization by all members of a multidisciplinary design team; (4) physical models; (5) validation process and error estimation; and (6) gridding and solution generation strategies. Recent experiences in the design of X-33 will be featured. Computational aerothermodynamic contributions to Mars Pathfinder, METEOR, and Stardust (Comet Sample return) will also provide context for this discussion. Some of the barriers that currently limit computational aerothermodynamics to a predominantly reactive mode in the design process will also be discussed, with the goal of providing focus for future research.

  19. Computational Aerothermodynamic Design Issues for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Olynick, David R.; Venkatapathy, Ethiraj

    2004-01-01

    A brief review of the evolutionary progress in computational aerothermodynamics is presented. The current status of computational aerothermodynamics is then discussed, with emphasis on its capabilities and limitations for contributions to the design process of hypersonic vehicles. Some topics to be highlighted include: (1) aerodynamic coefficient predictions with emphasis on high temperature gas effects; (2) surface heating and temperature predictions for thermal protection system (TPS) design in a high temperature, thermochemical nonequilibrium environment; (3) methods for extracting and extending computational fluid dynamic (CFD) solutions for efficient utilization by all members of a multidisciplinary design team; (4) physical models; (5) validation process and error estimation; and (6) gridding and solution generation strategies. Recent experiences in the design of X-33 will be featured. Computational aerothermodynamic contributions to Mars Pathfinder, METEOR, and Stardust (Comet Sample return) will also provide context for this discussion. Some of the barriers that currently limit computational aerothermodynamics to a predominantly reactive mode in the design process will also be discussed, with the goal of providing focus for future research.

  20. Computational Aerothermodynamic Design Issues for Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Weilmuenster, K. James; Hamilton, H. Harris, II; Olynick, David R.; Venkatapathy, Ethiraj

    2005-01-01

    A brief review of the evolutionary progress in computational aerothermodynamics is presented. The current status of computational aerothermodynamics is then discussed, with emphasis on its capabilities and limitations for contributions to the design process of hypersonic vehicles. Some topics to be highlighted include: (1) aerodynamic coefficient predictions with emphasis on high temperature gas effects; (2) surface heating and temperature predictions for thermal protection system (TPS) design in a high temperature, thermochemical nonequilibrium environment; (3) methods for extracting and extending computational fluid dynamic (CFD) solutions for efficient utilization by all members of a multidisciplinary design team; (4) physical models; (5) validation process and error estimation; and (6) gridding and solution generation strategies. Recent experiences in the design of X-33 will be featured. Computational aerothermodynamic contributions to Mars Path finder, METEOR, and Stardust (Comet Sample return) will also provide context for this discussion. Some of the barriers that currently limit computational aerothermodynamics to a predominantly reactive mode in the design process will also be discussed, with the goal of providing focus for future research.

  1. Electrical system design of a solar electric vehicle

    Microsoft Academic Search

    Brian R. Borchers; Jonathan A. Locker

    1997-01-01

    This paper presents the results of a team approach to the design and construction of an electrical system for a solar electric vehicle. The design proceeds from the selection of solar cells to the brushless DC motor inverter fed electric drive with solar tracking and optimal battery storage. The vehicle design is being implemented for construction in the 1997 Sunrayce

  2. Propulsion system design of electric and hybrid vehicles

    Microsoft Academic Search

    Mehrdad Ehsani; Khwaja M. Rahman; Hamid A. Toliyat

    1997-01-01

    There is a growing interest in electric and hybrid-electric vehicles due to environmental concerns. Efforts are directed toward developing an improved propulsion system for electric and hybrid-electric vehicles applications. This paper is aimed at developing the system design philosophies of electric and hybrid vehicle propulsion systems. The vehicles' dynamics are studied in an attempt to find an optimal torque-speed profile

  3. Communications and Tracking of Visiting Vehicles near ISS: The Design of the Reusable Launch Vehicle Communications

    NASA Technical Reports Server (NTRS)

    Stillwagen, Frederic H.

    1999-01-01

    The International Space Station (ISS) will provide for the visitation of various vehicles such as the Shuttle, Automated Transfer Vehicle (ATV), H-II Transfer Vehicle (HTV), Crew Return Vehicle (CRV), Reusable Launch Vehicle (RLV) and Soyuz. These vehicles will provide for crew replacement, consumables resupply, and equipment delivery. In order for these vehicles to approach and eventually dock with the ISS, there must be near continuous communications coverage between the visiting vehicle and the ISS, as well as communications between the vehicle and a Mission Control Center (MCC). Since the ISS communications systems are already designed and scheduled for ISS activation, the vehicles must either utilize these communications systems or provide their own. There are two means of two-way communications with the ISS. These are (1) S-Band communications using TDRSS, and (2) UHF communications using some form of the Space to Space Station Radio (SSSR) link. The RLV utilizes ISS compatible communications systems to communicate with both the ISS and a Mission Control Center. Since all vehicles must adhere to the Visiting Vehicle Interface requirements given in reference 1, the RLV communications system design must meet these requirements during entry into the ISS Approach Ellipsoid (AE) and during Proximity Operations. Included in this paper are descriptions of these communications approaches as well as their potential utilization in the ISS communications system.

  4. Preventing Passenger Vehicle Occupant Injuries by Vehicle Design—A Historical Perspective from IIHS

    Microsoft Academic Search

    Brian ONeill

    2009-01-01

    Motor vehicle crashes result in some 1.2 million deaths and many more injuries worldwide each year and is one of the biggest public health problems facing societies today. This article reviews the history of, and future potential for, one important countermeasure—designing vehicles that reduce occupant deaths and injuries. For many years, people had urged automakers to add design features to

  5. Optimization of entry-vehicle shapes during conceptual design

    NASA Astrophysics Data System (ADS)

    Dirkx, D.; Mooij, E.

    2014-01-01

    During the conceptual design of a re-entry vehicle, the vehicle shape and geometry can be varied and its impact on performance can be evaluated. In this study, the shape optimization of two classes of vehicles has been studied: a capsule and a winged vehicle. Their aerodynamic characteristics were analyzed using local-inclination methods, automatically selected per vehicle segment. Entry trajectories down to Mach 3 were calculated assuming trimmed conditions. For the winged vehicle, which has both a body flap and elevons, a guidance algorithm to track a reference heat-rate was used. Multi-objective particle swarm optimization was used to optimize the shape using objectives related to mass, volume and range. The optimizations show a large variation in vehicle performance over the explored parameter space. Areas of very strong non-linearity are observed in the direct neighborhood of the two-dimensional Pareto fronts. This indicates the need for robust exploration of the influence of vehicle shapes on system performance during engineering trade-offs, which are performed during conceptual design. A number of important aspects of the influence of vehicle behavior on the Pareto fronts are observed and discussed. There is a nearly complete convergence to narrow-wing solutions for the winged vehicle. Also, it is found that imposing pitch-stability for the winged vehicle at all angles of attack results in vehicle shapes which require upward control surface deflections during the majority of the entry.

  6. Effective design choices for skid-steering robotic vehicles

    NASA Astrophysics Data System (ADS)

    Sinha, Aakash K.; Rosenblum, Mark

    2004-12-01

    One of the major problems with any robotic vehicle is inefficient use of available power. This research explores in detail the locomotion, power dynamics and performance of a skid steered robotic vehicle and develops techniques to derive efficient design parameters of the vehicle in order to achieve optimal performance by minimizing the power losses/consumption. Three categories of design variables describe the vehicle and its dynamics; variables that describe the vehicle, variables that describe the surface on which it runs and variables that describe the vehicle"s motion. Two major constituent components of power losses/consumption of the vehicle are - losses in skid steer turning, and losses in rolling. Our focus is on skid steering, we present a detailed analysis of skid steering for different turning modes; elastic mode steering, half-slip steering, skid turns, low radius turns, and zero radius turns. Each of the power loss components is modeled from physics in terms of the design variables. The effect of design variables on the total power losses/consumption is then studied using simulated data for different types of surfaces i.e. hard surfaces and muddy surfaces. Finally, we make suggestions about efficient vehicle design choices in terms of the design variables.

  7. The design of an autonomous vehicle for the disabled

    Microsoft Academic Search

    RICHARD L. MADARASZ; LOREN C. HEINY; ROBERT F. CROMP; NEAL M. MAZUR

    1986-01-01

    The first steps in the design and construction of an autonomous vehicle for the physically and sensory disabled are described. The vehicle is basically a self-navigating wheelchair, which is designed to transport a person to a desired room within an office building given only the destination room number. The wheelchair has been equipped with an on-board microcomputer, a digital camera,

  8. Design and Implement of a Trimaran Unmanned Surface Vehicle System

    Microsoft Academic Search

    Juntong Qi; Yan Peng; He Wang; Jianda Han

    2007-01-01

    This paper describes recent research on system design of a trimaran unmanned surface vehicle (TUSV) control system and a control scheme for such a vehicle. The trimaran is to be designed as a test bed for the implementation of new nonlinear control theories. The full system has been tested successfully in the manual operation and obtained useful data, which is

  9. Vehicle classes for pavement design and capacity analysis

    SciTech Connect

    Kubala, J.; Asce, M.; Lalani, N.; O'Connell, R.; Petersen, C.

    1986-11-01

    Transportation engineers working in Colorado were aware of a lack of published data at both the local and national level for vehicle classes on urban streets. Such vehicle class breakdowns are necessary for calculating equivalent daily loaded axle (EDLA) values for pavement design and conducting capacity analyses. A technical committee was formed to collect and analyze weekday vehicle class data on urban streets of various types. The major vehicle classes are passenger cars (70-75%), pickups (15-20%), single unit trucks (5-7%); tractor-trailers, buses, and recreational vehicles account for less than 1%. Using these data, a microcomputer spread sheet was set up to calculate EDLA values for pavement design for a range of design year volumes. This vehicle class data is also very useful in highway capacity calculations.

  10. Integrated structural and thermal design of an entry vehicle aeroshell 

    E-print Network

    Cochran, David Brian

    1996-01-01

    Preliminary designs of two different reusable entry vehicle aeroshells were developed and compared on the basis of total weight, projected cost, reliability, and manufacturability. The first design was performed in the "traditional" method; first...

  11. Design diversity of HEVs with example vehicles from HEV competitions

    SciTech Connect

    Duoba, M.; Larsen, R.; LeBlanc, N.

    1996-12-31

    Hybrid Electric Vehicles (HEVS) can be designed and operated to satisfy many different operational missions. The three most common HEV types differ with respect to component sizing and operational capabilities. However, HEV technology offers design opportunities beyond these three types. This paper presents a detailed HEV categorization process that can be used to describe unique HEV prototype designs entered in college and university-level HEV design competitions. We explored possible energy management strategies associated with designs that control the utilization of the two on- board energy sources and use the competition vehicles to illustrate various configurations and designs that affect the vehicle`s capabilities. Experimental data is used to help describe the details of the power control strategies which determine how the engine and electric motor of HEV designs work together to provide motive power to the wheels.

  12. Winged cargo return vehicle. Volume 1: Conceptual design

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Advanced Design Project (ADP) allows an opportunity for students to work in conjunction with NASA and other aerospace companies on NASA Advanced Design Projects. The following volumes represent the design report: Volume 1 Conceptual Design; Volume 2 Wind Tunnel Tests; Volume 3 Structural Analysis; and Volume 4 Water Tunnel Tests. The project chosen by the University of Minnesota in conjunction with NASA Marshall Space Flight Center for this year is a Cargo Return Vehicle (CRV) to support the Space Station Freedom. The vehicle is the third generation of vehicles to be built by NASA, the first two being the Apollo program, and the Space Shuttle program. The CRV is to work in conjunction with a personnel launch system (PLS) to further subdivide and specialize the vehicles that NASA will operate in the year 2000. The cargo return vehicle will carry payload to and from the Space Station Freedom (SSF).

  13. Unmanned air vehicles: new challenges in design

    Microsoft Academic Search

    T. J. Cord; S. Newbern

    2001-01-01

    The last ten years have seen a gradual shift in emphasis on future aeronautical technologies towards autonomous operation. This is most evident in the extended planning and development of unmanned air vehicles (UAV). UAV have grown from being target drones to unmanned combat air vehicles that will perform the suppression of enemy air defenses mission. Following generations may even include

  14. Design and implementation of liquid cooling system for ArchiMITes vehicle

    E-print Network

    Hui, Sam, S.B. Massachusetts Institute of Technology

    2011-01-01

    MIT Vehicle Design Summit is building ArchiMITes, a lightweight hybrid vehicle with a modular auxiliary power unit. For testing purposes, the vehicle platform will first be built as an all-electric vehicle. It will be ...

  15. Design of Adaptive Variable Structure Control System for Aerospace Vehicle

    Microsoft Academic Search

    Tong Chunxia

    2006-01-01

    The aerospace vehicle is a hypersonic vehicle for long distance transport in near-space. The control system design is much more complicated than that of conventional aircraft due to its large attitude maneuvers and a large amount of uncertainty in ascent and descent modes. In order to provide accurate guidance and attitude tracking, the controller must be robust to external unknown

  16. Design of a fast crew transfer vehicle to Mars

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A final report is made on the trajectory and vehicle requirements for a fast crew transfer vehicle to Mars which will complete an Earth to Mars (and Mars to Earth) transfer in 150 days and will have a stay time at Mars of 40 days. This vehicle will maximize the crew's effectiveness on Mars by minimizing detrimental physiological effects such as bone demineralization and loss of muscle tone caused by long period exposure to zero gravity and radiation from cosmic rays and solar flares. The crew transfer vehicle discussed will complete the second half of a Split Mission to Mars. In the Split Mission, a slow, unmanned cargo vehicle, nicknamed the Barge, is sent to Mars ahead of the crew vehicle. Once the Barge is in orbit around Mars, the fast crew vehicle will be launched to rendezvous with the Barge in Mars orbit. The vehicle presented is designed to carry six astronauts for a mission duration of one year. The vehicle uses a chemical propulsion system and a nuclear power system. Four crew modules, similar to the proposed Space Station Common Modules, are used to house the crew and support equipment during the mission. The final design also includes a command module that is shielded to protect the crew during radiation events.

  17. Preliminary subsystem designs for the Assured Crew Return Vehicle (ACRV)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Described herein is a series of design studies concerning the Assured Crew Return Vehicle (ACRV). Study topics include a braking and landing system for the ACRV, ACRV growth options, and the design impacts of ACRV's role as a medical emergency vehicle. Four alternate designs are presented for the ACRV braking and landing system. Options presented include ballistic and lifting body reentries; the use of high-lift, high-payload aerodynamic decelerators, as well as conventional parachutes; landing systems designed for water landings, land landings or both; and an aerial recovery system. Uses of the ACRV or a similarly designed vehicle in several roles for possible future space missions are discussed, along with the required changes to the ACRV to allow it to perform these missions optimally. The impacts on the design of the ACRV due to its role as an emergency vehicle were studied and are presented here. This study included the design of a stretcher-like system to transport an ill or injured crewmember safely within the ACRV; a compilation of necessary medical equipment and decisions on how or where to store it; and recommendations about internal and external vehicle characteristics that will ease the transport of the ill or injured crewmember and allow for swift and easy ingress/egress of the vehicle.

  18. Adaptive Modeling, Engineering Analysis and Design of Advanced Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Hsu, Su-Yuen; Mason, Brian H.; Hicks, Mike D.; Jones, William T.; Sleight, David W.; Chun, Julio; Spangler, Jan L.; Kamhawi, Hilmi; Dahl, Jorgen L.

    2006-01-01

    This paper describes initial progress towards the development and enhancement of a set of software tools for rapid adaptive modeling, and conceptual design of advanced aerospace vehicle concepts. With demanding structural and aerodynamic performance requirements, these high fidelity geometry based modeling tools are essential for rapid and accurate engineering analysis at the early concept development stage. This adaptive modeling tool was used for generating vehicle parametric geometry, outer mold line and detailed internal structural layout of wing, fuselage, skin, spars, ribs, control surfaces, frames, bulkheads, floors, etc., that facilitated rapid finite element analysis, sizing study and weight optimization. The high quality outer mold line enabled rapid aerodynamic analysis in order to provide reliable design data at critical flight conditions. Example application for structural design of a conventional aircraft and a high altitude long endurance vehicle configuration are presented. This work was performed under the Conceptual Design Shop sub-project within the Efficient Aerodynamic Shape and Integration project, under the former Vehicle Systems Program. The project objective was to design and assess unconventional atmospheric vehicle concepts efficiently and confidently. The implementation may also dramatically facilitate physics-based systems analysis for the NASA Fundamental Aeronautics Mission. In addition to providing technology for design and development of unconventional aircraft, the techniques for generation of accurate geometry and internal sub-structure and the automated interface with the high fidelity analysis codes could also be applied towards the design of vehicles for the NASA Exploration and Space Science Mission projects.

  19. The design, construction, and control of a wheeled robot vehicle 

    E-print Network

    Ekiriwang, Tevo

    1986-01-01

    THE DESIGN, CONSTRUCTION, AND CONTROL OF A WHEELED ROBOT VEHICLE A Thesis by TEVO EKIRI WANG Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December... 1986 Major Subject: Mechanical Engineering THE DESIGN, CONSTRUCTION, AND CONTROL OF A WHEELED ROBOT VEHICLE A Thesis by TEVO EKIRIWANG Approved as to style and content by: Dennis N. ingham (Chairman of Committ ) Louis J. Everett c . C...

  20. Design of a stable fuzzy controller for an articulated vehicle.

    PubMed

    Tanaka, K; Kosaki, T

    1997-01-01

    This paper presents a backward movement control of an articulated vehicle via a model-based fuzzy control technique. A nonlinear dynamic model of the articulated vehicle is represented by a Takagi-Sugeno fuzzy model. The concept of parallel distributed compensation is employed to design a fuzzy controller from the Takagi-Sugeno fuzzy model of the articulated vehicle. Stability of the designed fuzzy control system is guaranteed via Lyapunov approach. The stability conditions are characterized in terms of linear matrix inequalities since the stability analysis is reduced to a problem of finding a common Lyapunov function for a set of Lyapunov inequalities. Simulation results and experimental results show that the designed fuzzy controller effectively achieves the backward movement control of the articulated vehicle. PMID:18255895

  1. Preventing passenger vehicle occupant injuries by vehicle design--a historical perspective from IIHS.

    PubMed

    O'Neill, Brian

    2009-04-01

    Motor vehicle crashes result in some 1.2 million deaths and many more injuries worldwide each year and is one of the biggest public health problems facing societies today. This article reviews the history of, and future potential for, one important countermeasure-designing vehicles that reduce occupant deaths and injuries. For many years, people had urged automakers to add design features to reduce crash injuries, but it was not until the mid-1960s that the idea of pursuing vehicle countermeasures gained any significant momentum. In 1966, the U.S. Congress passed the National Traffic and Motor Vehicle Safety Act, requiring the government to issue a comprehensive set of vehicle safety standards. This was the first broad set of requirements issued anywhere in the world, and within a few years similar standards were adopted in Europe and Australia. Early vehicle safety standards specified a variety of safety designs resulting in cars being equipped with lap/shoulder belts, energy-absorbing steering columns, crash-resistant door locks, high-penetration-resistant windshields, etc. Later, the standards moved away from specifying particular design approaches and instead used crash tests and instrumented dummies to set limits on the potential for serious occupant injuries by crash mode. These newer standards paved the way for an approach that used the marketplace, in addition to government regulation, to improve vehicle safety designs-using crash tests and instrumented dummies to provide consumers with comparative safety ratings for new vehicles. The approach began in the late 1970s, when NHTSA started publishing injury measures from belted dummies in new passenger vehicles subjected to frontal barrier crash tests at speeds somewhat higher than specified in the corresponding regulation. This program became the world's first New Car Assessment Program (NCAP) and rated frontal crashworthiness by awarding stars (five stars being the best and one the worst) derived from head and chest injury measures recorded on driver and front-seat test dummies. NHTSA later added side crash tests and rollover ratings to the U.S. NCAP. Consumer crash testing spread worldwide in the 1990s. In 1995, the Insurance Institute for Highway Safety (IIHS) began using frontal offset crash tests to rate and compare frontal crashworthiness and later added side and rear crash assessments. Shortly after, Europe launched EuroNCAP to assesses new car performance including front, side, and front-end pedestrian tests. The influence of these consumer-oriented crash test programs on vehicle designs has been major. From the beginning, U.S. NCAP results prompted manufacturers to improve seat belt performance. Frontal offset tests from IIHS and EuroNCAP resulted in greatly improved front-end crumple zones and occupant compartments. Side impact tests have similarly resulted in improved side structures and accelerated the introduction of side impact airbags, especially those designed to protect occupant's heads. Vehicle safety designs, initially driven by regulations and later by consumer demand because of crash testing, have proven to be very successful public health measures. Since they were first introduced in the late 1960s, vehicle safety designs have saved hundreds of thousands of lives and prevented countless injuries worldwide. The designs that improved vehicle crashworthiness have been particularly effective. Some newer crash avoidance designs also have the potential to be effective-e.g., electronic stability control is already saving many lives in single-vehicle crashes. However, determining the actual effectiveness of these new technologies is a slow process and needs real-world crash experience because there are no assessment equivalent of crash tests for crash avoidance designs. PMID:19333823

  2. In-situ vehicular antenna integration and design aspects for vehicle-to-vehicle communications

    Microsoft Academic Search

    Andreas Thiel; Oliver Klemp; Alexander Paiera; Laura Bernado; Johan Karedal; Andreas Kwoczek

    2010-01-01

    Vehicle-to-vehicle (V2V) communications aim to enhance driver safety and traffic efficiency by using the recently designated frequency bands in the 5.9 GHz range in Europe. Due to the time-frequency selective fading behavior of the vehicular communication channel, multi-antenna techniques can provide enhanced link conditions by means of diversity processing. This paper highlights the integration of a four-element (N =4) linear

  3. Spacecraft rendezvous operational considerations affecting vehicle systems design and configuration

    NASA Astrophysics Data System (ADS)

    Prust, Ellen E.

    One lesson learned from Orbiting Maneuvering Vehicle (OMV) program experience is that Design Reference Missions must include an appropriate balance of operations and performance inputs to effectively drive vehicle systems design and configuration. Rendezvous trajectory design is based on vehicle characteristics (e.g., mass, propellant tank size, and mission duration capability) and operational requirements, which have evolved through the Gemini, Apollo, and STS programs. Operational constraints affecting the rendezvous final approach are summarized. The two major objectives of operational rendezvous design are vehicle/crew safety and mission success. Operational requirements on the final approach which support these objectives include: tracking/targeting/communications; trajectory dispersion and navigation uncertainty handling; contingency protection; favorable sunlight conditions; acceptable relative state for proximity operations handover; and compliance with target vehicle constraints. A discussion of the ways each of these requirements may constrain the rendezvous trajectory follows. Although the constraints discussed apply to all rendezvous, the trajectory presented in 'Cargo Transfer Vehicle Preliminary Reference Definition' (MSFC, May 1991) was used as the basis for the comments below.

  4. Aerospace Vehicle Design, Spacecraft Section. Volume 3

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Research results are presented for the following groups: Project Mars Airplane Vehicle and Reconnaissance Instrument Carrier (MAVRIC), ACME, ARES, Project ACRONYM, Mars Aircraft Recepticle with Technical Instruments, Aerobraking, and Navigation (MARTIAN), and NOMADS. Each project is described by the following areas of focus: mission planning and costs; aerobraking systems; structures and thermal control systems; attitude and articulation control systems; comman and data control systems; science instrumentation; and power and propulsion systems.

  5. Computer Aided Design Tool for Electric, Hybrid Electric and Plug-in Hybrid Electric Vehicles 

    E-print Network

    Eskandari Halvaii, Ali

    2012-07-16

    This research is focused on designing a new generation of CAD tools that could help a ”hybrid vehicledesigner with the design process to come up with better vehicle configurations. The conventional design process for any type of hybrid...

  6. Conceptual Launch Vehicle and Spacecraft Design for Risk Assessment

    NASA Technical Reports Server (NTRS)

    Motiwala, Samira A.; Mathias, Donovan L.; Mattenberger, Christopher J.

    2014-01-01

    One of the most challenging aspects of developing human space launch and exploration systems is minimizing and mitigating the many potential risk factors to ensure the safest possible design while also meeting the required cost, weight, and performance criteria. In order to accomplish this, effective risk analyses and trade studies are needed to identify key risk drivers, dependencies, and sensitivities as the design evolves. The Engineering Risk Assessment (ERA) team at NASA Ames Research Center (ARC) develops advanced risk analysis approaches, models, and tools to provide such meaningful risk and reliability data throughout vehicle development. The goal of the project presented in this memorandum is to design a generic launch 7 vehicle and spacecraft architecture that can be used to develop and demonstrate these new risk analysis techniques without relying on other proprietary or sensitive vehicle designs. To accomplish this, initial spacecraft and launch vehicle (LV) designs were established using historical sizing relationships for a mission delivering four crewmembers and equipment to the International Space Station (ISS). Mass-estimating relationships (MERs) were used to size the crew capsule and launch vehicle, and a combination of optimization techniques and iterative design processes were employed to determine a possible two-stage-to-orbit (TSTO) launch trajectory into a 350-kilometer orbit. Primary subsystems were also designed for the crewed capsule architecture, based on a 24-hour on-orbit mission with a 7-day contingency. Safety analysis was also performed to identify major risks to crew survivability and assess the system's overall reliability. These procedures and analyses validate that the architecture's basic design and performance are reasonable to be used for risk trade studies. While the vehicle designs presented are not intended to represent a viable architecture, they will provide a valuable initial platform for developing and demonstrating innovative risk assessment capabilities.

  7. Influence of structural dynamics on vehicle design - Government view. [of aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Kordes, E. E.

    1977-01-01

    Dynamic design considerations for aerospace vehicles are discussed, taking into account fixed wing aircraft, rotary wing aircraft, and launch, space, and reentry vehicles. It is pointed out that space vehicles have probably had the most significant design problems from the standpoint of structural dynamics, because their large lightweight structures are highly nonlinear. Examples of problems in the case of conventional aircraft include the flutter encountered by high performance military aircraft with external stores. A description is presented of a number of examples which illustrate the direction of present efforts for improving aircraft efficiency. Attention is given to the results of studies on the structural design concepts for the arrow-wing supersonic cruise aircraft configuration and a system study on low-wing-loading, short haul transports.

  8. Design and modeling of Unmanned Trimaran Surface Vehicles

    Microsoft Academic Search

    Yan Peng; Jianda Han

    2009-01-01

    The design, development, modeling and sea trials of the unmanned Trimaran surface vehicles (UTSV) are presented in this paper. Hardware and sensors for navigation, localization and obstacle avoidance was developed. Sensors were chosen to provide the necessary data for an autonomous controller for control design, six DOF dynamic modeling of autonomous Trimarans is presented. The detailed mathematical modeling is intended

  9. Electrical system design for a solar powered vehicle

    Microsoft Academic Search

    Dean J Patterson

    1990-01-01

    Two separate electrical system designs for a solar-powered vehicle built for a race across Australia in November 1987 are described. A third system for a second race in November 1990 is also described. The design of motors, motor controllers, DC-DC power converters, and maximum power point trackers (MPPTs) under a specialized set of criteria is discussed

  10. Design of a recovery system for a reentry vehicle

    NASA Astrophysics Data System (ADS)

    von Eckroth, Wulf; Garrard, William L.; Miller, Norman

    Engineers are often required to design decelerator systems which are deployed in cross-wind orientations. If the system is not designed to minimize 'line sail', damage to the parachutes could result. A Reentry Vehicle Analysis Code (RVAC) and an accompanying graphics animation software program (DISPLAY) are presented in this paper. These computer codes allow the user to quickly apply the Purvis line sail modeling technique to any vehicle and then observe the relative motion of the vehicle, nose cap, suspension lines, pilot and drogue bags and canopies on a computer screen. Data files are created which allow plots of velocities, spacial positions, and dynamic pressures versus time to be generated. The code is an important tool for the design engineer because it integrates two degrees of freedom (DOF) line sail equations with a three DOF model of the reentry body and jettisoned nose cap to provide an animated output.

  11. Design of a recovery system for a reentry vehicle

    NASA Technical Reports Server (NTRS)

    Von Eckroth, Wulf; Garrard, William L.; Miller, Norman

    1993-01-01

    Engineers are often required to design decelerator systems which are deployed in cross-wind orientations. If the system is not designed to minimize 'line sail', damage to the parachutes could result. A Reentry Vehicle Analysis Code (RVAC) and an accompanying graphics animation software program (DISPLAY) are presented in this paper. These computer codes allow the user to quickly apply the Purvis line sail modeling technique to any vehicle and then observe the relative motion of the vehicle, nose cap, suspension lines, pilot and drogue bags and canopies on a computer screen. Data files are created which allow plots of velocities, spacial positions, and dynamic pressures versus time to be generated. The code is an important tool for the design engineer because it integrates two degrees of freedom (DOF) line sail equations with a three DOF model of the reentry body and jettisoned nose cap to provide an animated output.

  12. Fire hazard considerations for composites in vehicle design

    NASA Technical Reports Server (NTRS)

    Gordon, Rex B.

    1994-01-01

    Military ground vehicles fires are a significant cause of system loss, equipment damage, and crew injury in both combat and non-combat situations. During combat, the ability to successfully fight an internal fire, without losing fighting and mobility capabilities, is often the key to crew survival and mission success. In addition to enemy hits in combat, vehicle fires are initiated by electrical system failures, fuel line leaks, munitions mishaps and improper personnel actions. If not controlled, such fires can spread to other areas of the vehicle, causing extensive damage and the potential for personnel injury and death. The inherent fire safety characteristics (i.e. ignitability, compartments of these vehicles play a major roll in determining rather a newly started fire becomes a fizzle or a catastrophe. This paper addresses a systems approach to assuring optimum vehicle fire safety during the design phase of complex vehicle systems utilizing extensive uses of composites, plastic and related materials. It provides practical means for defining the potential fire hazard risks during a conceptual design phase, and criteria for the selection of composite materials based on its fire safety characteristics.

  13. MIT Electric Vehicle Team Porsche designing a cooling system for the AC24 electric motor

    E-print Network

    Meenen, Jordan N

    2010-01-01

    In this thesis I worked on the design and analysis of a cooling system for the electric motor of the MIT Electric Vehicle Team's Porsche 914 Battery Electric Vehicle. The vehicle's Azure Dynamics AC24 motor tended to ...

  14. Vehicle drive module having improved terminal design

    SciTech Connect

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Phillips, Mark G.; Kehl, Dennis L.; Kaishian, Steven C.; Kannenberg, Daniel G.

    2006-04-25

    A terminal structure for vehicle drive power electronics circuits reduces the need for a DC bus and thereby the incidence of parasitic inductance. The structure is secured to a support that may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as by direct contact between the terminal assembly and AC and DC circuit components. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  15. 36 CFR 212.57 - Monitoring of effects of motor vehicle use on designated roads and trails and in designated areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...effects of motor vehicle use on designated roads and trails and in designated areas. ...AGRICULTURE TRAVEL MANAGEMENT Designation of Roads, Trails, and Areas for Motor Vehicle...effects of motor vehicle use on designated roads and trails and in designated...

  16. 36 CFR 212.57 - Monitoring of effects of motor vehicle use on designated roads and trails and in designated areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...effects of motor vehicle use on designated roads and trails and in designated areas. ...AGRICULTURE TRAVEL MANAGEMENT Designation of Roads, Trails, and Areas for Motor Vehicle...effects of motor vehicle use on designated roads and trails and in designated...

  17. 36 CFR 212.57 - Monitoring of effects of motor vehicle use on designated roads and trails and in designated areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...effects of motor vehicle use on designated roads and trails and in designated areas. ...AGRICULTURE TRAVEL MANAGEMENT Designation of Roads, Trails, and Areas for Motor Vehicle...effects of motor vehicle use on designated roads and trails and in designated...

  18. 36 CFR 212.57 - Monitoring of effects of motor vehicle use on designated roads and trails and in designated areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...effects of motor vehicle use on designated roads and trails and in designated areas. ...AGRICULTURE TRAVEL MANAGEMENT Designation of Roads, Trails, and Areas for Motor Vehicle...effects of motor vehicle use on designated roads and trails and in designated...

  19. 36 CFR 212.57 - Monitoring of effects of motor vehicle use on designated roads and trails and in designated areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...effects of motor vehicle use on designated roads and trails and in designated areas. ...AGRICULTURE TRAVEL MANAGEMENT Designation of Roads, Trails, and Areas for Motor Vehicle...effects of motor vehicle use on designated roads and trails and in designated...

  20. EVALUATION OF SEAT DESIGNS RELATIVE TO TRANSMITTED VEHICLE VIBRATION ON UNDERGROUND MINE TRANSPORT VEHICLES

    Microsoft Academic Search

    Christopher C. Jobes; Alan G. Mayton

    The National Institute for Occupational Safety and Health (NIOSH) researchers have investigated seat design issues for the occupants and operators of underground mine transport vehicles relative to whole- body vibration (WBV) and mechanical shock. Considering the ergonomic and engineering improvements made to underground mine shuttle car seats, this study has focused on reducing injury risk by improving seating on transport

  1. Launch Vehicle Design Process: Characterization, Technical Integration, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.; Humphries, W. R.

    2001-01-01

    Engineering design is a challenging activity for any product. Since launch vehicles are highly complex and interconnected and have extreme energy densities, their design represents a challenge of the highest order. The purpose of this document is to delineate and clarify the design process associated with the launch vehicle for space flight transportation. The goal is to define and characterize a baseline for the space transportation design process. This baseline can be used as a basis for improving effectiveness and efficiency of the design process. The baseline characterization is achieved via compartmentalization and technical integration of subsystems, design functions, and discipline functions. First, a global design process overview is provided in order to show responsibility, interactions, and connectivity of overall aspects of the design process. Then design essentials are delineated in order to emphasize necessary features of the design process that are sometimes overlooked. Finally the design process characterization is presented. This is accomplished by considering project technical framework, technical integration, process description (technical integration model, subsystem tree, design/discipline planes, decision gates, and tasks), and the design sequence. Also included in the document are a snapshot relating to process improvements, illustrations of the process, a survey of recommendations from experienced practitioners in aerospace, lessons learned, references, and a bibliography.

  2. The design of infrared laser radar for vehicle initiative safety

    NASA Astrophysics Data System (ADS)

    Gong, Ping; Xu, Xi-ping; Li, Xiao-yu; Li, Tian-zhi; Liu, Yu-long; Wu, Jia-hui

    2013-09-01

    Laser radar for vehicle is mainly used in advanced vehicle on-board active safety systems, such as forward anti-collision systems, active collision warning systems and adaptive cruise control systems, etc. Laser radar for vehicle plays an important role in the improvement of vehicle active safety and the reduction of traffic accidents. The stability of vehicle active anti-collision system in dynamic environment is still one of the most difficult problems to break through nowadays. According to people's driving habit and the existed detecting technique of sensor, combining the infrared laser range and galvanometer scanning technique , design a 3-D infrared laser radar which can be used to assist navigation, obstacle avoidance and the vehicle's speed control for the vehicle initiative safety. The device is fixed to the head of vehicle. Then if an accident happened, the device could give an alarm to remind the driver timely to decelerate or brake down, by which way can people get the purpose of preventing the collision accidents effectively. To accomplish the design, first of all, select the core components. Then apply Zemax to design the transmitting and receiving optical system. Adopt 1550 nm infrared laser transmitter as emission unit in the device, a galvanometer scanning as laser scanning unit and an InGaAs-APD detector as laser echo signal receiving unit. Perform the construction of experimental system using FPGA and ARM as the core controller. The system designed in this paper can not only detect obstacle in front of the vehicle and make the control subsystem to execute command, but also transfer laser data to PC in real time. Lots of experiments using the infrared laser radar prototype are made, and main performance of it is under tested. The results of these experiments show that the imaging speed of the laser radar can reach up to 25 frames per second, the frame resolution of each image can reach 30×30 pixels, the horizontal angle resolution is about 6. 98mrad, the vertical angle resolution is about 3. 49mrad, the maximum value of range error is 0. 5m, minimum value is 0. 07m at the detectable distance range 10-200m and the detection probability is more than 99. 9%.

  3. Analysis Method for Quantifying Vehicle Design Goals

    NASA Technical Reports Server (NTRS)

    Fimognari, Peter; Eskridge, Richard; Martin, Adam; Lee, Michael

    2007-01-01

    A document discusses a method for using Design Structure Matrices (DSM), coupled with high-level tools representing important life-cycle parameters, to comprehensively conceptualize a flight/ground space transportation system design by dealing with such variables as performance, up-front costs, downstream operations costs, and reliability. This approach also weighs operational approaches based on their effect on upstream design variables so that it is possible to readily, yet defensively, establish linkages between operations and these upstream variables. To avoid the large range of problems that have defeated previous methods of dealing with the complex problems of transportation design, and to cut down the inefficient use of resources, the method described in the document identifies those areas that are of sufficient promise and that provide a higher grade of analysis for those issues, as well as the linkages at issue between operations and other factors. Ultimately, the system is designed to save resources and time, and allows for the evolution of operable space transportation system technology, and design and conceptual system approach targets.

  4. Hybrid vehicle system studies and optimized hydrogen engine design

    Microsoft Academic Search

    J. R. Smith; S. Aceves

    1995-01-01

    We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km\\/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments

  5. Mechanisms of injury and biomechanics: Vehicle design and crash performance

    Microsoft Academic Search

    Murray Mackay

    1992-01-01

    This paper reviews briefly the early evolution of the subject of the biomechanics of impacts. Some examples of rule-making of vehicle crash performance are cited to illustrate the need for evaluation of all design changes and regulations in the real world of crashes and injuries. Some background data on the relative frequencies of causalties and types of collisions are given

  6. Integrating vehicle design and human factors: minimizing elderly driving constraints

    Microsoft Academic Search

    Susan A. Shaheen; Debbie A. Niemeier

    2001-01-01

    With a projected rise in the number of elderly, most of whom have also relied primarily on the private automobile for their mobility, it is likely that future adaptations in vehicle design will be linked in some part to the physical infirmities often faced by the elderly. This paper offers a bridge between medical research on the physical impairments of

  7. Design tradeoffs on engine-integrated hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    O'Neill, Mary Kae L.; Lewis, Mark J.

    1992-01-01

    Two classes of airbreathing hypersonic vehicle concepts, one for primarily cruise missions and the other for accelerator type missions, are presented. Both are designed with waverider airframes and hydrogen-fueled scramjet engine modules. Cruise configurations are optimized for the product of I(sp) and L/D while matching lift to weight and thrust to drag at some equivalence ratio. Accelerator configurations are optimized for effective specific impulse while matching lift to weight at an equivalence ratio of one. The method and computer code developed to optimize the configurations are discussed. The features and design tradeoffs for each class of vehicles are described. Recently available weight estimates for all-body waveriders have had a significant impact on the integrated configurations. Mach 8 vehicles at 40 km altitude optimized with the cruise objective function have L/Ds of 2.55 to 2.92 and I(sp)s of 2850 to 2940 sec. A Mach 14 vehicle at 40-km altitude optimized with the accelerator objective function has an I(sp) sub eff of 189 sec, and a Mach 10 vehicle an I(sp) sub eff of 880 sec.

  8. An omni-directional design tool for series hybrid electric vehicle design 

    E-print Network

    Shidore, Neeraj Shripad

    2005-02-17

    debilitating aspects of the electric vehicle are its limited range and lack of supporting infrastructure [3]. Using present technologies. Electric vehicles can achieve ranges of only 200-250 km before the battery is depleted. While this is sufficient... [3]. The batteries used to power the electric motor can be either charged by the ICE or the electric machine, during regenerative braking. Hybrid vehicles provide an alternative to present automotive designs while research to develop advanced...

  9. Multipurpose Uninhabited Air Vehicle (UAV) design and verification

    NASA Astrophysics Data System (ADS)

    Barquero, Juan P.

    A multipurpose Uninhabited Air Vehicle was designed and built for the NASA University Research Center. It is capable of carrying a payload of up to 14 lbs with an estimated endurance of 3 hours. This thesis will describe the work that was completed on the aerodynamic and preliminary structural design of the air vehicle. It will be demonstrated how the size and configuration of the airframe were chosen based on the design requirements. The detailed design process will be described to achieve initial performance and mission requirements. Although the URC has successfully constructed airframes in the past, it is the intention of this thesis to also take a different approach on alternative construction methods in an effort to reduce cost and improve aircraft performance.

  10. Emerging CFD technologies and aerospace vehicle design

    Microsoft Academic Search

    Michael J. Aftosmis

    1995-01-01

    With the recent focus on the needs of design and applications CFD, research groups have begun to address the traditional bottlenecks of grid generation and surface modeling. Now, a host of emerging technologies promise to shortcut or dramatically simplify the simulation process. This paper discusses the current status of these emerging technologies. It will argue that some tools are already

  11. MDO approach for early design of aerobraking orbital transfer vehicles

    Microsoft Academic Search

    N. Bérend; S. Bertrand

    2009-01-01

    This paper presents a new multidisciplinary design optimization (MDO) methodology for preliminary design of an aeroassisted orbital transfer vehicle (AOTV) performing a two-way transfer between a low-Earth “parking” orbit and a high-energy orbit. This work has been performed in the frame of Onera's CENTOR [N. Bérend, C. Jolly, F. Jouhaud, D. Lazaro, Y. Mauriot, C. Monjaret, J.M. Moschetta, M. Parlier,

  12. Emerging CFD technologies and aerospace vehicle design

    NASA Astrophysics Data System (ADS)

    Aftosmis, Michael J.

    1995-03-01

    With the recent focus on the needs of design and applications CFD, research groups have begun to address the traditional bottlenecks of grid generation and surface modeling. Now, a host of emerging technologies promise to shortcut or dramatically simplify the simulation process. This paper discusses the current status of these emerging technologies. It will argue that some tools are already available which can have positive impact on portions of the design cycle. However, in most cases, these tools need to be integrated into specific engineering systems and process cycles to be used effectively. The rapidly maturing status of unstructured and Cartesian approaches for inviscid simulations makes suggests the possibility of highly automated Euler-boundary layer simulations with application to loads estimation and even preliminary design. Similarly, technology is available to link block structured mesh generation algorithms with topology libraries to avoid tedious re-meshing of topologically similar configurations. Work in algorithmic based auto-blocking suggests that domain decomposition and point placement operations in multi-block mesh generation may be properly posed as problems in Computational Geometry, and following this approach may lead to robust algorithmic processes for automatic mesh generation.

  13. Emerging CFD technologies and aerospace vehicle design

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael J.

    1995-01-01

    With the recent focus on the needs of design and applications CFD, research groups have begun to address the traditional bottlenecks of grid generation and surface modeling. Now, a host of emerging technologies promise to shortcut or dramatically simplify the simulation process. This paper discusses the current status of these emerging technologies. It will argue that some tools are already available which can have positive impact on portions of the design cycle. However, in most cases, these tools need to be integrated into specific engineering systems and process cycles to be used effectively. The rapidly maturing status of unstructured and Cartesian approaches for inviscid simulations makes suggests the possibility of highly automated Euler-boundary layer simulations with application to loads estimation and even preliminary design. Similarly, technology is available to link block structured mesh generation algorithms with topology libraries to avoid tedious re-meshing of topologically similar configurations. Work in algorithmic based auto-blocking suggests that domain decomposition and point placement operations in multi-block mesh generation may be properly posed as problems in Computational Geometry, and following this approach may lead to robust algorithmic processes for automatic mesh generation.

  14. Design of an autonomous Lunar construction utility vehicle

    NASA Technical Reports Server (NTRS)

    Ash, Robert L.; Chew, Mason; Dixon, Iain (editor)

    1990-01-01

    In order to prepare a site for a manned lunar base, an autonomously operated construction vehicle is necessary. A Lunar Construction Utility Vehicle (LCUV), which utilizes interchangeable construction implements, was designed conceptually. Some elements of the machine were studied in greater detail. Design of an elastic loop track system has advanced to the testing stage. A standard coupling device was designed to insure a proper connection between the different construction tools and the LCUV. Autonomous control of the track drive motors was simulated successfully through the use of a joystick and computer interface. A study of hydrogen-oxygen fuel cells has produced estimates of reactant and product size requirements and identified multi-layer insulation techniques. Research on a 100 kW heat rejection system has determined that it is necessary to house a radiator panel on a utility trailer. The impact of a 720 hr use cycle has produced a very large logistical support lien which requires further study.

  15. Aerodynamic design of electric and hybrid vehicles: A guidebook

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.

    1980-01-01

    A typical present-day subcompact electric hybrid vehicle (EHV), operating on an SAE J227a D driving cycle, consumes up to 35% of its road energy requirement overcoming aerodynamic resistance. The application of an integrated system design approach, where drag reduction is an important design parameter, can increase the cycle range by more than 15%. This guidebook highlights a logic strategy for including aerodynamic drag reduction in the design of electric and hybrid vehicles to the degree appropriate to the mission requirements. Backup information and procedures are included in order to implement the strategy. Elements of the procedure are based on extensive wind tunnel tests involving generic subscale models and full-scale prototype EHVs. The user need not have any previous aerodynamic background. By necessity, the procedure utilizes many generic approximations and assumptions resulting in various levels of uncertainty. Dealing with these uncertainties, however, is a key feature of the strategy.

  16. 43 CFR 420.21 - Procedure for designating areas for off-road vehicle use.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...Procedure for designating areas for off-road vehicle use. 420.21 Section 420...RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE Designated Areas and Permitted...Procedure for designating areas for off-road vehicle use. The Regional...

  17. 43 CFR 420.21 - Procedure for designating areas for off-road vehicle use.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...Procedure for designating areas for off-road vehicle use. 420.21 Section 420...RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE Designated Areas and Permitted...Procedure for designating areas for off-road vehicle use. The Regional...

  18. 43 CFR 420.21 - Procedure for designating areas for off-road vehicle use.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...Procedure for designating areas for off-road vehicle use. 420.21 Section 420...RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE Designated Areas and Permitted...Procedure for designating areas for off-road vehicle use. The Regional...

  19. 43 CFR 420.21 - Procedure for designating areas for off-road vehicle use.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...Procedure for designating areas for off-road vehicle use. 420.21 Section 420...RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE Designated Areas and Permitted...Procedure for designating areas for off-road vehicle use. The Regional...

  20. 43 CFR 420.21 - Procedure for designating areas for off-road vehicle use.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...Procedure for designating areas for off-road vehicle use. 420.21 Section 420...RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE Designated Areas and Permitted...Procedure for designating areas for off-road vehicle use. The Regional...

  1. Design of an autonomous lunar construction utility vehicle

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In order to prepare a site for a lunar base, an autonomously operated construction vehicle is necessary. Discussed here is a Lunar Construction Utility Vehicle (LCUV), which uses interchangeable construction implements. Design of an elastic loop track system has advanced to the testing stage. A standard coupling device has been designed to insure a proper connection between the different construction tools and the LCUV. Autonomous control of the track drive motors was simulated successfully through the use of a joystick and a computer interface. A study of hydrogen-oxygen fuel cells produced estimates of reactant and product requirements and identified multilayer insulation needs. Research on the 100-kW heat rejection system determined that it is necessary to transport the radiator panel on a utility trailer. Extensive logistical support for the 720 hour use cycle requires further study.

  2. Drive-by-wire vehicle stabilization and yaw regulation: a hybrid Model Predictive Control design

    Microsoft Academic Search

    Daniele Bernardini; Stefano Di Cairano; Alberto Bemporad; H. Eric Tseng

    2009-01-01

    Electronic Stability Control (ESC) and Active Front Steering (AFS) have been introduced in production vehicles in recent years, due to improved vehicle maneuverability and the effects in reducing single vehicle accident. We propose a hybrid Model Predictive Control (MPC) design for coordinated control of AFS and ESC. By formulating the vehicle dynamics with respect to the front and rear tire

  3. Noise, vibration and harshness (NVH) criteria as functions of vehicle design and consumer expectations

    Microsoft Academic Search

    Daniel R. Raichel

    2005-01-01

    The criteria for NVH design are to a large degree determined by the types of vehicles and the perceived desires of the purchasers of vehicles, as well as the cost of incorporating NVH measures. Vehicles may be classified into specific types, e.g., economy car, midsize passenger, near-luxury and luxury passenger cars, sports cars, vans, minivans, and sports utility vehicles of

  4. Pointing control design for autonomous space vehicle applications

    SciTech Connect

    Young, K.D.

    1993-03-01

    This paper addresses the design of pointing control systems for autonomous space vehicles. The function of the pointing control system is to keep distant orbiting objects within the field-of-view of an on-board optical sensor. We outline the development of novel nonlinear control algorithms which exploit the availability of on- board sensors. Simulation results comparing the performance of the different pointing control implementations are presented.

  5. Design and Implementation of WLAN-Based Automatic Vehicle Identification

    Microsoft Academic Search

    Hyun-sung Park; Seung-chur Yang; Oh Doo-hwan; Jong-deok Kim

    2009-01-01

    In this paper, we present a WLAN-based automatic vehicle identification (AVI) technique. AVI, typically used for electronic toll collection, is a basic functional requirement for a smart car. The development of this technique is a subtask of building a WLAN-based multi-purpose vehicular terminal device providing various functions, such as AVI, car-to-car communication and vehicular Internet access. The design and implementation

  6. Integrated structural and thermal design of an entry vehicle aeroshell

    E-print Network

    Cochran, David Brian

    1996-01-01

    ring. The masses of the kerosene 1 RP-1) propellant tank, the main engine, and all accompanying hardware are applied to the lower ring. Fluid pressures and internal tank pressurization must be accounted for in the model as well. Correct application... OF SCIENCE May 1996 Major Subject: Mechanical Engineering INTEGRATED STRUCTURAL AND THERMAL DESIGN OF AN ENTRY VEHICLE AEROSHELL A Thesis by DAVID BRIAN COCHRAN Submitted to Texas A&M University in partial fulfillment of the requirements...

  7. Design and construction of a solar-electric vehicle

    SciTech Connect

    Bhavnani, S.H. (Auburn Univ., AL (United States). Dept. of Mechanical Engineering)

    1994-02-01

    Recent concerns relating to global warming caused by greenhouse gases, coupled with a growing awareness of the limited available resources of fossil fuels, have spurred an interest in alternative energy powered vehicles. This paper describes the analysis, development, and testing of an aerodynamic vehicle powered by photovoltaic cells. The primary components of the vehicle are the composite material body, the aluminum space frame, the wheel hubs and front suspension assembly, the drive train, and the electrical system. The frame was designed using finite element analysis with the components of the frame modeled as beam elements. The body, designed to have a very high strength-to-weight ratio, was of graphite/Kevlar/Nomex sandwich construction. Testing was carried out using the three-point bend test to determine the optimal sandwich cross-sectional configuration. The design of the front suspension, the wheel hubs, and the power transmission are also discussed. The electrical system, based on a monocrystalline photovoltaic cell assembly, and silver-zinc storage cells, is also described. Finally, results of the optimization routine developed are also described.

  8. Vibration Challenges in the Design of NASA's Ares Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Ryan, Stephen G.

    2009-01-01

    This paper focuses on the vibration challenges inherent in the design of NASA s Ares launch vehicles. A brief overview of the launch system architecture is provided to establish the context for the discussion. Following this is a general discussion of the design considerations and analytical disciplines that are affected by vibration. The first challenge discussed is that of coupling between the vehicle flight control system and fundamental vibrational modes of the vehicle. The potential destabilizing influence of the vibrational dynamics is described along with discussion of the typical methods employed to overcome this issue. Next is a general discussion of the process for developing the design loads for the primary structure. This includes quasi-steady loads and dynamic loads induced by the structural dynamic response. The two principal parts of this response are the gust induced responses of the lower frequency modes and the buffet induced responses of the higher frequency modes. Structural dynamic model validation will also be addressed. Following this, discussions of three somewhat unique topics of Pogo Instability, Solid Booster Thrust Oscillation, and Liquid Rocket Engine Turbopump Rotordynamic Stability and Response are presented.

  9. Use of axiomatic design principles to develop vehicle suspension controls for variable stiffness and ride height

    E-print Network

    Luu, Way

    2005-01-01

    Axiomatic Design principles are used to design a vehicle suspension system. The use of Axiomatic Design helps to guide the design of a decoupled system. The Design Matrix (DM) illustrates the independence among the Functional ...

  10. Development of Integrated Programs for Aerospace-vehicle design (IPAD): Reference design process

    NASA Technical Reports Server (NTRS)

    Meyer, D. D.

    1979-01-01

    The airplane design process and its interfaces with manufacturing and customer operations are documented to be used as criteria for the development of integrated programs for the analysis, design, and testing of aerospace vehicles. Topics cover: design process management, general purpose support requirements, design networks, and technical program elements. Design activity sequences are given for both supersonic and subsonic commercial transports, naval hydrofoils, and military aircraft.

  11. Preliminary design of a lunar construction utility vehicle

    NASA Technical Reports Server (NTRS)

    Bryant, C. A.; Alcorn, D.; Bentley, R.; Campbell, B.; Coulson, T.; Jacobs, J.; Stiles, P.

    1989-01-01

    Construction of a lunar base, prior to manned occupancy, is one of the most demanding technological challenges facing space system designers today. A flexible lunar construction machine is needed that can be operated remotely and that can perform a variety of construction tasks over a wide range of lunar conditions. A preliminary lunar construction utility vehicle (LCUV) design has been developed as part of a capstone design course at Old Dominion University and is described in this summary report. The design requirements are taken from a 1988 USRA Summer Design Report entitled The Lunar Split Mission: A Robotic Constructed Lunar Base Scenario, and from the proceedings of a workshop hosted by United Technologies Corporation entitled Report of the In Situ Resources Utilization Workshop. The first report describes a bootstrap base concept in which a minimum of essential surface elements are delivered and configured such that minimum EVA is required to bring the initial base on-line. The base is to be built in three phases, the first of which will be unmanned, while the second and third will be manned. The key to these concepts is the development of a semiautonomous, telerobotic lunar construction utility vehicle (LCUV). The tasks required of this robotic vehicle during the phase 1 build-up are as follows: (1) surface element transportation, handling, and assembly; (2) soil excavation and movement for site preparation; (3) radiation protection and materials processing; and (4) repair and maintenance of surface elements. In order to meet the stated requirements, the LCUV must be: (1) transformable to perform a wide variety of tasks; (2) self supporting; (3) designed to allow for telerobotic control as well as autonomous operation; (4) able to transport one fully configured space station common module (SSCM); (5) upgradable to allow for future growth; and (6) easy to maintain.

  12. Small thermal optics design for UAV (unmanned aerial vehicle) system

    NASA Astrophysics Data System (ADS)

    Lee, Sun Kyu; Na, Jun Hee; Yoon, Chang Jun; Oh, Seung Eun; Choi, Joongkyu; Pyo, Hyo Jin

    2010-08-01

    Now, Military demands focused attention on small and light-weight system development. Above all, UAV(Unmanned Aerial Vehicle) is necessary to reduce weight of equipments. Therefore, we invest some expense in many years so that it might design more light optical system for UAV. Consequently, we can build new miniaturization and light-weight system. The most important thing is the system using just two motors for continuous zoom(x3 ~ x20), NUC(nonuniformity correction), Narcissus, Athermalization, and auto-focus functions. An MTF (modulation transfer function) and a detection range are also satisfied by the demands. We use CODE V and NVTherm program for design and analysis.

  13. Design Guidelines for Quiet Fans and Pumps for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Lovell, John S.; Magliozzi, Bernard

    2008-01-01

    This document presents guidelines for the design of quiet fans and pumps of the class used on space vehicles. A simple procedure is presented for the prediction of fan noise over the meaningful frequency spectrum. A section also presents general design criteria for axial flow fans, squirrel cage fans, centrifugal fans, and centrifugal pumps. The basis for this report is an experimental program conducted by Hamilton Standard under NASA Contract NAS 9-12457. The derivations of the noise predicting methods used in this document are explained in Hamilton Standard Report SVHSER 6183, "Fan and Pump Noise Control," dated May 1973 (6).

  14. A computerized compensator design algorithm with launch vehicle applications

    NASA Technical Reports Server (NTRS)

    Mitchell, J. R.; Mcdaniel, W. L., Jr.

    1976-01-01

    This short paper presents a computerized algorithm for the design of compensators for large launch vehicles. The algorithm is applicable to the design of compensators for linear, time-invariant, control systems with a plant possessing a single control input and multioutputs. The achievement of frequency response specifications is cast into a strict constraint mathematical programming format. An improved solution algorithm for solving this type of problem is given, along with the mathematical necessities for application to systems of the above type. A computer program, compensator improvement program (CIP), has been developed and applied to a pragmatic space-industry-related example.

  15. Launch Vehicle Propulsion Design with Multiple Selection Criteria

    NASA Technical Reports Server (NTRS)

    Shelton, Joey D.; Frederick, Robert A.; Wilhite, Alan W.

    2005-01-01

    The approach and techniques described herein define an optimization and evaluation approach for a liquid hydrogen/liquid oxygen single-stage-to-orbit system. The method uses Monte Carlo simulations, genetic algorithm solvers, a propulsion thermo-chemical code, power series regression curves for historical data, and statistical models in order to optimize a vehicle system. The system, including parameters for engine chamber pressure, area ratio, and oxidizer/fuel ratio, was modeled and optimized to determine the best design for seven separate design weight and cost cases by varying design and technology parameters. Significant model results show that a 53% increase in Design, Development, Test and Evaluation cost results in a 67% reduction in Gross Liftoff Weight. Other key findings show the sensitivity of propulsion parameters, technology factors, and cost factors and how these parameters differ when cost and weight are optimized separately. Each of the three key propulsion parameters; chamber pressure, area ratio, and oxidizer/fuel ratio, are optimized in the seven design cases and results are plotted to show impacts to engine mass and overall vehicle mass.

  16. Integrated Software for Analyzing Designs of Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Philips, Alan D.

    2003-01-01

    Launch Vehicle Analysis Tool (LVA) is a computer program for preliminary design structural analysis of launch vehicles. Before LVA was developed, in order to analyze the structure of a launch vehicle, it was necessary to estimate its weight, feed this estimate into a program to obtain pre-launch and flight loads, then feed these loads into structural and thermal analysis programs to obtain a second weight estimate. If the first and second weight estimates differed, it was necessary to reiterate these analyses until the solution converged. This process generally took six to twelve person-months of effort. LVA incorporates text to structural layout converter, configuration drawing, mass properties generation, pre-launch and flight loads analysis, loads output plotting, direct solution structural analysis, and thermal analysis subprograms. These subprograms are integrated in LVA so that solutions can be iterated automatically. LVA incorporates expert-system software that makes fundamental design decisions without intervention by the user. It also includes unique algorithms based on extensive research. The total integration of analysis modules drastically reduces the need for interaction with the user. A typical solution can be obtained in 30 to 60 minutes. Subsequent runs can be done in less than two minutes.

  17. Mobile large-vehicle inspection system design issues

    NASA Astrophysics Data System (ADS)

    Smith, Gerald J.; Adams, William L.; Huang, Suzhou

    1998-12-01

    X-ray systems capable of scanning semitrailers using conventional fanbeam technology are restricted to transmission-based imaging techniques that suffer from superposition of clutter. MobileSearchTM I is a truck-mounted 450 KeV pencil beam system incorporating x-ray backscatter imaging to produce near photo-like images, which was reported on in a paper by Swift in 1996. Since that time MobileSearchTM II added a transmission detector providing both backscatter and transmission in a single pass. The transmission detector design is the result of extensive x-ray and optical simulations. The radiation safety was studied extensively using the GEANT2 simulation system. The simulations were extended from 450 KeV to 5 MeV, to determine the safety implications of increasing the x-ray energy. Operationally, a 14 foot high, 8 foot 6 inch wide vehicle can be parked on a level area and the MobileSearchTM II system driven alongside to examine the contents. Deployment and setup are facilitated by having a self-contained system, which can be driven over the road and cen be operational in less than an hour. MobileSearchTM II is also capable of continuous mode scanning. In this mode, a line of vehicles can be scanned without having to stop and reposition or queue vehicles. The system is designed to fit in a C17 for easy air transport to a distant location.

  18. Design Considerations for Space Transfer Vehicles Using Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Emrich, William J.

    1995-01-01

    The economical deployment of satellites to high energy earth orbits is crucial to the ultimate success of this nations commerical space ventures and is highly desirable for deep space planetary missions requiring earth escape trajectories. Upper stage space transfer vehicles needed to accomplish this task should ideally be simple, robust, and highly efficient. In this regard, solar thermal propulsion is particularly well suited to those missions where high thrust is not a requirement. The Marshall Space Flight Center is , therefore, currently engaged in defining a transfer vehicle employing solar thermal propulsion capable of transferring a 1000 lb. payload from low Earth orbit (LEO) to a geostationary Earth orbit (GEO) using a Lockheed launch vehicle (LLV3) with three Castors and a large shroud. The current design uses liquid hydrogen as the propellant and employs two inflatable 16 x 24 feet eliptical off-axis parabolic solar collectors to focus sunlight onto a tungsten/rhenium windowless black body type absorber. The concentration factor on this design is projected to be approximately 1800:1 for the primary collector and 2.42:1 for the secondary collector for an overall concentration factor of nearly 4400:1. The engine, which is about twice as efficient as the best currently available chemical engines, produces two pounds of thrust with a specific impulse (Isp) of 860 sec. Transfer times to GEO are projected to be on the order of one month. The launch and deployed configurations of the solar thermal upper stage (STUS) are depicted.

  19. Simulation Assisted Risk Assessment Applied to Launch Vehicle Conceptual Design

    NASA Technical Reports Server (NTRS)

    Mathias, Donovan L.; Go, Susie; Gee, Ken; Lawrence, Scott

    2008-01-01

    A simulation-based risk assessment approach is presented and is applied to the analysis of abort during the ascent phase of a space exploration mission. The approach utilizes groupings of launch vehicle failures, referred to as failure bins, which are mapped to corresponding failure environments. Physical models are used to characterize the failure environments in terms of the risk due to blast overpressure, resulting debris field, and the thermal radiation due to a fireball. The resulting risk to the crew is dynamically modeled by combining the likelihood of each failure, the severity of the failure environments as a function of initiator and time of the failure, the robustness of the crew module, and the warning time available due to early detection. The approach is shown to support the launch vehicle design process by characterizing the risk drivers and identifying regions where failure detection would significantly reduce the risk to the crew.

  20. A Geometric Approach to Trajectory Design for an Autonomous Underwater Vehicle

    E-print Network

    Chyba, Monique

    DRAFT 1 A Geometric Approach to Trajectory Design for an Autonomous Underwater Vehicle: Surveying Abstract In this paper, we present a control strategy design technique for an autonomous underwater vehicle on automating ship hull inspections by employing autonomous vehicles. Despite the progresses made, human

  1. The ground surveillance robot (GSR): An autonomous vehicle designed to transit unknown terrain

    Microsoft Academic Search

    S. Harmon

    1987-01-01

    The Ground Surveillance Robot (GSR) project has proceeded continuously since the Fall of 1980, and in that time an autonomous vehicle design and some degree of implementation has been achieved. The vehicle design has been partitioned into sensor, control, and planning subsystems. A distributed blackboard scheme has been developed which provides the mechanism by which these subsystems are coordinated. Vehicle

  2. 19 CFR 115.65 - Technical requirements for road vehicles by design type.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 false Technical requirements for road vehicles by design type. 115.65 ...DEPARTMENT OF THE TREASURY CARGO CONTAINER AND ROAD VEHICLE CERTIFICATION PURSUANT TO INTERNATIONAL...CONVENTIONS Procedures for Approval of Road Vehicles by Design Type § 115.65...

  3. 19 CFR 115.65 - Technical requirements for road vehicles by design type.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 false Technical requirements for road vehicles by design type. 115.65 ...DEPARTMENT OF THE TREASURY CARGO CONTAINER AND ROAD VEHICLE CERTIFICATION PURSUANT TO INTERNATIONAL...CONVENTIONS Procedures for Approval of Road Vehicles by Design Type § 115.65...

  4. 19 CFR 115.65 - Technical requirements for road vehicles by design type.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 false Technical requirements for road vehicles by design type. 115.65 ...DEPARTMENT OF THE TREASURY CARGO CONTAINER AND ROAD VEHICLE CERTIFICATION PURSUANT TO INTERNATIONAL...CONVENTIONS Procedures for Approval of Road Vehicles by Design Type § 115.65...

  5. 19 CFR 115.65 - Technical requirements for road vehicles by design type.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 false Technical requirements for road vehicles by design type. 115.65 ...DEPARTMENT OF THE TREASURY CARGO CONTAINER AND ROAD VEHICLE CERTIFICATION PURSUANT TO INTERNATIONAL...CONVENTIONS Procedures for Approval of Road Vehicles by Design Type § 115.65...

  6. 19 CFR 115.65 - Technical requirements for road vehicles by design type.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 false Technical requirements for road vehicles by design type. 115.65 ...DEPARTMENT OF THE TREASURY CARGO CONTAINER AND ROAD VEHICLE CERTIFICATION PURSUANT TO INTERNATIONAL...CONVENTIONS Procedures for Approval of Road Vehicles by Design Type § 115.65...

  7. Assured crew return vehicle post landing configuration design and test

    NASA Astrophysics Data System (ADS)

    The 1991-1992 senior Mechanical and Aerospace Engineering Design class continued work on the post landing configurations for the Assured Crew Return Vehicle (ACRV) and the Emergency Egress Couch (EEC). The ACRV will be permanently docked to Space Station Freedom fulfilling NASA's commitment of Assured Crew Return Capability in the event of an accident or illness aboard Space Station Freedom. The EEC provides medical support and a transportation surface for an incapacitated crew member. The objective of the projects was to give the ACRV Project Office data to feed into their feasibility studies. Four design teams were given the task of developing models with dynamically and geometrically scaled characteristics. Groups one and two combined efforts to design a one-fifth scale model for the Apollo Command Module derivative, an on-board flotation system, and a lift attachment point system. This model was designed to test the feasibility of a rigid flotation and stabilization system and to determine the dynamics associated with lifting the vehicle during retrieval. However, due to priorities, it was not built. Group three designed a one-fifth scale model of the Johnson Space Center (JSC) benchmark configuration, the Station Crew Return Alternative Module (SCRAM) with a lift attachment point system. This model helped to determine the flotation and lifting characteristics of the SCRAM configuration. Group four designed a full scale EEC with changeable geometric and geometric and dynamic characteristics. This model provided data on the geometric characteristics of the EEC and on the placement of the CG and moment of inertia. It also gave the helicopter rescue personnel direct input to the feasibility study. Section 1 describes in detail the design of a one-fifth scale model of the Apollo Command Module Derivative (ACMD) ACRV. The objective of the ACMD Configuration Model Team was to use geometric and dynamic constraints to design a one-fifth scale working model of the Apollo Command Module Derivative (ACMD) configuration with a Lift Attachment Point (LAP) System. This model was required to incorporate a rigidly mounted flotation system and the egress system designed the previous academic year. The LAP system was to be used to determine the dynamic effects of locating the lifting points at different locations on the vehicle. The team was then to build and test the model; however, due to priorities, this did not occur. design process were construction, center of gravity and moment of inertia, and lift attachment points.

  8. Multidisciplinary Design Techniques Applied to Conceptual Aerospace Vehicle Design. Ph.D. Thesis Final Technical Report

    NASA Technical Reports Server (NTRS)

    Olds, John Robert; Walberg, Gerald D.

    1993-01-01

    Multidisciplinary design optimization (MDO) is an emerging discipline within aerospace engineering. Its goal is to bring structure and efficiency to the complex design process associated with advanced aerospace launch vehicles. Aerospace vehicles generally require input from a variety of traditional aerospace disciplines - aerodynamics, structures, performance, etc. As such, traditional optimization methods cannot always be applied. Several multidisciplinary techniques and methods were proposed as potentially applicable to this class of design problem. Among the candidate options are calculus-based (or gradient-based) optimization schemes and parametric schemes based on design of experiments theory. A brief overview of several applicable multidisciplinary design optimization methods is included. Methods from the calculus-based class and the parametric class are reviewed, but the research application reported focuses on methods from the parametric class. A vehicle of current interest was chosen as a test application for this research. The rocket-based combined-cycle (RBCC) single-stage-to-orbit (SSTO) launch vehicle combines elements of rocket and airbreathing propulsion in an attempt to produce an attractive option for launching medium sized payloads into low earth orbit. The RBCC SSTO presents a particularly difficult problem for traditional one-variable-at-a-time optimization methods because of the lack of an adequate experience base and the highly coupled nature of the design variables. MDO, however, with it's structured approach to design, is well suited to this problem. The result of the application of Taguchi methods, central composite designs, and response surface methods to the design optimization of the RBCC SSTO are presented. Attention is given to the aspect of Taguchi methods that attempts to locate a 'robust' design - that is, a design that is least sensitive to uncontrollable influences on the design. Near-optimum minimum dry weight solutions are determined for the vehicle. A summary and evaluation of the various parametric MDO methods employed in the research are included. Recommendations for additional research are provided.

  9. GPS Auto-Navigation Design for Unmanned Air Vehicles

    NASA Technical Reports Server (NTRS)

    Nilsson, Caroline C. A.; Heinzen, Stearns N.; Hall, Charles E., Jr.; Chokani, Ndaona

    2003-01-01

    A GPS auto-navigation system is designed for Unmanned Air Vehicles. The objective is to enable the air vehicle to be used as a test-bed for novel flow control concepts. The navigation system uses pre-programmed GPS waypoints. The actual GPS position, heading, and velocity are collected by the flight computer, a PC104 system running in Real-Time Linux, and compared with the desired waypoint. The navigator then determines the necessity of a heading correction and outputs the correction in the form of a commanded bank angle, for a level coordinated turn, to the controller system. This controller system consists of 5 controller! (pitch rate PID, yaw damper, bank angle PID, velocity hold, and altitude hold) designed for a closed loop non-linear aircraft model with linear aerodynamic coefficients. The ability and accuracy of using GPS data, is validated by a GPS flight. The autopilots are also validated in flight. The autopilot unit flight validations show that the designed autopilots function as designed. The aircraft model, generated on Matlab SIMULINK is also enhanced by the flight data to accurately represent the actual aircraft.

  10. Hardware design and UKF-based tracking control design of Unmanned Trimaran Surface Vehicle

    Microsoft Academic Search

    Yan Peng; Bo Zhou; Jianda Han

    2007-01-01

    This paper focuses on the process of hardware selection in the design of an Unmanned Trimaran Surface Vehicle (UTSV) and a control scheme design of model-scaled UTSV. The controller development is based on Unscented Kalman Filter (UKF) and backstepping techniques. The UKF is used to update the estimation of the uncertain parameters online to avoid the parameters' drift due to

  11. Design of a fuzzy controller for energy management of a parallel hybrid electric vehicle 

    E-print Network

    Estrada Gutierrez, Pedro Cuauhtemoc

    1997-01-01

    This thesis addresses the design of a control scheme based on Fuzzy Logic to minimize automobile fuel consumption and exhaust emissions while maximizing battery state of charge (SOC) for hybrid vehicles. The advantages the hybrid vehicle has over...

  12. Design and Control of a Fully Automated Vehicle door 

    E-print Network

    Hong, Kyung-Min

    2010-07-14

    capacity of 20 pounds, which is sufficient force to motivate vehicle doors. A pulse width magnitude (PWM) signal generated by the PIC micro controller controls the velocity of the motor. In order to maintain the door at a constant angular velocity... door, actuator, sensors, PIC microcontroller, power supply and a mount. The design requirements for the test bed were that it be strong enough to support the weight of the door, have a stable base with a low center of gravity and be mobile...

  13. Design principles for a flywheel energy store for road vehicles

    SciTech Connect

    Acarnley, P.P.; Mecrow, B.C.; Burdess, J.S.; Fawcett, J.N.; Kelly, J.G.; Dickinson, P.G. [Univ. of Newcastle Upon Tyne (United Kingdom)

    1995-12-31

    This paper introduces a flywheel energy storage device capable of enhancing the fuel economy of a hybrid-type road vehicle. A number of possible drive types is considered and the permanent magnet machine drive is shown to provide the best solution. Reasons for selecting a device using an axial-field configuration with single rotor and double stator sections are described. Electrical, magnetic and mechanical design data are presented for a full-scale prototype device with 240 kJ of usable energy storage and 25 kW of power transfer, operating at speeds up to 50,000 revs per minute, with a 10% duty cycle.

  14. Design principles for a flywheel energy store for road vehicles

    SciTech Connect

    Acarnley, P.P.; Mecrow, B.C.; Burdess, J.S.; Fawcett, J.N.; Kelly, J.G.; Dickinson, P.G. [Univ. of Newcastle, Newcastle upon Tyne (United Kingdom)] [Univ. of Newcastle, Newcastle upon Tyne (United Kingdom)

    1996-11-01

    This paper introduces a flywheel energy storage device capable of enhancing the fuel economy of a hybrid-type road vehicle. A number of possible drive types are considered and the permanent magnet machine drive is shown to provide the best solution. Reasons for selecting a device using an axial-field configuration with single-rotor and double-stator sections are described. Electrical, magnetic, and mechanical design data are presented for a full-scale prototype device with 240 KJ of usable energy storage and 25 kW of power transfer, operating at speeds up to 50,000 r/min, with a 10% duty cycle.

  15. Assured crew return vehicle post landing configuration design and test

    NASA Technical Reports Server (NTRS)

    Anderson, Loren A.; Armitage, Pamela Kay

    1992-01-01

    The 1991-1992 senior Mechanical and Aerospace Engineering Design class continued work on the post landing configurations for the Assured Crew Return Vehicle (ACRV) and the Emergency Egress Couch (EEC). The ACRV will be permanently docked to Space Station Freedom, fulfilling NASA's commitment of Assured Crew Return Capability in the event of an accident or illness aboard Space Station Freedom. The EEC provides medical support and a transportation surface for an incapacitated crew member. The objective of the projects was to give the ACRV Project Office data to feed into their feasibility studies. Four design teams were given the task of developing models with dynamically and geometrically scaled characteristics. Groups one and two combined effort to design a one-fifth scale model of the Apollo Command Module derivative, an on-board flotation system, and a lift attachment point system. This model was designed to test the feasibility of a rigid flotation and stabilization system and to determine the dynamics associated with lifting the vehicle during retrieval. However, due to priorities, it was not built. Group three designed a one-fifth scale model of the Johnson Space Center (JSC) benchmark configuration, the Station Crew Return Alternative Module (SCRAM) with a lift attachment point system. This model helped to determine the flotation and lifting characteristics of the SCRAM configuration. Group four designed a full scale EEC with changeable geometric and dynamic characteristics. This model provided data on the geometric characteristics of the EEC and on the placement of the CG and moment of inertia. It also gave the helicopter rescue personnel direct input to the feasibility study.

  16. DESIGN OF SMALL SCALE GAS TURBINE SYSTEMS FOR UNMANNED-AERIAL VEHICLES

    E-print Network

    Camci, Cengiz

    Aerial Vehicles (UAV) (4) Turbomachinery Component Design Centrifugal compressor design for reduced sizeDESIGN OF SMALL SCALE GAS TURBINE SYSTEMS FOR UNMANNED-AERIAL VEHICLES (AERSP 597/497-K) SPRING 814 865 9871 cxc11@psu.edu Summary : The proposed course is a three-credit gas turbine design course

  17. Postlanding optimum designs for the assured crew return vehicle

    NASA Technical Reports Server (NTRS)

    Hosterman, Kenneth C.; Anderson, Loren A.

    1990-01-01

    The optimized preliminary engineering design concepts for postlanding operations of a water-landing Assured Crew Return Vehicle (ACRV) during a medical rescue mission are presented. Two ACRVs will be permanently docked to Space Station Freedom, fulfilling NASA's commitment to Assured Crew Return Capability in the event of an accident or illness. The optimized configuration of the ACRV is based on an Apollo command module (ACM) derivative. The scenario assumes landing a sick or injured crewmember on water with the possibility of a delayed rescue. Design emphasis is placed on four major areas. First is the design of a mechanism that provides a safe and time-critical means of removing the sick or injured crewmember from the ACRV. Support to the assisting rescue personnel is also provided. Second is the design of a system that orients and stabilizes the craft after landing so as to cause no further injury or discomfort to the already ill or injured crewmember. Third is the design of a system that provides full medical support to a sick or injured crewmember aboard the ACRV from the time of separation from the space station to rescue by recovery forces. Last is the design of a system that provides for the comfort and safety of the entire crew after splashdown up to the point of rescue. The four systems are conceptually integrated into the ACRV.

  18. Loligomers: design of de novo peptide-based intracellular vehicles.

    PubMed Central

    Sheldon, K; Liu, D; Ferguson, J; Gariépy, J

    1995-01-01

    Defined branched peptides (loligomers) incorporating cytoplasmic translocation signals, nuclear localization sequences, and fluorescent probes were designed and synthesized to demonstrate the feasibility and simplicity of creating novel classes of intracellular vehicles. Loligomers containing all the above signals were rapidly internalized by Chinese hamster ovary (CHO) cells and accumulated in their nucleus. At 4 degrees C, the interaction of peptide constructs with CHO cells was limited to membrane association. Loligomers entered cells at higher temperatures by adsorptive endocytosis. Inhibitors of ATP synthesis affected cytoplasmic import only weakly but abolished nuclear uptake. The peptide signals guided both cytoplasmic and nuclear localization events. The properties exhibited by loligomers suggest a strategy for the facile design of "guided" classes of intracellular agents. Images Fig. 3 PMID:7892224

  19. Design of a Lateral-Line Sensor for an Autonomous Underwater Vehicle

    E-print Network

    van Hemmen, J. Leo

    Design of a Lateral-Line Sensor for an Autonomous Underwater Vehicle Nora Martiny, Stefan Sosnowski: In an ongoing research project an autonomous underwater vehicle is to be built that will detect, localize: artificial lateral line, autonomous underwater vehicle (AUV), object avoidance, Mexican cave fish

  20. Should adaptive cruise-control systems be designed to maintain a constant time gap between vehicles?

    Microsoft Academic Search

    Junmin Wang; Rajesh Rajamani

    2004-01-01

    This paper addresses the stability of traffic flow on a highway when the vehicles operate under an adaptive cruise-control (ACC) system. These systems are commonly designed to maintain a constant time gap between vehicles during vehicle following. Previous researchers in the literature have produced contradictory results on whether the traffic flow is stable when the constant time-gap spacing policy is

  1. Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle

    E-print Network

    Mi, Chunting "Chris"

    Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle an important role in the success of electric, hybrid and fuel cell vehicles. Typical power electronics circuits in hybrid vehicles include electric motor drive circuits and DC/DC converter circuits. Conventional circuit

  2. Design and Control of the Induction Motor Propulsion of an Electric Vehicle

    E-print Network

    Brest, Université de

    Design and Control of the Induction Motor Propulsion of an Electric Vehicle B. Tabbache1,2 , A for presizing the induction motor propulsion of an Electric Vehicle (EV). Based on the EV desired performances for different induction motor-based EVs using a siding mode control technique. Index Terms--Electric Vehicle (EV

  3. Design of Electric or Hybrid vehicle alert sound system for pedestrian

    E-print Network

    Boyer, Edmond

    on a track of our test center located in La Ferté Vidame. Two cars were used: -a diesel-vehicle - an electricDesign of Electric or Hybrid vehicle alert sound system for pedestrian J.-C. Chamard and V, France 1691 #12;The arrival of fully or hybrid electric vehicles raised safety problems respect

  4. Noise control, sound, and the vehicle design process

    NASA Astrophysics Data System (ADS)

    Donavan, Paul

    2005-09-01

    For many products, noise and sound are viewed as necessary evils that need to be dealt with in order to bring the product successfully to market. They are generally not product ``exciters'' although some vehicle manufacturers do tune and advertise specific sounds to enhance the perception of their products. In this paper, influencing the design process for the ``evils,'' such as wind noise and road noise, are considered in more detail. There are three ingredients to successfully dealing with the evils in the design process. The first of these is knowing how excesses in noise effects the end customer in a tangible manner and how that effects customer satisfaction and ultimately sells. The second is having and delivering the knowledge of what is required of the design to achieve a satisfactory or even better level of noise performance. The third ingredient is having the commitment of the designers to incorporate the knowledge into their part, subsystem or system. In this paper, the elements of each of these ingredients are discussed in some detail and the attributes of a successful design process are enumerated.

  5. Coupled Vehicle Design and Network Flow Optimization for Air Transportation Systems

    E-print Network

    de Weck, Olivier L.

    Coupled Vehicle Design and Network Flow Optimization for Air Transportation Systems Christine: 10.2514/1.27320 Traditionally, the design of a transportation system has focused on either vehicle for a transportation system, it is advantageous to expand the system boundary during the design process to include

  6. Design Optimization of a Space Launch Vehicle Using a Genetic Algorithm

    Microsoft Academic Search

    Douglas J. Bayley; Roy J. Hartfield; John E. Burkhalter; Rhonald M. Jenkins

    2007-01-01

    This paper describes an effort to optimize the design of an entire space launch vehicle to low-Earth (circular) orbit, consisting of multiple stages using a genetic algorithm (GA) with the goal of minimizing vehicle weight and ultimately vehicle cost. The entire launch vehicle system is analyzed using various multi- stage configurations to reach low-Earth orbit. Specifically, three and four-stage solid

  7. Design Study of Wafer Seals for Future Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H.; Finkbeiner, Joshua R.; Steinetz, Bruce M.; DeMange, Jeffrey J.

    2005-01-01

    Future hypersonic vehicles require high temperature, dynamic seals in advanced hypersonic engines and on the vehicle airframe to seal the perimeters of movable panels, flaps, and doors. Current seals do not meet the demanding requirements of these applications, so NASA Glenn Research Center is developing improved designs to overcome these shortfalls. An advanced ceramic wafer seal design has shown promise in meeting these needs. Results from a design of experiments study performed on this seal revealed that several installation variables played a role in determining the amount of leakage past the seals. Lower leakage rates were achieved by using a tighter groove width around the seals, a higher seal preload, a tighter wafer height tolerance, and a looser groove length. During flow testing, a seal activating pressure acting behind the wafers combined with simulated vibrations to seat the seals more effectively against the sealing surface and produce lower leakage rates. A seal geometry study revealed comparable leakage for full-scale wafers with 0.125 and 0.25 in. thicknesses. For applications in which lower part counts are desired, fewer 0.25-in.-thick wafers may be able to be used in place of 0.125-in.-thick wafers while achieving similar performance. Tests performed on wafers with a rounded edge (0.5 in. radius) in contact with the sealing surface resulted in flow rates twice as high as those for wafers with a flat edge. Half-size wafers had leakage rates approximately three times higher than those for full-size wafers.

  8. Series hybrid vehicles and optimized hydrogen engine design

    NASA Astrophysics Data System (ADS)

    Smith, J. R.; Aceves, S.; Vanblarigan, P.

    1995-05-01

    Lawrence Livermore, Sandia Livermore and Los Alamos National Laboratories have a joint project to develop an optimized hydrogen fueled engine for series hybrid automobiles. The major divisions of responsibility are: system analysis, engine design and kinetics modeling by LLNL; performance and emission testing, and friction reduction by SNL; computational fluid mechanics and combustion modeling by LANL. This project is a component of the Department of Energy, Office of Utility Technology, National Hydrogen Program. We report here on the progress on system analysis and preliminary engine testing. We have done system studies of series hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. The impact of various on-board storage options on fuel economy are evaluated. Experiments with an available engine at the Sandia Combustion Research Facility demonstrated NO(x) emissions of 10 to 20 ppm at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid vehicle simulation studies indicate that exhaust NO(x) concentrations must be less than 180 ppm to meet the 0.2 g/mile California Air Resources Board ULEV or Federal Tier-2 emissions regulations. We have designed and fabricated a first generation optimized hydrogen engine head for use on an existing single cylinder Onan engine. This head currently features 14.8:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses.

  9. A hybrid vehicle evaluation code and its application to vehicle design

    SciTech Connect

    Aceves, S.M.; Smith, J.R.

    1994-07-15

    This report describes a hybrid vehicle simulation model, which can be applied to many of the vehicles currently being considered for low pollution and high fuel economy. The code operates interactively, with all the vehicle information stored in data files. The code calculates fuel economy for three driving schedules, time for 0-96 km/h at maximum acceleration, hill climbing performance, power train dimensions, and pollution generation rates. This report also documents the application of the code to a hybrid vehicle that operates with a hydrogen internal combustion engine. The simulation model is used for parametric studies of the vehicle. The results show the fuel economy of the vehicle as a function of vehicle mass, aerodynamic drag, engine-generator efficiency, flywheel efficiency, and flywheel energy and power capacities.

  10. Propulsion integration of hypersonic air-breathing vehicles utilizing a top-down design methodology

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Brad Kenneth

    In recent years, a focus of aerospace engineering design has been the development of advanced design methodologies and frameworks to account for increasingly complex and integrated vehicles. Techniques such as parametric modeling, global vehicle analyses, and interdisciplinary data sharing have been employed in an attempt to improve the design process. The purpose of this study is to introduce a new approach to integrated vehicle design known as the top-down design methodology. In the top-down design methodology, the main idea is to relate design changes on the vehicle system and sub-system level to a set of over-arching performance and customer requirements. Rather than focusing on the performance of an individual system, the system is analyzed in terms of the net effect it has on the overall vehicle and other vehicle systems. This detailed level of analysis can only be accomplished through the use of high fidelity computational tools such as Computational Fluid Dynamics (CFD) or Finite Element Analysis (FEA). The utility of the top-down design methodology is investigated through its application to the conceptual and preliminary design of a long-range hypersonic air-breathing vehicle for a hypothetical next generation hypersonic vehicle (NHRV) program. System-level design is demonstrated through the development of the nozzle section of the propulsion system. From this demonstration of the methodology, conclusions are made about the benefits, drawbacks, and cost of using the methodology.

  11. Polymer selection and cell design for electric-vehicle supercapacitors

    SciTech Connect

    Mastragostino, M.; Arbizzani, C.; Paraventi, R.; Zanelli, A.

    2000-02-01

    Supercapacitors are devices for applications requiring high operating power levels, such as secondary power sources in electric vehicles (EVs) to provide peak power for acceleration and hill climbing. While electronically conducting polymers yield different redox supercapacitor configurations, devices with the n-doped polymer as the negative electrode and the p-doped polymer as the positive one are the most promising for EV applications. Indeed, this type of supercapacitor has a high operating potential, is able to deliver all the doping charge and, when charged, has both electrodes in the conducting (p- and n-doped) states. This study reports selection criteria for polymer materials and cell design for high performance EV supercapacitors and experimental results of selected polymer materials.

  12. Man-vehicle systems research facility: Design and operating characteristics

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Man-Vehicle Systems Research Facility (MVSRF) provides the capability of simulating aircraft (two with full crews), en route and terminal air traffic control and aircrew interactions, and advanced cockpit (1995) display representative of future generations of aircraft, all within the full mission context. The characteristics of this facility derive from research, addressing critical human factors issues that pertain to: (1) information requirements for the utilization and integration of advanced electronic display systems, (2) the interaction and distribution of responsibilities between aircrews and ground controllers, and (3) the automation of aircrew functions. This research has emphasized the need for high fidelity in simulations and for the capability to conduct full mission simulations of relevant aircraft operations. This report briefly describes the MVSRF design and operating characteristics.

  13. Hybrid Wing Body Planform Design with Vehicle Sketch Pad

    NASA Technical Reports Server (NTRS)

    Wells, Douglas P.; Olson, Erik D.

    2011-01-01

    The objective of this paper was to provide an update on NASA s current tools for design and analysis of hybrid wing body (HWB) aircraft with an emphasis on Vehicle Sketch Pad (VSP). NASA started HWB analysis using the Flight Optimization System (FLOPS). That capability is enhanced using Phoenix Integration's ModelCenter(Registered TradeMark). Model Center enables multifidelity analysis tools to be linked as an integrated structure. Two major components are linked to FLOPS as an example; a planform discretization tool and VSP. The planform discretization tool ensures the planform is smooth and continuous. VSP is used to display the output geometry. This example shows that a smooth & continuous HWB planform can be displayed as a three-dimensional model and rapidly sized and analyzed.

  14. Zinc-bromine battery design for electric vehicles

    NASA Astrophysics Data System (ADS)

    Bellows, R. J.; Grimes, P.; Einstein, H.; Kantner, E.; Malachesky, P.; Newby, K.

    1983-02-01

    Design projections for zinc-bromine batteries are attractive for electric vehicle applications in terms of low manufacturing costs ($28/kWh) and good performance characteristics. Zinc-bromine battery projections (60-80 Wh/kg, 130-200 W/kg) compare favorably to both current lead acid batteries and proposed advanced battery candidates. The performance of recently developed battery components with 1200 sq/cm electrodes in a 120V, 10 kWh module is described. Similarly constructed smaller scale (600 sq/cm) components have shown lifetimes exceeding 400 cycles and the ability to follow both regenerative braking (J227aD) and random cycling regimes. Initial dynamometer evaluations of full scale 20 kWh batteries is expected in early 1984.

  15. The design of intelligence vehicle's heterogeneous interconnection platform

    Microsoft Academic Search

    Hung-Yih Tsai; Yuan-Yong Hsu; Yung-Hoh Sheu; Tsun-Hsiang Fu; Jeng-Shyong Chen

    2011-01-01

    This research mainly aims at developing an intelligence vehicle's heterogeneous interconnection platform for vehicle communication network-LIN, CAN-Bus, and FlexRay in the vehicle electronic network. Since there are limited studies on Fly-By-Wire interface, the purpose of the study is to build a FlexRay high-speed vehicle's communication network. Besides, the study accomplish FlexRay, CAN and LIN ECU nodes and two FlaxRay\\/CAN and

  16. Reliability-based robust design optimization of vehicle components, Part I: Theory

    NASA Astrophysics Data System (ADS)

    Zhang, Yimin

    2015-04-01

    The reliability-based design optimization, the reliability sensitivity analysis and robust design method are employed to present a practical and effective approach for reliability-based robust design optimization of vehicle components. A procedure for reliability-based robust design optimization of vehicle components is proposed. Application of the method is illustrated by reliability-based robust design optimization of axle and spring. Numerical results have shown that the proposed method can be trusted to perform reliability-based robust design optimization of vehicle components.

  17. OPTIMAL DESIGN AND DYNAMIC SIMULATION OF A HYBRID SOLAR VEHICLE

    Microsoft Academic Search

    Ivan Arsie; Gianfranco Rizzo; Marco Sorrentino

    The paper deals with a detailed study on the optimal sizing of a solar hybrid car, based on a longitudinal vehicle dynamic model and considering energy flows, weight and costs. The model describes the effects of solar panels area and position, vehicle dimensions and propulsion system components on vehicle performance, weight, fuel savings and costs. It is shown that significant

  18. Design and construction of a solar-electric vehicle

    Microsoft Academic Search

    S. H. Bhavnani

    1994-01-01

    Recent concerns relating to global warming caused by greenhouse gases, coupled with a growing awareness of the limited available resources of fossil fuels, have spurred an interest in alternative energy powered vehicles. This paper describes the analysis, development, and testing of an aerodynamic vehicle powered by photovoltaic cells. The primary components of the vehicle are the composite material body, the

  19. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    NASA Technical Reports Server (NTRS)

    Frederick, D. K.; Lashmet, P. K.; Moyer, W. R.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.

    1973-01-01

    The following tasks related to the design, construction, and evaluation of a mobile planetary vehicle for unmanned exploration of Mars are discussed: (1) design and construction of a 0.5 scale dynamic vehicle; (2) mathematical modeling of vehicle dynamics; (3) experimental 0.4 scale vehicle dynamics measurements and interpretation; (4) vehicle electro-mechanical control systems; (5) remote control systems; (6) collapsibility and deployment concepts and hardware; (7) design, construction and evaluation of a wheel with increased lateral stiffness, (8) system design optimization; (9) design of an on-board computer; (10) design and construction of a laser range finder; (11) measurement of reflectivity of terrain surfaces; (12) obstacle perception by edge detection; (13) terrain modeling based on gradients; (14) laser scan systems; (15) path selection system simulation and evaluation; (16) gas chromatograph system concepts; (17) experimental chromatograph separation measurements and chromatograph model improvement and evaluation.

  20. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    NASA Technical Reports Server (NTRS)

    Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.

    1972-01-01

    Investigation of problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars has been undertaken. Problem areas receiving attention include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis; terrain modeling and path selection; and chemical analysis of specimens. The following specific tasks have been under study: vehicle model design, mathematical modeling of a dynamic vehicle, experimental vehicle dynamics, obstacle negotiation, electromechanical controls, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer sybsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, chromatograph model evaluation and improvement.

  1. Analysis and design of a capsule landing system and surface vehicle control system for Mars exporation

    NASA Technical Reports Server (NTRS)

    Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Smith, E. J.; Yerazunis, S. W.

    1972-01-01

    The problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars were investigated. Problem areas receiving attention include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis; navigation, terrain modeling and path selection; and chemical analysis of specimens. The following specific tasks were studied: vehicle model design, mathematical modeling of dynamic vehicle, experimental vehicle dynamics, obstacle negotiation, electromechanical controls, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer subsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, chromatograph model evaluation and improvement and transport parameter evaluation.

  2. Life Cycle Energy and Environmental Assessment of Aluminum-Intensive Vehicle Design

    SciTech Connect

    Das, Sujit [ORNL

    2014-01-01

    Advanced lightweight materials are increasingly being incorporated into new vehicle designs by automakers to enhance performance and assist in complying with increasing requirements of corporate average fuel economy standards. To assess the primary energy and carbon dioxide equivalent (CO2e) implications of vehicle designs utilizing these materials, this study examines the potential life cycle impacts of two lightweight material alternative vehicle designs, i.e., steel and aluminum of a typical passenger vehicle operated today in North America. LCA for three common alternative lightweight vehicle designs are evaluated: current production ( Baseline ), an advanced high strength steel and aluminum design ( LWSV ), and an aluminum-intensive design (AIV). This study focuses on body-in-white and closures since these are the largest automotive systems by weight accounting for approximately 40% of total curb weight of a typical passenger vehicle. Secondary mass savings resulting from body lightweighting are considered for the vehicles engine, driveline and suspension. A cradle-to-cradle life cycle assessment (LCA) was conducted for these three vehicle material alternatives. LCA methodology for this study included material production, mill semi-fabrication, vehicle use phase operation, and end-of-life recycling. This study followed international standards ISO 14040:2006 [1] and ISO 14044:2006 [2], consistent with the automotive LCA guidance document currently being developed [3]. Vehicle use phase mass reduction was found to account for over 90% of total vehicle life cycle energy and CO2e emissions. The AIV design achieved mass reduction of 25% (versus baseline) resulting in reductions in total life cycle primary energy consumption by 20% and CO2e emissions by 17%. Overall, the AIV design showed the best breakeven vehicle mileage from both primary energy consumption and climate change perspectives.

  3. The Effect of Predicted Vehicle Displacement on Ground Crew Task Performance and Hardware Design

    NASA Technical Reports Server (NTRS)

    Atencio, Laura Ashley; Reynolds, David W.

    2011-01-01

    NASA continues to explore new launch vehicle concepts that will carry astronauts to low- Earth orbit to replace the soon-to-be retired Space Transportation System (STS) shuttle. A tall vertically stacked launch vehicle (> or =300 ft) is exposed to the natural environment while positioned on the launch pad. Varying directional winds and vortex shedding cause the vehicle to sway in an oscillating motion. Ground crews working high on the tower and inside the vehicle during launch preparations will be subjected to this motion while conducting critical closeout tasks such as mating fluid and electrical connectors and carrying heavy objects. NASA has not experienced performing these tasks in such environments since the Saturn V, which was serviced from a movable (but rigid) service structure; commercial launchers are likewise attended by a service structure that moves away from the vehicle for launch. There is concern that vehicle displacement may hinder ground crew operations, impact the ground system designs, and ultimately affect launch availability. The vehicle sway assessment objective is to replicate predicted frequencies and displacements of these tall vehicles, examine typical ground crew tasks, and provide insight into potential vehicle design considerations and ground crew performance guidelines. This paper outlines the methodology, configurations, and motion testing performed while conducting the vehicle displacement assessment that will be used as a Technical Memorandum for future vertically stacked vehicle designs.

  4. Design of an agile unmanned combat vehicle: a product of the DARPA UGCV program

    Microsoft Academic Search

    Lindsey D. Thornhill; Alan Walls; Ronald C. Arkin; Joseph H. Beno; Chuck Bergh; Don Bresie; Anthony Giovannetti; Benny M. Gothard; Larry H. Matthies; Porfirio Nogueiro; Jim Scanlon; Ron Scott; Miguel Simon; Wilford Smith; Kenneth J. Waldron

    2003-01-01

    The unmanned ground compat vehicle (UGCV) design evolved by the SAIC team on the DARPA UGCV Program is summarized in this paper. This UGCV design provides exceptional performance against all of the program metrics and incorporates key attributes essential for high performance robotic combat vehicles. This performance includes protection against 7.62 mm threats, C130 and CH47 transportability, and the ability

  5. Adjoint-Based Aerothermodynamic Shape Design of Hypersonic Vehicles in Non-Equilibrium Flows

    E-print Network

    Alonso, Juan J.

    Adjoint-Based Aerothermodynamic Shape Design of Hypersonic Vehicles in Non-Equilibrium Flows Sean R Rigid-rotator harmonic-oscillator I. Introduction The hypersonic aerothermodynamic environment. The hypersonic vehicle design process requires the synthesis of aerothermodynamic, structural, TPS material

  6. Estimating Basic Preliminary Design Performances of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Luz, Paul L.; Alexander, Reginald

    2004-01-01

    Aerodynamics and Performance Estimation Toolset is a collection of four software programs for rapidly estimating the preliminary design performance of aerospace vehicles represented by doing simplified calculations based on ballistic trajectories, the ideal rocket equation, and supersonic wedges through standard atmosphere. The program consists of a set of Microsoft Excel worksheet subprograms. The input and output data are presented in a user-friendly format, and calculations are performed rapidly enough that the user can iterate among different trajectories and/or shapes to perform "what-if" studies. Estimates that can be computed by these programs include: 1. Ballistic trajectories as a function of departure angles, initial velocities, initial positions, and target altitudes; assuming point masses and no atmosphere. The program plots the trajectory in two-dimensions and outputs the position, pitch, and velocity along the trajectory. 2. The "Rocket Equation" program calculates and plots the trade space for a vehicle s propellant mass fraction over a range of specific impulse and mission velocity values, propellant mass fractions as functions of specific impulses and velocities. 3. "Standard Atmosphere" will estimate the temperature, speed of sound, pressure, and air density as a function of altitude in a standard atmosphere, properties of a standard atmosphere as functions of altitude. 4. "Supersonic Wedges" will calculate the free-stream, normal-shock, oblique-shock, and isentropic flow properties for a wedge-shaped body flying supersonically through a standard atmosphere. It will also calculate the maximum angle for which a shock remains attached, and the minimum Mach number for which a shock becomes attached, all as functions of the wedge angle, altitude, and Mach number.

  7. Critical engine system design characteristics for SSTO vehicles

    NASA Astrophysics Data System (ADS)

    Fanciullo, Thomas J.; Judd, D. C.; Obrien, C. J.

    1992-02-01

    Engine system design characteristics are summarized for typical vertical take-off and landing (VTOL) and vertical take-off and horizontal landing (VTHL) Strategic Defense Initiative Organization (SDIO) single stage to orbit (SSTO) vehicles utilizing plug nozzle configurations. Power cycle selection trades involved the unique modular platelet engine (MPE) with the use of (1) LO2 and LH2 at fixed and variable mixture ratios, (2) LO2 and propane or RP-1, and (3) dual fuels (LO2 with LH2 and C3H8). The number of thrust cells and modules were optimized. Dual chamber bell and a cluster of conventional bell nozzle configurations were examined for comparison with the plug configuration. Thrust modulation (throttling) was selected for thrust vector control. Installed thrust ratings were established to provide an additional 20 percent overthrust capability for engine out operation. Turbopumps were designed to operate at subcritical speeds to facilitate a wide range of throttling and long life. A unique dual spool arrangement with hydrostatic bearings was selected for the LH2 turbopump. Controls and health monitoring with expert systems for diagnostics are critical subsystems to ensure minimum maintenance and supportability for a less than seven day turnaround. The use of an idle mode start, in conjunction with automated health condition monitoring, allows the rocket propulsion system to operate reliably in the manner of present day aircraft propulsion.

  8. Adjustment of Design Limited Imperfections for Transportation Vehicles

    NASA Astrophysics Data System (ADS)

    Voges-Schwieger, Kathrin; Hübner, Sven; Behrens, Bernd-Arno

    2011-05-01

    The realization of light weight-construction without loss of passive safety in transportation vehicles is a big challenge for the next years. Considering the requirements on an automobile from consumer view a modern car should combine a high quality of comfort and standard with low operating expenses and a high safety standard. The use of lightweight design enables reductions in fuel consumption and CO2 emissions which are leading to a decrease of operating costs. The increase in passive safety is mainly characterized by an increase in strength and weight due to a concerted material selection, an enhancement of sheet metal thickness and additional compensating elements, e.g. patches. Especially for limited imperfections like cataphoretic drain holes or accesses for joining operations the strength adjustment without additional compensating elements and increasing weight possesses very much potential. The presented research investigate the possibility to reinforce local imperfections considering the material TRIP780 by combining different approaches on light-weight design. The reinforcements are realized by additional forming elements and enhance the moment of inertia. Different investigations were carried out to assess the placement and arrangement of the reinforcements in the deep drawing parts

  9. A hybrid vehicle evaluation code and its application to vehicle design. Revision 1

    SciTech Connect

    Aceves, S.M.; Smith, J.R.

    1994-09-15

    This paper describes a hybrid vehicle simulation model which can be applied to many of the vehicles currently being considered for low pollution and high fuel economy. The code operates in batch mode with all the vehicle information stored in data files. The code calculates fuel economy for three driving schedules, time for 0--96 km/h at maximum acceleration, hill climbing performance, power train dimensions, and pollution generation rates. This paper also documents the application of the code to a hybrid vehicle that utilizes a hydrogen internal combustion engine. The simulation model is used for parametric studies of the vehicle. The results show the fuel economy of the vehicle as a function of vehicle mass, aerodynamic drag, engine efficiency, accessory load, and flywheel efficiency. The code also calculates the minimum flywheel energy and power to obtain a desired performance. The hydrogen hybrid vehicle analyzed in the paper has a predicted range of 480 km (300 miles), with a gasoline equivalent fuel efficiency of 34.2 km/liter (80.9 mpg).

  10. A hybrid vehicle evaluation code and its application to vehicle design. Revision 2

    SciTech Connect

    Aceves, S.M.; Smith, J.R.

    1994-12-13

    This paper describes a hybrid vehicle simulation model which can be applied to many of the vehicles currently being considered for low pollution and high fuel economy. The code operates in batch mode with all the vehicle information stored in data files. The code calculates power train dimensions, fuel economy for three driving schedules, time for 0-96 km/h at maximum acceleration, hill climbing performance, and pollution generation rates. This paper also documents the application of the code to a hybrid vehicle that utilizes a hydrogen internal combustion engine. The simulation model is used for parametric studies of the vehicle. The results show the fuel economy of the vehicle as a function of vehicle mass, aerodynamic drag, engine efficiency, accessory load, and flywheel efficiency. The code also calculates the minimum flywheel energy and power to obtain a desired performance. The hydrogen hybrid vehicle analyzed in the paper has a range of 480 km (300 miles), with a predicted gasoline equivalent fuel efficiency of 33.7 km/liter (79.3 mpg).

  11. Aerospace Vehicle Design, Spacecraft Section. Final Project Reports. Volume 2; Project Groups 6-8

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Three groups of student engineers in an aerospace vehicle design course present their designs for a vehicle that can be used to resupply the Space Station Freedam and provide emergency crew return to earth capability. The vehicle's requirements include a lifetime that exceeds six years, low cost, the capability for withstanding pressurization, launch, orbit, and reentry hazards, and reliability. The vehicle's subsystems are structures, communication and command data systems, attitude and articulation control, life support and crew systems, power and propulsion, reentry and recovery systems, and mission management, planning, and costing. Special attention is given to spacecraft communications.

  12. Aerospace Vehicle Design, Spacecraft Section. Volume 1: Project Groups 3-5

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Three groups of student engineers in an aerospace vehicle design course present their designs for a vehicle that can be used to resupply the Space Station Freedom and provide an emergency crew return to earth capability. The vehicle's requirements include a lifetime that exceeds six years, low cost, the capability for withstanding pressurization, launch, orbit, and reentry hazards, and reliability. The vehicle's subsystems are analyzed. These subsystems are structures, communication and command data systems, attitude and articulation control, life support and crew systems, power and propulsion, reentry and recovery systems, and mission management, planning, and costing.

  13. System Design of Real Time Vehicle Type Recognition Based on Video for Windows (AVI) Files

    NASA Astrophysics Data System (ADS)

    Zhan, Wei; Luo, Zhiqing

    In this system, with technology of motion detection, the data frames include vehicle digital image can be detected automatically from a Video for Windows (AVI) File, at the same time, vehicle type will be recognized and displayed automatically. The system's process consists of five steps: Read the AVI file and decompose it into digital image frames; Motion detection; Vehicle digital image processing; Counting number of black pixels included in vehicle body contour and project on car image; Module of vehicle type classification. In particular, algorithm of vehicle recognition through counting number of black pixels included in vehicle body contour is one innovation algorithm. Experiment on actual AVI files shows: the system design is simple and effective.

  14. Design of an autonomous underwater vehicle to evaluate the blazed array sonar and simultaneous localization and mapping algorithms

    E-print Network

    Uhle, Matthew William

    2007-01-01

    This thesis has investigated aspects of the design of a new highly maneuverable Autonomous Underwater Vehicle - the XAUV. The overall goal for the design of this vehicle is to create a small, highly maneuverable AUV that ...

  15. Study of design directions for lateral vehicle control

    Microsoft Academic Search

    Jurgen Guldner; Han-Shue Tan; Satyajit Patwardhan

    1997-01-01

    Lateral vehicle control for passenger cars, a vital control subsystem of automated highway systems (AHS), has been studied for several decades. Different reference systems have been examined for detecting the lateral vehicle displacement from the lane center. Implementations of `look-down' reference systems, however, encountered practical constraints, limiting driving speed to approximately 20 m\\/s under realistic conditions. This paper presents new

  16. Controller design for improving lateral vehicle dynamic stability

    Microsoft Academic Search

    Seung-Jin Heo; Inho Baek

    2001-01-01

    A vehicle dynamics control system has been developed in this study for improving vehicle dynamic stability under critical lateral motions. The system consists of a feedforward controller, a state feedback controller, and an estimator for the body sideslip angle. The linear quadratic regulator theory has been exploited for the state feedback gain, and for estimation of the body sideslip angle,

  17. Design and Implementation of Renewable Hydrogen Fuel Cell Vehicles

    Microsoft Academic Search

    Kary Thanapalan; Jonathan Williams; Alan Guwy

    2011-01-01

    In this paper, a systematic approach for investigating a hydrogen fuel cell hybrid vehicle system is considered. This approach involves developing a mathematical model incorporating renewable hydrogen production, storage and refuelling of the fuel cell vehicle system. The University of Glamorgan's (UOG) Sustainable Environment Research Centre (SERC) have developed the UK's first alternative energy refuelling facility at the University's Hydrogen

  18. Design and Control of a Fully Automated Vehicle door

    E-print Network

    Hong, Kyung-Min

    2010-07-14

    a pull of the door handle, utilizes an IR sensor to detect objects in its path. The vehicle door utilizes a linear direct current (DC) actuator with a built in potentiometer to power and control the vehicle door. The built in potentiometer provides...

  19. The effect of recent trends in vehicle design on U.S. societal fatality risk per vehicle mile traveled, and their projected future relationship with vehicle mass.

    PubMed

    Wenzel, Tom

    2013-07-01

    The National Highway Traffic Safety Administration (NHTSA) recently updated its 2003 and 2010 logistic regression analyses of the effect of a reduction in light-duty vehicle mass on US fatality risk per vehicle mile traveled (VMT). The current NHTSA analysis is the most thorough investigation of this issue to date. LBNL's assessment of the analysis indicates that the estimated effect of mass reduction on risk is smaller than in the previous studies, and statistically non-significant for all but the lightest cars. The effects three recent trends in vehicle designs and technologies have on societal fatality risk per VMT are estimated, and whether these changes might affect the relationship between vehicle mass and fatality risk in the future. Side airbags are found to reduce fatality risk in cars, but not necessarily light trucks or CUVs/minivans, struck in the side by another light-duty vehicle; reducing the number of fatalities in cars struck in the side is predicted to reduce the estimated detrimental effect of footprint reduction, but increase the detrimental effect of mass reduction, in cars on societal fatality risk. Better alignment of light truck bumpers with those of other vehicles appears to result in a statistically significant reduction in risk imposed on car occupants; however, reducing this type of fatality will likely have little impact on the estimated effect of mass or footprint reduction on risk. Finally, shifting light truck drivers into safer, car-based vehicles, such as sedans, CUVs, and minivans, would result in larger reductions in societal fatalities than expected from even substantial reductions in the masses of light trucks. A strategy of shifting drivers from truck-based to car-based vehicles would reduce fuel use and greenhouse gas emissions, while improving societal safety. PMID:23631906

  20. Design and realization of an intelligent ground vehicle with modular payloads

    NASA Astrophysics Data System (ADS)

    Akmanalp, Mehmet A.; Doherty, Ryan M.; Gorges, Jeffrey; Kalauskas, Peter; Peterson, Ellen; Polido, Felipe; Nestinger, Stephen S.; Padir, Taskin

    2012-01-01

    In June 2011, Worcester Polytechnic Institute's (WPI) unmanned ground vehicle Prometheus participated in the 8th Annual Robotic Lawnmower and 19th Annual Intelligent Ground Vehicle Competitions back-to-back. This paper details the two-year design and development cycle for WPI's intelligent ground vehicle, Prometheus. The on-board intelligence algorithms include lane detection, obstacle avoidance, path planning, world representation and waypoint navigation. The authors present experimental results and discuss practical implementations of the intelligence algorithms used on the robot.

  1. Hybrid vehicle system studies and optimized hydrogen engine design

    SciTech Connect

    Smith, J.R.; Aceves, S.

    1995-04-26

    We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments in an available engine at the Sandia CRF demonstrated NO{sub x} emissions of 10 to 20 ppM at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid simulation studies indicate that exhaust NO{sub x} concentrations must be less than 180 ppM to meet the 0.2 g/mile ULEV or Federal Tier II emissions regulations. LLNL has designed and fabricated a first generation optimized hydrogen engine head for use on an existing Onan engine. This head features 15:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses. Initial testing shows promise of achieving an indicated efficiency of nearly 50% and emissions of less than 100 ppM NO{sub x}. Hydrocarbons and CO are to be measured, but are expected to be very low since their only source is engine lubricating oil. A successful friction reduction program on the Onan engine should result in a brake thermal efficiency of about 42% compared to today`s gasoline engines of 32%. Based on system studies requirements, the next generation engine will be about 2 liter displacement and is projected to achieve 46% brake thermal efficiency with outputs of 15 kW for cruise and 40 kW for hill climb.

  2. Hybrid vehicle system studies and optimized hydrogen engine design

    NASA Astrophysics Data System (ADS)

    Smith, J. R.; Aceves, S.

    1995-04-01

    We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments in an available engine at the Sandia CRF demonstrated NO(x) emissions of 10 to 20 ppM at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid simulation studies indicate that exhaust NO(x) concentrations must be less than 180 ppM to meet the 0.2 g/mile ULEV or Federal Tier II emissions regulations. LLNL has designed and fabricated a first generation optimized hydrogen engine head for use on an existing Onan engine. This head features 15:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses. Initial testing shows promise of achieving an indicated efficiency of nearly 50% and emissions of less than 100 ppM NO(x). Hydrocarbons and CO are to be measured, but are expected to be very low since their only source is engine lubricating oil. A successful friction reduction program on the Onan engine should result in a brake thermal efficiency of about 42% compared to today's gasoline engines of 32%. Based on system studies requirements, the next generation engine will be about 2 liter displacement and is projected to achieve 46% brake thermal efficiency with outputs of 15 kW for cruise and 40 kW for hill climb.

  3. Powertrain Design for Shell Eco-marathon UrbanConcept Vehicle The team was tasked with designing the powertrain for a highly fuel efficient vehicle. The

    E-print Network

    Demirel, Melik C.

    Powertrain Design for Shell Eco-marathon UrbanConcept Vehicle Overview The team was tasked to the rules and regulations of the UrbanConcept category of the 2010 Shell Eco-marathon. The powertrain competed in the 2010 Shell Eco-marathon. Objectives The goal of the team was to design and build

  4. Unmanned Vehicle Controller Design, Evaluation and Implementation: From MATLAB to Printed Circuit Board

    Microsoft Academic Search

    Daniel Ernst; Kimon P. Valavanis; Richard Garcia; Jeff Craighead

    2007-01-01

    A detailed step-by-step approach is presented to optimize, standardize, and automate the process of unmanned vehicle controller\\u000a design, evaluation, validation and verification, followed by actual hardware controller implementation on the vehicle. The\\u000a proposed approach follows the standard practice to utilize MATLAB\\/SIMULINK and related toolboxes as the design framework. Controller design in MATLAB\\/SIMULINK is followed by automatic conversion from MATLAB to

  5. Rotorcraft control system design for uncertain vehicle dynamics using quantitative feedback theory

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1994-01-01

    Quantitative Feedback Theory describes a frequency-domain technique for the design of multi-input, multi-output control systems which must meet time or frequency domain performance criteria when specified uncertainty exists in the linear description of the vehicle dynamics. This theory is applied to the design of the longitudinal flight control system for a linear model of the BO-105C rotorcraft. Uncertainty in the vehicle model is due to the variation in the vehicle dynamics over a range of airspeeds from 0-100 kts. For purposes of exposition, the vehicle description contains no rotor or actuator dynamics. The design example indicates the manner in which significant uncertainty exists in the vehicle model. The advantage of using a sequential loop closure technique to reduce the cost of feedback is demonstrated by example.

  6. Integrating Human Factors into Crew Exploration Vehicle Design

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Baggerman, Susan; Campbell, paul

    2007-01-01

    With NASA's new Vision for Exploration to send humans beyond Earth orbit, it is critical to consider the human as a system that demands early and continuous user involvement, and an iterative prototype/test/redesign process. Addressing human-system interface issues early on can be very cost effective even cost reducing when performed early in the design and development cycle. To achieve this goal within Crew Exploration Vehicle (CEV) Project Office, human engineering (HE) team is formed. Key tasks are to apply HE requirements and guidelines to hardware/software, and provide HE design, analysis and evaluation of crew interfaces. Initial activities included many practice-orientated evaluations using low-fidelity CEV mock-ups. What follows is a description of such evaluations that focused on a HE requirement regarding Net Habitable Volume (NHV). NHV is defined as the total remaining pressurized volume available to on-orbit crew after accounting for the loss of volume due to deployed hardware and structural inefficiencies which decrease functional volume. The goal of the NHV evaluations was to develop requirements providing sufficient CEV NHV for crewmembers to live and perform tasks in support of mission goals. Efforts included development of a standard NHV calculation method using computer models and physical mockups, and crew/ stakeholder evaluations. Nine stakeholders and ten crewmembers participated in the unsuited evaluations. Six crewmembers also participated in a suited evaluation. The mock-up was outfitted with volumetric representation of sub-systems such as seats, and stowage bags. Thirteen scenarios were developed to represent mission/crew tasks and considered to be primary volume drivers (e.g., suit donning) for the CEV. Unsuited evaluations included a structured walkthrough of these tasks. Suited evaluations included timed donning of the existing launch and entry suit to simulate a contingency scenario followed by doffing/ stowing of the suits. All mockup evaluations were videotaped. Structured questionnaires were used to document user interface issues and volume impacts of layout configuration. Computer model and physical measures of the NHV agreed within 1 percent. This included measurement of the gross habitable volume, subtraction of intrusive volumes, and other non-habitable spaces. Calculation method developed was validated as a standard means of measuring NHV, and was recommended as a verification method for the NHV requirements. Evaluations confirmed that there was adequate volume for unsuited scenarios and suit donning/ doffing activity. Seats, suit design stowage and waste hygiene system noted to be critical volume drivers. The low-fidelity mock-up evaluations along with human modeling analysis generated discussions that will lead to high-level systems requirements and human-centered design decisions. This approach allowed HE requirements and operational concepts to evolve in parallel with engineering system concepts and design requirements. As the CEV design matures, these evaluations will continue and help with design decisions, and assessment, verification and validation of HE requirements.

  7. Design and Optimization of the University of Wisconsin's Parallel Hybrid-Electric Sport Utility Vehicle

    Microsoft Academic Search

    Ryan F. Rowe; Jennifer A. Topinka; Ethan K. Brodsky; Julie G. Marshaus; Glenn R. Bower

    The University of Wisconsin - Madison FutureTruck Team has designed and built a four-wheel drive, charge sustaining, parallel hybrid-electric sport utility vehicle for entry into the FutureTruck 2001 competition. The base vehicle is a 2000 Chevrolet Suburban. Our FutureTruck is nicknamed the \\

  8. ANALYSIS AND CONTROL DESIGN OF A HYDRO-MECHANICAL HYDRAULIC HYBRID PASSENGER VEHICLE

    E-print Network

    Li, Perry Y.

    the internal speed variable comes from either the en- gine (mode 1) or the hydraulic system (mode 2 of this hydraulic hybrid vehicle is the development of an effective control system layer to regulate the numerousANALYSIS AND CONTROL DESIGN OF A HYDRO-MECHANICAL HYDRAULIC HYBRID PASSENGER VEHICLE Teck Ping, Sim

  9. Design and Implementation of Vehicle Monitoring System Based on GPS\\/GSM\\/GIS

    Microsoft Academic Search

    Hui Hu; Lian Fang

    2009-01-01

    Based on the background that vehicle monitoring system had urgent necessity recently, the paper put forward a overall scheme of vehicle monitoring system combining with global positioning system (GPS), global system for mobile communication (GSM) and geographical information system (GIS), introduced the key technologies of this monitoring center software, designed the function software of monitoring center based on VC++ software

  10. Biomimetic Micro Underwater Vehicle with Oscillating Fin Propulsion: System Design and Force Measurement

    Microsoft Academic Search

    Xinyan Deng; Srinath Avadhanula

    2005-01-01

    This paper presents the design, fabrication, and force measurement of a centimeter scale micro underwater vehicle mimicking a boxfish. The principles of locomotion of real boxfish have been investigated thoroughly from a biological point of view, but attempts to replicate such a device within the research community of Micro Underwater Vehicles (MUV) have been quite limited. The authors have developed

  11. Design of an Adaptive Cruise Control \\/ Collision Avoidance with lane change support for vehicle autonomous driving

    Microsoft Academic Search

    Dongwook Kim; Seungwuk Moon; H. J. Kim; Kyongsu Yi

    2009-01-01

    This paper presents an adaptive cruise control (ACC) and collision avoidance (CA) system for vehicle autonomous driving. The control scheme is designed to improve drivers' comfort during multi-vehicle driving situations and to completely avoid rear-end collision using severe braking and lane change maneuver. In order to create such an application, the proposed system consists of a longitudinal control strategy for

  12. Design of Electrical Air-Condition Control System for Fuel Cell Vehicle Based on CAN Bus

    Microsoft Academic Search

    Hui Chen; Lin Zhan

    2010-01-01

    This paper introduces the principle of controller area network (CAN) bus and the structure of fuel cell vehicle control system based on CAN bus. It focuses on electrical air -condition control system for fuel cell vehicle based on CAN bus, which consists of an air condition control node and an air condition compressor drive. The design of electrical air condition

  13. Advanced Intelligent Trajectory Tracking Design for Vehicle Systems under the Effects of Uncertain Disturbances

    Microsoft Academic Search

    Nai Ren Guo; Yung-Yue Chen; Tzong Jiy Tsai

    2011-01-01

    An intelligent control of the automated highway system for the guidance of four wheeled vehicles is proposed. The control objective is to find one control law that can automatically guide the new-generation smart vehicles when driving in the highway under the effects of uncertain disturbance as wind gust, etc. We successfully propose one control law for designing the intelligent control

  14. Head posture measurements among work vehicle drivers and implications for work and workplace design

    Microsoft Academic Search

    JÖRGEN EKLUND; PER ODENRICK; STEFAN ZETTERGEN; HANS JOHANSSON

    1994-01-01

    An increased risk of musculoskeletal disorders, e.g. from the neck region, has been found among professional drivers of work vehicles. The purpose of this study was to identify causes of postural load and implications for vehicle design and work tasks. A second purpose was to develop the methods for measurement and analysis of head postures. Field measurements of head postures

  15. Aerodynamic Design Criteria for Class 8 Heavy Vehicles Trailer Base Devices to Attain Optimum Performance

    Microsoft Academic Search

    K Salari; J Ortega

    2010-01-01

    Lawrence Livermore National Laboratory (LLNL) as part of its Department of Energy (DOE), Energy Efficiency and Renewable Energy (EERE), and Vehicle Technologies Program (VTP) effort has investigated class 8 tractor-trailer aerodynamics for many years. This effort has identified many drag producing flow structures around the heavy vehicles and also has designed and tested many new active and passive drag reduction

  16. Parametric Analysis of Vehicle Design Influence on the Four Phases of Whiplash Motion

    Microsoft Academic Search

    Polat Sendur; Robert Thibodeau; John Burge; Allan Tencer

    2005-01-01

    Objective. The objective is to establish a basis for motor vehicle test requirements that measure component contributions to Whiplash Associated Disorders (WAD).Methods. Selected vehicle design features are evaluated with regard to their relative contributions to WAD measures. The motion of the occupant cervical spine associated with WAD is divided into four phases: retraction, extension, rebound, and protraction. Injury measures from

  17. A versatile computer model for the design and analysis of electric and hybrid vehicles

    E-print Network

    Stevens, Kenneth Michael

    1996-01-01

    The primary purpose of the work reported in this thesis was to develop a versatile computer model to facilitate the design and analysis of hybrid vehicle drive-trains. A hybrid vehicle is one in which power for propulsion comes from two distinct...

  18. A realistic simulator for the design and evaluation of intelligent vehicles

    Microsoft Academic Search

    Sven Gowal; Yizhen Zhang; Alcherio Martinoli

    2010-01-01

    The number of vehicles hitting the road each day is rapidly increasing, and several problems, such as traffic congestion or driver safety, can no longer be solved in the same fashion as before. Intelligent transportation systems could potentially solve part of these problems, but prototyping, designing and testing cooperative smart vehicles is a cumbersome task. This paper presents a realistic

  19. Design and realization of expressway vehicle path recognition and ETC system based on RFID

    Microsoft Academic Search

    Zhihui Feng; Yanjie Zhu; Pengtao Xue; Mingjie Li

    2010-01-01

    With the development of expressway, the vehicle path recognition based on RFID is designed and an Electronic Toll Collection system of expressway will be implemented. It uses a passive RFID tag as carrier to identify Actual vehicle path in loop road. The ETC system will toll collection without parking, also census traffic flow and audit road maintenance fees. It is

  20. Environmental Controls and Life Support System Design for a Space Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Stambaugh, Imelda C.; Rodriguez, Branelle; Vonau, Walt, Jr.; Borrego, Melissa

    2012-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Space Exploration Vehicle (SEV). The SEV will aid to expand the human exploration envelope for Geostationary Transfer Orbit (GEO), Near Earth Object (NEO), or planetary missions by using pressurized surface exploration vehicles. The SEV, formerly known as the Lunar Electric Rover (LER), will be an evolutionary design starting as a ground test prototype where technologies for various systems will be tested and evolve into a flight vehicle. This paper will discuss the current SEV ECLSS design, any work contributed toward the development of the ECLSS design, and the plan to advance the ECLSS design based on the SEV vehicle and system needs.

  1. Environmental Controls and Life Support System (ECLSS) Design for a Space Exploration Vehicle (SEV)

    NASA Technical Reports Server (NTRS)

    Stambaugh, Imelda; Sankaran, Subra

    2010-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Space Exploration Vehicle (SEV). The SEV will aid to expand the human exploration envelope for Geostationary Transfer Orbit (GEO), Near Earth Object (NEO), or planetary missions by using pressurized surface exploration vehicles. The SEV, formerly known as the Lunar Electric Rover (LER), will be an evolutionary design starting as a ground test prototype where technologies for various systems will be tested and evolve into a flight vehicle. This paper will discuss the current SEV ECLSS design, any work contributed toward the development of the ECLSS design, and the plan to advance the ECLSS design based on the SEV vehicle and system needs.

  2. The Application of Fuzzy Evaluation Method on Design Quality Evaluation of Mine Disaster Rescue Vehicle Detection

    Microsoft Academic Search

    Zhao Fangfang; He Zhen; Sun Huilai

    2008-01-01

    Product quality is impacted by design quality deeply. This paper discussed comprehensively the evaluation indices of design quality from product function and performance. Fuzzy evaluation method was used to evaluate the design quality. Factors set, weight set and evaluation matrix were established and evaluation model was chosen and solved. As an example, the design quality of mine disaster rescue vehicle

  3. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications: Conceptual vehicle design report pure fuel cell powertrain vehicle

    SciTech Connect

    Oei, D.; Kinnelly, A.; Sims, R.; Sulek, M.; Wernette, D.

    1997-02-01

    In partial fulfillment of the Department of Energy (DOE) Contract No. DE-AC02-94CE50389, {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation Applications{close_quotes}, this preliminary report addresses the conceptual design and packaging of a fuel cell-only powered vehicle. Three classes of vehicles are considered in this design and packaging exercise, the Aspire representing the small vehicle class, the Taurus or Aluminum Intensive Vehicle (AIV) Sable representing the mid-size vehicle and the E-150 Econoline representing the van-size class. A fuel cell system spreadsheet model and Ford`s Corporate Vehicle Simulation Program (CVSP) were utilized to determine the size and the weight of the fuel cell required to power a particular size vehicle. The fuel cell power system must meet the required performance criteria for each vehicle. In this vehicle design and packaging exercise, the following assumptions were made: fuel cell power system density of 0.33 kW/kg and 0.33 kg/liter, platinum catalyst loading less than or equal to 0.25 mg/cm{sup 2} total and hydrogen tanks containing gaseous hydrogen under 340 atm (5000 psia) pressure. The fuel cell power system includes gas conditioning, thermal management, humidity control, and blowers or compressors, where appropriate. This conceptual design of a fuel cell-only powered vehicle will help in the determination of the propulsion system requirements for a vehicle powered by a PEMFC engine in lieu of the internal combustion (IC) engine. Only basic performance level requirements are considered for the three classes of vehicles in this report. Each vehicle will contain one or more hydrogen storage tanks and hydrogen fuel for 560 km (350 mi) driving range. Under these circumstances, the packaging of a fuel cell-only powered vehicle is increasingly difficult as the vehicle size diminishes.

  4. Design for manufacturing analysis on the Small Unmanned Ground Vehicle

    E-print Network

    Yu, Ada (Ada Cheuk Ying)

    2008-01-01

    iRobot is responsible for delivering the Small Unmanned Ground Vehicle (SUGV) as part of the U.S. Army's Future Combat Systems (FCS) initiative. With increasing external competition and pressures, iRobot must deliver an ...

  5. Controller design for underwater vehicle systems with communication constraints

    E-print Network

    Reed, Brooks Louis-Kiguchi

    2015-01-01

    Real-time cooperation between autonomous vehicles can enable time-critical missions such as tracking and pursuit of a dynamic target or environmental feature, but relies on wireless communications. Underwater, communication ...

  6. Visualization of ground target designation from an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Violette Pierce, Deborah J.; Santapietro, John J.

    1998-08-01

    The common ground station (CGS) receives data from the joint surveillance and target attack radar system aircraft and from other airborne platforms. High-resolution imagery such as that provided by an unmanned airborne vehicle (UAV) carrying an IR and/or synthetic aperture radar (SAR) sensor will be incorporated into an advanced imagery CGS operation. While this level of integration provides a wealth of valuable information, it also increase the complexity of planning, assessment and exploitation which in turn dictates flexible simulation tools for mission rehearsal and operator training. MITRE has developed a ModSAF-driven model for a UAV equipped with a moving target indicator (MTI) radar for wide-area surveillance, and a battlefield combat identification system for positive identification of friendly forces. The imaging functions are performed by integrating the UAV model with visualization software in order to render the sensor's view in real-time. This model forms the basis for a multisensor CGS simulation controls imaging task assignments which taken place when an MTI track is selected for imaging by means of a mouse click entry on an active MTI display. At that time, the UAV is commanded to fly an automatically determined trajectory in order to align MTI display. At that time, the UAV is commanded to fly an automatically determined trajectory in order to align itself for the imaging task. A beam footprint whose position, size and shape is determined by the sensor position, attitude, and field-of-view appears on the display as an indication of the relationship of the image display to the terrain in the operational scenario. A 3D visualization of the designated target area then takes place on a separate display.

  7. Mechanical design engineering. NASA/university advanced design program: Lunar Bulk Material Transport Vehicle

    NASA Astrophysics Data System (ADS)

    Daugherty, Paul; Griner, Stewart; Hendrix, Alan; Makarov, Chris; Martiny, Stephen; Meyhoefer, Douglas Ralph; Platt, Cody Claxton; Sivak, John; Wheeler, Elizabeth Fitch

    1988-06-01

    The design of a Lunar Bulk Material Transport Vehicle (LBMTV) is discussed. Goals set in the project include a payload of 50 cubic feet of lunar soil with a lunar of approximately 800 moon-pounds, a speed of 15 mph, and the ability to handle a grade of 20 percent. Thermal control, an articulated steering mechanism, a dump mechanism, a self-righting mechanism, viable power sources, and a probable control panel are analyzed. The thermal control system involves the use of small strip heaters to heat the housing of electronic equipment in the absence of sufficient solar radiation and multi-layer insulation during periods of intense solar radiation. The entire system uses only 10 W and weighs about 60 pounds, or 10 moon-pounds. The steering mechanism is an articulated steering joint at the center of the vehicle. It utilizes two actuators and yields a turning radius of 10.3 feet. The dump mechanism rotates the bulk material container through an angle of 100 degree using one actuator. The self-righting mechanism consists of two four bar linkages, each of which is powered by the same size actuator as the other linkages. The LBMTV is powered by rechargeable batteries. A running time of at least two hours is attained under a worst case analysis. The weight of the batteries is 100 pounds. A control panel consisting of feedback and control instruments is described. The panel includes all critical information necessary to control the vehicle remotely. The LBMTV is capable of handling many types of cargo. It is able to interface with many types of removable bulk material containers. These containers are made to interface with the three-legged walker, SKITTER. The overall vehicle is about 15 feet in length and has a weight of about 1000 pounds, or 170 lunar pounds.

  8. Conceptual Human-System Interface Design for a Lunar Access Vehicle

    E-print Network

    Cummings, Mary "Missy"

    Conceptual Human-System Interface Design for a Lunar Access Vehicle Mary Cummings Enlie Wang-SI........................................................................................ 3 2.2 APOLLO VS. LUNAR ACCESS REQUIREMENTS ...................................................... 4.3 LANDING ZONE (LZ) DISPLAY............................................................................. 8 3

  9. Trade-off results and preliminary designs of Near-Term Hybrid Vehicles

    NASA Technical Reports Server (NTRS)

    Sandberg, J. J.

    1980-01-01

    Phase I of the Near-Term Hybrid Vehicle Program involved the development of preliminary designs of electric/heat engine hybrid passenger vehicles. The preliminary designs were developed on the basis of mission analysis, performance specification, and design trade-off studies conducted independently by four contractors. THe resulting designs involve parallel hybrid (heat engine/electric) propulsion systems with significant variation in component selection, power train layout, and control strategy. Each of the four designs is projected by its developer as having the potential to substitute electrical energy for 40% to 70% of the petroleum fuel consumed annually by its conventional counterpart.

  10. Design and analysis of an Extended Kalman Filter based navigator for an autonomous underwater vehicle 

    E-print Network

    Just, Bradley Eugene

    1994-01-01

    DESIGN AND ANALYSIS OF AN EXTENDED KALMAN FILTER BASED NAVIGATOR FOR AN AUTONOMOUS UNDERWATER VEHICLE A Thesis by BRADLEY EUGENE JUST Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1994 Major Subject: Mechanical Engineering DESIGN AND ANALYSIS OF AN EXTENDED KALMAN FILTER BASED NAVIGATOR FOR AN AUTONOMOUS UNDERWATER VEHICLE A Thesis by BRADLEY EUGENE JUST Submitted to Texas A...

  11. Preliminary power train design for a state-of-the-art electric vehicle (executive summary)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The preliminary design of a state-of-the-art electric power train is part of a national effort to reap the potential benefit of useful urban electric passenger vehicles. Outlined in a detailed presentation are: (1) assessment of the state-of-the-art in electric vehicle technology; (2) state-of-the-art power train design; (3) improved power train; and (4) summary and recommendations.

  12. System design and optimization of the world's fastest hydrogen fuel cell vehicle

    Microsoft Academic Search

    Edward Hillstrom; Kevin Ponziani; Benjamin Sinshiemer; Carington Bork; Marcello Canova; Yann Guezennec; Giorgio Rizzoni; Mike Procter

    2010-01-01

    The Buckeye Bullet 2 is the world's fastest hydrogen fuel cell electric vehicle, with a certified FIA record of 487.433 km\\/hr (302.877 mi\\/hr). This paper provides the basic details of the overall vehicle and focuses on the design, testing, and optimization of the propulsion system. A unique fuel cell system was designed, tested, and integrated to produce over 500 kW

  13. Design and fabrication of metallic thermal protection systems for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Varisco, A.; Bell, P.; Wolter, W.

    1978-01-01

    A program was conducted to develop a lightweight, efficient metallic thermal protection system (TPS) for application to future shuttle-type reentry vehicles, advanced space transports, and hypersonic cruise vehicles. Technical requirements were generally derived from the space shuttle. A corrugation-stiffened beaded-skin TPS design was used as a baseline. The system was updated and modified to incorporate the latest technology developments and design criteria. The primary objective was to minimize mass for the total system.

  14. Department of Mechanical Engineering Spring 2012 Space Vehicle Water Drop Test and Vehicle Design

    E-print Network

    Demirel, Melik C.

    impact loading event but deviates as the weight and size of the test subject decreases. The test dataPENNSTATE Department of Mechanical Engineering Spring 2012 Space Vehicle Water Drop Test loaded test subject. To better understand a complex impact loading event, a large test bank of data

  15. Control-Relevant Modeling, Analysis, and Design for Scramjet-Powered Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Rodriguez, Armando A.; Dickeson, Jeffrey J.; Sridharan, Srikanth; Benavides, Jose; Soloway, Don; Kelkar, Atul; Vogel, Jerald M.

    2009-01-01

    Within this paper, control-relevant vehicle design concepts are examined using a widely used 3 DOF (plus flexibility) nonlinear model for the longitudinal dynamics of a generic carrot-shaped scramjet powered hypersonic vehicle. Trade studies associated with vehicle/engine parameters are examined. The impact of parameters on control-relevant static properties (e.g. level-flight trimmable region, trim controls, AOA, thrust margin) and dynamic properties (e.g. instability and right half plane zero associated with flight path angle) are examined. Specific parameters considered include: inlet height, diffuser area ratio, lower forebody compression ramp inclination angle, engine location, center of gravity, and mass. Vehicle optimizations is also examined. Both static and dynamic considerations are addressed. The gap-metric optimized vehicle is obtained to illustrate how this control-centric concept can be used to "reduce" scheduling requirements for the final control system. A classic inner-outer loop control architecture and methodology is used to shed light on how specific vehicle/engine design parameter selections impact control system design. In short, the work represents an important first step toward revealing fundamental tradeoffs and systematically treating control-relevant vehicle design.

  16. Novel approach for designing a hypersonic gliding-cruising dual waverider vehicle

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Ding, Feng; Huang, Wei; Jin, Liang

    2014-09-01

    For a hypersonic gliding-cruising vehicle, the gliding Mach number is larger than the cruising Mach number. It may be useful to design the inlet shroud to act as the compression surface of the waverider, to ensure that the vehicle rides on the shock wave, during both the gliding and cruising phases. A new design concept, namely a gliding-cruising dual waverider, is proposed in the current study. During the gliding phase, the hypersonic vehicle rides on the shock wave at the design gliding Mach number, as the inlet shroud is designed to act as waverider's compression surface. During the cruising phase, when the inlet shroud is cast away or jettisoned, the hypersonic vehicle rides on the shock wave at the design cruising Mach number, as the forebody is designed to act as waverider's compression surface. Thus, the design methodology of the dual-cone-derived waverider is described based on the theory of conical flow. Finally, the numerical methods are utilized to verify the new design method of the aerodynamic configuration. This methodology proposed is useful to design a hypersonic vehicle for two regimes of flight.

  17. Modular Approach to Launch Vehicle Design Based on a Common Core Element

    NASA Technical Reports Server (NTRS)

    Creech, Dennis M.; Threet, Grady E., Jr.; Philips, Alan D.; Waters, Eric D.; Baysinger, Mike

    2010-01-01

    With a heavy lift launch vehicle as the centerpiece of our nation's next exploration architecture's infrastructure, the Advanced Concepts Office at NASA's Marshall Space Flight Center initiated a study to examine the utilization of elements derived from a heavy lift launch vehicle for other potential launch vehicle applications. The premise of this study is to take a vehicle concept, which has been optimized for Lunar Exploration, and utilize the core stage with other existing or near existing stages and boosters to determine lift capabilities for alternative missions. This approach not only yields a vehicle matrix with a wide array of capabilities, but also produces an evolutionary pathway to a vehicle family based on a minimum development and production cost approach to a launch vehicle system architecture, instead of a purely performance driven approach. The upper stages and solid rocket booster selected for this study were chosen to reflect a cross-section of: modified existing assets in the form of a modified Delta IV upper stage and Castor-type boosters; potential near term launch vehicle component designs including an Ares I upper stage and 5-segment boosters; and longer lead vehicle components such as a Shuttle External Tank diameter upper stage. The results of this approach to a modular launch system are given in this paper.

  18. The design of an electro-hydraulically controlled, manual transmission for a hybrid electric vehicle

    SciTech Connect

    Davis, G.W.; Hoff, C.J.

    1998-07-01

    An electro-hydraulically controlled, manual transmission has been developed for the Department of Energy's FutureCar Challenge. This project which is jointly sponsored by the DOE and the Partnership for a New Generation of Vehicles (PNGV) seeks to modify a production mid-size car to reach 80 mpg, yet still maintain the safety and consumer acceptability of the original vehicle. To meet this challenge, a 1996 Ford Taurus has been modified into a parallel drive, hybrid electric vehicle. The propulsion system of this vehicle is based on a DC electric motor, which is coupled via a belt drive, in parallel, with a 1.9 liter turbo-charged, direct injection diesel engine. Both propulsion units are then coupled to the transmission. The OEM automatic transmission has been replaced with a five-speed, manual transmission, which was adapted from an earlier model year production Taurus SHO vehicle. This transmission is both lighter and more mechanically efficient than the automatic transmission. In order to provide the automatic transmission shifting capabilities expected by the consumer for a vehicle of this size, an electro-hydraulic control unit was designed and built. This unit automatically engages the clutch and shifts gears as required during vehicle operation. Gear selection is controlled by a programmable logic controller (PLC), which utilizes throttle and vehicle speed input signals. Additionally, the driver may select gears using a modified steering-column PRNDL selector. This paper discusses the final design of this system and provides an evaluation of its performance.

  19. Space Shuttle Solid Rocket Booster decelerator subsystem - Air drop test vehicle/B-52 design

    NASA Technical Reports Server (NTRS)

    Runkle, R. E.; Drobnik, R. F.

    1979-01-01

    The air drop development test program for the Space Shuttle Solid Rocket Booster Recovery System required the design of a large drop test vehicle that would meet all the stringent requirements placed on it by structural loads, safety considerations, flight recovery system interfaces, and sequence. The drop test vehicle had to have the capability to test the drogue and the three main parachutes both separately and in the total flight deployment sequence and still be low-cost to fit in a low-budget development program. The design to test large ribbon parachutes to loads of 300,000 pounds required the detailed investigation and integration of several parameters such as carrier aircraft mechanical interface, drop test vehicle ground transportability, impact point ground penetration, salvageability, drop test vehicle intelligence, flight design hardware interfaces, and packaging fidelity.

  20. Theoretical aerothermal concepts for configuration design of hypersonic vehicles

    Microsoft Academic Search

    Shripad P. Mahulikar

    2005-01-01

    Convection coefficients and heat fluxes due to aerodynamic heating on critical surfaces of hypersonic vehicle are obtained analytically. The applicability of recovery temperature for stagnation regions is discussed. Convection coefficient for the bicurvature forward stagnation region is obtained directly from 2-D stagnation region correlation, using the two principal radii of curvatures. Convective heat flux to swept-back leading edge (SBLE) surface

  1. Polymer selection and cell design for electric-vehicle supercapacitors

    Microsoft Academic Search

    M. Mastragostino; C. Arbizzani; R. Paraventi; A. Zanelli

    2000-01-01

    Supercapacitors are devices for applications requiring high operating power levels, such as secondary power sources in electric vehicles (EVs) to provide peak power for acceleration and hill climbing. While electronically conducting polymers yield different redox supercapacitor configurations, devices with the n-doped polymer as the negative electrode and the p-doped polymer as the positive one are the most promising for EV

  2. Launch Vehicle with Combustible Polyethylene Case Gasification Chamber Design Basis

    NASA Astrophysics Data System (ADS)

    Yemets, V.

    A single-stage launch vehicle equipped with a combustible tank shell of polyethylene and a moving propulsion plant is proposed. The propulsion plant is composed of a chamber for the gasification of the shell, a compressor of pyrolysed polyethylene and a magnetic powder obturator. It is shown that the “dental” structure of the gasification chamber is necessary to achieve the necessary contact area with the polyethylene shell. This conclusion is drawn from consideration of the thermo- physical properties of polyethylene, calculating quasisteady temperature field in the gasification chamber, estimating gasification rate of polyethylene, launch vehicle shortening rate and area of gasification. Experimental determination of the gasification rate is described. The gasification chamber specific mass as well as the propulsion plant weight-to-thrust ratio are estimated under some assumptions concerning the obturator and compressor. Combustible launch vehicles are compared with conventional launch vehicles taking into consideration their payload mass ratios. Combustible launchers are preferable as small launchers for micro and nano satellites. Reusable versions of such launchers seem suitable if polyethylene tank shells filled with metal or metal hydride fine dusts are used.

  3. Vehicle Sideslip Estimation Design, implementation, and experimental validation

    E-print Network

    Johansen, Tor Arne

    the wheel angular velocities, and a linear reference model taking the speed, steering wheel angle measurements include the steering wheel angle, wheel angular velocities, lateral acceleration, and the rate a great deal of information about the state of the vehicle. The speed of the car can be estimated using

  4. Visualization of ground target designation from an unmanned aerial vehicle

    Microsoft Academic Search

    Deborah J. Violette Pierce; John J. Santapietro

    1998-01-01

    The common ground station (CGS) receives data from the joint surveillance and target attack radar system aircraft and from other airborne platforms. High-resolution imagery such as that provided by an unmanned airborne vehicle (UAV) carrying an IR and\\/or synthetic aperture radar (SAR) sensor will be incorporated into an advanced imagery CGS operation. While this level of integration provides a wealth

  5. Design principles for a flywheel energy store for road vehicles

    Microsoft Academic Search

    P. P. Acarnley; B. C. Mecrow; J. S. Burdess; J. N. Fawcett; J. G. Kelly; P. G. Dickinson

    1995-01-01

    This paper introduces a flywheel energy storage device capable of enhancing the fuel economy of a hybrid-type road vehicle. A number of possible drive types is considered and the permanent magnet machine drive is shown to provide the best solution. Reasons for selecting a device using an axial-field configuration with single rotor and double stator sections are described. Electrical, magnetic

  6. Inflatable Re-Entry Vehicle Experiment (IRVE) Design Overview

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J.; Dillman, Robert A.; Starr, Brett R.; Stephan, Ryan A.; Lindell, Michael C.; Player, Charles J.; Cheatwood, F. McNeil

    2005-01-01

    Inflatable aeroshells offer several advantages over traditional rigid aeroshells for atmospheric entry. Inflatables offer increased payload volume fraction of the launch vehicle shroud and the possibility to deliver more payload mass to the surface for equivalent trajectory constraints. An inflatable s diameter is not constrained by the launch vehicle shroud. The resultant larger drag area can provide deceleration equivalent to a rigid system at higher atmospheric altitudes, thus offering access to higher landing sites. When stowed for launch and cruise, inflatable aeroshells allow access to the payload after the vehicle is integrated for launch and offer direct access to vehicle structure for structural attachment with the launch vehicle. They also offer an opportunity to eliminate system duplication between the cruise stage and entry vehicle. There are however several potential technical challenges for inflatable aeroshells. First and foremost is the fact that they are flexible structures. That flexibility could lead to unpredictable drag performance or an aerostructural dynamic instability. In addition, durability of large inflatable structures may limit their application. They are susceptible to puncture, a potentially catastrophic insult, from many possible sources. Finally, aerothermal heating during planetary entry poses a significant challenge to a thin membrane. NASA Langley Research Center and NASA's Wallops Flight Facility are jointly developing inflatable aeroshell technology for use on future NASA missions. The technology will be demonstrated in the Inflatable Re-entry Vehicle Experiment (IRVE). This paper will detail the development of the initial IRVE inflatable system to be launched on a Terrier/Orion sounding rocket in the fourth quarter of CY2005. The experiment will demonstrate achievable packaging efficiency of the inflatable aeroshell for launch, inflation, leak performance of the inflatable system throughout the flight regime, structural integrity when exposed to a relevant dynamic pressure and aerodynamic stability of the inflatable system. Structural integrity and structural response of the inflatable will be verified with photogrammetric measurements of the back side of the aeroshell in flight. Aerodynamic stability as well as drag performance will be verified with on board inertial measurements and radar tracking from multiple ground radar stations. The experiment will yield valuable information about zero-g vacuum deployment dynamics of the flexible inflatable structure with both inertial and photographic measurements. In addition to demonstrating inflatable technology, IRVE will validate structural, aerothermal, and trajectory modeling techniques for the inflatable. Structural response determined from photogrammetrics will validate structural models, skin temperature measurements and additional in-depth temperature measurements will validate material thermal performance models, and on board inertial measurements along with radar tracking from multiple ground radar stations will validate trajectory simulation models.

  7. Systems Analysis and Structural Design of an Unpressurized Cargo Delivery Vehicle

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Cruz, Jonathan N.; Antol, Jeffrey; Sasamoto, Washito A.

    2007-01-01

    The International Space Station will require a continuous supply of replacement parts for ongoing maintenance and repair after the planned retirement of the Space Shuttle in 2010. These parts are existing line-replaceable items collectively called Orbital Replacement Units, and include heavy and oversized items such as Control Moment Gyroscopes and stowed radiator arrays originally intended for delivery aboard the Space Shuttle. Current resupply spacecraft have limited to no capability to deliver these external logistics. In support of NASA's Exploration Systems Architecture Study, a team at Langley Research Center designed an Unpressurized Cargo Delivery Vehicle to deliver bulk cargo to the Space Station. The Unpressurized Cargo Delivery Vehicle was required to deliver at least 13,200 lbs of cargo mounted on at least 18 Flight Releasable Attachment Mechanisms. The Crew Launch Vehicle design recommended in the Exploration Systems Architecture Study would be used to launch one annual resupply flight to the International Space Station. The baseline vehicle design developed here has a cargo capacity of 16,000 lbs mounted on up to 20 Flight Releasable Attachment Mechanisms. Major vehicle components are a 5.5m-diameter cargo module containing two detachable cargo pallets with the payload, a Service Module to provide propulsion and power, and an aerodynamic nose cone. To reduce cost and risk, the Service Module is identical to the one used for the Crew Exploration Vehicle design.

  8. Water facilities in retrospect and prospect: An illuminating tool for vehicle design

    NASA Technical Reports Server (NTRS)

    Erickson, G. E.; Peak, D. J.; Delfrate, J.; Skow, A. M.; Malcolm, G. N.

    1986-01-01

    Water facilities play a fundamental role in the design of air, ground, and marine vehicles by providing a qualitative, and sometimes quantitative, description of complex flow phenomena. Water tunnels, channels, and tow tanks used as flow-diagnostic tools have experienced a renaissance in recent years in response to the increased complexity of designs suitable for advanced technology vehicles. These vehicles are frequently characterized by large regions of steady and unsteady three-dimensional flow separation and ensuing vortical flows. The visualization and interpretation of the complicated fluid motions about isolated vehicle components and complete configurations in a time and cost effective manner in hydrodynamic test facilities is a key element in the development of flow control concepts, and, hence, improved vehicle designs. A historical perspective of the role of water facilities in the vehicle design process is presented. The application of water facilities to specific aerodynamic and hydrodynamic flow problems is discussed, and the strengths and limitations of these important experimental tools are emphasized.

  9. Water facilities in retrospect and prospect: An illuminating tool for vehicle design

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Peake, David J.; Delfrate, John; Skow, Andrew M.; Malcolm, Gerald N.

    1987-01-01

    Water facilities play a fundamental role in the design of air, ground, and marine vehicles by providing a qualitative, and sometimes quantitative, description of complex flow phenomena. Water tunnels, channels, and tow tanks used as flow-diagnostic tools have experienced a renaissance in recent years in response to the increased complexity of designs suitable for advanced technology vehicles. These vehicles are frequently characterized by large regions of steady and unsteady 3-D flow separation and ensuing vortical flows. The visualization and interpretation of the complicated fluid motions about isolated vehicle components and complete configurations in a time and cost effective manner in hydrodynamic test facilities is a key element in the development of flow control concepts, and, hence, improved vehicle designs. A historical perspective of the role of water facilities in the vehicle design process is presented. The application of water facilities to specific aerodynamic and hydrodynamic flow problems is discussed, and the strengths and limitations of these important experimental tools are emphasized.

  10. Energy driven design-choices for skid-steering robotic vehicles

    NASA Astrophysics Data System (ADS)

    Sinha, Aakash; Vashishtha, Jyoti

    2005-10-01

    In the area research on unmanned robotic vehicles, there is a need for systematic analysis of locomotion and energy dynamics, which would enable an efficient design of the vehicle. This research builds upon the earlier research by the authors and develops techniques to derive efficient design parameters for skid steering vehicle in order to achieve optimal performance by minimizing the energy losses/consumption. Two major constituent components of energy losses/consumption of the vehicle are - losses in skid steer turning, and losses in rolling. Our focus is on skid steering, we present a detailed analysis of skid steering for different turning modes; elastic mode steering, half-slip steering, skid turns, low radius turns, and zero radius turns. Each of the energy loss components is modeled from physics in terms of the design variables. The effect of design variables on the total energy losses/consumption is then studied using simulated data for different types of surfaces i.e. hard surfaces and muddy surfaces. Finally, we make suggestions about efficient vehicle design choices in terms of the design variables.

  11. Design principles for a flywheel energy store for road vehicles

    Microsoft Academic Search

    P. P. Acarnley; B. C. Mecrow; J. S. Burdess; J. N. Fawcett; J. G. Kelly; P. G. Dickinson

    1996-01-01

    This paper introduces a flywheel energy storage device capable of enhancing the fuel economy of a hybrid-type road vehicle. A number of possible drive types are considered and the permanent magnet machine drive is shown to provide the best solution. Reasons for selecting a device using an axial-field configuration with single-rotor and double-stator sections are described. Electrical, magnetic, and mechanical

  12. Modeling, control design, and performance evaluation of high speed ground vehicle dynamics

    SciTech Connect

    Faye, I.; Kortum, W.; Schwartz, W. (DFVLR-Institute for Flight Systems Dynamics, D-8031 Weeslin (DE))

    1989-01-01

    The interest in developing high speed ground transportation systems is one reason for directing attention to the modeling and simulation of the dynamic behavior of vehicle systems. Rail-guided vehicles; i.e., conventional railways, advanced railway systems, or magnetically levitated trains, represent the practical implementation of such ground transportation systems. One computer program that is well suited for the analysis of rail-guided vehicles is the multibody program MEDYNA. This paper demonstrates the application of MEDYNA for control law design and to performance evaluation of such advanced vehicles. A brief description is made of the modeling requirements of magnetically levitated systems, along with a summary of some of the related capabilities and computational methods of MEDNYA. As a case study, analysis of a vehicle based on the German Transrapid system is presented. System matrices of a simplified vehicle model are established and control design is performed with the aid of MATLAB. Performance evaluation is studied with a complex model of the Transrapid vehicle and elastic guideways.

  13. Design considerations of the irradiation test vehicle for the advanced test reactor

    SciTech Connect

    Tsai, H.; Gomes, I.C.; Smith, D.L. [Argonne National Lab., IL (United States)] [and others

    1997-08-01

    An irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) is being jointly developed by the Lockheed Martin Idaho Technologies Company (LMIT) and the U.S. Fusion Program. The vehicle is intended for neutron irradiation testing of candidate structural materials, including vanadium-based alloys, silicon carbide composites, and low activation steels. It could possibly be used for U.S./Japanese collaboration in the Jupiter Program. The first test train is scheduled to be completed by September 1998. In this report, we present the functional requirements for the vehicle and a preliminary design that satisfies these requirements.

  14. The critical role of aerodynamic heating effects in the design of hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Wieting, Allan R.

    1989-01-01

    Hypersonic vehicles operate in a hostile aerothermal environment, which has a significant impact on their aerothermostructural performance. Significant coupling occurs between the aerodynamic flow field, structural heat transfer, and structural response, creating a multidisciplinary interaction. The critical role of aerodynamic heating effects in the design of hypersonic vehicles is identified with an example of high localized heating on an engine-cowl leading edge. Recent advances is integrated fluid-thermal-structural finite-element analyses are presented.

  15. Structure Design and Dynamic Analysis of Vehicle using Metamodeling and Optimization Techniques

    Microsoft Academic Search

    José A. F. Borges; Marcus F. Leal; Rômulo R. P. Filho; Jean C. C. Rezende

    The design and dynamic analysis of vehicles have been widely improved through numerical simulation techniques, mainly related\\u000a to the several analysis possibilities applied to complex and representative models. The automotive industry has already used\\u000a the numerical optimization techniques in product development. In this paper an optimization technique is applied to a full\\u000a vehicle model, using several modeling and simulation tools,

  16. Multidisciplinary design of a rocket-based combined cycle SSTO launch vehicle using Taguchi methods

    NASA Technical Reports Server (NTRS)

    Olds, John R.; Walberg, Gerald D.

    1993-01-01

    Results are presented from the optimization process of a winged-cone configuration SSTO launch vehicle that employs a rocket-based ejector/ramjet/scramjet/rocket operational mode variable-cycle engine. The Taguchi multidisciplinary parametric-design method was used to evaluate the effects of simultaneously changing a total of eight design variables, rather than changing them one at a time as in conventional tradeoff studies. A combination of design variables was in this way identified which yields very attractive vehicle dry and gross weights.

  17. A conceptual design of an unmanned test vehicle using an airbreathing propulsion system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    According to Aviation Week and Space Technology (Nov. 16, 1992), without a redefined approach to the problem of achieving single stage-to-orbit flight, the X-30 program is virtually assured of cancellation. One of the significant design goals of the X-30 program is to achieve single stage to low-earth orbit using airbreathing propulsion systems. In an attempt to avoid cancellation, the NASP Program has decided to design a test vehicle to achieve these goals. This report recommends a conceptual design of an unmanned test vehicle using an airbreathing propulsion system.

  18. Conceptual design of two-stage-to-orbit hybrid launch vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The object of this design class was to design an earth-to orbit vehicle to replace the present NASA space shuttle. The major motivations for designing a new vehicle were to reduce the cost of putting payloads into orbit and to design a vehicle that could better service the space station with a faster turn-around time. Another factor considered in the design was that near-term technology was to be used. Materials, engines and other important technologies were to be realized in the next 10 to 15 years. The first concept put forth by NASA to meet these objectives was the National Aerospace Plane (NASP). The NASP is a single-stage earth-to-orbit air-breathing vehicle. This concept ran into problems with the air-breathing engine providing enough thrust in the upper atmosphere, among other things. The solution of this design class is a two-stage-to-orbit vehicle. The first stage is air-breathing and the second stage is rocket-powered, similar to the space shuttle. The second stage is mounted on the top of the first stage in a piggy-back style. The vehicle takes off horizontally using only air-breathing engines, flies to Mach six at 100,000 feet, and launches the second stage towards its orbital path. The first stage, or booster, will weigh approximately 800,000 pounds and the second stage, or orbiter will weigh approximately 300,000 pounds. The major advantage of this design is the full recoverability of the first stage compared with the present solid rocket booster that are only partially recoverable and used only a few times. This reduces the cost as well as providing a more reliable and more readily available design for servicing the space station. The booster can fly an orbiter up, turn around, land, refuel, and be ready to launch another orbiter in a matter of hours.

  19. TOP-FUEL DRAGSTER WING DESIGN USING CFD AND ITS INFLUENCE ON VEHICLE

    E-print Network

    Jacob, Jamey

    TOP-FUEL DRAGSTER WING DESIGN USING CFD AND ITS INFLUENCE ON VEHICLE DYNAMIC PERFORMANCE By TONY for the Degree of MASTERS OF SCIENCE December, 2000 #12;ii TOP-FUEL DRAGSTER WING DESIGN USING CFD AND ITS.................................................................................... 3 II. LITERATURE REVIEW

  20. The Design of the Embedded Wireless Vehicles Monitoring Management System Based on GPRS: Evidence from China

    Microsoft Academic Search

    Huanming Yu; Zhifeng Pang; Dongru Ruan

    2008-01-01

    Unifying the embedded system, the GPRS networking and the car license recognition technology, this article designs and realizes one kind of a embedded wireless vehicle management system which using the ARM9 microprocessor from the hardware and the software. In terms of the hardware, completed the design and connection of arm embedded system, video frequency gathering compression module and GPRS module;

  1. Design and Evaluation of a Vehicle Data Distribution and Collection System

    E-print Network

    New Hampshire, University of

    system designed to create a pervasive computing environment within the police cruiser where officers can is designed to address these problems. By providing police vehicles with temporary, high-speed wireless access to make special stops in order to perform a data update. For example, when a police officer pulls his

  2. A Conceptual Aerospace Vehicle Structural System Modeling, Analysis and Design Process

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2007-01-01

    A process for aerospace structural concept analysis and design is presented, with examples of a blended-wing-body fuselage, a multi-bubble fuselage concept, a notional crew exploration vehicle, and a high altitude long endurance aircraft. Aerospace vehicle structures must withstand all anticipated mission loads, yet must be designed to have optimal structural weight with the required safety margins. For a viable systems study of advanced concepts, these conflicting requirements must be imposed and analyzed early in the conceptual design cycle, preferably with a high degree of fidelity. In this design process, integrated multidisciplinary analysis tools are used in a collaborative engineering environment. First, parametric solid and surface models including the internal structural layout are developed for detailed finite element analyses. Multiple design scenarios are generated for analyzing several structural configurations and material alternatives. The structural stress, deflection, strain, and margins of safety distributions are visualized and the design is improved. Over several design cycles, the refined vehicle parts and assembly models are generated. The accumulated design data is used for the structural mass comparison and concept ranking. The present application focus on the blended-wing-body vehicle structure and advanced composite material are also discussed.

  3. CONCEPTUAL DESIGN ISSUE: DEVELOPING A NEW HIGHWAY VEHICLE EMISSION ESTIMATION METHODOLOGY

    EPA Science Inventory

    The paper reports on EPA's effort to define the design of an ideal methodology for estimating emissions from highway vehicles. The design concept will be used by EPA to focus research and promote the availability of accurate, cost effective inventory procedures within 5 to 10 yea...

  4. Human driving data-based design of a vehicle adaptive cruise control algorithm

    Microsoft Academic Search

    Seungwuk Moon; Kyongsu Yi

    2008-01-01

    This paper presents a vehicle adaptive cruise control algorithm design with human factors considerations. Adaptive cruise control (ACC) systems should be acceptable to drivers. In order to be acceptable to drivers, the ACC systems need to be designed based on the analysis of human driver driving behaviour. Manual driving characteristics are investigated using real-world driving test data. The goal of

  5. An integrated design and optimization platform for vibration isolation system of vehicles

    Microsoft Academic Search

    Shen Yuan; Zhu Chang-an; Wei Shen; Liu Dong-cai

    2010-01-01

    An integrated design and optimization platform for vehicles vibration isolation system is presented. The integrated platform can not only direct the design by getting the precise analyze result of 3D models, but also carry through multi-objective optimization based on genetic algorithms. These can both expedite the optimization and improve the optimization result. Furthermore, we validate the reliability and validity of

  6. Department of Mechanical Engineering Spring 2012 Shell Eco-marathon Urban Concept Vehicle Body Design

    E-print Network

    Demirel, Melik C.

    PENNSTATE Department of Mechanical Engineering Spring 2012 Shell Eco-marathon Urban Concept Vehicle State Eco-marathon car frame. The design of the car body is to provide optimal efficiency and drag To design, test, and construct a carbon fiber body for the Eco-marathon car. The team was unable to complete

  7. Household market for electric vehicles. Testing the hybrid household hypothesis: A reflexively designed survey of new-car-buying, multi-vehicle California households. Final report

    SciTech Connect

    Turrentine, T.; Kurani, K.

    1995-05-12

    This survey was sponsored by the Air Resources Board in order to assist the Board in its evaluation of the zero-emission vehicle (ZEV) regulation. The survey was designed to test the consumer marketability of electric vehicles (EVs). A total of 454 households in six California metropolitan areas were surveyed. The survey consisted of four main parts: (1) Assessment of household demographics, the number and type of household vehicles, and environmental attitudes; (2) Travel diaries to determine household travel patterns; (3) Informational video and news articles on EVs, and (4) Vehicle purchase offerings and choices.

  8. Department of Mechanical and Nuclear Engineering Spring 2011 Shell 1 -Battery Electric Vehicle Chassis and Body Design

    E-print Network

    Demirel, Melik C.

    to the previous hydrogen fuel cell. Since the team was making the vehicle smaller, a smaller more aerodynamic body Vehicle Chassis and Body Design Overview The team faced the challenging task of redesigning a previous Penn State Shell Eco-marathon vehicle to accommodate a battery operated powertrain as opposed

  9. On the design of stable ram wing vehicles

    NASA Astrophysics Data System (ADS)

    Staufenbiel, R. W.

    Aerodynamic coefficients vary considerably with height in ground effect; longitudinal motion, in particular, reveals modes and stability conditions that are very different from out-of-ground characteristics. An evaluation is presently made of the consequences of these factors for the feasibility of 'wing-in-ground-effect' vehicles, with attention to the interrelation of height-dependent aerodynamic coefficients and stability. The influence of center-of-gravity position and the effect of horizontal tail volume and fore/aft position are demonstrated. Dynamic stability employing a linearized approach to calculated aerodynamic characteristics are studied for a chosen configuration.

  10. Coupled Solid Rocket Motor Ballistics and Trajectory Modeling for Higher Fidelity Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Ables, Brett

    2014-01-01

    Multi-stage launch vehicles with solid rocket motors (SRMs) face design optimization challenges, especially when the mission scope changes frequently. Significant performance benefits can be realized if the solid rocket motors are optimized to the changing requirements. While SRMs represent a fixed performance at launch, rapid design iterations enable flexibility at design time, yielding significant performance gains. The streamlining and integration of SRM design and analysis can be achieved with improved analysis tools. While powerful and versatile, the Solid Performance Program (SPP) is not conducive to rapid design iteration. Performing a design iteration with SPP and a trajectory solver is a labor intensive process. To enable a better workflow, SPP, the Program to Optimize Simulated Trajectories (POST), and the interfaces between them have been improved and automated, and a graphical user interface (GUI) has been developed. The GUI enables real-time visual feedback of grain and nozzle design inputs, enforces parameter dependencies, removes redundancies, and simplifies manipulation of SPP and POST's numerous options. Automating the analysis also simplifies batch analyses and trade studies. Finally, the GUI provides post-processing, visualization, and comparison of results. Wrapping legacy high-fidelity analysis codes with modern software provides the improved interface necessary to enable rapid coupled SRM ballistics and vehicle trajectory analysis. Low cost trade studies demonstrate the sensitivities of flight performance metrics to propulsion characteristics. Incorporating high fidelity analysis from SPP into vehicle design reduces performance margins and improves reliability. By flying an SRM designed with the same assumptions as the rest of the vehicle, accurate comparisons can be made between competing architectures. In summary, this flexible workflow is a critical component to designing a versatile launch vehicle model that can accommodate a volatile mission scope.

  11. 40 CFR 52.2348 - National Highway Systems Designation Act Motor Vehicle Inspection and Maintenance (I/M) Programs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false National Highway Systems Designation Act Motor Vehicle...CONTINUED) Utah § 52.2348 National Highway Systems Designation Act Motor Vehicle...authority of section 348 of the National Highway Systems Designation Act of...

  12. 40 CFR 52.2348 - National Highway Systems Designation Act Motor Vehicle Inspection and Maintenance (I/M) Programs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false National Highway Systems Designation Act Motor Vehicle...CONTINUED) Utah § 52.2348 National Highway Systems Designation Act Motor Vehicle...authority of section 348 of the National Highway Systems Designation Act of...

  13. 40 CFR 52.2348 - National Highway Systems Designation Act Motor Vehicle Inspection and Maintenance (I/M) Programs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false National Highway Systems Designation Act Motor Vehicle...CONTINUED) Utah § 52.2348 National Highway Systems Designation Act Motor Vehicle...authority of section 348 of the National Highway Systems Designation Act of...

  14. 40 CFR 52.2348 - National Highway Systems Designation Act Motor Vehicle Inspection and Maintenance (I/M) Programs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false National Highway Systems Designation Act Motor Vehicle...CONTINUED) Utah § 52.2348 National Highway Systems Designation Act Motor Vehicle...authority of section 348 of the National Highway Systems Designation Act of...

  15. Curving Analysis of Modified Designs of Passenger Railway Vehicle Trucks

    Microsoft Academic Search

    Rao V. Dukkipati; Srinivasan Narayanaswamy; Mohammad O. M. Osman

    2002-01-01

    In this paper, modified truck designs were studied with an objective to achieving better compatibility between high speed stability and curving behaviour compared to the conventional truck. The analysis has shown that USD truck can be designed to achieve better over all performance compared to other truck designs. The results of steady state curving program were validated using the commercial

  16. Rocket-powered single-stage vehicle configuration selection and design

    NASA Technical Reports Server (NTRS)

    Stanley, Douglas O.; Engelund, Walter C.; Lepsch, Roger A.; Mcmillin, Mark; Wurster, Kathryn E.; Powell, Richard W.; Guinta, Anthony A.; Unal, Resit

    1993-01-01

    A reusable rocket-powered, single-stage launch vehicle has been designed as a part of NASA's Advanced Manned Launch System (AMLS) study to examine options for a next-generation manned space transportation system. The configuration selection process utilized a response surface methodology for multidisciplinary optimization. The methodology was utilized to determine the minimum dry weight entry vehicle to meet constraints on landing velocity and on subsonic, supersonic, and hypersonic trim and stability. Once the optimum configuration was determined, a multidisciplinary conceptual vehicle design was performed. This paper presents the results of the configuration selection methodology and summarizes the overall conceptual design process with special attention given to the individual disciplines of weights/ sizing, structures/materials, configuration, flight mechanics, aerodynamics, aeroheating, propulsion, and operations.

  17. Curving Analysis of Modified Designs of Passenger Railway Vehicle Trucks

    NASA Astrophysics Data System (ADS)

    Dukkipati, Rao V.; Narayanaswamy, Srinivasan; Osman, Mohammad O. M.

    In this paper, modified truck designs were studied with an objective to achieving better compatibility between high speed stability and curving behaviour compared to the conventional truck. The analysis has shown that USD truck can be designed to achieve better over all performance compared to other truck designs. The results of steady state curving program were validated using the commercial software package NUCARS. The comparison of steady state curving behaviour of different truck designs using NUCARS also showed that USD truck has the potential to achieve superior performance compared to other truck designs. The research reported in this paper has dealt with steady state curving behaviour. To look into the safety implications of the new designs, transient behaviour in curves must be studied. The response of the railway cars in entry and exit spirals should be evaluated. The effects of track irregularities on the response of these modified designs need to be analyzed.

  18. Preliminary subsystem designs for the Assured Crew Return Vehicle (ACRV), volume 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A series of design studies is presented concerning the Assured Crew Return Vehicle (ACRV) for Space Station Freedom. Four alternate designs are presented for the ACRV braking and landing system. Options presented include: ballistic and lifting body reentries; the use of high-lift, high-payload aerodynamic decelerators, as well as conventional parachutes; landing systems designed for water landings, land landings, or both; and an aerial recovery system. All four design options presented combine some or all of the above attributes, and all meet performance requirements established by the ACRV Program Office. Two studies of ACRV growth options are also presented. Use of the ACRV or a similarly designed vehicle in several roles for possible future space missions is discussed, along with the required changes to a basic ACRV to allow it to perform these missions optimally. The outcome of these studies is a set of recommendations to the ACRV Program Office describing the vehicle characteristics of the basic ACRV which lend themselves most readily to be adapted for use in other missions. Finally, the impacts on the design of the ACRV due to its role as a medical emergency vehicle were studied and are presented. The use of the ACRV in this manner will impact its shape, internal configuration, and equipment.

  19. System modeling and optimal design of a Mars-roving vehicle.

    NASA Technical Reports Server (NTRS)

    Smith, E. J.; Pavarini, C.; Vandenburg, N.

    1972-01-01

    The problem of systematically determining the optimal design for an unmanned Mars-roving vehicle is considered. A system model, identifying all feasible designs, is generated by consideration of the physical constraints on the design parameters, and the requirement that the system be deliverable to the Mars surface. An expression which evaluates system performance relative to mission goals is developed. The model and objective function together allow simulation of the effects of design trade-offs upon system performance for all feasible designs. Nonlinear programming techniques are utilized to identify the optimal design.

  20. Computer modeling in the design and evaluation of electric and hybrid vehicles

    SciTech Connect

    Aceves, S.M.; Smith, J.R. [Lawrence Livermore National Lab., CA (United States); Johnson, N.L. [Los Alamos National Lab., NM (United States)

    1996-08-16

    This demonstration project uses modern simulation techniques to illustrate the important technologies and design variables that an auto-designer would consider in production a high efficiency, low emissions vehicle. Simulation and modeling techniques use the idea of capturing the relationships between real components of the systems with mathematical equations. These equations are then solved on a computer to simulate the behavior or performance of the system under various conditions. In the current demonstration project, we focus on many variations of a hydrogen-powered vehicle.

  1. Design of a remotely piloted vehicle for a low Reynolds number station keeping mission

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Six teams of senior level Aerospace Engineering undergraduates were given a request for proposal, asking for a design concept for a remotely piloted vehicle (RPV). This RPV was to be designed to fly at a target Reynolds number of 1 times 10(exp 5). The craft was to maximize loiter time and perform an indoor, closed course flight. As part of the proposal, each team was required to construct a prototype and validate their design with a flight demonstration.

  2. Nonlinear Bank-to-Turn autopilot design for hypersonic gliding vehicle

    Microsoft Academic Search

    Xiaoqing Chen; Zhongxi Hou; Jianxia Liu

    2010-01-01

    This paper presents the design and simulation of a Bank-to-Turn (BTT) autopilot for a hypersonic gliding vehicle. Based on the two-time scale assumption, the flight control system is divided in to two loops: the dynamics of fast state (inner loop) and slow state (outer loop). Autopilot is designed for each loop. The method used to design the autopilot relies on

  3. System design of the Pioneer Venus spacecraft. Volume 4: Probe bus and orbiter spacecraft vehicle studies

    NASA Technical Reports Server (NTRS)

    Bozajian, J. M.

    1973-01-01

    The requirements, trades, and design descriptions for the probe bus and orbiter spacecraft configurations, structure, thermal control, and harness are defined. Designs are developed for Thor/Delta and Atlas/Centaur launch vehicles with the latter selected as the final baseline. The major issues examined in achieving the baseline design are tabulated. The importance of spin axis orientation because of the effect on science experiments and earth communications is stressed.

  4. LPV design for a space vehicle attitude control benchmark problem

    Microsoft Academic Search

    Rui Gao; Kazuhisa Ohtsubo; Hiroyuki Kajiwara

    2003-01-01

    This paper is concerned with the design of quaternion-based, attitude tracking controller for a rigid spacecraft under a large angle maneuver. A new design technique is proposed, which is based on the decomposition of kinematics control and dynamics control, using linear parameter-varying (LPV) synthesis framework. The proposed LPV controllers ensure asymptotic attitude tracking. In addition, this two-step LPV design greatly

  5. Comparison of Two Multidisciplinary Optimization Strategies for Launch-Vehicle Design

    NASA Technical Reports Server (NTRS)

    Braun, R. D.; Powell, R. W.; Lepsch, R. A.; Stanley, D. O.; Kroo, I. M.

    1995-01-01

    The investigation focuses on development of a rapid multidisciplinary analysis and optimization capability for launch-vehicle design. Two multidisciplinary optimization strategies in which the analyses are integrated in different manners are implemented and evaluated for solution of a single-stage-to-orbit launch-vehicle design problem. Weights and sizing, propulsion, and trajectory issues are directly addressed in each optimization process. Additionally, the need to maintain a consistent vehicle model across the disciplines is discussed. Both solution strategies were shown to obtain similar solutions from two different starting points. These solutions suggests that a dual-fuel, single-stage-to-orbit vehicle with a dry weight of approximately 1.927 x 10(exp 5)lb, gross liftoff weight of 2.165 x 10(exp 6)lb, and length of 181 ft is attainable. A comparison of the two approaches demonstrates that treatment or disciplinary coupling has a direct effect on optimization convergence and the required computational effort. In comparison with the first solution strategy, which is of the general form typically used within the launch vehicle design community at present, the second optimization approach is shown to he 3-4 times more computationally efficient.

  6. Design and Analysis of Morphing Wing for Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Galantai, Vlad Paul

    This study is concerned with the design and development of a novel wing for UAVs that morphs seamlessly without the use of complex hydraulics, servo motors and controllers. The selected novel design is characterized by a high degree of flight adaptability and improved performance with a limited added weight. These characteristics were attained through the use of shape memory actuators in an antagonistic fashion. Unlike compliant actuators, the antagonistic setup requires the thermal energy to deform the wing but not to maintain its deformed shape. Structural analysis based upon safety factors specified by FAR23 standards and aerodynamic analysis using FLUENT were conducted on the novel design to validate its suitability as a viable wing for UAVs. In addition, thermal conditioning of the shape memory actuators was conducted using a specially designed programmable controller. This thesis does not concern itself with the design of a skin that accommodates the shape changes.

  7. Noise, vibration and harshness (NVH) criteria as functions of vehicle design and consumer expectations

    NASA Astrophysics Data System (ADS)

    Raichel, Daniel R.

    2005-09-01

    The criteria for NVH design are to a large degree determined by the types of vehicles and the perceived desires of the purchasers of vehicles, as well as the cost of incorporating NVH measures. Vehicles may be classified into specific types, e.g., economy car, midsize passenger, near-luxury and luxury passenger cars, sports cars, vans, minivans, and sports utility vehicles of varying sizes. The owner of a luxury sedan would expect a quiet ride with minimal vibration and harshness-however, if that sedan is to display sporting characteristics, some aspects of NVH may actually have to be increased in order to enhance a feeling of driver exhilaration. A discussion of the requirements for specific types of vehicles is provided, with due regard for effects on the usability of installed sound/video systems, driver and passenger fatigue, feel of steering mechanisms and other mechanical components, consumer market research, etc. A number of examples of vehicles on the market are cited.

  8. Advanced Usage of Vehicle Sketch Pad for CFD-Based Conceptual Design

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Li, Wu

    2013-01-01

    Conceptual design is the most fluid phase of aircraft design. It is important to be able to perform large scale design space exploration of candidate concepts that can achieve the design intent to avoid more costly configuration changes in later stages of design. This also means that conceptual design is highly dependent on the disciplinary analysis tools to capture the underlying physics accurately. The required level of analysis fidelity can vary greatly depending on the application. Vehicle Sketch Pad (VSP) allows the designer to easily construct aircraft concepts and make changes as the design matures. More recent development efforts have enabled VSP to bridge the gap to high-fidelity analysis disciplines such as computational fluid dynamics and structural modeling for finite element analysis. This paper focuses on the current state-of-the-art geometry modeling for the automated process of analysis and design of low-boom supersonic concepts using VSP and several capability-enhancing design tools.

  9. Applying Monte Carlo Simulation to Launch Vehicle Design and Requirements Verification

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Beard, Bernard B.

    2010-01-01

    This paper is focused on applying Monte Carlo simulation to probabilistic launch vehicle design and requirements verification. The approaches developed in this paper can be applied to other complex design efforts as well. Typically the verification must show that requirement "x" is met for at least "y" % of cases, with, say, 10% consumer risk or 90% confidence. Two particular aspects of making these runs for requirements verification will be explored in this paper. First, there are several types of uncertainties that should be handled in different ways, depending on when they become known (or not). The paper describes how to handle different types of uncertainties and how to develop vehicle models that can be used to examine their characteristics. This includes items that are not known exactly during the design phase but that will be known for each assembled vehicle (can be used to determine the payload capability and overall behavior of that vehicle), other items that become known before or on flight day (can be used for flight day trajectory design and go/no go decision), and items that remain unknown on flight day. Second, this paper explains a method (order statistics) for determining whether certain probabilistic requirements are met or not and enables the user to determine how many Monte Carlo samples are required. Order statistics is not new, but may not be known in general to the GN&C community. The methods also apply to determining the design values of parameters of interest in driving the vehicle design. The paper briefly discusses when it is desirable to fit a distribution to the experimental Monte Carlo results rather than using order statistics.

  10. Design Process of Flight Vehicle Structures for a Common Bulkhead and an MPCV Spacecraft Adapter

    NASA Technical Reports Server (NTRS)

    Aggarwal, Pravin; Hull, Patrick V.

    2015-01-01

    Design and manufacturing space flight vehicle structures is a skillset that has grown considerably at NASA during that last several years. Beginning with the Ares program and followed by the Space Launch System (SLS); in-house designs were produced for both the Upper Stage and the SLS Multipurpose crew vehicle (MPCV) spacecraft adapter. Specifically, critical design review (CDR) level analysis and flight production drawing were produced for the above mentioned hardware. In particular, the experience of this in-house design work led to increased manufacturing infrastructure for both Marshal Space Flight Center (MSFC) and Michoud Assembly Facility (MAF), improved skillsets in both analysis and design, and hands on experience in building and testing (MSA) full scale hardware. The hardware design and development processes from initiation to CDR and finally flight; resulted in many challenges and experiences that produced valuable lessons. This paper builds on these experiences of NASA in recent years on designing and fabricating flight hardware and examines the design/development processes used, as well as the challenges and lessons learned, i.e. from the initial design, loads estimation and mass constraints to structural optimization/affordability to release of production drawing to hardware manufacturing. While there are many documented design processes which a design engineer can follow, these unique experiences can offer insight into designing hardware in current program environments and present solutions to many of the challenges experienced by the engineering team.

  11. Role of CFD in Undergraduate Research in the Design of a Supermileage® Competition Vehicle

    Microsoft Academic Search

    Peter M. Burban; Harwood A. Hegna; Lawrence D. Zavodney

    As the field of 3-D graphics and Computational Fluids Dynamics (CFD) matures, rich opportunities are on the horizon for incorporating CFD tools in standard undergraduate curriculum. This paper reports the benefits of using Computational Fluid Dynamics (CFD) as an undergraduate research tool for students designing low Cd SAE Supermileage® competition vehicles. The paper, presented as a case study, walks through

  12. Status and Trends in Large Scale CFD Applications for Vehicle Design at Volvo Car Corporation

    Microsoft Academic Search

    Andreas Borg

    The role of Computational Fluid Dynamics, or CFD as an important tool for solving fluid dynamical issues and designing vehicle sub systems in the automotive industry is yet to grow. In this paper we discuss the current use of Large Scale CFD computations at Volvo Car Corporation. A short historical survey is given on the development of meshing and computational

  13. Soft Computing Design of a Linear Quadratic Gaussian Controller for an Unmanned Surface Vehicle

    Microsoft Academic Search

    Wasif Naeem; Robert Sutton; John Chudley

    2006-01-01

    To develop an unmanned surface vehicle (USV), several issues need to be addressed, however, the most important being the navigation, guidance and control which dictates the performance of the whole system. Herein, the control problem is addressed by designing a fuzzy logic based linear quadratic Gaussian autopilot for the Springer USV being developed at the University of Plymouth, UK. A

  14. Design of a quadruped walking vehicle for dynamic walking and stair climbing

    Microsoft Academic Search

    Shigeo Hirose; Kan Yoneda; Kazuhiko Arai; Tomoyoshi Ibe

    1994-01-01

    This paper discusses the design of a quadruped walking vehicle for walking dynamically at high speed and climbing ordinary stairs (30-40°). To realize these requests, new mechanisms are introduced, which are (1) a prismatic joint leg that does not interfere with the steps of a staircase and which performs a cylindrical coordinate motion with good energy efficiency, (2) an articulated

  15. Evolutionary computing for the design search and optimization of space vehicle power subsystems

    NASA Technical Reports Server (NTRS)

    Kordon, M.; Klimeck, G.; Hanks, D.

    2004-01-01

    Evolutionary computing has proven to be a straightforward and robust approach for optimizing a wide range of difficult analysis and design problems. This paper discusses the application of these techniques to an existing space vehicle power subsystem resource and performance analysis simulation in a parallel processing environment.

  16. Racing with the Sun: Students Learn Physics while Designing a Solar-Powered Vehicle

    ERIC Educational Resources Information Center

    Marshall, Jeff

    2004-01-01

    In this article, the author describes his experience conducting an inquiry investigation in his classroom in which high school physics students design, create, and race a solar-powered vehicle. Students learn invaluable science, technology, mathematics, communication, and critical thinking skills. Fueled by their knowledge, creativity, and the…

  17. Initial evaluation of the new real-time tracking gradiometer designed for small unmanned underwater vehicles

    Microsoft Academic Search

    G. I. Allen; G. Sulzberger; J. T. Bono; J. S. Pray; T. R. Clem

    2005-01-01

    The shallow water localization of buried mines places increased emphasis on sensor and sensor platform size and maneuverability. The Office of Naval Research (ONR) has funded a number of projects to develop efficient buried minehunting capabilities. In particular, they are supporting the development of two Unmanned Underwater Vehicles (UUVs) designed specifically for shallow water minehunting. In addition, the ONR has

  18. Design and Simulation of An Inverter-fed Induction motor for Electric Vehicles

    Microsoft Academic Search

    Huijuan liu; Yihuang zhang; Qionglin zheng; Sizhou guo

    2007-01-01

    The variable-frequency induction motor used in electric vehicle is investigated in this paper. Firstly the design method of a voltage inverter-fed induction motor is introduced, and then the calculation methods of electromagnetic parameter are presented and programmed in VB (Visual Basic) software. Based on the geometrical dimensions and parameters, a simulation model in the vector control system is used to

  19. Design of a 100 kW switched reluctance motor for electric vehicle propulsion

    Microsoft Academic Search

    Tatsuya Uematsu; Richard S. Wallace

    1995-01-01

    Low cost, high reliability, and competitive weight and efficiency combine to make the switched reluctance (SR) motor drive a strong candidate for application in future electric vehicle (EV) propulsion systems. This paper presents methods and results of a prototype SR motor design study. Finite element analysis and transient simulation results predict performance, efficiency, and weight that are competitive with existing

  20. Motor design considerations and test results of an interior permanent magnet synchronous motor for electric vehicles

    Microsoft Academic Search

    Yukio Honda; Tomokazu Nakamura; Toshiro Higaki; Yoji Takeda

    1997-01-01

    This paper describes the high performance motor design of an interior permanent magnet synchronous motor (IPM motor) for electric vehicles. The authors examined the differences in motor characteristics based on how the magnets were embedded. For this comparison, they set conditions so that the volume of magnets remained constant, and they used both computer simulation and experiments with a prototype

  1. 78 FR 68748 - Federal Motor Vehicle Safety Standards; Designated Seating Positions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ...Petitions for Reconsideration A. Definition of DSP B. Analysis of Safety Problem C. Seating...of ``designated seating position'' (DSP), as that term is used in the Federal...Occupant Crash Protection, requires that each DSP in a light vehicle be provided with...

  2. Highway Aesthetics: The Design of Motor Vehicles. Teaching Art with Art.

    ERIC Educational Resources Information Center

    Hubbard, Guy

    1999-01-01

    Addresses the design of highway vehicles as one means for students to learn about forms of three-dimensional art. Focuses on the Corvette, mass-produced cars like the Chrysler Concorde, the modern semi-trailer, and an antique 1931 Dusenberg Model J Murphy Aluminum Top Coupe. (CMK)

  3. Future Armored Resupply Vehicle (FARV) conceptual fuel system design. Final report

    Microsoft Academic Search

    R. R. Daubert; E. C. Fisher; W. K. Moore; N. C. Munro

    1995-01-01

    This document presents an idealized automated fuel system applicable to unique requirements. The system accepts fuel at high rates, transports fuel in a battlefield environment, and supplies fuel to a vehicle equipped to receive it without exposing the crew to small arms fire. The fuel system design incorporates controls and mechanisms which compensate for battle damage and irregularities found in

  4. The Design of a High Performance MMW Radar System for Autonomous Land Vehicle Navigation

    Microsoft Academic Search

    S. Clark; H. Durrant Whyte

    This paper describes the design of a high performance 77GHz millimetre wave radar, signal processing and control system for use in autonomous vehicle navigation. The radar front end and intermediate frequency components are described together with a method of distinguishing pre-placed target beacons from other reflectors using the polarisation of the reflected signal. Digital signal processing hardware is described which

  5. Grid Generation for Multidisciplinary Design and Optimization of an Aerospace Vehicle: Issues and Challenges

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2000-01-01

    The purpose of this paper is to discuss grid generation issues and to challenge the grid generation community to develop tools suitable for automated multidisciplinary analysis and design optimization of aerospace vehicles. Special attention is given to the grid generation issues of computational fluid dynamics and computational structural mechanics disciplines.

  6. Design of supercapacitor-based energy storage system for metro vehicles and its control rapid implementation

    Microsoft Academic Search

    Zhang Yi-cheng; Wu Lu-lu; Zhu Xue-jun; Liang Hai-quan

    2008-01-01

    Itpsilas a challenging task to take advantage of large baking energy of metro vehicles because of high power and high current. To save energy and stabilize voltage for the metro supply network, the new high power storage system is analyzed and the design process of charge and discharge unit which adopts non-isolated bi-directional convertor is presented. Then the system stability

  7. Leading Edge Aerothermal Inverse Design of Hyersonic Vehicle Based on Homotopy Optimization Method

    Microsoft Academic Search

    K. Cui; S. C. Hu; T. Y. Gao; X. P. Wang; G. W. Yang

    2011-01-01

    Blunt leading edge with profiles of circular or power law shape is often used to decrease the aerodynamic heating of a vehicle when it flights into hypersonic regime. In order to further reduce the peak of heat flux of the leading edge, an inverse shape design method is presented in this paper. The leading edge is parameterized by using B-spline

  8. Design of a linear permanent magnet motor for active vehicle suspension

    Microsoft Academic Search

    Jiabin Wang; Weiya Wang; Kais Atallah; David Howe

    2009-01-01

    Traditionally, automotive suspension designs with passive components have been a compromise between the three conflicting demands of road holding, load carrying, and passenger comfort. Linear electromagnetic motor based active suspension has superior controllability and bandwidth, provides shock load isolation between vehicle chassis and wheel, and therefore has a much great potential. It also has the ability to recover energy that

  9. Project EGRESS: The design of an assured crew return vehicle for the space station

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Keeping preliminary studies by NASA in mind, an Assured Crew Return Vehicle (ACRV) was developed. The system allows the escape of one or more crew members from Space Station Freedom in case of emergency. The design of the vehicle addresses propulsion, orbital operations, reentry, landing and recovery, power and communication, and life support. In light of recent modifications in Space Station design, Project EGRESS (Earthbound Guaranteed ReEntry from Space Station) pays particular attention to its impact on Space Station operations, interfaces and docking facilities, and maintenance needs. A water landing, medium lift vehicle was found to best satisfy project goals of simplicity and cost efficiency without sacrificing the safety and reliability requirements. With a single vehicle, one injured crew member could be returned to Earth with minimal pilot involvement. Since the craft is capable of returning up to five crew members, two such permanently docked vehicles would allow full evacuation of the Space Station. The craft could be constructed entirely with available 1990 technology and launched aboard a shuttle orbiter.

  10. Analyzing the influence of median cross-section design on highway safety using vehicle dynamics simulations.

    PubMed

    Stine, Jason S; Hamblin, Bridget C; Brennan, Sean N; Donnell, Eric T

    2010-11-01

    Although vehicle dynamics simulations have long been used in vehicle design and crash reconstruction, their use for highway design is rare. This paper investigates the safety of highway medians through iterative simulations of off-road median encroachments. The commercially available software CarSim was used to simulate over one hundred thousand encroachments, representing the entire passenger vehicle fleet and a wide range of encroachment angles, departure speeds, steering inputs, and braking inputs. Each individual simulation output was then weighted using data from previous studies to reflect the probability of each specific accident scenario occurring in a real-life median encroachment. Results of this analysis illustrate the relative influence of median cross-section geometry on the resulting accident outcomes. The simulations indicate that the overall safety of a highway median depends on the occurrence of both vehicle rollover and median crossover events, and the cross-section shape, slope, and width are all shown to greatly affect each of these incidents. An evaluation of the simulation results was conducted with vehicle trajectories from previous experimental crash tests. Further assessment of the aggregate simulation results to actual crash data was achieved through comparison with several databases of crash statistics. Both efforts showed a strong agreement between the simulations and the real-life crash data. PMID:20728628

  11. Development of a dedicated ethanol ultra-low emission vehicle (ULEV) system design

    NASA Astrophysics Data System (ADS)

    Bourn, G.; Callahan, T.; Dodge, L.; Mulik, J.; Naegeli, D.; Shouse, K.; Smith, L.; Whitney, K.

    1995-02-01

    The objective of this 3.5 year project is to develop a commercially competitive vehicle powered by ethanol (or ethanol blend) that can meet California's ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes a system design study completed after six months of effort on this project. The design study resulted in recommendations for ethanol-fuel blends that shall be tested for engine low-temperature cold-start performance and other criteria. The study also describes three changes to the engine and two other changes to the vehicle to improve low-temperature starting, efficiency, and emissions. The three engine changes are to increase the compression ratio, to replace the standard fuel injectors with fine spray injectors, and to replace the powertrain controller. The two other vehicle changes involve the fuel tank and the aftertreatment system. The fuel tank will likely need to be replaced to reduce evaporative emissions. In addition to changes in the main catalyst, supplemental aftertreatment systems will be analyzed to reduce emissions before the main catalyst reaches operating temperature.

  12. A New Battery\\/Ultracapacitor Energy Storage System Design and Its Motor Drive Integration for Hybrid Electric Vehicles

    Microsoft Academic Search

    Shuai Lu; Keith A. Corzine; Mehdi Ferdowsi

    2007-01-01

    This paper proposes a new energy storage system (ESS) design, including both batteries and ultracapacitors (UCs) in hybrid electric vehicle (HEV) and electric vehicle applications. The conventional designs require a DC-DC converter to interface the UC unit. Herein, the UC can be directly switched across the motor drive DC link during the peak power demands. The resulting wide voltage variation

  13. A case study comparing 1-D and 3-D analytical modeling methods for vehicle intake system design

    Microsoft Academic Search

    Allan C. Aubert; Ed Green; Jennifer Bastiaan; Thomas Leclercq

    2005-01-01

    There is intense competition among automakers to create ever-quieter vehicles and powertrains. Exterior and interior noise of many vehicles is significantly influenced by noise coming from the engine intake system. In order to address this source, significant effort needs to be expended on the noise design of an engine's intake system. Cost and time constraints tend to make intake designers

  14. Aerothermal Protuberance Heating Design and Test Configurations for Ascent Vehicle Design

    NASA Technical Reports Server (NTRS)

    Martin, Charles E.; Neumann, Richard D.; Freeman, Delma

    2010-01-01

    A series of tests were conducted to evaluate protuberance heating for the purposes of vehicle design and modification. These tests represent a state of the art approach to both testing and instrumentation for defining aerothermal protuberance effects on the protuberance and surrounding areas. The testing was performed with a number of wind tunnel entries beginning with the proof of concept "pathfinder" test in the Test Section 1 (TS1) tunnel in the Langley Unitary Plan Wind Tunnel (UPWT). The TS1 section (see Figures 1a and 1b) is a lower Mach number tunnel and the Test Section 2 (TS2) has overlapping and higher Mach number capability as showin in Figure 1c. The pathfinder concept was proven and testing proceeded for a series of protuberance tests using an existing splitter aluminum protuberance mounting plate, Macor protuberances, thin film gages, total temperature and pressure gages, Kulite pressure transducers, Infra-Red camera imaging, LASER velocimetry evaluations and the UPWT data collection system. A boundary layer rake was used to identify the boundary layer profile at the protuberance locations for testing and helped protuberance design. This paper discusses the techniques and instrumentation used during the protuberance heating tests performed in the UPWT in TS1 and TS2. Runs of the protuberances were made Mach numbers of 1.5, 2.16, 2.65, and 3.51. The data set generated from this testing is for ascent protuberance effects and is termed Protuberance Heating Ascent Data (PHAD) and this testing may be termed PHAD-1 to distinguish it from future testing of this type.

  15. Design Considerations for a Crewed Mars Ascent Vehicle

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.

    2015-01-01

    Exploration architecture studies identified the Mars Ascent Vehicle (MAV) as one of the largest "gear ratio" items in a crewed Mars mission. Because every kilogram of mass ascended from the Martian surface requires seven kilograms or more of ascent propellant, it is desirable for the MAV to be as small and lightweight as possible. Analysis identified four key factors that drive MAV sizing: 1) Number of crew: more crew members require more equipment-and a larger cabin diameter to hold that equipment-with direct implications to structural, thermal, propulsion, and power subsystem mass. 2) Which suit is worn during ascent: Extravehicular Activity (EVA) type suits are physically larger and heavier than Intravehicular Activity (IVA) type suits and because they are less flexible, EVA suits require more elbow-room to maneuver in and out of. An empty EVA suit takes up about as much cabin volume as a crew member. 3) How much time crew spends in the MAV: less than about 12 hours and the MAV can be considered a "taxi" with few provisions for crew comfort. However, if the crew spends more than 12 consecutive hours in the MAV, it begins to look like a Habitat requiring more crew comfort items. 4) How crew get into/out of the MAV: ingress/egress method drives structural mass (for example, EVA hatch vs. pressurized tunnel vs. suit port) as well as consumables mass for lost cabin atmosphere, and has profound impacts on surface element architecture. To minimize MAV cabin mass, the following is recommended: Limit MAV usage to 24 consecutive hours or less; discard EVA suits on the surface and ascend wearing IVA suits; Limit MAV functionality to ascent only, rather than dual-use ascent/habitat functions; and ingress/egress the MAV via a detachable tunnel to another pressurized surface asset.

  16. Design of Z-Pinch and Dense Plasma Focus Powered Vehicles

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Fincher, Sharon; Adams, Robert B.; Cassibry, Jason; Cortez, Ross; Turner, Matthew; Maples, C. Daphne; Miermik, Janie N.; Statham, Geoffrey N.; Fabisinski, Leo; Santarius, John; Percy, Tom

    2011-01-01

    Z-pinch and Dense Plasma Focus (DPF) are two promising techniques for bringing fusion power to the field of in-space propulsion. A design team comprising of engineers and scientists from UAHuntsville, NASA's George C. Marshall Space Flight Center and the University of Wisconsin developed concept vehicles for a crewed round trip mission to Mars and an interstellar precursor mission. Outlined in this paper are vehicle concepts, complete with conceptual analysis of the mission profile, operations, structural and thermal analysis and power/avionics design. Additionally engineering design of the thruster itself is included. The design efforts adds greatly to the fidelity of estimates for power density (alpha) and overall performance for these thruster concepts

  17. AEVITA : designing biomimetic vehicle-to-pedestrian communication protocols for autonomously operating & parking on-road electric vehicles

    E-print Network

    Pennycooke, Nicholas (Nicholas D.)

    2012-01-01

    With research institutions from various private, government and academic sectors performing research into autonomous vehicle deployment strategies, the way we think about vehicles must adapt. But what happens when the ...

  18. A Loop Material Flow System Design for Automated Guided Vehicles

    E-print Network

    Dessouky, Maged

    Abstract We develop an exact integer programming formulation to design a loop material ow system for unit of LP/IP routines, analyzing the mathemati- cal properties of the problem, and developing an intelligent branch and bound solution procedure. Keywords and phrases: Facilities Planning, AGVS, Integer Programming

  19. Suntrakker-a student-designed solar vehicle

    Microsoft Academic Search

    B. Rogow

    1997-01-01

    The purpose of this paper is to highlight the major challenges faced by the student team while designing, building and racing the Suntrakker Solar Car, and competing in the 1993 World Solar Challenge in Australia. The author hopes that this paper will offer a glimpse of the scale of such a project, and by highlighting some of challenges, help any

  20. Series hybrid vehicles and optimized hydrogen engine design

    Microsoft Academic Search

    J. R. Smith; S. Aceves; P. Vanblarigan

    1995-01-01

    Lawrence Livermore, Sandia Livermore and Los Alamos National Laboratories have a joint project to develop an optimized hydrogen fueled engine for series hybrid automobiles. The major divisions of responsibility are: system analysis, engine design and kinetics modeling by LLNL; performance and emission testing, and friction reduction by SNL; computational fluid mechanics and combustion modeling by LANL. This project is a

  1. The Design of a Vehicle Network CAN\\/LIN Gateway Based on ARM

    Microsoft Academic Search

    Junshan Gao; Yixiang Zhang; Bo Wu

    2010-01-01

    With the CAN\\/LIN network using in the Automobile Body Control System widely, in order to economically achieve the reliable communication in the vehicle, this article has designed a communication gateway based on ARM968E-S.This scheme introduces characteristics of ARM controller (LPC2919\\/01) and the CAN receiver (CTM1050T) in particular, achieved the software and hardware design of the CAN\\/LIN gateway. The body network

  2. Robust design of railway vehicle suspension using a process capability index

    Microsoft Academic Search

    Kwang-Ki Lee; Chan-Kyoung Park; Seung-Ho Han

    2010-01-01

    Robust design for the primary suspension of a railway vehicle was performed according to the optimization of 10 dynamic responses\\u000a representing driving safety and ride comfort, in which response surface models (RSMs) from the design of experiments (DOEs)\\u000a were applied. To evaluate the probabilistic feasibility of robustness, an intensive computational process is mandatory. In\\u000a the present study, the authors utilized

  3. Control design for unmanned sea surface vehicles: hardware-in-the-loop simulator and experimental results

    Microsoft Academic Search

    Prashanth Krishnamurthy; Farshad Khorrami; Tzer Leei Ng

    2007-01-01

    We address the control design problem for stabilization and tracking of unmanned sea surface vehicles (USSVs). To this end, we describe the design and implementation of a high-accuracy real-time six degree-of-freedom (DOF) hardware-in-the-loop (HITL) simulation platform for use in development and evaluation of controllers for USSVs. The HITL platform incorporates a nonlinear dynamic model of the USSV, emulation of sensors

  4. Design and fabrication of elevon cove thermal protection systems for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Varisco, A.; Borysewiez, A.; Wolter, W.

    1979-01-01

    The design study of a lightweight, effective, reuseable seal for use along the elevon cove of shuttle-type reentry and hypersonic cruise vehicles is presented. The study deals primarily with membrane seals, both metallic and non-metallic. This type of seal spans the cove gap between the wing and elevon, and does not depend on spring tension to maintain contact along a flexing wing span. Technical requirements and criteria were generally derived from the space shuttle and utilized for seal design.

  5. DHM in human-centered product design: a case-study on public transport vehicle.

    PubMed

    Santos, V; Guimarães, C P; Franca, G A N; Cid, G L; Paranhos, A G

    2012-01-01

    The goal of this paper is to present the advantages on the use of 3D Digital Human Models (DHM) on the design of public transport vehicles. In this case, the subjects were scanned using the WBX Cyberware 3D Whole Body Scanner, with functional and daily postures according to the use of public transportation and some especial cases, such as a mother with her offspring or a business man with his valise, so the volume of the person would be taken in consideration. A data collection was created to simulate several situations of the daily use of the vehicle. PMID:22317047

  6. Design of an innovative lead-acid battery for electric and hybrid vehicles

    SciTech Connect

    Baxa, M.S.; Weinlein, C.E.

    1982-01-01

    Utilizing the technology developed at Globe over the last few years with funding assistance from the DOE, an innovative lead-acid battery has been designed specifically for use in a hybrid car. The battery has exceeded all of the minimum performance goals, and in many cases the optimistic target goals. The eV-1300, which features electrolyte circulation, has excellent energy density, power characteristics, efficiency, and cycle life. It is a good candidate battery for other hybrid vehicles and electric vehicles which require a relatively small cell size.

  7. NASA Ares I Launch Vehicle Roll and Reaction Control Systems Design Status

    NASA Technical Reports Server (NTRS)

    Butt, Adam; Popp, Chris G.; Pitts, Hank M.; Sharp, David J.

    2009-01-01

    This paper provides an update of design status following the preliminary design review of NASA s Ares I first stage roll and upper stage reaction control systems. The Ares I launch vehicle has been chosen to return humans to the moon, mars, and beyond. It consists of a first stage five segment solid rocket booster and an upper stage liquid bi-propellant J-2X engine. Similar to many launch vehicles, the Ares I has reaction control systems used to provide the vehicle with three degrees of freedom stabilization during the mission. During launch, the first stage roll control system will provide the Ares I with the ability to counteract induced roll torque. After first stage booster separation, the upper stage reaction control system will provide the upper stage element with three degrees of freedom control as needed. Trade studies and design assessments conducted on the roll and reaction control systems include: propellant selection, thruster arrangement, pressurization system configuration, and system component trades. Since successful completion of the preliminary design review, work has progressed towards the critical design review with accomplishments made in the following areas: pressurant / propellant tank, thruster assembly, and other component configurations, as well as thruster module design, and waterhammer mitigation approach. Also, results from early development testing are discussed along with plans for upcoming system testing. This paper concludes by summarizing the process of down selecting to the current baseline configuration for the Ares I roll and reaction control systems.

  8. Development of a conceptual flight vehicle design weight estimation method library and documentation

    NASA Astrophysics Data System (ADS)

    Walker, Andrew S.

    The state of the art in estimating the volumetric size and mass of flight vehicles is held today by an elite group of engineers in the Aerospace Conceptual Design Industry. This is not a skill readily accessible or taught in academia. To estimate flight vehicle mass properties, many aerospace engineering students are encouraged to read the latest design textbooks, learn how to use a few basic statistical equations, and plunge into the details of parametric mass properties analysis. Specifications for and a prototype of a standardized engineering "tool-box" of conceptual and preliminary design weight estimation methods were developed to manage the growing and ever-changing body of weight estimation knowledge. This also bridges the gap in Mass Properties education for aerospace engineering students. The Weight Method Library will also be used as a living document for use by future aerospace students. This "tool-box" consists of a weight estimation method bibliography containing unclassified, open-source literature for conceptual and preliminary flight vehicle design phases. Transport aircraft validation cases have been applied to each entry in the AVD Weight Method Library in order to provide a sense of context and applicability to each method. The weight methodology validation results indicate consensus and agreement of the individual methods. This generic specification of a method library will be applicable for use by other disciplines within the AVD Lab, Post-Graduate design labs, or engineering design professionals.

  9. The Role of Uncertainty in Aerospace Vehicle Analysis and Design

    NASA Technical Reports Server (NTRS)

    Kenny, Sean P.; Crespo, Luis G.

    2011-01-01

    Effective uncertainty quantification (UQ) begins at the earliest phase in the design phase for which there are adequate models and continues tightly integrated to the analysis and design cycles as the refinement of the models and the fidelity of the tools increase. It is essential that uncertainty quantification strategies provide objective information to support the processes of identifying, analyzing and accommodating for the effects of uncertainty. Assessments of uncertainty should never render the results more difficult for engineers and decision makers to comprehend, but instead provide them with critical information to assist with resource utilization decisions and risk mitigation strategies. Success would be measured by the tools to enable engineers and decision makers to effectively balance critical project resources against system requirements while accounting for the impact of uncertainty.

  10. Design and application of parallel hybrid vehicle simulation platform

    Microsoft Academic Search

    Xiao Ye; Zhenhua Jin; Biao Liu; Mingjie Chen; Qinchun Lu

    2010-01-01

    A parallel type hybrid-electric bus model is constructed to study hybrid powertrain and its sub-systems. The model is a forward-looking model based on LabVIEW simulation module. The engine, clutch and battery model were specially designed according to the target powertrain. Each part of the model is separately validated by test bench experiment. Part model behavior is compared with that of

  11. Design and analysis of biomimetic joints for morphing of micro air vehicles.

    PubMed

    Grant, Daniel T; Abdulrahim, Mujahid; Lind, Rick

    2010-12-01

    Flight capability for micro air vehicles is rapidly maturing throughout the aviation community; however, mission capability has not yet matured at the same pace. Maintaining trim during a descent or in the presence of crosswinds remains challenging for fixed-wing aircraft but yet is routinely performed by birds. This paper presents an overview of designs that incorporate morphing to enhance their flight characteristics. In particular, a series of joints and structures is adopted from seagulls to alter either the dihedral or sweep of the wings and thus alter the flight characteristics. The resulting vehicles are able to trim with significantly increased angles of attack and sideslip compared to traditional fixed-wing vehicles. PMID:21098958

  12. Preliminary power train design for a state-of-the-art electric vehicle

    NASA Technical Reports Server (NTRS)

    Mighdoll, P.; Hahn, W. F.

    1978-01-01

    Power train designs which can be implemented within the current state-of-the-art were identified by means of a review of existing electric vehicles and suitable off-the-shelf components. The affect of various motor/transmission combinations on vehicle range over the SAE J227a schedule D cycle was evaluated. The selected, state-of-the-art power train employs a dc series wound motor, SCR controller, variable speed transmission, regenerative braking, drum brakes and radial ply tires. Vehicle range over the SAE cycle can be extended by approximately 20% by the further development of separately excited, shunt wound DC motors and electrical controllers. Approaches which could improve overall power train efficiency, such as AC motor systems, are identified. However, future emphasis should remain on batteries, tires and lightweight structures if substantial range improvements are to be achieved.

  13. Design for Reliability and Safety Approach for the New NASA Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.; Weldon, Danny M.

    2007-01-01

    The United States National Aeronautics and Space Administration (NASA) is in the midst of a space exploration program intended for sending crew and cargo to the international Space Station (ISS), to the moon, and beyond. This program is called Constellation. As part of the Constellation program, NASA is developing new launch vehicles aimed at significantly increase safety and reliability, reduce the cost of accessing space, and provide a growth path for manned space exploration. Achieving these goals requires a rigorous process that addresses reliability, safety, and cost upfront and throughout all the phases of the life cycle of the program. This paper discusses the "Design for Reliability and Safety" approach for the NASA new launch vehicles, the ARES I and ARES V. Specifically, the paper addresses the use of an integrated probabilistic functional analysis to support the design analysis cycle and a probabilistic risk assessment (PRA) to support the preliminary design and beyond.

  14. Evaluation of Separation Mechanism Design for the Orion/Ares Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Konno, Kevin E.; Catalano, Daniel A.; Krivanek, Thomas M.

    2008-01-01

    As a part of the preliminary design work being performed for the Orion vehicle, the Orion to Spacecraft Adaptor (SA) separation mechanism mechanism was analyzed and sized, with findings presented here. Sizing is based on worst case abort condition as a result of an anomaly driving the launch vehicle engine thrust vector control hard-over causing a severe vehicle pitch over. This worst case scenario occurs just before Upper Stage Main Engine Cut-Off (MECO) when the vehicle is the lightest and the damping effect due to propellant slosh has been reduced to a minimum. To address this scenario and others, two modeling approaches were invoked. The first approach was a detailed Simulink model to quickly assess the Service Module Engine nozzle to SA clearance for a given separation mechanism. The second approach involved the generation of an Automatic Dynamic Analysis of Mechanical Systems (ADAMS) model to assess secondary effects due to mass centers of gravity that were slightly off the vehicle centerline. It also captured any interference between the Solar Arrays and the Spacecraft Adapter. A comparison of modeling results and accuracy are discussed. Most notably, incorporating a larger SA flange diameter allowed for a natural separation of the Orion and its engine nozzle even at relatively large pitch rates minimizing the kickoff force. Advantages and disadvantages of the Simulink model vs. a full geometric ADAMS model are discussed as well.

  15. Evaluation of Separation Mechanism Design for the Orion/Ares Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Konno, Kevin E.; Catalano, Daniel A.; Krivanek, Thomas M.

    2008-01-01

    As a part of the preliminary design work being performed for the Orion vehicle, the Orion to Spacecraft Adaptor (SA) separation mechanism was analyzed and sized, with findings presented here. Sizing is based on worst case abort condition as a result of an anomaly driving the launch vehicle engine thrust vector control hard-over causing a severe vehicle pitch over. This worst case scenario occurs just before Upper Stage Main Engine Cut-Off (MECO) when the vehicle is the lightest and the damping effect due to propellant slosh has been reduced to a minimum. To address this scenario and others, two modeling approaches were invoked. The first approach was a detailed Simulink model to quickly assess the Service Module Engine nozzle to SA clearance for a given separation mechanism. The second approach involved the generation of an Automatic Dynamic Analysis of Mechanical Systems (ADAMS) model to assess secondary effects due to mass centers of gravity that were slightly off the vehicle centerline. It also captured any interference between the Solar Arrays and the Spacecraft Adapter. A comparison of modeling results and accuracy are discussed. Most notably, incorporating a larger SA flange diameter allowed for a natural separation of the Orion and it's engine nozzle even at relatively large pitch rates minimizing the kickoff force. Advantages and disadvantages of the Simulink model vs. a full geometric ADAMS model are discussed as well.

  16. A Design for Composing and Extending Vehicle Models

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.; Neuhaus, Jason R.

    2003-01-01

    The Systems Development Branch (SDB) at NASA Langley Research Center (LaRC) creates simulation software products for research. Each product consists of an aircraft model with experiment extensions. SDB treats its aircraft models as reusable components, upon which experiments can be built. SDB has evolved aircraft model design with the following goals: 1. Avoid polluting the aircraft model with experiment code. 2. Discourage the copy and tailor method of reuse. The current evolution of that architecture accomplishes these goals by reducing experiment creation to extend and compose. The architecture mechanizes the operational concerns of the model's subsystems and encapsulates them in an interface inherited by all subsystems. Generic operational code exercises the subsystems through the shared interface. An experiment is thus defined by the collection of subsystems that it creates ("compose"). Teams can modify the aircraft subsystems for the experiment using inheritance and polymorphism to create variants ("extend").

  17. Fire safety design considerations for advanced space vehicles

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The desire to understand and explore space has driven man to overcome the confines of the Earth's atmosphere and accept the challenge of spaceflight. With our increasing ability to travel, work, and explore in space comes a need for a better understanding of the hazards in this relatively new endeavor. One of the most important and immediate needs is to be able to predict the ignition, spread, and growth of fire on board spacecraft. Fire safety aboard spacecraft has always been a concern; however, with the increasing number and duration of proposed missions, it is imperative that the spacecraft be designed with a solid understanding of fire hazards, insuring that all risks have been minimized and extinguishment systems are available.

  18. Design of an energy storage unit for fuel-cell and hybrid-electric vehicles

    NASA Astrophysics Data System (ADS)

    Schupbach, Roberto Marcelo

    This dissertation describes an ESU design methodology capable of minimizing the volume, weight and cost of the MES and ESU (i.e., battery pack, ultracapacitor pack and PE interfaces) while allowing for the implementation of power management in a cost-effective manner. The proposed ESU design methodology is based on a holistic approach that includes the vehicle performance requirements and allows for the optimization of the ESU with respect to predetermined goals of minimum volume, weight and cost. Substantial weight and volume reductions are accomplish when combining batteries and ultracapacitors even when considering the efficiencies of the PE interfaces. The optimized BU-ESU achieved a volume reduction of over 37% (from 135 liters to 84 liters) and a weight reduction of over 66% (from 333 kg to 148 kg) when compared to a 'classic' BO-ESU design. The benefits of the optimized BU-ESU are not limited to weight and volume reductions since sweeping the battery cost in $/kW predicts that the BU-ESU provides the lowest cost path to meet the vehicles energy and power requirements. Additional benefits, such as improve ESU efficiency, vehicle acceleration, regenerative braking capabilities, and battery life are also identified in this research work. The proposed ESU design and optimization procedure also includes the associated PE interfaces by selecting and designing the most suitable converter topology. The design is carried out by encompassing the wide output-to-input voltage ratio variation and output power typical on this automotive application. The comparison process identifies the half-bridge converter topology as the most cost-effective converter topology for this application. A novel design approach that incorporated a ratio defined as transitioning power ratio is proposed to overcome shortcoming of the 'classical' approach. This novel design approach allows the minimization of inductor size requirements and current stresses present in active components when designing converters with wide output-to-input voltage ratio.

  19. Model Development and Experimental Validation of the Fusible Heat Sink Design for Exploration Vehicles

    NASA Technical Reports Server (NTRS)

    Cognata, Thomas J.; Leimkuehler, Thomas O.; Sheth, Rubik B.; Le,Hung

    2012-01-01

    The Fusible Heat Sink is a novel vehicle heat rejection technology which combines a flow through radiator with a phase change material. The combined technologies create a multi-function device able to shield crew members against Solar Particle Events (SPE), reduce radiator extent by permitting sizing to the average vehicle heat load rather than to the peak vehicle heat load, and to substantially absorb heat load excursions from the average while constantly maintaining thermal control system setpoints. This multi-function technology provides great flexibility for mission planning, making it possible to operate a vehicle in hot or cold environments and under high or low heat load conditions for extended periods of time. This paper describes the model development and experimental validation of the Fusible Heat Sink technology. The model developed was intended to meet the radiation and heat rejection requirements of a nominal MMSEV mission. Development parameters and results, including sizing and model performance will be discussed. From this flight-sized model, a scaled test-article design was modeled, designed, and fabricated for experimental validation of the technology at Johnson Space Center thermal vacuum chamber facilities. Testing showed performance comparable to the model at nominal loads and the capability to maintain heat loads substantially greater than nominal for extended periods of time.

  20. Alloy Design and Thermomechanical Processing of a Beta Titanium Alloy for a Heavy Vehicle Application

    SciTech Connect

    Blue, C.A.; Peter, W.H.

    2010-07-02

    With the strength of steel, but at half the weight, titanium has the potential to offer significant benefits in the weight reduction of heavy vehicle components while possibly improving performance. However, the cost of conventional titanium fabrication is a major barrier in implementation. New reduction technologies are now available that have the potential to create a paradigm shift in the way the United States uses titanium, and the economics associated with fabrication of titanium components. This CRADA project evaluated the potential to develop a heavy vehicle component from titanium powders. The project included alloy design, development of manufacturing practices, and modeling the economics associated with the new component. New Beta alloys were designed for this project to provide the required mechanical specifications while utilizing the benefits of the new fabrication approach. Manufacturing procedures were developed specific to the heavy vehicle component. Ageing and thermal treatment optimization was performed to provide the desired microstructures. The CRADA partner established fabrication practices and targeted capital investment required for fabricating the component out of titanium. Though initial results were promising, the full project was not executed due to termination of the effort by the CRADA partner and economic trends observed in the heavy vehicle market.

  1. Phase 1 of the near team hybrid passenger vehicle development program. Appendix C: Preliminary design data package, volume 1

    NASA Technical Reports Server (NTRS)

    Piccolo, R.

    1979-01-01

    The methodology used for vehicle layout and component definition is described as well as techniques for system optimization and energy evaluation. The preliminary design is examined with particular attention given to body and structure; propulsion system; crash analysis and handling; internal combustion engine; DC motor separately excited; Ni-Zn battery; transmission; control system; vehicle auxiliarries; weight breakdown, and life cycle costs. Formulas are given for the quantification of energy consumption and results are compared with the reference vehicle.

  2. Design optimization of the electrically peaking hybrid (ELPH) vehicle. Research report

    SciTech Connect

    Ehsani, M.; Gao, Y.; Butler, K.

    1998-10-01

    Electrically Peaking Hybrid (ELPH) is a parallel hybrid electric vehicle propulsion concept that was invented at Texas A and M University, by the advanced vehicle systems research group. Over the past six years, design methodologies, component development, and system optimization work has been going on for this invention. This project was a first attempt in integrating the above developments into an optimized design of an ELPH passenger car. Design specifications were chosen for a full size passenger car, performing as well as any conventional car, over the EPA-FTP-75 combined city/highway drive cycles. The results of this design project were two propulsion systems. Both were appropriate for commercial production, from the points of view of cost, availability of the technologies, and components. One utilized regenerative braking and the other did not. Substantial fuel savings and emissions reductions resulted from simulating these designs on the FTP-75 drive cycle. For example, the authors` ELPH full size car, with regenerative braking, was capable of delivering over 50 miles per gallon in city driving, with corresponding reductions in its emissions. This project established the viability of the authors` ELPH concept and their design methodologies, in computer simulations. More work remains to be done on investigating more advanced power plants, such as fuel cells, and more advanced components, such as switched reluctance motor drives, for the authors` designs. Furthermore, the authors` design optimization can be carried out to more detailed levels, for prototyping and production.

  3. Preliminary Design and Analysis of the ARES Atmospheric Flight Vehicle Thermal Control System

    NASA Technical Reports Server (NTRS)

    Gasbarre, J. F.; Dillman, R. A.

    2003-01-01

    The Aerial Regional-scale Environmental Survey (ARES) is a proposed 2007 Mars Scout Mission that will be the first mission to deploy an atmospheric flight vehicle (AFV) on another planet. This paper will describe the preliminary design and analysis of the AFV thermal control system for its flight through the Martian atmosphere and also present other analyses broadening the scope of that design to include other phases of the ARES mission. Initial analyses are discussed and results of trade studies are presented which detail the design process for AFV thermal control. Finally, results of the most recent AFV thermal analysis are shown and the plans for future work are discussed.

  4. Conceptual design of the AE481 Demon Remotely Piloted Vehicle (RPV)

    NASA Technical Reports Server (NTRS)

    Hailes, Chris; Kolver, Jill; Nestor, Julie; Patterson, Mike; Selow, Jan; Sagdeo, Pradip; Katz, Kenneth

    1994-01-01

    This project report presents a conceptual design for a high speed remotely piloted vehicle (RPV). The AE481 Demon RPV is capable of performing video reconnaissance missions and electronic jamming over hostile territory. The RPV cruises at a speed of Mach 0.8 and an altitude of 300 feet above the ground throughout its mission. It incorporates a rocket assisted takeoff and a parachute-airbag landing. Missions are preprogrammed, but in-flight changes are possible. The Demon is the answer to a military need for a high speed, low altitude RPV. The design methods, onboard systems, and avionics payload are discussed in this conceptual design report along with economic viability.

  5. Building Operations Efficiencies into NASA's Ares I Crew Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.; Davis, Stephan R.

    2007-01-01

    The U.S. Vision for Space Exploration guides the National Aeronautics and Space Administration's (NASA's) challenging missions that expand humanity's boundaries and open new routes to the space frontier. With the Agency's commitment to complete the International Space Station (ISS) and to retire the venerable Space Shuttle by 2010, the NASA Administrator commissioned the Exploration Systems Architecture Study (ESAS) in 2005 to analyze options for safe, simple, cost-efficient launch solutions that could deliver human-rated space transportation capabilities in a timely manner within fixed budget guidelines. The Exploration Launch Projects (ELP) Office, chartered by the Constellation Program in October 2005, has been conducting systems engineering studies and business planning to successively refine the design configurations and better align vehicle concepts with customer and stakeholder requirements, such as significantly reduced life-cycle costs. As the Agency begins the process of replacing the Shuttle with a new generation of spacecraft destined for missions beyond low-Earth orbit to the Moon and Mars, NASA is designing the follow-on crew and cargo launch systems for maximum operational efficiencies. To sustain the long-term exploration of space, it is imperative to reduce the $4 billion NASA typically spends on space transportation each year. This paper gives toplevel information about how the follow-on Ares I Crew Launch Vehicle (CLV) is being designed for improved safety and reliability, coupled with reduced operations costs. These methods include carefully developing operational requirements; conducting operability design and analysis; using the latest information technology tools to design and simulate the vehicle; and developing a learning culture across the workforce to ensure a smooth transition between Space Shuttle operations and Ares vehicle development.

  6. Design of a Flush Airdata System (FADS) for the Hypersonic Air Launched Option (HALO) Vehicle

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Moes, Timothy R.; Deets, Dwain A. (Technical Monitor)

    1994-01-01

    This paper presents a design study for a pressure based Flush airdata system (FADS) on the Hypersonic Air Launched Option (HALO) Vehicle. The analysis will demonstrate the feasibility of using a pressure based airdata system for the HALO and provide measurement uncertainty estimates along a candidate trajectory. The HALO is a conceived as a man-rated vehicle to be air launched from an SR-71 platform and is proposed as a testbed for an airbreathing hydrogen scramjet. A feasibility study has been performed and indicates that the proposed trajectory is possible with minimal modifications to the existing SR71 vehicle. The mission consists of launching the HALO off the top of an SR-71 at Mach 3 and 80,000 ft. A rocket motor is then used to accelerate the vehicle to the test condition. After the scramjet test is completed the vehicle will glide to a lakebed runway landing. This option provides reusability of the vehicle and scramjet engine. The HALO design will also allow for various scramjet engine and flowpath designs to be flight tested. For the HALO flights, measurements of freestream airdata are considered to be a mission critical to perform gain scheduling and trajectory optimization. One approach taken to obtaining airdata involves measurement of certain parameters such as external atmospheric winds, temperature, etc to estimate the airdata quantities. This study takes an alternate approach. Here the feasibility of obtaining airdata using a pressure-based flush airdata system (FADS) methods is assessed. The analysis, although it is performed using the HALO configuration and trajectory, is generally applicable to other hypersonic vehicles. The method to be presented offers the distinct advantage of inferring total pressure, Mach number, and flow incidence angles, without stagnating the freestream flow. This approach allows for airdata measurements to be made using blunt surfaces and significantly diminishes the heating load at the sensor. In the FADS concept a matrix of flush ports is placed in the vicinity of the aircraft nose, and the airdata are inferred indirectly from the measured pressures.

  7. Quantum dots as a platform for nanoparticle drug delivery vehicle design

    PubMed Central

    Probst, Christine E.; Zrazhevskiy, Pavel; Bagalkot, Vaishali; Gao, Xiaohu

    2012-01-01

    Nanoparticle-based drug delivery (NDD) has emerged as a promising approach to improving upon the efficacy of existing drugs and enabling the development of new therapies. Proof-of-concept studies have demonstrated the potential for NDD systems to simultaneously achieve reduced drug toxicity, improved bio-availability, increased circulation times, controlled drug release, and targeting. However, clinical translation of NDD vehicles with the goal of treating particularly challenging diseases, such as cancer, will require a thorough understanding of how nanoparticle properties influence their fate in biological systems, especially in vivo. Consequently, a model system for systematic evaluation of all stages of NDD with high sensitivity, high resolution, and low cost is highly desirable. In theory, this system should maintain the properties and behavior of the original NDD vehicle, while providing mechanisms for monitoring intracellular and systemic nanocarrier distribution, degradation, drug release, and clearance. For such a model system, quantum dots (QDots) offer great potential. QDots feature small size and versatile surface chemistry, allowing their incorporation within virtually any NDD vehicle with minimal effect on overall characteristics, and offer superb optical properties for real-time monitoring of NDD vehicle transport and drug release at both cellular and systemic levels. Though the direct use of QDots for drug delivery remains questionable due to their potential long-term toxicity, the QDot core can be easily replaced with other organic drug carriers or more biocompatible inorganic contrast agents (such as gold and magnetic nanoparticles) by their similar size and surface properties, facilitating translation of well characterized NDD vehicles to the clinic, maintaining NDD imaging capabilities, and potentially providing additional therapeutic functionalities such as photothermal therapy and magneto-transfection. In this review we outline unique features that make QDots an ideal platform for nanocarrier design and discuss how this model has been applied to study NDD vehicle behavior for diverse drug delivery applications. PMID:23000745

  8. Concept Design of High Power Solar Electric Propulsion Vehicles for Human Exploration

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Kerslake, Thomas W.; Hojnicki, Jeffrey S.; Manzella, David H.; Falck, Robert D.; Cikanek, Harry A., III; Klem, Mark D.; Free, James M.

    2011-01-01

    Human exploration beyond low Earth orbit will require enabling capabilities that are efficient, affordable and reliable. Solar electric propulsion (SEP) has been proposed by NASA s Human Exploration Framework Team as one option to achieve human exploration missions beyond Earth orbit because of its favorable mass efficiency compared to traditional chemical propulsion systems. This paper describes the unique challenges associated with developing a large-scale high-power (300-kWe class) SEP vehicle and design concepts that have potential to meet those challenges. An assessment of factors at the subsystem level that must be considered in developing an SEP vehicle for future exploration missions is presented. Overall concepts, design tradeoffs and pathways to achieve development readiness are discussed.

  9. A multi-criteria decision aid methodology to design electric vehicles public charging networks

    NASA Astrophysics Data System (ADS)

    Raposo, João; Rodrigues, Ana; Silva, Carlos; Dentinho, Tomaz

    2015-05-01

    This article presents a new multi-criteria decision aid methodology, dynamic-PROMETHEE, here used to design electric vehicle charging networks. In applying this methodology to a Portuguese city, results suggest that it is effective in designing electric vehicle charging networks, generating time and policy based scenarios, considering offer and demand and the city's urban structure. Dynamic-PROMETHE adds to the already known PROMETHEE's characteristics other useful features, such as decision memory over time, versatility and adaptability. The case study, used here to present the dynamic-PROMETHEE, served as inspiration and base to create this new methodology. It can be used to model different problems and scenarios that may present similar requirement characteristics.

  10. Development of Integrated Programs for Aerospace-vehicle design (IPAD): Integrated information processing requirements

    NASA Technical Reports Server (NTRS)

    Southall, J. W.

    1979-01-01

    The engineering-specified requirements for integrated information processing by means of the Integrated Programs for Aerospace-Vehicle Design (IPAD) system are presented. A data model is described and is based on the design process of a typical aerospace vehicle. General data management requirements are specified for data storage, retrieval, generation, communication, and maintenance. Information management requirements are specified for a two-component data model. In the general portion, data sets are managed as entities, and in the specific portion, data elements and the relationships between elements are managed by the system, allowing user access to individual elements for the purpose of query. Computer program management requirements are specified for support of a computer program library, control of computer programs, and installation of computer programs into IPAD.

  11. Design and New Control of DC\\/DC Converters to Share Energy Between Supercapacitors and Batteries in Hybrid Vehicles

    Microsoft Academic Search

    Mamadou BaÏlo Camara; Hamid Gualous; Frederic Gustin; Alain Berthon

    2008-01-01

    In this paper, the authors propose the supercapacitor integration strategy in a hybrid series vehicle. The designed vehicle is an experimental test bench developed at the laboratory of electrical engineering and systems (L2ES) in collaboration with the research in electrical engineering and electronics center of Belfort (CREEBEL). This test bench currently has two diesel motors (each connected to one alternator)

  12. Assessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration

    E-print Network

    Bahrami, Majid

    ) for vehicle air conditioning and refrigeration (A/C­R) applications. Adsorber beds should be specifically conditioning and refrigeration Amir Sharafian, Majid Bahrami n Laboratory for Alternative Energy ConversionAssessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air

  13. Prototype Design and Controller Implementation for a Battery-Ultracapacitor Hybrid Electric Vehicle Energy Storage System

    Microsoft Academic Search

    Zahra Amjadi; Sheldon S. Williamson

    2012-01-01

    This paper presents the modeling, design, and novel control strategy development for a hybrid switched-capacitor bidirectional dc\\/dc converter, applicable for a hybrid electric vehicle energy storage system. The proposed control strategy is based on the power profile of the traction motor and the gradient of battery current. Features of voltage step-down, voltage step-up, and bidirectional power flow are integrated into

  14. Novel Control Strategy Design for Multiple Hybrid Electric Vehicle Energy Storage Systems

    Microsoft Academic Search

    Zahra Amjadi; Sheldon S. Williamson

    2009-01-01

    In this paper, two novel control strategies are designed and evaluated for a bidirectional DC\\/DC converter and a 3-stage parallel-interleaved bidirectional converter, for hybrid electric vehicle (HEV) energy storage applications. The energy storage system (ESS) combines 2 parallel ultra-capacitor (UC) modules with a bidirectional DC\\/DC converter, a Lithium-Ion (Li-ion) battery module, and a load module (which includes the inverter and

  15. Reliability-Based Design Optimization for Durability of Ground Vehicle Suspension System Components

    Microsoft Academic Search

    M. Grujicic; G. Arakere; W. C. Bell; H. Marvi; H. V. Yalavarthy; B. Pandurangan; I. Haque; G. M. Fadel

    2010-01-01

    The effect of materials processing- and component manufacturing-induced uncertainties in material properties and component\\u000a shape and size on the reliability of component performance is investigated. Specifically, reliability of a suspension system\\u000a component from a high-mobility multipurpose wheeled vehicle which typically can fail under low-cycle strain-based fatigue\\u000a conditions is analyzed. Toward that end, the most advanced reliability-based design optimization methods available

  16. Design of a bridge bumper to protect bridge girders against collisions of overheight vehicles 

    E-print Network

    Sharma, Hrishikesh

    2009-05-15

    of Department, David Rosowsky August 2007 Major Subject: Civil Engineering iii ABSTRACT Design of a Bridge Bumper to Protect Bridge Girders against Collisions of Overheight Vehicles. (August 2007) Hrishikesh Sharma, B.E., Visvesvaraya National... simulation for the beam with stiff guard (Impactor 1) ........................................................... 14? 4.4: Enlarged view of acceleration-time-history of experiment and finite element simulation for the beam with stiff guard...

  17. The 7.5K lbf thrust engine preliminary design for Orbit Transfer Vehicle

    Microsoft Academic Search

    Warren R. Hayden; Ralph Sabiers; Judy Schneider

    1994-01-01

    This document summarizes the preliminary design of the Aerojet version of the Orbit Transfer Vehicle main engine. The concept of a 7500 lbf thrust LO2\\/GH2 engine using the dual expander cycle for optimum efficiency is validated through power balance and thermal calculations. The engine is capable of 10:1 throttling from a nominal 2000 psia to a 200 psia chamber pressure.

  18. Environmental Controls and Life Support System (ECLSS) Design for a Multi-Mission Space Exploration Vehicle (MMSEV)

    NASA Technical Reports Server (NTRS)

    Stambaugh, Imelda; Baccus, Shelley; Naids, Adam; Hanford, Anthony

    2012-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Multi-Mission Space Exploration Vehicle (MMSEV). The purpose of the MMSEV is to extend the human exploration envelope for Lunar, Near Earth Object (NEO), or Deep Space missions by using pressurized exploration vehicles. The MMSEV, formerly known as the Space Exploration Vehicle (SEV), employs ground prototype hardware for various systems and tests it in manned and unmanned configurations. Eventually, the system hardware will evolve and become part of a flight vehicle capable of supporting different design reference missions. This paper will discuss the latest MMSEV ECLSS architectures developed for a variety of design reference missions, any work contributed toward the development of the ECLSS design, lessons learned from testing prototype hardware, and the plan to advance the ECLSS toward a flight design.

  19. Environmental Controls and Life Support System (ECLSS) Design for a Multi-Mission Space Exploration Vehicle (MMSEV)

    NASA Technical Reports Server (NTRS)

    Stambaugh, Imelda; Baccus, Shelley; Buffington, Jessie; Hood, Andrew; Naids, Adam; Borrego, Melissa; Hanford, Anthony J.; Eckhardt, Brad; Allada, Rama Kumar; Yagoda, Evan

    2013-01-01

    Engineers at Johnson Space Center (JSC) are developing an Environmental Control and Life Support System (ECLSS) design for the Multi-Mission Space Exploration Vehicle (MMSEV). The purpose of the MMSEV is to extend the human exploration envelope for Lunar, Near Earth Object (NEO), or Deep Space missions by using pressurized exploration vehicles. The MMSEV, formerly known as the Space Exploration Vehicle (SEV), employs ground prototype hardware for various systems and tests it in manned and unmanned configurations. Eventually, the system hardware will evolve and become part of a flight vehicle capable of supporting different design reference missions. This paper will discuss the latest MMSEV ECLSS architectures developed for a variety of design reference missions, any work contributed toward the development of the ECLSS design, lessons learned from testing prototype hardware, and the plan to advance the ECLSS toward a flight design.

  20. Applying Monte Carlo Simulation to Launch Vehicle Design and Requirements Analysis

    NASA Technical Reports Server (NTRS)

    Hanson, J. M.; Beard, B. B.

    2010-01-01

    This Technical Publication (TP) is meant to address a number of topics related to the application of Monte Carlo simulation to launch vehicle design and requirements analysis. Although the focus is on a launch vehicle application, the methods may be applied to other complex systems as well. The TP is organized so that all the important topics are covered in the main text, and detailed derivations are in the appendices. The TP first introduces Monte Carlo simulation and the major topics to be discussed, including discussion of the input distributions for Monte Carlo runs, testing the simulation, how many runs are necessary for verification of requirements, what to do if results are desired for events that happen only rarely, and postprocessing, including analyzing any failed runs, examples of useful output products, and statistical information for generating desired results from the output data. Topics in the appendices include some tables for requirements verification, derivation of the number of runs required and generation of output probabilistic data with consumer risk included, derivation of launch vehicle models to include possible variations of assembled vehicles, minimization of a consumable to achieve a two-dimensional statistical result, recontact probability during staging, ensuring duplicated Monte Carlo random variations, and importance sampling.

  1. Integration of Launch Vehicle Simulation/Analysis Tools and Lunar Cargo Lander Design. Part 1/2

    NASA Technical Reports Server (NTRS)

    Shiue, Yeu-Sheng Paul

    2005-01-01

    Simulation and analysis of vehicle performance is essential for design of a new launch vehicle system. It is more and more demand to have an integrated, highly efficient, robust simulation tool with graphical user interface (GUI) for vehicle performance and simulations. The objectives of this project are to integrate and develop launch vehicle simulation and analysis tools in MATLAB/Simulink under PC Platform, to develop a vehicle capable of being launched on a Delta-IV Heavy Launch Vehicle which can land on the moon with the goal of pre-implanting cargo for a new lunar mission, also with the capability of selecting other launch vehicles that are capable of inserting a payload into Trans-Lunar Injection (TLI). The vehicle flight simulation software, MAVERIC-II (Marshall Aerospace VEhicle Representation In 'C'), developed by Marshall Space Flight Center was selected as a starting point for integration of simulation/analysis tools. The goals are to convert MAVERIC-II from UNIX to PC platform and build input/output GUI s in the MATLAB environment, and then integrate them under MATLAB/Simulink with other modules. Currently, MAVERIC-II has been successfully converted from UNIX to PC using Microsoft Services for UNIX subsystem on PC. Input/Output GUI's have been done for some key input/output files. Calling MAVERIC-II from Simulink has been tested. Details regarding Lunar Cargo Lander Design are described in Part 2/2 of the paper on page X-1.

  2. Designing cathodic protection systems for marine structures and vehicles. ASTM special technical publication 1370

    SciTech Connect

    Hack, H.P. [ed.

    1999-07-01

    Cathodic protection is an important method of protecting structures and ships from the corrosive effects of seawater. Poor designs can be far more costly to implement than optimal designs, Improper design can cause overprotection, with resulting paint blistering and accelerated corrosion of some alloys, underprotection, with resultant structure corrosion, or stray current corrosion of nearby structures. The first ASTM symposium specifically aimed at cathodic protection in seawater was intended to compile all the criteria and philosophy for designing both sacrificial and impressed current cathodic protection systems for structures and vehicles in seawater. The papers which are included in this STP are significant in that they summarize the major seawater cathodic protection system design philosophies. Papers have been processed separately for inclusion on the database.

  3. Aerospace Meteorology Lessons Learned Relative to Aerospace Vehicle Design and Operations

    NASA Technical Reports Server (NTRS)

    Vaughan, William W.; Anderson, B. Jeffrey

    2004-01-01

    Aerospace Meteorology came into being in the 1950s as the development of rockets for military and civilian usage grew in the United States. The term was coined to identify those involved in the development of natural environment models, design/operational requirements, and environment measurement systems to support the needs of aerospace vehicles, both launch vehicles and spacecraft. It encompassed the atmospheric environment of the Earth, including Earth orbit environments. Several groups within the United States were active in this area, including the Department of Defense, National Aeronautics and Space Administration, and a few of the aerospace industry groups. Some aerospace meteorology efforts were similar to those being undertaken relative to aviation interests. As part of the aerospace meteorology activities a number of lessons learned resulted that produced follow on efforts which benefited from these experiences, thus leading to the rather efficient and technologically current descriptions of terrestrial environment design requirements, prelaunch monitoring systems, and forecast capabilities available to support the development and operations of aerospace vehicles.

  4. Biconic cargo return vehicle with an advanced recovery system. Volume 1: Conceptual design

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The conceptual design of the biconic Cargo Return Vehicle (CRV) is presented. The CRV will be able to meet all of the Space Station Freedom (SSF's) resupply needs. Worth note is the absence of a backup recovery chute in case of Advanced Recovery System (ARS) failure. The high reliability of ram-air parachutes does not warrant the penalty weight that such a system would create on successful missions. The CRV will launch vertically integrated with an Liquid Rocket Booster (LRB) vehicle and meets all NASA restrictions on fuel type for all phases of the mission. Because of the downscaled Orbital Maneuvering Vehicle (OMV) program, the CRV has been designed to be able to transfer cargo by docking directly to the Space Station Freedom as well as with OMV assistance. The CRV will cover enough crossrange to reach its primary landing site, Edwards Airforce Base, and all secondary landing sites with the exception of one orbit. Transportation back to KSC will be via the Boeing Super Guppy. Due to difficulties with man-rating the CRV, it will not be used in a CERV role. A brief summary of the CRV's specifications is given.

  5. Preliminary power train design for a state-of-the-art electric vehicle

    NASA Technical Reports Server (NTRS)

    Ross, J. A.; Wooldridge, G. A.

    1978-01-01

    The state-of-the-art (SOTA) of electric vehicles built since 1965 was reviewed to establish a base for the preliminary design of a power train for a SOTA electric vehicle. The performance of existing electric vehicles were evaluated to establish preliminary specifications for a power train design using state-of-the-art technology and commercially available components. Power train components were evaluated and selected using a computer simulation of the SAE J227a Schedule D driving cycle. Predicted range was determined for a number of motor and controller combinations in conjunction with the mechanical elements of power trains and a battery pack of sixteen lead-acid batteries - 471.7 kg at 0.093 MJ/Kg (1040 lbs. at 11.7 Whr/lb). On the basis of maximum range and overall system efficiency using the Schedule D cycle, an induction motor and 3 phase inverter/controller was selected as the optimum combination when used with a two-speed transaxle and steel belted radial tires. The predicted Schedule D range is 90.4 km (56.2 mi). Four near term improvements to the SOTA were identified, evaluated, and predicted to increase range approximately 7%.

  6. Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 2: The design process

    NASA Technical Reports Server (NTRS)

    Gillette, W. B.; Turner, M. J.; Southall, J. W.; Whitener, P. C.; Kowalik, J. S.

    1973-01-01

    The extent to which IPAD is to support the design process is identified. Case studies of representative aerospace products were developed as models to characterize the design process and to provide design requirements for the IPAD computing system.

  7. Design of an autonomous teleoperated cargo transporting vehicle for lunar base operations

    NASA Technical Reports Server (NTRS)

    Holt, James; Lao, Tom; Monali, Nkoy

    1989-01-01

    At the turn of the century NASA plans to begin construction of a lunar base. The base will likely consist of developed areas (i.e., habitation, laboratory, landing and launching sites, power plant) separated from each other due to safety considerations. The Self-Repositioning Track Vehicle (SRTV) was designed to transport cargo between these base facilities. The SRTV operates by using two robotic arms to raise and position segments of track upon which the vehicle travels. The SRTV utilizes the semiautonomous mobility (SAM) method of teleoperation; actuator-controlled interlocking track sections; two robotic arms each with five degrees of freedom; and these materials: titanium for structural members and aluminum for shell members, with the possible use of light-weight, high-strength composites.

  8. Development of an Expert Judgement Elicitation and Calibration Methodology for Risk Analysis in Conceptual Vehicle Design

    NASA Technical Reports Server (NTRS)

    Unal, Resit; Keating, Charles; Conway, Bruce; Chytka, Trina

    2004-01-01

    A comprehensive expert-judgment elicitation methodology to quantify input parameter uncertainty and analysis tool uncertainty in a conceptual launch vehicle design analysis has been developed. The ten-phase methodology seeks to obtain expert judgment opinion for quantifying uncertainties as a probability distribution so that multidisciplinary risk analysis studies can be performed. The calibration and aggregation techniques presented as part of the methodology are aimed at improving individual expert estimates, and provide an approach to aggregate multiple expert judgments into a single probability distribution. The purpose of this report is to document the methodology development and its validation through application to a reference aerospace vehicle. A detailed summary of the application exercise, including calibration and aggregation results is presented. A discussion of possible future steps in this research area is given.

  9. DUKSUP: A Computer Program for High Thrust Launch Vehicle Trajectory Design and Optimization

    NASA Technical Reports Server (NTRS)

    Spurlock, O. Frank; Williams, Craig H.

    2015-01-01

    From the late 1960s through 1997, the leadership of NASAs Intermediate and Large class unmanned expendable launch vehicle projects resided at the NASA Lewis (now Glenn) Research Center (LeRC). One of LeRCs primary responsibilities --- trajectory design and performance analysis --- was accomplished by an internally-developed analytic three dimensional computer program called DUKSUP. Because of its Calculus of Variations-based optimization routine, this code was generally more capable of finding optimal solutions than its contemporaries. A derivation of optimal control using the Calculus of Variations is summarized including transversality, intermediate, and final conditions. The two point boundary value problem is explained. A brief summary of the codes operation is provided, including iteration via the Newton-Raphson scheme and integration of variational and motion equations via a 4th order Runge-Kutta scheme. Main subroutines are discussed. The history of the LeRC trajectory design efforts in the early 1960s is explained within the context of supporting the Centaur upper stage program. How the code was constructed based on the operation of the AtlasCentaur launch vehicle, the limits of the computers of that era, the limits of the computer programming languages, and the missions it supported are discussed. The vehicles DUKSUP supported (AtlasCentaur, TitanCentaur, and ShuttleCentaur) are briefly described. The types of missions, including Earth orbital and interplanetary, are described. The roles of flight constraints and their impact on launch operations are detailed (such as jettisoning hardware on heating, Range Safety, ground station tracking, and elliptical parking orbits). The computer main frames on which the code was hosted are described. The applications of the code are detailed, including independent check of contractor analysis, benchmarking, leading edge analysis, and vehicle performance improvement assessments. Several of DUKSUPs many major impacts on launches are discussed including Intelsat, Voyager, Pioneer Venus, HEAO, Galileo, and Cassini.

  10. Preliminary Assessment of Artificial Gravity Impacts to Deep-Space Vehicle Design

    NASA Technical Reports Server (NTRS)

    Joosten, B. Kent

    2007-01-01

    Even after more than thirty years of scientific investigation, serious concerns regarding human physiological effects of long-duration microgravity exposure remain. These include loss of bone mineral density, skeletal muscle atrophy, and orthostatic hypertension, among others. In particular, "Safe Passage: Astronaut Care for Exploration Missions," states "loss of bone density, which apparently occurs at a rate of 1% per month in microgravity, is relatively manageable on the short-duration missions of the space shuttle, but it becomes problematic on the ISS [International Space Station]. ...If this loss is not mitigated, interplanetary missions will be impossible." While extensive investigations into potential countermeasures are planned on the ISS, the delay in attaining full crew complement and onboard facilities, and the potential for extending crews tours of duty threaten the timely (< 20 years!) accumulation of sufficient data for countermeasures formulation. Indeed, there is no guarantee that even with the data, a practical or sufficiently robust set of countermeasures will be forthcoming. Providing an artificial gravity (AG) environment by crew centrifugation aboard deep-space human exploration vehicles, long a staple technique of science fiction, has received surprisingly limited engineering assessment. This is most likely due to a number of factors: the lack of definitive design requirements, especially acceptable artificial gravity levels and rotation rates, the perception of high vehicle mass and performance penalties, the incompatibility of resulting vehicle configurations with space propulsion options (i.e., aerocapture), the perception of complications associated with de-spun components such as antennae and photovoltaic arrays, and the expectation of effective crew micro-gravity countermeasures. These perception and concerns may have been overstated, or may be acceptable alternatives to countermeasures of limited efficacy. This study was undertaken as an initial step to try to understand the implications of and potential solutions to incorporating artificial gravity in the design of human deep-space exploration vehicles. Of prime interest will be the mass penalties incurred by incorporating AG, along with any mission performance degradation.

  11. Ares I Crew Launch Vehicle Project: Forward Plan to Preliminary Design Review

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.; Reuter, James L.

    2007-01-01

    The Exploration Launch Projects Office, located at NASA's Marshall Space Flight Center, conducted the Ares I Crew Launch Vehicle System Requirements Review (SRR) at the end of 2006, a mere year after the project team was assembled. In Ares' first year, extensive trade studies and evaluations were conducted to refine the design initially recommended by the Exploration Systems Architecture Study, conceptual designs were analyzed for fitness, and the contractual framework was assembled to enable a development effort unparalleled in American space flight since the Space Shuttle. Now, the project turns its focus to the Preliminary Design Review (PDR), scheduled for 2008. Taking into consideration the findings of the SRR, the design of the Ares I is being tightened and refined to meet the operability, reliability, and affordability goals outlined by the Constellation Program. As directed in NASA Procedure and Regulation (NPR) 7123, NASA Systems Engineering Procedural Requirements, the Ares I SRR examined "the functional and performance requirements defined for the system and the preliminary program or project plan and ensures that the requirements and the selected concept will satisfy the mission." The SRR was conducted to ensure the system- and element-level design and interface requirements are defined prior to proceeding into the project's design phase. The Exploration Launch Projects Control Board convened on December 19,2006, and accepted the findings of the SRR and the go-forward plan proceeding to PDR. Based upon these findings, the Ares project believes that operability must drive the vehicle's design, and that a number of design challenges, including system mass and reliability, must be addressed as part of the progress to PDR.

  12. Analysis and design of high power factor interior permanent magnet motor with concentrated windings for undersea vehicle propulsion

    Microsoft Academic Search

    Youlong Wang; Wen Xuhui; Shan Xue; Tao Fan; Zeng lili

    2008-01-01

    This paper focuses on the design criteria of high power factor, high power density interior permanent magnet motors with concentrated windings for undersea vehicle propulsions. The design requirements and critical parameters are analyzed. A design approach based on the selection of normalized d-axis inductance and saliency ratio of IPM is presented. Comparisons are made between the different results obtained from

  13. Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 4: IPAD system design

    NASA Technical Reports Server (NTRS)

    Goldfarb, W.; Carpenter, L. C.; Redhed, D. D.; Hansen, S. D.; Anderson, L. O.; Kawaguchi, A. S.

    1973-01-01

    The computing system design of IPAD is described and the requirements which form the basis for the system design are discussed. The system is presented in terms of a functional design description and technical design specifications. The functional design specifications give the detailed description of the system design using top-down structured programming methodology. Human behavioral characteristics, which specify the system design at the user interface, security considerations, and standards for system design, implementation, and maintenance are also part of the technical design specifications. Detailed specifications of the two most common computing system types in use by the major aerospace companies which could support the IPAD system design are presented. The report of a study to investigate migration of IPAD software between the two candidate 3rd generation host computing systems and from these systems to a 4th generation system is included.

  14. Rex 2 : design, construction, and operation of an unmanned underwater vehicle

    E-print Network

    Owens, Dylan

    2009-01-01

    The practical usage of unmanned underwater vehicles (UUVs) is limited by vehicle and operation cost, difficulty in accurate navigation, and communication between the vehicle and operator. The "Rex 2" UUV employs a system ...

  15. Control system and laser-based sensor design of an automonous vehicle for industrial environments

    NASA Astrophysics Data System (ADS)

    Sanchiz, Jose M.; Badenas, Jorge; Pla, Filiberto

    2004-09-01

    This work presents an approach to the sensorial device and control system of an autonomous vehicle intended for navigating and performing precise load/unload tasks in industrial environments. The control system is able to perform turns, line following, and arbitrary curve following specified as splines. It is based on a multivariable design using the technique of pole placement in state space. The control system uses results from parameter estimation modules to adapt to the changing responses of traction motors when loaded or unloaded, such estimators are Kalman filters that recover the vehicle motion parameters from measurements performed by the positioning sensor. Several steering configurations are possible since the control system provides a radius of turn as output. So differential drive, tricycle drive or Ackerman steering can be done by transforming this radius in motor orders, depending on the geometry of the vehicle. The only sensor the system relies on is a laser-based local positioning system consisting of a rotating laser and retro-reflectors. Robust algorithms for signal analysis and position/orientation estimation have been developed. The sensor is able to detect reflectors 25 meters away in daylight or in dusty industrial environments using a low-cost 1 mW laser. The system has been tested on two mobile bases, using differential drive and tricycle drive.

  16. Continuous high order sliding mode controller design for a flexible air-breathing hypersonic vehicle.

    PubMed

    Wang, Jie; Zong, Qun; Su, Rui; Tian, Bailing

    2014-05-01

    This paper investigates the problem of tracking control with uncertainties for a flexible air-breathing hypersonic vehicle (FAHV). In order to overcome the analytical intractability of this model, an Input-Output linearization model is constructed for the purpose of feedback control design. Then, the continuous finite time convergence high order sliding mode controller is designed for the Input-Output linearization model without uncertainties. In addition, a nonlinear disturbance observer is applied to estimate the uncertainties in order to compensate the controller and disturbance suppression, where disturbance observer and controller synthesis design is obtained. Finally, the synthesis of controller and disturbance observer is used to achieve the tracking for the velocity and altitude of the FAHV and simulations are presented to illustrate the effectiveness of the control strategies. PMID:24534328

  17. High-Alpha Research Vehicle (HARV) longitudinal controller: Design, analyses, and simulation resultss

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.; Hoffler, Keith D.; Proffitt, Melissa S.; Brown, Philip W.; Phillips, Michael R.; Rivers, Robert A.; Messina, Michael D.; Carzoo, Susan W.; Bacon, Barton J.; Foster, John F.

    1994-01-01

    This paper describes the design, analysis, and nonlinear simulation results (batch and piloted) for a longitudinal controller which is scheduled to be flight-tested on the High-Alpha Research Vehicle (HARV). The HARV is an F-18 airplane modified for and equipped with multi-axis thrust vectoring. The paper includes a description of the facilities, a detailed review of the feedback controller design, linear analysis results of the feedback controller, a description of the feed-forward controller design, nonlinear batch simulation results, and piloted simulation results. Batch simulation results include maximum pitch stick agility responses, angle of attack alpha captures, and alpha regulation for full lateral stick rolls at several alpha's. Piloted simulation results include task descriptions for several types of maneuvers, task guidelines, the corresponding Cooper-Harper ratings from three test pilots, and some pilot comments. The ratings show that desirable criteria are achieved for almost all of the piloted simulation tasks.

  18. Building Operations Efficiencies into NASA's Ares I Crew Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel

    2006-01-01

    The U.S. Vision for Space Exploration guides the National Aeronautics and Space Administration s (NASA's) challenging missions that expand humanity s boundaries and open new routes to the space frontier. With the Agency's commitment to complete the International Space Station (ISS) and to retire the venerable Space Shuttle by 2010, the NASA Administrator commissioned the Exploration Systems Architecture Study (ESAS) in mid 2005 to analyze options for safe, simple, cost-efficient launch solutions that could deliver human-rated space transportation capabilities in a timely manner within fixed budget guidelines. The Exploration Launch Projects Office, chartered in October 2005, has been conducting systems engineering studies and business planning over the past few months to successively refine the design configurations and better align vehicle concepts with customer and stakeholder requirements, such as significantly reduced life-cycle costs. As the Agency begins the process of replacing the Shuttle with a new generation of spacecraft destined for missions beyond low-Earth orbit to the Moon and Mars, NASA is designing the follow-on crew and cargo launch systems for maximum operational efficiencies. To sustain the long-term exploration of space, it is imperative to reduce the $4.5 billion NASA typically spends on space transportation each year. This paper gives top-level information about how the follow-on Ares I Crew Launch Vehicle (CLV) is being designed for improved safety and reliability, coupled with reduced operations costs.

  19. Design of an airborne launch vehicle for an air launched space booster

    NASA Technical Reports Server (NTRS)

    Chao, Chin; Choi, Rich; Cohen, Scott; Dumont, Brian; Gibin, Mauricius; Jorden, Rob; Poth, Stefan

    1993-01-01

    A conceptual design is presented for a carrier vehicle for an air launched space booster. This airplane is capable of carrying a 500,000 pound satellite launch system to an altitude over 40,000 feet for launch. The airplane features a twin fuselage configuration for improved payload and landing gear integration, a high aspect ratio wing for maneuverability at altitude, and is powered by six General Electric GE-90 engines. The analysis methods used and the systems employed in the airplane are discussed. Launch costs are expected to be competitive with existing launch systems.

  20. Evolutionary computing for the design search and optimization of space vehicle power subsystems

    NASA Technical Reports Server (NTRS)

    Kordon, Mark; Klimeck, Gerhard; Hanks, David; Hua, Hook

    2004-01-01

    Evolutionary computing has proven to be a straightforward and robust approach for optimizing a wide range of difficult analysis and design problems. This paper discusses the application of these techniques to an existing space vehicle power subsystem resource and performance analysis simulation in a parallel processing environment. Out preliminary results demonstrate that this approach has the potential to improve the space system trade study process by allowing engineers to statistically weight subsystem goals of mass, cost and performance then automatically size power elements based on anticipated performance of the subsystem rather than on worst-case estimates.

  1. Design, capability, and cost of a Versatile Upper Stage /VUS/ family of vehicles.

    NASA Technical Reports Server (NTRS)

    Haltermann, R. L.; Nelson, L. M.

    1973-01-01

    Trade-off studies and a preliminary design were accomplished to investigate the Versatile Upper Stage (VUS) concept. This concept entails the development by one contractor of a family of stages with a great deal of commonality to perform a spectrum of potential unmanned automated missions planned through 1990. The trade studies and analyses revealed areas where the penalty for commonality between stages was excessive in weight and performance loss. This occurred in the selection of the vehicle structural shell. In many of the expensive subsystems, especially astrionics, it was found that establishing the requirements for all family members and the application of commonality in subsystem selection could result in significant savings.

  2. PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report

    SciTech Connect

    Staunton, R.H.

    2004-08-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a power density surpassed by no other machine design.

  3. Concurrent Computational and Dimensional Analyses of Design of Vehicle Floor-Plates for Landmine-Blast Survivability

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Cheeseman, B. A.

    2014-01-01

    Development of military vehicles capable of surviving landmine blast is seldom done using full-scale prototype testing because of the associated prohibitively-high cost, the destructive nature of testing, and the requirements for major large-scale experimental-test facilities and a large crew of engineers committed to the task. Instead, tests of small-scale models are generally employed and the model-based results are scaled up to the full-size vehicle. In these scale-up efforts, various dimensional analyses are used whose establishment and validation requires major experimental testing efforts and different-scale models. In the present work, an approach is proposed within which concurrent and interactive applications of the computational analyses (of landmine detonation and the interaction of detonation products and soil ejecta with the vehicle hull-floor) and the corresponding dimensional analysis are utilized. It is argued that this approach can guide the design of military-vehicle hull-floors which provide the required level of protection to the vehicle occupants under landmine blast attack without introducing unnecessarily high weight to the vehicle. To validate this approach, a combined Eulerian/Lagrangian formulation for landmine detonation and the interaction of detonation products and soil ejecta with the vehicle hull-floor (developed in our previous work) has been utilized along with the experimental results pertaining to small-scale model and full-scale vehicle testing.

  4. Human Factors in the Design of the Crew Exploration Vehicle (CEV)

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Byrne, Vicky; Holden, Kritina

    2007-01-01

    NASA s Space Exploration vision for humans to venture to the moon and beyond provides interesting human factors opportunities and challenges. The Human Engineering group at NASA has been involved in the initial phases of development of the Crew Exploration Vehicle (CEV), Orion. Getting involved at the ground level, Human Factors engineers are beginning to influence design; this involvement is expected to continue throughout the development lifecycle. The information presented here describes what has been done to date, what is currently going on, and what is expected in the future. During Phase 1, prior to the contract award to Lockheed Martin, the Human Engineering group was involved in generating requirements, conducting preliminary task analyses based on interviews with subject matter experts in all vehicle systems areas, and developing preliminary concepts of operations based on the task analysis results. In addition, some early evaluations to look at CEV net habitable volume were also conducted. The program is currently in Phase 2, which is broken down into design cycles, including System Readiness Review, Preliminary Design Review, and Critical Design Review. Currently, there are ongoing Human Engineering Technical Interchange Meetings being held with both NASA and Lockheed Martin in order to establish processes, desired products, and schedules. Multiple design trades and quick-look evaluations (e.g. display device layout and external window size) are also in progress. Future Human Engineering activities include requirement verification assessments and crew/stakeholder evaluations of increasing fidelity. During actual flights of the CEV, the Human Engineering group is expected to be involved in in-situ testing and lessons learned reporting, in order to benefit human space flight beyond the initial CEV program.

  5. Preliminary Subsystem Designs for the Assured Crew Return Vehicle (ACRV), volumes 1-3

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A long term manned facility in space must include provisions for the safety of the crew. The resolution of this need was the design of an Assured Crew Return Vehicle (ACRV). The main focus is on the braking and landing system of the ACRV. This subsystem of the ACRV was divided into three phases. The Phase 1 analysis showed that the use of a tether to aid in the reentry of the ACRV was infeasible due to cost and efficiency. Therefore, a standard rocket would be used for reentry. It was also found that the continental United States was an achievable landing site for the ACRV. The Phase 2 analysis determined the L/D of the vehicle to be 1.8, thus requiring the use of a lifting body for reentry. It was also determined that shuttle tiles would be used for the thermal protection system. In addition, a parachute sequence for further deceleration was included, namely a ringslot drogue chute, a pilot chute, and finally a ringsail main parachute. This sequence was found to be capable of slowing the vehicle to a descent velocity of 9 to 10 m/s, which is the required velocity for aerial recovery. The Phase 3 analysis proved that a Sikorsky CH-53E helicopter is capable of retrieving the ACRV at 5.5 km altitude with minimal g-forces induced on the ACRV and minimal induced moments on the helicopter upon hookup. The helicopter would be modified such that it could stabilize the ACRV close to the bottom of helicopter and carry it to the nearest designated trauma center.

  6. Design and Implementation of Vehicle Monitoring System Based on GSM\\/GIS\\/GPS

    Microsoft Academic Search

    Hui Tan

    2010-01-01

    Vehicle monitoring system is a high technology system that includes geographical information system (GIS), global positioning system (GPS) and modern communications technology. Vehicles monitoring system can monitor and deploy of the vehicles reasonable through the accurate positioning, with communication technology and digital maps. The paper introduces the composition, the operating principle, the overall functions and system structure of vehicle monitoring

  7. Design and development considerations for biologically inspired flapping-wing micro air vehicles

    NASA Astrophysics Data System (ADS)

    Jones, Kevin D.; Platzer, Max F.

    In this paper, the decade of numerical and experimental investigations leading to the development of the authors' unique flapping-wing micro air vehicle is summarized. Early investigations included the study of boundary layer energization by means of a small flapping foil embedded in a flat-plate boundary layer, the reduction of the recirculatory flow region behind a backward-facing step by means of a small flapping foil, and the reduction or suppression of flow separation behind blunt or cusped airfoil trailing edges by flapping a small foil located in the wake flow region. These studies were followed by systematic investigations of the aerodynamic characteristics of single flapping airfoils and airfoil combinations. These unsteady flows were described using flow visualization, laser-Doppler velocimetry in addition to panel and Navier-Stokes computations. It is then shown how this flapping-wing database was used to conceive, design and develop a micro air vehicle which has a fixed wing for lift and two flapping wings for thrust generation. While animal flight is characterized by a coupled force generation, the present design appears to separate lift and thrust. However, in fact, the performance of one surface is closely coupled to the other surfaces.

  8. Design and development considerations for biologically inspired flapping-wing micro air vehicles

    NASA Astrophysics Data System (ADS)

    Jones, Kevin D.; Platzer, Max F.

    2009-05-01

    In this paper, the decade of numerical and experimental investigations leading to the development of the authors’ unique flapping-wing micro air vehicle is summarized. Early investigations included the study of boundary layer energization by means of a small flapping foil embedded in a flat-plate boundary layer, the reduction of the recirculatory flow region behind a backward-facing step by means of a small flapping foil, and the reduction or suppression of flow separation behind blunt or cusped airfoil trailing edges by flapping a small foil located in the wake flow region. These studies were followed by systematic investigations of the aerodynamic characteristics of single flapping airfoils and airfoil combinations. These unsteady flows were described using flow visualization, laser-Doppler velocimetry in addition to panel and Navier-Stokes computations. It is then shown how this flapping-wing database was used to conceive, design and develop a micro air vehicle which has a fixed wing for lift and two flapping wings for thrust generation. While animal flight is characterized by a coupled force generation, the present design appears to separate lift and thrust. However, in fact, the performance of one surface is closely coupled to the other surfaces.

  9. Design of overload vehicle monitoring and response system based on DSP

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Liu, Yiheng; Zhao, Xuefeng

    2014-03-01

    The overload vehicles are making much more damage to the road surface than the regular ones. Many roads and bridges are equipped with structural health monitoring system (SHM) to provide early-warning to these damage and evaluate the safety of road and bridge. However, because of the complex nature of SHM system, it's expensive to manufacture, difficult to install and not well-suited for the regular bridges and roads. Based on this application background, this paper designs a compact structural health monitoring system based on DSP, which is highly integrated, low-power, easy to install and inexpensive to manufacture. The designed system is made up of sensor arrays, the charge amplifier module, the DSP processing unit, the alarm system for overload, and the estimate for damage of the road and bridge structure. The signals coming from sensor arrays go through the charge amplifier. DSP processing unit will receive the amplified signals, estimate whether it is an overload signal or not, and convert analog variables into digital ones so that they are compatible with the back-end digital circuit for further processing. The system will also restrict certain vehicles that are overweight, by taking image of the car brand, sending the alarm, and transferring the collected pressure data to remote data center for further monitoring analysis by rain-flow counting method.

  10. Hardware-Based Non-Optimum Factors for Launch Vehicle Structural Design

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Cerro, Jeffrey A.

    2010-01-01

    During aerospace vehicle conceptual and preliminary design, empirical non-optimum factors are typically applied to predicted structural component weights to account for undefined manufacturing and design details. Non-optimum factors are developed here for 32 aluminum-lithium 2195 orthogrid panels comprising the liquid hydrogen tank barrel of the Space Shuttle External Tank using measured panel weights and manufacturing drawings. Minimum values for skin thickness, axial and circumferential blade stiffener thickness and spacing, and overall panel thickness are used to estimate individual panel weights. Panel non-optimum factors computed using a coarse weights model range from 1.21 to 1.77, and a refined weights model (including weld lands and skin and stiffener transition details) yields non-optimum factors of between 1.02 and 1.54. Acreage panels have an average 1.24 non-optimum factor using the coarse model, and 1.03 with the refined version. The observed consistency of these acreage non-optimum factors suggests that relatively simple models can be used to accurately predict large structural component weights for future launch vehicles.

  11. Nozzle design study for a quasi-axisymmetric scramjet-powered vehicle at Mach 7.9 flight conditions

    NASA Astrophysics Data System (ADS)

    Tanimizu, Katsuyoshi; Mee, David J.; Stalker, Raymond J.; Jacobs, Peter A.

    2013-09-01

    A nozzle shape optimization study for a quasi-axisymmetric scramjet has been performed for a Mach 7.9 operating condition with hydrogen fuel, aiming at the application of a hypersonic airbreathing vehicle. In this study, the nozzle geometry which is parameterized by a set of design variables, is optimized for the single objective of maximum net thrust using an in-house CFD solver for inviscid flowfields with a simple force prediction methodology. The combustion is modelled using a simple chemical reaction code. The effects of the nozzle design on the overall vehicle performance are discussed. For the present geometry, net thrust is achieved for the optimized vehicle design. The results of the nozzle-optimization study show that performance is limited by the nozzle area ratio that can be incorporated into the vehicle without leading to too large a base diameter of the vehicle and increasing the external drag of the vehicle. This study indicates that it is very difficult to achieve positive thrust at Mach 7.9 using the basic geometry investigated.

  12. Multidisciplinary Design Technology Development: A Comparative Investigation of Integrated Aerospace Vehicle Design Tools

    NASA Technical Reports Server (NTRS)

    Renaud, John E.; Batill, Stephen M.; Brockman, Jay B.

    1999-01-01

    This research effort is a joint program between the Departments of Aerospace and Mechanical Engineering and the Computer Science and Engineering Department at the University of Notre Dame. The purpose of the project was to develop a framework and systematic methodology to facilitate the application of Multidisciplinary Design Optimization (MDO) to a diverse class of system design problems. For all practical aerospace systems, the design of a systems is a complex sequence of events which integrates the activities of a variety of discipline "experts" and their associated "tools". The development, archiving and exchange of information between these individual experts is central to the design task and it is this information which provides the basis for these experts to make coordinated design decisions (i.e., compromises and trade-offs) - resulting in the final product design. Grant efforts focused on developing and evaluating frameworks for effective design coordination within a MDO environment. Central to these research efforts was the concept that the individual discipline "expert", using the most appropriate "tools" available and the most complete description of the system should be empowered to have the greatest impact on the design decisions and final design. This means that the overall process must be highly interactive and efficiently conducted if the resulting design is to be developed in a manner consistent with cost and time requirements. The methods developed as part of this research effort include; extensions to a sensitivity based Concurrent Subspace Optimization (CSSO) NMO algorithm; the development of a neural network response surface based CSSO-MDO algorithm; and the integration of distributed computing and process scheduling into the MDO environment. This report overviews research efforts in each of these focus. A complete bibliography of research produced with support of this grant is attached.

  13. Design and implement of the control system for unmanned surface vehicle based on the VxWorks

    Microsoft Academic Search

    Jiang Zhao; Weisheng Yan; Jian Gao; Shuwei Shi

    2010-01-01

    To increase reliability and real time of the unmanned surface vehicle (USV), research on system design and implement of USV was completed. Introduces the hardware architecture of the control system and clarifies the function of all parts. The software architecture is designed based on the VxWorks real-time operating system. The USV control system adopts a three layered hierarchical architecture, includes

  14. Design and control of a single stator dual PM rotors axial synchronous machine for hybrid electric vehicles

    Microsoft Academic Search

    Lucian Nicolae Tutelea; Sorin Ioan Deaconu; Ion Boldea; Fabrizio Marignetti; Gabriel Nicolae Popa

    2011-01-01

    In this paper is presenting the preliminary designing and control of a synchronous machine with axial airgap single stator dual-rotor with permanent surface magnets and different pole pairs number, destined for hybrid electric vehicles (HEV) applications. For machine’s designing was used the equivalent magnetic circuits method that takes into account the saturation and dispersion of the magnetic field. The control

  15. Less rare-earth magnet-high power density hybrid excitation motor designed for Hybrid Electric Vehicle drives

    Microsoft Academic Search

    Izumi Ozawa; Takashi Kosaka; Nobuyuki Matsui

    2009-01-01

    This paper presents an investigation into design possibility of hybrid excitation motor as less-permanent magnet and high power density for traction drives in Hybrid Electric Vehicles. Firstly, the construction, the basic working principle and the design concept are overviewed. Then, the reason why the proposed machine is suitable for realizing the motor with less-permanent magnet and high power density is

  16. A bi-criterion optimization approach for the design and planning of hydrogen supply chains for vehicle

    E-print Network

    Grossmann, Ignacio E.

    A bi-criterion optimization approach for the design and planning of hydrogen supply chains for vehicle use Gonzalo Guill´en-Gos´albeza , Fernando D. Meleb and Ignacio E. Grossmannc a Department the design of hydrogen supply chains for vehi- cle use with economic and environmental concerns. Given a set

  17. Conceptual Design of a Hypervelocity Asteroid Intercept Vehicle (HAIV) Flight Validation Mission

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Wie, Bong; Steiner, Mark; Getzandanner, Kenneth

    2013-01-01

    In this paper we present a detailed overview of the MDL study results and subsequent advances in the design of GNC algorithms for accurate terminal guidance during hypervelocity NEO intercept. The MDL study produced a conceptual con guration of the two-body HAIV and its subsystems; a mission scenario and trajectory design for a notional flight validation mission to a selected candidate target NEO; GNC results regarding the ability of the HAIV to reliably intercept small (50 m) NEOs at hypervelocity (typically greater than 10 km/s); candidate launch vehicle selection; a notional operations concept and cost estimate for the flight validation mission; and a list of topics to address during the remainder of our NIAC Phase II study.

  18. H? robust fault-tolerant controller design for an autonomous underwater vehicle's navigation control system

    NASA Astrophysics Data System (ADS)

    Cheng, Xiang-Qin; Qu, Jing-Yuan; Yan, Zhe-Ping; Bian, Xin-Qian

    2010-03-01

    In order to improve the security and reliability for autonomous underwater vehicle (AUV) navigation, an H? robust fault-tolerant controller was designed after analyzing variations in state-feedback gain. Operating conditions and the design method were then analyzed so that the control problem could be expressed as a mathematical optimization problem. This permitted the use of linear matrix inequalities (LMI) to solve for the H? controller for the system. When considering different actuator failures, these conditions were then also mathematically expressed, allowing the H? robust controller to solve for these events and thus be fault-tolerant. Finally, simulation results showed that the H? robust fault-tolerant controller could provide precise AUV navigation control with strong robustness.

  19. Design and test of a situation-augmented display for an unmanned aerial vehicle monitoring task.

    PubMed

    Lu, Jen-Li; Horng, Ruey-Yun; Chao, Chin-Jung

    2013-08-01

    In this study, a situation-augmented display for unmanned aerial vehicle (UAV) monitoring was designed, and its effects on operator performance and mental workload were examined. The display design was augmented with the knowledge that there is an invariant flight trajectory (formed by the relationship between altitude and velocity) for every flight, from takeoff to landing. 56 participants were randomly assigned to the situation-augmented display or a conventional display condition to work on 4 (number of abnormalities) x 2 (noise level) UAV monitoring tasks three times. Results showed that the effects of situation-augmented display on flight completion time and time to detect abnormalities were robust under various workload conditions, but error rate and perceived mental workload were unaffected by the display type. Results suggest that the UAV monitoring task is extremely difficult, and that display devices providing high-level situation-awareness may improve operator monitoring performance. PMID:24422345

  20. Design and performance analysis of an aero-maneuvering orbital-transfer vehicle concept

    NASA Technical Reports Server (NTRS)

    Menees, G. P.

    1985-01-01

    Systems requirements for design-optimized, lateral-turn performance were determined for reusable, space-based applications and low-Earth orbits involving large multiple plane-inclination changes. The aerothermodynamic analysis is the most advanced available for rarefield-hypersonic flow over lifting surfaces at incidence. The effects of leading-edge bluntness, low-density viscous phenomena, and finite-rate flow-field chemistry and surface catalysis are accounted for. The predicted aerothermal heating characteristics are correlated with thermal-control and flight-performance capabilities. The mission payload capacity for delivery, retrieval, and combined operations was determined for round-trip sorties extending to polar orbits. Recommendations are given for future design refinements. The results help to identify technology issues required to develop prototype operational vehicles.

  1. PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application

    SciTech Connect

    Staunton, R.H.

    2004-10-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a high power density.

  2. Arcjet exploratory tests of ARC optical window design for the AFE vehicle

    NASA Technical Reports Server (NTRS)

    Whiting, Ellis E.; Terrazas-Salinas, Imelda; Craig, Roger A.; Sobeck, Charles K.; Sarver, George L., III; Salerno, Louis J.; Love, Wendell; Maa, Scott; Covington, AL

    1991-01-01

    Tests were made in the 20 MW arc jet facility at the NASA ARC to determine the suitability of sapphire and fused silica as window materials for the Aeroassist Flight Experiment (AFE) entry vehicle. Twenty nine tests were made; 25 at a heating rate about 80 percent of that expected during the AFE entry and 4 at approximately the full, 100 percent AFE heating rate profile, that produces a temperature of about 2900 F on the surface of the tiles that protect the vehicle. These tests show that a conductively cooled window design using mechanical thermal contacts and sapphire is probably not practical. Cooling the window using mechanical thermal contacts produces thermal stresses in the sapphire that cause the window to crack. An insulated design using sapphire, that cools the window as little as possible, appears promising although some spectral data in the vacuum-ultra-violet (VUV) will be lost due to the high temperature reached by the sapphire. The surface of the insulated sapphire windows, tested at the 100 percent AFE heating rate, showed some slight ablation, and cracks appeared in two of three test windows. One small group of cracks were obviously caused by mechanical binding of the window in the assembly, which can be eliminated with improved design. Other cracks were long, straight, thin crystallographic cracks that have very little effect on the optical transmission of the window. Also, the windows did not fall apart along these crystallographic cracks when the windows were removed from their assemblies. Theoretical results from the thermal analysis computer program SINDA indicate that increasing the window thickness from 4 to 8 mm may enable surface ablation to be avoided. An insulated design using a fused silica window tested at the nominal AFE heating rate experienced severe ablation, thus fused silica is not considered to be an acceptable window material.

  3. Statistical methods for launch vehicle guidance, navigation, and control (GN&C) system design and analysis

    NASA Astrophysics Data System (ADS)

    Rose, Michael Benjamin

    A novel trajectory and attitude control and navigation analysis tool for powered ascent is developed. The tool is capable of rapid trade-space analysis and is designed to ultimately reduce turnaround time for launch vehicle design, mission planning, and redesign work. It is streamlined to quickly determine trajectory and attitude control dispersions, propellant dispersions, orbit insertion dispersions, and navigation errors and their sensitivities to sensor errors, actuator execution uncertainties, and random disturbances. The tool is developed by applying both Monte Carlo and linear covariance analysis techniques to a closed-loop, launch vehicle guidance, navigation, and control (GN&C) system. The nonlinear dynamics and flight GN&C software models of a closed-loop, six-degree-of-freedom (6-DOF), Monte Carlo simulation are formulated and developed. The nominal reference trajectory (NRT) for the proposed lunar ascent trajectory is defined and generated. The Monte Carlo truth models and GN&C algorithms are linearized about the NRT, the linear covariance equations are formulated, and the linear covariance simulation is developed. The performance of the launch vehicle GN&C system is evaluated using both Monte Carlo and linear covariance techniques and their trajectory and attitude control dispersion, propellant dispersion, orbit insertion dispersion, and navigation error results are validated and compared. Statistical results from linear covariance analysis are generally within 10% of Monte Carlo results, and in most cases the differences are less than 5%. This is an excellent result given the many complex nonlinearities that are embedded in the ascent GN&C problem. Moreover, the real value of this tool lies in its speed, where the linear covariance simulation is 1036.62 times faster than the Monte Carlo simulation. Although the application and results presented are for a lunar, single-stage-to-orbit (SSTO), ascent vehicle, the tools, techniques, and mathematical formulations that are discussed are applicable to ascent on Earth or other planets as well as other rocket-powered systems such as sounding rockets and ballistic missiles.

  4. Abstract--In this work is proposed the design of a system to create and handle Electric Vehicles (EV) charging procedures,

    E-print Network

    da Silva, Alberto Rodrigues

    Abstract--In this work is proposed the design of a system to create and handle Electric Vehicles network limitation and absence of smart meter devices, Electric Vehicles charging should be performed application to assist the EV driver on these processes. This proposed Smart Electric Vehicle Charging System

  5. Near-term hybrid vehicle program, phase 1. Appendix B: Design trade-off studies report. Volume 3: Computer program listings

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A description and listing is presented of two computer programs: Hybrid Vehicle Design Program (HYVELD) and Hybrid Vehicle Simulation Program (HYVEC). Both of the programs are modifications and extensions of similar programs developed as part of the Electric and Hybrid Vehicle System Research and Development Project.

  6. Design of a toy submarine using underwater vehicle design optimization framework

    Microsoft Academic Search

    Khairul Alam; Tapabrata Ray; Sreenatha G. Anavatti

    2011-01-01

    This paper presents a framework for optimum design of a small, low-cost, light-weight toy submarine for recre- ational purposes. Two state of the art optimization algorithms namely Non-dominated sorting genetic algorithm (NSGA-II) and Infeasibility driven evolutionary algorithm (IDEA) have been used in this study to carry out optimization of the toy submarine design. Single objective formulation of the toy submarine

  7. The 7.5K lbf thrust engine preliminary design for Orbit Transfer Vehicle

    NASA Technical Reports Server (NTRS)

    Hayden, Warren R.; Sabiers, Ralph; Schneider, Judy

    1994-01-01

    This document summarizes the preliminary design of the Aerojet version of the Orbit Transfer Vehicle main engine. The concept of a 7500 lbf thrust LO2/GH2 engine using the dual expander cycle for optimum efficiency is validated through power balance and thermal calculations. The engine is capable of 10:1 throttling from a nominal 2000 psia to a 200 psia chamber pressure. Reservations are detailed on the feasibility of a tank head start, but the design incorporates low speed turbopumps to mitigate the problem. The mechanically separate high speed turbopumps use hydrostatic bearings to meet engine life requirements, and operate at sub-critical speed for better throttling ability. All components were successfully packaged in the restricted envelope set by the clearances for the extendible/retractable nozzle. Gimbal design uses an innovative primary and engine out gimbal system to meet the +/- 20 deg gimbal requirement. The hydrogen regenerator and LOX/GH2 heat exchanger uses the Aerojet platelet structures approach for a highly compact component design. The extendible/retractable nozzle assembly uses an electric motor driven jack-screw design and a one segment carbon-carbon or silicide coated columbium nozzle with an area ratio, when extended, of 1430:1. A reliability analysis and risk assessment concludes the report.

  8. Design and implementation of a biomimetic turtle hydrofoil for an autonomous underwater vehicle.

    PubMed

    Font, Davinia; Tresanchez, Marcel; Siegentahler, Cedric; Pallejà, Tomàs; Teixidó, Mercè; Pradalier, Cedric; Palacin, Jordi

    2011-01-01

    This paper presents the design and implementation of a turtle hydrofoil for an Autonomous Underwater Vehicle (AUV). The final design of the AUV must have navigation performance like a turtle, which has also been the biomimetic inspiration for the design of the hydrofoil and propulsion system. The hydrofoil design is based on a National Advisory Committee for Aeronautics (NACA) 0014 hydrodynamic profile. During the design stage, four different propulsion systems were compared in terms of propulsion path, compactness, sealing and required power. The final implementation is based on a ball-and-socket mechanism because it is very compact and provides three degrees of freedom (DoF) to the hydrofoil with very few restrictions on the propulsion path. The propulsion obtained with the final implementation of the hydrofoil has been empirically evaluated in a water channel comparing different motion strategies. The results obtained have confirmed that the proposed turtle hydrofoil controlled with a mechanism with three DoF generates can be used in the future implementation of the planned AUV. PMID:22247660

  9. Multidisciplinary Design Technology Development: A Comparative Investigation of Integrated Aerospace Vehicle Design Tools

    NASA Technical Reports Server (NTRS)

    Renaud, John E.; Batill, Stephen M.; Brockman, Jay B.

    1998-01-01

    This research effort is a joint program between the Departments of Aerospace and Mechanical Engineering and the Computer Science and Engineering Department at the University of Notre Dame. Three Principal Investigators; Drs. Renaud, Brockman and Batill directed this effort. During the four and a half year grant period, six Aerospace and Mechanical Engineering Ph.D. students and one Masters student received full or partial support, while four Computer Science and Engineering Ph.D. students and one Masters student were supported. During each of the summers up to four undergraduate students were involved in related research activities. The purpose of the project was to develop a framework and systematic methodology to facilitate the application of Multidisciplinary Design Optimization (N4DO) to a diverse class of system design problems. For all practical aerospace systems, the design of a systems is a complex sequence of events which integrates the activities of a variety of discipline "experts" and their associated "tools". The development, archiving and exchange of information between these individual experts is central to the design task and it is this information which provides the basis for these experts to make coordinated design decisions (i.e., compromises and trade-offs) - resulting in the final product design. Grant efforts focused on developing and evaluating frameworks for effective design coordination within a MDO environment. Central to these research efforts was the concept that the individual discipline "expert", using the most appropriate "tools" available and the most complete description of the system should be empowered to have the greatest impact on the design decisions and final design. This means that the overall process must be highly interactive and efficiently conducted if the resulting design is to be developed in a manner consistent with cost and time requirements. The methods developed as part of this research effort include; extensions to a sensitivity based Concurrent Subspace Optimization (CSSO) MDO algorithm; the development of a neural network response surface based CSSO-MDO algorithm; and the integration of distributed computing and process scheduling into the MDO environment. This report overviews research efforts in each of these focus. A complete bibliography of research produced with support of this grant is attached.

  10. Aerodynamic Design Criteria for Class 8 Heavy Vehicles Trailer Base Devices to Attain Optimum Performance

    SciTech Connect

    Salari, K; Ortega, J

    2010-12-13

    Lawrence Livermore National Laboratory (LLNL) as part of its Department of Energy (DOE), Energy Efficiency and Renewable Energy (EERE), and Vehicle Technologies Program (VTP) effort has investigated class 8 tractor-trailer aerodynamics for many years. This effort has identified many drag producing flow structures around the heavy vehicles and also has designed and tested many new active and passive drag reduction techniques and concepts for significant on the road fuel economy improvements. As part of this effort a database of experimental, computational, and conceptual design for aerodynamic drag reduction devices has been established. The objective of this report is to provide design guidance for trailer base devices to improve their aerodynamic performance. These devices are commonly referred to as boattails, base flaps, tail devices, and etc. The information provided here is based on past research and our most recent full-scale experimental investigations in collaboration with Navistar Inc. Additional supporting data from LLNL/Navistar wind tunnel, track test, and on the road test will be published soon. The trailer base devices can be identified by 4 flat panels that are attached to the rear edges of the trailer base to form a closed cavity. These devices have been engineered in many different forms such as, inflatable and non-inflatable, 3 and 4-sided, closed and open cavity, and etc. The following is an in-depth discussion with some recommendations, based on existing data and current research activities, of changes that could be made to these devices to improve their aerodynamic performance. There are 6 primary factors that could influence the aerodynamic performance of trailer base devices: (1) Deflection angle; (2) Boattail length; (3) Sealing of edges and corners; (4) 3 versus 4-sided, Position of the 4th plate; (5) Boattail vertical extension, Skirt - boattail transition; and (6) Closed versus open cavity.

  11. Thermal Design and Analysis of the Supersonic Flight Dynamics Test Vehicle for the Low Density Supersonic Decelerator Project

    NASA Technical Reports Server (NTRS)

    Mastropietro, A. J.; Pauken, Michael; Sunada, Eric; Gray, Sandria

    2013-01-01

    The thermal design and analysis of the experimental Supersonic Flight Dynamics Test (SFDT) vehicle is presented. The SFDT vehicle is currently being designed as a platform to help demonstrate key technologies for NASA's Low Density Supersonic Decelerator (LDSD) project. The LDSD project is charged by NASA's Office of the Chief Technologist (OCT) with the task of advancing the state of the art in Mars Entry, Descent, and Landing (EDL) systems by developing and testing three new technologies required for landing heavier payloads on Mars. The enabling technologies under development consist of a large 33.5 meter diameter Supersonic Ringsail (SSRS) parachute and two different types of Supersonic Inflatable Aerodynamic Decelerator (SIAD) devices - a robotic class, SIAD-R, that inflates to a 6 meter diameter torus, and an exploration class, SIAD-E, that inflates to an 8 meter diameter isotensoid. As part of the technology development effort, the various elements of the new supersonic decelerator system must be tested in a Mars-like environment. This is currently planned to be accomplished by sending a series of SFDT vehicles into Earth's stratosphere. Each SFDT vehicle will be lifted to a stable float altitude by a large helium carrier balloon. Once at altitude, the SFDT vehicles will be released from their carrier balloon and spun up via spin motors to provide trajectory stability. An onboard third stage solid rocket motor will propel each test vehicle to supersonic flight in the upper atmosphere. After main engine burnout, each vehicle will be despun and testing of the deceleration system will begin: first an inflatable decelerator will be deployed around the aeroshell to increase the drag surface area, and then the large parachute will be deployed to continue the deceleration and return the vehicle back to the Earth's surface. The SFDT vehicle thermal system must passively protect the vehicle structure and its components from cold temperatures experienced during the ascent phase of the mission as well as from the extreme heat fluxes produced during the supersonic test phase by the main motor plume and aeroheating. The passive thermal design approach for the SFDT vehicle relies upon careful and complex bounding analysis of all three modes of heat transfer - conduction, convection, and radiation - coupled with a tightly managed transient power dissipation timeline for onboard electronics components throughout all mission phases.

  12. Structure and Design Optimisation of Composites for Noise Suppression in Vehicles.

    NASA Astrophysics Data System (ADS)

    Ling, Matthew K.

    Available from UMI in association with The British Library. This thesis reviews previous theoretical work on the dynamics of panel vibration and the airborne acoustic insulation and the structure-borne isolation provided by composite systems. Mathematical models are developed for the acoustic behaviour of unbonded multi-layer foam cored carpet composites as experienced on the experimental test rig. The models identify the important material and system parameters governing behaviour. The experimental facility uses a horizontal steel test panel, 1mm thick, about 1m x 1m, and provides acoustic and vibration excitation. Data are obtained for the effective damping (loss factor) of the 4C panel and the insertion loss (IL) of foam cored composites for both vibration and airborne excitation. The intensity method was used to measure the transmitted noise. The precision of the insertion loss measurements was shown to be better than 1.7dB for frequencies below 4kHz. For airborne excitation reproducibility was better than 1.5dB (f < 2kHz). For vibration excitation the reproducibility was less. This was attributed to the coupling method used. Experimental and theoretical studies are divided into three sections: (i) loss factors, (ii) vibration insertion loss and (iii) airborne insertion loss. Particular attention is given to airborne insertion loss since the precision of measurement allows a detailed analysis to be made. It is shown that IL passes through a minimum governed primarily by the modulus and thickness of the foam core and the surface density of the septum and steel substrate. The design optimisation procedure described in the thesis takes account of the loudness of vehicle interior noise at relatively high frequencies (f > 500Hz) and the annoyance of discrete tonal noise at relatively low frequencies. It is shown that for a particular incident noise spectrum the carpet composite can be designed to provide the most acceptable noise quality in a vehicle. For a typical large volume production vehicle the optimum resonance frequency is predicted to be about 300Hz. Ways of achieving this frequency with different combinations of design parameters are described. (Abstract shortened by UMI.).

  13. Design considerations for a lithium-aluminum/iron sulfide electric vehicle battery

    NASA Astrophysics Data System (ADS)

    Chilenskas, A. A.; Gay, E. C.; Shimotake, H.; Barney, D. L.; Kawahara, K.; Goto, K.

    A study has been made of battery-vehicle design interactions using a Toyota Carina converted to electric drive with a Li-Al/FeS battery used as a power and energy source. Energy and power requirements were calculated based on a range of 120 or 200 km with acceleration requirements typical of today's internal-combustion automobiles. Cell modeling analysis was employed to relate the specific energy of the battery to its power capability in terms of the P/E ratio, and this relationship was then used to estimate the battery weight and volume. Based on the results of the study, the specifications and performance of a compact electric automobile have been derived. It is concluded that, when fully developed, the Li-Al/FeS battery can provide a power source of high energy and power density for a personal electric vehicle. The battery is safe, rugged, requires no maintenance, and may offer the possibility of range extension through quick recharge.

  14. Large-scale hybrid motor performance and designs for use in launch vehicle applications

    NASA Astrophysics Data System (ADS)

    Flittie, K. J.; Estey, P.

    1993-11-01

    The American Rocket Company has developed two large-scale liquid oxygen/polybutadiene hybrid rocket motors at 334,000 N (75,000 lbf) and 1,112,000 N (250,000 lbf) thrust. These hybrid rocket motors or derivatives of these motors can be used as strap-on boosters to replace or upgrade the existing strap-on boosters for the fleet of U.S. launch vehicles and for the planned next generation launch vehicle. Hybrid rocket boosters offer a new solution for boost propulsion since hybrids solve many of the safety and environmental concerns facing solid rocket motor manufacture and operation, yet deliver performance comparable to liquid rocket engines with much less hardware and operational complexity. This paper presents motor performance data from AMROC's 334,000 N and 1,112,000 N thrust hybrid rocket motors. A description of these hybrid motors, their performance specifications, and the key enabling technologies that have been developed at AMROC is presented. The design and development approach for an 850K thrust hybrid motor is described.

  15. Design, building, and testing of the postlanding systems for the assured crew return vehicle

    NASA Astrophysics Data System (ADS)

    Hosterman, Kenneth C.; Anderson, Loren A.

    The design, building, and testing of the postlanding support systems for a water-landing Assured Crew Return Vehicle (ACRV) are presented. One ACRV will be permanently docked to Space Station Freedom, fulfilling NASA's commitment to Assured Crew Return Capability in the event of an accident or illness. The configuration of the ACRV is based on an Apollo Command Module (ACM) derivative. The 1990-1991 effort concentrated on the design, building, and testing of a one-fifth scale model of the egress and stabilization systems. The objective was to determine the feasibility of (1) stabilizing the ACM out of the range of motions that cause seasickness and (2) the safe and rapid removal of a sick or injured crew member from the ACRV. The development of the ACRV postlanding systems model was performed at the University of Central Florida with guidance from the Kennedy Space Center ACRV program managers. Emphasis was placed on four major areas. First was design and construction of a one-fifth scale model of the ACM derivative to accommodate the egress and stabilization systems for testing. Second was the identification of a water test facility suitable for testing the model in all possible configurations. Third was the construction of the rapid egress mechanism designed in the previous academic year for incorporation into the ACRV model. The fourth area was construction and motion response testing of the attitude ring and underwater parachute systems.

  16. Development and Design of a Zero-G Liquid Quantity Gauge for a Solar Thermal Vehicle

    NASA Technical Reports Server (NTRS)

    Dodge, Franklin T.; Green, Steven T.; Petullo, Steven P.; VanDresar, Neil T.; Taylor, William J. (Technical Monitor)

    2002-01-01

    The development and design of a cryogenic liquid quantity gauge for zero-g applications is described. The gauge, named the Compression Mass Gauge (CMG), operates on the principle of slightly changing the volume of the tank by an oscillating bellows. The resulting pressure change is measured and used to predict the volume of vapor in the tank, from which the volume of liquid is computed. For each gauging instance, pressures are measured for several different bellows frequencies to enable minor real-gas effects to be quantified and thereby to obtain a gauging accuracy of +/- 1% of tank volume. Southwest Research Institute (Tm) and NASA-GRC (Glenn Research Center) have developed several previous breadboard and engineering development gauges and tested them in cryogenic hydrogen and nitrogen to establish the gauge capabilities, to resolve several design issues, and to formulate data processing algorithms. The CMG has been selected by NASA's Future X program for a flight demonstration on the USAF (United States Air Force) / Boeing Solar Thermal Vehicle Space Experiment (SOTVSE). This paper reviews the design trade studies needed to satisfy the SOTVSE limitations on CMG power, volume, and mass, and describes the mechanical design of the CMG.

  17. Design and characterization of Hover Nano Aerial Vehicle (HNAV) propulsion system

    E-print Network

    Sato, Sho, Ph. D. Massachusetts Institute of Technology

    2008-01-01

    On October 4th 2005, DARPA released a request for proposals for a Nano-Air Vehicle (NAV) program. The program sought to develop an advanced urban reconnaissance vehicle. According the requirement imposed by DARPA, the NAV ...

  18. Design and Testing of a Prototype Lunar or Planetary Surface Landing Research Vehicle (LPSLRV)

    NASA Technical Reports Server (NTRS)

    Murphy, Gloria A.

    2010-01-01

    This handbook describes a two-semester senior design course sponsored by the NASA Office of Education, the Exploration Systems Mission Directorate (ESMD), and the NASA Space Grant Consortium. The course was developed and implemented by the Mechanical and Aerospace Engineering Department (MAE) at Utah State University. The course final outcome is a packaged senior design course that can be readily incorporated into the instructional curriculum at universities across the country. The course materials adhere to the standards of the Accreditation Board for Engineering and Technology (ABET), and is constructed to be relevant to key research areas identified by ESMD. The design project challenged students to apply systems engineering concepts to define research and training requirements for a terrestrial-based lunar landing simulator. This project developed a flying prototype for a Lunar or Planetary Surface Landing Research Vehicle (LPSRV). Per NASA specifications the concept accounts for reduced lunar gravity, and allows the terminal stage of lunar descent to be flown either by remote pilot or autonomously. This free-flying platform was designed to be sufficiently-flexible to allow both sensor evaluation and pilot training. This handbook outlines the course materials, describes the systems engineering processes developed to facilitate design fabrication, integration, and testing. This handbook presents sufficient details of the final design configuration to allow an independent group to reproduce the design. The design evolution and details regarding the verification testing used to characterize the system are presented in a separate project final design report. Details of the experimental apparatus used for system characterization may be found in Appendix F, G, and I of that report. A brief summary of the ground testing and systems verification is also included in Appendix A of this report. Details of the flight tests will be documented in a separate flight test report. This flight test report serves as a complement to the course handbook presented here. This project was extremely ambitious, and achieving all of the design and test objectives was a daunting task. The schedule ran slightly longer than a single academic year with the complete design closure not occurring until early April. Integration and verification testing spilled over into late May and the first flight did not occur until mid to late June. The academic year at Utah State University ended on May 8, 2010. Following the end of the academic year, testing and integration was performed by the faculty advisor, paid research assistants, and volunteer student help

  19. Post landing design and testing of an ACRV model. [Assured Crew Return Vehicles

    NASA Technical Reports Server (NTRS)

    Hosterman, Kenneth C.; Anderson, Loren A.

    1991-01-01

    Consideration is given to a 1990-1991 program concentrated on the design, building, and testing of a one-fifth scale model of the egress and stabilization systems for an Apollo Command Module (ACM)-based assured crew return vehicle (ACRV). The program is aimed at determining the feasibility of 1) stabilizing the ACRV out of the range of motions which cause space sickness and 2) the safe and rapid removaling of a sick or injured crewmember from the ACRV. Research have been conducted in the following areas: ACRV model construction, water test facility identification, and stabilization control systems. The fidelity of the model has been established from geometric and dynamic characteristic tests performed on the model.

  20. Analysis, Design and Optimization of Non-Cylindrical Fuselage for Blended-Wing-Body (BWB) Vehicle

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.; Sobieszczanski-Sobieski, J.; Kosaka, I.; Quinn, G.; Charpentier, C.

    2002-01-01

    Initial results of an investigation towards finding an efficient non-cylindrical fuselage configuration for a conceptual blended-wing-body flight vehicle were presented. A simplified 2-D beam column analysis and optimization was performed first. Then a set of detailed finite element models of deep sandwich panel and ribbed shell construction concepts were analyzed and optimized. Generally these concepts with flat surfaces were found to be structurally inefficient to withstand internal pressure and resultant compressive loads simultaneously. Alternatively, a set of multi-bubble fuselage configuration concepts were developed for balancing internal cabin pressure load efficiently, through membrane stress in inner-stiffened shell and inter-cabin walls. An outer-ribbed shell was designed to prevent buckling due to external resultant compressive loads. Initial results from finite element analysis appear to be promising. These concepts should be developed further to exploit their inherent structurally efficiency.

  1. Aerodynamic heating and surface temperatures on vehicles for computer-aided design studies

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.; Kania, L. A.; Chitty, A.

    1983-01-01

    A computer subprogram has been developed to calculate aerodynamic and radiative heating rates and to determine surface temperatures by integrating the heating rates along the trajectory of a vehicle. Convective heating rates are calculated by applying the axisymmetric analogue to inviscid surface streamlines and using relatively simple techniques to calculate laminar, transitional, or turbulent heating rates. Options are provided for the selection of gas model, transition criterion, turbulent heating method, Reynolds Analogy factor, and entropy-layer swallowing effects. Heating rates are compared to experimental data, and the time history of surface temperatures are given for a high-speed trajectory. The computer subprogram is developed for preliminary design and mission analysis where parametric studies are needed at all speeds.

  2. Design of an Autonomous Underwater Vehicle to Calibrate the Europa Clipper Ice-Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Stone, W.; Siegel, V.; Kimball, P.; Richmond, K.; Flesher, C.; Hogan, B.; Lelievre, S.

    2013-12-01

    Jupiter's moon Europa has been prioritized as the target for the Europa Clipper flyby mission. A key science objective for the mission is to remotely characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface-ice-ocean exchange. This objective is a critical component of the mission's overarching goal of assessing the habitability of Europa. The instrument targeted for addressing key aspects of this goal is an ice-penetrating radar (IPR). As a primary goal of our work, we will tightly couple airborne IPR studies of the Ross Ice Shelf by the Europa Clipper radar team with ground-truth data to be obtained from sub-glacial sonar and bio-geochemical mapping of the corresponding ice-water and water-rock interfaces using an advanced autonomous underwater vehicle (AUV). The ARTEMIS vehicle - a heavily morphed long-range, low drag variant of the highly successful 4-degree-of-freedom hovering sub-ice ENDURANCE bot -- will be deployed from a sea-ice drill hole adjacent the McMurdo Ice Shelf (MIS) and will perform three classes of missions. The first includes original exploration and high definition mapping of both the ice-water interface and the benthic interface on a length scale (approximately 10 kilometers under-ice penetration radius) that will definitively tie it to the synchronous airborne IPR over-flights. These exploration and mapping missions will be conducted at up to 10 different locations along the MIS in order to capture varying ice thickness and seawater intrusion into the ice shelf. Following initial mapping characterization, the vehicle will conduct astrobiology-relevant proximity operations using bio-assay sensors (custom-designed UV fluorescence and machine-vision-processed optical imagery) followed by point-targeted studies at regions of interest. Sample returns from the ice-water interface will be triggered autonomously using real-time-processed instrument data and onboard decision-to-collect algorithms. ARTEMIS will be capable of conducting precision hovering proximity science in an unexplored environment, followed by high speed (1.5 m/s) return to the melt hole. The navigation system will significantly advance upon the successes of the prior DEPTHX and ENDURANCE systems and several novel pose-drift correction technologies will be developed and tested under ice during the project. The method of down-hole deployment and auto-docking return will be extended to a vertically-deployed, horizontally-recovered concept that is depth independent and highly relevant to an ice-water deployment on an icy moon. The presentation will discuss the mission down-select architecture for the ARTEMIS vehicle and its implications for the design of a Europa 'fast mover' carrier AUV, the onboard instrument suite, and the Antarctic mission CONOPS. The vehicle and crew will deploy to Antarctica in the 2015/2016 season.

  3. Features and challenges for Auxiliary Power Module (APM) design for hybrid\\/electric vehicle applications

    Microsoft Academic Search

    S. M. Nayeem Hasan; Mohammad N. Anwar; Mehrdad Teimorzadeh; Teimorzadeh David

    2011-01-01

    Electric and hybrid electric vehicle (EV\\/HEV) architectures require a small DC\\/DC converter to replace a conventional vehicle's alternator. The small DC\\/DC converter, also described as the vehicle Auxiliary Power Module (APM), provides power flow between the vehicle high voltage (HV) and low voltage (LV) DC bus. The APM HV interface is connected to the HV DC bus that contains energy

  4. Design, demonstrations and sustainability impact assessments for plug-in hybrid electric vehicles

    Microsoft Academic Search

    Thomas H. Bradley; Andrew A. Frank

    2009-01-01

    Plug-in hybrid electric vehicles (PHEVs) are hybrid electric vehicles that can draw and store energy from an electric grid to supply propulsive energy for the vehicle. This simple functional change to the conventional hybrid electric vehicle allows a plug-in hybrid to displace petroleum energy with multi-source electrical energy. This has important and generally beneficial impacts on transportation energy sector petroleum

  5. Applied Virtual Reality in Reusable Launch Vehicle Design, Operations Development, and Training

    NASA Technical Reports Server (NTRS)

    Hale, Joseph P.

    1997-01-01

    Application of Virtual Reality (VR) technology offers much promise to enhance and accelerate the development of Reusable Launch Vehicle (RLV) infrastructure and operations while simultaneously reducing developmental and operational costs. One of the primary cost areas in the RLV concept that is receiving special attention is maintenance and refurbishment operations. To produce and operate a cost effective RLV, turnaround cost must be minimized. Designing for maintainability is a necessary requirement in developing RLVs. VR can provide cost effective methods to design and evaluate components and systems for maintenance and refurbishment operations. The National Aeronautics and Space Administration (NASA)/Marshall Space Flight Center (MSFC) is beginning to utilize VR for design, operations development, and design analysis for RLVs. A VR applications program has been under development at NASA/MSFC since 1989. The objectives of the MSFC VR Applications Program are to develop, assess, validate, and utilize VR in hardware development, operations development and support, mission operations training and science training. The NASA/MSFC VR capability has also been utilized in several applications. These include: 1) the assessment of the design of the late Space Station Freedom Payload Control Area (PCA), the control room from which onboard payload operations are managed; 2) a viewing analysis of the Tethered Satellite System's (TSS) "end-of-reel" tether marking options; 3) development of a virtual mockup of the International Space Welding Experiment for science viewing analyses from the Shuttle Remote Manipulator System elbow camera and as a trainer for ground controllers; and 4) teleoperations using VR. This presentation will give a general overview of the MSFC VR Applications Program and describe the use of VR in design analyses, operations development, and training for RLVs.

  6. Design of a docking station for solar charged electric and fuel cell vehicles

    Microsoft Academic Search

    Diego M. Robalino; Ganapathy Kumar; L. O. Uzoechi; U. C. Chukwu; S. M. Mahajan

    2009-01-01

    An effect of constant increase in the price of hydrocarbon-based fuels and the resulting pollution of environment have motivated researchers and the automobile industry to take a serious look at electric vehicles (EV). Hybrid technologies have also found their place in the automobile industry. Hybrid Electric and Plug-in Hybrid Electric Vehicles are being developed and improved constantly. An electric vehicle

  7. Robust design strategy applied to a vehicle suspension system with high camber angle Estelle Koensgen

    E-print Network

    Paris-Sud XI, Université de

    Koensgen Renault SAS / Vehicle Dynamics Research Group, 1 av Golf 78280 Guyancourt, France, estelle.koensgen@renault.com Estelle Koensgen is working in the Vehicle Dynamics Research group of Renault. Sébastien Berger MIPS / Vehicle Dynamics Research Group, 1 av Golf 78280 Guyancourt, France, christophe

  8. VEHICLE-BARRIER TRACKING OF ASCALED CRASH TEST FOR ROADSIDE BARRIER DESIGN

    E-print Network

    Paris-Sud XI, Université de

    system was composed of a high speed camera and a set of targets to measure the vehicle linear and angular, the vehicle linear and angular velo and barrier displacements were to be recorded together with the vehicle accelerations and angular velocities

  9. Platform degrader analysis for the design and development of Vehicle Health Management Systems

    Microsoft Academic Search

    J. C. Banks; K. M. Reichard; J. A. Hines; M. S. Brought

    2008-01-01

    The US Armypsilas Heavy Brigade Combat Team (HBCT) is investigating the implementation of Vehicle Health Management Systems across its fleet of platforms. A vehicle degrader analysis was conducted to determine where the application of vehicle health management systems (VHMS) could potentially have the greatest impact on increasing maintainer effectiveness and operational availability. The analysis was conducted for M1 Abrams tanks

  10. Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle

    SciTech Connect

    Adam, Patrick; Leachman, Jacob [HYdrogen Properties for Energy Research (HYPER) Laboratory, Washington State University, Pullman, WA 99164-2920 (United States)

    2014-01-29

    Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate.

  11. Development and Design of Zero-g Liquid Quantity Gauge for Solar Thermal Vehicle

    NASA Technical Reports Server (NTRS)

    Dodge, Franklin T.; Green, Steven T.; Petullo, Steven P.; VanDresar, Neil T.

    2002-01-01

    The development and design of a cryogenic liquid quantity gauge for zero-gravity (zero-g) applications are described. The gauge, named the compression mass gauge (CMG), operates on the principle of slightly changing the volume of the tank by an oscillating bellows. The resulting pressure change is measured and used to predict the volume of vapor in the tank, from which the volume of liquid is computed. For each gauging instance, pressures are measured for several different bellows frequencies to enable minor real-gas effects to be quantified and thereby to obtain a gauging accuracy of 11 percent of tank volume. The CMG has been selected by NASA's Future-X program for a flight demonstration on the United States Air Force-Boeing Solar Orbit Transfer Vehicle Space Experiment (SOTVSE). This report reviews the design trade studies needed for the CMG to satisfy the SOTVSE limitations on its power, volume, and mass and also describes the mechanical design of the CMG.

  12. Leading Edge Aerothermal Inverse Design of Hyersonic Vehicle Based on Homotopy Optimization Method

    NASA Astrophysics Data System (ADS)

    Cui, K.; Hu, S. C.; Gao, T. Y.; Wang, X. P.; Yang, G. W.

    2011-09-01

    Blunt leading edge with profiles of circular or power law shape is often used to decrease the aerodynamic heating of a vehicle when it flights into hypersonic regime. In order to further reduce the peak of heat flux of the leading edge, an inverse shape design method is presented in this paper. The leading edge is parameterized by using B-spline curve method. The hypersonic flow field and the heat flux distribution around the leading edge is evaluated by computational fluid dynamics. A homotopy method is developed as the optimizer. The computational heat flux distribution is driven by the optimizer to meet the objective . In order to verify the validity of the method, the inverse aerothermal design of a 2D leading edge with the thickness of 5 mm was carried out in the design condition Mach number is 6.5. The initial profile of the leading edge approximates to a circular arc. An H-type structured grid was used to discrete the computational domain. A 2D thin-layer Reynolds-averaged Navier-Stokes equations in strong conservation law form was employed as the solver. The results have shown that the peak value of the heat flux decreases about 4.6%.

  13. Design and evaluation of automated guided vehicle systems for flexible manufacturing systems: an extended timed Petri net-based approach

    Microsoft Academic Search

    K. RAVI RAJU; O. V. KRISHNAIAH CHETTY

    1993-01-01

    The design and evaluation of automated guided vehicle systems ( AGVSs) for flexible manufacturing systems ( FMSs) is complex because of the randomness and number of variables involved. A Petri net-based methodology is proposed in this paper for modelling and simulating AGVSs for FMSs. To this end, the capabilities of time Petri nets are expanded. The proposed methodology is elucidated

  14. Engineering and design of vehicles for long distance road transport of livestock: the example of cattle transport in northern Australia.

    PubMed

    Lapworth, John W

    2008-01-01

    The author outlines the design of road vehicles for the long distance transport of livestock, mainly cattle, which are used in the tropical and sub-Mediterranean climatic regions of Australia and which have been engineered to meet animal welfare principles. Over 50% of journeys exceed 500 km. Journeys of 2 000 to 3 000 km do occur and involve the resting of animals once or twice during the journey. Specialised vehicles, known as 'road trains', are employed and these consist of multiple trailers with multi-deck containers or stock crates for animals, which are hauled by a prime mover or tractor. The starting point for design is safety for both people and animals and the need to preserve transport infrastructure such as roads and bridges. The move to volume livestock loading, where livestock are loaded according to the volume they occupy rather than their weight, was a major early breakthrough. Details are given of the design of vehicles and loading facilities. Vehicle design includes suspensions and the floors, interior walls, doors, partitions and penning, deck supports and arrangements for through loading of stock crates. Loading and unloading ramps can be a major source of stress and standardised heights have been adopted in Australia. PMID:20405427

  15. Nuclear Thermal Rocket/vehicle design options for future NASA missions to the Moon and Mars

    NASA Astrophysics Data System (ADS)

    Borowski, Stanley K.; Corban, Robert R.; McGuire, Melissa L.; Beke, Erik G.

    1995-09-01

    The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners/designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (approximately 850-1000 s) and engine thrust-to-weight ratio (approximately 3-10), the NTR can also be configured as a 'dual mode' system capable of generating electrical power for spacecraft environmental systems, communications, and enhanced stage operations (e.g., refrigeration for long-term liquid hydrogen storage). At present the Nuclear Propulsion Office (NPO) is examining a variety of mission applications for the NTR ranging from an expendable, single-burn, trans-lunar injection (TLI) stage for NASA's First Lunar Outpost (FLO) mission to all propulsive, multiburn, NTR-powered spacecraft supporting a 'split cargo-piloted sprint' Mars mission architecture. Each application results in a particular set of requirements in areas such as the number of engines and their respective thrust levels, restart capability, fuel operating temperature and lifetime, cryofluid storage, and stage size. Two solid core NTR concepts are examined -- one based on NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide 'twisted ribbon' fuel form developed by the Commonwealth of Independent States (CIS). The NDR and CIS concepts have an established technology database involving significant nuclear testing at or near representative operating conditions. Integrated systems and mission studies indicate that clusters of two to four 15 to 25 klbf NDR or CIS engines are sufficient for most of the lunar and Mars mission scenarios currently under consideration. This paper provides descriptions and performance characteristics for the NDR and CIS concepts, summarizes NASA's First Lunar Outpost and Mars mission scenarios, and describes characteristics for representative cargo and piloted vehicles compatible with a reference 240 t-class heavy lift launch vehicle (HLLV) and smaller 120 t HLLV option. Attractive performance characteristics and high-leverage technologies associated with both the engine and stage are identified, and supporting parametric sensitivity data is provided. The potential for commonality of engine and stage components to satisfy a broad range of lunar and Mars missions is also discussed.

  16. Design, building, and testing of the post landing systems for the assured crew return vehicle

    NASA Technical Reports Server (NTRS)

    Anderson, Loren A.

    1991-01-01

    The design, building, and testing of the post landing support systems for a water landing Assured Crew Return Vehicle (ACRV) are presented. One ACRV will be permanently docked to Space Station Freedom, fulfilling NASA's commitment to Assured Crew Return Capability in the event of an accident or illness. The configuration of the ACRV is based on an Apollo Command Module (ACM) derivative. The 1990 to 91 effort concentrated on the design, building, and testing of a 1/5 scale model of the egress and stabilization systems. The objective was to determine the feasibility of: (1) stabilizing the ACM out of the range of motions which cause sea sickness; and (2) the safe and rapid removal of a sick or injured crewmember from the ACRV. The ACRV model construction is presented along with a discussion of the water test facility. The rapid egress system is also presented along with a discussion of the ACRV stabilization control systems. Results are given and discussed in detail.

  17. A knowledge-based design for assemble system for vehicle seat

    NASA Astrophysics Data System (ADS)

    Wahidin, L. S.; Tan, CheeFai; Khalil, S. N.; Juffrizal, K.; Nidzamuddin, M. Y.

    2015-05-01

    Companies worldwide are striving to reduce the costs of their products to impact their bottom line profitability. When it comes to improving profits, there are in two choices: sell more or cut the cost of what is currently being sold. Given the depressed economy of the last several years, the "sell more" option, in many cases, has been taken off the table. As a result, cost cutting is often the most effective path. One of the industrial challenges is to search for the shorten product development and lower manufacturing cost especially in the early stage of designing the product. Knowledge-based system is used to assist the industry when the expert is not available and to keep the expertise within the company. The application of knowledge-based system will enable the standardization and accuracy of the assembly process. For this purpose, a knowledge-based design for assemble system is developed to assist the industry to plan the assembly process of the vehicle seat.

  18. Demonstration of improved vehicle fuel efficiency through innovative tire design, materials, and weight reduction technologies

    SciTech Connect

    Donley, Tim

    2014-12-31

    Cooper completed an investigation into new tire technology using a novel approach to develop and demonstrate a new class of fuel efficient tires using innovative materials technology and tire design concepts. The objective of this work was to develop a new class of fuel efficient tires, focused on the “replacement market” that would improve overall passenger vehicle fuel efficiency by 3% while lowering the overall tire weight by 20%. A further goal of this project was to accomplish the objectives while maintaining the traction and wear performance of the control tire. This program was designed to build on what has already been accomplished in the tire industry for rolling resistance based on the knowledge and general principles developed over the past decades. Cooper’s CS4 (Figure #1) premium broadline tire was chosen as the control tire for this program. For Cooper to achieve the goals of this project, the development of multiple technologies was necessary. Six technologies were chosen that are not currently being used in the tire industry at any significant level, but that showed excellent prospects in preliminary research. This development was divided into two phases. Phase I investigated six different technologies as individual components. Phase II then took a holistic approach by combining all the technologies that showed positive results during phase one development.

  19. Design of a Vehicle-Based Intervention System to Prevent Ozone Loss

    NASA Technical Reports Server (NTRS)

    Mason, William H.; Kirchbaum, Nathan; Kay, Jacob; Benoliel, Alexander M.; Lynn, Sean R.; Bunker, Deborah; Hesbach, Thomas D., Jr.; Howerton, Everett B.; Hreinsson, Gudbjoern; Mistr, E. Kirk

    1993-01-01

    Reduced quantities of ozone in the atmosphere allow greater levels of ultraviolet (UV) radiation to reach the earth's surface. The 1992/1993 project goals for the Virginia Tech Senior Design Team were to 1) understand the processes which contribute to stratospheric ozone loss, 2) examine ways to prevent ozone loss, and 3) define the requirements for an implementation vehicle to carry out the prevention scheme. A scheme proposed by R.J. Cicerone, el al late in 1991 was selected because of its supporting research and economic feasibility. This scheme uses hydrocarbon injected into the Antarctic ozone hole to form stable compounds with free chlorine, thus reducing ozone depletion. A study of the hydrocarbon injection requirements determined that 130 aircraft traveling Mach 2.4 at a maximum altitude of 66,000 ft. would provide the most economic approach to preventing ozone loss. Each aircraft would require an 8,000 nm. range and be able to carry 35,000 lbs. of propane. The propane would be stored in a three-tank high pressure system. Modularity and multi-role functionality were selected to be key design features. Missions originate from airports located in South America and Australia.

  20. Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles

    PubMed Central

    Eom, Hwisoo; Lee, Sang Hun

    2015-01-01

    A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model. PMID:26076406

  1. Design study of steel V-Belt CVT for electric vehicles

    NASA Technical Reports Server (NTRS)

    Swain, J. C.; Klausing, T. A.; Wilcox, J. P.

    1980-01-01

    A continuously variable transmission (CVT) design layout was completed. The intended application was for coupling the flywheel to the driveline of a flywheel battery hybrid electric vehicle. The requirements were that the CVT accommodate flywheel speeds from 14,000 to 28,000 rpm and driveline speeds of 850 to 5000 rpm without slipping. Below 850 rpm a slipping clutch was used between the CVT and the driveline. The CVT was required to accommodate 330 ft-lb maximum torque and 100 hp maximum transient. The weighted average power was 22 hp, the maximum allowable full range shift time was 2 seconds and the required lift was 2600 hours. The resulting design utilized two steel V-belts in series to accommodate the required wide speed ratio. The size of the CVT, including the slipping clutch, was 20.6 inches long, 9.8 inches high and 13.8 inches wide. The estimated weight was 155 lb. An overall potential efficiency of 95 percent was projected for the average power condition.

  2. An unsymmetrical design of IMU for attitude measurement of land vehicles

    NASA Astrophysics Data System (ADS)

    Zhang, Huaqiang; Zhao, Yan; Chen, Yu

    2011-08-01

    Focusing on the determining attitude of land vehicles which equipped with antenna platform for communication satellite, the mathematical model of the integrated navigation system of Strapdown Inertial Navigation System(SINS) and Global Positioning System(GPS) has been built at first. Then the observability of the attitude errors of the integrated navigation system has been concluded to be very weak, and the observability of the heading error is weaker than the horizontal attitude's. Due to this characteristic and the requirement of miniaturization and low-cost, a new inertial measurement unit (IMU) structure has been designed, which comprises three gyros and three accelerometers. Two MEMS gyros were installed on the horizontal plane, and a high degree of accuracy fibre optical gyro was installed in the vertical direction. During navigation period, the Kalman filter is used for calculating the navigation information. Both the theoretical analysis and simulation results show that the new unsymmetrical design of IMU can improve the precision of heading significantly, and when this IMU is integrated with GPS, the attitude precision can meet the requirement of the antenna platform control.

  3. Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles.

    PubMed

    Eom, Hwisoo; Lee, Sang Hun

    2015-01-01

    A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model. PMID:26076406

  4. Modeling, Simulation Design and Control of Hybrid-Electric Vehicle Drives

    SciTech Connect

    Giorgio Rizzoni

    2005-09-30

    Ohio State University (OSU) is uniquely poised to establish such a center, with interdisciplinary emphasis on modeling, simulation, design and control of hybrid-electric drives for a number of reasons, some of which are: (1) The OSU Center for Automotive Research (CAR) already provides an infrastructure for interdisciplinary automotive research and graduate education; the facilities available at OSU-CAR in the area of vehicle and powertrain research are among the best in the country. CAR facilities include 31,000 sq. feet of space, multiple chassis and engine dynamometers, an anechoic chamber, and a high bay area. (2) OSU has in excess of 10 graduate level courses related to automotive systems. A graduate level sequence has already been initiated with GM. In addition, an Automotive Systems Engineering (ASE) program cosponsored by the mechanical and electrical engineering programs, had been formulated earlier at OSU, independent of the GATE program proposal. The main objective of the ASE is to provide multidisciplinary graduate education and training in the field of automotive systems to Masters level students. This graduate program can be easily adapted to fulfill the spirit of the GATE Center of Excellence. (3) A program in Mechatronic Systems Engineering has been in place at OSU since 1994; this program has a strong emphasis on automotive system integration issues, and has emphasized hybrid-electric vehicles as one of its application areas. (4) OSU researchers affiliated with CAR have been directly involved in the development and study of: HEV modeling and simulation; electric drives; transmission design and control; combustion engines; and energy storage systems. These activities have been conducted in collaboration with government and automotive industry sponsors; further, the same researchers have been actively involved in continuing education programs in these areas with the automotive industry. The proposed effort will include: (1) The development of a laboratory facility that will include: electric drive and IC engine test benches; a test vehicle designed for rapid installation of prototype drives; benches for the measurement and study of HEV energy storage components (batteries, ultra-capacitors, flywheels); hardware-in-the-loop control system development tools. (2) The creation of new courses and upgrades of existing courses on subjects related to: HEV modeling and simulation; supervisory control of HEV drivetrains; engine, transmission, and electric drive modeling and control. Specifically, two new courses (one entitled HEV Component Analysis: and the other entitled HEV System Integration and Control) will be developed. Two new labs, that will be taught with the courses (one entitled HEV Components Lab and one entitled HEV Systems and Control lab) will also be developed. (3) The consolidation of already existing ties among faculty in electrical and mechanical engineering departments. (4) The participation of industrial partners through: joint laboratory development; internship programs; continuing education programs; research project funding. The proposed effort will succeed because of the already exceptional level of involvement in HEV research and in graduate education in automotive engineering at OSU, and because the PIs have a proven record of interdisciplinary collaboration as evidenced by joint proposals, joint papers, and co-advising of graduate students. OSU has been expanding its emphasis in Automotive Systems for quite some time. This has led to numerous successes such as the establishment of the Center of Automotive Research, a graduate level course sequence with GM, and numerous grants and contracts on automotive research. The GATE Center of Excellence is a natural extension of what educators at OSU already do well.

  5. The design of passively athermalized narrow- and wide-field-of-view infrared objectives for the OBSERVER unmanned air vehicle

    NASA Astrophysics Data System (ADS)

    Simmons, Richard C.; Manning, Paul A.; Chamberlain, Trevor V.

    2004-12-01

    Some years ago QinetiQ introduced a short-range reconnaissance unmanned air vehicle (UAV), known as OBSERVER, which carried a visible three-camera sensor. To increase its versatility, a compatible infrared (IR) thermal imaging (TI) sensor was developed for the vehicle for operation in the 8-12mm waveband with a dual field of view function. The sensor incorporates a specially designed camera board, employing two IR lead scandium tantalate (PST) detectors based on UK un-cooled TI technology. Since no cooling engine is required for the detectors, the sensor module is very lightweight and hence well suited to its UAV application. So as to achieve the minimum possible payload for the vehicle, in addition to the lightweight detectors and electronics board, compact low mass optical solutions were devised for the camera objectives. These functioned at a relative aperture of f/1.0 and were designed to provide stable focus and imaging performance over a comparatively large temperature span (-10°C to + 50°C) to enable all weather operation. In order to achieve an athermalisation scheme devoid of elaborate electro-mechanical drives, thermally passive solutions were developed for the objectives in which the differing thermal characteristics of the components were designed to self-cancel optically. In this paper, the design and performance limitations of the optics are discussed and the procedure employed for establishing a thin lens pre-design for one of the objectives is described.

  6. DESIGNING NETWORK MOTIFS IN CONNECTED VEHICLE SYSTEMS: DELAY EFFECTS AND STABILITY

    E-print Network

    Daly, Samantha

    - s of simple motifs in the presence of communication delays, and show that long-distance communication can the control gains for the long-distance communication links, plant and string sta- bility can be achieved even wireless com- munication technologies enable vehicles to observe the motion of distant vehicles, which can

  7. American Institute of Aeronautics and Astronautics Optimal Design of Commercial Vehicle Systems

    E-print Network

    Papalambros, Panos

    Featherman7 Altair Engineering, Troy, MI 48083, USA This paper presents an industrial application. It is the first milestone of a recently initiated research effort between Altair, Hyundai and the University Vehicle CAE Research Lab 6 Research Fellow, Commercial Vehicle CAE Research Lab 7 Program Manager, Altair

  8. A Comprehensive Design of Hybrid Electric Vehicle System Ready For Manufacturing using Computing Programs

    Microsoft Academic Search

    M. K. O. Beck

    2006-01-01

    The main object of this paper is to study and evaluate a comprehensive hybrid electric vehicle (HEV) system, ready for manufacturing, using computing programs. The methods and means of hybrid electric vehicle technology have been investigated. Special needs of technology transfer of alternative energy industry and business development experience have been considered with special interest to enable use to be

  9. Software design techniques for the man machine interface to a complex underwater vehicle

    Microsoft Academic Search

    R. P. Stokey

    1994-01-01

    As underwater vehicle complexity grows, so does the manpower needed to operate and maintain them. This paper describes the architecture of the software used to operate FOSS (Fiber-Optic Survey System), a complex full ocean depth towed vehicle. This system operates using the UNIX operating system and the X Windows graphical user interface. It is in constant serial communication with 25

  10. Structural design and optimization using neural networks and genetic algorithms of a tanker vehicle

    Microsoft Academic Search

    Ramon Miralbes; Luis Castejon

    2011-01-01

    The aim of this article is to introduce a structural optimization tool based on the combination of neural networks and genetic algorithms, applied to optimize a cryogenic tanker vehicle. To use this tool, it is necessary to introduce an equation that defines the aspects that are going to be optimized (weight, resistance, rigidity, etc.) of a part of the vehicle

  11. Structural design and optimization using neural networks and genetic algorithms of a tanker vehicle

    Microsoft Academic Search

    Ramon Miralbes; Luis Castejon

    2012-01-01

    The aim of this article is to introduce a structural optimization tool based on the combination of neural networks and genetic algorithms, applied to optimize a cryogenic tanker vehicle. To use this tool, it is necessary to introduce an equation that defines the aspects that are going to be optimized (weight, resistance, rigidity, etc.) of a part of the vehicle

  12. A novel design and feasibility analysis of a fuel cell plug-in hybrid electric vehicle

    Microsoft Academic Search

    Di Wu; Sheldon S. Williamson

    2008-01-01

    Hydrogen powered fuel cell vehicles (FCVs) are receiving global attention, stimulated by the urgent need for more fuel-efficient vehicles. However, current challenges for fuel cells such as high cost, sizing problem, and limited driving range, greatly affect the pace of FCV development. At the same time, domestic and renewable energy resource usage is frequently being encouraged for future electric propulsion

  13. General Description and Design of the Configuration of the Juno I and Juno II Launching Vehicles

    Microsoft Academic Search

    Bill B. Greever

    1960-01-01

    The Juno I Vehicle consists of a modified Redstone Booster with three solid propellant upper stages. The second and third stages are made up by clustering the same rocket used as the fourth stage. The upper stages are contained in a spinning launcher. The spinning provides stability during flight. The Juno II vehicle uses the same upper stages as the

  14. Design and Analysis of an Underwater Vehicle for Controlled Gliding 1

    E-print Network

    Leonard, Naomi

    of gravity and steering is maintained by controlling the location of the center of gravity of the vehicle. Such missions traditionally use ship­based observations, satellites, floats and moorings resulting­ ing underwater vehicle that is independent of any ship can take dense measurements along large

  15. Design and development of the redundant launcher stabilization system for the Atlas 2 launch vehicle

    NASA Technical Reports Server (NTRS)

    Nakamura, M.

    1991-01-01

    The Launcher Stabilization System (LSS) is a pneumatic/hydraulic ground system used to support an Atlas launch vehicle prior to launch. The redesign and development activity undertaken to achieve an LSS with increased load capacity and a redundant hydraulic system for the Atlas 2 launch vehicle are described.

  16. Design and fabrication of microflap actuators for steering of micro air vehicles

    NASA Astrophysics Data System (ADS)

    Zimbru, George C.; Lee, Woo Ho; Popa, Dan O.

    2009-05-01

    This paper presents the design, analysis, and fabrication of an array of microflap actuators that can produce a substantial aerodynamic force for course corrections of Micro Air Vehicles (MAVs) and low speed projectiles. In the past, several actuation principles, including microjet, magnetic and bubble actuators, and flapping wings have been proposed, and had varying degrees of success. In this paper, we discuss the benefits and drawbacks of past attempts, and the technology that can be used to address the microflap steering problem. We propose a hybrid microflap actuation scheme that combines two types of actuators including: 1) a MEMS fabricated "active" microactuator connected to a microflap, and 2) a "passive" fluidic channel system that harvests the potential energy in the high pressure field on the leading edge of the MAV or high speed projectile to achieve a desired deflection. An array of microflap actuators was prototyped using silicon MEMS fabrication and microassembly. A Silicon On Insulator (SOI) wafer with 100 micron thick device layer was used to as a substrate material to fabricate microflap structures with springs. Front and back side DRIE process was used to etch and release the microstructures including microflaps. Then, the microactuator was assembled on top of the microflap. The static and dynamic behaviors of a microflap were measured using a laser displacement sensor and were compared to the analytic model. In the near future, a prototyped microflap will be tested inside of a wind tunnel to measure the lift and drag at various air speeds.

  17. Design of a comfortable optimal driving strategy for electric vehicles using multi-objective optimization

    NASA Astrophysics Data System (ADS)

    Nandi, Arup K.; Chakraborty, Debasri; Vaz, Warren

    2015-06-01

    Due to the limited amount of stored battery energy available for electric vehicles, it is important to use the energy in an optimal manner. This study proposes a novel comfortable optimal driving strategy (CODS) to change a speed that presents a number of optimal acceleration(s) to the driver, along with the total acceleration duration and range corresponding to a desired driving comfort. The design of CODS is done by solving a multi-objective optimization problem (MOOP) of minimizing acceleration duration and battery energy consumption. The acceleration jerk was used as a metric to quantify driving comfort. Based on the realization that the system response time should be low without sacrificing solution optimality for online implementation, two MOOPs were solved: constraining the jerk to a maximum level and minimizing the jerk as an optimization objective. Pareto-optimal fronts were obtained and it was found that consideration of minimizing total jerk is more convenient in finding CODS. A plot of the predicted range, time, and comfort for optimal acceleration(s) to a chosen speed change was presented and a comfortable optimal driving zone was identified. The system response time was found to be around 1 s, indicating its suitability for online implementation.

  18. Cooperative GN&C development in a rapid prototyping environment. [flight software design for space vehicles

    NASA Technical Reports Server (NTRS)

    Bordano, Aldo; Uhde-Lacovara, JO; Devall, Ray; Partin, Charles; Sugano, Jeff; Doane, Kent; Compton, Jim

    1993-01-01

    The Navigation, Control and Aeronautics Division (NCAD) at NASA-JSC is exploring ways of producing Guidance, Navigation and Control (GN&C) flight software faster, better, and cheaper. To achieve these goals NCAD established two hardware/software facilities that take an avionics design project from initial inception through high fidelity real-time hardware-in-the-loop testing. Commercially available software products are used to develop the GN&C algorithms in block diagram form and then automatically generate source code from these diagrams. A high fidelity real-time hardware-in-the-loop laboratory provides users with the capability to analyze mass memory usage within the targeted flight computer, verify hardware interfaces, conduct system level verification, performance, acceptance testing, as well as mission verification using reconfigurable and mission unique data. To evaluate these concepts and tools, NCAD embarked on a project to build a real-time 6 DOF simulation of the Soyuz Assured Crew Return Vehicle flight software. To date, a productivity increase of 185 percent has been seen over traditional NASA methods for developing flight software.

  19. Minimum Hamiltonian Ascent Trajectory Evaluation (MASTRE) program (update to automatic flight trajectory design, performance prediction, and vehicle sizing for support of Shuttle and Shuttle derived vehicles) engineering manual

    NASA Technical Reports Server (NTRS)

    Lyons, J. T.

    1993-01-01

    The Minimum Hamiltonian Ascent Trajectory Evaluation (MASTRE) program and its predecessors, the ROBOT and the RAGMOP programs, have had a long history of supporting MSFC in the simulation of space boosters for the purpose of performance evaluation. The ROBOT program was used in the simulation of the Saturn 1B and Saturn 5 vehicles in the 1960's and provided the first utilization of the minimum Hamiltonian (or min-H) methodology and the steepest ascent technique to solve the optimum trajectory problem. The advent of the Space Shuttle in the 1970's and its complex airplane design required a redesign of the trajectory simulation code since aerodynamic flight and controllability were required for proper simulation. The RAGMOP program was the first attempt to incorporate the complex equations of the Space Shuttle into an optimization tool by using an optimization method based on steepest ascent techniques (but without the min-H methodology). Development of the complex partial derivatives associated with the Space Shuttle configuration and using techniques from the RAGMOP program, the ROBOT program was redesigned to incorporate these additional complexities. This redesign created the MASTRE program, which was referred to as the Minimum Hamiltonian Ascent Shuttle TRajectory Evaluation program at that time. Unique to this program were first-stage (or booster) nonlinear aerodynamics, upper-stage linear aerodynamics, engine control via moment balance, liquid and solid thrust forces, variable liquid throttling to maintain constant acceleration limits, and a total upgrade of the equations used in the forward and backward integration segments of the program. This modification of the MASTRE code has been used to simulate the new space vehicles associated with the National Launch Systems (NLS). Although not as complicated as the Space Shuttle, the simulation and analysis of the NLS vehicles required additional modifications to the MASTRE program in the areas of providing additional flexibility in the use of the program, allowing additional optimization options, and providing special options for the NLS configuration.

  20. A robust nonlinear skid-steering control design applied to the MULE (6x6) unmanned ground vehicle

    NASA Astrophysics Data System (ADS)

    Kaloust, Joseph

    2006-05-01

    The paper presents a robust nonlinear skid-steering control design concept. The control concept is based on the recursive/backstepping control design technique and is capable of compensating for uncertainties associated with sensor noise measurements and/or system dynamic state uncertainties. The objective of this control design is to demonstrate the performance of the nonlinear controller under uncertainty associate with road traction (rough off-road and on-road terrain). The MULE vehicle is used in the simulation modeling and results.

  1. Aerodynamic Design of Heavy Vehicles Reporting Period January 15, 2004 through April 15, 2004

    SciTech Connect

    Leonard, A; Chatelain, P; Heineck, J; Browand, F; Mehta, R; Ortega, J; Salari, K; Storms, B; Brown, J; DeChant, L; Rubel, M; Ross, J; Hammache, M; Pointer, D; Roy, C; Hassan, B; Arcas, D; Hsu, T; Payne, J; Walker, S; Castellucci, P; McCallen, R

    2004-04-13

    Listed are summaries of the activities and accomplishments during this second-quarter reporting period for each of the consortium participants. The following are some highlights for this reporting period: (1) Experiments and computations guide conceptual designs for reduction of drag due to tractor-trailer gap flow (splitter plate), trailer underbody (wedges), and base drag (base-flap add-ons). (2) Steady and unsteady RANS simulations for the GTS geometry are being finalized for development of clear modeling guidelines with RANS. (3) Full geometry and tunnel simulations on the GCM geometry are underway. (4) CRADA with PACCAR is supporting computational parametric study to determine predictive need to include wind tunnel geometry as limits of computational domain. (5) Road and track test options are being investigated. All is ready for field testing of base-flaps at Crows Landing in California in collaboration with Partners in Advanced Transportation Highways (PATH). In addition, MAKA of Canada is providing the device and Wabash is providing a new trailer. (6) Apparatus to investigate tire splash and spray has been designed and is under construction. Michelin has offered tires with customized threads for this study. (7) Vortex methods have improved techniques for the treatment of vorticity near surfaces and spinning geometries like rotating tires. (8) Wind tunnel experiments on model rail cars demonstrate that empty coal cars exhibit substantial aerodynamic drag compared to full coal cars, indicating that significant fuel savings could be obtained by reducing the drag of empty coal cars. (9) Papers are being prepared for an exclusive conference session on the Heavy Vehicle DOE Aerodynamic Drag Project at the 34th AIAA Fluid Dynamics Conference in Portland, Oregon, June 28-July 1, 2004.

  2. The design and development of an axial flux permanent magnet brushless DC motor for wheel drive in a solar powered vehicle

    Microsoft Academic Search

    D. Patterson; R. Spee

    1994-01-01

    This paper presents the development of a “weight-power trade-off” applicable to high performance, power limited vehicles. The theory is then applied to the electric vehicle case to justify the pursuit of an “in the wheel” motor design. The singular benefits of axial flux geometry are discussed with reference to the particular requirements of electric motors for vehicular applications. The basic

  3. Constellation Program (CxP) Crew Exploration Vehicle (CEV) Parachute Assembly System (CPAS) Independent Design Reliability Assessment. Volume 2; Appendices

    NASA Technical Reports Server (NTRS)

    Kelly, Michael J.

    2010-01-01

    This document contains the Appendices to the report documenting the activities, findings, and NASA Engineering and Safety Center (NESC) recommendations of a multidiscipline team to independently assess the Constellation Program (CxP) Crew Exploration Vehicle (CEV) Parachute Assembly System (CPAS). The assessment occurred during a period of 15 noncontiguous months between December 2008 and April 2010, prior to the CPAS Project's Preliminary Design Review (PDR) in August 2010.

  4. Summary of Jimsphere wind profiles: Programs, data, comments, part 1. [for use in aeronautical vehicle design and engineering

    NASA Technical Reports Server (NTRS)

    Willett, J. A.

    1979-01-01

    Jimsphere wind profiles are documented for the following ranges and installations: Eastern Test Range, Cape Kennedy, Florida; Western Test Range; Point Mugu, California; White Sands Missile Range, New Mexico; Wallops Island, Virginia; Green River, Utah; and Vandenberg Air Force Base, California. Profile information for 1964-1977 includes data summaries, computer formats, frequency distributions, composite listings, etc., for use in establishing and interpreting natural environment criteria for aeronautical vehicle design and engineering operations.

  5. An efficient fluid-structure interaction method for conceptual design of flexible micro air vehicle wings: Development, comparison, and application

    NASA Astrophysics Data System (ADS)

    Combes, Thomas P.

    This thesis summarizes the development, comparison, and applications of an efficient fluid-structure interaction method capable of simulating the effects that wing flexibility has on micro air vehicle (MAV) performance. Micro air vehicles wing designs often incorporate flexible wing structures that mimic the skeleton / membrane designs found in natural flyers such as bats and insects. However, accurate performance prediction for these wings requires the coupling of the simulation of the fluid physics around the wing and the simulation of the structural deformation. These fluid-structure interaction (FSI) simulations are often accomplished using high fidelity, computationally expensive techniques such as computational fluid dynamics (CFD) for the fluid physics and nonlinear finite element analysis (FEA) for the structural simulation. The main drawback of these methods, especially for use simulating vehicles that are able to be manufactured relatively quickly, is that the computational cost required to perform relevant trade studies on the design is prohibitively large and time-consuming. The main goal of this research is the development of a coupled fluid-structure interaction method computationally efficient and accurate enough to be used for conceptual design of micro air vehicles. An advanced potential flow model is used to calculate aerodynamic performance and loading, while a simplified finite element structural model using frame and shell elements calculates the wing deflection due to aerodynamic loading. The contents of this thesis include a literature survey of current approaches, an introduction to the efficient FSI formulation, comparison of the presented FSI method with higher-fidelity simulation methods, demonstrations of the method's capability for tradeoff and optimization studies, and an overview of contributions to a nonlinear dynamic algorithm for the simulation of flapping flight.

  6. Optimal Design of a High-Speed On/Off Valve for a Hydraulic Hybrid Vehicle Application

    E-print Network

    Li, Perry Y.

    Coefficient 0.6 same none eq Fluid Bulk Modulus 3.7 x 108 1.2 x 109 Pa Pc Check Valve Cracking Pressure 3.2 NOptimal Design of a High-Speed On/Off Valve for a Hydraulic Hybrid Vehicle Application Michael of Minnesota, Minneapolis, MN, USA ABSTRACT Control of hydraulic systems using high-speed on/off valves has

  7. Design and Verification of Hardware Building Blocks for High-Speed and Fault-Tolerant In-Vehicle Networks

    Microsoft Academic Search

    Federico Baronti; Esa Petri; Sergio Saponara; Luca Fanucci; Roberto Roncella; Roberto Saletti; Paolo D'Abramo; Riccardo Serventi

    2011-01-01

    This paper presents the design, implementation, and validation of a FlexRay transceiver and a SpaceWire (SpW) router and interface, which constitute the main hardware building blocks of the two in-vehicle communication standards. The FlexRay protocol features data rates up to 10 Mb\\/s and time- and event- triggered transmissions, along with scalable fault-tolerance sup- port, and it is expected to become

  8. Design of a spherical vehicle with flywheel momentum storage for high torque capabilities

    E-print Network

    Schroll, Gregory C. (Gregory Cordner)

    2008-01-01

    A novel method for supplementing the propulsion of a spherical ground vehicle was conceived and developed. The addition of angular momentum storage via counter-rotating control moment gyroscopes is proposed in order to ...

  9. Development and validation of a conceptual design program for unmanned underwater vehicles

    E-print Network

    Laun, Alexander Walter, Ensign

    2013-01-01

    With a renewed focus on the Asia-Pacific region, the United States Navy will increasingly rely on high-endurance unmanned underwater vehicles (UUVs) to support successful operations in a challenging threat environment. ...

  10. Marine Vehicle Sensor Network Architecture and Protocol Designs for Ocean Observation

    PubMed Central

    Zhang, Shaowei; Yu, Jiancheng; Zhang, Aiqun; Yang, Lei; Shu, Yeqiang

    2012-01-01

    The micro-scale and meso-scale ocean dynamic processes which are nonlinear and have large variability, have a significant impact on the fisheries, natural resources, and marine climatology. A rapid, refined and sophisticated observation system is therefore needed in marine scientific research. The maneuverability and controllability of mobile sensor platforms make them a preferred choice to establish ocean observing networks, compared to the static sensor observing platform. In this study, marine vehicles are utilized as the nodes of mobile sensor networks for coverage sampling of a regional ocean area and ocean feature tracking. A synoptic analysis about marine vehicle dynamic control, multi vehicles mission assignment and path planning methods, and ocean feature tracking and observing techniques is given. Combined with the observation plan in the South China Sea, we provide an overview of the mobile sensor networks established with marine vehicles, and the corresponding simulation results. PMID:22368475

  11. Design of an adaptive 3-dimensional display enabled by a swarm of autonomous micro air vehicles

    E-print Network

    Mueller, Erich, S.M. Massachusetts Institute of Technology

    2012-01-01

    This thesis is motivated by the concept of a system consisting of a swarm of small, automatically controlled air vehicles, each carrying a colour-controlled light source (payload), capable of executing coordinated maneouvres ...

  12. System design of an unmanned aerial vehicle (UAV) for marine environmental sensing

    E-print Network

    Leighton, Joshua (Joshua C.)

    2013-01-01

    Technological improvements over the past decade have led to the widespread use of autonomous surface and underwater vehicles for data collection in marine environmental sensing and modeling in coastal environments. However, ...

  13. Outline of a small unmanned aerial vehicle (Ant-Plane) designed for Antarctic research

    Microsoft Academic Search

    Minoru Funaki; Naohiko Hirasawa

    2008-01-01

    As part of the Ant-Plane project for summertime scientific research and logistics in the coastal region of Antarctica, we developed six types of small autonomous UAVs (unmanned aerial vehicles, similar to drones; we term these vehicles ‘Ant-Planes’) based on four types of airframe. In test flights, Ant-Plane 2 cruised within 20m accuracy along a straight course during calm weather at

  14. Issues Related to the Design of a Time Triggered CAN System for Future Intelligent Vehicles

    Microsoft Academic Search

    Syed Masud Mahmud

    The demand for drive-by-wire, telematics, entertainment, multimedia, pre-crash warning, hit avoidance, remote diagnostic, software update, etc. will significantly increase the complexity of the future commercial and military in-vehicle communication networks. New types of communication networks will also be necessary to satisfy the requirements of safety and fuel efficiency, and meet the demand for new features. Different sets of vehicle electronic

  15. Design, fabrication, and characterization of multifunctional wings to harvest solar energy in flapping wing air vehicles

    NASA Astrophysics Data System (ADS)

    Perez-Rosado, Ariel; Gehlhar, Rachel D.; Nolen, Savannah; Gupta, Satyandra K.; Bruck, Hugh A.

    2015-06-01

    Currently, flapping wing unmanned aerial vehicles (a.k.a., ornithopters or robotic birds) sustain very short duration flight due to limited on-board energy storage capacity. Therefore, energy harvesting elements, such as flexible solar cells, need to be used as materials in critical components, such as wing structures, to increase operational performance. In this paper, we describe a layered fabrication method that was developed for realizing multifunctional composite wings for a unique robotic bird we developed, known as Robo Raven, by creating compliant wing structure from flexible solar cells. The deformed wing shape and aerodynamic lift/thrust loads were characterized throughout the flapping cycle to understand wing mechanics. A multifunctional performance analysis was developed to understand how integration of solar cells into the wings influences flight performance under two different operating conditions: (1) directly powering wings to increase operation time, and (2) recharging batteries to eliminate need for external charging sources. The experimental data is then used in the analysis to identify a performance index for assessing benefits of multifunctional compliant wing structures. The resulting platform, Robo Raven III, was the first demonstration of a robotic bird that flew using energy harvested from solar cells. We developed three different versions of the wing design to validate the multifunctional performance analysis. It was also determined that residual thrust correlated to shear deformation of the wing induced by torsional twist, while biaxial strain related to change in aerodynamic shape correlated to lift. It was also found that shear deformation of the solar cells induced changes in power output directly correlating to thrust generation associated with torsional deformation. Thus, it was determined that multifunctional solar cell wings may be capable of three functions: (1) lightweight and flexible structure to generate aerodynamic forces, (2) energy harvesting to extend operational time and autonomy, and (3) sensing of an aerodynamic force associated with wing deformation.

  16. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles, summary. [aircraft design of aircraft fuel systems

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Baker, A. H.; Stone, J. E.

    1976-01-01

    A detailed analytical study was made to investigate the effects of fuselage cross section (circular and elliptical) and the structural arrangement (integral and nonintegral tanks) on aircraft performance. The vehicle was a 200 passenger, liquid hydrogen fueled Mach 6 transport designed to meet a range goal of 9.26 Mn (5000 NM). A variety of trade studies were conducted in the area of configuration arrangement, structural design, and active cooling design in order to maximize the performance of each of three point design aircraft: (1) circular wing-body with nonintegral tanks, (2) circular wing-body with integral tanks and (3) elliptical blended wing-body with integral tanks. Aircraft range and weight were used as the basis for comparison. The resulting design and performance characteristics show that the blended body integral tank aircraft weights the least and has the greatest range capability, however, producibility and maintainability factors favor nonintegral tank concepts.

  17. Optimal Design of Integrated Systems Health Management (ISHM) Systems for improving safety in NASA's Exploration Vehicles: A Two-Level Multidisciplinary Design Approach

    NASA Technical Reports Server (NTRS)

    Mehr, Ali Farhang; Tumer, Irem; Barszcz, Eric

    2005-01-01

    Integrated Vehicle Health Management (ISHM) systems are used to detect, assess, and isolate functional failures in order to improve safety of space systems such as Orbital Space Planes (OSPs). An ISHM system, as a whole, consists of several subsystems that monitor different components of an OSP including: Spacecraft, Launch Vehicle, Ground Control, and the International Space Station. In this research, therefore, we propose a new methodology to design and optimize ISHM as a distributed system with multiple disciplines (that correspond to different subsystems of OSP safety). A paramount amount of interest has been given in the literature to the multidisciplinary design optimization of problems with such architecture (as will be reviewed in the full paper).

  18. Best Practices from the Design and Development of the Ares I Launch Vehicle Roll and Reaction Control Systems

    NASA Technical Reports Server (NTRS)

    Butt, Adam; Paseur, Lila F.; Pitts, Hank M.

    2012-01-01

    On April 15, 2010 President Barak Obama made the official announcement that the Constellation Program, which included the Ares I launch vehicle, would be canceled. NASA s Ares I launch vehicle was being designed to launch the Orion Crew Exploration Vehicle, returning humans to the moon, Mars, and beyond. It consisted of a First Stage (FS) five segment solid rocket booster and a liquid J-2X Upper Stage (US) engine. Roll control for the FS was planned to be handled by a dedicated Roll Control System (RoCS), located on the connecting interstage. Induced yaw or pitch moments experienced during FS ascent would have been handled by vectoring of the booster nozzle. After FS booster separation, the US Reaction Control System (ReCS) would have provided the US Element with three degrees of freedom control as needed. The best practices documented in this paper will be focused on the technical designs and producibility of both systems along with the partnership between NASA and Boeing, who was on contract to build the Ares I US Element, which included the FS RoCS and US ReCS. In regards to partnership, focus will be placed on integration along with technical work accomplished by Boeing. This will include detailed emphasis on task orders developed between NASA and Boeing that were used to direct specific work that needed to be accomplished. In summary, this paper attempts to capture key best practices that should be helpful in the development of future launch vehicle and spacecraft RCS designs.

  19. A Characterization of the Terrestrial Environment of Kodiak Island, Alaska for the Design, Development and Operation of Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Rawlins, Michael A.; Johnson, Dale L.; Batts, Glen W.

    2000-01-01

    A quantitative characterization of the terrestrial environment is an important component in the success of a launch vehicle program. Environmental factors such as winds, atmospheric thermodynamics, precipitation, fog, and cloud characteristics are among many parameters that must be accurately defined for flight success. The National Aeronautics and Space Administration (NASA) is currently coordinating weather support and performing analysis for the launch of a NASA payload from a new facility located at Kodiak Island, Alaska in late 2001 (NASA, 1999). Following the first launch from the Kodiak Launch Complex, an Air Force intercontinental ballistic missile on November 5, 1999, the site's developer, the Alaska Aerospace Development Corporation (AADC), is hoping to acquire a sizable share of the many launches that will occur over the next decade. One such customer is NASA, which is planning to launch the Vegetation Canopy Lidar satellite aboard an Athena I rocket, the first planned mission to low earth orbit from the new facility. To support this launch, a statistical model of the atmospheric and surface environment for Kodiak Island, AK has been produced from rawinsonde and surface-based meteorological observations for use as an input to future launch vehicle design and/or operations. In this study, the creation of a "reference atmosphere" from rawinsonde observations is described along with comparisons between the reference atmosphere and existing model representations for Kodiak. Meteorological conditions that might result in a delay on launch day (cloud cover, visibility, precipitation, etc.) are also explored and described through probabilities of launch by month and hour of day. This atmospheric "mission analysis" is also useful during the early stages of a vehicle program, when consideration of the climatic characteristics of a location can be factored into vehicle designs. To be most beneficial, terrestrial environment definitions should a) be available at the inception of the program and based on the desired operational performance of the launch vehicle, b) be issued under the signature of the program manager and be part of the controlled program definition and requirements documentation, and c) specify the terrestrial environment for all phases of activity including prelaunch, launch, ascent, on-orbit, decent, and landing. Since the beginning of the space era, NASA has utilized some of the most detailed assessments of the terrestrial climatic environment in design, development, and operations of both expendable and reusable launch vehicles.

  20. System design optimization for a Mars-roving vehicle and perturbed-optimal solutions in nonlinear programming

    NASA Technical Reports Server (NTRS)

    Pavarini, C.

    1974-01-01

    Work in two somewhat distinct areas is presented. First, the optimal system design problem for a Mars-roving vehicle is attacked by creating static system models and a system evaluation function and optimizing via nonlinear programming techniques. The second area concerns the problem of perturbed-optimal solutions. Given an initial perturbation in an element of the solution to a nonlinear programming problem, a linear method is determined to approximate the optimal readjustments of the other elements of the solution. Then, the sensitivity of the Mars rover designs is described by application of this method.

  1. Intelligent pothole repair vehicle 

    E-print Network

    Minocher Homji, Ruzbeh Adi

    2006-10-30

    This thesis presents an endeavor to design and construct a prototype of an automated road repair vehicle called the Intelligent Pothole Repair Vehicle (IPRV). The IPRV is capable of automatically detecting and filling ...

  2. Nonlinear fractional order proportion-integral-derivative active disturbance rejection control method design for hypersonic vehicle attitude control

    NASA Astrophysics Data System (ADS)

    Song, Jia; Wang, Lun; Cai, Guobiao; Qi, Xiaoqiang

    2015-06-01

    Near space hypersonic vehicle model is nonlinear, multivariable and couples in the reentry process, which are challenging for the controller design. In this paper, a nonlinear fractional order proportion integral derivative (NFOPI?D?) active disturbance rejection control (ADRC) strategy based on a natural selection particle swarm (NSPSO) algorithm is proposed for the hypersonic vehicle flight control. The NFOPI?D? ADRC method consists of a tracking-differentiator (TD), an NFOPI?D? controller and an extended state observer (ESO). The NFOPI?D? controller designed by combining an FOPI?D? method and a nonlinear states error feedback control law (NLSEF) is to overcome concussion caused by the NLSEF and conversely compensate the insufficiency for relatively simple and rough signal processing caused by the FOPI?D? method. The TD is applied to coordinate the contradiction between rapidity and overshoot. By attributing all uncertain factors to unknown disturbances, the ESO can achieve dynamic feedback compensation for these disturbances and thus reduce their effects. Simulation results show that the NFOPI?D? ADRC method can make the hypersonic vehicle six-degree-of-freedom nonlinear model track desired nominal signals accurately and fast, has good stability, dynamic properties and strong robustness against external environmental disturbances.

  3. The design and development of an axial flux permanent magnet brushless DC motor for wheel drive in a solar powered vehicle

    Microsoft Academic Search

    Dean Patterson; R. Spee

    1995-01-01

    This paper presents the development of a “weight-power trade-off” applicable to high-performance, power limited vehicles. The theory is then applied to the electric vehicle case to justify the pursuit of an “in the wheel” motor design. The singular benefits of axial flux geometry are discussed with reference to the particular requirements of electric motors for vehicular applications. The basic design

  4. High voltage energy storage system design for a parallel-through-the-road plug-in hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Belt, Bryan Whitney D.

    A parallel-through-the-road (PTTR) plug-in hybrid electric vehicle (PHEV) pairs an engine powering the front wheels of a vehicle with an electric motor powering the rear wheels. This arrangement gives the flexibility of being able to operate the vehicle in an all-electric mode, an all biodiesel mode, or a combination of both to create maximum power. For this work, a 1.7 L CIDI engine running on biodiesel will be the engine being used and a 103 kW Magna motor will power the rear wheels. In order to power the motor, a high voltage (HV) energy storage system (ESS) needs to be designed and integrated into the vehicle. The goal for the mechanical design of the ESS is to create a structure that will enclose all of the batteries and battery control modules to protect them from environmental factors such as dirt and water as well as to prevent them from becoming dislodged in the event of a collision. The enclosure will also serve as a means to protect the consumer from the dangers of HV. The mechanical design also entailed designing a cooling system that will keep the batteries operating in an acceptable temperature range while they are charging and discharging. The electrical design focused on designing a HV system that could adequately supply enough current flow to each component to meet the peak loading condition yet be able to disconnect should a fault occur to prevent component damage. The system was also designed with safety in mind. Controllers will constantly be monitoring both the HV and LV systems to make sure that each is isolated from the other. Should a controller detect a problem, it will disconnect the HV system. The electrical system will have a high voltage interlock loop (HVIL). The HVIL will be a continuous LV circuit that passes through every HV connector and various switches, so that, if a connector is unplugged or a switch is flipped, the circuit will open. A controller will be monitoring the HVIL for LV. Should it not detect LV, the controller will disconnect the HV system. Several simulations and calculations were conducted as to whether six or seven batteries should be used. Seven batteries will allow the vehicle to accelerate quicker and have lower fuel consumption and emissions produced. However, there are several integration and cooling challenges that arise when trying to integrate seven batteries onto the vehicle. In the end, these challenges outweighed the benefits of seven batteries, and the six battery system was chosen. On top of all of the design and simulation results discussed above, there were also many lessons learned in regards to managing the design team involved in this project. The best way found to keep all members on task was to split the project into smaller sections, create a timeline with specific tasks and corresponding completion dates, and assign a person to be responsible for each task. This helped to gauge whether the project was behind schedule but also gave each member a responsibility and ownership to the project. It was also established that the best way to transmit data was to have a secure, networked drive that allowed members to access it from any computer at any time. This gave members the flexibility to work whenever and wherever was most convenient for them and allowed them to easily share data amongst members without having to attach large files to emails.

  5. Passivity Analysis and Design of Passivity-Based Controllers for Trajectory Tracking at High Speed of Autonomous Vehicles

    E-print Network

    Paris-Sud XI, Université de

    of Autonomous Vehicles Gilles Tagne, Reine Talj and Ali Charara Abstract-- Autonomous intelligent vehicles of intelligent vehicles, with the aim of minimizing the lateral displacement of the autonomous vehicle; the Korean Autonomous Vehicle Competitions (AVC) at 2010, 2012 and 2013, and many others. The introduction

  6. Design study and performance analysis of 12S-14P field excitation flux switching motor for hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Husin, Zhafir Aizat; Sulaiman, Erwan; Khan, Faisal; Mazlan, Mohamed Mubin Aizat; Othman, Syed Muhammad Naufal Syed

    2015-05-01

    This paper presents a new structure of 12slot-14pole field excitation flux switching motor (FEFSM) as an alternative candidate of non-Permanent Magnet (PM) machine for HEV drives. Design study, performance analysis and optimization of field excitation flux switching machine with non-rare-earth magnet for hybrid electric vehicle drive applications is done. The stator of projected machine consists of iron core made of electromagnetic steels, armature coils and field excitation coils as the only field mmf source. The rotor is consisted of only stack of iron and hence, it is reliable and appropriate for high speed operation. The design target is a machine with the maximum torque, power and power density, more than 210Nm, 123kW and 3.5kW/kg, respectively, which competes with interior permanent magnet synchronous machine used in existing hybrid electric vehicle. Some design feasibility studies on FEFSM based on 2D-FEA and deterministic optimization method will be applied to design the proposed machine.

  7. Design and Implementation of Embedded Data Acquisition System for Mobile Vehicle

    Microsoft Academic Search

    Li Nan; Zhou Zhou; Li Qingjiang; Yin Qinghong; Sun Zhaolin; Xu Xin; Xu Hui

    2010-01-01

    The article presents a FPGA based novel embedded automobile data acquisition system, which records vehicle's, environment's and driver's operation information intuitively. The data acquisition system is useful in the fields of traffic accident analyze and accident responsibility confirmation. The core of system is Altera's Nios II processor in FPGA. According to the trigger conditions set by users, the processor controls

  8. Design of a GaAs\\/Ge solar array for unmanned aerial vehicles

    Microsoft Academic Search

    David A. Scheiman; David J. Brinker; David J. Bents; Anthony J. Colozza

    1994-01-01

    Unmanned aerial vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration airplane. Due to the weight, speed, and altitude constraints imposed on such aircraft, solar array generated electric power is a viable alternative to air-breathing engines. Development of such aircraft is being funded under

  9. Design of a GaAs\\/Ge solar array for unmanned aerial vehicles

    Microsoft Academic Search

    David A. Scheiman; David J. Brinker; David J. Bents; Anthony J. Colozza

    1995-01-01

    Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration airplane. Due to the weight, speed, and altitude constraints imposed on such aircraft, solar array generated electric power is a viable alternative to air-breathing engines. Development of such aircraft is currently being funded

  10. Optimal design and finite element analysis of switched reluctance motor for electric vehicles

    Microsoft Academic Search

    Li Weili; Sheng Man; Huo Fei

    2008-01-01

    Low cost, high reliability, low weight and competitive efficiency combine to make the switched reluctance motor (SRM) drive a strong candidate for application in future electric vehicle (EV) propulsion systems. In this paper , a three-phase 6\\/4 structure switched reluctance motor used in small size EV is proposed. Start performance and output property are both improved through optimizing the stator

  11. Design and implementation of vehicle monitor system based on GIS and GPRS

    Microsoft Academic Search

    Zhu Lina; Pan Wei; Wu Xiaoping

    2009-01-01

    Most of vehicle monitoring systems based on GPS and GIS technologies use SMS as their communicating means. SMS didn't have private channel and is difficult to extend to suit other data business, could not afford stable communicating in those systems in some special situations. Contrasting with SMS, GPRS is cheap, real time and is more stable, and more suitable for

  12. Optimal Design and Allocation of Electrified Vehicles and Dedicated Charging Infrastructure for Minimum Greenhouse Gas Emissions

    E-print Network

    Michalek, Jeremy J.

    for Minimum Greenhouse Gas Emissions Submitted for Presentation at the 2011 Annual Meeting to reduce greenhouse gas (GHG) emissions from personal transportation by shifting energy demand from in the fleet for minimum lifecycle GHG emissions over a range of scenarios. We focus on vehicles with similar

  13. Design and control of 100% low floor light rail vehicle traction system

    Microsoft Academic Search

    Shen Maosheng; Diao Lijun; Mei Ying; Li Zhefeng; Liu Zhigang

    2008-01-01

    With the development of human-beingpsilas civilization, public transportation has achieved great progress, but more attention has to be taken for children, old men, and other people who are not convenient to take public traffic, LFLRV (low floor light rail vehicle) has so many advantages that it is a very good choice in the city for these people. This paper describes

  14. Platform-Based Embedded Software Design and System Integration for Autonomous Vehicles

    E-print Network

    Sastry, S. Shankar

    .2002.805827 increase in capabilities of integrated circuit technology and the advances in control about the control of vehicles, such as airplanes and cars, and about the control of armaments, has led, IEEE, AND S. SHANKAR SASTRY, FELLOW, IEEE Invited Paper Automatic control systems typically incorporate

  15. PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report

    Microsoft Academic Search

    Staunton

    2004-01-01

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is

  16. Autonomous deep-ocean lander vehicles; modular approaches to design and operation

    Microsoft Academic Search

    Imants G. PRIEDE; Steven ADDISON; Scott BRADLEY; Phil M. BAGLEY; Peter GRAY; Cynthia YAU; Jean-Francois ROLIN; Jerome BLANDIN; Jacques LEGRAND; Alexis KHRIPOUNOFF; Annick VANGRIESHEIM; Axel CREMER; Ursula WITTE; Olaf PFANNKUCHE; Anders TENGBERG; Stefan HULTH; P. Hall; W. Helder; T. Van Weering; G. Duineveld

    1998-01-01

    Deep-ocean landers are autonomous vehicles that descend to the sea floor and function autonomously without any connection to the surface for periods of 12 h to one year. At the end of the mission, ballast is released by acoustic command from the surface and the lander ascends by virtue of its buoyancy. Landers are made up of two components: a

  17. Autonomous Underwater Vehicle trajectory design coupled with predictive ocean models: A case study

    Microsoft Academic Search

    Ryan N. Smith; Arvind Pereira; Yi Chao; Peggy P. Li; David A. Caron; Burton H. Jones; Gaurav S. Sukhatme

    2010-01-01

    Data collection using Autonomous Underwater Vehicles (AUVs) is increasing in importance within the oceano- graphic research community. Contrary to traditional moored or static platforms, mobile sensors require intelligent planning strategies to maneuver through the ocean. However, the ability to navigate to high-value locations and collect data with specific scientific merit is worth the planning efforts. In this study, we examine

  18. CHARACTERIZATION OF EMISSIONS FROM MOTOR VEHICLES DESIGNED FOR LOW N0X EMISSIONS

    EPA Science Inventory

    Tailpipe emissions were characterized for four advanced low NOx catalyst equipped passenger cars under a variety of cyclic driving conditions. All of the vehicles had three-way catalysts, three with feedback carburetors and exhaust gas recirculation, and two with oxidation cataly...

  19. Conceptual Design by TRIZ: An Application to a Rear Underrun Protective Device for Industrial Vehicle

    NASA Astrophysics Data System (ADS)

    Cerniglia, D.; Lombardo, E.; Nigrelli, Vincenzo

    2008-11-01

    The paper describes results of methodical activity performed by employing inventive principles of the theory for the inventive resolution of problems (TRIZ), in order to obtain concept of rear underrun protective device for an industrial vehicle. A screening with concepts proposed in previous papers is also performed.

  20. Hover and wind-tunnel testing of shrouded rotors for improved micro air vehicle design

    NASA Astrophysics Data System (ADS)

    Pereira, Jason L.

    The shrouded-rotor configuration has emerged as the most popular choice for rotary-wing Micro Air Vehicles (MAVs), because of the inherent safety of the design and the potential for significant performance improvements. However, traditional design philosophies based on experience with large-scale ducted propellers may not apply to the low-Reynolds-number (˜20,000) regime in which MAVs operate. An experimental investigation of the effects of varying the shroud profile shape on the performance of MAV-scale shrouded rotors has therefore been conducted. Hover tests were performed on seventeen models with a nominal rotor diameter of 16 cm (6.3 in) and various values of diffuser expansion angle, diffuser length, inlet lip radius and blade tip clearance, at various rotor collective angles. Compared to the baseline open rotor, the shrouded rotors showed increases in thrust by up to 94%, at the same power consumption, or reductions in power by up to 62% at the same thrust. These improvements surpass those predicted by momentum theory, due to the additional effect of the shrouds in reducing the non-ideal power losses of the rotor. Increasing the lip radius and decreasing the blade tip clearance caused performance to improve, while optimal values of diffuser angle and length were found to be 10 and 50% of the shroud throat diameter, respectively. With the exception of the lip radius, the effects of changing any of the shrouded-rotor parameters on performance became more pronounced as the values of the other parameters were changed to degrade performance. Measurements were also made of the wake velocity profiles and the shroud surface pressure distributions. The uniformity of the wake was improved by the presence of the shrouds and by decreasing the blade tip clearance, resulting in lower induced power losses. For high net shroud thrust, a favorable pressure distribution over the inlet was seen to be more important than in the diffuser. Strong suction pressures were observed above the blade-passage region on the inlet surface; taking advantage of this phenomenon could enable further increases in thrust. However, trade studies showed that, for a given overall aircraft size limitation, and ignoring considerations of the safety benefits of a shroud, a larger-diameter open rotor is more likely to give better performance than a smaller-diameter shrouded rotor. The open rotor and a single shrouded-rotor model were subsequently tested at a single collective in translational flight, at angles of attack from 0° (axial flow) to 90° (edgewise flow), and at various advance ratios. In axial flow, the net thrust and the power consumption of the shrouded rotor were lower than those of the open rotor. In edgewise flow, the shrouded rotor produced greater thrust than the open rotor, while consuming less power. Measurements of the shroud surface pressure distributions illustrated the extreme longitudinal asymmetry of the flow around the shroud, with consequent pitch moments much greater than those exerted on the open rotor. Except at low airspeeds and high angles of attack, the static pressure in the wake did not reach ambient atmospheric values at the diffuser exit plane; this challenges the validity of the fundamental assumption of the simple-momentum-theory flow model for short-chord shrouds in translational flight.

  1. Electric/Hybrid Vehicle Simulation

    NASA Technical Reports Server (NTRS)

    Slusser, R. A.; Chapman, C. P.; Brennand, J. P.

    1985-01-01

    ELVEC computer program provides vehicle designer with simulation tool for detailed studies of electric and hybrid vehicle performance and cost. ELVEC simulates performance of user-specified electric or hybrid vehicle under user specified driving schedule profile or operating schedule. ELVEC performs vehicle design and life cycle cost analysis.

  2. Conceptual design and selection of a biodiesel fuel processor for a vehicle fuel cell auxiliary power unit

    NASA Astrophysics Data System (ADS)

    Specchia, S.; Tillemans, F. W. A.; van den Oosterkamp, P. F.; Saracco, G.

    Within the European project BIOFEAT (biodiesel fuel processor for a fuel cell auxiliary power unit for a vehicle), a complete modular 10 kW e biodiesel fuel processor capable of feeding a PEMFC will be developed, built and tested to generate electricity for a vehicle auxiliary power unit (APU). Tail pipe emissions reduction, increased use of renewable fuels, increase of hydrogen-fuel economy and efficient supply of present and future APU for road vehicles are the main project goals. Biodiesel is the chosen feedstock because it is a completely natural and thus renewable fuel. Three fuel processing options were taken into account at a conceptual design level and compared for hydrogen production: (i) autothermal reformer (ATR) with high and low temperature shift (HTS/LTS) reactors; (ii) autothermal reformer (ATR) with a single medium temperature shift (MTS) reactor; (iii) thermal cracker (TC) with high and low temperature shift (HTS/LTS) reactors. Based on a number of simulations (with the AspenPlus® software), the best operating conditions were determined (steam-to-carbon and O 2/C ratios, operating temperatures and pressures) for each process alternative. The selection of the preferential fuel processing option was consequently carried out, based on a number of criteria (efficiency, complexity, compactness, safety, controllability, emissions, etc.); the ATR with both HTS and LTS reactors shows the most promising results, with a net electrical efficiency of 29% (LHV).

  3. Methods for Determining the Level of Autonomy to Design into a Human Spaceflight Vehicle: A Function Specific Approach

    NASA Technical Reports Server (NTRS)

    Proud, Ryan W.; Hart, Jeremy J.; Mrozinski, Richard B.

    2003-01-01

    The next-generation human spaceflight vehicle is in a unique position to realize the benefits of more than thirty years of technological advancements since the Space Shuttle was designed. Computer enhancements, the emergence of highly reliable decision-making algorithms, and an emphasis on efficiency make an increased use of autonomous systems highly likely. NASA is in a position to take advantage of these advances and apply them to the human spaceflight environment. One of the key paradigm shifts will be the shift, where appropriate, of monitoring, option development, decision-making, and execution responsibility from humans to an Autonomous Flight Management (AFM) system. As an effort to reduce risk for development of an AFM system, NASA engineers are developing a prototype to prove the utility of previously untested autonomy concepts. This prototype, called SMART (Spacecraft Mission Assessment and Replanning Tool), is a functionally decomposed flight management system with an appropriate level of autonomy for each of its functions. As the development of SMART began, the most important and most often asked question was, How autonomous should an AFM system be? A thorough study of the literature through 2002 surrounding autonomous systems has not yielded a standard method for designing a level of autonomy into either a crewed vehicle or an uncrewed vehicle. The current focus in the literature on defining autonomy is centered on developing IQ tests for built systems. The literature that was analyzed assumes that the goal of all systems is to strive for complete autonomy from human intervention, rather than identifying how autonomous each function within the system should have been. In contrast, the SMART team developed a method for determining the appropriate level of autonomy to be designed into each function within a system. This paper summarizes the development of the Level of Autonomy Assessment Tool and its application to the SMART project.

  4. Modeling and Inverse Controller Design for an Unmanned Aerial Vehicle Based on the Self-Organizing Map

    NASA Technical Reports Server (NTRS)

    Cho, Jeongho; Principe, Jose C.; Erdogmus, Deniz; Motter, Mark A.

    2005-01-01

    The next generation of aircraft will have dynamics that vary considerably over the operating regime. A single controller will have difficulty to meet the design specifications. In this paper, a SOM-based local linear modeling scheme of an unmanned aerial vehicle (UAV) is developed to design a set of inverse controllers. The SOM selects the operating regime depending only on the embedded output space information and avoids normalization of the input data. Each local linear model is associated with a linear controller, which is easy to design. Switching of the controllers is done synchronously with the active local linear model that tracks the different operating conditions. The proposed multiple modeling and control strategy has been successfully tested in a simulator that models the LoFLYTE UAV.

  5. Bridging design and implementation for a more practical Condition Based Maintenance Plus (CBM+) solution: Embedded vehicle diagnostics on the Mini-Vehicle Computer System (VCS)

    Microsoft Academic Search

    M. P. Zachos; K. E. Schohl

    2010-01-01

    Our last paper covered the background, current spiral developments, roll out, and sustainment of the US Army's newest At-Platform Automatic Test Systems (APATS) equipment for TWVs (Tactical Wheeled Vehicles). The equipment, called the SWICE (Smart Wireless Internal Combustion Engine) system, was developed for vehicle diagnostics systems in at-platform and embedded applications, including prognostics. An overview of the SWICE system operation

  6. Autonomous vehicles

    SciTech Connect

    Meyrowitz, A.L. [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States)] [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States); Blidberg, D.R. [Autonomous Undersea Systems Inst., Lee, NH (United States)] [Autonomous Undersea Systems Inst., Lee, NH (United States); Michelson, R.C. [Georgia Tech Research Inst., Smyrna, GA (United States)] [Georgia Tech Research Inst., Smyrna, GA (United States); [International Association for Unmanned Vehicle Systems, Smyrna, GA (United States)

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  7. Design of small MEMS microphone array systems for direction finding of outdoors moving vehicles.

    PubMed

    Zhang, Xin; Huang, Jingchang; Song, Enliang; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing

    2014-01-01

    In this paper, a MEMS microphone array system scheme is proposed which implements real-time direction of arrival (DOA) estimation for moving vehicles. Wind noise is the primary source of unwanted noise on microphones outdoors. A multiple signal classification (MUSIC) algorithm is used in this paper for direction finding associated with spatial coherence to discriminate between the wind noise and the acoustic signals of a vehicle. The method is implemented in a SHARC DSP processor and the real-time estimated DOA is uploaded through Bluetooth or a UART module. Experimental results in different places show the validity of the system and the deviation is no bigger than 6° in the presence of wind noise. PMID:24603636

  8. Design of a Capacitive Flexible Weighing Sensor for Vehicle WIM System

    PubMed Central

    Cheng, Lu; Zhang, Hongjian; Li, Qing

    2007-01-01

    With the development of the Highway Transportation and Business Trade, vehicle weigh-in-motion (WIM) technology has become a key technology and trend of measuring traffic loads. In this paper, a novel capacitive flexible weighing sensor which is light weight, smaller volume and easy to carry was applied in the vehicle WIM system. The dynamic behavior of the sensor is modeled using the Maxwell-Kelvin model because the materials of the sensor are rubbers which belong to viscoelasticity. A signal processing method based on the model is presented to overcome effects of rubber mechanical properties on the dynamic weight signal. The results showed that the measurement error is less than ±10%. All the theoretic analysis and numerical results demonstrated that appliance of this system to weigh in motion is feasible and convenient for traffic inspection.

  9. Design of Small MEMS Microphone Array Systems for Direction Finding of Outdoors Moving Vehicles

    PubMed Central

    Zhang, Xin; Huang, Jingchang; Song, Enliang; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing

    2014-01-01

    In this paper, a MEMS microphone array system scheme is proposed which implements real-time direction of arrival (DOA) estimation for moving vehicles. Wind noise is the primary source of unwanted noise on microphones outdoors. A multiple signal classification (MUSIC) algorithm is used in this paper for direction finding associated with spatial coherence to discriminate between the wind noise and the acoustic signals of a vehicle. The method is implemented in a SHARC DSP processor and the real-time estimated DOA is uploaded through Bluetooth or a UART module. Experimental results in different places show the validity of the system and the deviation is no bigger than 6° in the presence of wind noise. PMID:24603636

  10. Aerodynamic design of a descent vehicle in the Martian atmosphere under the exomars project

    NASA Astrophysics Data System (ADS)

    Golomazov, M. M.; Finchenko, V. S.

    2014-12-01

    The paper considers mathematical support for calculation of the aerodynamics and flight trajectory of descent vehicles (DV) during entry into the Martian atmosphere. The study of aerodynamics of a segmental and conical DV is given under various reentry conditions. The paper presents comparison of computational results of the aerodynamic properties of the DV of the ExoMars project with wind tunnel test data of DV models.

  11. Aerothermodynamics in the Heart of the Reentry Vehicles Shape Design and Mission Analysis Matters

    Microsoft Academic Search

    E. Cosson; F. Thivet; J. Soler; Ph. Tran; M. Spel; W. Dieudonne; J.-C. Paulat; M. Prampolini; J. Moulin

    2005-01-01

    \\/RESUME On the path to a Reusable Space Transportation System, Europe first reviewed the gaps to fulfil. Then, a step-by-step master plan with both on-ground and in-flight tests was drawn up with the uppermost goal to secure the development of the future Reusable Launch Vehicle (RLV) and get proof of its economic efficiency. With the potential budgets and programmatics foreseeable

  12. PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application

    Microsoft Academic Search

    Staunton

    2004-01-01

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial

  13. Design and analysis of aluminum\\/air battery system for electric vehicles

    Microsoft Academic Search

    Shaohua Yang; Harold Knickle

    2002-01-01

    Aluminum (Al)\\/air batteries have the potential to be used to produce power to operate cars and other vehicles. These batteries might be important on a long-term interim basis as the world passes through the transition from gasoline cars to hydrogen fuel cell cars. The Al\\/air battery system can generate enough energy and power for driving ranges and acceleration similar to

  14. Design of the Embedded Navigation System of Autonomous Underwater Vehicle based on the VxWorks

    Microsoft Academic Search

    Yushan Sun; Lei Wan; Xiao Liang; Yongjie Pang

    2007-01-01

    The embedded navigation system of autonomous underwater vehicle is introduced, which includes navigation overall architecture, hardware and software structure. The navigation system based on PC104 bus adopts the VxWorks system, which is a powerful real-time operating system. Intel PIIX-4 is used as the navigation controller's CPU. Meanwhile, the whole information flow of the navigation system is also discussed in this

  15. Analysis, Design, and Optimization of Noncylindrical Fuselage for Blended-Wing-Body Vehicle

    Microsoft Academic Search

    V. Mukhopadhyay; J. Sobieszczanski-Sobieski; G. Quinn; G. Vanderpaats

    2004-01-01

    Initial results of an investigation towards finding an efficient non-cylindrical fuselage configuration for a conceptual blended-wing-body flight vehicle were presented. A simplified 2-D beam column analysis and optimization was performed first. Then a set of detailed finite element models of deep sandwich panel and ribbed shell construction concepts were analyzed and optimized. Generally these concepts with flat surfaces were found

  16. A Multi-Year Program Plan for the Aerodynamic Design of Heavy Vehicles

    SciTech Connect

    None

    2001-09-01

    The project tasks and deliverables are as follows: Computations and Experiments--(1) Simulation and analysis of a range of generic shapes, simplified to more complex, representative of tractor and integrated tractor-trailer flow characteristics using computational tools, (2) The establishment of an experimental data base for tractor-trailer models for code/computational method development and validation. The first shapes to be considered will be directed towards the investigation of tractor-trailer gaps and mismatch of tractor-trailer heights. (3) The evaluation and documentation of effective computational approaches for application to heavy vehicle aerodynamics based on the benchmark results with existing and advanced computational tools compared to experimental data, and (4) Computational tools and experimental methods for use by industry, National Laboratories, and universities for the aerodynamic modeling of heavy truck vehicles. Evaluation of current and new technologies--(1) The evaluation and documentation of current and new technologies for drag reduction based on published literature and continued communication with the heavy vehicle industry (e.g., identification and prioritization of tractor-trailer drag-sources, blowing and/or suction devices, body shaping, new experimental methods or facilities), and the identification and analysis of tractor and integrated tractor-trailer aerodynamic problem areas and possible solution strategies. (2) Continued industrial site visits. It should be noted that ''CFD tools'' are not only the actual computer codes, but descriptions of appropriate numerical solution methods. Part of the project effort will be to determine the restrictions or avenues for technology transfer.

  17. Main propulsion system design recommendations for an advanced Orbit Transfer Vehicle

    NASA Technical Reports Server (NTRS)

    Redd, L.

    1985-01-01

    Various main propulsion system configurations of an advanced OTV are evaluated with respect to the probability of nonindependent failures, i.e., engine failures that disable the entire main propulsion system. Analysis of the life-cycle cost (LCC) indicates that LCC is sensitive to the main propulsion system reliability, vehicle dry weight, and propellant cost; it is relatively insensitive to the number of missions/overhaul, failures per mission, and EVA and IVA cost. In conclusion, two or three engines are recommended in view of their highest reliability, minimum life-cycle cost, and fail operational/fail safe capability.

  18. UNIVERSITY OF CALIFORNIA, SAN DIEGO Weight Reduction Techniques Applied to Formula SAE Vehicle Design

    E-print Network

    Wang, Deli

    Design: An Investigation in Topology Optimization A thesis submitted in partial satisfaction whose companionship surely propelled my own drive and confidence, and to whom I credit most of my...............................................................................14 B. Design Space...............................................................................16

  19. A practical application of concept selection methods for high-speed marine vehicle design

    E-print Network

    Hagan, William L. (William Laurie), III

    2008-01-01

    Naval ship design and construction has been in existence for thousands of years. Over that time, many tools have been developed to aid naval architects in the quest for an optimal design, whether fast and sleek like a ...

  20. Vehicle and Mission Design Options for the Human Exploration of Mars/Phobos Using "Bimodal" NTR and LANTR Propulsion

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Dudzinski, Leonard A.; McGuire, Melissa L.

    1998-01-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars because of its high specific impulse (Isp-850-1000 s) capability and its attractive engine thrust-to-weight ratio (approximately equal 3-10). To stay within the available mass and payload volume limits of a "Magnum" heavy lift vehicle, a high performance propulsion system is required for trans-Mars injection (TMI). An expendable TMI stage, powered by three 15 thousand pounds force (klbf) NTR engines is currently under consideration by NASA for its Design Reference Mission (DRM). However, because of the miniscule burnup of enriched uranium-235 during the Earth departure phase (approximately 10 grams out of 33 kilograms in each NTR core), disposal of the TMI stage and its engines after a single use is a costly and inefficient use of this high performance stage. By reconfiguring the engines for both propulsive thrust and modest power generation (referred to as "bimodal" operation), a robust, multiple burn, "power-rich" stage with propulsive Mars capture and reuse capability is possible, A family of modular "bimodal" NTR (BNTR) vehicles are described which utilize a common "core" stage powered by three 15 klbf BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration / reliquification system for long term, "zero-boiloff" liquid hydrogen (LH2) storage, and high data rate communications. An innovative, spine-like "saddle truss" design connects the core stage and payload element and is open underneath to allow supplemental "in-line" propellant tanks and contingency crew consumables to be easily jettisoned to improve vehicle performance. A "modified" DRM using BNTR transfer vehicles requires fewer transportation system elements, reduces IMLEO and mission risk, and simplifies space operations. By taking the next logical step--use of the BNTR for propulsive capture of all payload elements into Mars orbit--the power available in Mars orbit grows to 150 kWe compared to 30 kWe for the DRM. Propulsive capture also eliminates the complex, higher risk aerobraking and capture maneuver which is replaced by a simpler reentry using a standardized, lower mass "aerodescent" shell. The attractiveness of the "all BNTR" option is further increased by the substitution of the lightweight, inflatable "TransHab" module in place of the heavier, hard-shell hab module. Use of TransHab introduces the potential for propulsive recovery and reuse of the BNTR/ERV. It also allows the crew to travel to and from Mar on the same BNTR transfer vehicle thereby cutting the duration of the ERV mission in half--from approximately 4.7 to 2.5 years. Finally, for difficult Mars options, such as Phobos rendezvous and sample return missions, volume (not mass) constraints limit the performance of the "all LH2" BNTR stage. The use of "LOX-augmented" NTR (LANTR) engines, operating at a modest oxygen-to-hydrogen mixutre ratio (MR) of 0.5, helps to increase "bulk" propellant density and total thrust during the TMI burn. On all subsequent burns, the bimodal LANTR engines operate on LH2 only (MR=0) to maximize vehicle performance while staying within the lift capability of two Magnum launches.