Science.gov

Sample records for ventilation perfusion imbalance

  1. Sustained ventilation: perfusion imbalance during hemodialysis.

    PubMed

    Milner, L S; Rothberg, A D; Thomson, P D; Stothart, M

    1983-06-01

    Five children between the ages of 6 and 15 years, who required chronic hemodialysis (HD) for renal failure, were studied to evaluate the central and pulmonary effects of HD on gas exchange. Acetate dialysate was used, and dialysate pO2 and pCO2, arterial pO2 and pCO2, endtidal CO2 and minute ventilation were measured pre-HD and 15, 30, 60, 120 and 240 minutes after commencement of HD. Arterial-alveolar CO2 gradient (aADCO2) was calculated to determine the ventilation: perfusion (V/Q) status. Minute ventilation did not change significantly from the pre-HD value of 8.9 +/- 1.1 l/min (mean +/- SD). The aADCO2 increased significantly from 3.2 +/- 3.7 mmHg to 8.4 +/- 2.4 mmHg at 15 mins (p less than .01) and was still elevated at 120 mins. (9.1 +/- 3.4 mmHg, p less than .02). There was a weak but significant inverse relationship between aADCO2 and arterial pO2 (r -0.42, p less than 0.05). The results suggest that, in these children, dialysed at altitude, dialysis-related hypoxemia appears to be the result of a sustained V/Q mismatch, possibly related to a decrease in pulmonary perfusion. PMID:6413444

  2. EFFECT OF VENTILATION AND PERFUSION IMBALANCE ON INERT GAS REBREATHING VARIABLES

    EPA Science Inventory

    The effects of ventilation-to-perfusion (Va/Qc) maldistribution within the lungs on measured multiple gas rebreathing variables were studied in 14 dogs. The rebreathing method (using He, C18C, and C2H2) allows for measurements of pulmonary capillary blood flow (Qc), diffusing cap...

  3. Pulmonary ventilation/perfusion scan

    MedlinePlus

    V/Q scan; Ventilation/perfusion scan; Lung ventilation/perfusion scan ... A pulmonary ventilation/perfusion scan is actually two tests. They may be done separately or together. During the perfusion scan, a health ...

  4. Lung Ventilation/Perfusion Scan

    MedlinePlus

    ... from the NHLBI on Twitter. What Is a Lung Ventilation/Perfusion Scan? A lung ventilation/perfusion scan, or VQ scan, is a ... that measures air and blood flow in your lungs. A VQ scan most often is used to ...

  5. Estimating a regional ventilation-perfusion index

    PubMed Central

    Muller, P A; Li, T; Isaacson, D; Newell, J C; Saulnier, G J; Kao, Tzu-Jen; Ashe, Jeffrey

    2015-01-01

    This is a methods paper, where an approximation to the local ventilation-perfusion ratio is derived. This approximation, called the ventilation-perfusion index since it is not exactly the physiological ventilation-perfusion ratio, is calculated using conductivity reconstructions obtained using electrical impedance tomography. Since computation of the ventilation-perfusion index only requires knowledge of the internal conductivity, any conductivity reconstruction method may be used. The method is explained, and results are presented using conductivities obtained from two EIT systems, one using an iterative method and the other a linearization method. PMID:26006279

  6. Methodology for ventilation/perfusion SPECT.

    PubMed

    Bajc, Marika; Neilly, Brian; Miniati, Massimo; Mortensen, Jan; Jonson, Björn

    2010-11-01

    Ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) is the scintigraphic technique of choice for the diagnosis of pulmonary embolism and many other disorders that affect lung function. Data from recent ventilation studies show that the theoretic advantages of Technegas over radiolabeled liquid aerosols are not restricted to the presence of obstructive lung disease. Radiolabeled macroaggregated human albumin is the imaging agent of choice for perfusion scintigraphy. An optimal combination of nuclide activities and acquisition times for ventilation and perfusion, collimators, and imaging matrix yields an adequate V/Q SPECT study in approximately 20 minutes of imaging time. The recommended protocol based on the patient remaining in an unchanged position during the initial ventilation study and the perfusion study allows presentation of matching ventilation and perfusion slices in all projections as well as in rotating volume images based upon maximum intensity projections. Probabilistic interpretation of V/Q SPECT should be replaced by a holistic interpretation strategy on the basis of all relevant information about the patient and all ventilation/perfusion patterns. PE is diagnosed when there is more than one subsegment showing a V/Q mismatch representing an anatomic lung unit. Apart from pulmonary embolism, other pathologies should be identified and reported, for example, obstructive disease, heart failure, and pneumonia. Pitfalls exist both with respect to imaging technique and scan interpretation. PMID:20920632

  7. Pulmonary perfusion during anesthesia and mechanical ventilation.

    PubMed

    Hedenstierna, G

    2005-06-01

    Cardiac output and the pulmonary perfusion can be affected by anesthesia and by mechanical ventilation. The changes contribute to impeded oxygenation of the blood. The major determinant of perfusion distribution in the lung is the relation between alveolar and pulmonary capillary pressures. Perfusion increases down the lung, due to hydrostatic forces. Since atelectasis is located in dependent lung regions, perfusion of non-ventilated lung parenchyma is common, producing shunt of around 8-10% of cardiac output. In addition, non-gravitational inhomogeneity of perfusion, that can be greater than the gravitational inhomogeneity, adds to impeded oxygenation of blood. Essentially all anaesthetics exert some, although mild, cardiodepressant action with one exception, ketamine. Ketamine may also increase pulmonary artery pressure, whereas other agents have little effect on pulmonary vascular tone. Mechanical ventilation impedes venous return and pushes blood flow downwards to dependent lung regions, and the effect may be striking with higher levels of PEEP. During one-lung anesthesia, there is shunt blood flow both in the non-ventilated and the ventilated lung, and shunt can be much larger in the ventilated lung than thought of. Recruitment manoeuvres shall be directed to the ventilated lung and other physical and pharmacological measures can be taken to manipulate blood flow in one lung anesthesia. PMID:15886595

  8. Ventilation-perfusion imaging in pulmonary papillomatosis

    SciTech Connect

    Espinola, D.; Rupani, H.; Camargo, E.E.; Wagner, H.N. Jr.

    1981-11-01

    Three children with laryngeal papillomas involving the lungs had serial ventilation-perfusion scintigrams to assess results of therapy designed to reduce the bronchial involvement. Different imaging patterns were observed depending on size, number, and location of lesions. In early parenchymal involvement a ventilation-perfusion mismatch was seen. The initial and follow-up studies correlated well with clinical and radiographic findings. This noninvasive procedure is helpful in evaluating ventilatory and perfusion impairment in these patients as well as their response to treatment.

  9. Measurement of continuous distributions of ventilation-perfusion ratios - Theory

    NASA Technical Reports Server (NTRS)

    Wagner, P. D.; Saltzman, H. A.; West, J. B.

    1974-01-01

    The resolution of the technique considered is sufficient to describe smooth distributions containing blood flow to unventilated regions (shunt), ventilation to unperfused regions (dead space), and up to three additional modes over the range of finite ventilation-perfusion ratios. In particular, areas whose ventilation-perfusion ratios are low can be separated from unventilated regions and those whose ventilation-perfusion ratios are high can similarly be distinguished from unperfused areas.

  10. Perfusion and ventilation of isolated canine lungs

    PubMed Central

    Otto, T. J.; Trenkner, M.; Stopczyk, A.; Gawdziński, M.; Chełstowska, B.

    1968-01-01

    In order to evaluate methods of preserving lungs for use in transplantation, experiments on 28 mongrel dogs were carried out. Two methods were tried—first, mechanical respiration of isolated lungs under deep hypothermia, with the vascular bed filled with blood; and, secondly, the perfusion of isolated lungs with the aid of a modified DeWall's apparatus. Allogenic transplantations of lungs preserved in both ways were carried out. Gasometric and histological examinations of preserved lungs, before and after transplantation, were performed. The best results were obtained with perfusion under hypothermic conditions; ventilation without perfusion resulted in failure. Lung transplantation was successful when, after being preserved, the lung remained unchanged. Major discrepancies between the macroscopic and microscopic findings in preserved lungs were observed. An original classification of the changes occurring in preserved lungs is proposed. PMID:4886091

  11. [Pulmonary ventilation/perfusion ratio].

    PubMed

    Guenard, H

    1987-01-01

    The ratios of ventilatory (V) and perfusion (Q) flow rates in the lung are to a large extent responsible for the efficiency of gas exchange. In a simplified monocompartmental model of the lung, the arterial partial pressure of a given gas (Pa) is a function of several factors: the solubility of this gas in blood, its venous and inspired partial pressures and the V/Q ratio. In a multicompartemental model, the mean arterial partial pressure of the gas is a function of the individual values of Pa in each compartment as well as the distribution of V/Q ratios in the lung and the relationship between the concentration and the partial pressure of the gas. The heterogeneity of the distribution of V/Q results from those of both V and Q. Two factors are mainly responsible for this heterogeneity: the gravity and the morphometric characteristics of bronchi and vessels. V/Q ratios are partially controlled at least in low V/Q compartments since hypoxia in these compartments leads to pulmonary arteriolar vasoconstriction. However lungs V/Q ratios range from 0.1 to 10 with a mode around 1. Age, muscular exercise, posture, accelerations, anesthesia, O2 breathing, pulmonary pathology are factors which may alter the distribution of V/Q ratios. PMID:3332289

  12. Spatial distribution of ventilation and perfusion: mechanisms and regulation.

    PubMed

    Glenny, Robb W; Robertson, H Thomas

    2011-01-01

    With increasing spatial resolution of regional ventilation and perfusion, it has become more apparent that ventilation and blood flow are quite heterogeneous in the lung. A number of mechanisms contribute to this regional variability, including hydrostatic gradients, pleural pressure gradients, lung compressibility, and the geometry of the airway and vascular trees. Despite this marked heterogeneity in both ventilation and perfusion, efficient gas exchange is possible through the close regional matching of the two. Passive mechanisms, such as the shared effect of gravity and the matched branching of vascular and airway trees, create efficient gas exchange through the strong correlation between ventilation and perfusion. Active mechanisms that match local ventilation and perfusion play little if no role in the normal healthy lung but are important under pathologic conditions. PMID:23737178

  13. Ventilation-perfusion matching during exercise

    NASA Technical Reports Server (NTRS)

    Wagner, P. D.

    1992-01-01

    In normal subjects, exercise widens the alveolar-arterial PO2 difference (P[A-a]O2) despite a more uniform topographic distribution of ventilation-perfusion (VA/Q) ratios. While part of the increase in P(A-a)O2 (especially during heavy exercise) is due to diffusion limitation, a considerable amount is caused by an increase in VA/Q mismatch as detected by the multiple inert gas elimination technique. Why this occurs is unknown, but circumstantial evidence suggests it may be related to interstitial pulmonary edema rather than to factors dependent on ventilation, airway gas mixing, airway muscle tone, or pulmonary vascular tone. In patients with lung disease, the gas exchange consequences of exercise are variable. Thus, arterial PO2 may increase, remain the same, or fall. In general, patients with advanced chronic obstructive pulmonary disease (COPD) or interstitial fibrosis who exercise show a fall in PO2. This is usually not due to worsening VA/Q relationships but mostly to the well-known fall in mixed venous PO2, which itself results from a relatively smaller increase in cardiac output than VO2. However, in interstitial fibrosis (but not COPD), there is good evidence that a part of the fall in PO2 on exercise is caused by alveolar-capillary diffusion limitation of O2 transport; in COPD (but not interstitial fibrosis), a frequent additional contributing factor to the hypoxemia of exercise is an inadequate ventilatory response, such that minute ventilation does not rise as much as does CO2 production or O2 uptake, causing arterial PCO2 to increase and PO2 to fall.

  14. Pulmonary ventilation and perfusion studies in lung cancer

    SciTech Connect

    Narabayashi, I.; Otsuka, N.

    1984-02-01

    In 46 patients with bronchogenic carcinoma, the diagnostic significance of pulmonary ventilation images by the continuous inhalation of Kr-81m gas, which has an extremely short half life, was studied in comparison with pulmonary perfusion images with Tc-99m MAA. The data were processed using digital analysis techniques. There were 15 cases with discrepancies between ventilation and perfusion. The V/Q ratios of the affected lung among the 43 patients showed values above 1.2 in nine cases and below 0.8 in six cases. The Kr-81m ventilation and Tc-99m perfusion images were compared before and after radiation therapy in eight patients. It was possible to assess the therapeutic effect on regional ventilation and regional perfusion, which could not be evaluated by chest x-ray alone, under the same conditions of normal breathing.

  15. Deep Vein Thrombosis Presenting on Pulmonary Ventilation and Perfusion Scintigraphy.

    PubMed

    Itani, Malak; Fair, Joanna; Hillman, Zachary; Behnia, Fatemeh; Elojeimy, Saeed

    2016-10-01

    A 52-year-old woman presenting with dyspnea was referred for a ventilation and perfusion scan (VQ). VQ images (with Tc-DTPA [diethylene triamine pentaacetic acid aerosol] and Tc-MAA [macroaggregated albumin]) initially appeared normal; however, count rates on perfusion images were similar to ventilation images, implying little Tc-MAA had reached the lungs. Spot images of the injected extremity demonstrated focal Tc-MAA accumulation worrisome for a venous thrombus, subsequently confirmed by Doppler ultrasound. Careful attention to relative radiotracer count rates on VQ scans is crucial to ensure diagnostic utility. In addition, abnormal low perfusion radiotracer counts may unveil other pathology with important clinical implications. PMID:27556796

  16. Ventilation-perfusion scintiscanning in tropical pulmonary eosinophilia.

    PubMed

    Ray, D; Jayachandran, C A

    1993-08-01

    We report the findings of ventilation and perfusion scintiscanning performed in three untreated patients with acute tropical pulmonary eosinophilia (TPE). In a 26-year-old man whose arterial blood gas values were normal, the lung scan showed normal radioactivity. The scintigrams of a 20-year-old woman who had hypoxemia and hypercapnea showed gross ventilation defects of both lungs that were mainly mismatched; changes in the perfusion scan were minimal. Scintiscanning in a 14-year-old girl who had moderate arterial hypoxia and mild hypocapnea, on the other hand, showed ventilation defects in both lungs, more marked in left lung; multiple matching ventilation-perfusion defects were also seen; however, the V/Q defects did not appear to be equally matched. The scintigraphic findings were compatible with arterial blood gas status of the individual patients and consistent with the notion that a disturbed ventilation-perfusion relationship may be responsible for hypoxemia in some of the patients with TPE. PMID:8339640

  17. Teaching Ventilation/Perfusion Relationships in the Lung

    ERIC Educational Resources Information Center

    Glenny, Robb W.

    2008-01-01

    This brief review is meant to serve as a refresher for faculty teaching respiratory physiology to medical students. The concepts of ventilation and perfusion matching are some of the most challenging ideas to learn and teach. Some strategies to consider in teaching these concepts are, first, to build from simple to more complex by starting with a…

  18. Postresection bronchopleural fistula: detection by regional ventilation-perfusion studies

    SciTech Connect

    Dixon, C.; Ali, M.K.; Atallah, M.R.; Ewer, M.S.

    1983-04-01

    In three patients, bronchopleural fistula developed after right pneumonectomy for bronchogenic carcinoma. In each instance, radiologic and clinical evidence was inconclusive. Xenon 133 regional ventilation-perfusion studies confirmed the diagnosis of a bronchopleural fistula in both the immediate and late postoperative periods.

  19. Topographic distribution of pulmonary ventilation and perfusion in the horse

    SciTech Connect

    Amis, T.C.; Pascoe, J.R.; Hornof, W.

    1984-08-01

    The regional distribution of ventilation to perfusion ratios (VA/Q) in the lungs of 8 healthy standing Thoroughbred geldings (4.4 +/- 1.5 years, 465.7 +/- 46.6 kg) was studied, using steady-state inhalation and IV infusion of the radioactive gas krypton-81m. The VA/Q was uniformly distributed within a vertical lung strip centered over the 9th rib on the right side. Ventilation per unit of alveolar volume (V/VA) assessed from the clearance of inhaled radioactive gas in 5 horses increased from 0.49 +/- 0.13 (arbitrary units) in nondependent lung zones to 1.45 +/- 0.16 in dependent lung zones. Seemingly, a vertical gradient of pulmonary ventilation exists in the horse that is matched by a similar gradient of perfusion.

  20. Ventilation perfusion radionuclide imaging in cryptogenic fibrosing alveolitis.

    PubMed

    Bourke, S J; Hawkins, T; Keavey, P M; Gascoigne, A D; Corris, P A

    1993-06-01

    There is increasing interest in ventilation perfusion (V/Q) imaging in cryptogenic fibrosing alveolitis because of the data these scans provide on the dynamic V/Q relationships in such patients undergoing single lung transplantation. However, the full spectrum of V/Q abnormalities in this disease is poorly defined. We therefore analysed the V/Q scans of 45 consecutive patients with advanced cryptogenic fibrosing alveolitis being considered for single lung transplantation. Scans were classified according to the presence, severity and degree of matching of defects in ventilation and perfusion images and the results were compared with the data obtained from lung function tests. Ventilation images showed defects in 13 (29%) and 'washout delay' in 15 (33%) patients; 10 (22%) patients had asymmetric distribution of ventilation with one lung receiving > 60% of total ventilation. Perfusion images showed normal perfusion in 8 (18%), mild defects in 18 (40%) and major defects in 19 (42%) patients. The distribution of perfusion between lungs was significantly asymmetric in 20 (45%) patients. V/Q images were matched in 15 (33%), mildly mismatched in 15 (33%) and severely mismatched in 15 (33%) patients, but the degree of V/Q mismatch did not show a relationship to KCO, PaO2 or A-aO2 gradient. The appearances were atypical of pulmonary embolism in eight patients. V/Q images in cryptogenic fibrosing alveolitis show a diverse range of appearances and may mimic pulmonary embolism. V/Q imaging complements the data obtained from lung function tests and is particularly useful in defining the differential function of each lung which is particularly important in the assessment of patients for single lung transplantation. PMID:8321484

  1. "Matching" ventilation/perfusion images in fat embolization.

    PubMed

    Skarzynski, J J; Slavin, J D; Spencer, R P; Karimeddini, M K

    1986-01-01

    Forty-eight hours after fracture of the tibia and fibula, a 27-year-old man developed the triad of findings noted in the fat embolism syndrome (neurologic changes, respiratory distress, and petechiae). An initially normal chest-x-ray, which progressed to one of bilateral fluffy diffuse infiltrates, aided in making the diagnosis. Ventilation/perfusion lung images were performed at the time of the radiographic changes and showed "matching" defects. Transcapillary passage of lipid breakdown products was considered to be the cause. While all parts of the lung showed reduced ventilation/perfusion, the upper half of the lung fields was affected more prominently, as opposed to emboli of venous origin, which most frequently involve the lung bases. PMID:3943243

  2. Ventilation-perfusion matching in long-term microgravity

    NASA Technical Reports Server (NTRS)

    Verbandt, Y.; Wantier, M.; Prisk, G. K.; Paiva, M.; West, J. B. (Principal Investigator)

    2000-01-01

    We studied the ventilation-perfusion matching pattern in normal gravity (1 G) and short- and long-duration microgravity (microG) using the cardiogenic oscillations in the sulfur hexaflouride (SF(6)) and CO(2) concentration signals during the phase III portion of vital capacity single-breath washout experiments. The signal power of the cardiogenic concentration variations was assessed by spectral analysis, and the phase angle between the oscillations of the two simultaneously expired gases was obtained through cross-correlation. For CO(2), a significant reduction of cardiogenic power was observed in microG, with respect to 1 G, but the reduction was smaller and more variable in the case of SF(6). A shift from an in-phase condition in 1 G to an out-of-phase condition was found for both short- and long-duration microG. We conclude that, although the distribution of ventilation and perfusion becomes more homogeneous in microG, significant inhomogeneities persist and that areas of high perfusion become associated with areas of relatively lower ventilation. In addition, these modifications seem to remain constant during long-term exposure to microG.

  3. Gas exchange and ventilation-perfusion relationships in the lung.

    PubMed

    Petersson, Johan; Glenny, Robb W

    2014-10-01

    This review provides an overview of the relationship between ventilation/perfusion ratios and gas exchange in the lung, emphasising basic concepts and relating them to clinical scenarios. For each gas exchanging unit, the alveolar and effluent blood partial pressures of oxygen and carbon dioxide (PO2 and PCO2) are determined by the ratio of alveolar ventilation to blood flow (V'A/Q') for each unit. Shunt and low V'A/Q' regions are two examples of V'A/Q' mismatch and are the most frequent causes of hypoxaemia. Diffusion limitation, hypoventilation and low inspired PO2 cause hypoxaemia, even in the absence of V'A/Q' mismatch. In contrast to other causes, hypoxaemia due to shunt responds poorly to supplemental oxygen. Gas exchanging units with little or no blood flow (high V'A/Q' regions) result in alveolar dead space and increased wasted ventilation, i.e. less efficient carbon dioxide removal. Because of the respiratory drive to maintain a normal arterial PCO2, the most frequent result of wasted ventilation is increased minute ventilation and work of breathing, not hypercapnia. Calculations of alveolar-arterial oxygen tension difference, venous admixture and wasted ventilation provide quantitative estimates of the effect of V'A/Q' mismatch on gas exchange. The types of V'A/Q' mismatch causing impaired gas exchange vary characteristically with different lung diseases. PMID:25063240

  4. Changes in distribution of lung perfusion and ventilation at rest and during maximal exercise

    SciTech Connect

    Mohsenifar, Z.; Ross, M.D.; Waxman, A.; Goldbach, P.; Koerner, S.K.

    1985-03-01

    A new method for evaluation of changes in the distribution of pulmonary perfusion and ventilation during exercise was applied to normal male volunteers. Ventilation and perfusion scans were done with the subjects seated on a bicycle ergometer. The resting studies utilized krypton 81 (/sup 81m/Kr) for ventilation and technetium /sup 99m/ (/sup 99m/Tc) macroaggregate albumin intravenously for perfusion. Exercise studies were done when 80 percent of maximum predicted heart rate was maintained for five minutes and utilized /sup 81m/Kr for ventilation and a tenfold dose of /sup 99m/Tc for perfusion. Higher dose of /sup 99m/Tc would minimize the effect of radioactivity left over from the resting study. This method allowed us to assess changes in ventilation and perfusion in normal subjects induced by exercise, but may also be applicable in a variety of cardiopulmonary conditions that affect pulmonary ventilation and perfusion or both.

  5. Regional ventilation/perfusion mismatch pattern in patient with Swyer James (MacLeod's) syndrome.

    PubMed

    Sager, Sait; Asa, Sertac; Akyel, Reşit; Atahan, Ersan; Kanmaz, Bedii

    2014-09-01

    Swyer James (McLeod's) syndrome (SJMS) is an uncommon disease, which occurs as a result of childhood bronchiolitis obliterans. Patients may not be diagnosed until later in their life. A 46-year-old man underwent ventilation/perfusion scintigraphy for acute onset of dyspnea. The scan showed markedly diminished ventilation and perfusion unilaterally on the right middle and inferior lobes. However, mismatched ventilation-perfusion pattern was shown on the upper right lobe, which was consistent with pulmonary embolism. Unilaterally matched ventilation/perfusion defect can see in SJMS in lung scintigraphy; however, when pulmoner embolism may accompany, scintigraphy should be carefully examined. PMID:25535507

  6. Ventilation/perfusion mismatch during lung aeration at birth.

    PubMed

    Lang, Justin A R; Pearson, James T; te Pas, Arjan B; Wallace, Megan J; Siew, Melissa L; Kitchen, Marcus J; Fouras, Andreas; Lewis, Robert A; Wheeler, Kevin I; Polglase, Graeme R; Shirai, Mikiyasu; Sonobe, Takashi; Hooper, Stuart B

    2014-09-01

    At birth, the transition to newborn life is triggered by lung aeration, which stimulates a large increase in pulmonary blood flow (PBF). Current theories predict that the increase in PBF is spatially related to ventilated lung regions as they aerate after birth. Using simultaneous phase-contrast X-ray imaging and angiography we investigated the spatial relationships between lung aeration and the increase in PBF after birth. Six near-term (30-day gestation) rabbits were delivered by caesarean section, intubated and an intravenous catheter inserted, before they were positioned for X-ray imaging. During imaging, iodine was injected before ventilation onset, after ventilation of the right lung only, and after ventilation of both lungs. Unilateral ventilation increased iodine levels entering both left and right pulmonary arteries (PAs) and significantly increased heart rate, iodine ejection per beat, diameters of both left and right PAs, and number of visible vessels in both lungs. Within the 6th intercostal space, the mean gray level (relative measure of iodine level) increased from 68.3 ± 11.6 and 70.3 ± 7.5%·s to 136.3 ± 22.6 and 136.3 ± 23.7%·s in the left and right PAs, respectively. No differences were observed between vessels in the left and right lungs, despite the left lung not initially being ventilated. The increase in PBF at birth is not spatially related to lung aeration allowing a large ventilation/perfusion mismatch, or pulmonary shunting, to occur in the partially aerated lung at birth. PMID:24994883

  7. Idiopathic pulmonary fibrosis. A rare cause of scintigraphic ventilation-perfusion mismatch

    SciTech Connect

    Pochis, W.T.; Krasnow, A.Z.; Collier, B.D.; Mewissen, M.W.; Almagro, U.A.; Hellman, R.S.; Isitman, A.T. )

    1990-05-01

    A case of idiopathic pulmonary fibrosis with multiple areas of mismatch on ventilation-perfusion lung imaging in the absence of pulmonary embolism is presented. Idiopathic pulmonary fibrosis is one of the few nonembolic diseases producing a pulmonary ventilation-perfusion mismatch. In this condition, chest radiographs may not detect the full extent of disease, and xenon-133 ventilation imaging may be relatively insensitive to morbid changes in small airways. Thus, when examining patients with idiopathic pulmonary fibrosis, one should be aware that abnormal perfusion imaging patterns without matching ventilation abnormalities are not always due to embolism. In this setting, contrast pulmonary angiography is often needed for accurate differential diagnosis.

  8. Effect of PEEP on regional ventilation and perfusion in the mechanically ventilated preterm lamb

    SciTech Connect

    Schlessel, J.S.; Susskind, H.; Joel, D.D.; Bossuyt, A.; Harrold, W.H.; Zanzi, I.; Chanana, A.D. )

    1989-08-01

    Improvement of gas exchange through closer matching of regional ventilation (V) and lung perfusion (Q) with the application of positive end-expiratory pressure (PEEP) was evaluated in vivo in six mechanically ventilated preterm lambs (107-126 days/145 days gestation). Changes in V and Q were determined from in vivo scintigraphic measurements in four lung regions with inhaled radioactive 81mKr, and infused {sup 81m}Kr/dextrose and/or ({sup 99m}Tc)MAA as PEEP was applied at 2, 4, and 6 cm H{sub 2}O in each animal. Dynamic compliance varied between 0.02 and 0.40 ml/cm H{sub 2}O, which was consistent with surfactant deficiency. As PEEP was increased, the regional distribution of Q shifted from the rostral to the caudal lung regions (p less than 0.02 to less than 0.05), while that of V remained unchanged. Regional V/Q matching improved together with a trend towards improvement of arterial blood gases as PEEP was increased from 2 to 4 cm H{sub 2}O. Pulmonary scintigraphy offers a noninvasive methodology for the quantitative assessment of regional V and Q matching in preterm lambs and may be clinically applicable to ventilated neonates.

  9. Ventilation-perfusion inequality in chronic obstructive pulmonary disease.

    PubMed Central

    Wagner, P D; Dantzker, D R; Dueck, R; Clausen, J L; West, J B

    1977-01-01

    A multiple inert gas elimination method was used to study the mechanism of impaired gas exchange in 23 patients with advanced chronic obstructive pulmonary disease (COPD). Three patterns of ventilation-perfusion (Va/Q) inequality were found: (a) A pattern with considerable regions of high (greater than 3) VA/Q, none of low (less than 0.1) VA/Q, and essentially no shunt. Almost all patients with type A COPD showed this pattern, and it was also seen in some patients with type B. (b) A pattern with large amounts of low but almost none of high VA/Q, and essentially no shunt. This pattern was found in 4 of 12 type B patients and 1 of type A. (c) A pattern with both low and high VA/Q areas was found in the remaining 6 patients. Distributions with high VA/Q areas occurred mostly in patients with greatly increased compliance and may represent loss of blood-glow due to alveolar wall destruction. Similarly, well-defined modes of low VA/Q areas were seen mostly in patients with severe cough and sputum and may be due to reduced ventilation secondary to mechanical airways obstruction or distortion. There was little change in the VA/Q distributions on exercise or on breathing 100% O2. The observed patterns of VA/Q inequality and shunt accounted for all of the hypoxemia at rest and during exercise. There was therefore no evidence for hypoxemia caused by diffusion impairment. Patients with similar arterial blood gases often had dissimilar VA/Q patterns. As a consequence the pattern of VA/Q inequality could not necessarily be inferred from the arterial PO2 and PCO2. PMID:833271

  10. Computed tomography studies of lung ventilation and perfusion.

    PubMed

    Hoffman, Eric A; Chon, Deokiee

    2005-01-01

    With the emergence of multidetector-row computed tomography (CT) it is now possible to image both structure and function via use of a single imaging modality. Breath-hold spiral CT provides detail of the airway and vascular trees along with texture reflective of the state of the lung parenchyma. Use of stable xenon gas wash-in and/or wash-out methods using an axial mode of the CT scanner whereby images are acquired through gating to the respiratory cycle provide detailed images of regional ventilation with isotropic voxel dimensions now on the order of 0.4 mm. Axial scanning during a breath hold and gating to the electrocardiogram during the passage of a sharp bolus injection of iodinated contrast agent provide detailed images of regional pulmonary perfusion. These dynamic CT methods for the study of regional lung function are discussed in the context of other methods that have been used to study heterogeneity of lung function. PMID:16352755

  11. Standing prone positioning in establishing causality between matched ventilation-perfusion defects and pleural effusion.

    PubMed

    Fotos, Joseph S; Tulchinsky, Mark

    2015-01-01

    Ventilation-perfusion scintigraphy is routinely performed in patients with suspected pulmonary thromboembolism. Pleural effusions in such patients are common and can cause matched ventilation-perfusion defects. This is especially true of the posterior projections in the supine patient. Prone positioning has been described as a useful technique to redistribute pleural fluid anteriorly, exposing perfusion in posterior lung fields; however, some patients have a concurrent condition that renders prone positioning difficult. This report discusses a modified technique that allows patients to be imaged in a standing prone position with excellent results. PMID:25247271

  12. Separation of ventilation and perfusion related signals within EIT-data streams

    NASA Astrophysics Data System (ADS)

    Pikkemaat, R.; Leonhardt, S.

    2010-04-01

    Electrical impedance tomography is a widely established technique for ventilation monitoring in the case of clinical research. To assess the capability of a patient's gas exchange, it is necessary to determine the regional supply of ventilation V as well as the local perfusion Q. Therefore, many approaches have been investigated to extract both signals from EIT-data, which would allow a V/Q-mapping. The challenge of this issue depends on the very weak perfusion related signal compared to the signal of ventilation. First approaches to visualize the perfusion were performed inducing apnea, ECG-gating or were based on Fourier series. Rather new techniques use principle component analysis (PCA) defining eigenvectors as a signal in time and thus try to determine "typical" ventilatory as well perfusion related signal streams. In this work, the algorithms of separation will be analyzed and compared (using apnea needs no separation and will not be discussed in this work).

  13. Comparison of 4-Dimensional Computed Tomography Ventilation With Nuclear Medicine Ventilation-Perfusion Imaging: A Clinical Validation Study

    PubMed Central

    Vinogradskiy, Yevgeniy; Koo, Phillip J.; Castillo, Richard; Castillo, Edward; Guerrero, Thomas; Gaspar, Laurie E.; Miften, Moyed; Kavanagh, Brian D.

    2014-01-01

    Purpose Four-dimensional computed tomography (4DCT) ventilation imaging provides lung function information for lung cancer patients undergoing radiation therapy. Before 4DCT-ventilation can be implemented clinically it needs to be validated against an established imaging modality. The purpose of this work was to compare 4DCT-ventilation to nuclear medicine ventilation, using clinically relevant global metrics and radiologist observations. Methods and Materials Fifteen lung cancer patients with 16 sets of 4DCT and nuclear medicine ventilation-perfusion (VQ) images were used for the study. The VQ-ventilation images were acquired in planar mode using Tc-99m-labeled diethylenetriamine-pentaacetic acid aerosol inhalation. 4DCT data, spatial registration, and a density-change-based model were used to compute a 4DCT-based ventilation map for each patient. The percent ventilation was calculated in each lung and each lung third for both the 4DCT and VQ-ventilation scans. A nuclear medicine radiologist assessed the VQ and 4DCT scans for the presence of ventilation defects. The VQ and 4DCT-based images were compared using regional percent ventilation and radiologist clinical observations. Results Individual patient examples demonstrate good qualitative agreement between the 4DCT and VQ-ventilation scans. The correlation coefficients were 0.68 and 0.45, using the percent ventilation in each individual lung and lung third, respectively. Using radiologist-noted presence of ventilation defects and receiver operating characteristic analysis, the sensitivity, specificity, and accuracy of the 4DCT-ventilation were 90%, 64%, and 81%, respectively. Conclusions The current work compared 4DCT with VQ-based ventilation using clinically relevant global metrics and radiologist observations. We found good agreement between the radiologist’s assessment of the 4DCT and VQ-ventilation images as well as the percent ventilation in each lung. The agreement lessened when the data were analyzed

  14. Comparison of 4-Dimensional Computed Tomography Ventilation With Nuclear Medicine Ventilation-Perfusion Imaging: A Clinical Validation Study

    SciTech Connect

    Vinogradskiy, Yevgeniy; Koo, Phillip J.; Castillo, Richard; Castillo, Edward; Guerrero, Thomas; Gaspar, Laurie E.; Miften, Moyed; Kavanagh, Brian D.

    2014-05-01

    Purpose: Four-dimensional computed tomography (4DCT) ventilation imaging provides lung function information for lung cancer patients undergoing radiation therapy. Before 4DCT-ventilation can be implemented clinically it needs to be validated against an established imaging modality. The purpose of this work was to compare 4DCT-ventilation to nuclear medicine ventilation, using clinically relevant global metrics and radiologist observations. Methods and Materials: Fifteen lung cancer patients with 16 sets of 4DCT and nuclear medicine ventilation-perfusion (VQ) images were used for the study. The VQ-ventilation images were acquired in planar mode using Tc-99m-labeled diethylenetriamine-pentaacetic acid aerosol inhalation. 4DCT data, spatial registration, and a density-change-based model were used to compute a 4DCT-based ventilation map for each patient. The percent ventilation was calculated in each lung and each lung third for both the 4DCT and VQ-ventilation scans. A nuclear medicine radiologist assessed the VQ and 4DCT scans for the presence of ventilation defects. The VQ and 4DCT-based images were compared using regional percent ventilation and radiologist clinical observations. Results: Individual patient examples demonstrate good qualitative agreement between the 4DCT and VQ-ventilation scans. The correlation coefficients were 0.68 and 0.45, using the percent ventilation in each individual lung and lung third, respectively. Using radiologist-noted presence of ventilation defects and receiver operating characteristic analysis, the sensitivity, specificity, and accuracy of the 4DCT-ventilation were 90%, 64%, and 81%, respectively. Conclusions: The current work compared 4DCT with VQ-based ventilation using clinically relevant global metrics and radiologist observations. We found good agreement between the radiologist's assessment of the 4DCT and VQ-ventilation images as well as the percent ventilation in each lung. The agreement lessened when the data were analyzed

  15. Effect of Endobronchial Valve Therapy on Pulmonary Perfusion and Ventilation Distribution

    PubMed Central

    Pizarro, Carmen; Ahmadzadehfar, Hojjat; Essler, Markus; Tuleta, Izabela; Fimmers, Rolf; Nickenig, Georg; Skowasch, Dirk

    2015-01-01

    Introduction Endoscopic lung volume reduction (ELVR) is an emerging therapy for emphysematous COPD. However, any resulting changes in lung perfusion and ventilation remain undetermined. Here, we report ELVR-mediated adaptations in lung perfusion and ventilation, as investigated by means of pulmonary scintigraphy. Methods In this observational study, we enrolled 26 patients (64.9±9.4 yrs, 57.7% male) with COPD heterogeneous emphysema undergoing ELVR with endobronchial valves (Zephyr, Pulmonx, Inc.). Mean baseline FEV1 and RV were 32.9% and 253.8% predicted, respectively. Lung scintigraphy was conducted prior to ELVR and eight weeks thereafter. Analyses of perfusion and ventilation shifts were performed and complemented by correlation analyses between paired zones. Results After ELVR, target zone perfusion showed a mean relative reduction of 43.32% (p<0.001), which was associated with a significant decrease in target zone ventilation (p<0.001). Perfusion of the contralateral untreated zone and of the contralateral total lung exhibited significant increases post-ELVR (p = 0.002 and p = 0.005, respectively); both correlated significantly with the corresponding target zone perfusion adaptations. Likewise, changes in target zone ventilation correlated significantly with ventilatory changes in the contralateral untreated zone and the total contralateral lung (Pearson’s r: −0.42, p = 0.04 and Pearson’s r: −0.42, p = 0.03, respectively). These effects were observed in case of clinical responsiveness to ELVR, as assessed by changes in the six-minute walk test distance. Discussion ELVR induces a relevant decrease in perfusion and ventilation of the treated zone with compensatory perfusional and ventilatory redistribution to the contralateral lung, primarily to the non-concordant, contralateral zone. PMID:25822624

  16. Ventilation/Perfusion Scintigraphy in Children with Post-Infectious Bronchiolitis Obliterans: A Pilot Study

    PubMed Central

    Xie, Bo-Qia; Wang, Wei; Zhang, Wen-Qian; Guo, Xin-Hua; Yang, Min-Fu; Wang, Li; He, Zuo-Xiang; Tian, Yue-Qin

    2014-01-01

    Purpose Childhood post-infectious bronchiolitis obliterans (BO) is an infrequent lung disease leading to narrowing and/or complete obliteration of small airways. Ventilation and perfusion (V/Q) scan can provide both regional and global pulmonary information. However, only few retrospective researches investigating post-infectious BO involved V/Q scan, the clinical value of this method is unknown. This preliminary prospective study was aimed to evaluate the correlation of V/Q scan with disease severity, pulmonary function test results, and prognosis in children with post-infectious BO. Methods Twenty-five post-infectious BO children (18 boys and 7 girls; mean age, 41 months) underwent V/Q scan and pulmonary function tests. Patients were followed after their inclusion. Ventilation index and perfusion index obtained from V/Q scan were used to measure pulmonary abnormalities. Spearman's rank correlation test of ventilation index and perfusion index on disease severity, lung function tests indices, and follow-up results were performed. Results The median follow-up period was 4.6 years (range, 2.2 to 5.0 years). Ventilation index and perfusion index were both correlated with disease severity (r = 0.72, p<0.01 and r = 0.73, p<0.01), but only ventilation index was related to pulmonary function tests results (all p<0.05). In addition, Spearman test yielded significant correlations between perfusion index and prognosis (r = 0.77, p<0.01), and ventilation index and prognosis (r = 0.63, p = 0.01). Conclusions For children with post-infectious BO, the present study preliminarily indicated that the degree of ventilation and perfusion abnormalities evaluated by V/Q scan may be used to assess disease severity, and may be predictive of patient's outcome. PMID:24852165

  17. Dynamic chest radiography with a flat-panel detector (FPD): ventilation-perfusion study

    NASA Astrophysics Data System (ADS)

    Tanaka, R.; Sanada, S.; Fujimura, M.; Yasui, M.; Tsuji, S.; Hayashi, N.; Okamoto, H.; Nanbu, Y.; Matsui, O.

    2011-03-01

    Pulmonary ventilation and blood flow are reflected in dynamic chest radiographs as changes in X-ray translucency, i.e., pixel values. This study was performed to investigate the feasibility of ventilation-perfusion (V/Q) study based on the changes in pixel value. Sequential chest radiographs of a patient with ventilation-perfusion mismatch were obtained during respiration using a dynamic flat-panel detector (FPD) system. The lung area was recognized and average pixel value was measured in each area, tracking and deforming the region of interest. Inter-frame differences were then calculated, and the absolute values were summed in each respiratory phase. The results were visualized as ventilation, blood flow, V/Q ratio distribution map and compared to distribution of radioactive counts on ventilation and perfusion scintigrams. In the results, abnormalities were appeared as a reduction of changes in pixel values, and a correlation was observed between the distribution of changes in pixel value and those of radioactivity counts (Ventilation; r=0.78, Perfusion; r=0.77). V/Q mismatch was also indicated as mismatch of changes in pixel value, and a correlation with V/Q calculated by radioactivity counts (r=0.78). These results indicated that the present method is potentially useful for V/Q study as an additional examination in conventional chest radiography.

  18. Perfusion and ventilation filters for Fourier-decomposition MR lung imaging.

    PubMed

    Wujcicki, Artur; Corteville, Dominique; Materka, Andrzej; Schad, Lothar R

    2015-03-01

    MR imaging without the use of contrast agents has recently been used for creating perfusion and ventilation functional lung images. The technique incorporates frequency- or wavelet-domain filters to separate the MR signal components. This paper presents a new, subject-adaptive algorithm for perfusion and ventilation filters design. The proposed algorithm uses a lung signal model for separation of the signal components in the frequency domain. Non-stationary lung signals are handled by a short time Fourier transform. This method was applied to sets of 192 and 90 co-registered non-contrast MR lung images measured for five healthy subjects at the rate of 3,33 images per second, using different slice thicknesses. In each case, the resulted perfusion and ventilation images showed a smaller amount of mutual information, when compared to those obtained using the known lowpass/highpass filter approach. PMID:25466452

  19. Optimization of isolated perfused/ventilated mouse lung to study hypoxic pulmonary vasoconstriction

    PubMed Central

    Yoo, Hae Young; Zeifman, Amy; Ko, Eun A.; Smith, Kimberly A.; Chen, Jiwang; Machado, Roberto F.; Zhao, You-Yang; Minshall, Richard D.; Yuan, Jason X.-J.

    2013-01-01

    Hypoxic pulmonary vasoconstriction (HPV) is a compensatory physiological mechanism in the lung that optimizes the matching of ventilation to perfusion and thereby maximizes gas exchange. Historically, HPV has been primarily studied in isolated perfused/ventilated lungs; however, the results of these studies have varied greatly due to different experimental conditions and species. Therefore, in the present study, we utilized the mouse isolated perfused/ventilated lung model for investigation of the role of extracellular Ca2+ and caveolin-1 and endothelial nitric oxide synthase expression on HPV. We also compared HPV using different perfusate solutions: Physiological salt solution (PSS) with albumin, Ficoll, rat blood, fetal bovine serum (FBS), or Dulbecco's Modified Eagle Medium (DMEM). After stabilization of the pulmonary arterial pressure (PAP), hypoxic (1% O2) and normoxic (21% O2) gases were applied via a ventilator in five-minute intervals to measure HPV. The addition of albumin or Ficoll with PSS did not induce persistent and strong HPV with or without a pretone agent. DMEM with the inclusion of FBS in the perfusate induced strong HPV in the first hypoxic challenge, but the HPV was neither persistent nor repetitive. PSS with rat blood only induced a small increase in HPV amplitude. Persistent and repetitive HPV occurred with PSS with 20% FBS as perfusate. HPV was significantly decreased by the removal of extracellular Ca2+ along with addition of 1 mM EGTA to chelate residual Ca2+ and voltage-dependent Ca2+ channel blocker (nifedipine 1 μM). PAP was also reactive to contractile stimulation by high K+ depolarization and U46619 (a stable analogue of thromboxane A2). In summary, optimal conditions for measuring HPV were established in the isolated perfused/ventilated mouse lung. Using this method, we further confirmed that HPV is dependent on Ca2+ influx. PMID:24015341

  20. Impaired matching of perfusion and ventilation in heart failure detected by 133xenon.

    PubMed

    Lewis, N P; Banning, A P; Cooper, J P; Sundar, A S; Facey, P E; Evans, W D; Henderson, A H

    1996-01-01

    In severe chronic heart failure (CHF) the ventilatory cost of CO2 elimination during exercise (VE/VCO2) is increased, suggesting ventilation/perfusion (V/Q) mismatch. The relationship of exercise VE/VCO2 regression slope m to deadspace ventilation was studied in 15 patients with CHF who underwent cardiopulmonary exercise testing and arterial blood gas monitoring. Regional lung ventilation and perfusion was studied, using 133xenon, at rest and peak exercise in a further group of 10 CHF patients and in five normal subjects. VE/VCO2 slope m correlated well with deadspace ventilation at peak exercise in the 15 patients with CHF. We therefore used exercise VE/VCO2 slope m to categorize CHF patients undergoing 133xenon imaging into groups with increased (slope m > 36) or normal (slope m < 36) exercise deadspace ventilation. In normals, resting V/Q determined by 133xenon showed a gravitational gradient, which improved on exercise as a result of relative increases and of relative reductions in regional perfusion; no significant changes in regional ventilation distribution were detected. In patients with CHF who had normal slope m (n = 5), rest and exercise V/Q were similar to the normal subjects. In CHF patients with increased slope m (n = 5) however, the resting gravitational gradient of V/Q was lost, and there were no significant changes in relative perfusion distribution on exercise. These findings suggest that the increased ventilatory cost of CO2 elimination found in certain patients with CHF is related to inability to coordinate and optimise the relative distribution of lung perfusion with respect to ventilation during exercise. PMID:8896743

  1. Bilateral basal Xe-133 retention and ventilation/perfusion patterns in mild and subclinical congestive heart failure

    SciTech Connect

    Lee, H.K.; Skarzynski, J.J.; Spadaro, A. )

    1989-12-01

    The Xe-133 ventilation pattern in congestive heart failure (CHF) was assessed using 24 inpatient ventilation/perfusion studies performed to rule out pulmonary embolism. Patients with histories of CHF, myocardial infarction (MI), and cardiomyopathy were included in the study. Frank pulmonary edema, pulmonary embolism, and other known lung diseases such as chronic obstructive lung disease, tumor, and pneumonia were excluded. Fifteen of the 24 patients had abnormal ventilation scans. Twelve of the 15 showed bilateral basal Xe-133 retention on washout; the remaining 3 showed diffuse, posterior regional retention. On perfusion scans, 14 of the 15 abnormal ventilation patients showed evidence of CHF such as inverted perfusion gradient, enlarged cardiac silhouette, or patchy perfusion, and all of them had a history of CHF or cardiac disease. Nine of the 24 patients had normal ventilation scans, including normal washout patterns. Seven of the nine had normal perfusion (p less than 0.01). Four of the nine normal ventilation patients had a history of cardiac disease or CHF but no recent acute MI. Bilateral basal regional Xe-133 retention, coupled with perfusion scan evidence of CHF such as inverted perfusion gradient, enlarged cardiac silhouette, and patchy perfusion pattern, appears to be a sensitive and characteristic ventilation/perfusion finding in mild or subclinical CHF.

  2. Distribution of pulmonary ventilation and perfusion during short periods of weightlessness

    NASA Technical Reports Server (NTRS)

    Michels, D. B.; West, J. B.

    1978-01-01

    Airborne experiments were conducted on four trained normal male subjects (28-40 yr) to study pulmonary function during short periods (22-27 sec) of zero gravity obtained by flying a jet aircraft through appropriate parabolic trajectories. The cabin was always pressurized to a sea-level altitude. The discussion is limited to pulmonary ventilation and perfusion. The results clearly demonstrate that gravity is the major factor causing nonuniformity in the topographical distribution of pulmonary ventilation. More importantly, the results suggest that virtually all the topographical nonuniformity of ventilation, blood flow, and lung volume observed under 1-G conditions are eliminated during short periods of zero gravity.

  3. A General Approach to the Evaluation of Ventilation-Perfusion Ratios in Normal and Abnormal Lungs

    ERIC Educational Resources Information Center

    Wagner, Peter D.

    1977-01-01

    Outlines methods for manipulating multiple gas data so as to gain the greatest amount of insight into the properties of ventilation-perfusion distributions. Refers to data corresponding to normal and abnormal lungs. Uses a two-dimensional framework with the respiratory gases of oxygen and carbon dioxide. (CS)

  4. Prediction of postoperative pulmonary function following thoracic operations. Value of ventilation-perfusion scanning

    SciTech Connect

    Bria, W.F.; Kanarek, D.J.; Kazemi, H.

    1983-08-01

    Surgical resection of lung cancer is frequently required in patients with severely impaired lung function resulting from chronic obstructive pulmonary disease. Twenty patients with obstructive lung disease and cancer (mean preoperative forced expiratory volume in 1 second (FEV1) . 1.73 L) were studied preoperatively and postoperatively by spirometry and radionuclide perfusion, single-breath ventilation, and washout techniques to test the ability of these methods to predict preoperatively the partial loss of lung function by the resection. Postoperative FEV1 and forced vital capacity (FVC) were accurately predicted by the formula: postoperative FEV1 (or FVC) . preoperative FEV1 X percent function of regions of lung not to be resected (r . 0.88 and 0.95, respectively). Ventilation and perfusion scans are equally effective in prediction. Washout data add to the sophistication of the method by permitting the qualitative evaluation of ventilation during tidal breathing. Criteria for patients requiring the study are suggested.

  5. Evaluation of pulmonary perfusion in lung regions showing isolated xenon-133 ventilation washout defects

    SciTech Connect

    Bushnell, D.L.; Sood, K.B.; Shirazi, P.; Pal, I. )

    1990-08-01

    Xenon-133 washout phase imaging is often used to help determine whether the etiology of a perfusion defect is embolic or due to pulmonary parenchymal pathology, such as chronic obstructive pulmonary disease. This study was designed to evaluate the pulmonary blood flow patterns associated with isolated defects on xenon washout images. Scintigraphic lung studies were reviewed until 100 cases with abnormal ventilation results were obtained. Ventilation abnormalities were compared with the corresponding perfusion scan results at the same anatomic site. Of the 208 individual lung regions with xenon abnormalities, 111 showed isolated washout defects (that is, with normal washin). Ninety-four of these 111 sites showed either normal perfusion or a small, nonsegmental corresponding perfusion defect. Three segmental perfusion defects were noted in association with isolated xenon retention. In each of these cases, however, the patient was felt actually to have pulmonary embolism. Thus, it is recommended that, for interpretation of scintigraphic images in the assessment of pulmonary embolism, lung pathology associated with isolated xenon retention not be considered a potential cause for large or segmental perfusion defects.

  6. Intensity correlation of ventilation-perfusion lung images

    NASA Astrophysics Data System (ADS)

    Costa, Antonio A.; Vaz de Carvalho, Carlos; Seixas, M.; Ferreira, F. N.; Guedes, M. A.; Amaral, I.

    1993-07-01

    The purpose of this study is to develop a method to create new images, based on lung verification and perfusion raw nuclear medicine images obtained from a gamma camera, that may help the correlation of their intrinsic information. Another major topic of this study is the assessment of the usefulness of this method in the detection of lung malfunction.

  7. Diffusing capacities and ventilation: perfusion ratios in patients with the clinical syndrome of alveolar capillary block

    PubMed Central

    Arndt, Hartmut; King, Thomas K. C.; Briscoe, William A.

    1970-01-01

    Studies were performed on 10 patients with the clinical syndrome of alveolar capillary block while each patient was breathing four different inspired oxygen mixtures. The data were interpreted using the principle of the Bohr integral isopleth with which alveolar oxygen tension in the differently ventilated parts of the lung can initially be treated as unknown. It is then possible to determine the distribution of ventilation, of perfusion, of diffusing capacity, of lung volume, and of alveolar and end capillary blood oxygen tension in the variously functioning parts of the lung. In two patients shunts were the major factor interfering with oxygen transfer. In four others inequalities in ventilation: perfusion ratios and in diffusing capacity in different parts of the lung were the factors interfering with oxygen transfer. In four more patients ventilation: perfusion ratios were the same throughout the lung, the only disturbance of oxygen transfer being in the total diffusing capacity or in its distribution between the different parts of the lung. PMID:5411791

  8. Myocardial perfusion as assessed by thallium-201 scintigraphy during the discontinuation of mechanical ventilation in ventilator-dependent patients

    SciTech Connect

    Hurford, W.E.; Lynch, K.E.; Strauss, H.W.; Lowenstein, E.; Zapol, W.M. )

    1991-06-01

    Patients who cannot be separated from mechanical ventilation (MV) after an episode of acute respiratory failure often have coexisting coronary artery disease. The authors hypothesized that increased left ventricular (LV) wall stress during periods of spontaneous ventilation (SV) could alter myocardial perfusion in these patients. Using thallium-201 (201TI) myocardial scintigraphy, the authors studied the occurrence of myocardial perfusion abnormalities during periods of SV in 15 MV-dependent patients (nine women, six men; aged 71 {plus minus} 7 yr, mean {plus minus} SD). Fourteen of these patients were studied once with 201TI myocardial scintigraphy during intermittent mechanical ventilation (IMV) and again on another day, after at least 10 min of SV through a T-piece. One patient was studied during SV only. Thirteen of 14 of the patients (93%) studied during MV had abnormal patterns of initial myocardial 201TI uptake, but only 1 patient demonstrated redistribution of 201TI on delayed images. The remainder of the abnormalities observed during MV were fixed defects. SV produced significant alterations of myocardial 201TI distribution or transient LV dilation, or both, in 7 of the 15 patients (47%). Four patients demonstrated new regional decreases of LV myocardial thallium concentration with redistribution of the isotope on delayed images. The patient studied only during SV also had myocardial 201TI defects with redistribution. Five patients (3 also having areas of 201TI redistribution) had transient LV dilation during SV.

  9. Computation of ventilation-perfusion ratio with Kr-81m in pulmonary embolism

    SciTech Connect

    Meignan, M.; Simonneau, G.; Oliveira, L.; Harf, A.; Cinotti, L.; Cavellier, J.F.; Duroux, P.; Ansquer, J.C.; Galle, P.

    1984-02-01

    Diagnostic difficulties occur in pulmonary embolism (PE) during visual analysis of ventilation-perfusion images in matched defects or in chronic obstructive lung disease (COPD). In 44 patients with angiographically confirmed PE and in 40 patients with COPD, the regional ventilation-perfusion ratios (V/Q) were therefore computed using krypton-81m for each perfusion defect, and were displayed in a functional image. In patients with PE and mismatched defects, a high V/Q (1.96) was observed. A V/Q > 1.25 was also found in nine of 11 patients having PE and indeterminate studies (studies with perfusion abnormalities matched by radiographic abnormalities). COPD was characterized by matched defects and low V/Q. The percentage of patients correctly classified as having PE or COPD increased from 56% when considering the match or mismatched character to 88% when based on a V/Q of 1.25 in the region of the perfusion defect. This quantitative analysis, therefore, seems useful in classifying patients with scintigraphic suspicion of PE.

  10. Ventilation/Perfusion Positron Emission Tomography—Based Assessment of Radiation Injury to Lung

    SciTech Connect

    Siva, Shankar; Hardcastle, Nicholas; Kron, Tomas; Bressel, Mathias; Callahan, Jason; MacManus, Michael P.; Shaw, Mark; Plumridge, Nikki; Hicks, Rodney J.; Steinfort, Daniel; Ball, David L.; Hofman, Michael S.

    2015-10-01

    Purpose: To investigate {sup 68}Ga-ventilation/perfusion (V/Q) positron emission tomography (PET)/computed tomography (CT) as a novel imaging modality for assessment of perfusion, ventilation, and lung density changes in the context of radiation therapy (RT). Methods and Materials: In a prospective clinical trial, 20 patients underwent 4-dimensional (4D)-V/Q PET/CT before, midway through, and 3 months after definitive lung RT. Eligible patients were prescribed 60 Gy in 30 fractions with or without concurrent chemotherapy. Functional images were registered to the RT planning 4D-CT, and isodose volumes were averaged into 10-Gy bins. Within each dose bin, relative loss in standardized uptake value (SUV) was recorded for ventilation and perfusion, and loss in air-filled fraction was recorded to assess RT-induced lung fibrosis. A dose-effect relationship was described using both linear and 2-parameter logistic fit models, and goodness of fit was assessed with Akaike Information Criterion (AIC). Results: A total of 179 imaging datasets were available for analysis (1 scan was unrecoverable). An almost perfectly linear negative dose-response relationship was observed for perfusion and air-filled fraction (r{sup 2}=0.99, P<.01), with ventilation strongly negatively linear (r{sup 2}=0.95, P<.01). Logistic models did not provide a better fit as evaluated by AIC. Perfusion, ventilation, and the air-filled fraction decreased 0.75 ± 0.03%, 0.71 ± 0.06%, and 0.49 ± 0.02%/Gy, respectively. Within high-dose regions, higher baseline perfusion SUV was associated with greater rate of loss. At 50 Gy and 60 Gy, the rate of loss was 1.35% (P=.07) and 1.73% (P=.05) per SUV, respectively. Of 8/20 patients with peritumoral reperfusion/reventilation during treatment, 7/8 did not sustain this effect after treatment. Conclusions: Radiation-induced regional lung functional deficits occur in a dose-dependent manner and can be estimated by simple linear models with 4D-V/Q PET

  11. Composite pseudocolor images: a technique to enhance the visual correlation between ventilation-perfusion lung images

    NASA Astrophysics Data System (ADS)

    Vaz de Carvalho, Carlos; Costa, Antonio A.; Seixas, M.; Ferreira, F. N.; Guedes, M. A.; Amaral, I.

    1993-07-01

    Lung ventilation and perfusion raw nuclear medicine images obtained from a gamma camera can be difficult to analyze on a per si basis. A method to optimize the visual correlation between these images was established through the use of new combination images: Composite Pseudo-Color (CPC) images. The major topic of this study is the assessment of the usefulness of this method in the detection of lung malfunction.

  12. Radiographic parenchymal opacity, matching perfusion defect, and normal ventilation: a sign of pulmonary embolism. Work in progress

    SciTech Connect

    Strauss, E.B.; Sostman, H.D.; Gottschalk, A.

    1987-05-01

    By conventional criteria, perfusion defects that correspond to radiographic parenchymal opacities of similar size have less diagnostic significance for pulmonary embolism (PE) than perfusion defects in areas that are radiographically clear, regardless of the findings on ventilation scan. It was proposed that the demonstration of normal ventilation in areas with matched radiographic opacity and perfusion defects does support the diagnosis of PE. To test this hypothesis, a retrospective review was done of selected cases from a consecutive series of 85 pulmonary angiography studies. Cases were reviewed if the following criteria were met: chest radiography, ventilation-perfusion scintigraphy, and angiography of the relevant regions had all been performed within 24 hours of one another, and there was a radiographic opacity corresponding to the perfusion defect. Sixteen cases fulfilled these criteria. Six patients had normal ventilation in the regions of the radiographic infiltrate and perfusion defect, and all had PE. No patient had an area of opacity and perfusion defect and normal ventilation without PE.

  13. The effect of positive end-expiratory pressure on regional ventilation and perfusion in the normal and injured primate lung.

    PubMed

    Hammon, J W; Wolfe, W G; Moran, J F; Jones, R H; Sabiston, D C

    1976-11-01

    Although positive end-expiratory pressure (PEEP) is being employed in the management of respiratory insufficiency, many of its physiological effects remain undetermined. The cardiopulmonary effects of PEEP as well as its effect on regional ventilation and perfusion were studied in 10 baboons before and after pulmonary injury with oleic acid. In the normal lung, there was significant improvement in oxygenation at a PEEP of 5 cm. of water secondary to improved ventilation and perfusion in all PEEP greater than 5 cm. of water produced increasing mismatch of ventilation and perfusion in all zones. After oleic acid was injected, hypoxemia was evident with a reversal of the normal ventilation-perfusion (V/Q) relationship between upper and lower lung zones. This mismatch of ventilation and perfusion was corrected at a PEEP of 15 cm. of water. It was reasonable to conclude that the use of PEEP in the injured lung exerts it beneficial effect by balancing regional ventilation and perfusion in addition to increasing functional residual capacity. PMID:824505

  14. Regional lung perfusion and ventilation with radioisotopes in cervical cord-injured patients

    SciTech Connect

    Hiraizumi, Y.; Fujimaki, E.; Hishida, T.; Maruyama, T.; Takeuchi, M.

    1986-05-01

    In general, cervical cord-injured patients present with restrictive pulmonary dysfunction resulting from paralysis of the intercostal muscles. Vital capacity frequently decreases below 50% of that in normal subjects, and their respiratory pattern frequently includes paradoxical movement in which the intercostal spaces sink and the abdomen distends at inspiration. Ventilation scintigraphy using Xe-133 and pulmonary perfusion scintigraphy using Tc-99m macroaggregated albumin (MAA) were performed on nine cervical cord-injured patients and four normal subjects to investigate regional lung functions in the cervical cord-injured patients. Pulmonary perfusion scintigraphy, in which measurement was made in the supine position, revealed no differences between the patients and the normal subjects. The inhomogeneous ventilation/perfusion distribution was presumed to have resulted from change in regional intrapleural pressure due to paradoxical movement of the thoracic cage. Washing and washout times were prolonged by paralysis of the intercostal muscles. These phenomena were particularly apparent in the upper and middle lung regions where compensating action by movement of the diaphragm is small.

  15. Ventilation-perfusion scintigraphy in an adult with congenital unilateral hyperlucent lung

    SciTech Connect

    Wegener, W.A.; Velchik, M.G. )

    1990-10-01

    A variety of congenital and acquired etiologies can give rise to the radiographic finding of a unilateral hyperlucent lung. An unusual case of congenital lobar emphysema diagnosed in a young adult following the initial discovery of a hyperexpanded, hyperlucent lung is reported. Although subsequent bronchoscopy and radiologic studies detailed extensive anatomic abnormalities, functional imaging also played an important role in arriving at this rare diagnosis. In particular, ventilation-perfusion scintigraphy identified the small contralateral lung as the functional lung and helped narrow the differential diagnosis to etiologies involving obstructive airway disorders.

  16. Ventilation-perfusion relationships in the lung during head-out water immersion

    NASA Technical Reports Server (NTRS)

    Derion, Toniann; Guy, Harold J. B.; Tsukimoto, Koichi; Schaffartzik, Walter; Prediletto, Renato; Poole, David C.; Knight, Douglas R.; Wagner, Peter D.

    1992-01-01

    Mechanisms of altered pulmonary gas exchange during water immersion were studied in 12 normal males: 6 young (aged 20-29) and 6 older (aged 40-45). It is concluded that, in young subjects with closing volume (CV) less than expiratory reserve volume (ERV), gas exchange was enhanced during immersion, because normal ventilation-perfusion relations were preserved, and by mass balance, the ventilation/O2 uptake changes elevated arterial P(O2). In older males with CV greater than ERV and 52 percent of tidal volume below CV, immersion-induced airways closure during tidal breathing was associated with minimally increased shunt that did not significantly impair gas exchange. It is suggested that airways closure of this degree is of little importance to gas exchange.

  17. Respiratory tract exacerbations revisited: ventilation, inflammation, perfusion, and structure (VIPS) monitoring to redefine treatment.

    PubMed

    Tiddens, Harm A W M; Stick, Stephen M; Wild, Jim M; Ciet, Pierluigi; Parker, Geoffrey J M; Koch, Armin; Vogel-Claussen, Jens

    2015-10-01

    For cystic fibrosis (CF) patients older than 6 years there are convincing data that suggest respiratory tract exacerbations (RTE) play an important role in the progressive loss of functional lung tissue. There is a poor understanding of the pathobiology of RTE and whether specific treatment of RTE reduces lung damage in the long term. In addition, there are limited tools available to measure the various components of CF lung disease and responses to therapy. Therefore, in order to better understand the impact of RTE on CF lung disease we need to develop sensitive measures to characterize RTE and responses to treatment; and improve our understanding of structure-function changes during treatment of RTE. In this paper we review our current knowledge of the impact of RTE on the progression of lung disease and identify strategies to improve our understanding of the pathobiology of RTE. By improving our knowledge regarding RTE in CF we will be better positioned to develop approaches to treatment that are individualized and that can prevent permanent structural damage. We suggest the development of a ventilation, perfusion, inflammation and structure (VIPS)-MRI suite that supplies the clinician with data on ventilation, inflammation, perfusion, and structure in one MRI session. VIPS-MRI could be an important step to better understand the factors that contribute to and limit treatment efficacy of RTE. PMID:26335955

  18. Quantitative assessment of ventilation-perfusion mismatch by radioxenon imaging of the lung.

    PubMed

    Ishii, Y; Itoh, H; Suzuki, T; Yonekura, Y; Mukai, T; Torizuka, K

    1978-06-01

    By the use of xenon-133 and a scintillation camera with digital data storage and processing system, a topographic relationship between ventilation distribution (V) and perfusion distribution (Q) was examined quantitatively in two groups of normal nonsmokers and one of older smokers, all healthy. In addition, subjects with a variety of cardiopulmonary disease were tested. The fractional regional ventilation (VR) and regional perfusion (QR) were plotted against the V/Q ratio on a logarithmic abscissa for the normal subjects; both were distributed log-normally with a narrow standard deviation, and were dissociated slightly from each other. However, with smoking and with increasing age, the s.d. and the dissociation became wider, suggesting an impairment of gas exchange as estimated by alveolar-atrial gas-pressure differences (A-aD), which were calculated by putting these topographic relationships into a gas-exchange program in a computer. In various cardiopulmonary diseases a good correlation was found between the estimated A-aDO2 thus obtained and the actual A-aDO2 derived from analysis of the blood gases. PMID:660273

  19. An expert system for the interpretation of radionuclide ventilation-perfusion lung scans

    NASA Astrophysics Data System (ADS)

    Gabor, Frank V.; Datz, Frederick L.; Christian, Paul E.; Gullberg, Grant T.; Morton, Kathryn A.

    1993-09-01

    One of the most commonly performed imaging procedures in nuclear medicine is the lung scan for suspected pulmonary embolism. The purpose of this research was to develop an expert system that interprets lung scans and gives a probability of pulmonary embolism. Three standard ventilation and eight standard perfusion images are first outlined manually. Then the images are normalized. Because lung size varies from patient to patient, each image undergoes a two-dimensional stretch onto a standard-size mask. To determine the presence of regional defects in ventilation or perfusion, images are then compared on a pixel by pixel basis with a normal database. This database consists of 21 normal studies that represent the variation in activity between subjects. Any pixel that falls more than 2.2 standard deviations below the normal file is flagged as possibly abnormal. To reduce statistical fluctuations, a clustering criteria is applied such that each pixel must have at least two continuous neighbors that are abnormal for a pixel to be flagged abnormal.

  20. Kr-81m for both ventilation and perfusion from one generator

    SciTech Connect

    Webber, M.M.; Gong, H.; Ertle, A.R.

    1984-01-01

    This paper describes a new technique which utilizes a single generator to provide both gaseous Kr-81m for ventilation and Kr-81m dissolved in water for perfusion lung images. Commercially available Krypton 81m gas generators provide Kr-81m in the gas form only, by air elution. Also available on an experimental basis is a small generator which by water elution provides Kr-81m in a soluble form suitable for perfusion lung scans. The small generator used for soluble form of Krypton is only approximately 1/8 inch in diameter by about 1 inch in length. A patient could not breath through it easily and quickly enough to achieve a deep single breath necessary for imaging. In order to overcome this problem the authors designed a system in which the patient breathes through a large spirometry tube, 1 1/2 in diameter by 2 feet long. The small generator is prepared for use by flushing out the water, 5 ml of sterile air is drawn into a syringe using an 18 gauge needle. The patient then places the end of the large tube in his mouth, and is asked to take a deep breath and to hold it. As the patient takes the breath an injection of the sterile air is made into the lumen of the large tube, passing through the small generator en route. The injection of air continues as the patient takes his breath. The method, although only requiring the small generator which can be used for perfusion lung scans as well as ventilation scans, consistently provides good results.

  1. Heterogeneous ventilation and perfusion: a sensitive indicator of lung impairment in nonsmoking coal miners.

    PubMed

    Susskind, H; Acevedo, J C; Iwai, J; Rasmussen, D L; Heydinger, D K; Pate, H R; Harold, W H; Brill, A B

    1988-03-01

    Twenty life-long nonsmoking West Virginia coal-miners participated in a study to amplify the role of focal irregularities on regional ventilation (V) and perfusion (Q) and to develop an improved method for the early detection of coal-workers' pneumoconiosis. Their mean age was 59.3 yr and they averaged 35.2 years' exposure to coal dust. Conventional pulmonary function tests were supplemented by measurement of V, Q and lung volume (V), using radioactive Kr-81m, Tc-99m MAA and Xe-127, respectively, to determine regional abnormalities in lung function. A computer analysis of the regional distributions of V/V, Q/V and V/Q was performed, and their topographical distributions and indices of heterogeneity (HI) computed. V/V and Q/V were significantly reduced in the lower third, and increased in the upper two-thirds of the miners' lungs; V/Q was reduced in the upper half. The miners' V/V and Q/V were more heterogeneous (p less than 0.001) than that of eleven age-matched controls, with mean ventilation HI values of 0.190 +/- 0.027 and 0.133 +/- 0.011, respectively, and mean perfusion HI values of 0.206 +/- 0.022 and 0.164 +/- 0.041, respectively. P(A-a)O2 correlated positively (r = 0.72; p less than 0.001) with ventilation HI. Gas exchange was the most significant functional measurement, being abnormal in 19/20 subjects. In contrast, conventional spirometric measurements were within the predicted normal limits in all but four miners. PMID:3384076

  2. Regional ventilation-perfusion distribution is more uniform in the prone position

    NASA Technical Reports Server (NTRS)

    Mure, M.; Domino, K. B.; Lindahl, S. G.; Hlastala, M. P.; Altemeier, W. A.; Glenny, R. W.

    2000-01-01

    The arterial blood PO(2) is increased in the prone position in animals and humans because of an improvement in ventilation (VA) and perfusion (Q) matching. However, the mechanism of improved VA/Q is unknown. This experiment measured regional VA/Q heterogeneity and the correlation between VA and Q in supine and prone positions in pigs. Eight ketamine-diazepam-anesthetized, mechanically ventilated pigs were studied in supine and prone positions in random order. Regional VA and Q were measured using fluorescent-labeled aerosols and radioactive-labeled microspheres, respectively. The lungs were dried at total lung capacity and cubed into 603-967 small ( approximately 1.7-cm(3)) pieces. In the prone position the homogeneity of the ventilation distribution increased (P = 0.030) and the correlation between VA and Q increased (correlation coefficient = 0.72 +/- 0.08 and 0.82 +/- 0.06 in supine and prone positions, respectively, P = 0.03). The homogeneity of the VA/Q distribution increased in the prone position (P = 0.028). We conclude that the improvement in VA/Q matching in the prone position is secondary to increased homogeneity of the VA distribution and increased correlation of regional VA and Q.

  3. Clinical relevance of ventilation-perfusion inequality determined by inert gas elimination.

    PubMed

    Rodriguez-Roisin, R; Wagner, P D

    1990-04-01

    The first part of this review deals with the basic mechanisms and factors determining hypoxaemia and hypercapnia and the different approaches used in clinical practice and in clinical research to assess the presence of ventilation-perfusion mismatching, shunt and diffusion limitation for oxygen, and more specifically the multiple inert gas elimination technique (MIGET), in pulmonary medicine. The second part reviews three different respiratory disorders where the complex interplay between intrapulmonary and extrapulmonary factors regulating oxygen are essentially interpreted through the results afforded by the MIGET over the last decade. The gas exchange response to bronchodilators in bronchial asthma, an airway disease, and then the major determinants governing abnormal gas exchange in acute pulmonary embolism, a pulmonary vascular disorder, and during haemodialysis, a respiratory entity of extrapulmonary origin, are successively explored in the light of the inert gas method. PMID:2163880

  4. Effects of carbonic anhydrase inhibition on ventilation-perfusion matching in the dog lung.

    PubMed Central

    Swenson, E R; Robertson, H T; Hlastala, M P

    1993-01-01

    Lung carbonic anhydrase (CA) permits rapid pH responses when changes in regional ventilation or perfusion alter airway and alveolar PCO2. These pH changes affect airway and vascular resistances and lung compliance to optimize the balance of regional ventilation (VA) and perfusion (Q) in the lung. To test the hypothesis that these or other CA-dependent mechanisms contribute to VA/Q matching, we administered acetazolamide (25 mg/kg intravenously) to six anesthetized and paralyzed dogs and measured VA/Q relationships before and after CA inhibition by the multiple inert gas elimination technique. Four other groups of dogs were studied to control for possible confounding effects of time under anesthesia and nonselective CA inhibition by acetazolamide: (a) saline placebo as a control for duration of anesthesia, (b) 4% CO2 inhalation to mimic systemic CO2 retention, (c) 1 mg/kg benzolamide (a selective renal CA inhibitor) or 0.5 meq/kg HCl to mimic systemic metabolic acidosis, and (d) 500 mg/kg 4,4'-dinitrostilbene-2,2'-disulfonate (an inhibitor of red cell band 3 protein) to mimic the respiratory acidosis arising from an intracapillary block to rapid mobilization of plasma HCO3- in CO2 exchange. Acetazolamide increased VA/Q mismatch and reduced arterial PO2 measured at equilibrium but these did not occur in the control group. There was no deterioration in VA/Q matching when systemic respiratory acidosis produced either by CO2 inhalation or 4,4'-dinitrostilbene-2,2'-disulfonate or metabolic acidosis (benzolamide or HCl) were imposed to mimic the effects of acetazolamide apart from its inhibition of lung CA. These results support the concept that lung CA subserves VA/Q matching in the normal lung. Images PMID:8349809

  5. Validation of measurements of ventilation-to-perfusion ratio inequality in the lung from expired gas.

    PubMed

    Prisk, G Kim; Guy, Harold J B; West, John B; Reed, James W

    2003-03-01

    The analysis of the gas in a single expirate has long been used to estimate the degree of ventilation-perfusion (Va/Q) inequality in the lung. To further validate this estimate, we examined three measures of Va/Q inhomogeneity calculated from a single full exhalation in nine anesthetized mongrel dogs under control conditions and after exposure to aerosolized methacholine. These measurements were then compared with arterial blood gases and with measurements of Va/Q inhomogeneity obtained using the multiple inert gas elimination technique. The slope of the instantaneous respiratory exchange ratio (R slope) vs. expired volume was poorly correlated with independent measures, probably because of the curvilinear nature of the relationship due to continuing gas exchange. When R was converted to the intrabreath Va/Q (iV/Q), the best index was the slope of iV/Q vs. volume over phase III (iV/Q slope). This was strongly correlated with independent measures, especially those relating to inhomogeneity of perfusion. The correlations for iV/Q slope and R slope considerably improved when only the first half of phase III was considered. We conclude that a useful noninvasive measurement of Va/Q inhomogeneity can be derived from the intrabreath respiratory exchange ratio. PMID:12433859

  6. Validation of measurements of ventilation-to-perfusion ratio inequality in the lung from expired gas

    NASA Technical Reports Server (NTRS)

    Prisk, G. Kim; Guy, Harold J B.; West, John B.; Reed, James W.

    2003-01-01

    The analysis of the gas in a single expirate has long been used to estimate the degree of ventilation-perfusion (Va/Q) inequality in the lung. To further validate this estimate, we examined three measures of Va/Q inhomogeneity calculated from a single full exhalation in nine anesthetized mongrel dogs under control conditions and after exposure to aerosolized methacholine. These measurements were then compared with arterial blood gases and with measurements of Va/Q inhomogeneity obtained using the multiple inert gas elimination technique. The slope of the instantaneous respiratory exchange ratio (R slope) vs. expired volume was poorly correlated with independent measures, probably because of the curvilinear nature of the relationship due to continuing gas exchange. When R was converted to the intrabreath Va/Q (iV/Q), the best index was the slope of iV/Q vs. volume over phase III (iV/Q slope). This was strongly correlated with independent measures, especially those relating to inhomogeneity of perfusion. The correlations for iV/Q slope and R slope considerably improved when only the first half of phase III was considered. We conclude that a useful noninvasive measurement of Va/Q inhomogeneity can be derived from the intrabreath respiratory exchange ratio.

  7. Characterization of the Isolated, Ventilated, and Instrumented Mouse Lung Perfused with Pulsatile Flow

    PubMed Central

    Vanderpool, Rebecca R.; Chesler, Naomi C.

    2011-01-01

    The isolated, ventilated and instrumented mouse lung preparation allows steady and pulsatile pulmonary vascular pressure-flow relationships to be measured with independent control over pulmonary arterial flow rate, flow rate waveform, airway pressure and left atrial pressure. Pulmonary vascular resistance is calculated based on multi-point, steady pressure-flow curves; pulmonary vascular impedance is calculated from pulsatile pressure-flow curves obtained at a range of frequencies. As now recognized clinically, impedance is a superior measure of right ventricular afterload than resistance because it includes the effects of vascular compliance, which are not negligible, especially in the pulmonary circulation. Three important metrics of impedance - the zero hertz impedance Z0, the characteristic impedance ZC, and the index of wave reflection RW - provide insight into distal arterial cross-sectional area available for flow, proximal arterial stiffness and the upstream-downstream impedance mismatch, respectively. All results obtained in isolated, ventilated and perfused lungs are independent of sympathetic nervous system tone, volume status and the effects of anesthesia. We have used this technique to quantify the impact of pulmonary emboli and chronic hypoxia on resistance and impedance, and to differentiate between sites of action (i.e., proximal vs. distal) of vasoactive agents and disease using the pressure dependency of ZC. Furthermore, when these techniques are used with the lungs of genetically engineered strains of mice, the effects of molecular-level defects on pulmonary vascular structure and function can be determined. PMID:21559007

  8. Spatial correspondence of 4D CT ventilation and SPECT pulmonary perfusion defects in patients with malignant airway stenosis

    NASA Astrophysics Data System (ADS)

    Castillo, Richard; Castillo, Edward; McCurdy, Matthew; Gomez, Daniel R.; Block, Alec M.; Bergsma, Derek; Joy, Sarah; Guerrero, Thomas

    2012-04-01

    To determine the spatial overlap agreement between four-dimensional computed tomography (4D CT) ventilation and single photon emission computed tomography (SPECT) perfusion hypo-functioning pulmonary defect regions in a patient population with malignant airway stenosis. Treatment planning 4D CT images were obtained retrospectively for ten lung cancer patients with radiographically demonstrated airway obstruction due to gross tumor volume. Each patient also received a SPECT perfusion study within one week of the planning 4D CT, and prior to the initiation of treatment. Deformable image registration was used to map corresponding lung tissue elements between the extreme component phase images, from which quantitative three-dimensional (3D) images representing the local pulmonary specific ventilation were constructed. Semi-automated segmentation of the percentile perfusion distribution was performed to identify regional defects distal to the known obstructing lesion. Semi-automated segmentation was similarly performed by multiple observers to delineate corresponding defect regions depicted on 4D CT ventilation. Normalized Dice similarity coefficient (NDSC) indices were determined for each observer between SPECT perfusion and 4D CT ventilation defect regions to assess spatial overlap agreement. Tidal volumes determined from 4D CT ventilation were evaluated versus measurements obtained from lung parenchyma segmentation. Linear regression resulted in a linear fit with slope = 1.01 (R2 = 0.99). Respective values for the average DSC, NDSC1 mm and NDSC2 mm for all cases and multiple observers were 0.78, 0.88 and 0.99, indicating that, on average, spatial overlap agreement between ventilation and perfusion defect regions was comparable to the threshold for agreement within 1-2 mm uncertainty. Corresponding coefficients of variation for all metrics were similarly in the range: 0.10%-19%. This study is the first to quantitatively assess 3D spatial overlap agreement between

  9. Platelet-activating factor causes ventilation-perfusion mismatch in humans.

    PubMed Central

    Rodriguez-Roisin, R; Félez, M A; Chung, K F; Barberà, J A; Wagner, P D; Cobos, A; Barnes, P J; Roca, J

    1994-01-01

    We hypothesized that platelet-activating factor (PAF), a potent inflammatory mediator, could induce gas exchange abnormalities in normal humans. To this end, the effect of aerosolized PAF (2 mg/ml solution; 24 micrograms) on ventilation-perfusion (VA/Q) relationships, hemodynamics, and resistance of the respiratory system was studied in 14 healthy, nonatopic, and nonsmoking individuals (23 +/- 1 [SEM]yr) before and at 2, 4, 6, 8, 15, and 45 min after inhalation, and compared to that of inhaled lyso-PAF in 10 other healthy individuals (24 +/- 2 yr). PAF induced, compared to lyso-PAF, immediate leukopenia (P < 0.001) followed by a rebound leukocytosis (P < 0.002), increased minute ventilation (P < 0.05) and resistance of the respiratory system (P < 0.01), and decreased systemic arterial pressure (P < 0.05). Similarly, compared to lyso-PAF, PaO2 showed a trend to fall (by 12.2 +/- 4.3 mmHg, mean +/- SEM maximum change from baseline), and arterial-alveolar O2 gradient increased (by 16.7 +/- 4.3 mmHg) (P < 0.02) after PAF, because of VA/Q mismatch: the dispersion of pulmonary blood flow and that of ventilation increased by 0.45 +/- 0.1 (P < 0.01) and 0.29 +/- 0.1 (P < 0.04), respectively. We conclude that in normal subjects, inhaled PAF results in considerable immediate VA/Q inequality and gas exchange impairment. These results reinforce the notion that PAF may play a major role as a mediator of inflammation in the human lung. Images PMID:8282786

  10. Distribution of pulmonary ventilation and perfusion during short periods of weightlessness.

    PubMed

    Michels, D B; West, J B

    1978-12-01

    Information on the distributions of pulmonary ventilation and perfusion was obtained from four subjects on board a Learjet during 112 weightless periods lasting up to 27 s each. Zero gravity (G) was obtained during all or part of each test by varying the aircraft flight profile. Single-breath N2 washouts were performed with the test inspiration containing an initial bolus of argon at residual volume (RV). When the test inspiration was at 0 G, and the washout at 0 G or greater, the terminal rises and the cardiogenic oscillations in both N2 and argon were small and often absent. If instead the test inspiration was at 1 G with the washout at 0 G, the terminal rises were again small or absent but the cardiogenic oscillations remained. The terminal rise and the cardiogenic oscillations for N2, but not argon, were also nearly eliminated by performing just the preliminary exhalation to RV at 0 G with the test inspiration and washout following at 1 G. Aleveolar plateaus for N2 sloped upward at 0 G apparently due to nontopographical inequalities of ventilation. In further tests during air breathing, recordings were made of expired partial pressure of oxygen PO2) and carbon dioxide (POO2) following a brief hyperventilation and a 15-s breath hold. These recordings revealed marked cardiogenic oscillations in PO2 and PCO2 at 1 G that were enhanced at 2 G but almost eliminated at 0 G. The results suggest that virtually all the topographical inequality of ventilation, blood flow, and lung volume seen under 1-G conditions are abolished during short periods of 0 G. PMID:730604

  11. Focal Hepatic Hot Spot From Superior Vena Cava Occlusion Visualized on Ventilation/Perfusion Scintigraphy With Contrast-Enhanced CT Correlate.

    PubMed

    Lawrence, Michael; Schuster, David M

    2016-05-01

    A 57-year-old woman with superior vena cava stenosis from repeated central line placements underwent ventilation/perfusion scanning after presenting with pleuritic chest pain. The ventilation/perfusion scan was not characteristic for pulmonary embolus, but perfusion images demonstrated abnormal radiotracer activity within hepatic segment 4, along with extensive collateral vessels as seen on SPECT/CT. Two months later, the patient presented with similar complaints and had a chest CT with contrast to evaluate for pulmonary embolus. This showed occlusion of the superior vena cava and arterial enhancement within segment 4 in a similar distribution to the radiotracer in the perfusion scan. PMID:26825208

  12. Blood flow redistribution and ventilation-perfusion mismatch during embolic pulmonary arterial occlusion

    PubMed Central

    Burrowes, K. S.; Clark, A. R.; Tawhai, M. H.

    2011-01-01

    Acute pulmonary embolism causes redistribution of blood in the lung, which impairs ventilation/perfusion matching and gas exchange and can elevate pulmonary arterial pressure (PAP) by increasing pulmonary vascular resistance (PVR). An anatomically-based multi-scale model of the human pulmonary circulation was used to simulate pre- and post-occlusion flow, to study blood flow redistribution in the presence of an embolus, and to evaluate whether reduction in perfused vascular bed is sufficient to increase PAP to hypertensive levels, or whether other vasoconstrictive mechanisms are necessary. A model of oxygen transfer from air to blood was included to assess the impact of vascular occlusion on oxygen exchange. Emboli of 5, 7, and 10 mm radius were introduced to occlude increasing proportions of the vasculature. Blood flow redistribution was calculated after arterial occlusion, giving predictions of PAP, PVR, flow redistribution, and micro-circulatory flow dynamics. Because of the large flow reserve capacity (via both capillary recruitment and distension), approximately 55% of the vasculature was occluded before PAP reached clinically significant levels indicative of hypertension. In contrast, model predictions showed that even relatively low levels of occlusion could cause localized oxygen deficit. Flow preferentially redistributed to gravitationally non-dependent regions regardless of occlusion location, due to the greater potential for capillary recruitment in this region. Red blood cell transit times decreased below the minimum time for oxygen saturation (<0.25 s) and capillary pressures became high enough to initiate cell damage (which may result in edema) only after ~80% of the lung was occluded. PMID:22140626

  13. Alveolar ventilation to perfusion heterogeneity and diffusion impairment in a mathematical model of gas exchange

    NASA Technical Reports Server (NTRS)

    Vidal Melo, M. F.; Loeppky, J. A.; Caprihan, A.; Luft, U. C.

    1993-01-01

    This study describes a two-compartment model of pulmonary gas exchange in which alveolar ventilation to perfusion (VA/Q) heterogeneity and impairment of pulmonary diffusing capacity (D) are simultaneously taken into account. The mathematical model uses as input data measurements usually obtained in the lung function laboratory. It consists of two compartments and an anatomical shunt. Each compartment receives fractions of alveolar ventilation and blood flow. Mass balance equations and integration of Fick's law of diffusion are used to compute alveolar and blood O2 and CO2 values compatible with input O2 uptake and CO2 elimination. Two applications are presented. The first is a method to partition O2 and CO2 alveolar-arterial gradients into VA/Q and D components. The technique is evaluated in data of patients with chronic obstructive pulmonary disease (COPD). The second is a theoretical analysis of the effects of blood flow variation in alveolar and blood O2 partial pressures. The results show the importance of simultaneous consideration of D to estimate VA/Q heterogeneity in patients with diffusion impairment. This factor plays an increasing role in gas alveolar-arterial gradients as severity of COPD increases. Association of VA/Q heterogeneity and D may produce an increase of O2 arterial pressure with decreasing QT which would not be observed if only D were considered. We conclude that the presented computer model is a useful tool for description and interpretation of data from COPD patients and for performing theoretical analysis of variables involved in the gas exchange process.

  14. Influence of perfusion and ventilation scans on therapeutic decision making and outcome in cases of possible embolism.

    PubMed

    Mercandetti, A J; Kipper, M S; Moser, K M

    1985-02-01

    We examined the influence of perfusion (Q) and ventilation (V) scans on therapeutic decision making and outcome among 229 patients referred for lung scans because embolism was suggested and found that specific V/Q scan patterns strongly influenced postscan decisions regarding initiation, maintenance or cessation of heparin therapy. These therapeutic decisions bore a relationship to outcome (recurrences and death) and disclosed decision-making deficits that need remedy by future investigational and educational efforts. PMID:4013250

  15. Ventilation-perfusion mismatching in acute severe asthma: effects of salbutamol and 100% oxygen.

    PubMed Central

    Ballester, E; Reyes, A; Roca, J; Guitart, R; Wagner, P D; Rodriguez-Roisin, R

    1989-01-01

    Ventilation-perfusion (VA/Q) relationships and gas exchange were studied by the multiple inert gas technique in 19 patients admitted to hospital with acute severe asthma (FEV1 41% predicted) before and during the administration of intravenous salbutamol, inhaled salbutamol, or 100% oxygen. Eight patients received a continuous intravenous infusion of salbutamol (4 micrograms/min, total dose 360 micrograms) and were studied before treatment, after 60 and 90 minutes of treatment, and one hour after treatment had been discontinued. Six patients had measurements before and 15 minutes after inhaling 300 micrograms salbutamol from a metered dose inhaler on two occasions (total dose 600 micrograms) and one hour after the last dose. Measurements were also made in five patients before and while they breathed 100% oxygen for 20 minutes. At baseline (fractional inspired oxygen (FiO2) 21%) all patients showed a broad unimodal (n = 10) or bimodal (n = 9) distribution of blood flow with respect to VA/Q. A mean of 10.5% of the blood flow was associated with low VA/Q units without any appreciable shunt. One of the best descriptors of VA/Q inequality, the second moment of the perfusion distribution on a log scale (log SD Q), was moderately high with a mean of 1.18 (SEM 0.08) (normal less than 0.6). Measures of VA/Q inequality correlated poorly with spirometric findings. After salbutamol the increase in airflow rates was similar regardless of the route of administration. Intravenous salbutamol, however, caused a significant increase in heart rate, cardiac output, and oxygen consumption (VO2); in addition, both perfusion to low VA/Q areas and log SD Q increased significantly. Inhaled salbutamol caused only minor changes in heart rate, cardiac output, VO2, and VA/Q inequality. Arterial oxygen tension (PaO2) remained unchanged during salbutamol administration, irrespective of the route of administration. During 100% oxygen breathing there was a significant increase in log SD Q (from 1

  16. Effect of Electrode Belt and Body Positions on Regional Pulmonary Ventilation- and Perfusion-Related Impedance Changes Measured by Electric Impedance Tomography

    PubMed Central

    Ericsson, Elin; Tesselaar, Erik; Sjöberg, Folke

    2016-01-01

    Ventilator-induced or ventilator-associated lung injury (VILI/VALI) is common and there is an increasing demand for a tool that can optimize ventilator settings. Electrical impedance tomography (EIT) can detect changes in impedance caused by pulmonary ventilation and perfusion, but the effect of changes in the position of the body and in the placing of the electrode belt on the impedance signal have not to our knowledge been thoroughly evaluated. We therefore studied ventilation-related and perfusion-related changes in impedance during spontaneous breathing in 10 healthy subjects in five different body positions and with the electrode belt placed at three different thoracic positions using a 32-electrode EIT system. We found differences between regions of interest that could be attributed to changes in the position of the body, and differences in impedance amplitudes when the position of the electrode belt was changed. Ventilation-related changes in impedance could therefore be related to changes in the position of both the body and the electrode belt. Perfusion-related changes in impedance were probably related to the interference of major vessels. While these findings give us some insight into the sources of variation in impedance signals as a result of changes in the positions of both the body and the electrode belt, further studies on the origin of the perfusion-related impedance signal are needed to improve EIT further as a tool for the monitoring of pulmonary ventilation and perfusion. PMID:27253433

  17. Effect of Electrode Belt and Body Positions on Regional Pulmonary Ventilation- and Perfusion-Related Impedance Changes Measured by Electric Impedance Tomography.

    PubMed

    Ericsson, Elin; Tesselaar, Erik; Sjöberg, Folke

    2016-01-01

    Ventilator-induced or ventilator-associated lung injury (VILI/VALI) is common and there is an increasing demand for a tool that can optimize ventilator settings. Electrical impedance tomography (EIT) can detect changes in impedance caused by pulmonary ventilation and perfusion, but the effect of changes in the position of the body and in the placing of the electrode belt on the impedance signal have not to our knowledge been thoroughly evaluated. We therefore studied ventilation-related and perfusion-related changes in impedance during spontaneous breathing in 10 healthy subjects in five different body positions and with the electrode belt placed at three different thoracic positions using a 32-electrode EIT system. We found differences between regions of interest that could be attributed to changes in the position of the body, and differences in impedance amplitudes when the position of the electrode belt was changed. Ventilation-related changes in impedance could therefore be related to changes in the position of both the body and the electrode belt. Perfusion-related changes in impedance were probably related to the interference of major vessels. While these findings give us some insight into the sources of variation in impedance signals as a result of changes in the positions of both the body and the electrode belt, further studies on the origin of the perfusion-related impedance signal are needed to improve EIT further as a tool for the monitoring of pulmonary ventilation and perfusion. PMID:27253433

  18. Correlation between the clinical pretest probability score and the lung ventilation and perfusion scan probability

    PubMed Central

    Bhoobalan, Shanmugasundaram; Chakravartty, Riddhika; Dolbear, Gill; Al-Janabi, Mazin

    2013-01-01

    Purpose: Aim of the study was to determine the accuracy of the clinical pretest probability (PTP) score and its association with lung ventilation and perfusion (VQ) scan. Materials and Methods: A retrospective analysis of 510 patients who had a lung VQ scan between 2008 and 2010 were included in the study. Out of 510 studies, the number of normal, low, and high probability VQ scans were 155 (30%), 289 (57%), and 55 (11%), respectively. Results: A total of 103 patients underwent computed tomography pulmonary angiography (CTPA) scan in which 21 (20%) had a positive scan, 81 (79%) had a negative scan and one (1%) had an equivocal result. The rate of PE in the normal, low-probability, and high-probability scan categories were: 2 (9.5%), 10 (47.5%), and 9 (43%) respectively. A very low correlation (Pearson correlation coefficient r = 0.20) between the clinical PTP score and lung VQ scan. The area under the curve (AUC) of the clinical PTP score was 52% when compared with the CTPA results. However, the accuracy of lung VQ scan was better (AUC = 74%) when compared with CTPA scan. Conclusion: The clinical PTP score is unreliable on its own; however, it may still aid in the interpretation of lung VQ scan. The accuracy of the lung VQ scan was better in the assessment of underlying pulmonary embolism (PE). PMID:24379532

  19. (68)Ga PET Ventilation and Perfusion Lung Imaging-Current Status and Future Challenges.

    PubMed

    Bailey, Dale L; Eslick, Enid M; Schembri, Geoffrey P; Roach, Paul J

    2016-09-01

    Gallium-68 ((68)Ga) is a positron-emitting radionuclide suitable for positron emission tomography (PET) imaging that has a number of convenient features-it has a physical half life of 68 minutes, it is generator produced at the PET facility and needs no local cyclotron, and being a radiometal is able to be chelated to a number of useful molecules for diagnostic imaging with PET. (68)Ga has recently been investigated as a radiotracer for ventilation and perfusion (V/Q) lung imaging. It is relatively easy to produce both V/Q radiopharmaceuticals labeled with (68)Ga for PET studies, it offers higher spatial resolution than equivalent SPECT studies, the short half life allows for multiple (repeated) scans on the same day, and low amounts of radiotracer can be used thus limiting the radiation dose to the subject. In the usual clinical setting requiring a V/Q scan, that of suspected pulmonary embolism, the role of (68)Ga V/Q PET may be limited from a logistical perspective, however, in nonacute applications such as lung function evaluation, radiotherapy treatment planning, and respiratory physiology investigations it would appear to be an ideal modality to employ. PMID:27553468

  20. Krypton 81m ventilation/perfusion ratios (V/Q) measured in lateral decubitus in pulmonary embolism (P. E. )

    SciTech Connect

    Meignan, M.; Cinotti, L.; Harf, A.; Oliveira, L.; Simonneau, G.

    1984-01-01

    In normal subjects lateral decubitis induces in both independent (lower) and nondependent lung (upper), major changes in perfusion, ventilation and V/Q ratios which can be studied with the short life radioisotope Krypton 81m. Regional V/Q are computed from ventilation and perfusion scans, successively obtained with a gamma camera linked to a computer by continuous inhalation or infusion of this gas during tidal breathing. They were displayed as a color coded functional image. To assess the effect of posture on V/Q in P.E. and other diseases which decrease the regional perfusion, 32 patients with unilateral lung diseases were studied in supine posture and both lateral decubitis: 8 with proved P.E., (3 out of them having radiological opacity matching the perfusion defect), 9 with bullous emphysema, 6 with bronchogenic carcinoma, 9 with acute bacterial pneumonia. V/Q were computed in the region of the perfusion defect. In P.E. the mean V/Q was high (1.92 +- 0.6 SD), and did not change whatever the posture. Conversely major changes of V/Q were induced with postural changes in bullous emphysema and lung carcinoma whatever the V/Q in patient supine. In pneumonia low V/Q were observed in supine posture (.73 +- .2). They decreased significantly when the pneumonia was dependent (.53 +- .2 p < 0.02) and increased in the controlateral decubitis (1.07 +- .3, p < 0.001). Since posture has no or little effect on regional V/Q in P.E., it can be used to discriminate P.E., even in the case of radiological opacity, from other unilateral disease inducing perfusion defect.

  1. A Short Period of Ventilation without Perfusion Seems to Reduce Atelectasis without Harming the Lungs during Ex Vivo Lung Perfusion

    PubMed Central

    Pierre, Leif

    2013-01-01

    To evaluate the lung function of donors after circulatory deaths (DCDs), ex vivo lung perfusion (EVLP) has been shown to be a valuable method. We present modified EVLP where lung atelectasis is removed, while the lung perfusion is temporarily shut down. Twelve pigs were randomized into two groups: modified EVLP and conventional EVLP. When the lungs had reached 37°C in the EVLP circuit, lung perfusion was temporarily shut down in the modified EVLP group, and positive end-expiratory pressure (PEEP) was increased to 10 cm H2O for 10 minutes. In the conventional EVLP group, PEEP was increased to 10 cm H2O for 10 minutes with unchanged lung perfusion. In the modified EVLP group, the arterial oxygen partial pressure (PaO2) was 18.5 ± 7.0 kPa before and 64.5 ± 6.0 kPa after the maneuver (P < 0.001). In the conventional EVLP group, the PaO2 was 16.8 ± 3.1 kPa and 46.8 ± 2.7 kPa after the maneuver (P < 0.01; P < 0.01). In the modified EVLP group, the pulmonary graft weight was unchanged, while in the conventional EVLP group, the pulmonary graft weight was significantly increased. Modified EVLP with normoventilation of the lungs without ongoing lung perfusion for 10 minutes may eliminate atelectasis almost completely without harming the lungs. PMID:24102021

  2. A Short Period of Ventilation without Perfusion Seems to Reduce Atelectasis without Harming the Lungs during Ex Vivo Lung Perfusion.

    PubMed

    Lindstedt, Sandra; Pierre, Leif; Ingemansson, Richard

    2013-01-01

    To evaluate the lung function of donors after circulatory deaths (DCDs), ex vivo lung perfusion (EVLP) has been shown to be a valuable method. We present modified EVLP where lung atelectasis is removed, while the lung perfusion is temporarily shut down. Twelve pigs were randomized into two groups: modified EVLP and conventional EVLP. When the lungs had reached 37°C in the EVLP circuit, lung perfusion was temporarily shut down in the modified EVLP group, and positive end-expiratory pressure (PEEP) was increased to 10 cm H2O for 10 minutes. In the conventional EVLP group, PEEP was increased to 10 cm H2O for 10 minutes with unchanged lung perfusion. In the modified EVLP group, the arterial oxygen partial pressure (PaO2) was 18.5 ± 7.0 kPa before and 64.5 ± 6.0 kPa after the maneuver (P < 0.001). In the conventional EVLP group, the PaO2 was 16.8 ± 3.1 kPa and 46.8 ± 2.7 kPa after the maneuver (P < 0.01; P < 0.01). In the modified EVLP group, the pulmonary graft weight was unchanged, while in the conventional EVLP group, the pulmonary graft weight was significantly increased. Modified EVLP with normoventilation of the lungs without ongoing lung perfusion for 10 minutes may eliminate atelectasis almost completely without harming the lungs. PMID:24102021

  3. Impact of ventilation/perfusion single-photon emission computed tomography on treatment duration of pulmonary embolism

    PubMed Central

    Begic, Amela; Opanković, Emina; Čukić, Vesna; Rustempašić, Medzida; Bašić, Amila; Miniati, Massimo; Jögi, Jonas

    2015-01-01

    Purpose The aim of the study was to establish whether the duration of anticoagulant (AC) therapy can be tailored, on an objective basis, by using ventilation/perfusion single-photon emission computed tomography (V/P SPECT) and to assess the extent of residual perfusion defects over time. In particular, we addressed the following: (a) is the extent of perfusion recovery at 3 months of initial pulmonary embolism (PE) diagnosis a satisfactory criterion for deciding the duration of oral AC? (b) Is it safe to withdraw AC at 3 months if perfusion recovery is complete? Patients and methods Of 269 consecutive patients with suspected PE, 100 patients were diagnosed with PE using V/P SPECT. Sixty-seven patients with acute PE were followed up clinically and with V/P SPECT at 3 months. Sixty-four patients were subject to review and examination using V/P SPECT for a period of 6 months and 33 were followed up only clinically. Therapy was terminated after 3 months if perfusion was normalized, and patients were free of symptoms and the risk of hypercoagulability. Initial extension of PE did not have an impact on decision making. Results PE extension varied from 10 to 70% in the acute stage. After 3 months, complete resolution of PE was found in 48 patients. The treating pulmonologist decided to terminate therapy in 35 (73%) patients and to continue AC in 13 patients because of persistent risk factors. Six months later, at the second control stage, 53 patients had complete recovery of pulmonary perfusion. Eleven patients still had perfusion defects at 6 months. No recurrence was identified at 6 months in the 35 patients whose therapy was terminated after 3 months. No bleeding effects were observed in any of the patients during the 6-month follow-up. Conclusion This study shows that AC therapy can be tailored, on an objective basis, by using V/P SPECT. Normalization of perfusion at 3 months of initial PE diagnosis was a reliable indicator that AC could be safely withdrawn in

  4. [Simultaneous analysis of the distribution of ventilation and diffusive conductance to perfusion in the lungs].

    PubMed

    Yamaguchi, K

    1989-12-01

    Theoretical analysis and experimental observations were performed to establish an essential method allowing demonstration of the characteristics of distribution of ventilation (VA) as well as of diffusive conductance (G) to perfusion (Q) in the lungs. O2, CO2 and CO binding to hemoglobin molecules within erythrocytes, together with six inert gases including SF6, ethane, cyclopropane, halothane, diethyl ether and acetone, possessing various degrees of solubility in blood and different degrees of diffusibility in lung tissue were used as indicator gases. Fifteen patients with interstitial pneumonia of unknown etiology, placed in a supine position, were given a mixture of 21% O2 and 0.1% CO in N2 as the inspired gas and normal saline containing appropriate amounts of the six inert gases via the antecubital vein. After a steady state was established, the expired gas was collected and both arterial and mixed venous blood were simultaneously sampled through the catheter inserted either into the femoral or pulmonary artery. The concentrations of the indicator gases in the samples were measured by gas chromatography, with electrodes or with Scholander gas analyzer. Assuming that the mass transfer efficiency of a given indicator gas at each gas exchange unit would be limited by the ratio of VA to Q (VA/Q) and by that of G/Q, the data obtained from the human subjects were analyzed in terms of a lung model having 20 units along the VA/Q and G/Q axes, respectively. The numerical analysis including the procedure of a simultaneous Bohr integration for O2, CO2 and CO in a pulmonary capillary and the method of weighted least-squares combined with the idea of constrained optimization permitted the data to be transformed into a virtually continuous distribution of Q against VA/Q and G/Q axes. The numerical procedure was strictly tested based on many artificial distributions of VA/Q and G/Q ratios, showing that it could characterize distributions containing up to at least two modes

  5. Continuous distributions of ventilation and gas conductance to perfusion in the lungs.

    PubMed

    Yamaguchi, K; Kawai, A; Mori, M; Asano, K; Takasugi, T; Umeda, A; Yokoyama, T

    1990-01-01

    Theoretical analysis and experimental observations were conducted to establish a method allowing to demonstrate the characteristics of distribution of ventilation (VA) as well as of diffusive conductance (G) to perfusion (Q) in the lungs. O2, CO2 and CO binding to hemoglobin molecules within the erythrocyte together with six inert gases including SF6, ethane, cyclopropane, halothane, diethyl ether and acetone, of varied solubility in blood and different diffusivity in lung tissue, were used as indicator gases. 15 patients with interstitial pneumonia of unknown etiology, placed in the supine position, were given a mixture of 21% O2 and 0.1% CO in N2 as the inspired gas and saline containing appropriate amount of the six inert gases was infused via an antecubital vein. After a steady state was established, the expired gas was collected and the samples of both arterial and mixed venous blood were simultaneously taken through catheters inserted into the femoral and pulmonary artery. The concentrations of the indicator gases in the samples were measured by gas chromatography, with electrodes or with the Scholander gas analyzer. Assuming that the mass transfer efficiency of a given indicator gas at each gas exchange unit would be limited by VA/Q and G/Q ratios, the data obtained from the human subjects were analyzed in terms of a lung model having 20 units along the VA/Q and G/Q axes, respectively. The numerical analysis including the procedure of simultaneous Bohr integration for O2, CO2 and CO in a pulmonary capillary and the method of weighted least-squares combined with constrained optimization permitted the data to be transformed into a virtually continuous distribution of Q against VA/Q and G/Q axes. The numerical procedure was strictly tested using various artificial distributions of VA/Q and G/Q ratios, showing that it could characterize the distributions containing up to at least two modes on VA/Q-G/Q field with a substantial accuracy. Analytical results

  6. Validation of a two-compartment model of ventilation/perfusion distribution.

    PubMed

    Loeppky, Jack A; Caprihan, Arvind; Altobelli, Stephen A; Icenogle, Milton V; Scotto, Pietro; Vidal Melo, Marcos F

    2006-03-28

    Ventilation (V (A)) to perfusion (Q ) heterogeneity (V (A)/Q ) analyses by a two-compartment lung model (2C), utilizing routine gas exchange measurements and a computer solution to account for O(2) and CO(2) measurements, were compared with multiple inert gas elimination technique (MIGET) analyses and a multi-compartment (MC) model. The 2C and MC estimates of V (A)/Q mismatch were obtained in 10 healthy subjects, 43 patients having chronic obstructive pulmonary disease (COPD) and in 14 dog experiments where hemodynamics and acid-base status were manipulated with gas mixtures, fluid loading and tilt-table stressors. MIGET comparisons with 2C were made on 6 patients and 32 measurements in healthy subjects before and after exercise at normoxia and altitude hypoxia. Statistically significant correlations for logarithmic standard deviations of V (A)/Q distributions (SD(V (A)/Q )) were obtained for all 2C comparisons, with similar values between 2C and both other methods in the 1.1-1.5 range, compatible with mild to moderate COPD. 2C tended to overestimate MC and MIGET values at low and underestimate them at high SD(V (A)/Q ) values. SD(V (A)/Q ) weighted by Q agreed better with MC and MIGET estimates in the normal range, whereas SD(V (A)/Q ) weighted by V (A) was closer to MC at higher values because the V (A)-weighted SD(V (A)/Q ) is related to blood-to-gas PCO(2) differences that are elevated in disease, thereby allowing better discrimination. The 2C model accurately described functional V (A)/Q characteristics in 26 normal and bronchoconstricted dogs during non-steady state rebreathing and could be used to quantify the effect of reduced O(2) diffusing capacity in diseased lungs. These comparisons indicate that 2C adequately describes V (A)/Q mismatch and can be useful in clinical or experimental situations where other techniques are not feasible. PMID:16024300

  7. The Effect of Equal Ratio Ventilation on Oxygenation, Respiratory Mechanics, and Cerebral Perfusion Pressure During Laparoscopy in the Trendelenburg Position.

    PubMed

    Jo, Youn Yi; Kim, Ji Young; Chang, Young Jin; Lee, Sehwan; Kwak, Hyun Jeong

    2016-06-01

    The aim of this study was to investigate the effects of equal ratio ventilation (ERV) on oxygenation, respiratory mechanics, and the cerebral perfusion pressure during pneumoperitoneum in the Trendelenburg position. Thirty patients undergoing laparoscopic low anterior resection (25 to 65 y) were enrolled. Mechanical ventilator was set to volume-controlled mode at an inspiratory to expiratory (I:E) ratio of 1:2 with a tidal volume of 8 mL/kg of ideal body weight with a 5 cm H2O positive end-expiratory pressure. Twenty minutes after pneumoperitoneum in the Trendelenburg position, the I:E ratio was changed to 1:1 for 20 minutes and then restored to 1:2. No significant changes in arterial oxygen tension and respiratory compliance after adopting ERV. Mean arterial pressure and cerebral perfusion pressure decreased significantly over time after adopting the Trendelenburg position during pneumoperitoneum (P=0.014 and 0.005, respectively). In conclusion, there was no improvement in oxygenation or respiratory mechanics with ERV. PMID:27258912

  8. Bronchopulmonary dysplasia: clinical grading in relation to ventilation/perfusion mismatch measured by single photon emission computed tomography.

    PubMed

    Kjellberg, Malin; Björkman, Karin; Rohdin, Malin; Sanchez-Crespo, Alejandro; Jonsson, Baldvin

    2013-12-01

    Bronchopulmonary dysplasia (BPD) is a significant cause of morbidity in the preterm population. Clinical severity grading based on the need for supplemental oxygen and/or need for positive airway pressure at 36 weeks postmenstrual age does not yield reproducible predictive values for later pulmonary morbidity. Single photon emission computed tomography (SPECT) was used to measure the distribution of lung ventilation (V) and perfusion (Q) in 30 BPD preterm infants at a median age of 37 weeks postmenstrual age. The V and Q were traced with 5 MBq Technegas and Technetium-labeled albumin macro aggregates, respectively, and the V/Q match-mismatch was used to quantify the extent of lung function impairment. The latter was then compared with the clinical severity grading at 36 weeks, and time spent on mechanical ventilation, continuous positive airway pressure (CPAP) and supplemental oxygen. Of those with mild and moderate BPD 3/9 and 3/11 patients, respectively, showed significant V/Q mismatches. By contrast, 4/10 patients with severe BPD showed a satisfactory V/Q matching distribution. An unsatisfactory V/Q match was not correlated with time spent on supplemental oxygen or CPAP, but was significantly negatively correlated with time spent on mechanical ventilation. SPECT provides unique additional information about regional lung function. The results suggest that the current clinical severity grading can be improved and/or complemented with SPECT. PMID:23359534

  9. The gravitational distribution of ventilation-perfusion ratio is more uniform in prone than supine posture in the normal human lung.

    PubMed

    Henderson, A Cortney; Sá, Rui Carlos; Theilmann, Rebecca J; Buxton, Richard B; Prisk, G Kim; Hopkins, Susan R

    2013-08-01

    The gravitational gradient of intrapleural pressure is suggested to be less in prone posture than supine. Thus the gravitational distribution of ventilation is expected to be more uniform prone, potentially affecting regional ventilation-perfusion (Va/Q) ratio. Using a novel functional lung magnetic resonance imaging technique to measure regional Va/Q ratio, the gravitational gradients in proton density, ventilation, perfusion, and Va/Q ratio were measured in prone and supine posture. Data were acquired in seven healthy subjects in a single sagittal slice of the right lung at functional residual capacity. Regional specific ventilation images quantified using specific ventilation imaging and proton density images obtained using a fast gradient-echo sequence were registered and smoothed to calculate regional alveolar ventilation. Perfusion was measured using arterial spin labeling. Ventilation (ml·min(-1)·ml(-1)) images were combined on a voxel-by-voxel basis with smoothed perfusion (ml·min(-1)·ml(-1)) images to obtain regional Va/Q ratio. Data were averaged for voxels within 1-cm gravitational planes, starting from the most gravitationally dependent lung. The slope of the relationship between alveolar ventilation and vertical height was less prone than supine (-0.17 ± 0.10 ml·min(-1)·ml(-1)·cm(-1) supine, -0.040 ± 0.03 prone ml·min(-1)·ml(-1)·cm(-1), P = 0.02) as was the slope of the perfusion-height relationship (-0.14 ± 0.05 ml·min(-1)·ml(-1)·cm(-1) supine, -0.08 ± 0.09 prone ml·min(-1)·ml(-1)·cm(-1), P = 0.02). There was a significant gravitational gradient in Va/Q ratio in both postures (P < 0.05) that was less in prone (0.09 ± 0.08 cm(-1) supine, 0.04 ± 0.03 cm(-1) prone, P = 0.04). The gravitational gradients in ventilation, perfusion, and regional Va/Q ratio were greater supine than prone, suggesting an interplay between thoracic cavity configuration, airway and vascular tree anatomy, and the effects of gravity on Va/Q matching. PMID

  10. Difference in the value of arterial and end-tidal carbon dioxide tension according to different surgical positions: Does it reliably reflect ventilation-perfusion mismatch?

    PubMed Central

    Joo, Jin; Kim, Young Hee; Choi, Jong Ho

    2012-01-01

    Background Body posture, as a gravitational factor, has a clear impact on pulmonary ventilation and perfusion. In lung units with mismatched ventilation and perfusion, gas exchange and/or elimination of carbon dioxide can be impaired. In this situation, differences in the value of arterial and end-tidal carbon dioxide tension [Δ(PaCO2 - PETCO2)] are expected to increase. This study was conducted to observe how Δ(PaCO2 - PETCO2) changed according to the 3 different surgical positions, and to determine whether Δ(PaCO2 - PETCO2) is a reliable predictor of ventilation/perfusion mismatch when a patient is in different postural positions. Methods Fifty-nine patients were divided into either the chronic obstructive pulmonary disease (COPD) group (n = 29) or the non-COPD group (n = 30). PaCO2 and PETCO2 were measured during surgery in the supine, prone, and lateral decubitus positions after a 10 minute stabilization period. The Δ(PaCO2 - PETCO2) were calculated and compared among positions. Results The Δ(PaCO2 - PETCO2) decreased slightly in the prone position and increased significantly in the lateral decubitus position compared with the supine position in both groups. These patterns almost corresponded with the degree of ventilation/perfusion mismatch from the results of the radiological studies. The Δ(PaCO2 - PETCO2) in the COPD group was significantly greater than that in the non-COPD group at all surgical positions. Conclusions Lateral decubitus position is associated with marked increase in Δ(PaCO2 - PETCO2), especially in patients with COPD. The Δ(PaCO2 - PETCO2) is a simple and reliable indicator to predict ventilation/perfusion mismatch at different surgical positions in patients with or without COPD. PMID:23060977

  11. Evaluation of a computer program for non-invasive determination of pulmonary shunt and ventilation-perfusion mismatch.

    PubMed

    Lockwood, Geoffrey G; Fung, Nick L S; Jones, J Gareth

    2014-12-01

    We describe a three-compartment model (shunt and two perfused compartments) to analyse the relationship between inspired oxygen (FIO2) and arterial oxygen saturation (SaO2) in terms of pulmonary shunt and ventilation-perfusion ratio (VA/Q). The program was tested using 24 exact datasets, each with six pairs of FIO2 and SaO2 data points with known VA/Q and shunt, generated by a complex calculator of gas exchange. Additional datasets were created by adding noise and rounding the exact sets, and by reducing the number of data points per dataset. The importance of the oxyhaemoglobin dissociation curve and the arterio-venous difference in oxygen content (avDO2) were also tested. Analysis using the three compartment model was more accurate than the two compartment model and less affected by data degradation. The absolute error in shunt estimation was never more than 2.2 % for the exact and rounded datasets, but the error in VA/Q estimation was -29 to 19 % of the true value (10th-90th centiles). The characteristics of the well-ventilated compartment were not determined accurately. At extremes of cardiac output, an assumed value of avDO2 resulted in significant errors. It is probably advantageous to correct for foetal haemoglobin in neonatal datasets. Analysis of FIO2 versus SaO2 datasets using a three compartment model provides accurate estimates of shunt and VA/Q when arterio-venous difference in oxygen content is known. The estimates may have value as objective measures of gas exchange, and as a visual guide for oxygen therapy. PMID:24402641

  12. Fluid imbalance

    MedlinePlus

    ... up in the body. This is called fluid overload (volume overload). This can lead to edema (excess fluid in ... Water imbalance; Fluid imbalance - dehydration; Fluid buildup; Fluid overload; Volume overload; Loss of fluids; Edema - fluid imbalance; ...

  13. Abolished ventilation and perfusion of lung caused by blood clot in the left main bronchus: auto-downregulation of pulmonary arterial blood supply.

    PubMed

    Afzelius, P; Bergmann, A; Henriksen, J H

    2015-01-01

    It is generally assumed that the lungs possess arterial autoregulation associated with bronchial obstruction. A patient with pneumonia and congestive heart failure unexpectedly developed frequent haemoptysis. High-resolution CT and diagnostic CT were performed as well as ventilation/perfusion (V/Q) scintigraphy with single-photon emission CT (SPECT)/CT. V/Q SPECT/CT demonstrated abolished ventilation due to obstruction of the left main bronchus and markedly reduced perfusion of the entire left lung, a condition that was completely reversed after removal of a blood clot. We present the first pictorially documented case of hypoxia-induced pulmonary vasoconstriction and flow shift in a main pulmonary artery due to a complete intrinsic obstruction of the ipsilateral main bronchus. The condition is reversible, contingent on being relieved within a few days. PMID:26374773

  14. Assisted Ventilation.

    PubMed

    Dries, David J

    2016-01-01

    Controlled Mechanical Ventilation may be essential in the setting of severe respiratory failure but consequences to the patient including increased use of sedation and neuromuscular blockade may contribute to delirium, atelectasis, and diaphragm dysfunction. Assisted ventilation allows spontaneous breathing activity to restore physiological displacement of the diaphragm and recruit better perfused lung regions. Pressure Support Ventilation is the most frequently used mode of assisted mechanical ventilation. However, this mode continues to provide a monotonous pattern of support for respiration which is normally a dynamic process. Noisy Pressure Support Ventilation where tidal volume is varied randomly by the ventilator may improve ventilation and perfusion matching but the degree of support is still determined by the ventilator. Two more recent modes of ventilation, Proportional Assist Ventilation and Neurally Adjusted Ventilatory Assist (NAVA), allow patient determination of the pattern and depth of ventilation. Proposed advantages of Proportional Assist Ventilation and NAVA include decrease in patient ventilator asynchrony and improved adaptation of ventilator support to changing patient demand. Work of breathing can be normalized with these modes as well. To date, however, a clear pattern of clinical benefit has not been demonstrated. Existing challenges for both of the newer assist modes include monitoring patients with dynamic hyperinflation (auto-positive end expiratory pressure), obstructive lung disease, and air leaks in the ventilator system. NAVA is dependent on consistent transduction of diaphragm activity by an electrode system placed in the esophagus. Longevity of effective support with this technique is unclear. PMID:25501776

  15. The relationship between pulmonary function tests, thorax HRCT, and quantitative ventilation-perfusion scintigraphy in chronic obstructive pulmonary disease.

    PubMed

    Demir, Tunçalp; Ikitimur, Hande; Akpinar Tekgündüz, Sibel; Mutlu, Birsen; Yildirim, Nurhayat; Akman, Canan; Ozmen, Ozlem; Kanmaz, Bedii

    2005-01-01

    We have evaluated the relationship between pulmonary function tests (PFT), thorax high resolution computed tomography (HRCT) images and quantitative ventilation-perfusion (V/Q) scintigraphic studies in 16 male patients (mean age 65.6 +/- 5.5 years) with chronic obstructive pulmonary disease (COPD). The mean forced vital capacity (FVC) value of the patient group was 2352 +/- 642 mL (65.4 +/- 15.8%), whereas mean forced expiratory volume in one second (FEV(1)) was found to be 1150 +/- 442 mL (40.8 +/- 14.9%). The ratio of carbon monoxide diffusion capacity to alveolar ventilation (DLCO/VA) was 3.17 +/- 0.88 mL/min/mmHg/L, and the mean partial oxygen (PaO(2)) and carbon dioxide (PaCO(2)) pressures were 68.5 +/- 11.04 mmHg and 38.9 +/- 5.8 mmHg respectively. For each patient, thorax HRCT and V/Q scintigraphic images of both lungs were divided into upper, mid and lower zones during examination. Visual scoring for the assessment of emphysema on thorax HRCT were used and images were graded from mild to severe (< or = 25% - > or = 76%). Emphysema scores were found to be higher on upper zones with accompanying lowest V/Q ratios. DLCO/VA, DLCO, total emphysema scores, and individual emphysema scores of the upper, mid and lower zones were found to be correlated. As a conclusion, it can be stated that emphysematous changes in COPD patients are more apparent in the upper lung zones, which also have the lowest V/Q ratios. PMID:16456733

  16. Imaging of the three-dimensional alveolar structure and the alveolar mechanics of a ventilated and perfused isolated rabbit lung with Fourier domain optical coherence tomography.

    PubMed

    Popp, Alexander; Wendel, Martina; Knels, Lilla; Koch, Thea; Koch, Edmund

    2006-01-01

    In this feasibility study, Fourier domain optical coherence tomography (FDOCT) is used for visualizing the 3-D structure of fixated lung parenchyma and to capture real-time cross sectional images of the subpleural alveolar mechanics in a ventilated and perfused isolated rabbit lung. The compact and modular setup of the FDOCT system allows us to image the first 500 microm of subpleural lung parenchyma with a 3-D resolution of 16 x 16 x 8 microm (in air). During mechanical ventilation, real-time cross sectional FDOCT images visualize the inflation and deflation of alveoli and alveolar sacks (acini) in successive images of end-inspiratory and end-expiratory phase. The FDOCT imaging shows the relation of local alveolar mechanics to the setting of tidal volume (VT), peak airway pressure, and positive end-expiratory pressure (PEEP). Application of PEEP leads to persistent recruitment of alveoli and acini in the end-expiratory phase, compared to ventilation without PEEP where alveolar collapse and reinflation are observed. The imaging of alveolar mechanics by FDOCT will help to determine the amount of mechanical stress put on the alveolar walls during tidal ventilation, which is a key factor in understanding the development of ventilator induced lung injury (VILI). PMID:16526892

  17. Imaging of the three-dimensional alveolar structure and the alveolar mechanics of a ventilated and perfused isolated rabbit lung with Fourier domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Popp, Alexander; Wendel, Martina; Knels, Lilla; Koch, T.; Koch, Edmund

    2006-01-01

    In this feasibility study, Fourier domain optical coherence tomography (FDOCT) is used for visualizing the 3-D structure of fixated lung parenchyma and to capture real-time cross sectional images of the subpleural alveolar mechanics in a ventilated and perfused isolated rabbit lung. The compact and modular setup of the FDOCT system allows us to image the first 500 µm of subpleural lung parenchyma with a 3-D resolution of 16×16×8 µm (in air). During mechanical ventilation, real-time cross sectional FDOCT images visualize the inflation and deflation of alveoli and alveolar sacks (acini) in successive images of end-inspiratory and end-expiratory phase. The FDOCT imaging shows the relation of local alveolar mechanics to the setting of tidal volume (VT), peak airway pressure, and positive end-expiratory pressure (PEEP). Application of PEEP leads to persistent recruitment of alveoli and acini in the end-expiratory phase, compared to ventilation without PEEP where alveolar collapse and reinflation are observed. The imaging of alveolar mechanics by FDOCT will help to determine the amount of mechanical stress put on the alveolar walls during tidal ventilation, which is a key factor in understanding the development of ventilator induced lung injury (VILI).

  18. Ventilation-perfusion inequality in the human lung is not increased following no-decompression-stop hyperbaric exposure.

    PubMed

    Moore, Gaea Schwaebe; Wong, Stewart C; Darquenne, Chantal; Neuman, Tom S; West, John B; Kim Prisk, G

    2009-11-01

    Venous gas bubbles occur in recreational SCUBA divers in the absence of decompression sickness, forming venous gas emboli (VGE) which are trapped within pulmonary circulation and cleared by the lung without overt pathology. We hypothesized that asymptomatic VGE would transiently increase ventilation-perfusion mismatch due to their occlusive effects within the pulmonary circulation. Two sets of healthy volunteers (n = 11, n = 12) were recruited to test this hypothesis with a single recreational ocean dive or a baro-equivalent dry hyperbaric dive. Pulmonary studies (intrabreath V (A)/Q (iV/Q), alveolar dead space, and FVC) were conducted at baseline and repeat 1- and 24-h after the exposure. Contrary to our hypothesis V (A)/Q mismatch was decreased 1-h post-SCUBA dive (iV/Q slope 0.023 +/- 0.008 ml(-1) at baseline vs. 0.010 +/- 0.005 NS), and was significantly reduced 24-h post-SCUBA dive (0.000 +/- 0.005, p < 0.05), with improved V (A)/Q homogeneity inversely correlated to dive severity. No changes in V (A)/Q mismatch were observed after the chamber dive. Alveolar dead space decreased 24-h post-SCUBA dive (78 +/- 10 ml at baseline vs. 56 +/- 5, p < 0.05), but not 1-h post dive. FVC rose 1-h post-SCUBA dive (5.01 +/- 0.18 l vs. 5.21 +/- 0.26, p < 0.05), remained elevated 24-h post SCUBA dive (5.06 +/- 0.2, p < 0.05), but was decreased 1-hr after the chamber dive (4.96 +/- 0.31 L to 4.87 +/- 0.32, p < 0.05). The degree of V (A)/Q mismatch in the lung was decreased following recreational ocean dives, and was unchanged following an equivalent air chamber dive, arguing against an impact of VGE on the pulmonary circulation. PMID:19690884

  19. Liver Trapping of (99m)Tc Macroaggregated Albumin During Ventilation/Perfusion Scintigraphy in a Patient With Superior Vena Cava Stenosis as Demonstrated by SPECT/CT.

    PubMed

    Rousseau, Etienne; Leclerc, Yves; Prévost, Sylvain; Keu, Khun Visith

    2015-07-01

    A 50-year-old woman presented to our institution with a 1-day history of right posterior thoracic pain and dyspnea. She had a previous history of conservative resection of a high-grade basal-like infiltrating ductal carcinoma of the right breast 2 years before, subsequently treated by chemotherapy and radiotherapy. A ventilation and perfusion (VQ) scintigraphy performed for suspected pulmonary embolism showed an abnormal deposition of (99m)Tc macroaggregated albumin ((99m)Tc-MAA) in the left lobe of the liver. This unusual finding prompted additional imaging that demonstrated a superior vena cava stenosis. PMID:26018706

  20. SN50, a Cell-Permeable Inhibitor of Nuclear Factor-κB, Attenuates Ventilator-Induced Lung Injury in an Isolated and Perfused Rat Lung Model.

    PubMed

    Chian, Chih-Feng; Chiang, Chi-Huei; Chuang, Chiao-Hui; Liu, Shiou-Ling; Tsai, Chen-Liang

    2016-08-01

    High tidal volume (VT) ventilation causes the release of various mediators and results in ventilator-induced lung injury (VILI). SN50, a cell-permeable nuclear factor-κB (NF-κB) inhibitory peptide, attenuates inflammation and acute respiratory distress syndrome. However, the mechanisms associated with the effects of SN50 in VILI have not been fully elucidated. We investigated the cellular and molecular mechanisms for the effects of SN50 treatment in VILI. An isolated and perfused rat lung model was exposed to low (5 mL/kg) or high (15 mL/kg) VT ventilation for 6 h. SN50 was administered in the perfusate at the onset of the high-stretch mechanical ventilation. The hemodynamics, lung histological changes, inflammatory responses, and activation of apoptotic pathways were evaluated. VILI was demonstrated by increased pulmonary vascular permeability and lung weight gain, as well as by increased levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, myeloperoxidase (MPO), hydrogen peroxide, and macrophage inflammatory protein-2 in the bronchoalveolar lavage fluid. The lung tissue expression of TNF-α, IL-1β, mitogen-activated protein kinases (MAPKs), caspase-3, and phosphorylation of serine/threonine-specific protein kinase (p-AKT) was greater in the high VT group than in the low VT group. Upregulation and activation of NF-κB was associated with increased lung injury in VILI. SN50 attenuated the inflammatory responses, including the expression of IL-1β, TNF-α, MPO, MAPKs, and NF-κB. In addition, the downregulation of apoptosis was evaluated using caspase-3 and p-AKT expression. Furthermore, SN50 mitigated the increases in the lung weights, pulmonary vascular permeability, and lung injury. In conclusion, VILI is associated with inflammatory responses and activation of NF-κB. SN50 inhibits the activation of NF-κB and attenuates VILI. PMID:26780513

  1. Ultra-protective ventilation and hypoxemia.

    PubMed

    Gattinoni, Luciano

    2016-01-01

    Partial extracorporeal CO2 removal allows a decreasing tidal volume without respiratory acidosis in patients with acute respiratory distress syndrome. This, however, may be associated with worsening hypoxemia, due to several mechanisms, such as gravitational and reabsorption atelectasis, due to a decrease in mean airway pressure and a critically low ventilation-perfusion ratio, respectively. In addition, an imbalance between alveolar and artificial lung partial pressures of nitrogen may accelerate the process. Finally, the decrease in the respiratory quotient, leading to unrecognized alveolar hypoxia and monotonous low plateau pressures preventing critical opening, may contribute to hypoxemia. PMID:27170273

  2. CHARGE IMBALANCE

    SciTech Connect

    Clarke, John

    1980-09-01

    The purpose of this article is to review the theory of charge imbalance, and to discuss its relevance to a number of experimental situations. We introduce the concepts of quasiparticle charge and charge imbalance, and discuss the generation and detection of charge imbalance by tunneling. We describe the relaxation of the injected charge imbalance by inelastic scattering processes, and show how the Boltzmann equation can be solved to obtain the steady state quasiparticle distribution and the charge relaxation rate. Details are given of experiments to measure charge imbalance and the charge relaxation rate when inelastic scattering is the predominant relaxation mechanism. Experiments on and theories of other charge relaxation mechanisms are discussed, namely relaxation via elastic scattering in the presence of energy gap anisotropy, or in the presence of a pair breaking mechanism such as magnetic impurities or an applied supercurrent or magnetic field. We describe three other situations in which charge imbalance occurs, namely the resistance of the NS interface, phase slip centers, and the flow of a supercurrent in the presence of a temperature gradient.

  3. Changes in Global Function and Regional Ventilation and Perfusion on SPECT During the Course of Radiotherapy in Patients With Non-Small-Cell Lung Cancer

    SciTech Connect

    Yuan Shuanghu; Frey, Kirk A.; Gross, Milton D.; Hayman, James A.; Arenberg, Doug; Cai Xuwei; Ramnath, Nithya; Hassan, Khaled; Moran, Jean; Eisbruch, Avraham; Ten Haken, Randall K.; Kong Fengming

    2012-03-15

    Purpose: This study aimed to (1) examine changes in dyspnea, global pulmonary function test (PFT) results, and functional activity on ventilation (V)/perfusion (Q) single-photon emission computerized tomography (SPECT) scans during the course of radiation (RT), and (2) factors associated with the changes in patients with non-small-cell lung cancer (NSCLC). Methods and Materials: Fifty-six stage I to III NSCLC patients treated with definitive RT with or without chemotherapy were enrolled prospectively. Dyspnea was graded according to Common Terminology Criteria for Adverse Events version 3.0 prior to and weekly during RT. V/Q SPECT-computed tomography (CT) and PFTs were performed prior to and during RT at approximately 45 Gy. Functions of V and Q activities were assessed using a semiquantitative scoring of SPECT images. Results: Breathing improved significantly at the third week (mean dyspnea grade, 0.8 vs. 0.6; paired t-test p = 0.011) and worsened during the later course of RT (p > 0.05). Global PFT results did not change significantly, while regional lung function on V/Q SPECT improved significantly after {approx}45 Gy. The V defect score (DS) was 4.9 pre-RT versus 4.3 during RT (p = 0.01); Q DS was 4.3 pre-RT versus 4.0 during RT (p < 0.01). Improvements in V and Q functions were seen primarily in the ipsilateral lung (V DS, 1.9 pre-RT versus 1.4 during RT, p < 0.01; Q DS, 1.7 pre-RT versus 1.5 during RT, p < 0.01). Baseline primary tumor volume was significantly correlated with pre-RT V/Q DS (p < 0.01). Patients with central lung tumors had greater interval changes in V and Q than those with more peripheral tumors (p <0.05 for both V and Q DS). Conclusions: Regional ventilation and perfusion improved during RT at 45 Gy. This suggests that adaptive planning based on V/Q SPECT during RT may allow sparing of functionally recoverable lung tissue.

  4. Exhaled CO2 Parameters as a Tool to Assess Ventilation-Perfusion Mismatching during Neonatal Resuscitation in a Swine Model of Neonatal Asphyxia

    PubMed Central

    Li, Elliott Shang-shun; Cheung, Po-Yin; O'Reilly, Megan; LaBossiere, Joseph; Lee, Tze-Fun; Cowan, Shaun; Bigam, David L.; Schmölzer, Georg Marcus

    2016-01-01

    Background End-tidal CO2 (ETCO2), partial pressure of exhaled CO2 (PECO2), and volume of expired CO2 (VCO2) can be continuously monitored non-invasively to reflect pulmonary ventilation and perfusion status. Although ETCO2 ≥14mmHg has been shown to be associated with return of an adequate heart rate in neonatal resuscitation and quantifying the PECO2 has the potential to serve as an indicator of resuscitation quality, there is little information regarding capnometric measurement of PECO2 and ETCO2 in detecting return of spontaneous circulation (ROSC) and survivability in asphyxiated neonates receiving cardiopulmonary resuscitation (CPR). Methods Seventeen newborn piglets were anesthetized, intubated, instrumented, and exposed to 45-minute normocapnic hypoxia followed by apnea to induce asphyxia. Protocolized resuscitation was initiated when heart rate decreased to 25% of baseline. Respiratory and hemodynamic parameters including ETCO2, PECO2, VCO2, heart rate, cardiac output, and carotid artery flow were continuously measured and analyzed. Results There were no differences in respiratory and hemodynamic parameters between surviving and non-surviving piglets prior to CPR. Surviving piglets had significantly higher ETCO2, PECO2, VCO2, cardiac index, and carotid artery flow values during CPR compared to non-surviving piglets. Conclusion Surviving piglets had significantly better respiratory and hemodynamic parameters during resuscitation compared to non-surviving piglets. In addition to optimizing resuscitation efforts, capnometry can assist by predicting outcomes of newborns requiring chest compressions. PMID:26766424

  5. An evaluation of preoperative and postoperative ventilation and perfusion lung scintigraphy in the screening for pulmonary embolism after elective orthopedic surgery

    SciTech Connect

    Keenan, A.M.; Palevsky, H.I.; Steinberg, M.E.; Hartman, K.M.; Alavi, A.; Lotke, P.A. )

    1991-01-01

    One hundred two patients undergoing elective knee or hip arthroplasty were studied with radionuclide ventilation scans (V) and perfusion scans (Q) preoperatively (preop) and postoperatively (postop) to assess their relative value in the diagnosis of asymptomatic pulmonary embolism (PE) after orthopedic surgery. Postop Q were read in combination with preop V and Q and postop V using prospective investigation of pulmonary embolism diagnosis (PIOPED) criteria. Of 25 postop Q interpreted as either high or intermediate probability for PE, preop Q were judged useful in 96%; the postop V were useful in 78%; and the preop V were not helpful in any of the cases. Of 63 postop Q interpreted as low probability, preop Q were useful in 74%; the postop V were useful in only 33%; and the preop V were useful in only one case. When postop Q were read as normal (14 cases), none of the three auxiliary studies were found to be useful. Overall, postop V were more helpful than preop Q in only 2%, and preop V contributed significantly in only 1%. This experience suggests that preop Q alone is the most useful adjunct to the postop Q in the postoperative evaluation for PE. The authors conclude that to screen for asymptomatic PE after elective orthopedic surgery, preop Q should be performed in all cases, preop V are not necessary, and postop V need be performed only if a baseline preop Q is not available.

  6. N-terminal natriuretic peptide and ventilation-perfusion lung scan in sickle cell disease and thalassemia patients with pulmonary hypertension.

    PubMed

    Mokhtar, Galila M; Adly, Amira A M; El Alfy, Mohsen S; Tawfik, Lamis M; Khairy, Ahmed T

    2010-01-01

    The aim of this study was to determine the prevalence of pulmonary hypertension (PH) in sickle cell disease and thalassemia patients in relation to clinical and laboratory parameters of hemolysis and hemosidersosis, as well as plasma N-terminal pro-brain natriuretic peptide (NT-pro-BNP). The study also aimed to define the role of thromboembolic pulmonary artery (PA) obstruction in its etiology. Forty sickle cell disease and 30 thalassemia patients [15 beta-thalassemia major (beta-TM) and 15 beta-thalassemia intermedia (beta-TI)] were screened for PH defined as tricuspid regurgitant velocity (TRV) >2.5 m/sec and evaluated for PA obstruction using ventilation-perfusion lung scan (V/Q), together with measurement of their plasma levels of NT-pro-BNP. Patients were prospectively followed up for a mean of 18 +/- 6.1 months. The prevalence of PH was 37.5, 40.0 and 26.7% in sickle cell disease, beta-TI and beta-TM patients, respectively. Pulmonary hypertension patients were older, had longer disease duration, higher serum ferritin, serum lactate dehydrogenase (LDH) and NT-pro-BNP with lower hemoglobin (Hb) levels compared to patients without PH. N-terminal pro-BNP was positively correlated with duration of illness, TRV, LDH, serum ferritin, and negatively correlated with Hb levels. The strongest predictor for TRV was serum ferritin followed by the NT-pro-BNP level. Forty-six-point-seven percent of sickle cell disease patients with PH had either high or intermediate probability V/Q scan results compared to 10% of thalassemic patients with PH who had high probability V/Q scan results. Pulmonary hypertension is highly prevalent in young sickle cell disease and thalassemia patients, where elevated serum ferritin and NT-pro-BNP are the main indicators. PMID:20113292

  7. Pulmonary ventilation/perfusion scan

    MedlinePlus

    ... Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA. Also reviewed by David Zieve, MD, MHA, Isla Ogilvie, PhD, and the A.D.A.M. Editorial team. Related MedlinePlus Health Topics COPD Lung Diseases Nuclear Scans Pulmonary Embolism Browse the Encyclopedia A.D. ...

  8. Ventilator-associated lung injury.

    PubMed

    Kuchnicka, Katarzyna; Maciejewski, Dariusz

    2013-01-01

    Mechanical ventilation of disease-affected lungs, as well as being an inadequate mode of ventilation for initially healthy lungs, can cause significant changes in their structure and function. In order to differentiate these processes, two terms are used: ventilator-associated lung injury (VALI) and ventilator-induced lung injury (VILI). In both cases, lung injury primarily results from differences in transpulmonary pressure - a consequence of an imbalance between lung stress and strain. This paper focuses on changes in lung structure and function due to this imbalance. Moreover, in this context, barotrauma, volutrauma and atelectrauma are interpreted, and the importance of signal transduction as a process inducing local and systemic inflammatory responses (biotrauma), is determined. None of the assessed methods of reducing VALI and VILI has been found to be entirely satisfactory, yet studies evaluating oscillatory ventilation, liquid ventilation, early ECMO, super-protective ventilation or noisy ventilation and administration of certain drugs are under way. Low tidal volume ventilation and adequately adjusted PEEP appear to be the best preventive measures of mechanical ventilation in any setting, including the operating theatre. Furthermore, this paper highlights the advances in VILI/VALI prevention resulting from better understanding of pathophysiological phenomena. PMID:24092514

  9. Noninvasive ventilation in trauma.

    PubMed

    Karcz, Marcin K; Papadakos, Peter J

    2015-02-01

    Trauma patients are a diverse population with heterogeneous needs for ventilatory support. This requirement depends mainly on the severity of their ventilatory dysfunction, degree of deterioration in gaseous exchange, any associated injuries, and the individual feasibility of potentially using a noninvasive ventilation approach. Noninvasive ventilation may reduce the need to intubate patients with trauma-related hypoxemia. It is well-known that these patients are at increased risk to develop hypoxemic respiratory failure which may or may not be associated with hypercapnia. Hypoxemia in these patients is due to ventilation perfusion mismatching and right to left shunt because of lung contusion, atelectasis, an inability to clear secretions as well as pneumothorax and/or hemothorax, all of which are common in trauma patients. Noninvasive ventilation has been tried in these patients in order to avoid the complications related to endotracheal intubation, mainly ventilator-associated pneumonia. The potential usefulness of noninvasive ventilation in the ventilatory management of trauma patients, though reported in various studies, has not been sufficiently investigated on a large scale. According to the British Thoracic Society guidelines, the indications and efficacy of noninvasive ventilation treatment in respiratory distress induced by trauma have thus far been inconsistent and merely received a low grade recommendation. In this review paper, we analyse and compare the results of various studies in which noninvasive ventilation was applied and discuss the role and efficacy of this ventilator modality in trauma. PMID:25685722

  10. The added value of hybrid ventilation/perfusion SPECT/CT in patients with stable COPD or apparently healthy smokers. Cancer-suspected CT findings in the lungs are common when hybrid imaging is used.

    PubMed

    Jögi, Jonas; Markstad, Hanna; Tufvesson, Ellen; Bjermer, Leif; Bajc, Marika

    2015-01-01

    Ventilation/perfusion (V/P) single-photon emission computed tomography (SPECT) is recognized as a diagnostic method with potential beyond the diagnosis of pulmonary embolism. V/P SPECT identifies functional impairment in diseases such as heart failure (HF), pneumonia, and chronic obstructive pulmonary disease (COPD). The development of hybrid SPECT/computed tomography (CT) systems, combining functional with morphological imaging through the addition of low-dose CT (LDCT), may be useful in COPD, as these patients are prone to lung cancer and other comorbidities. The aim of this study was to investigate the added value of LDCT among healthy smokers and patients with stable COPD, when examined with V/P SPECT/CT hybrid imaging. Sixty-nine subjects, 55 with COPD (GOLD I-IV) and 14 apparently healthy smokers, were examined with V/P SPECT and LDCT hybrid imaging. Spirometry was used to verify COPD grade. Only one apparently healthy smoker and three COPD patients had a normal or nearly normal V/P SPECT. All other patients showed various degrees of airway obstruction, even when spirometry was normal. The same interpretation was reached on both modalities in 39% of the patients. LDCT made V/P SPECT interpretation more certain in 9% of the patients and, in 52%, LDCT provided additional diagnoses. LDCT better characterized the type of emphysema in 12 patients. In 19 cases, tumor-suspected changes were reported. Three of these 19 patients (ie, 4.3% of all subjects) were in the end confirmed to have lung cancer. The majority of LDCT findings were not regarded as clinically significant. V/P SPECT identified perfusion patterns consistent with decompensated left ventricular HF in 14 COPD patients. In 16 patients (23%), perfusion defects were observed. HF and perfusion defects were not recognized with LDCT. In COPD patients and long-time smokers, hybrid imaging had added value compared to V/P SPECT alone, by identifying patients with lung malignancy and more clearly identifying

  11. Ventilation and ventilators.

    PubMed

    Hayes, B

    1982-01-01

    The history of ventilation is reviewed briefly and recent developments in techniques of ventilation are discussed. Operating features of ventilators have changed in the past few years, partly as the result of clinical progress; yet, technology appears to have outstripped the clinician's ability to harness it most effectively. Clinical discipline and training of medical staff in the use of ventilators could be improved. The future is promising if clinician and designer can work together closely. Ergonomics of ventilators and their controls and the provision of alarms need special attention. Microprocessors are likely to feature prominently in the next generation of designs. PMID:6754938

  12. Administration of hydrogen sulfide via extracorporeal membrane lung ventilation in sheep with partial cardiopulmonary bypass perfusion: a proof of concept study on metabolic and vasomotor effects

    PubMed Central

    2011-01-01

    Introduction Although inhalation of 80 parts per million (ppm) of hydrogen sulfide (H2S) reduces metabolism in mice, doses higher than 200 ppm of H2S were required to depress metabolism in rats. We therefore hypothesized that higher concentrations of H2S are required to reduce metabolism in larger mammals and humans. To avoid the potential pulmonary toxicity of H2S inhalation at high concentrations, we investigated whether administering H2S via ventilation of an extracorporeal membrane lung (ECML) would provide means to manipulate the metabolic rate in sheep. Methods A partial venoarterial cardiopulmonary bypass was established in anesthetized, ventilated (fraction of inspired oxygen = 0.5) sheep. The ECML was alternately ventilated with air or air containing 100, 200, or 300 ppm H2S for intervals of 1 hour. Metabolic rate was estimated on the basis of total CO2 production (V˙CO2) and O2 consumption (V˙O2). Continuous hemodynamic monitoring was performed via indwelling femoral and pulmonary artery catheters. Results V˙CO2, V˙O2, and cardiac output ranged within normal physiological limits when the ECML was ventilated with air and did not change after administration of up to 300 ppm H2S. Administration of 100, 200 and 300 ppm H2S increased pulmonary vascular resistance by 46, 52 and 141 dyn·s/cm5, respectively (all P ≤ 0.05 for air vs. 100, 200 and 300 ppm H2S, respectively), and mean pulmonary artery pressure by 4 mmHg (P ≤ 0.05), 3 mmHg (n.s.) and 11 mmHg (P ≤ 0.05), respectively, without changing pulmonary capillary wedge pressure or cardiac output. Exposure to 300 ppm H2S decreased systemic vascular resistance from 1,561 ± 553 to 870 ± 138 dyn·s/cm5 (P ≤ 0.05) and mean arterial pressure from 121 ± 15 mmHg to 66 ± 11 mmHg (P ≤ 0.05). In addition, exposure to 300 ppm H2S impaired arterial oxygenation (PaO2 114 ± 36 mmHg with air vs. 83 ± 23 mmHg with H2S; P ≤ 0.05). Conclusions Administration of up to 300 ppm H2S via ventilation of an

  13. Anaesthesia ventilators

    PubMed Central

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-01-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV). PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits. PMID:24249886

  14. Ventilator-associated lung injury during assisted mechanical ventilation.

    PubMed

    Saddy, Felipe; Sutherasan, Yuda; Rocco, Patricia R M; Pelosi, Paolo

    2014-08-01

    Assisted mechanical ventilation (MV) may be a favorable alternative to controlled MV at the early phase of acute respiratory distress syndrome (ARDS), since it requires less sedation, no paralysis and is associated with less hemodynamic deterioration, better distal organ perfusion, and lung protection, thus reducing the risk of ventilator-associated lung injury (VALI). In the present review, we discuss VALI in relation to assisted MV strategies, such as volume assist-control ventilation, pressure assist-control ventilation, pressure support ventilation (PSV), airway pressure release ventilation (APRV), APRV with PSV, proportional assist ventilation (PAV), noisy ventilation, and neurally adjusted ventilatory assistance (NAVA). In summary, we suggest that assisted MV can be used in ARDS patients in the following situations: (1) Pao(2)/Fio(2) >150 mm Hg and positive end-expiratory pressure ≥ 5 cm H(2)O and (2) with modalities of pressure-targeted and time-cycled breaths including more or less spontaneous or supported breaths (A-PCV [assisted pressure-controlled ventilation] or APRV). Furthermore, during assisted MV, the following parameters should be monitored: inspiratory drive, transpulmonary pressure, and tidal volume (6 mL/kg). Further studies are required to determine the impact of novel modalities of assisted ventilation such as PAV, noisy pressure support, and NAVA on VALI. PMID:25105820

  15. Where Is the Imbalance?

    ERIC Educational Resources Information Center

    Chan, John H. F.

    2009-01-01

    For many researchers, the concept of a power imbalance is central to the understanding of bullying, and its presence in the bully-victim relationship is a prerequisite condition that needs to be fulfilled before bullying is deemed to have taken place. Despite the concept's central importance in many definitions of bullying, the nature of the power…

  16. Generation of parametric images during routine Tc-99m PYP inhalation/Tc-99m MAA perfusion lung scintigraphy. Technical note.

    PubMed

    Miron, S D; Wiesen, E J; Feiglin, D H; Cohen, A M; Bellon, E M

    1991-07-01

    A simple technique is described for generating ventilation/perfusion ratio and perfusion/ventilation ratio images from the posterior Tc-99m PYP aerosol inhalation and Tc-99m MAA perfusion images obtained during routine lung scintigraphy. These images highlight areas of ventilation/perfusion incongruence--mismatch or reverse mismatch--that may sometimes be difficult to detect on conventional images. PMID:1834387

  17. Ex vivo lung perfusion.

    PubMed

    Machuca, Tiago N; Cypel, Marcelo

    2014-08-01

    Lung transplantation (LTx) is an established treatment option for eligible patients with end-stage lung disease. Nevertheless, the imbalance between suitable donor lungs available and the increasing number of patients considered for LTx reflects in considerable waitlist mortality. Among potential alternatives to address this issue, ex vivo lung perfusion (EVLP) has emerged as a modern preservation technique that allows for more accurate lung assessment and also improvement of lung function. Its application in high-risk donor lungs has been successful and resulted in safe expansion of the donor pool. This article will: (I) review the technical details of EVLP; (II) the rationale behind the method; (III) report the worldwide clinical experience with the EVLP, including the Toronto technique and others; (IV) finally, discuss the growing literature on EVLP application for donation after cardiac death (DCD) lungs. PMID:25132972

  18. Ex vivo lung perfusion

    PubMed Central

    Machuca, Tiago N.

    2014-01-01

    Lung transplantation (LTx) is an established treatment option for eligible patients with end-stage lung disease. Nevertheless, the imbalance between suitable donor lungs available and the increasing number of patients considered for LTx reflects in considerable waitlist mortality. Among potential alternatives to address this issue, ex vivo lung perfusion (EVLP) has emerged as a modern preservation technique that allows for more accurate lung assessment and also improvement of lung function. Its application in high-risk donor lungs has been successful and resulted in safe expansion of the donor pool. This article will: (I) review the technical details of EVLP; (II) the rationale behind the method; (III) report the worldwide clinical experience with the EVLP, including the Toronto technique and others; (IV) finally, discuss the growing literature on EVLP application for donation after cardiac death (DCD) lungs. PMID:25132972

  19. Hyperventilation induces release of cytokines from perfused mouse lung.

    PubMed

    von Bethmann, A N; Brasch, F; Nüsing, R; Vogt, K; Volk, H D; Müller, K M; Wendel, A; Uhlig, S

    1998-01-01

    Artificial mechanical ventilation represents a major cause of iatrogenic lung damage in intensive care. It is largely unknown which mediators, if any, contribute to the onset of such complications. We investigated whether stress caused by artificial mechanical ventilation leads to induction, synthesis, and release of cytokines or eicosanoids from lung tissue. We used the isolated perfused and ventilated mouse lung where frequent perfusate sampling allows determination of mediator release into the perfusate. Hyperventilation was executed with either negative (NPV) or positive pressure ventilation (PPV) at a transpulmonary pressure that was increased 2.5-fold above normal. Both modes of hyperventilation resulted in an approximately 1.75-fold increased expression of tumor necrosis factor alpha (TNFalpha) and interleukin-6 (IL-6) mRNA, but not of cyclooxygenase-2 mRNA. After switching to hyperventilation, prostacyclin release into the perfusate increased almost instantaneously from 19 +/- 17 pg/min to 230 +/- 160 pg/min (PPV) or 115 +/- 87 pg/min (NPV). The enhancement in TNFalpha and IL-6 production developed more slowly. In control lungs after 150 min of perfusion and ventilation, TNFalpha and IL-6 production was 23 +/- 20 pg/min and 330 +/- 210 pg/min, respectively. In lungs hyperventilated for 150 min, TNFalpha and IL-6 production were increased to 287 +/- 180 pg/min and more than 1,000 pg/min, respectively. We conclude that artificial ventilation might cause pulmonary and systemic adverse reactions by inducing the release of mediators into the circulation. PMID:9445308

  20. [Collateral ventilation].

    PubMed

    Voshaar, Th H

    2008-06-01

    The phenomenon of collateral ventilation is defined as ventilation of alveolar structures through passages or channels that bypass the normal airways. Such bypassing structures can be interalveolar, bronchiole-alveolar, interbronchiole, and interlobar. Collateral ventilation structures seem to be prominent in human lungs with trapped air and emphysema. In healthy human lungs normally no relevant collateral ventilation can be detected. In emphysematic lungs the ventilation through collateral channels can probably improve gas exchange mechanisms. The phenomenon of collateral ventilation explains several clinical observations in human lungs such as the absence of atalectasis following complete bronchial obstruction, e. g. after foreign body aspiration or tumour. The various results after bronchoscopic implantation of one-way endobronchial valves as a new technique for treating emphysema can also be explained by collateral ventilation. Understanding collateral ventilation is of high importance for clinicians, those working in the field of physiology of emphysema in human lungs and may be central to planning new bronchoscopic techniques for treating emphysema. The paper offers an overview of history, physiology and the relevance for lung volume reduction methods. Moreover, a new imaging technique to demonstrate collateral ventilation in vivo is described. PMID:18535980

  1. Imbalance problem in community detection

    NASA Astrophysics Data System (ADS)

    Sun, Peng Gang

    2016-09-01

    Community detection gives us a simple way to understand complex networks' structures. However, there is an imbalance problem in community detection. This paper first introduces the imbalance problem and then proposes a new measure to alleviate the imbalance problem. In addition, we study two variants of the measure and further analyze the resolution scale of community detection. Finally, we compare our approach with some state of the art methods on random networks as well as real-world networks for community detection. Both the theoretical analysis and the experimental results show that our approach achieves better performance for community detection. We also find that our approach tends to separate densely connected subgroups preferentially.

  2. Intraoperative mechanical ventilation strategies for one-lung ventilation.

    PubMed

    Şentürk, Mert; Slinger, Peter; Cohen, Edmond

    2015-09-01

    One-lung ventilation (OLV) has two major challenges: oxygenation and lung protection. The former is mainly because the ventilation of one lung is stopped while the perfusion continues; the latter is mainly because the whole ventilation is applied to only one lung. Recommendations for maintaining the oxygenation and methods of lung protection can contradict each other (such as high vs. low inspiratory oxygen fraction (FiO2), high vs. low tidal volume (TV), etc.). In light of the (very few) randomized clinical trials, this review focuses on a recent strategy for OLV, which includes a possible decrease in FiO2, lower TVs, positive end-expiratory pressure (PEEP) to the dependent lung, continuous positive airway pressure (CPAP) to the non-dependent lung and recruitment manoeuvres. Other applications such as anaesthetic choice and fluid management can affect the success of ventilatory strategy; new developments have changed the classical approach in this respect. PMID:26643100

  3. Ventilation Model

    SciTech Connect

    H. Yang

    1999-11-04

    The purpose of this analysis and model report (AMR) for the Ventilation Model is to analyze the effects of pre-closure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts and provide heat removal data to support EBS design. It will also provide input data (initial conditions, and time varying boundary conditions) for the EBS post-closure performance assessment and the EBS Water Distribution and Removal Process Model. The objective of the analysis is to develop, describe, and apply calculation methods and models that can be used to predict thermal conditions within emplacement drifts under forced ventilation during the pre-closure period. The scope of this analysis includes: (1) Provide a general description of effects and heat transfer process of emplacement drift ventilation. (2) Develop a modeling approach to simulate the impacts of pre-closure ventilation on the thermal conditions in emplacement drifts. (3) Identify and document inputs to be used for modeling emplacement ventilation. (4) Perform calculations of temperatures and heat removal in the emplacement drift. (5) Address general considerations of the effect of water/moisture removal by ventilation on the repository thermal conditions. The numerical modeling in this document will be limited to heat-only modeling and calculations. Only a preliminary assessment of the heat/moisture ventilation effects and modeling method will be performed in this revision. Modeling of moisture effects on heat removal and emplacement drift temperature may be performed in the future.

  4. Dynamic chest image analysis: model-based pulmonary perfusion analysis with pyramid images

    NASA Astrophysics Data System (ADS)

    Liang, Jianming; Haapanen, Arto; Jaervi, Timo; Kiuru, Aaro J.; Kormano, Martti; Svedstrom, Erkki; Virkki, Raimo

    1998-07-01

    The aim of the study 'Dynamic Chest Image Analysis' is to develop computer analysis and visualization methods for showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames collected at different phases of the respiratory/cardiac cycles in a short period of time. We have proposed a framework for ventilation study with an explicit ventilation model based on pyramid images. In this paper, we extend the framework to pulmonary perfusion study. A perfusion model and the truncated pyramid are introduced. The perfusion model aims at extracting accurate, geographic perfusion parameters, and the truncated pyramid helps in understanding perfusion at multiple resolutions and speeding up the convergence process in optimization. Three cases are included to illustrate the experimental results.

  5. Should High-Frequency Ventilation in the Adult Be Abandoned?

    PubMed

    Nguyen, Albert P; Schmidt, Ulrich H; MacIntyre, Neil R

    2016-06-01

    High-frequency oscillatory ventilation (HFOV) can improve ventilation-perfusion matching without excessive alveolar tidal stretching or collapse-reopening phenomenon. This is an attractive feature in the ventilation of patients with ARDS. However, two recent large multi-center trials of HFOV failed to show benefits in this patient population. The following review addresses whether, in view of these trails, HFOV should be abandoned in the adult population? PMID:27235314

  6. Functional Lung MRI in Chronic Obstructive Pulmonary Disease: Comparison of T1 Mapping, Oxygen-Enhanced T1 Mapping and Dynamic Contrast Enhanced Perfusion

    PubMed Central

    Jobst, Bertram J.; Triphan, Simon M. F.; Sedlaczek, Oliver; Anjorin, Angela; Kauczor, Hans Ulrich; Biederer, Jürgen; Ley-Zaporozhan, Julia; Ley, Sebastian; Wielpütz, Mark O.

    2015-01-01

    Purpose Monitoring of regional lung function in interventional COPD trials requires alternative endpoints beyond global parameters such as FEV1. T1 relaxation times of the lung might allow to draw conclusions on tissue composition, blood volume and oxygen fraction. The aim of this study was to evaluate the potential value of lung Magnetic resonance imaging (MRI) with native and oxygen-enhanced T1 mapping for the assessment of COPD patients in comparison with contrast enhanced perfusion MRI. Materials and Methods 20 COPD patients (GOLD I-IV) underwent a coronal 2-dimensional inversion recovery snapshot flash sequence (8 slices/lung) at room air and during inhalation of pure oxygen, as well as dynamic contrast-enhanced first-pass perfusion imaging. Regional distribution of T1 at room air (T1), oxygen-induced T1 shortening (ΔT1) and peak enhancement were rated by 2 chest radiologists in consensus using a semi-quantitative 3-point scale in a zone-based approach. Results Abnormal T1 and ΔT1 were highly prevalent in the patient cohort. T1 and ΔT1 correlated positively with perfusion abnormalities (r = 0.81 and r = 0.80; p&0.001), and with each other (r = 0.80; p<0.001). In GOLD stages I and II ΔT1 was normal in 16/29 lung zones with mildly abnormal perfusion (15/16 with abnormal T1). The extent of T1 (r = 0.45; p<0.05), ΔT1 (r = 0.52; p<0.05) and perfusion abnormalities (r = 0.52; p<0.05) showed a moderate correlation with GOLD stage. Conclusion Native and oxygen-enhanced T1 mapping correlated with lung perfusion deficits and severity of COPD. Under the assumption that T1 at room air correlates with the regional pulmonary blood pool and that oxygen-enhanced T1 reflects lung ventilation, both techniques in combination are principally suitable to characterize ventilation-perfusion imbalance. This appears valuable for the assessment of regional lung characteristics in COPD trials without administration of i.v. contrast. PMID:25822195

  7. Ventilation Model

    SciTech Connect

    V. Chipman

    2002-10-05

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. The purposes of Revision 01 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of the discretization (Section 6.2.3.1), and the downstream applicability of the model results (i.e. wall heat fractions) to initialize post

  8. Amino acid imbalance in cystinuria

    PubMed Central

    Asatoor, A. M.; Freedman, P. S.; Gabriel, J. R. T.; Milne, M. D.; Prosser, D. I.; Roberts, J. T.; Willoughby, C. P.

    1974-01-01

    After oral ingestion of a free amino acid mixture by three cystinuric patients, plasma increments of lysine and arginine were lower and those of many other amino acids were significantly higher than those found in control subjects. Similar results were obtained in control subjects after amino acid imbalance had been artificially induced by the omission of cystine, lysine, and arginine from the amino acid mixture. Especially high increments of alanine and proline provided the best evidence of amino acid imbalance caused by a temporary lysine and, to a lesser extent, arginine and cystine deficit. No such amino acid imbalance was found to occur in the cystinuric patients after ingestion of whole protein, indicating that absorption of oligopeptides produced by protein digestion provided a balanced physiological serum amino acid increment. This is considered to explain the lack of any unequivocal nutritional deficit in cystinuric patients despite poor absorption of the essential free amino acid, lysine. PMID:4411931

  9. Ex vivo lung graft perfusion.

    PubMed

    Briot, Raphaël; Gennai, Stéphane; Maignan, Maxime; Souilamas, Redha; Pison, Christophe

    2016-04-01

    This review proposes an update of the state of the art and the ongoing clinical trials of ex vivo lung perfusion for lung transplantation in patients. Ex vivo lung perfusion techniques (EVLP) can be used to evaluate a lung graft outside of the body. The goal of EVLP is to study the functional status of lung grafts that were first rejected for transplantation because they did not match all criteria for a conventional transplantation. After an EVLP evaluation, some of these lungs may be requalified for a possible transplantation in patients. This article proposes an overview of the developments of EVLP techniques. During EVLP, the perfusion and ventilation of the isolated lung preparation are very progressive in order to avoid oedema due to ischaemia-reperfusion injuries. Lung evaluation is mainly based on gasometric (PaO2/FiO2) and rheological criteria (low pulmonary arterial resistance). Several series of patients transplanted with EVLP evaluated lungs have been recently published with promising results. EVLP preparations also allow a better understanding of the physiopathology and treatments of ischaemia-reperfusion injuries. Organ procurements from "non-heart-beating" donors will probably require a wider application of these ex vivo techniques. The development of semi-automated systems might facilitate the clinical use of EVLP techniques. PMID:26746565

  10. Nasal ventilation.

    PubMed Central

    Simonds, A. K.

    1998-01-01

    Nasal intermittent positive pressure ventilation is likely to have an increasing role in the management of acute ventilatory failure, weaning, and chronic ventilatory problems. Further improvements in ventilator and mask design will be seen. Appropriate application is likely to reduce both mortality and admissions to intensive care, while domiciliary use can improve life expectancy and/or quality of life in chronic ventilatory disorders. As with any new technique, enthusiasm should not outweigh clear outcome information, and possible new indications should always be subject to careful assessment. Images Figure 2 PMID:9799887

  11. Perfusion lung scan: an aid in detection of lymphangitic carcinomatosis

    SciTech Connect

    Bates, S.E.; Tranum, B.L.

    1982-07-15

    Lymphangitic carcinomatosis is usually a late manifestation of metastatic disease. The patient usually presents with cough or dyspnea, and the chest radiograph is often nondiagnostic. Two patients are presented who developed symptoms while on adjuvant chemotherapy. Both had abnormal perfusion lung scans. One had matching ventilation defects; the other a normal ventilation study. Biopsy revealed metastatic carcinoma; in one case tumor was seen in both the pulmonary lymphatics and arterioles; in technique which can speed diagnosis and institution of therapy in lymphangitic carcinomatosis.

  12. Mechanical Ventilation

    MedlinePlus

    ... or husband or next of kin). It is important that you talk with your family members and your doctors about using a ventilator and what you would like to happen in different situations. The more clearly you explain your values and choices to friends, loved ones and doctors, ...

  13. Dynamic Chest Image Analysis: Model-Based Perfusion Analysis in Dynamic Pulmonary Imaging

    NASA Astrophysics Data System (ADS)

    Liang, Jianming; Järvi, Timo; Kiuru, Aaro; Kormano, Martti; Svedström, Erkki

    2003-12-01

    The "Dynamic Chest Image Analysis" project aims to develop model-based computer analysis and visualization methods for showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames collected with the dynamic pulmonary imaging technique. We have proposed and evaluated a multiresolutional method with an explicit ventilation model for ventilation analysis. This paper presents a new model-based method for pulmonary perfusion analysis. According to perfusion properties, we first devise a novel mathematical function to form a perfusion model. A simple yet accurate approach is further introduced to extract cardiac systolic and diastolic phases from the heart, so that this cardiac information may be utilized to accelerate the perfusion analysis and improve its sensitivity in detecting pulmonary perfusion abnormalities. This makes perfusion analysis not only fast but also robust in computation; consequently, perfusion analysis becomes computationally feasible without using contrast media. Our clinical case studies with 52 patients show that this technique is effective for pulmonary embolism even without using contrast media, demonstrating consistent correlations with computed tomography (CT) and nuclear medicine (NM) studies. This fluoroscopical examination takes only about 2 seconds for perfusion study with only low radiation dose to patient, involving no preparation, no radioactive isotopes, and no contrast media.

  14. Ventilator-driven xenon ventilation studies

    SciTech Connect

    Chilcoat, R.T.; Thomas, F.D.; Gerson, J.I.

    1984-07-01

    A modification of a common commerical Xe-133 ventilation device is described for mechanically assisted ventilation imaging. The patient's standard ventilator serves as the power source controlling the ventilator rate and volume during the xenon study, but the gases in the two systems are not intermixed. This avoids contamination of the ventilator with radioactive xenon. Supplemental oxygen and positive end-expiratory pressure (PEEP) are provided if needed. The system can be converted quickly for conventional studies with spontaneous respiration.

  15. FATE OF INHALED NITROGEN DIOXIDE IN ISOLATED PERFUSED RAT LUNG

    EPA Science Inventory

    The fate of inhaled NO2 was studied with isolated perfused rat lungs. The isolated lungs were exposed to 5 ppm NO2 for 90 min at a ventilation rate of 45 ml/min. The NO2 exposure had no adverse effects on the lungs as judged from their weights, glucose uptake, or lactate producti...

  16. Dead space: the physiology of wasted ventilation.

    PubMed

    Robertson, H Thomas

    2015-06-01

    An elevated physiological dead space, calculated from measurements of arterial CO2 and mixed expired CO2, has proven to be a useful clinical marker of prognosis both for patients with acute respiratory distress syndrome and for patients with severe heart failure. Although a frequently cited explanation for an elevated dead space measurement has been the development of alveolar regions receiving no perfusion, evidence for this mechanism is lacking in both of these disease settings. For the range of physiological abnormalities associated with an increased physiological dead space measurement, increased alveolar ventilation/perfusion ratio (V'A/Q') heterogeneity has been the most important pathophysiological mechanism. Depending on the disease condition, additional mechanisms that can contribute to an elevated physiological dead space measurement include shunt, a substantial increase in overall V'A/Q' ratio, diffusion impairment, and ventilation delivered to unperfused alveolar spaces. PMID:25395032

  17. Pulmonary blood flow distribution in sheep: effects of anesthesia, mechanical ventilation, and change in posture

    NASA Technical Reports Server (NTRS)

    Walther, S. M.; Domino, K. B.; Glenny, R. W.; Hlastala, M. P.

    1997-01-01

    BACKGROUND: Recent studies providing high-resolution images of pulmonary perfusion have questioned the classical zone model of pulmonary perfusion. Hence the present work was undertaken to provide detailed maps of regional pulmonary perfusion to examine the influence of anesthesia, mechanical ventilation, and posture. METHODS: Pulmonary perfusion was analyzed with intravenous fluorescent microspheres (15 microm) in six sheep studied in four conditions: prone and awake, prone with pentobarbital-anesthesia and breathing spontaneously, prone with anesthesia and mechanical ventilation, and supine with anesthesia and mechanical ventilation. Lungs were air dried at total lung capacity and sectioned into approximately 1,100 pieces (about 2 cm3) per animal. The pieces were weighed and assigned spatial coordinates. Fluorescence was read on a spectrophotometer, and signals were corrected for piece weight and normalized to mean flow. Pulmonary blood flow heterogeneity was assessed using the coefficient of variation of flow data. RESULTS: Pentobarbital anesthesia and mechanical ventilation did not influence perfusion heterogeneity, but heterogeneity increased when the animals were in the supine posture (P < 0.01). Gravitational flow gradients were absent in the prone position but present in the supine (P < 0.001 compared with zero). Pulmonary perfusion was distributed with a hilar-to-peripheral gradient in animals breathing spontaneously (P < 0.05). CONCLUSIONS: The influence of pentobarbital anesthesia and mechanical ventilation on pulmonary perfusion heterogeneity is small compared with the effect of changes in posture. Analysis of flow gradients indicate that gravity plays a small role in determining pulmonary blood flow distribution.

  18. Comparison of conventional mechanical ventilation and synchronous independent lung ventilation (SILV) in the treatment of unilateral lung injury.

    PubMed

    Hurst, J M; DeHaven, C B; Branson, R D

    1985-08-01

    Eight patients presenting with severe unilateral pulmonary injury responded poorly to conventional mechanical ventilation. Synchronous independent lung ventilation (SILV) was employed to provide support of ventilation and oxygenation without creating the ventilation/perfusion (V/Q) mismatch observed during conventional ventilation. All patients demonstrated improved oxygenation (mean increase, 80 torr) during SILV with the FIO2 unchanged from previous therapy. Invasive hemodynamic monitoring in five of eight patients showed no difference in the commonly measured cardiopulmonary parameters with the two forms of mechanical ventilation. Peak inspiratory pressure (PIP), continuous positive airway pressure (CPAP), and pressure change secondary to tidal volume delivery to the uninvolved lung were significantly less during SILV. SILV is an effective method of improving oxygenation in patients with severe unilateral pulmonary injury. PMID:3894680

  19. Regional pulmonary perfusion following human heart-lung transplantation

    SciTech Connect

    Lisbona, R.; Hakim, T.S.; Dean, G.W.; Langleben, D.; Guerraty, A.; Levy, R.D. )

    1989-08-01

    Ventilation and perfusion scans were obtained in six subjects who had undergone heart-lung transplantation with consequent denervation of the cardiopulmonary axis. Two of the subjects had developed obliterative bronchiolitis, which is believed to be a form of chronic rejection. Their pulmonary function tests demonstrated airflow obstruction and their scintigraphic studies were abnormal. In the remaining four subjects without obstructive airways disease, ventilation and planar perfusion scans were normal. Single photon emission computed tomography imaging of pulmonary perfusion in these patients revealed a layered distribution of blood flow indistinguishable from that of normal individuals. It is concluded that neurogenic mechanisms have little influence on the pattern of local pulmonary blood flow at rest.

  20. Oxidative Imbalance and Anxiety Disorders

    PubMed Central

    R, Krolow; D. M, Arcego; C, Noschang; S. N, Weis; C, Dalmaz

    2014-01-01

    The oxidative imbalance appears to have an important role in anxiety development. Studies in both humans and animals have shown a strong correlation between anxiety and oxidative stress. In humans, for example, the increased malondialdehyde levels and discrepancies in antioxidant enzymes in erythrocytes have been observed. In animals, several studies also show that anxiety-like behavior is related to the oxidative imbalance. Moreover, anxiety-like behavior can be caused by pharmacological-induced oxidative stress. Studies using knockout or overexpression of antioxidant enzymes have shown a relationship between anxiety-like behavior and oxidative stress. Related factors of oxidative stress that could influence anxious behavior are revised, including impaired function of different mitochondrial proteins, inflammatory cytokines, and neurotrophic factors. It has been suggested that a therapy specifically focus in reducing reactive species production may have a beneficial effect in reducing anxiety. However, the neurobiological pathways underlying the effect of oxidative stress on anxiety symptoms are not fully comprehended. The challenge now is to identify the oxidative stress mechanisms likely to be involved in the induction of anxiety symptoms. Understanding these pathways could help to clarify the neurobiology of the anxiety disorder and provide tools for new discovery in therapies and preventive strategies. PMID:24669212

  1. Estimation of Lung Ventilation

    NASA Astrophysics Data System (ADS)

    Ding, Kai; Cao, Kunlin; Du, Kaifang; Amelon, Ryan; Christensen, Gary E.; Raghavan, Madhavan; Reinhardt, Joseph M.

    Since the primary function of the lung is gas exchange, ventilation can be interpreted as an index of lung function in addition to perfusion. Injury and disease processes can alter lung function on a global and/or a local level. MDCT can be used to acquire multiple static breath-hold CT images of the lung taken at different lung volumes, or with proper respiratory control, 4DCT images of the lung reconstructed at different respiratory phases. Image registration can be applied to this data to estimate a deformation field that transforms the lung from one volume configuration to the other. This deformation field can be analyzed to estimate local lung tissue expansion, calculate voxel-by-voxel intensity change, and make biomechanical measurements. The physiologic significance of the registration-based measures of respiratory function can be established by comparing to more conventional measurements, such as nuclear medicine or contrast wash-in/wash-out studies with CT or MR. An important emerging application of these methods is the detection of pulmonary function change in subjects undergoing radiation therapy (RT) for lung cancer. During RT, treatment is commonly limited to sub-therapeutic doses due to unintended toxicity to normal lung tissue. Measurement of pulmonary function may be useful as a planning tool during RT planning, may be useful for tracking the progression of toxicity to nearby normal tissue during RT, and can be used to evaluate the effectiveness of a treatment post-therapy. This chapter reviews the basic measures to estimate regional ventilation from image registration of CT images, the comparison of them to the existing golden standard and the application in radiation therapy.

  2. Gas exchange and intrapulmonary distribution of ventilation during continuous-flow ventilation

    SciTech Connect

    Vettermann, J.; Brusasco, V.; Rehder, K.

    1988-05-01

    In 12 anesthetized paralyzed dogs, pulmonary gas exchange and intrapulmonary inspired gas distribution were compared between continuous-flow ventilation (CFV) and conventional mechanical ventilation (CMV). Nine dogs were studied while they were lying supine, and three dogs were studied while they were lying prone. A single-lumen catheter for tracheal insufflation and a double-lumen catheter for bilateral endobronchial insufflation (inspired O2 fraction = 0.4; inspired minute ventilation = 1.7 +/- 0.3 (SD) 1.kg-1.min-1) were evaluated. Intrapulmonary gas distribution was assessed from regional 133Xe clearances. In dogs lying supine, CO2 elimination was more efficient with endobronchial insufflation than with tracheal insufflation, but the alveolar-arterial O2 partial pressure difference was larger during CFV than during CMV, regardless of the type of insufflation. By contrast, endobronchial insufflation maintained both arterial PCO2 and alveolar-arterial O2 partial pressure difference at significantly lower levels in dogs lying prone than in dogs lying supine. In dogs lying supine, the dependent lung was preferentially ventilated during CMV but not during CFV. In dogs lying prone, gas distribution was uniform with both modes of ventilation. The alveolar-arterial O2 partial pressure difference during CFV in dogs lying supine was negatively correlated with the reduced ventilation of the dependent lung, which suggests that increased ventilation-perfusion mismatching was responsible for the increase in alveolar-arterial O2 partial pressure difference. The more efficient oxygenation during CFV in dogs lying prone suggests a more efficient matching of ventilation to perfusion, presumably because the distribution of blood flow is also nearly uniform.

  3. Energy Imbalance Markets (Fact Sheet)

    SciTech Connect

    Not Available

    2012-09-01

    The anticipated increase in variable renewable generation, such as wind and solar power, over the next several years has raised concerns about how system operators will maintain balance between electricity production and demand in the Western Interconnection, especially in its smaller balancing authority areas (BAAs). Given renewable portfolio standards in the West, it is possible that more than 50 gigawatts of wind capacity will be installed by 2020. Significant quantities of solar generation are likely to be added as well. Meanwhile, uncertainties about future load growth and challenges siting new transmission and generation resources may add additional stresses on the Western Interconnection of the future. One proposed method of addressing these challenges is an energy imbalance market (EIM). An EIM is a means of supplying and dispatching electricity to balance fluctuations in generation and load. It aggregates the variability of generation and load over multiple balancing areas (BAs).

  4. Ventilator-driven xenon ventilation studies

    SciTech Connect

    Chilcoat, R.T.; Thomas, F.D.; Gerson, J.I.

    1984-07-01

    A modification of a common commercial Xe-133 ventilation device is described for mechanically assisted ventilation imaging. The patient's standard ventilator serves as the power source controlling the ventilatory rate and volume during the xenon study, but the gases in the two systems are not intermixed. This avoids contamination of the ventilator with radioactive xenon. Supplemental oxygen and positive end-expiratory pressure (PEEP) are provided if needed. The system can be converted quickly for conventional studies with spontaneous respiration.

  5. Timing positive-pressure ventilation during chest compression: the key to improving the thoracic pump?

    PubMed

    Chalkias, Athanasios; Xanthos, Theodoros

    2015-02-01

    Given the importance of increased coronary and cerebral perfusion pressure during cardiopulmonary resuscitation, the recommendation of limiting tidal volume and ventilation rate to 10 per minute in order not to inhibit venous return seems to be correct. However, although the resuscitation community believes that positive-pressure ventilation during cardiopulmonary resuscitation is bad for the circulation, proper timing of compression and ventilation may actually improve the circulation. PMID:24381094

  6. Earth's energy imbalance and implications

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Sato, M.; Kharecha, P.; von Schuckmann, K.

    2011-09-01

    Improving observations of ocean heat content show that Earth is absorbing more energy from the sun than it is radiating to space as heat, even during the recent solar minimum. The inferred planetary energy imbalance, 0.59 ± 0.15 W m-2 during the 6-year period 2005-2010, confirms the dominant role of the human-made greenhouse effect in driving global climate change. Observed surface temperature change and ocean heat gain together constrain the net climate forcing and ocean mixing rates. We conclude that most climate models mix heat too efficiently into the deep ocean and as a result underestimate the negative forcing by human-made aerosols. Aerosol climate forcing today is inferred to be -1.6 ± 0.3 W m-2, implying substantial aerosol indirect climate forcing via cloud changes. Continued failure to quantify the specific origins of this large forcing is untenable, as knowledge of changing aerosol effects is needed to understand future climate change. We conclude that recent slowdown of ocean heat uptake was caused by a delayed rebound effect from Mount Pinatubo aerosols and a deep prolonged solar minimum. Observed sea level rise during the Argo float era is readily accounted for by ice melt and ocean thermal expansion, but the ascendency of ice melt leads us to anticipate acceleration of the rate of sea level rise this decade. Humanity is potentially vulnerable to global temperature change, as discussed in the Intergovernmental Panel on Climate Change (IPCC, 2001, 2007) reports and by innumerable authors. Although climate change is driven by many climate forcing agents and the climate system also exhibits unforced (chaotic) variability, it is now widely agreed that the strong global warming trend of recent decades is caused predominantly by human-made changes of atmospheric composition (IPCC, 2007). The basic physics underlying this global warming, the greenhouse effect, is simple. An increase of gases such as CO2 makes the atmosphere more opaque at infrared

  7. Current concepts of protective ventilation during general anaesthesia.

    PubMed

    Serpa Neto, Ary; Schultz, Marcus J; Slutsky, Arthur S

    2015-01-01

    Mechanical ventilation with high tidal volumes (VT) has been common practice in operating theatres because this strategy recruits collapsed lung tissue and improves ventilation-perfusion mismatch, thus decreasing the need for high inspired oxygen concentrations. Positive end-expiratory pressure (PEEP) was not used routinely because it was thought to impair cardiovascular function. Over the past two decades there have been advances in our understanding of the causes and importance of ventilation-induced lung injury based on studies in animals with healthy lungs, and trials in critically ill patients with and without acute respiratory distress syndrome. Recent data from randomised controlled trials in patients receiving ventilation during general anaesthesia for surgery have demonstrated that lung-protective strategies (use of low VT, use of PEEP if indicated, and avoidance of excessive oxygen concentrations) are also of importance during intraoperative ventilation. PMID:26561993

  8. Single perfusion defect and pulmonary embolism: Angiographic correlation

    SciTech Connect

    Catania, T.A.; Caride, V.J. )

    1990-03-01

    One hundred and thirty-three ventilation-perfusion scans (V-P) with angiographic correlation were retrospectively reviewed to evaluate the frequency of pulmonary emboli (PE) in single perfusion defects (SPD), regardless of ventilation or radiographic findings. By angiography, 15 of 30 SPD cases had PE. Demographic data and clinical presentation were similar for PE and non-PE patients. However, 9 out of 15 patients with PE had recent surgery compared to none of the non-PE patients. SPD were seen in areas of ventilation and chest x-ray abnormalities in 12 of 15 PE and 11 of 19 non-PE cases. Size of the actual lesion was underestimated by scintigraphy in most cases. In 7 of 15 PE cases, the perfusion defect was larger than the corresponding ventilation abnormality. Most SPD were located at the bases. Twelve of 15 SPD in the PE group were at the posterior basilar segment. In the appropriate clinical setting, SPD carries at least a moderate probability for PE. When the clinical suspicion is high, a pulmonary angiography will be needed to confirm the diagnosis.

  9. VENTILATION NEEDS DURING CONSTRUCTION

    SciTech Connect

    C.R. Gorrell

    1998-07-23

    The purpose of this analysis is to determine ventilation needs during construction and development of the subsurface repository and develop systems to satisfy those needs. For this analysis, construction is defined as pre-emplacement excavation and development is excavation that takes place simultaneously with emplacement. The three options presented in the ''Overall Development and Emplacement Ventilation Systems'' analysis (Reference 5.5) for development ventilation will be applied to construction ventilation in this analysis as well as adding new and updated ventilation factors to each option for both construction and development. The objective of this analysis is to develop a preferred ventilation system to support License Application Design. The scope of this analysis includes: (1) Description of ventilation conditions; (2) Ventilation factors (fire hazards, dust control, construction logistics, and monitoring and control systems); (3) Local ventilation alternatives; (4) Global ventilation options; and (5) Evaluation of options.

  10. Perfusion lung scan: an aid in detection of lymphangitic carcinomatosis

    SciTech Connect

    Bates, S.E.; Tranum, B.L.

    1982-07-15

    Lymphangitic carcinomatosis is usually a late manifestation of metastatic disease. The patient usually presents with cough or dyspnea, and the chest radiograph is often nondiagnostic. Two patients are presented who developed symptoms while on adjuvant chemotherapy. Both had abnormal perfusion lung scans. One had matching ventilation defects; the other a normal ventilation study. Biopsy revealed metastatic carcinoma; in one case tumor was seen in both the pulmonary lymphatics and arterioles; in the other, tumor was identified but the site could not be specified. The radionuclide lung scan is a technique which can speed diagnosis and institution of therapy in lymphangitic carcinomatosis.

  11. [Complaints of imbalance in elderly people].

    PubMed

    Eysink Smeets, Marjolein M; van Leeuwen, Roeland B; van de Berg, Raymond

    2016-02-01

    Balance disorders in the elderly often have several contributing causes. The search for these causes focuses on vision, proprioception, coordination and medication. The peripheral vestibular system is often overlooked. This is probably due to the fact that most clinicians overlook the vestibular system, when complaints of vertigo are missing. However, dysfunction of the vestibular system may cause imbalance without vertigo. Three cases are presented. One case illustrates several contributing causes leading to imbalance. Two other cases illustrate causes of vestibular dysfunction resulting in imbalance without vertigo: a bilateral vestibulopathy and benign paroxysmal positional vertigo. Symptoms, examination and treatment are discussed. All patients with imbalance should undergo a Head Impulse Test and Dix-Hallpike maneuver. PMID:26518204

  12. Metformin attenuates ventilator-induced lung injury

    PubMed Central

    2012-01-01

    Introduction Diabetic patients may develop acute lung injury less often than non-diabetics; a fact that could be partially ascribed to the usage of antidiabetic drugs, including metformin. Metformin exhibits pleiotropic properties which make it potentially beneficial against lung injury. We hypothesized that pretreatment with metformin preserves alveolar capillary permeability and, thus, prevents ventilator-induced lung injury. Methods Twenty-four rabbits were randomly assigned to pretreatment with metformin (250 mg/Kg body weight/day per os) or no medication for two days. Explanted lungs were perfused at constant flow rate (300 mL/min) and ventilated with injurious (peak airway pressure 23 cmH2O, tidal volume ≈17 mL/Kg) or protective (peak airway pressure 11 cmH2O, tidal volume ≈7 mL/Kg) settings for 1 hour. Alveolar capillary permeability was assessed by ultrafiltration coefficient, total protein concentration in bronchoalveolar lavage fluid (BALF) and angiotensin-converting enzyme (ACE) activity in BALF. Results High-pressure ventilation of the ex-vivo lung preparation resulted in increased microvascular permeability, edema formation and microhemorrhage compared to protective ventilation. Compared to no medication, pretreatment with metformin was associated with a 2.9-fold reduction in ultrafiltration coefficient, a 2.5-fold reduction in pulmonary edema formation, lower protein concentration in BALF, lower ACE activity in BALF, and fewer histological lesions upon challenge of the lung preparation with injurious ventilation. In contrast, no differences regarding pulmonary artery pressure and BALF total cell number were noted. Administration of metformin did not impact on outcomes of lungs subjected to protective ventilation. Conclusions Pretreatment with metformin preserves alveolar capillary permeability and, thus, decreases the severity of ventilator-induced lung injury in this model. PMID:22827994

  13. Dynamic chest image analysis: model-based ventilation study with pyramid images

    NASA Astrophysics Data System (ADS)

    Liang, Jianming; Jaervi, Timo; Kiuru, Aaro J.; Kormano, Martti; Svedstrom, Erkki; Virkki, Raimo

    1997-05-01

    The aim of the study 'dynamic chest image analysis' is to develop computing analysis and visualization methods for showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames collected at different phases of the respiratory/cardiac cycles. A multiresolutional method for ventilation study with an explicit ventilation model based on pyramid images is proposed in this paper. The ventilation model is sophisticated enough in coverage of both inhalation and exhalation phases, but also remains simple enough in model realization. This model plays a critical role in extracting accurate, geographic ventilation parameters; while the pyramid helps in understanding ventilation at multiple resolutions and speeding up the convergence process in optimization. A number of patients have been studied with a research prototype produced in MATLAB. The prototype has proven to be useful aid in dynamic pulmonary ventilation study. However, for clinical use, further work must be done in the future.

  14. Utilization of the organ care system as ex-vivo lung perfusion after cold storage transportation.

    PubMed

    Mohite, P N; Maunz, O; Popov, A-F; Zych, B; Patil, N P; Simon, A R

    2015-11-01

    The Organ Care System (OCS) allows perfusion and ventilation of the donor lungs under physiological conditions. Ongoing trials to compare preservation with OCS Lung with standard cold storage do not include donor lungs with suboptimal gas exchange and donor lungs treated with OCS following cold storage transportation. We present a case of a 48-yr-old man who received such lungs after cold storage transportation treated with ex-vivo lung perfusion utilizing OCS. PMID:25662732

  15. VENTILATION MODEL REPORT

    SciTech Connect

    V. Chipman

    2002-10-31

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their postclosure analyses.

  16. VENTILATION TECHNOLOGY SYSTEMS ANALYSIS

    EPA Science Inventory

    The report gives results of a project to develop a systems analysis of ventilation technology and provide a state-of-the-art assessment of ventilation and indoor air quality (IAQ) research needs. (NOTE: Ventilation technology is defined as the hardware necessary to bring outdoor ...

  17. A rational framework for selecting modes of ventilation.

    PubMed

    Mireles-Cabodevila, Eduardo; Hatipoğlu, Umur; Chatburn, Robert L

    2013-02-01

    Mechanical ventilation is a life-saving intervention for respiratory failure and thus has become the cornerstone of the practice of critical care medicine. A mechanical ventilation mode describes the predetermined pattern of patient-ventilator interaction. In recent years there has been a dizzying proliferation of mechanical ventilation modes, driven by technological advances and market pressures, rather than clinical data. The comparison of these modes is hampered by the sheer number of combinations that need to be tested against one another, as well as the lack of a coherent, logical nomenclature that accurately describes a mode. In this paper we propose a logical nomenclature for mechanical ventilation modes, akin to biological taxonomy. Accordingly, the control variable, breath sequence, and targeting schemes for the primary and secondary breaths represent the order, family, genus, and species, respectively, for the described mode. To distinguish unique operational algorithms, a fifth level of distinction, termed variety, is utilized. We posit that such coherent ordering would facilitate comparison and understanding of modes. Next we suggest that the clinical goals of mechanical ventilation may be simplified into 3 broad categories: provision of safe gas exchange; provision of comfort; and promotion of liberation from mechanical ventilation. Safety is achieved via optimization of ventilation-perfusion matching and pressure-volume relationship of the lungs. Comfort is provided by fostering patient-ventilator synchrony. Liberation is promoted by optimization of the weaning experience. Then we follow a paradigm that matches the technological capacity of a particular mode to achieving a specific clinical goal. Finally, we provide the reader with a comparison of existing modes based on these principles. The status quo in mechanical ventilation mode nomenclature impedes communication and comparison of existing mechanical ventilation modes. The proposed model

  18. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    SciTech Connect

    Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

    2014-01-06

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits

  19. Ex vivo lung perfusion.

    PubMed

    Reeb, Jeremie; Cypel, Marcelo

    2016-03-01

    Lung transplantation is an established life-saving therapy for patients with end-stage lung disease. Unfortunately, greater success in lung transplantation is hindered by a shortage of lung donors and the relatively poor early-, mid-, and long-term outcomes associated with severe primary graft dysfunction. Ex vivo lung perfusion has emerged as a modern preservation technique that allows for a more accurate lung assessment and improvement in lung quality. This review outlines the: (i) rationale behind the method; (ii) techniques and protocols; (iii) Toronto ex vivo lung perfusion method; (iv) devices available; and (v) clinical experience worldwide. We also highlight the potential of ex vivo lung perfusion in leading a new era of lung preservation. PMID:26700566

  20. [Independent lung ventilation for asymmetric injury: case report as a demonstration of common challenge].

    PubMed

    Lebedinskiĭ, K M; Artiukov, D A; Borisov, M V; Gromova, T A; Slivin, O A

    2014-01-01

    The article deals with a case of conventional mechanical ventilation in 75 y.o. woman with the background of uncompensated diabetes mellitus, suffering from bilateral pneumonia with predominantly left-sided lesion and severe sepsis. The conventional mechanical ventilation with high pressure levels led to arterial hypoxemia with P/F ratio 52. Independent lung ventilation immediately increased oxygenation up to P/F ratio 225 and evidently improved left lung aeration. The case demonstrates that while applying high pressures to open alveoli, we could not only provoke ventilator-induced lung injury and low cardiac output, but also "squeeze out" pulmonary perfusion from ventilated areas to non-ventilated ones with less intraalveolar pressure levels. PMID:25549491

  1. Ventilation Model Report

    SciTech Connect

    V. Chipman; J. Case

    2002-12-20

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. Revision 01 ICN 01 included the results of the unqualified software code MULTIFLUX to assess the influence of moisture on the ventilation efficiency. The purposes of Revision 02 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of

  2. On the chiral imbalance and Weibel instabilities

    NASA Astrophysics Data System (ADS)

    Kumar, Avdhesh; Bhatt, Jitesh R.; Kaw, P. K.

    2016-06-01

    We study the chiral-imbalance and the Weibel instabilities in presence of the quantum anomaly using the Berry-curvature modified kinetic equation. We argue that in many realistic situations, e.g. relativistic heavy-ion collisions, both the instabilities can occur simultaneously. The Weibel instability depends on the momentum anisotropy parameter ξ and the angle (θn) between the propagation vector and the anisotropy direction. It has maximum growth rate at θn = 0 while θn = π / 2 corresponds to a damping. On the other hand the pure chiral-imbalance instability occurs in an isotropic plasma and depends on difference between the chiral chemical potentials of right and left-handed particles. It is shown that when θn = 0, only for a very small values of the anisotropic parameter ξ ∼ξc, growth rates of the both instabilities are comparable. For the cases ξc < ξ ≪ 1 or ξ ≳ 1 at θn = 0, the Weibel modes dominate over the chiral-imbalance instability if μ5 / T ≤ 1. However, when μ5 / T ≥ 1, it is possible to have dominance of the chiral-imbalance modes at certain values of θn for an arbitrary ξ.

  3. Protective garment ventilation system

    NASA Technical Reports Server (NTRS)

    Lang, R. (Inventor)

    1970-01-01

    A method and apparatus for ventilating a protective garment, space suit system, and/or pressure suits to maintain a comfortable and nontoxic atmosphere within is described. The direction of flow of a ventilating and purging gas in portions of the garment may be reversed in order to compensate for changes in environment and activity of the wearer. The entire flow of the ventilating gas can also be directed first to the helmet associated with the garment.

  4. Mechanical ventilation in children.

    PubMed

    Kendirli, Tanil; Kavaz, Asli; Yalaki, Zahide; Oztürk Hişmi, Burcu; Derelli, Emel; Ince, Erdal

    2006-01-01

    Mechanical ventilation can be lifesaving, but > 50% of complications in conditions that require intensive care are related to ventilatory support, particularly if it is prolonged. We retrospectively evaluated the medical records of patients who had mechanical ventilation in the Pediatric Intensive Care Unit (PICU) during a follow-up period between January 2002-May 2005. Medical records of 407 patients were reviewed. Ninety-one patients (22.3%) were treated with mechanical ventilation. Ages of all patients were between 1-180 (median: 8) months. The mechanical ventilation time was 18.8 +/- 14.1 days. Indication of mechanical ventilation could be divided into four groups as respiratory failure (64.8%), cardiovascular failure (19.7%), central nervous system disease (9.8%) and safety airway (5.4%). Tracheostomy was performed in four patients. The complication ratio of mechanically ventilated children was 42.8%, and diversity of complications was as follows: 26.3% atelectasia, 17.5% ventilator-associated pneumonia, 13.1% pneumothorax, 5.4% bleeding, 4.3% tracheal edema, and 2.1% chronic lung disease. The mortality rate of mechanically ventilated patients was 58.3%, but the overall mortality rate in the PICU was 12.2%. In conclusion, there are few published epidemiological data on the follow-up results and mortality in infants and children who are mechanically ventilated. PMID:17290566

  5. Importance of capillary perfusion.

    PubMed

    Hardaway, R M

    1979-11-01

    Perfusion is more critical than oxygen in the maintenance of cell viability. A high hematocrit or high fibrinogen level increases blood viscosity and predisposes to disseminated intravascular coagulation. It is recommended that a hematocrit of about 30 be maintained in periods of circulatory stress such as shock or extracorporeal circulation. PMID:495856

  6. Distribution of perfusion.

    PubMed

    Glenny, Robb; Robertson, H Thomas

    2011-01-01

    Local driving pressures and resistances within the pulmonary vascular tree determine the distribution of perfusion in the lung. Unlike other organs, these local determinants are significantly influenced by regional hydrostatic and alveolar pressures. Those effects on blood flow distribution are further magnified by the large vertical height of the human lung and the relatively low intravascular pressures in the pulmonary circulation. While the distribution of perfusion is largely due to passive determinants such as vascular geometry and hydrostatic pressures, active mechanisms such as vasoconstriction induced by local hypoxia can also redistribute blood flow. This chapter reviews the determinants of regional lung perfusion with a focus on vascular tree geometry, vertical gradients induced by gravity, the interactions between vascular and surrounding alveolar pressures, and hypoxic pulmonary vasoconstriction. While each of these determinants of perfusion distribution can be examined in isolation, the distribution of blood flow is dynamically determined and each component interacts with the others so that a change in one region of the lung influences the distribution of blood flow in other lung regions. PMID:23737171

  7. Education in the imbalance of Nature

    NASA Astrophysics Data System (ADS)

    Shlafman, L. M.; Kontar, V. A.

    2013-12-01

    There are two concepts understanding of the real Nature: balanced and imbalanced. The traditional balanced concept understanding of Nature was originated in prehistoric times to calm the frightened souls of prehistoric man and manage groups of people. The balanced concept presupposes that Nature is isotropic, balanced, etc. The balanced concept of understanding of Nature gradually has moved to science and technology. The balanced concept of understanding of Nature is dominating from the prehistoric time up to today. But always parallel and opposite was exists the concept imbalanced understanding of Nature, which presupposes that Nature is anisotropy, imbalanced, etc. The balanced concept is much simpler than Imbalanced. The balanced concept has given mankind a lot of rough description of Nature which helped to solve a lot of practical problems but with sufficient accuracy, i.e. approximately, but not with an absolute precision. While people were few, and a lot of resources, person could take from Nature only what Nature gave willingly. During this period, people feared and respected Nature and Nature was able easily compensate the activity of people. The high accuracy of the description of Nature was not needed when resources were plentiful and people were few. But now the situation is completely different. The population has become a very large and growing. Traditional resources are almost run out and the lack of resources escalates. People are not afraid of Nature and bravely try to take by force what Nature does not give voluntarily. People invaded into imbalance Nature, and Nature can no longer compensate activity of people. The era of global change is started, including those that man provokes. In the conditions of global changes is insufficiently of the approximate solutions of the traditional balanced concept. The balanced concept is exhausted, and increasingly misleads people. The balanced concept cannot solve the problems that arise in the global change

  8. Ventilatory failure, ventilator support, and ventilator weaning.

    PubMed

    Tobin, Martin J; Laghi, Franco; Jubran, Amal

    2012-10-01

    The development of acute ventilatory failure represents an inability of the respiratory control system to maintain a level of respiratory motor output to cope with the metabolic demands of the body. The level of respiratory motor output is also the main determinant of the degree of respiratory distress experienced by such patients. As ventilatory failure progresses and patient distress increases, mechanical ventilation is instituted to help the respiratory muscles cope with the heightened workload. While a patient is connected to a ventilator, a physician's ability to align the rhythm of the machine with the rhythm of the patient's respiratory centers becomes the primary determinant of the level of rest accorded to the respiratory muscles. Problems of alignment are manifested as failure to trigger, double triggering, an inflationary gas-flow that fails to match inspiratory demands, and an inflation phase that persists after a patient's respiratory centers have switched to expiration. With recovery from disorders that precipitated the initial bout of acute ventilatory failure, attempts are made to discontinue the ventilator (weaning). About 20% of weaning attempts fail, ultimately, because the respiratory controller is unable to sustain ventilation and this failure is signaled by development of rapid shallow breathing. Substantial advances in the medical management of acute ventilatory failure that requires ventilator assistance are most likely to result from research yielding novel insights into the operation of the respiratory control system. PMID:23720268

  9. Review of Residential Ventilation Technologies

    SciTech Connect

    Armin Rudd

    2005-08-30

    This paper reviews current and potential ventilation technologies for residential buildings, including a variety of mechanical systems, natural ventilation, and passive ventilation. with particular emphasis on North American climates and construction.

  10. Multifamily Ventilation Retrofit Strategies

    SciTech Connect

    Ueno, K.; Lstiburek, J.; Bergey, D.

    2012-12-01

    In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

  11. Guide to Home Ventilation

    SciTech Connect

    2010-10-01

    A fact sheet from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy: Ventilation refers to the exchange of indoor and outdoor air. Without proper ventilation, an otherwise insulated and airtight house will seal in harmful pollutants, such as carbon monoxide, and moisture that can damage a house.

  12. Segmental hemodynamics during partial liquid ventilation in isolated rat lungs

    PubMed Central

    Ko, Angela C.; Hirsh, Emily; Wong, Andrew C.; Moore, Timothy M.; Taylor, Aubrey E.; Hirschl, Ronald B.; Younger, John G.

    2011-01-01

    Partial liquid ventilation (PLV) is a means of ventilatory support in which gas ventilation is carried out in a lung partially filled with a perfluorocarbon liquid capable of supporting gas exchange. Recently, this technique has been proposed as an adjunctive therapy for cardiac arrest, during which PLV with cold perfluorocarbons might rapidly cool the intrathoracic contents and promote cerebral protective hypothermia while not interfering with gas exchange. A concern during such therapy will be the effect of PLV on pulmonary hemodynamics during very low blood flow conditions. In the current study, segmental (i.e. precapillary, capillary, and postcapillary) hemodynamics were studied in the rat lung using a standard isolated lung perfusion system at a flow rate of 6 ml/min ( ~5% normal cardiac output). Lungs received either gas ventilation or 5 or 10 ml/kg PLV. Segmental pressures and vascular resistances were determined, as was transcapillary fluid flux. The relationship between individual hemodynamic parameters and PLV dose was examined using linear regression, with n = 5 in each study group. PLV at both the 5 and 10 ml/kg dose produced no detectable changes in pulmonary blood flow or in transcapillary fluid flux (all R2 values < 0.20). Conclusion: In an isolated perfused lung model of low flow conditions, normal segmental hemodynamic behavior was preserved during liquid ventilation. These data support further investigation of this technique as an adjunct to cardiopulmonary resuscitation. PMID:12668304

  13. Volumetric capnography in the mechanically ventilated patient.

    PubMed

    Blanch, L; Romero, P V; Lucangelo, U

    2006-06-01

    Expiratory capnogram provides qualitative information on the waveform patterns associated with mechanical ventilation and quantitative estimation of expired CO2. Volumetric capnography simultaneously measures expired CO2 and tidal volume and allows identification of CO2 from 3 sequential lung compartments: apparatus and anatomic dead space, from progressive emptying of alveoli and alveolar gas. Lung heterogeneity creates regional differences in CO2 concentration and sequential emptying contributes to the rise of the alveolar plateau and to the steeper the expired CO2 slope. The concept of dead space accounts for those lung areas that are ventilated but not perfused. In patients with sudden pulmonary vascular occlusion due to pulmonary embolism, the resultant high V/Q mismatch produces an increase in alveolar dead space. Calculations derived from volumetric capnography are useful to suspect pulmonary embolism at the bedside. Alveolar dead space is large in acute lung injury and when the effect of positive end-expiratory pressure (PEEP) is to recruit collapsed lung units resulting in an improvement of oxygenation, alveolar dead space may decrease, whereas PEEP-induced overdistension tends to increase alveolar dead space. Finally, measurement of physiologic dead space and alveolar ejection volume at admission or the trend during the first 48 hours of mechanical ventilation might provide useful information on outcome of critically ill patients with acute lung injury or acute respiratory distress syndrome. PMID:16682932

  14. [Ventilation strategies in the child with severe hypoxemic respiratory failure].

    PubMed

    Donoso F, Alejandro; Arriagada S, Daniela; Díaz R, Franco; Cruces R, Pablo

    2015-01-01

    In this review, we assemble the fundamental concepts of the use of mechanical ventilation (MV) in children with acute respiratory failure (ARDS) and refractory hypoxemia. We also discusses topics of protective ventilation and recruitment potential, and specifically examine the options of ventilation and/or maneuvers designed to optimize the non-aerated lung tissue: alveolar recruitment maneuvers, positive end-expiratory pressure (PEEP) titulation, high frequency oscillatory ventilation (HFOV), airway pressure release ventilation (APRV), aimed at correcting the mismatch ventilation/perfusion (V/Q): use of prone position. The only pharmacological intervention analyzed is the use of neuromuscular blockers. In clinical practice, the protective MV concept involves using an individual adjustment of the PEEP and volume tidal (V(T)). Use of recruitment maneuvers and PEEP downward titration can improve lung function in patients with ARDS and severe hypoxemia. We must keep in mind HFOV instauration as early as possible in response to failure of MV. The use of early and prolonged prone can improve gas exchange in hopes of a better control of what caused the use of MV. PMID:25739487

  15. The Global Imbalance of the Inanimate Nature

    NASA Astrophysics Data System (ADS)

    Vargashkin, V. Y.

    2013-12-01

    The preservation laws serve is the general expression of balancing properties and stability in nature. The preservation laws, according to Noether's theorem, are displays of properties of uniformity and isotropy of space and time. So, in the most global representation, the imbalance of the Universe assumes presence of some large-scale non-uniformity in it. The scale of such non-uniformity may form the basis for balance and imbalance correlation in the nature as a whole. This heterogeneity may lead to global infringement of laws of preservation, such as laws of preservation of an impulse, the impulse and the moment of energy. So, the most global imbalance of the inanimate nature may be connected with existence of large-scale fluctuations of properties of the Universe matter. It is possible to think about existence of such imbalance with presence of the allocated areas and directions on celestial sphere. Now most of interest in a science is represented by some types of global anisotropy. First, it is spatial anisotropy of cosmic microwave background. It depends of direction on celestial sphere, including formation of the allocated directions, and also "hot" and "cold" spots. Secondly, it is anisotropy of substance's density, concerning clusters and super clusters of galaxies. It is known as a large-scale structure of the Universe. This kind of anisotropy is connected with imbalance between distributions of radiated substance and observable emptiness. The geometry of this kind of imbalance is that the shining matter forms "cellular", "sheet" or "filaments" structure, forming the cells, filled with visible "voids". Thirdly, it is the hypothetical anisotropy connected with prospective dependence of speed of expansion of the Universe with direction on celestial sphere, and also with time. The relative size for this speed is known as Hubble's parameter. The told testifies about actuality of systematization, and also revelation of an interconnection and mutual

  16. An Algorithm to Evaluate Imbalances of Quadrature Mixers

    NASA Astrophysics Data System (ADS)

    Asami, Koji; Arai, Michiaki

    It is essential, as bandwidths of wireless communications get wider, to evaluate the imbalances among quadrature mixer ports, in terms of carrier phase offset, IQ gain imbalance, and IQ skew. Because it is time consuming to separate skew, gain imbalance and carrier phase offset evaluation during test is often performed using a composite value, without separation of the imbalance factors. This paper describes an algorithm for enabling separation among quadrature mixer gain imbalance, carrier phase offset, and skew. Since the test time is reduced by the proposed method, it can be applied during high volume production testing.

  17. Developments in longwall ventilation

    SciTech Connect

    Brune, J.F.; Aman, J.P.; Kotch, M.

    1999-07-01

    Rapid development in longwall mining technology has brought significant changes in panel layout and geometry. These changes require adaptations in the ventilation system to provide sufficient air quantities in longwall face and bleeder areas. At CONSOL, various longwall bleeder systems in the Pittsburgh No. 8 Seam have been studied with detailed ventilation surveys. Computer model network simulations were conducted from these surveys to study the effects of different bleeder configurations and ventilation adjustments. This paper examines the relationships between the longwall face air quantity and the convergence in the tailgate-to-bleeder entries, number of development entries, bleeder fan pressure and the tailgate ventilation scheme. It shows that, using conventional ventilation patterns, the face air quantity may be limited if the gob caves tightly. In such cases, modification of the ventilation pattern to an internal bleeder system, combined with appropriate tailgate ventilation and higher bleeder fan pressure may be required. Experience in CONSOL's operations has proven this method successful especially in mines that changed from four-entry to three-entry longwall development.

  18. Ventilator-patient dyssynchrony induced by change in ventilation mode.

    PubMed

    Lydon, A M; Doyle, M; Donnelly, M B

    2001-06-01

    Patient-ventilator interactions may be coordinated (synchronous) or uncoordinated (dyssynchronous). Ventilator-patient dyssynchrony increases the work of breathing by imposing a respiratory muscle workload. Respiratory centre output responds to feedback from respiratory muscle loading. Mismatching of respiratory centre output and mechanical assistance results in dyssynchrony. We describe a case of severe patient-ventilator dyssynchrony and hypothesize that dyssynchrony was induced by a change in mode of ventilation from pressure-cycled to volume-cycled ventilation, due to both ventilator settings and by the patient's own respiratory centre adaptation to mechanical ventilation. The causes, management and clinical implications of dyssynchrony are discussed. PMID:11439799

  19. Ventilating Air-Conditioner

    NASA Technical Reports Server (NTRS)

    Dinh, Khanh

    1994-01-01

    Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.

  20. High-frequency ventilation.

    PubMed

    Crawford, M R

    1986-08-01

    Over the last six years high-frequency ventilation has been extensively evaluated both in the clinical and laboratory settings. It is now no longer the great mystery it once was, and it is now no longer believed (as many had hoped), that it will solve all the problems associated with mechanical pulmonary ventilation. Although the technique is safe and appears to cause no harm even in the long term, it has not yet been shown to offer any major advantages over conventional mechanical ventilation. PMID:3530042

  1. Ventilation and cardiac related impedance changes in children undergoing corrective open heart surgery.

    PubMed

    Schibler, Andreas; Pham, Trang M T; Moray, Amol A; Stocker, Christian

    2013-10-01

    Electrical impedance tomography (EIT) can determine ventilation and perfusion relationship. Most of the data obtained so far originates from experimental settings and in healthy subjects. The aim of this study was to demonstrate that EIT measures the perioperative changes in pulmonary blood flow after repair of a ventricular septum defect in children with haemodynamic relevant septal defects undergoing open heart surgery. In a 19 bed intensive care unit in a tertiary children's hospital ventilation and cardiac related impedance changes were measured using EIT before and after surgery in 18 spontaneously breathing patients. The EIT signals were either filtered for ventilation (ΔZV) or for cardiac (ΔZQ) related impedance changes. Impedance signals were then normalized (normΔZV, normΔZQ) for calculation of the global and regional impedance related ventilation perfusion relationship (normΔZV/normΔZQ). We observed a trend towards increased normΔZV in all lung regions, a significantly decreased normΔZQ in the global and anterior, but not the posterior lung region. The normΔZV/normΔZQ was significantly increased in the global and anterior lung region. Our study qualitatively validates our previously published modified EIT filtration technique in the clinical setting of young children with significant left-to-right shunt undergoing corrective open heart surgery, where perioperative assessment of the ventilation perfusion relation is of high clinical relevance. PMID:24021191

  2. Why We Ventilate

    SciTech Connect

    Logue, Jennifer M.; Sherman, Max H.; Price, Phil N.; Singer, Brett C.

    2011-09-01

    It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of"good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

  3. [Love trouble: armonies and imbalances of passions].

    PubMed

    Morpurgo, Piero

    2012-01-01

    Love trouble is a well described 'pathology' in Italian medieval literature, often indebted to the humoral medical theories of the School of Salerno, especially in the idea of love sickness as the result of the balance or imbalance ofthe four Hippocratic humors and of the cyclical pattern of the seasons and stages of life. Unbridled passions, not controlled by the 'amor cortese', deform bodies and torment souls and lead both men and women away from the search for a celestial balance, only guaranteed by the union of the heart spirit and bodily heat. PMID:25807728

  4. Lung-derived soluble mediators are pathogenic in ventilator-induced lung injury.

    PubMed

    Jaecklin, Thomas; Engelberts, Doreen; Otulakowski, Gail; O'Brodovich, Hugh; Post, Martin; Kavanagh, Brian P

    2011-04-01

    Ventilator-induced lung injury (VILI) due to high tidal volume (V(T)) is associated with increased levels of circulating factors that may contribute to, or be markers of, injury. This study investigated if exclusively lung-derived circulating factors produced during high V(T) ventilation can cause or worsen VILI. In isolated perfused mouse lungs, recirculation of perfusate worsened injury (compliance impairment, microvascular permeability, edema) induced by high V(T). Perfusate collected from lungs ventilated with high V(T) and used to perfuse lungs ventilated with low V(T) caused similar compliance impairment and permeability and caused a dose-dependent decrease in transepithelial electrical resistance (TER) across rat distal lung epithelial monolayers. Circulating soluble factors derived from the isolated lung thus contributed to VILI and had deleterious effects on the lung epithelial barrier. These data demonstrate transferability of an injury initially caused exclusively by mechanical ventilation and provides novel evidence for the biotrauma hypothesis in VILI. Mediators of the TER decrease were heat-sensitive, transferable via Folch extraction, and (following ultrafiltration, 3 kDa) comprised both smaller and larger molecules. Although several classes of candidate mediators, including protein cytokines (e.g., tumor necrosis factor-α, interleukin-6, macrophage inflammation protein-1α) and lipids (e.g., eicosanoids, ceramides, sphingolipids), have been implicated in VILI, only prostanoids accumulated in the perfusate in a pattern consistent with a pathogenic role, yet cyclooxygenase inhibition did not protect against injury. Although no single class of factor appears solely responsible for the decrease in barrier function, the current data implicate lipid-soluble protein-bound molecules as not just markers but pathogenic mediators in VILI. PMID:21239530

  5. Electrolyte Imbalance in Patients with Sheehan's Syndrome

    PubMed Central

    Lim, Chur Hoan; Han, Ji Hyun; Jin, Joon; Yu, Ji Eun; Cho, Dong Hyeok; Chung, Dong Jin; Chung, Min Young

    2015-01-01

    Background We investigated the prevalence of electrolyte imbalance and the relationship between serum electrolyte and anterior pituitary hormone levels in patients with Sheehan's syndrome. Methods In a retrospective study, we investigated 78 patients with Sheehan's syndrome. We also included 95 normal control subjects who underwent a combined anterior pituitary hormone stimulation test and showed normal hormonal responses. Results In patients with Sheehan's syndrome, the serum levels of sodium, potassium, ionized calcium, magnesium, and inorganic phosphate were significantly lower than those in control subjects. The prevalence of hyponatremia, hypokalemia, hypocalcemia, hypomagnesemia, and hypophosphatemia in patients with Sheehan's syndrome was 59.0% (n=46), 26.9% (n=21), 35.9% (n=28), 47.4% (n=37), and 23.1% (n=18), respectively. Levels of sodium and ionized calcium in serum were positively correlated with levels of all anterior pituitary hormones (all P<0.05). Levels of potassium in serum were positively correlated with adrenocorticotrophic hormone (ACTH) and growth hormone (GH) levels (all P<0.05). Levels of inorganic phosphate in serum were positively correlated with levels of thyroid-stimulating hormone, prolactin, and GH (all P<0.05), and levels of magnesium in serum were positively correlated with delta ACTH (P<0.01). Conclusion Electrolyte imbalance was common in patients with Sheehan's syndrome. Furthermore, the degree of anterior pituitary hormone deficiency relates to the degree of electrolyte disturbance in patients with this disease. PMID:26485467

  6. 14 CFR 25.831 - Ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Ventilation and Heating § 25.831 Ventilation... probable failures or malfunctioning of the ventilating, heating, pressurization, or other systems...

  7. 14 CFR 25.831 - Ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Ventilation and Heating § 25.831 Ventilation... probable failures or malfunctioning of the ventilating, heating, pressurization, or other systems...

  8. 14 CFR 25.831 - Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Ventilation and Heating § 25.831 Ventilation... probable failures or malfunctioning of the ventilating, heating, pressurization, or other systems...

  9. 14 CFR 25.831 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Ventilation and Heating § 25.831 Ventilation... probable failures or malfunctioning of the ventilating, heating, pressurization, or other systems...

  10. 14 CFR 25.831 - Ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Ventilation and Heating § 25.831 Ventilation... probable failures or malfunctioning of the ventilating, heating, pressurization, or other systems...

  11. Clinical challenges in mechanical ventilation.

    PubMed

    Goligher, Ewan C; Ferguson, Niall D; Brochard, Laurent J

    2016-04-30

    Mechanical ventilation supports gas exchange and alleviates the work of breathing when the respiratory muscles are overwhelmed by an acute pulmonary or systemic insult. Although mechanical ventilation is not generally considered a treatment for acute respiratory failure per se, ventilator management warrants close attention because inappropriate ventilation can result in injury to the lungs or respiratory muscles and worsen morbidity and mortality. Key clinical challenges include averting intubation in patients with respiratory failure with non-invasive techniques for respiratory support; delivering lung-protective ventilation to prevent ventilator-induced lung injury; maintaining adequate gas exchange in severely hypoxaemic patients; avoiding the development of ventilator-induced diaphragm dysfunction; and diagnosing and treating the many pathophysiological mechanisms that impair liberation from mechanical ventilation. Personalisation of mechanical ventilation based on individual physiological characteristics and responses to therapy can further improve outcomes. PMID:27203509

  12. A Resonant Synchronous Vibration Based Approach for Rotor Imbalance Detection

    NASA Technical Reports Server (NTRS)

    Luo, Huangeng; Rodriquez, Hector; Hallman, Darren; Lewicki, David G.

    2006-01-01

    This paper presents a methodology of detecting rotor imbalances, such as mass imbalance and crack-induced imbalance, using shaft synchronous vibrations. An iterative scheme is developed to identify parameters from measured synchronous vibration data. A detection system is integrated by using state-of-the-art commercial analysis equipment. A laboratory rotor test rig is used to verify the system integration and algorithm validation. A real engine test has been carried out and the results are reported.

  13. An imperative to monitor Earth's energy imbalance

    NASA Astrophysics Data System (ADS)

    von Schuckmann, K.; Palmer, M. D.; Trenberth, K. E.; Cazenave, A.; Chambers, D.; Champollion, N.; Hansen, J.; Josey, S. A.; Loeb, N.; Mathieu, P.-P.; Meyssignac, B.; Wild, M.

    2016-02-01

    The current Earth's energy imbalance (EEI) is mostly caused by human activity, and is driving global warming. The absolute value of EEI represents the most fundamental metric defining the status of global climate change, and will be more useful than using global surface temperature. EEI can best be estimated from changes in ocean heat content, complemented by radiation measurements from space. Sustained observations from the Argo array of autonomous profiling floats and further development of the ocean observing system to sample the deep ocean, marginal seas and sea ice regions are crucial to refining future estimates of EEI. Combining multiple measurements in an optimal way holds considerable promise for estimating EEI and thus assessing the status of global climate change, improving climate syntheses and models, and testing the effectiveness of mitigation actions. Progress can be achieved with a concerted international effort.

  14. Ventilation technologies scoping study

    SciTech Connect

    Walker, Iain S.; Sherman, Max H.

    2003-09-30

    This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the needs of California, determining residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and level of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  15. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    SciTech Connect

    Sherman, Max H.; Walker, Iain S.

    2011-04-01

    Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outdoor pollutant levels are high, the importance of minimizing energy use particularly during times of peak electricity demand, and how the energy used to condition air as part of ventilation system operation changes with outdoor conditions. Dynamic control of ventilation systems can provide ventilation equivalent to or better than what is required by standards while minimizing energy costs and can also add value by shifting load during peak times and reducing intake of outdoor air contaminants. This article describes the logic that enables dynamic control of whole-house ventilation systems to meet the intent of ventilation standards and demonstrates the dynamic ventilation system control concept through simulations and field tests of the Residential Integrated Ventilation-Energy Controller (RIVEC).

  16. Imbalance of Water as an Example of Fundamental Imbalance of Nature.

    NASA Astrophysics Data System (ADS)

    Nechayev, A.

    2012-12-01

    Water is one of the main attributes of the world around us. Turning into ice or water vapor it controls a wide range of natural phenomena. It is one of the most moving substances of Earth and in it as in a mirror all imbalance of the Nature reflects. The laws that govern the water are above all the laws of classical physics, laws of motion and conservation. They determine an equilibrium state and out of it when the balance of forces, flows and energy is disturbed. Volcanic eruption, earthquake, tsunami, hurricane or tornado formation are the extreme form of imbalance of Nature. Unfortunately they are involved in it as a genetic feature. Mass and energy flows pervade the natural world. The structure of the space makes them come into conflict. Internal stress increase, there is an imbalance resulting in the fast, catastrophic events. Whether it is possible to understand the reasons of similar imbalance and to find its critical conditions? The water in their states shows the most striking examples of imbalance of Nature. If the equilibrium of forces and flows is disturbed the nature of movement can fundamentally change. The dependence of the total flux I flowing through the structure of the pressure drop Δp causing this flow can serve as an important informative characteristic for the imbalance phenomena connected with water. This «flow - forcing» characteristic I(Δp) qualitatively changes its form with changes of so-called bifurcation parameter. From monotonous it can become S- or N-shaped. The approach to the analysis of Nature imbalance phenomenon can be illustrated by geyser eruption mechanism which is theoretically described in (Nechayev, 2012). One-dimensional motion of water flow in the geyser conduit obeys the Navier-Stokes equation. The influx of masses of water vapor due to water boiling in an underground chamber creates increasing overpressure. Bifurcation parameter is the volume of this chamber. There is a critical value of this volume (as compared

  17. Central Fan Integrated Ventilation Systems

    SciTech Connect

    2009-05-12

    This information sheet describes one example of a ventilation system design, a central fan integrated supply (CFIS) system, a mechanical ventilation and pollutant source control to ensure that there is reasonable indoor air quality inside the house.

  18. Pulmonary effects of expiratory-assisted small-lumen ventilation during upper airway obstruction in pigs.

    PubMed

    Ziebart, A; Garcia-Bardon, A; Kamuf, J; Thomas, R; Liu, T; Schad, A; Duenges, B; David, M; Hartmann, E K

    2015-10-01

    Novel devices for small-lumen ventilation may enable effective inspiration and expiratory ventilation assistance despite airway obstruction. In this study, we investigated a porcine model of complete upper airway obstruction. After ethical approval, we randomly assigned 13 anaesthetised pigs either to small-lumen ventilation following airway obstruction (n = 8) for 30 min, or to volume-controlled ventilation (sham setting, n = 5). Small-lumen ventilation enabled adequate gas exchange over 30 min. One animal died as a result of a tension pneumothorax in this setting. Redistribution of ventilation from dorsal to central compartments and significant impairment of the distribution of ventilation/perfusion occurred. Histopathology demonstrated considerable lung injury, predominantly through differences in the dorsal dependent lung regions. Small-lumen ventilation maintained adequate gas exchange in a porcine airway obstruction model. The use of this technique for 30 min by inexperienced clinicians was associated with considerable end-expiratory collapse leading to lung injury, and may also carry the risk of severe injury. PMID:26179167

  19. A Central Dilemma in the Mental Health Sector: Structural Imbalance

    ERIC Educational Resources Information Center

    Doessel, Darrel P.; Williams, Ruth F. G.; Nolan, Patricia

    2008-01-01

    Mental health services provision is persistently criticised regarding resource inadequacy. Services are also subject to another dilemma, "structural imbalance". This study demonstrates the dimensions of structural imbalance in Australia's mental health sector by recourse to the 1997 Australian Bureau of Statistics national survey of mental health…

  20. ADVISORY COMMITTEE ON RACIAL IMBALANCE AND EDUCATION. INTERIM REPORT.

    ERIC Educational Resources Information Center

    ADVISORY COMMITTEE ON RACIAL IMBALANCE AND EDUCATION

    RACIAL IMBALANCE HAMPERS THE FULLEST ACADEMIC AND VOCATIONAL DEVELOPMENT OF THOSE AFFECTED BY IT AND IMPAIRS ADEQUATE PREPARATION FOR THE DUTIES OF AMERICAN CITIZENSHIP. THE PRACTICAL DEFINITION OF A RACIALLY IMBALANCE SCHOOL WAS ONE IN WHICH COMPOSITION OF THE SCHOOL POPULATION IS SHARPLY OUT OF BALANCE WITH THE RACIAL COMPOSITION OF THE SOCIETY…

  1. How to Plan Ventilation Systems.

    ERIC Educational Resources Information Center

    Clarke, John H.

    1963-01-01

    Ventilation systems for factory safety demand careful planning. The increased heat loads and new processes of industry have introduced complex ventilation problems in--(1) ventilation supply, (2) duct work design, (3) space requirements, (4) hood face velocities, (5) discharge stacks, and (6) building eddies. This article describes and diagrams…

  2. Space station ventilation study

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Allen, G. E.

    1972-01-01

    A ventilation system design and selection method which is applicable to any manned vehicle were developed. The method was used to generate design options for the NASA 33-foot diameter space station, all of which meet the ventilation system design requirements. System characteristics such as weight, volume, and power were normalized to dollar costs for each option. Total system costs for the various options ranged from a worst case $8 million to a group of four which were all approximately $2 million. A system design was then chosen from the $2 million group and is presented in detail. A ventilation system layout was designed for the MSFC space station mockup which provided comfortable, efficient ventilation of the mockup. A conditioned air distribution system design for the 14-foot diameter modular space station, using the same techniques, is also presented. The tradeoff study resulted in the selection of a system which costs $1.9 million, as compared to the alternate configuration which would have cost $2.6 million.

  3. Laboratory Ventilation and Safety.

    ERIC Educational Resources Information Center

    Steere, Norman V.

    1965-01-01

    In order to meet the needs of both safety and economy, laboratory ventilation systems must effectively remove air-borne toxic and flammable materials and at the same time exhaust a minimum volume of air. Laboratory hoods are the most commonly used means of removing gases, dusts, mists, vapors, and fumed from laboratory operations. To be effective,…

  4. Measure Guideline: Ventilation Cooling

    SciTech Connect

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  5. RESIDENTIAL VENTILATION STUDY

    EPA Science Inventory

    This project evaluated the effectiveness, first costs and operational costs of various types of residential ventilation systems in three different climates in the U.S. The Agency, through its Energy Star Program, recommends that builders construct homes that are energy efficient ...

  6. Effects of alveolar and perfusion hypoxia and hypercapnia on pulmonary vascular resistance in the lamb.

    PubMed

    Hyman, A L; Kadowitz, P J

    1975-02-01

    The effects of ventilatory hypoxia and hypercapnia and perfusion hypoxia and hypercapnia on pulmonary vascular resistance were studied in the intact lamb using right heart techniques to isolate and perfuse the left lower lobe. Ventilatory hypoxia increased vascular resistance in the left lower lobe by constricting predominantly vessels upstream from small lobar veins, presumably small arteries. The response to hypoxia was not blocked by phentolamine and diphenhydramine in doses that markedly decreased pressor responses to norepinephrine and histamine in the lung. Perfusion hypoxia did not alter vascular resistance in the perfused lobe. Ventilatory hypercapnia increased vascular resistance in the lung by constricting mainly upstream vessels, whereas perfusion hypercapnia decreased resistance by dilating upstream vessels. These data indicate that histamine and catecholamines are not involved in the response to alveolar hypoxia. These results suggest that the sensor site for ventilatory hypoxia is close to the alveolus since the response is unrelated to lobar arterial Po2. It is concluded that systemic reflexes are not necessarily involved in the response of the pulmonary vascular bed to ventilatory hypoxia or hypercapnia and that the magnitude and rapidity of this response suggest that it may represent an important local mechanism for the control of ventilation-perfusion relationships in this species. PMID:235217

  7. Blood perfusion and pH monitoring in organs by laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Vari, Sandor G.; Papazoglou, Theodore G.; Pergadia, Vani R.; Stavridi, Marigo; Snyder, Wendy J.; Papaioannou, Thanassis; Duffy, J. T.; Weiss, Andrew B.; Thomas, Reem; Grundfest, Warren S.

    1994-01-01

    Sensitivity of laser-induced fluorescence spectroscopy (LIFS) in detecting a change in tissue pH, and blood perfusion was determined. Rabbits were anesthetized, paralyzed, and mechanically ventilated. The arterial and venous blood supplies of the kidney were isolated and ligated to alter the perfusion. The femoral artery was cannulated to extract samples for blood gas analysis. A 308-nm XeCl was used as an excitation source. A 600 micrometers core diameter fiber was used for fluorescence acquisition, and the spectra analyzed by an optical multichannel analyzer (EG & G, OMA III). the corresponding intensity ratio R equals INADH / ICOLL was used as an index for respiratory acidosis. Blood perfusion was assessed using the following algorithm: (IELAS minus ICOLL) divided by (INADH minus ICOLL). The intensity ratio linearly decreased with the reduction of blood perfusion. When we totally occluded the artery the ratio decreased tenfold when compared to the ratio of a fully perfused kidney. Results of monitoring blood acidosis by laser-induced fluorescence spectroscopy shows a significant trend between pH and intensity ratio. Since all the slopes were negative, there is an obvious significant correlation between the pH and NADH.COLLAGEN RATIO. Blue-light-induced fluorescence measurements and ratio fluorometry is a sensitive method for monitoring blood perfusion and acidity or alkalinity of an organ.

  8. Optimizing ventilation in conjunction with phased chest and abdominal compression-decompression (Lifestick) resuscitation.

    PubMed

    Kern, Karl B; Hilwig, Ronald W; Berg, Robert A; Schock, Robert B; Ewy, Gordon A

    2002-01-01

    The best method for employment of phased chest and abdominal compression-decompression (Lifestick) cardiopulmonary resuscitation (CPR) has yet to be determined. Of particular concern with using this technique is the combining of ventilation with the phased compressions and decompressions. Twenty domestic swine (50+/-1 kg) were equally divided into four groups. Following 10 min of untreated VF, CPR was begun. Group 1 received Lifestick (LS) CPR with only passive ventilation ('passive'); Group 2 received LS-CPR with synchronized positive pressure ventilations (ppv) at a chest compression ratio of 15:2 (15:2 S); Group 3 had LS-CPR with synchronized ppv at 5:1 (5:1 S); and Group 4 received LS-CPR with asynchronous ppv at 5:1 (5:1 A). Endpoints included hemodynamics, blood gases, minute ventilation, and 24 h outcome. Asynchronous ventilation (5:1 A) had significantly worse hemodynamics including aortic and right atrial systolic, aortic diastolic, and coronary perfusion pressures than the other groups (P<0.05). Passive ventilation had the poorest arterial and mixed venous blood gases (P<0.05), but did not differ from 15:2 S in minute ventilation produced (8 vs 10 l/min). No differences in outcome were seen. The ventilation technique combined with LS-CPR can make a significant difference in hemodynamics as well as ventilation. Optimizing other forms of basic and advanced cardiac life support through different ventilation methods deserves new consideration, including a re-examination of the current single rescuer recommendation of a 15:2 ratio. Optimal ventilation strategy when using the LS device at 60 compressions per min appears to be 5:1 S. Such data is important for conducting clinical trials with this new CPR adjunct. PMID:11801354

  9. Hydrostatic determinants of cerebral perfusion

    SciTech Connect

    Wagner, E.M.; Traystman, R.J.

    1986-05-01

    We examined the cerebral blood flow response to alterations in perfusion pressure mediated through decreases in mean arterial pressure, increases in cerebrospinal fluid (CSF) pressure, and increases in jugular venous (JV) pressure in 42 pentobarbital anesthetized dogs. Each of these three pressures was independently controlled. Cerebral perfusion pressure was defined as mean arterial pressure minus JV or CSF pressure, depending on which was greater. Mean hemispheric blood flow was measured with the radiolabeled microsphere technique. Despite 30-mm Hg reductions in mean arterial pressure or increases in CSF or JV pressure, CBF did not change as long as the perfusion pressure remained greater than approximately 60 mm Hg. However, whenever perfusion pressure was reduced to an average of 48 mm Hg, cerebral blood flow decreased 27% to 33%. These results demonstrate the capacity of the cerebral vascular bed to respond similarly to changes in the perfusion pressure gradient obtained by decreasing mean arterial pressure, increasing JV pressure or increasing CSF pressure, and thereby support the above definition of cerebral perfusion pressure.

  10. Immunological hazards from nutritional imbalance in athletes.

    PubMed

    Shephard, R J; Shek, P N

    1998-01-01

    This review examines the influences of nutritional imbalance on immune function of competitive athletes, who may adopt an unusual diet in an attempt to enhance performance. A major increase in body fat can have adverse effects on immune response. In contrast, a negative energy balance and reduction of body mass are likely to impair immune function in an already thin athlete. A moderate increase in polyunsaturated fat enhances immune function, but excessive consumption can be detrimental. Since endurance exercise leads to protein catabolism, an athlete may need 2.0 g/kg protein rather than the 0.7-1.0 g/kg recommended for a sedentary individual. Both sustained exercise and overtraining reduce plasma glutamine levels, which may contribute to suppressed immune function postexercise. A large intake of carbohydrate counters glutamine depletion but may also modify immune responses by altering the secretion of glucose-regulating hormones. Vitamins are important to immune function because of their antioxidant role. However, the clinical benefits of vitamin C supplementation are not enhanced by the use of more complex vitamin mixtures, and excessive vitamin E can have negative effects. Iron, selenium, zinc, calcium, and magnesium ion all influence immune function. Supplements may be required after heavy sweating, but an excessive intake of iron facilitates bacterial growth. In making dietary recommendations to athletes, it is important to recognize that immune response can be jeopardized not only by deficiencies but also by excessive intake of certain nutrients. The goal should be a well-balanced diet. PMID:9644093

  11. Optimizing patient-ventilator synchrony.

    PubMed

    Epstein, S K

    2001-01-01

    Mechanical ventilation assumes the work of breathing, improves gas exchange, and unloads the respiratory muscles, all of which require good synchronization between the patient and the ventilator. Causes for patient-ventilator dyssynchrony include both patient factors (abnormalities of respiratory drive and abnormal respiratory mechanics) and ventilator factors (triggering, flow delivery, breath termination criteria, the level and mode of ventilator support, and imposed work of breathing). Although patient-ventilator dyssynchrony can often be detected on physical exam, careful analysis of ventilator waveforms (pressure-time, flow-time) allows for more precise definition of the underlying cause. Patient-ventilator interaction can be improved by reversing patient factors that alter respiratory drive or elevate patient ventilatory requirements and by correcting factors that contribute to dynamic hyperinflation. Proper setting of the ventilator using sensitive triggering mechanisms, satisfactory flow rates, adequate delivered minute ventilation, matching machine T(I) to neural T(I), and applying modes that overcome the imposed work of breathing, further optimize patient-ventilator synchrony. PMID:16088669

  12. CAD of myocardial perfusion

    NASA Astrophysics Data System (ADS)

    Storm, Corstiaan J.; Slump, Cornelis H.

    2007-03-01

    Our purpose is in the automated evaluation of the physiological relevance of lesions in coronary angiograms. We aim to extract as much as possible quantitative information about the physiological condition of the heart from standard angiographic image sequences. Coronary angiography is still the gold standard for evaluating and diagnosing coronary abnormalities as it is able to locate precisely the coronary artery lesions. The dimensions of the stenosis can be assessed nowadays successfully with image processing based Quantitative Coronary Angiography (QCA) techniques. Our purpose is to assess the clinical relevance of the pertinent stenosis. We therefore analyze the myocardial perfusion as revealed in standard angiographic image sequences. In a Region-of-Interest (ROI) on the angiogram (without an overlaying major blood vessel) the contrast is measured as a function of time (the so-called time-density curve). The required hyperemic state of exercise is induced artificially by the injection of a vasodilator drug e.g. papaverine. In order to minimize motion artifacts we select based on the recorded ECG signal end-diastolic images in both a basal and a hyperemic run in the same projection to position the ROI. We present the development of the algorithms together with results of a small study of 20 patients which have been catheterized following the standard protocol.

  13. ASHRAE and residential ventilation

    SciTech Connect

    Sherman, Max H.

    2003-10-01

    In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the

  14. Spatial-frequency dependent binocular imbalance in amblyopia.

    PubMed

    Kwon, MiYoung; Wiecek, Emily; Dakin, Steven C; Bex, Peter J

    2015-01-01

    While amblyopia involves both binocular imbalance and deficits in processing high spatial frequency information, little is known about the spatial-frequency dependence of binocular imbalance. Here we examined binocular imbalance as a function of spatial frequency in amblyopia using a novel computer-based method. Binocular imbalance at four spatial frequencies was measured with a novel dichoptic letter chart in individuals with amblyopia, or normal vision. Our dichoptic letter chart was composed of band-pass filtered letters arranged in a layout similar to the ETDRS acuity chart. A different chart was presented to each eye of the observer via stereo-shutter glasses. The relative contrast of the corresponding letter in each eye was adjusted by a computer staircase to determine a binocular Balance Point at which the observer reports the letter presented to either eye with equal probability. Amblyopes showed pronounced binocular imbalance across all spatial frequencies, with greater imbalance at high compared to low spatial frequencies (an average increase of 19%, p < 0.01). Good test-retest reliability of the method was demonstrated by the Bland-Altman plot. Our findings suggest that spatial-frequency dependent binocular imbalance may be useful for diagnosing amblyopia and as an outcome measure for recovery of binocular vision following therapy. PMID:26603125

  15. Spatial-frequency dependent binocular imbalance in amblyopia

    PubMed Central

    Kwon, MiYoung; Wiecek, Emily; Dakin, Steven C.; Bex, Peter J.

    2015-01-01

    While amblyopia involves both binocular imbalance and deficits in processing high spatial frequency information, little is known about the spatial-frequency dependence of binocular imbalance. Here we examined binocular imbalance as a function of spatial frequency in amblyopia using a novel computer-based method. Binocular imbalance at four spatial frequencies was measured with a novel dichoptic letter chart in individuals with amblyopia, or normal vision. Our dichoptic letter chart was composed of band-pass filtered letters arranged in a layout similar to the ETDRS acuity chart. A different chart was presented to each eye of the observer via stereo-shutter glasses. The relative contrast of the corresponding letter in each eye was adjusted by a computer staircase to determine a binocular Balance Point at which the observer reports the letter presented to either eye with equal probability. Amblyopes showed pronounced binocular imbalance across all spatial frequencies, with greater imbalance at high compared to low spatial frequencies (an average increase of 19%, p < 0.01). Good test-retest reliability of the method was demonstrated by the Bland-Altman plot. Our findings suggest that spatial-frequency dependent binocular imbalance may be useful for diagnosing amblyopia and as an outcome measure for recovery of binocular vision following therapy. PMID:26603125

  16. Systemic oxygen delivery by peritoneal perfusion of oxygen microbubbles.

    PubMed

    Feshitan, Jameel A; Legband, Nathan D; Borden, Mark A; Terry, Benjamin S

    2014-03-01

    Severe hypoxemia refractory to pulmonary mechanical ventilation remains life-threatening in critically ill patients. Peritoneal ventilation has long been desired for extrapulmonary oxygenation owing to easy access of the peritoneal cavity for catheterization and the relative safety compared to an extracorporeal circuit. Unfortunately, prior attempts involving direct oxygen ventilation or aqueous perfusates of fluorocarbons or hemoglobin carriers have failed, leading many researchers to abandon the method. We attribute these prior failures to limited mass transfer of oxygen to the peritoneum and have designed an oxygen formulation that overcomes this limitation. Using phospholipid-coated oxygen microbubbles (OMBs), we demonstrate 100% survival for rats experiencing acute lung trauma to at least 2 h. In contrast, all untreated rats and rats treated with peritoneal oxygenated saline died within 30 min. For rats treated with OMBs, hemoglobin saturation and heart rate were at normal levels over the 2-h timeframe. Peritoneal oxygenation with OMBs was therefore shown to be safe and effective, and the method requires less equipment and technical expertise than initiating and maintaining an extracorporeal circuit. Further translation of peritoneal oxygenation with OMBs may provide therapy for acute respiratory distress syndrome arising from trauma, sepsis, pneumonia, aspiration, burns and other pulmonary diseases. PMID:24439406

  17. MR Perfusion Imaging in Acute Ischemic Stroke

    PubMed Central

    Copen, William A.; Schaefer, Pamela W.; Wu, Ona

    2011-01-01

    MR perfusion imaging offers the potential for measuring brain perfusion in acute stroke patients, at a time when treatment decisions based upon these measurements may affect outcomes dramatically. Rapid advancements in both acute stroke therapy and perfusion imaging techniques have resulted in continuing redefinition of the role that perfusion imaging should play in patient management. This review first discusses the basic pathophysiology of acute stroke, with specific attention to alterations in the various perfusion-related parameters that can be studied by MR perfusion imaging. Although these parameters are sometimes treated as somewhat interchangeable, they reveal greatly different information about brain perfusion. Therefore, subsequent discussion of the utility of different kinds of perfusion images focuses on the differences between them, as well as important artifacts that can complicate their interpretation. Finally, research on the continually evolving role of MR perfusion imaging in acute stroke care is summarized. PMID:21640299

  18. Lung perfusion and emphysema distribution affect the outcome of endobronchial valve therapy

    PubMed Central

    Thomsen, Christian; Theilig, Dorothea; Herzog, Dominik; Poellinger, Alexander; Doellinger, Felix; Schreiter, Nils; Schreiter, Vera; Schürmann, Dirk; Temmesfeld-Wollbrueck, Bettina; Hippenstiel, Stefan; Suttorp, Norbert; Hubner, Ralf-Harto

    2016-01-01

    The exclusion of collateral ventilation (CV) and other factors affect the clinical success of endoscopic lung volume reduction (ELVR). However, despite its benefits, the outcome of ELVR remains difficult to predict. We investigated whether clinical success could be predicted by emphysema distribution assessed by computed tomography scan and baseline perfusion assessed by perfusion scintigraphy. Data from 57 patients with no CV in the target lobe (TL) were retrospectively analyzed after ELVR with valves. Pulmonary function tests (PFT), St George’s Respiratory Questionnaire (SGRQ), and 6-minute walk tests (6MWT) were performed on patients at baseline. The sample was grouped into high and low levels at the median of TL perfusion, ipsilateral nontarget lobe (INL) perfusion, and heterogeneity index (HI). These groups were analyzed for association with changes in outcome parameters from baseline to 3 months follow-up. Compared to baseline, patients showed significant improvements in PFT, SGRQ, and 6MWT (all P≤0.001). TL perfusion was not associated with changes in the outcome. High INL perfusion was significantly associated with increases in 6MWT (P=0.014), and high HI was associated with increases in forced expiratory volume in 1 second (FEV1), (P=0.012). Likewise, there were significant correlations for INL perfusion and improvement of 6MWT (r=0.35, P=0.03) and for HI and improvement in FEV1 (r=0.45, P=0.001). This study reveals new attributes that associate with positive outcomes for patient selection prior to ELVR. Patients with high perfusions in INL demonstrated greater improvements in 6MWT, while patients with high HI were more likely to respond in FEV1. PMID:27354783

  19. Lung perfusion and emphysema distribution affect the outcome of endobronchial valve therapy.

    PubMed

    Thomsen, Christian; Theilig, Dorothea; Herzog, Dominik; Poellinger, Alexander; Doellinger, Felix; Schreiter, Nils; Schreiter, Vera; Schürmann, Dirk; Temmesfeld-Wollbrueck, Bettina; Hippenstiel, Stefan; Suttorp, Norbert; Hubner, Ralf-Harto

    2016-01-01

    The exclusion of collateral ventilation (CV) and other factors affect the clinical success of endoscopic lung volume reduction (ELVR). However, despite its benefits, the outcome of ELVR remains difficult to predict. We investigated whether clinical success could be predicted by emphysema distribution assessed by computed tomography scan and baseline perfusion assessed by perfusion scintigraphy. Data from 57 patients with no CV in the target lobe (TL) were retrospectively analyzed after ELVR with valves. Pulmonary function tests (PFT), St George's Respiratory Questionnaire (SGRQ), and 6-minute walk tests (6MWT) were performed on patients at baseline. The sample was grouped into high and low levels at the median of TL perfusion, ipsilateral nontarget lobe (INL) perfusion, and heterogeneity index (HI). These groups were analyzed for association with changes in outcome parameters from baseline to 3 months follow-up. Compared to baseline, patients showed significant improvements in PFT, SGRQ, and 6MWT (all P≤0.001). TL perfusion was not associated with changes in the outcome. High INL perfusion was significantly associated with increases in 6MWT (P=0.014), and high HI was associated with increases in forced expiratory volume in 1 second (FEV1), (P=0.012). Likewise, there were significant correlations for INL perfusion and improvement of 6MWT (r=0.35, P=0.03) and for HI and improvement in FEV1 (r=0.45, P=0.001). This study reveals new attributes that associate with positive outcomes for patient selection prior to ELVR. Patients with high perfusions in INL demonstrated greater improvements in 6MWT, while patients with high HI were more likely to respond in FEV1. PMID:27354783

  20. Population imbalance in the extended Fermi-Hubbard model

    NASA Astrophysics Data System (ADS)

    Dhar, A.; Kinnunen, J. J.; Törmä, P.

    2016-08-01

    We study the interplay between population imbalance in a two-component fermionic system and nearest-neighbor interaction using the matrix product states method. Our analysis reveals a parameter regime for the existence of the Fulde-Ferrell-Larkin-Ovchinnikov phase. Furthermore, we find distinct evidence for the presence of hidden order in the system. We present an effective model to understand the emergent oscillations in the string correlations due to the imbalance and show how they can become an efficient tool to investigate systems with imbalance.

  1. Evaluation of ventilator alarms.

    PubMed

    1984-01-01

    An evaluation of ventilator alarms is being carried out for the DHSS within the Welsh National School of Medicine. The technical performance and safety assessments are being made within the Department of Anaesthetics and clinical trials within the South Glamorgan Area Health Authority. For this evaluation (published in 'Health Equipment Information' ['HEI'] No. 124 [June 1984]) one example of each model was assessed (Penlon IDP, Draeger, Medix Ventimonitor 101, BOC Medishield, East Ventilarm, Cape TTL) and the conclusions are based on the assumption that the sample was typical of normal production. This is a continuing programme and the next report will evaluate a group of infant ventilators. For full details of the evaluation findings, readers should consult 'HEI' 124. The following are extracts from the report. PMID:6398368

  2. Harnessing natural ventilation benefits.

    PubMed

    O'Leary, John

    2013-04-01

    Making sure that a healthcare establishment has a good supply of clean fresh air is an important factor in keeping patients, staff, and visitors, free from the negative effects of CO2 and other contaminants. John O'Leary of Trend Controls, a major international supplier of building energy management solutions (BEMS), examines the growing use of natural ventilation, and the health, energy-saving, and financial benefits, that it offers. PMID:23678661

  3. Oven ventilation system

    SciTech Connect

    Brewer, D.E.

    1987-02-17

    A ventilation system is described for venting an oven with external surfaces, the oven being located within an enclosed space, the system comprising: intake means for collecting air from the external environment of the enclosed space; means for forming a sheet of the air and passing the sheet across the external surfaces of the oven; and exhaust means for exhausting the sheet of the air to the external environment of the enclosed space after the air has been passed across the external surfaces.

  4. SU-E-J-120: Comparing 4D CT Computed Ventilation to Lung Function Measured with Hyperpolarized Xenon-129 MRI

    SciTech Connect

    Neal, B; Chen, Q

    2015-06-15

    Purpose: To correlate ventilation parameters computed from 4D CT to ventilation, profusion, and gas exchange measured with hyperpolarized Xenon-129 MRI for a set of lung cancer patients. Methods: Hyperpolarized Xe-129 MRI lung scans were acquired for lung cancer patients, before and after radiation therapy, measuring ventilation, perfusion, and gas exchange. In the standard clinical workflow, these patients also received 4D CT scans before treatment. Ventilation was computed from 4D CT using deformable image registration (DIR). All phases of the 4D CT scan were registered using a B-spline deformable registration. Ventilation at the voxel level was then computed for each phase based on a Jacobian volume expansion metric, yielding phase sorted ventilation images. Ventilation based upon 4D CT and Xe-129 MRI were co-registered, allowing qualitative visual comparison and qualitative comparison via the Pearson correlation coefficient. Results: Analysis shows a weak correlation between hyperpolarized Xe-129 MRI and 4D CT DIR ventilation, with a Pearson correlation coefficient of 0.17 to 0.22. Further work will refine the DIR parameters to optimize the correlation. The weak correlation could be due to the limitations of 4D CT, registration algorithms, or the Xe-129 MRI imaging. Continued development will refine parameters to optimize correlation. Conclusion: Current analysis yields a minimal correlation between 4D CT DIR and Xe-129 MRI ventilation. Funding provided by the 2014 George Amorino Pilot Grant in Radiation Oncology at the University of Virginia.

  5. Ventilators for noninvasive ventilation to treat acute respiratory failure.

    PubMed

    Scala, Raffaele; Naldi, Mario

    2008-08-01

    The application of noninvasive ventilation (NIV) to treat acute respiratory failure has increased tremendously both inside and outside the intensive care unit. The choice of ventilator is crucial for success of NIV in the acute setting, because poor tolerance and excessive air leaks are significantly correlated with NIV failure. Patient-ventilator asynchrony and discomfort can occur if the physician or respiratory therapist fails to adequately set NIV to respond to the patient's ventilatory demand, so clinicians need to fully understood the ventilator's technical peculiarities (eg, efficiency of trigger and cycle systems, speed of pressurization, air-leak compensation, CO(2) rebreathing, reliability of fraction of inspired oxygen reading, monitoring accuracy). A wide range of ventilators of different complexity have been introduced into clinical practice to noninvasively support patients in acute respiratory failure, but the numerous commercially available ventilators (bi-level, intermediate, and intensive care unit ventilators) have substantial differences that can influence patient comfort, patient-ventilator interaction, and, thus, the chance of NIV clinical success. This report examines the most relevant aspects of the historical evolution, the equipment, and the acute-respiratory-failure clinical application of NIV ventilators. PMID:18655744

  6. Severe hypoxemia during carinal resection in the lateral position under one-lung ventilation of a non-dependent lung: a case report

    PubMed Central

    Koo, Chang-Hoon; Jung, Yoo Sun; Lee, Yong-Hun; Kim, Hyun-Chang; Bahk, Jae-Hyon

    2016-01-01

    During one-lung ventilation (OLV) in the lateral position, the dependent, ventilated lung receives more blood flow than the non-dependent, non-ventilated lung owing to gravity, improving the match of ventilation and perfusion. Conversely, in the rare clinical situations when OLV is applied to the non-dependent lung, arterial oxygenation can get worse due to considerable shunt flow to the dependent non-ventilated lung. We report a case of severe hypoxemia during carinal resection under OLV of a non-dependent lung. In this case, OLV had to be applied to the non-dependent lung in the lateral position because the bronchus of the non-dependent lung was anastomosed with the trachea, whereas the bronchus of the dependent lung had already been resected for carinal resection. The subsequent hypoxemia resulting from the shunt flow to the dependent non-ventilated lung was treated successfully by ligating the pulmonary artery of the dependent lung. PMID:27274375

  7. Severe hypoxemia during carinal resection in the lateral position under one-lung ventilation of a non-dependent lung: a case report.

    PubMed

    Koo, Chang-Hoon; Jung, Yoo Sun; Lee, Yong-Hun; Kim, Hyun-Chang; Bahk, Jae-Hyon; Seo, Jeong-Hwa

    2016-06-01

    During one-lung ventilation (OLV) in the lateral position, the dependent, ventilated lung receives more blood flow than the non-dependent, non-ventilated lung owing to gravity, improving the match of ventilation and perfusion. Conversely, in the rare clinical situations when OLV is applied to the non-dependent lung, arterial oxygenation can get worse due to considerable shunt flow to the dependent non-ventilated lung. We report a case of severe hypoxemia during carinal resection under OLV of a non-dependent lung. In this case, OLV had to be applied to the non-dependent lung in the lateral position because the bronchus of the non-dependent lung was anastomosed with the trachea, whereas the bronchus of the dependent lung had already been resected for carinal resection. The subsequent hypoxemia resulting from the shunt flow to the dependent non-ventilated lung was treated successfully by ligating the pulmonary artery of the dependent lung. PMID:27274375

  8. Pretest Predictions for Ventilation Tests

    SciTech Connect

    Y. Sun; H. Yang; H.N. Kalia

    2007-01-17

    The objective of this calculation is to predict the temperatures of the ventilating air, waste package surface, concrete pipe walls, and insulation that will be developed during the ventilation tests involving various test conditions. The results will be used as input to the following three areas: (1) Decisions regarding testing set-up and performance. (2) Assessing how best to scale the test phenomena measured. (3) Validating numerical approach for modeling continuous ventilation. The scope of the calculation is to identify the physical mechanisms and parameters related to thermal response in the ventilation tests, and develop and describe numerical methods that can be used to calculate the effects of continuous ventilation. Sensitivity studies to assess the impact of variation of linear power densities (linear heat loads) and ventilation air flow rates are included. The calculation is limited to thermal effect only.

  9. 46 CFR 111.105-21 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation. 111.105-21 Section 111.105-21 Shipping... REQUIREMENTS Hazardous Locations § 111.105-21 Ventilation. A ventilation duct which ventilates a hazardous location has the classification of that location. Each fan for ventilation of a hazardous location must...

  10. Cadmium transport and toxicity in isolated perfused renal proximal tubules

    SciTech Connect

    Robinson, M.E.K.

    1991-01-01

    Cadmium is a potent toxicant preferentially accumulated in the renal cortex of humans and other animals. To assess the renal toxicity of inorganic cadmium, isolated segments (S1, S2, and S3) of rabbit renal proximal tubules were perfused with various concentrations of unlabeled cadmium chloride (CdCl[sub 2]) and a vital dye (FD C green). The tubular epithelial cells were observed under the light microscope for cellular injury and necrosis. Cellular swelling, luminal membrane blebbing, and cellular vacuolization were indicators of cellular injury, and dye uptake was indicative of cellular necrosis. To determine lumen-to-bath transport rates for cadmium, the segments were perfused with a mixture of [sup 109]CdCl[sub 2] and [sup 3]H-L-glucose; unlabeled CdCl[sub 2] was added when necessary to vary the total cadmium concentration from 1.5 [mu]M to 2000 [mu]M. Immediately after perfusion the tubules were extracted with 3% trichoroacetic acid (TCA) or with a modified Ringer's buffer of reduced osmolality to determine the fate of the cadmium removed from the lumen. Based on the toxicant indicators, increased dye uptake, increased luminal membrane blebbing, and increased vacuole formation, as the cadmium concentration was increased, cadmium was found to show toxicity to renal tubular cells at concentrations greater than 500 [mu]M. In transport experiments, increasing the cadmium concentration causes an increase in the leak of L-glucose, also indicating toxicity. A clear imbalance exists between the rate of disappearance of cadmium from the lumen and the rate of appearance in the bath for all three tubular segments. Cadmium appears to bind cellular membrane proteins, but it is extractable with 3% TCA. Cadmium, like mercury, is taken up at the luminal membrane, but very little is transported through the basolateral membrane.

  11. Field measurement of ventilation rates.

    PubMed

    Persily, A K

    2016-02-01

    Ventilation rates have significant impacts on building energy use and indoor contaminant concentrations, making them key parameters in building performance. Ventilation rates have been measured in buildings for many decades, and there are mature measurement approaches available to researchers and others who need to know actual ventilation rates in buildings. Despite the fact that ventilation rates are critical in interpreting indoor concentration measurements, it is disconcerting how few Indoor Air Quality field studies measure ventilation rates or otherwise characterize the ventilation design of the study building(s). This paper summarizes parameters of interest in characterizing building ventilation, available methods for quantifying these parameters, and challenges in applying these methods to different types of buildings and ventilation systems. These parameters include whole-building air change rates, system outdoor air intake rates, and building infiltration rates. Tracer gas methods are reviewed as well as system airflow rate measurements using, for example, duct traverses. Several field studies of ventilation rates conducted over the past 75 years are described to highlight the approaches employed and the findings obtained. PMID:25689218

  12. Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion.

    PubMed

    Bell, Robert M; Mocanu, Mihaela M; Yellon, Derek M

    2011-06-01

    In the late 19th century, a number of investigators were working on perfecting isolated heart model, but it was Oscar Langendorff who, in 1895, pioneered the isolated perfused mammalian heart. Since that time, the Langendorff preparation has evolved and provided a wealth of data underpinning our understanding of the fundamental physiology of the heart: its contractile function, coronary blood flow regulation and cardiac metabolism. In more recent times, the procedure has been used to probe pathophysiology of ischaemia/reperfusion and disease states, and with the dawn of molecular biology and genetic manipulation, the Langendorff perfused heart has remained a stalwart tool in the study of the impact upon the physiology of the heart by pharmacological inhibitors and targeted deletion or up-regulation of genes and their impact upon intracellular signalling and adaption to clinically relevant stressful stimuli. We present here the basic structure of the Langendorff system and the fundamental experimental rules which warrant a viable heart preparation. In addition, we discuss the use of the isolated retrograde perfused heart in the model of ischaemia-reperfusion injury ex-vivo, and its applicability to other areas of study. The Langendorff perfusion apparatus is highly adaptable and this is reflected not only in the procedure's longevity but also in the number of different applications to which it has been turned. PMID:21385587

  13. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Power ventilation systems except machinery space... Power ventilation systems except machinery space ventilation systems. Each power ventilation system must have: (a) A control to stop the ventilation that is: (1) Outside the space ventilated; and (2)...

  14. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Power ventilation systems except machinery space... Power ventilation systems except machinery space ventilation systems. Each power ventilation system must have: (a) A control to stop the ventilation that is: (1) Outside the space ventilated; and (2)...

  15. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Power ventilation systems except machinery space... Power ventilation systems except machinery space ventilation systems. Each power ventilation system must have: (a) A control to stop the ventilation that is: (1) Outside the space ventilated; and (2)...

  16. Kinetics of reversible-sequestration of leukocytes by the isolated perfused rat lung

    SciTech Connect

    Goliaei, B.

    1980-08-01

    The kinetics and morphology of sequestration and margination of rat leukocytes were studied using an isolated perfused and ventilated rat lung preparation. Whole rat blood, bone marrow suspension, or leukocyte suspensions, were used to perfuse the isolated rat lung. The lung was also perfused with latex particle suspensions and the passage of particles through the lung capillaries was studied. When a leukocyte suspension was perfused through the lung in the single-pass mode, the rate of sequestration decreased as more cells were perfused. In contrast, latex particles of a size comparable to that of leukocytes were totally stopped by the lung. When the leukocyte suspension was recirculated through the lung, cells were rapidly removed from circulation until a steady state was reached, after which no net removal of cells by the lung occurred. These results indicate that leukocytes are reversibly sequestered from circulation. The sequestered cells marginated and attached to the luminal surface of the endothelium of post-capillary venules and veins. A mathematical model was developed based on the assumption that the attachment and detachment of leukocytes to blood vessel walls follows first-order kinetics. The model correctly predicts the following characteristics of the system: (a) the kinetics of the sequestration of leukocytes by the lung; (b) the existence of a steady state when a suspension of leukocytes is recirculated through the lung; and (c) the independence of the fraction of cells remaining in circulation from the starting concentration for all values of starting concentration. (ERB)

  17. Constant-flow ventilation in canine experimental pulmonary emphysema.

    PubMed

    Hachenberg, T; Wendt, M; Meyer, J; Struckmeier, O; Lawin, P

    1989-07-01

    The efficacy of constant-flow ventilation (CFV) was investigated in eight mongrel dogs before (control-phase) and after development of papain-induced panlobular emphysema (PLE-phase). For CFV, heated, humidified and oxygen-enriched air was continuously delivered via two catheters positioned within each mainstem bronchus at flow rates (V) of 0.33, 0.5 and 0.66 l/s. Data obtained during intermittent positive pressure ventilation (IPPV) served as reference. In the control-phase, Pao2 was lower (P less than or equal to 0.05) and alveolo-arterial O2 difference (P(A-a)O2) was higher (P less than or equal to 0.01) during CFV at all flow rates when compared with IPPV. This may be due to inhomogeneities of intrapulmonary gas distribution and increased ventilation-perfusion (VA/Q) mismatching. Paco2 and V showed a hyperbolic relationship; constant normocapnia (5.3 kPa) was achieved at 0.48 +/- 0.21 l/s (V53). Development of PLE resulted in an increase of functional residual capacity (FRC), residual volume (RV) and static compliance (Cstat) (P less than or equal to 0.05). PaO2 had decreased and P(A-a)O2 had increased (P less than or equal to 0.05), indicating moderate pulmonary dysfunction. Oxygenation during CFV was not significantly different in the PLE-phase when compared with the control-phase. Paco2 and V showed a hyperbolic relationship and V5.3 was even lower than in the control-group (0.42 +/- 0.13 l/s). In dogs with emphysematous lungs CFV maintains sufficient gas exchange. This may be due to preferential ventilation of basal lung units, thereby counterbalancing the effects of impaired lung morphometry and increased airtrapping. Conventional mechanical ventilation is more effective in terms of oxygenation and CO2-elimination. PMID:2800979

  18. Ventilation best practices guide

    SciTech Connect

    Dorgan, C.B.; Dorgan, C.E.

    1996-07-01

    The intent of this Guide is to provide utility marketing and engineering personnel with information on how to identify indoor air quality (IAQ) problems, the current standards relating to IAQ and examples of what typically causes IAQ problems in commercial buildings. The Guide is written assuming that the reader has limited knowledge of heating, ventilating and air conditioning (HVAC) systems and that they are new to the IAQ arena. Also included in the Guide is a discussion of new electric technologies which are energy efficient and maintain a high level of IAQ.

  19. Laboratory and Industrial Ventilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This handbook supplements the Facilities Engineering Handbook (NHB 7320.1) and provides additional policies and criteria for uniform application to ventilation systems. It expands basic requirements, provides additional design and construction guidance, and places emphasis on those design considerations which will provide for greater effectiveness in the use of these systems. The provisions of this handbook are applicable to all NASA field installations and the Jet Propulsion Laboratory. Since supply of this handbook is limited, abstracts of the portion or portions applicable to a given requirement will be made for the individual specific needs encountered rather than supplying copies of the handbook as has been past practice.

  20. Developing a tissue perfusion sensor.

    PubMed

    Harvey, S L R; Parker, K H; O'Hare, D

    2007-01-01

    The development of a electrochemical tissue perfusion sensor is presented. The sensor is a platinum/platinum ring-disc microelectrode that relies on the principle of collector-generator to monitor mass transport within its vicinity. Tissue perfusion is a mass transport mechanism that describes the movement of respiratory gases, nutrients and metabolites in tissue. The sensor's capability of detecting perfusion at the cellular level in a continuous fashion is unique. This sensor will provide insight into the way nutrients and metabolites are transported in tissue especially in cases were perfusion is low such as in wounds or ischemic tissue. We present experimental work for the development and testing of the sensors in vitro. Experimental flow recordings in free steam solutions as well as the flow through tissue-like media are shown. Tests on post operative human tissue are also presented. The sensor's feature such as the continuous recoding capacities, spatial resolution and the measurement range from ml/min to microl/min are highlighted. PMID:18002549

  1. New Ventilated Isolation Cage

    PubMed Central

    Cook, Reginald O.

    1968-01-01

    A multifunction lid has been developed for a commercially available transparent animal cage which permits feeding, watering, viewing, long-term holding, and local transport of laboratory rodents on experiment while isolating the surrounding environment. The cage is airtight except for its inlet and exhaust high-efficiency particulate air filters, and it is completely steam-sterilizable. Opening of the cage's feed and water ports causes an inrush of high velocity air which prevents back-migration of aerosols and permits feeding and watering while eliminating need for chemical vapor decontamination. Ventilation system design permits the holding in adjacent cages of animals infected with different organisms without danger of cross-contamination; leaves the animal room odor-free; reduces required bedding changes to twice a month or less, and provides investigators with capability to control precisely individual cage ventilation rates. Forty-eight cages can be conveniently placed on a standard NIH “shoebox” cage rack (60 inches wide × 28 inches deep × 74 inches high) fitted with a simple manifold exhaust system. The entire system is mobile, requiring only an electrical power outlet. Principal application of the caging system is in the area of preventing exposure of animal caretakers to pathogenic substances associated with the animal host, and in reducing handling of animals and their exposure to extraneous contamination. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 9 PMID:5659368

  2. Tracheostomy in mechanical ventilation.

    PubMed

    Terragni, Pierpaolo; Faggiano, Chiara; Martin, Erica L; Ranieri, V Marco

    2014-08-01

    Airway access for mechanical ventilation (MV) can be provided either by orotracheal intubation (OTI) or tracheostomy tube. During episodes of acute respiratory failure, patients are commonly ventilated through an orotracheal tube that represents an easy and rapid initial placement of the airway device. OTI avoids acute surgical complications such as bleeding, nerve and posterior tracheal wall injury, and late complications such as wound infection and tracheal lumen stenosis that may emerge due to tracheostomy tube placement. Tracheostomy is often considered when MV is expected to be applied for prolonged periods or for the improvement of respiratory status, as this approach provides airway protection, facilitates access for secretion removal, improves patient comfort, and promotes progression of care in and outside the intensive care unit (ICU). The aim of this review is to assess the frequency and performance of different surgical or percutaneous dilational tracheostomy and timing and safety procedures associated with the use of fiberoptic bronchoscopy and ultrasounds. Moreover, we analyzed the performance based on National European surveys to assess the current tracheostomy practice in ICUs. PMID:25111644

  3. Comparison of CT-derived Ventilation Maps with Deposition Patterns of Inhaled Microspheres in Rats

    SciTech Connect

    Jacob, Rick E.; Lamm, W. J.; Einstein, Daniel R.; Krueger, Melissa; Glenny, Robb W.; Corley, Richard A.

    2015-04-01

    Purpose: Computer models for inhalation toxicology and drug-aerosol delivery studies rely on ventilation pattern inputs for predictions of particle deposition and vapor uptake. However, changes in lung mechanics due to disease can impact airflow dynamics and model results. It has been demonstrated that non-invasive, in vivo, 4DCT imaging (3D imaging at multiple time points in the breathing cycle) can be used to map heterogeneities in ventilation patterns under healthy and disease conditions. The purpose of this study was to validate ventilation patterns measured from CT imaging by exposing the same rats to an aerosol of fluorescent microspheres (FMS) and examining particle deposition patterns using cryomicrotome imaging. Materials and Methods: Six male Sprague-Dawley rats were intratracheally instilled with elastase to a single lobe to induce a heterogeneous disease. After four weeks, rats were imaged over the breathing cycle by CT then immediately exposed to an aerosol of ~1µm FMS for ~5 minutes. After the exposure, the lungs were excised and prepared for cryomicrotome imaging, where a 3D image of FMS deposition was acquired using serial sectioning. Cryomicrotome images were spatially registered to match the live CT images to facilitate direct quantitative comparisons of FMS signal intensity with the CT-based ventilation maps. Results: Comparisons of fractional ventilation in contiguous, non-overlapping, 3D regions between CT-based ventilation maps and FMS images showed strong correlations in fractional ventilation (r=0.888, p<0.0001). Conclusion: We conclude that ventilation maps derived from CT imaging are predictive of the 1µm aerosol deposition used in ventilation-perfusion heterogeneity inhalation studies.

  4. Transpired Air Collectors - Ventilation Preheating

    SciTech Connect

    Christensen, C.

    2006-06-22

    Many commercial and industrial buildings have high ventilation rates. Although all that fresh air is great for indoor air quality, heating it can be very expensive. This short (2-page) fact sheet describes a technology available to use solar energy to preheat ventilation air and dramatically reduce utility bills.

  5. Inhalation therapy in mechanical ventilation

    PubMed Central

    Maccari, Juçara Gasparetto; Teixeira, Cassiano; Gazzana, Marcelo Basso; Savi, Augusto; Dexheimer-Neto, Felippe Leopoldo; Knorst, Marli Maria

    2015-01-01

    Patients with obstructive lung disease often require ventilatory support via invasive or noninvasive mechanical ventilation, depending on the severity of the exacerbation. The use of inhaled bronchodilators can significantly reduce airway resistance, contributing to the improvement of respiratory mechanics and patient-ventilator synchrony. Although various studies have been published on this topic, little is known about the effectiveness of the bronchodilators routinely prescribed for patients on mechanical ventilation or about the deposition of those drugs throughout the lungs. The inhaled bronchodilators most commonly used in ICUs are beta adrenergic agonists and anticholinergics. Various factors might influence the effect of bronchodilators, including ventilation mode, position of the spacer in the circuit, tube size, formulation, drug dose, severity of the disease, and patient-ventilator synchrony. Knowledge of the pharmacological properties of bronchodilators and the appropriate techniques for their administration is fundamental to optimizing the treatment of these patients. PMID:26578139

  6. Evaluation of building ventilation systems

    SciTech Connect

    Hughes, R.T.; O'Brien, D.M.

    1986-04-01

    Over the past several years, NIOSH has responded to health hazard evaluation requests from workers in dozens of office environments. Typically, the employees have complained of headache, eye and upper respiratory tract irritation, dizziness, lethargy and the inability to concentrate. Most often inadequate ventilation has been blamed for these complaints. Of paramount importance in the evaluation and correction of these problems is an effective evaluation of the building's ventilation system. Heating, ventilating and air-conditioning conditions that can cause worker stresses include: migration of odors or chemical hazards between building areas; reentrainment of exhaust from building fume hoods or through heat wheels; buildup of microorganisms in the HVAC system components; and poor odor or environmental control due to insufficient fresh outdoor air or system heating or cooling malfunction. The purpose of this paper is to provide an overview of building ventilation systems, the ventilation problems associated with poorly designed or operating systems, and the methodology for effectively evaluating system performance.

  7. Imbalance in treatment assignments in stratified blocked randomization.

    PubMed

    Hallstrom, A; Davis, K

    1988-12-01

    Blocking and stratification are used in preparing randomization assignments to ensure that there will be nearly equal numbers of patients in each treatment group and that the groups will be similar with respect to important covariates. Stratified blocked randomization will create near balance within strata, but imbalance for the total trial may still occur. The variance for the total trial imbalance D is derived and examples from clinical trials are given. Under reasonable assumptions, if the blocking factor is size B in each of K strata, then max D = KB/2 and var D = K(B + 1)/6. These results may be used in planning a trial to estimate the overall imbalance expected for various choices of B and K. A conditional variance is given that allows the probability of an observed imbalance at the completion of a trial to be evaluated. Overall imbalance is about as likely with stratified blocked randomization as with simple randomization unless the total sample size N is appreciably larger than K X B. So long as the blinding is maintained, the block sizes should be chosen to be as small as possible. PMID:3203527

  8. Potential Role of Lung Ventilation Scintigraphy in the Assessment of COPD

    PubMed Central

    Cukic, Vesna; Begic, Amela

    2014-01-01

    Objective: To highlight the importance of the lung ventilation scintigraphy (LVS) to study the regional distribution of lung ventilation and to describe most frequent abnormal patterns of lung ventilation distribution obtained by this technique in COPD and to compare the information obtained by LVS with the that obtained by traditional lung function tests. Material and methods: The research was done in 20 patients with previously diagnosed COPD who were treated in Intensive care unit of Clinic for pulmonary diseases and TB “Podhrastovi” Clinical Center, University of Sarajevo in exacerbation of COPD during first three months of 2014. Each patient was undergone to testing of pulmonary function by body plethysmography and ventilation/perfusion lung scintigraphy with radio pharmaceutics Technegas, 111 MBq Tc -99m-MAA. We compared the results obtained by these two methods. Results: All patients with COPD have a damaged lung function tests examined by body plethysmography implying airflow obstruction, but LVS indicates not only airflow obstruction and reduced ventilation, but also indicates the disorders in distribution in lung ventilation. Conclusion: LVS may add further information to the functional evaluation of COPD to that provided by traditional lung function tests and may contribute to characterizing the different phenotypes of COPD. PMID:25132709

  9. Transpleural Ventilation via Spiracles in Severe Emphysema Increases Alveolar Ventilation.

    PubMed

    Chahla, Mayy; Larson, Christopher D; Parekh, Kalpaj R; Reed, Robert M; Terry, Peter; Schmidt, Gregory A; Eberlein, Michael

    2016-06-01

    In emphysema airway resistance can exceed collateral airflow resistance, causing air to flow preferentially through collateral pathways. In severe emphysema ventilation through openings directly through the chest wall into the parenchyma (spiracles) could bypass airway obstruction and increase alveolar ventilation via transpleural expiration. During lung transplant operations, spiracles occasionally can occur inadvertently. We observed transpleural expiration via spiracles in three subjects undergoing lung transplant for emphysema. During transpleural spiracle ventilation, inspiratory tidal volumes (TV) were unchanged; however, expiration was entirely transpleural in two patients whereas the expired TV to the ventilator circuit was reduced to 25% of the inspired TV in one. At baseline, mean PCO2 was 61 ± 5 mm Hg, which decreased to a mean PCO2 of 49 ± 5 mm Hg (P = .05) within minutes after transpleural spiracle ventilation and further decreased at 1 to 2 h (36 ± 4 mm Hg; P = .002 compared with baseline) on unchanged ventilator settings. This observation of increased alveolar ventilation supports further studies of spiracles as a possible therapy for advanced emphysema. PMID:27287591

  10. [Effectiveness of artificial ventilation in oil microembolism followed by pulmonary edema].

    PubMed

    Tarakanov, I A; Kuz'michev, S A; Semkina, G A

    1992-07-01

    In experiments on sodium pentobarbital (40 mg/kg, i.p.) anesthetized mongrel cats of either sex weighting from 2.0 to 4.0 kg, it was found, that in conditions of oil pulmonary microembolization, followed by pulmonary edema, the most suitable is rapid and shallow pattern of ventilation, ensuring optimal ventilation/perfusion interrelation. The oil microembolization was introduced with intravenous administration (1 mg per kg of body weight during 2 min) of olive oil. It is necessary to provide flexible regimens of artificial ventilation and conformity of respiratory pattern and body's demands can be controlled according to pHa and PaO2. It is desirable that pH and pO2 can be evaluated continuously. PMID:1421295