Science.gov

Sample records for ventilation perfusion imbalance

  1. Sustained ventilation: perfusion imbalance during hemodialysis.

    PubMed

    Milner, L S; Rothberg, A D; Thomson, P D; Stothart, M

    1983-06-01

    Five children between the ages of 6 and 15 years, who required chronic hemodialysis (HD) for renal failure, were studied to evaluate the central and pulmonary effects of HD on gas exchange. Acetate dialysate was used, and dialysate pO2 and pCO2, arterial pO2 and pCO2, endtidal CO2 and minute ventilation were measured pre-HD and 15, 30, 60, 120 and 240 minutes after commencement of HD. Arterial-alveolar CO2 gradient (aADCO2) was calculated to determine the ventilation: perfusion (V/Q) status. Minute ventilation did not change significantly from the pre-HD value of 8.9 +/- 1.1 l/min (mean +/- SD). The aADCO2 increased significantly from 3.2 +/- 3.7 mmHg to 8.4 +/- 2.4 mmHg at 15 mins (p less than .01) and was still elevated at 120 mins. (9.1 +/- 3.4 mmHg, p less than .02). There was a weak but significant inverse relationship between aADCO2 and arterial pO2 (r -0.42, p less than 0.05). The results suggest that, in these children, dialysed at altitude, dialysis-related hypoxemia appears to be the result of a sustained V/Q mismatch, possibly related to a decrease in pulmonary perfusion. PMID:6413444

  2. EFFECT OF VENTILATION AND PERFUSION IMBALANCE ON INERT GAS REBREATHING VARIABLES

    EPA Science Inventory

    The effects of ventilation-to-perfusion (Va/Qc) maldistribution within the lungs on measured multiple gas rebreathing variables were studied in 14 dogs. The rebreathing method (using He, C18C, and C2H2) allows for measurements of pulmonary capillary blood flow (Qc), diffusing cap...

  3. Pulmonary ventilation/perfusion scan

    MedlinePlus

    V/Q scan; Ventilation/perfusion scan; Lung ventilation/perfusion scan ... A pulmonary ventilation/perfusion scan is actually two tests. They may be done separately or together. During the perfusion scan, a health ...

  4. Lung Ventilation/Perfusion Scan

    MedlinePlus

    ... from the NHLBI on Twitter. What Is a Lung Ventilation/Perfusion Scan? A lung ventilation/perfusion scan, or VQ scan, is a ... that measures air and blood flow in your lungs. A VQ scan most often is used to ...

  5. Estimating a regional ventilation-perfusion index

    PubMed Central

    Muller, P A; Li, T; Isaacson, D; Newell, J C; Saulnier, G J; Kao, Tzu-Jen; Ashe, Jeffrey

    2015-01-01

    This is a methods paper, where an approximation to the local ventilation-perfusion ratio is derived. This approximation, called the ventilation-perfusion index since it is not exactly the physiological ventilation-perfusion ratio, is calculated using conductivity reconstructions obtained using electrical impedance tomography. Since computation of the ventilation-perfusion index only requires knowledge of the internal conductivity, any conductivity reconstruction method may be used. The method is explained, and results are presented using conductivities obtained from two EIT systems, one using an iterative method and the other a linearization method. PMID:26006279

  6. Methodology for ventilation/perfusion SPECT.

    PubMed

    Bajc, Marika; Neilly, Brian; Miniati, Massimo; Mortensen, Jan; Jonson, Björn

    2010-11-01

    Ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) is the scintigraphic technique of choice for the diagnosis of pulmonary embolism and many other disorders that affect lung function. Data from recent ventilation studies show that the theoretic advantages of Technegas over radiolabeled liquid aerosols are not restricted to the presence of obstructive lung disease. Radiolabeled macroaggregated human albumin is the imaging agent of choice for perfusion scintigraphy. An optimal combination of nuclide activities and acquisition times for ventilation and perfusion, collimators, and imaging matrix yields an adequate V/Q SPECT study in approximately 20 minutes of imaging time. The recommended protocol based on the patient remaining in an unchanged position during the initial ventilation study and the perfusion study allows presentation of matching ventilation and perfusion slices in all projections as well as in rotating volume images based upon maximum intensity projections. Probabilistic interpretation of V/Q SPECT should be replaced by a holistic interpretation strategy on the basis of all relevant information about the patient and all ventilation/perfusion patterns. PE is diagnosed when there is more than one subsegment showing a V/Q mismatch representing an anatomic lung unit. Apart from pulmonary embolism, other pathologies should be identified and reported, for example, obstructive disease, heart failure, and pneumonia. Pitfalls exist both with respect to imaging technique and scan interpretation. PMID:20920632

  7. Pulmonary perfusion during anesthesia and mechanical ventilation.

    PubMed

    Hedenstierna, G

    2005-06-01

    Cardiac output and the pulmonary perfusion can be affected by anesthesia and by mechanical ventilation. The changes contribute to impeded oxygenation of the blood. The major determinant of perfusion distribution in the lung is the relation between alveolar and pulmonary capillary pressures. Perfusion increases down the lung, due to hydrostatic forces. Since atelectasis is located in dependent lung regions, perfusion of non-ventilated lung parenchyma is common, producing shunt of around 8-10% of cardiac output. In addition, non-gravitational inhomogeneity of perfusion, that can be greater than the gravitational inhomogeneity, adds to impeded oxygenation of blood. Essentially all anaesthetics exert some, although mild, cardiodepressant action with one exception, ketamine. Ketamine may also increase pulmonary artery pressure, whereas other agents have little effect on pulmonary vascular tone. Mechanical ventilation impedes venous return and pushes blood flow downwards to dependent lung regions, and the effect may be striking with higher levels of PEEP. During one-lung anesthesia, there is shunt blood flow both in the non-ventilated and the ventilated lung, and shunt can be much larger in the ventilated lung than thought of. Recruitment manoeuvres shall be directed to the ventilated lung and other physical and pharmacological measures can be taken to manipulate blood flow in one lung anesthesia. PMID:15886595

  8. Ventilation-perfusion imaging in pulmonary papillomatosis

    SciTech Connect

    Espinola, D.; Rupani, H.; Camargo, E.E.; Wagner, H.N. Jr.

    1981-11-01

    Three children with laryngeal papillomas involving the lungs had serial ventilation-perfusion scintigrams to assess results of therapy designed to reduce the bronchial involvement. Different imaging patterns were observed depending on size, number, and location of lesions. In early parenchymal involvement a ventilation-perfusion mismatch was seen. The initial and follow-up studies correlated well with clinical and radiographic findings. This noninvasive procedure is helpful in evaluating ventilatory and perfusion impairment in these patients as well as their response to treatment.

  9. Measurement of continuous distributions of ventilation-perfusion ratios - Theory

    NASA Technical Reports Server (NTRS)

    Wagner, P. D.; Saltzman, H. A.; West, J. B.

    1974-01-01

    The resolution of the technique considered is sufficient to describe smooth distributions containing blood flow to unventilated regions (shunt), ventilation to unperfused regions (dead space), and up to three additional modes over the range of finite ventilation-perfusion ratios. In particular, areas whose ventilation-perfusion ratios are low can be separated from unventilated regions and those whose ventilation-perfusion ratios are high can similarly be distinguished from unperfused areas.

  10. Perfusion and ventilation of isolated canine lungs

    PubMed Central

    Otto, T. J.; Trenkner, M.; Stopczyk, A.; Gawdziński, M.; Chełstowska, B.

    1968-01-01

    In order to evaluate methods of preserving lungs for use in transplantation, experiments on 28 mongrel dogs were carried out. Two methods were tried—first, mechanical respiration of isolated lungs under deep hypothermia, with the vascular bed filled with blood; and, secondly, the perfusion of isolated lungs with the aid of a modified DeWall's apparatus. Allogenic transplantations of lungs preserved in both ways were carried out. Gasometric and histological examinations of preserved lungs, before and after transplantation, were performed. The best results were obtained with perfusion under hypothermic conditions; ventilation without perfusion resulted in failure. Lung transplantation was successful when, after being preserved, the lung remained unchanged. Major discrepancies between the macroscopic and microscopic findings in preserved lungs were observed. An original classification of the changes occurring in preserved lungs is proposed. PMID:4886091

  11. [Pulmonary ventilation/perfusion ratio].

    PubMed

    Guenard, H

    1987-01-01

    The ratios of ventilatory (V) and perfusion (Q) flow rates in the lung are to a large extent responsible for the efficiency of gas exchange. In a simplified monocompartmental model of the lung, the arterial partial pressure of a given gas (Pa) is a function of several factors: the solubility of this gas in blood, its venous and inspired partial pressures and the V/Q ratio. In a multicompartemental model, the mean arterial partial pressure of the gas is a function of the individual values of Pa in each compartment as well as the distribution of V/Q ratios in the lung and the relationship between the concentration and the partial pressure of the gas. The heterogeneity of the distribution of V/Q results from those of both V and Q. Two factors are mainly responsible for this heterogeneity: the gravity and the morphometric characteristics of bronchi and vessels. V/Q ratios are partially controlled at least in low V/Q compartments since hypoxia in these compartments leads to pulmonary arteriolar vasoconstriction. However lungs V/Q ratios range from 0.1 to 10 with a mode around 1. Age, muscular exercise, posture, accelerations, anesthesia, O2 breathing, pulmonary pathology are factors which may alter the distribution of V/Q ratios. PMID:3332289

  12. Spatial distribution of ventilation and perfusion: mechanisms and regulation.

    PubMed

    Glenny, Robb W; Robertson, H Thomas

    2011-01-01

    With increasing spatial resolution of regional ventilation and perfusion, it has become more apparent that ventilation and blood flow are quite heterogeneous in the lung. A number of mechanisms contribute to this regional variability, including hydrostatic gradients, pleural pressure gradients, lung compressibility, and the geometry of the airway and vascular trees. Despite this marked heterogeneity in both ventilation and perfusion, efficient gas exchange is possible through the close regional matching of the two. Passive mechanisms, such as the shared effect of gravity and the matched branching of vascular and airway trees, create efficient gas exchange through the strong correlation between ventilation and perfusion. Active mechanisms that match local ventilation and perfusion play little if no role in the normal healthy lung but are important under pathologic conditions. PMID:23737178

  13. Ventilation-perfusion matching during exercise

    NASA Technical Reports Server (NTRS)

    Wagner, P. D.

    1992-01-01

    In normal subjects, exercise widens the alveolar-arterial PO2 difference (P[A-a]O2) despite a more uniform topographic distribution of ventilation-perfusion (VA/Q) ratios. While part of the increase in P(A-a)O2 (especially during heavy exercise) is due to diffusion limitation, a considerable amount is caused by an increase in VA/Q mismatch as detected by the multiple inert gas elimination technique. Why this occurs is unknown, but circumstantial evidence suggests it may be related to interstitial pulmonary edema rather than to factors dependent on ventilation, airway gas mixing, airway muscle tone, or pulmonary vascular tone. In patients with lung disease, the gas exchange consequences of exercise are variable. Thus, arterial PO2 may increase, remain the same, or fall. In general, patients with advanced chronic obstructive pulmonary disease (COPD) or interstitial fibrosis who exercise show a fall in PO2. This is usually not due to worsening VA/Q relationships but mostly to the well-known fall in mixed venous PO2, which itself results from a relatively smaller increase in cardiac output than VO2. However, in interstitial fibrosis (but not COPD), there is good evidence that a part of the fall in PO2 on exercise is caused by alveolar-capillary diffusion limitation of O2 transport; in COPD (but not interstitial fibrosis), a frequent additional contributing factor to the hypoxemia of exercise is an inadequate ventilatory response, such that minute ventilation does not rise as much as does CO2 production or O2 uptake, causing arterial PCO2 to increase and PO2 to fall.

  14. Pulmonary ventilation and perfusion studies in lung cancer

    SciTech Connect

    Narabayashi, I.; Otsuka, N.

    1984-02-01

    In 46 patients with bronchogenic carcinoma, the diagnostic significance of pulmonary ventilation images by the continuous inhalation of Kr-81m gas, which has an extremely short half life, was studied in comparison with pulmonary perfusion images with Tc-99m MAA. The data were processed using digital analysis techniques. There were 15 cases with discrepancies between ventilation and perfusion. The V/Q ratios of the affected lung among the 43 patients showed values above 1.2 in nine cases and below 0.8 in six cases. The Kr-81m ventilation and Tc-99m perfusion images were compared before and after radiation therapy in eight patients. It was possible to assess the therapeutic effect on regional ventilation and regional perfusion, which could not be evaluated by chest x-ray alone, under the same conditions of normal breathing.

  15. Deep Vein Thrombosis Presenting on Pulmonary Ventilation and Perfusion Scintigraphy.

    PubMed

    Itani, Malak; Fair, Joanna; Hillman, Zachary; Behnia, Fatemeh; Elojeimy, Saeed

    2016-10-01

    A 52-year-old woman presenting with dyspnea was referred for a ventilation and perfusion scan (VQ). VQ images (with Tc-DTPA [diethylene triamine pentaacetic acid aerosol] and Tc-MAA [macroaggregated albumin]) initially appeared normal; however, count rates on perfusion images were similar to ventilation images, implying little Tc-MAA had reached the lungs. Spot images of the injected extremity demonstrated focal Tc-MAA accumulation worrisome for a venous thrombus, subsequently confirmed by Doppler ultrasound. Careful attention to relative radiotracer count rates on VQ scans is crucial to ensure diagnostic utility. In addition, abnormal low perfusion radiotracer counts may unveil other pathology with important clinical implications. PMID:27556796

  16. Ventilation-perfusion scintiscanning in tropical pulmonary eosinophilia.

    PubMed

    Ray, D; Jayachandran, C A

    1993-08-01

    We report the findings of ventilation and perfusion scintiscanning performed in three untreated patients with acute tropical pulmonary eosinophilia (TPE). In a 26-year-old man whose arterial blood gas values were normal, the lung scan showed normal radioactivity. The scintigrams of a 20-year-old woman who had hypoxemia and hypercapnea showed gross ventilation defects of both lungs that were mainly mismatched; changes in the perfusion scan were minimal. Scintiscanning in a 14-year-old girl who had moderate arterial hypoxia and mild hypocapnea, on the other hand, showed ventilation defects in both lungs, more marked in left lung; multiple matching ventilation-perfusion defects were also seen; however, the V/Q defects did not appear to be equally matched. The scintigraphic findings were compatible with arterial blood gas status of the individual patients and consistent with the notion that a disturbed ventilation-perfusion relationship may be responsible for hypoxemia in some of the patients with TPE. PMID:8339640

  17. Teaching Ventilation/Perfusion Relationships in the Lung

    ERIC Educational Resources Information Center

    Glenny, Robb W.

    2008-01-01

    This brief review is meant to serve as a refresher for faculty teaching respiratory physiology to medical students. The concepts of ventilation and perfusion matching are some of the most challenging ideas to learn and teach. Some strategies to consider in teaching these concepts are, first, to build from simple to more complex by starting with a…

  18. Postresection bronchopleural fistula: detection by regional ventilation-perfusion studies

    SciTech Connect

    Dixon, C.; Ali, M.K.; Atallah, M.R.; Ewer, M.S.

    1983-04-01

    In three patients, bronchopleural fistula developed after right pneumonectomy for bronchogenic carcinoma. In each instance, radiologic and clinical evidence was inconclusive. Xenon 133 regional ventilation-perfusion studies confirmed the diagnosis of a bronchopleural fistula in both the immediate and late postoperative periods.

  19. Topographic distribution of pulmonary ventilation and perfusion in the horse

    SciTech Connect

    Amis, T.C.; Pascoe, J.R.; Hornof, W.

    1984-08-01

    The regional distribution of ventilation to perfusion ratios (VA/Q) in the lungs of 8 healthy standing Thoroughbred geldings (4.4 +/- 1.5 years, 465.7 +/- 46.6 kg) was studied, using steady-state inhalation and IV infusion of the radioactive gas krypton-81m. The VA/Q was uniformly distributed within a vertical lung strip centered over the 9th rib on the right side. Ventilation per unit of alveolar volume (V/VA) assessed from the clearance of inhaled radioactive gas in 5 horses increased from 0.49 +/- 0.13 (arbitrary units) in nondependent lung zones to 1.45 +/- 0.16 in dependent lung zones. Seemingly, a vertical gradient of pulmonary ventilation exists in the horse that is matched by a similar gradient of perfusion.

  20. Ventilation perfusion radionuclide imaging in cryptogenic fibrosing alveolitis.

    PubMed

    Bourke, S J; Hawkins, T; Keavey, P M; Gascoigne, A D; Corris, P A

    1993-06-01

    There is increasing interest in ventilation perfusion (V/Q) imaging in cryptogenic fibrosing alveolitis because of the data these scans provide on the dynamic V/Q relationships in such patients undergoing single lung transplantation. However, the full spectrum of V/Q abnormalities in this disease is poorly defined. We therefore analysed the V/Q scans of 45 consecutive patients with advanced cryptogenic fibrosing alveolitis being considered for single lung transplantation. Scans were classified according to the presence, severity and degree of matching of defects in ventilation and perfusion images and the results were compared with the data obtained from lung function tests. Ventilation images showed defects in 13 (29%) and 'washout delay' in 15 (33%) patients; 10 (22%) patients had asymmetric distribution of ventilation with one lung receiving > 60% of total ventilation. Perfusion images showed normal perfusion in 8 (18%), mild defects in 18 (40%) and major defects in 19 (42%) patients. The distribution of perfusion between lungs was significantly asymmetric in 20 (45%) patients. V/Q images were matched in 15 (33%), mildly mismatched in 15 (33%) and severely mismatched in 15 (33%) patients, but the degree of V/Q mismatch did not show a relationship to KCO, PaO2 or A-aO2 gradient. The appearances were atypical of pulmonary embolism in eight patients. V/Q images in cryptogenic fibrosing alveolitis show a diverse range of appearances and may mimic pulmonary embolism. V/Q imaging complements the data obtained from lung function tests and is particularly useful in defining the differential function of each lung which is particularly important in the assessment of patients for single lung transplantation. PMID:8321484

  1. "Matching" ventilation/perfusion images in fat embolization.

    PubMed

    Skarzynski, J J; Slavin, J D; Spencer, R P; Karimeddini, M K

    1986-01-01

    Forty-eight hours after fracture of the tibia and fibula, a 27-year-old man developed the triad of findings noted in the fat embolism syndrome (neurologic changes, respiratory distress, and petechiae). An initially normal chest-x-ray, which progressed to one of bilateral fluffy diffuse infiltrates, aided in making the diagnosis. Ventilation/perfusion lung images were performed at the time of the radiographic changes and showed "matching" defects. Transcapillary passage of lipid breakdown products was considered to be the cause. While all parts of the lung showed reduced ventilation/perfusion, the upper half of the lung fields was affected more prominently, as opposed to emboli of venous origin, which most frequently involve the lung bases. PMID:3943243

  2. Ventilation-perfusion matching in long-term microgravity

    NASA Technical Reports Server (NTRS)

    Verbandt, Y.; Wantier, M.; Prisk, G. K.; Paiva, M.; West, J. B. (Principal Investigator)

    2000-01-01

    We studied the ventilation-perfusion matching pattern in normal gravity (1 G) and short- and long-duration microgravity (microG) using the cardiogenic oscillations in the sulfur hexaflouride (SF(6)) and CO(2) concentration signals during the phase III portion of vital capacity single-breath washout experiments. The signal power of the cardiogenic concentration variations was assessed by spectral analysis, and the phase angle between the oscillations of the two simultaneously expired gases was obtained through cross-correlation. For CO(2), a significant reduction of cardiogenic power was observed in microG, with respect to 1 G, but the reduction was smaller and more variable in the case of SF(6). A shift from an in-phase condition in 1 G to an out-of-phase condition was found for both short- and long-duration microG. We conclude that, although the distribution of ventilation and perfusion becomes more homogeneous in microG, significant inhomogeneities persist and that areas of high perfusion become associated with areas of relatively lower ventilation. In addition, these modifications seem to remain constant during long-term exposure to microG.

  3. Gas exchange and ventilation-perfusion relationships in the lung.

    PubMed

    Petersson, Johan; Glenny, Robb W

    2014-10-01

    This review provides an overview of the relationship between ventilation/perfusion ratios and gas exchange in the lung, emphasising basic concepts and relating them to clinical scenarios. For each gas exchanging unit, the alveolar and effluent blood partial pressures of oxygen and carbon dioxide (PO2 and PCO2) are determined by the ratio of alveolar ventilation to blood flow (V'A/Q') for each unit. Shunt and low V'A/Q' regions are two examples of V'A/Q' mismatch and are the most frequent causes of hypoxaemia. Diffusion limitation, hypoventilation and low inspired PO2 cause hypoxaemia, even in the absence of V'A/Q' mismatch. In contrast to other causes, hypoxaemia due to shunt responds poorly to supplemental oxygen. Gas exchanging units with little or no blood flow (high V'A/Q' regions) result in alveolar dead space and increased wasted ventilation, i.e. less efficient carbon dioxide removal. Because of the respiratory drive to maintain a normal arterial PCO2, the most frequent result of wasted ventilation is increased minute ventilation and work of breathing, not hypercapnia. Calculations of alveolar-arterial oxygen tension difference, venous admixture and wasted ventilation provide quantitative estimates of the effect of V'A/Q' mismatch on gas exchange. The types of V'A/Q' mismatch causing impaired gas exchange vary characteristically with different lung diseases. PMID:25063240

  4. Changes in distribution of lung perfusion and ventilation at rest and during maximal exercise

    SciTech Connect

    Mohsenifar, Z.; Ross, M.D.; Waxman, A.; Goldbach, P.; Koerner, S.K.

    1985-03-01

    A new method for evaluation of changes in the distribution of pulmonary perfusion and ventilation during exercise was applied to normal male volunteers. Ventilation and perfusion scans were done with the subjects seated on a bicycle ergometer. The resting studies utilized krypton 81 (/sup 81m/Kr) for ventilation and technetium /sup 99m/ (/sup 99m/Tc) macroaggregate albumin intravenously for perfusion. Exercise studies were done when 80 percent of maximum predicted heart rate was maintained for five minutes and utilized /sup 81m/Kr for ventilation and a tenfold dose of /sup 99m/Tc for perfusion. Higher dose of /sup 99m/Tc would minimize the effect of radioactivity left over from the resting study. This method allowed us to assess changes in ventilation and perfusion in normal subjects induced by exercise, but may also be applicable in a variety of cardiopulmonary conditions that affect pulmonary ventilation and perfusion or both.

  5. Regional ventilation/perfusion mismatch pattern in patient with Swyer James (MacLeod's) syndrome.

    PubMed

    Sager, Sait; Asa, Sertac; Akyel, Reşit; Atahan, Ersan; Kanmaz, Bedii

    2014-09-01

    Swyer James (McLeod's) syndrome (SJMS) is an uncommon disease, which occurs as a result of childhood bronchiolitis obliterans. Patients may not be diagnosed until later in their life. A 46-year-old man underwent ventilation/perfusion scintigraphy for acute onset of dyspnea. The scan showed markedly diminished ventilation and perfusion unilaterally on the right middle and inferior lobes. However, mismatched ventilation-perfusion pattern was shown on the upper right lobe, which was consistent with pulmonary embolism. Unilaterally matched ventilation/perfusion defect can see in SJMS in lung scintigraphy; however, when pulmoner embolism may accompany, scintigraphy should be carefully examined. PMID:25535507

  6. Ventilation/perfusion mismatch during lung aeration at birth.

    PubMed

    Lang, Justin A R; Pearson, James T; te Pas, Arjan B; Wallace, Megan J; Siew, Melissa L; Kitchen, Marcus J; Fouras, Andreas; Lewis, Robert A; Wheeler, Kevin I; Polglase, Graeme R; Shirai, Mikiyasu; Sonobe, Takashi; Hooper, Stuart B

    2014-09-01

    At birth, the transition to newborn life is triggered by lung aeration, which stimulates a large increase in pulmonary blood flow (PBF). Current theories predict that the increase in PBF is spatially related to ventilated lung regions as they aerate after birth. Using simultaneous phase-contrast X-ray imaging and angiography we investigated the spatial relationships between lung aeration and the increase in PBF after birth. Six near-term (30-day gestation) rabbits were delivered by caesarean section, intubated and an intravenous catheter inserted, before they were positioned for X-ray imaging. During imaging, iodine was injected before ventilation onset, after ventilation of the right lung only, and after ventilation of both lungs. Unilateral ventilation increased iodine levels entering both left and right pulmonary arteries (PAs) and significantly increased heart rate, iodine ejection per beat, diameters of both left and right PAs, and number of visible vessels in both lungs. Within the 6th intercostal space, the mean gray level (relative measure of iodine level) increased from 68.3 ± 11.6 and 70.3 ± 7.5%·s to 136.3 ± 22.6 and 136.3 ± 23.7%·s in the left and right PAs, respectively. No differences were observed between vessels in the left and right lungs, despite the left lung not initially being ventilated. The increase in PBF at birth is not spatially related to lung aeration allowing a large ventilation/perfusion mismatch, or pulmonary shunting, to occur in the partially aerated lung at birth. PMID:24994883

  7. Idiopathic pulmonary fibrosis. A rare cause of scintigraphic ventilation-perfusion mismatch

    SciTech Connect

    Pochis, W.T.; Krasnow, A.Z.; Collier, B.D.; Mewissen, M.W.; Almagro, U.A.; Hellman, R.S.; Isitman, A.T. )

    1990-05-01

    A case of idiopathic pulmonary fibrosis with multiple areas of mismatch on ventilation-perfusion lung imaging in the absence of pulmonary embolism is presented. Idiopathic pulmonary fibrosis is one of the few nonembolic diseases producing a pulmonary ventilation-perfusion mismatch. In this condition, chest radiographs may not detect the full extent of disease, and xenon-133 ventilation imaging may be relatively insensitive to morbid changes in small airways. Thus, when examining patients with idiopathic pulmonary fibrosis, one should be aware that abnormal perfusion imaging patterns without matching ventilation abnormalities are not always due to embolism. In this setting, contrast pulmonary angiography is often needed for accurate differential diagnosis.

  8. Effect of PEEP on regional ventilation and perfusion in the mechanically ventilated preterm lamb

    SciTech Connect

    Schlessel, J.S.; Susskind, H.; Joel, D.D.; Bossuyt, A.; Harrold, W.H.; Zanzi, I.; Chanana, A.D. )

    1989-08-01

    Improvement of gas exchange through closer matching of regional ventilation (V) and lung perfusion (Q) with the application of positive end-expiratory pressure (PEEP) was evaluated in vivo in six mechanically ventilated preterm lambs (107-126 days/145 days gestation). Changes in V and Q were determined from in vivo scintigraphic measurements in four lung regions with inhaled radioactive 81mKr, and infused {sup 81m}Kr/dextrose and/or ({sup 99m}Tc)MAA as PEEP was applied at 2, 4, and 6 cm H{sub 2}O in each animal. Dynamic compliance varied between 0.02 and 0.40 ml/cm H{sub 2}O, which was consistent with surfactant deficiency. As PEEP was increased, the regional distribution of Q shifted from the rostral to the caudal lung regions (p less than 0.02 to less than 0.05), while that of V remained unchanged. Regional V/Q matching improved together with a trend towards improvement of arterial blood gases as PEEP was increased from 2 to 4 cm H{sub 2}O. Pulmonary scintigraphy offers a noninvasive methodology for the quantitative assessment of regional V and Q matching in preterm lambs and may be clinically applicable to ventilated neonates.

  9. Ventilation-perfusion inequality in chronic obstructive pulmonary disease.

    PubMed Central

    Wagner, P D; Dantzker, D R; Dueck, R; Clausen, J L; West, J B

    1977-01-01

    A multiple inert gas elimination method was used to study the mechanism of impaired gas exchange in 23 patients with advanced chronic obstructive pulmonary disease (COPD). Three patterns of ventilation-perfusion (Va/Q) inequality were found: (a) A pattern with considerable regions of high (greater than 3) VA/Q, none of low (less than 0.1) VA/Q, and essentially no shunt. Almost all patients with type A COPD showed this pattern, and it was also seen in some patients with type B. (b) A pattern with large amounts of low but almost none of high VA/Q, and essentially no shunt. This pattern was found in 4 of 12 type B patients and 1 of type A. (c) A pattern with both low and high VA/Q areas was found in the remaining 6 patients. Distributions with high VA/Q areas occurred mostly in patients with greatly increased compliance and may represent loss of blood-glow due to alveolar wall destruction. Similarly, well-defined modes of low VA/Q areas were seen mostly in patients with severe cough and sputum and may be due to reduced ventilation secondary to mechanical airways obstruction or distortion. There was little change in the VA/Q distributions on exercise or on breathing 100% O2. The observed patterns of VA/Q inequality and shunt accounted for all of the hypoxemia at rest and during exercise. There was therefore no evidence for hypoxemia caused by diffusion impairment. Patients with similar arterial blood gases often had dissimilar VA/Q patterns. As a consequence the pattern of VA/Q inequality could not necessarily be inferred from the arterial PO2 and PCO2. PMID:833271

  10. Computed tomography studies of lung ventilation and perfusion.

    PubMed

    Hoffman, Eric A; Chon, Deokiee

    2005-01-01

    With the emergence of multidetector-row computed tomography (CT) it is now possible to image both structure and function via use of a single imaging modality. Breath-hold spiral CT provides detail of the airway and vascular trees along with texture reflective of the state of the lung parenchyma. Use of stable xenon gas wash-in and/or wash-out methods using an axial mode of the CT scanner whereby images are acquired through gating to the respiratory cycle provide detailed images of regional ventilation with isotropic voxel dimensions now on the order of 0.4 mm. Axial scanning during a breath hold and gating to the electrocardiogram during the passage of a sharp bolus injection of iodinated contrast agent provide detailed images of regional pulmonary perfusion. These dynamic CT methods for the study of regional lung function are discussed in the context of other methods that have been used to study heterogeneity of lung function. PMID:16352755

  11. Standing prone positioning in establishing causality between matched ventilation-perfusion defects and pleural effusion.

    PubMed

    Fotos, Joseph S; Tulchinsky, Mark

    2015-01-01

    Ventilation-perfusion scintigraphy is routinely performed in patients with suspected pulmonary thromboembolism. Pleural effusions in such patients are common and can cause matched ventilation-perfusion defects. This is especially true of the posterior projections in the supine patient. Prone positioning has been described as a useful technique to redistribute pleural fluid anteriorly, exposing perfusion in posterior lung fields; however, some patients have a concurrent condition that renders prone positioning difficult. This report discusses a modified technique that allows patients to be imaged in a standing prone position with excellent results. PMID:25247271

  12. Separation of ventilation and perfusion related signals within EIT-data streams

    NASA Astrophysics Data System (ADS)

    Pikkemaat, R.; Leonhardt, S.

    2010-04-01

    Electrical impedance tomography is a widely established technique for ventilation monitoring in the case of clinical research. To assess the capability of a patient's gas exchange, it is necessary to determine the regional supply of ventilation V as well as the local perfusion Q. Therefore, many approaches have been investigated to extract both signals from EIT-data, which would allow a V/Q-mapping. The challenge of this issue depends on the very weak perfusion related signal compared to the signal of ventilation. First approaches to visualize the perfusion were performed inducing apnea, ECG-gating or were based on Fourier series. Rather new techniques use principle component analysis (PCA) defining eigenvectors as a signal in time and thus try to determine "typical" ventilatory as well perfusion related signal streams. In this work, the algorithms of separation will be analyzed and compared (using apnea needs no separation and will not be discussed in this work).

  13. Comparison of 4-Dimensional Computed Tomography Ventilation With Nuclear Medicine Ventilation-Perfusion Imaging: A Clinical Validation Study

    PubMed Central

    Vinogradskiy, Yevgeniy; Koo, Phillip J.; Castillo, Richard; Castillo, Edward; Guerrero, Thomas; Gaspar, Laurie E.; Miften, Moyed; Kavanagh, Brian D.

    2014-01-01

    Purpose Four-dimensional computed tomography (4DCT) ventilation imaging provides lung function information for lung cancer patients undergoing radiation therapy. Before 4DCT-ventilation can be implemented clinically it needs to be validated against an established imaging modality. The purpose of this work was to compare 4DCT-ventilation to nuclear medicine ventilation, using clinically relevant global metrics and radiologist observations. Methods and Materials Fifteen lung cancer patients with 16 sets of 4DCT and nuclear medicine ventilation-perfusion (VQ) images were used for the study. The VQ-ventilation images were acquired in planar mode using Tc-99m-labeled diethylenetriamine-pentaacetic acid aerosol inhalation. 4DCT data, spatial registration, and a density-change-based model were used to compute a 4DCT-based ventilation map for each patient. The percent ventilation was calculated in each lung and each lung third for both the 4DCT and VQ-ventilation scans. A nuclear medicine radiologist assessed the VQ and 4DCT scans for the presence of ventilation defects. The VQ and 4DCT-based images were compared using regional percent ventilation and radiologist clinical observations. Results Individual patient examples demonstrate good qualitative agreement between the 4DCT and VQ-ventilation scans. The correlation coefficients were 0.68 and 0.45, using the percent ventilation in each individual lung and lung third, respectively. Using radiologist-noted presence of ventilation defects and receiver operating characteristic analysis, the sensitivity, specificity, and accuracy of the 4DCT-ventilation were 90%, 64%, and 81%, respectively. Conclusions The current work compared 4DCT with VQ-based ventilation using clinically relevant global metrics and radiologist observations. We found good agreement between the radiologist’s assessment of the 4DCT and VQ-ventilation images as well as the percent ventilation in each lung. The agreement lessened when the data were analyzed

  14. Comparison of 4-Dimensional Computed Tomography Ventilation With Nuclear Medicine Ventilation-Perfusion Imaging: A Clinical Validation Study

    SciTech Connect

    Vinogradskiy, Yevgeniy; Koo, Phillip J.; Castillo, Richard; Castillo, Edward; Guerrero, Thomas; Gaspar, Laurie E.; Miften, Moyed; Kavanagh, Brian D.

    2014-05-01

    Purpose: Four-dimensional computed tomography (4DCT) ventilation imaging provides lung function information for lung cancer patients undergoing radiation therapy. Before 4DCT-ventilation can be implemented clinically it needs to be validated against an established imaging modality. The purpose of this work was to compare 4DCT-ventilation to nuclear medicine ventilation, using clinically relevant global metrics and radiologist observations. Methods and Materials: Fifteen lung cancer patients with 16 sets of 4DCT and nuclear medicine ventilation-perfusion (VQ) images were used for the study. The VQ-ventilation images were acquired in planar mode using Tc-99m-labeled diethylenetriamine-pentaacetic acid aerosol inhalation. 4DCT data, spatial registration, and a density-change-based model were used to compute a 4DCT-based ventilation map for each patient. The percent ventilation was calculated in each lung and each lung third for both the 4DCT and VQ-ventilation scans. A nuclear medicine radiologist assessed the VQ and 4DCT scans for the presence of ventilation defects. The VQ and 4DCT-based images were compared using regional percent ventilation and radiologist clinical observations. Results: Individual patient examples demonstrate good qualitative agreement between the 4DCT and VQ-ventilation scans. The correlation coefficients were 0.68 and 0.45, using the percent ventilation in each individual lung and lung third, respectively. Using radiologist-noted presence of ventilation defects and receiver operating characteristic analysis, the sensitivity, specificity, and accuracy of the 4DCT-ventilation were 90%, 64%, and 81%, respectively. Conclusions: The current work compared 4DCT with VQ-based ventilation using clinically relevant global metrics and radiologist observations. We found good agreement between the radiologist's assessment of the 4DCT and VQ-ventilation images as well as the percent ventilation in each lung. The agreement lessened when the data were analyzed

  15. Effect of Endobronchial Valve Therapy on Pulmonary Perfusion and Ventilation Distribution

    PubMed Central

    Pizarro, Carmen; Ahmadzadehfar, Hojjat; Essler, Markus; Tuleta, Izabela; Fimmers, Rolf; Nickenig, Georg; Skowasch, Dirk

    2015-01-01

    Introduction Endoscopic lung volume reduction (ELVR) is an emerging therapy for emphysematous COPD. However, any resulting changes in lung perfusion and ventilation remain undetermined. Here, we report ELVR-mediated adaptations in lung perfusion and ventilation, as investigated by means of pulmonary scintigraphy. Methods In this observational study, we enrolled 26 patients (64.9±9.4 yrs, 57.7% male) with COPD heterogeneous emphysema undergoing ELVR with endobronchial valves (Zephyr, Pulmonx, Inc.). Mean baseline FEV1 and RV were 32.9% and 253.8% predicted, respectively. Lung scintigraphy was conducted prior to ELVR and eight weeks thereafter. Analyses of perfusion and ventilation shifts were performed and complemented by correlation analyses between paired zones. Results After ELVR, target zone perfusion showed a mean relative reduction of 43.32% (p<0.001), which was associated with a significant decrease in target zone ventilation (p<0.001). Perfusion of the contralateral untreated zone and of the contralateral total lung exhibited significant increases post-ELVR (p = 0.002 and p = 0.005, respectively); both correlated significantly with the corresponding target zone perfusion adaptations. Likewise, changes in target zone ventilation correlated significantly with ventilatory changes in the contralateral untreated zone and the total contralateral lung (Pearson’s r: −0.42, p = 0.04 and Pearson’s r: −0.42, p = 0.03, respectively). These effects were observed in case of clinical responsiveness to ELVR, as assessed by changes in the six-minute walk test distance. Discussion ELVR induces a relevant decrease in perfusion and ventilation of the treated zone with compensatory perfusional and ventilatory redistribution to the contralateral lung, primarily to the non-concordant, contralateral zone. PMID:25822624

  16. Ventilation/Perfusion Scintigraphy in Children with Post-Infectious Bronchiolitis Obliterans: A Pilot Study

    PubMed Central

    Xie, Bo-Qia; Wang, Wei; Zhang, Wen-Qian; Guo, Xin-Hua; Yang, Min-Fu; Wang, Li; He, Zuo-Xiang; Tian, Yue-Qin

    2014-01-01

    Purpose Childhood post-infectious bronchiolitis obliterans (BO) is an infrequent lung disease leading to narrowing and/or complete obliteration of small airways. Ventilation and perfusion (V/Q) scan can provide both regional and global pulmonary information. However, only few retrospective researches investigating post-infectious BO involved V/Q scan, the clinical value of this method is unknown. This preliminary prospective study was aimed to evaluate the correlation of V/Q scan with disease severity, pulmonary function test results, and prognosis in children with post-infectious BO. Methods Twenty-five post-infectious BO children (18 boys and 7 girls; mean age, 41 months) underwent V/Q scan and pulmonary function tests. Patients were followed after their inclusion. Ventilation index and perfusion index obtained from V/Q scan were used to measure pulmonary abnormalities. Spearman's rank correlation test of ventilation index and perfusion index on disease severity, lung function tests indices, and follow-up results were performed. Results The median follow-up period was 4.6 years (range, 2.2 to 5.0 years). Ventilation index and perfusion index were both correlated with disease severity (r = 0.72, p<0.01 and r = 0.73, p<0.01), but only ventilation index was related to pulmonary function tests results (all p<0.05). In addition, Spearman test yielded significant correlations between perfusion index and prognosis (r = 0.77, p<0.01), and ventilation index and prognosis (r = 0.63, p = 0.01). Conclusions For children with post-infectious BO, the present study preliminarily indicated that the degree of ventilation and perfusion abnormalities evaluated by V/Q scan may be used to assess disease severity, and may be predictive of patient's outcome. PMID:24852165

  17. Dynamic chest radiography with a flat-panel detector (FPD): ventilation-perfusion study

    NASA Astrophysics Data System (ADS)

    Tanaka, R.; Sanada, S.; Fujimura, M.; Yasui, M.; Tsuji, S.; Hayashi, N.; Okamoto, H.; Nanbu, Y.; Matsui, O.

    2011-03-01

    Pulmonary ventilation and blood flow are reflected in dynamic chest radiographs as changes in X-ray translucency, i.e., pixel values. This study was performed to investigate the feasibility of ventilation-perfusion (V/Q) study based on the changes in pixel value. Sequential chest radiographs of a patient with ventilation-perfusion mismatch were obtained during respiration using a dynamic flat-panel detector (FPD) system. The lung area was recognized and average pixel value was measured in each area, tracking and deforming the region of interest. Inter-frame differences were then calculated, and the absolute values were summed in each respiratory phase. The results were visualized as ventilation, blood flow, V/Q ratio distribution map and compared to distribution of radioactive counts on ventilation and perfusion scintigrams. In the results, abnormalities were appeared as a reduction of changes in pixel values, and a correlation was observed between the distribution of changes in pixel value and those of radioactivity counts (Ventilation; r=0.78, Perfusion; r=0.77). V/Q mismatch was also indicated as mismatch of changes in pixel value, and a correlation with V/Q calculated by radioactivity counts (r=0.78). These results indicated that the present method is potentially useful for V/Q study as an additional examination in conventional chest radiography.

  18. Perfusion and ventilation filters for Fourier-decomposition MR lung imaging.

    PubMed

    Wujcicki, Artur; Corteville, Dominique; Materka, Andrzej; Schad, Lothar R

    2015-03-01

    MR imaging without the use of contrast agents has recently been used for creating perfusion and ventilation functional lung images. The technique incorporates frequency- or wavelet-domain filters to separate the MR signal components. This paper presents a new, subject-adaptive algorithm for perfusion and ventilation filters design. The proposed algorithm uses a lung signal model for separation of the signal components in the frequency domain. Non-stationary lung signals are handled by a short time Fourier transform. This method was applied to sets of 192 and 90 co-registered non-contrast MR lung images measured for five healthy subjects at the rate of 3,33 images per second, using different slice thicknesses. In each case, the resulted perfusion and ventilation images showed a smaller amount of mutual information, when compared to those obtained using the known lowpass/highpass filter approach. PMID:25466452

  19. Optimization of isolated perfused/ventilated mouse lung to study hypoxic pulmonary vasoconstriction

    PubMed Central

    Yoo, Hae Young; Zeifman, Amy; Ko, Eun A.; Smith, Kimberly A.; Chen, Jiwang; Machado, Roberto F.; Zhao, You-Yang; Minshall, Richard D.; Yuan, Jason X.-J.

    2013-01-01

    Hypoxic pulmonary vasoconstriction (HPV) is a compensatory physiological mechanism in the lung that optimizes the matching of ventilation to perfusion and thereby maximizes gas exchange. Historically, HPV has been primarily studied in isolated perfused/ventilated lungs; however, the results of these studies have varied greatly due to different experimental conditions and species. Therefore, in the present study, we utilized the mouse isolated perfused/ventilated lung model for investigation of the role of extracellular Ca2+ and caveolin-1 and endothelial nitric oxide synthase expression on HPV. We also compared HPV using different perfusate solutions: Physiological salt solution (PSS) with albumin, Ficoll, rat blood, fetal bovine serum (FBS), or Dulbecco's Modified Eagle Medium (DMEM). After stabilization of the pulmonary arterial pressure (PAP), hypoxic (1% O2) and normoxic (21% O2) gases were applied via a ventilator in five-minute intervals to measure HPV. The addition of albumin or Ficoll with PSS did not induce persistent and strong HPV with or without a pretone agent. DMEM with the inclusion of FBS in the perfusate induced strong HPV in the first hypoxic challenge, but the HPV was neither persistent nor repetitive. PSS with rat blood only induced a small increase in HPV amplitude. Persistent and repetitive HPV occurred with PSS with 20% FBS as perfusate. HPV was significantly decreased by the removal of extracellular Ca2+ along with addition of 1 mM EGTA to chelate residual Ca2+ and voltage-dependent Ca2+ channel blocker (nifedipine 1 μM). PAP was also reactive to contractile stimulation by high K+ depolarization and U46619 (a stable analogue of thromboxane A2). In summary, optimal conditions for measuring HPV were established in the isolated perfused/ventilated mouse lung. Using this method, we further confirmed that HPV is dependent on Ca2+ influx. PMID:24015341

  20. Impaired matching of perfusion and ventilation in heart failure detected by 133xenon.

    PubMed

    Lewis, N P; Banning, A P; Cooper, J P; Sundar, A S; Facey, P E; Evans, W D; Henderson, A H

    1996-01-01

    In severe chronic heart failure (CHF) the ventilatory cost of CO2 elimination during exercise (VE/VCO2) is increased, suggesting ventilation/perfusion (V/Q) mismatch. The relationship of exercise VE/VCO2 regression slope m to deadspace ventilation was studied in 15 patients with CHF who underwent cardiopulmonary exercise testing and arterial blood gas monitoring. Regional lung ventilation and perfusion was studied, using 133xenon, at rest and peak exercise in a further group of 10 CHF patients and in five normal subjects. VE/VCO2 slope m correlated well with deadspace ventilation at peak exercise in the 15 patients with CHF. We therefore used exercise VE/VCO2 slope m to categorize CHF patients undergoing 133xenon imaging into groups with increased (slope m > 36) or normal (slope m < 36) exercise deadspace ventilation. In normals, resting V/Q determined by 133xenon showed a gravitational gradient, which improved on exercise as a result of relative increases and of relative reductions in regional perfusion; no significant changes in regional ventilation distribution were detected. In patients with CHF who had normal slope m (n = 5), rest and exercise V/Q were similar to the normal subjects. In CHF patients with increased slope m (n = 5) however, the resting gravitational gradient of V/Q was lost, and there were no significant changes in relative perfusion distribution on exercise. These findings suggest that the increased ventilatory cost of CO2 elimination found in certain patients with CHF is related to inability to coordinate and optimise the relative distribution of lung perfusion with respect to ventilation during exercise. PMID:8896743

  1. Bilateral basal Xe-133 retention and ventilation/perfusion patterns in mild and subclinical congestive heart failure

    SciTech Connect

    Lee, H.K.; Skarzynski, J.J.; Spadaro, A. )

    1989-12-01

    The Xe-133 ventilation pattern in congestive heart failure (CHF) was assessed using 24 inpatient ventilation/perfusion studies performed to rule out pulmonary embolism. Patients with histories of CHF, myocardial infarction (MI), and cardiomyopathy were included in the study. Frank pulmonary edema, pulmonary embolism, and other known lung diseases such as chronic obstructive lung disease, tumor, and pneumonia were excluded. Fifteen of the 24 patients had abnormal ventilation scans. Twelve of the 15 showed bilateral basal Xe-133 retention on washout; the remaining 3 showed diffuse, posterior regional retention. On perfusion scans, 14 of the 15 abnormal ventilation patients showed evidence of CHF such as inverted perfusion gradient, enlarged cardiac silhouette, or patchy perfusion, and all of them had a history of CHF or cardiac disease. Nine of the 24 patients had normal ventilation scans, including normal washout patterns. Seven of the nine had normal perfusion (p less than 0.01). Four of the nine normal ventilation patients had a history of cardiac disease or CHF but no recent acute MI. Bilateral basal regional Xe-133 retention, coupled with perfusion scan evidence of CHF such as inverted perfusion gradient, enlarged cardiac silhouette, and patchy perfusion pattern, appears to be a sensitive and characteristic ventilation/perfusion finding in mild or subclinical CHF.

  2. Distribution of pulmonary ventilation and perfusion during short periods of weightlessness

    NASA Technical Reports Server (NTRS)

    Michels, D. B.; West, J. B.

    1978-01-01

    Airborne experiments were conducted on four trained normal male subjects (28-40 yr) to study pulmonary function during short periods (22-27 sec) of zero gravity obtained by flying a jet aircraft through appropriate parabolic trajectories. The cabin was always pressurized to a sea-level altitude. The discussion is limited to pulmonary ventilation and perfusion. The results clearly demonstrate that gravity is the major factor causing nonuniformity in the topographical distribution of pulmonary ventilation. More importantly, the results suggest that virtually all the topographical nonuniformity of ventilation, blood flow, and lung volume observed under 1-G conditions are eliminated during short periods of zero gravity.

  3. A General Approach to the Evaluation of Ventilation-Perfusion Ratios in Normal and Abnormal Lungs

    ERIC Educational Resources Information Center

    Wagner, Peter D.

    1977-01-01

    Outlines methods for manipulating multiple gas data so as to gain the greatest amount of insight into the properties of ventilation-perfusion distributions. Refers to data corresponding to normal and abnormal lungs. Uses a two-dimensional framework with the respiratory gases of oxygen and carbon dioxide. (CS)

  4. Prediction of postoperative pulmonary function following thoracic operations. Value of ventilation-perfusion scanning

    SciTech Connect

    Bria, W.F.; Kanarek, D.J.; Kazemi, H.

    1983-08-01

    Surgical resection of lung cancer is frequently required in patients with severely impaired lung function resulting from chronic obstructive pulmonary disease. Twenty patients with obstructive lung disease and cancer (mean preoperative forced expiratory volume in 1 second (FEV1) . 1.73 L) were studied preoperatively and postoperatively by spirometry and radionuclide perfusion, single-breath ventilation, and washout techniques to test the ability of these methods to predict preoperatively the partial loss of lung function by the resection. Postoperative FEV1 and forced vital capacity (FVC) were accurately predicted by the formula: postoperative FEV1 (or FVC) . preoperative FEV1 X percent function of regions of lung not to be resected (r . 0.88 and 0.95, respectively). Ventilation and perfusion scans are equally effective in prediction. Washout data add to the sophistication of the method by permitting the qualitative evaluation of ventilation during tidal breathing. Criteria for patients requiring the study are suggested.

  5. Evaluation of pulmonary perfusion in lung regions showing isolated xenon-133 ventilation washout defects

    SciTech Connect

    Bushnell, D.L.; Sood, K.B.; Shirazi, P.; Pal, I. )

    1990-08-01

    Xenon-133 washout phase imaging is often used to help determine whether the etiology of a perfusion defect is embolic or due to pulmonary parenchymal pathology, such as chronic obstructive pulmonary disease. This study was designed to evaluate the pulmonary blood flow patterns associated with isolated defects on xenon washout images. Scintigraphic lung studies were reviewed until 100 cases with abnormal ventilation results were obtained. Ventilation abnormalities were compared with the corresponding perfusion scan results at the same anatomic site. Of the 208 individual lung regions with xenon abnormalities, 111 showed isolated washout defects (that is, with normal washin). Ninety-four of these 111 sites showed either normal perfusion or a small, nonsegmental corresponding perfusion defect. Three segmental perfusion defects were noted in association with isolated xenon retention. In each of these cases, however, the patient was felt actually to have pulmonary embolism. Thus, it is recommended that, for interpretation of scintigraphic images in the assessment of pulmonary embolism, lung pathology associated with isolated xenon retention not be considered a potential cause for large or segmental perfusion defects.

  6. Intensity correlation of ventilation-perfusion lung images

    NASA Astrophysics Data System (ADS)

    Costa, Antonio A.; Vaz de Carvalho, Carlos; Seixas, M.; Ferreira, F. N.; Guedes, M. A.; Amaral, I.

    1993-07-01

    The purpose of this study is to develop a method to create new images, based on lung verification and perfusion raw nuclear medicine images obtained from a gamma camera, that may help the correlation of their intrinsic information. Another major topic of this study is the assessment of the usefulness of this method in the detection of lung malfunction.

  7. Diffusing capacities and ventilation: perfusion ratios in patients with the clinical syndrome of alveolar capillary block

    PubMed Central

    Arndt, Hartmut; King, Thomas K. C.; Briscoe, William A.

    1970-01-01

    Studies were performed on 10 patients with the clinical syndrome of alveolar capillary block while each patient was breathing four different inspired oxygen mixtures. The data were interpreted using the principle of the Bohr integral isopleth with which alveolar oxygen tension in the differently ventilated parts of the lung can initially be treated as unknown. It is then possible to determine the distribution of ventilation, of perfusion, of diffusing capacity, of lung volume, and of alveolar and end capillary blood oxygen tension in the variously functioning parts of the lung. In two patients shunts were the major factor interfering with oxygen transfer. In four others inequalities in ventilation: perfusion ratios and in diffusing capacity in different parts of the lung were the factors interfering with oxygen transfer. In four more patients ventilation: perfusion ratios were the same throughout the lung, the only disturbance of oxygen transfer being in the total diffusing capacity or in its distribution between the different parts of the lung. PMID:5411791

  8. Myocardial perfusion as assessed by thallium-201 scintigraphy during the discontinuation of mechanical ventilation in ventilator-dependent patients

    SciTech Connect

    Hurford, W.E.; Lynch, K.E.; Strauss, H.W.; Lowenstein, E.; Zapol, W.M. )

    1991-06-01

    Patients who cannot be separated from mechanical ventilation (MV) after an episode of acute respiratory failure often have coexisting coronary artery disease. The authors hypothesized that increased left ventricular (LV) wall stress during periods of spontaneous ventilation (SV) could alter myocardial perfusion in these patients. Using thallium-201 (201TI) myocardial scintigraphy, the authors studied the occurrence of myocardial perfusion abnormalities during periods of SV in 15 MV-dependent patients (nine women, six men; aged 71 {plus minus} 7 yr, mean {plus minus} SD). Fourteen of these patients were studied once with 201TI myocardial scintigraphy during intermittent mechanical ventilation (IMV) and again on another day, after at least 10 min of SV through a T-piece. One patient was studied during SV only. Thirteen of 14 of the patients (93%) studied during MV had abnormal patterns of initial myocardial 201TI uptake, but only 1 patient demonstrated redistribution of 201TI on delayed images. The remainder of the abnormalities observed during MV were fixed defects. SV produced significant alterations of myocardial 201TI distribution or transient LV dilation, or both, in 7 of the 15 patients (47%). Four patients demonstrated new regional decreases of LV myocardial thallium concentration with redistribution of the isotope on delayed images. The patient studied only during SV also had myocardial 201TI defects with redistribution. Five patients (3 also having areas of 201TI redistribution) had transient LV dilation during SV.

  9. Computation of ventilation-perfusion ratio with Kr-81m in pulmonary embolism

    SciTech Connect

    Meignan, M.; Simonneau, G.; Oliveira, L.; Harf, A.; Cinotti, L.; Cavellier, J.F.; Duroux, P.; Ansquer, J.C.; Galle, P.

    1984-02-01

    Diagnostic difficulties occur in pulmonary embolism (PE) during visual analysis of ventilation-perfusion images in matched defects or in chronic obstructive lung disease (COPD). In 44 patients with angiographically confirmed PE and in 40 patients with COPD, the regional ventilation-perfusion ratios (V/Q) were therefore computed using krypton-81m for each perfusion defect, and were displayed in a functional image. In patients with PE and mismatched defects, a high V/Q (1.96) was observed. A V/Q > 1.25 was also found in nine of 11 patients having PE and indeterminate studies (studies with perfusion abnormalities matched by radiographic abnormalities). COPD was characterized by matched defects and low V/Q. The percentage of patients correctly classified as having PE or COPD increased from 56% when considering the match or mismatched character to 88% when based on a V/Q of 1.25 in the region of the perfusion defect. This quantitative analysis, therefore, seems useful in classifying patients with scintigraphic suspicion of PE.

  10. Ventilation/Perfusion Positron Emission Tomography—Based Assessment of Radiation Injury to Lung

    SciTech Connect

    Siva, Shankar; Hardcastle, Nicholas; Kron, Tomas; Bressel, Mathias; Callahan, Jason; MacManus, Michael P.; Shaw, Mark; Plumridge, Nikki; Hicks, Rodney J.; Steinfort, Daniel; Ball, David L.; Hofman, Michael S.

    2015-10-01

    Purpose: To investigate {sup 68}Ga-ventilation/perfusion (V/Q) positron emission tomography (PET)/computed tomography (CT) as a novel imaging modality for assessment of perfusion, ventilation, and lung density changes in the context of radiation therapy (RT). Methods and Materials: In a prospective clinical trial, 20 patients underwent 4-dimensional (4D)-V/Q PET/CT before, midway through, and 3 months after definitive lung RT. Eligible patients were prescribed 60 Gy in 30 fractions with or without concurrent chemotherapy. Functional images were registered to the RT planning 4D-CT, and isodose volumes were averaged into 10-Gy bins. Within each dose bin, relative loss in standardized uptake value (SUV) was recorded for ventilation and perfusion, and loss in air-filled fraction was recorded to assess RT-induced lung fibrosis. A dose-effect relationship was described using both linear and 2-parameter logistic fit models, and goodness of fit was assessed with Akaike Information Criterion (AIC). Results: A total of 179 imaging datasets were available for analysis (1 scan was unrecoverable). An almost perfectly linear negative dose-response relationship was observed for perfusion and air-filled fraction (r{sup 2}=0.99, P<.01), with ventilation strongly negatively linear (r{sup 2}=0.95, P<.01). Logistic models did not provide a better fit as evaluated by AIC. Perfusion, ventilation, and the air-filled fraction decreased 0.75 ± 0.03%, 0.71 ± 0.06%, and 0.49 ± 0.02%/Gy, respectively. Within high-dose regions, higher baseline perfusion SUV was associated with greater rate of loss. At 50 Gy and 60 Gy, the rate of loss was 1.35% (P=.07) and 1.73% (P=.05) per SUV, respectively. Of 8/20 patients with peritumoral reperfusion/reventilation during treatment, 7/8 did not sustain this effect after treatment. Conclusions: Radiation-induced regional lung functional deficits occur in a dose-dependent manner and can be estimated by simple linear models with 4D-V/Q PET

  11. Composite pseudocolor images: a technique to enhance the visual correlation between ventilation-perfusion lung images

    NASA Astrophysics Data System (ADS)

    Vaz de Carvalho, Carlos; Costa, Antonio A.; Seixas, M.; Ferreira, F. N.; Guedes, M. A.; Amaral, I.

    1993-07-01

    Lung ventilation and perfusion raw nuclear medicine images obtained from a gamma camera can be difficult to analyze on a per si basis. A method to optimize the visual correlation between these images was established through the use of new combination images: Composite Pseudo-Color (CPC) images. The major topic of this study is the assessment of the usefulness of this method in the detection of lung malfunction.

  12. Radiographic parenchymal opacity, matching perfusion defect, and normal ventilation: a sign of pulmonary embolism. Work in progress

    SciTech Connect

    Strauss, E.B.; Sostman, H.D.; Gottschalk, A.

    1987-05-01

    By conventional criteria, perfusion defects that correspond to radiographic parenchymal opacities of similar size have less diagnostic significance for pulmonary embolism (PE) than perfusion defects in areas that are radiographically clear, regardless of the findings on ventilation scan. It was proposed that the demonstration of normal ventilation in areas with matched radiographic opacity and perfusion defects does support the diagnosis of PE. To test this hypothesis, a retrospective review was done of selected cases from a consecutive series of 85 pulmonary angiography studies. Cases were reviewed if the following criteria were met: chest radiography, ventilation-perfusion scintigraphy, and angiography of the relevant regions had all been performed within 24 hours of one another, and there was a radiographic opacity corresponding to the perfusion defect. Sixteen cases fulfilled these criteria. Six patients had normal ventilation in the regions of the radiographic infiltrate and perfusion defect, and all had PE. No patient had an area of opacity and perfusion defect and normal ventilation without PE.

  13. The effect of positive end-expiratory pressure on regional ventilation and perfusion in the normal and injured primate lung.

    PubMed

    Hammon, J W; Wolfe, W G; Moran, J F; Jones, R H; Sabiston, D C

    1976-11-01

    Although positive end-expiratory pressure (PEEP) is being employed in the management of respiratory insufficiency, many of its physiological effects remain undetermined. The cardiopulmonary effects of PEEP as well as its effect on regional ventilation and perfusion were studied in 10 baboons before and after pulmonary injury with oleic acid. In the normal lung, there was significant improvement in oxygenation at a PEEP of 5 cm. of water secondary to improved ventilation and perfusion in all PEEP greater than 5 cm. of water produced increasing mismatch of ventilation and perfusion in all zones. After oleic acid was injected, hypoxemia was evident with a reversal of the normal ventilation-perfusion (V/Q) relationship between upper and lower lung zones. This mismatch of ventilation and perfusion was corrected at a PEEP of 15 cm. of water. It was reasonable to conclude that the use of PEEP in the injured lung exerts it beneficial effect by balancing regional ventilation and perfusion in addition to increasing functional residual capacity. PMID:824505

  14. Regional lung perfusion and ventilation with radioisotopes in cervical cord-injured patients

    SciTech Connect

    Hiraizumi, Y.; Fujimaki, E.; Hishida, T.; Maruyama, T.; Takeuchi, M.

    1986-05-01

    In general, cervical cord-injured patients present with restrictive pulmonary dysfunction resulting from paralysis of the intercostal muscles. Vital capacity frequently decreases below 50% of that in normal subjects, and their respiratory pattern frequently includes paradoxical movement in which the intercostal spaces sink and the abdomen distends at inspiration. Ventilation scintigraphy using Xe-133 and pulmonary perfusion scintigraphy using Tc-99m macroaggregated albumin (MAA) were performed on nine cervical cord-injured patients and four normal subjects to investigate regional lung functions in the cervical cord-injured patients. Pulmonary perfusion scintigraphy, in which measurement was made in the supine position, revealed no differences between the patients and the normal subjects. The inhomogeneous ventilation/perfusion distribution was presumed to have resulted from change in regional intrapleural pressure due to paradoxical movement of the thoracic cage. Washing and washout times were prolonged by paralysis of the intercostal muscles. These phenomena were particularly apparent in the upper and middle lung regions where compensating action by movement of the diaphragm is small.

  15. Ventilation-perfusion scintigraphy in an adult with congenital unilateral hyperlucent lung

    SciTech Connect

    Wegener, W.A.; Velchik, M.G. )

    1990-10-01

    A variety of congenital and acquired etiologies can give rise to the radiographic finding of a unilateral hyperlucent lung. An unusual case of congenital lobar emphysema diagnosed in a young adult following the initial discovery of a hyperexpanded, hyperlucent lung is reported. Although subsequent bronchoscopy and radiologic studies detailed extensive anatomic abnormalities, functional imaging also played an important role in arriving at this rare diagnosis. In particular, ventilation-perfusion scintigraphy identified the small contralateral lung as the functional lung and helped narrow the differential diagnosis to etiologies involving obstructive airway disorders.

  16. Ventilation-perfusion relationships in the lung during head-out water immersion

    NASA Technical Reports Server (NTRS)

    Derion, Toniann; Guy, Harold J. B.; Tsukimoto, Koichi; Schaffartzik, Walter; Prediletto, Renato; Poole, David C.; Knight, Douglas R.; Wagner, Peter D.

    1992-01-01

    Mechanisms of altered pulmonary gas exchange during water immersion were studied in 12 normal males: 6 young (aged 20-29) and 6 older (aged 40-45). It is concluded that, in young subjects with closing volume (CV) less than expiratory reserve volume (ERV), gas exchange was enhanced during immersion, because normal ventilation-perfusion relations were preserved, and by mass balance, the ventilation/O2 uptake changes elevated arterial P(O2). In older males with CV greater than ERV and 52 percent of tidal volume below CV, immersion-induced airways closure during tidal breathing was associated with minimally increased shunt that did not significantly impair gas exchange. It is suggested that airways closure of this degree is of little importance to gas exchange.

  17. Quantitative assessment of ventilation-perfusion mismatch by radioxenon imaging of the lung.

    PubMed

    Ishii, Y; Itoh, H; Suzuki, T; Yonekura, Y; Mukai, T; Torizuka, K

    1978-06-01

    By the use of xenon-133 and a scintillation camera with digital data storage and processing system, a topographic relationship between ventilation distribution (V) and perfusion distribution (Q) was examined quantitatively in two groups of normal nonsmokers and one of older smokers, all healthy. In addition, subjects with a variety of cardiopulmonary disease were tested. The fractional regional ventilation (VR) and regional perfusion (QR) were plotted against the V/Q ratio on a logarithmic abscissa for the normal subjects; both were distributed log-normally with a narrow standard deviation, and were dissociated slightly from each other. However, with smoking and with increasing age, the s.d. and the dissociation became wider, suggesting an impairment of gas exchange as estimated by alveolar-atrial gas-pressure differences (A-aD), which were calculated by putting these topographic relationships into a gas-exchange program in a computer. In various cardiopulmonary diseases a good correlation was found between the estimated A-aDO2 thus obtained and the actual A-aDO2 derived from analysis of the blood gases. PMID:660273

  18. An expert system for the interpretation of radionuclide ventilation-perfusion lung scans

    NASA Astrophysics Data System (ADS)

    Gabor, Frank V.; Datz, Frederick L.; Christian, Paul E.; Gullberg, Grant T.; Morton, Kathryn A.

    1993-09-01

    One of the most commonly performed imaging procedures in nuclear medicine is the lung scan for suspected pulmonary embolism. The purpose of this research was to develop an expert system that interprets lung scans and gives a probability of pulmonary embolism. Three standard ventilation and eight standard perfusion images are first outlined manually. Then the images are normalized. Because lung size varies from patient to patient, each image undergoes a two-dimensional stretch onto a standard-size mask. To determine the presence of regional defects in ventilation or perfusion, images are then compared on a pixel by pixel basis with a normal database. This database consists of 21 normal studies that represent the variation in activity between subjects. Any pixel that falls more than 2.2 standard deviations below the normal file is flagged as possibly abnormal. To reduce statistical fluctuations, a clustering criteria is applied such that each pixel must have at least two continuous neighbors that are abnormal for a pixel to be flagged abnormal.

  19. Respiratory tract exacerbations revisited: ventilation, inflammation, perfusion, and structure (VIPS) monitoring to redefine treatment.

    PubMed

    Tiddens, Harm A W M; Stick, Stephen M; Wild, Jim M; Ciet, Pierluigi; Parker, Geoffrey J M; Koch, Armin; Vogel-Claussen, Jens

    2015-10-01

    For cystic fibrosis (CF) patients older than 6 years there are convincing data that suggest respiratory tract exacerbations (RTE) play an important role in the progressive loss of functional lung tissue. There is a poor understanding of the pathobiology of RTE and whether specific treatment of RTE reduces lung damage in the long term. In addition, there are limited tools available to measure the various components of CF lung disease and responses to therapy. Therefore, in order to better understand the impact of RTE on CF lung disease we need to develop sensitive measures to characterize RTE and responses to treatment; and improve our understanding of structure-function changes during treatment of RTE. In this paper we review our current knowledge of the impact of RTE on the progression of lung disease and identify strategies to improve our understanding of the pathobiology of RTE. By improving our knowledge regarding RTE in CF we will be better positioned to develop approaches to treatment that are individualized and that can prevent permanent structural damage. We suggest the development of a ventilation, perfusion, inflammation and structure (VIPS)-MRI suite that supplies the clinician with data on ventilation, inflammation, perfusion, and structure in one MRI session. VIPS-MRI could be an important step to better understand the factors that contribute to and limit treatment efficacy of RTE. PMID:26335955

  20. Kr-81m for both ventilation and perfusion from one generator

    SciTech Connect

    Webber, M.M.; Gong, H.; Ertle, A.R.

    1984-01-01

    This paper describes a new technique which utilizes a single generator to provide both gaseous Kr-81m for ventilation and Kr-81m dissolved in water for perfusion lung images. Commercially available Krypton 81m gas generators provide Kr-81m in the gas form only, by air elution. Also available on an experimental basis is a small generator which by water elution provides Kr-81m in a soluble form suitable for perfusion lung scans. The small generator used for soluble form of Krypton is only approximately 1/8 inch in diameter by about 1 inch in length. A patient could not breath through it easily and quickly enough to achieve a deep single breath necessary for imaging. In order to overcome this problem the authors designed a system in which the patient breathes through a large spirometry tube, 1 1/2 in diameter by 2 feet long. The small generator is prepared for use by flushing out the water, 5 ml of sterile air is drawn into a syringe using an 18 gauge needle. The patient then places the end of the large tube in his mouth, and is asked to take a deep breath and to hold it. As the patient takes the breath an injection of the sterile air is made into the lumen of the large tube, passing through the small generator en route. The injection of air continues as the patient takes his breath. The method, although only requiring the small generator which can be used for perfusion lung scans as well as ventilation scans, consistently provides good results.

  1. Heterogeneous ventilation and perfusion: a sensitive indicator of lung impairment in nonsmoking coal miners.

    PubMed

    Susskind, H; Acevedo, J C; Iwai, J; Rasmussen, D L; Heydinger, D K; Pate, H R; Harold, W H; Brill, A B

    1988-03-01

    Twenty life-long nonsmoking West Virginia coal-miners participated in a study to amplify the role of focal irregularities on regional ventilation (V) and perfusion (Q) and to develop an improved method for the early detection of coal-workers' pneumoconiosis. Their mean age was 59.3 yr and they averaged 35.2 years' exposure to coal dust. Conventional pulmonary function tests were supplemented by measurement of V, Q and lung volume (V), using radioactive Kr-81m, Tc-99m MAA and Xe-127, respectively, to determine regional abnormalities in lung function. A computer analysis of the regional distributions of V/V, Q/V and V/Q was performed, and their topographical distributions and indices of heterogeneity (HI) computed. V/V and Q/V were significantly reduced in the lower third, and increased in the upper two-thirds of the miners' lungs; V/Q was reduced in the upper half. The miners' V/V and Q/V were more heterogeneous (p less than 0.001) than that of eleven age-matched controls, with mean ventilation HI values of 0.190 +/- 0.027 and 0.133 +/- 0.011, respectively, and mean perfusion HI values of 0.206 +/- 0.022 and 0.164 +/- 0.041, respectively. P(A-a)O2 correlated positively (r = 0.72; p less than 0.001) with ventilation HI. Gas exchange was the most significant functional measurement, being abnormal in 19/20 subjects. In contrast, conventional spirometric measurements were within the predicted normal limits in all but four miners. PMID:3384076

  2. Regional ventilation-perfusion distribution is more uniform in the prone position

    NASA Technical Reports Server (NTRS)

    Mure, M.; Domino, K. B.; Lindahl, S. G.; Hlastala, M. P.; Altemeier, W. A.; Glenny, R. W.

    2000-01-01

    The arterial blood PO(2) is increased in the prone position in animals and humans because of an improvement in ventilation (VA) and perfusion (Q) matching. However, the mechanism of improved VA/Q is unknown. This experiment measured regional VA/Q heterogeneity and the correlation between VA and Q in supine and prone positions in pigs. Eight ketamine-diazepam-anesthetized, mechanically ventilated pigs were studied in supine and prone positions in random order. Regional VA and Q were measured using fluorescent-labeled aerosols and radioactive-labeled microspheres, respectively. The lungs were dried at total lung capacity and cubed into 603-967 small ( approximately 1.7-cm(3)) pieces. In the prone position the homogeneity of the ventilation distribution increased (P = 0.030) and the correlation between VA and Q increased (correlation coefficient = 0.72 +/- 0.08 and 0.82 +/- 0.06 in supine and prone positions, respectively, P = 0.03). The homogeneity of the VA/Q distribution increased in the prone position (P = 0.028). We conclude that the improvement in VA/Q matching in the prone position is secondary to increased homogeneity of the VA distribution and increased correlation of regional VA and Q.

  3. Clinical relevance of ventilation-perfusion inequality determined by inert gas elimination.

    PubMed

    Rodriguez-Roisin, R; Wagner, P D

    1990-04-01

    The first part of this review deals with the basic mechanisms and factors determining hypoxaemia and hypercapnia and the different approaches used in clinical practice and in clinical research to assess the presence of ventilation-perfusion mismatching, shunt and diffusion limitation for oxygen, and more specifically the multiple inert gas elimination technique (MIGET), in pulmonary medicine. The second part reviews three different respiratory disorders where the complex interplay between intrapulmonary and extrapulmonary factors regulating oxygen are essentially interpreted through the results afforded by the MIGET over the last decade. The gas exchange response to bronchodilators in bronchial asthma, an airway disease, and then the major determinants governing abnormal gas exchange in acute pulmonary embolism, a pulmonary vascular disorder, and during haemodialysis, a respiratory entity of extrapulmonary origin, are successively explored in the light of the inert gas method. PMID:2163880

  4. Effects of carbonic anhydrase inhibition on ventilation-perfusion matching in the dog lung.

    PubMed Central

    Swenson, E R; Robertson, H T; Hlastala, M P

    1993-01-01

    Lung carbonic anhydrase (CA) permits rapid pH responses when changes in regional ventilation or perfusion alter airway and alveolar PCO2. These pH changes affect airway and vascular resistances and lung compliance to optimize the balance of regional ventilation (VA) and perfusion (Q) in the lung. To test the hypothesis that these or other CA-dependent mechanisms contribute to VA/Q matching, we administered acetazolamide (25 mg/kg intravenously) to six anesthetized and paralyzed dogs and measured VA/Q relationships before and after CA inhibition by the multiple inert gas elimination technique. Four other groups of dogs were studied to control for possible confounding effects of time under anesthesia and nonselective CA inhibition by acetazolamide: (a) saline placebo as a control for duration of anesthesia, (b) 4% CO2 inhalation to mimic systemic CO2 retention, (c) 1 mg/kg benzolamide (a selective renal CA inhibitor) or 0.5 meq/kg HCl to mimic systemic metabolic acidosis, and (d) 500 mg/kg 4,4'-dinitrostilbene-2,2'-disulfonate (an inhibitor of red cell band 3 protein) to mimic the respiratory acidosis arising from an intracapillary block to rapid mobilization of plasma HCO3- in CO2 exchange. Acetazolamide increased VA/Q mismatch and reduced arterial PO2 measured at equilibrium but these did not occur in the control group. There was no deterioration in VA/Q matching when systemic respiratory acidosis produced either by CO2 inhalation or 4,4'-dinitrostilbene-2,2'-disulfonate or metabolic acidosis (benzolamide or HCl) were imposed to mimic the effects of acetazolamide apart from its inhibition of lung CA. These results support the concept that lung CA subserves VA/Q matching in the normal lung. Images PMID:8349809

  5. Validation of measurements of ventilation-to-perfusion ratio inequality in the lung from expired gas.

    PubMed

    Prisk, G Kim; Guy, Harold J B; West, John B; Reed, James W

    2003-03-01

    The analysis of the gas in a single expirate has long been used to estimate the degree of ventilation-perfusion (Va/Q) inequality in the lung. To further validate this estimate, we examined three measures of Va/Q inhomogeneity calculated from a single full exhalation in nine anesthetized mongrel dogs under control conditions and after exposure to aerosolized methacholine. These measurements were then compared with arterial blood gases and with measurements of Va/Q inhomogeneity obtained using the multiple inert gas elimination technique. The slope of the instantaneous respiratory exchange ratio (R slope) vs. expired volume was poorly correlated with independent measures, probably because of the curvilinear nature of the relationship due to continuing gas exchange. When R was converted to the intrabreath Va/Q (iV/Q), the best index was the slope of iV/Q vs. volume over phase III (iV/Q slope). This was strongly correlated with independent measures, especially those relating to inhomogeneity of perfusion. The correlations for iV/Q slope and R slope considerably improved when only the first half of phase III was considered. We conclude that a useful noninvasive measurement of Va/Q inhomogeneity can be derived from the intrabreath respiratory exchange ratio. PMID:12433859

  6. Validation of measurements of ventilation-to-perfusion ratio inequality in the lung from expired gas

    NASA Technical Reports Server (NTRS)

    Prisk, G. Kim; Guy, Harold J B.; West, John B.; Reed, James W.

    2003-01-01

    The analysis of the gas in a single expirate has long been used to estimate the degree of ventilation-perfusion (Va/Q) inequality in the lung. To further validate this estimate, we examined three measures of Va/Q inhomogeneity calculated from a single full exhalation in nine anesthetized mongrel dogs under control conditions and after exposure to aerosolized methacholine. These measurements were then compared with arterial blood gases and with measurements of Va/Q inhomogeneity obtained using the multiple inert gas elimination technique. The slope of the instantaneous respiratory exchange ratio (R slope) vs. expired volume was poorly correlated with independent measures, probably because of the curvilinear nature of the relationship due to continuing gas exchange. When R was converted to the intrabreath Va/Q (iV/Q), the best index was the slope of iV/Q vs. volume over phase III (iV/Q slope). This was strongly correlated with independent measures, especially those relating to inhomogeneity of perfusion. The correlations for iV/Q slope and R slope considerably improved when only the first half of phase III was considered. We conclude that a useful noninvasive measurement of Va/Q inhomogeneity can be derived from the intrabreath respiratory exchange ratio.

  7. Characterization of the Isolated, Ventilated, and Instrumented Mouse Lung Perfused with Pulsatile Flow

    PubMed Central

    Vanderpool, Rebecca R.; Chesler, Naomi C.

    2011-01-01

    The isolated, ventilated and instrumented mouse lung preparation allows steady and pulsatile pulmonary vascular pressure-flow relationships to be measured with independent control over pulmonary arterial flow rate, flow rate waveform, airway pressure and left atrial pressure. Pulmonary vascular resistance is calculated based on multi-point, steady pressure-flow curves; pulmonary vascular impedance is calculated from pulsatile pressure-flow curves obtained at a range of frequencies. As now recognized clinically, impedance is a superior measure of right ventricular afterload than resistance because it includes the effects of vascular compliance, which are not negligible, especially in the pulmonary circulation. Three important metrics of impedance - the zero hertz impedance Z0, the characteristic impedance ZC, and the index of wave reflection RW - provide insight into distal arterial cross-sectional area available for flow, proximal arterial stiffness and the upstream-downstream impedance mismatch, respectively. All results obtained in isolated, ventilated and perfused lungs are independent of sympathetic nervous system tone, volume status and the effects of anesthesia. We have used this technique to quantify the impact of pulmonary emboli and chronic hypoxia on resistance and impedance, and to differentiate between sites of action (i.e., proximal vs. distal) of vasoactive agents and disease using the pressure dependency of ZC. Furthermore, when these techniques are used with the lungs of genetically engineered strains of mice, the effects of molecular-level defects on pulmonary vascular structure and function can be determined. PMID:21559007

  8. Spatial correspondence of 4D CT ventilation and SPECT pulmonary perfusion defects in patients with malignant airway stenosis

    NASA Astrophysics Data System (ADS)

    Castillo, Richard; Castillo, Edward; McCurdy, Matthew; Gomez, Daniel R.; Block, Alec M.; Bergsma, Derek; Joy, Sarah; Guerrero, Thomas

    2012-04-01

    To determine the spatial overlap agreement between four-dimensional computed tomography (4D CT) ventilation and single photon emission computed tomography (SPECT) perfusion hypo-functioning pulmonary defect regions in a patient population with malignant airway stenosis. Treatment planning 4D CT images were obtained retrospectively for ten lung cancer patients with radiographically demonstrated airway obstruction due to gross tumor volume. Each patient also received a SPECT perfusion study within one week of the planning 4D CT, and prior to the initiation of treatment. Deformable image registration was used to map corresponding lung tissue elements between the extreme component phase images, from which quantitative three-dimensional (3D) images representing the local pulmonary specific ventilation were constructed. Semi-automated segmentation of the percentile perfusion distribution was performed to identify regional defects distal to the known obstructing lesion. Semi-automated segmentation was similarly performed by multiple observers to delineate corresponding defect regions depicted on 4D CT ventilation. Normalized Dice similarity coefficient (NDSC) indices were determined for each observer between SPECT perfusion and 4D CT ventilation defect regions to assess spatial overlap agreement. Tidal volumes determined from 4D CT ventilation were evaluated versus measurements obtained from lung parenchyma segmentation. Linear regression resulted in a linear fit with slope = 1.01 (R2 = 0.99). Respective values for the average DSC, NDSC1 mm and NDSC2 mm for all cases and multiple observers were 0.78, 0.88 and 0.99, indicating that, on average, spatial overlap agreement between ventilation and perfusion defect regions was comparable to the threshold for agreement within 1-2 mm uncertainty. Corresponding coefficients of variation for all metrics were similarly in the range: 0.10%-19%. This study is the first to quantitatively assess 3D spatial overlap agreement between

  9. Distribution of pulmonary ventilation and perfusion during short periods of weightlessness.

    PubMed

    Michels, D B; West, J B

    1978-12-01

    Information on the distributions of pulmonary ventilation and perfusion was obtained from four subjects on board a Learjet during 112 weightless periods lasting up to 27 s each. Zero gravity (G) was obtained during all or part of each test by varying the aircraft flight profile. Single-breath N2 washouts were performed with the test inspiration containing an initial bolus of argon at residual volume (RV). When the test inspiration was at 0 G, and the washout at 0 G or greater, the terminal rises and the cardiogenic oscillations in both N2 and argon were small and often absent. If instead the test inspiration was at 1 G with the washout at 0 G, the terminal rises were again small or absent but the cardiogenic oscillations remained. The terminal rise and the cardiogenic oscillations for N2, but not argon, were also nearly eliminated by performing just the preliminary exhalation to RV at 0 G with the test inspiration and washout following at 1 G. Aleveolar plateaus for N2 sloped upward at 0 G apparently due to nontopographical inequalities of ventilation. In further tests during air breathing, recordings were made of expired partial pressure of oxygen PO2) and carbon dioxide (POO2) following a brief hyperventilation and a 15-s breath hold. These recordings revealed marked cardiogenic oscillations in PO2 and PCO2 at 1 G that were enhanced at 2 G but almost eliminated at 0 G. The results suggest that virtually all the topographical inequality of ventilation, blood flow, and lung volume seen under 1-G conditions are abolished during short periods of 0 G. PMID:730604

  10. Platelet-activating factor causes ventilation-perfusion mismatch in humans.

    PubMed Central

    Rodriguez-Roisin, R; Félez, M A; Chung, K F; Barberà, J A; Wagner, P D; Cobos, A; Barnes, P J; Roca, J

    1994-01-01

    We hypothesized that platelet-activating factor (PAF), a potent inflammatory mediator, could induce gas exchange abnormalities in normal humans. To this end, the effect of aerosolized PAF (2 mg/ml solution; 24 micrograms) on ventilation-perfusion (VA/Q) relationships, hemodynamics, and resistance of the respiratory system was studied in 14 healthy, nonatopic, and nonsmoking individuals (23 +/- 1 [SEM]yr) before and at 2, 4, 6, 8, 15, and 45 min after inhalation, and compared to that of inhaled lyso-PAF in 10 other healthy individuals (24 +/- 2 yr). PAF induced, compared to lyso-PAF, immediate leukopenia (P < 0.001) followed by a rebound leukocytosis (P < 0.002), increased minute ventilation (P < 0.05) and resistance of the respiratory system (P < 0.01), and decreased systemic arterial pressure (P < 0.05). Similarly, compared to lyso-PAF, PaO2 showed a trend to fall (by 12.2 +/- 4.3 mmHg, mean +/- SEM maximum change from baseline), and arterial-alveolar O2 gradient increased (by 16.7 +/- 4.3 mmHg) (P < 0.02) after PAF, because of VA/Q mismatch: the dispersion of pulmonary blood flow and that of ventilation increased by 0.45 +/- 0.1 (P < 0.01) and 0.29 +/- 0.1 (P < 0.04), respectively. We conclude that in normal subjects, inhaled PAF results in considerable immediate VA/Q inequality and gas exchange impairment. These results reinforce the notion that PAF may play a major role as a mediator of inflammation in the human lung. Images PMID:8282786

  11. Focal Hepatic Hot Spot From Superior Vena Cava Occlusion Visualized on Ventilation/Perfusion Scintigraphy With Contrast-Enhanced CT Correlate.

    PubMed

    Lawrence, Michael; Schuster, David M

    2016-05-01

    A 57-year-old woman with superior vena cava stenosis from repeated central line placements underwent ventilation/perfusion scanning after presenting with pleuritic chest pain. The ventilation/perfusion scan was not characteristic for pulmonary embolus, but perfusion images demonstrated abnormal radiotracer activity within hepatic segment 4, along with extensive collateral vessels as seen on SPECT/CT. Two months later, the patient presented with similar complaints and had a chest CT with contrast to evaluate for pulmonary embolus. This showed occlusion of the superior vena cava and arterial enhancement within segment 4 in a similar distribution to the radiotracer in the perfusion scan. PMID:26825208

  12. Blood flow redistribution and ventilation-perfusion mismatch during embolic pulmonary arterial occlusion

    PubMed Central

    Burrowes, K. S.; Clark, A. R.; Tawhai, M. H.

    2011-01-01

    Acute pulmonary embolism causes redistribution of blood in the lung, which impairs ventilation/perfusion matching and gas exchange and can elevate pulmonary arterial pressure (PAP) by increasing pulmonary vascular resistance (PVR). An anatomically-based multi-scale model of the human pulmonary circulation was used to simulate pre- and post-occlusion flow, to study blood flow redistribution in the presence of an embolus, and to evaluate whether reduction in perfused vascular bed is sufficient to increase PAP to hypertensive levels, or whether other vasoconstrictive mechanisms are necessary. A model of oxygen transfer from air to blood was included to assess the impact of vascular occlusion on oxygen exchange. Emboli of 5, 7, and 10 mm radius were introduced to occlude increasing proportions of the vasculature. Blood flow redistribution was calculated after arterial occlusion, giving predictions of PAP, PVR, flow redistribution, and micro-circulatory flow dynamics. Because of the large flow reserve capacity (via both capillary recruitment and distension), approximately 55% of the vasculature was occluded before PAP reached clinically significant levels indicative of hypertension. In contrast, model predictions showed that even relatively low levels of occlusion could cause localized oxygen deficit. Flow preferentially redistributed to gravitationally non-dependent regions regardless of occlusion location, due to the greater potential for capillary recruitment in this region. Red blood cell transit times decreased below the minimum time for oxygen saturation (<0.25 s) and capillary pressures became high enough to initiate cell damage (which may result in edema) only after ~80% of the lung was occluded. PMID:22140626

  13. Alveolar ventilation to perfusion heterogeneity and diffusion impairment in a mathematical model of gas exchange

    NASA Technical Reports Server (NTRS)

    Vidal Melo, M. F.; Loeppky, J. A.; Caprihan, A.; Luft, U. C.

    1993-01-01

    This study describes a two-compartment model of pulmonary gas exchange in which alveolar ventilation to perfusion (VA/Q) heterogeneity and impairment of pulmonary diffusing capacity (D) are simultaneously taken into account. The mathematical model uses as input data measurements usually obtained in the lung function laboratory. It consists of two compartments and an anatomical shunt. Each compartment receives fractions of alveolar ventilation and blood flow. Mass balance equations and integration of Fick's law of diffusion are used to compute alveolar and blood O2 and CO2 values compatible with input O2 uptake and CO2 elimination. Two applications are presented. The first is a method to partition O2 and CO2 alveolar-arterial gradients into VA/Q and D components. The technique is evaluated in data of patients with chronic obstructive pulmonary disease (COPD). The second is a theoretical analysis of the effects of blood flow variation in alveolar and blood O2 partial pressures. The results show the importance of simultaneous consideration of D to estimate VA/Q heterogeneity in patients with diffusion impairment. This factor plays an increasing role in gas alveolar-arterial gradients as severity of COPD increases. Association of VA/Q heterogeneity and D may produce an increase of O2 arterial pressure with decreasing QT which would not be observed if only D were considered. We conclude that the presented computer model is a useful tool for description and interpretation of data from COPD patients and for performing theoretical analysis of variables involved in the gas exchange process.

  14. Influence of perfusion and ventilation scans on therapeutic decision making and outcome in cases of possible embolism.

    PubMed

    Mercandetti, A J; Kipper, M S; Moser, K M

    1985-02-01

    We examined the influence of perfusion (Q) and ventilation (V) scans on therapeutic decision making and outcome among 229 patients referred for lung scans because embolism was suggested and found that specific V/Q scan patterns strongly influenced postscan decisions regarding initiation, maintenance or cessation of heparin therapy. These therapeutic decisions bore a relationship to outcome (recurrences and death) and disclosed decision-making deficits that need remedy by future investigational and educational efforts. PMID:4013250

  15. Ventilation-perfusion mismatching in acute severe asthma: effects of salbutamol and 100% oxygen.

    PubMed Central

    Ballester, E; Reyes, A; Roca, J; Guitart, R; Wagner, P D; Rodriguez-Roisin, R

    1989-01-01

    Ventilation-perfusion (VA/Q) relationships and gas exchange were studied by the multiple inert gas technique in 19 patients admitted to hospital with acute severe asthma (FEV1 41% predicted) before and during the administration of intravenous salbutamol, inhaled salbutamol, or 100% oxygen. Eight patients received a continuous intravenous infusion of salbutamol (4 micrograms/min, total dose 360 micrograms) and were studied before treatment, after 60 and 90 minutes of treatment, and one hour after treatment had been discontinued. Six patients had measurements before and 15 minutes after inhaling 300 micrograms salbutamol from a metered dose inhaler on two occasions (total dose 600 micrograms) and one hour after the last dose. Measurements were also made in five patients before and while they breathed 100% oxygen for 20 minutes. At baseline (fractional inspired oxygen (FiO2) 21%) all patients showed a broad unimodal (n = 10) or bimodal (n = 9) distribution of blood flow with respect to VA/Q. A mean of 10.5% of the blood flow was associated with low VA/Q units without any appreciable shunt. One of the best descriptors of VA/Q inequality, the second moment of the perfusion distribution on a log scale (log SD Q), was moderately high with a mean of 1.18 (SEM 0.08) (normal less than 0.6). Measures of VA/Q inequality correlated poorly with spirometric findings. After salbutamol the increase in airflow rates was similar regardless of the route of administration. Intravenous salbutamol, however, caused a significant increase in heart rate, cardiac output, and oxygen consumption (VO2); in addition, both perfusion to low VA/Q areas and log SD Q increased significantly. Inhaled salbutamol caused only minor changes in heart rate, cardiac output, VO2, and VA/Q inequality. Arterial oxygen tension (PaO2) remained unchanged during salbutamol administration, irrespective of the route of administration. During 100% oxygen breathing there was a significant increase in log SD Q (from 1

  16. Effect of Electrode Belt and Body Positions on Regional Pulmonary Ventilation- and Perfusion-Related Impedance Changes Measured by Electric Impedance Tomography.

    PubMed

    Ericsson, Elin; Tesselaar, Erik; Sjöberg, Folke

    2016-01-01

    Ventilator-induced or ventilator-associated lung injury (VILI/VALI) is common and there is an increasing demand for a tool that can optimize ventilator settings. Electrical impedance tomography (EIT) can detect changes in impedance caused by pulmonary ventilation and perfusion, but the effect of changes in the position of the body and in the placing of the electrode belt on the impedance signal have not to our knowledge been thoroughly evaluated. We therefore studied ventilation-related and perfusion-related changes in impedance during spontaneous breathing in 10 healthy subjects in five different body positions and with the electrode belt placed at three different thoracic positions using a 32-electrode EIT system. We found differences between regions of interest that could be attributed to changes in the position of the body, and differences in impedance amplitudes when the position of the electrode belt was changed. Ventilation-related changes in impedance could therefore be related to changes in the position of both the body and the electrode belt. Perfusion-related changes in impedance were probably related to the interference of major vessels. While these findings give us some insight into the sources of variation in impedance signals as a result of changes in the positions of both the body and the electrode belt, further studies on the origin of the perfusion-related impedance signal are needed to improve EIT further as a tool for the monitoring of pulmonary ventilation and perfusion. PMID:27253433

  17. Effect of Electrode Belt and Body Positions on Regional Pulmonary Ventilation- and Perfusion-Related Impedance Changes Measured by Electric Impedance Tomography

    PubMed Central

    Ericsson, Elin; Tesselaar, Erik; Sjöberg, Folke

    2016-01-01

    Ventilator-induced or ventilator-associated lung injury (VILI/VALI) is common and there is an increasing demand for a tool that can optimize ventilator settings. Electrical impedance tomography (EIT) can detect changes in impedance caused by pulmonary ventilation and perfusion, but the effect of changes in the position of the body and in the placing of the electrode belt on the impedance signal have not to our knowledge been thoroughly evaluated. We therefore studied ventilation-related and perfusion-related changes in impedance during spontaneous breathing in 10 healthy subjects in five different body positions and with the electrode belt placed at three different thoracic positions using a 32-electrode EIT system. We found differences between regions of interest that could be attributed to changes in the position of the body, and differences in impedance amplitudes when the position of the electrode belt was changed. Ventilation-related changes in impedance could therefore be related to changes in the position of both the body and the electrode belt. Perfusion-related changes in impedance were probably related to the interference of major vessels. While these findings give us some insight into the sources of variation in impedance signals as a result of changes in the positions of both the body and the electrode belt, further studies on the origin of the perfusion-related impedance signal are needed to improve EIT further as a tool for the monitoring of pulmonary ventilation and perfusion. PMID:27253433

  18. Correlation between the clinical pretest probability score and the lung ventilation and perfusion scan probability

    PubMed Central

    Bhoobalan, Shanmugasundaram; Chakravartty, Riddhika; Dolbear, Gill; Al-Janabi, Mazin

    2013-01-01

    Purpose: Aim of the study was to determine the accuracy of the clinical pretest probability (PTP) score and its association with lung ventilation and perfusion (VQ) scan. Materials and Methods: A retrospective analysis of 510 patients who had a lung VQ scan between 2008 and 2010 were included in the study. Out of 510 studies, the number of normal, low, and high probability VQ scans were 155 (30%), 289 (57%), and 55 (11%), respectively. Results: A total of 103 patients underwent computed tomography pulmonary angiography (CTPA) scan in which 21 (20%) had a positive scan, 81 (79%) had a negative scan and one (1%) had an equivocal result. The rate of PE in the normal, low-probability, and high-probability scan categories were: 2 (9.5%), 10 (47.5%), and 9 (43%) respectively. A very low correlation (Pearson correlation coefficient r = 0.20) between the clinical PTP score and lung VQ scan. The area under the curve (AUC) of the clinical PTP score was 52% when compared with the CTPA results. However, the accuracy of lung VQ scan was better (AUC = 74%) when compared with CTPA scan. Conclusion: The clinical PTP score is unreliable on its own; however, it may still aid in the interpretation of lung VQ scan. The accuracy of the lung VQ scan was better in the assessment of underlying pulmonary embolism (PE). PMID:24379532

  19. (68)Ga PET Ventilation and Perfusion Lung Imaging-Current Status and Future Challenges.

    PubMed

    Bailey, Dale L; Eslick, Enid M; Schembri, Geoffrey P; Roach, Paul J

    2016-09-01

    Gallium-68 ((68)Ga) is a positron-emitting radionuclide suitable for positron emission tomography (PET) imaging that has a number of convenient features-it has a physical half life of 68 minutes, it is generator produced at the PET facility and needs no local cyclotron, and being a radiometal is able to be chelated to a number of useful molecules for diagnostic imaging with PET. (68)Ga has recently been investigated as a radiotracer for ventilation and perfusion (V/Q) lung imaging. It is relatively easy to produce both V/Q radiopharmaceuticals labeled with (68)Ga for PET studies, it offers higher spatial resolution than equivalent SPECT studies, the short half life allows for multiple (repeated) scans on the same day, and low amounts of radiotracer can be used thus limiting the radiation dose to the subject. In the usual clinical setting requiring a V/Q scan, that of suspected pulmonary embolism, the role of (68)Ga V/Q PET may be limited from a logistical perspective, however, in nonacute applications such as lung function evaluation, radiotherapy treatment planning, and respiratory physiology investigations it would appear to be an ideal modality to employ. PMID:27553468

  20. Krypton 81m ventilation/perfusion ratios (V/Q) measured in lateral decubitus in pulmonary embolism (P. E. )

    SciTech Connect

    Meignan, M.; Cinotti, L.; Harf, A.; Oliveira, L.; Simonneau, G.

    1984-01-01

    In normal subjects lateral decubitis induces in both independent (lower) and nondependent lung (upper), major changes in perfusion, ventilation and V/Q ratios which can be studied with the short life radioisotope Krypton 81m. Regional V/Q are computed from ventilation and perfusion scans, successively obtained with a gamma camera linked to a computer by continuous inhalation or infusion of this gas during tidal breathing. They were displayed as a color coded functional image. To assess the effect of posture on V/Q in P.E. and other diseases which decrease the regional perfusion, 32 patients with unilateral lung diseases were studied in supine posture and both lateral decubitis: 8 with proved P.E., (3 out of them having radiological opacity matching the perfusion defect), 9 with bullous emphysema, 6 with bronchogenic carcinoma, 9 with acute bacterial pneumonia. V/Q were computed in the region of the perfusion defect. In P.E. the mean V/Q was high (1.92 +- 0.6 SD), and did not change whatever the posture. Conversely major changes of V/Q were induced with postural changes in bullous emphysema and lung carcinoma whatever the V/Q in patient supine. In pneumonia low V/Q were observed in supine posture (.73 +- .2). They decreased significantly when the pneumonia was dependent (.53 +- .2 p < 0.02) and increased in the controlateral decubitis (1.07 +- .3, p < 0.001). Since posture has no or little effect on regional V/Q in P.E., it can be used to discriminate P.E., even in the case of radiological opacity, from other unilateral disease inducing perfusion defect.

  1. A Short Period of Ventilation without Perfusion Seems to Reduce Atelectasis without Harming the Lungs during Ex Vivo Lung Perfusion

    PubMed Central

    Pierre, Leif

    2013-01-01

    To evaluate the lung function of donors after circulatory deaths (DCDs), ex vivo lung perfusion (EVLP) has been shown to be a valuable method. We present modified EVLP where lung atelectasis is removed, while the lung perfusion is temporarily shut down. Twelve pigs were randomized into two groups: modified EVLP and conventional EVLP. When the lungs had reached 37°C in the EVLP circuit, lung perfusion was temporarily shut down in the modified EVLP group, and positive end-expiratory pressure (PEEP) was increased to 10 cm H2O for 10 minutes. In the conventional EVLP group, PEEP was increased to 10 cm H2O for 10 minutes with unchanged lung perfusion. In the modified EVLP group, the arterial oxygen partial pressure (PaO2) was 18.5 ± 7.0 kPa before and 64.5 ± 6.0 kPa after the maneuver (P < 0.001). In the conventional EVLP group, the PaO2 was 16.8 ± 3.1 kPa and 46.8 ± 2.7 kPa after the maneuver (P < 0.01; P < 0.01). In the modified EVLP group, the pulmonary graft weight was unchanged, while in the conventional EVLP group, the pulmonary graft weight was significantly increased. Modified EVLP with normoventilation of the lungs without ongoing lung perfusion for 10 minutes may eliminate atelectasis almost completely without harming the lungs. PMID:24102021

  2. A Short Period of Ventilation without Perfusion Seems to Reduce Atelectasis without Harming the Lungs during Ex Vivo Lung Perfusion.

    PubMed

    Lindstedt, Sandra; Pierre, Leif; Ingemansson, Richard

    2013-01-01

    To evaluate the lung function of donors after circulatory deaths (DCDs), ex vivo lung perfusion (EVLP) has been shown to be a valuable method. We present modified EVLP where lung atelectasis is removed, while the lung perfusion is temporarily shut down. Twelve pigs were randomized into two groups: modified EVLP and conventional EVLP. When the lungs had reached 37°C in the EVLP circuit, lung perfusion was temporarily shut down in the modified EVLP group, and positive end-expiratory pressure (PEEP) was increased to 10 cm H2O for 10 minutes. In the conventional EVLP group, PEEP was increased to 10 cm H2O for 10 minutes with unchanged lung perfusion. In the modified EVLP group, the arterial oxygen partial pressure (PaO2) was 18.5 ± 7.0 kPa before and 64.5 ± 6.0 kPa after the maneuver (P < 0.001). In the conventional EVLP group, the PaO2 was 16.8 ± 3.1 kPa and 46.8 ± 2.7 kPa after the maneuver (P < 0.01; P < 0.01). In the modified EVLP group, the pulmonary graft weight was unchanged, while in the conventional EVLP group, the pulmonary graft weight was significantly increased. Modified EVLP with normoventilation of the lungs without ongoing lung perfusion for 10 minutes may eliminate atelectasis almost completely without harming the lungs. PMID:24102021

  3. Impact of ventilation/perfusion single-photon emission computed tomography on treatment duration of pulmonary embolism

    PubMed Central

    Begic, Amela; Opanković, Emina; Čukić, Vesna; Rustempašić, Medzida; Bašić, Amila; Miniati, Massimo; Jögi, Jonas

    2015-01-01

    Purpose The aim of the study was to establish whether the duration of anticoagulant (AC) therapy can be tailored, on an objective basis, by using ventilation/perfusion single-photon emission computed tomography (V/P SPECT) and to assess the extent of residual perfusion defects over time. In particular, we addressed the following: (a) is the extent of perfusion recovery at 3 months of initial pulmonary embolism (PE) diagnosis a satisfactory criterion for deciding the duration of oral AC? (b) Is it safe to withdraw AC at 3 months if perfusion recovery is complete? Patients and methods Of 269 consecutive patients with suspected PE, 100 patients were diagnosed with PE using V/P SPECT. Sixty-seven patients with acute PE were followed up clinically and with V/P SPECT at 3 months. Sixty-four patients were subject to review and examination using V/P SPECT for a period of 6 months and 33 were followed up only clinically. Therapy was terminated after 3 months if perfusion was normalized, and patients were free of symptoms and the risk of hypercoagulability. Initial extension of PE did not have an impact on decision making. Results PE extension varied from 10 to 70% in the acute stage. After 3 months, complete resolution of PE was found in 48 patients. The treating pulmonologist decided to terminate therapy in 35 (73%) patients and to continue AC in 13 patients because of persistent risk factors. Six months later, at the second control stage, 53 patients had complete recovery of pulmonary perfusion. Eleven patients still had perfusion defects at 6 months. No recurrence was identified at 6 months in the 35 patients whose therapy was terminated after 3 months. No bleeding effects were observed in any of the patients during the 6-month follow-up. Conclusion This study shows that AC therapy can be tailored, on an objective basis, by using V/P SPECT. Normalization of perfusion at 3 months of initial PE diagnosis was a reliable indicator that AC could be safely withdrawn in

  4. Validation of a two-compartment model of ventilation/perfusion distribution.

    PubMed

    Loeppky, Jack A; Caprihan, Arvind; Altobelli, Stephen A; Icenogle, Milton V; Scotto, Pietro; Vidal Melo, Marcos F

    2006-03-28

    Ventilation (V (A)) to perfusion (Q ) heterogeneity (V (A)/Q ) analyses by a two-compartment lung model (2C), utilizing routine gas exchange measurements and a computer solution to account for O(2) and CO(2) measurements, were compared with multiple inert gas elimination technique (MIGET) analyses and a multi-compartment (MC) model. The 2C and MC estimates of V (A)/Q mismatch were obtained in 10 healthy subjects, 43 patients having chronic obstructive pulmonary disease (COPD) and in 14 dog experiments where hemodynamics and acid-base status were manipulated with gas mixtures, fluid loading and tilt-table stressors. MIGET comparisons with 2C were made on 6 patients and 32 measurements in healthy subjects before and after exercise at normoxia and altitude hypoxia. Statistically significant correlations for logarithmic standard deviations of V (A)/Q distributions (SD(V (A)/Q )) were obtained for all 2C comparisons, with similar values between 2C and both other methods in the 1.1-1.5 range, compatible with mild to moderate COPD. 2C tended to overestimate MC and MIGET values at low and underestimate them at high SD(V (A)/Q ) values. SD(V (A)/Q ) weighted by Q agreed better with MC and MIGET estimates in the normal range, whereas SD(V (A)/Q ) weighted by V (A) was closer to MC at higher values because the V (A)-weighted SD(V (A)/Q ) is related to blood-to-gas PCO(2) differences that are elevated in disease, thereby allowing better discrimination. The 2C model accurately described functional V (A)/Q characteristics in 26 normal and bronchoconstricted dogs during non-steady state rebreathing and could be used to quantify the effect of reduced O(2) diffusing capacity in diseased lungs. These comparisons indicate that 2C adequately describes V (A)/Q mismatch and can be useful in clinical or experimental situations where other techniques are not feasible. PMID:16024300

  5. [Simultaneous analysis of the distribution of ventilation and diffusive conductance to perfusion in the lungs].

    PubMed

    Yamaguchi, K

    1989-12-01

    Theoretical analysis and experimental observations were performed to establish an essential method allowing demonstration of the characteristics of distribution of ventilation (VA) as well as of diffusive conductance (G) to perfusion (Q) in the lungs. O2, CO2 and CO binding to hemoglobin molecules within erythrocytes, together with six inert gases including SF6, ethane, cyclopropane, halothane, diethyl ether and acetone, possessing various degrees of solubility in blood and different degrees of diffusibility in lung tissue were used as indicator gases. Fifteen patients with interstitial pneumonia of unknown etiology, placed in a supine position, were given a mixture of 21% O2 and 0.1% CO in N2 as the inspired gas and normal saline containing appropriate amounts of the six inert gases via the antecubital vein. After a steady state was established, the expired gas was collected and both arterial and mixed venous blood were simultaneously sampled through the catheter inserted either into the femoral or pulmonary artery. The concentrations of the indicator gases in the samples were measured by gas chromatography, with electrodes or with Scholander gas analyzer. Assuming that the mass transfer efficiency of a given indicator gas at each gas exchange unit would be limited by the ratio of VA to Q (VA/Q) and by that of G/Q, the data obtained from the human subjects were analyzed in terms of a lung model having 20 units along the VA/Q and G/Q axes, respectively. The numerical analysis including the procedure of a simultaneous Bohr integration for O2, CO2 and CO in a pulmonary capillary and the method of weighted least-squares combined with the idea of constrained optimization permitted the data to be transformed into a virtually continuous distribution of Q against VA/Q and G/Q axes. The numerical procedure was strictly tested based on many artificial distributions of VA/Q and G/Q ratios, showing that it could characterize distributions containing up to at least two modes

  6. Continuous distributions of ventilation and gas conductance to perfusion in the lungs.

    PubMed

    Yamaguchi, K; Kawai, A; Mori, M; Asano, K; Takasugi, T; Umeda, A; Yokoyama, T

    1990-01-01

    Theoretical analysis and experimental observations were conducted to establish a method allowing to demonstrate the characteristics of distribution of ventilation (VA) as well as of diffusive conductance (G) to perfusion (Q) in the lungs. O2, CO2 and CO binding to hemoglobin molecules within the erythrocyte together with six inert gases including SF6, ethane, cyclopropane, halothane, diethyl ether and acetone, of varied solubility in blood and different diffusivity in lung tissue, were used as indicator gases. 15 patients with interstitial pneumonia of unknown etiology, placed in the supine position, were given a mixture of 21% O2 and 0.1% CO in N2 as the inspired gas and saline containing appropriate amount of the six inert gases was infused via an antecubital vein. After a steady state was established, the expired gas was collected and the samples of both arterial and mixed venous blood were simultaneously taken through catheters inserted into the femoral and pulmonary artery. The concentrations of the indicator gases in the samples were measured by gas chromatography, with electrodes or with the Scholander gas analyzer. Assuming that the mass transfer efficiency of a given indicator gas at each gas exchange unit would be limited by VA/Q and G/Q ratios, the data obtained from the human subjects were analyzed in terms of a lung model having 20 units along the VA/Q and G/Q axes, respectively. The numerical analysis including the procedure of simultaneous Bohr integration for O2, CO2 and CO in a pulmonary capillary and the method of weighted least-squares combined with constrained optimization permitted the data to be transformed into a virtually continuous distribution of Q against VA/Q and G/Q axes. The numerical procedure was strictly tested using various artificial distributions of VA/Q and G/Q ratios, showing that it could characterize the distributions containing up to at least two modes on VA/Q-G/Q field with a substantial accuracy. Analytical results

  7. The Effect of Equal Ratio Ventilation on Oxygenation, Respiratory Mechanics, and Cerebral Perfusion Pressure During Laparoscopy in the Trendelenburg Position.

    PubMed

    Jo, Youn Yi; Kim, Ji Young; Chang, Young Jin; Lee, Sehwan; Kwak, Hyun Jeong

    2016-06-01

    The aim of this study was to investigate the effects of equal ratio ventilation (ERV) on oxygenation, respiratory mechanics, and the cerebral perfusion pressure during pneumoperitoneum in the Trendelenburg position. Thirty patients undergoing laparoscopic low anterior resection (25 to 65 y) were enrolled. Mechanical ventilator was set to volume-controlled mode at an inspiratory to expiratory (I:E) ratio of 1:2 with a tidal volume of 8 mL/kg of ideal body weight with a 5 cm H2O positive end-expiratory pressure. Twenty minutes after pneumoperitoneum in the Trendelenburg position, the I:E ratio was changed to 1:1 for 20 minutes and then restored to 1:2. No significant changes in arterial oxygen tension and respiratory compliance after adopting ERV. Mean arterial pressure and cerebral perfusion pressure decreased significantly over time after adopting the Trendelenburg position during pneumoperitoneum (P=0.014 and 0.005, respectively). In conclusion, there was no improvement in oxygenation or respiratory mechanics with ERV. PMID:27258912

  8. Bronchopulmonary dysplasia: clinical grading in relation to ventilation/perfusion mismatch measured by single photon emission computed tomography.

    PubMed

    Kjellberg, Malin; Björkman, Karin; Rohdin, Malin; Sanchez-Crespo, Alejandro; Jonsson, Baldvin

    2013-12-01

    Bronchopulmonary dysplasia (BPD) is a significant cause of morbidity in the preterm population. Clinical severity grading based on the need for supplemental oxygen and/or need for positive airway pressure at 36 weeks postmenstrual age does not yield reproducible predictive values for later pulmonary morbidity. Single photon emission computed tomography (SPECT) was used to measure the distribution of lung ventilation (V) and perfusion (Q) in 30 BPD preterm infants at a median age of 37 weeks postmenstrual age. The V and Q were traced with 5 MBq Technegas and Technetium-labeled albumin macro aggregates, respectively, and the V/Q match-mismatch was used to quantify the extent of lung function impairment. The latter was then compared with the clinical severity grading at 36 weeks, and time spent on mechanical ventilation, continuous positive airway pressure (CPAP) and supplemental oxygen. Of those with mild and moderate BPD 3/9 and 3/11 patients, respectively, showed significant V/Q mismatches. By contrast, 4/10 patients with severe BPD showed a satisfactory V/Q matching distribution. An unsatisfactory V/Q match was not correlated with time spent on supplemental oxygen or CPAP, but was significantly negatively correlated with time spent on mechanical ventilation. SPECT provides unique additional information about regional lung function. The results suggest that the current clinical severity grading can be improved and/or complemented with SPECT. PMID:23359534

  9. The gravitational distribution of ventilation-perfusion ratio is more uniform in prone than supine posture in the normal human lung.

    PubMed

    Henderson, A Cortney; Sá, Rui Carlos; Theilmann, Rebecca J; Buxton, Richard B; Prisk, G Kim; Hopkins, Susan R

    2013-08-01

    The gravitational gradient of intrapleural pressure is suggested to be less in prone posture than supine. Thus the gravitational distribution of ventilation is expected to be more uniform prone, potentially affecting regional ventilation-perfusion (Va/Q) ratio. Using a novel functional lung magnetic resonance imaging technique to measure regional Va/Q ratio, the gravitational gradients in proton density, ventilation, perfusion, and Va/Q ratio were measured in prone and supine posture. Data were acquired in seven healthy subjects in a single sagittal slice of the right lung at functional residual capacity. Regional specific ventilation images quantified using specific ventilation imaging and proton density images obtained using a fast gradient-echo sequence were registered and smoothed to calculate regional alveolar ventilation. Perfusion was measured using arterial spin labeling. Ventilation (ml·min(-1)·ml(-1)) images were combined on a voxel-by-voxel basis with smoothed perfusion (ml·min(-1)·ml(-1)) images to obtain regional Va/Q ratio. Data were averaged for voxels within 1-cm gravitational planes, starting from the most gravitationally dependent lung. The slope of the relationship between alveolar ventilation and vertical height was less prone than supine (-0.17 ± 0.10 ml·min(-1)·ml(-1)·cm(-1) supine, -0.040 ± 0.03 prone ml·min(-1)·ml(-1)·cm(-1), P = 0.02) as was the slope of the perfusion-height relationship (-0.14 ± 0.05 ml·min(-1)·ml(-1)·cm(-1) supine, -0.08 ± 0.09 prone ml·min(-1)·ml(-1)·cm(-1), P = 0.02). There was a significant gravitational gradient in Va/Q ratio in both postures (P < 0.05) that was less in prone (0.09 ± 0.08 cm(-1) supine, 0.04 ± 0.03 cm(-1) prone, P = 0.04). The gravitational gradients in ventilation, perfusion, and regional Va/Q ratio were greater supine than prone, suggesting an interplay between thoracic cavity configuration, airway and vascular tree anatomy, and the effects of gravity on Va/Q matching. PMID

  10. Difference in the value of arterial and end-tidal carbon dioxide tension according to different surgical positions: Does it reliably reflect ventilation-perfusion mismatch?

    PubMed Central

    Joo, Jin; Kim, Young Hee; Choi, Jong Ho

    2012-01-01

    Background Body posture, as a gravitational factor, has a clear impact on pulmonary ventilation and perfusion. In lung units with mismatched ventilation and perfusion, gas exchange and/or elimination of carbon dioxide can be impaired. In this situation, differences in the value of arterial and end-tidal carbon dioxide tension [Δ(PaCO2 - PETCO2)] are expected to increase. This study was conducted to observe how Δ(PaCO2 - PETCO2) changed according to the 3 different surgical positions, and to determine whether Δ(PaCO2 - PETCO2) is a reliable predictor of ventilation/perfusion mismatch when a patient is in different postural positions. Methods Fifty-nine patients were divided into either the chronic obstructive pulmonary disease (COPD) group (n = 29) or the non-COPD group (n = 30). PaCO2 and PETCO2 were measured during surgery in the supine, prone, and lateral decubitus positions after a 10 minute stabilization period. The Δ(PaCO2 - PETCO2) were calculated and compared among positions. Results The Δ(PaCO2 - PETCO2) decreased slightly in the prone position and increased significantly in the lateral decubitus position compared with the supine position in both groups. These patterns almost corresponded with the degree of ventilation/perfusion mismatch from the results of the radiological studies. The Δ(PaCO2 - PETCO2) in the COPD group was significantly greater than that in the non-COPD group at all surgical positions. Conclusions Lateral decubitus position is associated with marked increase in Δ(PaCO2 - PETCO2), especially in patients with COPD. The Δ(PaCO2 - PETCO2) is a simple and reliable indicator to predict ventilation/perfusion mismatch at different surgical positions in patients with or without COPD. PMID:23060977

  11. Evaluation of a computer program for non-invasive determination of pulmonary shunt and ventilation-perfusion mismatch.

    PubMed

    Lockwood, Geoffrey G; Fung, Nick L S; Jones, J Gareth

    2014-12-01

    We describe a three-compartment model (shunt and two perfused compartments) to analyse the relationship between inspired oxygen (FIO2) and arterial oxygen saturation (SaO2) in terms of pulmonary shunt and ventilation-perfusion ratio (VA/Q). The program was tested using 24 exact datasets, each with six pairs of FIO2 and SaO2 data points with known VA/Q and shunt, generated by a complex calculator of gas exchange. Additional datasets were created by adding noise and rounding the exact sets, and by reducing the number of data points per dataset. The importance of the oxyhaemoglobin dissociation curve and the arterio-venous difference in oxygen content (avDO2) were also tested. Analysis using the three compartment model was more accurate than the two compartment model and less affected by data degradation. The absolute error in shunt estimation was never more than 2.2 % for the exact and rounded datasets, but the error in VA/Q estimation was -29 to 19 % of the true value (10th-90th centiles). The characteristics of the well-ventilated compartment were not determined accurately. At extremes of cardiac output, an assumed value of avDO2 resulted in significant errors. It is probably advantageous to correct for foetal haemoglobin in neonatal datasets. Analysis of FIO2 versus SaO2 datasets using a three compartment model provides accurate estimates of shunt and VA/Q when arterio-venous difference in oxygen content is known. The estimates may have value as objective measures of gas exchange, and as a visual guide for oxygen therapy. PMID:24402641

  12. Fluid imbalance

    MedlinePlus

    ... up in the body. This is called fluid overload (volume overload). This can lead to edema (excess fluid in ... Water imbalance; Fluid imbalance - dehydration; Fluid buildup; Fluid overload; Volume overload; Loss of fluids; Edema - fluid imbalance; ...

  13. Abolished ventilation and perfusion of lung caused by blood clot in the left main bronchus: auto-downregulation of pulmonary arterial blood supply.

    PubMed

    Afzelius, P; Bergmann, A; Henriksen, J H

    2015-01-01

    It is generally assumed that the lungs possess arterial autoregulation associated with bronchial obstruction. A patient with pneumonia and congestive heart failure unexpectedly developed frequent haemoptysis. High-resolution CT and diagnostic CT were performed as well as ventilation/perfusion (V/Q) scintigraphy with single-photon emission CT (SPECT)/CT. V/Q SPECT/CT demonstrated abolished ventilation due to obstruction of the left main bronchus and markedly reduced perfusion of the entire left lung, a condition that was completely reversed after removal of a blood clot. We present the first pictorially documented case of hypoxia-induced pulmonary vasoconstriction and flow shift in a main pulmonary artery due to a complete intrinsic obstruction of the ipsilateral main bronchus. The condition is reversible, contingent on being relieved within a few days. PMID:26374773

  14. Assisted Ventilation.

    PubMed

    Dries, David J

    2016-01-01

    Controlled Mechanical Ventilation may be essential in the setting of severe respiratory failure but consequences to the patient including increased use of sedation and neuromuscular blockade may contribute to delirium, atelectasis, and diaphragm dysfunction. Assisted ventilation allows spontaneous breathing activity to restore physiological displacement of the diaphragm and recruit better perfused lung regions. Pressure Support Ventilation is the most frequently used mode of assisted mechanical ventilation. However, this mode continues to provide a monotonous pattern of support for respiration which is normally a dynamic process. Noisy Pressure Support Ventilation where tidal volume is varied randomly by the ventilator may improve ventilation and perfusion matching but the degree of support is still determined by the ventilator. Two more recent modes of ventilation, Proportional Assist Ventilation and Neurally Adjusted Ventilatory Assist (NAVA), allow patient determination of the pattern and depth of ventilation. Proposed advantages of Proportional Assist Ventilation and NAVA include decrease in patient ventilator asynchrony and improved adaptation of ventilator support to changing patient demand. Work of breathing can be normalized with these modes as well. To date, however, a clear pattern of clinical benefit has not been demonstrated. Existing challenges for both of the newer assist modes include monitoring patients with dynamic hyperinflation (auto-positive end expiratory pressure), obstructive lung disease, and air leaks in the ventilator system. NAVA is dependent on consistent transduction of diaphragm activity by an electrode system placed in the esophagus. Longevity of effective support with this technique is unclear. PMID:25501776

  15. The relationship between pulmonary function tests, thorax HRCT, and quantitative ventilation-perfusion scintigraphy in chronic obstructive pulmonary disease.

    PubMed

    Demir, Tunçalp; Ikitimur, Hande; Akpinar Tekgündüz, Sibel; Mutlu, Birsen; Yildirim, Nurhayat; Akman, Canan; Ozmen, Ozlem; Kanmaz, Bedii

    2005-01-01

    We have evaluated the relationship between pulmonary function tests (PFT), thorax high resolution computed tomography (HRCT) images and quantitative ventilation-perfusion (V/Q) scintigraphic studies in 16 male patients (mean age 65.6 +/- 5.5 years) with chronic obstructive pulmonary disease (COPD). The mean forced vital capacity (FVC) value of the patient group was 2352 +/- 642 mL (65.4 +/- 15.8%), whereas mean forced expiratory volume in one second (FEV(1)) was found to be 1150 +/- 442 mL (40.8 +/- 14.9%). The ratio of carbon monoxide diffusion capacity to alveolar ventilation (DLCO/VA) was 3.17 +/- 0.88 mL/min/mmHg/L, and the mean partial oxygen (PaO(2)) and carbon dioxide (PaCO(2)) pressures were 68.5 +/- 11.04 mmHg and 38.9 +/- 5.8 mmHg respectively. For each patient, thorax HRCT and V/Q scintigraphic images of both lungs were divided into upper, mid and lower zones during examination. Visual scoring for the assessment of emphysema on thorax HRCT were used and images were graded from mild to severe (< or = 25% - > or = 76%). Emphysema scores were found to be higher on upper zones with accompanying lowest V/Q ratios. DLCO/VA, DLCO, total emphysema scores, and individual emphysema scores of the upper, mid and lower zones were found to be correlated. As a conclusion, it can be stated that emphysematous changes in COPD patients are more apparent in the upper lung zones, which also have the lowest V/Q ratios. PMID:16456733

  16. Imaging of the three-dimensional alveolar structure and the alveolar mechanics of a ventilated and perfused isolated rabbit lung with Fourier domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Popp, Alexander; Wendel, Martina; Knels, Lilla; Koch, T.; Koch, Edmund

    2006-01-01

    In this feasibility study, Fourier domain optical coherence tomography (FDOCT) is used for visualizing the 3-D structure of fixated lung parenchyma and to capture real-time cross sectional images of the subpleural alveolar mechanics in a ventilated and perfused isolated rabbit lung. The compact and modular setup of the FDOCT system allows us to image the first 500 µm of subpleural lung parenchyma with a 3-D resolution of 16×16×8 µm (in air). During mechanical ventilation, real-time cross sectional FDOCT images visualize the inflation and deflation of alveoli and alveolar sacks (acini) in successive images of end-inspiratory and end-expiratory phase. The FDOCT imaging shows the relation of local alveolar mechanics to the setting of tidal volume (VT), peak airway pressure, and positive end-expiratory pressure (PEEP). Application of PEEP leads to persistent recruitment of alveoli and acini in the end-expiratory phase, compared to ventilation without PEEP where alveolar collapse and reinflation are observed. The imaging of alveolar mechanics by FDOCT will help to determine the amount of mechanical stress put on the alveolar walls during tidal ventilation, which is a key factor in understanding the development of ventilator induced lung injury (VILI).

  17. Imaging of the three-dimensional alveolar structure and the alveolar mechanics of a ventilated and perfused isolated rabbit lung with Fourier domain optical coherence tomography.

    PubMed

    Popp, Alexander; Wendel, Martina; Knels, Lilla; Koch, Thea; Koch, Edmund

    2006-01-01

    In this feasibility study, Fourier domain optical coherence tomography (FDOCT) is used for visualizing the 3-D structure of fixated lung parenchyma and to capture real-time cross sectional images of the subpleural alveolar mechanics in a ventilated and perfused isolated rabbit lung. The compact and modular setup of the FDOCT system allows us to image the first 500 microm of subpleural lung parenchyma with a 3-D resolution of 16 x 16 x 8 microm (in air). During mechanical ventilation, real-time cross sectional FDOCT images visualize the inflation and deflation of alveoli and alveolar sacks (acini) in successive images of end-inspiratory and end-expiratory phase. The FDOCT imaging shows the relation of local alveolar mechanics to the setting of tidal volume (VT), peak airway pressure, and positive end-expiratory pressure (PEEP). Application of PEEP leads to persistent recruitment of alveoli and acini in the end-expiratory phase, compared to ventilation without PEEP where alveolar collapse and reinflation are observed. The imaging of alveolar mechanics by FDOCT will help to determine the amount of mechanical stress put on the alveolar walls during tidal ventilation, which is a key factor in understanding the development of ventilator induced lung injury (VILI). PMID:16526892

  18. Ventilation-perfusion inequality in the human lung is not increased following no-decompression-stop hyperbaric exposure.

    PubMed

    Moore, Gaea Schwaebe; Wong, Stewart C; Darquenne, Chantal; Neuman, Tom S; West, John B; Kim Prisk, G

    2009-11-01

    Venous gas bubbles occur in recreational SCUBA divers in the absence of decompression sickness, forming venous gas emboli (VGE) which are trapped within pulmonary circulation and cleared by the lung without overt pathology. We hypothesized that asymptomatic VGE would transiently increase ventilation-perfusion mismatch due to their occlusive effects within the pulmonary circulation. Two sets of healthy volunteers (n = 11, n = 12) were recruited to test this hypothesis with a single recreational ocean dive or a baro-equivalent dry hyperbaric dive. Pulmonary studies (intrabreath V (A)/Q (iV/Q), alveolar dead space, and FVC) were conducted at baseline and repeat 1- and 24-h after the exposure. Contrary to our hypothesis V (A)/Q mismatch was decreased 1-h post-SCUBA dive (iV/Q slope 0.023 +/- 0.008 ml(-1) at baseline vs. 0.010 +/- 0.005 NS), and was significantly reduced 24-h post-SCUBA dive (0.000 +/- 0.005, p < 0.05), with improved V (A)/Q homogeneity inversely correlated to dive severity. No changes in V (A)/Q mismatch were observed after the chamber dive. Alveolar dead space decreased 24-h post-SCUBA dive (78 +/- 10 ml at baseline vs. 56 +/- 5, p < 0.05), but not 1-h post dive. FVC rose 1-h post-SCUBA dive (5.01 +/- 0.18 l vs. 5.21 +/- 0.26, p < 0.05), remained elevated 24-h post SCUBA dive (5.06 +/- 0.2, p < 0.05), but was decreased 1-hr after the chamber dive (4.96 +/- 0.31 L to 4.87 +/- 0.32, p < 0.05). The degree of V (A)/Q mismatch in the lung was decreased following recreational ocean dives, and was unchanged following an equivalent air chamber dive, arguing against an impact of VGE on the pulmonary circulation. PMID:19690884

  19. Liver Trapping of (99m)Tc Macroaggregated Albumin During Ventilation/Perfusion Scintigraphy in a Patient With Superior Vena Cava Stenosis as Demonstrated by SPECT/CT.

    PubMed

    Rousseau, Etienne; Leclerc, Yves; Prévost, Sylvain; Keu, Khun Visith

    2015-07-01

    A 50-year-old woman presented to our institution with a 1-day history of right posterior thoracic pain and dyspnea. She had a previous history of conservative resection of a high-grade basal-like infiltrating ductal carcinoma of the right breast 2 years before, subsequently treated by chemotherapy and radiotherapy. A ventilation and perfusion (VQ) scintigraphy performed for suspected pulmonary embolism showed an abnormal deposition of (99m)Tc macroaggregated albumin ((99m)Tc-MAA) in the left lobe of the liver. This unusual finding prompted additional imaging that demonstrated a superior vena cava stenosis. PMID:26018706

  20. SN50, a Cell-Permeable Inhibitor of Nuclear Factor-κB, Attenuates Ventilator-Induced Lung Injury in an Isolated and Perfused Rat Lung Model.

    PubMed

    Chian, Chih-Feng; Chiang, Chi-Huei; Chuang, Chiao-Hui; Liu, Shiou-Ling; Tsai, Chen-Liang

    2016-08-01

    High tidal volume (VT) ventilation causes the release of various mediators and results in ventilator-induced lung injury (VILI). SN50, a cell-permeable nuclear factor-κB (NF-κB) inhibitory peptide, attenuates inflammation and acute respiratory distress syndrome. However, the mechanisms associated with the effects of SN50 in VILI have not been fully elucidated. We investigated the cellular and molecular mechanisms for the effects of SN50 treatment in VILI. An isolated and perfused rat lung model was exposed to low (5 mL/kg) or high (15 mL/kg) VT ventilation for 6 h. SN50 was administered in the perfusate at the onset of the high-stretch mechanical ventilation. The hemodynamics, lung histological changes, inflammatory responses, and activation of apoptotic pathways were evaluated. VILI was demonstrated by increased pulmonary vascular permeability and lung weight gain, as well as by increased levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, myeloperoxidase (MPO), hydrogen peroxide, and macrophage inflammatory protein-2 in the bronchoalveolar lavage fluid. The lung tissue expression of TNF-α, IL-1β, mitogen-activated protein kinases (MAPKs), caspase-3, and phosphorylation of serine/threonine-specific protein kinase (p-AKT) was greater in the high VT group than in the low VT group. Upregulation and activation of NF-κB was associated with increased lung injury in VILI. SN50 attenuated the inflammatory responses, including the expression of IL-1β, TNF-α, MPO, MAPKs, and NF-κB. In addition, the downregulation of apoptosis was evaluated using caspase-3 and p-AKT expression. Furthermore, SN50 mitigated the increases in the lung weights, pulmonary vascular permeability, and lung injury. In conclusion, VILI is associated with inflammatory responses and activation of NF-κB. SN50 inhibits the activation of NF-κB and attenuates VILI. PMID:26780513

  1. Ultra-protective ventilation and hypoxemia.

    PubMed

    Gattinoni, Luciano

    2016-01-01

    Partial extracorporeal CO2 removal allows a decreasing tidal volume without respiratory acidosis in patients with acute respiratory distress syndrome. This, however, may be associated with worsening hypoxemia, due to several mechanisms, such as gravitational and reabsorption atelectasis, due to a decrease in mean airway pressure and a critically low ventilation-perfusion ratio, respectively. In addition, an imbalance between alveolar and artificial lung partial pressures of nitrogen may accelerate the process. Finally, the decrease in the respiratory quotient, leading to unrecognized alveolar hypoxia and monotonous low plateau pressures preventing critical opening, may contribute to hypoxemia. PMID:27170273

  2. CHARGE IMBALANCE

    SciTech Connect

    Clarke, John

    1980-09-01

    The purpose of this article is to review the theory of charge imbalance, and to discuss its relevance to a number of experimental situations. We introduce the concepts of quasiparticle charge and charge imbalance, and discuss the generation and detection of charge imbalance by tunneling. We describe the relaxation of the injected charge imbalance by inelastic scattering processes, and show how the Boltzmann equation can be solved to obtain the steady state quasiparticle distribution and the charge relaxation rate. Details are given of experiments to measure charge imbalance and the charge relaxation rate when inelastic scattering is the predominant relaxation mechanism. Experiments on and theories of other charge relaxation mechanisms are discussed, namely relaxation via elastic scattering in the presence of energy gap anisotropy, or in the presence of a pair breaking mechanism such as magnetic impurities or an applied supercurrent or magnetic field. We describe three other situations in which charge imbalance occurs, namely the resistance of the NS interface, phase slip centers, and the flow of a supercurrent in the presence of a temperature gradient.

  3. Changes in Global Function and Regional Ventilation and Perfusion on SPECT During the Course of Radiotherapy in Patients With Non-Small-Cell Lung Cancer

    SciTech Connect

    Yuan Shuanghu; Frey, Kirk A.; Gross, Milton D.; Hayman, James A.; Arenberg, Doug; Cai Xuwei; Ramnath, Nithya; Hassan, Khaled; Moran, Jean; Eisbruch, Avraham; Ten Haken, Randall K.; Kong Fengming

    2012-03-15

    Purpose: This study aimed to (1) examine changes in dyspnea, global pulmonary function test (PFT) results, and functional activity on ventilation (V)/perfusion (Q) single-photon emission computerized tomography (SPECT) scans during the course of radiation (RT), and (2) factors associated with the changes in patients with non-small-cell lung cancer (NSCLC). Methods and Materials: Fifty-six stage I to III NSCLC patients treated with definitive RT with or without chemotherapy were enrolled prospectively. Dyspnea was graded according to Common Terminology Criteria for Adverse Events version 3.0 prior to and weekly during RT. V/Q SPECT-computed tomography (CT) and PFTs were performed prior to and during RT at approximately 45 Gy. Functions of V and Q activities were assessed using a semiquantitative scoring of SPECT images. Results: Breathing improved significantly at the third week (mean dyspnea grade, 0.8 vs. 0.6; paired t-test p = 0.011) and worsened during the later course of RT (p > 0.05). Global PFT results did not change significantly, while regional lung function on V/Q SPECT improved significantly after {approx}45 Gy. The V defect score (DS) was 4.9 pre-RT versus 4.3 during RT (p = 0.01); Q DS was 4.3 pre-RT versus 4.0 during RT (p < 0.01). Improvements in V and Q functions were seen primarily in the ipsilateral lung (V DS, 1.9 pre-RT versus 1.4 during RT, p < 0.01; Q DS, 1.7 pre-RT versus 1.5 during RT, p < 0.01). Baseline primary tumor volume was significantly correlated with pre-RT V/Q DS (p < 0.01). Patients with central lung tumors had greater interval changes in V and Q than those with more peripheral tumors (p <0.05 for both V and Q DS). Conclusions: Regional ventilation and perfusion improved during RT at 45 Gy. This suggests that adaptive planning based on V/Q SPECT during RT may allow sparing of functionally recoverable lung tissue.

  4. An evaluation of preoperative and postoperative ventilation and perfusion lung scintigraphy in the screening for pulmonary embolism after elective orthopedic surgery

    SciTech Connect

    Keenan, A.M.; Palevsky, H.I.; Steinberg, M.E.; Hartman, K.M.; Alavi, A.; Lotke, P.A. )

    1991-01-01

    One hundred two patients undergoing elective knee or hip arthroplasty were studied with radionuclide ventilation scans (V) and perfusion scans (Q) preoperatively (preop) and postoperatively (postop) to assess their relative value in the diagnosis of asymptomatic pulmonary embolism (PE) after orthopedic surgery. Postop Q were read in combination with preop V and Q and postop V using prospective investigation of pulmonary embolism diagnosis (PIOPED) criteria. Of 25 postop Q interpreted as either high or intermediate probability for PE, preop Q were judged useful in 96%; the postop V were useful in 78%; and the preop V were not helpful in any of the cases. Of 63 postop Q interpreted as low probability, preop Q were useful in 74%; the postop V were useful in only 33%; and the preop V were useful in only one case. When postop Q were read as normal (14 cases), none of the three auxiliary studies were found to be useful. Overall, postop V were more helpful than preop Q in only 2%, and preop V contributed significantly in only 1%. This experience suggests that preop Q alone is the most useful adjunct to the postop Q in the postoperative evaluation for PE. The authors conclude that to screen for asymptomatic PE after elective orthopedic surgery, preop Q should be performed in all cases, preop V are not necessary, and postop V need be performed only if a baseline preop Q is not available.

  5. Exhaled CO2 Parameters as a Tool to Assess Ventilation-Perfusion Mismatching during Neonatal Resuscitation in a Swine Model of Neonatal Asphyxia

    PubMed Central

    Li, Elliott Shang-shun; Cheung, Po-Yin; O'Reilly, Megan; LaBossiere, Joseph; Lee, Tze-Fun; Cowan, Shaun; Bigam, David L.; Schmölzer, Georg Marcus

    2016-01-01

    Background End-tidal CO2 (ETCO2), partial pressure of exhaled CO2 (PECO2), and volume of expired CO2 (VCO2) can be continuously monitored non-invasively to reflect pulmonary ventilation and perfusion status. Although ETCO2 ≥14mmHg has been shown to be associated with return of an adequate heart rate in neonatal resuscitation and quantifying the PECO2 has the potential to serve as an indicator of resuscitation quality, there is little information regarding capnometric measurement of PECO2 and ETCO2 in detecting return of spontaneous circulation (ROSC) and survivability in asphyxiated neonates receiving cardiopulmonary resuscitation (CPR). Methods Seventeen newborn piglets were anesthetized, intubated, instrumented, and exposed to 45-minute normocapnic hypoxia followed by apnea to induce asphyxia. Protocolized resuscitation was initiated when heart rate decreased to 25% of baseline. Respiratory and hemodynamic parameters including ETCO2, PECO2, VCO2, heart rate, cardiac output, and carotid artery flow were continuously measured and analyzed. Results There were no differences in respiratory and hemodynamic parameters between surviving and non-surviving piglets prior to CPR. Surviving piglets had significantly higher ETCO2, PECO2, VCO2, cardiac index, and carotid artery flow values during CPR compared to non-surviving piglets. Conclusion Surviving piglets had significantly better respiratory and hemodynamic parameters during resuscitation compared to non-surviving piglets. In addition to optimizing resuscitation efforts, capnometry can assist by predicting outcomes of newborns requiring chest compressions. PMID:26766424

  6. N-terminal natriuretic peptide and ventilation-perfusion lung scan in sickle cell disease and thalassemia patients with pulmonary hypertension.

    PubMed

    Mokhtar, Galila M; Adly, Amira A M; El Alfy, Mohsen S; Tawfik, Lamis M; Khairy, Ahmed T

    2010-01-01

    The aim of this study was to determine the prevalence of pulmonary hypertension (PH) in sickle cell disease and thalassemia patients in relation to clinical and laboratory parameters of hemolysis and hemosidersosis, as well as plasma N-terminal pro-brain natriuretic peptide (NT-pro-BNP). The study also aimed to define the role of thromboembolic pulmonary artery (PA) obstruction in its etiology. Forty sickle cell disease and 30 thalassemia patients [15 beta-thalassemia major (beta-TM) and 15 beta-thalassemia intermedia (beta-TI)] were screened for PH defined as tricuspid regurgitant velocity (TRV) >2.5 m/sec and evaluated for PA obstruction using ventilation-perfusion lung scan (V/Q), together with measurement of their plasma levels of NT-pro-BNP. Patients were prospectively followed up for a mean of 18 +/- 6.1 months. The prevalence of PH was 37.5, 40.0 and 26.7% in sickle cell disease, beta-TI and beta-TM patients, respectively. Pulmonary hypertension patients were older, had longer disease duration, higher serum ferritin, serum lactate dehydrogenase (LDH) and NT-pro-BNP with lower hemoglobin (Hb) levels compared to patients without PH. N-terminal pro-BNP was positively correlated with duration of illness, TRV, LDH, serum ferritin, and negatively correlated with Hb levels. The strongest predictor for TRV was serum ferritin followed by the NT-pro-BNP level. Forty-six-point-seven percent of sickle cell disease patients with PH had either high or intermediate probability V/Q scan results compared to 10% of thalassemic patients with PH who had high probability V/Q scan results. Pulmonary hypertension is highly prevalent in young sickle cell disease and thalassemia patients, where elevated serum ferritin and NT-pro-BNP are the main indicators. PMID:20113292

  7. Pulmonary ventilation/perfusion scan

    MedlinePlus

    ... Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. Also reviewed by David Zieve, MD, MHA, Isla Ogilvie, PhD, and the A.D.A.M. Editorial team. Related MedlinePlus Health Topics COPD Lung Diseases Nuclear Scans Pulmonary Embolism Browse the Encyclopedia A.D. ...

  8. Ventilator-associated lung injury.

    PubMed

    Kuchnicka, Katarzyna; Maciejewski, Dariusz

    2013-01-01

    Mechanical ventilation of disease-affected lungs, as well as being an inadequate mode of ventilation for initially healthy lungs, can cause significant changes in their structure and function. In order to differentiate these processes, two terms are used: ventilator-associated lung injury (VALI) and ventilator-induced lung injury (VILI). In both cases, lung injury primarily results from differences in transpulmonary pressure - a consequence of an imbalance between lung stress and strain. This paper focuses on changes in lung structure and function due to this imbalance. Moreover, in this context, barotrauma, volutrauma and atelectrauma are interpreted, and the importance of signal transduction as a process inducing local and systemic inflammatory responses (biotrauma), is determined. None of the assessed methods of reducing VALI and VILI has been found to be entirely satisfactory, yet studies evaluating oscillatory ventilation, liquid ventilation, early ECMO, super-protective ventilation or noisy ventilation and administration of certain drugs are under way. Low tidal volume ventilation and adequately adjusted PEEP appear to be the best preventive measures of mechanical ventilation in any setting, including the operating theatre. Furthermore, this paper highlights the advances in VILI/VALI prevention resulting from better understanding of pathophysiological phenomena. PMID:24092514

  9. Noninvasive ventilation in trauma.

    PubMed

    Karcz, Marcin K; Papadakos, Peter J

    2015-02-01

    Trauma patients are a diverse population with heterogeneous needs for ventilatory support. This requirement depends mainly on the severity of their ventilatory dysfunction, degree of deterioration in gaseous exchange, any associated injuries, and the individual feasibility of potentially using a noninvasive ventilation approach. Noninvasive ventilation may reduce the need to intubate patients with trauma-related hypoxemia. It is well-known that these patients are at increased risk to develop hypoxemic respiratory failure which may or may not be associated with hypercapnia. Hypoxemia in these patients is due to ventilation perfusion mismatching and right to left shunt because of lung contusion, atelectasis, an inability to clear secretions as well as pneumothorax and/or hemothorax, all of which are common in trauma patients. Noninvasive ventilation has been tried in these patients in order to avoid the complications related to endotracheal intubation, mainly ventilator-associated pneumonia. The potential usefulness of noninvasive ventilation in the ventilatory management of trauma patients, though reported in various studies, has not been sufficiently investigated on a large scale. According to the British Thoracic Society guidelines, the indications and efficacy of noninvasive ventilation treatment in respiratory distress induced by trauma have thus far been inconsistent and merely received a low grade recommendation. In this review paper, we analyse and compare the results of various studies in which noninvasive ventilation was applied and discuss the role and efficacy of this ventilator modality in trauma. PMID:25685722

  10. The added value of hybrid ventilation/perfusion SPECT/CT in patients with stable COPD or apparently healthy smokers. Cancer-suspected CT findings in the lungs are common when hybrid imaging is used.

    PubMed

    Jögi, Jonas; Markstad, Hanna; Tufvesson, Ellen; Bjermer, Leif; Bajc, Marika

    2015-01-01

    Ventilation/perfusion (V/P) single-photon emission computed tomography (SPECT) is recognized as a diagnostic method with potential beyond the diagnosis of pulmonary embolism. V/P SPECT identifies functional impairment in diseases such as heart failure (HF), pneumonia, and chronic obstructive pulmonary disease (COPD). The development of hybrid SPECT/computed tomography (CT) systems, combining functional with morphological imaging through the addition of low-dose CT (LDCT), may be useful in COPD, as these patients are prone to lung cancer and other comorbidities. The aim of this study was to investigate the added value of LDCT among healthy smokers and patients with stable COPD, when examined with V/P SPECT/CT hybrid imaging. Sixty-nine subjects, 55 with COPD (GOLD I-IV) and 14 apparently healthy smokers, were examined with V/P SPECT and LDCT hybrid imaging. Spirometry was used to verify COPD grade. Only one apparently healthy smoker and three COPD patients had a normal or nearly normal V/P SPECT. All other patients showed various degrees of airway obstruction, even when spirometry was normal. The same interpretation was reached on both modalities in 39% of the patients. LDCT made V/P SPECT interpretation more certain in 9% of the patients and, in 52%, LDCT provided additional diagnoses. LDCT better characterized the type of emphysema in 12 patients. In 19 cases, tumor-suspected changes were reported. Three of these 19 patients (ie, 4.3% of all subjects) were in the end confirmed to have lung cancer. The majority of LDCT findings were not regarded as clinically significant. V/P SPECT identified perfusion patterns consistent with decompensated left ventricular HF in 14 COPD patients. In 16 patients (23%), perfusion defects were observed. HF and perfusion defects were not recognized with LDCT. In COPD patients and long-time smokers, hybrid imaging had added value compared to V/P SPECT alone, by identifying patients with lung malignancy and more clearly identifying

  11. Ventilation and ventilators.

    PubMed

    Hayes, B

    1982-01-01

    The history of ventilation is reviewed briefly and recent developments in techniques of ventilation are discussed. Operating features of ventilators have changed in the past few years, partly as the result of clinical progress; yet, technology appears to have outstripped the clinician's ability to harness it most effectively. Clinical discipline and training of medical staff in the use of ventilators could be improved. The future is promising if clinician and designer can work together closely. Ergonomics of ventilators and their controls and the provision of alarms need special attention. Microprocessors are likely to feature prominently in the next generation of designs. PMID:6754938

  12. Administration of hydrogen sulfide via extracorporeal membrane lung ventilation in sheep with partial cardiopulmonary bypass perfusion: a proof of concept study on metabolic and vasomotor effects

    PubMed Central

    2011-01-01

    Introduction Although inhalation of 80 parts per million (ppm) of hydrogen sulfide (H2S) reduces metabolism in mice, doses higher than 200 ppm of H2S were required to depress metabolism in rats. We therefore hypothesized that higher concentrations of H2S are required to reduce metabolism in larger mammals and humans. To avoid the potential pulmonary toxicity of H2S inhalation at high concentrations, we investigated whether administering H2S via ventilation of an extracorporeal membrane lung (ECML) would provide means to manipulate the metabolic rate in sheep. Methods A partial venoarterial cardiopulmonary bypass was established in anesthetized, ventilated (fraction of inspired oxygen = 0.5) sheep. The ECML was alternately ventilated with air or air containing 100, 200, or 300 ppm H2S for intervals of 1 hour. Metabolic rate was estimated on the basis of total CO2 production (V˙CO2) and O2 consumption (V˙O2). Continuous hemodynamic monitoring was performed via indwelling femoral and pulmonary artery catheters. Results V˙CO2, V˙O2, and cardiac output ranged within normal physiological limits when the ECML was ventilated with air and did not change after administration of up to 300 ppm H2S. Administration of 100, 200 and 300 ppm H2S increased pulmonary vascular resistance by 46, 52 and 141 dyn·s/cm5, respectively (all P ≤ 0.05 for air vs. 100, 200 and 300 ppm H2S, respectively), and mean pulmonary artery pressure by 4 mmHg (P ≤ 0.05), 3 mmHg (n.s.) and 11 mmHg (P ≤ 0.05), respectively, without changing pulmonary capillary wedge pressure or cardiac output. Exposure to 300 ppm H2S decreased systemic vascular resistance from 1,561 ± 553 to 870 ± 138 dyn·s/cm5 (P ≤ 0.05) and mean arterial pressure from 121 ± 15 mmHg to 66 ± 11 mmHg (P ≤ 0.05). In addition, exposure to 300 ppm H2S impaired arterial oxygenation (PaO2 114 ± 36 mmHg with air vs. 83 ± 23 mmHg with H2S; P ≤ 0.05). Conclusions Administration of up to 300 ppm H2S via ventilation of an

  13. Anaesthesia ventilators

    PubMed Central

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-01-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV). PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits. PMID:24249886

  14. Ventilator-associated lung injury during assisted mechanical ventilation.

    PubMed

    Saddy, Felipe; Sutherasan, Yuda; Rocco, Patricia R M; Pelosi, Paolo

    2014-08-01

    Assisted mechanical ventilation (MV) may be a favorable alternative to controlled MV at the early phase of acute respiratory distress syndrome (ARDS), since it requires less sedation, no paralysis and is associated with less hemodynamic deterioration, better distal organ perfusion, and lung protection, thus reducing the risk of ventilator-associated lung injury (VALI). In the present review, we discuss VALI in relation to assisted MV strategies, such as volume assist-control ventilation, pressure assist-control ventilation, pressure support ventilation (PSV), airway pressure release ventilation (APRV), APRV with PSV, proportional assist ventilation (PAV), noisy ventilation, and neurally adjusted ventilatory assistance (NAVA). In summary, we suggest that assisted MV can be used in ARDS patients in the following situations: (1) Pao(2)/Fio(2) >150 mm Hg and positive end-expiratory pressure ≥ 5 cm H(2)O and (2) with modalities of pressure-targeted and time-cycled breaths including more or less spontaneous or supported breaths (A-PCV [assisted pressure-controlled ventilation] or APRV). Furthermore, during assisted MV, the following parameters should be monitored: inspiratory drive, transpulmonary pressure, and tidal volume (6 mL/kg). Further studies are required to determine the impact of novel modalities of assisted ventilation such as PAV, noisy pressure support, and NAVA on VALI. PMID:25105820

  15. Where Is the Imbalance?

    ERIC Educational Resources Information Center

    Chan, John H. F.

    2009-01-01

    For many researchers, the concept of a power imbalance is central to the understanding of bullying, and its presence in the bully-victim relationship is a prerequisite condition that needs to be fulfilled before bullying is deemed to have taken place. Despite the concept's central importance in many definitions of bullying, the nature of the power…

  16. Generation of parametric images during routine Tc-99m PYP inhalation/Tc-99m MAA perfusion lung scintigraphy. Technical note.

    PubMed

    Miron, S D; Wiesen, E J; Feiglin, D H; Cohen, A M; Bellon, E M

    1991-07-01

    A simple technique is described for generating ventilation/perfusion ratio and perfusion/ventilation ratio images from the posterior Tc-99m PYP aerosol inhalation and Tc-99m MAA perfusion images obtained during routine lung scintigraphy. These images highlight areas of ventilation/perfusion incongruence--mismatch or reverse mismatch--that may sometimes be difficult to detect on conventional images. PMID:1834387

  17. Ex vivo lung perfusion.

    PubMed

    Machuca, Tiago N; Cypel, Marcelo

    2014-08-01

    Lung transplantation (LTx) is an established treatment option for eligible patients with end-stage lung disease. Nevertheless, the imbalance between suitable donor lungs available and the increasing number of patients considered for LTx reflects in considerable waitlist mortality. Among potential alternatives to address this issue, ex vivo lung perfusion (EVLP) has emerged as a modern preservation technique that allows for more accurate lung assessment and also improvement of lung function. Its application in high-risk donor lungs has been successful and resulted in safe expansion of the donor pool. This article will: (I) review the technical details of EVLP; (II) the rationale behind the method; (III) report the worldwide clinical experience with the EVLP, including the Toronto technique and others; (IV) finally, discuss the growing literature on EVLP application for donation after cardiac death (DCD) lungs. PMID:25132972

  18. Ex vivo lung perfusion

    PubMed Central

    Machuca, Tiago N.

    2014-01-01

    Lung transplantation (LTx) is an established treatment option for eligible patients with end-stage lung disease. Nevertheless, the imbalance between suitable donor lungs available and the increasing number of patients considered for LTx reflects in considerable waitlist mortality. Among potential alternatives to address this issue, ex vivo lung perfusion (EVLP) has emerged as a modern preservation technique that allows for more accurate lung assessment and also improvement of lung function. Its application in high-risk donor lungs has been successful and resulted in safe expansion of the donor pool. This article will: (I) review the technical details of EVLP; (II) the rationale behind the method; (III) report the worldwide clinical experience with the EVLP, including the Toronto technique and others; (IV) finally, discuss the growing literature on EVLP application for donation after cardiac death (DCD) lungs. PMID:25132972

  19. Hyperventilation induces release of cytokines from perfused mouse lung.

    PubMed

    von Bethmann, A N; Brasch, F; Nüsing, R; Vogt, K; Volk, H D; Müller, K M; Wendel, A; Uhlig, S

    1998-01-01

    Artificial mechanical ventilation represents a major cause of iatrogenic lung damage in intensive care. It is largely unknown which mediators, if any, contribute to the onset of such complications. We investigated whether stress caused by artificial mechanical ventilation leads to induction, synthesis, and release of cytokines or eicosanoids from lung tissue. We used the isolated perfused and ventilated mouse lung where frequent perfusate sampling allows determination of mediator release into the perfusate. Hyperventilation was executed with either negative (NPV) or positive pressure ventilation (PPV) at a transpulmonary pressure that was increased 2.5-fold above normal. Both modes of hyperventilation resulted in an approximately 1.75-fold increased expression of tumor necrosis factor alpha (TNFalpha) and interleukin-6 (IL-6) mRNA, but not of cyclooxygenase-2 mRNA. After switching to hyperventilation, prostacyclin release into the perfusate increased almost instantaneously from 19 +/- 17 pg/min to 230 +/- 160 pg/min (PPV) or 115 +/- 87 pg/min (NPV). The enhancement in TNFalpha and IL-6 production developed more slowly. In control lungs after 150 min of perfusion and ventilation, TNFalpha and IL-6 production was 23 +/- 20 pg/min and 330 +/- 210 pg/min, respectively. In lungs hyperventilated for 150 min, TNFalpha and IL-6 production were increased to 287 +/- 180 pg/min and more than 1,000 pg/min, respectively. We conclude that artificial ventilation might cause pulmonary and systemic adverse reactions by inducing the release of mediators into the circulation. PMID:9445308

  20. [Collateral ventilation].

    PubMed

    Voshaar, Th H

    2008-06-01

    The phenomenon of collateral ventilation is defined as ventilation of alveolar structures through passages or channels that bypass the normal airways. Such bypassing structures can be interalveolar, bronchiole-alveolar, interbronchiole, and interlobar. Collateral ventilation structures seem to be prominent in human lungs with trapped air and emphysema. In healthy human lungs normally no relevant collateral ventilation can be detected. In emphysematic lungs the ventilation through collateral channels can probably improve gas exchange mechanisms. The phenomenon of collateral ventilation explains several clinical observations in human lungs such as the absence of atalectasis following complete bronchial obstruction, e. g. after foreign body aspiration or tumour. The various results after bronchoscopic implantation of one-way endobronchial valves as a new technique for treating emphysema can also be explained by collateral ventilation. Understanding collateral ventilation is of high importance for clinicians, those working in the field of physiology of emphysema in human lungs and may be central to planning new bronchoscopic techniques for treating emphysema. The paper offers an overview of history, physiology and the relevance for lung volume reduction methods. Moreover, a new imaging technique to demonstrate collateral ventilation in vivo is described. PMID:18535980

  1. Imbalance problem in community detection

    NASA Astrophysics Data System (ADS)

    Sun, Peng Gang

    2016-09-01

    Community detection gives us a simple way to understand complex networks' structures. However, there is an imbalance problem in community detection. This paper first introduces the imbalance problem and then proposes a new measure to alleviate the imbalance problem. In addition, we study two variants of the measure and further analyze the resolution scale of community detection. Finally, we compare our approach with some state of the art methods on random networks as well as real-world networks for community detection. Both the theoretical analysis and the experimental results show that our approach achieves better performance for community detection. We also find that our approach tends to separate densely connected subgroups preferentially.

  2. Intraoperative mechanical ventilation strategies for one-lung ventilation.

    PubMed

    Şentürk, Mert; Slinger, Peter; Cohen, Edmond

    2015-09-01

    One-lung ventilation (OLV) has two major challenges: oxygenation and lung protection. The former is mainly because the ventilation of one lung is stopped while the perfusion continues; the latter is mainly because the whole ventilation is applied to only one lung. Recommendations for maintaining the oxygenation and methods of lung protection can contradict each other (such as high vs. low inspiratory oxygen fraction (FiO2), high vs. low tidal volume (TV), etc.). In light of the (very few) randomized clinical trials, this review focuses on a recent strategy for OLV, which includes a possible decrease in FiO2, lower TVs, positive end-expiratory pressure (PEEP) to the dependent lung, continuous positive airway pressure (CPAP) to the non-dependent lung and recruitment manoeuvres. Other applications such as anaesthetic choice and fluid management can affect the success of ventilatory strategy; new developments have changed the classical approach in this respect. PMID:26643100

  3. Ventilation Model

    SciTech Connect

    H. Yang

    1999-11-04

    The purpose of this analysis and model report (AMR) for the Ventilation Model is to analyze the effects of pre-closure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts and provide heat removal data to support EBS design. It will also provide input data (initial conditions, and time varying boundary conditions) for the EBS post-closure performance assessment and the EBS Water Distribution and Removal Process Model. The objective of the analysis is to develop, describe, and apply calculation methods and models that can be used to predict thermal conditions within emplacement drifts under forced ventilation during the pre-closure period. The scope of this analysis includes: (1) Provide a general description of effects and heat transfer process of emplacement drift ventilation. (2) Develop a modeling approach to simulate the impacts of pre-closure ventilation on the thermal conditions in emplacement drifts. (3) Identify and document inputs to be used for modeling emplacement ventilation. (4) Perform calculations of temperatures and heat removal in the emplacement drift. (5) Address general considerations of the effect of water/moisture removal by ventilation on the repository thermal conditions. The numerical modeling in this document will be limited to heat-only modeling and calculations. Only a preliminary assessment of the heat/moisture ventilation effects and modeling method will be performed in this revision. Modeling of moisture effects on heat removal and emplacement drift temperature may be performed in the future.

  4. Dynamic chest image analysis: model-based pulmonary perfusion analysis with pyramid images

    NASA Astrophysics Data System (ADS)

    Liang, Jianming; Haapanen, Arto; Jaervi, Timo; Kiuru, Aaro J.; Kormano, Martti; Svedstrom, Erkki; Virkki, Raimo

    1998-07-01

    The aim of the study 'Dynamic Chest Image Analysis' is to develop computer analysis and visualization methods for showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames collected at different phases of the respiratory/cardiac cycles in a short period of time. We have proposed a framework for ventilation study with an explicit ventilation model based on pyramid images. In this paper, we extend the framework to pulmonary perfusion study. A perfusion model and the truncated pyramid are introduced. The perfusion model aims at extracting accurate, geographic perfusion parameters, and the truncated pyramid helps in understanding perfusion at multiple resolutions and speeding up the convergence process in optimization. Three cases are included to illustrate the experimental results.

  5. Should High-Frequency Ventilation in the Adult Be Abandoned?

    PubMed

    Nguyen, Albert P; Schmidt, Ulrich H; MacIntyre, Neil R

    2016-06-01

    High-frequency oscillatory ventilation (HFOV) can improve ventilation-perfusion matching without excessive alveolar tidal stretching or collapse-reopening phenomenon. This is an attractive feature in the ventilation of patients with ARDS. However, two recent large multi-center trials of HFOV failed to show benefits in this patient population. The following review addresses whether, in view of these trails, HFOV should be abandoned in the adult population? PMID:27235314

  6. Ventilation Model

    SciTech Connect

    V. Chipman

    2002-10-05

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. The purposes of Revision 01 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of the discretization (Section 6.2.3.1), and the downstream applicability of the model results (i.e. wall heat fractions) to initialize post

  7. Functional Lung MRI in Chronic Obstructive Pulmonary Disease: Comparison of T1 Mapping, Oxygen-Enhanced T1 Mapping and Dynamic Contrast Enhanced Perfusion

    PubMed Central

    Jobst, Bertram J.; Triphan, Simon M. F.; Sedlaczek, Oliver; Anjorin, Angela; Kauczor, Hans Ulrich; Biederer, Jürgen; Ley-Zaporozhan, Julia; Ley, Sebastian; Wielpütz, Mark O.

    2015-01-01

    Purpose Monitoring of regional lung function in interventional COPD trials requires alternative endpoints beyond global parameters such as FEV1. T1 relaxation times of the lung might allow to draw conclusions on tissue composition, blood volume and oxygen fraction. The aim of this study was to evaluate the potential value of lung Magnetic resonance imaging (MRI) with native and oxygen-enhanced T1 mapping for the assessment of COPD patients in comparison with contrast enhanced perfusion MRI. Materials and Methods 20 COPD patients (GOLD I-IV) underwent a coronal 2-dimensional inversion recovery snapshot flash sequence (8 slices/lung) at room air and during inhalation of pure oxygen, as well as dynamic contrast-enhanced first-pass perfusion imaging. Regional distribution of T1 at room air (T1), oxygen-induced T1 shortening (ΔT1) and peak enhancement were rated by 2 chest radiologists in consensus using a semi-quantitative 3-point scale in a zone-based approach. Results Abnormal T1 and ΔT1 were highly prevalent in the patient cohort. T1 and ΔT1 correlated positively with perfusion abnormalities (r = 0.81 and r = 0.80; p&0.001), and with each other (r = 0.80; p<0.001). In GOLD stages I and II ΔT1 was normal in 16/29 lung zones with mildly abnormal perfusion (15/16 with abnormal T1). The extent of T1 (r = 0.45; p<0.05), ΔT1 (r = 0.52; p<0.05) and perfusion abnormalities (r = 0.52; p<0.05) showed a moderate correlation with GOLD stage. Conclusion Native and oxygen-enhanced T1 mapping correlated with lung perfusion deficits and severity of COPD. Under the assumption that T1 at room air correlates with the regional pulmonary blood pool and that oxygen-enhanced T1 reflects lung ventilation, both techniques in combination are principally suitable to characterize ventilation-perfusion imbalance. This appears valuable for the assessment of regional lung characteristics in COPD trials without administration of i.v. contrast. PMID:25822195

  8. Amino acid imbalance in cystinuria

    PubMed Central

    Asatoor, A. M.; Freedman, P. S.; Gabriel, J. R. T.; Milne, M. D.; Prosser, D. I.; Roberts, J. T.; Willoughby, C. P.

    1974-01-01

    After oral ingestion of a free amino acid mixture by three cystinuric patients, plasma increments of lysine and arginine were lower and those of many other amino acids were significantly higher than those found in control subjects. Similar results were obtained in control subjects after amino acid imbalance had been artificially induced by the omission of cystine, lysine, and arginine from the amino acid mixture. Especially high increments of alanine and proline provided the best evidence of amino acid imbalance caused by a temporary lysine and, to a lesser extent, arginine and cystine deficit. No such amino acid imbalance was found to occur in the cystinuric patients after ingestion of whole protein, indicating that absorption of oligopeptides produced by protein digestion provided a balanced physiological serum amino acid increment. This is considered to explain the lack of any unequivocal nutritional deficit in cystinuric patients despite poor absorption of the essential free amino acid, lysine. PMID:4411931

  9. Ex vivo lung graft perfusion.

    PubMed

    Briot, Raphaël; Gennai, Stéphane; Maignan, Maxime; Souilamas, Redha; Pison, Christophe

    2016-04-01

    This review proposes an update of the state of the art and the ongoing clinical trials of ex vivo lung perfusion for lung transplantation in patients. Ex vivo lung perfusion techniques (EVLP) can be used to evaluate a lung graft outside of the body. The goal of EVLP is to study the functional status of lung grafts that were first rejected for transplantation because they did not match all criteria for a conventional transplantation. After an EVLP evaluation, some of these lungs may be requalified for a possible transplantation in patients. This article proposes an overview of the developments of EVLP techniques. During EVLP, the perfusion and ventilation of the isolated lung preparation are very progressive in order to avoid oedema due to ischaemia-reperfusion injuries. Lung evaluation is mainly based on gasometric (PaO2/FiO2) and rheological criteria (low pulmonary arterial resistance). Several series of patients transplanted with EVLP evaluated lungs have been recently published with promising results. EVLP preparations also allow a better understanding of the physiopathology and treatments of ischaemia-reperfusion injuries. Organ procurements from "non-heart-beating" donors will probably require a wider application of these ex vivo techniques. The development of semi-automated systems might facilitate the clinical use of EVLP techniques. PMID:26746565

  10. Nasal ventilation.

    PubMed Central

    Simonds, A. K.

    1998-01-01

    Nasal intermittent positive pressure ventilation is likely to have an increasing role in the management of acute ventilatory failure, weaning, and chronic ventilatory problems. Further improvements in ventilator and mask design will be seen. Appropriate application is likely to reduce both mortality and admissions to intensive care, while domiciliary use can improve life expectancy and/or quality of life in chronic ventilatory disorders. As with any new technique, enthusiasm should not outweigh clear outcome information, and possible new indications should always be subject to careful assessment. Images Figure 2 PMID:9799887

  11. Perfusion lung scan: an aid in detection of lymphangitic carcinomatosis

    SciTech Connect

    Bates, S.E.; Tranum, B.L.

    1982-07-15

    Lymphangitic carcinomatosis is usually a late manifestation of metastatic disease. The patient usually presents with cough or dyspnea, and the chest radiograph is often nondiagnostic. Two patients are presented who developed symptoms while on adjuvant chemotherapy. Both had abnormal perfusion lung scans. One had matching ventilation defects; the other a normal ventilation study. Biopsy revealed metastatic carcinoma; in one case tumor was seen in both the pulmonary lymphatics and arterioles; in technique which can speed diagnosis and institution of therapy in lymphangitic carcinomatosis.

  12. Mechanical Ventilation

    MedlinePlus

    ... or husband or next of kin). It is important that you talk with your family members and your doctors about using a ventilator and what you would like to happen in different situations. The more clearly you explain your values and choices to friends, loved ones and doctors, ...

  13. Dynamic Chest Image Analysis: Model-Based Perfusion Analysis in Dynamic Pulmonary Imaging

    NASA Astrophysics Data System (ADS)

    Liang, Jianming; Järvi, Timo; Kiuru, Aaro; Kormano, Martti; Svedström, Erkki

    2003-12-01

    The "Dynamic Chest Image Analysis" project aims to develop model-based computer analysis and visualization methods for showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames collected with the dynamic pulmonary imaging technique. We have proposed and evaluated a multiresolutional method with an explicit ventilation model for ventilation analysis. This paper presents a new model-based method for pulmonary perfusion analysis. According to perfusion properties, we first devise a novel mathematical function to form a perfusion model. A simple yet accurate approach is further introduced to extract cardiac systolic and diastolic phases from the heart, so that this cardiac information may be utilized to accelerate the perfusion analysis and improve its sensitivity in detecting pulmonary perfusion abnormalities. This makes perfusion analysis not only fast but also robust in computation; consequently, perfusion analysis becomes computationally feasible without using contrast media. Our clinical case studies with 52 patients show that this technique is effective for pulmonary embolism even without using contrast media, demonstrating consistent correlations with computed tomography (CT) and nuclear medicine (NM) studies. This fluoroscopical examination takes only about 2 seconds for perfusion study with only low radiation dose to patient, involving no preparation, no radioactive isotopes, and no contrast media.

  14. Ventilator-driven xenon ventilation studies

    SciTech Connect

    Chilcoat, R.T.; Thomas, F.D.; Gerson, J.I.

    1984-07-01

    A modification of a common commerical Xe-133 ventilation device is described for mechanically assisted ventilation imaging. The patient's standard ventilator serves as the power source controlling the ventilator rate and volume during the xenon study, but the gases in the two systems are not intermixed. This avoids contamination of the ventilator with radioactive xenon. Supplemental oxygen and positive end-expiratory pressure (PEEP) are provided if needed. The system can be converted quickly for conventional studies with spontaneous respiration.

  15. FATE OF INHALED NITROGEN DIOXIDE IN ISOLATED PERFUSED RAT LUNG

    EPA Science Inventory

    The fate of inhaled NO2 was studied with isolated perfused rat lungs. The isolated lungs were exposed to 5 ppm NO2 for 90 min at a ventilation rate of 45 ml/min. The NO2 exposure had no adverse effects on the lungs as judged from their weights, glucose uptake, or lactate producti...

  16. Dead space: the physiology of wasted ventilation.

    PubMed

    Robertson, H Thomas

    2015-06-01

    An elevated physiological dead space, calculated from measurements of arterial CO2 and mixed expired CO2, has proven to be a useful clinical marker of prognosis both for patients with acute respiratory distress syndrome and for patients with severe heart failure. Although a frequently cited explanation for an elevated dead space measurement has been the development of alveolar regions receiving no perfusion, evidence for this mechanism is lacking in both of these disease settings. For the range of physiological abnormalities associated with an increased physiological dead space measurement, increased alveolar ventilation/perfusion ratio (V'A/Q') heterogeneity has been the most important pathophysiological mechanism. Depending on the disease condition, additional mechanisms that can contribute to an elevated physiological dead space measurement include shunt, a substantial increase in overall V'A/Q' ratio, diffusion impairment, and ventilation delivered to unperfused alveolar spaces. PMID:25395032

  17. Pulmonary blood flow distribution in sheep: effects of anesthesia, mechanical ventilation, and change in posture

    NASA Technical Reports Server (NTRS)

    Walther, S. M.; Domino, K. B.; Glenny, R. W.; Hlastala, M. P.

    1997-01-01

    BACKGROUND: Recent studies providing high-resolution images of pulmonary perfusion have questioned the classical zone model of pulmonary perfusion. Hence the present work was undertaken to provide detailed maps of regional pulmonary perfusion to examine the influence of anesthesia, mechanical ventilation, and posture. METHODS: Pulmonary perfusion was analyzed with intravenous fluorescent microspheres (15 microm) in six sheep studied in four conditions: prone and awake, prone with pentobarbital-anesthesia and breathing spontaneously, prone with anesthesia and mechanical ventilation, and supine with anesthesia and mechanical ventilation. Lungs were air dried at total lung capacity and sectioned into approximately 1,100 pieces (about 2 cm3) per animal. The pieces were weighed and assigned spatial coordinates. Fluorescence was read on a spectrophotometer, and signals were corrected for piece weight and normalized to mean flow. Pulmonary blood flow heterogeneity was assessed using the coefficient of variation of flow data. RESULTS: Pentobarbital anesthesia and mechanical ventilation did not influence perfusion heterogeneity, but heterogeneity increased when the animals were in the supine posture (P < 0.01). Gravitational flow gradients were absent in the prone position but present in the supine (P < 0.001 compared with zero). Pulmonary perfusion was distributed with a hilar-to-peripheral gradient in animals breathing spontaneously (P < 0.05). CONCLUSIONS: The influence of pentobarbital anesthesia and mechanical ventilation on pulmonary perfusion heterogeneity is small compared with the effect of changes in posture. Analysis of flow gradients indicate that gravity plays a small role in determining pulmonary blood flow distribution.

  18. Comparison of conventional mechanical ventilation and synchronous independent lung ventilation (SILV) in the treatment of unilateral lung injury.

    PubMed

    Hurst, J M; DeHaven, C B; Branson, R D

    1985-08-01

    Eight patients presenting with severe unilateral pulmonary injury responded poorly to conventional mechanical ventilation. Synchronous independent lung ventilation (SILV) was employed to provide support of ventilation and oxygenation without creating the ventilation/perfusion (V/Q) mismatch observed during conventional ventilation. All patients demonstrated improved oxygenation (mean increase, 80 torr) during SILV with the FIO2 unchanged from previous therapy. Invasive hemodynamic monitoring in five of eight patients showed no difference in the commonly measured cardiopulmonary parameters with the two forms of mechanical ventilation. Peak inspiratory pressure (PIP), continuous positive airway pressure (CPAP), and pressure change secondary to tidal volume delivery to the uninvolved lung were significantly less during SILV. SILV is an effective method of improving oxygenation in patients with severe unilateral pulmonary injury. PMID:3894680

  19. Regional pulmonary perfusion following human heart-lung transplantation

    SciTech Connect

    Lisbona, R.; Hakim, T.S.; Dean, G.W.; Langleben, D.; Guerraty, A.; Levy, R.D. )

    1989-08-01

    Ventilation and perfusion scans were obtained in six subjects who had undergone heart-lung transplantation with consequent denervation of the cardiopulmonary axis. Two of the subjects had developed obliterative bronchiolitis, which is believed to be a form of chronic rejection. Their pulmonary function tests demonstrated airflow obstruction and their scintigraphic studies were abnormal. In the remaining four subjects without obstructive airways disease, ventilation and planar perfusion scans were normal. Single photon emission computed tomography imaging of pulmonary perfusion in these patients revealed a layered distribution of blood flow indistinguishable from that of normal individuals. It is concluded that neurogenic mechanisms have little influence on the pattern of local pulmonary blood flow at rest.

  20. Oxidative Imbalance and Anxiety Disorders

    PubMed Central

    R, Krolow; D. M, Arcego; C, Noschang; S. N, Weis; C, Dalmaz

    2014-01-01

    The oxidative imbalance appears to have an important role in anxiety development. Studies in both humans and animals have shown a strong correlation between anxiety and oxidative stress. In humans, for example, the increased malondialdehyde levels and discrepancies in antioxidant enzymes in erythrocytes have been observed. In animals, several studies also show that anxiety-like behavior is related to the oxidative imbalance. Moreover, anxiety-like behavior can be caused by pharmacological-induced oxidative stress. Studies using knockout or overexpression of antioxidant enzymes have shown a relationship between anxiety-like behavior and oxidative stress. Related factors of oxidative stress that could influence anxious behavior are revised, including impaired function of different mitochondrial proteins, inflammatory cytokines, and neurotrophic factors. It has been suggested that a therapy specifically focus in reducing reactive species production may have a beneficial effect in reducing anxiety. However, the neurobiological pathways underlying the effect of oxidative stress on anxiety symptoms are not fully comprehended. The challenge now is to identify the oxidative stress mechanisms likely to be involved in the induction of anxiety symptoms. Understanding these pathways could help to clarify the neurobiology of the anxiety disorder and provide tools for new discovery in therapies and preventive strategies. PMID:24669212

  1. Estimation of Lung Ventilation

    NASA Astrophysics Data System (ADS)

    Ding, Kai; Cao, Kunlin; Du, Kaifang; Amelon, Ryan; Christensen, Gary E.; Raghavan, Madhavan; Reinhardt, Joseph M.

    Since the primary function of the lung is gas exchange, ventilation can be interpreted as an index of lung function in addition to perfusion. Injury and disease processes can alter lung function on a global and/or a local level. MDCT can be used to acquire multiple static breath-hold CT images of the lung taken at different lung volumes, or with proper respiratory control, 4DCT images of the lung reconstructed at different respiratory phases. Image registration can be applied to this data to estimate a deformation field that transforms the lung from one volume configuration to the other. This deformation field can be analyzed to estimate local lung tissue expansion, calculate voxel-by-voxel intensity change, and make biomechanical measurements. The physiologic significance of the registration-based measures of respiratory function can be established by comparing to more conventional measurements, such as nuclear medicine or contrast wash-in/wash-out studies with CT or MR. An important emerging application of these methods is the detection of pulmonary function change in subjects undergoing radiation therapy (RT) for lung cancer. During RT, treatment is commonly limited to sub-therapeutic doses due to unintended toxicity to normal lung tissue. Measurement of pulmonary function may be useful as a planning tool during RT planning, may be useful for tracking the progression of toxicity to nearby normal tissue during RT, and can be used to evaluate the effectiveness of a treatment post-therapy. This chapter reviews the basic measures to estimate regional ventilation from image registration of CT images, the comparison of them to the existing golden standard and the application in radiation therapy.

  2. Gas exchange and intrapulmonary distribution of ventilation during continuous-flow ventilation

    SciTech Connect

    Vettermann, J.; Brusasco, V.; Rehder, K.

    1988-05-01

    In 12 anesthetized paralyzed dogs, pulmonary gas exchange and intrapulmonary inspired gas distribution were compared between continuous-flow ventilation (CFV) and conventional mechanical ventilation (CMV). Nine dogs were studied while they were lying supine, and three dogs were studied while they were lying prone. A single-lumen catheter for tracheal insufflation and a double-lumen catheter for bilateral endobronchial insufflation (inspired O2 fraction = 0.4; inspired minute ventilation = 1.7 +/- 0.3 (SD) 1.kg-1.min-1) were evaluated. Intrapulmonary gas distribution was assessed from regional 133Xe clearances. In dogs lying supine, CO2 elimination was more efficient with endobronchial insufflation than with tracheal insufflation, but the alveolar-arterial O2 partial pressure difference was larger during CFV than during CMV, regardless of the type of insufflation. By contrast, endobronchial insufflation maintained both arterial PCO2 and alveolar-arterial O2 partial pressure difference at significantly lower levels in dogs lying prone than in dogs lying supine. In dogs lying supine, the dependent lung was preferentially ventilated during CMV but not during CFV. In dogs lying prone, gas distribution was uniform with both modes of ventilation. The alveolar-arterial O2 partial pressure difference during CFV in dogs lying supine was negatively correlated with the reduced ventilation of the dependent lung, which suggests that increased ventilation-perfusion mismatching was responsible for the increase in alveolar-arterial O2 partial pressure difference. The more efficient oxygenation during CFV in dogs lying prone suggests a more efficient matching of ventilation to perfusion, presumably because the distribution of blood flow is also nearly uniform.

  3. Energy Imbalance Markets (Fact Sheet)

    SciTech Connect

    Not Available

    2012-09-01

    The anticipated increase in variable renewable generation, such as wind and solar power, over the next several years has raised concerns about how system operators will maintain balance between electricity production and demand in the Western Interconnection, especially in its smaller balancing authority areas (BAAs). Given renewable portfolio standards in the West, it is possible that more than 50 gigawatts of wind capacity will be installed by 2020. Significant quantities of solar generation are likely to be added as well. Meanwhile, uncertainties about future load growth and challenges siting new transmission and generation resources may add additional stresses on the Western Interconnection of the future. One proposed method of addressing these challenges is an energy imbalance market (EIM). An EIM is a means of supplying and dispatching electricity to balance fluctuations in generation and load. It aggregates the variability of generation and load over multiple balancing areas (BAs).

  4. Ventilator-driven xenon ventilation studies

    SciTech Connect

    Chilcoat, R.T.; Thomas, F.D.; Gerson, J.I.

    1984-07-01

    A modification of a common commercial Xe-133 ventilation device is described for mechanically assisted ventilation imaging. The patient's standard ventilator serves as the power source controlling the ventilatory rate and volume during the xenon study, but the gases in the two systems are not intermixed. This avoids contamination of the ventilator with radioactive xenon. Supplemental oxygen and positive end-expiratory pressure (PEEP) are provided if needed. The system can be converted quickly for conventional studies with spontaneous respiration.

  5. Timing positive-pressure ventilation during chest compression: the key to improving the thoracic pump?

    PubMed

    Chalkias, Athanasios; Xanthos, Theodoros

    2015-02-01

    Given the importance of increased coronary and cerebral perfusion pressure during cardiopulmonary resuscitation, the recommendation of limiting tidal volume and ventilation rate to 10 per minute in order not to inhibit venous return seems to be correct. However, although the resuscitation community believes that positive-pressure ventilation during cardiopulmonary resuscitation is bad for the circulation, proper timing of compression and ventilation may actually improve the circulation. PMID:24381094

  6. Earth's energy imbalance and implications

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Sato, M.; Kharecha, P.; von Schuckmann, K.

    2011-09-01

    Improving observations of ocean heat content show that Earth is absorbing more energy from the sun than it is radiating to space as heat, even during the recent solar minimum. The inferred planetary energy imbalance, 0.59 ± 0.15 W m-2 during the 6-year period 2005-2010, confirms the dominant role of the human-made greenhouse effect in driving global climate change. Observed surface temperature change and ocean heat gain together constrain the net climate forcing and ocean mixing rates. We conclude that most climate models mix heat too efficiently into the deep ocean and as a result underestimate the negative forcing by human-made aerosols. Aerosol climate forcing today is inferred to be -1.6 ± 0.3 W m-2, implying substantial aerosol indirect climate forcing via cloud changes. Continued failure to quantify the specific origins of this large forcing is untenable, as knowledge of changing aerosol effects is needed to understand future climate change. We conclude that recent slowdown of ocean heat uptake was caused by a delayed rebound effect from Mount Pinatubo aerosols and a deep prolonged solar minimum. Observed sea level rise during the Argo float era is readily accounted for by ice melt and ocean thermal expansion, but the ascendency of ice melt leads us to anticipate acceleration of the rate of sea level rise this decade. Humanity is potentially vulnerable to global temperature change, as discussed in the Intergovernmental Panel on Climate Change (IPCC, 2001, 2007) reports and by innumerable authors. Although climate change is driven by many climate forcing agents and the climate system also exhibits unforced (chaotic) variability, it is now widely agreed that the strong global warming trend of recent decades is caused predominantly by human-made changes of atmospheric composition (IPCC, 2007). The basic physics underlying this global warming, the greenhouse effect, is simple. An increase of gases such as CO2 makes the atmosphere more opaque at infrared

  7. Current concepts of protective ventilation during general anaesthesia.

    PubMed

    Serpa Neto, Ary; Schultz, Marcus J; Slutsky, Arthur S

    2015-01-01

    Mechanical ventilation with high tidal volumes (VT) has been common practice in operating theatres because this strategy recruits collapsed lung tissue and improves ventilation-perfusion mismatch, thus decreasing the need for high inspired oxygen concentrations. Positive end-expiratory pressure (PEEP) was not used routinely because it was thought to impair cardiovascular function. Over the past two decades there have been advances in our understanding of the causes and importance of ventilation-induced lung injury based on studies in animals with healthy lungs, and trials in critically ill patients with and without acute respiratory distress syndrome. Recent data from randomised controlled trials in patients receiving ventilation during general anaesthesia for surgery have demonstrated that lung-protective strategies (use of low VT, use of PEEP if indicated, and avoidance of excessive oxygen concentrations) are also of importance during intraoperative ventilation. PMID:26561993

  8. VENTILATION NEEDS DURING CONSTRUCTION

    SciTech Connect

    C.R. Gorrell

    1998-07-23

    The purpose of this analysis is to determine ventilation needs during construction and development of the subsurface repository and develop systems to satisfy those needs. For this analysis, construction is defined as pre-emplacement excavation and development is excavation that takes place simultaneously with emplacement. The three options presented in the ''Overall Development and Emplacement Ventilation Systems'' analysis (Reference 5.5) for development ventilation will be applied to construction ventilation in this analysis as well as adding new and updated ventilation factors to each option for both construction and development. The objective of this analysis is to develop a preferred ventilation system to support License Application Design. The scope of this analysis includes: (1) Description of ventilation conditions; (2) Ventilation factors (fire hazards, dust control, construction logistics, and monitoring and control systems); (3) Local ventilation alternatives; (4) Global ventilation options; and (5) Evaluation of options.

  9. Single perfusion defect and pulmonary embolism: Angiographic correlation

    SciTech Connect

    Catania, T.A.; Caride, V.J. )

    1990-03-01

    One hundred and thirty-three ventilation-perfusion scans (V-P) with angiographic correlation were retrospectively reviewed to evaluate the frequency of pulmonary emboli (PE) in single perfusion defects (SPD), regardless of ventilation or radiographic findings. By angiography, 15 of 30 SPD cases had PE. Demographic data and clinical presentation were similar for PE and non-PE patients. However, 9 out of 15 patients with PE had recent surgery compared to none of the non-PE patients. SPD were seen in areas of ventilation and chest x-ray abnormalities in 12 of 15 PE and 11 of 19 non-PE cases. Size of the actual lesion was underestimated by scintigraphy in most cases. In 7 of 15 PE cases, the perfusion defect was larger than the corresponding ventilation abnormality. Most SPD were located at the bases. Twelve of 15 SPD in the PE group were at the posterior basilar segment. In the appropriate clinical setting, SPD carries at least a moderate probability for PE. When the clinical suspicion is high, a pulmonary angiography will be needed to confirm the diagnosis.

  10. Perfusion lung scan: an aid in detection of lymphangitic carcinomatosis

    SciTech Connect

    Bates, S.E.; Tranum, B.L.

    1982-07-15

    Lymphangitic carcinomatosis is usually a late manifestation of metastatic disease. The patient usually presents with cough or dyspnea, and the chest radiograph is often nondiagnostic. Two patients are presented who developed symptoms while on adjuvant chemotherapy. Both had abnormal perfusion lung scans. One had matching ventilation defects; the other a normal ventilation study. Biopsy revealed metastatic carcinoma; in one case tumor was seen in both the pulmonary lymphatics and arterioles; in the other, tumor was identified but the site could not be specified. The radionuclide lung scan is a technique which can speed diagnosis and institution of therapy in lymphangitic carcinomatosis.

  11. [Complaints of imbalance in elderly people].

    PubMed

    Eysink Smeets, Marjolein M; van Leeuwen, Roeland B; van de Berg, Raymond

    2016-02-01

    Balance disorders in the elderly often have several contributing causes. The search for these causes focuses on vision, proprioception, coordination and medication. The peripheral vestibular system is often overlooked. This is probably due to the fact that most clinicians overlook the vestibular system, when complaints of vertigo are missing. However, dysfunction of the vestibular system may cause imbalance without vertigo. Three cases are presented. One case illustrates several contributing causes leading to imbalance. Two other cases illustrate causes of vestibular dysfunction resulting in imbalance without vertigo: a bilateral vestibulopathy and benign paroxysmal positional vertigo. Symptoms, examination and treatment are discussed. All patients with imbalance should undergo a Head Impulse Test and Dix-Hallpike maneuver. PMID:26518204

  12. Metformin attenuates ventilator-induced lung injury

    PubMed Central

    2012-01-01

    Introduction Diabetic patients may develop acute lung injury less often than non-diabetics; a fact that could be partially ascribed to the usage of antidiabetic drugs, including metformin. Metformin exhibits pleiotropic properties which make it potentially beneficial against lung injury. We hypothesized that pretreatment with metformin preserves alveolar capillary permeability and, thus, prevents ventilator-induced lung injury. Methods Twenty-four rabbits were randomly assigned to pretreatment with metformin (250 mg/Kg body weight/day per os) or no medication for two days. Explanted lungs were perfused at constant flow rate (300 mL/min) and ventilated with injurious (peak airway pressure 23 cmH2O, tidal volume ≈17 mL/Kg) or protective (peak airway pressure 11 cmH2O, tidal volume ≈7 mL/Kg) settings for 1 hour. Alveolar capillary permeability was assessed by ultrafiltration coefficient, total protein concentration in bronchoalveolar lavage fluid (BALF) and angiotensin-converting enzyme (ACE) activity in BALF. Results High-pressure ventilation of the ex-vivo lung preparation resulted in increased microvascular permeability, edema formation and microhemorrhage compared to protective ventilation. Compared to no medication, pretreatment with metformin was associated with a 2.9-fold reduction in ultrafiltration coefficient, a 2.5-fold reduction in pulmonary edema formation, lower protein concentration in BALF, lower ACE activity in BALF, and fewer histological lesions upon challenge of the lung preparation with injurious ventilation. In contrast, no differences regarding pulmonary artery pressure and BALF total cell number were noted. Administration of metformin did not impact on outcomes of lungs subjected to protective ventilation. Conclusions Pretreatment with metformin preserves alveolar capillary permeability and, thus, decreases the severity of ventilator-induced lung injury in this model. PMID:22827994

  13. Dynamic chest image analysis: model-based ventilation study with pyramid images

    NASA Astrophysics Data System (ADS)

    Liang, Jianming; Jaervi, Timo; Kiuru, Aaro J.; Kormano, Martti; Svedstrom, Erkki; Virkki, Raimo

    1997-05-01

    The aim of the study 'dynamic chest image analysis' is to develop computing analysis and visualization methods for showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames collected at different phases of the respiratory/cardiac cycles. A multiresolutional method for ventilation study with an explicit ventilation model based on pyramid images is proposed in this paper. The ventilation model is sophisticated enough in coverage of both inhalation and exhalation phases, but also remains simple enough in model realization. This model plays a critical role in extracting accurate, geographic ventilation parameters; while the pyramid helps in understanding ventilation at multiple resolutions and speeding up the convergence process in optimization. A number of patients have been studied with a research prototype produced in MATLAB. The prototype has proven to be useful aid in dynamic pulmonary ventilation study. However, for clinical use, further work must be done in the future.

  14. VENTILATION MODEL REPORT

    SciTech Connect

    V. Chipman

    2002-10-31

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their postclosure analyses.

  15. Utilization of the organ care system as ex-vivo lung perfusion after cold storage transportation.

    PubMed

    Mohite, P N; Maunz, O; Popov, A-F; Zych, B; Patil, N P; Simon, A R

    2015-11-01

    The Organ Care System (OCS) allows perfusion and ventilation of the donor lungs under physiological conditions. Ongoing trials to compare preservation with OCS Lung with standard cold storage do not include donor lungs with suboptimal gas exchange and donor lungs treated with OCS following cold storage transportation. We present a case of a 48-yr-old man who received such lungs after cold storage transportation treated with ex-vivo lung perfusion utilizing OCS. PMID:25662732

  16. VENTILATION TECHNOLOGY SYSTEMS ANALYSIS

    EPA Science Inventory

    The report gives results of a project to develop a systems analysis of ventilation technology and provide a state-of-the-art assessment of ventilation and indoor air quality (IAQ) research needs. (NOTE: Ventilation technology is defined as the hardware necessary to bring outdoor ...

  17. A rational framework for selecting modes of ventilation.

    PubMed

    Mireles-Cabodevila, Eduardo; Hatipoğlu, Umur; Chatburn, Robert L

    2013-02-01

    Mechanical ventilation is a life-saving intervention for respiratory failure and thus has become the cornerstone of the practice of critical care medicine. A mechanical ventilation mode describes the predetermined pattern of patient-ventilator interaction. In recent years there has been a dizzying proliferation of mechanical ventilation modes, driven by technological advances and market pressures, rather than clinical data. The comparison of these modes is hampered by the sheer number of combinations that need to be tested against one another, as well as the lack of a coherent, logical nomenclature that accurately describes a mode. In this paper we propose a logical nomenclature for mechanical ventilation modes, akin to biological taxonomy. Accordingly, the control variable, breath sequence, and targeting schemes for the primary and secondary breaths represent the order, family, genus, and species, respectively, for the described mode. To distinguish unique operational algorithms, a fifth level of distinction, termed variety, is utilized. We posit that such coherent ordering would facilitate comparison and understanding of modes. Next we suggest that the clinical goals of mechanical ventilation may be simplified into 3 broad categories: provision of safe gas exchange; provision of comfort; and promotion of liberation from mechanical ventilation. Safety is achieved via optimization of ventilation-perfusion matching and pressure-volume relationship of the lungs. Comfort is provided by fostering patient-ventilator synchrony. Liberation is promoted by optimization of the weaning experience. Then we follow a paradigm that matches the technological capacity of a particular mode to achieving a specific clinical goal. Finally, we provide the reader with a comparison of existing modes based on these principles. The status quo in mechanical ventilation mode nomenclature impedes communication and comparison of existing mechanical ventilation modes. The proposed model

  18. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    SciTech Connect

    Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

    2014-01-06

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits

  19. Ex vivo lung perfusion.

    PubMed

    Reeb, Jeremie; Cypel, Marcelo

    2016-03-01

    Lung transplantation is an established life-saving therapy for patients with end-stage lung disease. Unfortunately, greater success in lung transplantation is hindered by a shortage of lung donors and the relatively poor early-, mid-, and long-term outcomes associated with severe primary graft dysfunction. Ex vivo lung perfusion has emerged as a modern preservation technique that allows for a more accurate lung assessment and improvement in lung quality. This review outlines the: (i) rationale behind the method; (ii) techniques and protocols; (iii) Toronto ex vivo lung perfusion method; (iv) devices available; and (v) clinical experience worldwide. We also highlight the potential of ex vivo lung perfusion in leading a new era of lung preservation. PMID:26700566

  20. [Independent lung ventilation for asymmetric injury: case report as a demonstration of common challenge].

    PubMed

    Lebedinskiĭ, K M; Artiukov, D A; Borisov, M V; Gromova, T A; Slivin, O A

    2014-01-01

    The article deals with a case of conventional mechanical ventilation in 75 y.o. woman with the background of uncompensated diabetes mellitus, suffering from bilateral pneumonia with predominantly left-sided lesion and severe sepsis. The conventional mechanical ventilation with high pressure levels led to arterial hypoxemia with P/F ratio 52. Independent lung ventilation immediately increased oxygenation up to P/F ratio 225 and evidently improved left lung aeration. The case demonstrates that while applying high pressures to open alveoli, we could not only provoke ventilator-induced lung injury and low cardiac output, but also "squeeze out" pulmonary perfusion from ventilated areas to non-ventilated ones with less intraalveolar pressure levels. PMID:25549491

  1. Ventilation Model Report

    SciTech Connect

    V. Chipman; J. Case

    2002-12-20

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. Revision 01 ICN 01 included the results of the unqualified software code MULTIFLUX to assess the influence of moisture on the ventilation efficiency. The purposes of Revision 02 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of

  2. On the chiral imbalance and Weibel instabilities

    NASA Astrophysics Data System (ADS)

    Kumar, Avdhesh; Bhatt, Jitesh R.; Kaw, P. K.

    2016-06-01

    We study the chiral-imbalance and the Weibel instabilities in presence of the quantum anomaly using the Berry-curvature modified kinetic equation. We argue that in many realistic situations, e.g. relativistic heavy-ion collisions, both the instabilities can occur simultaneously. The Weibel instability depends on the momentum anisotropy parameter ξ and the angle (θn) between the propagation vector and the anisotropy direction. It has maximum growth rate at θn = 0 while θn = π / 2 corresponds to a damping. On the other hand the pure chiral-imbalance instability occurs in an isotropic plasma and depends on difference between the chiral chemical potentials of right and left-handed particles. It is shown that when θn = 0, only for a very small values of the anisotropic parameter ξ ∼ξc, growth rates of the both instabilities are comparable. For the cases ξc < ξ ≪ 1 or ξ ≳ 1 at θn = 0, the Weibel modes dominate over the chiral-imbalance instability if μ5 / T ≤ 1. However, when μ5 / T ≥ 1, it is possible to have dominance of the chiral-imbalance modes at certain values of θn for an arbitrary ξ.

  3. Protective garment ventilation system

    NASA Technical Reports Server (NTRS)

    Lang, R. (Inventor)

    1970-01-01

    A method and apparatus for ventilating a protective garment, space suit system, and/or pressure suits to maintain a comfortable and nontoxic atmosphere within is described. The direction of flow of a ventilating and purging gas in portions of the garment may be reversed in order to compensate for changes in environment and activity of the wearer. The entire flow of the ventilating gas can also be directed first to the helmet associated with the garment.

  4. Mechanical ventilation in children.

    PubMed

    Kendirli, Tanil; Kavaz, Asli; Yalaki, Zahide; Oztürk Hişmi, Burcu; Derelli, Emel; Ince, Erdal

    2006-01-01

    Mechanical ventilation can be lifesaving, but > 50% of complications in conditions that require intensive care are related to ventilatory support, particularly if it is prolonged. We retrospectively evaluated the medical records of patients who had mechanical ventilation in the Pediatric Intensive Care Unit (PICU) during a follow-up period between January 2002-May 2005. Medical records of 407 patients were reviewed. Ninety-one patients (22.3%) were treated with mechanical ventilation. Ages of all patients were between 1-180 (median: 8) months. The mechanical ventilation time was 18.8 +/- 14.1 days. Indication of mechanical ventilation could be divided into four groups as respiratory failure (64.8%), cardiovascular failure (19.7%), central nervous system disease (9.8%) and safety airway (5.4%). Tracheostomy was performed in four patients. The complication ratio of mechanically ventilated children was 42.8%, and diversity of complications was as follows: 26.3% atelectasia, 17.5% ventilator-associated pneumonia, 13.1% pneumothorax, 5.4% bleeding, 4.3% tracheal edema, and 2.1% chronic lung disease. The mortality rate of mechanically ventilated patients was 58.3%, but the overall mortality rate in the PICU was 12.2%. In conclusion, there are few published epidemiological data on the follow-up results and mortality in infants and children who are mechanically ventilated. PMID:17290566

  5. Distribution of perfusion.

    PubMed

    Glenny, Robb; Robertson, H Thomas

    2011-01-01

    Local driving pressures and resistances within the pulmonary vascular tree determine the distribution of perfusion in the lung. Unlike other organs, these local determinants are significantly influenced by regional hydrostatic and alveolar pressures. Those effects on blood flow distribution are further magnified by the large vertical height of the human lung and the relatively low intravascular pressures in the pulmonary circulation. While the distribution of perfusion is largely due to passive determinants such as vascular geometry and hydrostatic pressures, active mechanisms such as vasoconstriction induced by local hypoxia can also redistribute blood flow. This chapter reviews the determinants of regional lung perfusion with a focus on vascular tree geometry, vertical gradients induced by gravity, the interactions between vascular and surrounding alveolar pressures, and hypoxic pulmonary vasoconstriction. While each of these determinants of perfusion distribution can be examined in isolation, the distribution of blood flow is dynamically determined and each component interacts with the others so that a change in one region of the lung influences the distribution of blood flow in other lung regions. PMID:23737171

  6. Importance of capillary perfusion.

    PubMed

    Hardaway, R M

    1979-11-01

    Perfusion is more critical than oxygen in the maintenance of cell viability. A high hematocrit or high fibrinogen level increases blood viscosity and predisposes to disseminated intravascular coagulation. It is recommended that a hematocrit of about 30 be maintained in periods of circulatory stress such as shock or extracorporeal circulation. PMID:495856

  7. Ventilatory failure, ventilator support, and ventilator weaning.

    PubMed

    Tobin, Martin J; Laghi, Franco; Jubran, Amal

    2012-10-01

    The development of acute ventilatory failure represents an inability of the respiratory control system to maintain a level of respiratory motor output to cope with the metabolic demands of the body. The level of respiratory motor output is also the main determinant of the degree of respiratory distress experienced by such patients. As ventilatory failure progresses and patient distress increases, mechanical ventilation is instituted to help the respiratory muscles cope with the heightened workload. While a patient is connected to a ventilator, a physician's ability to align the rhythm of the machine with the rhythm of the patient's respiratory centers becomes the primary determinant of the level of rest accorded to the respiratory muscles. Problems of alignment are manifested as failure to trigger, double triggering, an inflationary gas-flow that fails to match inspiratory demands, and an inflation phase that persists after a patient's respiratory centers have switched to expiration. With recovery from disorders that precipitated the initial bout of acute ventilatory failure, attempts are made to discontinue the ventilator (weaning). About 20% of weaning attempts fail, ultimately, because the respiratory controller is unable to sustain ventilation and this failure is signaled by development of rapid shallow breathing. Substantial advances in the medical management of acute ventilatory failure that requires ventilator assistance are most likely to result from research yielding novel insights into the operation of the respiratory control system. PMID:23720268

  8. Education in the imbalance of Nature

    NASA Astrophysics Data System (ADS)

    Shlafman, L. M.; Kontar, V. A.

    2013-12-01

    There are two concepts understanding of the real Nature: balanced and imbalanced. The traditional balanced concept understanding of Nature was originated in prehistoric times to calm the frightened souls of prehistoric man and manage groups of people. The balanced concept presupposes that Nature is isotropic, balanced, etc. The balanced concept of understanding of Nature gradually has moved to science and technology. The balanced concept of understanding of Nature is dominating from the prehistoric time up to today. But always parallel and opposite was exists the concept imbalanced understanding of Nature, which presupposes that Nature is anisotropy, imbalanced, etc. The balanced concept is much simpler than Imbalanced. The balanced concept has given mankind a lot of rough description of Nature which helped to solve a lot of practical problems but with sufficient accuracy, i.e. approximately, but not with an absolute precision. While people were few, and a lot of resources, person could take from Nature only what Nature gave willingly. During this period, people feared and respected Nature and Nature was able easily compensate the activity of people. The high accuracy of the description of Nature was not needed when resources were plentiful and people were few. But now the situation is completely different. The population has become a very large and growing. Traditional resources are almost run out and the lack of resources escalates. People are not afraid of Nature and bravely try to take by force what Nature does not give voluntarily. People invaded into imbalance Nature, and Nature can no longer compensate activity of people. The era of global change is started, including those that man provokes. In the conditions of global changes is insufficiently of the approximate solutions of the traditional balanced concept. The balanced concept is exhausted, and increasingly misleads people. The balanced concept cannot solve the problems that arise in the global change

  9. Review of Residential Ventilation Technologies

    SciTech Connect

    Armin Rudd

    2005-08-30

    This paper reviews current and potential ventilation technologies for residential buildings, including a variety of mechanical systems, natural ventilation, and passive ventilation. with particular emphasis on North American climates and construction.

  10. Multifamily Ventilation Retrofit Strategies

    SciTech Connect

    Ueno, K.; Lstiburek, J.; Bergey, D.

    2012-12-01

    In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

  11. Guide to Home Ventilation

    SciTech Connect

    2010-10-01

    A fact sheet from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy: Ventilation refers to the exchange of indoor and outdoor air. Without proper ventilation, an otherwise insulated and airtight house will seal in harmful pollutants, such as carbon monoxide, and moisture that can damage a house.

  12. Volumetric capnography in the mechanically ventilated patient.

    PubMed

    Blanch, L; Romero, P V; Lucangelo, U

    2006-06-01

    Expiratory capnogram provides qualitative information on the waveform patterns associated with mechanical ventilation and quantitative estimation of expired CO2. Volumetric capnography simultaneously measures expired CO2 and tidal volume and allows identification of CO2 from 3 sequential lung compartments: apparatus and anatomic dead space, from progressive emptying of alveoli and alveolar gas. Lung heterogeneity creates regional differences in CO2 concentration and sequential emptying contributes to the rise of the alveolar plateau and to the steeper the expired CO2 slope. The concept of dead space accounts for those lung areas that are ventilated but not perfused. In patients with sudden pulmonary vascular occlusion due to pulmonary embolism, the resultant high V/Q mismatch produces an increase in alveolar dead space. Calculations derived from volumetric capnography are useful to suspect pulmonary embolism at the bedside. Alveolar dead space is large in acute lung injury and when the effect of positive end-expiratory pressure (PEEP) is to recruit collapsed lung units resulting in an improvement of oxygenation, alveolar dead space may decrease, whereas PEEP-induced overdistension tends to increase alveolar dead space. Finally, measurement of physiologic dead space and alveolar ejection volume at admission or the trend during the first 48 hours of mechanical ventilation might provide useful information on outcome of critically ill patients with acute lung injury or acute respiratory distress syndrome. PMID:16682932

  13. Segmental hemodynamics during partial liquid ventilation in isolated rat lungs

    PubMed Central

    Ko, Angela C.; Hirsh, Emily; Wong, Andrew C.; Moore, Timothy M.; Taylor, Aubrey E.; Hirschl, Ronald B.; Younger, John G.

    2011-01-01

    Partial liquid ventilation (PLV) is a means of ventilatory support in which gas ventilation is carried out in a lung partially filled with a perfluorocarbon liquid capable of supporting gas exchange. Recently, this technique has been proposed as an adjunctive therapy for cardiac arrest, during which PLV with cold perfluorocarbons might rapidly cool the intrathoracic contents and promote cerebral protective hypothermia while not interfering with gas exchange. A concern during such therapy will be the effect of PLV on pulmonary hemodynamics during very low blood flow conditions. In the current study, segmental (i.e. precapillary, capillary, and postcapillary) hemodynamics were studied in the rat lung using a standard isolated lung perfusion system at a flow rate of 6 ml/min ( ~5% normal cardiac output). Lungs received either gas ventilation or 5 or 10 ml/kg PLV. Segmental pressures and vascular resistances were determined, as was transcapillary fluid flux. The relationship between individual hemodynamic parameters and PLV dose was examined using linear regression, with n = 5 in each study group. PLV at both the 5 and 10 ml/kg dose produced no detectable changes in pulmonary blood flow or in transcapillary fluid flux (all R2 values < 0.20). Conclusion: In an isolated perfused lung model of low flow conditions, normal segmental hemodynamic behavior was preserved during liquid ventilation. These data support further investigation of this technique as an adjunct to cardiopulmonary resuscitation. PMID:12668304

  14. [Ventilation strategies in the child with severe hypoxemic respiratory failure].

    PubMed

    Donoso F, Alejandro; Arriagada S, Daniela; Díaz R, Franco; Cruces R, Pablo

    2015-01-01

    In this review, we assemble the fundamental concepts of the use of mechanical ventilation (MV) in children with acute respiratory failure (ARDS) and refractory hypoxemia. We also discusses topics of protective ventilation and recruitment potential, and specifically examine the options of ventilation and/or maneuvers designed to optimize the non-aerated lung tissue: alveolar recruitment maneuvers, positive end-expiratory pressure (PEEP) titulation, high frequency oscillatory ventilation (HFOV), airway pressure release ventilation (APRV), aimed at correcting the mismatch ventilation/perfusion (V/Q): use of prone position. The only pharmacological intervention analyzed is the use of neuromuscular blockers. In clinical practice, the protective MV concept involves using an individual adjustment of the PEEP and volume tidal (V(T)). Use of recruitment maneuvers and PEEP downward titration can improve lung function in patients with ARDS and severe hypoxemia. We must keep in mind HFOV instauration as early as possible in response to failure of MV. The use of early and prolonged prone can improve gas exchange in hopes of a better control of what caused the use of MV. PMID:25739487

  15. The Global Imbalance of the Inanimate Nature

    NASA Astrophysics Data System (ADS)

    Vargashkin, V. Y.

    2013-12-01

    The preservation laws serve is the general expression of balancing properties and stability in nature. The preservation laws, according to Noether's theorem, are displays of properties of uniformity and isotropy of space and time. So, in the most global representation, the imbalance of the Universe assumes presence of some large-scale non-uniformity in it. The scale of such non-uniformity may form the basis for balance and imbalance correlation in the nature as a whole. This heterogeneity may lead to global infringement of laws of preservation, such as laws of preservation of an impulse, the impulse and the moment of energy. So, the most global imbalance of the inanimate nature may be connected with existence of large-scale fluctuations of properties of the Universe matter. It is possible to think about existence of such imbalance with presence of the allocated areas and directions on celestial sphere. Now most of interest in a science is represented by some types of global anisotropy. First, it is spatial anisotropy of cosmic microwave background. It depends of direction on celestial sphere, including formation of the allocated directions, and also "hot" and "cold" spots. Secondly, it is anisotropy of substance's density, concerning clusters and super clusters of galaxies. It is known as a large-scale structure of the Universe. This kind of anisotropy is connected with imbalance between distributions of radiated substance and observable emptiness. The geometry of this kind of imbalance is that the shining matter forms "cellular", "sheet" or "filaments" structure, forming the cells, filled with visible "voids". Thirdly, it is the hypothetical anisotropy connected with prospective dependence of speed of expansion of the Universe with direction on celestial sphere, and also with time. The relative size for this speed is known as Hubble's parameter. The told testifies about actuality of systematization, and also revelation of an interconnection and mutual

  16. An Algorithm to Evaluate Imbalances of Quadrature Mixers

    NASA Astrophysics Data System (ADS)

    Asami, Koji; Arai, Michiaki

    It is essential, as bandwidths of wireless communications get wider, to evaluate the imbalances among quadrature mixer ports, in terms of carrier phase offset, IQ gain imbalance, and IQ skew. Because it is time consuming to separate skew, gain imbalance and carrier phase offset evaluation during test is often performed using a composite value, without separation of the imbalance factors. This paper describes an algorithm for enabling separation among quadrature mixer gain imbalance, carrier phase offset, and skew. Since the test time is reduced by the proposed method, it can be applied during high volume production testing.

  17. Developments in longwall ventilation

    SciTech Connect

    Brune, J.F.; Aman, J.P.; Kotch, M.

    1999-07-01

    Rapid development in longwall mining technology has brought significant changes in panel layout and geometry. These changes require adaptations in the ventilation system to provide sufficient air quantities in longwall face and bleeder areas. At CONSOL, various longwall bleeder systems in the Pittsburgh No. 8 Seam have been studied with detailed ventilation surveys. Computer model network simulations were conducted from these surveys to study the effects of different bleeder configurations and ventilation adjustments. This paper examines the relationships between the longwall face air quantity and the convergence in the tailgate-to-bleeder entries, number of development entries, bleeder fan pressure and the tailgate ventilation scheme. It shows that, using conventional ventilation patterns, the face air quantity may be limited if the gob caves tightly. In such cases, modification of the ventilation pattern to an internal bleeder system, combined with appropriate tailgate ventilation and higher bleeder fan pressure may be required. Experience in CONSOL's operations has proven this method successful especially in mines that changed from four-entry to three-entry longwall development.

  18. Ventilator-patient dyssynchrony induced by change in ventilation mode.

    PubMed

    Lydon, A M; Doyle, M; Donnelly, M B

    2001-06-01

    Patient-ventilator interactions may be coordinated (synchronous) or uncoordinated (dyssynchronous). Ventilator-patient dyssynchrony increases the work of breathing by imposing a respiratory muscle workload. Respiratory centre output responds to feedback from respiratory muscle loading. Mismatching of respiratory centre output and mechanical assistance results in dyssynchrony. We describe a case of severe patient-ventilator dyssynchrony and hypothesize that dyssynchrony was induced by a change in mode of ventilation from pressure-cycled to volume-cycled ventilation, due to both ventilator settings and by the patient's own respiratory centre adaptation to mechanical ventilation. The causes, management and clinical implications of dyssynchrony are discussed. PMID:11439799

  19. Ventilating Air-Conditioner

    NASA Technical Reports Server (NTRS)

    Dinh, Khanh

    1994-01-01

    Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.

  20. High-frequency ventilation.

    PubMed

    Crawford, M R

    1986-08-01

    Over the last six years high-frequency ventilation has been extensively evaluated both in the clinical and laboratory settings. It is now no longer the great mystery it once was, and it is now no longer believed (as many had hoped), that it will solve all the problems associated with mechanical pulmonary ventilation. Although the technique is safe and appears to cause no harm even in the long term, it has not yet been shown to offer any major advantages over conventional mechanical ventilation. PMID:3530042

  1. Why We Ventilate

    SciTech Connect

    Logue, Jennifer M.; Sherman, Max H.; Price, Phil N.; Singer, Brett C.

    2011-09-01

    It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of"good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

  2. Ventilation and cardiac related impedance changes in children undergoing corrective open heart surgery.

    PubMed

    Schibler, Andreas; Pham, Trang M T; Moray, Amol A; Stocker, Christian

    2013-10-01

    Electrical impedance tomography (EIT) can determine ventilation and perfusion relationship. Most of the data obtained so far originates from experimental settings and in healthy subjects. The aim of this study was to demonstrate that EIT measures the perioperative changes in pulmonary blood flow after repair of a ventricular septum defect in children with haemodynamic relevant septal defects undergoing open heart surgery. In a 19 bed intensive care unit in a tertiary children's hospital ventilation and cardiac related impedance changes were measured using EIT before and after surgery in 18 spontaneously breathing patients. The EIT signals were either filtered for ventilation (ΔZV) or for cardiac (ΔZQ) related impedance changes. Impedance signals were then normalized (normΔZV, normΔZQ) for calculation of the global and regional impedance related ventilation perfusion relationship (normΔZV/normΔZQ). We observed a trend towards increased normΔZV in all lung regions, a significantly decreased normΔZQ in the global and anterior, but not the posterior lung region. The normΔZV/normΔZQ was significantly increased in the global and anterior lung region. Our study qualitatively validates our previously published modified EIT filtration technique in the clinical setting of young children with significant left-to-right shunt undergoing corrective open heart surgery, where perioperative assessment of the ventilation perfusion relation is of high clinical relevance. PMID:24021191

  3. [Love trouble: armonies and imbalances of passions].

    PubMed

    Morpurgo, Piero

    2012-01-01

    Love trouble is a well described 'pathology' in Italian medieval literature, often indebted to the humoral medical theories of the School of Salerno, especially in the idea of love sickness as the result of the balance or imbalance ofthe four Hippocratic humors and of the cyclical pattern of the seasons and stages of life. Unbridled passions, not controlled by the 'amor cortese', deform bodies and torment souls and lead both men and women away from the search for a celestial balance, only guaranteed by the union of the heart spirit and bodily heat. PMID:25807728

  4. Lung-derived soluble mediators are pathogenic in ventilator-induced lung injury.

    PubMed

    Jaecklin, Thomas; Engelberts, Doreen; Otulakowski, Gail; O'Brodovich, Hugh; Post, Martin; Kavanagh, Brian P

    2011-04-01

    Ventilator-induced lung injury (VILI) due to high tidal volume (V(T)) is associated with increased levels of circulating factors that may contribute to, or be markers of, injury. This study investigated if exclusively lung-derived circulating factors produced during high V(T) ventilation can cause or worsen VILI. In isolated perfused mouse lungs, recirculation of perfusate worsened injury (compliance impairment, microvascular permeability, edema) induced by high V(T). Perfusate collected from lungs ventilated with high V(T) and used to perfuse lungs ventilated with low V(T) caused similar compliance impairment and permeability and caused a dose-dependent decrease in transepithelial electrical resistance (TER) across rat distal lung epithelial monolayers. Circulating soluble factors derived from the isolated lung thus contributed to VILI and had deleterious effects on the lung epithelial barrier. These data demonstrate transferability of an injury initially caused exclusively by mechanical ventilation and provides novel evidence for the biotrauma hypothesis in VILI. Mediators of the TER decrease were heat-sensitive, transferable via Folch extraction, and (following ultrafiltration, 3 kDa) comprised both smaller and larger molecules. Although several classes of candidate mediators, including protein cytokines (e.g., tumor necrosis factor-α, interleukin-6, macrophage inflammation protein-1α) and lipids (e.g., eicosanoids, ceramides, sphingolipids), have been implicated in VILI, only prostanoids accumulated in the perfusate in a pattern consistent with a pathogenic role, yet cyclooxygenase inhibition did not protect against injury. Although no single class of factor appears solely responsible for the decrease in barrier function, the current data implicate lipid-soluble protein-bound molecules as not just markers but pathogenic mediators in VILI. PMID:21239530

  5. Electrolyte Imbalance in Patients with Sheehan's Syndrome

    PubMed Central

    Lim, Chur Hoan; Han, Ji Hyun; Jin, Joon; Yu, Ji Eun; Cho, Dong Hyeok; Chung, Dong Jin; Chung, Min Young

    2015-01-01

    Background We investigated the prevalence of electrolyte imbalance and the relationship between serum electrolyte and anterior pituitary hormone levels in patients with Sheehan's syndrome. Methods In a retrospective study, we investigated 78 patients with Sheehan's syndrome. We also included 95 normal control subjects who underwent a combined anterior pituitary hormone stimulation test and showed normal hormonal responses. Results In patients with Sheehan's syndrome, the serum levels of sodium, potassium, ionized calcium, magnesium, and inorganic phosphate were significantly lower than those in control subjects. The prevalence of hyponatremia, hypokalemia, hypocalcemia, hypomagnesemia, and hypophosphatemia in patients with Sheehan's syndrome was 59.0% (n=46), 26.9% (n=21), 35.9% (n=28), 47.4% (n=37), and 23.1% (n=18), respectively. Levels of sodium and ionized calcium in serum were positively correlated with levels of all anterior pituitary hormones (all P<0.05). Levels of potassium in serum were positively correlated with adrenocorticotrophic hormone (ACTH) and growth hormone (GH) levels (all P<0.05). Levels of inorganic phosphate in serum were positively correlated with levels of thyroid-stimulating hormone, prolactin, and GH (all P<0.05), and levels of magnesium in serum were positively correlated with delta ACTH (P<0.01). Conclusion Electrolyte imbalance was common in patients with Sheehan's syndrome. Furthermore, the degree of anterior pituitary hormone deficiency relates to the degree of electrolyte disturbance in patients with this disease. PMID:26485467

  6. 14 CFR 25.831 - Ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Ventilation and Heating § 25.831 Ventilation... probable failures or malfunctioning of the ventilating, heating, pressurization, or other systems...

  7. 14 CFR 25.831 - Ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Ventilation and Heating § 25.831 Ventilation... probable failures or malfunctioning of the ventilating, heating, pressurization, or other systems...

  8. 14 CFR 25.831 - Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Ventilation and Heating § 25.831 Ventilation... probable failures or malfunctioning of the ventilating, heating, pressurization, or other systems...

  9. 14 CFR 25.831 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Ventilation and Heating § 25.831 Ventilation... probable failures or malfunctioning of the ventilating, heating, pressurization, or other systems...

  10. 14 CFR 25.831 - Ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Ventilation and Heating § 25.831 Ventilation... probable failures or malfunctioning of the ventilating, heating, pressurization, or other systems...

  11. Clinical challenges in mechanical ventilation.

    PubMed

    Goligher, Ewan C; Ferguson, Niall D; Brochard, Laurent J

    2016-04-30

    Mechanical ventilation supports gas exchange and alleviates the work of breathing when the respiratory muscles are overwhelmed by an acute pulmonary or systemic insult. Although mechanical ventilation is not generally considered a treatment for acute respiratory failure per se, ventilator management warrants close attention because inappropriate ventilation can result in injury to the lungs or respiratory muscles and worsen morbidity and mortality. Key clinical challenges include averting intubation in patients with respiratory failure with non-invasive techniques for respiratory support; delivering lung-protective ventilation to prevent ventilator-induced lung injury; maintaining adequate gas exchange in severely hypoxaemic patients; avoiding the development of ventilator-induced diaphragm dysfunction; and diagnosing and treating the many pathophysiological mechanisms that impair liberation from mechanical ventilation. Personalisation of mechanical ventilation based on individual physiological characteristics and responses to therapy can further improve outcomes. PMID:27203509

  12. A Resonant Synchronous Vibration Based Approach for Rotor Imbalance Detection

    NASA Technical Reports Server (NTRS)

    Luo, Huangeng; Rodriquez, Hector; Hallman, Darren; Lewicki, David G.

    2006-01-01

    This paper presents a methodology of detecting rotor imbalances, such as mass imbalance and crack-induced imbalance, using shaft synchronous vibrations. An iterative scheme is developed to identify parameters from measured synchronous vibration data. A detection system is integrated by using state-of-the-art commercial analysis equipment. A laboratory rotor test rig is used to verify the system integration and algorithm validation. A real engine test has been carried out and the results are reported.

  13. An imperative to monitor Earth's energy imbalance

    NASA Astrophysics Data System (ADS)

    von Schuckmann, K.; Palmer, M. D.; Trenberth, K. E.; Cazenave, A.; Chambers, D.; Champollion, N.; Hansen, J.; Josey, S. A.; Loeb, N.; Mathieu, P.-P.; Meyssignac, B.; Wild, M.

    2016-02-01

    The current Earth's energy imbalance (EEI) is mostly caused by human activity, and is driving global warming. The absolute value of EEI represents the most fundamental metric defining the status of global climate change, and will be more useful than using global surface temperature. EEI can best be estimated from changes in ocean heat content, complemented by radiation measurements from space. Sustained observations from the Argo array of autonomous profiling floats and further development of the ocean observing system to sample the deep ocean, marginal seas and sea ice regions are crucial to refining future estimates of EEI. Combining multiple measurements in an optimal way holds considerable promise for estimating EEI and thus assessing the status of global climate change, improving climate syntheses and models, and testing the effectiveness of mitigation actions. Progress can be achieved with a concerted international effort.

  14. Ventilation technologies scoping study

    SciTech Connect

    Walker, Iain S.; Sherman, Max H.

    2003-09-30

    This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the needs of California, determining residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and level of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  15. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    SciTech Connect

    Sherman, Max H.; Walker, Iain S.

    2011-04-01

    Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outdoor pollutant levels are high, the importance of minimizing energy use particularly during times of peak electricity demand, and how the energy used to condition air as part of ventilation system operation changes with outdoor conditions. Dynamic control of ventilation systems can provide ventilation equivalent to or better than what is required by standards while minimizing energy costs and can also add value by shifting load during peak times and reducing intake of outdoor air contaminants. This article describes the logic that enables dynamic control of whole-house ventilation systems to meet the intent of ventilation standards and demonstrates the dynamic ventilation system control concept through simulations and field tests of the Residential Integrated Ventilation-Energy Controller (RIVEC).

  16. Central Fan Integrated Ventilation Systems

    SciTech Connect

    2009-05-12

    This information sheet describes one example of a ventilation system design, a central fan integrated supply (CFIS) system, a mechanical ventilation and pollutant source control to ensure that there is reasonable indoor air quality inside the house.

  17. Imbalance of Water as an Example of Fundamental Imbalance of Nature.

    NASA Astrophysics Data System (ADS)

    Nechayev, A.

    2012-12-01

    Water is one of the main attributes of the world around us. Turning into ice or water vapor it controls a wide range of natural phenomena. It is one of the most moving substances of Earth and in it as in a mirror all imbalance of the Nature reflects. The laws that govern the water are above all the laws of classical physics, laws of motion and conservation. They determine an equilibrium state and out of it when the balance of forces, flows and energy is disturbed. Volcanic eruption, earthquake, tsunami, hurricane or tornado formation are the extreme form of imbalance of Nature. Unfortunately they are involved in it as a genetic feature. Mass and energy flows pervade the natural world. The structure of the space makes them come into conflict. Internal stress increase, there is an imbalance resulting in the fast, catastrophic events. Whether it is possible to understand the reasons of similar imbalance and to find its critical conditions? The water in their states shows the most striking examples of imbalance of Nature. If the equilibrium of forces and flows is disturbed the nature of movement can fundamentally change. The dependence of the total flux I flowing through the structure of the pressure drop Δp causing this flow can serve as an important informative characteristic for the imbalance phenomena connected with water. This «flow - forcing» characteristic I(Δp) qualitatively changes its form with changes of so-called bifurcation parameter. From monotonous it can become S- or N-shaped. The approach to the analysis of Nature imbalance phenomenon can be illustrated by geyser eruption mechanism which is theoretically described in (Nechayev, 2012). One-dimensional motion of water flow in the geyser conduit obeys the Navier-Stokes equation. The influx of masses of water vapor due to water boiling in an underground chamber creates increasing overpressure. Bifurcation parameter is the volume of this chamber. There is a critical value of this volume (as compared

  18. Pulmonary effects of expiratory-assisted small-lumen ventilation during upper airway obstruction in pigs.

    PubMed

    Ziebart, A; Garcia-Bardon, A; Kamuf, J; Thomas, R; Liu, T; Schad, A; Duenges, B; David, M; Hartmann, E K

    2015-10-01

    Novel devices for small-lumen ventilation may enable effective inspiration and expiratory ventilation assistance despite airway obstruction. In this study, we investigated a porcine model of complete upper airway obstruction. After ethical approval, we randomly assigned 13 anaesthetised pigs either to small-lumen ventilation following airway obstruction (n = 8) for 30 min, or to volume-controlled ventilation (sham setting, n = 5). Small-lumen ventilation enabled adequate gas exchange over 30 min. One animal died as a result of a tension pneumothorax in this setting. Redistribution of ventilation from dorsal to central compartments and significant impairment of the distribution of ventilation/perfusion occurred. Histopathology demonstrated considerable lung injury, predominantly through differences in the dorsal dependent lung regions. Small-lumen ventilation maintained adequate gas exchange in a porcine airway obstruction model. The use of this technique for 30 min by inexperienced clinicians was associated with considerable end-expiratory collapse leading to lung injury, and may also carry the risk of severe injury. PMID:26179167

  19. How to Plan Ventilation Systems.

    ERIC Educational Resources Information Center

    Clarke, John H.

    1963-01-01

    Ventilation systems for factory safety demand careful planning. The increased heat loads and new processes of industry have introduced complex ventilation problems in--(1) ventilation supply, (2) duct work design, (3) space requirements, (4) hood face velocities, (5) discharge stacks, and (6) building eddies. This article describes and diagrams…

  20. A Central Dilemma in the Mental Health Sector: Structural Imbalance

    ERIC Educational Resources Information Center

    Doessel, Darrel P.; Williams, Ruth F. G.; Nolan, Patricia

    2008-01-01

    Mental health services provision is persistently criticised regarding resource inadequacy. Services are also subject to another dilemma, "structural imbalance". This study demonstrates the dimensions of structural imbalance in Australia's mental health sector by recourse to the 1997 Australian Bureau of Statistics national survey of mental health…

  1. ADVISORY COMMITTEE ON RACIAL IMBALANCE AND EDUCATION. INTERIM REPORT.

    ERIC Educational Resources Information Center

    ADVISORY COMMITTEE ON RACIAL IMBALANCE AND EDUCATION

    RACIAL IMBALANCE HAMPERS THE FULLEST ACADEMIC AND VOCATIONAL DEVELOPMENT OF THOSE AFFECTED BY IT AND IMPAIRS ADEQUATE PREPARATION FOR THE DUTIES OF AMERICAN CITIZENSHIP. THE PRACTICAL DEFINITION OF A RACIALLY IMBALANCE SCHOOL WAS ONE IN WHICH COMPOSITION OF THE SCHOOL POPULATION IS SHARPLY OUT OF BALANCE WITH THE RACIAL COMPOSITION OF THE SOCIETY…

  2. Laboratory Ventilation and Safety.

    ERIC Educational Resources Information Center

    Steere, Norman V.

    1965-01-01

    In order to meet the needs of both safety and economy, laboratory ventilation systems must effectively remove air-borne toxic and flammable materials and at the same time exhaust a minimum volume of air. Laboratory hoods are the most commonly used means of removing gases, dusts, mists, vapors, and fumed from laboratory operations. To be effective,…

  3. Measure Guideline: Ventilation Cooling

    SciTech Connect

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  4. RESIDENTIAL VENTILATION STUDY

    EPA Science Inventory

    This project evaluated the effectiveness, first costs and operational costs of various types of residential ventilation systems in three different climates in the U.S. The Agency, through its Energy Star Program, recommends that builders construct homes that are energy efficient ...

  5. Space station ventilation study

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Allen, G. E.

    1972-01-01

    A ventilation system design and selection method which is applicable to any manned vehicle were developed. The method was used to generate design options for the NASA 33-foot diameter space station, all of which meet the ventilation system design requirements. System characteristics such as weight, volume, and power were normalized to dollar costs for each option. Total system costs for the various options ranged from a worst case $8 million to a group of four which were all approximately $2 million. A system design was then chosen from the $2 million group and is presented in detail. A ventilation system layout was designed for the MSFC space station mockup which provided comfortable, efficient ventilation of the mockup. A conditioned air distribution system design for the 14-foot diameter modular space station, using the same techniques, is also presented. The tradeoff study resulted in the selection of a system which costs $1.9 million, as compared to the alternate configuration which would have cost $2.6 million.

  6. Effects of alveolar and perfusion hypoxia and hypercapnia on pulmonary vascular resistance in the lamb.

    PubMed

    Hyman, A L; Kadowitz, P J

    1975-02-01

    The effects of ventilatory hypoxia and hypercapnia and perfusion hypoxia and hypercapnia on pulmonary vascular resistance were studied in the intact lamb using right heart techniques to isolate and perfuse the left lower lobe. Ventilatory hypoxia increased vascular resistance in the left lower lobe by constricting predominantly vessels upstream from small lobar veins, presumably small arteries. The response to hypoxia was not blocked by phentolamine and diphenhydramine in doses that markedly decreased pressor responses to norepinephrine and histamine in the lung. Perfusion hypoxia did not alter vascular resistance in the perfused lobe. Ventilatory hypercapnia increased vascular resistance in the lung by constricting mainly upstream vessels, whereas perfusion hypercapnia decreased resistance by dilating upstream vessels. These data indicate that histamine and catecholamines are not involved in the response to alveolar hypoxia. These results suggest that the sensor site for ventilatory hypoxia is close to the alveolus since the response is unrelated to lobar arterial Po2. It is concluded that systemic reflexes are not necessarily involved in the response of the pulmonary vascular bed to ventilatory hypoxia or hypercapnia and that the magnitude and rapidity of this response suggest that it may represent an important local mechanism for the control of ventilation-perfusion relationships in this species. PMID:235217

  7. Blood perfusion and pH monitoring in organs by laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Vari, Sandor G.; Papazoglou, Theodore G.; Pergadia, Vani R.; Stavridi, Marigo; Snyder, Wendy J.; Papaioannou, Thanassis; Duffy, J. T.; Weiss, Andrew B.; Thomas, Reem; Grundfest, Warren S.

    1994-01-01

    Sensitivity of laser-induced fluorescence spectroscopy (LIFS) in detecting a change in tissue pH, and blood perfusion was determined. Rabbits were anesthetized, paralyzed, and mechanically ventilated. The arterial and venous blood supplies of the kidney were isolated and ligated to alter the perfusion. The femoral artery was cannulated to extract samples for blood gas analysis. A 308-nm XeCl was used as an excitation source. A 600 micrometers core diameter fiber was used for fluorescence acquisition, and the spectra analyzed by an optical multichannel analyzer (EG & G, OMA III). the corresponding intensity ratio R equals INADH / ICOLL was used as an index for respiratory acidosis. Blood perfusion was assessed using the following algorithm: (IELAS minus ICOLL) divided by (INADH minus ICOLL). The intensity ratio linearly decreased with the reduction of blood perfusion. When we totally occluded the artery the ratio decreased tenfold when compared to the ratio of a fully perfused kidney. Results of monitoring blood acidosis by laser-induced fluorescence spectroscopy shows a significant trend between pH and intensity ratio. Since all the slopes were negative, there is an obvious significant correlation between the pH and NADH.COLLAGEN RATIO. Blue-light-induced fluorescence measurements and ratio fluorometry is a sensitive method for monitoring blood perfusion and acidity or alkalinity of an organ.

  8. Optimizing ventilation in conjunction with phased chest and abdominal compression-decompression (Lifestick) resuscitation.

    PubMed

    Kern, Karl B; Hilwig, Ronald W; Berg, Robert A; Schock, Robert B; Ewy, Gordon A

    2002-01-01

    The best method for employment of phased chest and abdominal compression-decompression (Lifestick) cardiopulmonary resuscitation (CPR) has yet to be determined. Of particular concern with using this technique is the combining of ventilation with the phased compressions and decompressions. Twenty domestic swine (50+/-1 kg) were equally divided into four groups. Following 10 min of untreated VF, CPR was begun. Group 1 received Lifestick (LS) CPR with only passive ventilation ('passive'); Group 2 received LS-CPR with synchronized positive pressure ventilations (ppv) at a chest compression ratio of 15:2 (15:2 S); Group 3 had LS-CPR with synchronized ppv at 5:1 (5:1 S); and Group 4 received LS-CPR with asynchronous ppv at 5:1 (5:1 A). Endpoints included hemodynamics, blood gases, minute ventilation, and 24 h outcome. Asynchronous ventilation (5:1 A) had significantly worse hemodynamics including aortic and right atrial systolic, aortic diastolic, and coronary perfusion pressures than the other groups (P<0.05). Passive ventilation had the poorest arterial and mixed venous blood gases (P<0.05), but did not differ from 15:2 S in minute ventilation produced (8 vs 10 l/min). No differences in outcome were seen. The ventilation technique combined with LS-CPR can make a significant difference in hemodynamics as well as ventilation. Optimizing other forms of basic and advanced cardiac life support through different ventilation methods deserves new consideration, including a re-examination of the current single rescuer recommendation of a 15:2 ratio. Optimal ventilation strategy when using the LS device at 60 compressions per min appears to be 5:1 S. Such data is important for conducting clinical trials with this new CPR adjunct. PMID:11801354

  9. Hydrostatic determinants of cerebral perfusion

    SciTech Connect

    Wagner, E.M.; Traystman, R.J.

    1986-05-01

    We examined the cerebral blood flow response to alterations in perfusion pressure mediated through decreases in mean arterial pressure, increases in cerebrospinal fluid (CSF) pressure, and increases in jugular venous (JV) pressure in 42 pentobarbital anesthetized dogs. Each of these three pressures was independently controlled. Cerebral perfusion pressure was defined as mean arterial pressure minus JV or CSF pressure, depending on which was greater. Mean hemispheric blood flow was measured with the radiolabeled microsphere technique. Despite 30-mm Hg reductions in mean arterial pressure or increases in CSF or JV pressure, CBF did not change as long as the perfusion pressure remained greater than approximately 60 mm Hg. However, whenever perfusion pressure was reduced to an average of 48 mm Hg, cerebral blood flow decreased 27% to 33%. These results demonstrate the capacity of the cerebral vascular bed to respond similarly to changes in the perfusion pressure gradient obtained by decreasing mean arterial pressure, increasing JV pressure or increasing CSF pressure, and thereby support the above definition of cerebral perfusion pressure.

  10. Optimizing patient-ventilator synchrony.

    PubMed

    Epstein, S K

    2001-01-01

    Mechanical ventilation assumes the work of breathing, improves gas exchange, and unloads the respiratory muscles, all of which require good synchronization between the patient and the ventilator. Causes for patient-ventilator dyssynchrony include both patient factors (abnormalities of respiratory drive and abnormal respiratory mechanics) and ventilator factors (triggering, flow delivery, breath termination criteria, the level and mode of ventilator support, and imposed work of breathing). Although patient-ventilator dyssynchrony can often be detected on physical exam, careful analysis of ventilator waveforms (pressure-time, flow-time) allows for more precise definition of the underlying cause. Patient-ventilator interaction can be improved by reversing patient factors that alter respiratory drive or elevate patient ventilatory requirements and by correcting factors that contribute to dynamic hyperinflation. Proper setting of the ventilator using sensitive triggering mechanisms, satisfactory flow rates, adequate delivered minute ventilation, matching machine T(I) to neural T(I), and applying modes that overcome the imposed work of breathing, further optimize patient-ventilator synchrony. PMID:16088669

  11. Immunological hazards from nutritional imbalance in athletes.

    PubMed

    Shephard, R J; Shek, P N

    1998-01-01

    This review examines the influences of nutritional imbalance on immune function of competitive athletes, who may adopt an unusual diet in an attempt to enhance performance. A major increase in body fat can have adverse effects on immune response. In contrast, a negative energy balance and reduction of body mass are likely to impair immune function in an already thin athlete. A moderate increase in polyunsaturated fat enhances immune function, but excessive consumption can be detrimental. Since endurance exercise leads to protein catabolism, an athlete may need 2.0 g/kg protein rather than the 0.7-1.0 g/kg recommended for a sedentary individual. Both sustained exercise and overtraining reduce plasma glutamine levels, which may contribute to suppressed immune function postexercise. A large intake of carbohydrate counters glutamine depletion but may also modify immune responses by altering the secretion of glucose-regulating hormones. Vitamins are important to immune function because of their antioxidant role. However, the clinical benefits of vitamin C supplementation are not enhanced by the use of more complex vitamin mixtures, and excessive vitamin E can have negative effects. Iron, selenium, zinc, calcium, and magnesium ion all influence immune function. Supplements may be required after heavy sweating, but an excessive intake of iron facilitates bacterial growth. In making dietary recommendations to athletes, it is important to recognize that immune response can be jeopardized not only by deficiencies but also by excessive intake of certain nutrients. The goal should be a well-balanced diet. PMID:9644093

  12. CAD of myocardial perfusion

    NASA Astrophysics Data System (ADS)

    Storm, Corstiaan J.; Slump, Cornelis H.

    2007-03-01

    Our purpose is in the automated evaluation of the physiological relevance of lesions in coronary angiograms. We aim to extract as much as possible quantitative information about the physiological condition of the heart from standard angiographic image sequences. Coronary angiography is still the gold standard for evaluating and diagnosing coronary abnormalities as it is able to locate precisely the coronary artery lesions. The dimensions of the stenosis can be assessed nowadays successfully with image processing based Quantitative Coronary Angiography (QCA) techniques. Our purpose is to assess the clinical relevance of the pertinent stenosis. We therefore analyze the myocardial perfusion as revealed in standard angiographic image sequences. In a Region-of-Interest (ROI) on the angiogram (without an overlaying major blood vessel) the contrast is measured as a function of time (the so-called time-density curve). The required hyperemic state of exercise is induced artificially by the injection of a vasodilator drug e.g. papaverine. In order to minimize motion artifacts we select based on the recorded ECG signal end-diastolic images in both a basal and a hyperemic run in the same projection to position the ROI. We present the development of the algorithms together with results of a small study of 20 patients which have been catheterized following the standard protocol.

  13. ASHRAE and residential ventilation

    SciTech Connect

    Sherman, Max H.

    2003-10-01

    In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the

  14. Spatial-frequency dependent binocular imbalance in amblyopia

    PubMed Central

    Kwon, MiYoung; Wiecek, Emily; Dakin, Steven C.; Bex, Peter J.

    2015-01-01

    While amblyopia involves both binocular imbalance and deficits in processing high spatial frequency information, little is known about the spatial-frequency dependence of binocular imbalance. Here we examined binocular imbalance as a function of spatial frequency in amblyopia using a novel computer-based method. Binocular imbalance at four spatial frequencies was measured with a novel dichoptic letter chart in individuals with amblyopia, or normal vision. Our dichoptic letter chart was composed of band-pass filtered letters arranged in a layout similar to the ETDRS acuity chart. A different chart was presented to each eye of the observer via stereo-shutter glasses. The relative contrast of the corresponding letter in each eye was adjusted by a computer staircase to determine a binocular Balance Point at which the observer reports the letter presented to either eye with equal probability. Amblyopes showed pronounced binocular imbalance across all spatial frequencies, with greater imbalance at high compared to low spatial frequencies (an average increase of 19%, p < 0.01). Good test-retest reliability of the method was demonstrated by the Bland-Altman plot. Our findings suggest that spatial-frequency dependent binocular imbalance may be useful for diagnosing amblyopia and as an outcome measure for recovery of binocular vision following therapy. PMID:26603125

  15. Spatial-frequency dependent binocular imbalance in amblyopia.

    PubMed

    Kwon, MiYoung; Wiecek, Emily; Dakin, Steven C; Bex, Peter J

    2015-01-01

    While amblyopia involves both binocular imbalance and deficits in processing high spatial frequency information, little is known about the spatial-frequency dependence of binocular imbalance. Here we examined binocular imbalance as a function of spatial frequency in amblyopia using a novel computer-based method. Binocular imbalance at four spatial frequencies was measured with a novel dichoptic letter chart in individuals with amblyopia, or normal vision. Our dichoptic letter chart was composed of band-pass filtered letters arranged in a layout similar to the ETDRS acuity chart. A different chart was presented to each eye of the observer via stereo-shutter glasses. The relative contrast of the corresponding letter in each eye was adjusted by a computer staircase to determine a binocular Balance Point at which the observer reports the letter presented to either eye with equal probability. Amblyopes showed pronounced binocular imbalance across all spatial frequencies, with greater imbalance at high compared to low spatial frequencies (an average increase of 19%, p < 0.01). Good test-retest reliability of the method was demonstrated by the Bland-Altman plot. Our findings suggest that spatial-frequency dependent binocular imbalance may be useful for diagnosing amblyopia and as an outcome measure for recovery of binocular vision following therapy. PMID:26603125

  16. Systemic oxygen delivery by peritoneal perfusion of oxygen microbubbles.

    PubMed

    Feshitan, Jameel A; Legband, Nathan D; Borden, Mark A; Terry, Benjamin S

    2014-03-01

    Severe hypoxemia refractory to pulmonary mechanical ventilation remains life-threatening in critically ill patients. Peritoneal ventilation has long been desired for extrapulmonary oxygenation owing to easy access of the peritoneal cavity for catheterization and the relative safety compared to an extracorporeal circuit. Unfortunately, prior attempts involving direct oxygen ventilation or aqueous perfusates of fluorocarbons or hemoglobin carriers have failed, leading many researchers to abandon the method. We attribute these prior failures to limited mass transfer of oxygen to the peritoneum and have designed an oxygen formulation that overcomes this limitation. Using phospholipid-coated oxygen microbubbles (OMBs), we demonstrate 100% survival for rats experiencing acute lung trauma to at least 2 h. In contrast, all untreated rats and rats treated with peritoneal oxygenated saline died within 30 min. For rats treated with OMBs, hemoglobin saturation and heart rate were at normal levels over the 2-h timeframe. Peritoneal oxygenation with OMBs was therefore shown to be safe and effective, and the method requires less equipment and technical expertise than initiating and maintaining an extracorporeal circuit. Further translation of peritoneal oxygenation with OMBs may provide therapy for acute respiratory distress syndrome arising from trauma, sepsis, pneumonia, aspiration, burns and other pulmonary diseases. PMID:24439406

  17. MR Perfusion Imaging in Acute Ischemic Stroke

    PubMed Central

    Copen, William A.; Schaefer, Pamela W.; Wu, Ona

    2011-01-01

    MR perfusion imaging offers the potential for measuring brain perfusion in acute stroke patients, at a time when treatment decisions based upon these measurements may affect outcomes dramatically. Rapid advancements in both acute stroke therapy and perfusion imaging techniques have resulted in continuing redefinition of the role that perfusion imaging should play in patient management. This review first discusses the basic pathophysiology of acute stroke, with specific attention to alterations in the various perfusion-related parameters that can be studied by MR perfusion imaging. Although these parameters are sometimes treated as somewhat interchangeable, they reveal greatly different information about brain perfusion. Therefore, subsequent discussion of the utility of different kinds of perfusion images focuses on the differences between them, as well as important artifacts that can complicate their interpretation. Finally, research on the continually evolving role of MR perfusion imaging in acute stroke care is summarized. PMID:21640299

  18. Lung perfusion and emphysema distribution affect the outcome of endobronchial valve therapy

    PubMed Central

    Thomsen, Christian; Theilig, Dorothea; Herzog, Dominik; Poellinger, Alexander; Doellinger, Felix; Schreiter, Nils; Schreiter, Vera; Schürmann, Dirk; Temmesfeld-Wollbrueck, Bettina; Hippenstiel, Stefan; Suttorp, Norbert; Hubner, Ralf-Harto

    2016-01-01

    The exclusion of collateral ventilation (CV) and other factors affect the clinical success of endoscopic lung volume reduction (ELVR). However, despite its benefits, the outcome of ELVR remains difficult to predict. We investigated whether clinical success could be predicted by emphysema distribution assessed by computed tomography scan and baseline perfusion assessed by perfusion scintigraphy. Data from 57 patients with no CV in the target lobe (TL) were retrospectively analyzed after ELVR with valves. Pulmonary function tests (PFT), St George’s Respiratory Questionnaire (SGRQ), and 6-minute walk tests (6MWT) were performed on patients at baseline. The sample was grouped into high and low levels at the median of TL perfusion, ipsilateral nontarget lobe (INL) perfusion, and heterogeneity index (HI). These groups were analyzed for association with changes in outcome parameters from baseline to 3 months follow-up. Compared to baseline, patients showed significant improvements in PFT, SGRQ, and 6MWT (all P≤0.001). TL perfusion was not associated with changes in the outcome. High INL perfusion was significantly associated with increases in 6MWT (P=0.014), and high HI was associated with increases in forced expiratory volume in 1 second (FEV1), (P=0.012). Likewise, there were significant correlations for INL perfusion and improvement of 6MWT (r=0.35, P=0.03) and for HI and improvement in FEV1 (r=0.45, P=0.001). This study reveals new attributes that associate with positive outcomes for patient selection prior to ELVR. Patients with high perfusions in INL demonstrated greater improvements in 6MWT, while patients with high HI were more likely to respond in FEV1. PMID:27354783

  19. Lung perfusion and emphysema distribution affect the outcome of endobronchial valve therapy.

    PubMed

    Thomsen, Christian; Theilig, Dorothea; Herzog, Dominik; Poellinger, Alexander; Doellinger, Felix; Schreiter, Nils; Schreiter, Vera; Schürmann, Dirk; Temmesfeld-Wollbrueck, Bettina; Hippenstiel, Stefan; Suttorp, Norbert; Hubner, Ralf-Harto

    2016-01-01

    The exclusion of collateral ventilation (CV) and other factors affect the clinical success of endoscopic lung volume reduction (ELVR). However, despite its benefits, the outcome of ELVR remains difficult to predict. We investigated whether clinical success could be predicted by emphysema distribution assessed by computed tomography scan and baseline perfusion assessed by perfusion scintigraphy. Data from 57 patients with no CV in the target lobe (TL) were retrospectively analyzed after ELVR with valves. Pulmonary function tests (PFT), St George's Respiratory Questionnaire (SGRQ), and 6-minute walk tests (6MWT) were performed on patients at baseline. The sample was grouped into high and low levels at the median of TL perfusion, ipsilateral nontarget lobe (INL) perfusion, and heterogeneity index (HI). These groups were analyzed for association with changes in outcome parameters from baseline to 3 months follow-up. Compared to baseline, patients showed significant improvements in PFT, SGRQ, and 6MWT (all P≤0.001). TL perfusion was not associated with changes in the outcome. High INL perfusion was significantly associated with increases in 6MWT (P=0.014), and high HI was associated with increases in forced expiratory volume in 1 second (FEV1), (P=0.012). Likewise, there were significant correlations for INL perfusion and improvement of 6MWT (r=0.35, P=0.03) and for HI and improvement in FEV1 (r=0.45, P=0.001). This study reveals new attributes that associate with positive outcomes for patient selection prior to ELVR. Patients with high perfusions in INL demonstrated greater improvements in 6MWT, while patients with high HI were more likely to respond in FEV1. PMID:27354783

  20. Evaluation of ventilator alarms.

    PubMed

    1984-01-01

    An evaluation of ventilator alarms is being carried out for the DHSS within the Welsh National School of Medicine. The technical performance and safety assessments are being made within the Department of Anaesthetics and clinical trials within the South Glamorgan Area Health Authority. For this evaluation (published in 'Health Equipment Information' ['HEI'] No. 124 [June 1984]) one example of each model was assessed (Penlon IDP, Draeger, Medix Ventimonitor 101, BOC Medishield, East Ventilarm, Cape TTL) and the conclusions are based on the assumption that the sample was typical of normal production. This is a continuing programme and the next report will evaluate a group of infant ventilators. For full details of the evaluation findings, readers should consult 'HEI' 124. The following are extracts from the report. PMID:6398368

  1. Harnessing natural ventilation benefits.

    PubMed

    O'Leary, John

    2013-04-01

    Making sure that a healthcare establishment has a good supply of clean fresh air is an important factor in keeping patients, staff, and visitors, free from the negative effects of CO2 and other contaminants. John O'Leary of Trend Controls, a major international supplier of building energy management solutions (BEMS), examines the growing use of natural ventilation, and the health, energy-saving, and financial benefits, that it offers. PMID:23678661

  2. Oven ventilation system

    SciTech Connect

    Brewer, D.E.

    1987-02-17

    A ventilation system is described for venting an oven with external surfaces, the oven being located within an enclosed space, the system comprising: intake means for collecting air from the external environment of the enclosed space; means for forming a sheet of the air and passing the sheet across the external surfaces of the oven; and exhaust means for exhausting the sheet of the air to the external environment of the enclosed space after the air has been passed across the external surfaces.

  3. Population imbalance in the extended Fermi-Hubbard model

    NASA Astrophysics Data System (ADS)

    Dhar, A.; Kinnunen, J. J.; Törmä, P.

    2016-08-01

    We study the interplay between population imbalance in a two-component fermionic system and nearest-neighbor interaction using the matrix product states method. Our analysis reveals a parameter regime for the existence of the Fulde-Ferrell-Larkin-Ovchinnikov phase. Furthermore, we find distinct evidence for the presence of hidden order in the system. We present an effective model to understand the emergent oscillations in the string correlations due to the imbalance and show how they can become an efficient tool to investigate systems with imbalance.

  4. SU-E-J-120: Comparing 4D CT Computed Ventilation to Lung Function Measured with Hyperpolarized Xenon-129 MRI

    SciTech Connect

    Neal, B; Chen, Q

    2015-06-15

    Purpose: To correlate ventilation parameters computed from 4D CT to ventilation, profusion, and gas exchange measured with hyperpolarized Xenon-129 MRI for a set of lung cancer patients. Methods: Hyperpolarized Xe-129 MRI lung scans were acquired for lung cancer patients, before and after radiation therapy, measuring ventilation, perfusion, and gas exchange. In the standard clinical workflow, these patients also received 4D CT scans before treatment. Ventilation was computed from 4D CT using deformable image registration (DIR). All phases of the 4D CT scan were registered using a B-spline deformable registration. Ventilation at the voxel level was then computed for each phase based on a Jacobian volume expansion metric, yielding phase sorted ventilation images. Ventilation based upon 4D CT and Xe-129 MRI were co-registered, allowing qualitative visual comparison and qualitative comparison via the Pearson correlation coefficient. Results: Analysis shows a weak correlation between hyperpolarized Xe-129 MRI and 4D CT DIR ventilation, with a Pearson correlation coefficient of 0.17 to 0.22. Further work will refine the DIR parameters to optimize the correlation. The weak correlation could be due to the limitations of 4D CT, registration algorithms, or the Xe-129 MRI imaging. Continued development will refine parameters to optimize correlation. Conclusion: Current analysis yields a minimal correlation between 4D CT DIR and Xe-129 MRI ventilation. Funding provided by the 2014 George Amorino Pilot Grant in Radiation Oncology at the University of Virginia.

  5. Ventilators for noninvasive ventilation to treat acute respiratory failure.

    PubMed

    Scala, Raffaele; Naldi, Mario

    2008-08-01

    The application of noninvasive ventilation (NIV) to treat acute respiratory failure has increased tremendously both inside and outside the intensive care unit. The choice of ventilator is crucial for success of NIV in the acute setting, because poor tolerance and excessive air leaks are significantly correlated with NIV failure. Patient-ventilator asynchrony and discomfort can occur if the physician or respiratory therapist fails to adequately set NIV to respond to the patient's ventilatory demand, so clinicians need to fully understood the ventilator's technical peculiarities (eg, efficiency of trigger and cycle systems, speed of pressurization, air-leak compensation, CO(2) rebreathing, reliability of fraction of inspired oxygen reading, monitoring accuracy). A wide range of ventilators of different complexity have been introduced into clinical practice to noninvasively support patients in acute respiratory failure, but the numerous commercially available ventilators (bi-level, intermediate, and intensive care unit ventilators) have substantial differences that can influence patient comfort, patient-ventilator interaction, and, thus, the chance of NIV clinical success. This report examines the most relevant aspects of the historical evolution, the equipment, and the acute-respiratory-failure clinical application of NIV ventilators. PMID:18655744

  6. Severe hypoxemia during carinal resection in the lateral position under one-lung ventilation of a non-dependent lung: a case report

    PubMed Central

    Koo, Chang-Hoon; Jung, Yoo Sun; Lee, Yong-Hun; Kim, Hyun-Chang; Bahk, Jae-Hyon

    2016-01-01

    During one-lung ventilation (OLV) in the lateral position, the dependent, ventilated lung receives more blood flow than the non-dependent, non-ventilated lung owing to gravity, improving the match of ventilation and perfusion. Conversely, in the rare clinical situations when OLV is applied to the non-dependent lung, arterial oxygenation can get worse due to considerable shunt flow to the dependent non-ventilated lung. We report a case of severe hypoxemia during carinal resection under OLV of a non-dependent lung. In this case, OLV had to be applied to the non-dependent lung in the lateral position because the bronchus of the non-dependent lung was anastomosed with the trachea, whereas the bronchus of the dependent lung had already been resected for carinal resection. The subsequent hypoxemia resulting from the shunt flow to the dependent non-ventilated lung was treated successfully by ligating the pulmonary artery of the dependent lung. PMID:27274375

  7. Severe hypoxemia during carinal resection in the lateral position under one-lung ventilation of a non-dependent lung: a case report.

    PubMed

    Koo, Chang-Hoon; Jung, Yoo Sun; Lee, Yong-Hun; Kim, Hyun-Chang; Bahk, Jae-Hyon; Seo, Jeong-Hwa

    2016-06-01

    During one-lung ventilation (OLV) in the lateral position, the dependent, ventilated lung receives more blood flow than the non-dependent, non-ventilated lung owing to gravity, improving the match of ventilation and perfusion. Conversely, in the rare clinical situations when OLV is applied to the non-dependent lung, arterial oxygenation can get worse due to considerable shunt flow to the dependent non-ventilated lung. We report a case of severe hypoxemia during carinal resection under OLV of a non-dependent lung. In this case, OLV had to be applied to the non-dependent lung in the lateral position because the bronchus of the non-dependent lung was anastomosed with the trachea, whereas the bronchus of the dependent lung had already been resected for carinal resection. The subsequent hypoxemia resulting from the shunt flow to the dependent non-ventilated lung was treated successfully by ligating the pulmonary artery of the dependent lung. PMID:27274375

  8. Pretest Predictions for Ventilation Tests

    SciTech Connect

    Y. Sun; H. Yang; H.N. Kalia

    2007-01-17

    The objective of this calculation is to predict the temperatures of the ventilating air, waste package surface, concrete pipe walls, and insulation that will be developed during the ventilation tests involving various test conditions. The results will be used as input to the following three areas: (1) Decisions regarding testing set-up and performance. (2) Assessing how best to scale the test phenomena measured. (3) Validating numerical approach for modeling continuous ventilation. The scope of the calculation is to identify the physical mechanisms and parameters related to thermal response in the ventilation tests, and develop and describe numerical methods that can be used to calculate the effects of continuous ventilation. Sensitivity studies to assess the impact of variation of linear power densities (linear heat loads) and ventilation air flow rates are included. The calculation is limited to thermal effect only.

  9. 46 CFR 111.105-21 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation. 111.105-21 Section 111.105-21 Shipping... REQUIREMENTS Hazardous Locations § 111.105-21 Ventilation. A ventilation duct which ventilates a hazardous location has the classification of that location. Each fan for ventilation of a hazardous location must...

  10. Field measurement of ventilation rates.

    PubMed

    Persily, A K

    2016-02-01

    Ventilation rates have significant impacts on building energy use and indoor contaminant concentrations, making them key parameters in building performance. Ventilation rates have been measured in buildings for many decades, and there are mature measurement approaches available to researchers and others who need to know actual ventilation rates in buildings. Despite the fact that ventilation rates are critical in interpreting indoor concentration measurements, it is disconcerting how few Indoor Air Quality field studies measure ventilation rates or otherwise characterize the ventilation design of the study building(s). This paper summarizes parameters of interest in characterizing building ventilation, available methods for quantifying these parameters, and challenges in applying these methods to different types of buildings and ventilation systems. These parameters include whole-building air change rates, system outdoor air intake rates, and building infiltration rates. Tracer gas methods are reviewed as well as system airflow rate measurements using, for example, duct traverses. Several field studies of ventilation rates conducted over the past 75 years are described to highlight the approaches employed and the findings obtained. PMID:25689218

  11. Cadmium transport and toxicity in isolated perfused renal proximal tubules

    SciTech Connect

    Robinson, M.E.K.

    1991-01-01

    Cadmium is a potent toxicant preferentially accumulated in the renal cortex of humans and other animals. To assess the renal toxicity of inorganic cadmium, isolated segments (S1, S2, and S3) of rabbit renal proximal tubules were perfused with various concentrations of unlabeled cadmium chloride (CdCl[sub 2]) and a vital dye (FD C green). The tubular epithelial cells were observed under the light microscope for cellular injury and necrosis. Cellular swelling, luminal membrane blebbing, and cellular vacuolization were indicators of cellular injury, and dye uptake was indicative of cellular necrosis. To determine lumen-to-bath transport rates for cadmium, the segments were perfused with a mixture of [sup 109]CdCl[sub 2] and [sup 3]H-L-glucose; unlabeled CdCl[sub 2] was added when necessary to vary the total cadmium concentration from 1.5 [mu]M to 2000 [mu]M. Immediately after perfusion the tubules were extracted with 3% trichoroacetic acid (TCA) or with a modified Ringer's buffer of reduced osmolality to determine the fate of the cadmium removed from the lumen. Based on the toxicant indicators, increased dye uptake, increased luminal membrane blebbing, and increased vacuole formation, as the cadmium concentration was increased, cadmium was found to show toxicity to renal tubular cells at concentrations greater than 500 [mu]M. In transport experiments, increasing the cadmium concentration causes an increase in the leak of L-glucose, also indicating toxicity. A clear imbalance exists between the rate of disappearance of cadmium from the lumen and the rate of appearance in the bath for all three tubular segments. Cadmium appears to bind cellular membrane proteins, but it is extractable with 3% TCA. Cadmium, like mercury, is taken up at the luminal membrane, but very little is transported through the basolateral membrane.

  12. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Power ventilation systems except machinery space... Power ventilation systems except machinery space ventilation systems. Each power ventilation system must have: (a) A control to stop the ventilation that is: (1) Outside the space ventilated; and (2)...

  13. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Power ventilation systems except machinery space... Power ventilation systems except machinery space ventilation systems. Each power ventilation system must have: (a) A control to stop the ventilation that is: (1) Outside the space ventilated; and (2)...

  14. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Power ventilation systems except machinery space... Power ventilation systems except machinery space ventilation systems. Each power ventilation system must have: (a) A control to stop the ventilation that is: (1) Outside the space ventilated; and (2)...

  15. Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion.

    PubMed

    Bell, Robert M; Mocanu, Mihaela M; Yellon, Derek M

    2011-06-01

    In the late 19th century, a number of investigators were working on perfecting isolated heart model, but it was Oscar Langendorff who, in 1895, pioneered the isolated perfused mammalian heart. Since that time, the Langendorff preparation has evolved and provided a wealth of data underpinning our understanding of the fundamental physiology of the heart: its contractile function, coronary blood flow regulation and cardiac metabolism. In more recent times, the procedure has been used to probe pathophysiology of ischaemia/reperfusion and disease states, and with the dawn of molecular biology and genetic manipulation, the Langendorff perfused heart has remained a stalwart tool in the study of the impact upon the physiology of the heart by pharmacological inhibitors and targeted deletion or up-regulation of genes and their impact upon intracellular signalling and adaption to clinically relevant stressful stimuli. We present here the basic structure of the Langendorff system and the fundamental experimental rules which warrant a viable heart preparation. In addition, we discuss the use of the isolated retrograde perfused heart in the model of ischaemia-reperfusion injury ex-vivo, and its applicability to other areas of study. The Langendorff perfusion apparatus is highly adaptable and this is reflected not only in the procedure's longevity but also in the number of different applications to which it has been turned. PMID:21385587

  16. Constant-flow ventilation in canine experimental pulmonary emphysema.

    PubMed

    Hachenberg, T; Wendt, M; Meyer, J; Struckmeier, O; Lawin, P

    1989-07-01

    The efficacy of constant-flow ventilation (CFV) was investigated in eight mongrel dogs before (control-phase) and after development of papain-induced panlobular emphysema (PLE-phase). For CFV, heated, humidified and oxygen-enriched air was continuously delivered via two catheters positioned within each mainstem bronchus at flow rates (V) of 0.33, 0.5 and 0.66 l/s. Data obtained during intermittent positive pressure ventilation (IPPV) served as reference. In the control-phase, Pao2 was lower (P less than or equal to 0.05) and alveolo-arterial O2 difference (P(A-a)O2) was higher (P less than or equal to 0.01) during CFV at all flow rates when compared with IPPV. This may be due to inhomogeneities of intrapulmonary gas distribution and increased ventilation-perfusion (VA/Q) mismatching. Paco2 and V showed a hyperbolic relationship; constant normocapnia (5.3 kPa) was achieved at 0.48 +/- 0.21 l/s (V53). Development of PLE resulted in an increase of functional residual capacity (FRC), residual volume (RV) and static compliance (Cstat) (P less than or equal to 0.05). PaO2 had decreased and P(A-a)O2 had increased (P less than or equal to 0.05), indicating moderate pulmonary dysfunction. Oxygenation during CFV was not significantly different in the PLE-phase when compared with the control-phase. Paco2 and V showed a hyperbolic relationship and V5.3 was even lower than in the control-group (0.42 +/- 0.13 l/s). In dogs with emphysematous lungs CFV maintains sufficient gas exchange. This may be due to preferential ventilation of basal lung units, thereby counterbalancing the effects of impaired lung morphometry and increased airtrapping. Conventional mechanical ventilation is more effective in terms of oxygenation and CO2-elimination. PMID:2800979

  17. Ventilation best practices guide

    SciTech Connect

    Dorgan, C.B.; Dorgan, C.E.

    1996-07-01

    The intent of this Guide is to provide utility marketing and engineering personnel with information on how to identify indoor air quality (IAQ) problems, the current standards relating to IAQ and examples of what typically causes IAQ problems in commercial buildings. The Guide is written assuming that the reader has limited knowledge of heating, ventilating and air conditioning (HVAC) systems and that they are new to the IAQ arena. Also included in the Guide is a discussion of new electric technologies which are energy efficient and maintain a high level of IAQ.

  18. Laboratory and Industrial Ventilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This handbook supplements the Facilities Engineering Handbook (NHB 7320.1) and provides additional policies and criteria for uniform application to ventilation systems. It expands basic requirements, provides additional design and construction guidance, and places emphasis on those design considerations which will provide for greater effectiveness in the use of these systems. The provisions of this handbook are applicable to all NASA field installations and the Jet Propulsion Laboratory. Since supply of this handbook is limited, abstracts of the portion or portions applicable to a given requirement will be made for the individual specific needs encountered rather than supplying copies of the handbook as has been past practice.

  19. Kinetics of reversible-sequestration of leukocytes by the isolated perfused rat lung

    SciTech Connect

    Goliaei, B.

    1980-08-01

    The kinetics and morphology of sequestration and margination of rat leukocytes were studied using an isolated perfused and ventilated rat lung preparation. Whole rat blood, bone marrow suspension, or leukocyte suspensions, were used to perfuse the isolated rat lung. The lung was also perfused with latex particle suspensions and the passage of particles through the lung capillaries was studied. When a leukocyte suspension was perfused through the lung in the single-pass mode, the rate of sequestration decreased as more cells were perfused. In contrast, latex particles of a size comparable to that of leukocytes were totally stopped by the lung. When the leukocyte suspension was recirculated through the lung, cells were rapidly removed from circulation until a steady state was reached, after which no net removal of cells by the lung occurred. These results indicate that leukocytes are reversibly sequestered from circulation. The sequestered cells marginated and attached to the luminal surface of the endothelium of post-capillary venules and veins. A mathematical model was developed based on the assumption that the attachment and detachment of leukocytes to blood vessel walls follows first-order kinetics. The model correctly predicts the following characteristics of the system: (a) the kinetics of the sequestration of leukocytes by the lung; (b) the existence of a steady state when a suspension of leukocytes is recirculated through the lung; and (c) the independence of the fraction of cells remaining in circulation from the starting concentration for all values of starting concentration. (ERB)

  20. Tracheostomy in mechanical ventilation.

    PubMed

    Terragni, Pierpaolo; Faggiano, Chiara; Martin, Erica L; Ranieri, V Marco

    2014-08-01

    Airway access for mechanical ventilation (MV) can be provided either by orotracheal intubation (OTI) or tracheostomy tube. During episodes of acute respiratory failure, patients are commonly ventilated through an orotracheal tube that represents an easy and rapid initial placement of the airway device. OTI avoids acute surgical complications such as bleeding, nerve and posterior tracheal wall injury, and late complications such as wound infection and tracheal lumen stenosis that may emerge due to tracheostomy tube placement. Tracheostomy is often considered when MV is expected to be applied for prolonged periods or for the improvement of respiratory status, as this approach provides airway protection, facilitates access for secretion removal, improves patient comfort, and promotes progression of care in and outside the intensive care unit (ICU). The aim of this review is to assess the frequency and performance of different surgical or percutaneous dilational tracheostomy and timing and safety procedures associated with the use of fiberoptic bronchoscopy and ultrasounds. Moreover, we analyzed the performance based on National European surveys to assess the current tracheostomy practice in ICUs. PMID:25111644

  1. New Ventilated Isolation Cage

    PubMed Central

    Cook, Reginald O.

    1968-01-01

    A multifunction lid has been developed for a commercially available transparent animal cage which permits feeding, watering, viewing, long-term holding, and local transport of laboratory rodents on experiment while isolating the surrounding environment. The cage is airtight except for its inlet and exhaust high-efficiency particulate air filters, and it is completely steam-sterilizable. Opening of the cage's feed and water ports causes an inrush of high velocity air which prevents back-migration of aerosols and permits feeding and watering while eliminating need for chemical vapor decontamination. Ventilation system design permits the holding in adjacent cages of animals infected with different organisms without danger of cross-contamination; leaves the animal room odor-free; reduces required bedding changes to twice a month or less, and provides investigators with capability to control precisely individual cage ventilation rates. Forty-eight cages can be conveniently placed on a standard NIH “shoebox” cage rack (60 inches wide × 28 inches deep × 74 inches high) fitted with a simple manifold exhaust system. The entire system is mobile, requiring only an electrical power outlet. Principal application of the caging system is in the area of preventing exposure of animal caretakers to pathogenic substances associated with the animal host, and in reducing handling of animals and their exposure to extraneous contamination. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 9 PMID:5659368

  2. Developing a tissue perfusion sensor.

    PubMed

    Harvey, S L R; Parker, K H; O'Hare, D

    2007-01-01

    The development of a electrochemical tissue perfusion sensor is presented. The sensor is a platinum/platinum ring-disc microelectrode that relies on the principle of collector-generator to monitor mass transport within its vicinity. Tissue perfusion is a mass transport mechanism that describes the movement of respiratory gases, nutrients and metabolites in tissue. The sensor's capability of detecting perfusion at the cellular level in a continuous fashion is unique. This sensor will provide insight into the way nutrients and metabolites are transported in tissue especially in cases were perfusion is low such as in wounds or ischemic tissue. We present experimental work for the development and testing of the sensors in vitro. Experimental flow recordings in free steam solutions as well as the flow through tissue-like media are shown. Tests on post operative human tissue are also presented. The sensor's feature such as the continuous recoding capacities, spatial resolution and the measurement range from ml/min to microl/min are highlighted. PMID:18002549

  3. Comparison of CT-derived Ventilation Maps with Deposition Patterns of Inhaled Microspheres in Rats

    SciTech Connect

    Jacob, Rick E.; Lamm, W. J.; Einstein, Daniel R.; Krueger, Melissa; Glenny, Robb W.; Corley, Richard A.

    2015-04-01

    Purpose: Computer models for inhalation toxicology and drug-aerosol delivery studies rely on ventilation pattern inputs for predictions of particle deposition and vapor uptake. However, changes in lung mechanics due to disease can impact airflow dynamics and model results. It has been demonstrated that non-invasive, in vivo, 4DCT imaging (3D imaging at multiple time points in the breathing cycle) can be used to map heterogeneities in ventilation patterns under healthy and disease conditions. The purpose of this study was to validate ventilation patterns measured from CT imaging by exposing the same rats to an aerosol of fluorescent microspheres (FMS) and examining particle deposition patterns using cryomicrotome imaging. Materials and Methods: Six male Sprague-Dawley rats were intratracheally instilled with elastase to a single lobe to induce a heterogeneous disease. After four weeks, rats were imaged over the breathing cycle by CT then immediately exposed to an aerosol of ~1µm FMS for ~5 minutes. After the exposure, the lungs were excised and prepared for cryomicrotome imaging, where a 3D image of FMS deposition was acquired using serial sectioning. Cryomicrotome images were spatially registered to match the live CT images to facilitate direct quantitative comparisons of FMS signal intensity with the CT-based ventilation maps. Results: Comparisons of fractional ventilation in contiguous, non-overlapping, 3D regions between CT-based ventilation maps and FMS images showed strong correlations in fractional ventilation (r=0.888, p<0.0001). Conclusion: We conclude that ventilation maps derived from CT imaging are predictive of the 1µm aerosol deposition used in ventilation-perfusion heterogeneity inhalation studies.

  4. Transpired Air Collectors - Ventilation Preheating

    SciTech Connect

    Christensen, C.

    2006-06-22

    Many commercial and industrial buildings have high ventilation rates. Although all that fresh air is great for indoor air quality, heating it can be very expensive. This short (2-page) fact sheet describes a technology available to use solar energy to preheat ventilation air and dramatically reduce utility bills.

  5. Inhalation therapy in mechanical ventilation

    PubMed Central

    Maccari, Juçara Gasparetto; Teixeira, Cassiano; Gazzana, Marcelo Basso; Savi, Augusto; Dexheimer-Neto, Felippe Leopoldo; Knorst, Marli Maria

    2015-01-01

    Patients with obstructive lung disease often require ventilatory support via invasive or noninvasive mechanical ventilation, depending on the severity of the exacerbation. The use of inhaled bronchodilators can significantly reduce airway resistance, contributing to the improvement of respiratory mechanics and patient-ventilator synchrony. Although various studies have been published on this topic, little is known about the effectiveness of the bronchodilators routinely prescribed for patients on mechanical ventilation or about the deposition of those drugs throughout the lungs. The inhaled bronchodilators most commonly used in ICUs are beta adrenergic agonists and anticholinergics. Various factors might influence the effect of bronchodilators, including ventilation mode, position of the spacer in the circuit, tube size, formulation, drug dose, severity of the disease, and patient-ventilator synchrony. Knowledge of the pharmacological properties of bronchodilators and the appropriate techniques for their administration is fundamental to optimizing the treatment of these patients. PMID:26578139

  6. Evaluation of building ventilation systems

    SciTech Connect

    Hughes, R.T.; O'Brien, D.M.

    1986-04-01

    Over the past several years, NIOSH has responded to health hazard evaluation requests from workers in dozens of office environments. Typically, the employees have complained of headache, eye and upper respiratory tract irritation, dizziness, lethargy and the inability to concentrate. Most often inadequate ventilation has been blamed for these complaints. Of paramount importance in the evaluation and correction of these problems is an effective evaluation of the building's ventilation system. Heating, ventilating and air-conditioning conditions that can cause worker stresses include: migration of odors or chemical hazards between building areas; reentrainment of exhaust from building fume hoods or through heat wheels; buildup of microorganisms in the HVAC system components; and poor odor or environmental control due to insufficient fresh outdoor air or system heating or cooling malfunction. The purpose of this paper is to provide an overview of building ventilation systems, the ventilation problems associated with poorly designed or operating systems, and the methodology for effectively evaluating system performance.

  7. Potential Role of Lung Ventilation Scintigraphy in the Assessment of COPD

    PubMed Central

    Cukic, Vesna; Begic, Amela

    2014-01-01

    Objective: To highlight the importance of the lung ventilation scintigraphy (LVS) to study the regional distribution of lung ventilation and to describe most frequent abnormal patterns of lung ventilation distribution obtained by this technique in COPD and to compare the information obtained by LVS with the that obtained by traditional lung function tests. Material and methods: The research was done in 20 patients with previously diagnosed COPD who were treated in Intensive care unit of Clinic for pulmonary diseases and TB “Podhrastovi” Clinical Center, University of Sarajevo in exacerbation of COPD during first three months of 2014. Each patient was undergone to testing of pulmonary function by body plethysmography and ventilation/perfusion lung scintigraphy with radio pharmaceutics Technegas, 111 MBq Tc -99m-MAA. We compared the results obtained by these two methods. Results: All patients with COPD have a damaged lung function tests examined by body plethysmography implying airflow obstruction, but LVS indicates not only airflow obstruction and reduced ventilation, but also indicates the disorders in distribution in lung ventilation. Conclusion: LVS may add further information to the functional evaluation of COPD to that provided by traditional lung function tests and may contribute to characterizing the different phenotypes of COPD. PMID:25132709

  8. Imbalance in treatment assignments in stratified blocked randomization.

    PubMed

    Hallstrom, A; Davis, K

    1988-12-01

    Blocking and stratification are used in preparing randomization assignments to ensure that there will be nearly equal numbers of patients in each treatment group and that the groups will be similar with respect to important covariates. Stratified blocked randomization will create near balance within strata, but imbalance for the total trial may still occur. The variance for the total trial imbalance D is derived and examples from clinical trials are given. Under reasonable assumptions, if the blocking factor is size B in each of K strata, then max D = KB/2 and var D = K(B + 1)/6. These results may be used in planning a trial to estimate the overall imbalance expected for various choices of B and K. A conditional variance is given that allows the probability of an observed imbalance at the completion of a trial to be evaluated. Overall imbalance is about as likely with stratified blocked randomization as with simple randomization unless the total sample size N is appreciably larger than K X B. So long as the blinding is maintained, the block sizes should be chosen to be as small as possible. PMID:3203527

  9. Transpleural Ventilation via Spiracles in Severe Emphysema Increases Alveolar Ventilation.

    PubMed

    Chahla, Mayy; Larson, Christopher D; Parekh, Kalpaj R; Reed, Robert M; Terry, Peter; Schmidt, Gregory A; Eberlein, Michael

    2016-06-01

    In emphysema airway resistance can exceed collateral airflow resistance, causing air to flow preferentially through collateral pathways. In severe emphysema ventilation through openings directly through the chest wall into the parenchyma (spiracles) could bypass airway obstruction and increase alveolar ventilation via transpleural expiration. During lung transplant operations, spiracles occasionally can occur inadvertently. We observed transpleural expiration via spiracles in three subjects undergoing lung transplant for emphysema. During transpleural spiracle ventilation, inspiratory tidal volumes (TV) were unchanged; however, expiration was entirely transpleural in two patients whereas the expired TV to the ventilator circuit was reduced to 25% of the inspired TV in one. At baseline, mean PCO2 was 61 ± 5 mm Hg, which decreased to a mean PCO2 of 49 ± 5 mm Hg (P = .05) within minutes after transpleural spiracle ventilation and further decreased at 1 to 2 h (36 ± 4 mm Hg; P = .002 compared with baseline) on unchanged ventilator settings. This observation of increased alveolar ventilation supports further studies of spiracles as a possible therapy for advanced emphysema. PMID:27287591

  10. [Effectiveness of artificial ventilation in oil microembolism followed by pulmonary edema].

    PubMed

    Tarakanov, I A; Kuz'michev, S A; Semkina, G A

    1992-07-01

    In experiments on sodium pentobarbital (40 mg/kg, i.p.) anesthetized mongrel cats of either sex weighting from 2.0 to 4.0 kg, it was found, that in conditions of oil pulmonary microembolization, followed by pulmonary edema, the most suitable is rapid and shallow pattern of ventilation, ensuring optimal ventilation/perfusion interrelation. The oil microembolization was introduced with intravenous administration (1 mg per kg of body weight during 2 min) of olive oil. It is necessary to provide flexible regimens of artificial ventilation and conformity of respiratory pattern and body's demands can be controlled according to pHa and PaO2. It is desirable that pH and pO2 can be evaluated continuously. PMID:1421295

  11. Cardiac gated ventilation

    SciTech Connect

    Hanson, C.W. III; Hoffman, E.A.

    1995-12-31

    There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. The authors evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50 msec scan aperture. Multi slice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. The authors observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a non-failing model of the heart.

  12. Cardiac gated ventilation

    NASA Astrophysics Data System (ADS)

    Hanson, C. William, III; Hoffman, Eric A.

    1995-05-01

    There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. We evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50msec scan aperture. Multislice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. We observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a nonfailing model of the heart.

  13. Solar ventilation and tempering

    NASA Astrophysics Data System (ADS)

    Adámek, Karel; Pavlů, Miloš; Bandouch, Milan

    2014-08-01

    The paper presents basic information about solar panels, designed, realized and used for solar ventilation of rooms. Used method of numerical flow simulation gives good overview about warming and flowing of the air in several kinds of realized panels (window, facade, chimney). Yearlong measurements give a good base for calculations of economic return of invested capital. The operation of the system in transient period (spring, autumn) prolongs the period without classical heating of the room or building, in winter the classical heating is supported. In the summer period the system, furnished with chimney, can exhaust inner warm air together with necessary cooling of the system by gravity circulation, only. System needs not any invoiced energy source; it is supplied entirely by solar energy. Large building systems are supported by classical electric fan respectively.

  14. Itinerant ferromagnetism in an interacting Fermi gas with mass imbalance

    NASA Astrophysics Data System (ADS)

    von Keyserlingk, C. W.; Conduit, G. J.

    2011-05-01

    We study the emergence of itinerant ferromagnetism in an ultracold atomic gas with a variable mass ratio between the up- and down-spin species. Mass imbalance breaks the SU(2) spin symmetry, leading to a modified Stoner criterion. We first elucidate the phase behavior in both the grand canonical and canonical ensembles. Second, we apply the formalism to a harmonic trap to demonstrate how a mass imbalance delivers unique experimental signatures of ferromagnetism. These could help future experiments to better identify the putative ferromagnetic state. Furthermore, we highlight how a mass imbalance suppresses the three-body loss processes that handicap the formation of a ferromagnetic state. Finally, we study the time-dependent formation of the ferromagnetic phase following a quench in the interaction strength.

  15. Itinerant ferromagnetism in an interacting Fermi gas with mass imbalance

    SciTech Connect

    Keyserlingk, C. W. von; Conduit, G. J.

    2011-05-15

    We study the emergence of itinerant ferromagnetism in an ultracold atomic gas with a variable mass ratio between the up- and down-spin species. Mass imbalance breaks the SU(2) spin symmetry, leading to a modified Stoner criterion. We first elucidate the phase behavior in both the grand canonical and canonical ensembles. Second, we apply the formalism to a harmonic trap to demonstrate how a mass imbalance delivers unique experimental signatures of ferromagnetism. These could help future experiments to better identify the putative ferromagnetic state. Furthermore, we highlight how a mass imbalance suppresses the three-body loss processes that handicap the formation of a ferromagnetic state. Finally, we study the time-dependent formation of the ferromagnetic phase following a quench in the interaction strength.

  16. Subsurface Ventilation System Description Document

    SciTech Connect

    Eric Loros

    2001-07-25

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  17. Subsurface Ventilation System Description Document

    SciTech Connect

    2000-10-12

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  18. A method of detecting and locating electrical current imbalances

    NASA Astrophysics Data System (ADS)

    Patterson, Richard L.

    1993-01-01

    A method of detecting and locating current imbalances such as ground faults in multiwire systems using the Faraday effect is described. As an example, for 2-wire or 3-wire (1 ground wire) electrical systems, light is transmitted along an optical path which is exposed to magnetic fields produced by currents flowing in the hot and neutral wires. The rotations produced by these two magnetic fields cancel each other, therefore light on the optical path does not read the effect of either. However, when a ground fault occurs, the optical path is exposed to a net Faraday effect rotation due to the current imbalance thereby exposing the ground fault.

  19. [Variability of ventilation parameters of home ventilation equipment].

    PubMed

    Fuchs, M; Bickhardt, J; Morgenstern, U

    2002-01-01

    The performance of pressure- and volume controlled ventilators used for invasive and non-invasive ventilation in the home were tested on a patient lung model. In order to determine the influence of tidal volume preset, breathing rate, resistance, compliance and leakage to the variability of delivered tidal volume and peak airway pressure a factorial plan with adapted analysis of variance was used. The influence of tidal volume preset, compliance and leakage to the delivered tidal volume is significant. The peak airway pressure depends hardly on the influence factors. All tested ventilators meet the legal demands. But in some clinical situations there are considerable deviations of the breathing parameters depending on the brand. In conclusion ventilators of different brands are not interchangeable. PMID:12465320

  20. 30 CFR 57.8520 - Ventilation plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Ventilation plan. 57.8520 Section 57.8520... Underground Only § 57.8520 Ventilation plan. A plan of the mine ventilation system shall be set out by the... ventilation plan or revisions thereto shall be submitted to the District Manager for review and comments...

  1. 30 CFR 57.8520 - Ventilation plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Ventilation plan. 57.8520 Section 57.8520... Underground Only § 57.8520 Ventilation plan. A plan of the mine ventilation system shall be set out by the... ventilation plan or revisions thereto shall be submitted to the District Manager for review and comments...

  2. 30 CFR 57.8520 - Ventilation plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Ventilation plan. 57.8520 Section 57.8520... Underground Only § 57.8520 Ventilation plan. A plan of the mine ventilation system shall be set out by the... ventilation plan or revisions thereto shall be submitted to the District Manager for review and comments...

  3. 30 CFR 57.8520 - Ventilation plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Ventilation plan. 57.8520 Section 57.8520... Underground Only § 57.8520 Ventilation plan. A plan of the mine ventilation system shall be set out by the... ventilation plan or revisions thereto shall be submitted to the District Manager for review and comments...

  4. 30 CFR 57.8520 - Ventilation plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Ventilation plan. 57.8520 Section 57.8520... Underground Only § 57.8520 Ventilation plan. A plan of the mine ventilation system shall be set out by the... ventilation plan or revisions thereto shall be submitted to the District Manager for review and comments...

  5. 24 CFR 3285.505 - Crawlspace ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Crawlspace ventilation. 3285.505... ventilation. (a) A crawlspace with skirting must be provided with ventilation openings. The minimum net area of ventilation openings must not be less than one square foot (ft.2) for every 150 square feet...

  6. Preoperational test report, vent building ventilation system

    SciTech Connect

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Vent Building Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides Heating, Ventilation, and Air Conditioning (HVAC) for the W-030 Ventilation Building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  7. 21 CFR 868.5975 - Ventilator tubing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ventilator tubing. 868.5975 Section 868.5975 Food... DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5975 Ventilator tubing. (a) Identification. Ventilator tubing is a device intended for use as a conduit for gases between a ventilator and a...

  8. 21 CFR 868.5975 - Ventilator tubing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ventilator tubing. 868.5975 Section 868.5975 Food... DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5975 Ventilator tubing. (a) Identification. Ventilator tubing is a device intended for use as a conduit for gases between a ventilator and a...

  9. 21 CFR 868.5975 - Ventilator tubing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ventilator tubing. 868.5975 Section 868.5975 Food... DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5975 Ventilator tubing. (a) Identification. Ventilator tubing is a device intended for use as a conduit for gases between a ventilator and a...

  10. 21 CFR 868.5975 - Ventilator tubing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ventilator tubing. 868.5975 Section 868.5975 Food... DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5975 Ventilator tubing. (a) Identification. Ventilator tubing is a device intended for use as a conduit for gases between a ventilator and a...

  11. 21 CFR 868.5975 - Ventilator tubing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ventilator tubing. 868.5975 Section 868.5975 Food... DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5975 Ventilator tubing. (a) Identification. Ventilator tubing is a device intended for use as a conduit for gases between a ventilator and a...

  12. 46 CFR 168.15-50 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Accommodations § 168.15-50 Ventilation. (a) All quarters must be adequately ventilated in a manner suitable to the purpose of the space and route of the vessel. (b) When mechanical ventilation is provided for... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation. 168.15-50 Section 168.15-50 Shipping...

  13. 33 CFR 175.201 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... unless it is equipped with an operable ventilation system that meets the requirements of 33 CFR 183.610... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Ventilation. 175.201 Section 175... SAFETY EQUIPMENT REQUIREMENTS Ventilation § 175.201 Ventilation. No person may operate a boat built...

  14. Intestinal perfusion monitoring using photoplethysmography

    NASA Astrophysics Data System (ADS)

    Akl, Tony J.; Wilson, Mark A.; Ericson, M. Nance; Coté, Gerard L.

    2013-08-01

    In abdominal trauma patients, monitoring intestinal perfusion and oxygen consumption is essential during the resuscitation period. Photoplethysmography is an optical technique potentially capable of monitoring these changes in real time to provide the medical staff with a timely and quantitative measure of the adequacy of resuscitation. The challenges for using optical techniques in monitoring hemodynamics in intestinal tissue are discussed, and the solutions to these challenges are presented using a combination of Monte Carlo modeling and theoretical analysis of light propagation in tissue. In particular, it is shown that by using visible wavelengths (i.e., 470 and 525 nm), the perfusion signal is enhanced and the background contribution is decreased compared with using traditional near-infrared wavelengths leading to an order of magnitude enhancement in the signal-to-background ratio. It was further shown that, using the visible wavelengths, similar sensitivity to oxygenation changes could be obtained (over 50% compared with that of near-infrared wavelengths). This is mainly due to the increased contrast between tissue and blood in that spectral region and the confinement of the photons to the thickness of the small intestine. Moreover, the modeling results show that the source to detector separation should be limited to roughly 6 mm while using traditional near-infrared light, with a few centimeters source to detector separation leads to poor signal-to-background ratio. Finally, a visible wavelength system is tested in an in vivo porcine study, and the possibility of monitoring intestinal perfusion changes is showed.

  15. Nozzle for discharging ventilation air from a ventilation system

    SciTech Connect

    Elfverson, S.E.

    1986-09-30

    This patent describes a nozzle for discharging ventilation air from a ventilation system, preferably arranged in a vehicle, including at least one outlet housing with a through-flow duct for ventilation air, a fixed plate transverse to the flow duct and rigidly attached to the outlet housing, and a plurality of plates parallel to the fixed plate. These plates are mutually displaceable in a direction transverse to the flow duct under the action of a control lever passing through the plates, the plates being formed with perforation patterns, which in coaction form ventilation ducts through which the ventilation air can flow and in response to the setting of the control lever cause deviation of the flow direction of the ventilation air. Each displaceable plate is formed with a grid cross comprising at least two intersecting bars, of which one bar has a substantially circular cross section, while the other bar has a substantially elliptical cross section and wherein the control lever is adapted to grip round a grid cross, the control lever having two pairs of longitudinal slots. One pair of the slots is adapted to grip without play one of the intersecting bars in each respective grid cross. The other pair of slots comprises a first slot adapted to grip without play the other of the intersecting bars, and a second slot formed with a width disabling engagement with the other of the intersecting bars.

  16. Intermedin Stabilized Endothelial Barrier Function and Attenuated Ventilator-induced Lung Injury in Mice

    PubMed Central

    Müller-Redetzky, Holger Christian; Kummer, Wolfgang; Pfeil, Uwe; Hellwig, Katharina; Will, Daniel; Paddenberg, Renate; Tabeling, Christoph; Hippenstiel, Stefan; Suttorp, Norbert; Witzenrath, Martin

    2012-01-01

    Background Even protective ventilation may aggravate or induce lung failure, particularly in preinjured lungs. Thus, new adjuvant pharmacologic strategies are needed to minimize ventilator-induced lung injury (VILI). Intermedin/Adrenomedullin-2 (IMD) stabilized pulmonary endothelial barrier function in vitro. We hypothesized that IMD may attenuate VILI-associated lung permeability in vivo. Methodology/Principal Findings Human pulmonary microvascular endothelial cell (HPMVEC) monolayers were incubated with IMD, and transcellular electrical resistance was measured to quantify endothelial barrier function. Expression and localization of endogenous pulmonary IMD, and its receptor complexes composed of calcitonin receptor-like receptor (CRLR) and receptor activity-modifying proteins (RAMPs) 1–3 were analyzed by qRT-PCR and immunofluorescence in non ventilated mouse lungs and in lungs ventilated for 6 h. In untreated and IMD treated mice, lung permeability, pulmonary leukocyte recruitment and cytokine levels were assessed after mechanical ventilation. Further, the impact of IMD on pulmonary vasoconstriction was investigated in precision cut lung slices (PCLS) and in isolated perfused and ventilated mouse lungs. IMD stabilized endothelial barrier function in HPMVECs. Mechanical ventilation reduced the expression of RAMP3, but not of IMD, CRLR, and RAMP1 and 2. Mechanical ventilation induced lung hyperpermeability, which was ameliorated by IMD treatment. Oxygenation was not improved by IMD, which may be attributed to impaired hypoxic vasoconstriction due to IMD treatment. IMD had minor impact on pulmonary leukocyte recruitment and did not reduce cytokine levels in VILI. Conclusions/Significance IMD may possibly provide a new approach to attenuate VILI. PMID:22563471

  17. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Power ventilation systems except machinery space ventilation systems. 111.103-1 Section 111.103-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Power ventilation systems except machinery space ventilation systems. Each power ventilation system...

  18. Modified PISAPED Criteria in Combination with Ventilation Scintigraphic Finding for Predicting Acute Pulmonary Embolism.

    PubMed

    Watanabe, Naoyuki; Fettich, Jure; Küçük, Nurie Özlem; Kraft, Otakar; Mut, Fernando; Choudhury, Partha; Sharma, Surendra K; Endo, Keigo; Dondi, Maurizio

    2015-01-01

    This prospective clinical study aimed at assessing three pulmonary scintigraphic algorithms to detect acute pulmonary embolism (PE): Lung ventilation/perfusion (V/Q) scintigraphy along with modified prospective investigation of pulmonary embolism diagnosis (PIOPED) criteria; lung perfusion scintigraphy along with prospective investigative study of acute pulmonary embolism diagnosis (PISAPED) criteria; and lung perfusion scan in combination with ventilation scan, along with modified PISAPED criteria, which were newly developed. Patients with suspicion of PE were eligible for this study if they had no abnormal chest x-ray. Their diagnostic workup included a clinical assessment, a pulmonary V/Q scintigraphy, and CT pulmonary angiography (CTPA), as well as a clinical outcome assessment over a period of 24 weeks. Referred to the final clinical diagnosis of patients, the sensitivity and specificity of each algorithm were evaluated. The diagnostic performance of each algorithm by the area under the maximum likelihood fitted receiver operating characteristic (ROC) curve was determined. With respect to the PISAPED criteria, the sensitivity was 60.8% and specificity was 87.3%. No patient was classified into nondiagnostic category. The PIOPED criteria showed that the sensitivity was 95.0% and specificity was 88.2%, while 57.4% of the patients were in nondiagnostic category. The areas under the ROC curve constructed from the PISAPED criteria results and the modified PIOPED criteria results were 0.734 and 0.859 (P < 0.01), respectively. The modified PISAPED criteria demonstrated that the sensitivity was 83.8% and specificity was 89.1%. No patient was classified into nondiagnostic category. The area under the ROC curve constructed from modified PISAPED criteria was 0.864 (P < 0.01). Perfusion scans used with ventilation scans and modified PISAPED criteria may increase the diagnostic accuracy of pulmonary scintigraphy for acute PE, compared with the two major algorithms. PMID

  19. Newer nonconventional modes of mechanical ventilation.

    PubMed

    Singh, Preet Mohinder; Borle, Anuradha; Trikha, Anjan

    2014-07-01

    The conventional modes of ventilation suffer many limitations. Although they are popularly used and are well-understood, often they fail to match the patient-based requirements. Over the years, many small modifications in ventilators have been incorporated to improve patient outcome. The ventilators of newer generation respond to patient's demands by additional feedback systems. In this review, we discuss the popular newer modes of ventilation that have been accepted in to clinical practice. Various intensive care units over the world have found these modes to improve patient ventilator synchrony, decrease ventilator days and improve patient safety. The various modes discusses in this review are: Dual control modes (volume assured pressure support, volume support), Adaptive support ventilation, proportional assist ventilation, mandatory minute ventilation, Bi-level airway pressure release ventilation, (BiPAP), neurally adjusted ventilatory assist and NeoGanesh. Their working principles with their advantages and clinical limitations are discussed in brief. PMID:25114434

  20. Equivalence in Ventilation and Indoor Air Quality

    SciTech Connect

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  1. Newer nonconventional modes of mechanical ventilation

    PubMed Central

    Singh, Preet Mohinder; Borle, Anuradha; Trikha, Anjan

    2014-01-01

    The conventional modes of ventilation suffer many limitations. Although they are popularly used and are well-understood, often they fail to match the patient-based requirements. Over the years, many small modifications in ventilators have been incorporated to improve patient outcome. The ventilators of newer generation respond to patient's demands by additional feedback systems. In this review, we discuss the popular newer modes of ventilation that have been accepted in to clinical practice. Various intensive care units over the world have found these modes to improve patient ventilator synchrony, decrease ventilator days and improve patient safety. The various modes discusses in this review are: Dual control modes (volume assured pressure support, volume support), Adaptive support ventilation, proportional assist ventilation, mandatory minute ventilation, Bi-level airway pressure release ventilation, (BiPAP), neurally adjusted ventilatory assist and NeoGanesh. Their working principles with their advantages and clinical limitations are discussed in brief. PMID:25114434

  2. Addressing Gender Imbalance in Nigeria's Higher Education through Institutional Framework

    ERIC Educational Resources Information Center

    Okeke, Emeka Paul

    2013-01-01

    This paper examined the gender imbalance among students in Nigeria's higher education and the possible ways to addressing them. The poor access of female gender to higher education in Nigeria has become a thing of great concern to all stakeholders such as School authorities, Government, International agencies and employers of labor. The paper…

  3. On cuff imbalance and tripolar ENG amplifier configurations.

    PubMed

    Triantis, Iasonas F; Demosthenous, Andreas; Donaldson, Nick

    2005-02-01

    Electroneurogram (ENG) recording techniques benefit from the use of tripolar cuffs because they assist in reducing interference from sources outside the cuff. However, in practice the performance of ENG amplifier configurations, such as the quasi-tripole and the true-tripole, has been widely reported to be degraded due to the departure of the tripolar cuff from ideal behavior. This paper establishes the presence of cuff imbalance and investigates its relationship to cuff asymmetry, cuff end-effects and interference source proximity. The paper also presents a comparison of the aforementioned amplifier configurations with a new alternative, termed the adaptive-tripole, developed to automatically compensate for cuff imbalance. The output signal-to-interference ratio of the three amplifier configurations were compared in vivo for two interference signals (stimulus artifact and M-wave) superimposed on compound action potentials. The experiments showed (for the first time) that the two interference signals result in different cuff imbalance values. Nevertheless, even with two distinct cuff imbalances present, the adaptive-tripole performed better than the other two systems in 61.9% of the trials. PMID:15709669

  4. THE ROLE OF INORGANIC ION IMBALANCE IN AQUATIC TOXICITY TESTING

    EPA Science Inventory

    Effluent toxicity testing methods have been well defined, but to a large part have not attempted to segregate the effects of active ionic concentrations and ion imbalances upon test and species performances. The role that various total dissolved solids in effluents have on regula...

  5. Gender Imbalance in Accounting Academia: Past and Present

    ERIC Educational Resources Information Center

    Jordan, Charles E.; Pate, Gwen R.; Clark, Stanley J.

    2006-01-01

    Studies conducted in the late 1980s and early 1990s reflected a gender imbalance in the accounting academy as the proportion of female professors fell far below the percentage of women accountants in practice. For a sample of doctoral-granting and nondoctoral-granting Association to Advance Collegiate Schools of Business (AACSB) institutions, the…

  6. Ultrasound perfusion signal processing for tumor detection

    NASA Astrophysics Data System (ADS)

    Kim, MinWoo; Abbey, Craig K.; Insana, Michael F.

    2016-04-01

    Enhanced blood perfusion in a tissue mass is an indication of neo-vascularity and a sign of a potential malignancy. Ultrasonic pulsed-Doppler imaging is a preferred modality for noninvasive monitoring of blood flow. However, the weak blood echoes and disorganized slow flow make it difficult to detect perfusion using standard methods without the expense and risk of contrast enhancement. Our research measures the efficiency of conventional power-Doppler (PD) methods at discriminating flow states by comparing measurement performance to that of an ideal discriminator. ROC analysis applied to the experimental results shows that power Doppler methods are just 30-50 % efficient at perfusion flows less than 1ml/min, suggesting an opportunity to improve perfusion assessment through signal processing. A new perfusion estimator is proposed by extending the statistical discriminator approach. We show that 2-D perfusion color imaging may be enhanced using this approach.

  7. High frequency jet ventilation and intermittent positive pressure ventilation. Effect of cerebral blood flow in patients after open heart surgery

    SciTech Connect

    Pittet, J.F.; Forster, A.; Suter, P.M. )

    1990-02-01

    Attenuation of ventilator-synchronous pressure fluctuations of intracranial pressure has been demonstrated during high frequency ventilation in animal and human studies, but the consequences of this effect on cerebral blood flow have not been investigated in man. We compared the effects of high frequency jet ventilation and intermittent positive pressure ventilation on CBF in 24 patients investigated three hours after completion of open-heart surgery. The patients were investigated during three consecutive periods with standard sedation (morphine, pancuronium): a. IPPV; b. HFJV; c. IPPV. Partial pressure of arterial CO{sub 2} (PaCO{sub 2}: 4.5-5.5 kPa) and rectal temperature (35.5 to 37.5{degree}C) were maintained constant during the study. The CBF was measured by intravenous {sup 133}Xe washout technique. The following variables were derived from the cerebral clearance of {sup 133}Xe: the rapid compartment flow, the initial slope index, ie, a combination of the rapid and the slow compartment flows, and the ratio of fast compartment flow over total CBF (FF). Compared to IPPV, HFJV applied to result in the same mean airway pressure did not produce any change in pulmonary gas exchange, mean systemic arterial pressure, and cardiac index. Similarly, CBF was not significantly altered by HFJV. However, important variations of CBF values were observed in three patients, although the classic main determinants of CBF (PaCO{sub 2}, cerebral perfusion pressure, Paw, temperature) remained unchanged. Our results suggest that in patients with normal systemic hemodynamics, the effects of HFJV and IPPV on CBF are comparable at identical levels of mean airway pressure.

  8. Genomic imbalances in pediatric patients with chronic kidney disease

    PubMed Central

    Verbitsky, Miguel; Sanna-Cherchi, Simone; Fasel, David A.; Levy, Brynn; Kiryluk, Krzysztof; Wuttke, Matthias; Abraham, Alison G.; Kaskel, Frederick; Köttgen, Anna; Warady, Bradley A.; Furth, Susan L.; Wong, Craig S.; Gharavi, Ali G.

    2015-01-01

    BACKGROUND. There is frequent uncertainty in the identification of specific etiologies of chronic kidney disease (CKD) in children. Recent studies indicate that chromosomal microarrays can identify rare genomic imbalances that can clarify the etiology of neurodevelopmental and cardiac disorders in children; however, the contribution of unsuspected genomic imbalance to the incidence of pediatric CKD is unknown. METHODS. We performed chromosomal microarrays to detect genomic imbalances in children enrolled in the Chronic Kidney Disease in Children (CKiD) prospective cohort study, a longitudinal prospective multiethnic observational study of North American children with mild to moderate CKD. Patients with clinically detectable syndromic disease were excluded from evaluation. We compared 419 unrelated children enrolled in CKiD to multiethnic cohorts of 21,575 children and adults that had undergone microarray genotyping for studies unrelated to CKD. RESULTS. We identified diagnostic copy number disorders in 31 children with CKD (7.4% of the cohort). We detected 10 known pathogenic genomic disorders, including the 17q12 deletion HNF1 homeobox B (HNF1B) and triple X syndromes in 19 of 419 unrelated CKiD cases as compared with 98 of 21,575 control individuals (OR 10.8, P = 6.1 × 10–20). In an additional 12 CKiD cases, we identified 12 likely pathogenic genomic imbalances that would be considered reportable in a clinical setting. These genomic imbalances were evenly distributed among patients diagnosed with congenital and noncongenital forms of CKD. In the vast majority of these cases, the genomic lesion was unsuspected based on the clinical assessment and either reclassified the disease or provided information that might have triggered additional clinical care, such as evaluation for metabolic or neuropsychiatric disease. CONCLUSION. A substantial proportion of children with CKD have an unsuspected genomic imbalance, suggesting genomic disorders as a risk factor for

  9. Ventilation Model and Analysis Report

    SciTech Connect

    V. Chipman

    2003-07-18

    This model and analysis report develops, validates, and implements a conceptual model for heat transfer in and around a ventilated emplacement drift. This conceptual model includes thermal radiation between the waste package and the drift wall, convection from the waste package and drift wall surfaces into the flowing air, and conduction in the surrounding host rock. These heat transfer processes are coupled and vary both temporally and spatially, so numerical and analytical methods are used to implement the mathematical equations which describe the conceptual model. These numerical and analytical methods predict the transient response of the system, at the drift scale, in terms of spatially varying temperatures and ventilation efficiencies. The ventilation efficiency describes the effectiveness of the ventilation process in removing radionuclide decay heat from the drift environment. An alternative conceptual model is also developed which evaluates the influence of water and water vapor mass transport on the ventilation efficiency. These effects are described using analytical methods which bound the contribution of latent heat to the system, quantify the effects of varying degrees of host rock saturation (and hence host rock thermal conductivity) on the ventilation efficiency, and evaluate the effects of vapor and enhanced vapor diffusion on the host rock thermal conductivity.

  10. Mechanical ventilation for severe asthma.

    PubMed

    Leatherman, James

    2015-06-01

    Acute exacerbations of asthma can lead to respiratory failure requiring ventilatory assistance. Noninvasive ventilation may prevent the need for endotracheal intubation in selected patients. For patients who are intubated and undergo mechanical ventilation, a strategy that prioritizes avoidance of ventilator-related complications over correction of hypercapnia was first proposed 30 years ago and has become the preferred approach. Excessive pulmonary hyperinflation is a major cause of hypotension and barotrauma. An appreciation of the key determinants of hyperinflation is essential to rational ventilator management. Standard therapy for patients with asthma undergoing mechanical ventilation consists of inhaled bronchodilators, corticosteroids, and drugs used to facilitate controlled hypoventilation. Nonconventional interventions such as heliox, general anesthesia, bronchoscopy, and extracorporeal life support have also been advocated for patients with fulminant asthma but are rarely necessary. Immediate mortality for patients who are mechanically ventilated for acute severe asthma is very low and is often associated with out-of-hospital cardiorespiratory arrest before intubation. However, patients who have been intubated for severe asthma are at increased risk for death from subsequent exacerbations and must be managed accordingly in the outpatient setting. PMID:26033128

  11. Digital Compensation of IQ Imbalance for Dual-Carrier Double Conversion Receivers

    NASA Astrophysics Data System (ADS)

    Park, Chester Sungchung; Park, Fitzgerald Sungkyung

    A receiver architecture and a digital IQ imbalance compensation method for dual-carrier reception are newly proposed. The impact of IQ imbalance on the baseband signal is mathematically analyzed. Based on the analysis, IQ imbalance parameters are estimated and the coupling effect of IQ imbalance is compensated using digital baseband processing alone. Simulation results show that the proposed IQ imbalance compensation successfully removes IQ imbalance. The deviation from the ideal performance is less than 1dB when it is applied to the 3GPP-LTE carrier aggregation.

  12. Quantitative analysis of changes in blood concentrations and 'presumed effect-site concentration' of sevoflurane during one-lung ventilation.

    PubMed

    Matsuse, S; Hara, Y; Ohkura, T; Yahagi, N

    2012-10-01

    During one-lung ventilation, ventilation-perfusion mismatch decreases the arterial concentration of inhaled anaesthetics due to the arterial-to-venous concentration difference. This study tested the hypothesis that in humans, the 'presumed effect-site concentration' (taken as the mid-point between the arterial and superior jugular venous concentrations) of inhaled anaesthetic falls during one-lung (vs two-lung) ventilation. Four patients scheduled for elective prostatectomy (two-lung ventilation) and four patients for elective thoracotomy (one-lung ventilation) were randomly selected and assigned to receive sevoflurane (vaporiser-dial setting, 1.5%). Sevoflurane concentrations were measured periodically from radial artery and superior jugular vein (via a catheter advanced cephalad from the jugular vein). During one-lung ventilation, the end-expiratory sevoflurane concentration was stable at ∼1.3% but the mean (SD) presumed effect-site concentration declined initially from 58 (6.7) to 43 (4.7) μg.ml(-1) (p=0.011) before slowly recovering. A period of insufficient depth of anaesthesia is thus a risk during one-lung ventilation. PMID:22734829

  13. Vasomotor tone does not affect perfusion heterogeneity and gas exchange in normal primate lungs during normoxia

    NASA Technical Reports Server (NTRS)

    Glenny, R. W.; Robertson, H. T.; Hlastala, M. P.

    2000-01-01

    To determine whether vasoregulation is an important cause of pulmonary perfusion heterogeneity, we measured regional blood flow and gas exchange before and after giving prostacyclin (PGI(2)) to baboons. Four animals were anesthetized with ketamine and mechanically ventilated. Fluorescent microspheres were used to mark regional perfusion before and after PGI(2) infusion. The lungs were subsequently excised, dried inflated, and diced into approximately 2-cm(3) pieces (n = 1,208-1,629 per animal) with the spatial coordinates recorded for each piece. Blood flow to each piece was determined for each condition from the fluorescent signals. Blood flow heterogeneity did not change with PGI(2) infusion. Two other measures of spatial blood flow distribution, the fractal dimension and the spatial correlation, did not change with PGI(2) infusion. Alveolar-arterial O(2) differences did not change with PGI(2) infusion. We conclude that, in normal primate lungs during normoxia, vasomotor tone is not a significant cause of perfusion heterogeneity. Despite the heterogeneous distribution of blood flow, active regulation of regional perfusion is not required for efficient gas exchange.

  14. Myocardial performance and perfusion during exercise in patients with coronary artery disease caused by Kawasaki disease

    SciTech Connect

    Paridon, S.M.; Ross, R.D.; Kuhns, L.R.; Pinsky, W.W. )

    1990-01-01

    For a study of the natural history of coronary artery lesions after Kawasaki disease and their effect on myocardial blood flow reserve with exercise, five such patients underwent exercise testing on a bicycle. Oxygen consumption, carbon dioxide production, minute ventilation, and electrocardiograms were monitored continuously. Thallium-201 scintigraphy was performed for all patients. One patient stopped exercise before exhaustion of cardiovascular reserve but had no evidence of myocardial perfusion abnormalities. Four patients terminated exercise because of exhaustion of cardiovascular reserve; one had normal cardiovascular reserve and thallium scintiscans, but the remaining patients had diminished cardiovascular reserve. Thallium scintigrams showed myocardial ischemia in two and infarction in one. No patient had exercise-induced electrocardiographic changes. These results indicate that patients with residual coronary artery lesions after Kawasaki disease frequently have reduced cardiovascular reserve during exercise. The addition of thallium scintigraphy and metabolic measurements to exercise testing improved the detection of exercise-induced abnormalities of myocardial perfusion.

  15. Animal models of ex vivo lung perfusion as a platform for transplantation research

    PubMed Central

    Nelson, Kevin; Bobba, Christopher; Ghadiali, Samir; Jr, Don Hayes; Black, Sylvester M; Whitson, Bryan A

    2014-01-01

    Ex vivo lung perfusion (EVLP) is a powerful experimental model for isolated lung research. EVLP allows for the lungs to be manipulated and characterized in an external environment so that the effect of specific ventilation/perfusion variables can be studied independent of other confounding physiologic contributions. At the same time, EVLP allows for normal organ level function and real-time monitoring of pulmonary physiology and mechanics. As a result, this technique provides unique advantages over in vivo and in vitro models. Small and large animal models of EVLP have been developed and each of these models has their strengths and weaknesses. In this manuscript, we provide insight into the relative strengths of each model and describe how the development of advanced EVLP protocols is leading to a novel experimental platform that can be used to answer critical questions in pulmonary physiology and transplant medicine. PMID:24977117

  16. Animal models of ex vivo lung perfusion as a platform for transplantation research.

    PubMed

    Nelson, Kevin; Bobba, Christopher; Ghadiali, Samir; Hayes, Don; Black, Sylvester M; Whitson, Bryan A

    2014-05-20

    Ex vivo lung perfusion (EVLP) is a powerful experimental model for isolated lung research. EVLP allows for the lungs to be manipulated and characterized in an external environment so that the effect of specific ventilation/perfusion variables can be studied independent of other confounding physiologic contributions. At the same time, EVLP allows for normal organ level function and real-time monitoring of pulmonary physiology and mechanics. As a result, this technique provides unique advantages over in vivo and in vitro models. Small and large animal models of EVLP have been developed and each of these models has their strengths and weaknesses. In this manuscript, we provide insight into the relative strengths of each model and describe how the development of advanced EVLP protocols is leading to a novel experimental platform that can be used to answer critical questions in pulmonary physiology and transplant medicine. PMID:24977117

  17. 46 CFR 153.312 - Ventilation system standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... ventilation system must not recycle vapors from ventilation discharges. (c) Except for the space served by the ventilation duct, a ventilation duct must not pass through a machinery room, an accommodation space,...

  18. 46 CFR 153.312 - Ventilation system standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... ventilation system must not recycle vapors from ventilation discharges. (c) Except for the space served by the ventilation duct, a ventilation duct must not pass through a machinery room, an accommodation space,...

  19. 46 CFR 153.312 - Ventilation system standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation... ventilation system must not recycle vapors from ventilation discharges. (c) Except for the space served by the ventilation duct, a ventilation duct must not pass through a machinery room, an accommodation space,...

  20. Myocardial perfusion imaging using contrast echocardiography.

    PubMed

    Pathan, Faraz; Marwick, Thomas H

    2015-01-01

    Microbubbles are an excellent intravascular tracer, and both the rate of myocardial opacification (analogous to coronary microvascular perfusion) and contrast intensity (analogous to myocardial blood volume) provide unique insights into myocardial perfusion. A strong evidence base has been accumulated to show comparability with nuclear perfusion imaging and incremental diagnostic and prognostic value relative to wall motion analysis. This technique also provides the possibility to measure myocardial perfusion at the bedside. Despite all of these advantages, the technique is complicated, technically challenging, and has failed to scale legislative and financial hurdles. The development of targeted imaging and therapeutic interventions will hopefully rekindle interest in this interesting modality. PMID:25817740

  1. Patterns of pulmonary perfusion scans in normal subjects. IV. The prevalence of abnormal scans in smokers 30 to 49 years of age

    SciTech Connect

    Fedullo, P.F.; Kapitan, K.S.; Brewer, N.S.; Ashburn, W.L.; Hartman, M.T.; Moser, K.M.

    1989-05-01

    The usefulness of ventilation-perfusion scans in the diagnosis of pulmonary embolism is limited by the wide range of pulmonary diseases that are associated with abnormal scans, and by the largely undetermined prevalence of abnormal scans in persons without cardiopulmonary disease. In prior studies, we found perfusion defects to be rarely present in young persons and in older nonsmokers. To determine if normal older smokers have a higher prevalence of abnormal ventilation and perfusion scans, we performed six-view /sup 99m/Tc perfusion (Q) scans and /sup 133/Xe ventilation (V) scans in 40 subjects 30 to 49 yr of age who had no known cardiopulmonary disease. Each subject had undergone a history, physical examination, electrocardiogram, spirometry, and posteroanterior chest roentgenogram prior to scanning. All V and Q scans were interpreted blindly and independently by two experienced readers. No subject demonstrated a lobar or segmental defect on two views. One subject had a matched subsegmental defect, and one subject had delayed washout from a subsegmental area of the right upper lobe during V scanning, with a normal Q scan. We conclude that abnormal V and Q scans are uncommon among normal smokers 30 to 49 yr of age.

  2. Cigarette smoke ventilation decreases prostaglandin inactivation in rat and hamster lungs

    SciTech Connect

    Maennistoe, J.; Uotila, P.

    1982-06-01

    The effects of cigarette smoke on the metabolism of exogenous PGE2 and PGF2 alpha were investigated in isolated rat and hamster lungs. When isolated lungs from animals were ventilated with cigarette smoke during pulmonary infusion of 100 nmol of PGE2 or PGF2 alpha, the amounts of the 15-keto-metabolites in the perfusion effluent were decreased. Pre-exposure of animals to cigarette smoke daily for 3 weeks did not change the metabolism of PGE2 when the lungs were ventilated with air. Cigarette smoke ventilation of lungs from pre-exposed animals caused, however, a similar decrease in the metabolism of PGE2 as in animals not previously exposed to smoke. After pulmonary injection of 10 nmol of /sup 14/C-PGE2 the radioactivity appeared more rapidly in the effluent during cigarette smoke ventilation suggesting inhibition of the PGE2 uptake mechanism. In rat lungs pulmonary vascular pressor responses to PGE2 and PGF2 alpha were inhibited by smoke ventilation.

  3. Hypercapnic acidosis impairs plasma membrane wound resealing in ventilator-injured lungs.

    PubMed

    Doerr, Clinton H; Gajic, Ognjen; Berrios, Jorge C; Caples, Sean; Abdel, Matthew; Lymp, James F; Hubmayr, Rolf D

    2005-06-15

    The objective of this study was to assess the effects of hypercapnic acidosis on lung cell injury and repair by confocal microscopy in a model of ventilator-induced lung injury. Three groups of normocapnic, hypocapnic, and hypercapnic rat lungs were perfused ex vivo, either during or after injurious ventilation, with a solution containing the membrane-impermeant label propidium iodide. In lungs labeled during injurious ventilation, propidium iodide fluorescence identifies all cells with plasma membrane wounds, both permanent and transient, whereas in lungs labeled after injurious ventilation propidium iodide fluorescence identifies only cells with permanent plasma membrane wounds. Hypercapnia minimized the adverse effects of high-volume ventilation on vascular barrier function, whereas hypocapnia had the opposite effect. Despite CO2-dependent differences in lung mechanics and edema the number of injured subpleural cells per alveolus was similar in the three groups (0.48 +/- 0.34 versus 0.51 +/- 0.19 versus 0.43 +/- 0.20 for hypocapnia, normocapnia, and hypercapnia, respectively). However, compared with normocapnia the probability of wound repair was significantly reduced in hypercapnic lungs (63 versus 38%; p < 0.02). This finding was subsequently confirmed in alveolar epithelial cell scratch models. The potential relevance of these observations for lung inflammation and remodeling after mechanical injury is discussed. PMID:15695495

  4. Water and Carbon as Creators of Imbalances in Nature

    NASA Astrophysics Data System (ADS)

    Shlafman, L. M.; Kontar, V. A.

    2012-12-01

    Our studies are showing that the carbon and water are closely intertwined. There are many reasons to study the imbalance of water and carbon together. For example, in photosynthesis six molecules of water and six molecules of carbon dioxide have created one molecule of sugar and six molecules of oxygen. 6H2O + 6CO2 go C6H12O6 + 6O2 For water and carbon dioxide, regarding the point of view of the imbalance, this process is the creator of imbalance of the decreasing type. The concentration of water and carbon dioxide in the atmosphere will decrease. For oxygen this process is the creator of imbalance of the increasing type. The concentration of oxygen in the atmosphere will increase. Water and carbon dioxide can be created independently of each other. For example, water is obtained from combining two hydrogen atoms and one oxygen atom: 2 H2 + O2 go 2 H2O Carbon dioxide also is possible to create without water: Na2CO3 go Na2O + CO2 or CaCO3 go CaO + CO2 But it is very often the water and carbon dioxide made up simultaneously in one reaction. For example combustion of methane gives carbon dioxide and water: CH4 + 2 O2 go CO2 + 2 H2O Carbon dioxide can come up more complicated way. Initially created carbon monoxide and water 2 CH4 + 3 O2 go 2 CO + 4 H2O After then the carbon monoxide rapidly oxidized to carbon dioxide. The gasification of solid fuels is the reaction: C + H20 go CO + H2 In the next step carbon monoxide is oxidized to carbon dioxide, and hydrogen is oxidized to water. C3H8 + 5 O2 go 3 CO2 + 4 H2O By the incomplete combustion of propane will be produced some very interesting components: 2 C3H8 + 7 O2 go 8 H2O + 2 CO2 + 2 CO + 2 C It will be water, carbon dioxide, carbon monoxide and pure carbon. Carbon monoxide will oxidize to carbon dioxide. But the pure carbon will have a very serious going on. By the incomplete combustion of not only propane, but other hydrocarbons, will be produced and the pure carbon also. This "pure carbon" or "black carbon" plays a

  5. Delimiting Allelic Imbalance of TYMS by Allele-Specific Analysis

    PubMed Central

    Balboa-Beltrán, Emilia; Cruz, Raquel; Carracedo, Angel; Barros, Francisco

    2015-01-01

    Abstract Allelic imbalance of thymidylate synthase (TYMS) is attributed to polymorphisms in the 5′- and 3′-untranslated region (UTR). These polymorphisms have been related to the risk of suffering different cancers, for example leukemia, breast or gastric cancer, and response to different drugs, among which are methotrexate glutamates, stavudine, and specifically 5-fluorouracil (5-FU), as TYMS is its direct target. A vast literature has been published in relation to 5-FU, even suggesting the sole use of these polymorphisms to effectively manage 5-FU dosage. Estimates of the extent to which these polymorphisms influence in TYMS expression have in the past been based on functional analysis by luciferase assays and quantification of TYMS mRNA, but both these studies, as the association studies with cancer risk or with toxicity or response to 5-FU, are very contradictory. Regarding functional assays, the artificial genetic environment created in luciferase assay and the problems derived from quantitative polymerase chain reactions (qPCRs), for example the use of a reference gene, may have distorted the results. To avoid these sources of interference, we have analyzed the allelic imbalance of TYMS by allelic-specific analysis in peripheral blood mononuclear cells (PBMCs) from patients. Allelic imbalance in PBMCs, taken from 40 patients with suspected myeloproliferative haematological diseases, was determined by fluorescent fragment analysis (for the 3′-UTR polymorphism), Sanger sequencing and allelic-specific qPCR in multiplex (for the 5′-UTR polymorphisms). For neither the 3′- nor the 5′-UTR polymorphisms did the observed allelic imbalance exceed 1.5 fold. None of the TYMS polymorphisms is statistically associated with allelic imbalance. The results acquired allow us to deny the previously established assertion of an influence of 2 to 4 fold of the rs45445694 and rs2853542 polymorphisms in the expression of TYMS and narrow its allelic imbalance to 1.5 fold

  6. Meclofenamate increases ventilation in lambs.

    PubMed

    Guerra, F A; Savich, R D; Clyman, R I; Kitterman, J A

    1989-01-01

    To investigate the effects of the prostaglandin synthetase inhibitor, meclofenamate, on postnatal ventilation, we studied 11 unanaesthetised, spontaneously-breathing lambs at an average age of 7.9 +/- 1.1 days (SEM; range 5-14 days) and an average weight of 4.9 +/- 0.5 kg (range 3.0-7.0 kg). After a 30-min control period we infused 4.23 mg/kg meclofenamate over 10 min and then gave 0.23 mg/h per kg for the remainder of the 4 h. Ventilation increased progressively from a control value of 515 +/- 72 ml/min per kg to a maximum of 753 +/- 100 ml/min per kg after 3h of infusion (P less than 0.05) due to an increased breathing rate; the effects were similar during both high- and low-voltage electrocortical activity. There were no significant changes in tidal volume, heart rate, blood pressure, arterial pH or PaCO2, the increased ventilation resulted from either an increase in dead space ventilation or an increase in CO2 production. This study indicates that meclofenamate causes an increase in ventilation in lambs but no changes in pH of PaCO2. The mechanism and site of action remain to be defined. PMID:2507622

  7. Residential ventilation standards scoping study

    SciTech Connect

    McKone, Thomas E.; Sherman, Max H.

    2003-10-01

    The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  8. New strategies for mechanical ventilation. Lung protective ventilation.

    PubMed

    Wilmoth, D

    1999-12-01

    Although research is ongoing, and there are no definitive data to mandate the final answer to the question of which ventilation strategies result in the most optimal outcomes, the consensus of clinicians today suggests that we limit FIO2 to nontoxic levels, limit ventilating pressures and volumes, and use PEEP levels adequate to recruit alveoli and prevent tidal collapse. The critical care nurse must remain vigilant in his or her review of current literature to maintain knowledge of the current recommendations for optimal MV strategies. PMID:10855109

  9. Long term perfusion system supporting adipogenesis

    PubMed Central

    Abbott, Rosalyn D.; Raja, Waseem K.; Wang, Rebecca Y.; Stinson, Jordan A.; Glettig, Dean L.; Burke, Kelly A.; Kaplan, David L.

    2015-01-01

    Adipose tissue engineered models are needed to enhance our understanding of disease mechanisms and for soft tissue regenerative strategies. Perfusion systems generate more physiologically relevant and sustainable adipose tissue models, however adipocytes have unique properties that make culturing them in a perfusion environment challenging. In this paper we describe the methods involved in the development of two perfusion culture systems (2D and 3D) to test their applicability for long term in vitro adipogenic cultures. It was hypothesized that a silk protein biomaterial scaffold would provide a 3D framework, in combination with perfusion flow, to generate a more physiologically relevant sustainable adipose tissue engineered model than 2D cell culture. Consistent with other studies evaluating 2D and 3D culture systems for adipogenesis we found that both systems successfully model adipogensis, however 3D culture systems were more robust, providing the mechanical structure required to contain the large, fragile adipocytes that were lost in 2D perfused culture systems. 3D perfusion also stimulated greater lipogenesis and lipolysis and resulted in decreased secretion of LDH compared to 2D perfusion. Regardless of culture configuration (2D or 3D) greater glycerol was secreted with the increased nutritional supply provided by perfusion of fresh media. These results are promising for adipose tissue engineering applications including long term cultures for studying disease mechanisms and regenerative approaches, where both acute (days to weeks) and chronic (weeks to months) cultivation are critical for useful insight. PMID:25843606

  10. Myocardial perfusion with rubidium-82. III. Theory relating severity of coronary stenosis to perfusion deficit

    SciTech Connect

    Mullani, N.A.

    1984-11-01

    The relation between the quantitative perfusion deficit, as measured by emission computerized tomography, and the severity of coronary artery stenosis is important for the noninvasive clinical evaluation of coronary artery disease in man. Positron emission tomography allows direct noninvasive measurement of myocardial perfusion and quantification of the size of the perfusion defect. Given this important imformation, a mathematical model has been derived to gauge the severity of a coronary stenosis from quantitative perfusion measurements in the normal and poststenotic regions of the heart. The theoretical basis is presented for relating regional myocardial perfusion and regional perfusion resistance to total, coronary blood flow and resistance at normal resting flow and during maximal coronary vasodilation. The concept of perfusion reserve is presented as a clinical measure of the severity of a stenosis.

  11. Spinal pedicle subtraction osteotomy for fixed sagittal imbalance patients

    PubMed Central

    Hyun, Seung-Jae; Kim, Yongjung J; Rhim, Seung-Chul

    2013-01-01

    In addressing spinal sagittal imbalance through a posterior approach, the surgeon now may choose from among a variety of osteotomy techniques. Posterior column osteotomies such as the facetectomy or Ponte or Smith-Petersen osteotomy provide the least correction, but can be used at multiple levels with minimal blood loss and a lower operative risk. Pedicle subtraction osteotomies provide nearly 3 times the per-level correction of Ponte/Smith-Petersen osteotomies; however, they carry increased technical demands, longer operative time, and greater blood loss and associated significant morbidity, including neurological injury. The literature focusing on pedicle subtraction osteotomy for fixed sagittal imbalance patients is reviewed. The long-term overall outcomes, surgical tips to reduce the complications and suggestions for their proper application are also provided. PMID:24340276

  12. Different nutritional states and autonomic imbalance in childhood.

    PubMed

    Dippacher, S; Willaschek, C; Buchhorn, R

    2014-11-01

    Autonomic imbalance, measured as heart rate variability (HRV), and an increased cardiovascular risk are described for overweight children, as well as for patients with anorexia nervosa. We investigate whether body mass index or actual caloric intake influences HRV. In our cross-sectional study, we compared HRV parameters for a healthy control group (n=52), anorexia nervosa patients (n=17), thin (n=18) and overweight children (n=19). Anorexia nervosa patients showed significantly lower heart rates at night (P<0.001) and significantly higher SDNN (standard deviation of all RR-intervals) (P<0.001 ), whereas overweight children showed an opposing pattern. SDNN and heart rate at night are highly correlated (r=0.89, R(2)=0.79, P<0.001). We conclude that not current body mass index but caloric intake determines HRV. Obesity and anorexia nervosa are characterized by a specific pattern of autonomic imbalance. PMID:25248356

  13. How does Chinese medicine target cytokine imbalance in rheumatoid arthritis?

    PubMed

    Liu, Jian; Sun, Yue

    2013-11-01

    Rheumatoid arthritis (RA) manifests as an imbalance between pro- and anti-inflammatory cytokines. Cytokine imbalance is suggested to play critical roles in the development of RA. Currently, various treatments for RA, including biological agents such as antibodies against inflammation mediators, or Chinese herbal medicines, intervene the disease by restoring the balance of cytokines. Chinese medicine (CM) can not only suppress the expression of pro-inflammatory cytokines, but also induce the expression of cytokines with anti-inflammatory and immunomodulatory effects. Thus, Chinese medicine can effectively reduce inflammatory cell infiltration into synovial tissue, pannus formation, and degradation of the extracellular matrix surrounding cartilage cells, thereby reducing subchondral bone damage. This paper reviews the changes of cytokine profiling during development of RA and discuss the mechanisms by which Chinese medicine restores the cytokine balance. PMID:24170633

  14. Vorticity imbalance and stability in relation to convection

    NASA Technical Reports Server (NTRS)

    Read, W. L.; Scoggins, J. R.

    1977-01-01

    A complete synoptic-scale vorticity budget was related to convection storm development in the eastern two-thirds of the United States. The 3-h sounding interval permitted a study of time changes of the vorticity budget in areas of convective storms. Results of analyses revealed significant changes in values of terms in the vorticity equation at different stages of squall line development. Average budgets for all areas of convection indicate systematic imbalance in the terms in the vorticity equation. This imbalance resulted primarily from sub-grid scale processes. Potential instability in the lower troposphere was analyzed in relation to the development of convective activity. Instability was related to areas of convection; however, instability alone was inadequate for forecast purposes. Combinations of stability and terms in the vorticity equation in the form of indices succeeded in depicting areas of convection better than any one item separately.

  15. Two-Species Fermion Mixtures with Population Imbalance

    SciTech Connect

    Iskin, M.; Sa de Melo, C. A. R.

    2006-09-08

    We analyze the phase diagram of uniform superfluidity for two-species fermion mixtures from the Bardeen-Cooper-Schrieffer to Bose-Einstein condensation (BEC) limit as a function of the scattering parameter and population imbalance. We find at zero temperature that the phase diagram of population imbalance versus scattering parameter is asymmetric for unequal masses, having a larger stability region for uniform superfluidity when the lighter fermions are in excess. In addition, we find topological quantum phase transitions associated with the disappearance or appearance of momentum space regions of zero quasiparticle energies. Lastly, near the critical temperature, we derive the Ginzburg-Landau equation and show that it describes a dilute mixture of composite bosons and unpaired fermions in the BEC limit.

  16. Thrust imbalance of the Space Shuttle solid rocket motors

    NASA Technical Reports Server (NTRS)

    Foster, W. A., Jr.; Sforzini, R. H.; Shackelford, B. W., Jr.

    1981-01-01

    The Monte Carlo statistical analysis of thrust imbalance is applied to both the Titan IIIC and the Space Shuttle solid rocket motors (SRMs) firing in parallel, and results are compared with those obtained from the Space Shuttle program. The test results are examined in three phases: (1) pairs of SRMs selected from static tests of the four developmental motors (DMs 1 through 4); (2) pairs of SRMs selected from static tests of the three quality assurance motors (QMs 1 through 3); (3) SRMs on the first flight test vehicle (STS-1A and STS-1B). The simplified internal ballistic model utilized for computing thrust from head-end pressure measurements on flight tests is shown to agree closely with measured thrust data. Inaccuracies in thrust imbalance evaluation are explained by possible flight test instrumentation errors.

  17. The Role of Grade Sensitivity in Explaining the Gender Imbalance in Undergraduate Economics

    ERIC Educational Resources Information Center

    Rask, Kevin; Tiefenthaler, Jill

    2008-01-01

    There is a gender imbalance in undergraduate economics departments with most departments educating a strong majority of young men. This imbalance has led many economists to ponder the question of why relatively few women choose to take courses and major in economics. Our hypothesis is that the gender imbalance in undergraduate economics,…

  18. Spin imbalance effect on the Larkin-Ovchinnikov-Fulde-Ferrel state

    SciTech Connect

    Yoshii, Ryosuke; Tsuchiya, Shunji; Marmorini, Giacomo; Nitta, Muneto

    2011-07-01

    We study spin imbalance effects on the Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) state relevant for superconductors under a strong magnetic field and spin polarized ultracold Fermi gas. We obtain the exact solution for the condensates with arbitrary spin imbalance and the fermion spectrum perturbatively in the presence of small spin imbalance. We also obtain fermion zero mode exactly without perturbation theory.

  19. Systemic Redox Imbalance in Chronic Kidney Disease: A Systematic Review.

    PubMed

    Poulianiti, Konstantina P; Kaltsatou, Antonia; Mitrou, Georgia I; Jamurtas, Athanasios Z; Koutedakis, Yiannis; Maridaki, Maria; Stefanidis, Ioannis; Sakkas, Giorgos K; Karatzaferi, Christina

    2016-01-01

    Patients with chronic kidney disease (CKD) experience imbalance between oxygen reactive species (ROS) production and antioxidant defenses leading to cell and tissue damage. However, it remains unclear at which stage of renal insufficiency the redox imbalance becomes more profound. The aim of this systematic review was to provide an update on recent advances in our understanding of how the redox status changes in the progression of renal disease from predialysis stages 1 to 4 to end stage 5 and whether the various treatments and dialysis modalities influence the redox balance. A systematic review was conducted searching PubMed and Scopus by using the Cochrane and PRISMA guidelines. In total, thirty-nine studies met the inclusion criteria and were reviewed. Even from an early stage, imbalance in redox status is evident and as the kidney function worsens it becomes more profound. Hemodialysis therapy per se seems to negatively influence the redox status by the elevation of lipid peroxidation markers, protein carbonylation, and impairing erythrocyte antioxidant defense. However, other dialysis modalities do not so far appear to confer advantages. Supplementation with antioxidants might assist and should be considered as an early intervention to halt premature atherogenesis development at an early stage of CKD. PMID:27563376

  20. Money and age in schools: Bullying and power imbalances.

    PubMed

    Chaux, Enrique; Castellanos, Melisa

    2015-05-01

    School bullying continues to be a serious problem around the world. Thus, it seems crucial to clearly identify the risk factors associated with being a victim or a bully. The current study focused in particular on the role that age and socio-economic differences between classmates could play on bullying. Logistic and multilevel analyses were conducted using data from 53,316 5th and 9th grade students from a representative sample of public and private Colombian schools. Higher age and better family socio-economic conditions than classmates were risk factors associated with being a bully, while younger age and poorer socio-economic conditions than classmates were associated with being a victim of bullying. Coming from authoritarian families or violent neighborhoods, and supporting beliefs legitimizing aggression, were also associated with bullying and victimization. Empathy was negatively associated with being a bully, and in some cases positively associated with being a victim. The results highlight the need to take into account possible sources of power imbalances, such as age and socio-economic differences among classmates, when seeking to prevent bullying. In particular, interventions focused on peer group dynamics might contribute to avoid power imbalances or to prevent power imbalances from becoming power abuse. Aggr. Behav. 41:280-293, 2015. © 2014 Wiley Periodicals, Inc. PMID:25219327

  1. Systemic Redox Imbalance in Chronic Kidney Disease: A Systematic Review

    PubMed Central

    Kaltsatou, Antonia; Jamurtas, Athanasios Z.; Koutedakis, Yiannis; Stefanidis, Ioannis; Sakkas, Giorgos K.

    2016-01-01

    Patients with chronic kidney disease (CKD) experience imbalance between oxygen reactive species (ROS) production and antioxidant defenses leading to cell and tissue damage. However, it remains unclear at which stage of renal insufficiency the redox imbalance becomes more profound. The aim of this systematic review was to provide an update on recent advances in our understanding of how the redox status changes in the progression of renal disease from predialysis stages 1 to 4 to end stage 5 and whether the various treatments and dialysis modalities influence the redox balance. A systematic review was conducted searching PubMed and Scopus by using the Cochrane and PRISMA guidelines. In total, thirty-nine studies met the inclusion criteria and were reviewed. Even from an early stage, imbalance in redox status is evident and as the kidney function worsens it becomes more profound. Hemodialysis therapy per se seems to negatively influence the redox status by the elevation of lipid peroxidation markers, protein carbonylation, and impairing erythrocyte antioxidant defense. However, other dialysis modalities do not so far appear to confer advantages. Supplementation with antioxidants might assist and should be considered as an early intervention to halt premature atherogenesis development at an early stage of CKD. PMID:27563376

  2. Fracture ventilation by surface winds

    NASA Astrophysics Data System (ADS)

    Nachshon, U.; Dragila, M. I.; Weisbrod, N.

    2011-12-01

    Gas exchange between the Earth subsurface and the atmosphere is an important mechanism, affecting hydrological, agricultural and environmental processes. From a hydrological aspect, water vapor transport is the most important process related to Earth-atmosphere gas exchange. In respect to agriculture, gas transport in the upper soil profile is important for soil aeration. From an environmental aspect, emission of volatile radionuclides, such as 3H, 14C and Rd from radioactive waste disposal facilities; volatile organic components from industrial sources and Rn from natural sources, all found in the upper vadose zone, can greatly affect public health when emissions occur in populated areas. Thus, it is vital to better understand gas exchange processes between the Earth's upper crust and atmosphere. Four major mechanisms are known to transfer gases between ground surface and atmosphere: (1) Diffusion; (2) Pressure gradients between ground pores and atmosphere due to changes in barometric pressure; (3) Density-driven gas flow in respond to thermal gradients in the ground; and (4) Winds above the ground surface. Herein, the wind ventilation mechanism is studied. Whereas the wind's impact on ground ventilation was explored in several studies, the physical mechanisms governing this process were hardly quantified or characterized. In this work the physical properties of fracture ventilation due to wind blowing along land surface were explored and quantified. Both field measurements and Hele-Shaw experiments under controlled conditions in the laboratory were used to study this process. It was found that winds in the range of 0.3 m/s result in fracture ventilation down to a depth of 0.2 m. As wind velocity increases, the depth of the ventilation inside the fracture increases respectively, in a linear manner. In addition, the fracture aperture also affects the depth of ventilation, which grows as fracture aperture increases. For the maximal examined aperture of 2 cm and wind

  3. Fire fighter helmet ventilation analysis.

    PubMed

    Reischl, U

    1986-09-01

    A series of wind tunnel tests was conducted on selected fire fighter helmets to identify design factors which affect helmet ventilation at various air velocities and head orientation angles. Biomedical heat flux transducers were mounted on the surface of an electrically heated mannequin head to monitor convective heat loss. Under the experimental conditions, specific helmet design features were identified which can contribute to improved helmet ventilation and thus improve body metabolic heat loss. Attention to helmet design and helmet suspension systems is recommended to reduce fire fighter heat stress. PMID:3766398

  4. Speech for People with Tracheostomies or Ventilators

    MedlinePlus

    ... ventilator users may sound different. Because of the design of the ventilator, speech occurs when air is ... pathologists (SLPs) The SLP will evaluate the person's thinking and language skills, oral-motor and swallowing functioning, ...

  5. Musculoskeletal pain and effort-reward imbalance- a systematic review

    PubMed Central

    2014-01-01

    Background Musculoskeletal pain may be triggered by physical strains and psychosocial risk factors. The effort-reward imbalance model (ERI model) is a stress model which measures psychosocial factors in the working world. The question is whether workers with an effort-reward imbalance report musculoskeletal pain more frequently than those with no effort-reward imbalance. A systematic review using a best evidence synthesis approach was conducted to answer this question. Methods A literature search was conducted for the period from 1996 to 2012, using three databases (Pubmed, Embase and PsycINFO). The research criteria related to psychosocial, work-related stress as per the ERI model and to musculoskeletal pain. A quality score was developed using various quality criteria to assess the standard of the studies. The level of evidence was graded as in (Am J Ind Med 39:180–193, 2001). Results After applying the inclusion criteria, a total of 19 studies were included in the review: 15 cross-sectional studies, three prospective studies and one case–control study. 74% of all studies exhibited good methodological quality, 53% collected data using the original ERI questionnaire, and in 42% of the studies, there was adequate control for physical working conditions. Furthermore, different cut-off points were used to classify exposed and non-exposed individuals. On the basis of 13 studies with a positive, statistically significant association, a moderate level of evidence was inferred for the association between effort-reward imbalance and musculoskeletal pain. The evidence for a role of over-commitment and for its interaction with effort-reward imbalance was rated as inconclusive - on the basis of eight and five studies, respectively. Conclusions On the basis of the available evidence, no reliable conclusion may be drawn about any association between the psychosocial factors ascertained using the ERI model and musculoskeletal pain. Before a reliable statement can be made on

  6. ICA-based compensation for IQ imbalance in OFDM optical fiber communication

    NASA Astrophysics Data System (ADS)

    Jiang, Shan; Hu, Guijun; Li, Zhaoxi; Mu, Liping; Zhang, Jingdong

    2014-01-01

    A method based on the independent component analysis (ICA) is proposed to compensate the in-phase and quadrature-phase the (IQ) imbalance in orthogonal frequency division multiplexing (OFDM) optical fiber communication systems. The mathematical model of IQ imbalance system has been analyzed. Then, ICA algorithm is applied in the system to combat the mirror interference introduced by IQ imbalance. This algorithm can realize the joint compensation of both transmitter and receiver IQ imbalance with the optical channel that contains noise, attenuation and chromatic dispersion. The simulation shows that the performance degradation caused by IQ imbalance can be compensated by ICA algorithm effectively.

  7. TISSUE ENGINEERING PERFUSABLE CANCER MODELS

    PubMed Central

    Fong, E.L.; Santoro, M.; Farach-Carson, M.C.; Kasper, F.K.; Mikos, A.G.

    2014-01-01

    The effect of fluid flow on cancer progression is currently not well understood, highlighting the need for perfused tumor models to close this gap in knowledge. Enabling biological processes at the cellular level to be modeled with high spatiotemporal control, microfluidic tumor models have demonstrated applicability as platforms to study cell-cell interactions, effect of interstitial flow on tumor migration and the role of vascular barrier function. To account for the multi-scale nature of cancer growth and invasion, macroscale models are also necessary. The consideration of fluid dynamics within tumor models at both the micro- and macroscopic levels may greatly improve our ability to more fully mimic the tumor microenvironment. PMID:24634812

  8. 46 CFR 42.15-45 - Ventilators.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... any ventilator exceeds 351/2 inches in height it shall be specially supported. (b) Ventilators passing.... Ventilators in position 1 shall have coamings of a height of at least 351/2 inches above the deck; in position 2 the coamings shall be of a height at least 30 inches above the deck. (e) In exposed positions,...

  9. 46 CFR 42.15-45 - Ventilators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... any ventilator exceeds 351/2 inches in height it shall be specially supported. (b) Ventilators passing.... Ventilators in position 1 shall have coamings of a height of at least 351/2 inches above the deck; in position 2 the coamings shall be of a height at least 30 inches above the deck. (e) In exposed positions,...

  10. 46 CFR 42.15-45 - Ventilators.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... any ventilator exceeds 351/2 inches in height it shall be specially supported. (b) Ventilators passing.... Ventilators in position 1 shall have coamings of a height of at least 351/2 inches above the deck; in position 2 the coamings shall be of a height at least 30 inches above the deck. (e) In exposed positions,...

  11. 46 CFR 42.15-45 - Ventilators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... any ventilator exceeds 351/2 inches in height it shall be specially supported. (b) Ventilators passing.... Ventilators in position 1 shall have coamings of a height of at least 351/2 inches above the deck; in position 2 the coamings shall be of a height at least 30 inches above the deck. (e) In exposed positions,...

  12. 46 CFR 42.15-45 - Ventilators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... any ventilator exceeds 351/2 inches in height it shall be specially supported. (b) Ventilators passing.... Ventilators in position 1 shall have coamings of a height of at least 351/2 inches above the deck; in position 2 the coamings shall be of a height at least 30 inches above the deck. (e) In exposed positions,...

  13. 14 CFR 125.117 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Ventilation. 125.117 Section 125.117 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS....117 Ventilation. Each passenger or crew compartment must be suitably ventilated. Carbon...

  14. 14 CFR 29.831 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ventilation. 29.831 Section 29.831 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Ventilation. (a) Each passenger and crew compartment must be ventilated, and each crew compartment must...

  15. 14 CFR 252.9 - Ventilation systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Ventilation systems. 252.9 Section 252.9... REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking whenever the ventilation system is not fully functioning. Fully functioning for this purpose means operating...

  16. 46 CFR 111.15-10 - Ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-10 Ventilation. (a) General. Each room, locker, and box for storage batteries must be arranged or ventilated to prevent... with the battery charger so that the battery cannot be charged without ventilation. (c) Large...

  17. 46 CFR 111.15-10 - Ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-10 Ventilation. (a) General. Each room, locker, and box for storage batteries must be arranged or ventilated to prevent... with the battery charger so that the battery cannot be charged without ventilation. (c) Large...

  18. 46 CFR 111.15-10 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-10 Ventilation. (a) General. Each room, locker, and box for storage batteries must be arranged or ventilated to prevent... with the battery charger so that the battery cannot be charged without ventilation. (c) Large...

  19. 46 CFR 111.15-10 - Ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-10 Ventilation. (a) General. Each room, locker, and box for storage batteries must be arranged or ventilated to prevent... with the battery charger so that the battery cannot be charged without ventilation. (c) Large...

  20. 46 CFR 111.15-10 - Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-10 Ventilation. (a) General. Each room, locker, and box for storage batteries must be arranged or ventilated to prevent... with the battery charger so that the battery cannot be charged without ventilation. (c) Large...

  1. Preventing Ventilation On Sailboard Skegs

    NASA Technical Reports Server (NTRS)

    Caldwell, Richard A.

    1990-01-01

    Design effort undertaken to solve spinout problem plaguing high-performance sailboards. Proposed skeg section designed by use of computer model of pressure field and boundary layer. Prevents ventilation by maintaining attached boundary-layer flow throughout operating environment. Cavitation also avoided by preventing valleys in pressure distribution while skeg operated throughout its range.

  2. Cochlear perfusion with a viscous fluid.

    PubMed

    Wang, Yi; Olson, Elizabeth S

    2016-07-01

    The flow of viscous fluid in the cochlea induces shear forces, which could provide benefit in clinical practice, for example to guide cochlear implant insertion or produce static pressure to the cochlear partition or wall. From a research standpoint, studying the effects of a viscous fluid in the cochlea provides data for better understanding cochlear fluid mechanics. However, cochlear perfusion with a viscous fluid may damage the cochlea. In this work we studied the physiological and anatomical effects of perfusing the cochlea with a viscous fluid. Gerbil cochleae were perfused at a rate of 2.4 μL/min with artificial perilymph (AP) and sodium hyaluronate (Healon, HA) in four different concentrations (0.0625%, 0.125%, 0.25%, 0.5%). The different HA concentrations were applied either sequentially in the same cochlea or individually in different cochleae. The perfusion fluid entered from the round window and was withdrawn from basal scala vestibuli, in order to perfuse the entire perilymphatic space. Compound action potentials (CAP) were measured after each perfusion. After perfusion with increasing concentrations of HA in the order of increasing viscosity, the CAP thresholds generally increased. The threshold elevation after AP and 0.0625% HA perfusion was small or almost zero, and the 0.125% HA was a borderline case, while the higher concentrations significantly elevated CAP thresholds. Histology of the cochleae perfused with the 0.0625% HA showed an intact Reissner's membrane (RM), while in cochleae perfused with 0.125% and 0.25% HA RM was torn. Thus, the CAP threshold elevation was likely due to the broken RM, likely caused by the shear stress produced by the flow of the viscous fluid. Our results and analysis indicate that the cochlea can sustain, without a significant CAP threshold shift, up to a 1.5 Pa shear stress. Beside these finding, in the 0.125% and 0.25% HA perfusion cases, a temporary CAP threshold shift was observed, perhaps due to the presence and

  3. The basis and basics of mechanical ventilation.

    PubMed

    Bone, R C; Eubanks, D H

    1991-06-01

    The development of mechanical ventilators and the procedures for their application began with the simple foot pump developed by Fell O'Dwyer in 1888. Ventilators have progressed through three generations, beginning with intermittent positive pressure breathing units such as the Bird and Bennett device in the 1960s. These were followed by second-generation units--represented by the Bennett MA-2 ventilator--in the 1970s, and the third-generation microprocessor-controlled units of today. During this evolutionary process clinicians recognized Types I and II respiratory failure as being indicators for mechanical ventilatory support. More recently investigators have expanded, clarified, and clinically applied the physiology of the work of breathing (described by Julius Comroe and other pioneers) to muscle fatigue, requiring ventilatory support. A ventilator classification system can help the clinician understand how ventilators function and under what conditions they may fail to operate as desired. Pressure-support ventilation is an example of how industry has responded to a clinical need--that is, to unload the work of breathing. All positive pressure ventilators generate tidal volumes by using power sources such as medical gas cylinders, air compressors, electrically driven turbines, or piston driven motors. Positive end-expiratory pressures, synchronized intermittent mandatory ventilation, pressure support ventilation, pressure release ventilation, and mandatory minute ventilation, are examples of the special functions available on modern ventilators. Modern third-generation ventilators use microprocessors to control operational functions and monitors. Because these units have incorporated the experience learned from earlier ventilators, it is imperative that clinicians understand basic ventilator operation and application in order to most effectively prescribe and assess their use. PMID:2036934

  4. The Imbalance of Water in Nature as System

    NASA Astrophysics Data System (ADS)

    Kontar, V. A.; Imbalance of Water in Nature

    2011-12-01

    Consider some of the water-containing area. Choose some the factors which we consider important to the system. The system contains a system factors, and the external environment these factors doesn't contain. Between the system and the external environment must be some flows into the system, out of the system and along the border. If the flows into and out of the system are not equal, that means within the system exactly something is happening. But the equality of the flows into and out of the system does not mean that within the system nothing happens. It is extremely important to determine the time factor. Everything has a beginning and an end. Each factor has its own life from 0 to 1, as well as their watches. Thus that within the system and the environment at the same time are going a lot of the watches and each watch is going by their own pace. System-wide time is needed to describe the system as a whole and to be able to re-measure the individual time of each factor. It is also very important to identify each factor of the system, environment and border. Definition of each particular factor depends on the level of our knowledge. There are many examples where one factor was divided into several, and vice versa, several factors have combined in one or even disappear as a non-existent. Each factor is determined by specific people for reasons of convenience, the specific of tasks, the possible accuracy of measurement, available resources, etc. The development of the science and applications are going to the direction of the clearer separation of factors and the precision of their measurements. Now is extremely important to more clearly define the boundaries of systems, factors and the allowed accuracy of their measurements. With such a revision, many previously balanced situations become to the imbalance. There are many specific details for each case, but they do not change the basic approach described above. If not clearly resolved the questions listed above so

  5. What is the Imbalance of Water in Nature?

    NASA Astrophysics Data System (ADS)

    Kontar, V. A.

    2011-12-01

    Look at any lake. Water comes into the lake from the atmosphere, from surface and groundwater sources. Water leaves the lake to the atmosphere, surface and underground drains, as well as for consumption by human society, wild plants and animals if they are within the boundaries of the lake's system. If quantity of water coming into the lake is equally of the quantity of water which flow from the lake, so the lake level has not changed and we have a state of equilibration or balance. The bookkeeper's book also has name "balance". But this is just a play on words. If the water is coming into the lake more than the water is coming away from lake, therefore the lake level will increase and we have a state of the imbalance of the increase type. If the water is coming into the lake less than the water is coming away from lake, therefore the lake level will decrease and we have a state of the imbalance of the decrease type. Everyone knows that the lake level rises or falls, for example during the year. Sometimes it is happened some balance. But the state of balance is rare and in of the short duration. The lake is of most the time in the conditions of the imbalance increases or the imbalance decreases type. The balance as a state of equilibrium, in the language of mathematics, is the point of the extremum between the periods of rise and fall. The balance is a special condition, which is existing very rare and a very short period of time. The people sometimes to do the great efforts for maintain the constant level of the lakes. But these facts don't change the situation. On the contrary, the human's struggle for maintain the lake in constant level just shows how difficult and expensive to go against the natural laws of Nature. When water was plentiful, these facts could be ignored. But now when the global water shortage is quickly growing, many previously ignored details are becoming crucial. There are very important to do the correct definitions of the borders and

  6. Minute ventilation at different compression to ventilation ratios, different ventilation rates, and continuous chest compressions with asynchronous ventilation in a newborn manikin

    PubMed Central

    2012-01-01

    Background In newborn resuscitation the recommended rate of chest compressions should be 90 per minute and 30 ventilations should be delivered each minute, aiming at achieving a total of 120 events per minute. However, this recommendation is based on physiological plausibility and consensus rather than scientific evidence. With focus on minute ventilation (Mv), we aimed to compare today’s standard to alternative chest compression to ventilation (C:V) ratios and different ventilation rates, as well as to continuous chest compressions with asynchronous ventilation. Methods Two investigators performed cardiopulmonary resuscitation on a newborn manikin with a T-piece resuscitator and manual chest compressions. The C:V ratios 3:1, 9:3 and 15:2, as well as continuous chest compressions with asynchronous ventilation (120 compressions and 40 ventilations per minute) were performed in a randomised fashion in series of 10 × 2 minutes. In addition, ventilation only was performed at three different rates (40, 60 and 120 ventilations per minute, respectively). A respiratory function monitor measured inspiration time, tidal volume and ventilation rate. Mv was calculated for the different interventions and the Mann–Whitney test was used for comparisons between groups. Results Median Mv per kg in ml (interquartile range) was significantly lower at the C:V ratios of 9:3 (140 (134–144)) and 15:2 (77 (74–83)) as compared to 3:1 (191(183–199)). With ventilation only, there was a correlation between ventilation rate and Mv despite a negative correlation between ventilation rate and tidal volumes. Continuous chest compressions with asynchronous ventilation gave higher Mv as compared to coordinated compressions and ventilations at a C:V ratio of 3:1. Conclusions In this study, higher C:V ratios than 3:1 compromised ventilation dynamics in a newborn manikin. However, higher ventilation rates, as well as continuous chest compressions with asynchronous ventilation gave higher Mv

  7. Cardiac autonomic imbalance in children with allergic rhinitis.

    PubMed

    Tascilar, Emre; Yokusoglu, Mehmet; Dundaroz, Rusen; Baysan, Oben; Ozturk, Sami; Yozgat, Yilmaz; Kilic, Ayhan

    2009-11-01

    The involvement of autonomic imbalance has been reported in the pathogenesis of hypersensitivity reactions. Allergic diseases are more frequent in children and some of predisposing factors may be changed according to the increasing age, but the involvement of autonomic imbalance has not been investigated in pediatric population. In this cross-sectional, case-control study, we evaluated the autonomic system by measuring heart rate variability (HRV) in pediatric patients with allergic rhinitis. Thirty-five pediatric patients with allergic rhinitis and 36 healthy children (mean age 11 +/- 2.7, and 12 +/- 3 years, respectively) were enrolled in the study. Age and gender were not different between the groups. The diagnosis of allergic rhinitis was based on the history, symptoms, and skin prick tests. Participants with acute infection, nasal polyposis, bronchial asthma, and any other medical problems, assessed by history, physical examination and routine laboratory tests, were excluded. Twenty-four hour ambulatory electrocardiographic recordings were obtained, and the time domain and frequency domain indices of HRV were analyzed. We found significant increase in calculated HRV variables in children with allergic rhinitis compared to controls, which reflect parasympathetic tones, such as number of R-R intervals exceeding 50 ms, root mean square of successive differences between normal sinus R-R intervals, the percentage of difference between adjacent normal R-R intervals, and high frequency. These results indicate that HRV is increased, which implies sympathetic withdrawal and parasympathetic predominance. We propose that autonomic imbalance may be involved in the pathophysiology of allergic rhinitis in pediatric patients. PMID:19851046

  8. A tuning fork gyroscope with compensated imbalance signal

    NASA Astrophysics Data System (ADS)

    Arnold, E.; Nuscheler, F.

    2007-05-01

    This paper is presenting a robust gyroscope sensor with an electrical and mechanical self-test option and the ability to suppress the quadrature error. The presented sensor is based on a tuning-fork working principle. The mechanical part is assembled in bulk-technology produced with a wet etching process. The two detection elements are manufactured with a standard CMOS-process and the material of the two thin-film actuators is AlN (aluminium-nitrid). The two actuators can be controlled independently from each other. Two electronic PCB's were developed for actuating and measurement. One is including the analogue signal path; the second PCB is the digital electronics consisting of a FPGA and other peripherals. The tuning fork is actuated in a primary oscillation mode also called drive mode. For keeping the oscillation in resonance, a digital PLL is used in a forced feedback loop. To have a constant energy in the drive mode an Amplitude-Gain-Control (AGC) is implemented. An appearing angular rate causes the corriolis-force which is actuating secondary oscillation, also called detection mode. The amplitude of this oscillation is proportional to the angular rate. The signal has a component resulting from the mechanical imbalance. To separate these two signal parts from each other a synchronous demodulator followed by a digital filter chain has been developed. To achieve the maximum suppression of the imbalance signal a control-loop is used to shift the phases of the two actuation signals. This creates an additional force that compensates the movement as a result of the mechanical imbalance. With the implementation of this control loop the performance of the sensor was increased. An enhanced temperature stability over operation was achieved with the means of this compensation.

  9. Influence of fluid and volume state on PaO2 oscillations in mechanically ventilated pigs.

    PubMed

    Bodenstein, Marc; Bierschock, Stephan; Boehme, Stefan; Wang, Hemei; Vogt, Andreas; Kwiecien, Robert; David, Matthias; Markstaller, Klaus

    2013-03-01

    Varying pulmonary shunt fractions during the respiratory cycle cause oxygen oscillations during mechanical ventilation. In artificially damaged lungs, cyclical recruitment of atelectasis is responsible for varying shunt according to published evidence. We introduce a complimentary hypothesis that cyclically varying shunt in healthy lungs is caused by cyclical redistribution of pulmonary perfusion. Administration of crystalloid or colloid infusions would decrease oxygen oscillations if our hypothesis was right. Therefore, n=14 mechanically ventilated healthy pigs were investigated in 2 groups: crystalloid (fluid) versus no-fluid administration. Additional volume interventions (colloid infusion, blood withdrawal) were carried out in each pig. Intra-aortal PaO2 oscillations were recorded using fluorescence quenching technique. Phase shift of oxygen oscillations during altered inspiratory to expiratory (I:E) ventilation ratio and electrical impedance tomography (EIT) served as control methods to exclude that recruitment of atelectasis is responsible for oxygen oscillations. In hypovolemia relevant oxygen oscillations could be recorded. Fluid and volume state changed PaO2 oscillations according to our hypothesis. Fluid administration led to a mean decline of 105.3 mmHg of the PaO2 oscillations amplitude (P<0.001). The difference of the amplitudes between colloid administration and blood withdrawal was 62.4 mmHg in pigs not having received fluids (P=0.0059). Fluid and volume state also changed the oscillation phase during altered I:E ratio. EIT excluded changes of regional ventilation (i.e., recruitment of atelectasis) to be responsible for these oscillations. In healthy pigs, cyclical redistribution of pulmonary perfusion can explain the size of respiratory-dependent PaO2 oscillations. PMID:23320977

  10. Western Interconnection Energy Imbalance Market Status and Prospects (Presentation)

    SciTech Connect

    Milligan, M.; Kirby, B.; King, J.; Beuning, S.

    2011-10-01

    This presentation describes how a new wholesale electricity market for energy imbalance ancillary services could be implemented and operated. Some conclusions of this presentation are: (1) Method for calculating additional reserve requirements due to wind and solar production; (2) EIM results in substantial reduction in reserves requirements and ramping demand; (3) Reduced participation reduces benefits for all but reduces the benefits to non-participants the most; (4) Full participation leads to maximum benefit across the Western Interconnection, up to 42% of total reserve requirement; and (5) Regional EIM implementations have smaller but substantial benefits.

  11. Luminal distension as a possible consequence of experimental intestinal perfusion

    PubMed Central

    Wingate, David; Hyams, Ashley; Phillips, Sidney

    1974-01-01

    In an experimental jejunal perfusion study, distress in healthy subjects occurred during eight out of 16 perfusions in which intestinal secretion was provoked. Calculation demonstrates the volumetric consequences of inadequate recovery of secretory perfusates, and analysis of the perfusion studies shows that distress was significantly associated with poor recovery of the perfusate. These observations are pertinent to increasing interest in the phenomenon of intestinal fluid secretion. PMID:4435588

  12. [The effect of non-invasive mechanical ventilation in postoperative respiratory failure].

    PubMed

    Ozyılmaz, Ezgi; Kaya, Akın

    2012-01-01

    Postoperative respiratory failure is related with the highest mortality and morbidity among all perioperative complications. The most common underlying mechanism of postoperative respiratory failure is the development of atelectasis. Anaesthesia, medications which cause respiratory depression, high FiO2 use, postoperative pain and disruption of muscle forces due to surgery leads to decrease in functional residual capacity and results in atelectasis formation. Atelectasis causes severe hypoxemia due to ventilation, perfusion mismatch, shunt and increased peripheral vascular resistance. Intrathoracic positive pressure is an effective therapeutic option in both prevention and treatment of atelectasis. Non-invasive mechanical ventilation is related with a lower mortality and morbidity rate due to lack of any potential complication risks of endotracheal intubation. Non-invasive mechanical ventilation can be applied as prophylactic or curative. Both of these techniques are related with lower reintubation rates, nosocomial infections, duration of hospitalization and mortality in patients with postoperative respiratory failure. The differences of this therapy from standard application and potential complications should be well known in order to improve prognosis in these group of patients. The primary aim of this review is to underline the pathogenesis of postoperative respiratory failure. The secondary aim is to clarify the optimum method, effect and complications of non-invasive mechanical ventilation therapy under the light of the studies which was performed in specific patient groups. PMID:22779943

  13. Perfusion education and training in Europe.

    PubMed

    Merkle, Frank

    2006-01-01

    Perfusion education and training varies considerably throughout Europe. Unlike in the US, where a common curriculum for perfusion education has been established, each European country has its own education system. This fact is further complicated by a multitude of national languages and cultures. Thus, perfusion education programmes vary, not only in content, but also in their academic levels. This article aims to give a comprehensive overview of the situation in each of the 20 member states of the European Board of Cardiovascular Perfusion (EBCP). The EBCP delegates were polled for a description of the process of training and education of clinical perfusionists in their respective countries. Following the initial delegate poll in 2001, an update of the material was performed in spring 2005. In summary, training of clinical perfusionists in Europe varies considerably between countries. A professional body is necessary to oversee the training process and to guarantee a minimum level of clinical competency for cardiovascular perfusionists. PMID:16485693

  14. Calculation of the Respiratory Modulation of the Photoplethysmogram (DPOP) Incorporating a Correction for Low Perfusion.

    PubMed

    Addison, Paul S; Wang, Rui; McGonigle, Scott J; Uribe, Alberto A; Bergese, Sergio D

    2014-01-01

    DPOP quantifies respiratory modulations in the photoplethysmogram. It has been proposed as a noninvasive surrogate for pulse pressure variation (PPV) used in the prediction of the response to volume expansion in hypovolemic patients. The correlation between DPOP and PPV may degrade due to low perfusion effects. We implemented an automated DPOP algorithm with an optional correction for low perfusion. These two algorithm variants (DPOPa and DPOPb) were tested on data from 20 mechanically ventilated OR patients split into a benign "stable region" subset and a whole record "global set." Strong correlation was found between DPOP and PPV for both algorithms when applied to the stable data set: R = 0.83/0.85 for DPOPa/DPOPb. However, a marked improvement was found when applying the low perfusion correction to the global data set: R = 0.47/0.73 for DPOPa/DPOPb. Sensitivities, Specificities, and AUCs were 0.86, 0.70, and 0.88 for DPOPa/stable region; 0.89, 0.82, and 0.92 for DPOPb/stable region; 0.81, 0.61, and 0.73 for DPOPa/global region; 0.83, 0.76, and 0.86 for DPOPb/global region. An improvement was found in all results across both data sets when using the DPOPb algorithm. Further, DPOPb showed marked improvements, both in terms of its values, and correlation with PPV, for signals exhibiting low percent modulations. PMID:25177348

  15. Site of pulmonary vasodilation by inhaled nitric oxide in the perfused lung

    SciTech Connect

    Rimar, S.; Gillis, C.N.

    1995-05-01

    Site of pulmonary vasodilation by inhaled nitric oxide in the perfused lung. To determine the site of inhaled nitric oxide (NO)-induced pulmonary vasodilation, a double vascular occlusion technique was used with rabbit lungs ventilated and perfused at 20 ml/min with Krebs solution containing 3% dextran and 30 {mu}M indomethacin. Inhaled NO (120 ppm for 3% min) reduced pulmonary vasoconstriction produced by U-46619 infusion (0.5 -1.2 nmol/min), significantly decreasing total resistance (RT) [1,080 {plus_minus} 51 (SE) vs. 1,545 {plus_minus} 109 mmHg-min/l; P < 0.01]. Acetylcholine infusion (ACh; 2-5 nmol/min) and nitroglycerin (NTG; 0.35 {mu}mol) likewise decreased RT. Arterial resistance (Ra) was also significantly less with inhaled NO, ACh, and NTG compared with U-46619 alone. Venous resistance (Rv), however, was unchanged. When the direction of perfusion was reversed in the lung, inhaled NO, ACh, and NTG significantly decreased RT compared with U-46619 alone, and Rv was also reduced by all three agents. After electrolysis-induced acute lung injury, inhaled NO significantly reduced both RT and Ra compared with U-46619 alone, whereas Rv was unaffected. Our results demonstrate that inhaled NO gas affects primarily the arterial (precapillary) component of the pulmonary circulation but, under conditions of extreme venous constriction, may dilate the postcapillary component as well. 25 refs., 4 figs.

  16. Ex vivo lung perfusion: a comprehensive review of the development and exploration of future trends.

    PubMed

    Roman, Marius A; Nair, Sukumaran; Tsui, Steven; Dunning, John; Parmar, Jasvir S

    2013-09-01

    There is a critical mismatch between the number of donor lungs available and the demand for lungs for transplantation. This has created unacceptably high waiting-list mortality for lung transplant recipients. Currently (2012) in the United Kingdom, there are 216 patients on the lung transplant waiting list and 17 on heart and lung transplant list. The waiting times for suitable lungs average 412 days, with an increasing mortality and morbidity among the patients on the lung transplant list. Ex vivo lung perfusion (EVLP) has emerged as a technique for the assessment, resuscitation, and potential repair of suboptimal donor lungs. This is a rapidly developing field with significant clinical implications. In this review article, we critically appraise the background developments that have led to our current clinical practice. In particular, we focus on the human and animal experience, the different perfusion-ventilation strategies, and the impact of different perfusates and leukocyte filters. Finally, we examine EVLP as a potential research tool. This will provide insight into EVLP and its future development in the field of clinical lung transplantation. PMID:23694953

  17. Lung transplantation from donors after circulatory death using portable ex vivo lung perfusion

    PubMed Central

    Bozso, Sabin; Vasanthan, Vishnu; Luc, Jessica GY; Kinaschuk, Katie; Freed, Darren; Nagendran, Jayan

    2015-01-01

    BACKGROUND: Donation after circulatory death is a novel method of increasing the number of donor lungs available for transplantation. Using organs from donors after circulatory death has the potential to increase the number of transplants performed. METHODS: Three bilateral lung transplants from donors after circulatory death were performed over a six-month period. Following organ retrieval, all sets of lungs were placed on a portable ex vivo lung perfusion device for evaluation and preservation. RESULTS: Lung function remained stable during portable ex vivo perfusion, with improvement in partial pressure of oxygen/fraction of inspired oxygen ratios. Mechanical ventilation was discontinued within 48 h for each recipient and no patient stayed in the intensive care unit longer than eight days. There was no postgraft dysfunction at 72 h in two of the three recipients. Ninety-day mortality for all recipients was 0% and all maintain excellent forced expiratory volume in 1 s and forced vital capacity values post-transplantation. CONCLUSION: The authors report excellent results with their initial experience using donors after circulatory death after portable ex vivo lung perfusion. It is hoped this will allow for the most efficient use of available donor lungs, leading to more transplants and fewer deaths for potential recipients on wait lists. PMID:25379654

  18. Calculation of the Respiratory Modulation of the Photoplethysmogram (DPOP) Incorporating a Correction for Low Perfusion

    PubMed Central

    Addison, Paul S.; Wang, Rui; McGonigle, Scott J.; Bergese, Sergio D.

    2014-01-01

    DPOP quantifies respiratory modulations in the photoplethysmogram. It has been proposed as a noninvasive surrogate for pulse pressure variation (PPV) used in the prediction of the response to volume expansion in hypovolemic patients. The correlation between DPOP and PPV may degrade due to low perfusion effects. We implemented an automated DPOP algorithm with an optional correction for low perfusion. These two algorithm variants (DPOPa and DPOPb) were tested on data from 20 mechanically ventilated OR patients split into a benign “stable region” subset and a whole record “global set.” Strong correlation was found between DPOP and PPV for both algorithms when applied to the stable data set: R = 0.83/0.85 for DPOPa/DPOPb. However, a marked improvement was found when applying the low perfusion correction to the global data set: R = 0.47/0.73 for DPOPa/DPOPb. Sensitivities, Specificities, and AUCs were 0.86, 0.70, and 0.88 for DPOPa/stable region; 0.89, 0.82, and 0.92 for DPOPb/stable region; 0.81, 0.61, and 0.73 for DPOPa/global region; 0.83, 0.76, and 0.86 for DPOPb/global region. An improvement was found in all results across both data sets when using the DPOPb algorithm. Further, DPOPb showed marked improvements, both in terms of its values, and correlation with PPV, for signals exhibiting low percent modulations. PMID:25177348

  19. Cyclooxygenase blockade (COB) attenuates ethanol-induced pulmonary vasoconstriction in perfused rat lungs

    SciTech Connect

    Drummond, W.H.; Lyles, D. )

    1990-02-26

    Ethanol causes pulmonary vasoconstriction and vascular leak by obscure mechanisms. In lambs, COB with indomethacin (Indo) or meclofenamate (Meclo) block ethanol's circulatory effects. To test for these effects in rats, in-situ, ventilated, Krebs-Henselheit perfused (constant flow) lungs were studied in 6 groups: ethanol (ETOH) and perfusate controls; ETOH/Meclo, 0.5 and 1 mg/kg, IV; ETOH/Indo, 0.5 and 1 mg/kg, IV, given 30 minutes before study. They measured mean pulmonary arterial pressure (PAP), peak inspiratory pressure (PIP) and edema, indexed by reservoir weight change (RW), then by tracheal froth ( death'). ETOH doses (0.5, 1.3 and 2.2gm) were infused into the perfusate (60 ml). Data were analyzed by ANOVA and X{sup 2}; n = 9 in each group. PAP differed by treatment, by drug/dose, and by dose/treatment interactions; PIP, RW change, and death' were attenuated. Data show that COB lessens the vascular and edema effects of moderate dose ETOH, which larger ETOH doses override.

  20. Summary of human responses to ventilation

    SciTech Connect

    Seppanen, Olli A.; Fisk, William J.

    2004-06-01

    The effects of ventilation on indoor air quality and health is a complex issue. It is known that ventilation is necessary to remove indoor generated pollutants from indoor air or dilute their concentration to acceptable levels. But, as the limit values of all pollutants are not known, the exact determination of required ventilation rates based on pollutant concentrations and associated risks is seldom possible. The selection of ventilation rates has to be based also on epidemiological research (e.g. Seppanen et al., 1999), laboratory and field experiments (e.g. CEN 1996, Wargocki et al., 2002a) and experience (e.g. ECA 2003). Ventilation may also have harmful effects on indoor air quality and climate if not properly designed, installed, maintained and operated as summarized by Seppdnen (2003). Ventilation may bring indoors harmful substances that deteriorate the indoor environment. Ventilation also affects air and moisture flow through the building envelope and may lead to moisture problems that deteriorate the structures of the building. Ventilation changes the pressure differences over the structures of building and may cause or prevent the infiltration of pollutants from structures or adjacent spaces. Ventilation is also in many cases used to control the thermal environment or humidity in buildings. Ventilation can be implemented with various methods which may also affect health (e.g. Seppdnen and Fisk, 2002, Wargocki et al., 2002a). In non residential buildings and hot climates, ventilation is often integrated with air-conditioning which makes the operation of ventilation system more complex. As ventilation is used for many purposes its health effects are also various and complex. This paper summarizes the current knowledge on positive and negative effects of ventilation on health and other human responses. The focus of the paper is on office-type working environment and residential buildings. In the industrial premises the problems of air quality are usually

  1. Myocardial perfusion imaging with 201Tl.

    PubMed

    Pagnanelli, Robert A; Basso, Danny A

    2010-03-01

    The object of this review is to provide information about (201)Tl-thallous chloride in radionuclide myocardial perfusion imaging. This technique has experienced a recent resurgence because of the shortage of (99m)Tc. After reading this article, the technologist will be able to describe the properties and uptake mechanism of (201)Tl, the procedure for myocardial perfusion imaging with this agent, and the advantages and disadvantages of thallium, compared with the technetium agents. PMID:20159930

  2. Improved exercise myocardial perfusion during lidoflazine therapy

    SciTech Connect

    Shapiro, W.; Narahara, K.A.; Park, J.

    1983-11-01

    Lidoflazine is a synthetic drug with calcium-channel blocking effects. In a study of 6 patients with severe classic angina pectoris, single-blind administration of lidoflazine was associated with improved myocardial perfusion during exercise as determined by thallium-201 stress scintigraphy. These studies demonstrate that lidoflazine therapy is associated with relief of angina, an increased physical work capacity, and improved regional myocardial perfusion during exercise.

  3. Perfusion visualization and analysis for pulmonary embolism

    NASA Astrophysics Data System (ADS)

    Vaz, Michael S.; Kiraly, Atilla P.; Naidich, David P.; Novak, Carol L.

    2005-04-01

    Given the nature of pulmonary embolism (PE), timely and accurate diagnosis is critical. Contrast enhanced high-resolution CT images allow physicians to accurately identify segmental and sub-segmental emboli. However, it is also important to assess the effect of such emboli on the blood flow in the lungs. Expanding upon previous research, we propose a method for 3D visualization of lung perfusion. The proposed method allows users to examine perfusion throughout the entire lung volume at a single glance, with areas of diminished perfusion highlighted so that they are visible independent of the viewing location. This may be particularly valuable for better accuracy in assessing the extent of hemodynamic alterations resulting from pulmonary emboli. The method also facilitates user interaction and may help identify small peripheral sub-segmental emboli otherwise overlooked. 19 patients referred for possible PE were evaluated by CT following the administration of IV contrast media. An experienced thoracic radiologist assessed the 19 datasets with 17 diagnosed as being positive for PE with multiple emboli. Since anomalies in lung perfusion due to PE can alter the distribution of parenchymal densities, we analyzed features collected from histograms of the computed perfusion maps and demonstrate their potential usefulness as a preliminary test to suggest the presence of PE. These histogram features also offer the possibility of distinguishing distinct patterns associated with chronic PE and may even be useful for further characterization of changes in perfusion or overall density resulting from associated conditions such as pneumonia or diffuse lung disease.

  4. Patterns of pulmonary perfusion scans in normal subjects

    SciTech Connect

    Wallace, J.M.; Moser, K.M.; Hartman, M.T.; Ashburn, W.L.

    1981-01-01

    A vital factor conditioning the usage of the pulmonary perfusion (Q) scan in the evaluation of patients suspected of pulmonary embolism is the prevalence of abnormal Q scans in subjects free of cardiopulmonary disease. Because this prevalence has not been well defined, we performed Q scans in 80 nonsmoking subjects 18 to 29 yr of age having no known active cardiopulmonary disease. Each subject underwent a history, physical examination, electrocardiogram, spirometry, and PA chest roentgenogram, followed by a 6-view Q scan. Two subjects in whom a Q defect was suspected underwent a /sup 133/Xe equilibrium-washout ventilation (V) scan. All Q scans were interpreted blindly and independently by 2 experienced readers. Seventy-nine of the 80 Q scans were read as normal. No subject demonstrated a lobar or segmental defect. One of the 80 subjects, who had a mild pectus excavatum, had a left upper lobe subsegmental defect, which was not seen on the V scan. Based on the statistical analysis of these data, no more than 3.68% of normal nonsmoking persons in this age group may have a lobar or segmental Q scan defect and no more than 6.77% may have a subsegmental defect (with 95% confidence). Therefore, our study indicated that Q scan defects, particularly lobar or segmental, are rarely present among normal nonsmokers in this age group.

  5. Hypobaric Hypoxia Imbalances Mitochondrial Dynamics in Rat Brain Hippocampus

    PubMed Central

    Jain, Khushbu; Prasad, Dipti; Singh, Shashi Bala; Kohli, Ekta

    2015-01-01

    Brain is predominantly susceptible to oxidative stress and mitochondrial dysfunction during hypobaric hypoxia, and therefore undergoes neurodegeneration due to energy crisis. Evidences illustrate a high degree of association for mitochondrial fusion/fission imbalance and mitochondrial dysfunction. Mitochondrial fusion/fission is a recently reported dynamic mechanism which frequently occurs among cellular mitochondrial network. Hence, the study investigated the temporal alteration and involvement of abnormal mitochondrial dynamics (fusion/fission) along with disturbed mitochondrial functionality during chronic exposure to hypobaric hypoxia (HH). The Sprague-Dawley rats were exposed to simulated high altitude equivalent to 25000 ft for 3, 7, 14, 21, and 28 days. Mitochondrial morphology, distribution within neurons, enzyme activity of respiratory complexes, Δψm, ADP: ATP, and expression of fission/fusion key proteins were determined. Results demonstrated HH induced alteration in mitochondrial morphology by damaged, small mitochondria observed in neurons with disturbance of mitochondrial functionality and reduced mitochondrial density in neuronal processes manifested by excessive mitochondrial fragmentation (fission) and decreased mitochondrial fusion as compared to unexposed rat brain hippocampus. The study suggested that imbalance in mitochondrial dynamics is one of the noteworthy mechanisms occurring in hippocampal neurons during HH insult. PMID:26236504

  6. Effort-reward imbalance at work and cardiovascular diseases.

    PubMed

    Siegrist, Johannes

    2010-01-01

    Working conditions and employment arrangements make a significant contribution to the burden of cardiovascular disease, in particular in modern societies where mental and emotional demands and threats are becoming widespread. Occupational research has identified health-adverse features of modern work with the help of theoretical models. One such model, effort-reward imbalance, has been developed by this author and his group and has been widely tested in epidemiological and experimental studies. The model claims that stressful experience at work is elicited by a lack of reciprocity between efforts spent at work and rewards received in return, where rewards include money, promotion prospects, job security, and esteem. Results demonstrate elevated risks of coronary heart disease among employees exposed to effort-reward imbalance. Moreover, in ambulatory and experimental investigations, elevated heart rate and blood pressure and altered secretion of stress hormones were observed under these conditions. Although additional scientific evidence is needed, available findings call for practical measures towards improving quality of work, most importantly at the level of single companies and organisations. This conclusion is supported by first results from intervention studies that are guided by this theoretical approach. In view of the burden of cardiovascular disease attributable to unfavourable working conditions, such efforts are well justified and need to be extended in order to promote healthy work. PMID:20934954

  7. TEMPOL increases NAD+ and improves redox imbalance in obese mice

    PubMed Central

    Yamato, Mayumi; Kawano, Kimika; Yamanaka, Yuki; Saiga, Misako; Yamada, Ken-ichi

    2016-01-01

    Continuous energy conversion is controlled by reduction–oxidation (redox) processes. NAD+ and NADH represent an important redox couple in energy metabolism. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL) is a redox-cycling nitroxide that promotes the scavenging of several reactive oxygen species (ROS) and is reduced to hydroxylamine by NADH. TEMPOL is also involved in NAD+ production in the ascorbic acid–glutathione redox cycle. We utilized the chemical properties of TEMPOL to investigate the effects of antioxidants and NAD+/NADH modulators on the metabolic imbalance in obese mice. Increases in the NAD+/NADH ratio by TEMPOL ameliorated the metabolic imbalance when combined with a dietary intervention, changing from a high-fat diet to a normal diet. Plasma levels of the superoxide marker dihydroethidium were higher in mice receiving the dietary intervention compared with a control diet, but were normalized with TEMPOL consumption. These findings provide novel insights into redox regulation in obesity. PMID:26942863

  8. Earth's Radiation Imbalance from a Constellation of 66 Iridium Satellites

    NASA Astrophysics Data System (ADS)

    Chiu, J. C.; Wiscombe, W. J.

    2012-04-01

    The Earth Radiation Imbalance (ERI) at the top of the atmosphere is the primary driving force for climate change. If ERI is not zero, then Earth's temperature, both oceanic and atmospheric, will change gradually over time, tending toward a new steady state. The best estimates of current ERI from climate models range from 0.4 to 0.9 W/m2 (the imbalance being caused mainly by increasing CO2), but current satellite systems do not have the accuracy to measure ERI to even one significant digit. In this paper, we will describe a proposed constellation of 66 Earth radiation budget instruments, to be hosted on Iridium satellites. This system represents a quantum leap over current systems in several ways, in particular in providing ERI to at least one significant digit, thus enabling a crucial test of climate models. Because of its 24/7 coverage, the system will also provide ERI at three-hourly time scales without requiring extrapolations from narrowband geostationary instruments. This would allow studies of ERI's response to fast-evolving phenomena like dust storms and hurricanes. This offers a new, synoptic view of Earth radiation budget that will transform it from a monthly average into a dynamical variable alongside standard meteorological variables like temperature and pressure.

  9. Effects of imbalance and geometric error on precision grinding machines

    SciTech Connect

    Bibler, J.E.

    1997-06-01

    To study balancing in grinding, a simple mechanical system was examined. It was essential to study such a well-defined system, as opposed to a large, complex system such as a machining center. The use of a compact, well-defined system enabled easy quantification of the imbalance force input, its phase angle to any geometric decentering, and good understanding of the machine mode shapes. It is important to understand a simple system such as the one I examined given that imbalance is so intimately coupled to machine dynamics. It is possible to extend the results presented here to industrial machines, although that is not part of this work. In addition to the empirical testing, a simple mechanical system to look at how mode shapes, balance, and geometric error interplay to yield spindle error motion was modelled. The results of this model will be presented along with the results from a more global grinding model. The global model, presented at ASPE in November 1996, allows one to examine the effects of changing global machine parameters like stiffness and damping. This geometrically abstract, one-dimensional model will be presented to demonstrate the usefulness of an abstract approach for first-order understanding but it will not be the main focus of this thesis. 19 refs., 36 figs., 10 tables.

  10. TEMPOL increases NAD(+) and improves redox imbalance in obese mice.

    PubMed

    Yamato, Mayumi; Kawano, Kimika; Yamanaka, Yuki; Saiga, Misako; Yamada, Ken-Ichi

    2016-08-01

    Continuous energy conversion is controlled by reduction-oxidation (redox) processes. NAD(+) and NADH represent an important redox couple in energy metabolism. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL) is a redox-cycling nitroxide that promotes the scavenging of several reactive oxygen species (ROS) and is reduced to hydroxylamine by NADH. TEMPOL is also involved in NAD(+) production in the ascorbic acid-glutathione redox cycle. We utilized the chemical properties of TEMPOL to investigate the effects of antioxidants and NAD(+)/NADH modulators on the metabolic imbalance in obese mice. Increases in the NAD(+)/NADH ratio by TEMPOL ameliorated the metabolic imbalance when combined with a dietary intervention, changing from a high-fat diet to a normal diet. Plasma levels of the superoxide marker dihydroethidium were higher in mice receiving the dietary intervention compared with a control diet, but were normalized with TEMPOL consumption. These findings provide novel insights into redox regulation in obesity. PMID:26942863

  11. Quantification of the effect of energy imbalance on bodyweight

    PubMed Central

    Hall, Kevin D; Sacks, Gary; Chandramohan, Dhruva; Chow, Carson C; Wang, Y Claire; Gortmaker, Steven L; Swinburn, Boyd A

    2013-01-01

    Obesity interventions can result in weight loss, but accurate prediction of the bodyweight time course requires properly accounting for dynamic energy imbalances. In this report, we describe a mathematical modelling approach to adult human metabolism that simulates energy expenditure adaptations during weight loss. We also present a web-based simulator for prediction of weight change dynamics. We show that the bodyweight response to a change of energy intake is slow, with half times of about 1 year. Furthermore, adults with greater adiposity have a larger expected weight loss for the same change of energy intake, and to reach their steady-state weight will take longer than it would for those with less initial body fat. Using a population-averaged model, we calculated the energy-balance dynamics corresponding to the development of the US adult obesity epidemic. A small persistent average daily energy imbalance gap between intake and expenditure of about 30 kJ per day underlies the observed average weight gain. However, energy intake must have risen to keep pace with increased expenditure associated with increased weight. The average increase of energy intake needed to sustain the increased weight (the maintenance energy gap) has amounted to about 0·9 MJ per day and quantifies the public health challenge to reverse the obesity epidemic. PMID:21872751

  12. Hypothermic machine perfusion of the liver and the critical balance between perfusion pressures and endothelial injury.

    PubMed

    't Hart, N A; van der Plaats, A; Leuvenink, H G D; van Goor, H; Wiersema-Buist, J; Verkerke, G J; Rakhorst, G; Ploeg, R J

    2005-01-01

    Hypothermic machine perfusion (HMP) provides better protection against cold ischemic injury than cold storage in marginal donor kidneys. Also, in liver transplantation a switch from static cold storage to HMP could be beneficial as it would allow longer preservation times and the use of marginal donors. A critical question concerning application of HMP in liver preservation is the crucial balance between perfusion pressure and occurrence of endothelial injury. Rat livers were cold-perfused for 24 hours to study perfusion pressures for both hepatic artery and portal vein. Cold storage served as control and was compared to HMP-preserved livers using a mean arterial perfusion pressure of 25 mm Hg and a portal perfusion pressure of 4 mm Hg (25% of normothermic liver circulation) and to HMP at 50 mm Hg and 8 mm Hg perfusion, respectively (50% of normothermic liver circulation). UW solution was enriched with 14.9 micromol/L propidium iodide (PI) to stain for dead cells and with an additional 13.5 micromol/L acridine orange to stain for viable hepatocytes. A low PI-positive cell count was found using HMP at 25% of normal circulation compared to cold storage. The PI count was high for the HMP group perfused at just 50% of normal circulation compared to HMP at 25% and compared to cold storage. In summary, for liver HMP, perfusion at 25% showed complete perfusion with minimal cellular injury. HMP using perfusion pressures of 25 mm Hg for the hepatic artery and 4 mm Hg for the portal vein is feasible without induction of endothelial injury. PMID:15808634

  13. Oxygen toxicity during artificial ventilation

    PubMed Central

    Brewis, R. A. L.

    1969-01-01

    Repeated pulmonary collapse and changes suggestive of a severe alveolar-capillary diffusion defect were observed over a period of 20 days in a patient who was receiving artificial ventilation because of status epilepticus. Profound cyanosis followed attempts to discontinue assisted ventilation. The Bird Mark 8 respirator employed was found to be delivering approximately 90% oxygen on the air-mix setting and pulmonary oxygen toxicity was suspected. Radiological improvement and progressive resolution of the alveolar-capillary block followed gradual reduction of the inspired concentration over nine days. The management and prevention of this complication are discussed. The inspired oxygen concentration should be routinely monitored in patients receiving intermittent positive pressure ventilation, and the concentration should not be higher than that required to maintain adequate oxygenation. The Bird Mark 8 respirator has an inherent tendency to develop high oxygen concentrations on the air-mix setting, and the machine should therefore be driven from a compressed air source unless high concentrations of oxygen are essential. Images PMID:4900444

  14. Development of a Residential Integrated Ventilation Controller

    SciTech Connect

    Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

    2011-12-01

    The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

  15. Assessment of regional lung ventilation by electrical impedance tomography in a patient with unilateral bronchial stenosis and a history of tuberculosis*

    PubMed Central

    Marinho, Liégina Silveira; de Sousa, Nathalia Parente; Barros, Carlos Augusto Barbosa da Silveira; Matias, Marcelo Silveira; Monteiro, Luana Torres; Beraldo, Marcelo do Amaral; Costa, Eduardo Leite Vieira; Amato, Marcelo Britto Passos; Holanda, Marcelo Alcantara

    2013-01-01

    Bronchial stenosis can impair regional lung ventilation by causing abnormal, asymmetric airflow limitation. Electrical impedance tomography (EIT) is an imaging technique that allows the assessment of regional lung ventilation and therefore complements the functional assessment of the lungs. We report the case of a patient with left unilateral bronchial stenosis and a history of tuberculosis, in whom regional lung ventilation was assessed by EIT. The EIT results were compared with those obtained by ventilation/perfusion radionuclide imaging. The patient was using nasal continuous positive airway pressure (CPAP) for the treatment of obstructive sleep apnea syndrome. Therefore, we studied the effects of postural changes and of the use of nasal CPAP. The EIT revealed heterogeneous distribution of regional lung ventilation, the ventilation being higher in the right lung, and this distribution was influenced by postural changes and CPAP use. The EIT assessment of regional lung ventilation produced results similar to those obtained with the radionuclide imaging technique and had the advantage of providing a dynamic evaluation without radiation exposure. PMID:24473768

  16. New Adaptive Method for IQ Imbalance Compensation of Quadrature Modulators in Predistortion Systems

    NASA Astrophysics Data System (ADS)

    Zareian, Hassan; Vakili, Vahid Tabataba

    2009-12-01

    Imperfections in quadrature modulators (QMs), such as inphase and quadrature (IQ) imbalance, can severely impact the performance of power amplifier (PA) linearization systems, in particular in adaptive digital predistorters (PDs). In this paper, we first analyze the effect of IQ imbalance on the performance of a memory orthogonal polynomials predistorter (MOP PD), and then we propose a new adaptive algorithm to estimate and compensate the unknown IQ imbalance in QM. Unlike previous compensation techniques, the proposed method was capable of online IQ imbalance compensation with faster convergence, and no special calibration or training signals were needed. The effectiveness of the proposed IQ imbalance compensator was validated by simulations. The results clearly show the performance of the MOP PD to be enhanced significantly by adding the proposed IQ imbalance compensator.

  17. Particle deposition in ventilation ducts

    SciTech Connect

    Sippola, Mark R.

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 {micro}m were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on

  18. The effect of CO sub 2 on pulmonary artery pressure (P sub pa ) over time in the isolated perfused rabbit lung

    SciTech Connect

    Reynolds, P.; Shayevitz, J. )

    1991-03-11

    The isolated perfused rabbit lung model is used in studies of pulmonary hemodynamics, structure, and function under conditions closely resembling those which occur in living animals. The purpose of this study is to observe changes in P{sub pa} in response to differing concentrations of CO{sub 2} over time. After rapid exsanguination a tracheostomy was performed. Cannulas were secured in the main pulmonary artery and the left atrium. The lungs were perfused with Krebs-Henseleit buffer mixed with blood at a rate of 120 ml/min with recirculation. The temperature of the perfusate was maintained between 35 and 38C. The lungs were then ventilated with 5% CO{sub 2} in air with a tidal volume of 10 ml/kg at 20 breaths/min. CO{sub 2} was altered randomly by ventilating the lungs 2, 5 or 10% CO{sub 2} in air. Metabolic acidosis was corrected with NaHCO{sub 3}. In the first two hour period after lung perfusion was begun, the model was allowed to stabilize at each CO{sub 2} concentration, and pH, pCO{sub 2}, pO{sub 2}, and base excess were determined at each P{sub pa}. All measurements were repeated in the second period beginning two hours after lung perfusion was started. P{sub pa} was plotted against pH for each animal in both early and late phases, and simple regression analysis was performed. The slopes and the y intercepts for the data sets in both groups were compared using one factor ANOVA, and were found to be significantly different, implying a statistical difference between regression lines. In the early phase this model behaves like the in vivo lung, i.e. hypercarbia appears to increase, while hypocarbia decreases, P{sub pa}. During the late phase of lung perfusion the opposite occurs.

  19. Effects of Steroid Hormones on Sex Differences in Cerebral Perfusion

    PubMed Central

    Ghisleni, Carmen; Bollmann, Steffen; Biason-Lauber, Anna; Poil, Simon-Shlomo; Brandeis, Daniel; Martin, Ernst; Michels, Lars; Hersberger, Martin; Suckling, John

    2015-01-01

    Sex differences in the brain appear to play an important role in the prevalence and progression of various neuropsychiatric disorders, but to date little is known about the cerebral mechanisms underlying these differences. One widely reported finding is that women demonstrate higher cerebral perfusion than men, but the underlying cause of this difference in perfusion is not known. This study investigated the putative role of steroid hormones such as oestradiol, testosterone, and dehydroepiandrosterone sulphate (DHEAS) as underlying factors influencing cerebral perfusion. We acquired arterial spin labelling perfusion images of 36 healthy adult subjects (16 men, 20 women). Analyses on average whole brain perfusion levels included a multiple regression analysis to test for the relative impact of each hormone on the global perfusion. Additionally, voxel-based analyses were performed to investigate the sex difference in regional perfusion as well as the correlations between local perfusion and serum oestradiol, testosterone, and DHEAS concentrations. Our results replicated the known sex difference in perfusion, with women showing significantly higher global and regional perfusion. For the global perfusion, DHEAS was the only significant predictor amongst the steroid hormones, showing a strong negative correlation with cerebral perfusion. The voxel-based analyses revealed modest sex-dependent correlations between local perfusion and testosterone, in addition to a strong modulatory effect of DHEAS in cortical, subcortical, and cerebellar regions. We conclude that DHEAS in particular may play an important role as an underlying factor driving the difference in cerebral perfusion between men and women. PMID:26356576

  20. GPU-accelerated voxelwise hepatic perfusion quantification.

    PubMed

    Wang, H; Cao, Y

    2012-09-01

    Voxelwise quantification of hepatic perfusion parameters from dynamic contrast enhanced (DCE) imaging greatly contributes to assessment of liver function in response to radiation therapy. However, the efficiency of the estimation of hepatic perfusion parameters voxel-by-voxel in the whole liver using a dual-input single-compartment model requires substantial improvement for routine clinical applications. In this paper, we utilize the parallel computation power of a graphics processing unit (GPU) to accelerate the computation, while maintaining the same accuracy as the conventional method. Using compute unified device architecture-GPU, the hepatic perfusion computations over multiple voxels are run across the GPU blocks concurrently but independently. At each voxel, nonlinear least-squares fitting the time series of the liver DCE data to the compartmental model is distributed to multiple threads in a block, and the computations of different time points are performed simultaneously and synchronically. An efficient fast Fourier transform in a block is also developed for the convolution computation in the model. The GPU computations of the voxel-by-voxel hepatic perfusion images are compared with ones by the CPU using the simulated DCE data and the experimental DCE MR images from patients. The computation speed is improved by 30 times using a NVIDIA Tesla C2050 GPU compared to a 2.67 GHz Intel Xeon CPU processor. To obtain liver perfusion maps with 626 400 voxels in a patient's liver, it takes 0.9 min with the GPU-accelerated voxelwise computation, compared to 110 min with the CPU, while both methods result in perfusion parameters differences less than 10(-6). The method will be useful for generating liver perfusion images in clinical settings. PMID:22892645

  1. FATTY ACID CHAIN-ELONGATION IN PERFUSED RAT HEART: SYNTHESIS OF STEAROYLCARNITINE FROM PERFUSED PALMITATE

    PubMed Central

    Kerner, Janos; Minkler, Paul E.; Lesnefsky, Edward J.; Hoppel, Charles L.

    2009-01-01

    Rat hearts perfused for up to 60 min in the working mode with palmitate, but not with glucose, resulted in substantial formation of palmitoylcarnitine and stearoylcarnitine. To test whether lipolysis of endogenous lipids was responsible for the increased stearoylcarnitine content or whether some of the perfused palmitate underwent chain elongation, hearts were perfused with hexadecanoic-16,16,16-d3 acid (M+3). The pentafluorophenacyl ester of deuterium labeled stearoylcarnitine had an M+3 (639.4 m/z) compared to the unlabeled M+0 (636.3 m/z) consistent with a direct chain elongation of the perfused palmitate. Furthermore, the near equal isotope enrichment of palmitoyl- (90.2 ± 5.8 %) and stearoylcarnitine (78.0 ± 7.1 %) suggest that both palmitoyl- and stearoyl-CoA have ready access to mitochondrial carnitine palmitoyltransferase and that most of the stearoylcarnitine is derived from the perfused palmitate. PMID:17761175

  2. Obtained Diversity Gain in OFDM Systems under the Influence of IQ Imbalance

    NASA Astrophysics Data System (ADS)

    Jin, Younghwan; Kwon, Jihyeon; Lee, Yuro; Lee, Dongchan; Ahn, Jaemin

    In this paper, we analyze the effects of IQ (In-phase/Quadrature-phase) imbalance at both transmitter and receiver of OFDM (Orthogonal Frequency Division Multiplexing) system and show that more diversity gain can be achieved even though there are unwanted IQ imbalance. When mixed sub-carriers within an OFDM symbol due to the IQ imbalance undergo frequency selective channels, additional diversity effects are expected during the demodulation process. Simulation results on the symbol error rate (SER) performance with ML (Maximum Likelihood) and OSIC (Ordered Successive Interference Cancellation) receiver show that significant performance gain can be achieved with the diversity gain caused by the IQ imbalance combined with the frequency selective channels.

  3. Efficient Compensation of Transmitter and Receiver IQ Imbalance in OFDM Systems

    NASA Astrophysics Data System (ADS)

    Tandur, Deepaknath; Moonen Eurasip Member, Marc

    2010-12-01

    Radio frequency impairments such as in-phase/quadrature-phase (IQ) imbalances can result in a severe performance degradation in direct-conversion architecture-based communication systems. In this paper, we consider the case of transmitter and receiver IQ imbalance together with frequency selective channel distortion. The proposed training-based schemes can decouple the compensation of transmitter and receiver IQ imbalance from the compensation of channel distortion in an orthogonal frequency division multiplexing (OFDM) systems. The presence of frequency selective channel fading is a requirement for the estimation of IQ imbalance parameters when both transmitter/receiver IQ imbalance are present. However, the proposed schemes are equally applicable over a frequency flat/frequency selective channel when either transmitter or only receiver IQ imbalance is present. Once the transmitter and receiver IQ imbalance parameters are estimated, a standard channel equalizer can be applied to estimate/compensate for the channel distortion. The proposed schemes result in an overall lower training overhead and a lower computational requirement, compared to the joint compensation of transmitter/receiver IQ imbalance and channel distortion. Simulation results demonstrate that the proposed schemes provide a very efficient compensation with performance close to the ideal case without any IQ imbalance.

  4. In Vivo MR Imaging of Pulmonary Perfusion and Gas Exchange in Rats via Continuous Extracorporeal Infusion of Hyperpolarized 129Xe

    PubMed Central

    Cleveland, Zackary I.; Möller, Harald E.; Hedlund, Laurence W.; Nouls, John C.; Freeman, Matthew S.; Qi, Yi; Driehuys, Bastiaan

    2012-01-01

    Background Hyperpolarized (HP) 129Xe magnetic resonance imaging (MRI) permits high resolution, regional visualization of pulmonary ventilation. Additionally, its reasonably high solubility (>10%) and large chemical shift range (>200 ppm) in tissues allow HP 129Xe to serve as a regional probe of pulmonary perfusion and gas transport, when introduced directly into the vasculature. In earlier work, vascular delivery was accomplished in rats by first dissolving HP 129Xe in a biologically compatible carrier solution, injecting the solution into the vasculature, and then detecting HP 129Xe as it emerged into the alveolar airspaces. Although easily implemented, this approach was constrained by the tolerable injection volume and the duration of the HP 129Xe signal. Methods and Principal Findings Here, we overcome the volume and temporal constraints imposed by injection, by using hydrophobic, microporous, gas-exchange membranes to directly and continuously infuse 129Xe into the arterial blood of live rats with an extracorporeal (EC) circuit. The resulting gas-phase 129Xe signal is sufficient to generate diffusive gas exchange- and pulmonary perfusion-dependent, 3D MR images with a nominal resolution of 2×2×2 mm3. We also show that the 129Xe signal dynamics during EC infusion are well described by an analytical model that incorporates both mass transport into the blood and longitudinal relaxation. Conclusions Extracorporeal infusion of HP 129Xe enables rapid, 3D MR imaging of rat lungs and, when combined with ventilation imaging, will permit spatially resolved studies of the ventilation-perfusion ratio in small animals. Moreover, EC infusion should allow 129Xe to be delivered elsewhere in the body and make possible functional and molecular imaging approaches that are currently not feasible using inhaled HP 129Xe. PMID:22363613

  5. Intraoperative ventilation strategies to prevent postoperative pulmonary complications: Systematic review, meta-analysis, and trial sequential analysis.

    PubMed

    Serpa Neto, Ary; Schultz, Marcus J; Gama de Abreu, Marcelo

    2015-09-01

    For many years, mechanical ventilation with high tidal volumes (V(T)) was common practice in operating theaters because this strategy recruits collapsed lung tissue, improves ventilation-perfusion mismatch, and thus decreases the need for high oxygen fractions. Positive end-expiratory pressure (PEEP) was seldom used because it could cause cardiac compromise. Increasing advances in the understanding of the mechanisms of ventilator-induced lung injury from animal studies and randomized controlled trials in patients with uninjured lungs in intensive care unit and operation room have pushed anesthesiologists to consider lung-protective strategies during intraoperative ventilation. These strategies at least include the use of low V(T), and perhaps also the use of PEEP, which when compared to high V(T) with low PEEP may prevent the occurrence of postoperative pulmonary complications (PPCs). Such protective effects, however, are likely ascribed to low V(T) rather than to PEEP. In fact, at least in nonobese patients undergoing open abdominal surgery, high PEEP does not protect against PPCs, and it can impair the hemodynamics. Further studies shall determine whether a strategy consisting of low V(T) combined with PEEP and recruitment maneuvers reduces PPCs in obese patients and other types of surgery (e.g., laparoscopic and thoracic), compared to low V(T) with low PEEP. Furthermore, the role of driving pressure for titrating ventilation settings in patients with uninjured lungs shall be investigated. PMID:26643098

  6. 30 CFR 57.8532 - Opening and closing ventilation doors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Opening and closing ventilation doors. 57.8532... Ventilation Underground Only § 57.8532 Opening and closing ventilation doors. When ventilation control doors...-establish normal ventilation to working places....

  7. 46 CFR 153.312 - Ventilation system standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ventilation system standards. 153.312 Section 153.312... Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation system must meet the following: (a) A ventilation system exhaust duct must discharge no less than 10...

  8. Echocardiography in a Patient on Mechanical Ventilation.

    PubMed

    Sachdeva, Ankush

    2015-07-01

    Cardiopulmonary interactions or effects of spontaneous and mechanical ventilation (MV) were first documented in the year 1733. Stephen Hales showed that the blood pressure of healthy individual fell during spontaneous inspiration and he later went on to discover the ventilator. A year later Kussmaul described pulsus paradoxus (inspiratory absence of radial pulse) in patients with tubercular pericarditis. Echocardiography can help to diagnose a wide variety of cardiovascular diseases and can guide therapeutic decisions in patients on mechanical ventilation. PMID:26731826

  9. Evaluating imbalances of adverse events during biosimilar development.

    PubMed

    Vana, Alicia M; Freyman, Amy W; Reich, Steven D; Yin, Donghua; Li, Ruifeng; Anderson, Scott; Jacobs, Ira A; Zacharchuk, Charles M; Ewesuedo, Reginald

    2016-07-01

    Biosimilars are designed to be highly similar to approved or licensed (reference) biologics and are evaluated based on the totality of evidence from extensive analytical, nonclinical and clinical studies. As part of the stepwise approach recommended by regulatory agencies, the first step in the clinical evaluation of biosimilarity is to conduct a pharmacokinetics similarity study in which the potential biosimilar is compared with the reference product. In the context of biosimilar development, a pharmacokinetics similarity study is not necessarily designed for a comparative assessment of safety. Development of PF-05280014, a potential biosimilar to trastuzumab, illustrates how a numerical imbalance in an adverse event in a small pharmacokinetics study can raise questions on safety that may require additional clinical trials. PMID:27050730

  10. Redox Imbalance in T Cell-Mediated Skin Diseases

    PubMed Central

    Pastore, Saveria; Korkina, Liudmila

    2010-01-01

    The skin is permanently exposed to physical, chemical, and biological aggression by the environment. In addition, acute and chronic inflammatory events taking place in the skin are accompanied by abnormal release of pro-oxidative mediators. In this paper, we will briefly overview the homeostatic systems active in the skin to maintain the redox balance and also to counteract abnormal oxidative stress. We will concentrate on the evidence that a local and/or systemic redox dysregulation accompanies the chronic inflammatory disorder events associated to psoriasis, contact dermatitis, and atopic dermatitis. We will also discuss the fact that several well-established treatments for the therapy of chronic inflammatory skin disorders are based on the application of strong physical or chemical oxidants onto the skin, indicating that, in selected conditions, a further increase of the oxidative imbalance may lead to a beneficial outcome. PMID:20847812

  11. Microbial imbalance and intestinal pathologies: connections and contributions

    PubMed Central

    Yang, Ye; Jobin, Christian

    2014-01-01

    Microbiome analysis has identified a state of microbial imbalance (dysbiosis) in patients with chronic intestinal inflammation and colorectal cancer. The bacterial phylum Proteobacteria is often overrepresented in these individuals, with Escherichia coli being the most prevalent species. It is clear that a complex interplay between the host, bacteria and bacterial genes is implicated in the development of these intestinal diseases. Understanding the basic elements of these interactions could have important implications for disease detection and management. Recent studies have revealed that E. coli utilizes a complex arsenal of virulence factors to colonize and persist in the intestine. Some of these virulence factors, such as the genotoxin colibactin, were found to promote colorectal cancer in experimental models. In this Review, we summarize key features of the dysbiotic states associated with chronic intestinal inflammation and colorectal cancer, and discuss how the dysregulated interplay between host and bacteria could favor the emergence of E. coli with pathological traits implicated in these pathologies. PMID:25256712

  12. Redox Imbalance and Viral Infections in Neurodegenerative Diseases.

    PubMed

    Limongi, Dolores; Baldelli, Sara

    2016-01-01

    Reactive oxygen species (ROS) are essential molecules for many physiological functions and act as second messengers in a large variety of tissues. An imbalance in the production and elimination of ROS is associated with human diseases including neurodegenerative disorders. In the last years the notion that neurodegenerative diseases are accompanied by chronic viral infections, which may result in an increase of neurodegenerative diseases progression, emerged. It is known in literature that enhanced viral infection risk, observed during neurodegeneration, is partly due to the increase of ROS accumulation in brain cells. However, the molecular mechanisms of viral infection, occurring during the progression of neurodegeneration, remain unclear. In this review, we discuss the recent knowledge regarding the role of influenza, herpes simplex virus type-1, and retroviruses infection in ROS/RNS-mediated Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). PMID:27110325

  13. Evaluating imbalances of adverse events during biosimilar development

    PubMed Central

    Vana, Alicia M.; Freyman, Amy W.; Reich, Steven D.; Yin, Donghua; Li, Ruifeng; Anderson, Scott; Jacobs, Ira A.; Zacharchuk, Charles M.; Ewesuedo, Reginald

    2016-01-01

    ABSTRACT Biosimilars are designed to be highly similar to approved or licensed (reference) biologics and are evaluated based on the totality of evidence from extensive analytical, nonclinical and clinical studies. As part of the stepwise approach recommended by regulatory agencies, the first step in the clinical evaluation of biosimilarity is to conduct a pharmacokinetics similarity study in which the potential biosimilar is compared with the reference product. In the context of biosimilar development, a pharmacokinetics similarity study is not necessarily designed for a comparative assessment of safety. Development of PF-05280014, a potential biosimilar to trastuzumab, illustrates how a numerical imbalance in an adverse event in a small pharmacokinetics study can raise questions on safety that may require additional clinical trials. PMID:27050730

  14. Is copper imbalance an environmental factor influencing keratoconus development?

    PubMed

    Dudakova, L; Liskova, P; Jirsova, K

    2015-05-01

    Keratoconus is a bilateral disease characterized by progressive corneal thinning leading to irregular astigmatism that results in significant visual impairment. Despite extensive research, the exact etiopathogenesis of keratoconus remains unknown. Many copper-dependent enzymes such as superoxide dismutases, cytochrome c oxidase and lysyl oxidase have been shown to be altered in keratoconic corneas, and a decrease of copper levels in the diseased tissue has been reported as well. We propose a hypothesis linking all the putative pathways of keratoconus development and suggest that copper imbalance in corneal tissue may be an independent risk factor for the disease. The assessment of copper levels and its distribution in keratoconic corneas warrants further investigation. PMID:25758858

  15. Redox Imbalance and Viral Infections in Neurodegenerative Diseases

    PubMed Central

    Limongi, Dolores

    2016-01-01

    Reactive oxygen species (ROS) are essential molecules for many physiological functions and act as second messengers in a large variety of tissues. An imbalance in the production and elimination of ROS is associated with human diseases including neurodegenerative disorders. In the last years the notion that neurodegenerative diseases are accompanied by chronic viral infections, which may result in an increase of neurodegenerative diseases progression, emerged. It is known in literature that enhanced viral infection risk, observed during neurodegeneration, is partly due to the increase of ROS accumulation in brain cells. However, the molecular mechanisms of viral infection, occurring during the progression of neurodegeneration, remain unclear. In this review, we discuss the recent knowledge regarding the role of influenza, herpes simplex virus type-1, and retroviruses infection in ROS/RNS-mediated Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). PMID:27110325

  16. Colombian late cretaceous tropical planktonic foraminifera: Redressing the imbalance

    SciTech Connect

    McCarthy, L.D.

    1993-02-01

    Recent work involving Late Cretaceous planktonic foraminifera has concentrated on European and other areas in the Northern Hemisphere. Many of the biostratigraphical and evolutionary models reflect this geographical restriction and ignore earlier studies from tropical areas. In 1955 Rolando Gandolfi described many new species and subspecies from Colombia and provided a different view of the evolutionary development of planktonic foraminifera. A re-examination of the Gandolfi type collection using Scanning Electron Micrography (Environmental Chamber technique) integrated with Colombian well samples from onshore Guajira area, Middle and Upper Magdalena Valley and Putumayo Basin has given a new view into the evolutionary development of Late Cretaceous planktonic foraminifera. This has enabled a modified globigerine Late Cretaceous biostratigraphy to be constructed for Colombia. This work redresses the imbalance between studies of tropical and northern high latitude Late Cretaceous planktonic foraminifera and provides an insight into the paleoenvironmental and paleoclimatological factors influencing the Colombian region at the time.

  17. Optimal weight based on energy imbalance and utility maximization

    NASA Astrophysics Data System (ADS)

    Sun, Ruoyan

    2016-01-01

    This paper investigates the optimal weight for both male and female using energy imbalance and utility maximization. Based on the difference of energy intake and expenditure, we develop a state equation that reveals the weight gain from this energy gap. We ​construct an objective function considering food consumption, eating habits and survival rate to measure utility. Through applying mathematical tools from optimal control methods and qualitative theory of differential equations, we obtain some results. For both male and female, the optimal weight is larger than the physiologically optimal weight calculated by the Body Mass Index (BMI). We also study the corresponding trajectories to steady state weight respectively. Depending on the value of a few parameters, the steady state can either be a saddle point with a monotonic trajectory or a focus with dampened oscillations.

  18. Radionuclide cerebral perfusion imaging: Normal pattern

    SciTech Connect

    Goldsmith, S.J.; Stritzke, P.; Losonczy, M.; Vallabhajosula, S.; Holan, V.; DaCosta, M.; Muzinic, M.

    1991-12-31

    Regional cerebral perfusion imaging using a new class of {sup 99m}Tc and {sup 123}I labeled compounds which traverse the blood brain barrier and SPECT imaging technology provides an opportunity to assess this physiologic phenomenon during normal cerebral function and as a manifestation of disease in the central nervous system disease. These applications pose a challenge to the nuclear medicine physician for several reasons: (a) the complex and somewhat unfamiliar functional anatomy, (b) the marked regional differences in regional cerebral perfusion at rest, (c) the lack of understanding of the effect of variations in ambient conditions on regional cerebral perfusion. The difficulties in interpretation are augmented by the display itself. There is frequently no difficulty in differentiating between gray and white matter. However, the frequently used {open_quotes}hot body{close_quotes} color maps, introduce a good deal of contrast, producing displays with apparent interruption in regional cortical perfusion whereas black and white displays provide minimal contrast in the regional cortical activity. The authors sought to define how much variation in regional cerebral perfusion is {open_quotes}allowed{close_quotes} under controlled conditions, to establish a basis to interpret if changes in the environment, psychological interventions, or disease states are accompanied by a measurable change. 2 figs., 1 tab.

  19. Perfusion harmonic imaging of the human brain

    NASA Astrophysics Data System (ADS)

    Metzler, Volker H.; Seidel, Guenter; Wiesmann, Martin; Meyer, Karsten; Aach, Til

    2003-05-01

    The fast visualisation of cerebral microcirculation supports diagnosis of acute cerebrovascular diseases. However, the commonly used CT/MRI-based methods are time consuming and, moreover, costly. Therefore we propose an alternative approach to brain perfusion imaging by means of ultrasonography. In spite of the low signal/noise-ratio of transcranial ultrasound and the high impedance of the skull, flow images of cerebral blood flow can be derived by capturing the kinetics of appropriate contrast agents by harmonic ultrasound image sequences. In this paper we propose three different methods for human brain perfusion imaging, each of which yielding flow images indicating the status of the patient's cerebral microcirculation by visualising local flow parameters. Bolus harmonic imaging (BHI) displays the flow kinetics of bolus injections, while replenishment (RHI) and diminution harmonic imaging (DHI) compute flow characteristics from contrast agent continuous infusions. RHI measures the contrast agents kinetics in the influx phase and DHI displays the diminution kinetics of the contrast agent acquired from the decay phase. In clinical studies, BHI- and RHI-parameter images were found to represent comprehensive and reproducible distributions of physiological cerebral blood flow. For DHI it is shown, that bubble destruction and hence perfusion phenomena principally can be displayed. Generally, perfusion harmonic imaging enables reliable and fast bedside imaging of human brain perfusion. Due to its cost efficiency it complements cerebrovascular diagnostics by established CT/MRI-based methods.

  20. Propensity to Obesity Impacts the Neuronal Response to Energy Imbalance

    PubMed Central

    Cornier, Marc-Andre; McFadden, Kristina L.; Thomas, Elizabeth A.; Bechtell, Jamie L.; Bessesen, Daniel H.; Tregellas, Jason R.

    2015-01-01

    The mechanisms responsible for the propensity to gain weight or remain normal weight are poorly understood. The objective of this study was to study the neuronal response to visual food cues during short-term energy imbalance in healthy adults recruited as obesity-resistant (OR) or obesity-prone (OP) based on self-identification, body mass index, and personal/family weight history. Twenty-five OR and 28 OP subjects were studied in underfed (UF) and overfed (OF) as compared to eucaloric (EU) conditions in a randomized crossover design. Each study phase included a 3-day run-in diet, 1 day of controlled feeding (basal energy needs for EU, 40% above/below basal energy needs for OF/UF), and a test day. On the test day, fMRI was performed in the acute fed stated (30 min after a test meal) while subjects viewed images of foods of high hedonic value and neutral non-food objects. Measures of appetite and hormones were also performed before and every 30 min after the test meal. UF was associated with significantly increased activation of insula, somatosensory cortex, inferior and medial prefrontal cortex (PFC), parahippocampus, precuneus, cingulate, and visual cortex in OR. However, UF had no impact in OP. As a result, UF was associated with significantly greater activation, specifically in the insula, inferior PFC, and somatosensory cortex in OR as compared to OP. While OF was overall associated with reduced activation of inferior visual cortex, no group interaction was observed with OF. In summary, these findings suggest that individuals resistant to weight gain and obesity are more sensitive to short-term energy imbalance, particularly with UF, than those prone to weight gain. The inability to sense or adapt to changes in energy balance may represent an important mechanism contributing to excess energy intake and risk for obesity. PMID:25767441

  1. Propensity to obesity impacts the neuronal response to energy imbalance.

    PubMed

    Cornier, Marc-Andre; McFadden, Kristina L; Thomas, Elizabeth A; Bechtell, Jamie L; Bessesen, Daniel H; Tregellas, Jason R

    2015-01-01

    The mechanisms responsible for the propensity to gain weight or remain normal weight are poorly understood. The objective of this study was to study the neuronal response to visual food cues during short-term energy imbalance in healthy adults recruited as obesity-resistant (OR) or obesity-prone (OP) based on self-identification, body mass index, and personal/family weight history. Twenty-five OR and 28 OP subjects were studied in underfed (UF) and overfed (OF) as compared to eucaloric (EU) conditions in a randomized crossover design. Each study phase included a 3-day run-in diet, 1 day of controlled feeding (basal energy needs for EU, 40% above/below basal energy needs for OF/UF), and a test day. On the test day, fMRI was performed in the acute fed stated (30 min after a test meal) while subjects viewed images of foods of high hedonic value and neutral non-food objects. Measures of appetite and hormones were also performed before and every 30 min after the test meal. UF was associated with significantly increased activation of insula, somatosensory cortex, inferior and medial prefrontal cortex (PFC), parahippocampus, precuneus, cingulate, and visual cortex in OR. However, UF had no impact in OP. As a result, UF was associated with significantly greater activation, specifically in the insula, inferior PFC, and somatosensory cortex in OR as compared to OP. While OF was overall associated with reduced activation of inferior visual cortex, no group interaction was observed with OF. In summary, these findings suggest that individuals resistant to weight gain and obesity are more sensitive to short-term energy imbalance, particularly with UF, than those prone to weight gain. The inability to sense or adapt to changes in energy balance may represent an important mechanism contributing to excess energy intake and risk for obesity. PMID:25767441

  2. Sleep and Mechanical Ventilation in Critical Care.

    PubMed

    Blissitt, Patricia A

    2016-06-01

    Sleep disturbances in critically ill mechanically ventilated patients are common. Although many factors may potentially contribute to sleep loss in critical care, issues around mechanical ventilation are among the more complex. Sleep deprivation has systemic effects that may prolong the need for mechanical ventilation and length of stay in critical care and result in worse outcomes. This article provides a brief review of the physiology of sleep, physiologic changes in breathing associated with sleep, and the impact of mechanical ventilation on sleep. A summary of the issues regarding research studies to date is also included. Recommendations for the critical care nurse are provided. PMID:27215357

  3. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Power ventilation systems except machinery space ventilation systems. 111.103-1 Section 111.103-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except...

  4. [Home mechanical ventilation-tracheostomy ventilation, for the long-term and variation].

    PubMed

    Yamamoto, Makoto

    2006-12-01

    We experienced long-term ventilation for 30 patients mostly with amyotrophic lateral sclerosis (ALS). For long-term ventilation by tracheostomy positive pressure ventilation (TPPV), we must set tidal volume (TV) over 600 ml, because setting 400 ml as TV usually applied in Japan, often develops atelectasis which causes frequent or serious pneumonia. To avoid both the elevation of airway pressure and hyper ventilation, the following intervals are needed: 10 times/min for breathing frequency and 2 seconds for exhaling time. In the cases with ventilator induced lung injury (VILI), it is necessary to lower the TV and to treat with steroid pulse therapy. In the transitional stage from non-invasive positive pressure ventilation (NPPV) to TPPV, we conduct tracheostomy for suction of the sputum. In that stage, by using a cuffless tracheal canule, we can continue NPPV. As another method in that stage, we recommend biphasic management by NPPV at daytime and TPPV at nighttime with a bi-level ventilator. This method can provide certain ventilation also during sleep. When the respiratory failure proceeds further, we manage the ventilation with a bi-level ventilator on TPPV, because a bi-level ventilator is also good adapting to assist spontaneous breathing in that stage. And if the patient does not have bulbar paralysis, the patient can utter by air leakage with using bi-level ventilator and flattening the cuff of the tracheal canule. PMID:17469348

  5. Cardiac tissue engineering using perfusion bioreactor systems

    PubMed Central

    Radisic, Milica; Marsano, Anna; Maidhof, Robert; Wang, Yadong; Vunjak-Novakovic, Gordana

    2009-01-01

    This protocol describes tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cell populations on porous scaffolds (in some cases with an array of channels) and bioreactors with perfusion of culture medium (in some cases supplemented with an oxygen carrier). The overall approach is ‘biomimetic’ in nature as it tends to provide in vivo-like oxygen supply to cultured cells and thereby overcome inherent limitations of diffusional transport in conventional culture systems. In order to mimic the capillary network, cells are cultured on channeled elastomer scaffolds that are perfused with culture medium that can contain oxygen carriers. The overall protocol takes 2–4 weeks, including assembly of the perfusion systems, preparation of scaffolds, cell seeding and cultivation, and on-line and end-point assessment methods. This model is well suited for a wide range of cardiac tissue engineering applications, including the use of human stem cells, and high-fidelity models for biological research. PMID:18388955

  6. Perfusion in Britain: the early days.

    PubMed

    Braimbridge, Mark V

    2004-07-01

    Experimental perfusion was largely the province of Germany in the nineteenth century but in the mid-twentieth century the focus of perfusion switched to the USA with the explosive clinical advances of Lillehei, Kirklin and Cooley. British clinical perfusion started with Melrose in 1953 at the Postgraduate Medical School in London but, as in other centres at that time, stopped due to the high mortality. The arrival of hands-on experience of American expertise via returning research fellows and other visitors to the USA enabled the first successful on-going series to begin at the Hammersmith Hospital with Cleland in 1957 and then to spread around the country. The various problems of those early 1950s days are described in the units starting then. PMID:15376765

  7. Myocardial perfusion scintigraphy: the evidence.

    PubMed

    Underwood, S R; Anagnostopoulos, C; Cerqueira, M; Ell, P J; Flint, E J; Harbinson, M; Kelion, A D; Al-Mohammad, A; Prvulovich, E M; Shaw, L J; Tweddel, A C

    2004-02-01

    This review summarises the evidence for the role of myocardial perfusion scintigraphy (MPS) in patients with known or suspected coronary artery disease. It is the product of a consensus conference organised by the British Cardiac Society, the British Nuclear Cardiology Society and the British Nuclear Medicine Society and is endorsed by the Royal College of Physicians of London and the Royal College of Radiologists. It was used to inform the UK National Institute of Clinical Excellence in their appraisal of MPS in patients with chest pain and myocardial infarction. MPS is a well-established, non-invasive imaging technique with a large body of evidence to support its effectiveness in the diagnosis and management of angina and myocardial infarction. It is more accurate than the exercise ECG in detecting myocardial ischaemia and it is the single most powerful technique for predicting future coronary events. The high diagnostic accuracy of MPS allows reliable risk stratification and guides the selection of patients for further interventions, such as revascularisation. This in turn allows more appropriate utilisation of resources, with the potential for both improved clinical outcomes and greater cost-effectiveness. Evidence from modelling and observational studies supports the enhanced cost-effectiveness associated with MPS use. In patients presenting with stable or acute chest pain, strategies of investigation involving MPS are more cost-effective than those not using the technique. MPS also has particular advantages over alternative techniques in the management of a number of patient subgroups, including women, the elderly and those with diabetes, and its use will have a favourable impact on cost-effectiveness in these groups. MPS is already an integral part of many clinical guidelines for the investigation and management of angina and myocardial infarction. However, the technique is underutilised in the UK, as judged by the inappropriately long waiting times and by

  8. Cage RACK ventilation options for laboratory animal facilities.

    PubMed

    Stakutis, Richard E

    2003-09-01

    Individually ventilated cage systems have become the method of choice for housing rodents. The author describes the various options for cage ventilation, from using supply and exhaust fans to directly connecting the racks to the building ventilation system. PMID:12966448

  9. A comparison between the effort-reward imbalance and demand control models

    PubMed Central

    Ostry, Aleck S; Kelly, Shona; Demers, Paul A; Mustard, Cameron; Hertzman, Clyde

    2003-01-01

    Background To compare the predictive validity of the demand/control and reward/imbalance models, alone and in combination with each other, for self-reported health status and the self-reported presence of any chronic disease condition. Methods Self-reports for psychosocial work conditions were obtained in a sample of sawmill workers using the demand/control and effort/reward imbalance models. The relative predictive validity of task-level control was compared with effort/reward imbalance. As well, the predictive validity of a model developed by combining task-level control with effort/reward imbalance was determined. Logistic regression was utilized for all models. Results The demand/control and effort/reward imbalance models independently predicted poor self-reported health status. The effort-reward imbalance model predicted the presence of a chronic disease while the demand/control model did not. A model combining effort-reward imbalance and task-level control was a better predictor of self-reported health status and any chronic condition than either model alone. Effort reward imbalance modeled with intrinsic effort had marginally better predictive validity than when modeled with extrinsic effort only. Conclusions Future work should explore the combined effects of these two models of psychosocial stress at work on health more thoroughly. PMID:12636876

  10. Wife Beating in South Africa: An Imbalance Theory of Resources and Power

    ERIC Educational Resources Information Center

    Choi, Susanne Y. P.; Ting, Kwok-Fai

    2008-01-01

    This article develops an imbalance theory to explain physical violence against women in intimate relationships in South Africa. The theory proposes four typologies: dependence, compensation, submission, and transgression, through which imbalances in resource contribution and power distribution between spouses are hypothesized to contribute to…

  11. History of Mechanical Ventilation. From Vesalius to Ventilator-induced Lung Injury.

    PubMed

    Slutsky, Arthur S

    2015-05-15

    Mechanical ventilation is a life-saving therapy that catalyzed the development of modern intensive care units. The origins of modern mechanical ventilation can be traced back about five centuries to the seminal work of Andreas Vesalius. This article is a short history of mechanical ventilation, tracing its origins over the centuries to the present day. One of the great advances in ventilatory support over the past few decades has been the development of lung-protective ventilatory strategies, based on our understanding of the iatrogenic consequences of mechanical ventilation such as ventilator-induced lung injury. These strategies have markedly improved clinical outcomes in patients with respiratory failure. PMID:25844759

  12. Ventilator-induced Lung Injury

    PubMed Central

    Kneyber, Martin C. J.; Zhang, Haibo; Slutsky, Arthur S.

    2016-01-01

    It is well established that mechanical ventilation can injure the lung, producing an entity known as ventilator-induced lung injury (VILI). There are various forms of VILI, including volutrauma (i.e., injury caused by overdistending the lung), atelectrauma (injury due to repeated opening/closing of lung units), and biotrauma (release of mediators that can induce lung injury or aggravate pre-existing injury, potentially leading to multiple organ failure). Experimental data in the pediatric context are in accord with the importance of VILI, and appear to show age-related susceptibility to VILI, although a conclusive link between use of large Vts and mortality has not been demonstrated in this population. The relevance of VILI in the pediatric intensive care unit population is thus unclear. Given the physiological and biological differences in the respiratory systems of infants, children, and adults, it is difficult to directly extrapolate clinical practice from adults to children. This Critical Care Perspective analyzes the relevance of VILI to the pediatric population, and addresses why pediatric patients might be less susceptible than adults to VILI. PMID:25003705

  13. Effects of laser acupuncture on blood perfusion rate

    NASA Astrophysics Data System (ADS)

    Wang, Xian-ju; Zeng, Chang-chun; Liu, Han-ping; Liu, Song-hao; Liu, Liang-gang

    2006-09-01

    Based on Pennes equation, the influences of the intensity and the impulse frequency of laser acupuncture on the point tissues' blood flow perfusion rate are discussed. We find that the blood perfusion rate of point tissue increases with the intensity of laser acupuncture increasing. After impulse laser acupuncture the point tissue blood perfusion rate increase little, but after continuum laser acupuncture the point tissues blood perfusion rate increase much.

  14. Lung ventilation injures areas with discrete alveolar flooding, in a surface tension-dependent fashion.

    PubMed

    Wu, You; Kharge, Angana Banerjee; Perlman, Carrie E

    2014-10-01

    With proteinaceous-liquid flooding of discrete alveoli, a model of the edema pattern in the acute respiratory distress syndrome, lung inflation over expands aerated alveoli adjacent to flooded alveoli. Theoretical considerations suggest that the overexpansion may be proportional to surface tension, T. Yet recent evidence indicates proteinaceous edema liquid may not elevate T. Thus whether the overexpansion is injurious is not known. Here, working in the isolated, perfused rat lung, we quantify fluorescence movement from the vasculature to the alveolar liquid phase as a measure of overdistension injury to the alveolar-capillary barrier. We label the perfusate with fluorescence; micropuncture a surface alveolus and instill a controlled volume of nonfluorescent liquid to obtain a micropunctured-but-aerated region (control group) or a region with discrete alveolar flooding; image the region at a constant transpulmonary pressure of 5 cmH2O; apply five ventilation cycles with a positive end-expiratory pressure of 0-20 cmH2O and tidal volume of 6 or 12 ml/kg; return the lung to a constant transpulmonary pressure of 5 cmH2O; and image for an additional 10 min. In aerated areas, ventilation is not injurious. With discrete alveolar flooding, all ventilation protocols cause sustained injury. Greater positive end-expiratory pressure or tidal volume increases injury. Furthermore, we determine T and find injury increases with T. Inclusion of either plasma proteins or Survanta in the flooding liquid does not alter T or injury. Inclusion of 2.7-10% albumin and 1% Survanta together, however, lowers T and injury. Contrary to expectation, albumin inclusion in our model facilitates exogenous surfactant activity. PMID:25080924

  15. Lung ventilation injures areas with discrete alveolar flooding, in a surface tension-dependent fashion

    PubMed Central

    Wu (吴右), You; Kharge, Angana Banerjee

    2014-01-01

    With proteinaceous-liquid flooding of discrete alveoli, a model of the edema pattern in the acute respiratory distress syndrome, lung inflation over expands aerated alveoli adjacent to flooded alveoli. Theoretical considerations suggest that the overexpansion may be proportional to surface tension, T. Yet recent evidence indicates proteinaceous edema liquid may not elevate T. Thus whether the overexpansion is injurious is not known. Here, working in the isolated, perfused rat lung, we quantify fluorescence movement from the vasculature to the alveolar liquid phase as a measure of overdistension injury to the alveolar-capillary barrier. We label the perfusate with fluorescence; micropuncture a surface alveolus and instill a controlled volume of nonfluorescent liquid to obtain a micropunctured-but-aerated region (control group) or a region with discrete alveolar flooding; image the region at a constant transpulmonary pressure of 5 cmH2O; apply five ventilation cycles with a positive end-expiratory pressure of 0–20 cmH2O and tidal volume of 6 or 12 ml/kg; return the lung to a constant transpulmonary pressure of 5 cmH2O; and image for an additional 10 min. In aerated areas, ventilation is not injurious. With discrete alveolar flooding, all ventilation protocols cause sustained injury. Greater positive end-expiratory pressure or tidal volume increases injury. Furthermore, we determine T and find injury increases with T. Inclusion of either plasma proteins or Survanta in the flooding liquid does not alter T or injury. Inclusion of 2.7–10% albumin and 1% Survanta together, however, lowers T and injury. Contrary to expectation, albumin inclusion in our model facilitates exogenous surfactant activity. PMID:25080924

  16. 46 CFR 194.10-25 - Ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Magazines § 194.10-25 Ventilation. (a) Integral magazines. (1) All integral magazines shall be provided with natural or mechanical ventilation. Design calculations shall be submitted demonstrating that the system has sufficient capacity to maintain the...

  17. 46 CFR 194.10-25 - Ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Magazines § 194.10-25 Ventilation. (a) Integral magazines. (1) All integral magazines shall be provided with natural or mechanical ventilation. Design calculations shall be submitted demonstrating that the system has sufficient capacity to maintain the...

  18. 46 CFR 194.10-25 - Ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Magazines § 194.10-25 Ventilation. (a) Integral magazines. (1) All integral magazines shall be provided with natural or mechanical ventilation. Design calculations shall be submitted demonstrating that the system has sufficient capacity to maintain the...

  19. 21 CFR 868.5895 - Continuous ventilator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Continuous ventilator. 868.5895 Section 868.5895 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED..., pediatric, and neonatal ventilators are included in this generic type of device. (b) Classification....

  20. 21 CFR 868.5895 - Continuous ventilator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Continuous ventilator. 868.5895 Section 868.5895 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED..., pediatric, and neonatal ventilators are included in this generic type of device. (b) Classification....

  1. 21 CFR 868.5895 - Continuous ventilator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Continuous ventilator. 868.5895 Section 868.5895 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED..., pediatric, and neonatal ventilators are included in this generic type of device. (b) Classification....

  2. 21 CFR 868.5895 - Continuous ventilator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Continuous ventilator. 868.5895 Section 868.5895 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED..., pediatric, and neonatal ventilators are included in this generic type of device. (b) Classification....

  3. 21 CFR 868.5895 - Continuous ventilator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Continuous ventilator. 868.5895 Section 868.5895 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED..., pediatric, and neonatal ventilators are included in this generic type of device. (b) Classification....

  4. 46 CFR 72.05-50 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... periodic inspection by means of a hinged or bolted plate in the duct. The damper and the portion of duct....05-10(e). (d) All ventilation systems shall be designed, where practicable, so that all ducts leading...) In all ventilation systems, manually operated dampers or other suitable means shall be provided...

  5. 46 CFR 72.05-50 - Ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... periodic inspection by means of a hinged or bolted plate in the duct. The damper and the portion of duct....05-10(e). (d) All ventilation systems shall be designed, where practicable, so that all ducts leading...) In all ventilation systems, manually operated dampers or other suitable means shall be provided...

  6. 46 CFR 72.05-50 - Ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Ventilation. 72.05-50 Section 72.05-50 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS CONSTRUCTION AND ARRANGEMENT Structural Fire Protection § 72.05-50 Ventilation. (a) Where the term duct is used in this section, it shall include trunks, plenums, and any other...

  7. 46 CFR 72.05-50 - Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Ventilation. 72.05-50 Section 72.05-50 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS CONSTRUCTION AND ARRANGEMENT Structural Fire Protection § 72.05-50 Ventilation. (a) Where the term duct is used in this section, it shall include trunks, plenums, and any other...

  8. 46 CFR 194.20-5 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or Storerooms § 194.20-5 Ventilation. (a) Chemical storerooms shall be equipped with a power ventilation system of exhaust type. The system shall have a capacity sufficient to effect a complete change of air in not more than 4...

  9. 46 CFR 194.20-5 - Ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or Storerooms § 194.20-5 Ventilation. (a) Chemical storerooms shall be equipped with a power ventilation system of exhaust type. The system shall have a capacity sufficient to effect a complete change of air in not more than 4...

  10. 14 CFR 121.219 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Ventilation. 121.219 Section 121.219 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.219 Ventilation....

  11. 14 CFR 23.831 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ventilation. 23.831 Section 23.831 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Cargo Accommodations § 23.831 Ventilation. (a) Each passenger and crew compartment must be...

  12. 46 CFR 72.05-50 - Ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Ventilation. 72.05-50 Section 72.05-50 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS CONSTRUCTION AND ARRANGEMENT Structural Fire Protection § 72.05-50 Ventilation. (a) Where the term duct is used in this section, it shall include trunks, plenums, and any other...

  13. New modes of assisted mechanical ventilation.

    PubMed

    Suarez-Sipmann, F

    2014-05-01

    Recent major advances in mechanical ventilation have resulted in new exciting modes of assisted ventilation. Compared to traditional ventilation modes such as assisted-controlled ventilation or pressure support ventilation, these new modes offer a number of physiological advantages derived from the improved patient control over the ventilator. By implementing advanced closed-loop control systems and using information on lung mechanics, respiratory muscle function and respiratory drive, these modes are specifically designed to improve patient-ventilator synchrony and reduce the work of breathing. Depending on their specific operational characteristics, these modes can assist spontaneous breathing efforts synchronically in time and magnitude, adapt to changing patient demands, implement automated weaning protocols, and introduce a more physiological variability in the breathing pattern. Clinicians have now the possibility to individualize and optimize ventilatory assistance during the complex transition from fully controlled to spontaneous assisted ventilation. The growing evidence of the physiological and clinical benefits of these new modes is favoring their progressive introduction into clinical practice. Future clinical trials should improve our understanding of these modes and help determine whether the claimed benefits result in better outcomes. PMID:24507472

  14. 14 CFR 252.9 - Ventilation systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Ventilation systems. 252.9 Section 252.9 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking...

  15. 14 CFR 252.9 - Ventilation systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Ventilation systems. 252.9 Section 252.9 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking...

  16. 14 CFR 252.9 - Ventilation systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Ventilation systems. 252.9 Section 252.9 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking...

  17. 14 CFR 252.9 - Ventilation systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Ventilation systems. 252.9 Section 252.9 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking...

  18. Infiltration in ASHRAE's Residential Ventilation Standards

    SciTech Connect

    Sherman, Max

    2008-10-01

    The purpose of ventilation is to dilute or remove indoor contaminants that an occupant could be exposed to. It can be provided by mechanical or natural means. ASHRAE Standards including standards 62, 119, and 136 have all considered the contribution of infiltration in various ways, using methods and data from 20 years ago. The vast majority of homes in the United States and indeed the world are ventilated through natural means such as infiltration caused by air leakage. Newer homes in the western world are tight and require mechanical ventilation. As we seek to provide acceptable indoor air quality at minimum energy cost, it is important to neither over-ventilate norunder-ventilate. Thus, it becomes critically important to correctly evaluate the contribution infiltration makes to both energy consumption and equivalent ventilation. ASHRAE Standard 62.2 specifies how much mechanical ventilation is considered necessary to provide acceptable indoor air quality, but that standard is weak on how infiltration can contribute towards meeting the total requirement. In the past ASHRAE Standard 136 was used to do this, but new theoretical approaches and expanded weather data have made that standard out of date. This article will describe how to properly treat infiltration as an equivalent ventilation approach and then use new data and these new approaches to demonstrate how these calculations might be done both in general and to update Standard 136.

  19. Microprocessor control of broiler house ventilation

    SciTech Connect

    Kay, F.W.; Allison, J.M.

    1983-06-01

    An M6800 microprocessor control system for ventilation fans, supplemental heaters, and air inlet slots is presented. The control system uses inputs from temperature sensors, both inside and outside the house, along with the desired environmental conditions inside to calculate the required ventilation for heat and moisture control.

  20. Preoperational test report, primary ventilation system

    SciTech Connect

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Primary Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space filtered venting of tanks AY101, AY102, AZ101, AZ102. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  1. Commissioning Ventilated Containment Systems in the Laboratory

    SciTech Connect

    Not Available

    2008-08-01

    This Best Practices Guide focuses on the specialized approaches required for ventilated containment systems, understood to be all components that drive and control ventilated enclosures and local exhaust systems within the laboratory. Geared toward architects, engineers, and facility managers, this guide provides information about technologies and practices to use in designing, constructing, and operating operating safe, sustainable, high-performance laboratories.

  2. Guidelines for choosing face ventilation systems

    SciTech Connect

    Divers, E.F.; Volkwein, J.C.

    1987-10-01

    The authors discuss two machine-mounted face ventilation systems, a fan-powered dust scrubber and a sprayfan, for controlling dust and methane and increasing production by extending the cutting time of continuous miners. The systems are compared for a variety of considerations: installation and maintenance costs, ventilation, seam conditions, and dust control. Guidelines are given for the best use of each system.

  3. Pandemic Ventilator Rationing and Appeals Processes

    PubMed Central

    Patrone, Daniel; Resnik, David

    2014-01-01

    In a severe influenza pandemic, hospitals will likely experience serious and widespread shortages of patient pulmonary ventilators and of staff qualified to operate them. Deciding who will receive access to mechanical ventilation will often determine who lives and who dies. This prospect raises an important question whether pandemic preparedness plans should include some process by which individuals affected by ventilator rationing would have the opportunity to appeal adverse decisions. However, the issue of appeals processes to ventilator rationing decisions has been largely neglected in state pandemic planning efforts. If we are to devise just and effective plans for coping with a severe influenza pandemic, more attention to the issue of appeals processes for pandemic ventilator rationing decisions is needed. Arguments for and against appeals processes are considered, and some suggestions are offered to help efforts at devising more rational pandemic preparedness plans. PMID:20354793

  4. Mine ventilation and air conditioning. 3. edition

    SciTech Connect

    Hartman, H.L.; Mutmansky, J.M.; Ramani, R.V.; Wang, Y.J.

    1998-12-31

    This revised edition presents an engineering design approach to ventilation and air conditioning as part of the comprehensive environmental control of the mine atmosphere. It provides an in-depth look, for practitioners who design and operate mines, into the health and safety aspects of environmental conditions in the underground workplace. The contents include: Environmental control of the mine atmosphere; Properties and behavior of air; Mine air-quality control; Mine gases; Dusts and other mine aerosols; Mine ventilation; Airflow through mine openings and ducts; Mine ventilation circuits and networks; Natural ventilation; Fan application to mines; Auxiliary ventilation and controlled recirculation; Economics of airflow; Control of mine fires and explosions; Mine air conditioning; Heat sources and effect in mines; Mine air conditioning systems; Appendices; References; Answers to selected problems; and Index.

  5. The prognostic value of non-perfusion variables obtained during vasodilator stress myocardial perfusion imaging.

    PubMed

    Bajaj, Navkaranbir S; Singh, Siddharth; Farag, Ayman; El-Hajj, Stephanie; Heo, Jack; Iskandrian, Ami E; Hage, Fadi G

    2016-06-01

    Myocardial perfusion imaging (MPI) is an established diagnostic test that provides useful prognostic data in patients with known or suspected coronary artery disease. In more than half of the patients referred for stress testing, vasodilator stress is used in lieu of exercise. Unlike exercise, vasodilator stress does not provide information on exercise and functional capacity, heart rate recovery, and chronotropy, and ECG changes are less frequent. These non-perfusion data provide important prognostic and patient management information. Further, event rates in patients undergoing vasodilator MPI are higher than in those undergoing exercise MPI and even in those with normal images probably due to higher pretest risk. However, there are a number of non-perfusion variables that are obtained during vasodilator stress testing, which have prognostic relevance but their use has not been well emphasized. The purpose of this review is to summarize the prognostic values of these non-perfusion data obtained during vasodilator MPI. PMID:26940574

  6. Tissue-engineering bioreactors: a new combined cell-seeding and perfusion system for vascular tissue engineering.

    PubMed

    Sodian, Ralf; Lemke, Thees; Fritsche, Clemens; Hoerstrup, Simon P; Fu, Ping; Potapov, Evgenij V; Hausmann, Harald; Hetzer, Roland

    2002-10-01

    One approach to the tissue engineering of vascular structures is to develop in vitro conditions in order ultimately to fabricate functional vascular tissues before final implantation. In our experiment, we aimed to develop a new combined cell seeding and perfusion system that provides sterile conditions during cell seeding and biomechanical stimuli in order to fabricate autologous human vascular tissue in vitro. The cell seeding and perfusion system is made of Plexiglas and is completely transparent (Berlin Heart, Berlin, Germany; University Hospital Benjamin Franklin, Berlin, Germany). The whole system consists of a cell seeding chamber that can be incorporated into the perfusion system and an air-driven respirator pump connected to the bioreactor. The cell culture medium continuously circulates through a closed-loop system. We thus developed a cell seeding device for static and dynamic seeding of vascular cells onto a polymeric vascular scaffold and a closed-loop perfused bioreactor for long-term vascular conditioning. The cell seeding chamber can be easily connected to the bioreactor, which combines continuous, pulsatile perfusion and mechanical stimulation to the tissue-engineered conduit. Adjusting the stroke volume, the stroke rate, and the inspiration/expiration time of the ventilator allows various pulsatile flows and different levels of pressure. The whole system is a highly isolated cell culture setting, which provides a high level of sterility and a gas supply and fits into a standard humidified incubator. The device can be sterilized by ethylene oxide and assembled with a standard screwdriver. Our newly developed combination of a cell seeding and conditioning device provides sterile conditions and biodynamic stimuli for controlled tissue development and in vitro conditioning of an autologous tissue-engineered vessel. PMID:12459065

  7. Gradient-enhanced FAWSETS perfusion measurements

    NASA Astrophysics Data System (ADS)

    Marro, Kenneth I.; Lee, Donghoon; Hyyti, Outi M.

    2005-08-01

    This work describes the use of custom-built gradients to enhance skeletal muscle perfusion measurements acquired with a previously described arterial spin labeling technique known as FAWSETS (flow-driven arterial water stimulation with elimination of tissue signal). Custom-built gradients provide active control of the static magnetic field gradient on which FAWSETS relies for labeling. This allows selective, 180° modulations of the phase of the perfusion component of the signal. Phase cycling can then be implemented to eliminate all extraneous components leaving a signal that exclusively reflects capillary-level perfusion. Gradient-enhancement substantially reduces acquisition time and eliminates the need to acquire an ischemic signal to quantify perfusion. This removes critical obstacles to application of FAWSETS in organs other than skeletal muscle and makes the measurements more desirable for clinical environments. The basic physical principles of gradient-enhancement are demonstrated in flow phantom experiments and in vivo utility is demonstrated in rat hind limb during stimulated exercise.

  8. Urate synthesis in the perfused chick liver

    PubMed Central

    Barratt, Eileen; Buttery, Peter J.; Boorman, K. Neil

    1974-01-01

    Urate synthesis was studied in a perfused chicken liver preparation. The perfused liver had an ATP/ADP ratio of 0.29±0.05(6) compared with 0.34±0.07(10) in liver obtained from chicks under ether anaesthesia. Lactate/pyruvate ratios were 9.4±1.7(5) in the perfused liver and 14.8±1.8(5) in the rapidly sampled liver. Urate synthesis was only marginally stimulated by glycine, glutamine, aspartic acid or NH4Cl, but significant increases were observed with phosphoribosyl pyrophosphate, aminoimidazolecarboxylic acid riboside, inosine, inosinic acid and xanthine. Urate synthesis from glycine, glutamine, NH4Cl, asparagine, alanine, histidine and a mixture of 21 amino acids was obtained on inclusion of insulin in the perfusion medium. Evidence for the inclusion of the carbon of histidine into uric acid was obtained. Aspects of the energy consumption associated with the conversion of excess of amino acid into uric acid are considered. PMID:4462579

  9. Automated sonographic evaluation of testicular perfusion

    NASA Astrophysics Data System (ADS)

    Thierman, Jonathan S.; Clement, Gregory T.; Kalish, Leslie A.; O'Kane, Patrick L.; Frauscher, Ferdinand; Paltiel, Harriet J.

    2006-07-01

    Contrast-enhanced ultrasound (US) imaging is potentially applicable to the investigation of vascular disorders of the testis. We investigated the ability of two automated computer algorithms to analyse contrast-enhanced pulse inversion US data in a rabbit model of unilateral testicular ischaemia and to correctly determine relative testicular perfusion: nonlinear curve fitting of the US backscatter intensity as a function of time; and spectral analysis of the intensity time trace. We compared (i) five metrics based on the algorithmic data to testicular perfusion ratios obtained with radiolabelled microspheres, a reference standard; (ii) qualitative assessment of the US images by two independent readers blinded to the side of the experimental and control testes to the radiolabelled microsphere perfusion ratios; and (iii) results of the algorithmically-derived metrics to the qualitative assessments of the two readers. For the curve fit method, the algorithmically-derived metrics agreed with the reference standard in 54% to 68% of all cases. For the spectral method, the results agreed in 70% of all cases. The two readers agreed with the reference standard in 40% and 35% of all cases, respectively. These results suggest that automated methods of analysis may provide useful information in the assessment of testicular perfusion.

  10. Asynchronicity of Facial Blood Perfusion in Migraine

    PubMed Central

    Zaproudina, Nina; Teplov, Victor; Nippolainen, Ervin; Lipponen, Jukka A.; Kamshilin, Alexei A.; Närhi, Matti; Karjalainen, Pasi A.; Giniatullin, Rashid

    2013-01-01

    Asymmetrical changes in blood perfusion and asynchronous blood supply to head tissues likely contribute to migraine pathophysiology. Imaging was widely used in order to understand hemodynamic variations in migraine. However, mapping of blood pulsations in the face of migraineurs has not been performed so far. We used the Blood Pulsation Imaging (BPI) technique, which was recently developed in our group, to establish whether 2D-imaging of blood pulsations parameters can reveal new biomarkers of migraine. BPI characteristics were measured in migraineurs during the attack-free interval and compared to healthy subjects with and without a family history of migraine. We found a novel phenomenon of transverse waves of facial blood perfusion in migraineurs in contrast to healthy subjects who showed synchronous blood delivery to both sides of the face. Moreover, the amplitude of blood pulsations was symmetrically distributed over the face of healthy subjects, but asymmetrically in migraineurs and subjects with a family history of migraine. In the migraine patients we found a remarkable correlation between the side of unilateral headache and the direction of the blood perfusion wave. Our data suggest that migraine is associated with lateralization of blood perfusion and asynchronous blood pulsations in the facial area, which could be due to essential dysfunction of the autonomic vascular control in the face. These findings may further enhance our understanding of migraine pathophysiology and suggest new easily available biomarkers of this pathology. PMID:24324592

  11. Simplified prototyping of perfusable polystyrene microfluidics

    PubMed Central

    Tran, Reginald; Ahn, Byungwook; R. Myers, David; Qiu, Yongzhi; Sakurai, Yumiko; Moot, Robert; Mihevc, Emma; Trent Spencer, H.; Doering, Christopher; A. Lam, Wilbur

    2014-01-01

    Cell culture in microfluidic systems has primarily been conducted in devices comprised of polydimethylsiloxane (PDMS) or other elastomers. As polystyrene (PS) is the most characterized and commonly used substrate material for cell culture, microfluidic cell culture would ideally be conducted in PS-based microsystems that also enable tight control of perfusion and hydrodynamic conditions, which are especially important for culture of vascular cell types. Here, we report a simple method to prototype perfusable PS microfluidics for endothelial cell culture under flow that can be fabricated using standard lithography and wet laboratory equipment to enable stable perfusion at shear stresses up to 300 dyn/cm2 and pumping pressures up to 26 kPa for at least 100 h. This technique can also be extended to fabricate perfusable hybrid PS-PDMS microfluidics of which one application is for increased efficiency of viral transduction in non-adherent suspension cells by leveraging the high surface area to volume ratio of microfluidics and adhesion molecules that are optimized for PS substrates. These biologically compatible microfluidic devices can be made more accessible to biological-based laboratories through the outsourcing of lithography to various available microfluidic foundries. PMID:25379106

  12. Nuclear cardiology: Myocardial perfusion and function

    SciTech Connect

    Seldin, D.W. )

    1991-08-01

    Myocardial perfusion studies continue to be a major focus of research, with new investigations of the relationship of exercise-redistribution thallium imaging to diagnosis, prognosis, and case management. The redistribution phenomenon, which seemed to be fairly well understood a few years ago, is now recognized to be much more complex than originally thought, and various strategies have been proposed to clarify the meaning of persistent defects. Pharmacologic intervention with dipyridamole and adenosine has become available as an alternative to exercise, and comparisons with exercise imaging and catheterization results have been described. Thallium itself is no longer the sole single-photon perfusion radiopharmaceutical; two new technetium agents are now widely available. In addition to perfusion studies, advances in the study of ventricular function have been made, including reports of studies performed in conjunction with technetium perfusion studies, new insights into cardiac physiology, and the prognostic and case-management information that function studies provide. Finally, work has continued with monoclonal antibodies for the identification of areas of myocyte necrosis. 41 references.

  13. The man-made creators of the imbalance of water in Nature

    NASA Astrophysics Data System (ADS)

    Shlafman, L. M.; Kontar, V. A.

    2013-12-01

    At 2011 we have described the imbalance of water in Nature as the system [1]. At 2012 we have described water and carbon and the glaciers [2], [3] as creators of the imbalance of Nature. Now we are describing some man-made creators of the imbalance of Nature. The photosynthesis is a powerful creator of the imbalance of Nature. The photosynthesis significantly increases the complexity of the structures and reduces the entropy. Earth's hydrosphere contains water less than it was flowed via photosynthesis. This is an example of the imbalance of involving when the return of water has delayed because water is involved into the processes of life and other processes. People widely use photosynthesis and create not only an additional man-made imbalance of water in Nature, but also the man-made changing the albedo, and a lot of other important parameters of the planet of Earth. All of these processes are significantly imbalanced. The fossil hydrocarbons have accumulated during millions of years, but now are burned. This is an example of the imbalance delay by time. The man-made burning of the hydrocarbons is creating the imbalances of impact or explosive type, because of the burning processes is in millions of times faster than the accumulation processes. Please pay attention to the imbalance of redeployment by places. For example, oil and gas are extracted in one places, and burned in others. During combustion is standing out not only water, but energy, and other components. The temperature in the centers of big cities is always higher and there is dominating the rising air. It pollutes the environment, changes circulations, create greenhouse effect, etc. Other examples of the imbalance of relocation are shown in the production and consumption of food. The irrigation systems transfer water from one place to another. This transfer of water creates a lot of imbalances in change climate, ecosystems, etc in places where water was took and where the water was brought. Usually

  14. [The applied value of BiPAP mechanical ventilation via facial of nasal mask before or after ordinary mechanical ventilation].

    PubMed

    Chen, P

    1998-01-01

    To expore the applied value of BiPAP ventilator before or after regular ventilation, 44 patients who had indicators of regular mechanical ventilation and 4 patients who had difficulty of getting free from endotracheal intubation mechanical ventilation were ventilated with BiPAP ventilator via facial or nasal mask. The results showed that 13/44 patients had good responses and avoided receiving regular mechanical ventilation with endotracheal intubation or incision. BiPAP ventilation was also effective in patients who were dependent on regular mechanical ventilatin. PMID:10682574

  15. Does Observation of Postural Imbalance Induce a Postural Reaction?

    PubMed Central

    Tia, Banty; Saimpont, Arnaud; Paizis, Christos; Mourey, France; Fadiga, Luciano; Pozzo, Thierry

    2011-01-01

    Background Several studies bring evidence that action observation elicits contagious responses during social interactions. However automatic imitative tendencies are generally inhibited and it remains unclear in which conditions mere action observation triggers motor behaviours. In this study, we addressed the question of contagious postural responses when observing human imbalance. Methodology/Principal Findings We recorded participants' body sway while they observed a fixation cross (control condition), an upright point-light display of a gymnast balancing on a rope, and the same point-light display presented upside down. Our results showed that, when the upright stimulus was displayed prior to the inverted one, centre of pressure area and antero-posterior path length were significantly greater in the upright condition compared to the control and upside down conditions. Conclusions/Significance These results demonstrate a contagious postural reaction suggesting a partial inefficiency of inhibitory processes. Further, kinematic information was sufficient to trigger this reaction. The difference recorded between the upright and upside down conditions indicates that the contagion effect was dependent on the integration of gravity constraints by body kinematics. Interestingly, the postural response was sensitive to habituation, and seemed to disappear when the observer was previously shown an inverted display. The motor contagion recorded here is consistent with previous work showing vegetative output during observation of an effortful movement and could indicate that lower level control facilitates contagion effects. PMID:21423622

  16. Electrolyte depletion and osmotic imbalance in amphibians with chytridiomycosis.

    PubMed

    Voyles, Jamie; Berger, Lee; Young, Sam; Speare, Rick; Webb, Rebecca; Warner, Jeffrey; Rudd, Donna; Campbell, Ruth; Skerratt, Lee F

    2007-09-14

    Mounting evidence implicates the disease chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis, in global amphibian declines and extinctions. While the virulence of this disease has been clearly demonstrated, there is, as yet, no mechanistic explanation for how B. dendrobatidis kills amphibians. To investigate the pathology of chytridiomycosis, blood samples were collected from uninfected, aclinically infected and clinically diseased amphibians and analyzed for a wide range of biochemical and hematological parameters. Here, we show that green tree frogs Litoria caerulea with severe chytridiomycosis had reduced plasma osmolality, sodium, potassium, magnesium and chloride concentrations. Stable plasma albumin, hematocrit and urea levels indicated that hydration status was unaffected, signifying depletion of electrolytes from circulation rather than dilution due to increased water uptake. We suggest that B. dendrobatidis kills amphibians by disrupting normal epidermal functioning, leading to osmotic imbalance through loss of electrolytes. Determining how B. dendrobatidis kills amphibians is fundamental to understanding the host-pathogen relationship and thus the population declines attributed to B. dendrobatidis. Understanding the mechanisms of mortality may also explain interspecific variation in susceptibility to chytridiomycosis. PMID:17972752

  17. Gene Dosage Imbalance Contributes to Chromosomal Instability-Induced Tumorigenesis.

    PubMed

    Clemente-Ruiz, Marta; Murillo-Maldonado, Juan M; Benhra, Najate; Barrio, Lara; Pérez, Lidia; Quiroga, Gonzalo; Nebreda, Angel R; Milán, Marco

    2016-02-01

    Chromosomal instability (CIN) is thought to be a source of mutability in cancer. However, CIN often results in aneuploidy, which compromises cell fitness. Here, we used the dosage compensation mechanism (DCM) of Drosophila to demonstrate that chromosome-wide gene dosage imbalance contributes to the deleterious effects of CIN-induced aneuploidy and its pro-tumorigenic action. We present evidence that resetting of the DCM counterbalances the damaging effects caused by CIN-induced changes in X chromosome number. Importantly, interfering with the DCM suffices to mimic the cellular effects of aneuploidy in terms of reactive oxygen species (ROS) production, JNK-dependent cell death, and tumorigenesis upon apoptosis inhibition. We unveil a role of ROS in JNK activation and a variety of cellular and tissue-wide mechanisms that buffer the deleterious effects of CIN, including DNA-damage repair, activation of the p38 pathway, and cytokine induction to promote compensatory proliferation. Our data reveal the existence of robust compensatory mechanisms that counteract CIN-induced cell death and tumorigenesis. PMID:26859353

  18. Cardiac Angiogenic Imbalance Leads to Peri-partum Cardiomyopathy

    PubMed Central

    Patten, Ian S.; Rana, Sarosh; Shahul, Sajid; Rowe, Glenn C; Jang, Cholsoon; Liu, Laura; Hacker, Michele R.; Rhee, Julie S.; Mitchell, John; Mahmood, Feroze; Hess, Phil; Farrell, Caitlin; Koulisis, Nicole; Khankin, Eliyahu V; Burke, Suzanne D.; Tudorache, Igor; Bauersachs, Johann; del Monte, Federica; Hilfiker-Kleiner, Denise; Karumanchi, S. Ananth; Arany, Zoltan

    2012-01-01

    Peri-partum cardiomyopathy (PPCM) is a frequently fatal disease that affects women near delivery, and occurs more frequently in women with pre-eclampsia and/or multiple gestation. The etiology of PPCM, or why it associates with pre-eclampsia, remains unknown. We show here that PPCM is associated with a systemic angiogenic imbalance, accentuated by pre-eclampsia. Mice that lack cardiac PGC-1α, a powerful regulator of angiogenesis, develop profound PPCM. Importantly, the PPCM is entirely rescued by pro-angiogenic therapies. In humans, the placenta in late gestation secretes VEGF inhibitors like soluble Flt1 (sFlt1), and this is accentuated by multiple gestation and pre-eclampsia. This anti-angiogenic environment is accompanied by sub-clinical cardiac dysfunction, the extent of which correlates with circulating levels of sFlt1. Exogenous sFlt1 alone caused diastolic dysfunction in wildtype mice, and profound systolic dysfunction in mice lacking cardiac PGC-1α. Finally, plasma samples from women with PPCM contained abnormally high levels of sFlt1. These data strongly suggest that PPCM is in large part a vascular disease, caused by excess anti-angiogenic signaling in the peri-partum period. The data also explain how late pregnancy poses a threat to cardiac homeostasis, and why pre-eclampsia and multiple gestation are important risk factors for the development of PPCM. PMID:22596155

  19. Biomedical Implications of Heavy Metals Induced Imbalances in Redox Systems

    PubMed Central

    Singh, Shweta; Siddiqi, Nikhat J.

    2014-01-01

    Several workers have extensively worked out the metal induced toxicity and have reported the toxic and carcinogenic effects of metals in human and animals. It is well known that these metals play a crucial role in facilitating normal biological functions of cells as well. One of the major mechanisms associated with heavy metal toxicity has been attributed to generation of reactive oxygen and nitrogen species, which develops imbalance between the prooxidant elements and the antioxidants (reducing elements) in the body. In this process, a shift to the former is termed as oxidative stress. The oxidative stress mediated toxicity of heavy metals involves damage primarily to liver (hepatotoxicity), central nervous system (neurotoxicity), DNA (genotoxicity), and kidney (nephrotoxicity) in animals and humans. Heavy metals are reported to impact signaling cascade and associated factors leading to apoptosis. The present review illustrates an account of the current knowledge about the effects of heavy metals (mainly arsenic, lead, mercury, and cadmium) induced oxidative stress as well as the possible remedies of metal(s) toxicity through natural/synthetic antioxidants, which may render their effects by reducing the concentration of toxic metal(s). This paper primarily concerns the clinicopathological and biomedical implications of heavy metals induced oxidative stress and their toxicity management in mammals. PMID:25184144

  20. Mnesic imbalance: a cognitive theory about autism spectrum disorders

    PubMed Central

    Romero-Munguía, Miguel Ángel

    2008-01-01

    Autism is characterized by impairments in social interaction, communicative capacity and behavioral flexibility. Some cognitive theories can be useful for finding a relationship between these irregularities and the biological mechanisms that may give rise to this disorder. Among such theories are mentalizing deficit, weak central coherence and executive dysfunction, but none of them has been able to explain all three diagnostic symptoms of autism. These cognitive disorders may be related among themselves by faulty learning, since several research studies have shown that the brains of autistic individuals have abnormalities in the cerebellum, which plays a role in procedural learning. In keeping with this view, one may postulate the possibility that declarative memory replaces faulty procedural memory in some of its functions, which implies making conscious efforts in order to perform actions that are normally automatic. This may disturb cognitive development, resulting in autism symptoms. Furthermore, this mnesic imbalance is probably involved in all autism spectrum disorders. In the present work, this theory is expounded, including preliminary supporting evidence. PMID:18925971

  1. Changes in global net radiative imbalance 1985–2012

    PubMed Central

    Allan, Richard P; Liu, Chunlei; Loeb, Norman G; Palmer, Matthew D; Roberts, Malcolm; Smith, Doug; Vidale, Pier-Luigi

    2014-01-01

    Combining satellite data, atmospheric reanalyses, and climate model simulations, variability in the net downward radiative flux imbalance at the top of Earth's atmosphere (N) is reconstructed and linked to recent climate change. Over the 1985–1999 period mean N (0.34 ± 0.67 Wm−2) is lower than for the 2000–2012 period (0.62 ± 0.43 Wm−2, uncertainties at 90% confidence level) despite the slower rate of surface temperature rise since 2000. While the precise magnitude of N remains uncertain, the reconstruction captures interannual variability which is dominated by the eruption of Mount Pinatubo in 1991 and the El Niño Southern Oscillation. Monthly deseasonalized interannual variability in N generated by an ensemble of nine climate model simulations using prescribed sea surface temperature and radiative forcings and from the satellite-based reconstruction is significantly correlated (r∼0.6) over the 1985–2012 period. PMID:25821270

  2. Comparing Normothermic Machine Perfusion Preservation With Different Perfusates on Porcine Livers From Donors After Circulatory Death.

    PubMed

    Liu, Q; Nassar, A; Farias, K; Buccini, L; Mangino, M J; Baldwin, W; Bennett, A; O'Rourke, C; Iuppa, G; Soliman, B G; Urcuyo-Llanes, D; Okamoto, T; Uso, T D; Fung, J; Abu-Elmagd, K; Miller, C; Quintini, C

    2016-03-01

    The utilization of normothermic machine perfusion (NMP) may be an effective strategy to resuscitate livers from donation after circulatory death (DCD). There is no consensus regarding the efficacy of different perfusates on graft and bile duct viability. The aim of this study was to compare, in an NMP porcine DCD model, the preservation potential of three different perfusates. Twenty porcine livers with 60 min of warm ischemia were separated into four preservation groups: cold storage (CS), NMP with Steen solution (Steen; XVIVO Perfusion Inc., Denver, CO), Steen plus red blood cells (RBCs), or whole blood (WB). All livers were preserved for 10 h and reperfused to simulate transplantation for 24 h. During preservation, the NMP with Steen group presented the highest hepatocellular injury. At reperfusion, the CS group had the lowest bile production and the worst hepatocellular injury compared with all other groups, followed by NMP with Steen; the Steen plus RBC and WB groups presented the best functional and hepatocellular injury outcomes, with WB livers showing lower aspartate aminotransferase release and a trend toward better results for most parameters. Based on our results, a perfusate that contains an oxygen carrier is most effective in a model of NMP porcine DCD livers compared with Steen solution. Specifically, WB-perfused livers showed a trend toward better outcomes compared with Steen plus RBCs. PMID:26663737

  3. Common-path Fourier domain optical coherence tomography of irradiated human skin and ventilated isolated rabbit lungs

    NASA Astrophysics Data System (ADS)

    Popp, A.; Wendel, M.; Knels, L.; Knuschke, P.; Mehner, M.; Koch, T.; Boller, D.; Koch, P.; Koch, E.

    2005-08-01

    A compact common path Fourier domain optical coherence tomography (FD-OCT) system based on a broadband superluminescence diode is used for biomedical imaging. The epidermal thickening of human skin after exposure to ultraviolet radiation is measured to proof the feasibility of FD-OCT for future substitution of invasive biopsies in a long term study on natural UV skin protection. The FD-OCT system is also used for imaging lung parenchyma. FD-OCT images of a formalin fixated lung show the same alveolar structure as scanning electron microscopy images. In the ventilated and blood-free perfused isolated rabbit lung FD-OCT is used for real-time cross-sectional image capture of alveolar mechanics throughout tidal ventilation. The alveolar mechanics changing from alternating recruitment-derecruitment at zero positive end-expiratory pressure (PEEP) to persistent recruitment after applying a PEEP of 5 cm H2O is observed in the OCT images.

  4. Computational Study of Effects of Tension Imbalance on Phonation in a Three Dimensional Tubular Larynx Model

    PubMed Central

    Xue, Qian; Zheng, Xudong; Mittal, Rajat; Bielamowicz, Steve

    2014-01-01

    Summary Objective The current study explores the use of a continuum based computational model to investigate the effect of left right tension imbalance on vocal fold vibrations and glottal aerodynamics, as well as its implication on phonation. The study allows us to gain new insights into the underlying physical mechanism of irregularities induced by vocal fold tension imbalance associated with unilateral cricothyroid muscle paralysis. Method A three dimensional simulation of glottal flow and vocal fold dynamics in a tubular laryngeal model with tension imbalance was conducted by using a coupled flow-structure interaction computational model. Tension imbalance was modeled by reducing by 20% the Young’s modulus of one of the vocal folds, while holding vocal fold length constant. Effects of tension imbalance on vibratory characteristic of the vocal folds and on the time-varying properties of glottal airflow as well as the aerodynamic energy transfer are comprehensively analyzed. Results and Conclusions The analysis demonstrates that the continuum based biomechanical model can provide a good description of phonatory dynamics in tension imbalance conditions. It is found that while 20% tension imbalance does not have noticeable effects on the fundamental frequency, it does lead to a larger glottal flow leakage and asymmetric vibrations of the two vocal folds. A detailed analysis of the energy transfer suggests that the majority of the energy is consumed by the lateral motion of the vocal folds and the net energy transferred to the softer fold is less than the one transferred to the normal fold. PMID:24725589

  5. Optimization on Emergency Longitudinal Ventilation Design

    NASA Astrophysics Data System (ADS)

    Se, Camby M. K.; Yuen, Richard K. K.; Cheung, Sherman C. P.; Tu, Jiyuan

    2010-05-01

    Emergency ventilation design in longitudinally ventilated vehicular tunnels is vital to provide safe egress route for tunnel user under fire situations. In this study, the influences of the location of active fan groups on the upstream velocity are investigated using Computational Fluid Dynamics (CFD) techniques. The numeric model was firstly validated again the experimental data from Memorial Tunnel Fire Ventilation Test Program (MTFVTP). Based on the validated model, parametric studies were then preformed attempting to establish a semi-empirical correlation between the location of fan groups and the upstream velocity. In the presence of solid fire, it was found that the buoyant force by the fire source and inertial force by the fans interact with each other and resulted in a "leveling-off" characteristic when the inertial force is no longer dominating. Such interaction re-distributed the ventilation flow direction and sequentially reduces the magnitude of the upstream velocity. In other word, the industrial practice of activating furthest fan group may not be able to prevent the backlayering as a consequence of solid fires. Fans closer to the fire source are recommended to be activated for preventing the hazard of backlayering. Furthermore, through the parametric study, location of ventilation fans is found to have significant effect on the upstream velocity. Such finding suggests that other geometrical parameters could also impose adverse effects to the ventilation system. Existing empirical equation could be insufficient to cover all possible ventilation design scenarios.

  6. Clinical Neuroimaging Using Arterial Spin-Labeled Perfusion MRI

    PubMed Central

    Wolf, Ronald L.; Detre, John A.

    2007-01-01

    SUMMARY The two most common methods for measuring perfusion with MRI are based on dynamic susceptibility contrast (DSC) and arterial spin labeling (ASL). Although clinical experience to date is much more extensive with DSC perfusion MRI, ASL methods offer several advantages. The primary advantages are that completely noninvasive absolute cerebral blood flow (CBF) measurements are possible with relative insensitivity to permeability, and that multiple repeated measurements can be obtained to evaluate one or more interventions or to perform perfusion-based functional MRI. ASL perfusion and perfusion-based fMRI methods have been applied in many clinical settings, including acute and chronic cerebrovascular disease, CNS neoplasms, epilepsy, aging and development, neurodegenerative disorders, and neuropsychiatric diseases. Recent technical advances have improved the sensitivity of ASL perfusion MRI, and increasing use is expected in the coming years. This review focuses on ASL perfusion MRI and applications in clinical neuroimaging. PMID:17599701

  7. 22 year cycle in the imbalance of the photospheric magnetic fluxes

    NASA Astrophysics Data System (ADS)

    Vernova, Elena; Baranov, Dmitrii; Tyasto, Marta

    The manifestation of the 22 year solar magnetic cycle in the imbalance of positive and negative photospheric magnetic fluxes is studied. For the analysis we use synoptic maps of the photospheric magnetic field of Kitt Peak Observatory (1976 - 2003) and John Wilcox Observatory in Stanford (1976 - 2012). We consider strong magnetic fields for the heliolatitudes in the interval from +40° to -40°. It is shown that the sign of the imbalance between positive and negative fluxes remains constant during 11 years from one inversion of the Sun’s global magnetic field to the next one and always coincides with the sign of the polar field in the Northern hemisphere. Thus, the imbalance between the magnetic fluxes of different polarities changes according to the 22 year cycle. The sign of the imbalance is determined both by the phase of the solar cycle (before or after the inversion) and by the parity of the solar cycle. The imbalance of positive and negative magnetic fluxes can be observed not only for the strong fields in the sunspot zone. The mean magnetic field of the Sun (Sun as a star), which is determined by the net flux of the background fields, changes according to the same pattern as the imbalance of the strong fields. The regular changes of the imbalance of the photospheric magnetic fields are reflected also in the parameters of heliosphere. We show the connection of the imbalance with the quadrupole component of the photospheric magnetic field and with the imbalance of the interplanetary magnetic field (the difference between the numbers of the days with positive and negative polarities of the interplanetary magnetic field near Earth).

  8. Multi-modality imaging for the assessment of myocardial perfusion with emphasis on stress perfusion CT and MR imaging.

    PubMed

    Ko, Sung Min; Hwang, Hweung Kon; Kim, Sung Mok; Cho, Ihn Ho

    2015-06-01

    High-quality and non-invasive diagnostic tools for assessing myocardial ischemia are necessary for therapeutic decisions regarding coronary artery disease. Myocardial perfusion has been studied using myocardial contrast echo perfusion, single-photon emission computed tomography, positron emission tomography, cardiovascular magnetic resonance, and, more recently, computed tomography. The addition of coronary computed tomography angiography to myocardial perfusion imaging improves the specificity and overall diagnostic accuracy of detecting the hemodynamic significance of coronary artery stenosis. This study reviews the benefits, limitations, and imaging findings of various imaging modalities for assessing myocardial perfusion, with particular emphasis on stress perfusion computed tomography and cardiovascular magnetic resonance imaging. PMID:25809387

  9. HVAC (heating, ventilation, air conditioning) literature in Japan: A critical review

    SciTech Connect

    Hane, G.J.

    1988-02-01

    Japanese businessmen in the heating, ventilation, air conditioning, and refrigeration (HVACandR) industry consider the monitoring of technical and market developments in the United States to be a normal part of their business. In contrast, efforts by US businessmen to monitor Japanese HVAC and R developments are poorly developed. To begin to redress this imbalance, this report establishes the groundwork for a more effective system for use in monitoring Japanese HVAC and R literature. Discussions of a review of the principal HVAC and R publications in Japan and descriptions of the type of information contained in each of those publications are included in this report. Since the Japanese HVAC and R literature is abundant, this report also provides practical suggestions on how a researcher or research manager can limit the monitoring effort to the publications and type of information that would most likely be of greatest value.

  10. Noninvasive ventilation in large postoperative flail chest.

    PubMed

    Piastra, Marco; De Luca, Daniele; Zorzi, Giulia; Ruggiero, Antonio; Antonelli, Massimo; Conti, Giorgio; Pietrini, Domenico

    2008-12-01

    An 11-year-old male developed a severe respiratory failure due to a iatrogenic flail chest following a surgery for removing a large chest wall area. A rare Ewing sarcoma was histologically diagnosed and intensive chemotherapy was administered. Postoperatively, because of the failure in ventilation weaning, the patient was electively extubated and noninvasive positive pressure ventilation through face-mask was provided. Respiratory support avoided asynchronous paradoxical movements and achieved pneumatic stabilization. Clinical and respiratory improvement allowed a successful weaning from ventilator. PMID:18798557

  11. Pretreatment with perfluorohexane vapor attenuates fMLP-induced lung injury in isolated perfused rabbit lungs.

    PubMed

    Bleyl, Jörg U; Heller, Axel R; Fehrenbach, Antonia; Heintz, Manuel; Fehrenbach, Heinz; Klenz, Gesa; Gama de Abreu, Marcelo; Hübler, Matthias; Spieth, Peter M; Koch, Thea

    2010-08-01

    The authors investigated the protective effects and dose dependency of perfluorohexane (PFH) vapor on leukocyte-mediated lung injury in isolated, perfused, and ventilated rabbit lungs. Lungs received either 18 vol.% (n = 7), 9 vol.% (n = 7), or 4.5 vol.% (n = 7) PFH. Fifteen minutes after beginning of PFH application, lung injury was induced with formyl-Met-Leu-Phe (fMLP). Control lungs (n = 7) received fMLP only. In addition 5 lungs (PFH-sham) remained uninjured receiving 18 vol.% PFH only. Pulmonary artery pressure (mPAP), peak inspiratory pressure (P(max)), and lung weight were monitored for 90 minutes. Perfusate samples were taken at regular intervals for analysis and representative lungs were fixed for histological analysis. In the control, fMLP application led to a significant increase of mPAP, P(max), lung weight, and lipid mediators. Pretreatment with PFH attenuated the rise in these parameters. This was accompanied by preservation of the structural integrity of the alveolar architecture and air-blood barrier. In uninjured lungs, mPAP, P(max), lung weight, and lipid mediator formation remained uneffected in the presence of PFH. The authors concluded that pretreatment with PFH vapor leads to an attenuation of leukocyte-mediated lung injury. Vaporization of perfluorocarbons (PFCs) offers new therapeutic options, making use of their protective and anti-inflammatory properties in prophylaxis or in early treatment of acute lung injury. PMID:20653469

  12. [Effect of using several levels of positive end-expiratory pressure over barotrauma's induced lung injury in a model of isolated and perfused rabbit lungs].

    PubMed

    Trejo, Humberto; Urich, Daniela; Pezzulo, Alejandro; Novoa, Eva; Marcano, Héctor; Crespo, Astrid; Sánchez de León, Roberto

    2006-03-01

    The use of Positive end-expiratory pressure (PEEP) as a strategy of mechanical ventilation offers its advantages, such as improved oxygenation, without causing alveolar overstretching and barotrauma. We aim to investigate the effect of several levels of PEEP on barotrauma and, whether an optimal level of PEEP exists. Forty-eight New Zealand rabbits (2.5-3.5 kg) were divided into four groups with PEEP settings of 0, 4, 8 and 12 cmH2O, at increasing levels of inspiratory volume (IV). This was done in blood perfused rabbit lungs and in lungs perfused with a Buffer-Albumin Solution. We observed that lungs ventilated with PEEP 0 cmH2O suffered pulmonary rupture at high IV (300cc), with significant increases of Pap (Pulmonary artery pressure) and FFR (Fluid filtration rate). Lungs ventilated with PEEP 8 and 12 suffered pulmonary rupture at lower IV (200cc and 150cc vs. 300cc respectively) On the other hand, lungs ventilated with PEEP 4 cmH2O reached the highest IV (400cc), in addition, they showed the lowest elevations of Pap and FFR. The acellular lungs ventilated with PEEP 4, 8 and 12 showed pulmonary rupture at lower IV when compared with cellular ones (300cc vs. 400cc: 100cc vs. 200cc and 100cc vs. 150cc respectively). We concluded that an optimal PEEP exists, which protects against barotrauma, however, excess of PEEP could enhance its development. The blood could contain some mediators which attenuate the damage induced by barotrauma. PMID:16562644

  13. Hepatotoxicants induce cytokine imbalance in response to innate immune system.

    PubMed

    Goto, Shima; Deguchi, Jiro; Nishio, Naoki; Nomura, Naruaki; Funabashi, Hitoshi

    2015-06-01

    In recent years, attention has been paid to innate immune systems as mechanisms to initiate or promote drug-induced liver injury (DILI). Kupffer cells are hepatic resident macrophages and might be involved in the pathogenesis of DILI by release of pro- and anti-inflammatory mediators such as cytokines, chemokines, reactive oxygen species, and/or nitric oxides. The purpose of this study was to investigate alterations in mediator levels induced by hepatotoxic compounds in isolated Kupffer cells and discuss the relation between balance of each cytokine or chemokine and potential of innate immune-mediated DILI. Primary cultured rat Kupffer cells were treated with hepatotoxic (acetaminophen, troglitazone, trovafloxacin) or non-hepatotoxic (pioglitazone, levofloxacin) compounds with or without lipopolysaccharide (LPS). After 24 hr treatment, cell supernatants were collected and various levels of mediators released by Kupffer cells were examined. Although hepatotoxicants had no effect on the LPS-induced tumor necrosis factor-alpha (TNF-α) secretion, they enhanced the release of pro-inflammatory cytokine interleukin-1 beta (IL-1β) and suppressed the anti-inflammatory cytokines interleukin-6 (IL-6) and interleukin-10 (IL-10) induced by LPS. These cytokine shifts were not associated with switching the phenotypes of M1 and M2 macrophages in Kupffer cells. In conclusion, the present study suggested that the levels of some specific cytokines are affected by DILI-related drugs with LPS stimulation, and imbalance between pro- and anti-inflammatory cytokines, induced by the up-regulation of IL-1β and the down-regulation of IL-6 or IL-10, plays a key role in innate immune-mediated DILI. PMID:25972199

  14. Power Imbalances, Food Insecurity, and Children's Rights in Canada.

    PubMed

    Blay-Palmer, Alison

    2016-01-01

    Increasingly, food is provided through an industrial food system that separates people from the source of their food and results in high rates of food insecurity, particularly for the most vulnerable in society. A lack of food is a symptom of a lack of power in a system that privileges free market principles over social justice and the protection of human rights. In Canada, the high rates of food insecurity among Canadian children is a reflection of their lack of power and the disregard of their human rights, despite the adoption of the United Nations (UN) Convention on the Rights of the Child in 1991 and ratification of the International Covenant on Social, Economic and Cultural Rights in 1976, which established the right to food for all Canadians. Dueling tensions between human rights and market forces underpin this unacceptable state of affairs in Canada. Gaventa's "power cube" that describes different facets of power - including spaces, levels, and forms - is used to help understand the power imbalances that underlie this injustice. The analysis considers the impact of neoliberal free market principles on the realization of human rights, and the negative impacts this can have on health and well-being for the most vulnerable in society. Canadian case studies from both community organizations provide examples of how power can be shifted to achieve more inclusive, rights-based policy and action. Given increased global pressures toward more open trade markets and national austerity measures that hollow out social supports, Canada provides a cautionary tale for countries in the EU and the US, and for overall approaches to protect the most vulnerable in society. PMID:27563642

  15. Carbon and nutrient use efficiencies optimally balance stoichiometric imbalances

    NASA Astrophysics Data System (ADS)

    Manzoni, Stefano; Čapek, Petr; Lindahl, Björn; Mooshammer, Maria; Richter, Andreas; Šantrůčková, Hana

    2016-04-01

    Decomposer organisms face large stoichiometric imbalances because their food is generally poor in nutrients compared to the decomposer cellular composition. The presence of excess carbon (C) requires adaptations to utilize nutrients effectively while disposing of or investing excess C. As food composition changes, these adaptations lead to variable C- and nutrient-use efficiencies (defined as the ratios of C and nutrients used for growth over the amounts consumed). For organisms to be ecologically competitive, these changes in efficiencies with resource stoichiometry have to balance advantages and disadvantages in an optimal way. We hypothesize that efficiencies are varied so that community growth rate is optimized along stoichiometric gradients of their resources. Building from previous theories, we predict that maximum growth is achieved when C and nutrients are co-limiting, so that the maximum C-use efficiency is reached, and nutrient release is minimized. This optimality principle is expected to be applicable across terrestrial-aquatic borders, to various elements, and at different trophic levels. While the growth rate maximization hypothesis has been evaluated for consumers and predators, in this contribution we test it for terrestrial and aquatic decomposers degrading resources across wide stoichiometry gradients. The optimality hypothesis predicts constant efficiencies at low substrate C:N and C:P, whereas above a stoichiometric threshold, C-use efficiency declines and nitrogen- and phosphorus-use efficiencies increase up to one. Thus, high resource C:N and C:P lead to low C-use efficiency, but effective retention of nitrogen and phosphorus. Predictions are broadly consistent with efficiency trends in decomposer communities across terrestrial and aquatic ecosystems.

  16. Copper Imbalances in Ruminants and Humans: Unexpected Common Ground1

    PubMed Central

    Suttle, Neville F.

    2012-01-01

    Ruminants are more vulnerable to copper deficiency than humans because rumen sulfide generation lowers copper availability from forage, increasing the risk of conditions such as swayback in lambs. Molybdenum-rich pastures promote thiomolybdate (TM) synthesis and formation of unabsorbable Cu-TM complexes, turning risk to clinical reality (hypocuprosis). Selection pressures created ruminant species with tolerance of deficiency but vulnerability to copper toxicity in alien environments, such as specific pathogen–free units. By contrast, cases of copper imbalance in humans seemed confined to rare genetic aberrations of copper metabolism. Recent descriptions of human swayback and the exploratory use of TM for the treatment of Wilson’s disease, tumor growth, inflammatory diseases, and Alzheimer’s disease have created unexpected common ground. The incidence of pre–hemolytic copper poisoning in specific pathogen–free lambs was reduced by an infection with Mycobacterium avium that left them more responsive to treatment with TM but vulnerable to long-term copper depletion. Copper requirements in ruminants and humans may need an extra allowance for the “copper cost” of immunity to infection. Residual cuproenzyme inhibition in TM-treated lambs and anomalies in plasma copper composition that appeared to depend on liver copper status raise this question “can chelating capacity be harnessed without inducing copper-deficiency in ruminants or humans?” A model of equilibria between exogenous (TM) and endogenous chelators (e.g., albumin, metallothionein) is used to predict risk of exposure and hypocuprosis; although risk of natural exposure in humans is remote, vulnerability to TM-induced copper deficiency may be high. Biomarkers of TM impact are needed, and copper chaperones for inhibited cuproenzymes are prime candidates. PMID:22983845

  17. Luminal perfusion of isolated gastric glands.

    PubMed

    Waisbren, S J; Geibel, J; Boron, W F; Modlin, I M

    1994-04-01

    We have extended to rabbit gastric glands the technique for perfusing single isolated renal tubules. We isolated glands by hand dissection and used concentric glass pipettes to hold them and perfuse their lumina. Parietal cells (PCs), which tended to be located toward the gland opening, were identified by their pyramidal shape, large size, and autofluorescence. Chief cells (CCs) were identified by their round shape and smaller size. In some experiments, we perfused the lumen with hydroxypyrenetrisulfonate, a pH-sensitive fluorophore, at pH 7.4 and used digital image processing to monitor luminal pH (pH1). Solutions were buffered with N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid to pH 7.4 at 37 degrees C. With fast perfusion, we found no evidence of decreased pH1, even with stimulation by 10 microM carbachol. With slow perfusion, pH1 often fell below the dye's sensitive range (pH < 5), especially at low perfusate buffering power. In other experiments, we loaded cells with the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein and monitored intracellular pH (pHi) in multiple individual PCs and CCs in a single gland. Mean pHi was 7.21 +/- 0.02 (n = 136 cells) for PCs and 7.27 +/- 0.03 (n = 103) for CCs. To examine the response to decreased pH1 and basolateral pH (pHb), we lowered pHb to 6.4 or lowered pH1 to 3.4 or 1.4. Lowering pHb to 6.4 for approximately 1 min caused pHi to fall reversibly by 0.39 +/- 0.05 (n = 53) in PCs and 0.58 +/- 0.03 (n = 50) in CCs. Lowering pH1 to 3.4 or 1.4 caused no significant pHi changes in PCs (n = 38 and 82) or in CCs (n = 44 and 77). Carbachol did not affect the response to changes in pH1 or pHb. We conclude that the apical surfaces of PCs and CCs are unusually resistant to extreme pH gradients. PMID:8178950

  18. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent...

  19. 46 CFR 72.15-15 - Ventilation for closed spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Ventilation for closed spaces. 72.15-15 Section 72.15-15... ARRANGEMENT Ventilation § 72.15-15 Ventilation for closed spaces. (a) All enclosed spaces within the vessel... spaces and for closing all doorways, ventilators and annular spaces around funnels and other openings...

  20. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the...

  1. 46 CFR 38.20-10 - Ventilation-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Ventilation-T/ALL. 38.20-10 Section 38.20-10 Shipping... Ventilation § 38.20-10 Ventilation—T/ALL. (a) A power ventilation system shall be provided for compartments... equipped with power ventilation of the exhaust type having capacity sufficient to effect a complete...

  2. 46 CFR 153.310 - Ventilation system type.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ventilation system type. 153.310 Section 153.310... Handling Space Ventilation § 153.310 Ventilation system type. A cargo handling space must have a permanent forced ventilation system of the exhaust type....

  3. 33 CFR 183.620 - Natural ventilation system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Natural ventilation system. 183... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Ventilation § 183.620 Natural ventilation system. (a) Except for compartments open to the atmosphere, a natural ventilation system that meets...

  4. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent...

  5. 46 CFR 72.15-15 - Ventilation for closed spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Ventilation for closed spaces. 72.15-15 Section 72.15-15... ARRANGEMENT Ventilation § 72.15-15 Ventilation for closed spaces. (a) All enclosed spaces within the vessel... spaces and for closing all doorways, ventilators and annular spaces around funnels and other openings...

  6. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent...

  7. 46 CFR 72.15-15 - Ventilation for closed spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Ventilation for closed spaces. 72.15-15 Section 72.15-15... ARRANGEMENT Ventilation § 72.15-15 Ventilation for closed spaces. (a) All enclosed spaces within the vessel... spaces and for closing all doorways, ventilators and annular spaces around funnels and other openings...

  8. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the...

  9. 46 CFR 108.181 - Ventilation for enclosed spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Ventilation for enclosed spaces. 108.181 Section 108.181... AND EQUIPMENT Construction and Arrangement Ventilation § 108.181 Ventilation for enclosed spaces. (a) Each enclosed space must be vented or ventilated. (b) There must be a means to close each vent...

  10. 46 CFR 72.15-15 - Ventilation for closed spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Ventilation for closed spaces. 72.15-15 Section 72.15-15... ARRANGEMENT Ventilation § 72.15-15 Ventilation for closed spaces. (a) All enclosed spaces within the vessel... spaces and for closing all doorways, ventilators and annular spaces around funnels and other openings...

  11. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the...

  12. 46 CFR 111.103-3 - Machinery space ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Machinery space ventilation. 111.103-3 Section 111.103-3...-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-3 Machinery space ventilation. (a) Each machinery space ventilation system must have two controls to stop the ventilation, one of which may be the...

  13. 21 CFR 868.5955 - Intermittent mandatory ventilation attachment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... providing mechanical ventilation at a preset rate. (b) Classification. Class II (performance standards). ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intermittent mandatory ventilation attachment. 868... mandatory ventilation attachment. (a) Identification. An intermittent mandatory ventilation (IMV)...

  14. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Mechanical ventilation system: General. 154.1200 Section... Equipment Cargo Area: Mechanical Ventilation System § 154.1200 Mechanical ventilation system: General. (a... cargo handling equipment must have a fixed, exhaust-type mechanical ventilation system. (b)...

  15. 33 CFR 183.620 - Natural ventilation system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Natural ventilation system. 183... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Ventilation § 183.620 Natural ventilation system. (a) Except for compartments open to the atmosphere, a natural ventilation system that meets...

  16. 30 CFR 75.330 - Face ventilation control devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Face ventilation control devices. 75.330... control devices. (a) Brattice cloth, ventilation tubing and other face ventilation control devices shall be made of flame-resistant material approved by MSHA. (b)(1) Ventilation control devices shall...

  17. 30 CFR 57.8532 - Opening and closing ventilation doors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Opening and closing ventilation doors. 57.8532 Section 57.8532 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Ventilation Underground Only § 57.8532 Opening and closing ventilation doors. When ventilation control...

  18. 30 CFR 57.8532 - Opening and closing ventilation doors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Opening and closing ventilation doors. 57.8532 Section 57.8532 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Ventilation Underground Only § 57.8532 Opening and closing ventilation doors. When ventilation control...

  19. 30 CFR 57.8532 - Opening and closing ventilation doors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Opening and closing ventilation doors. 57.8532 Section 57.8532 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Ventilation Underground Only § 57.8532 Opening and closing ventilation doors. When ventilation control...

  20. 30 CFR 57.8532 - Opening and closing ventilation doors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Opening and closing ventilation doors. 57.8532 Section 57.8532 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Ventilation Underground Only § 57.8532 Opening and closing ventilation doors. When ventilation control...