These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

The Venus Express mission  

NASA Astrophysics Data System (ADS)

Venus evokes the ever-attractive image of a goddess from antiquity, and yet our sister planet, although attractive, is far from hospitable. The reasons for such a great difference between Earth and Venus have still to be understood and so, considering that they are very close in terms of astronomical distances, a mystery is invoked. Whether Earth is a unique planet, for which life was destined, or whether both planets were created under similar circumstances and subsequently evolved in different manners, is fundamental to the understanding of our place in the Solar System and, indeed, perhaps the Universe.

McCoy, Donald; Siwitza, Thorsten; Gouka, Roy

2005-11-01

2

Review of Venus Express Mission Analysis  

Microsoft Academic Search

This paper summarizes the main results of the mission analysis of the 2005 launch window of Venus Express. The operational orbit is a polar eccentric orbit with about a 1 day period. The orbit is well suited to study the atmosphere, the plasma environment and for remote observations. The launch window using the Soyuz+Fregat launcher is open for 30 days

J. M. Sanchez Perez; J. Rodriguez Canabal

2004-01-01

3

Missions to Venus  

NASA Astrophysics Data System (ADS)

Venus has always been a fascinating objective for planetary studies. At the beginning of the space era Venus became one of the first targets for spacecraft missions. Our neighbour in the solar system and, in size, the twin sister of Earth, Venus was expected to be very similar to our planet. However, the first phase of Venus spacecraft exploration in 1962-1992 by the family of Soviet Venera and Vega spacecraft and US Mariner, Pioneer Venus, and Magellan missions discovered an entirely different, exotic world hidden behind a curtain of dense clouds. These studies gave us a basic knowledge of the conditions on the planet, but generated many more questions concerning the atmospheric composition, chemistry, structure, dynamics, surface-atmosphere interactions, atmospheric and geological evolution, and the plasma environment. Despite all of this exploration by more than 20 spacecraft, the "morning star" still remains a mysterious world. But for more than a decade Venus has been a "forgotten" planet with no new missions featuring in the plans of the world space agencies. Now we are witnessing the revival of interest in this planet: the Venus Orbiter mission is approved in Japan, Venus Express - a European orbiter mission - has successfully passed the selection procedure in ESA, and several Venus Discovery proposals are knocking at the doors of NASA. The paper presents an exciting story of Venus spacecraft exploration, summarizes open scientific problems, and builds a bridge to the future missions.

Titov, D. V.; Baines, K. H.; Basilevsky, A. T.; Chassefiere, E.; Chin, G.; Crisp, D.; Esposito, L. W.; Lebreton, J.-P.; Lellouch, E.; Moroz, V. I.; Nagy, A. F.; Owen, T. C.; Oyama, K.-I.; Russell, C. T.; Taylor, F. W.; Young, R. E.

2002-10-01

4

The fluxgate magnetometer for the Venus Express Mission  

Microsoft Academic Search

The MAG (Magnetometer) instrument aboard the Venus Express spacecraft is designed to investigate the Venus plasma environment. Although Venus has no intrinsic magnetic moment, the magnetic field plays an important role in the solar wind interaction with the planet. The Space Research Institute (Institut für Weltraumforschung, IWF) in Graz, in collaboration with IGEP of TU Braunschweig and Imperial College London,

T. L. Zhang; G. Berghofer; W. Magnes; M. Delva; W. Baumjohann; H. Biernat; H. Lichtenegger; R. Nakamura; K. Schwingenschuh; H.-U. Auster; K.-H. Fornacon; I. Richter; K.-H. Glassmeier; C. Carr; A. Balogh; S. Barabash; K. Kudela; M. Balikhin

5

A dynamic atmosphere revealed by the Venus Express mission  

NASA Astrophysics Data System (ADS)

ESA’s Venus Express orbiter has achieved a mission lifetime of eight years, well in excess of its original nominal science mission duration of 500 days. The science payload was selected to focus on atmospheric investigations from the deep atmosphere - probed using near-infrared spectral windows - up to the mesosphere and exosphere. While initial analyses focussed on first detections and mean atmospheric states, subsequent analyses have revealed variability on timescales ranging from diurnal to seasonal to multiannual. In the upper atmosphere, VEx/VIRTIS shows dramatic maps of O_{2} nightglow spatial distribution changing location on scales of minutes to hours, as well as gravity waves high in polar regions high above the core of the polar vortex. Thermospheric and mesospheric densities, revealed through solar and stellar occultation as well as by the VEx Atmospheric Drag Experiment, are observed to vary by over 100% on a day-to-day basis. The Southern polar vortex was revealed to change shape on a day-to-day basis, taking sometimes the previously observed wavenumber-2 shape (“polar dipole”) but changing rapidly also to wavenumber-1 or wavenumber-3 shapes. In the lower / middle cloud layer Venus Express was able to map the formation and dissipation of regions of thin and thick cloud on timescales of hours to days. But it is the long-term changes on periods of several years which are perhaps the most intriguing. Mean zonal wind speed at low latitudes at cloud-top altitude, as revealed by cloud tracking in UV imagery, is found to have increased by 30% over the period 2007-2013. Mesospheric sulphur dioxide abundances were found to increase fourfold during 2006-2008 followed by a tenfold decrease in 2008-2012, echoing a pattern seen earlier from Pioneer Venus and Hubble observations. There may also be associated long-term changes in the UV albedo of Venus - this is still under investigation. But to date no long-term trend has been observed in the abundance of other trace gas species, notably of water vapour, which might be expected to vary alongside mesospheric sulphur dioxide abundances. Explaining this combination of observations provides constraints and challenges for our understanding of the Venus atmosphere. In this presentation we review the highlights of Venus Express atmospheric science results, with particular focus on temporal variability.

Wilson, Colin; Svedhem, Håkan; Drossart, Pierre; Piccioni, Giuseppe; Markiewicz, Wojciech; Pätzold, Martin; Titov, Dmitrij; Bertaux, Jean-Loup

6

Venus Express science planning  

Microsoft Academic Search

Venus Express is the first European mission to the planet Venus. Its payload consists of seven instruments and will investigate the atmosphere, the plasma environment, and the surface of Venus from orbit. Science planning is a complex process that takes into account requests from all experiments and the operational constraints. The planning of the science operations is based on synergetic

D. V. Titov; H. Svedhem; D. Koschny; R. Hoofs; S. Barabash; J.-L. Bertaux; P. Drossart; V. Formisano; B. Häusler; O. Korablev; W. J. Markiewicz; D. Nevejans; M. Pätzold; G. Piccioni; T. L. Zhang; D. Merritt; O. Witasse; J. Zender; A. Accomazzo; M. Sweeney; D. Trillard; M. Janvier; A. Clochet

2006-01-01

7

Post-Venus Express exploration of Venus : an in-situ mission to characterize Venus climate evolution  

NASA Astrophysics Data System (ADS)

The planet Venus - our neighbour in the solar system and twin sister of the Earth - was once expected to be very similar to the Earth. However the space missions to the planet discovered a world completely different from ours. The fundamental mysteries in the physics of Venus are related to the composition and dynamics of the atmosphere, physics of the cloud layer and greenhouse effect, surface mineralogy, evolution of the surface and volatile inventory. Despite the fact that both Earth and Venus were formed in the same region of the solar system, the planets followed dramatically different evolutionary paths. Understanding the reasons for this divergence would shed a light on the processes of origin and evolution of all terrestrial planets including Earth. A new mission to Venus is under study. It consists of a set of probes (balloon probe, descent probes) devoted to the characterization of atmospheric chemical cycles, atmospheric electrical/ electromagnetic activity, low atmosphere dynamics, surface/ atmosphere thermo-chemical interactions, surface mineralogy and geology, with an emphasis on past climate evolution (noble gas/ isotope composition of the atmosphere). Some orbital science is planned, in complement to in-situ science. An atmosphere sample return is also considered. Information about current activity may be found at http://www.aero.jussieu.fr/VEP/, together with documents describing the present state of thoughts about scientific priorities and possible mission scenarios.

Chassefiere, E.; Aplin, K.; Ferencz, C.; Lopez-Moreno, J.; Leitner, J.; Marty, B.; Roos-Serote, M.; Titov, D.; Wilson, C.; Witasse, O.; Vep Team

8

Venus 2000 Mission Design  

NASA Technical Reports Server (NTRS)

As part of the Discovery Program, National Aeronautics and Space Administration (NASA) has solicited proposals for inter-planetary research to conduct solar system exploration science investigations. A mission, called Venus 2000 (V2k), has been proposed for exploration of the Venus Atmosphere. This is NASAs first voyage to Venus to investigate key science objectives since Magellan and will be launched in summer 2002. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, V2k mission design and control will focus on the use of innovative and proven trajectory analysis programs and control systems provided by the Goddard Space Flight Center (GSFC).

Folta, David; Marr, Greg; Vaughn, Frank; Houghton, Martin B.

1997-01-01

9

Venus Aerobot Multisonde Mission  

NASA Technical Reports Server (NTRS)

Robotic exploration of Venus presents many challenges because of the thick atmosphere and the high surface temperatures. The Venus Aerobot Multisonde mission concept addresses these challenges by using a robotic balloon or aerobot to deploy a number of short lifetime probes or sondes to acquire images of the surface. A Venus aerobot is not only a good platform for precision deployment of sondes but is very effective at recovering high rate data. This paper describes the Venus Aerobot Multisonde concept and discusses a proposal to NASA's Discovery program using the concept for a Venus Exploration of Volcanoes and Atmosphere (VEVA). The status of the balloon deployment and inflation, balloon envelope, communications, thermal control and sonde deployment technologies are also reviewed.

Cutts, James A.; Kerzhanovich, Viktor; Balaram, J. Bob; Campbell, Bruce; Gershaman, Robert; Greeley, Ronald; Hall, Jeffery L.; Cameron, Jonathan; Klaasen, Kenneth; Hansen, David M.

1999-01-01

10

Venus Express science planning  

NASA Astrophysics Data System (ADS)

Venus Express is the first European mission to the planet Venus. Its payload consists of seven instruments and will investigate the atmosphere, the plasma environment, and the surface of Venus from orbit. Science planning is a complex process that takes into account requests from all experiments and the operational constraints. The planning of the science operations is based on synergetic approach to provide good coverage of science themes derived from the main mission goals. Typical observations in a single orbit - so-called "science cases" are used to build the mission science activity plan. The nominal science mission (from June 4, 2006 till October 2, 2007) is divided in nine phases depending on observational conditions, occurrences of the solar and Earth occultation, and particular science goals. The observation timelines for each phase were developed in a coordinated way to optimize the payload activity, maximize the overall mission science return, and to fit into the available mission budgets.

Titov, D. V.; Svedhem, H.; Koschny, D.; Hoofs, R.; Barabash, S.; Bertaux, J.-L.; Drossart, P.; Formisano, V.; Häusler, B.; Korablev, O.; Markiewicz, W. J.; Nevejans, D.; Pätzold, M.; Piccioni, G.; Zhang, T. L.; Merritt, D.; Witasse, O.; Zender, J.; Accomazzo, A.; Sweeney, M.; Trillard, D.; Janvier, M.; Clochet, A.

2006-11-01

11

The Pioneer Venus Missions.  

ERIC Educational Resources Information Center

This document provides detailed information on the atmosphere and weather of Venus. This pamphlet describes the technological hardware including the probes that enter the Venusian atmosphere, the orbiter and the launch vehicle. Information is provided in lay terms on the mission profile, including details of events from launch to mission end. The…

National Aeronautics and Space Administration, Mountain View, CA. Ames Research Center.

12

Future Drag Measurements from Venus Express  

Microsoft Academic Search

Beginning in July 2008 during the Venus Express Extended Mission, the European Space Agency will dramatically drop orbital periapsis from near 250km to near 180km above the Venus North Polar Region. This will allow orbital decay measurements of atmospheric densities to be made near the Venus North Pole by the VExADE (Venus Express Atmospheric Drag Experiment) whose team leader is

Gerald Keating; Ingo Mueller-Wodarg; Jeffrey M. Forbes; Roger Yelle; Sean Bruinsma; Paul Withers; Miguel Angel Lopez-Valverde; Stephen Bougher

2008-01-01

13

Magellan Mission to Venus  

NSDL National Science Digital Library

NASA's Magellan spacecraft used a sophisticated imaging radar to make the most highly detailed maps of Venus ever captured during its four years in orbit around Earth's sister planet from 1990 to 1994. After concluding its radar mapping, Magellan also made global maps of Venus's gravity field. Flight controllers also tested a new maneuvering technique called aerobraking, which uses a planet's atmosphere to slow or steer a spacecraft. Craters shown in the radar images that Magellan sent to Earth tell scientists that Venus's surface appears relatively young -- resurfaced about 500 million years ago by widespread volcanic eruptions. The planet's present harsh environment has persisted at least since then, with no features detected suggesting the presence of oceans or lakes at any time in the planet's past. Scientists also found no evidence of plate tectonics, the movements of huge crustal masses on Earth that cause earthquakes and result in the drifting of continents over time spans of hundreds of millions of years. In October 1994 Magellan's mission is expected to end with a dramatic plunge to the planet's surface, the first time an operating planetary spacecraft has ever been intentionally crashed. The purpose of the maneuver is for Magellan to gather data on Venus's atmosphere before it ceases to function during its fiery descent.

2009-07-23

14

Future Venus exploration: mission Venera-D  

NASA Astrophysics Data System (ADS)

Venus was actively studied by Soviet and US missions in 60-90-th years of the last century. The investigations carried out both from the orbit and in situ were highly successful. After a 15-year break in space research of Venus, the ESA Venus Express mission, launched in 2005, successfully continues its work on orbit around Venus, obtaining spectacular results. However, many questions concerning the structure and evolutions of the planet Venus, which are the key questions of comparative planetology and very essential for understanding the possible evolution of the terrestrial climate, cannot be solved by observations only from an orbit. Venera-D includes orbiter, lander, subsatellite, long living station on the surface. Venera-D is focused for both in situ and remote investigations of Venus of surface and atmosphere, as well plasma environment and solar wind interaction. Practically all experiments for Venera-D, will be provided by international teams. A Russia-US Venera-D Joint Science Definition Team has been formed in February 2014 to recommend a possible collaborative and coordinated implementation by considering the common aspects of Venera-D mission as presently defined, as well as the Venus Climate Mission recommended by the US Academies Decadal Survey of Planetary Science and the Venus Flagship mission studied by NASA in 2009. The team will provide its report by March 2015 and will likely lead to a coordinated or joint call for instruements and/or mission elements.

Zasova, Ludmila

15

Multiprobe Missions To Complement Venus Orbiters  

NASA Astrophysics Data System (ADS)

The proposed Venus Express and Venus Climate Orbiter provide a great opportunity for descenders and landers that would complement the orbiter investigations. Such a mission, called "MorningStar", has been proposed for the US Discovery program. Deficiencies of the previous proposal include lack of surface science, dependence on a single probe, and pushing the Discovery cost and mass limits. A larger mission in the possible "Discovery Plus" cost range could address these problems and provide a very broad science return as part of a more comprehensive international spacecraft investigation of Venus later in this decade.

Esposito, L.

16

Venus Climate Orbiter: Japan's First Mission to Venus  

NASA Astrophysics Data System (ADS)

Venus Climate Orbiter (VCO), aka Planet-C, is the first Venus exploration mission of Japan Aerospace Exploration Agency (JAXA), which now is in the phase B study. VCO is scheduled to be launched via M-V rocket around 2009-2010. Arrival to Venus will be in late 2010. The main target of VCO is the meteorology of this Earth's twin sister. The wind system of Venus is characterized by so-called super-rotation: the atmosphere at the cloud-top level rotates around the planet within 4 Earth days, although the planet itself rotates much slower at a period of 243 Earth days. To study in detail the atmospheric dynamics of Venus, VCO will be inserted to a nearly-equatorial and retrograde orbit around the planet. The orbit is an elongated ellipse (30 hours period) with the periapsis at 300 km from the planet's surface and the apoapsis at 13 Venus radii. The orbit is so designed that the angular motion of the spacecraft is synchronized with the westward motion of the cloud-level atmosphere as longer time as possible. Thus, VCO is expected to perform just as the geostationary meteorological satellites do. Five cameras onboard VCO will produce successive global images at a variety of wavelengths while the spacecraft is in this portion of the orbit. Such images will enable us to derive the three-dimensional global structure of the atmospheric circulation. The shadow of Venus is utilized for observing lightning and airglow. Radio occultation will also be performed to observe the vertical profiles of temperature and sulfuric acid vapor. We expect the data obtained from VCO will complements scientific results from ESA's Venus Express Mission and greatly enhance our knowledge about Venus. A new research field ``Planetary Meteorology" will be opened by this new mission.

Nakamura, M.; Imamura, T.; Abe, T.; Ishii, N.; Ueno, M.

2005-08-01

17

Magnetic field investigation of the Venus plasma environment: Expected new results from Venus Express  

Microsoft Academic Search

The Venus Express mission is scheduled for launch in 2005. Among many other instruments, it carries a magnetometer to investigate the Venus plasma environment. Although Venus has no intrinsic magnetic moment, magnetic field measurements are essential in studying the solar wind interaction with Venus. Our current understanding of the solar wind interaction with Venus is mainly from the long lasting

T. L. Zhang; W. Baumjohann; M. Delva; H.-U. Auster; A. Balogh; C.T. Russell; S. Barabash; M. Balikhin; G. Berghofer; H. K. Biernat; H. Lammer; H. Lichtenegger; W. Magnes; R. Nakamura; T. Penz; K. Schwingenschuh; Z. Vörös; W. Zambelli; K.-H. Fornacon; K.-H. Glassmeier; I. Richter; C. Carr; K. Kudela; J. K. Shi; H. Zhao; U. Motschmann; J.-P. Lebreton

2006-01-01

18

Venus Express Magnetometer Contribution to Space Plasma Physics  

Microsoft Academic Search

Venus Express (VEX), the first European satellite to Venus, is primarily a planetary mission itself and the main scientific objective is a comprehensive investigation of Venus atmosphere and plasma environment. But the plasma payload is very limited with only a plasma instrument and a magnetometer. Since Venus Express reused the spacecraft bus of Mars Express, which did not carry a

Tielong Zhang

2008-01-01

19

Results from Venus Express  

Microsoft Academic Search

Venus Express has been in orbit around Venus since May 2006 and has since then delivered a large amount of new and unique information on our sister planet. The atmosphere has been mapped in three dimensions and at regular intervals time lapse movies have been generated in order to make detailed characterization of the circulation patterns at different altitudes. The

Hakan Svedhem

2008-01-01

20

Results from Venus Express  

NASA Astrophysics Data System (ADS)

Venus Express has been in orbit around Venus since May 2006 and has since then delivered a large amount of new and unique information on our sister planet. The atmosphere has been mapped in three dimensions and at regular intervals time lapse movies have been generated in order to make detailed characterization of the circulation patterns at different altitudes. The thermal structure has been investigated with several different but complementary techniques to cover the range between 40km and 140 km. The surface temperature has been mapped over a large part of the southern hemisphere and regions with anomalous emissivity have been studied in some detail. The chemical analysis has characterised a large number of species and detected for the first time the radical hydroxyl. Existence of frequent lightning has been inferred from whistler waves detected by the magnetometer. Escape rates of hydrogen, oxygen and helium have been estimated. Recently the pericentre altitude was reduced to 185 km in order to better characterize, in situ, the magnetic fields and energetic particle environment. This talk will provide a summary of the most important results and give a status update of the mission.

Svedhem, Hakan

2008-09-01

21

Post-Venus Express exploration of Venus : the Venus Entry Probe Initiative  

NASA Astrophysics Data System (ADS)

The planet Venus -- our neighbour in the solar system and twin sister of the Earth -was once expected to be very similar to the Earth However the space missions to the planet discovered a world completely different from ours The fundamental mysteries in the physics of Venus are related to the composition and dynamics of the atmosphere physics of the cloud layer and greenhouse effect surface mineralogy evolution of the surface and volatile inventory Despite the fact that both Earth and Venus were formed in the same region of the solar system the planets followed dramatically different evolutionary paths Understanding the reasons for this divergence would shed a light on the processes of origin and evolution of all terrestrial planets including Earth Early missions to Venus in 1960-90 included a great variety of robotic spacecraft fly-bys orbiters landers and balloons They established basic understanding of the conditions prevailing in the atmosphere and on the surface of Venus In the same time they raised a number of fundamental questions concerning the mechanisms and processes that formed and are maintaining these conditions The new era of Venus exploration began with the launch of the ESA Venus Express spacecraft in November 2005 The spacecraft will deliver a powerful suite of remote sensing instruments into orbit around the planet The mission will perform a global survey of the Venus atmosphere and plasma environment The Japanese Planet-C mission scheduled for launch in 2010 will focus on meteorological monitoring from orbit These

Chassefière, E.; Roos-Serote, M.; Titov, D.; Wilson, C.; Witasse, O.; Vepi Team

22

The Analyser of Space Plasmas and Energetic Atoms (ASPERA-4) for the Venus Express mission  

Microsoft Academic Search

The general scientific objective of the ASPERA-4 (Analyser of Space Plasmas and Energetic Atoms) experiment is to study the solar wind–atmosphere interaction and characterise the plasma and neutral gas environment in the near-Venus space through energetic neutral atom (ENA) imaging and local charged particle measurements. The studies to be performed address the fundamental question: How strongly do the interplanetary plasma

S. Barabash; J.-A. Sauvaud; H. Gunell; H. Andersson; A. Grigoriev; K. Brinkfeldt; M. Holmström; R. Lundin; M. Yamauchi; K. Asamura; W. Baumjohann; T. L. Zhang; A. J. Coates; D. R. Linder; D. O. Kataria; C. C. Curtis; K. C. Hsieh; B. R. Sandel; A. Fedorov; C. Mazelle; J.-J. Thocaven; M. Grande; Hannu E. J. Koskinen; E. Kallio; T. Säles; P. Riihela; J. Kozyra; N. Krupp; J. Woch; J. Luhmann; S. McKenna-Lawlor; S. Orsini; R. Cerulli-Irelli; M. Mura; M. Milillo; M. Maggi; E. Roelof; P. Brandt; C. T. Russell; K. Szego; J. D. Winningham; R. A. Frahm; J. Scherrer; J. R. Sharber; P. Wurz; P. Bochsler

2007-01-01

23

Venus Express: Answered and unanswered questions on Venus (Invited)  

NASA Astrophysics Data System (ADS)

After having orbited our sister planet for more than seven Earth years Venus Express has collected a very large data set allowing a great number of fundamental scientific questions to be addressed and answered. Most of the questions included in the mission's science requirement, as formulated in the mission proposal, have been answered. These include topics in atmospheric dynamics, structure and chemistry, clouds and hazes, surface and interior, radiation balance and greenhouse, induced magnetosphere and plasma environment, and planetary evolution. Solid results have been achieved in all these fields but with some weakness in the radiation balance measurements, mostly due to the early loss of the planetary Fourier spectrometer providing data at the mid infrared wavelengths. Naturally, due to the limited scope and budget of the Venus Express mission a number of important questions had to be left unaddressed and to be taken up by future missions. This talk will summarise the major results of Venus Express and discuss a number of questions where additional data will be needed in order to provide answers. A wish list for future missions will be provided.

Svedhem, H.; Titov, D.

2013-12-01

24

The Venusian induced magnetosphere: A case study of plasma and magnetic field measurements on the Venus Express mission  

Microsoft Academic Search

Plasma and magnetic field measurements made onboard the Venus Express on June 1, 2006, are analyzed and compared with predictions of a global model. It is shown that in the orbit studied, the plasma and magnetic field observations obtained near the North Pole under solar minimum conditions were qualitatively and, in many cases also, quantitatively in agreement with the general

E. Kallio; T. L. Zhang; S. Barabash; R. Jarvinen; I. Sillanpaaa; P. Janhunen; A. Fedorov; J.-A. Sauvaud; C. Mazelle; J.-J. Thocaven; H. Gunell; H. Andersson; A. Grigoriev; K. Brinkfeldt; Y. Futaana; M. Holmström; R. Lundin; M. Yamauchi; K. Asamura; W. Baumjohann; H. Lammer; A. J. Coates; D. R. Linder; D. O. Kataria; C. C. Curtis; K. C. Hsieh; B. R. Sandel; M. Grande; H. E. J. Koskinen; T. Säles; W. Schmidt; P. Riihelä; J. Kozyra; N. Krupp; J. Woch; J. G. Luhmann; S. McKenna-Lawlor; S. Orsini; R. Cerulli-Irelli; A. Mura; A. Milillo; M. Maggi; E. Roelof; P. Brandt; C. T. Russell; K. Szego; J. D. Winningham; R. A. Frahm; J. R. Scherrer; J. R. Sharber; P. Wurz; P. Bochsler

2008-01-01

25

Venus Express and Venus Climate Orbiter: An Opportunity for mutual occultations to investigate the Venus Atmosphere  

NASA Astrophysics Data System (ADS)

The Venus Express orbiter mission planned for launch in 2005 and the Japanese Planet C Orbiter Mission to Venus planned for launch in 2008 together provide an unprecedented opportunity to investigate the thermal structure of the atmosphere of Venus using the radio occultation technique. As currently planned, the Venus Ex-press will go into a polar orbit (˜18-24 hour period) and Planet C into a near equato-rial orbit (172^o inclination, ˜30 hour period). These orbits will provide many mu-tual occultations between the two satellites, and periodically, occultations with re-spect to the earth. The advantage of the mutual occultations is that the locations and the time-of-day for the occultation zone is not aliased by the celestial Venus-Earth geometry that results in a very biased sampling of latitudes and local times. A simi-lar approach is being considered for investigation of the Martian atmosphere through Mars Scout opportunity (Kursinski et al., 2003). Unfortunately, due to lack of coor-dination and foresight, the opportunity to use the Mars Global Surveyor and the Mars Odyssey orbiters for mutual occultations has been lost. The realization of this invaluable opportunity requires that the communication in-struments on the two orbiters be mutually compatible and capable of receiving and measuring the Doppler shift of the signal between the two orbiters. Further, it is likely that Venus Express will have completed its nominal mission by the time Planet C arrives at Venus, hence the transmitter on Venus Express will need to be left turned so that the atmospheric signature of the Doppler shift in its signal as received on Planet C orbiter can be analyzed to determine the thermal structure, with perhaps 100 m vertical resolution. Such a high vertical resolution has been demon-strated through mutual occultations between the GPS constellation and METSAT on earth (Kursinski et al., 1997). With the looming prospect of a third orbiter around Venus through NASA's Discovery program in the next decade, the opportunity to obtain a unique and extensive sampling of the Venus atmosphere is being presented, and it is up to the mission teams to coordinate their efforts to realize its full potential that minimal resources.

Limaye, S.

2003-04-01

26

Venus Express ready for lift-off  

NASA Astrophysics Data System (ADS)

Venus Express is Europe’s first mission to Venus, a place of many mysteries that scientists are still eager to solve. Principal among those mysteries is why a planet so similar to the Earth in size, mass, and composition has evolved so differently over the course of the last 4.6 billion years. ESA’s ESOC establishment, the Space Operations Centre in Darmstadt, Germany will control the mission and organise a launch event from 06:00 to 12:00. A live televised transmission of the launch will bring images from Baikonur to broadcasters and the general public. ESA senior management and specialists will be on hand at ESOC and at other ESA establishments for explanations and interviews. All live transmissions are carried free-to-air. For broadcasters, complete details of the various satellite feeds (on Eutelsat W2) are listed at http://television.esa.int. For the general public, a launch transmission via Astra 1G has again been organised, with all schedule and transmission details online at http://television.esa.int/photos/Astra.pdf On the occasion of the launch of Venus Express, the Planetary Society has teamed up with ESA to invite youths and adults worldwide to enter a Venus Express Art Contest. The theme of the contest is "Postcards from Venus". Entrants are invited to imagine the surface of Venus from an above-ground perspective. The winner will be invited to follow the Venus Orbit Insertion event at ESA's control centre in Darmstadt, Germany, on 6 April 2006. More on the constest at http://planetary.org/postcards_from_venus/ Media representatives wishing to follow the event at ESA/ESOC, or the retransmission at other ESA establishments, are requested to fill in the attached registration form and fax it back to the place of their choice.

2005-10-01

27

Future Venus Exploration: Mission Venera-D  

NASA Astrophysics Data System (ADS)

Venera-D is a strategic mission to explore Venus, included in the Russian Federal Space Program 2016-2025. Venera-D mission is in the phase A now. The Venera-D Roscosmos/IKI - NASA Joint Science Definition Team has been formed in February 2014.

Zasova, L. V.; Ignatiev, N. I.; Gerasimov, M. V.

2014-05-01

28

Venus  

NSDL National Science Digital Library

This site focuses on the planet Venus. Some of the topics discussed include: the atmosphere, interior, and surface of Venus, recent discoveries, missions to Venus, and myths. There are also many pictures and additional websites for more information.

2005-06-07

29

The Surface of Venus After VIRTIS on Venus Express: Laboratory Analogs and the Venus Emissivity Mapper  

NASA Astrophysics Data System (ADS)

A combination of laboratory work and remote sensing will be able to determine the large-scale compositional variations of the surface of Venus and will provide valuable input for any landing site selections for future Venus lander missions.

Ferrari, S.; Helbert, J.; Maturilli, A.; Dyar, D. M.; Mueller, N.; Elkins-Tanton, L. T.

2014-05-01

30

Geochemistry of Venus: Progress, Prospects and New Missions  

NASA Astrophysics Data System (ADS)

Available geochemical data on Venus' surface materials are limited and of poor precision. Those data were obtained by the Venera and VEGA lander missions, which were engineering and scientific triumphs of their days. However, their chemical analyses of the Venus surface do not permit detailed geochemical interpretations, such as are routine for terrestrial analyses and MER APXS rover analyses from Mars. In particular, the Venera and VEGA analyses of major elements (by XRF) did not return abundances of Na, and their data on Mg and Al are little more than detections at the 2s level. Their analyses for K, U, and Th (by gamma rays) are imprecise, except for one (Venera 8) with extremely high K contents (~4% K2O) and one (Venera 9) with a non-chondritic U/Th abundance ratio. In addition, the Venera and VEGA landers sampled only materials from the Venus lowlands - they did not target sites in any of the highland areas: shield volcanoes, tesserae, nor the unique plateau construct of Ishtar Terra. The Virtis imaging spectrometer on Venus Express has provided new global data of likely geochemical importance - maps of surface emittance at near 1.2 µm - but it remains unclear just what causes its observed variations in emittance. The limitations of the available data on Venus' surface rock compositions and mineralogy highlight the huge opportunities in additional chemical and mineralogical analyses of Venus' surface. In geochemistry, currently available instruments could provide much more precise analyses for major and minor elements, even within the engineering constraints of the Venera / VEGA lander systems. Such precise analyses would be welcome for basalts of Venus' lowland plains, but would be especially desirable for the highland tesserae and for Ishtar Terra. The tesserae may well represent ancient crust that predates the most recent volcanic resurfacing event and so provide a geochemical look into Venus' distant past. Ishtar Terra may be composed (at least in part) of granitic rocks like Earth's continental crust, which required abundant water to form. So, Ishtar Terra could possibly yield evidence on whether Venus once had an ocean, and thus the possibility of life. The mineralogy of Venus' surface materials will reflect not only its rocks, but also their chemical weathering in the hot, dense, corrosive Venus atmosphere. Mineralogical instruments at the Venus surface (like XRD or Raman) could test various theories of surface atmosphere interactions, like carbonate buffering of atmospheric CO2, sulfide/sulfate buffering of SO2, and origin of Venus' low emissivity highlands as iron sulfide or as metallic tellurium frost. The geochemistry of Venus' surface would be learned best in lander missions, which are under consideration from several agencies. Current mission concepts are severely limited durations at Venus' surface before they succumb to its high temperature. However, high-temperature electronics and power systems are under development. Surface-atmosphere interactions, and hence surface mineralogy, can be constrained indirectly by probes of Venus' lower atmosphere (with or without soft landing). And improved radar imagery and altimetry can provide crucial indirect constraints on surface mineralogy and geology via emissivity and geophysical constraints (e.g., whether Ishtar Terra could be a granitic continent).

Treiman, A. H.

2009-04-01

31

Venera-D -the future Russian mission to Venus  

NASA Astrophysics Data System (ADS)

Venus was actively studied by Soviet and US mission in 60-80-th years of the last century. The investigations carried out both from the orbit and in situ were highly successful. After a 15-years break in space research of Venus, the ESA Venus Express mission, launched in 2005, successfully continues its work on orbit around Venus. In 2010 the launch of the Japanese Climate Orbiter (Planeta-C) mission is planned. However, many questions concerning the structure, and evolu-tions of planet Venus, which are the key questions of comparative planetology, very essential for understanding the evolution of the terrestrial climate, cannot be solved by observations from an orbit. Now in Russia the new investigation phase of Venus begins: the mission Venera-D is included in the Russian Federal Space Program to be launched in 2016. This mission includes the lander, balloons, and the orbiter. The long living balloons are planned to be deployed at different heights, in the clouds and under the clouds. Scientific goals of the mission include: -investigation of structure, chemical composition of the atmosphere, including noble gases abundance and isotopic ratio, structure and chemistry of the clouds; -study of dynamics of the atmosphere, nature of the superrotation, radiative balance, nature of an enormous greenhouse effect; -study of structure, mineralogy and geochemistry of the surface, search for seismic and volcanic activity, the lightening, interaction of the atmosphere and the surface; -investigation of the upper atmosphere, ionosphere, magnetosphere, and the escape rate; -study of the evolution of the atmosphere and the surface of Venus. The complex of experiments on the orbiter includes, among the others, several spectrometers in the spectral range from UV to MW, the mapping spectrometers and the plasma package. On the lander there are instruments to work during the descent, and on the surface: gas-chromatograph, PTW (meteo), nephelometer and the particle sizes spectrometer, optical package, active gamma-spectrometer, TV-complex, which includes panoramic, high resolution and descending cameras.. On the balloon which has to work near the lower boundary of clouds, the devices will be installed to study the lower atmosphere and to get the surface images with high resolution at 1 mkm. Successful realization of the project Venera-D will allow to solve the important scientific problems of comparative planetology. In particular it will help to understand why do Venus and the Earth (sister-planets), similar in many aspects, being formed at similar conditions in the protoplanet nebula, evolve by such a different way.

Zasova, Ludmila; Zelenyi, Lev; Korablev, Oleg; Sanko, N. F.; Khartov, Victor V.; Vorontsov, Victor A.; Basilevsky, A. T.; Pichkhadze, Konstantin M.; Elkin, Konstantin S.; Voron, Victor V.

32

Communications Transceivers for Venus Surface Missions  

NASA Technical Reports Server (NTRS)

The high temperature of the surface of Venus poses many difficulties. Previous Venus landers have only operated for short durations before succumbing to the heat. NASA Glenn Research Center conducted a study on communications for long duration Venus surface missions. I report the findings in this presentation. Current technology allows production of communications transceivers that can operate on the surface of Venus, at temperatures above 450 C and pressures of over 90 atmospheres. While these transceivers would have to be relatively simple, without much of the advanced signal processing often used in modern transceivers, since current and near future integrated circuits cannot operate at such high temperatures, the transceivers will be able to meet the requirements of proposed Venus Surface mission. The communication bands of interest are High Frequency or Very High Frequency (HFNHF) for communication between Venus surface and airborne probes (including surface to surface and air to air), and Ultra High Frequency (UHF) to Microwave bands for communication to orbiters. For HFNHF, transceivers could use existing vacuum tube technology. The packaging of the vacuum tubes may need modification, but the internal operating structure already operates at high temperatures. Using metal vacuum structures instead of glass, allows operation at high pressure. Wide bandgap transistors and diodes may be able to replace some of the thermionic components. VHF communications would be useful for line-of- sight operations, while HF would be useful for short-wave type communications using the Venusian ionosphere. UHF and microwave communications use magnetically focused thermionic devices, such as traveling wave tubes (TWTs), magnetron (M-type) amplifiers, and klystrons for high power amplifiers, and backward wave oscillators (BWOs) and reflex klystrons for oscillators. Permanent magnets are already in use in industry that can operate at 500 C. These magnets could focus electron beam tubes on the surface of Venus. While microwave windows will need to be designed for the high pressure, diamond windows have already been demonstrated, so high-pressure microwave windows can be designed and built. Thus, all of these devices could be useful for Venus surface missions. Current electronic power conditioners to supply the high voltages used in these microwave devices cannot operate at high temperatures, but earlier electronic power conditioners that used vacuum tubes can be modified to work at high temperature. Evaluating the various devices in this study, the M-type traveling wave tube (where a traveling wave structure is used in a crossed-field device, similar to the Amplitron used on the Apollo missions) stood out for the high power amplifier since it requires a single high voltage, simplifying the power supply design. Since the receiver amplifier is a low power amplifier, the loss of efficiency in linear beam devices without a depressed collector (and thus needing a single high voltage) is not important; a low noise TWT is a possible solution. Before solid-state microwave amplifiers were available, such TWTs were built with a 1-2 dB noise figure. A microwave triode or transistor made from a wide bandgap material may be preferable, if available. Much of the development work needed for Venusian communication devices will need to focus on the packaging of the devices, and their connections, but the technology is available to build transceivers that can operate on the surface of Venus indefinitely.

Force, Dale A.

2004-01-01

33

Planet-C: Venus Climate Orbiter mission of Japan  

Microsoft Academic Search

The Venus Climate Orbiter mission (PLANET-C), one of the future planetary missions of Japan, aims at understanding the atmospheric circulation of Venus. Meteorological information will be obtained by globally mapping clouds and minor constituents successively with four cameras at ultraviolet and infrared wavelengths, detecting lightning with a high-speed imager, and observing the vertical structure of the atmosphere with radio science

Masato Nakamura; Takeshi Imamura; Munetaka Ueno; Naomoto Iwagami; Takehiko Satoh; Shigeto Watanabe; Makoto Taguchi; Yukihiro Takahashi; Makoto Suzuki; Takumi Abe; George L. Hashimoto; Takeshi Sakanoi; Shoichi Okano; Yasumasa Kasaba; Jun Yoshida; Manabu Yamada; Nobuaki Ishii; Takahiro Yamada; Kazunori Uemizu; Tetsuya Fukuhara; Koh-Ichiro Oyama

2007-01-01

34

Future Drag Measurements from Venus Express  

NASA Astrophysics Data System (ADS)

Beginning in July 2008 during the Venus Express Extended Mission, the European Space Agency will dramatically drop orbital periapsis from near 250km to near 180km above the Venus North Polar Region. This will allow orbital decay measurements of atmospheric densities to be made near the Venus North Pole by the VExADE (Venus Express Atmospheric Drag Experiment) whose team leader is Ingo Mueller-Wodarg. VExADE consists of two parts VExADE-ODA (Orbital Drag Analysis from radio tracking data) and VExADE-ACC (Accelerometer in situ atmospheric density measurements). Previous orbital decay measurements of the Venus thermosphere were obtained by Pioneer Venus from the 1970's into the 1990's and from Magellan in the 1990's. The major difference is that the Venus Express will provide measurements in the North Polar Region on the day and night sides, while the earlier measurements were obtained primarily near the equator. The periapsis will drift upwards in altitude similar to the earlier spacecraft and then be commanded down to its lower original values. This cycle in altitude will allow estimates of vertical structure and thus thermospheric temperatures in addition to atmospheric densities. The periapsis may eventually be lowered even further so that accelerometers can more accurately obtain density measurements of the polar atmosphere as a function of altitude, latitude, longitude, local solar time, pressure, Ls, solar activity, and solar wind on each pass. Bias in accelerometer measurements will be determined and corrected for by accelerometer measurements obtained above the discernable atmosphere on each pass. The second experiment, VExADE-ACC, is similar to the accelerometer experiments aboard Mars Global Surveyor, Mars Odyssey, and Mars Reconnaissance Orbiter that carried similar accelerometers in orbit around Mars. The risk involved in the orbital decay and accelerometer measurements is minimal. We have not lost any spacecraft orbiting Venus or Mars due to unexpected thermospheric drag effects over the last 30 years. The Venus Express drag experiments will allow a global empirical model of the thermosphere to emerge. This new model will be a substantial improvement over the Venus International Reference Atmosphere, which was based principally on near equatorial measurements. General Circulation Models (GCM's) and other models will be generated that are in fair accord with the empirical models. The experiment may help us understand, on a global scale, tides, winds, gravity waves, planetary waves and the damping of waves. Comparisons will be made between low and high latitude results; between the middle and upper atmosphere; and with other instruments that provide information from current and previous measurements. The character of the sharp temperature gradient near the day/night terminator needs to be studied at all latitudes. The cryosphere we discovered on the nightside needs to be studied at high latitudes. The vortex dipole over the North Pole surrounded by a colder "collar" needs to be analyzed to identify how wave activity extends into the polar thermosphere. We have already discovered super-rotation in the equatorial thermosphere, but we need to study 4-day super-rotation at higher latitudes to obtain a global picture of the thermosphere. The observed global cooling from radiative effects of 15 micron excitation of CO2 by atomic oxygen should improve our understanding of global thermospheric cooling on Earth and Mars as well.

Keating, Gerald; Mueller-Wodarg, Ingo; Forbes, Jeffrey M.; Yelle, Roger; Bruinsma, Sean; Withers, Paul; Lopez-Valverde, Miguel Angel; Theriot, Res. Assoc. Michael; Bougher, Stephen

35

Life after Venus Express: Science goals for a European Venus radar orbiter  

NASA Astrophysics Data System (ADS)

ESA’s Venus Express mission has led to a renaissance of Venus science, following a dearth of Venus missions in the previous 15 years. Venus Express has made many discoveries in atmospheric science, for which its payload was optimised; however it has also provided tantalising hints about the geological activity of the planet. Mesospheric sulphur dioxide abundances vary by 1000% on decadal timescales, in a pattern which suggests episodic volcanic injections [Marcq et al. Nature Geosci 2013; Esposito, Science 1984]; anomalous emissivity near suggest volcanic hotspots implies geologically recent, as-yet-unweathered lava flows [Smrekar et al., Science 2010]; and recent results, if confirmed, show temporal evolution of thermal emission from some regions of the surface may be direct evidence of volcanic activity during the duration of the VEx mission [Shalygin et al., LPSC 2014]. While there are more results to be obtained yet from the Venus Express dataset, further investigation of these phenomena will require a new Venus mission. We therefore propose an orbiter mission focussed on characterising the geological activity of Venus. The key instrument would be a Synthetic Aperture Radar (SAR). Why a radar mission following NASA’s Magellan mission? Radar capabilities are vastly improved in the last 30 years and a modern radar would be capable of spatial resolution approaching two orders of magnitude better than that from Magellan; this enables a wide range of investigations, from detailed study of tectonic, volcanic and Aeolian features, to stratigraphy for better reconstruction of geological epochs. Interferometric SAR could also be used to study the centimetre-scale surface deformations due to current volcanic or tectonic activity. Constraints on interior structure can be obtained not only from improved gravity mapping (from spacecraft tracking) but also by studying the spin state of Venus from high-resolution radar measurements. The radar measurements will be complemented by a further suite of instruments which may include a dedicated surface emission mapper using near-infrared spectral windows; a spectrometer suite to map sulphur dioxide and other possibly volcanic gases; and possibly a subsurface sounding radar to reveal the structure of lava flows and other surface structures. This mission, following on from the 2007 EVE [Chassefière et al., Exp. Astron 2009] and 2010 Envision [Ghail et al., Exp. Astron 2012] proposals, is being developed for proposal to ESA as a “Medium-class” mission in late 2014.

Wilson, Colin; Ghail, Richard

36

Your Mission: Investigate the geographical features on Venus and map the locations of space missions to Venus using a computer mapping program called Jules Verne Voyager  

E-print Network

1 Your Mission: Investigate the geographical features on Venus and map the locations of space missions to Venus using a computer mapping program called Jules Verne Voyager Venus. Your Task: 1. Using the internet, navigate to the following webpage: http://jules.unavco.org/Voyager/Venus

Smith-Konter, Bridget

37

Altimeter and radiometer for a Venus orbiter mission  

NASA Technical Reports Server (NTRS)

The concept, constraints, and capabilities of a radar altimeter type contour mapper for a Venus orbiter mission are presented. The system was developed for the proposed planetary explorer universal bus concept. A system with a height precision of 30meters over a surface area of 7200 square kilometers is achieved. Using this system and the orbit proposed in the orbiting bus concept, the northern hemisphere of Venus is mapped in one Venus day. The radar receiver system, is used in a radiometer mode to obtain a map of the diurnal and logitudinal variations of the Venus surface temperature with a resolution of 3.0 degrees Kelvin.

Bryan, J. W.; Richter, K. R.

1971-01-01

38

Low-cost balloon missions to Mars and Venus  

NASA Technical Reports Server (NTRS)

The first successful flight demonstration of aerial deployment of Mars balloon prototypes in June 2002 and, earlier, of Venus balloon prototype deemed to be a turning point in the risk assessment of balloon missions.

Kerzhanovich, V.; Cutts, J.; Hall, J.

2003-01-01

39

Venus Express: Results, Status And Future Plans  

NASA Astrophysics Data System (ADS)

Venus Express has been very productive since its arrival at Venus in April 2006. The atmosphere of the southern hemisphere of the planet has been studied in detail by three instruments dedicated to atmospheric investigations, from near IR to UV and additional information has been derived from radio science measurements. The induced magnetosphere and escape of planetary matter have been characterized by a magnetometer and an energetic particle instrument. A large amount of data has been collected and results include maps of wind speeds at different altitudes, movies of the dynamics of the southern polar vortex, a surface temperature map of the southern hemisphere, profiles of atmospheric density and temperature from 40km to 140km altitude at various latitudes and solar times, information of cloud structure and waves at the top of the cloud deck and escape rates of hydrogen, oxygen and helium. In October this year a decision to extend the mission until end 2012 is expected. Future plans include a reduction of the pericentre altitude to allow atmospheric drag measurements, both by spacecraft tracking and by on-board accelerometers. The orbit may be modified for a lower apocentre altitude and a shorter period by aerobraking early 2012. Joint operations are planned with the Japanese VCO spacecraft in 2011. This talk will summarize the major results to date, report the present status of the mission and outline the future activities.

Svedhem, Hakan; Titov, D.

2009-09-01

40

ESA's Venus Express to reach final destination  

NASA Astrophysics Data System (ADS)

First step: catching Venus To begin to explore our Earth’s hot and hazy sister planet, Venus Express must complete a critical first step, the most challenging one following launch. This involves a set of complex operations and manoeuvres that will inject the spacecraft into orbit. The Venus Orbit Insertion (VOI) manoeuvre allows the spacecraft to reduce its speed relative to Venus, so that it can be captured by the planet’s gravitation. The manoeuvre is a critical one which must proceed at precisely the right place and time. The VOI phase officially started on 4 April and will not be completed until 13 April. It is split into three main sub-phases. The first consists in preparing or initialising the spacecraft for the actual capture manoeuvre so as to avoid the risk of the spacecraft going into safe mode, should parameters unrelated to VOI go off-range. The capture manoeuvre itself consists of a main-engine burn lasting about 50 minutes on the morning of 11 April starting at 09:17 (Central European Summer Time). This is the second main VOI sub-phase. The final sub-phase will be restoring all spacecraft functions, notably resuming communications with Earth and uplinking the commands to be executed during the preliminary ‘capture’ orbit. Orbital capture is controlled by an automatic sequence of predefined commands, uploaded to the spacecraft four days prior to VOI. This sequence is the minimum set needed to perform the main-engine burn. All spacecraft operations are controlled and commanded by the ground control team located at ESA’s European Spacecraft Operations Centre (ESOC) in Darmstadt, Germany. Timeeline of major VOI events (some times subject to change) 4 Aprilacecraft transmitter connected to low gain antenna is switched on. During its interplanetary cruise and during the scientific part of the mission to come, Venus Express communicates with Earth by means of its two high gain antennas. However, during the orbit capture phase (11 April), these two antennas become unusable because of the spacecraft’s required orientation at that time. The low gain antenna, carrying a feeble but instantly recognisable signal, will be transmitting throughout all VOI manoeuvres. This will allow ground controllers to monitor the velocity change during the burn, using NASA’s Deep Space Network’s 70-metre antenna near Madrid, Spain. No other means of communication with the Earth is possible during the capture burn. 5 and 9 April, targeting control manoeuvres. Two time slots are available to adjust course if needed. Given the high accuracy of the course correction performed end of March, Venus Express is currently on the right trajectory for a successful capture into orbit and it is therefore unlikely that either of these two extra slots will be required. 10 to 11 April, final preparations for VOI manoeuvre. 24 to 12 hours before VOI, spacecraft controllers will command Venus Express into its final configuration for the burn. Over the final 12 hours, they will monitor its status, ready to deal with any contingencies requiring last-minute trajectory correction or any revising of the main-engine burn duration. 11 April, 08:03 (CEST), ‘slew’ manoeuvre. This manoeuvre lasts about half an hour and rotates Venus Express so that the main engine faces the direction of motion. Thanks to this, the burn will slow down (rather than accelerate) the spacecraft. 11 April, 09:17 (CEST), main-engine burn starts. A few minutes after firing of the spacecraft thrusters to make sure the propellant settles in the feed lines to the main engine, the latter will begin its 50-minute long burn, ending at 10:07. This thrust will reduce the initial velocity of 29 000 kilometres per hour (in relation to Venus) by 15 percent, allowing capture. Venus Express will settle into its preliminary, elongated nine-day orbit. On capture, it will be at about 120 million kilometres from the Earth and, at its nearest point, within 400 km of the surface of Venus. During the burn, at 09:45 (CEST), Venus Express will disappear behind the planet and will not be visi

2006-04-01

41

Lightning on Venus? Searching for optical evidence with VIRTIS on Venus Express  

NASA Astrophysics Data System (ADS)

The Venus Express mission has been observing the Venusian Atmosphere continuously since 2006, producing great amounts of hyper-spectral data from the Visible to the Near InfraRed. Although the occurrence of lightning in the Venus atmosphere has been published several times in the past years, always on the basis of detected electromagnetic pulses, the subject is still controversial. It is generally agreed that an optical observation of the phenomenon would settle the issue. We will show here some details of the analysis of the whole data collection of hyperspectral images produced by the VIRTIS instrument in the visible and infrared range, with description of the method and preliminary results.

Cardesín Moinelo, A.; García Muñoz, A.; Piccioni, G.

2013-09-01

42

The science return from Venus Express  

NASA Astrophysics Data System (ADS)

Since the beginning of the space era, Venus has been an attractive target for planetary scientists. Our nearest planetary neighbour and, in size at least, the Earth's twin sister, Venus was expected to be very similar to our planet. However, the first phase of Venus spacecraft exploration (1962-1985) discovered an entirely different, exotic world hidden behind a curtain of dense cloud. The earlier exploration of Venus included a set of Soviet orbiters and descent probes, the Veneras 4 to 14, the US Pioneer Venus mission, the Soviet Vega balloons and the Venera 15, 16 and Magellan radar-mapping orbiters, the Galileo and Cassini flybys, and a variety of ground-based observations. But despite all of this exploration by more than 20 spacecraft, the so-called "morning star" remains a mysterious world!

Svedhem, Håkan; Witasse, Olivier; Titov, Dmitri V.

2005-11-01

43

Venus Express: Results, Status And Future Plans  

Microsoft Academic Search

Venus Express has been very productive since its arrival at Venus in April 2006. The atmosphere of the southern hemisphere of the planet has been studied in detail by three instruments dedicated to atmospheric investigations, from near IR to UV and additional information has been derived from radio science measurements. The induced magnetosphere and escape of planetary matter have been

Hakan Svedhem; D. Titov

2009-01-01

44

Results from Four Years of Venus Express  

Microsoft Academic Search

Since arriving at Venus in April 2006 Venus Express has provided a wealth of information on a large variety of topics on the atmosphere, surface and plasma environment of the planet. The atmosphere in the southern hemisphere has been studied in detail by three instruments dedicated to atmospheric investigations, from the near IR to the UV and additional information has

Hakan Svedhem; D. Titov; F. Taylor

2010-01-01

45

Venus Express observations of ULF and ELF waves in the Venus ionosphere: Wave properties and sources  

NASA Astrophysics Data System (ADS)

Electrical activity in a planetary atmosphere enables chemical reactions that are not possible under conditions of local thermodynamic equilibrium. In both the Venus and terrestrial atmospheres, lightning forms nitric oxide. Despite the existence of an inventory of NO at Venus like the Earth’s, and despite observations of the signals expected from lightning at optical, VLF, and ELF frequencies, the existence of Venus lightning still is met with some skepticism. The Venus Express mission was equipped with a fluxgate magnetometer gradiometer system sampling at rates as high as 128 Hz, and making measurements as low as 200 km altitude above the north polar regions of Venus. However, significant noise levels are present on the Venus Express spacecraft. Cleaning techniques have been developed to remove spacecraft interference at DC, ULF, and ELF frequencies, revealing two types of electromagnetic waves, a transverse right-handed guided mode, and a linearly polarized compressional mode. The propagation of both types of signals is sensitive to the magnetic field in ways consistent with propagation from a distant source to the spacecraft. The linearly polarized compressional waves generally are at lower frequencies than the right-handed transverse waves. They appear to be crossing the usually horizontal magnetic field. At higher frequencies above the lower hybrid frequency, waves cannot enter the ionosphere from below when the field is horizontal. The arrival of signals at the spacecraft is controlled by the orientation of the magnetic field. When the field dips into the atmosphere, the higher frequency guided mode above the lower hybrid frequency can enter the ionosphere by propagating along the magnetic field in the whistler mode. These properties are illustrated with examples from five orbits during Venus Express’ first year in orbit. These properties observed are consistent with the linearly polarized compressional waves being produced at the solar wind interface and the transverse guided waves being produced in the atmosphere.

Russell, C. T.; Leinweber, H.; Hart, R. A.; Wei, H. Y.; Strangeway, R. J.; Zhang, T. L.

2013-11-01

46

To the depths of Venus: Exploring the deep atmosphere and surface of our sister world with Venus Express  

NASA Astrophysics Data System (ADS)

With its comprehensive suite of near-infrared instruments, Venus Express will perform the first detailed global exploration of the depths of the thick Venusian atmosphere. Through the near-daily acquisition of Visible and Infrared maps and spectra, three infrared-sensing instruments - the Planetary Fourier Spectrometer (PFS), the Venus Monitoring Camera (VMC), and the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) - will comprehensively investigate the Thermal structure, meteorology, dynamics, chemistry, and stability of the deep Venus atmosphere. For the surface, these instruments will provide clues to the emissivity of surface materials and provide direct evidence of active volcanism. In so doing, ESA's Venus Express Mission directly addresses numerous high-priority Venus science objectives advanced by America's National Research Council (2003) decadal survey of planetary science.

Baines, Kevin H.; Atreya, Sushil; Carlson, Robert W.; Crisp, David; Drossart, Pierre; Formisano, Vittorio; Limaye, Sanjay S.; Markiewicz, Wojciech J.; Piccioni, Giuseppe

2006-11-01

47

A Cubesat Mission to Venus: A Low-Cost Approach to the Investigation of Venus Lightning  

NASA Astrophysics Data System (ADS)

The occurrence of Venus lightning has been detected by atmospheric probes and landers on Venus; by ionospheric satellites; by an orbiting visible spectrometer; at radio frequencies by the Galileo spacecraft while flying by Venus; and by an Earth-based telescope. However, none of these detectors has enabled us to determine the global occurrence rate of lightning in the atmosphere of Venus, nor the altitude at which this lightning is generated. Such measurements are needed in order to determine the processes that generate Venus lightning and to establish the importance of Venus lightning in controlling the chemical composition of the Venus atmosphere. A simple and affordable mission to perform this mapping could be achieved with CubeSat technology. A mother spacecraft with at least three CubeSat partners using RF detection could map the occurrence of lightning globally and determine its altitude of origin, with triangulation of precisely timed RF event arrivals. Such a mission would provide space for complementary investigations and be affordable under the Discovery mission program. We are embarking on a program to develop CubeSat-based instrumentation for such a mission. The initial task is to develop a lightning detector in a CubeSat development kit using a software defined radio (SDR) operating at decameter wavelengths (5-50 MHz). This involves algorithm development as well as selecting or developing radio hardware for a CubeSat. Two units will be tested on the ground in a lightning zone such as New Mexico, where the Long Wavelength Array operates in the same frequency range. When the concept has been proven, flight subsystems such as solar panels, attitude sensing and communication radios will be added to the CubeSats to test performance in low Earth orbit. Experience gained from flight would enable a cluster of sensors to be proposed for a future Venus mission.

Majid, W.; Duncan, C.; Kuiper, T.; Russell, C. T.; Hart, R. A.; Lightsey, E.

2013-12-01

48

Mapping Venus: Modeling the Magellan Mission.  

ERIC Educational Resources Information Center

Provides details of an activity designed to help students understand the relationship between astronomy and geology. Applies concepts of space research and map-making technology to the construction of a topographic map of a simulated section of Venus. (DDR)

Richardson, Doug

1997-01-01

49

Venus Express magnetic field observation of the solar wind interaction with Venus at solar minimum  

Microsoft Academic Search

The launch of Venus Express provides a new opportunity to study the solar wind interaction with Venus. Since Venus Express reused the spacecraft bus of Mars Express, which did not carry a magnetometer, no magnetic cleanliness program was implemented to minimize the spacecraft field and no boom was provided. Thus the data processing and cleaning tasks are formidable and unprecendented.

Tielong Zhang

2008-01-01

50

The 1973 Mariner mission to Venus and Mercury. I  

NASA Technical Reports Server (NTRS)

Research carried out in preparation for the Mariner mission to Venus and Mercury is reviewed, covering objectives, payload, trajectory, and coordinate system. Some details are given on the TV subsystem, charged particle telescope, and UV, magnetometric, plasma, radio, and celestial mechanics experiments of the mission. Close-up pictures of the Venusian cloud cover and the first detailed glimpse on the characteristics and environment of Mercury are indicated as the principal task of the mission.

Hooke, A. J.

1974-01-01

51

A conceptual venus rover mission using advanced radioisotope power system  

NASA Technical Reports Server (NTRS)

The primary goal of this study is to examine the feasibility of using the novel Advanced RPS-driven Stirling thermoacoustic system to enable extended science operations in the extremely hostile surface environment of Venus. The mission concept entails landing a rover onto the Venus surface, conducting science measurements in different areas on the surface, and returning the science data to Earth. The study focused on developing a rover design to satisfy the science goals with the capability to operate for 60 days. This mission life influences several design parameters, including Earth elevation angle and the maximum communications range to Earth.

Evans, Michael; Shirley, James H.; Abelson, Robert Dean

2006-01-01

52

VENUS EXPRESS STUDIES PERTAINING TO THE LOSS OF THE VENUS ATMOSPHERE BY ITS INTERACTION WITH THE SOLAR WIND  

E-print Network

VENUS EXPRESS STUDIES PERTAINING TO THE LOSS OF THE VENUS ATMOSPHERE BY ITS INTERACTION planets such as Venus and Mars. We use Venus Express measurements to show that a magnetic barrier the Venus Express magnetometer. Comparisons with models show that the location of the bow shock

California at Berkeley, University of

53

Results from Four Years of Venus Express  

NASA Astrophysics Data System (ADS)

Since arriving at Venus in April 2006 Venus Express has provided a wealth of information on a large variety of topics on the atmosphere, surface and plasma environment of the planet. The atmosphere in the southern hemisphere has been studied in detail by three instruments dedicated to atmospheric investigations, from the near IR to the UV and additional information has been derived from radio science measurements. The structure and composition of the atmosphere has been mapped in three dimensions from 40 km to 140 km altitude. Significant temporal and spatial variations have been found, both in composition, density and temperature. Imaging in the UV has revealed strong latitudinal variations and significant temporal changes in the global cloud top morphology as well as identification of various types of waves in the cloud layer. The cloud top altitude varies from about 72 km in the low and middle latitudes to about 64 km in the polar region, marking vast polar depressions, likely a result of the Hadley-type meridional circulation. A large amount of data on the atmospheric circulation has been collected and results include maps of wind speeds at different altitudes and movies of the dynamics of the southern polar vortex. A surface temperature map and an emissivity map of the full southern hemisphere have been constructed from IR images in the spectral windows. By correlating these results and the Magellan radar images and gravity data, regions of young unweathered surfaces likely due to recent volcanism have been identified. The induced magnetosphere with its boundaries and the escape of planetary matter have been characterized by a magnetometer and an energetic particle instrument, and escape rates of hydrogen, oxygen and helium have been determined.A decision to extend the mission until end 2014 is expected at the end of this year.

Svedhem, Hakan; Titov, D.; Taylor, F.

2010-10-01

54

Mariner 10 mission to Venus and Mercury  

NASA Technical Reports Server (NTRS)

The unmanned spacecraft Mariner 10 was launched on November 3, 1973. Investigations conducted during the first part of its journey included studies carried out to calibrate the instruments in the well-known environment of the earth-moon system. Images of the north polar region of the moon were obtained and observations of the comet Kohoutek were made. Mariner confirmed the presence of a Venus bowshock. Information obtained by the spacecraft about the Venus atmosphere is considered. On March 29, 1974, Mariner 10 passed across the night side of Mercury only 703 kilometers above the planetary surface. It was found that Mercury is a moon-like body, heavily cratered, and with large, flat, circular basins similar to those on the moon and Mars.

Giberson, W. E.; Cunningham, N. W.

1974-01-01

55

Composition and chemistry of the Venusian atmosphere after Venus Express  

NASA Astrophysics Data System (ADS)

The ESA/Venus Express orbiter mission is expected to end before the end of this year (2014), and time has come to summarize its results and examine how they changed our view of this planet. Venus Express instruments (especially the spectrometers VIRTIS and SPICAV/SOIR) have been addressing numerous scientific issues since 2006, among which remote sensing of many minor species from the lower troposphere up to the mesosphere at various latitudes and local solar time, often evidencing spatial or temporal variability. In preparation of a new synthesis of our current knowledge about Venusian atmospheric chemistry and composition to be included in the Venus III book (expected to be published in 2015), we shall present an overview of the most significant updates in this domain. A non-exhaustive list of the sub-topics we would like to address is; (1) Lower tropospheric measurements: Venus Express has been able to study in detail most of the thermal infrared windows, yielding extensive night side measurements of some key minor species (CO, OCS, H_2O, HDO, SO_2) (2) Profiles at an unparalleled vertical resolution of many minor species in the lower mesosphere thanks to stellar and solar occultation techniques. (3) Spatial and temporal variability of minor species at various scales, the most striking example being SO_2 above cloud top. (4) New theoretical understanding and modeling of the interplay between the various chemical cycles (carbon, sulfur, halogens) and the condensed phase particulate matter from the clouds and hazes, based on the newest available observational constraints from Venus Express and ground-based telescopes.

Marcq, Emmanuel

56

A Conceptual Venus Rover Mission Using Advanced Radioisotope Power Systems  

NASA Astrophysics Data System (ADS)

This concept study demonstrates that a long lived Venus rover mission could be enabled by a novel application of advanced RPS technology. General Purpose Heat Source (GPHS) modules would be employed to drive an advanced thermoacoustic Stirling engine, pulse tube cooler and linear alternator that provides electric power and cooling for the rover. The Thermoacoustic Stirling Heat Engine (TASHE) is a system for converting high-temperature heat into acoustic power which then drives linear alternators and a pulse tube cooler to provide both electric power and coolin6g for the rover. A small design team examined this mission concept focusing on the feasibility of using the TASHE system in this hostile environment. A rover design is described that would provide a mobile platform for science measurements on the Venus surface for 60 days, with the potential of operating well beyond that. A suite of science instruments is described that collects data on atmospheric and surface composition, surface stratigraphy, and subsurface structure. An Earth-Venus-Venus trajectory would be used to deliver the rover to a low entry angle allowing an inflated ballute to provide a low deceleration and low heat descent to the surface. All rover systems would be housed in a pressure vessel in vacuum with the internal temperature maintained by the TASHE at under 50 °C.

Evans, Michael; Shirley, James H.; Abelson, Robert Dean

2006-01-01

57

Navigation results of the Mariner Venus/Mercury 1973 mission  

NASA Technical Reports Server (NTRS)

The navigation aspects of the Mariner Venus/Mercury 1973 mission are presented. Principal emphasis is on the maneuver strategy employed, propellant costs and the results of the navigation performance relating to the accomplishment of the mission objectives including an extended mission for a second Mercury encounter. Key error sources and mission constraints are discussed. Of particular interest is the impact of in-flight adaptation of the pre-launch maneuver strategy (due to spacecraft anomalies) on propellant cost and the delivery achieved at the first Mercury encounter. The maneuver strategy and propellant cost for the extended mission are shown to be heavily influenced by the delivery achieved at the first Mercury encounter and the science objectives at the second Mercury encounter.

Bantell, M. H., Jr.; Jones, J. B.

1975-01-01

58

First results of an Investigation of Sulfur Dioxide in the Ultraviolet from Pioneer Venus through Venus Express  

NASA Astrophysics Data System (ADS)

The Laboratory for Atmospheric and Space Physics is carrying on a project to restore and preserve data products from several past missions for archival and use by the scientific community. This project includes the restoration of data from Mariner 6/7, Pioneer Venus, Voyager 1/2, and Galileo. Here, we present initial results of this project that involve Pioneer Venus Orbiter Ultraviolet Spectrometer (PVO UVS) data. Using the Discrete Ordinate Method for Radiative Transfer (DISORT), we generate a suite of models for the three free parameters in the upper atmosphere of Venus in which we are interested: sulfur dioxide abundance at 40mb, scale height of sulfur dioxide, and the typical radius of the upper haze particles (assumed to be composed of 84.5% sulfuric acid). We calculate best fits to our radiative transfer model results for multi-spectral images taken with PVO UVS, as well as the 'visible' channel (includes wavelengths from 290nm to about 1000nm) of the mapping mode of the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS-M-Vis) on the Venus Express spacecraft, currently orbiting Venus. This work is funded though the NASA Planetary Mission Data Analysis Program, NNH08ZDA001N.

McGouldrick, Kevin; Molaverdikhani, K.; Esposito, L. W.; Pankratz, C. K.

2010-10-01

59

IN-SITU AERIAL EXPLORATION OF VENUS BY BALLOON -SCIENCE OBJECTIVES AND MISSION ARCHITECTURE. K.H. Baines1  

E-print Network

IN-SITU AERIAL EXPLORATION OF VENUS BY BALLOON - SCIENCE OBJECTIVES AND MISSION ARCHITECTURE. K the trailblazing flights of the 1985 twin Soviet VEGA balloons, missions to fly in the skies of Venus have been of the recently-completed Venus Flagship Mission study. Such missions will answer fundamental science issues

Treiman, Allan H.

60

Solicitation for participation in early instrument development and mission planning for a Mariner Venus-Mercury flyby mission  

Microsoft Academic Search

The Planetary Programs Office of NASA is soliciting proposals for participation by scientists in the early development of instruments and in mission planning for a Mariner Venus-Mercury flyby mission. It is planned that the trajectory to Mercury will swing the spacecraft by Venus, where a gravity assist will send it on to Mercury. The report of the Space Science Board,

Anonymous

1969-01-01

61

The Ninevah Mission: A design summary for an unmanned mission to Venus, volume 1  

NASA Technical Reports Server (NTRS)

The design summary for an unmanned mission to the planet Venus, with code name Ninevah, is presented. The design includes a Hohmann transfer trajectory analysis, propulsion trade study, an overview of the communication and instrumentation systems, power requirements, probe and lander analysis, and a weight and cost analysis.

1988-01-01

62

Ballistic Mercury orbiter mission via Venus and Mercury gravity assists  

NASA Technical Reports Server (NTRS)

It is shown that it is possible to deliver a payload of 600 to 2000 kg to a 300-km circular orbit at Mercury using presently available NASA Space Transportation Systems and a single-stage bipropellant chemical rocket. This superior payload performance is attained by swingbys of Venus, plus (more importantly), the use of the reverse Delta-V/EGA process. In contrast to the Delta-V/EGA process (used to boost the launch energy by returning to earth for a gravity assist), the reverse Delta-V/EGA process reduces the Mercury approach energy each time a spacecraft makes a near-resonant return to Mercury for a gravity assist and reduces the orbit-capture Delta-V requirement. The mission sequences for such high-performance missions are described, and example mission opportunities for the years 1990 to 2010 are presented.

Yen, C.-W. L.

1986-01-01

63

Ballistic Mercury orbiter mission via Venus and Mercury gravity assists  

NASA Technical Reports Server (NTRS)

This paper shows that it is possible to deliver a payload of 600 to 2000 kg to a 300-km circular orbit at Mercury, using the presently available NASA STS and a single-stage bipropellant chemical rocket. This superior payload performance is attained by swingbys of Venus, plus more importantly, the use of the reverse Delta-V/EGA process. In contrast to the familiar Delta-V/EGA process used to boost the launch energy by returning to earth for a gravity assist, the reverse process reduces the Mercury approach energy each time a spacecraft makes a near-resonant return to Mercury for a gravity assist and reduces the orbit-capture Delta-V requirement. The mission sequences for such high-performance missions are described, and example mission opportunities for the years 1990 to 2010 are presented.

Yen, Chen-Wan Liu

1989-01-01

64

International Planetary Science Interoperability: The Venus Express Interface Prototype  

NASA Astrophysics Data System (ADS)

NASA's Planetary Data System (PDS) and ESA's Planetary Science Archive (PSA) have successfully demonstrated interoperability between planetary science data archives with the Venus Express (VEX) Interface prototype. Because VEX is an ESA mission, there is no memorandum of understanding to archive the data in the PDS. However, using a common communications protocol and common data standards, VEX mission science data ingested into the PSA can be accessed from a user interface at the Atmospheres Node of the PDS, making the science data accessible globally through two established planetary science data portals. The PSA makes scientific and engineering data from ESA's planetary missions accessible to the worldwide scientific community. The PSA consists of online services incorporating search, preview, download, notification and delivery basket functionality. Mission data included in the archive aside from VEX include data from the Giotto, Mars Express, Smart-1, Huygens, and Rosetta spacecraft and several ground-based cometary observations. All data are compatible to the Planetary Data System data standard. The PDS archives and distributes scientific data from NASA planetary missions, astronomical observations, and laboratory measurements. The PDS is sponsored by NASA's Science Mission Directorate. Its purpose is to ensure the long-term usability of NASA data and to stimulate advanced research. The architecture of the VEX prototype interface leverages components from both the PSA and PDS information system infrastructures, a user interface developed at the New Mexico State University, and the International Planetary Data Alliance (IPDA) Planetary Data Access Protocol (PDAP). The VEX Interoperability Project was a key project of the IPDA, whose objective is to ensure world-wide access to planetary data regardless of which agency collects and archives the data. A follow-on IPDA project will adapt the VEX Interoperability protocol for access in JAXA to the Venus Climate Orbiter "Planet C” data.

Sanford Bussard, Stephen; Chanover, N.; Huber, L.; Trejo, I.; Hughes, J. S.; Kelly, S.; Guinness, E.; Heather, D.; Salgado, J.; Osuna, P.

2009-09-01

65

MESSENGER and Venus Express Observations of the Solar Wind Interaction with Venus: A Dual Spacecraft Study  

NASA Technical Reports Server (NTRS)

At 23:08 UT on 5 June 2007 the MESSENGER spacecraft reached its closest approach altitude (338 krn) during its second flyby of Venus en route to its 201 1 orbit insertion at Mercury. Whereas no measurements were collected during MESSENGER'S first Venus flyby in October 2006, the Magnetometer (MAG) and the Energetic Particle and Plasma Spectrometer (EPPS) operated successfully throughout this second encounter. Venus provides the solar system's best example to date of a solar wind - ionosphere planetary interaction. Pioneer Venus Orbiter measurements have shown that this interaction affects the upper atmosphere and ionosphere down to altitudes of - 150 km. Here we present an initial overview of the MESSENGER observations during the - 4 hrs that the spacecraft spent within 10 planet radii of Venus and, together with Venus Express measurements, examine the influence of solar wind plasma and interplanetary magnetic field conditions on the solar wind interaction at solar minimum.

Slavin, James A.; Acuna, M. H.; Anderson, B. J.; Barabash, S.; Benna, M.; Boardsen, S. A.; Fraenz, M.; Gloeckler, G.; Gold, R. E.; Ho, G. C.; Korth, H.; Krimigis, S. M.; McNutt, R. L., Jr.; Raines, J. M.; Sarantos, M.; Solomon, S. C.; Zhang, T.; Zurbuchen, T. H.

2007-01-01

66

Search for active lava flows with VIRTIS on Venus Express  

NASA Astrophysics Data System (ADS)

There are several lines of evidence suggesting that effusive volcanism still shapes the surface of Venus but the rate is not well constrained. The preservation of impact craters is consistent with a rate of 1 km3/year (comparable to Earth intraplate volcanism) as well as a rate several orders of magnitude less. It has been proposed to search images of the Venus nightside near 1 ?m for the excess thermal emission of active lava flows. The scattering of photons in the optically thick cloud cover is similar in effect to a Gaussian blur with a Full Width Half Maximum (FWHM) of 90 km. This reduces the maximum intensity of the anomalies introduced by eruptions, making detection more difficult than in a clear atmosphere, but also provides larger targets for imaging. The VIRTIS instrument on Venus Express observed surface thermal emission at 1.02 ?m wavelength between April 2006 and October 2008 at a spatial resolution of typically a few tens of km. We have searched the ~1000 images for the signatures of active lava flows in form of transient excess emission measured in several adjacent pixels. We estimate that eruptions with 1GW/?m/sr total excess specific thermal emission would be clearly visible compared to the instrumental and atmospheric noise but no such anomalies were detected. It has been shown that the total thermal emission of eruptions on Earth can be related to the lava discharge rate. We adjust this model to the Venus surface environment by adjusting observed lava surface temperature distributions and estimate that a discharge rate on the order of 1000 m3/s is required to produce an anomaly clearly identifiable in VIRTIS data. This is a relatively high value for effusive volcanism but a few historical eruptions on Earth surpassed it. Adopting a fit to the discharge rates of historical eruptions on Hawaii as a model, 4% to 10% of the eruptions in the field of view of VIRTIS images would have been detectable. In addition to the low detection probability, the low surface coverage of on average 1% of the surface per day over a period of 800 days indicates that the probability of an eruption imaged by VIRTIS was low to begin with. Therefore the VIRTIS data set fails to provide a useful constraint on the rate of volcanism on Venus. Venus Express continues to observe surface thermal emission with the Venus Monitoring camera. For future missions, near infrared imaging would profit from more frequent images of the same area than is possible from the excentric 24h orbit of Venus Express. The superrotation of the cloud cover allows to reduce atmospheric noise by averaging of images taken hours apart and the detection of eruptions with 100 m3/s lava or less might then be possible. Nevertheless, searching for lava flows emplaced between two observations of the same surface by high resolution radar imaging, altimetry or interferometry generally provides a better constraints than infrared imaging for the same observation duration and surface coverage. However, high resolution radar and low resolution infrared observations are highly complementary and could be accommodated on the same mission, preferably with a low circular polar orbit.

Mueller, N. T.; Helbert, J.; Stofan, E. R.; Smrekar, S. E.; Piccioni, G.; Drossart, P.

2012-12-01

67

Power Conversion with a Stirling Cycle for Venus Surface Mission  

NASA Technical Reports Server (NTRS)

The light-filtering characteristic of the dense, mostly-CO2 atmosphere of Venus, combined with the high atmospheric cloud cover, relegates the surface mission use of photovoltaic power systems and beckons for the independence and reliability of a nuclear-powered energy source. A multi-faceted Venus mission study was completed at NASA GRC in December of 2003 that resulted in the preliminary design of a helium- charged, kinematic Stirling converter, which is powered by nuclear, General Purpose Heat Source (GPHS) modules. The kinematic, Stirling power converter is configured to drive an electronics and sensor cooler in addition to a generator for electrical power. This paper briefly describes the design process and also describes and summarizes key features of the Stirling power converter preliminary design concept. With an estimated total efficiency of 23.4%, the power converter drives the electronics and sensor cooler, and also produces 100 watts of electricity. The converter rejects waste heat at a hot sink temperature of 500 C.

Mellott, Ken

2004-01-01

68

MESSENGER and Venus Express Observations of the Solar Wind Interaction with Venus  

NASA Technical Reports Server (NTRS)

At 23:08 UTC on 5 June 2007 the MESSENGER spacecraft reached its closest approach altitude of 338 kin during its final flyby of Venus en route to its 2011 orbit insertion at Mercury. The availability of the simultaneous Venus Express solar wind and interplanetary magnetic field measurements provides a rare opportunity to examine the influence of upstream conditions on this planet's solar wind interaction. We present MESSENGER observations of new features of the Venus - solar wind interaction including hot flow anomalies upstream of the bow shock, a flux rope in the near-tail and a two-point determination of the timescale for magnetic flux transport through this induced magnetosphere. Citation: Stavin, J. A., et al. (2009), MESSENGER and Venus Express observations of the solar wind interaction with Venus,

Slavin, James A.; Acuna, Mario H.; Anderson, Brian J.; Barabash, Stas; Benna, Mehdi; Boardsen, Scott A.; Fraenz, Markus; Gloeckler, George; Gold, Robert E.; Ho,George C.; Korth, Haje; Krimigis, Stamatios M.; McNutt, Ralph L., Jr.; Raines, Jim M.; Sarantos, Menelaos; Solomon, Sean C.; Zhang, Tielong; Zurbuchen, Thomas H.

2009-01-01

69

European Venus Explorer (EVE): an in-situ mission to Venus  

NASA Astrophysics Data System (ADS)

The European Venus Explorer (EVE) mission was proposed to the European Space Agency in 2007, as an M-class mission under the Cosmic Vision Programme. Although it has not been chosen in the 2007 selection round for programmatic reasons, the EVE mission may serve as a useful reference point for future missions, so it is described here. It consists of one balloon platform floating at an altitude of 50-60 km, one descent probe provided by Russia, and an orbiter with a polar orbit which will relay data from the balloon and descent probe, and perform science observations. The balloon type preferred for scientific goals is one which oscillates in altitude through the cloud deck. To achieve this flight profile, the balloon envelope contains a phase change fluid, which results in a flight profile which oscillates in height. The nominal balloon lifetime is 7 days—enough for one full circumnavigation of the planet. The descent probe’s fall through the atmosphere takes 60 min, followed by 30 min of operation on the surface. The key measurement objectives of EVE are: (1) in situ measurement from the balloon of noble gas abundances and stable isotope ratios, to study the record of the evolution of Venus; (2) in situ balloon-borne measurement of cloud particle and gas composition, and their spatial variation, to understand the complex cloud-level chemistry; (3) in situ measurements of environmental parameters and winds (from tracking of the balloon) for one rotation around the planet, to understand atmospheric dynamics and radiative balance in this crucial region. The portfolio of key measurements is complemented by the Russian descent probe, which enables the investigation of the deep atmosphere and surface.

Chassefière, E.; Korablev, O.; Imamura, T.; Baines, K. H.; Wilson, C. F.; Titov, D. V.; Aplin, K. L.; Balint, T.; Blamont, J. E.; Cochrane, C. G.; Ferencz, Cs.; Ferri, F.; Gerasimov, M.; Leitner, J. J.; Lopez-Moreno, J.; Marty, B.; Martynov, M.; Pogrebenko, S. V.; Rodin, A.; Whiteway, J. A.; Zasova, L. V.; Michaud, J.; Bertrand, R.; Charbonnier, J.-M.; Carbonne, D.; Raizonville, P.

2009-03-01

70

Temporal variations of UV reflectivity of Venus observed by the Venus Monitoring Camera onboard Venus Express.  

NASA Astrophysics Data System (ADS)

The UV channel of the Venus Monitoring Camera (VMC) onboard Venus Express (VEX) detects dark and bright features at the cloud top level all over the globe. This UV contrast is affected by the abundance of an unknown UV absorber, which is located within the upper cloud layer, and the upper haze above the cloud tops (Pollack et al.,1979; Esposito, 1980). The unknown UV absorber is a major sink of solar energy in the Venus middle atmosphere (Crisp, 1986). The upper haze and clouds take part in sulfur photochemical processes in the Venus mesosphere (Mills et al., 2007). At the cloud top altitude the zonal wind speed is highest, resulting in changes in cloud morphology in a few days. Therefore, the features shown in the UV images are diagnostic for atmospheric dynamics and chemistry. By analyzing VMC UV images, we found there is a clear decreasing trend of the global mean albedo by 20-30% over 2000 orbits (=2000 Earth days) of VEX operation. This decrease is driven by changes at high latitudes. This implies that the typical latitudinal albedo distribution, bright polar hood and dark equatorial region, varies over time. The latitudinal difference in albedo changes from a clear brightness gradient from pole to equator to an almost identical brightness in both regions. Interestingly, this temporal variation is similar to that of the SO2 abundance above the cloud tops, observed in the same period (Marcq et al., 2013). This suggests a reduction of SO2 over the equator decreases the amount of upper haze at high latitudes, as less sulfur is supplied by the meridional circulation. We investigate the phase angle dependence of the latitudinal albedo difference, which reveals that the vertical distribution of the UV absorbers and the upper haze varies in time as well. Our results show large scale variations in Venusian atmospheric dynamics near the cloud tops, represented by temporal changes in the amount of upper haze at high latitudes and/or in the vertical distribution of the unknown UV absorber.

Lee, Yeon Joo; Imamura, Takeshi; Schroder, Stefan

71

Venus Express en route to probe the planet's hidden mysteries  

NASA Astrophysics Data System (ADS)

Venus Express will eventually manoeuvre itself into orbit around Venus in order to perform a detailed study of the structure, chemistry and dynamics of the planet's atmosphere, which is characterised by extremely high temperatures, very high atmospheric pressure, a huge greenhouse effect and as-yet inexplicable "super-rotation" which means that it speeds around the planet in just four days. The European spacecraft will also be the first orbiter to probe the planet's surface while exploiting the "visibility windows" recently discovered in the infrared waveband. The 1240 kg mass spacecraft was developed for ESA by a European industrial team led by EADS Astrium with 25 main contractors spread across 14 countries. It lifted off onboard a Soyuz-Fregat rocket, the launch service being provided by Starsem. The lift-off from the Baikonur Cosmodrome in Kazakstan this morning took place at 09:33 hours local time (04:33 Central European Time). Initial Fregat upper-stage ignition took place 9 minutes into the flight, manoeuvring the spacecraft into a low-earth parking orbit. A second firing, 1 hour 22 minutes later, boosted the spacecraft to pursue its interplanetary trajectory. Contact with Venus Express was established by ESA's European Space Operations Centre (ESOC) at Darmstadt, Germany approximately two hours after lift-off. The spacecraft has correctly oriented itself in relation to the sun and has deployed its solar arrays. All onboard systems are operating perfectly and the orbiter is communicating with the Earth via its low-gain antenna. In three days' time, it will establish communications using its high-gain antenna. Full speed ahead for Venus Venus Express is currently distancing itself from the Earth full speed, heading on its five-month 350 million kilometre journey inside our solar system. After check-outs to ensure that its onboard equipment and instrument payload are in proper working order, the spacecraft will be mothballed, with contact with the Earth being reduced to once daily. If needed, trajectory correction manoeuvres can go ahead at the half-way stage in January. When making its closest approach, Venus Express will face far tougher conditions than those encountered by Mars Express on nearing the Red Planet. For while Venus's size is indeed similar to that of the Earth, its mass is 7.6 times that of Mars, with gravitational attraction to match. To resist this greater gravitational pull, the spacecraft will have to ignite its main engine for 53 minutes in order to achieve 1.3 km/second deceleration and place itself into a highly elliptical orbit around the planet. Most of its 570 kg of propellant will be used for this manoeuvre. A second engine firing will be necessary in order to reach final operational orbit: a polar elliptical orbit with 12-hour crossings. This will enable the probe to make approaches to within 250 km of the planet's surface and withdraw to distances of up to 66 000 km, so as to carry out close-up observations and also get an overall perspective. Exploring other planets to better understand planet Earth "The launch of Venus Express is a further illustration of Europe's determination to study the various bodies in our solar system", stressed Professor David Southwood, the Director of ESA's science programmes. "We started in 2003 with the launch of Mars Express to the Red Planet and Smart-1 to the Moon and both these missions have amply exceeded our expectations. Venus Express marks a further step forward, with a view to eventually rounding off our initial overview of our immediate planetary neighbours with the BepiColombo mission to Mercury to be launched in 2013." "With Venus Express, we fully intend to demonstrate yet again that studying the planets is of vital importance for life here on Earth", said Jean Jacques Dordain, ESA Director General. "To understand climate change on Earth and all the contributing factors, we cannot make do with solely observing our own planet. We need to decipher the mechanics of the planetary atmosphere in

2005-11-01

72

Mariner Venus-Mercury 1973 project. Volume 2: Extended mission-Mercury 2 and 3 encounters  

NASA Technical Reports Server (NTRS)

The Mariner Venus/Mercury 1973 mission operations Extended Mission is described. The activities are summarized from shortly after Mercury I through the end of mission. The operational activities are reported by Mission Operations Systems functions providing a brief summary from each discipline. Based on these experiences recommendations for future projects are made.

1975-01-01

73

ESA Advanced Planetary Mission Studies: Venus Sample Return and Mercury Sample Return  

Microsoft Academic Search

Looking into the next decade, the Mercury Orbiter mission is the only future Planetary Exploration mission which has been identified as a potential element of ESA's Horizons 2000 Science programme. In order to prepare for the next steps in planetary exploration beyond the Mercury Orbiter mission, ESA is carrying out advanced studies of Planetary Sample Return Missions. The Venus Sample

F. W. Taylor; J. P. Lebreton; G. Scoon; P. Logonne; P. Masson; H. Waenke; M. Coradini

1999-01-01

74

Long-term orbit prediction for the Venus Radar Mapper Mission using an averaging method  

Microsoft Academic Search

A set of singly averaged equations of motion are presented and applied to long-term orbit prediction of an orbiting spacecraft around a slowly rotating planet, using the Venus Radar Mapper Mission as an example. The equations of motion used are valid for all eccentricities less than one. The disturbing potentials used include nonsphericity of the Venus gravity field and third-body

J. H. Kwok

1984-01-01

75

Ballistic trajectories for Mercury Orbiter missions using optimal Venus flybys, a systematic search  

Microsoft Academic Search

The considered approach, which has been previously studied by Hollenbeck et al. (1973) makes use of a Venus gravity assist. The search for ideal trajectories for Mercury Orbiter missions involves a determination of trajectories with the lowest possible Mercury approach speed. Ideal Venus-to-Mercury transfers and opportunities are discussed. The second part of the reported investigation is concerned with the determination

D. F. Bender

1976-01-01

76

Initial Venus Express magnetic field observations of the Venus bow shock location at solar minimum  

Microsoft Academic Search

In this study, magnetic field measurements obtained by the Venus Express spacecraft are used to determine the bow shock position at solar minimum. The best fit of bow shock location from solar zenith angle 20–120° gives a terminator bow shock location of 2.14 RV (1 RV=6052km) which is 1600km closer to Venus than the 2.40 RV determined during solar maximum

T. L. Zhang; M. Delva; W. Baumjohann; M. Volwerk; C.T. Russell; S. Barabash; M. Balikhin; S. Pope; K.-H. Glassmeier; K. Kudela; C. Wang; Z. Vörös; W. Zambelli

2008-01-01

77

The Scientific Exploration of Venus  

NASA Astrophysics Data System (ADS)

Part I. Views of Venus, from the Beginning to the Present Day: 1. The dawn of Venus exploration; 2. Mariner and Venera; 3. Pioneer Venus and Vega: orbiters, balloons and multi-probes; 4. Images of the surface; 5. The forgotten world; 6. Earth-based astronomy delivers a breakthrough; 7. Can't stop now; 8. Europe and Japan join in: Venus Express and Akatsuki; Part II. The Motivation to Continue the Quest: 9. Origin and evolution: the solid planet; 10. Atmosphere and ocean; 11. A volcanic world; 12. The mysterious clouds; 13. Superwinds and polar vortices; 14. The climate on Venus, past, present and future; 15. Could there be life on Venus?; Part III. Plans and Visions for the Future: 16. Solar system exploration; 17. Coming soon to a planet near you: planned Venus missions; 18. Towards the horizon: advanced technology; 19. Beyond the horizon: human expeditions; Epilogue; Appendix A. Chronology of space missions to Venus; Appendix B. Data about Venus.

Taylor, Fredric W.

2014-12-01

78

First Results from Venus Express Aerobraking Campaign  

NASA Astrophysics Data System (ADS)

After a very successful mission orbiting Venus for more than 8 years, slowly the fuel is running out and the spacecraft will inevitably end up in the hot and acid atmosphere of the planet. Before this will happen we are taking the opportunity to dip down to around 130 km in a controlled manner in order to make detailed in situ investigations of this for remote sensing instruments difficult to access region. The spacecraft will use an aerobraking technique which maximizes the atmospheric drag by placing the solar panels perpendicular to the flight direction and will benefit from the inherent dynamically stable configuration this will provide. The on board accelerometers will give a direct measurement of the deceleration which in turn is directly proportional to the local atmospheric density. This will provide an excellent way to study both the total density profile and small scale density variations in the region of the pericentre. At the time of this campaign the pericentre will be located near the terminator at about 75 degrees Northern latitude. Aerobraking is a very efficient method of reducing the pericentre velocity and thereby reducing the apocentre altitude and the orbital period. Using this technique missions otherwise not feasible due to mass and fuel constraints can be enabled. This will be the first time an ESA spacecraft will be used for aerobraking and therefore it is run on an experimental basis as only limited resources are available. The so called “walk-in” phase will start at 190 km altitude on 17 May and the campaign ends on 11 July. Depending on the atmospheric densities encountered the orbital period may be reduced with up to 30 minutes. This presentation will report on the initial findings from this aerobraking campaign.

Svedhem, Håkan

79

Mariner Venus-Mercury 1973 mission solar proton environment: fluence and dose  

NASA Technical Reports Server (NTRS)

A derivation is presented for proton fluence over the duration of the Mariner Venus-Mercury 1973 (MVM73) mission in terms of a relatively constant, low energy component, the solar wind, and a probabilistic high energy component from discrete solar events. An updated correlation of yearly energetic proton fluence with yearly average sunspot number is presented. This correlation and sunspot cycle forecasts for the period of the MVM73 mission (late 1973 through early 1975) form the basis for the high energy proton fluence estimates with various confidence levels. Uncertainties in the probability estimates and in calculation of the scaling with distance from the Sun are discussed. Selection of a particular 95-percentile model as the design constraint is recommended, and reasons are presented for not using the worst-case model. Interior fluences were calculated and expressed in terms useful for spacecraft design.

Thomas, J. R.

1972-01-01

80

Results of the Venus Express Aerobraking Campaign  

NASA Astrophysics Data System (ADS)

After a very successful mission orbiting Venus for more than 8 years, slowly the fuel is running out and the spacecraft will inevitably one day end up in the hot and acid atmosphere of the planet. Being near the end of the mission and in a position to accept some risk to the spacecraft we decided to take the opportunity to dip down deep into the atmosphere, to around 130 km, in a controlled manner, in order to make detailed in situ investigations of this for remote sensing instruments difficult to access region. The on board accelerometers gave direct measurements of the deceleration which in turn is directly proportional to the local atmospheric density. This provided an excellent way to study both the total density profile throughout the orbital arc in the atmosphere and small scale density variations in the region of the pericentre. The spacecraft behaved perfectly well throughout the whole campaign and provided a wealth of data both on the atmosphere and on the response of the spacecraft to the harsh environment with strong heat loads and some dynamic stress. At the time of the campaign the pericentre was located near the terminator at about 75 degrees Northern latitude. Aerobraking is a very efficient method of reducing the pericentre velocity and thereby reducing the apocentre altitude and the orbital period.The so called "walk-in" phase started at an altitude of 190 km on 17 May and the campaign ended on 11 July, after having reached a lowest altitude of 129.2 km. Subsequently, a series of orbit control manoeuvres lifted up the pericentre to 460 km altitude and the science activities were resumed after a thorough check-out of the spacecraft. We have detected a highly variable atmosphere, both on a day to day basis and within the individual pericentre passes. The duration of each pass was approximately 100 s and the maximum dynamic pressure achieved was more than 0.75 N/m2, probably a record for a spacecraft that continued its operation afterwards. The orbital period was reduced over the duration of the campaign changing from 24 hours to 22 hours 20 minutes.

Svedhem, Hakan; Müller-Wodarg, Ingo

2014-11-01

81

Whistler mode bursts in the Venus ionosphere due to lightning: Statistical properties using Venus Express magnetometer observations  

NASA Astrophysics Data System (ADS)

The Venus Express mission has completed over four years in polar orbit about Venus with periapsis altitudes as low as 180 km. On each orbit around periapsis the fluxgate magnetometer samples the magnetic field at 128 Hz. The data reveal short-lived bursts with peak-to-peak amplitudes up to 1.5 nT in the frequency range 42 to 60 Hz. These signals are whistler mode waves with burst durations of about 100 ms and Poynting vectors similar to terrestrial whistler mode signals generated by atmospheric lightning when detected in the ionosphere. We have examined the occurrence of these bursts as a function of background magnetic field strength, altitude, latitude and local time. The burst rates are highest for magnetic fields of 15-30 nT, at altitudes near 215 km, and at local times near the terminators. The characteristics of these signals are consistent with generation in the dynamic Venus atmosphere, entry into the ionosphere, propagation along the ionospheric magnetic field, and ultimately damping in the ionospheric plasma.

Daniels, J. T. M.; Russell, C. T.; Strangeway, R. J.; Wei, H. Y.; Zhang, T. L.

2012-04-01

82

Ballistic mode Mercury orbiter mission opportunity handbook extension. [interplanetary trajectories for Venus swingbys to Mercury  

NASA Technical Reports Server (NTRS)

Interplanetary trajectory characteristics are presented, for Venus swingbys to Mercury, where multiple revolutions about the Sun are permitted. Additional consideration is given to the use of multiple Venus swingbys and/or to midcourse, near perilhelion, propulsive maneuvers to improve the performance of the mission as measured in terms of payload in Mercury orbit. Missions in 1980, 1983, 1985 and 1988 were analyzed with navigation results also developed. An exploratory investigation established the availability of low energy mission opportunities in 1991, 1994, 1996 and 1999.

Hollenbeck, G. R.; Lewis, P. S.; Rockenbach, P. C.

1974-01-01

83

Exploration Targets for a Mission Concept with Multiple Venus Gliders  

NASA Astrophysics Data System (ADS)

Six targets have been identified for exploration with guided aerosondes that glide to their targets with high precision and conduct atmospheric and surface observations addressing all three of the major Venus scientific goals identified by VEXAG.

Cutts, J. A.; Nunes, D. C.; Mitchell, K. L.; Senske, D. A.; Pauken, M. T.; Matthies, L. H.; Tokamaru, P.

2014-05-01

84

Lunar and Planetary Science XXXV: Venus  

NASA Technical Reports Server (NTRS)

The session "Venus" included the following reports:Preliminary Study of Laser-induced Breakdown Spectroscopy (LIBS) for a Venus Mission; Venus Surface Investigation Using VIRTIS Onboard the ESA/Venus Express Mission; Use of Magellan Images for Venus Landing Safety Assessment; Volatile Element Geochemistry in the Lower Atmosphere of Venus; Resurfacing Styles and Rates on Venus: Assessment of 18 Venusian Quadrangles; Stereo Imaging of Impact Craters in the Beta-Atla-Themis (BAT) Region, Venus; Depths of Extended Crater-related Deposits on Venus ; Potential Pyroclastic Deposit in the Nemesis Tessera (V14) Quadrangle of Venus; Relationship Between Coronae, Regional Plains and Rift Zones on Venus, Preliminary Results; Coronae of Parga Chasma, Venus; The Evolution of Four Volcano/Corona Hybrids on Venus; Calderas on Venus and Earth: Comparison and Models of Formation; Venus Festoon Deposits: Analysis of Characteristics and Modes of Emplacement; Topographic and Structural Analysis of Devana Chasma, Venus: A Propagating Rift System; Anomalous Radial Structures at Irnini Mons, Venus: A Parametric Study of Stresses on a Pressurized Hole; Analysis of Gravity and Topography Signals in Atalanta-Vinmara and Lavinia Planitiae Canali are Lava, Not River, Channels; and Formation of Venusian Channels in a Shield Paint Substrate.

2004-01-01

85

Venus  

ERIC Educational Resources Information Center

On 8 June 2004 Venus will pass in front of the Sun as seen from the Earth. Many people will watch the small dark dot cross the solar disk, but will they stop to think about Venus as a real place? In this article we discuss what we know about Venus, what it looks like from orbit, what you might see if you were on the surface and future plans for…

Martin, Paula; Stofan, Ellen

2004-01-01

86

Pioneer Venus: Report of a study by the Science Steering Group, June 1972. [concerning 1976, 77, 78 and 80 missions  

NASA Technical Reports Server (NTRS)

The 1976/77 multiple probe mission of the Pioneer Venus spacecraft is discussed, along with the 1978 and 1980 missions. Various questions about Venus are answered; velocities and temperatures expected in the atmosphere, atmospheric chemistry, magnetic measurements, and model atmospheres are included.

1974-01-01

87

The search for active volcanism on Venus with Venus Express/VIRTIS data  

NASA Astrophysics Data System (ADS)

The composition of the lower atmosphere of Venus is of primary importance in understanding the past and indeed current evolution of climatology on this most enigmatic of planets In discovering the near infrared windows centered at 2 3 1 7 and 1 18 microns Allen and Crawford 1 in 1983 paved the way for the lower 40km of the atmosphere to be probed remotely from space This has led Venus Express to carry imaging spectrometers such as VIRTIS to make full use of this phenomenon Some fundamental questions concerning the exact makeup of the atmosphere will be answered by analyzing VIRTIS data Data collected from past observations indicate the possibility of current volcanic activity on the surface of Venus The monitoring of SO 2 at the cloud tops indicate a steady drop in concentration suggesting a possible source of SO 2 is due to volcanism 2 whilst deep atmospheric values below the clouds suggest a uniform mixing ratio 3 The analysis VIRTIS data at 2 48 micron window will no doubt shed light on this matter Analysis of the micro-window complex at 1 18 microns shows that we can image the surface of the planet in the infrared whilst negating most of the effects of the atmosphere 4 We can monitor the surface brightness temperatures to look for hot spots indicative of volcanic plumes another key goal of Venus Express and VIRTIS We have developed a radiative transfer model to analyse Venus Express VIRTIS data in the near infrared windows The retrieval model uses the correlated-k distribution method which incorporates the use

Tsang, C. C. C.; Virtis Team

88

O+ pickup ions outside of Venus' bow shock: Venus Express observations  

NASA Astrophysics Data System (ADS)

Pickup ions are ions of planetary origin that become assimilated into the solar wind flow through their interaction with the solar wind magnetic and electric field. The speed of pickup ions varies between zero and twice the underlying plasma flow component perpendicular to magnetic field vector. For the unmagnetized planet Venus and Mars, oxygen (O+) pickup ions are known to be important because they can modify the global configuration of planetary plasma environment and significantly contribute to the atmospheric O+ loss [1]. Since the kinetic energy of an O+ pickup ion can reach 64 times that of a co-moving proton, an instrument must be able to measure O+ ions with energy of at least tens of keV to investigate the O+ pickup ion distribution from planetary ionosphere to solar wind. The in-situ observations and simulations at Mars have shown that the energy of O+ pickup ions can be 55-72 keV outside of the bow shock [2]. For Venus case, the plasma analyzer (OPA) onboard Pioneer Venus Orbiter (PVO), which was designed for solar wind monitoring, has an 8 keV energy limit for O+ detection and the limited sampling and data rate [3]. Therefore, OPA can only measure the O+ pickup ions in the sheath flow or inside the induced magnetosphere where the speed of ambient plasma flow is significantly lower than that of the unshocked solar wind outside of the bow shock. In addition, Galileo also did not capture O+ outside bowshock during its 1-hour Venus flyby though its plasma instrument had ability to cover the energy band of O+ pickup ions [4]. The Ion Mass Analyzer (IMA), included in the Analyzer of Space Plasma and Energetic Atoms (ASPERA-4) package on board Venus Express (VEX), determines the composition, energy, and angular distribution of ions in the energy range ~10 eV/q to 30 keV/q. Note that an O+ ion moving at the typical solar wind speed 400 km/s has kinetic energy 13.4 keV. Therefore, IMA has ability to measure the O+ pickup ions outside of Venus' bow shock. We have examined the IMA data during the solar minimum period 2006-2010, and identified 80 cases with clear signature of O+ pickup ion. With these observations, we can determine the location and the scale height of the source region of O+ pickup ions and describe the relationship between the behavior of these O+ and the upstream solar wind condition. The results would provide new information for numerical simulation of plasma environment near Venus and contribute to estimation of total O+ ion loss from Venus. Reference: [1] Dubinin, E., M. Fränz, J. Woch, E. Roussos, S. Barabash, R. Lundin, J. D. Winningham, R. A. Frahm, and M. Acuña (2006a), Plasma morphology at Mars: Aspera-3 observations, Space Sci. Rev., 126, 209-238, doi:10.1007/s11214-006-9039-4. [2] Cravens, T. E., A. Hoppe, S. A. Ledvina, and S. McKenna-Lawlor (2002), Pickup ions near Mars associated with escaping oxygen atoms, J. Geophys. Res., 107, 1170, doi:10.1029/2001JA000125. [3] Luhmann, J. G., S. A. Ledvina, J. G. Lyon, and C. T. Russell (2006), Venus O+ pickup ions: Collected PVO results and expectations for Venus Express, Planet. Space Sci., 54, 1457-1471, doi:10.1016/j.pss.2005.10.009. [4] Williams, D. J. et al.(1991), Energetic Particles at Venus: Galileo Results. Science 253, 1525-1528.

Wei, Yong; Fraenz, Markus; Dubinin, Eduard; Zhang, Tielong; Jarvinen, Riku; Wan, Weixing; Kallio, Esa; Collinson, Glyn; Barabash, Stars; Norbert, Krupp; Woch, Joachim; Lundin, Rickard; delva, Magda

2013-04-01

89

Climatology of the Venus upper haze as measured by SOIR on board Venus Express  

NASA Astrophysics Data System (ADS)

We recently demonstrated the potential of the SPICAV/SOIR suite of instruments onboard the Venus Express spacecraft to characterize the aerosols in the mesosphere of Venus from a data set of three selected orbits [1]. The wavelength dependence of the continuum is primarily due to the extinction caused by the aerosol particles of the upper haze and is directly related to the effective particle radius of the particles. Recent advances are presented here, showing that careful selection of diffraction orders (i.e. spectral windows) during solar occultations performed by the SOIR instrument [2, 3] could allow using only the SOIR channel to obtain information on the particle's size. The continuum of the SOIR spectra was obtained with the ASIMAT retrieval code [4]. The possibility to use the SOIR channel alone, instead of in combination with the SPICAV channels is important as it offers a larger data set, although less informative in terms of microphysical properties. Therefore, temporal and geographical variations of the vertical profiles of the aerosol extinction were investigated for a particular diffraction order. This spectral window was measured in many solar occultations and over a period of 3 years leading to good spatial and temporal coverages. 1. Wilquet, V., et al., Preliminary characterization of the upper haze by SPICAV/SOIR solar occultation in UV to mid-IR onboard Venus Express. J. Geophysical Research, 2009. 114(E00B42): p. doi:10.1029/2008JE003186. 2. Nevejans, D., et al., Compact high-resolution space-borne echelle grating spectrometer with AOTF based on order sorting for the infrared domain from 2.2 to 4.3 micrometer. Applied Optics, 2006. 45(21): p. 5191-5206. 3. Mahieux, A., et al., In-Flight performance and calibration of SPICAV SOIR on board Venus Express. Applied Optics, 2008. 47(13): p. 2252-65. 4. Mahieux, A., et al., Venus atmospheric densities and temperature profiles retrieved from SOIR solar occultations on board Venus Express. J . Geophys . Res . 2010. (submitted).

Wilquet, Valérie; Mahieux, Arnaud; Drummond, Rachel; Robert, Séverine; Carine Vandaele, Ann; Montmessin, Franck; Bertaux, Jean-Loup

2010-05-01

90

Venus Express Publications Supported by NASA Last update: 05-20-2014  

E-print Network

1 Venus Express Publications Supported by NASA Last update: 05-20-2014 Compiled by Kevin H. Baines Venus Express funding 2006 Baines, K. H. Atreya, S., Carlson, R. W., Crisp, D., Drossart, P., Formisano, V., Limaye, S. S., Markiewicz, W. J., and Piccioni, G. (2006). To the depths of Venus: Exploring

Rathbun, Julie A.

91

Venus  

NSDL National Science Digital Library

This lithograph shows a mosaic of Venus that was composed from Magellan images taken during radar investigations from 1990-1994. This is a false-color image that depicts topography. Images of the Venusian cloud tops and some surface features are also included. The images are accompanied by a brief description and history, some statistical facts, and a list of important dates in the exploration of Venus.

92

Assessment of Guided Aerocapture and Entry for Venus In Situ Missions Using Mechanically Deployed Aerodynamic Decelerator  

NASA Astrophysics Data System (ADS)

The option of a a guided mechanically deployed aerodynamic decelerator (ADEPT) for in situ missions to Venus is evaluated to reduce both the peak deceleration loads to under 10g and and peak heat fluxes to less than 120 W/cm2.

Saikia, S. J.; Saranathan, H.; Longuski, J. M.; Grant, M. J.

2014-05-01

93

A mission to the asteroids with maneuvers near Venus, the Earth, Mars, and Jupiter  

Microsoft Academic Search

The dependences of stay times at main belt and Trojan asteroids, of the durations and energy expenditures for transfer flights to the asteroids with direct return to the Earth on the semimajor axes of the asteroid orbits and on the choice of mission path with maneuvers near Venus, the Earth, Mars, and Jupiter have been considered for circular orbits of

L. B. Livanov

1993-01-01

94

The Rationale for a New High-resolution Imaging Radar Mission to Venus  

NASA Astrophysics Data System (ADS)

Magellan, NASA’s last geoscience mission to Venus, provided synthetic aperture radar (SAR) images at ~100-m resolution, topography at ~10-km resolution, and the gravity field at ~300-km resolution. Although that mission provided a major advance in our understanding of the planet, basic questions about the geologic history of Venus remain unresolved. For example, hypotheses on the planet’s surface evolution range from uniformitarian to catastrophic, and assessments of current geologic activity range from earth-comparable levels of volcanic and tectonic activity to a surface shaped only by occasional impact and eolian processes. It is now feasible to send a mission to Venus that could provide SAR imaging at 1-5-m resolution; topography with tens-of-meters spatial resolution by utilizing interferometric SAR (InSAR) and stereo radargrammetry; and surface deformation at centimeter-scale vertical resolution through InSAR. Such a mission would substantially further our understanding of Venus by means of: (1) assessing the fundamental framework of the planet's geologic history (e.g., catastrophic change, slow evolution, uniformitarian) by imaging key stratigraphic contacts; (2) expanding the global framework of geomorphic unit types and relative stratigraphy with reconnaissance surveys of large geographic provinces; (3) directly detecting volcanic and tectonic activity through imaging of flows and fault-related activities (e.g., landslides) that occur between imaging passes; (4) monitoring present-day volcanic and tectonic activity with repeat-pass InSAR deformation studies; (5) constraining the nature of Venusian geologic volcanic and tectonic processes, and their relationship to mantle convective processes; (6) understanding the role of eolian processes in modifying the surface and the use of eolian features as stratigraphic markers (e.g., parabolic features) through detailed examination; (7) constraining Venusian impact processes, particularly the role of the atmosphere in the ejecta emplacement process; (8) constraining the processes responsible for the abrupt decrease in emissivity at high altitudes; (9) selecting landing sites for future missions; and (10) identifying past landers/probes to place them in geologic context. Our state of knowledge about Venus is currently analogous to our knowledge of Mars in the post-Viking era, and a high-resolution imaging radar mission to Venus could revolutionize our understanding of Venus in the way that the Mars Global Surveyor mission did for Mars.

Herrick, R. R.; Sharpton, V. L.; Gens, R.; Ghent, R. R.; Gilmore, M. S.; Grimm, R. E.; Johnson, C. L.; McGovern, P. J.; Meyer, F.; Mouginis-Mark, P. J.; Plaut, J. J.; Sandwell, D. T.; Simons, M.; Solomon, S. C.

2009-12-01

95

Concept study for a Venus Lander Mission to Analyze Atmospheric and Surface Composition  

NASA Astrophysics Data System (ADS)

We present a concept-level study of a New Frontiers class, Venus lander mission that was developed during Session 1 of NASA's 2011 Planetary Science Summer School, hosted by Team X at JPL. Venus is often termed Earth's sister planet, yet they have evolved in strikingly different ways. Venus' surface and atmosphere dynamics, and their complex interaction are poorly constrained. A lander mission to Venus would enable us to address a multitude of outstanding questions regarding the geological evolution of the Venusian atmosphere and crust. Our proposed mission concept, VenUs Lander for Composition ANalysis (VULCAN), is a two-component mission, consisting of a lander and a carrier spacecraft functioning as relay to transmit data to Earth. The total mission duration is 150 days, with primary science obtained during a 1-hour descent through the atmosphere and a 2-hour residence on the Venusian surface. In the atmosphere, the lander will provide new data on atmospheric evolution by measuring dominant and trace gas abundances, light stable isotopes, and noble gas isotopes with a neutral mass spectrometer. It will make important meteorological observations of mid-lower atmospheric dynamics with pressure and temperature sensors and obtain unprecedented, detailed imagery of surface geomorphology and properties with a descent Near-IR/VIS camera. A nepholometer will provide new constraints on the sizes of suspended particulate matter within the lower atmosphere. On the surface, the lander will quantitatively investigate the chemical and mineralogical evolution of the Venusian crust with a LIBS-Raman spectrometer. Planetary differentiation processes recorded in heavy elements will be evaluated using a gamma-ray spectrometer. The lander will also provide the first stereo images for evaluating the geomorphologic/volcanic evolution of the Venusian surface, as well as panoramic views of the sample site using multiple filters, and detailed images of unconsolidated material and rock textures from a microscopic imager. Our mission proposal will enable the construction of a unique Venus test facility that will attract a new generation of scientists to Venus science. With emphasis on flight heritage, we demonstrate our cost basis and risk mitigation strategies to ensure that the VULCAN mission can be conducted within the requirements and constraints of the New Frontiers Program.

Kumar, K.; Banks, M. E.; Benecchi, S. D.; Bradley, B. K.; Budney, C. J.; Clark, G. B.; Corbin, B. A.; James, P. B.; O'Brien, R. C.; Rivera-Valentin, E. G.; Saltman, A.; Schmerr, N. C.; Seubert, C. R.; Siles, J. V.; Stickle, A. M.; Stockton, A. M.; Taylor, C.; Zanetti, M.; JPL Team X

2011-12-01

96

Venus  

NASA Astrophysics Data System (ADS)

Venus is Earth's nearest planetary neighbor, and has fascinated mankind since the dawn of history. Venus' clouds reflect most of the sunlight shining on the planet and make it the brightest object in the sky after the Sun and Moon. Venus is visible with the naked eye as an evening star until a few hours after sunset, or as a morning star shortly before sunrise. Many ancient civilizations observed and worshipped Venus, which had a different name in each society, e.g., Ishtar to the Babylonians, Aphrodite to the Greeks, Tai'pei to the Chinese, and Venus to the Romans (Hunt and Moore, 1982). Venus has continued to play an important role in myth, literature, and science throughout history. In the early seventeenth century, Galileo's observations of the phases of Venus showed that the geocentric (Ptolemaic) model of the solar system was wrong and that the heliocentric (Copernican) model was correct. About a century later, Edmund Halley proposed that the distance from the Earth to the Sun (which was then unknown and is defined as one astronomical unit, AU) could be measured by observing transits of Venus across the Sun. These transits occur in pairs separated by eight years at intervals of 105.5 yr and 121.5 yr in an overall cycle of 243 yr, e.g., June 6, 1761, June 3, 1769; December 9, 1874, December 6, 1882, June 8, 2004, June 6, 2012, December 11, 2117, and December 8, 2125. The first attempted measurements of the astronomical unit during the 1761 transit were unsuccessful. However, several observers reported a halo around Venus as it entered and exited the Sun's disk. Thomas Bergman in Uppsala and Mikhail Lomonosov in St. Petersburg, independently speculated that the halo was due to an atmosphere on Venus. Eight years later observations of the 1769 solar transit (including those made by Captain Cook's expedition to Tahiti) gave a value of 1 AU=153 million kilometers, ~2.3% larger than the actual size (149.6 million kilometers) of the astronomical unit (Woolf, 1959; Maor, 2000).

Fegley, B., Jr.

2003-12-01

97

Ballistic Mercury orbiter mission via Venus and Mercury gravity assists  

Microsoft Academic Search

This paper shows that it is possible to deliver a payload of 600 to 2000 kg to a 300-km circular orbit at Mercury, using the presently available NASA STS and a single-stage bipropellant chemical rocket. This superior payload performance is attained by swingbys of Venus, plus more importantly, the use of the reverse Delta-V\\/EGA process. In contrast to the familiar

Chen-Wan Liu Yen

1989-01-01

98

Ballistic Mercury orbiter mission via Venus and Mercury gravity assists  

Microsoft Academic Search

It is shown that it is possible to deliver a payload of 600 to 2000 kg to a 300-km circular orbit at Mercury using presently available NASA Space Transportation Systems and a single-stage bipropellant chemical rocket. This superior payload performance is attained by swingbys of Venus, plus (more importantly), the use of the reverse Delta-V\\/EGA process. In contrast to the

C.-W. L. Yen

1986-01-01

99

Mariner-Venus-Mercury optical navigation demonstration - Results and implications for future missions  

Microsoft Academic Search

Optical navigation uses spacecraft television pictures of a target body against a known star background in a process which relates the spacecraft trajectory to the target body. This technology was used in the Mariner-Venus-Mercury mission, with the optical data processed in near-real-time, simulating a mission critical environment. Optical data error sources were identified, and a star location error analysis was

C. H. Acton Jr.; H. Ohtakay

1975-01-01

100

The polar atmosphere of Venus: Radio occultation measurements with Venus Express and Magellan  

NASA Astrophysics Data System (ADS)

The ESA Venus Express (VEx) spacecraft has been conducting radio occultation experiments since 2006. The results reported to date are based on data recorded by 35-m antennas of the ESA Tracking Station Network (e.g., Tellmann et al., J. Geophys. Res., 114, E00B36, 2009). We have recently begun to derive complementary new results through analysis of high-quality "open-loop" data recorded by a 70-m antenna of the NASA Deep Space Network. This experiment sounded the polar atmosphere in both hemispheres at latitudes greater than 75 degrees. As in previous occultation measurements in this region, there is a deep convective layer at altitudes below about 60 km. The convective layer is capped by an abrupt transition to stable stratification, and the overlying free air is modulated by vertically propagating gravity waves. These new results will be compared with Magellan radio occultation measurements acquired at comparable latitudes in the early 1990s and with the VEx results reported by Tellmann et al. (2009). Our analysis also illustrates some of the challenges that can arise in radio occultation measurements at Venus. For example, the sharp temperature minimum at the tropopause creates a thin layer that eludes radio occultation sounding owing to its peculiar refractive properties. This research is funded in part by NASA Grant NNX10AE22G of the Venus Express Participating Scientist Program.

Hinson, D. P.; Tellmann, S.; Paetzold, M.; Haeusler, B.; Bird, M. K.; Tyler, G. L.

2012-12-01

101

Spectral inventory of the SOIR spectra onboard Venus Express  

NASA Astrophysics Data System (ADS)

The set of spectra recorded by the SOIR instrument on board Venus Express have been carefully studied from a spectroscopic point of view. The SOIR instrument combines an echelle spectrometer and an Acousto-Optical Tunable Filter for order selection. It performs solar occultation measurements in the IR region (2.2 - 4.4 ?m) at a resolution of 0.10 - 0.24 cm-1 [1]. The wavelength range probed by SOIR allows a detailed chemical inventory of the Venus atmosphere above the cloud layer (65 to 180 km) with emphasis on the vertical distribution of gases (CO2, CO, H2O, HCl, HF, ...). The sensitivity of the SOIR instrument and the high concentration of CO2 on Venus, coupled with the long absorption paths sounded during solar occultations, enable us to detect weak absorption bands of rare CO2 isotopologues [2, 3]. The spectra are analysed using ASIMAT, an in-house Matlab algorithm [4]. It is based on the Optimal Estimation Method [5] with the aim to deduce physical characteristics (densities, temperature) of the Venus atmosphere from the spectra recorded using SOIR. The spectra were fitted using HITRAN 2008 [6]. A tool of automatic assignment was developed and applied to each spectrum leading to the creation of the wavenumber list of each line visible in the SOIR spectra. The tools used to calibrate the spectra, to characterize the residuals and to produce the line list will be described extensively for a selected number of orbits. References 1. Nevejans, D., et al., Compact high-resolution space-borne echelle grating spectrometer with AOTF based on order sorting for the infrared domain from 2.2 to 4.3 micrometer. Applied Optics, 2006. 45(21): p. 5191-5206. 2. Wilquet, V., et al., Line parameters for the 01111-00001 band of 12C16O18O from SOIR measurements of the Venus atmosphere. J. Quant. Spectrosc. Radiat. Transfer, 2008. 109: p. 895-905. 3. Robert, S., et al., Assignment and rotational analysis of new absorption bands of carbon dioxide isotopologues in Venus spectra. J. Quant. Spectrosc. Radiat. Transfer, 2013. 114: p. 29-41. 4. Mahieux, A., et al., Densities and temperatures in the Venus mesosphere and lower thermosphere retrieved from SOIR onboard Venus Express: Retrieval technique. J. Geophys. Res., 2010. 115(E12014): p. 10.1029/2010JE003589. 5. Rodgers, C., Inverse methods for atmospheric sounding: Theory and practice. World Scientific, ed. N.J. Hackensack. 2000: University of Oxford. 6. Rothman, L.S., et al., The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 2009. 110(9-10): p. 533-572.

Robert, Séverine; Mahieux, Arnaud; Wilquet, Valérie; Drummond, Rachel; Carine Vandaele, Ann

2013-04-01

102

In-Situ Exploration of Venus: Major Science Objectives, Investigations, and Mission Platform Options  

NASA Astrophysics Data System (ADS)

In-situ missions to Venus have been recommended by both the 2011 and 2003 Decadal Studies of the NRC and have been proposed numerous times to NASA's Discovery and New Frontiers programs as well as to ESA's Cosmic Vision program. Such missions would revolutionize our understanding of Venus, as they address key questions of Venus's origin, evolution, and current state via high precision measurements of (1) noble gases and their isotopes, and (2) reactive trace gases and aerosol associated with Venus's active photo- and thermo-chemistry and sulfur cycle, including components potentially responsible for the poorly-understood uv-absorbing haze layer. Fundamental questions, as promoted in recent VEXAG documents, include: (1) Did Venus, Mars, and Earth have a common origin? (2) What roles did comets from the outer Solar System play in delivering volatiles to Venus? (3) Did Venus once have and lose a global ocean? (4) How much has Venus outgassed, and what is the current rate of outgassing, particularly of sulfur, the major driver of Venus clouds? and (5) Through the deposition of energy within them, what role do these clouds play in (a) driving the cloud-level thermal structure and (b) generating and maintaining the super-rotating zonal windfield that covers the globe? Fundamental answers could be uniquely provided through in-situ sampling via mass spectrometry of the noble gases and their isotopes - in particular of the 8 stable Xe isotopes, the bulk abundances of Kr, and the 3 isotopes of Ne. Measurements of the relative abundances of the light isotopes of N, O, H, S and O, by, for example, tunable laser spectrometry, would provide additional insights into Venus's origin, surface outgassing and planetary escape. Such measurements could be performed by probes, landers, or balloons. On descent through the uv-absorbing layer and the surrounding H2SO4 cloud, each of these platforms could explore both the absorber and sulfur-cycle-associated reactive species and aerosols, thus addressing VEXAG desires for enhanced understanding of Venus' chemical cycles, aerosol properties, and radiative transfer. On descent to the surface, probes and landers can provide vertical profiles of temperatures and species abundances, as well as provide near-surface measurements of sulfur isotopes and trace sulfuric gases indicative of outgassing. Additional major in-situ goals dealing with Venus's global circulation and local dynamics can be addressed by a balloon platform floating within the convective middle cloud near ~55-km altitude. Drifting over a wide range of latitudes and all times-of-day and longitudes, such a floating platform could accurately measure (1) motions in all three dimensions - zonal, meridional, and vertical, including motions associated with convection and gravity waves, (2) simultaneous measurements of cloud particle size, their parent molecules, the local temperature, and vertical velocity, to study cloud formation/dissipation processes, and (3) the power and frequency of local lightning. Altogether, such in-situ measurements would potentially revolutionize our understanding of (1) Venus's circulation, including the role of waves and solar cloud heating in powering the planet's poorly-understood super-rotation, (2) Venus's sulfur cycle, key to Venus's current climate, and (3) how Earth's neighbor formed and evolved over the aeons.

Baines, K. H.; Limaye, S. S.; Hall, J. L.; Atreya, S. K.; Bullock, M. A.; Crisp, D.; Grinspoon, D. H.; Mahaffy, P. R.; Russell, C. T.; Webster, C. R.; Zahnle, K. J.

2013-12-01

103

Future Exploration of Venus  

NASA Astrophysics Data System (ADS)

Venus has been the target of exploration for half a century, before the successful Mariner 2 fly-by in December 1962. The decade after that was marked by growing sophistication in the instruments and spacecraft. During the second decade of Venus exploration (1972 - 1981) the instruments and spacecraft had advanced to make the first detailed survey of the planet and image the surface. During the third decade Venus was explored with more advanced instruments such as synthetic aperture radar and by balloons - the only balloons in another atmosphere ever flown till present. Then came a long pause until 2005 when ESA launched Venus Express, which is still orbiting the planet and returning data. The nearly two-dozen missions flown to Venus have painted a puzzling picture of Venus - we still do not have answers to some key questions. The foremost is why did Venus evolve so differently from Earth? International space agencies and scientists have been considering various approaches to exploring Venus through small and large missions. The Venus Exploration Analysis Group (NASA) has developed a Venus Exploration Roadmap and a comprehensive list of goals, objectives and investigations (www.lpi.usra.edu/vexag), but an international coordinated, comprehensive plan to explore Venus is needed. To fill this void, the COSPAR International Venus Exploration Working Group (IVEWG) has been active in fostering dialog and discussions among the space faring agencies. One small step in the future exploration of Venus is the formation of a joint Science Definition Team (SDT) (NASA and Roscosmos/IKI) for Russia’s Venera-D mission in early 2014. The team is expected to submit a report to respective agencies in early 2015. Towards identifying key surface regions and atmospheric regions of Venus, a workshop is being held in May 2014 by VEXAG to seek community input. It is likely that calls for proposals for missions will also be announced under the M class by ESA and under the Discovery Program by NASA during 2014. Given that the science questions about Venus are many - ranging from the surface and interior and extending into the atmosphere to 120 km and beyond, it is likely that there will be opportunities for other efforts to contribute to the comprehensive exploration of Venus. If undertaken in a coordinated and collaborative manner, we may make substantial progress in understanding Venus, why and/or how it evolved differently from Earth. This knowledge will help us understand Earth-like rocky planets around other stars that are being discovered at a rapid pace now.

Limaye, Sanjay

104

The Surface of Venus and Implications for its Geological and Geodynamical Evolution: The View Before Venus Express and Outstanding Questions for the Future  

NASA Astrophysics Data System (ADS)

Prior to the Venera 15/16 and the Magellan missions to Venus, a wide range of ideas existed concerning the nature of the surface of Venus, the geological processes currently operating there, their link to interior processes, the implied geological and geodynamical history of the planet, and how all this compared with the nature and history of other terrestrial planetary bodies. The history of exploration of the surface of Venus represents the acquisition of data with increasing spatial and areal coverage, culminating in the near-global high-resolution image, altimetry, physical property and gravity data obtained by the Magellan mission. Among the most fundamental findings of the global Magellan image data are: 1) that volcanism and tectonism represent the most abundant geological processes operating on the observed surface, 2) that the styles and abundance of volcanism and tectonism combine attributes of both the Earth (e.g., very heavily tectonically deformed regions such as tessera) and the smaller terrestrial planetary bodies (e.g., vast volcanic plains deformed by wrinkle ridges), 3) that the distribution and nature of impact craters precludes active plate tectonics despite many Earth-like tectonic features (e.g., folded mountain belts), 4) that some features (e.g., coronae) are somewhat unique to Venus and may provide important information on mantle convection and lithospheric evolution processes, 5) that the number of impact craters is very small, indicating that the surface geological record is very young, less than 20% of the history of the planet itself, 6) that 80% of the geological record of Venus is no longer obviously preserved in the surface morphology, but may be preserved in the surface rocks, 7) that the distribution and state of preservation of existing impact craters may be consistent with a range of catastrophic resurfacing models, and 8) that the geological record and sequence of events can be correlated with geophysical data to assess crustal thickness variations and mantle convection patterns. The relationships of major elements of global topography and the sequence of events in the observed geological history (as recorded by major geologic units and structures) suggest that much of the current long-wavelength topography of Venus (tessera highlands and lowlands with regional plains) may have formed prior to emplacement of regional plains and been preserved since that time. These observations may favor evolutionary geodynamic models that are characterized by changes in geological style and rates, and may involve non-linear heat loss mechanisms that could have profound influence on the atmosphere. Although the observed surface of Venus dates from relatively recent planetary history, comparative planetology permits inferences to be made about the major stages in the earlier history of Venus. The evolution of the understanding of the surface from early speculations to present observations and interpretations provides an important context for: 1) establishing the relationships of the surface of Venus to the nature of the atmosphere and its evolution as assessed by Venus Express, 2) the comparison of the geological features and history of Venus relative to the Moon, Mars, Mercury and the Earth, and 3) defining the major outstanding problems and questions to be addressed by future experiments and missions to Venus.

Head, J. W.; Ivanov, M. A.; Basilevsky, A. T.

2008-12-01

105

Venus Express observations of atmospheric oxygen escape during the passage of several coronal mass ejections  

E-print Network

Venus Express observations of atmospheric oxygen escape during the passage of several coronal mass of Venus atmospheric constituents, especially oxygen, by direct antisunward acceleration of planetary ions may have played a key role in Venus' atmosphere evolution, but the significance of their effects

California at Berkeley, University of

106

Magnetic fields in the Venus ionosphere: Dependence on the IMF direction—Venus express observations  

NASA Astrophysics Data System (ADS)

The structure of the magnetized ionosphere of Venus is investigated using the magnetometer and plasma (Analyzer of Space Plasmas and Energetic Atoms 4) data from the Venus Express spacecraft. Observations surveying the low-altitude (h ? 250 km) ionosphere were made at solar zenith angles ? 75°. The magnetic field permeating the Venus ionosphere at solar minimum conditions increases at low altitudes and reaches a maximum at an altitude of ˜200 km. The orientation of the magnetic field in the peak is almost insensible to the magnetic field direction in the solar wind. For both sector polarities of the IMF, the magnetic field vector has a dominant dawn-dusk component. The topology of the magnetic field also occurs different for different signs of the cross-flow component of the IMF revealing either a sudden straightening with liberation of the magnetic field stresses or a closing into a loop. We discuss different mechanisms of the peak formation including local magnetization, a weak intrinsic planetary field, a dipole field induced by eddy currents, a remnant origin, or giant flux ropes. All of them fail to explain most of the observed features. We suggest that a decoupling of ion and electron motion at low altitudes due to ion-neutral collisions results in currents which produce different field configurations depending on the IMF orientation.

Dubinin, E.; Fraenz, M.; Zhang, T. L.; Woch, J.; Wei, Y.

2014-09-01

107

Mitigating Extreme Environments for In-Situ Jupiter and Venus Missions  

NASA Technical Reports Server (NTRS)

In response to the recommendations by the National Research Council (NRC), NASA's Solar System Exploration (SSE) Roadmap identified the in situ exploration of Venus and Jupiter as high priority science objectives. For Jupiter, deep entry probes are recommended, which would descend to approx.250 km - measured from the 1 bar pressure depth. At this level the pressure would correspond to approx.100 bar and the temperature would reach approx.500(deg)C. Similarly, at the surface of Venus the temperature and pressure conditions are approx.460(deg)C and approx.90 bar. Lifetime of the Jupiter probes during descent can be measured in hours, while in{situ operations at and near the surface of Venus are envisioned over weeks or months. In this paper we discuss technologies, which share commonalities in mitigating these extreme conditions over proposed mission lifetimes, specially focusing on pressure and temperature environments.

Balint, Tibor S.; Kolawa, Elizabeth A.; Cutts, James A.

2006-01-01

108

Ballistic trajectories for Mercury Orbiter missions using optimal Venus flybys, a systematic search  

NASA Technical Reports Server (NTRS)

The considered approach, which has been previously studied by Hollenbeck et al. (1973) makes use of a Venus gravity assist. The search for ideal trajectories for Mercury Orbiter missions involves a determination of trajectories with the lowest possible Mercury approach speed. Ideal Venus-to-Mercury transfers and opportunities are discussed. The second part of the reported investigation is concerned with the determination of suitable trajectories for the trip from earth to Venus. On the basis of the obtained data it appears that the best ten trajectories can deliver spacecraft from a low of 720 kg to a high of 1230 kg to orbits with 500 km periapse and 24 hr periods. The corresponding flight times are 790 days and 1243 days.

Bender, D. F.

1976-01-01

109

Venus, Mars, and the ices on Mercury and the moon: astrobiological implications and proposed mission designs.  

PubMed

Venus and Mars likely had liquid water bodies on their surface early in the Solar System history. The surfaces of Venus and Mars are presently not a suitable habitat for life, but reservoirs of liquid water remain in the atmosphere of Venus and the subsurface of Mars, and with it also the possibility of microbial life. Microbial organisms may have adapted to live in these ecological niches by the evolutionary force of directional selection. Missions to our neighboring planets should therefore be planned to explore these potentially life-containing refuges and return samples for analysis. Sample return missions should also include ice samples from Mercury and the Moon, which may contain information about the biogenic material that catalyzed the early evolution of life on Earth (or elsewhere). To obtain such information, science-driven exploration is necessary through varying degrees of mission operation autonomy. A hierarchical mission design is envisioned that includes spaceborne (orbital), atmosphere (airborne), surface (mobile such as rover and stationary such as lander or sensor), and subsurface (e.g., ground-penetrating radar, drilling, etc.) agents working in concert to allow for sufficient mission safety and redundancy, to perform extensive and challenging reconnaissance, and to lead to a thorough search for evidence of life and habitability. PMID:16379531

Schulze-Makuch, Dirk; Dohm, James M; Fairén, Alberto G; Baker, Victor R; Fink, Wolfgang; Strom, Robert G

2005-12-01

110

Mars Express and Venus Express Data Retention In-Flight Performance  

NASA Astrophysics Data System (ADS)

Venus, Mars and Earth, three out of the four inner or 'rocky' planets of the Solar System, have a lot in common: a solid surface you could walk on, a comparable surface composition, an atmosphere and a weather system. European Space Agency (ESA) Mars Express (MEx) and Venus Express (VEx) pioneer scientific missions aim at exploring these two neighbours of the Earth, in order to enrich our knowledge of our planet and of the Solar System. Both projects are based on the same spacecraft bus, and in particular on 'sister' Solid State Mass Memory (SSMM) units, in charge of the acquisition, storage and retrieval of all on board data, relevant both to the platform and to the instruments. This paper recalls the common SSMM design and the inner fault tolerant memory array module architecture based on Computer Off The Shelf (COTS) Samsung 64 Mbit Synchronous Dynamic Random Access Memory (SDRAM) chips, and presents the comparative in-flight data retention performance for both MEx and Vex units, since their respective June 2003 and November 2005 launches. Both units have shown to successfully withstand the radiative deep space environment, including during the outstanding October 2003 solar flare, and no uncorrectable data corruption was ever reported. Beyond this stable retention performance over time, the memory scrubbing correctable error accounting feedback allows evaluating the deep space Single Event Upset (SEU) rates, to be compared with the theoretical SSMM radiation assessment as well as with other previous missions in-flight qualitative reference performance records, and finally enables to derive a couple of recommendations from the lessons' learnt.

Lebrédonchel, J.; Rombeck, F.-J.

2007-08-01

111

Manned Mars lander launch-to-rendezvous analysis for a 1981 Venus-swingby mission  

NASA Technical Reports Server (NTRS)

A description is given of the return of a manned Mars lander by a launch from the surface of Mars to some intermediate orbit, with subsequent maneuvers to rendezvous with a primary spacecraft (called the orbiter) in a Mars parking orbit. The type of Mars mission used to demonstrate the analytical technique includes a Venus swingby on the Mars-to-Earth portion of the trajectory in order to reduce the total mission velocity requirement. The total velocity requirement for the mission considered (if inplane launches are assumed) is approximately 17,500 ft/sec.

Faust, N. L.; Murtagh, T. B.

1971-01-01

112

Venus Exploration opportunities within NASA's Solar System Exploration roadmap  

NASA Technical Reports Server (NTRS)

Science goals to understand the origin, history and environment of Venus have been driving international space exploration missions for over 40 years. Past missions include the Magellan and Pioneer-Venus missions by the US; the Venera program by the USSR; and the Vega missions through international cooperation. Furthermore, the US National Research Council (NRC), in the 2003 Solar System Exploration (SSE) Decadal Survey, identified Venus as a high priority target, thus demonstrating a continuing interest in Earth's sister planet. In response to the NRC recommendation, the 2005 NASA SSE Roadmap included a number of potential Venus missions arching through all mission classes from small Discovery, to medium New Frontiers and to large Flagship class missions. While missions in all of these classes could be designed as orbiters with remote sensing capabilities, the desire for scientific advancements beyond our current knowledge - including what we expect to learn from the ongoing ESA Venus Express mission - point to in-situ exploration of Venus.

Balint, Tibor; Thompson, Thomas; Cutts, James; Robinson, James

2006-01-01

113

Assessing the long-term variability of Venus winds at cloud level from VIRTIS-Venus Express  

NASA Astrophysics Data System (ADS)

The Venus Express (VEX) mission has been in orbit to Venus for more than 4 years now. The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument onboard VEX observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet that can be used to sample the atmosphere at different altitudes. Day-side images in the ultraviolet range (380 nm) are used to study the dynamics of the upper cloud at 66-72 km while night-side images in the near infrared (1.74 ?m) map the opacity of the lower cloud deck at 44-48 km. Here we present a long-term analysis of the global atmospheric dynamics at these levels using a large selection of orbits from the VIRTIS-M dataset covering 860 Earth days that extends our previous work (Sánchez-Lavega, A. et al. [2008]. Geophys. Res. Lett. 35, L13204) and allows studying the variability of the global circulation at the two altitude levels. The atmospheric superrotation is evident with equatorial to mid-latitudes westward velocities of 100 and 60 m s -1 in the upper and lower cloud layers. These zonal velocities are almost constant in latitude from the equator to 50°S. From 50°S to 90°S the zonal winds at both cloud layers decrease steadily to zero at the pole. Individual cloud tracked winds have errors of 3-10 m s -1 with a mean of 5 m s -1 and the standard deviations for a given latitude of our zonal and meridional winds are 9 m s -1. The zonal winds in the upper cloud change with the local time in a way that can be interpreted in terms of a solar tide. The zonal winds in the lower cloud are stable at mid-latitudes to the tropics and present variability at subpolar latitudes apparently linked to the activity of the South polar vortex. While the upper cloud presents a net meridional motion consistent with the upper branch of a Hadley cell with peak velocity v = 10 m s -1 at 50°S, the lower cloud meridional motions are less organized with some cloud features moving with intense northwards and southwards motions up to v = ±15 m s -1 but, on average, with almost null global meridional motions at all latitudes. We also examine the long-term behavior of the winds at these two vertical layers by comparing our extended wind tracked data with results from previous missions.

Hueso, R.; Peralta, J.; Sánchez-Lavega, A.

2012-02-01

114

A study of an orbital radar mapping mission to Venus. Volume 2: Configuration comparisons and systems evaluation  

NASA Technical Reports Server (NTRS)

Configuration comparisons and systems evaluation for the orbital radar mapping mission of the planet Venus are discussed. Designs are recommended which best satisfy the science objectives of the Venus radar mapping concept. Attention is given to the interaction and integration of those specific mission-systems recommendations with one another, and the final proposed designs are presented. The feasibility, cost, and scheduling of these configurations are evaluated against assumptions of reasonable state-of-the-art growth and space funding expectations.

1973-01-01

115

Mars exploration, Venus swingby and conjunction class mission modes, time period 2000 to 2045  

NASA Technical Reports Server (NTRS)

Trajectory and mission requirement data are presented for Earth-Mars opposition class and conjunction class round trip stopover mission opportunities available during the time period year 2000 to year 2045. The opposition class mission employs the gravitational field of Venus to accelerate the space vehicle on either the outbound or inbound leg. The gravitational field of Venus was used to reduce the propulsion requirement associated with the opposition class mission. Representative space vehicle systems are sized to compare the initial mass required in low Earth orbit of one mission opportunity with another mission opportunity. The interplanetary space vehicle is made up of the spacecraft and the space vehicle acceleration system. The space vehicle acceleration system consists of three propulsion stages. The first propulsion stage performs the Earth escape maneuver; the second stage brakes the spacecraft and Earth braking stage into the Mars elliptical orbit and effects the escape maneuver from the Mars elliptical orbit. The third propulsion stage brakes the mission module into an elliptical orbit at Earth return. The interplanetary space vehicle was assumed to be assembled in and depart from the space station circular orbit.

Young, A. C.; Mulqueen, J. A.; Skinner, J. E.

1984-01-01

116

Venus Technology Plan Venus Technology Plan  

E-print Network

Venus Technology Plan May 2014 #12; ii Venus Technology Plan At the Venus Exploration Survey priorities, and (3) develop a Technology Plan for future Venus missions (after a Technology Forum at VEXAG Meeting 11 in November 2013). Here, we present the 2014 Venus Technology Plan

Rathbun, Julie A.

117

Electronics and Sensor Cooling with a Stirling Cycle for Venus Surface Mission  

NASA Technical Reports Server (NTRS)

The inhospitable ambient surface conditions of Venus, with a 450 C temperature and 92 bar pressure, may likely require any extended-duration surface exploratory mission to incorporate some type of cooling for probe electronics and sensor devices. A multiple-region Venus mission study was completed at NASA GRC in December of 2003 that resulted in the preliminary design of a kinematically-driven, helium charged, Stirling cooling cycle with an estimated over-all COP of 0.376 to lift 100 watts of heat from a 200 C cold sink temperature and reject it at a hot sink temperature of 500 C. This paper briefly describes the design process and also describes and summarizes key features of the kinematic, Stirling cooler preliminary design concept.

Mellott, Ken

2004-01-01

118

SPICAV on Venus Express: Three spectrometers to study the global structure and composition of the Venus atmosphere  

NASA Astrophysics Data System (ADS)

Spectroscopy for the investigation of the characteristics of the atmosphere of Venus (SPICAV) is a suite of three spectrometers in the UV and IR range with a total mass of 13.9 kg flying on the Venus Express (VEX) orbiter, dedicated to the study of the atmosphere of Venus from ground level to the outermost hydrogen corona at more than 40,000 km. It is derived from the SPICAM instrument already flying on board Mars Express (MEX) with great success, with the addition of a new IR high-resolution spectrometer, solar occultation IR (SOIR), working in the solar occultation mode. The instrument consists of three spectrometers and a simple data processing unit providing the interface of these channels with the spacecraft. A UV spectrometer (118-320 nm, resolution 1.5 nm) is identical to the MEX version. It is dedicated to nadir viewing, limb viewing and vertical profiling by stellar and solar occultation. In nadir orientation, SPICAV UV will analyse the albedo spectrum (solar light scattered back from the clouds) to retrieve SO 2, and the distribution of the UV-blue absorber (of still unknown origin) on the dayside with implications for cloud structure and atmospheric dynamics. On the nightside, ? and ? bands of NO will be studied, as well as emissions produced by electron precipitations. In the stellar occultation mode the UV sensor will measure the vertical profiles of CO 2, temperature, SO 2, SO, clouds and aerosols. The density/temperature profiles obtained with SPICAV will constrain and aid in the development of dynamical atmospheric models, from cloud top (˜60 km) to 160 km in the atmosphere. This is essential for future missions that would rely on aerocapture and aerobraking. UV observations of the upper atmosphere will allow studies of the ionosphere through the emissions of CO, CO +, and CO 2+, and its direct interaction with the solar wind. It will study the H corona, with its two different scale heights, and it will allow a better understanding of escape mechanisms and estimates of their magnitude, crucial for insight into the long-term evolution of the atmosphere. The SPICAV VIS-IR sensor (0.7-1.7 ?m, resolution 0.5-1.2 nm) employs a pioneering technology: an acousto-optical tunable filter (AOTF). On the nightside, it will study the thermal emission peeping through the clouds, complementing the observations of both VIRTIS and Planetary Fourier Spectrometer (PFS) on VEX. In solar occultation mode this channel will study the vertical structure of H 2O, CO 2, and aerosols. The SOIR spectrometer is a new solar occultation IR spectrometer in the range ?=2.2-4.3 ?m, with a spectral resolution ?/? ?>15,000, the highest on board VEX. This new concept includes a combination of an echelle grating and an AOTF crystal to sort out one order at a time. The main objective is to measure HDO and H 2O in solar occultation, in order to characterize the escape of D atoms from the upper atmosphere and give more insight about the evolution of water on Venus. It will also study isotopes of CO 2 and minor species, and provides a sensitive search for new species in the upper atmosphere of Venus. It will attempt to measure also the nightside emission, which would allow a sensitive measurement of HDO in the lower atmosphere, to be compared to the ratio in the upper atmosphere, and possibly discover new minor atmospheric constituents.

Bertaux, Jean-Loup; Nevejans, D.; Korablev, O.; Villard, E.; Quémerais, E.; Neefs, E.; Montmessin, F.; Leblanc, F.; Dubois, J. P.; Dimarellis, E.; Hauchecorne, A.; Lefèvre, F.; Rannou, P.; Chaufray, J. Y.; Cabane, M.; Cernogora, G.; Souchon, G.; Semelin, F.; Reberac, A.; Van Ransbeek, E.; Berkenbosch, S.; Clairquin, R.; Muller, C.; Forget, F.; Hourdin, F.; Talagrand, O.; Rodin, A.; Fedorova, A.; Stepanov, A.; Vinogradov, I.; Kiselev, A.; Kalinnikov, Yu.; Durry, Georges; Sandel, B.; Stern, A.; Gérard, J. C.

2007-10-01

119

VERITAS: A Mission Concept for the High Resolution Topographic Mapping and Imaging of Venus  

NASA Astrophysics Data System (ADS)

Magellan, a NASA mission to Venus in the early 1990's, mapped nearly the entire surface of Venus with an S-band (12 cm) synthetic aperture radar and microwave radiometer and made radar altimeter measurements of the topography. These measurements revolutionized our understanding of the geomorphology, geology and geophysical processes that have shaped the evolution of the surface of Venus. The Magellan spacecraft had an elliptical orbit with an apoapsis of approximately 8000 km and a periapsis of 257 km and an orbital inclination of 86°. In this way the radar was able to collect long strips of data approximately 10000 km in length running north to south with altitudes varying from 3000 km to 257 km. During the remainder of the orbit the collected data was down linked to earth. The SAR mode operated in burst mode fashion whereby it transmitted a small string of pulses up to a couple of hundred pulses in length followed by a quiescent period when the radar ceased transmission and allowed interleaved operation of the altimeter and radiometer modes. This mode of operation allowed for a significant reduction in downlinked SAR imaging data at the expense of azimuth (i.e. along-track) resolution. However, the lack of finer resolution imagery and topography of the surface than that obtained by the Magellan mission has hampered the definitive answer to key questions concerning the processes and evolution of the surface of Venus. The Venus Emissivity, Radio Science, InSAR Topography And Spectroscopy (VERITAS) Mission is a proposed mission to Venus designed to obtain high resolution imagery and topography of the surface using an X-band radar configured as a single pass radar interferometer coupled with a multispectral NIR emissivity mapping capability. VERITAS would map surface topography with a spatial resolution of 250 m and 5 m vertical accuracy and generate radar imagery with 30 m spatial resolution. These capabilities represent an order of magnitude or better improvement of the Magellan system and are expected to reveal definitive information on processes not possible with the Magellan data. The combination of surface topography and image data provide unprecedented knowledge of Venus' tectonic and impact history, the timing and mechanisms of volcanic resurfacing, and the mantle processes responsible for them. The combination of instruments on VERITAS, and in particular the InSAR instrument, is designed to address a series of focused hypothesis driven questions left unresolved by the Magellan mission for example: 1) Is there evidence for a past tectonic or cratered surface beneath the plains? and 2) How and when did Venus resurface? This talk will present an overview of the proposed VERITAS mission, the radar instrument design and trade options and the projected performance as well as a brief overview of some of the major science objectives. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

Hensley, S.; Smrekar, S. E.; Pollard, B.

2012-12-01

120

Models of the global cloud structure on Venus derived from Venus Express observations  

NASA Astrophysics Data System (ADS)

Spatially-resolved near-infrared spectra from the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on Venus Express have been used to derive improved models of the vertical structure and global distribution of cloud properties in the southern hemisphere of Venus. VIRTIS achieved the first systematic, global mapping of Venus at wavelengths within transparency windows in the 1.6-2.6 ?m range, which are sensitive on the nightside to absorption by the lower and middle cloud layers of thermally-emitted radiation from the hot lower atmosphere ( Taylor, F.W., Crisp, D., Bézard, B. [1997]. Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, pp. 325-351). The cloud model used to interpret the spectra is based on previous work by Pollack et al. (Pollack, J., Dalton, J., Grinspoon, D., Wattson, R., Freedman, R., Crisp, D., Allen, D., Bézard, B., de Bergh, C., Giver, L. [1993]. Icarus 103, 1-42), Grinspoon et al. (Grinspoon, D.H., Pollack, J.B., Sitton, B.R., Carlson, R.W., Kamp, L.W., Baines, K.H., Encrenaz, T., Taylor, F.W. [1993]. Planet. Space Sci. 41, 515-542) and Crisp (Crisp, D. [1986]. Icarus 67, 484-514), and assumes a composition for the cloud particles of sulfuric acid and water, with acid concentration as a free parameter to be determined. Other retrieved parameters are the average size of the particles and the altitude of the cloud base in the model. Latitudinal variation in the atmospheric temperature structure was incorporated using data from the Venus Radio Science experiment (VeRa). Values are estimated initially using wavelength pairs selected for their unique sensitivity to each parameter, and then validated by comparing measured to calculated spectra over the entire wavelength range, the latter generated using the NEMESIS radiative transfer and retrieval code (Irwin, P.G.J., Teanby, N.A., de Kok, R., Fletcher, L.N., Howett, C.J.A., Tsang, C.C.C., Wilson, C.F., Calcutt, S.B., Nixon, C.A., Parrish, P.D. [2008]. J. Quant. Spectrosc. Radiat. Trans. 109, 1136-1150). The sulfuric acid concentration in the cloud particles is found to be higher in regions of optically thick cloud. The cloud base altitude shows a dependence on latitude, reaching a maximum height near -50°. The increased average particle size near the pole found by Wilson et al. (Wilson, C.F., Guerlet, S., Irwin, P.G.J., Tsang, C.C.C., Taylor, F.W., Carlson, R.W., Drossart, P., Piccioni, G. [2008]. J. Geophys. Res. (Planets) 113, E12) and the finding of spatially variable water vapor abundance at35-40 km altitude first reported by Tsang et al. (Tsang, C.C.C., Wilson, C.F., Barstow, J.K., Irwin, P.G.J., Taylor, F.W., McGouldrick, K., Piccioni, G., Drossart, P., Svedhem, H. [2010]. Geophys. Res. Lett. 37, L02202) are both confirmed. The implications of these improved descriptions of cloud structure and variability for the chemistry, meteorology, and radiative energy balance on Venus are briefly discussed.

Barstow, J. K.; Tsang, C. C. C.; Wilson, C. F.; Irwin, P. G. J.; Taylor, F. W.; McGouldrick, K.; Drossart, P.; Piccioni, G.; Tellmann, S.

2012-02-01

121

Analysis of Venus Express optical extinction due to aerosols in the upper haze of Venus  

NASA Astrophysics Data System (ADS)

Observations by the SPICAV/SOIR instruments aboard Venus Express (VEx) have revealed that the Upper Haze of Venus is populated by two particle modes, as reported by Wilquet et al. (J. Geophys. Res., 114, E00B42, 2009; Icarus 217, 2012). Gao et al. (In press, Icarus, 2013) posit that the large mode is made up of cloud particles that have diffused upwards from the cloud deck below, while the smaller mode is generated by the in situ nucleation of meteoric dust. They tested this hypothesis by using version 3.0 of the Community Aerosol and Radiation Model for Atmospheres, first developed by Turco et al. (J. Atmos. Sci., 36, 699-717, 1979) and upgraded to version 3.0 by Bardeen et al. (The CARMA 3.0 microphysics package in CESM, Whole Atmosphere Working Group Meeting, 2011). Using the meteoric dust production profile of Kalashnikova et al. (Geophys. Res. Lett., 27, 3293-3296, 2000), the sulfur/sulfate condensation nuclei production profile of Imamura and Hashimoto (J. Atmos. Sci., 58, 3597-3612, 2001), and sulfuric acid vapor production profile of Zhang et al. (Icarus, 217, 714-739, 2012), they numerically simulate a column of the Venus atmosphere from 40 to 100 km above the surface. Their aerosol number density results agree well with Pioneer Venus Orbiter (PVO) data from Knollenberg and Hunten (J. Geophys. Res., 85, 8039-8058, 1980), while their gas distribution results match that of Kolodner and Steffes below 55 km (Icarus, 132, 151-169, 1998). The resulting size distribution of cloud particles shows two distinct modes, qualitatively matching the observations of PVO. They also observe a third mode in their results with a size of a few microns at 48 km altitude, which appears to support the existence of the controversial third mode in the PVO data. This mode disappears if coagulation is not included in the simulation. The Upper Haze size distribution shows two lognormal-like distributions overlapping each other, possibly indicating the presence of the two distinct modes. In this work, we significantly extend the analysis to include new SOIR (PSS, 2014 Submitted) and VeRa VEx temperature profiles (which are quite different from the PVO profiles) and discuss our new results in context of the recent VEx observations (Wilquet et al., Icarus 217, 2012) with an inter comparison with the PVO data. We will also discuss similarities and differences arising from the PVO and VEx epochs where they exist.

Parkinson, Christopher; Bougher, Stephen; Mahieux, Arnaud; Tellmann, Silvia; Pätzold, Martin; Vandaele, Ann C.; Wilquet, Valérie; Schulte, Rick; Yung, Yuk; Gao, Peter; Bardeen, Charles

122

Mariner-Venus-Mercury optical navigation demonstration - Results and implications for future missions  

NASA Technical Reports Server (NTRS)

Optical navigation uses spacecraft television pictures of a target body against a known star background in a process which relates the spacecraft trajectory to the target body. This technology was used in the Mariner-Venus-Mercury mission, with the optical data processed in near-real-time, simulating a mission critical environment. Optical data error sources were identified, and a star location error analysis was carried out. Several methods for selecting limb crossing coordinates were used, and a limb smear compensation was introduced. Omission of planetary aberration corrections was the source of large optical residuals.

Acton, C. H., Jr.; Ohtakay, H.

1975-01-01

123

Scattering particles in nightside limb observations of Venus’ upper atmosphere by Venus Express VIRTIS  

NASA Astrophysics Data System (ADS)

Nightside infrared limb spectra of the Venus upper atmosphere, obtained by Venus Express VIRTIS, show strong scattering of thermal radiation. This scattering of upward-going radiation into the line-of-sight is dominant below 82.5 km even at a wavelength of 5 ?m, which is indicative of relatively large particles. We show that 1 ?m-sized sulfuric acid particles (also known as mode 2 particles) provide a good fit to the VIRTIS limb data at high altitudes. We retrieve vertical profiles of the mode 2 number density between 75 and 90 km at two latitude ranges: 20-30°N and 47-50°N. Between 20 and 30°N, scattering by mode 2 particles is the main source of radiance for altitudes between 80 and 85 km. Above altitudes of 85 km smaller particles can also be used to fit the spectra. Between 47 and 50°N mode 2 number densities are generally lower than between 20 and 30°N and the profiles show more variability. This is consistent with the 47-50° latitude region being at the boundary between the low latitudes and high latitudes, with the latter showing lower cloud tops and higher ultraviolet brightness (Titov, D.V., Taylor, F.W., Svedhem, H., Ignatiev, N.I., Markiewicz, W.J., Piccioni, G., Drossart, P. [2008]. Nature 456, 620-623).

de Kok, R.; Irwin, P. G. J.; Tsang, C. C. C.; Piccioni, G.; Drossart, P.

2011-01-01

124

Using SFOC to fly the Magellan Venus mapping mission  

NASA Technical Reports Server (NTRS)

Traditionally, spacecraft flight operations at the Jet Propulsion Laboratory (JPL) have been performed by teams of spacecraft experts utilizing ground software designed specifically for the current mission. The Jet Propulsion Laboratory set out to reduce the cost of spacecraft mission operations by designing ground data processing software that could be used by multiple spacecraft missions, either sequentially or concurrently. The Space Flight Operations Center (SFOC) System was developed to provide the ground data system capabilities needed to monitor several spacecraft simultaneously and provide enough flexibility to meet the specific needs of individual projects. The Magellan Spacecraft Team utilizes the SFOC hardware and software designed for engineering telemetry analysis, both real-time and non-real-time. The flexibility of the SFOC System has allowed the spacecraft team to integrate their own tools with SFOC tools to perform the tasks required to operate a spacecraft mission. This paper describes how the Magellan Spacecraft Team is utilizing the SFOC System in conjunction with their own software tools to perform the required tasks of spacecraft event monitoring as well as engineering data analysis and trending.

Bucher, Allen W.; Leonard, Robert E., Jr.; Short, Owen G.

1993-01-01

125

Oxygen nightglow investigation with VIRTIS/Venus-Express  

NASA Astrophysics Data System (ADS)

Venus-Express is orbiting around Venus since April 2006, and the VIRTIS instrument (Visible and Infrared Thermal Imaging Spectrometer) on board the spacecraft, is providing a large set of valuable data. In particular several spectral features in the spectral region between 1.0 and 1.6µm, have been detected during the night and attributed to molecular oxygen airglow. The most intense feature has been observed at 1.27 µm and has been identified as the widely studied (0,0) band of the (a1?g -X3?-g) oxygen transition. A weaker oxygen emission, peaking at 1.58µm and due to the (0,1) band of the same electronic transition has also been investigated with the help of VIRTIS observations and reported in recent papers. The spectral region between 1.2 and 1.4µm is not fully satisfactorly explained considering the (0,0) band of the (a1?g -X3?-g) oxygen transition alone. This would suggest that other emitting species could be the cause of the mismatch between the available data and what is observed in the Venus atmosphere by VIRTIS. In the present work, we propose to improve the fit of the spectral region around the (0,0) (a1?g -X3?-g) oxygen emission near 1.27µm, by adding other transitions and modifying physical parameters like the rotational temperature. We find that the inclusion of the (1,1) band contributes to significantly improve the fit over the 1.27-1.28µm spectral range. Moreover, we discuss the detection of a not yet identified emission at 1.06µm, which we attribute to the (1,0) transition of oxygen, which supports further more the emission of the (1,1) reported in the previous point. The detection of these new emissions provide new hints to better investigate the upper mesosphere of Venus and to shed light on the chemistry and dynamics of our sister planet. Acknowledgment: We wish to thank ESA, ASI, CNES and the VIRTIS/Venus Express Team to have supported this research.

Migliorini, Alessandra; Piccioni, Giuseppe; Gerard, Jean-Claude; Stefani, Stefania; Snels, Marcel; Zasova, Ludmila; Drossart, Pierre

126

Detecting atmospheric perturbations produced by Venus quakes Raphael Garcia  

E-print Network

Detecting atmospheric perturbations produced by Venus quakes Rapha¨el Garcia Philippe Lognonn The possibility to detect seismic activity on Venus by using the mechanical coupling of the solid are analyzed in the framework of the VIR- TIS instrument on board the ESA Venus Express mission. 1

Garcia, Raphaël

127

The 1973 Mariner mission to Venus and Mercury. II  

NASA Technical Reports Server (NTRS)

The heart of the spacecraft downlink is the flight data subsystem (FDS). The FDS combines the functions of science and engineering measurement control. The FDS can generate six principal telemetry formats, each of which may be transmitted directly to earth. Spacecraft engineering subsystems are considered, giving attention to the power subsystem, the attitude control subsystem, the propulsion subsystem, devices for temperature control, and the tracking subsystem. The mission operations system is also discussed together with the flight plan.

Hooke, A. J.

1974-01-01

128

Long-term orbit prediction for the Venus Radar Mapper Mission using an averaging method  

NASA Technical Reports Server (NTRS)

A set of singly averaged equations of motion are presented and applied to long-term orbit prediction of an orbiting spacecraft around a slowly rotating planet, using the Venus Radar Mapper Mission as an example. The equations of motion used are valid for all eccentricities less than one. The disturbing potentials used include nonsphericity of the Venus gravity field and third-body effects due to the sun. Recursive relationships are used in the expansion and evaluation of these potentials and their respective partial derivatives. Special care is taken to optimize computational efficiency. The averaging method is compared with high precision Cowell's method using a desktop microcomputer and shows computational saving of about two orders of magnitude.

Kwok, J. H.

1984-01-01

129

Long-term orbit prediction for the Venus Radar Mapper Mission using an averaging method  

NASA Astrophysics Data System (ADS)

A set of singly averaged equations of motion are presented and applied to long-term orbit prediction of an orbiting spacecraft around a slowly rotating planet, using the Venus Radar Mapper Mission as an example. The equations of motion used are valid for all eccentricities less than one. The disturbing potentials used include nonsphericity of the Venus gravity field and third-body effects due to the sun. Recursive relationships are used in the expansion and evaluation of these potentials and their respective partial derivatives. Special care is taken to optimize computational efficiency. The averaging method is compared with high precision Cowell's method using a desktop microcomputer and shows computational saving of about two orders of magnitude.

Kwok, J. H.

1984-08-01

130

The Surface of Venus and Implications for its Geological and Geodynamical Evolution: The View Before Venus Express and Outstanding Questions for the Future  

Microsoft Academic Search

Prior to the Venera 15\\/16 and the Magellan missions to Venus, a wide range of ideas existed concerning the nature of the surface of Venus, the geological processes currently operating there, their link to interior processes, the implied geological and geodynamical history of the planet, and how all this compared with the nature and history of other terrestrial planetary bodies.

J. W. Head; M. A. Ivanov; A. T. Basilevsky

2008-01-01

131

Europe Scores New Planetary Success: Venus Express Enters Orbit around the Hothouse Planet  

NASA Astrophysics Data System (ADS)

During the next four weeks, the Venus Express probe will perform a series of manoeuvres to reach the scheduled operational orbit for its scientific mission. It will move from its current highly elongated 9-day orbit to a 24-hour polar orbit, culminating at 66,000 km. From this vantage point, the orbiter will conduct an in-depth observation of the structure, chemistry and dynamics of the atmosphere of Venus for at least two Venusian days (486 Earth days). Enigmatic atmosphere From previous missions to Venus as well as observations directly from Earth, we already know that our neighbouring planet is shrouded in a thick atmosphere where extremes of temperature and pressure conditions are common. This atmosphere creates a greenhouse effect of tremendous proportions as it spins around the planet in four days in an unexplained “super-rotation” phenomenon. The mission of Venus Express will be to carry out a detailed characterisation of this atmosphere, using state-of-the-art sensors in order to answer the questions and solve the mysteries left behind by the first wave of explorers. It will also be the first Venus orbiter to conduct optical observations of the surface through “visibility windows” discovered in the infrared spectrum.V The commissioning of the onboard scientific instruments will begin shortly and the first raw data are expected within days. The overall science payload is planned to be fully operational within two months. Europe explores the Solar System With this latest success, ESA is adding another celestial body to its range of solar system studies. ESA also operates Mars Express around Mars, SMART-1 around the Moon and is NASA’s partner on the Cassini orbiter around Saturn. In addition, ESA is also operating the Rosetta probe en route to comet 67P/Churyumov-Gerasimenko. It should reach its target and become the first spacecraft ever to enter orbit around a comet nucleus by 2014. Meanwhile, ESA also plans to complete the survey of our celestial neighbours with the launch of the BepiColombo mission to Mercury in 2013. “With the arrival of Venus Express, ESA is the only space agency to have science operations under way around four planets: Venus, the Moon, Mars and Saturn” underlines Professor David Southwood, the Director of ESA’s science programmes. “We are really proud to deliver such a capability to the international science community.” “To better understand our own planet, we need to explore other worlds in particular those with an atmosphere,” said Jean-Jacques Dordain, ESA Director General. “We’ve been on Titan and we already are around Mars. By observing Venus and its complex atmospheric system, we will be able to better understand the mechanisms that steers the evolution of a large planetary atmosphere and the change of climates. In the end, it will help us to get better models of what is actually going on in our own atmosphere, for the benefit of all Earth citizens.” State-of-the-art science package Venus Express was developed for ESA by a European industrial team led by EADS Astrium incorporating 25 main contractors from 14 European countries. Its design is derived from that of its highly successful predecessor, Mars Express, and its payload accommodates seven instruments including upgraded versions of three instruments developed for Mars Express and two for Rosetta. The PFS spectrometer will determine the temperature and composition profile of the atmosphere at very high resolution. It will also monitor the surface temperature and search for hot spots from possible volcanic activity. The UV/infrared SpicaV/SOIR spectrometer and the VeRa radioscience experiment will probe the atmosphere by observing the occultation of distant starts or the fading of radio signals on the planetary limb. SpicaV/SOIR will be particularly looking for traces of water molecules, molecular oxygen and sulphur compounds, which are suspected to exist in the atmosphere of Venus. The Virtis spectrometer will map the different layers of the atmosphere and provide imagery of the cloud systems at multipl

2006-04-01

132

Analysis of Trajectory Parameters for Probe and Round-Trip Missions to Venus  

NASA Technical Reports Server (NTRS)

For one-way transfers between Earth and Venus, charts are obtained that show velocity, time, and angle parameters as functions of the eccentricity and semilatus rectum of the Sun-focused vehicle conic. From these curves, others are obtained that are useful in planning one-way and round-trip missions to Venus. The analysis is characterized by circular coplanar planetary orbits, successive two-body approximations, impulsive velocity changes, and circular parking orbits at 1.1 planet radii. For round trips the mission time considered ranges from 65 to 788 days, while wait time spent in the parking orbit at Venus ranges from 0 to 467 days. Individual velocity increments, one-way travel times, and departure dates are presented for round trips requiring the minimum total velocity increment. For both single-pass and orbiting Venusian probes, the time span available for launch becomes appreciable with only a small increase in velocity-increment capability above the minimum requirement. Velocity-increment increases are much more effective in reducing travel time for single-pass probes than they are for orbiting probes. Round trips composed of a direct route along an ellipse tangent to Earth's orbit and an aphelion route result in the minimum total velocity increment for wait times less than 100 days and mission times ranging from 145 to 612 days. Minimum-total-velocity-increment trips may be taken along perihelion-perihelion routes for wait times ranging from 300 to 467 days. These wait times occur during missions lasting from 640 to 759 days.

Dugan, James F., Jr.; Simsic, Carl R.

1960-01-01

133

RAVEN - High-resolution Mapping of Venus within a Discovery Mission Budget  

NASA Astrophysics Data System (ADS)

It has been more than 15 years since the Magellan mission mapped Venus with S-band synthetic aperture radar (SAR) images at ~100-m resolution. Advances in radar technology are such that current Earth-orbiting SAR instruments are capable of providing images at meter-scale resolution. RAVEN (RAdar at VENus) is a mission concept that utilizes the instrument developed for the RADARSAT Constellation Mission (RCM) to map Venus in an economical, highly capable, and reliable way. RCM relies on a C-band SAR that can be tuned to generate images at a wide variety of resolutions and swath widths, ranging from ScanSAR mode (broad swaths at 30-m resolution) to strip-map mode (resolutions as fine as 3 m), as well as a spotlight mode that can image patches at 1-m resolution. In particular, the high-resolution modes allow the landing sites of previous missions to be pinpointed and characterized. Repeat-pass interferometric SAR (InSAR) and stereo radargrammetry provide options for constraining topography to better than 100-m horizontal and 10-m vertical resolution. InSAR also provides the potential for detecting surface deformation at centimeter precision. Performing InSAR requires precise knowledge and control of the orbital geometry, and for this reason a 600-km circular polar orbit is favored. This configuration causes the equatorial nadir point to move ~9 km per orbit. Considering both ascending and descending passes, the spacecraft will pass over every point on the planet in half a Venus day (~4 Earth months). The ability to transmit data back to Earth via the Deep Space Network is the primary limiting factor on the volume of data that can be collected. Our current estimates indicate that within an imaging cycle of one Venus day we can image 20-30 percent of the planet at 20-30-m resolution and several percent at 3-5 m resolution. These figures compare favorably to the coverage provided by recent imaging systems orbiting Mars. Our strategy calls for the first cycle of coverage to be devoted to imaging large geographic areas (e.g., Thetis Regio) at 20-30-m resolution with interleaved observation of pre-selected targets at high resolution. The second cycle will include additional imaging, but the focus will be repeat-pass coverage to obtain topography for a significant fraction of the first-cycle targets. A focus of the third cycle will be InSAR-based deformation studies of selected areas. All components of the spacecraft are expected to remain operational well beyond the nominal mission time, so global mapping at 10 m or better resolution during an extended mission is conceivable. RAVEN will allow us to determine both the broad framework of the planet’s geologic history (e.g, uniformitarian versus catastrophic evolution) and the nature of current geologic activity. It will substantially advance our understanding of Venus and reveal details, issues, and further questions that will benefit future site-specific missions such as probes and landers. Current RAVEN science team members are Buck Sharpton (PI), Rudi Gens, Rebecca Ghent, Martha Gilmore, Robert Grimm, Robert Herrick, Catherine Johnson, Patrick McGovern, Franz Meyer, Peter Mouginis-Mark, Jeff Plaut, David Sandwell, Mark Simons, and Sean Solomon.

Sharpton, V. L.; Herrick, R. R.; Rogers, F.; Waterman, S.

2009-12-01

134

PC-402 Pioneer Venus orbiter spacecraft mission operational characteristics document  

NASA Technical Reports Server (NTRS)

The operational characteristics of the Orbiter spacecraft and its subsystems are described. In extensive detail. Description of the nominal phases, system interfaces, and the capabilities and limitations of system level performance are included along with functional and operational descriptions at the subsystem and unit level the subtleties of nominal operation as well as detailed capabilities and limitations beyond nominal performance are discussed. A command and telemetry logic flow diagram for each subsystem is included. Each diagram encountered along each command signal path into, and each telemetry signal path out of the subsystem. Normal operating modes that correspond to the performance of specific functions at the time of specific events in the mission are also discussed. Principal backup means of performing the normal Orbiter operating modes are included.

Barker, F. C.; Butterworth, L. W.; Daniel, R. E.; Drean, R. J.; Filetti, K. A.; Fisher, J. N.; Nowak, L. A.; Porzucki, J.; Salvatore, J. O.; Tadler, G. A.

1978-01-01

135

Exploring Venus  

NASA Technical Reports Server (NTRS)

With a temperature higher than the inside of your oven and atmospheric pressure equal to that a kilometer under the ocean, the surface of Venus is one of the most hostile environments in the solar system, and Venus exploration presents a challenge to technology. This lecture presents mission trade-offs and discusses a proposed mission concept for rover and aircraft based exploration of the surface and atmosphere of Venus. Several approaches to the technology, electronics, mechanical parts, and power systems, are discussed.

Landis, Geoffrey A.

2008-01-01

136

Advanced Stirling Duplex Materials Assessment for Potential Venus Mission Heater Head Application  

NASA Technical Reports Server (NTRS)

This report will address materials selection for components in a proposed Venus lander system. The lander would use active refrigeration to allow Space Science instrumentation to survive the extreme environment that exists on the surface of Venus. The refrigeration system would be powered by a Stirling engine-based system and is termed the Advanced Stirling Duplex (ASD) concept. Stirling engine power conversion in its simplest definition converts heat from radioactive decay into electricity. Detailed design decisions will require iterations between component geometries, materials selection, system output, and tolerable risk. This study reviews potential component requirements against known materials performance. A lower risk, evolutionary advance in heater head materials could be offered by nickel-base superalloy single crystals, with expected capability of approximately 1100C. However, the high temperature requirements of the Venus mission may force the selection of ceramics or refractory metals, which are more developmental in nature and may not have a well-developed database or a mature supporting technology base such as fabrication and joining methods.

Ritzert, Frank; Nathal, Michael V.; Salem, Jonathan; Jacobson, Nathan; Nesbitt, James

2011-01-01

137

Venus cloud bobber mission: A long term survey of the Venusian surface  

NASA Technical Reports Server (NTRS)

We have examined the Venus Balloon concept in order to further develop the ideas and concepts behind it, and to creatively apply them to the design of the major Venus Balloon components. This report presents our models of the vertical path taken by the Venus Balloon and the entry into Venusian atmosphere. It also details our designs of the balloon, gondola, heat exchanger, power generator, and entry module. A vehicle is designed for a ballistic entry into the Venusian atmosphere, and an atmospheric model is created. The model is then used to set conditions. The shape and material of the vehicle are optimized, and the dimensions of the vehicle are then determined. Equipment is chosen and detailed that will be needed to collect and transmit information and control the mission. A gondola is designed that will enable this sensitive electronic equipment to survive in an atmosphere of very high temperature and pressure. This shape and the material of the shell are optimized, and the size is minimized. Insulation and supporting structures are designed to protect the payload equipment and to minimize mass. A method of cooling the gondola at upper altitudes was established. Power needs of the gondola equipment are determined. Power generation options are discussed and two separate thermoelectric generation models are outlined.

Wai, James; Derengowski, Cheryl; Lautzenhiser, Russ; Emerson, Matt; Choi, Yongho

1994-01-01

138

Water abundance and hydrogen isotopic ratio in the upper atmosphere of Venus from SOIR measurements on board Venus Express  

NASA Astrophysics Data System (ADS)

Water on Venus is much more scarce than on Earth, with volume mixing ratios lower than a part per million. The reason for this has always been of great interest, because it may give clues to the difference of evolution between the two planets. Studying water gives also access to another important planetary parameter, which is the deuterium to hydrogen isotopic ratio. H _{2}O and HDO are measured together with CO _{2} in the SOIR wavelength range, in the region 2.5 to 2.6 ?m (3800 to 4000 cm ^{-1}) for H _{2}O and 3.35 to 3.85 ?m (2600 to 3000 cm ^{-1}) for HDO, which allows the derivation of their vertical density profiles together with the temperature and total density profiles obtained from CO2 measurements [1], which can be used to calculate VMR profiles. The measurements all occur at the Venus terminator, both the morning and evening side, covering all latitudes from the North Pole to the South Pole. The vertical resolution is very good from the North Pole to 40° North (resolution of 500 m), and is poorer in the Southern hemisphere (resolution between 1000 m and 2500 m). The maximum extent of the H _{2}O and the HDO profiles is from 120 to 70 km, with variations from orbit to orbit. We will present results from the simultaneous measurements of H _{2}O and HDO that occur during the first 5 occultation seasons of Venus Express, i.e. from 04/09/2006 to 22/08/2007. 1. Mahieux, A., A.C. Vandaele, S. Robert, V. Wilquet, R. Drummond, F. Montmessin, and J.L. Bertaux, Densities and temperatures in the Venus mesosphere and lower thermosphere retrieved from SOIR on board Venus Express. Carbon dioxide measurements at the Venus terminator. J. Geophys. Res., (submitted) (2012)

Drummond, Rachel; Mahieux, Arnaud; Wilquet, Valerie; Bertaux, Jean-Loup; Robert, Severine; Vandaele, Ann C.; Matsui, Hiroki; Iwagami, Naomoto

2012-07-01

139

Electromagnetic waves observed by Venus Express at periapsis: Detection and analysis techniques  

Microsoft Academic Search

The magnetometer on Venus Express was designed to be able to obtain 128Hz samples of the magnetic field from two sensors in a gradiometer configuration. This mode is used around periapsis to determine whether the signals reported at low altitudes near 100Hz, had the properties of electromagnetic waves generated by electric discharges in the Venus atmosphere. The lack of a

C.T. Russell; T. L. Zhang; R. J. Strangeway; H. Y. Wei; M. Delva; W. Magnes

2008-01-01

140

Electromagnetic waves observed by Venus Express at periapsis: Detection and analysis techniques  

Microsoft Academic Search

The magnetometer on Venus Express was designed to be able to obtain 128 Hz samples of the magnetic field from two sensors in a gradiometer configuration. This mode is used around periapsis to determine whether the signals reported at low altitudes near 100 Hz, had the properties of electromagnetic waves generated by electric discharges in the Venus atmosphere. The lack

C. T. Russell; T. L. Zhang; R. J. Strangeway; H. Y. Wei; M. Delva; W. Magnes

2008-01-01

141

The variable upper atmosphere of Venus, as determined by data from drag and torque measurements by Venus Express  

NASA Astrophysics Data System (ADS)

Until recently the only information on the structure of the polar upper atmosphere of Venus available has been based on the reference atmosphere models such as the VTS3 or VIRA models. These models extrapolate the values from low latitudes to high latitudes by using equivalent solar zenith angles. New measurements by Venus Express show that such extrapolations not always give correct results and that there is a permanent overestimate of the density at high latitudes. These new results have been reached by using two different but related techniques, both using an atmospheric drag effect on the spacecraft. By reducing the pericentre altitude the total mass density in the altitude range 150-200km can be measured in situ by monitoring the orbital decay caused by the drag on the spacecraft by the atmosphere via direct tracking of the Doppler signal on the telecommunication link. Such measurements have been performed with Venus Express several times during the last years as part of the Venus Express Atmospheric Drag Experiment (VExADE). The results indicate a large variability within only a few days and have led to questions if these variations are real or within the uncertainty of the measurements. A completely different and independent measurement is given by monitoring the torque asserted by the atmosphere on the spacecraft. This is done by monitoring the momentum accumulated in the reaction wheels during the pericenter pass and at the same time considering all other perturbing forces. This requires the spacecraft to fly in an asymmetric attitude with respect to the center of gravity, center of drag and the velocity vector. This technique has proven very sensitive, in particular if the geometric asymmetry is large, and offers an additional method of measuring atmospheric densities in-situ that previously had not been explored with the Venus Express spacecraft. Similar measurements have been done in the past by Magellan at Venus and by Cassini at Titan. Between 2009 and 2012 several campaigns, with altitudes going as low as 165 km, were held. The highest density measured was 7.7 10-12kg/m3 which is significantly less than earlier models predict. The results largely confirm the density measurements by the VExADE drag measurements and add to the confidence in the results from these measurements. By using these drag and torque results and assuming a hydrostatic diffusive equilibrium atmosphere a new model has been constructed. The model is fitted to the Venus Express remote sensing measurements in the upper mesosphere (VeRa radio occultation data) and lower thermosphere (SpicaV/SOIR data) to give a continuous transition across the different regions.

Svedhem, Håkan; Müller-Wodarg, Ingo; Rosenblatt, Pascal

2013-04-01

142

The electrical performance of Ag Zn batteries for the Venus multi-probe mission  

NASA Technical Reports Server (NTRS)

An evaluation of 5 Ah and 21 Ah Silver-Zinc batteries was made to determine their suitability to meet the energy storage requirements of the bus vehicle, 3 small probes and large probe for the Venus multi-probe mission. The evaluation included a 4 Ah battery for the small probe, a 21 Ah battery for the large probe, one battery of each size for the bus vehicle power, a periodic cycling test on each size battery and a wet stand test of charged and discharged cells of both cell designs. The study on the probe batteries and bus vehicle batteries included both electrical and thermal simulation for the entire mission. The effects on silver migration and zinc penetration of the cellophane separators caused by the various test parameters were determined by visual and X-ray fluorescence analysis. The 5 Ah batteries supported the power requirements for the bus vehicle and small probe. The 21 Ah large probe battery supplied the required mission power. Both probe batteries delivered in excess of 132 percent of rated capacity at the completion of the mission simulation.

Palandati, C.

1975-01-01

143

Mission Sizing and Trade Studies for Low Ballistic Coefficient Entry Systems to Venus  

NASA Technical Reports Server (NTRS)

The U.S and the U.S.S.R. have sent seventeen successful atmospheric entry missions to Venus. Past missions to Venus have utilized rigid aeroshell systems for entry. This rigid aeroshell paradigm sets performance limitations since the size of the entry vehicle is constrained by the fairing diameter of the launch vehicle. This has limited ballistic coefficients (beta) to well above 100 kg/m2 for the entry vehicles. In order to maximize the science payload and minimize the Thermal Protection System (TPS) mass, these missions have entered at very steep entry flight path angles (gamma). Due to Venus thick atmosphere and the steep-gamma, high- conditions, these entry vehicles have been exposed to very high heat flux, very high pressures and extreme decelerations (upwards of 100 g's). Deployable aeroshells avoid the launch vehicle fairing diameter constraint by expanding to a larger diameter after the launch. Due to the potentially larger wetted area, deployable aeroshells achieve lower ballistic coefficients (well below 100 kg/m2), and if they are flown at shallower flight path angles, the entry vehicle can access trajectories with far lower decelerations (50-60 g's), peak heat fluxes (400 W/cm2) and peak pressures. The structural and TPS mass of the shallow-gamma, low-beta deployables are lower than their steep-gamma, high-beta rigid aeroshell counterparts at larger diameters, contributing to lower areal densities and potentially higher payload mass fractions. For example, at large diameters, deployables may attain aeroshell areal densities of 10 kg/m2 as opposed to 50 kg/m2 for rigid aeroshells. However, the low-beta, shallow-gamma paradigm also raises issues, such as the possibility of skip-out during entry. The shallow-gamma could also increase the landing footprint of the vehicle. Furthermore, the deployable entry systems may be flexible, so there could be fluid-structure interaction, especially in the high altitude, low-density regimes. The need for precision in guidance, navigation and control during entry also has to be better understood. This paper investigates some of the challenges facing the design of a shallow-gamma, low-beta entry system.

Dutta, Soumyo; Smith, Brandon; Prabhu, Dinesh; Venkatapathy, Ethiraj

2012-01-01

144

Inflight calibration technique for onboard high-gain antenna pointing. [of Mariner 10 spacecraft in Venus and Mercury flyby mission  

NASA Technical Reports Server (NTRS)

The X-band radio frequency communication system was used for the first time in deep space planetary exploration by the Mariner 10 Venus and Mercury flyby mission. This paper presents the technique utilized for and the results of inflight calibration of high-gain antenna (HGA) pointing. Also discussed is pointing accuracy to maintain a high data transmission rate throughout the mission, including the performance of HGA pointing during the critical period of Mercury encounter.

Ohtakay, H.; Hardman, J. M.

1975-01-01

145

Planetary and Space Science 56 (2008) 13201334 Venus Doppler winds at cloud tops observed  

E-print Network

Planetary and Space Science 56 (2008) 1320­1334 Venus Doppler winds at cloud tops observed online 23 July 2008 Abstract We present new wind measurements in Venus' lower mesosphere from visible spectroscopy during the 2007 worldwide coordinated ground campaign in support of ESA's Venus Express mission

Widemann, Thomas

146

Future Exploration of Venus: Opportunities and Challenges  

NASA Astrophysics Data System (ADS)

The successful fly-by of Venus by Mariner 2 began a half century of planetary exploration. During the last three decades Venus has been explored by orbiters, probes and balloons and even opportunistic fly-bys of VeGA, Galileo, Cassini and MESSENGER spacecraft, and currently ESA's Venus Express orbiter is returning data from its 24-hour highly eccentric polar orbit and JAXA's Akatsuki spacecraft awaits orbit insertion around Venus in 2015 or 2016. Recently the Planetary Science Decadal Survey (2013-2022) conducted by the US National Academies recommended a flagship mission to Venus. The current and future budget scenarios for NASA indicate that such a mission can be realized through international partnerships and collaborations. It is useful therefore to examine the scientific observations of Venus that have not yet been obtained and explore the current technological capabilities that have been developed and can be useful for Venus missions. These include long lived balloons, more efficient electric power generation, Unmanned Aerial Vehicles (UAV), surface seismometry stations and others. NASA's Venus Exploration Analysis Group (VEXAG) provides a forum for the international Venus community to consider international collaborations and scientists are invited to participate in the discussions.

Limaye, Sanjay; Svedhem, Håkan; Nakamura, Masato; Zasova, Ludila; Kiran Kumar, A. S.; Bullock, Mark; Wilson, Colin

2012-07-01

147

Radio science investigations by VeRa onboard the Venus Express spacecraft  

Microsoft Academic Search

The Venus Express Radio Science Experiment (VeRa) uses radio signals at wavelengths of 3.6 and 13cm (“X”- and “S”-band, respectively) to investigate the Venus surface, neutral atmosphere, ionosphere, and gravity field, as well as the interplanetary medium. An ultrastable oscillator (USO) provides a high quality onboard reference frequency source; instrumentation on Earth is used to record amplitude, phase, propagation time,

B. Häusler; M. Pätzold; G. L. Tyler; R. A. Simpson; M. K. Bird; V. Dehant; J.-P. Barriot; W. Eidel; R. Mattei; S. Remus; J. Selle; S. Tellmann; T. Imamura

2006-01-01

148

Mesoscale circulation at the upper cloud level at middle latitudes from the imaging by Venus Monitoring Camera onboard Venus Express  

NASA Astrophysics Data System (ADS)

The Venus Monitoring Camera onboard ESA Venus Express spacecraft acquired a great number of UV images (365 nm) allowing us to track the motion of cloud features at the upper cloud layer of Venus. A digital method developed to analyze correlation functions between two UV images provided wind vector fields on the Venus day side (9-16 hours local time) from the equator to high latitudes. Sizes and regions for the correlation were chosen empirically, as a trade-off of sensitivity against noise immunity and vary from 10(°) x7.5(°) to 20(°) x10(°) depending on the grid step, making this method suitable to investigate the mesoscale circulation. Previously, the digital method was used for investigation of the circulation at low latitudes and provided good agreement with manual tracking of the motion of cloud patterns. Here we present first results obtained by this method for middle latitudes (25(°) S-75(°) S) on the basis of 270 orbits. Comparing obtained vector fields with images for certain orbits, we found a relationship between morphological patterns of the cloud cover at middle latitudes and parameters of the circulation. Elongated cloud features, so-called streaks, are typical for middle latitudes, and their orientation varies over wide range. The behavior of the vector field of velocities depends on the angle between the streak and latitude circles. In the middle latitudes the average angle of the flow deviation from the zonal direction is equal to -5.6(°) ± 1(°) (the sign “-“ means the poleward flow, the standard error is given). For certain orbits, this angle varies from -15.6(°) ± 1(°) to 1.4(°) ± 1(°) . In some regions at latitudes above 60(°) S the meridional wind is equatorward in the morning. The relationship between the cloud cover morphology and circulation peculiarity can be attributed to the motion of the Y-feature in the upper cloud layer due to the super-rotation of the atmosphere.

Patsaeva, Marina; Ignatiev, Nikolay; Markiewicz, Wojciech; Khatuntsev, Igor; Titov, Dmitrij; Patsaev, Dmitry

149

A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus Express  

Microsoft Academic Search

The upper atmosphere of a planet is a transition region in which energy is transferred between the deeper atmosphere and outer space. Molecular emissions from the upper atmosphere (90-120km altitude) of Venus can be used to investigate the energetics and to trace the circulation of this hitherto little-studied region. Previous spacecraft and ground-based observations of infrared emission from CO2, O2

P. Drossart; G. Piccioni; J. C. Gérard; M. A. Lopez-Valverde; A. Sanchez-Lavega; L. Zasova; R. Hueso; F. W. Taylor; B. Bézard; A. Adriani; F. Angrilli; G. Arnold; K. H. Baines; G. Bellucci; J. Benkhoff; J. P. Bibring; A. Blanco; M. I. Blecka; R. W. Carlson; A. Coradini; A. di Lellis; T. Encrenaz; S. Erard; S. Fonti; V. Formisano; T. Fouchet; R. Garcia; R. Haus; J. Helbert; N. I. Ignatiev; P. Irwin; Y. Langevin; S. Lebonnois; D. Luz; L. Marinangeli; V. Orofino; A. V. Rodin; M. C. Roos-Serote; B. Saggin; D. M. Stam; D. Titov; G. Visconti; M. Zambelli; C. Tsang; Eleonora Ammannito; Alessandra Barbis; Rainer Berlin; Carlo Bettanini; Angelo Boccaccini; Guillaume Bonnello; Marc Bouyé; Fabrizio Capaccioni; Alejandro Cardesin; Francesco Carraro; Giovanni Cherubini; Massimo Cosi; Michele Dami; Maurizio de Nino; Davide Del Vento; Marco di Giampietro; Alessandro Donati; Olivier Dupuis; Sylvie Espinasse; Anna Fabbri; Agnès Fave; Iacopo Ficai Veltroni; Gianrico Filacchione; Katia Garceran; Yamina Ghomchi; Maurizio Giustizi; Brigitte Gondet; Yann Hello; Florence Henry; Stefan Hofer; Gerard Huntzinger; Juergen Kachlicki; René Knoll; Driss Kouach; Alessandro Mazzoni; Riccardo Melchiorri; Giuseppe Mondello; Francesco Monti; Christian Neumann; Fabrizio Nuccilli; Jérôme Parisot; Claudio Pasqui; Stefano Perferi; Gisbert Peter; Alain Piacentino; Carlo Pompei; Jean-Michel Réess; Jean-Pierre Rivet; Antonio Romano; Natalie Russ; Massimo Santoni; Adelmo Scarpelli; Alain Soufflot; Douchane Stefanovitch; Enrico Suetta; Fabio Tarchi; Nazzareno Tonetti; Federico Tosi; Bernd Ulmer

2007-01-01

150

Electrophysiological characteristics of inhibitory neurons of the prepositus hypoglossi nucleus as analyzed in Venus-expressing transgenic rats.  

PubMed

The identification and characterization of excitatory and inhibitory neurons are significant steps in understanding neural network functions. In this study, we investigated the intrinsic electrophysiological properties of neurons in the prepositus hypoglossi nucleus (PHN), a brainstem structure that is involved in gaze holding, using whole-cell recordings in brainstem slices from vesicular GABA transporter (VGAT)-Venus transgenic rats, in which inhibitory neurons express the fluorescent protein Venus. To characterize the intrinsic properties of these neurons, we recorded afterhyperpolarization (AHP) profiles and firing patterns from Venus-expressing [Venus?] and Venus-non-expressing [Venus?] PHN neurons. Although both types of neurons showed a wide variety of AHP profiles and firing patterns, oscillatory firing was specific to Venus? neurons, while a firing pattern showing only a few spikes was specific to Venus? neurons. In addition, AHPs without a slow component and delayed spike generation were preferentially displayed by Venus? neurons, whereas a firing pattern with constant interspike intervals was preferentially displayed by Venus? neurons. We evaluated the mRNAs expression of glutamate decarboxylase (GAD65, GAD67) and glycine transporter 2 (GlyT2) to determine whether the recorded Venus? neurons were GABAergic or glycinergic. Of the 67 Venus? neurons tested, GlyT2 expression alone was detected in only one neuron. Approximately 40% (28/67) expressed GAD65 and/or GAD67 (GABAergic neuron), and the remainder (38/67) expressed both GAD(s) and GlyT2 (GABA&GLY neuron). These results suggest that most inhibitory PHN neurons use either GABA or both GABA and glycine as neurotransmitters. Although the overall distribution of firing patterns in GABAergic neurons was similar to that of GABA&GLY neurons, only GABA&GLY neurons exhibited a firing pattern with a long first interspike interval. These differential electrophysiological properties will be useful for the identification of specific types of PHN neurons. PMID:21952130

Shino, M; Kaneko, R; Yanagawa, Y; Kawaguchi, Y; Saito, Y

2011-12-01

151

Cloud-top altitude from limb views acquired by the Venus Monitoring Camera (VMC) on Venus Express  

NASA Astrophysics Data System (ADS)

A good knowledge of the effective cloud top altitude is essential for interpretation of cloud motions measured from Venus images taken in reflected sunlight at different wavelengths. Ignatiev et al. (2009) reported the first inferences of the cloud top altitude from nadir observations acquired by the Visible Infrared Thermal Imaging Spectrometer (VIRTIS) on Venus Express using the depth of the 1.6µ CO2 continuum. Their results indicate that the cloud tops are 74 ± 1 km above the mean surface in low and mid-latitudes and at only 63-69 km in polar latitudes. The nominal cloud top altitude used in most previous analyses of imaging data are generally either 6115 and 6120 km radius, or 62.8 and 67.8 km respectively above the mean surface. The Level 3 map products generated from the VMC data use a cloud altitude of 65 km for all filters. Given the large number of images acquired from the VMC since the insertion of Venus Express in orbit in April 2006, it is now possible to measure the altitude of the visible cloud top (slant optical depth, ?slant = 1) from the images. Preliminary results were presented by Limaye et al. (2011) by determination of the ?slant location in the VMC images and using the observing geometry information to determine the altitude by first determining the image center very precisely. We used star field images from recent orbits to re-assess the pixel size. Results from the four filters of VMC (365, 513, 965 and 1010 nm central wavelengths) provide an improved value for the visible cloud top altitude using the improved values for the image scale of the four VMC cameras.

Limaye, S. S.; Krauss, R. J.; Ignatiev, N.; Markiewicz, W. J.,

2012-04-01

152

A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus Express.  

PubMed

The upper atmosphere of a planet is a transition region in which energy is transferred between the deeper atmosphere and outer space. Molecular emissions from the upper atmosphere (90-120 km altitude) of Venus can be used to investigate the energetics and to trace the circulation of this hitherto little-studied region. Previous spacecraft and ground-based observations of infrared emission from CO2, O2 and NO have established that photochemical and dynamic activity controls the structure of the upper atmosphere of Venus. These data, however, have left unresolved the precise altitude of the emission owing to a lack of data and of an adequate observing geometry. Here we report measurements of day-side CO2 non-local thermodynamic equilibrium emission at 4.3 microm, extending from 90 to 120 km altitude, and of night-side O2 emission extending from 95 to 100 km. The CO2 emission peak occurs at approximately 115 km and varies with solar zenith angle over a range of approximately 10 km. This confirms previous modelling, and permits the beginning of a systematic study of the variability of the emission. The O2 peak emission happens at 96 km +/- 1 km, which is consistent with three-body recombination of oxygen atoms transported from the day side by a global thermospheric sub-solar to anti-solar circulation, as previously predicted. PMID:18046396

Drossart, P; Piccioni, G; Gérard, J C; Lopez-Valverde, M A; Sanchez-Lavega, A; Zasova, L; Hueso, R; Taylor, F W; Bézard, B; Adriani, A; Angrilli, F; Arnold, G; Baines, K H; Bellucci, G; Benkhoff, J; Bibring, J P; Blanco, A; Blecka, M I; Carlson, R W; Coradini, A; Di Lellis, A; Encrenaz, T; Erard, S; Fonti, S; Formisano, V; Fouchet, T; Garcia, R; Haus, R; Helbert, J; Ignatiev, N I; Irwin, P; Langevin, Y; Lebonnois, S; Luz, D; Marinangeli, L; Orofino, V; Rodin, A V; Roos-Serote, M C; Saggin, B; Stam, D M; Titov, D; Visconti, G; Zambelli, M; Tsang, C; Ammannito, Eleonora; Barbis, Alessandra; Berlin, Rainer; Bettanini, Carlo; Boccaccini, Angelo; Bonnello, Guillaume; Bouyé, Marc; Capaccioni, Fabrizio; Cardesin, Alejandro; Carraro, Francesco; Cherubini, Giovanni; Cosi, Massimo; Dami, Michele; De Nino, Maurizio; Del Vento, Davide; Di Giampietro, Marco; Donati, Alessandro; Dupuis, Olivier; Espinasse, Sylvie; Fabbri, Anna; Fave, Agnès; Veltroni, Iacopo Ficai; Filacchione, Gianrico; Garceran, Katia; Ghomchi, Yamina; Giustizi, Maurizio; Gondet, Brigitte; Hello, Yann; Henry, Florence; Hofer, Stefan; Huntzinger, Gerard; Kachlicki, Juergen; Knoll, René; Kouach, Driss; Mazzoni, Alessandro; Melchiorri, Riccardo; Mondello, Giuseppe; Monti, Francesco; Neumann, Christian; Nuccilli, Fabrizio; Parisot, Jérôme; Pasqui, Claudio; Perferi, Stefano; Peter, Gisbert; Piacentino, Alain; Pompei, Carlo; Réess, Jean-Michel; Rivet, Jean-Pierre; Romano, Antonio; Russ, Natalie; Santoni, Massimo; Scarpelli, Adelmo; Sémery, Alain; Soufflot, Alain; Stefanovitch, Douchane; Suetta, Enrico; Tarchi, Fabio; Tonetti, Nazzareno; Tosi, Federico; Ulmer, Bernd

2007-11-29

153

A new view of Earth's sister: Insights following nine years of Venus Express observations  

NASA Astrophysics Data System (ADS)

Since April 2006 ESA’s Venus Express has been performing a global survey of the remarkably dense, cloudy, and dynamic atmosphere of our near neighbour. The mission delivers comprehensive data on the temperature structure, the atmospheric composition, the cloud morphology, the atmospheric dynamics, the solar wind interaction and the escape processes. Vertical profiles of the atmospheric temperature show strong latitudinal trend in the mesosphere and upper troposphere correlated with changes in the cloud top structure and indicate convective instability in the main cloud deck at 50-60 km. Observations reveal significant latitudinal variations and temporal changes in the global cloud top morphology, which modulate the solar energy deposited in the atmosphere. The cloud top altitude varies from 72 km in the low and middle latitudes to 64 km in the polar region, correlated with decrease of the aerosol scale height from 4±1.6 km to 1.7±2.4 km, marking vast polar depression. UV imaging shows for the first time the middle latitudes and polar regions in unprecedented detail. The eye of the Southern polar vortex was found to be a strongly variable feature with complex dynamics. Solar occultation observations and deep atmosphere spectroscopy in spectral transparency windows mapped the distribution of the major trace gases H _{2}O, SO _{2}, CO, COS and their variations above and below the clouds, revealing key features of the dynamical and chemical processes at work. Tracking motions of cloud features provided the most complete characterization of the mean atmospheric circulation as well as its variability. Low and middle latitudes show an almost constant zonal wind speed at the cloud tops and vertical wind shear of 2-3 m/s/km. The zonal wind speed increased from 84±20 m/s to 110±16 m/s over the course of the mission. Towards the pole, the wind speed drops quickly and the vertical shear vanishes. The meridional poleward wind ranges from 0 at equator to about 15 m/s in the middle latitudes. Comparison of the thermal wind field derived from temperature sounding to the cloud-tracked winds confirms the validity of cyclostrophic balance, at least in the latitude range from 30S to 70S. The observations are supported by development of General Circulation Models. Non-LTE infrared emissions in the lines of O _{2}, NO, CO _{2}, OH originating near the mesopause at 95-105 km were detected and mapped. The data show that the peak intensity occurs in average close to the anti-solar point for O _{2} emission, which is consistent with current models of the thermospheric circulation. For almost complete solar cycle the Venus Express instruments continuously monitoring the induced magnetic field and plasma environment established the global escape rates being 3•10 (24) s (-1) , 7•10 (24) s (-1) , 8•10 (22) s (-1) for O (+) , H (+) , and He (+) ions and identified the main acceleration process. For the first time it was shown that the reconnection process takes place in the tail of a non-magnetized body. It was confirmed that the lightning tentatively detected by PVO indeed occurs on Venus. The thermal mapping of the surface in the near-IR spectral “windows” on the night side indicated the presence of recent volcanism on the planet, as do the high and variable SO _{2} abundances.

Titov, Dmitrij; Svedhem, Håkan; Drossart, Pierre; Taylor, Fredric W.; Zhang, Tielong; Barabash, Stas; Paetzold, Martin; Piccioni, Giuseppe; Markiewicz, Wojciech; Vandaele, Ann C.; Wilson, Colin; Bertaux, Jean-Loup

154

Photochemical Control of the Distribution of Venusian Water and Comparison to Venus Express SOIR Observations  

NASA Astrophysics Data System (ADS)

We use the JPL/Caltech 1-D KINETICS photochemical model to solve the continuity diffusion equation for the atmospheric constituent abundances and total number density as a function of radial distance from the planet Venus. The photochemistry of the Venus atmosphere from 58 to 112 km is modeled using an updated and expanded chemical scheme (Zhang et al., 2010; 2012), guided by the results of recent observations. We mainly follow Zhang et al. (2010; 2012) to guide our choice of boundary conditions for 40 species. We fit the SOIR Venus Express results of 1 ppm at 70-90 km (Bertaux et al (2007) by modeling water from between 10 – 35 ppm at our 58 km lower boundary and using an SO2 mixing ratio of 25 ppm as our nominal reference value. We then vary the SO2 mixing ratio at the lower boundary between 5 and 75 ppm and find that it can control the water distribution at higher altitudes.

Parkinson, Chris; Yung, Yuk; Esposito, Larry; Gao, Peter; Bougher, Steve

2014-11-01

155

Venus geology  

NASA Technical Reports Server (NTRS)

The Magellan mission to Venus is reviewed. The scientific investigations conducted by 243-day cycles encompass mapping with a constant incidence angle for the radar, observing surface changes from one cycle to the next, and targeting young-looking volcanos. The topography of Venus is defined by the upper boundary of the crust and upwelling from lower domains. Tectonic features such as rift zones, linear mountain belts, ridge belts, and tesserae are described. The zones of tesserae are unique to the planet. Volcanism accounts for about 80 percent of the observed surface, the remainder being volcanic deposits which have been reworked by tectonism or impacts. Magellan data reveal about 900 impact craters with flow-like ejecta resulting from the fall of meteoroids. It is concluded that the age of the Venusian surface varies between 0 and 800 million years. Tectonic and volcanic activities dominate the formation of the Venus topography; such processes as weathering and erosion are relatively unimportant on Venus.

Mclaughlin, W. I.

1991-01-01

156

MESSENGER and Venus Express Observations of the Near-tail of Venus: Magnetic Flux Transport, Current Sheet Structure, and Flux Rope Formation  

NASA Technical Reports Server (NTRS)

At 23:08 UT on 5 June 2007 the MESSENGER spacecraft reached its closest approach altitude (338 km) during its second flyby of Venus en route to its 2011 orbit insertion at Mercury. Whereas no measurements were collected during MESSENGER'S first Venus flyby in October 2006, the Magnetometer (MAG) and the Energetic Particle and Plasma Spectrometer (EPPS) operated successfully throughout this second encounter. Venus provides the solar system's best example to date of a solar wind - ionosphere planetary interaction. We present MESSENGER observations of the near-tail of Venus with emphasis on determining the time scales for magnetic flux transport, the structure of the cross-tail current sheet at very low altitudes (approx. 300 to 1000 km), and the nature and origin of a magnetic flux rope observed in the current sheet. The availability of the simultaneous Venus Express upstream measurements provides a unique opportunity to examine the influence of solar wind plasma and interplanetary magnetic field conditions on this planet's solar wind interaction at solar minimum.

Slavin, James A.; Boardsen, S. A.; Sarantos, M.; Acuna, M. H.; Anderson, B. J.; Barabash, S.; Benna, M.; Fraenz, M.; Gloeckler, G.; Gold, R. E.; Ho, G. C.; Korth, H.; Krimigis, S. M.; McNutt, R. L., Jr.; Raines, J. M.; Solomon, S. C.; Zhang, T.-L.; Zurbuchen, T. H.

2008-01-01

157

Constraints on Magmatic Diversity on Venus from Terrestrial Analog Crystallization Experiments with Data Implications for Future Missions  

NASA Astrophysics Data System (ADS)

Igneous diversity,common on the Earth, is possible on Venus based on: the Venera and Vega analyses of rocks on the surface of Venus [1,2], orbital analyses of surface features [3], and thermochemical modeling of Venera and Vega basalts [4]. From these results, Venus and Earth have similar bulk chemistry and diversity of igneous rocks. However, the data from the Venera and Vega landers have large error bars compared with terrestrial geochemical analyses and do not provide mineralogy of the target rock, thereby making direct conclusions from this data challenging [e.g., 1, 2]. In order to make predictions about the types of magmas that could be on Venus, I will rely on crystallization experiments on terrestrial tholeiitic compositions. By comparing experimental results on terrestrial mafic basalts and natural terrestrial suites with the data from Venera and Vega, I constrain the types of igneous rocks that could be present on Venus, as well as the quality of data needed from future missions to distinguish the different suites. Extensive crystallization experiments have been conducted on terrestrial olivine tholeiites at varying pressures, temperatures, and water contents in order to understand the residual liquids produced by igneous differentiation [e.g., 5-10]. If similar processes of magma ponding and differentiation have occurred on Venus, then compositions similar to terrestrial igneous suites would be expected. The potential residual liquids produced by differentiation of a Venus tholeiite, based on experiments on analog compositions, range from rhyolites to phonolites, depending on pressure of crystallization and bulk water content. These experimental results are consistent with the interpretation of the Venera 13 analysis as a silica-undersaturated alkali basalt which suggests deep partial melting of a carbonated source region [11], while the identification of Venera 14 and Vega 2 as tholeiites suggests relatively shallow melting of a lherzolitic or peridotite source region. References: [1]. Kargel, J.S. et al. (1993) Icarus. 103(2): p. 253-275. [2] Treiman, A.H. (2007) in Exploring Venus as a Terrestrial Planet, Geophysical Monograph Series. p. 250. [3] Hashimoto, G.L., et al. (2008) JGR Planets. 113(E00B24): p. doi:10.1029/2008JE003134. [4] Shellnutt, J.G. (2013) JGR Planets. 118: p. 1350-1364, doi:10.1002/jgre.20094. [5] Spulber, S.D. and M.J. Rutherford (1983) Journal of Petrology. 24(1): p. 1-25. [6] Whitaker, M., et al. (2008) Bulletin of Volcanology. 70(3): p. 417-434. [7] Whitaker, M.L., et al. (2007) Journal of Petrology. 48(2): p. 365-393. [8] Nekvasil, H., et al. (2004) Journal of Petrology. 45(4): p. 693-721. [9] Green, D.H. (1970) Physics of the Earth and Planetary Interiors. 3: p. 221-235. [10] Filiberto, J. and Nekvasil H. (2003) GSA Abstracts with Programs. 35(6): p. 632. [11] Dasgupta, R., Hirschmann, M., and Smith, N. (2007) Journal of Petrology 48, 2093-2124.

Filiberto, J.

2013-12-01

158

Preparation of In-Situ Data from the VEGA Balloon Mission at Venus for Archival on the PDS  

NASA Astrophysics Data System (ADS)

In 1985, the pioneering Soviet VEGA mission deployed two helium balloons into the atmosphere of Venus - the first, and so far only, planetary balloon mission. The balloons were tracked by an international network of radio telescopes, with a slow trickle of in-situ pressure, temperature, optical and wind measurements transmitted directly to Earth over 46 hours until battery depletion. While the key results of the mission were published at the time, the data have not been generally available in numerical form. Here we report an effort to archive the data on the NASA Planetary Data System (PDS). In fact the very low telemetry rate dictated by the direct-to-Earth communication and minimal energy budget on-board demanded heavy data compression/selection, and the reconstruction of the history of altitude and meteorological measurements had to address ambiguities in the lossy compression scheme. These challenges entailed a significant effort as part of the postdoctoral work of D. Crisp, and have not been documented fully in the literature. Here we summarize the mission and the telemetry data, together with the approach used to reconstruct/interpolate the archival dataset. This documentation and numerical files are being prepared for submission to the PDS Atmospheres Node, where it will be available to all.

Lorenz, Ralph; Crisp, David

159

International Collaboration for Venus Exploration  

NASA Astrophysics Data System (ADS)

The Venus Exploration Analysis Group (VEXAG) was established by NASA in July 2005 to identify scientific priorities and strategy for exploration of Venus. From the outset, VEXAG has been open to the international community participation and has followed the progress of the ESA Venus Express Mission and the JAXA Akasuki mission as well exploring potential broad international partnerships for Venus exploration through coordinated science and missions. This paper discussed three mechanisms through which these collaborations are being explored in which VEXAG members participate One pathway for international collaboration has been through COSPAR. The International Venus Exploration Working Group (IVEWG) was formed during the 2012 COSPAR general assembly in Mysore, India. Another potentially significant outcome has been the IVEWG’s efforts to foster a formal dialog between IKI and NASA/PSD on the proposed Venera D mission resulting in a meeting in June 2013 to be followed by a discussion at the 4MS3 conference in October 2013. This has now resulted in an agreement between NASA/PSD and IKI to form a joint Science Definition Team for Venera D. A second pathway has been through an international focus on comparative climatology. Scientists from the established space faring nations participated in a first international conference on Comparative Climatology for Terrestrial Planet (CCTP) in Boulder Colorado in June 2012 sponsored by several international scientific organizations. A second conference is planned for 2015. The Planetary Robotics Exploration Coordinating Group (PRECG) of International Academy of Astronautics (IAA) the IAA has been focusing on exploring affordable contributions to the robotic exploration by non-space-faring nations wishing to get involved in planetary exploration. PRECG has sponsored a two year study of Comparative Climatology for which Venus is the focal point and focused on engaging nations without deep space exploration capabilities. A third area of interchange has been the International Planetary Probe Workshop (IPPW) , now in its eleventh year, which brings together scientists, technologists and mission designers interested in the exploration of planets with atmospheres and particularly in the challenges of entry, descent and landing and sustained flight on other planets. IPPW has been an opportunity for developing the collaborations at a grass roots level. With both NASA and ESA favoring competitive rather than strategic approaches for selecting planetary missions (except for Moon and Mars), future collaboration on Venus exploration will involve flexible partnerships. However, international standards for proximity communication frequencies and protocols will be vital to international collaboration.

Cutts, James; Limaye, Sanjay; Zasova, Ludmila; Wilson, Colin; Ocampo, Adriana; Glaze, Lori; Svedhem, H.; Nakamura, Masato; Widemann, Thomas

160

Radio science investigations by VeRa onboard the Venus Express spacecraft  

NASA Astrophysics Data System (ADS)

The Venus Express Radio Science Experiment (VeRa) uses radio signals at wavelengths of 3.6 and 13 cm ("X"- and "S"-band, respectively) to investigate the Venus surface, neutral atmosphere, ionosphere, and gravity field, as well as the interplanetary medium. An ultrastable oscillator (USO) provides a high quality onboard reference frequency source; instrumentation on Earth is used to record amplitude, phase, propagation time, and polarization of the received signals. Simultaneous, coherent measurements at the two wavelengths allow separation of dispersive media effects from classical Doppler shift. VeRa science objectives include the following: Determination of neutral atmospheric structure from the cloud deck (approximately 40 km altitude) to 100 km altitude from vertical profiles of neutral mass density, temperature, and pressure as a function of local time and season. Within the atmospheric structure, search for, and if detected, study of the vertical structure of localized buoyancy waves, and the presence and properties of planetary waves. Study of the H 2SO 4 vapor absorbing layer in the atmosphere by variations in signal intensity and application of this information to tracing atmospheric motions. Scintillation effects caused by radio wave diffraction within the atmosphere can also provide information on small-scale atmospheric turbulence. Investigation of ionospheric structure from approximately 80 km to the ionopause (<600 km), allowing study of the interaction between solar wind plasma and the Venus atmosphere. Observation of forward-scattered surface echoes obliquely reflected from selected high-elevation targets with anomalous radar properties (such as Maxwell Montes). More generally, such bistatic radar measurements provide information on the roughness and density of the surface material on scales of centimeters to meters. Detection of gravity anomalies, thereby providing insight into the properties of the Venus crust and lithosphere. Measurement of the Doppler shift, propagation time, and frequency fluctuations along the interplanetary ray path, especially during periods of superior conjunction, thus enabling investigation of dynamical processes in the solar corona.

Häusler, B.; Pätzold, M.; Tyler, G. L.; Simpson, R. A.; Bird, M. K.; Dehant, V.; Barriot, J.-P.; Eidel, W.; Mattei, R.; Remus, S.; Selle, J.; Tellmann, S.; Imamura, T.

2006-11-01

161

Ionospheric photoelectrons at Venus: Initial observations by ASPERA-4 ELS  

Microsoft Academic Search

We report the detection of electrons due to photo-ionization of atomic oxygen and carbon dioxide in the Venus atmosphere by solar helium 30.4nm photons. The detection was by the Analyzer of Space Plasma and Energetic Atoms (ASPERA-4) Electron Spectrometer (ELS) on the Venus Express (VEx) European Space Agency (ESA) mission. Characteristic peaks in energy for such photoelectrons have been predicted

A. J. Coates; R. A. Frahm; D. R. Linder; D. O. Kataria; Y. Soobiah; G. Collinson; J. R. Sharber; J. D. Winningham; S. J. Jeffers; S. Barabash; J.-A. Sauvaud; R. Lundin; M. Holmström; Y. Futaana; M. Yamauchi; A. Grigoriev; H. Andersson; H. Gunell; A. Fedorov; J.-J. Thocaven; T. L. Zhang; W. Baumjohann; E. Kallio; H. Koskinen; J. U. Kozyra; M. W. Liemohn; Y. Ma; A. Galli; P. Wurz; P. Bochsler; D. Brain; E. C. Roelof; P. Brandt; N. Krupp; J. Woch; M. Fraenz; E. Dubinin; S. McKenna-Lawlor; S. Orsini; R. Cerulli-Irelli; A. Mura; A. Milillo; M. Maggi; C. C. Curtis; B. R. Sandel; K. C. Hsieh; K. Szego; A. Asamura; M. Grande

2008-01-01

162

Mars Express—ESA's first mission to planet Mars  

Microsoft Academic Search

ESA’ Mars Express mission is a fully approved and funded project which has entered its spacecraft development (i.e. hardware) phase early January 2000. It is the first of ESA's new ‘F’ (flexible) missions which are based on a new implementation scenario to maintain overall mission cost below a stringent cost cap. The key features of an F-mission are streamlined management,

R. Schmidt

2003-01-01

163

Venus Discovery-Class Balloon Missions: Science Objectives and Desired Latitudinal and Longitudinal Coverage  

NASA Astrophysics Data System (ADS)

Long-duration (several weeks) balloon missions sampling the Venusian cloud level can circle the globe several times, providing the longitudinal and latitudinal coverage to effectively address key science objectives of the Decadal Survey and VEXAG.

Baines, K. H.; Atreya, S. K.; Bullock, M.; Crisp, D.; Esposito, L. W.; Grinspoon, D.; Hall, J. L.; Limaye, S. S.; Mahaffy, P. R.; Russell, C. T.; Webster, C. R.; Zahnle, K.

2014-05-01

164

Studying the surface composition of Venus from orbit  

NASA Astrophysics Data System (ADS)

The atmosphere of Venus allows observations of the surface only in very narrow spectral windows around 1 micron. These have been successfully used by the VenusExpress, Galileo and Cassini spacecrafts as well as by ground-based observers. For any other planetary body this spectral range would be observed in reflectance. However for Venus we can obtain useful data only during nighttime using the thermal emission of the surface. So far no systematic studies have been done on the emissivity of Venus analog materials at high temperatures in this wavelength range due to the significant technical challenges of such experiments. At the Planetary Emissivity Laboratory (PEL) we started 6 years ago to extend our laboratory capabilities to support specifically missions to Venus and Mercury. Both planets exhibit surface temperatures up to 500°C and this extreme temperature range affects the spectral characteristics of the surface minerals. We are systematically studying different Venusian analogs to obtain spectra in the 1 microns region at Venus surface temperatures. First measurements of a carbonatite and an ijolite sample as analogs for low viscosity lavas clearly indicating changes of the emissivity signature at 1 micron with temperature. One of the next steps is to study tesserae analog materials to determine how the diagnostic the 1 micron region is for different compositions. We are currently developing a new instrument concept for future Venus missions designed specifically to observe Venus's surface in segments of the near-IR (NIR) spectrum that penetrate the atmosphere with minimal absorption. The Venus Emissivity Mapper (VEM) builds on experience from analysis of data from Galileo/NIMS, Cassini/VIMS, and especially VIRTIS on Venus Express. Unlike those general-purpose imaging spectrometers, VEM is a hyperspectral mapper focused on observing the surface. It will map the surface in five atmospheric windows between 0.85 and 1.18 microns. In addition, several other bands are used to observe the clouds and water vapor at 0-15 km altitude.

Helbert, J.; Mueller, N. T.; Maturilli, A.; D'Incecco, P.; Smrekar, S. E.; Nadalini, R.

2013-12-01

165

Experiencing Venus: Clues to the origin, evolution, and chemistry of terrestrial planets via in-situ exploration of our sister world  

NASA Astrophysics Data System (ADS)

We review the current state of knowledge of (1) the origin and evolution of Venus and (2) the photochemical and thermochemical processes occurring in the middle and lower atmosphere there. For each, we review the promise of on-going and planned orbital observations by ESA's Venus Express and Japan's Venus Climate Orbiter missions. We review the need for future in-situ measurements for understanding Venus origin and evolution and present-day chemistry, and the implications for understanding the origin and history of the Earth and other bodies in the inner solar system, as well as for understanding terrestrial planets in other solar systems. We prioritize the goals remaining in the post Venus Express era, based on the Decadal Survey (National Research Council, 2003). Using past experience with Pioneer Venus, VEGAs, Veneras, and, most recently, Venus Express as guides, we suggest appropriate techniques and measurements to address these fundamental science issues.

Baines, Kevin H.; Atreya, Sushil K.; Carlson, Robert W.; Crisp, David; Grinspoon, David; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin

166

The Highlands of Venus  

NASA Astrophysics Data System (ADS)

The Poisson-type hypsometry of Venus implies many independent events raise(d) highlands incrementally and their concentration into various forms make these interesting targets for an Interferometric SAR mission, for which key parameters are given.

Cochrane, C. G.; Ghail, R. C.

2014-05-01

167

Mariner-Venus 1967  

NASA Technical Reports Server (NTRS)

Detailed information on the spacecraft performance, mission operations, and tracking and data acquisition is presented for the Mariner Venus 1967 and Mariner Venus 1967 extension projects. Scientific and engineering results and conclusions are discussed, and include the scientific mission, encounter with Venus, observations near Earth, and cruise phase of the mission. Flight path analysis, spacecraft subsystems, and mission-related hardware and computer program development are covered. The scientific experiments carried by Mariner 5 were ultraviolet photometer, solar plasma probe, helium magnetometer, trapped radiation detector, S-band radio occultation, dual-frequency radio propagation, and celestial mechanics. The engineering experience gained by converting a space Mariner Mars 1964 spacecraft into one flown to Venus is also described.

1971-01-01

168

Planet-C/IR1: A 1micrometer camera on board the Japanese Venus mission  

NASA Astrophysics Data System (ADS)

IR1 camera is designed to image both the night- and day-side of Venus at 1 01 mu m with a band width of 0 04 mu m onboard an orbiter Planet-C in a near-equatorial retrograde long-elliptical orbit with a period of 30 hours On the dayside it quantifies the wind-field in the cloud region 45-60 km over the hemisphere by comparing the solar reflection images taken every 2 hours By combining with meteorological information obtained by other cameras using different wavelengths it may contribute to solving the long-standing problem Super Rotation of the atmosphere On the nightside it measures the thermal radiation mostly from the solid surface and little from the atmosphere Such measurements will give us information about lowermost atmosphere and the crustal properties and might also discover active volcanoes either lava flows or eruption plumes The knowledge of current status of the volcanism is an important key to investigate the internal structure and the thermal history of this interesting planet The camera consists of a hood F 8 optics with a focal length of 84 2 mm 1 01 mu m band-pass and ND neutral density filters Si CSD charge sweeping device -CCD detector cooled down to 250K and an electronics It has a field of view of 12 degree and a spatial resolution of 16 km pixel at the apoapsis

Iwagami, N.; Sakanoi, T.; Ueno, M.; Sugita, S.; Hashimoto, G. L.

169

First ever in situ observations of Venus' polar upper atmosphere density using the tracking data of the Venus Express Atmospheric Drag Experiment (VExADE)  

NASA Astrophysics Data System (ADS)

On its highly elliptical 24 h orbit around Venus, the Venus Express (VEX) spacecraft briefly reaches a periapsis altitude of nominally 250 km. Recently, however, dedicated and intense radio tracking campaigns have taken place in August 2008, October 2009, February and April 2010, for which the periapsis altitude was lowered to the 186-176 km altitude range in order to be able to probe the upper atmosphere of Venus above the North Pole for the first time ever in situ. As the spacecraft experiences atmospheric drag, its trajectory is measurably perturbed during the periapsis pass, allowing us to infer total atmospheric mass density at the periapsis altitude. A Precise Orbit Determination (POD) of the VEX motion is performed through an iterative least-squares fitting process to the Doppler tracking data, acquired by the VEX radioscience experiment (VeRa). The drag acceleration is modelled using an initial atmospheric density model (VTS3 model, Hedin, A.E., Niemann, H.B., Kasprzak, W.T., Seiff, A. [1983]. J. Geophys. Res. 88, 73-83). A scale factor of the drag acceleration is estimated for each periapsis pass, which scales Hedin's density model in order to best fit the radio tracking data. Reliable density scale factors have been obtained for 10 passes mainly from the second (October 2009) and third (April 2010) VExADE campaigns, which indicate a lower density by a factor of about 1.8 than Hedin's model predicts. These first ever in situ polar density measurements at solar minimum have allowed us to construct a diffusive equilibrium density model for Venus' thermosphere, constrained in the lower thermosphere primarily by SPICAV-SOIR measurements and above 175 km by the VExADE drag measurements (Müller-Wodarg et al., in preparation). The preliminary results of the VExADE campaigns show that it is possible to obtain with the POD technique reliable estimates of Venus' upper atmosphere densities at an altitude of around 175 km. Future VExADE campaigns will benefit from the planned further lowering of VEX pericenter altitude to below 170 km.

Rosenblatt, P.; Bruinsma, S. L.; Müller-Wodarg, I. C. F.; Häusler, B.; Svedhem, H.; Marty, J. C.

2012-02-01

170

Venus's southern polar vortex reveals precessing circulation.  

PubMed

Initial images of Venus's south pole by the Venus Express mission have shown the presence of a bright, highly variable vortex, similar to that at the planet's north pole. Using high-resolution infrared measurements of polar winds from the Venus Express Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument, we show the vortex to have a constantly varying internal structure, with a center of rotation displaced from the geographic south pole by ~3 degrees of latitude and that drifts around the pole with a period of 5 to 10 Earth days. This is indicative of a nonsymmetric and varying precession of the polar atmospheric circulation with respect to the planetary axis. PMID:21474710

Luz, D; Berry, D L; Piccioni, G; Drossart, P; Politi, R; Wilson, C F; Erard, S; Nuccilli, F

2011-04-29

171

Revealing the face of Venus: Magellan  

NASA Technical Reports Server (NTRS)

An overview of the Magellan spacecraft and mission is presented. Topics covered include: a description of the Magellan spacecraft; Venus geology; Venus gravity; synthetic aperture radar; and radar sensing.

1993-01-01

172

The case for a deep-atmospheric in situ mission to address the highest priority Decadal Survey questions for Venus (Invited)  

NASA Astrophysics Data System (ADS)

Current understanding of Venus lags behind that for Mars, with a major disparity of information concerning noble and trace gases and the small scale surface processes needed for comparative studies of terrestrial planet evolution. Despite global surface mapping by Magellan, discoveries by Venera landers, and ongoing atmospheric observations by the Venus Express (VEx) orbiter, significant questions about Venus remain unanswered. To place Venus into its proper context with respect to Mars and Earth, it is necessary to obtain new measurements that address top issues identified in the National Research Council (NRC) Solar System Decadal Survey: (1) evolution of the atmosphere, history of climate, and evidence of past hydrologic cycles; (2) history of volatiles and sedimentary cycles; and (3) planetary surface evolution. To answer these questions, new measurements are needed. First and foremost, in situ noble gas measurements are needed to constrain solar system formation and Venus evolution. In particular, the isotopic ratios of Xe and Kr can provide unique insights into planetary accretion. Isotopic measurements of nitrogen (15N/14N) will place important constraints on atmospheric loss processes. Current knowledge of this ratio has a substantial uncertainty of ×20%. VEx observations of hydrogen isotopes indicate the D/H ratio above the clouds is substantially greater than measured by Pioneer Venus, and varies with height. High precision measurements of the vertical distribution of the D/H isotopic ratio below the cloud layers will provide constraints on models of the climate history of water on Venus. The majority of atmospheric mass is located below the clouds. Current data suggest intense interaction among atmospheric gases down to the surface. The haze within the cloud region of unknown composition plays a central role in the radiative balance. Photochemically-derived species (H2SO4, OCS, CO, Sn) are subjected to thermochemical reactions below the clouds, especially within 30 km of the surface. Competing temperature-pressure dependent reactions and atmospheric circulation may cause vertical and latitudinal gradients of chemically-active trace gases (e.g., SO2, H2S, OCS, CO). Measurements of the chemical composition of the near-surface atmosphere can be used to evaluate the stability of primary and secondary minerals and can help to understand chemistry of atmosphere-surface interactions. However, concentrations of many trace species have never been measured below ~30 km, and multiple in situ measurements are required to evaluate chemical processes and cycles of volatiles, which can only be accomplished with deep entry probes. Current lack of understanding about Venus not only limits our understanding of evolutionary pathways Earth could experience, but also suggests that we are ill-equipped to understand the evolution of star systems with similar-sized planets.

Atreya, S. K.; Garvin, J. B.; Glaze, L. S.; Campbell, B. A.; Fisher, M. E.; Flores, A.; Gilmore, M. S.; Johnson, N.; Kiefer, W. S.; Lorenz, R. D.; Mahaffy, P. R.; Ravine, M. A.; Webster, C. R.; Zolotov, M. Y.

2013-12-01

173

Pioneer Venus Overview  

NASA Technical Reports Server (NTRS)

A Pioneer Venus Overview is discussed. Pioneer Venus consists of two basic spacecraft: Orbiter and Multiprobe. The latter was separated into five separate vehicles near Venus. These were the probe transporter (called the Bus), a large atmospheric entry probe (dubbed Sounder) and three identical smaller probes (called North , Day, and Night in accordance with their entry locations). At Venus all six spacecraft communicated directly back to the Earth-based Deep Space Network (DSN) and, in the case of the Multiprobe mission, to two special receiving sites near Guam and Santiago (Chile). At the time this Special Issue was submitted for publication the nominal mission was complete and the Orbiter was continuing into an extended mission phase. It appears so that sufficient fuel remains to permit full operation through calendar year 1980, at least. The scientific payload, Principle Investigator, and his affiliation are listed for each Pioneer Venus spacecraft. This special issue is primarily devoted to short descriptions of the instruments listed with the exception of the Orbitor Cloud Photopolarimeter. Detailed instrument descriptions for this experiment have been published. Before proceeding with descriptions of the individual instruments, four special archival-type reports are included. The first deals with spacecraft design and operation. The Pioneer Venus spacecraft were unique and very special design features and operational modes needed to be incorporated. These are summarized therein. It should be noted that neither the scientific objectives nor the scientific results of the Pioneer Venus program are described or discussed in detail. The objectives have been published elsewhere.

Colin, Lawrence (Editor)

1980-01-01

174

Beagle 2: The Exobiology Lander on ESA's Mars Express Mission  

NASA Astrophysics Data System (ADS)

Beagle 2 is a small 60kg lander on the ESA Mars Express Mission due for launch in early June 2003. The lander aims to conduct a full survey of the landing site using an integrated suite of instrumentation. This search will include looking for the 13C isotopic biomarker in rock cores and sub-surface soil samples. The Beagle 2 Lander for ESA's Mars Express Mission will be described. The mission scenario and instrumentation will be detailed and the relevance of the mission will be described.

Sims, M. R.; Pullan, D.; Pillinger, C. T.; Wright, I.; Clemmet, J.; Thatcher, J.; Underwood, J.

175

Hypothetical habitability of Venus  

NASA Astrophysics Data System (ADS)

Hypothetical habitability of some of extrasolar planets is a fundamental question of science. Some of exoplanets possess physical conditions close to those of Venus. Therefore, the planet Venus, with its dense and hot (735 K) oxygen-free atmosphere of CO2, having a high pressure of 9.2 MPa at the surface, can be a natural laboratory for this kind of studies. The only existing data on the planet’s surface are still the results obtained by the Soviet VENERA landers in the 1970s and 1980s. The TV experiments of Venera-9 and 10 (October, 1975) and Venera-13 and 14 (March, 1982) delivered 41 panoramas of Venus surface (or their fragments). There have not been any similar missions to Venus in the subsequent 39 and 32 years. In the absence of new landing missions to Venus, the VENERA panoramas have been re-processed. The results of these missions are studied anew. A dozen of relatively large objects, from a decimeter to half a meter in size, with an unusual morphology have been found which moved very slowly or changed slightly their shape. Their emergence by chance could hardly be explained by noise. Certain unusual findings that have similar structure were found in different areas of the planet. This paper presents the last results obtained of a search for hypothetical flora and fauna of Venus.

Ksanfomality, Leonid

176

Venus Plasma Environment and Lessons Learned from Pioneer Venus  

Microsoft Academic Search

The Pioneer Venus Orbiter PVO obtained a great wealth of information on the solar wind interaction with Venus in part because of its comprehensive plasmas and fields instrumentation and in part because of the design and duration of the mission Our general understanding of the physics of the solar wind interaction with a weakly magnetized planet s upper atmosphere and

J. G. Luhmann; C. T. Russell; A. F. Nagy; T. E. Cravens

2006-01-01

177

Limb imaging of the Venus O2 visible nightglow with the Venus Monitoring Camera  

E-print Network

We investigated the Venus O2 visible nightglow with imagery from the Venus Monitoring Camera on Venus Express. Drawing from data collected between April 2007 and January 2011, we study the global distribution of this emission, discovered in the late 70s by the Venera 9 and 10 missions. The inferred limb-viewing intensities are on the order of 150 kiloRayleighs at the lower latitudes and seem to drop somewhat towards the poles. The emission is generally stable, although there are episodes when the intensities rise up to 500 kR. We compare a set of Venus Monitoring Camera observations with coincident measurements of the O2 nightglow at 1.27 {\\mu}m made with the Visible and Infrared Thermal Imaging Spectrometer, also on Venus Express. From the evidence gathered in this and past works, we suggest a direct correlation between the instantaneous emissions from the two O2 nightglow systems. Possible implications regarding the uncertain origin of the atomic oxygen green line at 557.7 nm are noted.

Muñoz, A García; Sánchez-Lavega, A; Markiewicz, W J; Titov, D V; Witasse, O; Opitz, A

2013-01-01

178

Venus Express: highlights of a four-year survey of our planet-neighbour  

NASA Astrophysics Data System (ADS)

Since April 2006 Venus Express has been performing a global survey of the remarkably dense, cloudy, and dynamic atmosphere of our near neighbour. A consistent picture of the climate on Venus is emerging on the basis of the new data, which enables us to provide an overview of the global temperature structure, the composition and its variations, the cloud morphology at various levels, the atmospheric dynamics and general circulation, and near-infrared emissions from trace species such as oxygen in the mesosphere. Vertical profiles of atmospheric tempera-ture in the mesosphere and upper troposphere show strong variability correlated with changes in the cloud top structure and many fine details indicating dynamical processes. Temperature sounding also shows that the cloud deck at 50-60 km is convectively unstable, in agreement with the analysis of UV images. Imaging also reveals strong latitudinal variations and significant temporal changes in the global cloud top morphology, which will inevitably modulate the solar energy deposited in the atmosphere. The cloud top altitude varies from ˜72 km in the low and middle latitudes to ˜64 km in the polar region, marking vast polar depressions that form as a result of the Hadley-type meridional circulation. Stellar and solar occultation measurements have revealed an extended upper haze of submicron particles and provided information on its optical properties. Solar occultation observations and deep atmosphere spectroscopy in several spectral transparency windows have quantified the distribution of the major trace gases H2O, SO2, CO, COS and their variations above and below the clouds, and so provided important input and validation for models of chemical cycles and dynamical transport. Cloud motion monitoring has characterised the mean state of the atmospheric circulation as well as its vari-ability. Low and middle latitudes show an almost constant zonal wind speed of 100+/-20 m/s at the cloud tops and vertical wind sheer of 2-3 m/s/km. Towards the pole, the wind speed drops quickly and the vertical shear vanishes. The meridional poleward wind ranges from 0 to about 15 m/s and there is some indication that it may change its direction at high latitudes. Comparison of the thermal wind field derived from temperature sounding to the cloud tracked winds confirms the approximate validity of cyclostrophic balance, at least in the latitude range from 30 S to 70S. Non-LTE infrared emissions in the lines of O2, NO, CO2, OH originating near the mesopause at 95-105 km altitude were detected and mapped. The data show that the peak intensity occurs close to the anti-solar point, which is consistent with current models of the thermospheric circulation.

Titov, Dmitri; Svedhem, Håkan; Barabash, S.; Bertaux, J.-L.; Drossart, P.; Haeusler, B.; Korablev, O. I.; Markiewicz, W. J.; Paetzold, M.; Piccioni, G.; Taylor, F. W.; Vandaele, A.-C.; Zhang, T.

179

Vertical structure of Venus polar thermosphere from in-situ data of the Venus Express Atmospheric Drag Experiment (VExADE)  

NASA Astrophysics Data System (ADS)

The Venus Express Atmospheric Drag Experiment (VExADE) has enabled first ever in-situ measurements of the density of the near-polar thermosphere of Venus above an altitude of 165 km. The measured values have been compared with existing models such as VTS3, which has been built mainly with the Pioneer Venus Orbiter Mass Spectrometer (PV-ONMS) data taken near 16? latitude, but extrapolated globally. The VExADE density values have been derived from the Precise Orbit Determination (POD) of the VEx spacecraft using both navigation and dedicated tracking data around pericenter passes during several VExADE campaigns. The last campaign has also benefited from the Planetary Radio Interferometry and Doppler Experiment (PRIDE) tracking. The combination of POD techniques has provided 46 reliable estimates of the polar thermosphere density. An independent set of density measurements was also taken by inferring the torque of the VEx spacecraft exerted by Venus’ upper atmosphere on the spacecraft during pericenter passes. This method has provided more than 120 density values in remarkably good agreement with the density values provided by the POD method. To date, the VExADE data have probed a range of 160 to 185 km in altitude, 80 to 90 degrees North in latitude and 5 to 20 hours in local time. While sampling in these ranges is insufficient to establish detailed horizontal density structures of the polar thermosphere a set of important properties can be inferred. First, the densities are lower by a factor of around 1.5 than the densities predicted by VTS3. At the same time, we find the density scale heights of VExADE and VTS3 to be consistent. Second, the density values exhibit strong variability, which is not taken into account in the VTS3 model. In order to investigate this dynamical behavior of the polar thermosphere, the ratio between the VExADE and VTS3 density has been analyzed. The latitude, altitude and local time trends are tentatively identified, but the sparse sampling provided by the VExADE data prevents us from drawing any definitive conclusions. We tentatively interpret the measured densities by a vertical wave-like pattern in the thermosphere with the amplitude of about 40% of the mean density value and a vertical wavelength of about 15 km. The causes of this vertical structure are as yet unknown. In order to improve sampling in this altitude range and thereby advance our understanding of the behavior of the polar thermosphere, further measurements are needed. An opportunity will be offered by the forthcoming aerobraking campaign scheduled for June-July 2014. The altitude of the spacecraft will decrease down to 130 km where the sensitivity of the accelerometer will enable density measurements. Tracking data and torque data may still be used to provide reliable density measurements at higher altitudes (150 to 185 km range).

Mueller-Wodarg, Ingo; Svedhem, Håkan; Bruinsma, Sean; Gurvits, Leonid; Cimo, Giuseppe; Molera Calves, Guifre; Bocanegra Bahamon, Tatiana; Rosenblatt, Pascal; Duev, Dmitry; Marty, Jean-Charles; Progebenko, Sergei

180

On Target for Venus Set Oriented Computation of Energy Efficient Low Thrust Trajectories  

E-print Network

On Target for Venus ­ Set Oriented Computation of Energy Efficient Low Thrust Trajectories Michael for a mission to Venus. Keywords: set oriented numerics, dynamical system, earth venus transfer, three body

181

Characterizing Volcanic Eruptions on Venus: Some Realistic (?) Scenarios  

NASA Technical Reports Server (NTRS)

When Pioneer Venus arrived at Venus in 1978, it detected anomalously high concentrations of SO2 at the top of the troposphere, which subsequently declined over the next five years. This decline in SO2 was linked to some sort of dynamic process, possibly a volcanic eruption. Observations of SO2 variability have persisted since Pioneer Venus. More recently, scientists from the Venus Express mission announced that the SPICAV (Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus) instrument had measured varying amounts of SO2 in the upper atmosphere; VIRTIS (Visible and Infrared Thermal Imaging Spectrometer) measured no similar variations in the lower atmosphere (ESA, 4 April, 2008). In addition, Fegley and Prinn stated that venusian volcanoes must replenish SO2 to the atmosphere, or it would react with calcite and disappear within 1.9 my. Fegley and Tremain suggested an eruption rate on the order of approx 1 cubic km/year to maintain atmospheric SO2; Bullock and Grinspoon posit that volcanism must have occurred within the last 20-50 my to maintain the sulfuric acid/water clouds on Venus. The abundance of volcanic deposits on Venus and the likely thermal history of the planet suggest that it is still geologically active, although at rates lower than Earth. Current estimates of resurfacing rates range from approx 0.01 cubic km/yr to approx 2 cubic km/yr. Demonstrating definitively that Venus is still volcanically active, and at what rate, would help to constrain models of evolution of the surface and interior, and help to focus future exploration of Venus.

Stofan, E. R.; Glaze, L. S.; Grinspoon, D. H.

2011-01-01

182

Magellan: The unveiling of Venus  

NASA Technical Reports Server (NTRS)

In the late 1970s and early 1980s, the United States and the Soviet Union sent the Pioneer Venus and Venera spacecraft, respectively, to study Venus more closely and to image its surface with radar. These missions have answered many questions about Venus, but many more questions remain unanswered about the extent to which Venus' surface was shaped by volcanoes, plate tectonics, impact craters, and water and wind erosion. To help answer these remaining questions a new radar imaging spacecraft Magellan will be launched from the Space Shuttle. Magellan will spend eight months mapping most of the planet at a resolution nearly ten times better than any previous views of the surface. The mission of Magellan, the radar equipment, orbiting of Venus, planetary imaging, and surface exploration are discussed.

1989-01-01

183

Power system comparison for the Pluto Express mission  

SciTech Connect

This paper presents a comparison of three advanced radioisotope power systems, along with a down sized RTG for the Pluto Express mission. These three advanced radioisotope power systems were the Radioisotope Alkali Metal Thermal--to-Electric Converter (RAMTEC), Radioisotope Stirling, and Radioisotope Thermophotovoltaic (RTPV). For the Pluto Express mission, the power requirement at the end of the 10-y mission is 74 We. It was found that all three advanced power systems could meet the required end of mission power with two General Purpose Heat Source (GPHS) modules. The RTG required six modules to meet the power requirement. Only the RAMTEC and RTPV met the mass goal of 9.5 kg. The AMTEC has a radiator area more than a factor of 10 lower than the Stirling and RTPV power systems, which simplifies spacecraft integration.

Harty, R.B. [Rockwell Aerospace, Canoga Park, CA (United States). Rocketdyne Div.

1995-12-31

184

Virtis: An Imaging Spectrometer for the Rosetta Mission  

Microsoft Academic Search

The VIRTIS (Visual IR Thermal Imaging Spectrometer) experiment has been one of the most successful experiments built in Europe\\u000a for Planetary Exploration. VIRTIS, developed in cooperation among Italy, France and Germany, has been already selected as\\u000a a key experiment for 3 planetary missions: the ESA-Rosetta and Venus Express and NASA-Dawn. VIRTIS on board Rosetta and Venus\\u000a Express are already producing

A. Coradini; F. Capaccioni; P. Drossart; G. Arnold; E. Ammannito; F. Angrilli; A. Barucci; G. Bellucci; J. Benkhoff; G. Bianchini; J. P. Bibring; M. Blecka; D. Bockelee-Morvan; M. T. Capria; R. Carlson; U. Carsenty; P. Cerroni; L. Colangeli; M. Combes; M. Combi; J. Crovisier; M. C. Desanctis; E. T. Encrenaz; S. Erard; C. Federico; G. Filacchione; U. Fink; S. Fonti; V. Formisano; W. H. Ip; R. Jaumann; E. Kuehrt; Y. Langevin; G. Magni; T. McCord; V. Mennella; S. Mottola; G. Neukum; P. Palumbo; G. Piccioni; H. Rauer; B. Saggin; B. Schmitt; D. Tiphene; G. Tozzi

2007-01-01

185

Chemical Weathering Kinetics of Basalt on Venus  

NASA Technical Reports Server (NTRS)

The purpose of this project was to experimentally measure the kinetics for chemical weathering reactions involving basalt on Venus. The thermochemical reactions being studied are important for the CO2 atmosphere-lithosphere cycle on Venus and for the atmosphere-surface reactions controlling the oxidation state of the surface of Venus. These reactions include the formation of carbonate and scapolite minerals, and the oxidation of Fe-bearing minerals. These experiments and calculations are important for interpreting results from the Pioneer Venus, Magellan, Galileo flyby, Venera, and Vega missions to Venus, for interpreting results from Earth-based telescopic observations, and for the design of new Discovery class (e.g., VESAT) and New Millennium missions to Venus such as geochemical landers making in situ elemental and mineralogical analyses, and orbiters, probes and balloons making spectroscopic observations of the sub-cloud atmosphere of Venus.

Fegley, Bruce, Jr.

1997-01-01

186

Planetary missions  

NASA Technical Reports Server (NTRS)

The scientific and engineering aspects of near-term missions for planetary exploration are outlined. The missions include the Voyager Neptune flyby, the Magellan survey of Venus, the Ocean Topography Experiment, the Mars Observer mission, the Galileo Jupiter Orbiter and Probe, the Comet Rendezvous Asteroid Flyby mission, the Mars Rover Sample Return mission, the Cassini mission to Saturn and Titan, and the Daedalus probe to Barnard's star. The spacecraft, scientific goals, and instruments for these missions are noted.

Mclaughlin, William I.

1989-01-01

187

Portuguese Participation In The Mars Express\\/beagle2 Mission  

Microsoft Academic Search

Three Portuguese groups responded to the European Space Agency (ESA) second an- nouncement of opportunities for the Mars Express Mission. Projects were submitted in the fields Atmosphere and Surface\\/Atmosphere Interaction, Exobiology and Geologi- cal Evolution. Contacts among the groups revealed large areas of potential interaction and a necessity of active data, methods and analysis interchange. The projects will be executed

E. I. Alves

2002-01-01

188

Radar observation of Venus' terrestrial analogues using TecSAR X-band SAR  

NASA Astrophysics Data System (ADS)

Venus is shrouded in a dense CO2 atmosphere that prevents us from viewing the surface in visible light or with optronic sensors. Long wavelengths are required to 'see' through the dense atmosphere. In the early 1990s, the S-band synthetic aperture radar of the Magellan spacecraft acquired images of a variety of surface features on Venus, including morphologies attributed to wind processes. These include sand dunes, wind-sculpted hills (yardangs), and almost 6000 wind streaks. These aeolian landscapes were formed and shaped by near surface atmospheric circulation and local winds. These can serve as local markers, each providing an integrated wind direction. Since the Magellan mission, there were no missions to Venus until the Venus Express Mission of 2005 to examine the upper atmosphere. The future will probably include high-resolution SAR images of Venus. This poster will demonstrate high resolution SAR images in X-band from the TecSAR sensor launched by Israel in 2008. Observations of wind streaks, dunes and impact craters in desert areas will show the wealth of information that is extracted from high-res X-band data. Detailed images of Aurounga impact crater in Chad, Kelso dunes, California and Pisgah lava flow show immense detail of the morphologies associated with these features. These are compared with Magellan images of sites on Venus and SRL data in C and L-bands. The X-band provides extremely high resolution and resembles optical data much more than the longer wavelengths.

Blumberg, D. G.

2012-04-01

189

Scaling Laws for Pulsed Electric Propulsion with Application to the Pluto Express Mission  

E-print Network

Scaling Laws for Pulsed Electric Propulsion with Application to the Pluto Express Mission J applied to the Pluto Express Mission. A 100% increase in the scientific payload mass of a recent probe's Pluto Express Mission is a low mass, low power mission currently in the design stage. Pluto's distance

Choueiri, Edgar

190

On ion escape from Venus  

NASA Astrophysics Data System (ADS)

This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics.Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects?One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the solar wind is called the plasma environment or the induced magnetosphere.Main findings of the work include new knowledge about the movement of escaping planetary ions in the Venusian induced magnetosphere. Further, the developed simulation model was used to study how the solar wind conditions affect the ion escape from Venus. Especially, the global three-dimensional structure of the Venusian particle and magnetic environment was studied. The results help to interpret spacecraft observations around the planet. Finally, several remaining questions were identified, which could potentially improve our knowledge of the Venus ion escape and guide the future development of planetary plasma simulations.

Jarvinen, R.

2011-04-01

191

On ion escape from Venus  

NASA Astrophysics Data System (ADS)

This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics. Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects? One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the solar wind is called the plasma environment or the induced magnetosphere. Main findings of the work include new knowledge about the movement of escaping planetary ions in the Venusian induced magnetosphere. Further, the developed simulation model was used to study how the solar wind conditions affect the ion escape from Venus. Especially, the global three-dimensional structure of the Venusian particle and magnetic environment was studied. The results help to interpret spacecraft observations around the planet. Finally, several remaining questions were identified, which could potentially improve our knowledge of the Venus ion escape and guide the future development of planetary plasma simulations.

Jarvinen, Riku

2011-04-01

192

Pioneer Venus and Galileo entry probe heritage  

NASA Astrophysics Data System (ADS)

Beginning in the late 1960s, NASA began planning for its first program to explore Venus. Although planetary entry probes had been flown to Venus by the Soviets beginning in 1967, NASA had not previously flown this type of mission. The Space and Communications Group of Hughes Aircraft Company, now owned by Boeing and called Boeing Satellite Systems, worked with NASA to perform initial studies that culminated with a contract for the Pioneer Venus program in early 1974. Pioneer Venus was an ambitious program that included four planetary entry probes, transported to Venus by a Multiprobe Bus, and a Venus Orbiter. This paper focuses on the engineering aspects of the probes and the challenges overcome in accommodating the various scientific instruments. The second NASA planetary entry program was the Galileo Mission that began with initial studies in the early 1970s. This mission to Jupiter included both an Orbiter and a Probe. Although the Galileo Probe planetary entry program was begun as the Pioneer Venus probes were heading towards Venus, there were significant engineering differences between the Pioneer Venus probe designs and the Galileo Probe. These differences, dictated by a number of factors, are discussed. The paper concludes with a summary of lessons learned by Boeing and NASA in designing, manufacturing and ultimately flying the Venus and Jupiter planetary entry probes.

Bienstock, Bernard J.

2004-02-01

193

Venus Atmosphere and Surface Explorer  

NASA Astrophysics Data System (ADS)

ContextVenus is Earth’s twin planet, but it is an evil twin! To understand how Venus went wrong, to understand the terrestrial planets in our Solar System, those around other stars, and the future of the Earth… we must understand Venus history, evolution and current processes. This requires entering the Venus atmosphere and examining its surface. Future missions will land on Venus, but they need better characterization of its atmosphere and of possible landing sites. VASE can build on discoveries from previous missions, on technical advances in the last decades and on improved balloon technology. The hybrid mission links together a single vertical profile with two weeks of temporal and longitudinal data on a global scale. We can investigate the linked surface and atmosphere processes. We will measure the noble gases which retain indicators of Venus formation; clouds, winds, and chemistry that drive the current Venus processes; and take descent images that extend the Magellan RADAR results to sub-1m resolution, providing ground truth for Magellan’s global mapping and to characterize possible future landing sites.Science Objectives VASE will measure the complete inventory of atmospheric noble gas and light stable isotopes to constrain theories of planetary formation and evolution. It will take nested surface images on descent. It will provide the first complete atmospheric structure profile from clouds to surface of temperature, pressure and wind. VASE will measure with critical accuracy the trace and reactive gas composition profile from clouds to surface. VASE will map the surface emissivity along the surface below two balloon circumnavigations of Venus.Mission VASE is a hybrid Venus mission consisting of a large balloon and a small probe. It reaches Venus after a 4 month trip from Earth. The probe deploys from the entry vehicle and falls to surface in 1.5 hours. The balloon mission lasts 2 weeks, flying in the clouds at 55 km and circumnavigating Venus twice. The balloon communicates directly to Earth and serves as the telecom relay for the probe.

Esposito, Larry W.; Hall, Jeff; Schofield, Tim

2014-11-01

194

Orbital Express Mission Operations Planning and Resource Management using ASPEN  

NASA Technical Reports Server (NTRS)

As satellite equipment and mission operations become more costly, the drive to keep working equipment running with less man-power rises.Demonstrating the feasibility of autonomous satellite servicing was the main goal behind the Orbital Express (OE) mission. Planning the satellite mission operations for OE required the ability to create a plan which could be executed autonomously over variable conditions. The Automated-Scheduling and Planning Environment (ASPEN)tool, developed at the Jet Propulsion Laboratory, was used to create the schedule of events in each daily plan for the two satellites of the OE mission. This paper presents an introduction to the ASPEN tool, the constraints of the OE domain, the variable conditions that were presented within the mission, and the solution to operations that ASPEN provided. ASPEN has been used in several other domains, including research rovers, Deep Space Network scheduling research, and in flight operations for the ASE project's EO1 satellite. Related work is discussed, as are the future of ASPEN and the future of autonomous satellite servicing.

Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Daniel

2008-01-01

195

AMTEC radioisotope power system for the Pluto Express mission  

SciTech Connect

The Alkali Metal Thermal to Electric Converter (AMTEC) technology has made substantial advances in the last 3 years through design improvements and technical innovations. In 1993 programs began to produce an AMTEC cell specifically for the NASA Pluto Express Mission. A set of efficiency goals was established for this series of cells to be developed. According to this plan, cell {number_sign}8 would be 17% efficient but was actually 18% efficient. Achieving this goal, as well as design advances that allow the cell to be compact, has resulted in pushing the cell from an unexciting 2 W/kg and 2% efficiency to very attractive 40 W/kg and 18% measured efficiency. This paper will describe the design and predict the performance of a radioisotope powered AMTEC system for the Pluto Express mission.

Ivanenok, J.F. III; Sievers, R.K. [Advanced Modular Power Systems, Inc., Ann Arbor, MI (United States)

1995-12-31

196

ULF and ELF Electromagnetic Waves over Venus Electrical Storms  

NASA Astrophysics Data System (ADS)

Venus Express (VEX) observations of electromagnetic signals from at both ULF and ELF frequencies have been enabled by new, improved cleaning algorithms using its dual fluxgate magnetometers. These data reveal two types of signals that are associated with electrical activity in Venus' atmosphere. The first signals occur only below about 20 Hz, at which frequencies signals can propagate perpendicular to the magnetic field. These signals consist of waves arriving from different directions across the field just as expected from discharges occurring in different places within the clouds beneath the spacecraft. Since these low frequency (ULF) signals can cross the magnetic field lines, they easily reach the spacecraft while horizontal ionospheric magnetic fields can prevent the entry of higher frequency (ELF) signals to the satellite. These signals allow us to map the occurrence rate of lightning on Venus much more directly and completely than we could previously with only the ELF portion of the spectrum. A second type of signal can occur at both low (<20 Hz) ULF and high (>20 Hz) ELF frequencies. This signal appears to represent connection via the ionospheric magnetic field to a more distant storm. The signals are right-hand circularly polarized and propagate parallel to the magnetic field. These were the signals used to perform our initial VEX studies of Venus lightning before the cleaning algorithm was perfected. They are the same type of signals detected "inside the resonance cone" on the Pioneer Venus mission using its electric field antenna and identified as propagating in the whistler mode.

Hart, R. A.; Russell, C. T.; Leinweber, H.; Zhang, T.; Strangeway, R. J.; Wei, H.

2012-12-01

197

Extreme Environments Technologies for Probes to Venus and Jupiter  

NASA Technical Reports Server (NTRS)

This viewgraph presentation reviews the technologies that are used to mitigate extreme environments for probes at Venus and Jupiter. The contents include: 1) Extreme environments at Venus and Jupiter; 2) In-situ missions to Venus and Jupiter (past/present/future); and 3) Approaches to mitigate conditions of extreme environments for probes with systems architectures and technologies.

Balint, Tibor S.; Kolawa, Elizabeth A.; Peterson, Craig E.; Cutts, James A.; Belz, Andrea P.

2007-01-01

198

Venus Transit 2004  

NASA Astrophysics Data System (ADS)

December 6th, 1882 was the last transit of the planet Venus across the disk of the sun. It was heralded as an event of immense interest and importance to the astronomical community as well as the public at large. There have been only six such occurrences since Galileo first trained his telescope on the heavens in 1609 and on Venus in 1610 where he concluded that Venus had phases like the moon and appeared to get larger and smaller over time. Many historians consider this the final nail in the coffin of the Ptolemaic, Earth centered solar system. In addition, each transit has provided unique opportunities for discovery such as measurement and refinement of the astronomical unit, calculation of longitudes on the earth, and detection of Venus' atmosphere. The NASA Sun Earth Connection Education Forum in partnership with the Solar System Exploration Forum, DPS, and a number of NASA space missions is developing plans for an international education program centered around the June 8, 2004 Venus transit. The transit will be visible in its entirety from Europe and partially from the East Coast of the United States. We will use a series of robotic observatories including the Telescopes In Education network distributed in latitude to provide observations of the transit that will allow middle and high school students to calculate the A.U. through application of parallax. We will also use Venus transit as a probe of episodes in American history (e.g. 1769: revolutionary era, 1882: post civil war era, and 2004: modern era). Museums and planetariums in the US and Europe will offer real time viewing of the transit and conduct educational programs through professional development seminars, public lectures, and planetarium shows. We are interested in soliciting advice from the research community to coordinate professional research interests with this program.

Mayo, L. A.; Odenwald, S. F.

2002-09-01

199

Robotic Technology for Exploration of Venus  

NASA Technical Reports Server (NTRS)

Venus, the "greenhouse planet", is a scientifically fascinating place. A huge number of important scientific questions remain to be answered. Venus is sometimes called Earth's "sister planet" due to the fact that it is closest to the Earth in distance and similar to Earth in size. Despite its similarity to Earth, however, the climate of Venus is vastly different from Earth's. Understanding the atmosphere, climate, geology, and history of Venus could shed considerable light on our understanding of our own home planet. The surface of Venus is a hostile environment, with an atmosperic pressure of over 90 bar of carbon dioxide, temperature of 450 C, and shrouded in sulphuric-acid clouds. Venus has been explored by a number of missions from Earth, including the Russian Venera missions which landed probes on the surface, the American Pioneer missions which flew both orbiters and atmospheric probes to Venus, the Russian "Vega" mission, which floated balloons in the atmosphere of Venus, and most recently the American Magellan mission which mapped the surface by radar imaging. While these missions have answered basic questions about Venus, telling us the surface temperature and pressure, the elevations and topography of the continents, and the composition of the atmosphere and clouds, scientific mysteries still abound. Venus is of considerable interest to terrestrial atmospheric science, since of all the planets in the solar system, it is the closest analogue to the Earth in terms of atmosphere. Yet Venus' atmosphere is an example of "runaway greenhouse effect." Understanding the history and the dynamics of Venus' atmosphere could tell us considerable insight about the workings of the atmosphere of the Earth. It also has some interest to astrobiology-- could life have existed on Venus in an earlier, pre-greenhouse-effect phase? Could life still be possible in the temperate middle-atmosphere of Venus? The geology of Venus also has interest in the study of Earth. surface robot will require new technologies; specifically, it will require electronics, scientific instruments, power supplies, and mechanical linkages designed to operate at a temperature above 450 C-hot enough to melt the solder on a standard electronic circuit board. This will require devices made from advanced semiconductor materials, such as silicon carbide, or even new approaches, such as micro-vacuum tube electronics. Such materials are now being developed in the laboratory.

Landis, Geoffrey A.

2003-01-01

200

High temperature, wireless seismometer sensor for Venus  

Microsoft Academic Search

Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462° C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept

George E. Ponchak; Maximilian C. Scardelletti; Brandt Taylor; Steve Beard; Roger D. Meredith; Glenn M. Beheim; Gary W. Hunter; Walter S. Kiefer

2012-01-01

201

Dual Balloon Concept For Lifting Payloads From The Surface Of Venus  

Microsoft Academic Search

Two highly rated Venus mission concepts proposed in the National Science Foundation Decadal Survey require a balloon to lift payloads from Venusian surface to high altitudes: Venus Surface Sample Return (VESSR) and Venus In-Situ Explorer (VISE). In case of VESSR the payload is a canister with the surface sample plus a Venus ascent vehicle (VAV), which is a rocket that

Viktor V. Kerzhanovich; Jeffery L. Hall; James A. Cutts

202

Venus Phasing.  

ERIC Educational Resources Information Center

Presents a science activity designed to introduce students to the geocentric and heliocentric models of the universe. Helps students discover why phase changes on Venus knocked Earth out of the center of the universe. (DKM)

Riddle, Bob

1997-01-01

203

Exploring Venus.  

ERIC Educational Resources Information Center

Presents basic information on the planet Venus answering questions on location, size, temperature, clouds, water, and daylight. A weather forecast for a typical day and revelations from radar experiments are also included. (DH)

The Universe in the Classroom, 1985

1985-01-01

204

Venus Syndrome  

NASA Astrophysics Data System (ADS)

We use three alternative avenues to investigate climate sensitivity on Earth and the conditions that could lead to extermination of human life on the planet or even a Venus-like runaway greenhouse effect.

Hansen, J.; Kharecha, P.; Lacis, A.; Russell, G.; Sato, M.

2012-06-01

205

Future exploration of Venus (post-Pioneer Venus 1978)  

NASA Technical Reports Server (NTRS)

A comprehensive study was performed to determine the major scientific unknowns about the planet Venus to be expected in the post-Pioneer Venus 1978 time frame. Based on those results the desirability of future orbiters, atmospheric entry probes, balloons, and landers as vehicles to address the remaining scientific questions were studied. The recommended mission scenario includes a high resolution surface mapping radar orbiter mission for the 1981 launch opportunity, a multiple-lander mission for 1985 and either an atmospheric entry probe or balloon mission in 1988. All the proposed missions can be performed using proposed space shuttle upper stage boosters. Significant amounts of long-lead time supporting research and technology developments are required to be initiated in the near future to permit the recommended launch dates.

Colin, L.; Evans, L. C.; Greeley, R.; Quaide, W. L.; Schaupp, R. W.; Seiff, A.; Young, R. E.

1976-01-01

206

Hinode Views the 2012 Venus Transit  

NASA Video Gallery

On June 5, 2012, Hinode captured these stunning views of the transit of Venus -- the last instance of this rare phenomenon until 2117. Hinode is a joint JAXA/NASA mission to study the connections o...

207

Electron optical study of the Venus Express ASPERA-4 Electron Spectrometer (ELS) top-hat electrostatic analyser  

NASA Astrophysics Data System (ADS)

The performance of the Venus Express (VEX) ASPERA-4 Electron Spectrometer (ELS) is different from the nominal response shown by the ASPERA-3 ELS aboard Mars Express due to machining tolerance. Up to now, the precise mechanism for this was unknown and, therefore, the results of the experimental calibration could not be supported with a theoretical understanding of the fundamental instrument science behind the device. In this study, we show that the difference is due to a misalignment of the inner hemisphere and a widening of the entrance aperture of the instrument. The response of the VEX ELS can be approximated by a combination of a vertical offset of the inner hemisphere of ?0.6 mm and a lateral offset of less than 0.125 mm, combined with an aperture that is ?0.54 mm wider than nominal. The resulting K-factor, geometric factor, energy resolution and peak elevation are in good agreement with those observed experimentally. Therefore, we now have a good agreement between both laboratory calibration data and computer simulation, giving a firm foundation for future scientific data analysis.

Collinson, Glyn A.; Kataria, D. O.; Coates, Andrew J.; Tsang, Sharon M. E.; Arridge, Christopher S.; Lewis, Gethyn R.; Frahm, Rudy A.; Winningham, J. David; Barabash, Stas

2009-05-01

208

From Earth to Venus - reaching our sister planet  

NASA Astrophysics Data System (ADS)

On 9 November 2005, Venus Express left Earth and was placed in orbit around Venus on 11 April 2006. Only 48 hours later, the first astonishing images of the south pole were received on Earth. A few weaks later, after orbital manoeuvres, Venus Express achieved its operational science orbit ready to begin several years of observations.

Accomazzo, Andrea; Schmitz, Peter; Tanco, Ignacio

2006-08-01

209

Optimizing Aerobot Exploration of Venus  

NASA Astrophysics Data System (ADS)

Venus Flyer Robot (VFR) is an aerobot; an autonomous balloon probe designed for remote exploration of Earth's sister planet in 2003. VFR's simple navigation and control system permits travel to virtually any location on Venus, but it can survive for only a limited duration in the harsh Venusian environment. To help address this limitation, we develop: (1) a global circulation model that captures the most important characteristics of the Venusian atmosphere; (2) a simple aerobot model that captures thermal restrictions faced by VFR at Venus; and (3) one exact and two heuristic algorithms that, using abstractions (1) and (2), construct routes making the best use of VFR's limited lifetime. We demonstrate this modeling by planning several small example missions and a prototypical mission that explores numerous interesting sites recently documented in the plane tary geology literature.

Ford, Kevin S.

1997-03-01

210

Optimizing Aerobot Exploration of Venus  

NASA Technical Reports Server (NTRS)

Venus Flyer Robot (VFR) is an aerobot; an autonomous balloon probe designed for remote exploration of Earth's sister planet in 2003. VFR's simple navigation and control system permits travel to virtually any location on Venus, but it can survive for only a limited duration in the harsh Venusian environment. To help address this limitation, we develop: (1) a global circulation model that captures the most important characteristics of the Venusian atmosphere; (2) a simple aerobot model that captures thermal restrictions faced by VFR at Venus; and (3) one exact and two heuristic algorithms that, using abstractions (1) and (2), construct routes making the best use of VFR's limited lifetime. We demonstrate this modeling by planning several small example missions and a prototypical mission that explores numerous interesting sites recently documented in the plane tary geology literature.

Ford, Kevin S.

1997-01-01

211

Scientists Identify Exploration Goals for Venus  

NASA Astrophysics Data System (ADS)

Since the turn of the millennium, a large proportion of NASA's planetary science missions—including spacecraft and payloads on four orbiting missions and three rovers—has targeted Mars in preparation for future human missions to the red planet. Less studied, however, is Venus.

Kumar, Mohi

2014-04-01

212

Similarities and Differences in the Nightglows of Venus, Earth, and Mars  

NASA Astrophysics Data System (ADS)

Although the atmospheres of Earth and its sister planets Venus and Mars are quite different, their nightglows have several features in common. These similarities are caused by the fact that all three planets contain N2 in their atmospheres, and all contain a molecule that photodissociates to give oxygen atoms, i.e. O2 in the terrestrial case, and CO2 for Venus and Mars. As a result, we find for example that two-body N + O recombination occurs on all three planets, as we know from terrestrial rocket/satellite observations, the Pioneer Venus results, and the recent observations from the Mars Express mission. The very different rotation periods of Earth and Mars on the one hand and Venus on the other presents no impediment to the generation of these emissions. The long-studied terrestrial 557.7 nm green line is now known to have its counterpart at Venus, with every expectation of observing it at Mars when the visible nightglow is finally studied. The presence of water in the terrestrial atmosphere and that of Mars differentiates them from Venus, and we do not yet know if the strong OH Meinel band emissions of the terrestrial mesosphere are duplicated at Mars, although the necessary chemical ingredients, H-atoms and ozone, are present. Comparative studies of these atmospheres lead to insights that will ultimately be useful as we start to probe the atmospheres of extrasolar planets.

Slanger, T. G.

2005-12-01

213

Orbital Express Mission Operations Planning and Resource Management using ASPEN  

NASA Technical Reports Server (NTRS)

The Orbital Express satellite servicing demonstrator program is a DARPA program aimed at developing "a safe and cost-effective approach to autonomously service satellites in orbit". The system consists of: a) the Autonomous Space Transport Robotic Operations (ASTRO) vehicle, under development by Boeing Integrated Defense Systems, and b) a prototype modular next-generation serviceable satellite, NEXTSat, being developed by Ball Aerospace. Flexibility of ASPEN: a) Accommodate changes to procedures; b) Accommodate changes to daily losses and gains; c) Responsive re-planning; and d) Critical to success of mission planning Auto-Generation of activity models: a) Created plans quickly; b) Repetition/Re-use of models each day; and c) Guarantees the AML syntax. One SRP per day vs. Tactical team

Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Danny

2008-01-01

214

Terraforming Venus  

NASA Astrophysics Data System (ADS)

The methods and force magnitudes necessary for terraforming Venus into a habitable planet are calculated. The basic requirements are to bring the Venus daylength closer to an earth day and to reform the basically CO2 Venus atmosphere into an oxygen-inert gas mixture suitable for breathing without a spacesuit. The redirection of large, dense matter asteroids from the inner asteroid belt to collisions with the Venus equator to speed up the rotational period of the planet is examined. The impact of two asteroids 350 km in diameter is considered sufficient to accelerate the Venus rotation to a solar day of 20.1 earth days, and a second dual kick would bring the period up to 11 earth days. The subsequent geologic upheavals are noted to possibly result in the release of inner planetary gasses of unknown, and potentially undesirable composition. Antimatter engines to drive the asteroids are discussed, as is the use of cometary bodies of supply water to the sped-up planet.

Adelman, S. J.

1982-02-01

215

Venus Exploration Themes Venus Exploration Themes  

E-print Network

Venus Exploration Themes May 2014 #12;ii Venus Exploration Themes Prepared as an adjunct to the three VEXAG documents: Goals, Objectives and Investigations; Roadmap; as well as Venus Technologies for distribution at the Venus Town Hall Meeting, March 2014 Lunar and Planetary Science Conference. This document

Rathbun, Julie A.

216

Venus lightning  

NASA Astrophysics Data System (ADS)

Although it is not unanimously accepted, many independent observations lead to the conclusion that lightning is prevalent on Venus. The EM signals detected by all four Venera landers are most readily explained as generation by lightning. The Venera 9 spectrometer appears to have observed a lightning storm on one occasion. The Pioneer Venus plasma-wave instrument detects waves both below the electron gyrofrequency (that may be due to lightning) and signals above the electron gyrofrequency but at very low altitudes (that may be due to the near field of the lightning). The VLF observations suggest that Venus lightning must be an intracloud phenomenon which is most frequent in the afternoon and evening sector. The occurrence rate is likely to be greater than on earth.

Russell, C. T.

1991-02-01

217

Venus gravity  

NASA Technical Reports Server (NTRS)

The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter (PVO) by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter was evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.

Reasenberg, Robert D.

1993-01-01

218

Venus Atmospheric Maneuverable Platform (VAMP)  

NASA Astrophysics Data System (ADS)

We have explored a possible new approach to Venus upper atmosphere exploration by applying recent Northrop Grumman (non-NASA) development programs to the challenges associated with Venus upper atmosphere science missions. Our concept is a low ballistic coefficient (<50 Pa), semi-buoyant aircraft that deploys prior to entering the Venus atmosphere, enters the Venus atmosphere without an aeroshell, and provides a long-lived (months to years), maneuverable vehicle capable of carrying science payloads to explore the Venus upper atmosphere. In 2012 we initiated a feasibility study for a semi-buoyant maneuverable vehicle that could operate in the upper atmosphere of Venus. In this presentation we report results from the ongoing study and plans for future analyses and prototyping to advance and refine the concept. We will discuss the overall mission architecture and concept of operations from launch through Venus arrival, orbit, entry, and atmospheric science operations. We will present a strawman concept of VAMP, including ballistic coefficient, planform area, percent buoyancy, inflation gas, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, subsystems, and packaging. The interaction between the VAMP vehicle and the supporting orbiter will also be discussed. In this context, we will specifically focus upon four key factors impacting the design and performance of VAMP: 1. Feasibility of and options for the deployment of the vehicle in space 2. Entry into the Venus atmosphere, including descent profile, heat rate, total heat load, stagnation temperature, control, and entry into level flight 3. Characteristics of flight operations and performance in the Venus atmosphere: altitude range, latitude and longitude access, day/night performance, aircraft performance (aerodynamics, power required vs. power available, propulsion, speed, percent buoyancy), performance sensitivity to payload weight 4. Science payload accommodation, constraints, and opportunities We will discuss interdependencies of the above factors and the manner in which the VAMP strawman's characteristics affect the CONOPs and the science objectives. We will show how the these factors provide constraints as well as enable opportunities for novel long duration scientific studies of the Venus upper atmosphere that support VEXAG goals 2 and 3. We will also discuss how the VAMP platform itself can facilitate some of these science measurements.

Griffin, K.; Sokol, D.; Lee, G.; Dailey, D.; Polidan, R.

2013-12-01

219

Venusian ion populations and bow shock as seen by the ASPERA-4 ion instrument on Venus Express  

NASA Astrophysics Data System (ADS)

Introduction We examine ion populations at Venus. Previous models use magnetic crossing points to derive the bow shock position. The current work uses data from the ASPERA-4 (Analyser of Space Plasmas and Energetic Atoms) [1] instrument to measure ion populations and derive a bow shock position at Venus. Instrumentation The ASPERA-4 instrument flies onboard Venus Express (VEX) and is comprised of five different detectors (Barabash et al 2006 [1]). A neutral particle detector and analyser, an electron spectrometer and the Ion Mass Analyser (IMA) (ref). This paper uses the IMA instrument for all its data and an explanation of the specifications is required. The instrument is a top hat electrostatic analyser; it runs through voltages to scan look angles and also acceptance energies. In one look direction it scans through 96 different energy values before changing to the next. A full scan of all look directions and energies takes 192 seconds. Data Collection All data is weighed dependant upon its probability of the spacecraft measuring at a particular point and when fitted produces a value of 1.24 RV, somewhat closer distance for the sub solar point than previous authors - see figure 1. We separate the data according to slow or fast solar wind and not the similarities and differences in the results derived. The inbound and outbound bow shock crossings were taken by inspection of 106 orbits between November 2006 and February 2007. Any orbits where the crossing point was not clear or with data missing were ignored. The occupational probability is found from orbital mechanics. By setting up a grid and deriving the amount of time it takes to cross each square the probability as a whole can then be determined. Ion distribution plots Two dimensional maps of the ions are produced and the bow shock model overplotted to verify its accuracy, as shown in figure 3. The test of the bow shock is to place it upon real data and examine the fit. To do this ion distribution plots are created and have the bow shock model placed upon them. The maps are shown in fig 8 and comprise 6 months of data from VEX in 2007. The count rates of all spectra of every orbit were stored and binned into a grid system. Each box in the grid being averaged from all values placed into it. The results were then smoothed and the maps created for individual species and plot types. Fig 3 shows maps for hydrogen ions in the x-y plane and in cylindrical coordinates signed with y. This plot is the same as a standard cylindrical plot but the r value is positive if y is positive and negative if y is negative. Effect of Coronal mass Ejections The HI imager on STEREO is able to image Coronal mass Ejections (CME) in the inner Solar System. In a recent paper, Roullard et al 2008 [2] have considered a CME observed to impact Venus, and used in situ measurements to examine the response of the magnetosphere. The plots in figure4 show the measured ion response to this and an earlier CME. We will examine the ion signatures in detail. Acknowledgements We acknowledge the contributions of the entire Aspera 4 team: S. Barabash, R. Lundin, H. Andersson, K. Brinkfeld, A. Grigoriev, H. Gunell, M. Holmström, M. Yamauchi, K. Asamura, P. Bochsler, P. Wurz, R. Cerulli-Irelli, A. Mura, A. Milillo, M. Maggi, S. Orsini, A. J. Coates, D. R. Linder, D. O. Kataria, C. C. Curtis, K. C. Hsieh, B. R. Sandel, R. A. Frahm, J. R. Sharber, J. D. Winningham, M. Grande, E. Kallio, H. Koskinen, P. Riihelä, W. Schmidt, T. Säles, J. U. Kozyra,N. Krupp, J. Woch,.S. Livi, J. G., Luhmann, S. McKenna-Lawlor, E. C. Roelof, D. J. Williams, J.-A. Sauvaud, A. Fedorov, and J.-J. Thocaven. References [1] S. Barabash, R. Lundin, H. Andersson, K. Brinkfeld, A. Grigoriev, H. Gunell, M. Holmström, M. Yamauchi, K. Asamura, P. Bochsler, P. Wurz, R. Cerulli-Irelli, A. Mura, A. Milillo, M. Maggi, S. Orsini, A. J. Coates, D. R. Linder, D. O. Kataria, C. C. Curtis, K. C. Hsieh, B. R. Sandel, R. A. Frahm, J. R. Sharber, J. D. Winningham, M. Grande, E. Kallio, H. Koskinen, P. Riihelä, W. Schmidt, T. Säles, J. U. Kozyra,N. Krupp

Grande, M.; Whittaker, I.; Guymer, G.; Barabash, S.

2008-09-01

220

The Venus environment  

SciTech Connect

Attention is given to noble gases in planetary atmospheres, the photochemistry of the stratosphere of Venus, the chemistry of metastable species in the Venusian ionosphere, the Venus ionosphere at grazing incidence of solar radiation, disappearing ionospheres on the nightside of Venus, and the observed composition of the ionosphere of Venus. Other investigations considered are concerned with the predicted electrical conductivity between 0 and 80 km in the Venusian atmosphere, sulfuric acid vapor and other cloud-related gases in the Venus atmosphere, the composition and vertical structure of the lower cloud deck on Venus, amorphous sulfur as the ultraviolet absorber on Venus, and polarization studies of the Venus UV contrasts. A description is provided of topics related to temporal variability of ultraviolet cloud features in the Venus stratosphere, zonal mean circulation at the cloud level on Venus, the influence of thermospheric winds on exospheric hydrogen on Venus, and an analysis of Venus gravity data.

Not Available

1982-08-01

221

Venus, Earth, Xenon  

NASA Astrophysics Data System (ADS)

Xenon has been regarded as an important goal of many proposed missions to Venus. This talk is intended to explain why. Despite its being the heaviest gas found in natural planetary atmospheres, there is more evidence that Xe escaped from Earth than for any element apart from helium: (i) Atmospheric Xe is very strongly mass fractionated (at about 4% per amu) from any known solar system source. This suggests fractionating escape that preferentially left the heavy Xe isotopes behind. (ii) Xe is underabundant compared to Kr, a lighter noble gas that is not strongly mass fractionated in air. (iii) Radiogenic Xe is strongly depleted by factors of several to ~100 compared to the quantities expected from radioactive decay of primordial solar system materials. In these respects Xe on Mars is similar to Xe on Earth, but with one key difference: Xe on Mars is readily explained by a simple process like hydrodynamic escape that acts on an initially solar or meteoritic Xe. This is not so for Earth. Earth's Xe cannot be derived by an uncontrived mass fractionating process acting on any known type of Solar System Xe. Earth is a stranger, made from different stuff than any known meteorite or Mars or even the Sun. Who else is in Earth's family? Comets? We know nothing. Father Zeus? Data from Jupiter are good enough to show that jovian Xe is not strongly mass-fractionated but not good enough to determine whether Jupiter resembles the Earth or the Sun. Sister Venus? Noble gas data from Venus are incomplete, with Kr uncertain and Xe unmeasured. Krypton was measured by several instruments on several spacecraft. The reported Kr abundances are discrepant and were once highly controversial. These discrepancies appear to have been not so much resolved as forgotten. Xenon was not detected on Venus. Upper limits were reported for the two most abundant xenon isotopes 129Xe and 132Xe. From the limited data it is not possible to tell whether Venus's affinities lie with the solar wind, or with the chondrites, with Earth, or with none of the above. Modern spacecraft mass spectrometers are at least 100-fold more sensitive to noble gases. Sending such an instrument to Venus may be the last best hope for decrypting what Earth's noble gases have been trying to tell us.

Zahnle, K. J.

2013-12-01

222

Observations of quasi-perpendicular propagating electromagnetic waves near the ionopause current sheet of Venus  

E-print Network

sheet of Venus H. Y. Wei,1 C. T. Russell,1 J. T. M. Daniels,1 T. L. Zhang,2 R. J. Strangeway,1 and J. G. [1] Due to the lack of an intrinsic magnetic field at Venus, the Venus ionosphere acts of the solar wind magnetic fields into the ionosphere. The Venus Express magnetometer occasionally observes

California at Berkeley, University of

223

Pioneer Venus orbiter electron temperature probe  

NASA Technical Reports Server (NTRS)

This document lists the scientific accomplishments of the Orbiter Electron Temperature Probe (OETP) group. The OETP instrument was fabricated in 1976, integrated into the PVO spacecraft in 1977, and placed in orbit about Venus in December 1978. The instrument operated flawlessly for nearly 14 years until PVO was lost as it entered the Venusian atmosphere in October 1992. The OETP group worked closely with other PVO investigators to examine the Venus ionosphere and its interactions with the solar wind. After the mission was completed we continued to work with the scientist selected for the Venus Data Analysis Program (VDAP), and this is currently leading to additional publications.

Brace, Larry H.

1994-01-01

224

Variable Venus  

NSDL National Science Digital Library

This is an activity about the phases of Venus and the planetâs variance in angular size as seen from Earth. Learners will use an online program such as Solar System Live to determine Venusâs distance from Earth for one half of its cycle. This activity requires access to the Solar System Update software and a computer with Internet access. This is Solar System Activity 6 in a larger resource, Space Update.

225

Venus Express observations of the induced magnetosphere at dayside during the passage of an interplanetary coronal mass ejection  

Microsoft Academic Search

Although there is no intrinsic magnetic field at Venus, the convected interplanetary magnetic field piles up to form a magnetic barrier in the dayside inner magnetosheath. In analogy to the Earth's magnetosphere, the magnetic barrier acts as an induced magnetosphere on the dayside and hence as the obstacle to the solar wind. It consists of regions near the planet and

Tielong Zhang

2008-01-01

226

Venus mapping  

NASA Technical Reports Server (NTRS)

Semicontrolled image mosaics of Venus, based on Magellan data, are being compiled at 1:50,000,000, 1:10,000,000, 1:5,000,000, and 1:1,000,000 scales to support the Magellan Radar Investigator (RADIG) team. The mosaics are semicontrolled in the sense that data gaps were not filled and significant cosmetic inconsistencies exist. Contours are based on preliminary radar altimetry data that is subjected to revision and improvement. Final maps to support geologic mapping and other scientific investigations, to be compiled as the dataset becomes complete, will be sponsored by the Planetary Geology and Geophysics Program and/or the Venus Data Analysis Program. All maps, both semicontrolled and final, will be published as I-maps by the United States Geological Survey. All of the mapping is based on existing knowledge of the spacecraft orbit; photogrammetric triangulation, a traditional basis for geodetic control on planets where framing cameras were used, is not feasible with the radar images of Venus, although an eventual shift of coordinate system to a revised spin-axis location is anticipated. This is expected to be small enough that it will affect only large-scale maps.

Batson, R. M.; Morgan, H. F.; Sucharski, Robert

1991-01-01

227

Hot Flow Anomalies at Venus  

NASA Technical Reports Server (NTRS)

We present a multi-instrument study of a hot flow anomaly (HFA) observed by the Venus Express spacecraft in the Venusian foreshock, on 22 March 2008, incorporating both Venus Express Magnetometer and Analyzer of Space Plasmas and Energetic Atoms (ASPERA) plasma observations. Centered on an interplanetary magnetic field discontinuity with inward convective motional electric fields on both sides, with a decreased core field strength, ion observations consistent with a flow deflection, and bounded by compressive heated edges, the properties of this event are consistent with those of HFAs observed at other planets within the solar system.

Collinson, G. A.; Sibeck, David Gary; Boardsen, Scott A.; Moore, Tom; Barabash, S.; Masters, A.; Shane, N.; Slavin, J.A.; Coates, A.J.; Zhang, T. L.; Sarantos, M.

2012-01-01

228

Scientific Balloons for Venus Exploration  

NASA Astrophysics Data System (ADS)

Almost 30 years ago, two balloons were successfully deployed into the atmosphere of Venus as an element of the VeGa – Venus Halley mission conducted by the Soviet Union. As interest in further Venus exploration grows among the established planetary exploration agencies – in Europe, Japan, Russia and the United States, use of balloons is emerging as an essential part of that investigative program. Venus balloons have been proposed in NASA’s Discovery program and ESA’s cosmic vision program and are a key element in NASA’s strategic plan for Venus exploration. At JPL, the focus for the last decade has been on the development of a 7m diameter superpressure pressure(twice that of VeGa) capable of carrying a 100 kg payload (14 times that of VeGA balloons), operating for more than 30 days (15 times the 2 day flight duration of the VeGa balloons) and transmitting up to 20 Mbit of data (300 times that of VeGa balloons). This new generation of balloons must tolerate day night transitions on Venus as well as extended exposure to the sulfuric acid environment. These constant altitude balloons operating at an altitude of about 55 km on Venus where temperatures are benign can also deploy sondes to sound the atmosphere beneath the probe and deliver deep sondes equipped to survive and operate down to the surface. The technology for these balloons is now maturing rapidly and we are now looking forward to the prospects for altitude control balloons that can cycle repeatedly through the Venus cloud region. One concept, which has been used for tropospheric profiling in Antarctica, is the pumped-helium balloon, with heritage to the anchor balloon, and would be best adapted for flight above the 55 km level. Phase change balloons, which use the atmosphere as a heat engine, can be used to investigate the lower cloud region down to 30 km. Progress in components for high temperature operation may also enable investigation of the deep atmosphere of Venus with metal-based balloons.

Cutts, James; Yavrouian, Andre; Nott, Julian; Baines, Kevin; Limaye, Sanjay; Wilson, Colin; Kerzhanovich, Viktor; Voss, Paul; Hall, Jeffery

229

System Analysis and Orbit Design for PLANET-C Venus Climate Orbiter  

Microsoft Academic Search

The Venus climate orbiter mission, PLANET-C, is aiming at understanding of the super rotational motion of the Venus atmosphere and differences from the earth climate and environment. The spacecraft is scheduled to be sent to Venus in 2010. Mechanical environments and electrical functions using proto-type components have been conducted, and currently mechanical and electrical functions of flight components are examined

Nobuaki Ishii; Sumitaka Tachikawa; Nobukatsu Okuizumi; Tomoaki Toda; Yukio Kamata; Tomoko Hayashiyama; Shinichiro Narita; Junichiro Nakatsuka; Takayuki Yamamoto; Masato Nakamura

230

Venus Technology Plan: 2014 (Draft for Community Review--March 12, 2014)  

E-print Network

Venus Technology Plan: 2014 (Draft for Community Review--March 12, 2014) #12; ii Venus Technology Plan At the last VEXAG meeting in November 2013, it was resolved to update the scientific as Planetary Decadal Survey priorities, and (3) develop a white paper on technologies for Venus missions. Here

Rathbun, Julie A.

231

Distant bow shock and magnetotail of Venus: magnetic field and plasma wave observations  

Microsoft Academic Search

An examination of the magnetic field and plasma wave data obtained by the Pioneer Venus orbiter in the wake region behind Venus discloses a well developed bow shock whose location is similar to that observed on previous missions in contrast to the dayside bow shock. Venus also has a well developed magnetotail in which the field strength is enhanced over

C.T. Russell; J. G. Luhmann; R. C. Elphic; F. L. Scarf

1981-01-01

232

The Plains of Venus  

NASA Astrophysics Data System (ADS)

Volcanic plains units of various types comprise at least 80% of the surface of Venus. Though devoid of topographic splendor and, therefore often overlooked, these plains units house a spectacular array of volcanic, tectonic, and impact features. Here I propose that the plains hold the keys to understanding the resurfacing history of Venus and resolving the global stratigraphy debate. The quasi-random distribution of impact craters and the small number that have been conspicuously modified from the outside by plains-forming volcanism have led some to propose that Venus was catastrophically resurfaced around 725×375 Ma with little volcanism since. Challenges, however, hinge on interpretations of certain morphological characteristics of impact craters: For instance, Venusian impact craters exhibit either radar dark (smooth) floor deposits or bright, blocky floors. Bright floor craters (BFC) are typically 100-400 m deeper than dark floor craters (DFC). Furthermore, all 58 impact craters with ephemeral bright ejecta rays and/or distal parabolic ejecta patterns have bright floor deposits. This suggests that BFCs are younger, on average, than DFCs. These observations suggest that DFCs could be partially filled with lava during plains emplacement and, therefore, are not strictly younger than the plains units as widely held. Because the DFC group comprises ~80% of the total crater population on Venus the recalculated emplacement age of the plains would be ~145 Ma if DFCs are indeed volcanically modified during plains formation. Improved image and topographic data are required to measure stratigraphic and morphometric relationships and resolve this issue. Plains units are also home to an abundant and diverse set of volcanic features including steep-sided domes, shield fields, isolated volcanoes, collapse features and lava channels, some of which extend for 1000s of kilometers. The inferred viscosity range of plains-forming lavas, therefore, is immense, ranging from the extremely fluid flows (i.e., channel formers), to viscous, possibly felsic lavas of steep-sided domes. Wrinkle ridges deform many plains units and this has been taken to indicate that these ridges essentially form an early stratigraphic marker that limits subsequent volcanism to a minimum. However, subtle backscatter variations within many ridged plains units suggest (but do not prove) that some plains volcanism continued well after local ridge deformation ended. Furthermore, many of volcanic sources show little, if any, indications of tectonic modification and detailed analyses have concluded that resurfacing rates could be similar to those on Earth. Improving constraints on the rates and styles of volcanism within the plains could lend valuable insights into the evolution of Venus's internal heat budget and the transition from thin-lid to thick-lid tectonic regimes. Improved spatial and radiometric resolution of radar images would greatly improve abilities to construct the complex local stratigraphy of ridged plains. Constraining the resurfacing history of Venus is central to understanding how Earth-sized planets evolve and whether or not their evolutionary pathways lead to habitability. This goal can only be adequately addressed if broad coverage is added to the implementation strategies of any future mapping missions to Venus.

Sharpton, V. L.

2013-12-01

233

PHYS 178 2008 Week 4, Part 1 Venus Colorized Clouds  

E-print Network

Through Violet and Near Infrared Filters These two Galileo images of Venus show the global structure by the spacecraft cameras; everything looks orange because the thick atmosphere of Venus absorbs the bluer colors by more than a decade of radar investigations culminating in the 1990-1994 Magellan mission, is centered

Wardle, Mark

234

Venus Exploration Themes: February 2014 Venus Exploration Themes  

E-print Network

1 Venus Exploration Themes: February 2014 Venus Exploration Themes February 2014 #12;2 Venus and Investigations; Roadmap; as well as Venus Technologies for distribution at Venus Town Hall Meeting at LPSC, March 2014. This document preserves extracts from the March 2012 Venus Exploration Goals and Objectives

Rathbun, Julie A.

235

A Bright Spot on Venus  

NASA Astrophysics Data System (ADS)

In July 2009 the ultraviolet images of Venus captured by the Venus Monitoring Camera (VMC) on Venus Express showed an anomalously bright feature. The brightness was about 30% higher than generally observed on Venus. Although the initial detection was made in the images acquired on the same date (19 July 2009) that several amateur images also reported a bright spot on Venus, the brightening was present about four days earlier. The bright anomaly remained localized to an area centered at approximately 40° S and 151° longitude with a radial extent of ~ 400 km. The VMC images were being acquired every 30 minutes, and they bright core region indicates an oscillatory behavior in the peak brightness region. The bright core gradually dissipated over the next several orbits. This brightening was quite distinct from an earlier major event observed in January 2007 when a very large portion of the southern hemisphere brightened and then quickly returned to normal appearance. The July brightening was not seen in images acquired through other VMC filters, thus the cause of the brightening is a puzzle. The change in the reflective properties of a limited region suggests an unusual trigger. A dynamical (convective) cause is possible but there can be other origins also. A volcanic eruption is one possibility, a solar wind connection is another, an external impact cannot be ruled out either. The challenge is to identify the cause of the brightening from the limited observations available.

Limaye, Sanjay; Markiewicz, Wojciech; Titov, Dimitry

2010-05-01

236

Atmospheric tides on Venus. III - The planetary boundary layer  

NASA Astrophysics Data System (ADS)

Diurnal solar heating of Venus' surface produces variable temperatures, winds, and pressure gradients within a shallow layer at the bottom of the atmosphere. The corresponding asymmetric mass distribution experiences a tidal torque tending to maintain Venus' slow retrograde rotation. It is shown that including viscosity in the boundary layer does not materially affect the balance of torques. On the other hand, friction between the air and ground can reduce the predicted wind speeds from about 5 to about 1 m/sec in the lower atmosphere, more consistent with the observations from Venus landers and descent probes. Implications for aeolian activity on Venus' surface and for future missions are discussed.

Dobrovolskis, A. R.

1983-10-01

237

New measurements of Venus winds with ground-based Doppler velocimetry at CFHT  

NASA Astrophysics Data System (ADS)

Since Venus Express spacecraft operations started in 2006, an ongoing effort has been made to coordinate its operations with observations from the ground using various techniques and spectral domains (Lellouch and Witasse, 2008). We present an analysis of Venus Doppler winds at cloud tops based on observations made at the Canada France Hawaii 3.6-m telescope (CFHT) with the ESPaDOnS visible spectrograph. These observations consisted of high-resolution spectra of Fraunhofer lines in the visible range (0.37-1.05 ?m) to measure the winds at cloud tops using the Doppler shift of solar radiation scattered by cloud top particles in the observer's direction (Widemann et al., 2007, 2008). The observations were made during 19-20 February 2011 and were coordinated with Visual Monitoring Camera (VMC) observations by Venus Express. The complete optical spectrum was collected over 40 spectral orders at each point with 2-5 seconds exposures, at a resolution of about 80000. The observations included various points of the dayside hemisphere at a phase angle of 67°, between +10° and -60° latitude, in steps of 10° , and from +70° to -12° longitude relative to sub-Earth meridian in steps of 12°. The Doppler shift measured in scattered solar light on Venus dayside results from two instantaneous motions: (1) a motion between the Sun and Venus upper cloud particles; (2) a motion between the observer and Venus clouds. The measured Doppler shift, which results from these two terms combined, varies with the planetocentric longitude and latitude and is minimum at meridian ?N = ?Sun - ?Earth where the two components subtract to each other for a pure zonal regime. Due to the need for maintaining a stable velocity reference during the course of acquisition using high resolution spectroscopy, we measure relative Doppler shifts to ?N. The main purpose of our work is to provide variable wind measurements with respect to the background atmosphere, complementary to simultaneous measurements made with the VMC camera onboard the Venus Express. We will present first results from this work, comparing with previous results by the CFHT/ESPaDOnS and VLT-UVES spectrographs (Machado et al., 2012), with Galileo fly-by measurements and with VEx nominal mission observations (Peralta et al., 2007, Luz et al., 2011). Acknowledgements: The authors acknowledge support from FCT through projects PTDC/CTE-AST/110702/2009 and PEst-OE/FIS/UI2751/2011. PM and TW also acknowledge support from the Observatoire de Paris. Lellouch, E., and Witasse, O., A coordinated campaign of Venus ground-based observations and Venus Express measurements, Planetary and Space Science 56 (2008) 1317-1319. Luz, D., et al., Venus's polar vortex reveals precessing circulation, Science 332 (2011) 577-580. Machado, P., Luz, D. Widemann, T., Lellouch, E., Witasse, O, Characterizing the atmospheric dynamics of Venus from ground-based Doppler velocimetry, Icarus, submitted. Peralta J., R. Hueso, A. Sánchez-Lavega, A reanalysis of Venus winds at two cloud levels from Galileo SSI images, Icarus 190 (2007) 469-477. Widemann, T., Lellouch, E., Donati, J.-F., 2008, Venus Doppler winds at Cloud Tops Observed with ESPaDOnS at CFHT, Planetary and Space Science, 56, 1320-1334.

Machado, P.; Widemann, T.; Luz, D.; Peralta, J.; Berry, D. L.

2012-04-01

238

Robotic exploration of the surface and atmosphere of Venus  

NASA Astrophysics Data System (ADS)

Venus, the “greenhouse planet,” is a scientifically fascinating place. The US National Academies of Sciences listed a Venus surface in situ explorer as one of the highest priority planetary science missions. A mission concept for a robotic mission to study the surface and atmosphere of Venus has been designed. The mission includes both surface robots, designed with an operational lifetime of 50 days on the surface of Venus, and also solar-powered airplanes to probe the middle atmosphere. At 450C, and with 90 atmospheres of pressure of carbon-dioxide atmosphere, the surface of Venus is a hostile place for operation of a probe. The mission design trade-off looked at three options for surface operation: developing technology to operate at Venus surface temperatures, using an active refrigeration system to lower the temperature inside a “cool electronics enclosure,” or developing a hybrid system, where the computer system and the most temperature-sensitive electronics are on an aerial platform at lower temperature, and less sophisticated surface electronics operate at the ambient surface temperature. This paper presents the mission objectives, discusses the technology options for materials, power systems, electronics, and instruments, and presents a short summary of the mission.

Landis, Geoffrey A.

2006-10-01

239

VENUS CLOUD TOPS VIEWED BY HUBBLE  

NASA Technical Reports Server (NTRS)

This is a NASA Hubble Space Telescope ultraviolet-light image of the planet Venus, taken on January 24 1995, when Venus was at a distance of 70.6 million miles (113.6 million kilometers) from Earth. Venus is covered with clouds made of sulfuric acid, rather than the water-vapor clouds found on Earth. These clouds permanently shroud Venus' volcanic surface, which has been radar mapped by spacecraft and from Earth-based telescope. At ultraviolet wavelengths cloud patterns become distinctive. In particular, a horizontal 'Y'-shaped cloud feature is visible near the equator. Similar features were seen from Mariner 10, Pioneer Venus, and Galileo spacecrafts. This global feature might indicate atmospheric waves, analogous to high and low pressure cells on Earth. Bright clouds toward Venus' poles appear to follow latitude lines. The polar regions are bright, possibly showing a haze of small particles overlying the main clouds. The dark regions show the location of enhanced sulfur dioxide near the cloud tops. From previous missions, astronomers know that such features travel east to west along with the Venus' prevailing winds, to make a complete circuit around the planet in four days. Because Venus is closer to the Sun than Earth, the planet appears to go through phases, like the Moon. When Venus swings close to Earth the planet's disk appears to grow in size, but changes from a full disk to a crescent. The image was taken with the Wide Field Planetary Camera-2, in PC mode. False color has been used enhance cloud features. Credit: L. Esposito (University of Colorado, Boulder), and NASA

2002-01-01

240

Discovery Venera Surface: Atmosphere Geochemistry Experiments Mission Concept.  

National Technical Information Service (NTIS)

The phenomenal increase in our understanding of Venus provided by the Magellan Mission has raised a series of focused, fundamental scientific questions about the geochemistry of the surface of Venus, the nature of the lower atmosphere, and the relationshi...

Y. A. Surkov, J. W. Head, R. Kremnev, K. T. Nock

1993-01-01

241

Study and Implementation of the End-to-End Data Pipeline for the Virtis Imaging Spectrometer Onbaord Venus Express: "From Science Operations Planning to Data Archiving and Higher Lever Processing"  

NASA Astrophysics Data System (ADS)

This PhD Thesis describes the activities performed during the Research Program undertaken for two years at the Istituto Nazionale di AstroFisica in Rome, Italy, as active member of the VIRTIS Technical and Scientific Team, and one additional year at the European Space Astronomy Center in Madrid, Spain, as member of the Mars Express Science Ground Segment. This document will show a study of all sections of the Science Ground Segment of the Venus Express mission, from the planning of the scientific operations, to the generation, calibration and archiving of the science data, including the production of valuable high level products. We will present and discuss here the end-to-end diagram of the ground segment from the technical and scientific point of view, in order to describe the overall flow of information: from the original scientific requests of the principal investigator and interdisciplinary teams, up to the spacecraft, and down again for the analysis of the measurements and interpretation of the scientific results. These scientific results drive to new and more elaborated scientific requests, which are used as feedback to the planning cycle, closing the circle. Special attention is given here to describe the implementation and development of the data pipeline for the VIRTIS instrument onboard Venus Express. During the research program, both the raw data generation pipeline and the data calibration pipeline were developed and automated in order to produce the final raw and calibrated data products from the input telemetry of the instrument. The final raw and calibrated products presented in this work are currently being used by the VIRTIS Science team for data analysis and are distributed to the whole scientific community via the Planetary Science Archive. More than 20,000 raw data files and 10,000 calibrated products have already been generated after almost 4 years of mission. In the final part of the Thesis, we will also present some high level data processing methods developed for the Mapping channel of the VIRTIS instrument. These methods have been implemented for the generation of high level global maps of measured radiance over the whole planet, which can then be used for the understanding of the global dynamics and morphology of the Venusian atmosphere. This method is currently being used to compare different emissions probing at different altitudes from the low cloud layers up to the upper mesosphere, by using the averaged projected values of radiance observed by the instrument, such as the near infrared windows at 1.7 ?m and 2.3?m, the thermal region at 3.8?m and 5?m plus the analysis of particular emissions in the night and day side of the planet. This research has been undertaken under guidance and supervision of Giuseppe Piccioni, VIRTIS co-Principal Investigator, with support of the entire VIRTIS technical and scientific team, in particular of the Archiving team in Paris (LESIA-Meudon). The work has also been done in close collaboration with the Science and Mission Operations Centres in Madrid and Darmstadt (European Space Agency), the EGSE software developer (Techno Systems), the manufacturer of the VIRTIS instrument (Galileo Avionica) and the developer of the VIRTIS onboard software (DLR Berlin). The outcome of the technical and scientific work presented in this thesis is currently being used by the VIRTIS team to continue the investigations on the Venusian atmosphere and plan new scientific observations to improve the overall knowledge of the solar system. At the end of this document we show some of the many technical and scientific contributions, which have already been published in several international journals and conferences, and some articles of the European Space Agency used for public outreach.

Cardesín Moinelo, Alejandro

2010-04-01

242

Planetary geometry handbook: Venus positional data, 1988 - 2020, volume 2  

NASA Technical Reports Server (NTRS)

Graphical data necessary for the analysis of planetary exploration missions to Venus are presented. Positional and geometric information spanning the time period from 1988 through 2020 is provided. The data and the usage are explained.

Sergeyevsky, A. B.; Snyder, G. C.; Paulson, B. L.; Cunniff, R. A.

1983-01-01

243

X-Band Microwave Radiometry as a Tool for Understanding the Deep Atmosphere of Venus  

NASA Astrophysics Data System (ADS)

Understanding the composition, structure, and spatial variability of the deep Venus atmosphere, including the boundary layer, is a key future direction identified in the Decadal Review. While only Mariner 2 carried a microwave radiometer for the expressed purpose of evaluating the Venus atmosphere, subsequent missions to Venus and other planets have used radar receivers in a "passive mode" to map the microwave emission from both surfaces and atmospheres. Additionally, successful mapping of microwave emissions from the atmospheres of Venus and the outer planets using earth-based antenna arrays have given unique insights into the composition and variability of such atmospheres. In the past two decades, multiple observations of Venus have been made at X band (3.6 cm) using the Jansky Very Large Array (VLA), and maps have been created of the 3.6 cm emission from Venus. Since the emission morphology is related both to surface features and to the deep atmospheric absorption from CO2 and SO2 (see, e.g., Butler et al., Icarus 154, 2001), emission measurements can be used to give unique information regarding the deep atmosphere, once surface effects are removed. Since surface emissivities measured at the 12.6 cm wavelength by the Magellan mission can be extrapolated to 3.6 cm (see, e.g., Tryka and Muhleman, JGR(Planets) 197, 1992), the residual effects due to deep atmospheric variability can potentially be detected, as they were for higher altitudes at shorter wavelengths (1.3 cm and 2.0 cm, Jenkins et.al., Icarus 158, 2002). As results from this study show, the limited resolution and sensitivity of earth-based measurements make detection of moderate atmospheric variability somewhat difficult. However, the higher sensitivity and resolution provided by an orbiting X-Band radiometer can provide important insights into the variability and structure of the Venus boundary layer. As shown in the figure, the vertical resolution of X-Band radiometry compares well with IR sounding of the deep atmosphere of Venus.

Steffes, P. G.; Devaraj, K.; Butler, B. J.

2013-12-01

244

A sporadic layer in the Venus lower ionosphere of meteoric origin M. Patzold,1  

E-print Network

A sporadic layer in the Venus lower ionosphere of meteoric origin M. Pa¨tzold,1 S. Tellmann,1 B. Ha October 2008; accepted 29 October 2008; published 12 March 2009. [1] The Venus Express Radio Science (VeRa) experiment aboard Venus Express has detected, by means of radio occultation, distinct, low-lying layers

Mendillo, Michael

245

Questions for the geologic exploration of Venus  

NASA Technical Reports Server (NTRS)

Venus is the last terrestrial planet to be mapped in the Solar System. This is an indication not of its relative importance for comparative planetary studies but of the previous lack of demonstrated, affordable technology. Venus is, in fact, the most important planet to study for improving our understanding of global terrestrial processes such as plate tectonics. The next NASA mission to Venus, in 1988, will map the planet at a resolution comparable to that of the Mars Mariner 9 mission. The objective is 70 percent coverage at 1 km per line pair or better. This is the minimum resolution that will allow analysis of tectonic, volcanic, aeolian, meteorite impact and other features. An altimeter will provide a global map of topography that will considerably improve our data base and, together with gravity field measurements, provide better interior geophysical models.

Saunders, R. S.

1984-01-01

246

Lada Terra: A 'new' hotspot on Venus  

NASA Astrophysics Data System (ADS)

On Earth, areas called 'hotspots' form above mantle plumes and are defined by their topographic swells, volcanism, and large positive gravity anomalies. Hawaii is a classic example. Venus has ~10 such highland regions that are analogous to terrestrial hotspots and are approximately 2000 km in diameter. Modeling of their gravity and topography provides evidence for compensation beneath the thermal lithosphere, which is interpreted to indicate the presence of a hot mantle plume. Analysis of data from the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS, see Drossart et al. 2007) on the Venus Express mission reveals surface thermal emissivity anomalies in the southern hemisphere that are interpreted as compositional variations (Helbert et al., 2008; Mueller et al., 2008). Most high emissivity anomalies occur in regions previously interpreted as hotspots: Imdr, Themis, and Dione Regiones. The evidence for plumes at depth, the correlation of high emissivity anomalies to stratigraphically young volcanic flows, and analysis of the likely emissivity of weathered and unweathered basalt on Venus lead Smrekar et al. (2010) to interpret the high emissivity flows as evidence of geologically recent, relatively unweathered volcanic flows. Lada Terra also contains volcanic flows with high emissivity anomalies. This region had not been studied using gravity data previously due to the locally low resolution (65-70 spherical harmonic degree and order). Further, the radar data have a high look angle, making it harder to interpret. The high emissivity anomalies inspired Ivanov and Head (2010) to reexamine this region. Their analysis of the geologic setting along with the high emissivity anomalies and the positive gravity anomaly provide evidence that Lada Terra is likely to be recently active. Here we use the spherical harmonic gravity and topography data from Magellan to calculate a geoid-to-topography ratio (GTR) of 23.5±1.6 m/km. This value is in the range of the GTRs previously found for highlands interpreted as hotspots on Venus and provides evidence of a mantle plume at depth. This brings the number of likely hotspots in the southern hemisphere to 4. Although VIRITS did not acquire 1 micron data in the northern hemisphere, the gravity and topography data for the 7 northern hemisphere hotspots indicate active plumes. The similarity of geologic and gravity signatures between northern and southern hemisphere hotspots suggests that all of them may be sites of currently or recently active volcanism. This brings the hotspot count on Venus to 11. Such hotspots could be plausible sources of lower atmospheric water (Smrekar and Sotin, 2012). The presence of ~10 plumes from the core-mantle-boundary on Venus suggests that the mantle may be heating up (Sotin and Smrekar, 2012 - this meeting). (Drossart et al., PSS, 2007; Helbert et al., GRL, 2008; Mueller et al., JGR-P, 2008; Smrekar et al., Sci., 2010; Ivanov and Head, PSS, 2010; Smrekar and Sotin, Icarus, 2012) This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

Smrekar, S. E.; Brown, N.

2012-12-01

247

LIPs on Venus  

Microsoft Academic Search

Venus, a planet similar to Earth in heat budget lacks plate tectonics, yet displays ample evidence of extensive volcanic and tectonomagmatic processes, including regions large enough to be considered LIPs. Thus Venus provides an excellent opportunity to examine large-scale magmatic processes outside a plate tectonic framework. I discuss four groups of Venus’ largest tectonomagmatic provinces: volcanic rises, large coronae (Artemis,

Vicki L. Hansen

2007-01-01

248

Approach and challenges to science and mission planning for the European orbiter Mars Express  

Microsoft Academic Search

The paper focuses on the end-to-end science operations for the first and only European Mars mission to-date, describing the approaches to science and mission planning and the challenges imposed by the operations constraints. It includes the activities of the instrument and science planning teams to plan and process the collected data. The Mars Express spacecraft has been in orbit around

Erhard Rabenau; Michel Denis; Nicolas Altobelli

2012-01-01

249

The Importance of Venus Lightning Investigations  

NASA Astrophysics Data System (ADS)

Lightning in planetary atmospheres arises due to the separation of electric charges in convective cloud systems. We expect that Venus should have strong thermally driven winds at its location of 0.72 AU from the Sun. Observations of the cloud tops and the vertical motions of the atmosphere by the VEGA balloons confirm this expectation. We have made extensive surveys for lightning on Venus with spacecraft in the Venusian ionosphere. However, as yet we do not have a complete mapping of the occurrence of lightning because at the low frequencies at which measurements have been made it is difficult for the waves generated to penetrate the ionosphere. We expect the lightning to be intense as it generates nitric oxide and nitric oxide as is abundant on Venus as on Earth. We have surveyed almost all the Venus Express 128 Hz magnetometer data recorded to date. These data reveal that lightning is extensive on Venus but still do not reveal its true occurrence rate or altitude of generation. This requires observations from multipoint monitors at frequencies that penetrate into the ionosphere and will allow us to determine the energy released by lightning in the Venusian atmosphere. Finally, it is essential for us to study similar planetary processes in different settings in order to fully understand the process itself. Lightning is an important terrestrial process. Venus gives us the opportunity to understand the process more deeply. In this presentation we review the present state of knowledge of Venus lightning.

Hart, R. A.; Russell, C. T.; Wei, H.; Zhang, T.

2013-12-01

250

The final status of Japanese Venus Climate Orbiter (PLANET-C) in the integration test  

Microsoft Academic Search

The Venus Climate Orbiter mission (PLANET-C), one of the future planetary missions of Japan, aims at understanding the atmospheric circulation of Venus. Meteorological information will be obtained by globally mapping clouds and minor constituents successively with 4 cameras at ultraviolet and infrared wavelengths, detecting lightning with a high-speed imager, and observing the vertical structure of the atmosphere with radio science

M. Nakamura; T. Imamura; N. Ishii; T. Satoh; M. Ueno; T. Abe; M. Suzuki; A. Yamazaki; N. Iwagami; M. Taguchi; S. Watanabe; Y. Takahashi

2009-01-01

251

Systems design study of the Pioneer Venus spacecraft. Volume 3. Specifications  

NASA Technical Reports Server (NTRS)

Pioneer Venus spacecraft performance requirements are presented. The specifications include: (1) Design criteria and performance requirements for the Pioneer Venus spacecraft systems and subsystems for a 1978 multiprobe mission and a 1978 orbiter mission, spacecraft system interface, and scientific instrument integration.

1973-01-01

252

ABSTRACTS FOR THE VENUS GEOSCIENCE TUTORIAL AND VENUS  

E-print Network

ABSTRACTS FOR THE VENUS GEOSCIENCE TUTORIAL AND VENUS GEOLOGIC MAPPING WORKSHOP Flagstaff, Arizona Administration #12;� ABSTRACTS FOR THE VENUS GEOSCIENCE TUTORIAL AND VENUS GEOLOGIC MAPPING WORKSHOP Flagstaff. Cover: Radar image of Maxwell Montes, Venus. (Courtesy Arecibo Observatory) #12;PREFACE This volume

Rathbun, Julie A.

253

Neutral Mass Spectrometry for Venus Atmosphere and Surface  

NASA Technical Reports Server (NTRS)

The nature of the divergent evolution of the terrestrial planets Venus, Earth, and Mars is a fundamental problem in planetary science that is most relevant to understanding the characteristics of small planets we are likely to discover in extrasolar systems and the number of such systems that may support habitable environments. For this reason, the National Research Council's Decadal Survey gives Venus exploration high priority. That report was the basis of the NASA selection of Venus as one of four prime mission targets for the recently initiated New Frontiers Program. If the Decadal Survey priorities are to be realized, in situ Venus exploration must remain a high priority. Remote sensing orbital and in situ atmospheric measurements from entry probe or balloon platforms might be realized under the low cost Discovery missions while both atmospheric and landed surface measurements are envisioned with the intermediate class missions of the New Frontiers Program.

Mahaffy, Paul

2004-01-01

254

Cassini Mission Overview Cassini Orbiter  

E-print Network

= 250 watts Diameter of Probe's heat shield = 2.7 meters / 8.9 feet Probe mission day = 14 January 2005 Trajectory type = "VVEJGA" or Venus-Venus-Earth-Jupiter Gravity Assist Launch = 15 October 1997 NOTE: Speeds/second Speed After Flyby = 39.1 kilometers/second #12;Gravity Assist = 4.1 kilometers/second Jupiter Flyby = 30

Waliser, Duane E.

255

Long-term Behaviour Of Venus Winds At Cloud Level From Virtis/vex Observations  

NASA Astrophysics Data System (ADS)

The Venus Express (VEX) mission has been in orbit to Venus for more than three years now. The VIRTIS instrument onboard VEX observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet. Images in the ultraviolet range are used to study the upper cloud at 66 km while images in the infrared (1.74 ?m) map the opacity of the lower cloud deck at 48 km. Here we present an analysis of the overall dynamics of Venus’ atmosphere at both levels using observations that cover a large fraction of the VIRTIS dataset. We will present our latest results concerning the zonal winds, the overall stability in the lower cloud deck motions and the variability in the upper cloud. Meridional winds are also observed in the upper and lower cloud in the UV and IR images obtained with VIRTIS. While the upper clouds present a net meridional motion consistent with the upper branch of a Hadley cell the lower cloud present more irregular, variable and less intense motions in the meridional direction. Acknowledgements This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07. RH acknowledges a "Ramón y Cajal” contract from MEC.

Hueso, Ricardo; Peralta, J.; Sánchez-Lavega, A.; Pérez-Hoyos, S.; Piccioni, G.; Drossart, P.

2009-09-01

256

Roadmap for Venus Exploration Roadmap for Venus Exploration  

E-print Network

Roadmap for Venus Exploration May 2014 #12;ii Roadmap for Venus Exploration At the VEXAG meeting in November 2013, it was resolved to update the scientific priorities and strategies for Venus exploration. To achieve this goal

Rathbun, Julie A.

257

Venus Atmospheric Circulation from Digital Tracking of VMC Images  

NASA Astrophysics Data System (ADS)

The Venus Monitoring Camera on Venus Express has been returning images of Venus in four filters since April 2006 on almost every orbit. These images portray the southern hemisphere of Venus at spatial resolutions ranging from ~ 50 km per pixel to better than ~ 10 km per pixel depending on when the planet was imaged from orbit. Images covering a substantial portion of the planet and separated by ~ 45 min to one hour have been mapped into rectilinear projection to enable use of digital tracking technique for the measurement of cloud motions on an orbit by orbit basis. The aggregate results are in good agreement with visual tracking results as well as from the previous missions [1] and show evidence of temporal variations, large scale waves and solar thermal tides in low and mid latitudes. The digital tracking results for the meridional component confirm the poleward flow increasing from low latitudes to mid-latitudes and then showing a tendency to weaken. However, the confidence in high latitude measurements is lower due to the peculiar nature of the cloud morphology that is generally streaky and quite different from the low latitudes. The meridional profile of the average zonal wind at higher latitudes is of considerable interest. At high and polar latitudes, a vortex organization is evident in the data consistently, with the core region centered over the pole. The images show variability in structure of the ultraviolet signature of the "S" shaped feature seen in the VIRTIS data on the capture orbit [2]. However, the cloud morphologies seen poleward of ~ 50 degrees latitude also makes digital tracking less reliable due to absence of discrete features at the spatial resolution of the VMC images acquired in the apoapsis portion of the Venus Express orbit. It is expected that images obtained closer to the planet will enable a determination of the zonal wind profile with better confidence which will be useful in elucidating the nature of the transient features seen in the core region of the Venus vortex. References [1] Limaye, S. S. Venus atmospheric circulation: Known and unknown, J. Geophys. Res., 112, E04S09, doi:10.1029/2006JE002814 (2007). [2] Piccioni, G, Drossart, P., Sanchez-Lavega, A., Hueso, R., Taylor, F., Wilson, C., Grassi, D., Zasova, L., Moriconi, M., Adriani, A., Lebonnois, S., Coradini, A., Bézard, B., Angrilli, F., Arnold, G., Baines, K. H., Bellucci, G., Benkhoff, J., Bibring, J. P., Blanco, A., Blecka, M. I., Carlson, R. W., Di Lellis, A., Encrenaz, T., Erard, S., Fonti1, S., Formisano, V., Fouchet, T., Garcia1, R., Haus, R., J. Helbert, J., Ignatiev, N. I., Irwin, P., Langevin,Y.,Lopez-Valverde, M. A., Luz, D., Marinangeli, L., Orofino, V., Rodin, A. V., Roos-Serote, M. C., Saggin, B., ,Stam, D. M., Titov, D., Visconti, G., and Zambelli M. South-polar features on Venus similar to those near the north, Nature, 450, 637-640, doi:10.1038/nature06209 (2007).

Limaye, S.; Moissl, R.; Markiewicz, W.; Titov, D.

2008-09-01

258

Interplanetary coronal mass ejection influence on high energy pick-up ions at Venus  

E-print Network

Interplanetary coronal mass ejection influence on high energy pick-up ions at Venus T.R. McEnulty a Available online 10 August 2010 Keywords: Venus Ion escape Space weather ICME a b s t r a c t We have used the ion mass analyzer (IMA) and magnetometer (MAG) on Venus Express (VEX) to study escaping O+ during

California at Berkeley, University of

259

Gravity waves in the upper atmosphere of Venus revealed by CO2 nonlocal thermodynamic equilibrium emissions  

E-print Network

Gravity waves in the upper atmosphere of Venus revealed by CO2 nonlocal thermodynamic equilibrium capabilities of the Visible and Infrared Thermal Imaging Spectrometer- Mapper (VIRTIS-M) onboard Venus Express in the thermosphere of Venus. These emissions with a wavelength of 4.3 mm originate from the 110­140 km altitude range

Garcia, Raphaël

260

MARS ADVANCED RADAR FOR SUBSURFACE AND IONOSPHERE SOUNDING (MARSIS) ON MARS EXPRESS MISSION  

Microsoft Academic Search

According to the Mars Express mission (scheduled for launch in 2003), the MARSIS primary scientific objective is to map the distribution of water, both liquid and solid, in the upper portions of the crust of Mars. Detection of such reservoirs of water will address key issues in the hydrologic, geologic, climatic and possible biologic evolution of Mars. Moreover three secondary

G. Picardi; D. Biccari; R. Seu; A. Gurnett; F. Provvedi; O. Bombaci; E. Zampolini

261

Signs of Life on Venus  

NASA Astrophysics Data System (ADS)

The search for "habitable zones" in extrasolar planetary systems is based on the premise of "normal" physical conditions in a habitable zone, i.e. pressure, temperature range, and atmospheric composition similar to those on the Earth. However, one should not exclude completely the possibility of the existence of life at relatively high temperatures, despite the fact that at the first glance it seems impossible. The planet Venus with its dense, hot (735 K), oxigenless CO2 - atmosphere and high 92 bar-pressure at the surface could be the natural laboratory for the studies of this type. Amid exoplanets, celestial bodies with the physical conditions similar to the Venusian can be met. The only existing data of actual close-in observations of Venus' surface are the results of a series of missions of the soviet VENERA landers which took place the 1970's and 80's in the atmosphere and on the surface of Venus. For 36 and 29 years since these missions, respectively, I repeatedly returned to the obtained images of the Venus' surface in order to reveal on them any unusual objects observed in the real conditions of Venus. The new analysis of the Venus' panoramas was based on the search of unusual elements in two ways. Since the efficiency of the VENERA landers maintained for a long time they produced a large number of primary television panoramas during the lander's work. Thus, one can try to detect: (a) any differences in successive images (appearance or disappearance of parts of the image or change of their shape), and understand what these changes are related to (e.g., wind), and whether they are related to hypothetical habitability of a planet. Another sign (b) of the wanted object is their morphological peculiarities which distinguishes them from the ordinary surface details. The results of VENERA-9 (1975) and VENERA -13 (1982) are of the main interest. A few relatively large objects ranging from a decimeter to half meter and with unusual morphology were observed in some images, but were absent in the other or altered their shape. What sources of energy, in principle, could be used by life in the high temperature oxigenless atmosphere? The objects found are large enough, they are not micro-organisms. It is most natural to assume that, like on Earth, Venusian fauna is heterotrophic, and the source of its life is hypothetical autotrophic flora. There is enough light for flora's photosynthesis. Since the critical temperature of water on Venus is about 320°C and the temperature at the surface is about 460°C, the metabolism of organisms on Venus (if any) should be built without water, on the basis of some other liquid medium. Based on data analyzed it has been suggested that because of the limited energy capacity of the Venusian fauna, the temporal characteristics of their physical actions can be much longer than that of the Earth.

Ksanfomality, L.

2012-04-01

262

Venus atmospheric platform options revisited  

NASA Astrophysics Data System (ADS)

Various balloon systems intended as scientific platforms to float in the atmosphere of Venus at altitudes between about 35 and 65 km are briefly reviewed. Previous predictions of the altitude oscillations of balloons filled with helium gas and water vapor are largely confirmed through numerical simulation and analysis. The need for refined thermal modelling is emphasised. Several novel technical concepts are introduced. It is concluded that phase change balloons would be more suitable than non-condensing super pressure gas balloons when repeated altitude excursions are a mission requirement.

Dorrington, G. E.

2010-08-01

263

Venus - The mystery continues  

NASA Astrophysics Data System (ADS)

Topics and discussion at the International Conference on the Venus Environment in Nov. 1981, dealing with data from the Pioneer Venus orbiter, five Pioneer probes, and four Venera spacecraft, are examined. The orbital radar maps have revealed an absence of oceanic ridges, of subduction trenches, and the presence of a topography similar to earth's. The possibility of active volcanoes at Beta Reggio, Aphrodite Terra, and Maxwell Montes is suggested by the similar sizes of the earth and Venus, the heights of some of the surface topography, satellite-detected gravitational anomalies, radar images that look like volcanoes, and the clustering of lightning patches over suspected volcanic areas. Finally, the presence of an enhanced deuterium concentration in the Venus atmosphere has been taken as evidence that a hydrogen migration away from Venus from dissociated water occurred in Venus' geologic past.

Beatty, J. K.

1982-02-01

264

Stirling Cooler Designed for Venus Exploration  

NASA Technical Reports Server (NTRS)

Venus having an average surface temperature of 460 degrees Celsius (about 860 degrees Fahrenheit) and an atmosphere 150 times denser than the Earth's atmosphere, designing a robot to merely survive on the surface to do planetary exploration is an extremely difficult task. This temperature is hundreds of degrees higher than the maximum operating temperature of currently existing microcontrollers, electronic devices, and circuit boards. To meet the challenge of Venus exploration, researchers at the NASA Glenn Research Center studied methods to keep a pressurized electronics package cooled, so that the operating temperature within the electronics enclosure would be cool enough for electronics to run, to allow a mission to operate on the surface of Venus for extended periods.

Landis, Geoffrey A.; Mellott, Kenneth D.

2004-01-01

265

X band model of Venus atmosphere permittivity  

NASA Astrophysics Data System (ADS)

A model of Venus' atmosphere permittivity profile up to 300 km is developed in this paper for X band. The model includes both the real and imaginary parts of the atmospheric permittivity, derived using data sets inferred or directly measured from past exploration missions to Venus: the real part is obtained by calculating the total polarization of the mixture of the atmospheric components including CO2, N2, H2O, SO2, H2SO4, CO, etc.; the imaginary part is derived using the superposition of the absorption of each component. The properties of the atmospheric components such as polarization and absorption are modeled with respect to frequency, temperature, and pressure. The validity of this model is verified by comparing simulation results with available measurements of Venus' atmosphere. This permittivity model is intended as a critical tool for the design of next-generation orbiting radar systems, in particular interferometric radars.

Duan, Xueyang; Moghaddam, Mahta; Wenkert, Daniel; Jordan, Rolando L.; Smrekar, Suzanne E.

2010-04-01

266

System design of the Pioneer Venus spacecraft. Volume 1: Executive summary  

NASA Technical Reports Server (NTRS)

The NASA Ames Research Center Pioneer Venus Project objective is to conduct scientific investigations of the planet Venus using spin stabilized spacecraft. The defined approach to accomplish this goal is to implement a multiprobe spacecraft mission and an orbiter spacecraft mission. Candidate launch vehicles for the Pioneer Venus missions were the Thor/Delta and Atlas/Centaur. The multiprobe spacecraft consists of a probe bus, one large probe, and three small probes. The probes are designed to survive to the surface of Venus, and to make in situ measurements of the Venusian atmosphere; the probe bus enters the atmosphere and makes scientific measurements until it burns out. The orbiter mission uses a spacecraft designed to orbit Venus for 225 days with an orbit period of about 24 hours (h). The probe bus and orbiter designs are to use a common spacecraft bus.

Dorfman, S. D.

1973-01-01

267

Phases of Venus Model  

NSDL National Science Digital Library

The EJS Venus Phases model illustrates the phases of Venus as predicted by either the Copernican system of the Ptolemaic system (the Copernican system is the default). One window shows Earth, Sun, and Venus on its Copernican orbit. Venus is shown as a disk with the side facing the sun colored yellow (since it reflects the sun's light) and the other side colored dark gray (since that side is dark). Playing the simulation puts all moving objects (Venus and Earth/Sun) in motion. Another window shows what Venus would look at this position, when viewed from Earth through a telescope. A menu option displays another window showing Galileo's drawings of his telescope observations of Venus. You can modify this simulation if you have Ejs installed by right-clicking within the plot and selecting "Open Ejs Model" from the pop-up menu item. EJS Phases of Venus model was created using the Easy Java Simulations (Ejs) modeling tool. It is distributed as a ready-to-run (compiled) Java archive. Double clicking the ejs_astronomy_VenusPhases.jar file will run the program if Java is installed. Ejs is a part of the Open Source Physics Project and is designed to make it easier to access, modify, and generate computer models. Additional Ejs models for astronomy are available. They can be found by searching ComPADRE for Open Source Physics, OSP, or Ejs.

Timberlake, Todd

2009-08-18

268

The Planet Venus  

NSDL National Science Digital Library

This resource covers early and modern views of Venus; the general features of Venus; its cloud layer, including high velocity winds, the absence of water vapor, and the different wavelengths used to analyze the Venusian atmosphere; properties of the Venusian atmosphere; a runaway greenhouse effect (where oceans would boil and rocks would sublimate), caused by radiation trapping by greenhouse gases; surface features of Venus, including different hemispheric views, mountains, volcanoes, lava flows, rift valleys and meteor craters; and a comparison of Venus and Earth.

2007-05-12

269

Colonization of Venus  

NASA Technical Reports Server (NTRS)

Although the surface of Venus is an extremely hostile environment, at about 50 kilometers above the surface the atmosphere of Venus is the most earthlike environment (other than Earth itself) in the solar system. It is proposed here that in the near term, human exploration of Venus could take place from aerostat vehicles in the atmosphere, and that in the long term, permanent settlements could be made in the form of cities designed to float at about fifty kilometer altitude in the atmosphere of Venus.

Landis, Geoffrey A.

2003-01-01

270

HST/STIS Observations of Venus’ Dayside Atmosphere, from morning to noon  

NASA Astrophysics Data System (ADS)

170-310 nm, high spectral (0.3 nm) and spatial (40-60 km/pixel) resolution observations of Venus’ low latitude dayside atmosphere were obtained using Hubble’s Space Telescope Imaging Spectrograph (HST/STIS), in order to measure the SO and SO2 gas column density on Venus’ morning quadrant between 20N and 40S latitude at an altitude of ~ 75±2 km, on three dates between late December 2010 and February 2011. These data provide the first direct and simultaneous measure of the SO and SO2 gas column density variability within Venus’ mesosphere as a function of both latitude and time of day. Our analysis indicates the cloud top gas densities vary strongly with latitude. On two of the 3 days of observing the gas densities are observed to peak at the equator, while the opposite trend is observed on the remaining date. On all dates, independent of the slope of the latitudinal gradient, a factor of ~ 1.7±0.5 enhancement in the SO2 gas density near the terminator (i.e., at SZA ~ 65±5°) is observed relative to the gas density detected at an equivalent latitude but smaller SZA. Using contemporaneously obtained Venus Express Monitoring Camera images, the significance of the HST inferred SO2 and SO gas density latitudinal variability relative to the observed cloud top characteristics will be discussed. Likewise, how the HST results relate to the near terminator and average dayside the SO2 and SO vertical volume mixing ratio (VMR) profiles inferred, respectively, from contemporaneously obtained Venus Express (VEx) Solar Occultation in the Infrared and sub-mm ground-based observations of Venus’s dayside atmosphere will be discussed. Lastly, the significance of the HST results relative to SPICAV observations obtained throughout the lifetime of the VEx mission will be summarized. E.g., the average dayside SO2 VMR inferred from the HST data is in the range of 42+/- 36 ppb, matching the average dayside VMR range derived from the SPICAV-UV data obtained during the entirety of 2011 (Jessup et al. 2014). These results suggest that HST data can be used to accurately document Venus’ average dayside behavior within a single year, and may be used to monitor the average SO2 gas density cloud top variance on a multi-year basis.

Jessup, Kandis-Lea; Marcq, Emmanuel; Mills, Frank; Yung, Yuk; Roman, Tony; Berteaux, Jean Loup; Mahieux, Arnaud; Wilquet, Valerie; Vandaele, Ann Carine; Wilson, Colin; Limaye, Sanjay; Markiewicz, Wojtek

2014-11-01

271

Mars Human Exploration Reference Mission  

Microsoft Academic Search

This presentation proposes the next steps for human exploration of Mars. The presentation reviews the reasons for human exploration of Mars. Two different trajectories are proposed: (1) for a long stay mission, and (2) for a short term mission, which could also include a swing by Venus. A reference mission scenario is investigated, which includes forward deployment of two cargo

Bret Drake

1998-01-01

272

Expendable Cooling for a One-Day Venus Lander  

NASA Astrophysics Data System (ADS)

A thermal architecture of a Venus lander mission using an expendable coolant system has been developed to enable a day-long surface mission. The system uses an aqua-ammonia mixture to provide cooling of the electronics and the pressure vessel.

Pauken, M. T.; Fernandez, C. J.; Jeter, S. M.

2014-06-01

273

Venus: Geochemical conclusions from the Magellan data  

NASA Technical Reports Server (NTRS)

Though the Magellan mission was not designed to collect geochemical or petrological information, it has done so nonetheless. Since the time of the Pioneer Venus mission it has been known that high-altitude (greater than 2.5-5 km) mountainous areas on Venus exhibit anomalously low radiothermal emissivity (e less than 0.6). Magellan has greatly refined and extended these observations. The low emissivity requires surface material in the uplands to have a mineralogical composition that gives it a high bulk dielectric constant, greater than 20. The dielectric constant of dry terrestrial volcanic rocks seldom exceeds 7. The high-dielectric character of high-altitude surface material cannot be a primary property of the local volcanic rock, because there is no reason why rock having the required special mineralogy would erupt only at high altitudes. Therefore it is a secondary property; the primary Venus rock has reacted with the atmosphere to form a mineralogically different surface layer, and the secondary minerals formed are controlled by the ambient temperature, which decreases with altitude on Venus. A further investigation of venusian mineralogy is presented.

Wood, J. A.

1992-01-01

274

Television on Venus  

NASA Astrophysics Data System (ADS)

Landing vehicles from the Venera-13 and Venera-14 stations made a soft landing on Venus on 1 and 5 March 1982, and black and white and color portraits of Venus were sent back to Earth. Interpretation of the telephotometry is discussed.

Selivanov, A. S.; Narayeva, M. K.

1983-01-01

275

Volcanoes on Venus  

NSDL National Science Digital Library

Visitors can read about the characteristics of volcanism on Venus and how it differs from volcanism on Earth. A map showing the locations and types of volcanic structures on the surface of Venus is provided, along with links to other related topics.

276

The Planetary Fourier Spectrometer (PFS) onboard the European Mars Express mission  

Microsoft Academic Search

The Planetary Fourier Spectrometer (PFS) for the Mars Express mission is an infrared spectrometer optimised for atmospheric studies. This instrument has a short wave (SW) channel that covers the spectral range from 1700 to 8200.0cm-1 (1.2–5.5?m) and a long-wave (LW) channel that covers 250–1700cm-1 (5.5–45?m). Both channels have a uniform spectral resolution of 1.3cm-1. The instrument field of view FOV

V. Formisanoa; F. Angrilli; G. Arnold; S. Atreya; G. Bianchini; D. Biondi; A. Blanco; M. I. Blecka; A. Coradini; L. Colangeli; A. Ekonomov; F. Esposito; S. Fonti; M. Giuranna; D. Grassi; V. Gnedykh; A. Grigoriev; G. Hansen; H. Hirsh; I. Khatuntsev; A. Kiselev; N. Ignatiev; A. Jurewicz; E. Lellouch; J. Lopez Moreno; A. Marten; A. Mattana; A. Maturilli; E. Mencarelli; M. Michalska; V. Moroz; B. Moshkin; F. Nespoli; Y. Nikolsky; R. Orfei; P. Orleanski; V. Orofino; E. Palomba; D. Patsaev; G. Piccioni; M. Rataj; R. Rodrigo; J. Rodriguez; M. Rossi; B. Saggin; D. Titov; L. Zasova

2005-01-01

277

Exploring the Planets: Venus  

NSDL National Science Digital Library

This site contains most of the up-to-date information known about the planet Venus, including mean distance from Sun, length of year, rotation period, mean orbital velocity, inclination of axis, average temperature (day and night), and diameter. Many discoveries about Venus have been made using Earth-based radio telescopes, however the images of Venus in this exhibit were collected by the Magellan spacecraft. Magellan used radar to produce the first high-resolution global map of Venus. Since Venus has no water erosion and little wind, volcanic eruptions are a major force reshaping the landscape. Geologic forces at work beneath the crust create mountains, rifts, and patterns of fractures, while the sluggish winds sculpt the surface in subtler ways but many mysteries remain. This site includes numerous images of the planet.

278

Atmosphere/mantle coupling and feedbacks on Venus  

NASA Astrophysics Data System (ADS)

investigate the coupled evolution of the atmosphere and mantle on Venus. Here we focus on mechanisms that deplete or replenish the atmosphere: atmospheric escape to space and volcanic degassing of the mantle. These processes are linked to obtain a coupled model of mantle convection and atmospheric evolution, including feedback of the atmosphere on the mantle via the surface temperature. During early atmospheric evolution, hydrodynamic escape is dominant, while for later evolution we focus on nonthermal escape, as observed by the Analyzer of Space Plasma and Energetic Atoms instrument on the Venus Express Mission. The atmosphere is replenished by volcanic degassing from the mantle, using mantle convection simulations based on those of Armann and Tackley [2012], and include episodic lithospheric overturn. The evolving surface temperature is calculated from the amount of CO2 and water in the atmosphere using a gray radiative-convective atmosphere model. This surface temperature in turn acts as a boundary condition for the mantle convection model. We obtain a Venus-like behavior (episodic lid) for the solid planet and an atmospheric evolution leading to the present conditions. CO2 pressure is unlikely to vary much over the history of the planet, with only a 0.25-20% postmagma-ocean buildup. In contrast, atmospheric water vapor pressure is strongly sensitive to volcanic activity, leading to variations in surface temperatures of up to 200 K, which have an effect on volcanic activity and mantle convection. Low surface temperatures trigger a mobile lid regime that stops once surface temperatures rise again, making way to stagnant lid convection that insulates the mantle.

Gillmann, Cedric; Tackley, Paul

2014-06-01

279

Radar characteristics of small craters - Implications for Venus  

NASA Technical Reports Server (NTRS)

Shuttle radar images (SIR-A) of volcanic and impact craters were examined to assess their appearance on radar images. Radar characteristics were determined for (1) nine maarlikie craters in the Pinacate volcanic field, Sonora, Mexico; (2) the caldera of Cerro Volcan Quemado, in the Bolivian Andes; (3) Talemzane impact crater, Algeria; and (4) Al Umchaimin, a possible impact structure in Iraq. SIR-A images were compared with conventional photographs and with results from field studies. Consideration was then given to radar images available for Venus, or anticipated from the Magellan mission. Of the criteria ordinarily used to identify impact craters, some can be assessed with radar images and others cannot be used; planimetric form, expressed as circularity, and ejecta-block distribution can be assessed on radar images, but rim and floor elevations relative to the surrounding plain and disposition of rim strata are difficult or impossible to determine. It is concluded that it will be difficult to separate small impact craters from small volcanic craters on Venus using radar images and is suggested that it will be necessary to understand the geological setting of the areas containing the craters in order to determine their origin.

Greeley, Ronald; Christensen, Philip R.; Mchone, John F.

1987-01-01

280

The extension of ionospheric holes into the tail of Venus  

NASA Astrophysics Data System (ADS)

Ionospheric holes are Cytherian nightside phenomena discovered by the NASA Pioneer Venus Orbiter, featuring localized plasma depletions driven by prominent and unexplained enhancements in the draped interplanetary magnetic field. Observed only during solar maximum, the phenomenon remains unexplained, despite their frequent observation during the first 3 years of the mission and more than 30 years having elapsed since their first description in the literature. We present new observations by the European Space Agency Venus Express showing that ionospheric holes can extend much further into the tail than previously anticipated (1.2 to 2.4 planetary radii) and may be observed throughout the solar cycle and over a wide range of solar wind conditions. We find that ionospheric holes are a manifestation of a deeper underlying phenomenon: tubes of enhanced draped interplanetary magnetic field that emerge in pairs from below the ionosphere and stretch far down the tail. We speculate on two possible explanations for the magnetic fields underlying the phenomena: magnetic pileup due to stagnation of ionospheric flow and internal draping around a metallic core.

Collinson, G. A.; Fedorov, A.; Futaana, Y.; Masunaga, K.; Hartle, R.; Stenberg, G.; Grebowsky, J.; Holmström, M.; Andre, N.; Barabash, S.; Zhang, T. L.

2014-08-01

281

HIGH-RESOLUTION SATELLITE IMAGING OF THE 2004 TRANSIT OF VENUS AND ASYMMETRIES IN THE CYTHEREAN ATMOSPHERE  

SciTech Connect

This paper presents the only space-borne optical-imaging observations of the 2004 June 8 transit of Venus, the first such transit visible from Earth since AD 1882. The high-resolution, high-cadence satellite images we arranged from NASA's Transition Region and Coronal Explorer (TRACE) reveal the onset of visibility of Venus's atmosphere and give further information about the black-drop effect, whose causes we previously demonstrated from TRACE observations of a transit of Mercury. The atmosphere is gradually revealed before second contact and after third contact, resulting from the changing depth of atmospheric layers refracting the photospheric surface into the observer's direction. We use Venus Express observations to relate the atmospheric arcs seen during the transit to the atmospheric structure of Venus. Finally, we relate the transit images to current and future exoplanet observations, providing a sort of ground truth showing an analog in our solar system to effects observable only with light curves in other solar systems with the Kepler and CoRoT missions and ground-based exoplanet-transit observations.

Pasachoff, Jay M. [Williams College-Hopkins Observatory, 33 Lab Campus Drive, Williamstown, MA 01267 (United States); Schneider, Glenn [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Widemann, Thomas [Observatoire de Paris-LESIA, 92190 Meudon (France)

2011-04-15

282

Venus Ionosphere and Solar Wind Interaction  

NASA Astrophysics Data System (ADS)

Venus Express, which was inserted into orbit in mid-2006, has added significantly to the knowledge gained from Pioneer Venus from 1978 to 1992. This observational database interpreted in terms of modern multi-fluid codes and hybrid simulations has deepened our understanding of Earth’s very different twin sister planet. Furthermore, the very different orbits of VEX and PVO has allowed the more complete mapping of the volume of space around the planet. Now the bow shock has been probed over its full surface, the ionosphere mapped everywhere, and the tail studied from the ionosphere to 12 Venus radii. Some unexpected discoveries have been made. The exospheric hydrogen at Venus, unlike that at Mars, does not produce ion-cyclotron waves, perhaps because the stronger gravity of Venus produces a smaller geocorona. The solar wind interaction drapes the magnetic field around the planet, and a strong layer of magnetic field builds up at low altitudes. While the layer does not appear to penetrate into the dayside atmosphere (perhaps diffusing only slowly through the low atmosphere), it does appear to dip into the atmosphere at night. Surprisingly, over the poles, this layer is most strongly seen when the IMF BY component has a positive Y-component in Venus-Solar-Orbital coordinates. Multi-fluid simulations show that this result is consistent with the pressure of significant ion densities of ions with quite different mass which causes magnetic polarity control of the ion flow over the terminators. Reconnection is found in the tail close to the planet, and the structure of the outer tail found by PVO is confirmed to exist in the inner tail by VEX. When combined, the VEX and PVO Data provide a very comprehensive picture of the physics of the solar wind interaction with the ionosphere of Venus.

Russell, C. T.; Luhmann, Janet G.; Ma, Yingjuan; Zhang, Tielong; Villarreal, M.

283

South-polar features on Venus similar to those near the north pole  

Microsoft Academic Search

Venus has no seasons, slow rotation and a very massive atmosphere, which is mainly carbon dioxide with clouds primarily of sulphuric acid droplets. Infrared observations by previous missions to Venus revealed a bright `dipole' feature surrounded by a cold `collar' at its north pole. The polar dipole is a `double-eye' feature at the centre of a vast vortex that rotates

G. Piccioni; P. Drossart; A. Sanchez-Lavega; R. Hueso; F. W. Taylor; C. F. Wilson; D. Grassi; L. Zasova; M. Moriconi; A. Adriani; S. Lebonnois; A. Coradini; B. Bézard; F. Angrilli; G. Arnold; K. H. Baines; G. Bellucci; J. Benkhoff; J. P. Bibring; A. Blanco; M. I. Blecka; R. W. Carlson; A. di Lellis; T. Encrenaz; S. Erard; S. Fonti; V. Formisano; T. Fouchet; R. Garcia; R. Haus; J. Helbert; N. I. Ignatiev; P. G. J. Irwin; Y. Langevin; M. A. Lopez-Valverde; D. Luz; L. Marinangeli; V. Orofino; A. V. Rodin; M. C. Roos-Serote; B. Saggin; D. M. Stam; D. Titov; G. Visconti; M. Zambelli; Eleonora Ammannito; Alessandra Barbis; Rainer Berlin; Carlo Bettanini; Angelo Boccaccini; Guillaume Bonnello; Marc Bouye; Fabrizio Capaccioni; Alejandro Cardesin Moinelo; Francesco Carraro; Giovanni Cherubini; Massimo Cosi; Michele Dami; Maurizio de Nino; Davide Del Vento; Marco di Giampietro; Alessandro Donati; Olivier Dupuis; Sylvie Espinasse; Anna Fabbri; Agnes Fave; Iacopo Ficai Veltroni; Gianrico Filacchione; Katia Garceran; Yamina Ghomchi; Maurizio Giustini; Brigitte Gondet; Yann Hello; Florence Henry; Stefan Hofer; Gerard Huntzinger; Juergen Kachlicki; René Knoll; Kouach Driss; Alessandro Mazzoni; Riccardo Melchiorri; Giuseppe Mondello; Francesco Monti; Christian Neumann; Fabrizio Nuccilli; Jerome Parisot; Claudio Pasqui; Stefano Perferi; Gisbert Peter; Alain Piacentino; Carlo Pompei; Jean-Michel Reess; Jean-Pierre Rivet; Antonio Romano; Natalie Russ; Massimo Santoni; Adelmo Scarpelli; Alain Soufflot; Douchane Stefanovitch; Enrico Suetta; Fabio Tarchi; Nazzareno Tonetti; Federico Tosi; Bernd Ulmer

2007-01-01

284

Salt tectonics on Venus  

SciTech Connect

The discovery of a surprisingly high deuterium/hydrogen ratio on Venus immediately led to the speculation that Venus may have once had a volume of surface water comparable to that of the terrestrial oceans. The authors propose that the evaporation of this putative ocean may have yielded residual salt deposits that formed various terrain features depicted in Venera 15 and 16 radar images. By analogy with models for the total evaporation of the terrestrial oceans, evaporite deposits on Venus should be at least tens to hundreds of meters thick. From photogeologic evidence and in-situ chemical analyses, it appears that the salt plains were later buried by lava flows. On Earth, salt diapirism leads to the formation of salt domes, anticlines, and elongated salt intrusions - features having dimensions of roughly 1 to 100 km. Due to the rapid erosion of salt by water, surface evaporite landforms are only common in dry regions such as the Zagros Mountains of Iran, where salt plugs and glaciers exist. Venus is far drier than Iran; extruded salt should be preserved, although the high surface temperature (470/sup 0/C) would probably stimulate rapid salt flow. Venus possesses a variety of circular landforms, tens to hundreds of kilometers wide, which could be either megasalt domes or salt intrusions colonizing impact craters. Additionally, arcurate bands seen in the Maxwell area of Venus could be salt intrusions formed in a region of tectonic stress. These large structures may not be salt features; nonetheless, salt features should exist on Venus.

Wood, C.A.; Amsbury, D.

1986-05-01

285

Loss of hydrogen and oxygen from the upper atmosphere of Venus  

NASA Astrophysics Data System (ADS)

Atmospheric escape from the upper atmosphere of Venus is mainly influenced by the loss of hydrogen and oxygen caused by the interaction of solar radiation and particle flux with the unprotected planetary environment. Because one main aim of the ASPERA-4 particle/plasma and VEX-MAG magnetic field experiments on board of ESA's forthcoming Venus Express mission is the investigation of atmospheric erosion processes from the planet's ionosphere-exosphere environment, we study the total loss of hydrogen and oxygen and identified the efficiency of several escape mechanisms involved. For the estimation of pick up loss rates we use a gas dynamic test particle model and obtained average loss rates for H+, and O+ pick up ions of about 1×1025s-1 and about 1.6×1025s-1, respectively. Further, we estimate ion loss rates due to detached plasma clouds, which were observed by the pioneer Venus orbiter and may be triggered by the Kelvin-Helmholtz instability of about 0.5-1×1025s-1. Thermal atmospheric escape processes and atmospheric loss by photo-chemically produced oxygen atoms yield negligible loss rates. Sputtering by incident pick up O+ ions give O atom loss rates in the order of about 6×1024s-1. On the other hand, photo-chemically produced hot hydrogen atoms are a very efficient loss mechanism for hydrogen on Venus with a global average total loss rate of about 3.8×1025s-1, which is in agreement with Donahue and Hartle [1992. Solar cycle variations in H+ and D+ densities in the Venus ionosphere: implications for escape. Geophys. Res. Lett. 12, 2449-2452] and of the same order but less than the estimated H+ ion outflow on the Venus nightside of about 7.0×1025s-1 due to acceleration by an outward electric polarization force related to ionospheric holes by Hartle and Grebowsky [1993. Light ion flow in the nightside ionosphere of Venus. J. Geophys. Res. 98, 7437-7445]. Our study indicates that on Venus, due to its larger mass and size compared to Mars, the most relevant atmospheric escape processes of oxygen involve ions and are caused by the interaction with the solar wind. The obtained results indicate that the ratio between H/O escape to space from the Venusian upper atmosphere is about 4, and is in a much better agreement with the stoichiometrically H/O escape ratio of 2:1, which is not the case on Mars. However, a detailed analysis of the outflow of ions from the Venus upper atmosphere by the ASPERA-4 and VEX-MAG instruments aboard Venus Express will lead to more accurate atmospheric loss estimations and a better understanding of the planet's water inventory.

Lammer, H.; Lichtenegger, H. I. M.; Biernat, H. K.; Erkaev, N. V.; Arshukova, I. L.; Kolb, C.; Gunell, H.; Lukyanov, A.; Holmstrom, M.; Barabash, S.; Zhang, T. L.; Baumjohann, W.

2006-11-01

286

Explosive propulsion applications. [to future unmanned missions  

NASA Technical Reports Server (NTRS)

The feasibility and application of an explosive propulsion concept capable of supporting future unmanned missions in the post-1980 era were examined and recommendations made for advanced technology development tasks. The Venus large lander mission was selected as the first in which the explosive propulsion concept can find application. A conceptual design was generated and its performance, weight, costs, and interaction effects determined. Comparisons were made with conventional propulsion alternatives. The feasibility of the explosive propulsion system was verified for planetology experiments within the dense atmosphere of Venus as well as the outer planets. Additionally, it was determined that the Venus large lander mission could be augmented ballistically with a significant delivery margin.

Nakamura, Y.; Varsi, G.; Back, L. H.

1974-01-01

287

Sensor Amplifier for the Venus Ground Ambient  

NASA Technical Reports Server (NTRS)

Previous Venus Landers employed high temperature pressure vessels, with thermally protected electronics, to achieve successful missions, with a maximum surface lifetime of 127 minutes. Extending the operating range of electronic systems to the temperatures (480 C) and pressures (90 bar) of the Venus ground ambient would significantly increase the science return of future missions. Toward that end, the current work describes the innovative design of a sensor preamplifier, capable of working in the Venus ground ambient and designed using commercial components (thermionic vacuum tubes, wide band gap transistors, thick film resistors, advanced high temperature capacitors, and monometallic interfaces) To identify commercial components and electronic packaging materials that are capable of operation within the specified environment, a series of active devices, passive components, and packaging materials were screened for operability at 500C, assuming a 10x increase in the mission lifetime. In addition. component degradation as a function of time at 500(deg)C was evaluated. Based on the results of these preliminary evaluations, two amplifiers were developed.

DelCastillo, Linda Y.; Johnson, Travis W.; Hatake, Toshiro; Mojarradi, Mohammad M.; Kolawa, Elizabeth A.

2006-01-01

288

System design of the Pioneer Venus spacecraft. Volume 2: Science  

NASA Technical Reports Server (NTRS)

The objectives of the low-cost Pioneer Venus space probe program are discussed. The space mission and science requirements are analyzed. The subjects considered are as follows: (1) the multiprobe mission, (2) the orbiter mission, (3) science payload accomodations, and (4) orbiter spacecraft experimental interface specifications. Tables of data are provided to show the science allocations for large and small probes. Illustrations of the systems and components of various probe configurations are included.

Acheson, L. K.

1973-01-01

289

The Venus ground-based image Active Archive: a database of amateur observations of Venus in ultraviolet and infrared light  

E-print Network

The Venus ground-based image Active Archive is an online database designed to collect ground-based images of Venus in such a way that they are optimally useful for science. The Archive was built to support ESA's Venus Amateur Observing Project, which utilises the capabilities of advanced amateur astronomers to collect filtered images of Venus in ultraviolet, visible and near-infrared light. These images complement the observations of the Venus Express spacecraft, which cannot continuously monitor the northern hemisphere of the planet due to its elliptical orbit with apocentre above the south pole. We present the first set of observations available in the Archive and assess the usability of the dataset for scientific purposes.

Barentsen, Geert

2013-01-01

290

Transits of Venus and Mercury as muses  

NASA Astrophysics Data System (ADS)

Transits of Venus and Mercury have inspired artistic creation of all kinds. After having been the first to witness a Venusian transit, in 1639, Jeremiah Horrocks expressed his feelings in poetry. Production has subsequently widened to include songs, short stories, novels, novellas, sermons, theatre, film, engravings, paintings, photography, medals, sculpture, stained glass, cartoons, stamps, music, opera, flower arrangements, and food and drink. Transit creations are reviewed, with emphasis on the English- and French-speaking worlds. It is found that transits of Mercury inspire much less creation than those of Venus, despite being much more frequent, and arguably of no less astronomical significance. It is suggested that this is primarily due to the mythological associations of Venus with sex and love, which are more powerful and gripping than Mercury's mythological role as a messenger and protector of traders and thieves. The lesson for those presenting the night sky to the public is that sex sells.

Tobin, William

2013-11-01

291

Planetary and Space Science 56 (2008) 807811 First observation of energetic neutral atoms in the Venus environment  

E-print Network

in the Venus environment A. Gallia,Ã?, P. Wurza , P. Bochslera , S. Barabashb , A. Grigorievb , Y. Futaanab , M The ASPERA-4 instrument on board the Venus Express spacecraft offers for the first time the possibility to directly measure the emission of energetic neutral atoms (ENAs) in the vicinity of Venus. When

California at Berkeley, University of

292

The thermal balance of the lower atmosphere of Venus  

NASA Technical Reports Server (NTRS)

The temperature near the surface of Venus (now established at 730 K) is remarkably high in view of Venus's cloud cover which causes the planet to absorb even less sunlight than does Earth. Early attempts to understand the thermal balance that leads to this unusual state were hindered by the lack of basic information regarding the composition, temperature-pressure structure, cloud properties, and wind field of the lower atmosphere. A series of successful space missions have measured many of the above quantities that control the transfer of heat in Venus's lower atmosphere. The relevant observational data are summarized and the attempts to understand the thermal balance of Venus's atmosphere below the cloud tops are reviewed. The data indicate that sufficient sunlight penetrates to deep atmospheric levels and is trapped by the large thermal opacity of the atmosphere to essentially account for the high temperatures observed.

Tomasko, M. G.

1981-01-01

293

Pioneer Venus Orbiter Ultraviolet Spectrometer: Operations and Data Analysis  

NASA Technical Reports Server (NTRS)

The Ultraviolet Spectrometer investigation on the Pioneer Venus Orbiter mission was extremely successful. The instrument was designed, built and tested at CU/LASP and delivered on time and within budget. The spacecraft and its instruments were required to operate for 243 days in Venus orbit. OUVS operated successfully for a further 13 years with only minor problems. The major scientific results listed above that deal with Venus were all unexpected and significant discoveries. The Comet Halley observations came about because of a favorable alignment of Halley, the Sun, and Venus, and were an important contribution to the international study of this comet. The scientific results of the OUVS investigation are to be found in the 41 papers listed in section 4 below. OUVS data provided material for 6 PhD and one MS dissertations, listed in section 5 below.

Stewart, A. I. F.

1997-01-01

294

Descenso al Infierno de VenusDescenso al Infierno de VenusDescenso al Infierno de VenusDescenso al Infierno de Venus Manuel Alfonseca  

E-print Network

Descenso al Infierno de VenusDescenso al Infierno de VenusDescenso al Infierno de VenusDescenso al Infierno de Venus Manuel Alfonseca #12;Manuel Alfonseca 2 #12;Descenso al infierno de Venus 3 Descenso al infierno de Venus Manuel Alfonseca RESERVADOS TODOS LOS DERECHOS. Salvo usos razonables destinados al

Alfonseca, Manuel

295

Solar Flight on Mars and Venus  

NASA Astrophysics Data System (ADS)

Solar powered aircraft are of interest for exploring both Mars and Venus. The thin atmosphere of Mars presents a difficult environment for flying. It is clear that a new approach is needed. By making a totally solar airplane, we can eliminate many of the heavy components, and make an airplane that can fly without fuel. Using high efficiency solar cells, we can succeed with an airplane design that can fly for up to 6 hours in near-equatorial regions of Mars (4 hours of level flight, plus two hours of slow descent), and potentially fly for many days in the polar regions. By designing an airplane for a single day flight. In particular, this change means that we no longer have to cope with the weight of the energy storage system that made previous solar powered airplanes for Mars impractical). The new airplane concept is designed to fly only under the optimal conditions: near equatorial flight, at the subsolar point, near noon. We baseline an 8 kg airplane, with 2 kg margin. Science instruments will be selected with the primary criterion of low mass. Solar-powered aircraft are also quite interesting for the exploration of Venus. Venus provides several advantages for flying a solar-powered aircraft. At the top of the cloud level, the solar intensity is comparable to or greater than terrestrial solar intensities. The atmospheric pressure makes flight much easier than on planets such as Mars. The atmospheric pressure on Venus is presented. From an altitude of approximately 45 km (pressure = 2 bar), to approximately 60 km (pressure = 0.2 bar), terrestrial airplane experience can be easily applied to a Venus airplane design. At these flight altitudes, the temperature varies from 80 C at 45 km, decreasing to -35 C at 60 km. Also, the slow rotation of Venus allows an airplane to be designed for flight within continuous sunlight, eliminating the need for energy storage for nighttime flight. These factors make Venus a prime choice for a long-duration solar-powered aircraft. Fleets of solar-powered aircraft could provide an architecture for efficient and low-cost comprehensive coverage for a variety of scientific missions. Exploratory planetary mapping and atmospheric sampling can lead to a greater understanding of the greenhouse effect not only on Venus but on Earth as well.

Landis, Geoffrey A.; LaMarre, Christopher; Colozza, Anthony

2002-10-01

296

Overview of Venus orbiter, Akatsuki  

NASA Astrophysics Data System (ADS)

The Akatsuki spacecraft of Japan was launched on May 21, 2010. The spacecraft planned to enter a Venus-encircling near-equatorial orbit in December 7, 2010; however, the Venus orbit insertion maneuver has failed, and at present the spacecraft is orbiting the Sun. There is a possibility of conducting an orbit insertion maneuver again several years later. The main goal of the mission is to understand the Venusian atmospheric dynamics and cloud physics, with the explorations of the ground surface and the interplanetary dust also being the themes. The angular motion of the spacecraft is roughly synchronized with the zonal flow near the cloud base for roughly 20 hours centered at the apoapsis. Seen from this portion of the orbit, cloud features below the spacecraft continue to be observed over 20 hours, and thus the precise determination of atmospheric motions is possible. The onboard science instruments sense multiple height levels of the atmosphere to model the three-dimensional structure and dynamics. The lower clouds, the lower atmosphere and the surface are imaged by utilizing near-infrared windows. The cloud top structure is mapped by using scattered ultraviolet radiation and thermal infrared radiation. Lightning discharge is searched for by high speed sampling of lightning flashes. Night airglow is observed at visible wavelengths. Radio occultation complements the imaging observations principally by determining the vertical temperature structure.

Nakamura, M.; Imamura, T.; Ishii, N.; Abe, T.; Satoh, T.; Suzuki, M.; Ueno, M.; Yamazaki, A.; Iwagami, N.; Watanabe, S.; Taguchi, M.; Fukuhara, T.; Takahashi, Y.; Yamada, M.; Hoshino, N.; Ohtsuki, S.; Uemizu, K.; Hashimoto, G. L.; Takagi, M.; Matsuda, Y.; Ogohara, K.; Sato, N.; Kasaba, Y.; Kouyama, T.; Hirata, N.; Nakamura, R.; Yamamoto, Y.; Okada, N.; Horinouchi, T.; Yamamoto, M.; Hayashi, Y.

2011-05-01

297

Solar Airplane Concept Developed for Venus Exploration  

NASA Technical Reports Server (NTRS)

An airplane is the ideal vehicle for gathering atmospheric data over a wide range of locations and altitudes, while having the freedom to maneuver to regions of scientific interest. Solar energy is available in abundance on Venus. Venus has an exoatmospheric solar flux of 2600 W/m2, compared with Earth's 1370 W/m2. The solar intensity is 20 to 50 percent of the exoatmospheric intensity at the bottom of the cloud layer, and it increases to nearly 95 percent of the exoatmospheric intensity at 65 km. At these altitudes, the temperature of the atmosphere is moderate, in the range of 0 to 100 degrees Celsius, depending on the altitude. A Venus exploration aircraft, sized to fit in a small aeroshell for a "Discovery" class scientific mission, has been designed and analyzed at the NASA Glenn Research Center. For an exploratory aircraft to remain continually illuminated by sunlight, it would have to be capable of sustained flight at or above the wind speed, about 95 m/sec at the cloud-top level. The analysis concluded that, at typical flight altitudes above the cloud layer (65 to 75 km above the surface), a small aircraft powered by solar energy could fly continuously in the atmosphere of Venus. At this altitude, the atmospheric pressure is similar to pressure at terrestrial flight altitudes.

Landis, Geoffrey A.

2004-01-01

298

10. The surface and interior of venus  

USGS Publications Warehouse

Present ideas about the surface and interior of Venus are based on data obtained from (1) Earth-based radio and radar: temperature, rotation, shape, and topography; (2) fly-by and orbiting spacecraft: gravity and magnetic fields; and (3) landers: winds, local structure, gamma radiation. Surface features, including large basins, crater-like depressions, and a linear valley, have been recognized from recent ground-based radar images. Pictures of the surface acquired by the USSR's Venera 9 and 10 show abundant boulders and apparent wind erosion. On the Pioneer Venus 1978 Orbiter mission, the radar mapper experiment will determine surface heights, dielectric constant values and small-scale slope values along the sub-orbital track between 50??S and 75??N. This experiment will also estimate the global shape and provide coarse radar images (40-80 km identification resolution) of part of the surface. Gravity data will be obtained by radio tracking. Maps combining radar altimetry with spacecraft and ground-based images will be made. A fluxgate magnetometer will measure the magnetic fields around Venus. The radar and gravity data will provide clues to the level of crustal differentiation and tectonic activity. The magnetometer will determine the field variations accurately. Data from the combined experiments may constrain the dynamo mechanism; if so, a deeper understanding of both Venus and Earth will be gained. ?? 1977 D. Reidel Publishing Company.

Masursky, H.; Kaula, W.M.; McGill, G.E.; Pettengill, G.H.; Phillips, R.J.; Russell, C.T.; Schubert, G.; Shapiro, I.I.

1977-01-01

299

The Atmosphere of Venus  

NASA Technical Reports Server (NTRS)

Topics considered at the conference included the dynamics, structure, chemistry, and evolution of the Venus atmosphere, as well as cloud physics and motion. Infrared, ultraviolet, and radio occultation methods of analysis are discussed, and atmospheric models are described.

Hansen, J. E. (editor)

1975-01-01

300

Venus fly trap  

NSDL National Science Digital Library

Time-lapse photos or video show progressions from the start of an event to the end of the event. These time-lapse photos illustrate the growth of a single Venus fly trap. Biological processes require time.

Paul Lenz (None;)

2006-01-26

301

SOHO Sees Venus' Approach  

NASA Video Gallery

This video taken by the Solar and Heliospheric Observatory (SOHO) shows the Sun's corona and Venus' approach for the transit. This was taken with the Extreme ultraviolet Imaging Telescope (EIT) in ...

302

Venus Transit 2004  

NSDL National Science Digital Library

In just several weeks, Venus, the Earth's sister planet, will pass in front of the sun, affording astronomers and the general public the ability to take part in a extremely rare event. While persons in Europe, Africa, and Asia will have the best vantage point for this occurrence, those interested in the Venus transit will want to take a detailed look at this lovely website in order to find out more about the event. Launched by the European Southern Observatory and the European Association for Astronomy Education (in cooperation with three other organizations), the site contains ample information about the latest news from the project, detailed background material about this astronomical event, the network of institutions involved with the project, and information on how individuals may participate in the Venus Transit 2004 project. One of the most helpful areas contains animations of the Venus transit from different perspectives.

303

The surface of Venus  

NASA Astrophysics Data System (ADS)

Radar images of Venus were assembled from observations made at the Arecibo Observatory in Puerto Rico in 1975 and 1977 when Venus made close approaches to the earth. The empty band below the equator is a region where in 1975 and 1977 the imaging method was unable to resolve the radar echoes. Shrouded by clouds, the surface of Venus is now mapped by radar from the earth and from a spacecraft in orbit around Venus and the images suggest a geology intermediate between that of the earth and that of Mars. From a synthesis of all the data now available there begins to emerge the picture of a planet nearly the size of the earth whose surface has been modified by all the processes that have shaped the earth's surface except erosion by rain.

Pettengill, G. H.; Campbell, D. B.; Masursky, H.

1980-08-01

304

Mercury, Venus, and Earth!  

NSDL National Science Digital Library

You will compare and contrast Mercury, Venus, and Earth. While looking at these different websites, use the information to fill in your handout of a column chart and on the back answer the questions you are asked on here. First view this website and record on your chart the distance from the sun Mercury,Venus, and Earth are. Now, learn about Mercury! What is the surface ...

Bschiffer

2009-10-21

305

Plate tectonics on Venus  

NASA Technical Reports Server (NTRS)

The high surface temperature of Venus implies a permanently buoyant lithosphere and a thick basaltic crust. Terrestrial-style tectonics with deep subduction and crustal recycling is not possible. Overthickened basaltic crust partially melts instead of converting to eclogite. Because mantle magmas do not have convenient access to the surface the Ar-40 abundance in the atmosphere should be low. Venus may provide an analog to Archean tectonics on the earth.

Anderson, D. L.

1981-01-01

306

Stratospheric balloon BIRBA 2 mission: effects of cosmic radiations on gene expression of human cells  

NASA Astrophysics Data System (ADS)

In space living organisms, including cells, are affected by two new environmental conditions: microgravity and cosmic radiations. In order to evaluate the effects of cosmoc radiation on the gene expression we exposed human cell lines to high quote cosmic radiation during stratospheric balloon trans-mediterranean flights (BIRBA2, mission 2002). To this purpose HUVEC (endotelial human cells) and purified human T lymphocytes, were used. After a 22 h flight the cells lines were examinated by the cDNA microarrays method, proved to be very sensible and accurate. A panel of genes candidate to be defined modulated by cosmic radiation has been isolated.

Galleri, Grazia; Camboni, Maria Gavina; Negri, Rodolfo; de Sanctis, Veronica; Costanzo, Giovanna; Meloni, Maria Antonia; Pipia, Proto; Cotronei, Vittorio; Cogoli, Augusto

2003-08-01

307

Long-Lived, Maneuverable, Semi-Buoyant Platform for Venus Upper Atmosphere Exploration  

NASA Astrophysics Data System (ADS)

This presentation discusses the continued development of the Northrop Grumman/L’GARDE team’s long-lived, maneuverable platform to explore the Venus upper atmosphere. It focuses on the overall mission architecture and concept of operations.

Lee, G.; Sokol, D.; Polidan, R.; Bolisay, L.; Barnes, N.

2014-06-01

308

Large Volcanic Edifices and Rises on Venus: The Benefits of Improved Topography and Gravity Data  

NASA Astrophysics Data System (ADS)

Venus is a volcanological laboratory, replete with edifices and rises that offer potentially deep insights into its evolution. However, this potential can only be realized with improved topography and gravity data, requiring a new orbital mission.

McGovern, P. J.

2014-05-01

309

3. ALTOVITI VENUS STATUE IN THE TEMPLE OF VENUS AS ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

3. ALTOVITI VENUS STATUE IN THE TEMPLE OF VENUS AS SEEN FROM LIVING ROOM DOORS, SOUTHEAST FACADE OF KYKUIT HOUSE, ON AXIS WITH LINDEN ALLEE - Kykuit, 200 Lake Road, Pocantico Hills, Westchester County, NY

310

Pioneer Venus data analysis for the retarding potential analyzer  

NASA Technical Reports Server (NTRS)

This report describes the data analysis and archiving activities, analysis results, and instrument performance of the orbiter retarding potential analyzer (ORPA) flown on the Pioneer Venus Orbiter spacecraft during the period, Aug. 1, 1988 to Sept. 30, 1993. During this period, the periapsis altitude of the Orbiter spacecraft descended slowly from 1900 km altitude, at which altitude the spacecraft was outside the Venus ionosphere, to approximately 130 km altitude in Oct. 1992 at which time communication with the spacecraft ceased as a result of entry of the spacecraft into the Venus atmosphere. The quantity of ORPA data returned during this reporting period was greatly reduced over that recovered in the previous years of the mission because of the reduced power capability of the spacecraft, loss of half of the onboard data storage, and partial failure of the ORPA. Despite the reduction in available data, especially ionospheric data, important scientific discoveries resulted from this extended period of the Pioneer Venus mission. The most significant discovery was that of a strong solar cycle change in the size of the dayside ionosphere and the resulting shutoff of flow of dayside ions into the nightside hemisphere. The large, topside O+ F2 ionospheric layer observed during the first three years of the Pioneer Venus mission, a period of solar cycle maximum activity, is absent during the solar cycle minimum activity period.

Knudsen, William C.

1993-01-01

311

11. Pioneer venus experiment descriptions  

Microsoft Academic Search

This concluding paper of a special issue of Space Science Reviews, devoted to the exploration of Venus and the Pioneer Venus Program, contains brief engineering descriptions of the experiments to be integrated into the Orbiter and Multiprobe scientific payloads.

L. Colin; D. M. Hunten

1977-01-01

312

Variations of zonal wind speed at Venus cloud tops from Venus Monitoring Camera UV images  

NASA Astrophysics Data System (ADS)

7 years of continuous monitoring of Venus by ESA's Venus Express provided an opportunity to study dynamics of the atmosphere of Venus. Venus Monitoring Camera (VMC) [1] delivered the longest and the most complete so far set of UV images to study the cloud level circulation by tracking motion of the cloud features. We analyzed 130 orbits with manual cloud tracking and 600 orbits with digital correlation method. Here we present the latest update of our results. Total number of wind vectors derived in this work is approximately a half million. During Venus Express observations the mean zonal speed was in the range of 85-110 m/s. VMC observations indicated a long term trend for the zonal wind speed at low latitudes to increase. The origin of low frequency trend with a period about 3000 days is unclear. Fourier analysis [2-3] of revealed quasi-periodicities in the zonal circulation at low latitudes. Two groups of the periods were found. The first group is close to the period of superrotation at low latitudes (4.83±0.1 days) with the period 4.1-5.1 days and the amplitude ranging from ±4.2 to ±17.4 m/s. The amplitude and phase of oscillations demonstrates dependence from the latitude and also time variability with preserving stable parameters of oscillation during at least 70 days. Short term oscillations may be caused by wave processes in the mesosphere of Venus at the cloud top level. Wave number of the observed oscillations is 1. The second group is a long term periods caused by orbital motion of Venus (116 days, 224 days) and is related to the periodicity in VMC observations. Also VMC UV observations showed a clear diurnal pattern of the mean circulation. The zonal wind demonstrated semi-diurnal variations with minimum speed close to noon (11-14 h) and maxima in the morning (8-9 h) and in the evening (16-17 h). The meridional component clearly peaks in the early afternoon (13-15h) at latitudes near 50S. The minimum of the meridional wind is located at low latitudes in the morning (8-11h). References [1] Markiewicz W. J. et al.: Venus Monitoring Camera for Venus Express // Planet. Space Sci.. V.55(12). pp1701-1711. doi:10.1016/j.pss.2007.01.004, 2007. [2] Deeming T.J.: Fourier analysis with unequally-spaced data. Astroph. and Sp. Sci. V.36, pp137-158, 1975. [3] Terebizh, V.Yu. Time series analysis in astrophysics. Moscow: "Nauka," Glav. red. fiziko-matematicheskoi lit-ry, 1992. In Russian

Khatuntsev, Igor; Patsaeva, Marina; Ignatiev, Nikolai; Titov, Dmitri; Markiewicz, Wojciech J.

2013-04-01

313

VENUS Atmospheric Exploration by Solar Aircraft  

NASA Astrophysics Data System (ADS)

much easier than on planets such as Mars. Above the clouds, solar energy is available in abundance on Venus. Venus has a solar flux of 2600 W/m2, compared to Earth's 1370 W/m2. The solar intensity is 20 to 50% of the exoatmospheric intensity (depending on wavelength) at the bottom of the cloud layer at 50 km, and increases to nearly 95% of the exoatmospheric intensity at 65 km, the top of the main cloud layer, and the slow rotation of Venus allows an airplane to be designed for flight within continuous sunlight, eliminating the need for energy storage for nighttime flight. challenge for a Venus aircraft will be the fierce winds and caustic atmosphere. The wind reaches a speed of about 95m/s at the cloud top level, and in order to remain on the sunlit side of Venus, an exploration aircraft will have to be capable of sustained flight at or above the wind speed. desirable that the number of moving parts be minimized. Figure 1 shows a concept for a Venus airplane design that requires only two folds to fold the wing into an aeroshell, and no folds to deploy the tail. Because of the design constraint that the two- fold wing is to fit into a small aeroshell, the wing area is maximum at extremely low aspect ratio, and higher aspect ratios can be achieved only by reducing the wing area. To fit the circular aeroshell, the resulting design trade-off increases wing area by accepting the design compromise of an extremely short tail moment and small tail area (stabilizer area 9% of wing area). In terms of flight behavior, the aircraft is essentially a flying wing design with the addition of a small control surface. A more conventional aircraft design can be made by folding or telescoping the tail boom as well as the wing. Typical flight altitudes for analysis were 65 to 75 km above the surface. For exploration of lower altitudes, it is feasible to glide down to low altitudes for periods of several hours, accepting the fact that the airplane ground track will blow downwind, and then climb back to higher altitudes and fly upwind to the original point, allowing both high and low altitudes to be probed. Analysis of flight using battery storage shows that it is not feasible to keep the aircraft aloft on battery power alone during the passage across the night side of the planet. Likewise, the unpowered glide range of the aircraft is not high enough for it to glide around the night side of the planet and re-emerge into sunlight. Therefore, if the mission duration is to be unlimited, the mission is restricted to the daylight side of the planet, and to altitudes high enough that the aircraft can equal or exceed the wind speed. would be a powerful tool for exploration. By learning how Venus can be so similar to Earth, and yet so different, we will learn to better understand the climate and geological history of the Earth. The success of a prototype solar airplane could lead to the development of a fleet of solar-powered airplanes flying across the Venus cloud tops, taking simultaneous measurements to develop a "snapshot" of the climate across the face of the planet. Fleets of solar-powered aircraft could provide an architecture for efficient and low-cost comprehensive coverage for a variety of scientific missions, both atmospheric and geological science via surface imaging and radar. Exploratory planetary mapping and atmospheric sampling can lead to a greater understanding of the greenhouse effect not only on Venus but on Earth as well.

Landis, G. A.; Lamarre, C.; Colozza, A.

2002-01-01

314

Pioneer Venus polarimetry and haze optical thickness  

NASA Technical Reports Server (NTRS)

The Pioneer Venus mission provided us with high-resolution measurements at four wavelengths of the linear polarization of sunlight reflected by the Venus atmosphere. These measurements span the complete phase angle range and cover a period of more than a decade. A first analysis of these data by Kawabata et al. confirmed earlier suggestions of a haze layer above and partially mixed with the cloud layer. They found that the haze exhibits large spatial and temporal variations. The haze optical thickness at a wavelength of 365 nm was about 0.06 at low latitudes, but approximately 0.8 at latitudes from 55 deg poleward. Differences between morning and evening terminator have also been reported by the same authors. Using an existing cloud/haze model of Venus, we study the relationship between the haze optical thickness and the degree of linear polarization. Variations over the visible disk and phase angle dependence are investigated. For that purpose, exact multiple scattering computations are compared with Pioneer Venus measurements. To get an impression of the variations over the visible disk, we have first studied scans of the polarization parallel to the intensity equator. After investigating a small subset of the available data we have the following results. Adopting the haze particle characteristics given by Kawabata et al., we find a thickening of the haze at increasing latitudes. Further, we see a difference in haze optical thickness between the northern and southern hemispheres that is of the same order of magnitude as the longitudinal variation of haze thickness along a scan line. These effects are most pronounced at a wavelength of 935 nm. We must emphasize the tentative nature of the results, because there is still an enormous amount of data to be analyzed. We intend to combine further polarimetric research of Venus with constraints on the haze parameters imposed by physical and chemical processes in the atmosphere.

Knibbe, W. J. J.; Wauben, W. M. F.; Travis, L. D.; Hovenier, J. W.

1992-01-01

315

Quantifying shapes of volcanoes on Venus  

NASA Technical Reports Server (NTRS)

A large population of discrete volcanic edifices on Venus has been identified and cataloged by means of Magellan SAR images, and an extensive database describing thousands of such features is in final preparation. Those volcanoes categorized as Intermediate to Large in scale, while relatively small in number (approx. 400), nonetheless constitute a significant volumetric component (approx. 13 x 10(exp 6) cu km) of the total apparent crustal volume of Venus. For this reason, we have focused attention on the morphometry of a representative suite of the larger edifices on Venus and, in particular, on ways of constraining the eruptive histories of these possibly geologically youthful landforms. Our approach has been to determine a series of reproducible morphometric parameters for as many of the discrete volcanoes on Venus that have an obvious expression within the global altimetry data acquired by Magellan. In addition, we have attempted to objectively and systematically define the mathematical essence of the shapes of these larger volcanoes using a polynomial cross-section approximation involving only parameters easily measured from digital topography, as well as with simple surface cylindrical harmonic expansions. The goal is to reduce the topological complexities of the larger edifices to a few simple parameters which can then be related to similar expressions for well-studied terrestrial and martian features.

Garvin, J. B.

1994-01-01

316

Venus balloons at low altitudes  

Microsoft Academic Search

The Venus balloons are one of the most important vehicles to explore the dynamics and composition of Venusian atmosphere. The authors here propose the balloons at low altitude of 10 to 20 km floating below the cloud in the Venus atmosphere, which will make it possible to perform the study of the Venus atmosphere at low altitude together with a

J. Nishimura; M. Hinada; N. Yajima; M. Fujii

1994-01-01

317

The Magellan Venus mapping mission: Aerobraking operations  

Microsoft Academic Search

The orbit of the Magellan spacecraft was circularized during a 70-day aerobraking phase, which ended on 3 August 1993. Shrinking the orbit apoapsis from 8467 km down to 541 km was required to obtain meaningful gravity science data at high and moderate latitudes. Aerobraking was the only way to reach this nearly-circular orbit, since the amount of propellant on board

Daniel T. Lyons; R. Stephen Saunders; Douglas G. Griffith

1995-01-01

318

Geologic map of the Mead quadrangle (V-21), Venus  

USGS Publications Warehouse

The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included (1) improving the knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Mead quadrangle (V-21) of Venus is bounded by lat 0 deg and 25 deg N., long 30 deg and 60 deg E. This quadrangle is one of 62 covering Venus at 1:5,000,000 scale. Named for the largest crater on Venus, the quadrangle is dominated by effusive volcanic deposits associated with five major coronae in eastern Eistla Regio (Didilia, Pavlova, Calakomana, Isong, and Ninmah), corona-like tectonic features, and Disani Corona. The southern extremity of Bell Regio, marked by lava flows from Nyx Mons, north of the map area, forms the north-central part of the quadrangle. The shield volcanoes Kali, Dzalarhons, and Ptesanwi Montes lie south and southwest of the large corona-related flow field. Lava flows from sources east of Mead crater flood low-lying areas along the east edge of the quadrangle.

Campbell, Bruce A.; Clark, David A.

2006-01-01

319

On the Frequency of Potential Venus Analogs from Kepler Data  

NASA Astrophysics Data System (ADS)

The field of exoplanetary science has seen a dramatic improvement in sensitivity to terrestrial planets over recent years. Such discoveries have been a key feature of results from the Kepler mission which utilizes the transit method to determine the size of the planet. These discoveries have resulted in a corresponding interest in the topic of the Habitable Zone and the search for potential Earth analogs. Within the solar system, there is a clear dichotomy between Venus and Earth in terms of atmospheric evolution, likely the result of the large difference (approximately a factor of two) in incident flux from the Sun. Since Venus is 95% of the Earth's radius in size, it is impossible to distinguish between these two planets based only on size. In this Letter we discuss planetary insolation in the context of atmospheric erosion and runaway greenhouse limits for planets similar to Venus. We define a "Venus Zone" in which the planet is more likely to be a Venus analog rather than an Earth analog. We identify 43 potential Venus analogs with an occurrence rate (??) of 0.32^{+0.05}_{-0.07} and 0.45^{+0.06}_{-0.09} for M dwarfs and GK dwarfs, respectively.

Kane, Stephen R.; Kopparapu, Ravi Kumar; Domagal-Goldman, Shawn D.

2014-10-01

320

Chasing Venus: Putting the Transits of Venus on Exhibition  

NASA Astrophysics Data System (ADS)

The upcoming 2004 transit of Venus provides a great opportunity to develop programs to educate the public about the history of the observations of the transits. The Smithsonian Institution Libraries is well-placed to take part in this effort with its collection of rare books that deal with the 17th- and 18th-century transits. The exhibition called ``Chasing Venus" will be on display at the National Museum of American History, Behring Center, from March 2004 to April 2005. The Museum will loan a number of its 19th-century artifacts and the US Naval Observatory is also cooperating with the loan of a telescope and some rare books from the USNO Library to flesh out the story of the 19th-century transits. The talk will take a closer look at the books and artifacts that will be used to tell the history of the transit observations in the special context of a library exhibition. Books from a wide variety of authors such as Kepler, Horrocks, Capt. Cook, Rittenhouse, Mason & Dixon, and even John Philip Sousa (!) will help express the authors' excitement about the event to the public at large.

Brashear, R. S.

2003-12-01

321

Venus lightning - An update  

NASA Technical Reports Server (NTRS)

The evidence for Venus lightning comes from three distinct sources: the Venera 11-14 landers, the Venera 9 orbiter and the Pioneer Venus orbiter. The largest data set and the one being analyzed most thoroughly at present comes the VLF electric field experiment on PVO spacecraft. Recent results show that the Poynting flux out of the atmosphere is consistent with that expected from a terrestrial sized source of lightning or possibly one much greater. Estimates of the flash rate from the statistics of impulsive signals also points to a source that is stronger than the terrestrial source. Ongoing studies of the polarization of the signals and their properties relative to their direction of propagation as well as a recalibration of the Pioneer Venus star sensor promise to provide continuing information on this phenomenon.

Russell, C. T.; Strangeway, R. J.

1992-01-01

322

Perspectives of the bistatic radar and occultation studying of the Venus atmosphere and surface  

NASA Astrophysics Data System (ADS)

Studying the physical properties of Venus surface and subsurface structures is an important direction in the space research. The first aim of this contribution is to present some results of reanalysis of the bistatic radar and occultation experiments provided using Venera-9, 10 and 15, 16 satellites. Comparison is made with Magellan and Venus Express bistatic radar missions. Bistatic radio images of the Venus surface is compared with monostatic radio images obtained by the Soviet and USA orbiters. The second aim consists in introducing new methods for investigation of the layered structure of the Venus atmosphere and measuring parameters of Venus surface and subsurface structures using the bistatic radar technology. The first bistatic radar measurements with spatial resolution ~ 10-20 km have been carried out during autumn of 1975 year in the five Venus equatorial regions using the Venera-9 and 10 satellites. Small roughness and, in general, plain character of relief in the investigated regions have been revealed. In 1983, the satellites Venera 15 and 16 have carried out new bistatic radar experiments with spatial resolution in the interval 5 - 10 km. New information on the large-scale topography and roughness of small-scale relief has been obtained in Northern polar areas of the planet. Some features have been detected. 1. The significant variations of the reflectivity ~ 2-4 times were found in the first region. The second area of reflectivity magnitude was far below (by three - four times) the previously measured values in the equatorial regions of Venus. These significant reflectivity variations may be related to changes in the conductivity of the ground. 2. Extremely small values roughness with rms of slopes ~ 0.20 were recorded in the northern area. 3. Both the bending angle and the reflection coefficient were determined in the experiment from the measured frequency difference between the direct and the reflected signals as a function of time, using the orbital data. New methods developed by analysis of the experimental data obtained using high-stability radio fields of the Earth's navigational satellites are introduced. For investigations of the layered structures of the Venus atmosphere a new eikonal acceleration/intensity technique is proposed. This technique allows: (1) one frequency high-precision measuring the total absorption of radio waves in the atmosphere; (2) estimating vertical gradients of the refractivity, and determining the height, slope, and horizontal displacement of the atmospheric and ionospheric layers; (3) a criterion is introduced for identification of the internal waves in the Venus atmosphere. To obtain the information on the planetary subsurface structure up to depth 1 km it is necessary to use radio waves in the Low Frequency (LF), Medium Frequency (MF), or High Frequency (HF) bands with wavelength from 1 m up 300 m. The depth of radio sounding is proportional to the wavelength, the intensity of the radio-emission source, and depends on the conductivity of the ground. The bistatic subsurface remote sensing of the planet can be achieved using powerful Earth based transmitters, and/or sporadic radio emission of the Sun and other space radio sources. The work was partly supported by Program 22 of Presidium of Russian Academy of Sciences.

Pavelyev, Alexander; Gubenko, Vladimir; Matyugov, Stanislav; Yakovlev, Oleg

2013-04-01

323

Lightning Occurrence in the Venus Atmosphere: Statistics from Venus Explorer Observations of ELF Emissions  

NASA Astrophysics Data System (ADS)

Venus Express has now recorded ELF emissions (up to 64 Hz) in the low-altitude Venus ionosphere since mid-2006. These signals are most prevalent when the ionosphere magnetic field dips into the atmosphere, enabling the electromagnetic signal to enter the ionosphere. The signals can extend over the full bandwidth of the instrument, up to 64 Hz. The waves are nearly circularly polarized and are right-hand polarized, as expected for whistler-mode propagation generated by lightning. When isolated bursts of signal occur, frequently dispersion is seen in which the high-frequency waves arrive first. This is the expected signature generated by impulsive electric discharges. These observations suggest that the rate of lightning occurrence on Venus is not unlike the terrestrial rate where atmosphere chemistry is affected measurably by these discharges. Here we report on the latest results of our studies.

Hart, Richard; Russell, Christopher; Zhang, Tielong

2014-05-01

324

Names on the maps of Venus - A pre-Magellan review  

NASA Astrophysics Data System (ADS)

As Venus is the only planet which has a female name, the Working Group on Planetary System Nomenclature of the International Astronomical Union has designated that only female names shall be used for topographic features on Venus. Craters and paterae have the names of famous women as well as female first names, noncrater features have names of mythological characters. The first 80 names appeared on the maps after the Pioneer Venus mission. About 300 more names were added after the Venera 15 and 16 missions. It is noted that a large number of new names will be needed after the Magellan mission, when detailed maps will be produced for nearly the whole surface of Venus. A list is provided of the 376 features of 17 types which are now named.

Burba, G. A.

1990-12-01

325

Lunar and Planetary Science XXXV: Venus  

NASA Technical Reports Server (NTRS)

The session "Venus" included the following reports:Is It Possible to Detect Magnetic Materials on Venus with Bistatic Radar Probing?; Airfall Crater Deposits on the Surface of Venus: Do We See Them in the Venera Panoramas?; Rift System Architecture on Venus; Constraints on Deformation Belt Evolution on Venus; An Admittance Survey of Large Volcanoes on Venus: Implications for Volcano Growth; Crustal Thickening Above a Convecting Mantle with Application to Venus and Mars; Geological Mapping of Venus: Interpretation of Geologic History and Assessment of; Directional and Non-Directional Models; Ages of Venusian Ridge Belts Relative to Regional Plains; and Plumes as a Mechanism for Equilibrium Resurfacing of Venus.

2004-01-01

326

Beagle 2: a proposed exobiology lander for ESA's 2003 Mars Express mission.  

PubMed

The aim of the proposed Beagle 2 small lander for ESA's 2003 Mars Express mission is to search for organic material on and below the surface of Mars and to study the inorganic chemistry and mineralogy of the landing site. The lander will have a total mass of 60kg including entry, descent, and landing system. Experiments will be deployed on the surface using a robotic arm. It will use a mechanical mole and grinder to obtain samples from below the surface, under rocks, and inside rocks. Sample analysis by a mass spectrometer will include isotopic analysis. An optical microscope, an X-ray spectrometer and a Mossbauer spectrometer will conduct in-situ rock studies. PMID:11543221

Sims, M R; Pillinger, C T; Wright, I P; Dowson, J; Whitehead, S; Wells, A; Spragg, J E; Fraser, G; Richter, L; Hamacher, H; Johnstone, A; Meredith, N P; de la Nougerede, C; Hancock, B; Turner, R; Peskett, S; Brack, A; Hobbs, J; Newns, M; Senior, A; Humphries, M; Keller, H U; Thomas, N; Lingard, J S; Ng, T C

1999-01-01

327

Beagle 2: a proposed exobiology lander for ESA's 2003 Mars express mission  

NASA Astrophysics Data System (ADS)

The aim of the proposed Beagle 2 small lander for ESA's 2003 Mars Express mission is to search for organic material on and below the surface of Mars and to study the inorganic chemistry and mineralogy of the landing site. The lander will have a total mass of 60kg including entry, descent, and landing system. Experiments will be deployed on the surface using a robotic arm. It will use a mechanical mole and grinder to obtain samples from below the surface, under rocks, and inside rocks. Sample analysis by a mass spectrometer will include isotopic analysis. An optical microscope, an X- ray spectrometer and a Mossbauer spectrometer will conduct in-situ rock studies.

Sims, M. R.; Pillinger, C. T.; Wright, I. P.; Dowson, J.; Whitehead, S.; Wells, A.; Spragg, J. E.; Fraser, G.; Richter, L.; Hamacher, H.; Johnstone, A.; Meredith, N. P.; de La Nougerede, C.; Hancock, B.; Turner, R.; Peskett, S.; Brack, A.; Hobbs, J.; Newns, M.; Senior, A.; Humphries, M.; Keller, H. U.; Thomas, N.; Lingard, J. S.; Underwood, J. C.; Sale, N. M.; Neal, M. F.; Klingelhofer, G.; Ng, T. C.

1999-01-01

328

Topographic comparisons of uplift features on Venus and Earth: Implications for Venus tectonics  

E-print Network

Topographic comparisons of uplift features on Venus and Earth: Implications for Venus tectonics: Available online 12 September 2011 Keywords: Venus, Surface Earth Tectonics a b s t r a c t Venus and Earth for shaping Venus' surface. Correlations tend to improve with faster spreading rates; Venus' correlations rank

Jurdy, Donna M.

329

Heavy metal frost on Venus  

NASA Astrophysics Data System (ADS)

Chemical equilibrium calculations of volatile metal geochemistry on Venus show that high dielectric constant compounds of lead and bismuth such as PbS (galena), Bi 2S 3 (bismuthite) or Pb-Bi sulfosalts condense in the venusian highlands and may be responsible for the low radar emissivities observed by Magellan and Pioneer Venus. Our calculations also show that elemental tellurium is unstable on Venus' surface and will not condense below 46.6 km. This is over 30 km higher than Maxwell Montes, the highest point on Venus' surface. Elemental analyses of Venus' highlands surface by laser induced breakdown spectroscopy (LIBS) and/or X-ray fluorescence (XRF) can verify the identity of the heavy metal frost on Venus. The Pb-Pb age of Venus could be determined by mass spectrometric measurements of the Pb 207/Pb 204 and Pb 206/Pb 204 isotopic ratios in Pb-bearing frosts. All of these measurements are technologically feasible now.

Schaefer, Laura; Fegley, Bruce

2004-03-01

330

Mars mission concepts and opportunities  

NASA Technical Reports Server (NTRS)

Trajectory and mission requirement data are presented for Earth Mars opposition and conjunction class roundtrip flyby and stopover mission opportunities available between 1997 and 2045. The opposition class flyby mission uses direct transfer trajectories to and on return from Mars. The opposition class stopover mission employs the gravitational field of Venus to accelerate the space vehicle on either the outbound or inbound leg in order to reduce the propulsion requirement associated with the opposition class mission. The conjunction class mission minimizes propulsion requirements by optimizing the stopover time at Mars.

Young, Archie C.

1986-01-01

331

MARSIS, a radar for the study of the Martian subsurface in the Mars Express mission  

NASA Astrophysics Data System (ADS)

MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) is a subsurface sounding radar on board the European Space Agency mission Mars Express. The MARSIS primary scientific objective is to map the distribution of water, both liquid and solid, in the upper portions of the crust of Mars. Detection of such reservoirs of water will address key issues in the hydrologic, geologic, climatic and possible biologic evolution of Mars. Three secondary scientific objectives are subsurface geologic probing, surface characterization and ionosphere sounding. In this paper an inversion approach of MARSIS data is presented. The data inversion (estimation of the materials composing the surface and the subsurface by the estimation of the dielectric constants) is based on the analysis of the data available from the MARSIS observations, that is the surface to subsurface power ratio and the relative time delay. The data inversion has been performed with a multi frequency analysis in order to estimate the frequency dependent parameters affecting the behavior of the radar echoes. The data inversion needs a hypothesis on the surface composition to give an geological interpretation of the subsurface dielectric properties. To improve the validity of the obtained solutions it is necessary to introduce few constraints relevant to the geological history of the surface, to the local temperature and the thermal condition of the observed zones and the results of other instruments of Mars Express and of other missions to Mars. This approach, that is addressed to evidence the radar capabilities, is a first step for the interpretation of the results by the geologist.

Picardi, G.; Biccari, D.; Cartacci, M.; Cicchetti, A.; Fuga, O.; Giuppi, S.; Masdea, A.; Noschese, R.; Seu, R.; Federico, C.; Frigeri, A.; Melacci, P. T.; Orosei, R.; Bombaci, O.; Calabrese, D.; Zampolini, E.; Marinangeli, L.; Pettinelli, E.; Flamini, E.; Vannaroni, G.

332

Final table of Kepler Objects of Interest that are transiting at about the same time as Venus  

E-print Network

Final table of Kepler Objects of Interest that are transiting at about the same time as Venus://spacemath.gsfc.nasa.gov/SED12/KeplerVenus.xls For additional Kepler-related math resources and problems, go to http candidates available at the Kepler mission page http://kepler

333

Morphology and dynamics of the upper cloud layer of Venus.  

PubMed

Venus is completely covered by a thick cloud layer, of which the upper part is composed of sulphuric acid and some unknown aerosols. The cloud tops are in fast retrograde rotation (super-rotation), but the factors responsible for this super-rotation are unknown. Here we report observations of Venus with the Venus Monitoring Camera on board the Venus Express spacecraft. We investigate both global and small-scale properties of the clouds, their temporal and latitudinal variations, and derive wind velocities. The southern polar region is highly variable and can change dramatically on timescales as short as one day, perhaps arising from the injection of SO2 into the mesosphere. The convective cells in the vicinity of the subsolar point are much smaller than previously inferred, which we interpret as indicating that they are confined to the upper cloud layer, contrary to previous conclusions, but consistent with more recent study. PMID:18046394

Markiewicz, W J; Titov, D V; Limaye, S S; Keller, H U; Ignatiev, N; Jaumann, R; Thomas, N; Michalik, H; Moissl, R; Russo, P

2007-11-29

334

Venus - Lessons for earth  

NASA Technical Reports Server (NTRS)

The old idea that Venus might possess surface conditions to those of an overcast earth has been thoroughly refuted by space-age measurements. Instead, the two planets may have started out similar, but diverged because of the greater solar flux at Venus. This cannot be proved, but is consistent with everything known. A runaway greenhouse effect could have evaporated an 'ocean'. The hydrogen would escape, and most of the oxygen would be incorporated into the crust. Without liquid water, CO2 would remain in the atmosphere. Chlorine atoms would catalyze the recombination of any free oxygen back to CO2. The same theories apply to the future of the earth, and to the explanation of the polar ozone holes; the analogies are striking. There is no likelihood that the earth will actually come to resemble Venus, but Venus serves both as a warning that major environmental effects can flow from seemingly small causes, and as a testbed for the predictive models of the earth.

Hunten, D. M.

1992-01-01

335

Plains Tectonics on Venus  

NASA Technical Reports Server (NTRS)

Tectonic deformation in the plains of Venus is pervasive, with virtually every area of the planet showing evidence for faulting or fracturing. This deformation can be classified into three general categories, defined by the intensity and areal extent of the surface deformation: distributed deformation, concentrated deformation, and local fracture patterns.

Banerdt, W. B.; McGill, G. E.; Zuber, M. T.

1996-01-01

336

Phases of Venus  

NSDL National Science Digital Library

This simple animation illustrates how we observe the phases of Venus. As the planet revolves around the Sun, there are times of the year when it is observed completely lit up by the star and times when we only get it's dark side. The user can change the inclination of the observing plane, allowing a better understanding of the process.

Fowler, Michael; Timmins, Michael

2007-12-28

337

Mercury and Venus  

NSDL National Science Digital Library

Students explore Mercury and Venus, the first and second planets nearest the Sun. They learn about the planets' characteristics, including their differences from Earth. Students also learn how engineers are involved in the study of planets by designing equipment and spacecraft to go where it is too dangerous for humans.

Integrated Teaching And Learning Program

338

The Prodigal Sister - Venus  

NASA Astrophysics Data System (ADS)

If you think Venus is a hellhole now, be thankful you weren't there 500 million years ago. Those were the days, many planetary scientists believe, of apocalypse on our sister world: Volcanoes wracked the land, while greenhouse gases broiled the air. Is this the Earth's fate, too?

Barlow, Nadine G.

1995-09-01

339

History of Venus Observations  

NASA Astrophysics Data System (ADS)

Our image of Venus is that of a hellish, hot planet, permanently covered by fast-moving clouds, with its surface inaccessible to any Earth-based observer. But the perception and knowledge of our sister planet has been very different in the recent and more remote past.

Bonnet, Roger-Maurice; Grinspoon, David; Rossi, Angelo Pio

340

Development of a Pioneer Venus expert scheduling system  

NASA Technical Reports Server (NTRS)

An Expert System has been developed to perform a substantial part of the science planning for NASA's Pioneer Venus spacecraft. The program performs functions that have been traditionally performed by operations personnel ('orbit builders'), and attempts to directly duplicate their methods and techniques. Output from the program is formatted to correspond to the previously hand-generated worksheets, in order to ease program validation as well as operator acceptance. Pioneer Venus mission operations are described in detail followed by a description of the expert system implementation.

Rosenthal, Donald A.; Jackson, Robert W.

1988-01-01

341

An analysis of AMTEC, multi-cell ground-demo for the Pluto/Express mission  

SciTech Connect

Results of recent tests of an 8-cell, AMTEC ground-demo are analyzed and the performance of individual cells compared. The ground-demo produced a peak electric power of 27 W{sub e} at an output voltage of 16 V, when tested at hot and cold side temperatures of 1123 K and 553 K. The electric power output and terminal voltage of the individual cells, however, differed by as much as 25%, from 2.94 to 3.76 W{sub e}, and 1.73 to 2.21 V, respectively. These variations were attributed to differences in: (a) contact resistance between electrode / BASE / current collector; (b) current (or electrons) leakage between anode and cathode electrodes through the metal-ceramic braze joint between BASE tubes and support plate; and (c) the charge-exchange polarization losses. Model's predictions compared very well with measured voltage and electric power output of individual cells and of the ground-demo. At the operating conditions for the Pluto/Express spacecraft (T{sub hot} {approximately} 1200 K, T{sub cd} {approximately} 573 K), the best performing ground-demo cell would have delivered 5 W{sub e} at an output voltage of 3 V. These values, however, are still significantly lower than those needed to meet the Pluto/Express mission power requirements (8.2 W{sub e} at 3.5 V, per cell).

Tournier, J.M.; El-Genk, M.S.

1998-07-01

342

Signs of hypothetical fauna of Venus  

NASA Astrophysics Data System (ADS)

On March 1 and 5, 1982, experiments in television photography instrumented by the landers VENERA-13 and -14, yielded 37 panoramas (or their fragments) of the Venus surface at the landing site. Over the past 31 years, no similar missions have been sent to Venus. Using a modern technique the VENERA panoramas were re-examined. A new analysis of Venusian surface panoramas' details has been made. A few relatively large objects of hypothetical fauna of Venus were found with size ranging from a decimeter to half meter and with unusual morphology. Treated once again VENERA-14 panoramic images revealed `amisada' object about 15 cm in size possessing apparent terramorphic features. The amisada's body stands out with its lizard-like shape against the stone plates close by. The amisada can be included into the list of the most significant findings of the hypothetical Venusian fauna. The amisada's body show slow movements, which is another evidence of the Venusian fauna's very slow style of activity, which appears to be associated with its energy constraints or, and that is more likely, with the properties of its internal medium. The terramorphic features of the Venusian fauna, if they are confirmed, may point out at outstandingly important and yet undiscovered general laws of the animated nature on different planets.

Ksanfomality, Leonid V.

2014-04-01

343

Venus transit 2004: An international education program  

NASA Astrophysics Data System (ADS)

December 6th, 1882 was the last transit of the planet Venus across the disk of the sun. It was heralded as an event of immense interest and importance to the astronomical community as well as the public at large. There have been only six such occurrences since Galileo first trained his telescope on the heavens in 1609 and on Venus in 1610 where he concluded that Venus had phases like the moon and appeared to get larger and smaller over time. Many historians consider this the final nail in the coffin of the Ptolemaic, Earth centered solar system. In addition, each transit has provided unique opportunities for discovery such as measurement and refinement of the detection of Venus' atmosphere, calculation of longitudes, and calculation of the astronomical unit (and therefore the scale of the solar system). The NASA Sun Earth Connection Education Forum (SECEF) in partnership with the Solar System Exploration (SSE) and Structure and Evolution of the Universe (SEU) Forums, AAS Division for Planetary Sciences (DPS), and a number of NASA space missions and science centers are developing plans for an international education program centered around the June 8, 2004 Venus transit. The transit will be visible in its entirety from Europe and partially from the East Coast of the United States. We will use a series of robotic observatories including the Telescopes In Education (TIE) network distributed in latitude to provide observations of the transit that will allow middle and high school students to calculate the A.U. through application of parallax. We will compare the terrestrial planets in terms of the evolutionary processes that define their magnetic fields, their widely differing interactions with the solar wind, and the implications this has for life on Earth and elsewhere in the universe. We will also use Venus transit as a probe of episodes in American history (e.g. 1769: revolutionary era, 1882: post civil war era, and 2004: modern era). Museums and planetariums in the US and Europe will offer real time viewing of the transit and conduct educational programs through professional development seminars, public lectures, and planetarium shows. We are interested in soliciting advice from the research community to coordinate professional research interests with this program.

Mayo, L.; Odenwald, S.

2003-04-01

344

The Stability of Climate on Venus  

NASA Astrophysics Data System (ADS)

The present climate of Venus is controlled by an efficient carbon dioxide-water greenhouse effect and by the radiative properties of its global cloud cover. Both the greenhouse effect and clouds are sensitive to perturbations in the abundance of atmospheric water vapor and sulfur gases. Planetary-scale processes involving the transport and sequestering of volatiles affect these abundances over time, driving changes in climate. I have developed a numerical model of the climate evolution of Venus. Atmospheric temperatures are calculated using a one-dimensional two-stream radiative-convective model that treats the transport of thermal infrared radiation in the atmosphere and clouds. These radiative transfer calculations are the first to utilize high temperature, high resolution spectral databases for the calculation of infrared absorption and scattering in Venus' atmosphere. I use a chemical/microphysical model of Venus' clouds to calculate changes in cloud structure that result from variations in atmospheric water and sulfur dioxide. Atmospheric abundances of water, sulfur dioxide, and carbon dioxide change under the influence of the exospheric escape of hydrogen, outgassing from the interior, and heterogeneous reactions with surface minerals. Radar images from the Magellan mission show that the surface of Venus has been geologically active on a global scale, yet its sparse impact cratering record is almost pristine. This geological record on Venus is consistent with an epoch of rapid plains emplacement 600-1100 million years ago. My models show that intense volcanic outgassing of sulfur dioxide and water during this time would have resulted in the formation of massive sulfuric acid/water clouds and the cooling of the surface for about 300 million years. The thick clouds would have subsequently given way to high, thin water clouds as atmospheric sulfur dioxide was lost to reactions with the surface. Surface temperatures approaching 900 K would have been reached about 500 million years after the onset of volcanic resurfacing. Evolution to current conditions would have proceeded due to loss of atmospheric water at the top of the atmosphere and the reappearance of sulfuric acid/water clouds. Current temperatures are maintained within a narrow range by the competing effects of cloud albedo and greenhouse warming. The present climate of Venus would be unstable if atmospheric carbon dioxide can react with surface minerals. Venus may be undergoing rapid climate change due to carbon dioxide reactions with the surface, but it is more likely stable because most of the surface is devoid of carbonate. Abundant atmospheric sulfur dioxide is maintained by the action of volcanic sources within the last 20 million years. Even if atmospheric carbon dioxide does not today react with the surface, volcanic outgassing sufficient to increase sulfur dioxide abundance 3-10 times the present value would cool the surface enough to engage carbon dioxide-mineral reactions. This would precipitate a climate runaway to a cooler, lower pressure state at 400 K and 43 bars within 60 million years. This may be the eventual fate of Venus anyway, as sulfur dioxide equilibrates with surface minerals in the absence of outgassing. The climate may oscillate between warm, cloudy conditions and a cooler, cloud-free regime before it runs away to the cooler stable state.

Bullock, Mark Alan

345

The Venus nitric oxide night airglow: Model calculations based on the Venus thermospheric general circulation model  

SciTech Connect

Pioneer Venus (PV) orbiter ultraviolet spectrometer (OUVS) images of the nightside airglow in the (0, 1) {delta} band of nitric oxide showed a maximum whose average location was at 0200 local solar time just south of the equator. The average airglow brightness calculated over a portion of the nightside for 35 early orbits during the Pioneer Venus mission was a factor of 4 lower than this maximum. Recent recalibration of the PV OUVS instrument and reanalysis of the data yield new values for this statistical maximum (1.9 {plus minus} 0.6 kR) and the nightside average (400-460 {plus minus} 120 R) nightglow. This emission is produced by radiative recombination of N and O atoms transported from their source on the dayside to the nightside by the Venus thermospheric circulation. The Venus Thermospheric General Circulation Model (VTGCM) has been extended to incorporate odd nitrogen chemistry in order to examine the dynamical and chemical processes required to give rise to this emission. Its predictions of dayside N atom densities are also compared with empirical models based on Pioneer Venus measurements. Calculations are presented corresponding to OUVS data taken during solar maximum. The average production of nitrogen atoms on the dayside is about 9.0 {times} 10{sup 9} atoms cm{sup {minus}2} s{sup {minus}1}. Approximately 30% of this dayside source is required for transport to the nightside to yield the observed dark-disk nightglow features. The statistical location and intensity of the bright spot are well reproduced, as well as the altitude of the airglow layer. The importance of the large-scale transport and eddy diffusion on the global N({sup 4}S) distribution is also evaluated.

Bougher, S.W. (Univ. of Arizona, Tucson (United States)); Gerard, J.C. (Univ. de Liege, Ougree-Liege (Belgium)); Stewart, A.I.F.; Fesen, C.G. (Univ. of Colorado, Boulder (United States))

1990-05-01

346

Planetary Ion fluxes in the Venus Wake  

NASA Astrophysics Data System (ADS)

Measurements conducted with the ASPERA-4 instrument and the magnetometer of the Venus Express spacecraft show that the kinetic pressure of planetary O+ ions measured in the Venus wake can be significantly larger than the local magnetic pressure and, as a result, those ions are not being driven by magnetic forces but by the kinetic energy of the solar wind. Beams of planetary O+ ions with those properties have been detected in several orbits of the Venus Express through the wake as the spacecraft traverses by the noon-midnight plane along its near polar trajectory. Peak values of the kinetic pressure of the O+ ions are sufficient to produce superalfvenic flow conditions. It is suggested that such O+ ion beams are eroded from the magnetic polar regions of the Venus ionosphere where the solar wind carves out plasma channels that extend downstream from those regions. Issues related to the acceleration of planetary ions as the solar wind interacts with the Venus ionosphere are related to the energetics of the plasma. When the kinetic pressure of the particle populations involved in the interaction is smaller than the local magnetic pressure the latter will be dominant and hence the particles will follow trajectories dictated by the magnetic field. Such conditions should occur by the magnetic barrier that is formed over the dayside Venus ionosphere where the interplanetary magnetic fluxes pile up thus leading to enhanced values of the magnetic field intensity. Different conditions are expected when the kinetic pressure of the plasma is larger than the local magnetic pressure. In this case the latter will be convected by the particle fluxes as it occurs in the superalfvenic solar wind. Plasma conditions applicable to the planetary ions that stream in the Venus wake and that have been removed from the Venus ionosphere can be examined using the plasma and magnetic field data obtained from the Venus Express (VEX) measurements. A suitable example is provided by the plasma and the magnetic pressure profiles that were obtained from the data in orbit 123 on August 22-2006 and that are reproduced in Figure 1. The profiles in the lower panel show that the peak kinetic pressure of the O+ ions becomes substantially larger than the local magnetic pressure (between 01:48 UT and 02:00 UT) and also that within a wide region of the wake (between ~02:00 UT and ~02:25 UT) the kinetic pressure becomes smaller than the magnetic pressure. Values of the ratio of the kinetic to the magnetic pressure that are obtained from both profiles are given in the upper panel to show that in the region where the peak kinetic pressure of the O+ ions are measured that ratio is substantially larger than one thus indicating that the local ions move under superalfvenic conditions. The opposite is true in other regions of the wake where values of that ratio are smaller than one and thus the plasma is subalfvenic.

Pérez-de-Tejada, H.; Lundin, R.; Durand-Manterola, H.; Barabash, S.; Zhang, T. L.; Sauvaud, J. A.; Reyes-Ruiz, M.

2012-09-01

347

Evolution of large shield volcanoes on Venus Robert R. Herrick1  

E-print Network

Evolution of large shield volcanoes on Venus Robert R. Herrick1 Lunar and Planetary Institute history, topographic expression, and gravity signature of 29 large Venusian shield volcanoes with similar] There are numerous large shield volcanoes on Venus whose flows cover an area more than 500 km in diameter. Venusian

Herrick, Robert R.

348

Mariner Venus/Mercury 1973 solar radiation force and torques  

NASA Technical Reports Server (NTRS)

The need for an improvement of the mathematical model of the solar radiation force and torques for the Mariner Venus/Mercury spacecraft arises from the fact that this spacecraft will be steering toward the inner planets (Venus and Mercury), where, due to the proximity of the Sun, the effect of the solar radiation pressure is much larger than it was on the antecedent Mariner spacecraft, steering in the opposite direction. Therefore, although the model yielded excellent results in the case of the Mariner 9 Mars Orbiter, additional effects of negligible magnitudes for the previous missions of the Mariner spacecraft should now be included in the model. This study examines all such effects and incorporates them into the already existing model, as well as using the improved model for calculation of the solar radiation force and torques acting on the Mariner Venus/Mercury spacecraft.

Georgevic, R. M.

1974-01-01

349

The Oldest Rocks on Venus: the Importance of Tessera Terrain for Venus Exploration (Invited)  

NASA Astrophysics Data System (ADS)

Venus tessera terrain is a major, yet unsampled, tectonic unit on Venus characterized by multiple sets of intersecting compressional and extensional structures. Tessera terrain is temporally, morphologically, and perhaps also compositionally unique on Venus. Stratigraphic studies of tessera terrain establish that they consistently appear locally, and perhaps even globally, as the oldest material on a planet with an average surface crater retention age of ~500 million years. Thus, the tesserae provide the best chance to access rocks that are derived from the first 80% of the history of the planet, an era obscured by the emplacement of voluminous (presumably basaltic) plains. Analysis of Magellan imagery, topography and gravity data show that tessera terrain is characterized by higher strain rates and a thinner lithosphere than at present and thus records an extinct geodynamical era on Venus. Yet very little is understood about the number, morphology and stratigraphy of geologic units within tessera terrain, nor mass wasting processes operating on the surface. Improved radar imagery at the 5-25 m scale, and optical images below the clouds (<1 km) and at the surface will help assess the geologic processes operating in the pre-plains era. Such data products are also essential for judicious landing site selection, since tessera meter-scale roughness will limit landing site safety and sample access. Improved topography data are required to quantify the deformation recorded by ubiquitous tesserae structures that are finer than Magellan resolution. Tessera terrain is unsampled, but recent analyses of radiance from the surface at 1 micron using instruments on Venus Express and Galileo are consistent with felsic compositions for tesserae. Silicic compositions likely require both water and a plate recycling mechanism (e.g., subduction) for formation. The high D/H ratio of the Venus atmosphere is consistent with the loss of a significant inventory of water over the history of the planet. Felsic tesserae may herald from an ancient water-rich Venus, perhaps with an ocean and potentially habitable. Further assessment of tessera composition requires more comprehensive 1 micron radiance measurements from orbital, near-surface and surface platforms and in-situ measurement of mineralogy and chemistry. Radiance data need tobe supported by improved laboratory measurements of the emissivity of relevant rocks and weathering products in a Venus environment. Venus weathering experiments also support the interpretation of in situ analyses at the surface of Venus and may constrain sampling strategy. If confirmed, felsic tesserae would be critical targets for sample return due to their potential to include ancient rocks and/or minerals formed in the presence of water (e.g., zircons). In sum, the tesserae are the oldest materials exposed on the Venus surface and are the best candidates for containing ancient rocks and for comprising evolved compositions. They uniquely and critically constrain the geochemistry, geodynamics and history of water on Venus through time.

Gilmore, M. S.; Glaze, L. S.

2013-12-01

350

Tectonics and composition of Venus  

NASA Technical Reports Server (NTRS)

The uncompressed density of Venus is a few percent less than the Earth. The high upper mantle temperature of Venus deepens the eclogite stability field and inserts a partial melt field. A thick basaltic crust is therefore likely. The anomalous density of Venus relative to the progression from Mercury to Mars may therefore have a tectonic rather than a cosmo-chemical explanation. There may be no need to invoke differences in composition or oxidization state.

Anderson, D. L.

1980-01-01

351

The oxygen nightglow emissions of Venus: vertical distribution and role of collisional quenching  

NASA Astrophysics Data System (ADS)

Three-body recombination of atomic oxygen produces O2 molecules excited in different electronic states such as a 1?g, b 1 ? g+, A 3 ? u+, c 1 ? uand A' 3?u, each with a specific quantum efficiency. When they radiate, optical transitions are observed in a wide range of wavelengths extending from the ultraviolet to the near infrared. In planetary atmospheres, spontaneous radiative deexcitation compete with collisional quenching with ambient molecules and atoms. As a consequence, the corresponding airglow emission profiles may significantly differ from each other in brightness and altitude of the emitting layer. We model the volume emission rates and limb profiles of the O2 Atmospheric Infrared (a 1?-X 3 ? ), Herzberg I (A 3 ?-X 3 ? ), Herzberg II (c 1 ? -X 3 ? ), Chamberlain (A' 3?-a 1?) bands expected on the Venus night side. The quenching rates are taken from laboratory and observational planetary data and we apply two different methods to determine the oxygen and CO2 density profiles. One is based on recent analysis of data collected by instruments on board the Venus Express mission. The second one uses a one-dimensional chemical-diffusive model where the free parameters are the strength of turbulent transport and the downward flux of O atoms. Both approaches indicate that the calculated intensities of each transition range over several orders of magnitude and that differences are expected in the altitude of the maximum emission. These predictions will be compared with VIRTIS/Venus Express limb observations, which make it possible to derive the vertical distribution of the O2 emissions in the visible and infrared. These measurements suggest that no difference is observed between the altitude of the peak of the IR Atmospheric and Herzberg II bands. Conclusions will be drawn about the validity of the current set of quenching coefficients used in the model.

Gérard, J.-C.; Soret, L.; Migliorini, A.; Piccioni, G.; Drossart, P.

2012-04-01

352

Aerobraking at Venus: A science and technology enabler  

NASA Astrophysics Data System (ADS)

Venus remains one of the great unexplored planets in our solar system, with key questions remaining on the evolution of its atmosphere and climate, its volatile cycles, and the thermal and magmatic evolution of its surface. One potential approach toward answering these questions is to fly a reconnaissance mission that uses a multi-mode radar in a near-circular, low-altitude orbit of ?400 km and 60-70° inclination. This type of mission profile results in a total mission delta-V of ?4.4 km/s. Aerobraking could provide a significant portion, potentially up to half, of this energy transfer, thereby permitting more mass to be allocated to the spacecraft and science payload or facilitating the use of smaller, cheaper launch vehicles.Aerobraking at Venus also provides additional science benefits through the measurement of upper atmospheric density (recovered from accelerometer data) and temperature values, especially near the terminator where temperature changes are abrupt and constant pressure levels drop dramatically in altitude from day to night.Scientifically rich, Venus is also an ideal location for implementing aerobraking techniques. Its thick lower atmosphere and slow planet rotation result in relatively more predictable atmospheric densities than Mars. The upper atmosphere (aerobraking altitudes) of Venus has a density variation of 8% compared to Mars' 30% variability. In general, most aerobraking missions try to minimize the duration of the aerobraking phase to keep costs down. These short phases have limited margin to account for contingencies. It is the stable and predictive nature of Venus' atmosphere that provides safer aerobraking opportunities.The nature of aerobraking at Venus provides ideal opportunities to demonstrate aerobraking enhancements and techniques yet to be used at Mars, such as flying a temperature corridor (versus a heat-rate corridor) and using a thermal-response surface algorithm and autonomous aerobraking, shifting many daily ground activities to onboard the spacecraft. A defined aerobraking temperature corridor, based on spacecraft component maximum temperatures, can be employed on a spacecraft specifically designed for aerobraking, and will predict subsequent aerobraking orbits and prescribe apoapsis propulsive maneuvers to maintain the spacecraft within its specified temperature limits. A spacecraft specifically designed for aerobraking in the Venus environment can provide a cost-effective platform for achieving these expanded science and technology goals.This paper discusses the scientific merits of a low-altitude, near-circular orbit at Venus, highlights the differences in aerobraking at Venus versus Mars, and presents design data using a flight system specifically designed for an aerobraking mission at Venus. Using aerobraking to achieve a low altitude orbit at Venus may pave the way for various technology demonstrations, such as autonomous aerobraking techniques and/or new science measurements like a multi-mode, synthetic aperture radar capable of altimetry and radiometry with performance that is significantly more capable than Magellan.

Hibbard, Kenneth; Glaze, Lori; Prince, Jill

2012-04-01

353

Mariner Venus Mercury, 1973. [close flyby investigation of mercury after Venus-flyby, and observation of Kohoutek comet  

NASA Technical Reports Server (NTRS)

The Mariner Venus Mercury 1973 unmanned mission is discussed, which is designed to conduct a close flyby investigation of the planet Mercury after using the gravity-turn technique in a Venus flyby. Its scientific purposes include photographic, thermal, and spectral surveys, radio occulation, and charged particle/magnetic measurements at each planet, observation of solar-system fields and particles from 1.0 a.u. down to 0.4 a.u., and comparative planetary surveys between the Earth, the Moon, Venus, and Mercury. It is also intended to observe Kohoutek's comet. The trajectory permits establishment of a solar orbit in phase with Mercury's, permitting repeated encounters with that planet.

Wilson, J. H.

1973-01-01

354

On the Frequency of Potential Venus Analogs from Kepler Data  

E-print Network

The field of exoplanetary science has seen a dramatic improvement in sensitivity to terrestrial planets over recent years. Such discoveries have been a key feature of results from the {\\it Kepler} mission which utilizes the transit method to determine the size of the planet. These discoveries have resulted in a corresponding interest in the topic of the Habitable Zone (HZ) and the search for potential Earth analogs. Within the Solar System, there is a clear dichotomy between Venus and Earth in terms of atmospheric evolution, likely the result of the large difference ($\\sim$ factor of two) in incident flux from the Sun. Since Venus is 95\\% of the Earth's radius in size, it is impossible to distinguish between these two planets based only on size. In this paper we discuss planetary insolation in the context of atmospheric erosion and runaway greenhouse limits for planets similar to Venus. We define a ``Venus Zone'' (VZ) in which the planet is more likely to be a Venus analog rather than an Earth analog. We iden...

Kane, Stephen R; Domagal-Goldman, Shawn D

2014-01-01

355

Plasma waves and electromagnetic radiation at Venus and Mars  

NASA Astrophysics Data System (ADS)

Plasma waves play a significant role in the interaction of the solar wind with the ionospheres of the unmagnetized planets, Venus and Mars. Upstream of the planet plasma oscillations are generated by electrons energized and reflected at the bow shock. The spatial extent of the plasma oscillations is indicative of the amount of energy gained at the shock. Comparison with the Earth's bow shock suggests that the electron energization is controlled by shock curvature. At the dayside ionopause of the unmagnetized planets low frequency waves are observed. These waves were originally identified as whistler-mode waves at Venus, but were subsequently identified as lower hybrid or ion acoustic waves. The waves appear to have an important role in mediating coupling between the solar wind and planetary ionosphere, in terms of either energy or momentum transfer. Plasma waves are also observed in the nightside ionosphere of the planets, and whistler-mode waves have been observed at low altitudes at Venus. These waves have been identified with planetary lightning, although recent observations by the Cassini spacecraft during its Venus flybys suggest that lightning at Venus must have different characteristics than terrestrial lightning. The waves are also subject to collisional Joule dissipation, and considerations of the predicted heating may help constrain the possible source mechanisms for the waves. Given the rich plasma wave environment at the unmagnetized planets, and the importance of plasma waves in the dynamics of the plasma, future aeronomy missions should include some form of wave instrumentation.

Strangeway, R. J.

2004-01-01

356

Magmatic diversity on Venus: Constraints from terrestrial analog crystallization experiments  

NASA Astrophysics Data System (ADS)

Igneous diversity is common on terrestrial planets and has been experimentally investigated for the Earth and Mars, but only suggested for Venus. Since Venus and Earth are sister planets and have similar bulk chemistry, experiments on terrestrial basalts can place constraints on the formation of the Venera and Vega basalts. Furthermore, experimental results can suggest the types of magmas that should be present on Venus if processes of differentiation similar to those taking place within the Earth are occurring on Venus, as suggested by the Venera and Vega analyses. The interpretation of the Venera 13 analysis as an alkali basalt suggests deep partial melting of a carbonated source region; while the identification of Venera 14 and Vega 2 as tholeiites suggest relatively shallow melting of a hydrous lherzolitic or peridotite source region. The residual liquids produced by differentiation of a Venus tholeiite, based on experiments on analog compositions, range from rhyolites to phonolites, depending on pressure of crystallization and bulk water content. Results from these crystallization experiments on tholeiitic terrestrial compositions can constrain the type and quality of data needed from future missions to determine the petrologic history of surface igneous rocks.

Filiberto, Justin

2014-03-01

357

NASA's New Horizons Mission to Pluto and Beyond  

E-print Network

Radio NASA's New Horizons Mission to Pluto and Beyond Dr. Henry Throop!! University of Pretoria,Venus, Earth, Mars #12;Jupiter Saturn Uranus Jupiter Saturn Uranus Neptune Pluto Sun Our Solar System Mercury,Venus, Earth, Mars #12;Kuiper Belt Jupiter Saturn Uranus Jupiter Saturn Uranus Neptune Pluto Sun Our Solar

Throop, Henry

358

Magellan unveils Venus  

SciTech Connect

Images obtained after an eight month Venusian year, during which the radar mapper Magellan surveyed nearly all of Venus, are described. It is observed that, instead of rigid plates moving as on earth, Venus appears covered with plumes of hot upwellings that dome out over hundreds or thousands of kilometers, feeding a continuous volcanic resurfacing of the planet. Although the Venusian surface is changing relatively rapidly by vulcanism and tectonic processes, the Magellan images make it clear that erosion is very slow. It is seen that some of the lava flows are highly fluid, etching narrow channels for hundreds of kilometers through the crust. Magellan also revealed some peculiarly Venusian formations, the tesserated areas where ridges and faults crosshatch the region into large blocks.

Lerner, E.J.

1991-07-01

359

A Unique Approach for Studying Venus’s Atmosphere: Technology Development for the Venus Atmospheric Maneuverable Platform (VAMP)  

NASA Astrophysics Data System (ADS)

We are investigating a novel, reduced-risk approach to long-duration upper atmosphere exploration of Venus. The Venus Atmospheric Maneuverable Platform (VAMP) concept is a semi-buoyant plane with a science payload that can perform in situ measurements of Venus’s atmosphere. VAMP is also capable of revisiting scientifically interesting locations. Designed with a low ballistic coefficient, VAMP deploys in space and enters Venus’s atmosphere without an aeroshell. Once in the atmosphere, it can engage in a variety of science campaigns while varying its altitude between 50 and 68 km as it circumnavigates Venus. During daytime, VAMP will be able to make continuous science measurements at a range of latitudes, longitudes, and altitudes, while at night the vehicle will descend to a fully-buoyant, lower-power state, capable of performing modest science measurements at the float altitude. Near the end of VAMP’s mission life, the vehicle may attempt an end-of-life trajectory into higher latitudes or descend to lower altitudes. This presentation focuses on the technology roadmap that will allow the vehicle to accomplish these science measurements. The roadmap is driven by high priority science measurements and the technology needed to implement VAMP’s main mission phases: deployment, entry into Venus’s atmosphere, and the transition to flight and science flight performance. The roadmap includes materials tests, planform aerodynamic characterization, various subscale and full-scale packaging and deployment tests, and a full-scale suborbital flight and is being produced with extensive science community interaction to define the science measurements that would be uniquely possible with this new science platform.

Samuele, Rocco; Lee, Greg; Sokol, Daniel; Polidan, Ron; Griffin, Kristen; Bolisay, Linden; Michi, Yuki; Barnes, Nathan

2014-11-01

360

Three ages of Venus  

NASA Technical Reports Server (NTRS)

A central question for any planet is the age of its surface. Based on comparative planetological arguments, Venus should be as young and active as the Earth (Wood and Francis). The detection of probable impact craters in the Venera radar images provides a tool for estimating the age of the surface of Venus. Assuming somewhat different crater production rates, Bazilevskiy et al. derived an age of 1 + or - 0.5 billion years, and Schaber et al. and Wood and Francis estimated an age of 200 to 400 million years. The known impact craters are not randomly distributed, however, thus some area must be older and others younger than this average age. Ages were derived for major geologic units on Venus using the Soviet catalog of impact craters (Bazilevskiy et al.), and the most accessible geologic unit map (Bazilevskiy). The crater counts are presented for (diameters greater than 20 km), areas, and crater densities for the 7 terrain units and coronae. The procedure for examining the distribution of craters is superior to the purely statistical approaches of Bazilevskiy et al. and Plaut and Arvidson because the bins are larger (average size 16 x 10(6) sq km) and geologically significant. Crater densities define three distinct groups: relatively heavily cratered (Lakshmi, mountain belts), moderately cratered (smooth and rolling plains, ridge belts, and tesserae), and essentially uncratered (coronae and domed uplands). Following Schaber et al., Grieve's terrestrial cratering rate of 5.4 + or - 2.7 craters greater than 20 km/10(9) yrs/10(6) sq km was used to calculate ages for the geologic units on Venus. To improve statistics, the data was aggregated into the three crater density groups, deriving the ages. For convenience, the three similar age groups are given informal time stratigraphic unit names, from youngest to oldest: Ulfrunian, Sednaian, Lakshmian.

Wood, Charles A.; Coombs, Cassandra R.

1989-01-01

361

Ice On Venus  

NSDL National Science Digital Library

This resource is part of the Science Education Gateway (SEGway) project, funded by NASA, which is a national consortium of scientists, museums, and educators working together to bring the latest science to students, teachers, and the general public. Is there ice on Venus? If so, what kind of ice is it? In this activity, students find the answers to these questions by using internet resources. The teacher's page contains teaching strategies, vocabulary, homework ideas, and assessment possibilities.

362

Mars Express - ESA sets ambitious goals for the first European mission to Mars  

NASA Astrophysics Data System (ADS)

Mars has always fascinated human beings. No other planet has been visited so many times by spacecraft. And still, it has not been easy to unveil its secrets. Martian mysteries seem to have increased in quantity and complexity with every mission. When the first spacecraft were sent - the Mariner series in 1960s - the public was expecting an Earth ‘twin’, a green, inhabited planet full of oceans. Mariner shattered this dream by showing a barren surface. This was followed by the Viking probes which searched for life unsuccessfully in 1976. Mars appeared dry, cold and uninhabited: the Earth’s opposite. Now, two decades later, modern spacecraft have changed that view, but they have also returned more questions. Current data show that Mars was probably much warmer in the past. Scientists now think that Mars had oceans, so it could have been a suitable place for life in the past. “We do not know what happened to the planet in the past. Which process turned Mars into the dry, cold world we see today?” says Agustin Chicarro, ESA’s Mars Express project scientist. “With Mars Express, we will find out. Above all, we aim to obtain a complete global view of the planet - its history, its geology, how it has evolved. Real planetology!” Mars Express will reach the Red Planet by the end of December 2003, after a trip of just over six months. Six days before injection into its final orbit, Mars Express will eject the lander, Beagle 2, named after the ship on which Charles Darwin found inspiration to formulate his theory of evolution. The Mars Express orbiter will observe the planet and its atmosphere from a near-polar orbit, and will remain in operation for at least a whole Martian year (687 Earth days). Beagle 2 will land in an equatorial region that was probably flooded in the past, and where traces of life may have been preserved. The Mars Express orbiter carries seven advanced experiments, in addition to the Beagle 2 lander. The orbiter’s instruments have been built by group of scientific institutes from all over Europe, plus Russia, the United States, Japan and China. These instruments are a subsurface sounding radar; a high-resolution camera, several surface and atmospheric spectrometers, a plasma analyzer and a radio science experiment. The high-resolution camera will image the entire planet in full colour, in 3D, at a resolution of up to 2 metres in selected areas. One of the spectrometers will map the mineral composition of the surface with great accuracy. The missing water Data from some of the instruments will be key to finding out what happened with the water which was apparently so abundant in the past. For instance, the radar altimeter will search for subsurface water and ice, down to a depth of a few kilometres. Scientists expect to find a layer of ice or permafrost, and to measure its thickness. Other observations with the spectrometers will determine the amount of water remaining in the atmosphere. They will also tell whether there is a still a full ‘water cycle’ on Mars, for example how water is deposited in the poles and how it evaporates, depending on the seasons. "These data will determine how much water there is left. We have clear evidence for the presence of water in the past, we have seen dry river beds and sedimentary layers, and there is also evidence for water on present-day Mars. But we do not know how much water there is. Mars Express will tell us,” says Chicarro. The search for life The instruments on board Beagle 2 will investigate the geology and the climate of the landing site. But, above all, it will look for signs of life. Contrary to the Viking missions, Mars Express will search for evidence for both present and past life. Scientists are now more aware that a few biological experiments are not enough to search for life - they will combine many different types of tests to help discard contradictory results. To ‘sniff’ out direct evidence of past or present biological activity, Beagle 2’s ‘nose’ is a gas analysis package. This will determine whether carbonate mineral

2003-05-01

363

Magellan orbits Venus  

NASA Technical Reports Server (NTRS)

Various events surrounding Magellan's orbit of Venus are recounted. Significant events include the successful firing of a solid rocket motor while the spacecraft was behind Venus to transfer it from a solar-centered trajectory to an orbit around the planet. The spacecraft orbits Venus every 3.26 hours at a maximum altitude of 8500 km and minimum altitude of 291 km in an elliptical orbit. The successful August 16 test of the synthetic-aperture radar system is discussed, noting that it produced two strips, each about 20 km x 16,000 km, revealing details as small as 120 m. Two anomalies causing a delay in the start of mapping operations and subsequent breaks in the communication link with earth for 14.5 hours and 17.7 hours are discussed. Protective measures directed from the spacecraft's ROM during breach of contact are listed, and possible causes of the anomalies are suggested, such as solar activity or hardware or software elements, although the actual cause is not yet known.

Mclaughlin, W. I.

1990-01-01

364

Report of the Terrestrial Bodies Science Working Group. Volume 3: Venus  

NASA Technical Reports Server (NTRS)

The science objectives of Pioneer Venus and future investigations of the planet are discussed. Concepts and payloads for proposed missions and the supporting research and technology required to obtain the desired measurements from space and Earth-based observations are examined, as well as mission priorities and schedules.

Kaula, W. M.; Malin, M. C.; Masursky, H.; Pettengill, G.; Prinn, R.; Young, R. E.

1977-01-01

365

Making the Venus Concept Watch 1.0  

NASA Astrophysics Data System (ADS)

Over the past year we have celebrated the 50th anniversary of planetary exploration, which started with the Venus flyby of Mariner-2; and the 35th anniversary of the Pioneer-Venus multi-probe mission where one large and three small probes descended to the surface of Venus, encountering extreme environmental conditions. At the surface of Venus the temperature is about 460 °C, and the pressure is 92 bar, with a highly corrosive super-critical CO2 atmosphere. At a Venusian altitude of 50 km the pressure and temperature conditions are near Earth-like, but the clouds carry sulfuric acid droplets. Deep probe missions to Jupiter and Saturn, targeting the 100 bar pressure depth encounter similar pressure and temperature conditions as the Pioneer-Venus probes did. Mitigating these environments is highly challenging and requires special considerations for designs and materials. While assessing such space mission concepts, we have found that there is an overlap between the extreme environments in planetary atmospheres and the environments experienced by deep-sea explorers back on Earth. Consequently, the mitigation approaches could be also similar between planetary probes and diver watches. For example, both need to tolerate about 100 bar of pressure-although high temperatures are not factors on Earth. Mitigating these environments, the potential materials are: titanium for the probe and the watch housing; sapphire for the window and glass; resin impregnated woven carbon fiber for the aeroshell's thermal protection system and for the face of the watch; and nylon ribbon for the parachute and for the watch band. Planetary probes also utilize precision watches; thus there is yet another crosscutting functionality with diver watches. Our team, from the Innovation Design Engineering Program of the Royal College of Art, has designed and built a concept watch to commemorate these historical events, while highlighting advances in manufacturing processes over the past three to five decades, relevant to both future planetary mission designs and can be used to produce deep diver watches. In this paper we describe our design considerations; give a brief overview of the extreme environments these components would experience on both Venus and Earth; the manufacturing techniques and materials we used to build the Venus Watch; and its outreach potential to bring a distant concept of planetary exploration closer to Earth. We will also address lessons learned from this project and new ideas forward, for the next generation of this concept design.

Balint, Tibor S.; Melchiorri, Julian P.

2014-08-01

366

Technology development for long-lived Venus landers.  

NASA Astrophysics Data System (ADS)

Simultaneously with many successful lander missions on Venus in 1972-1985 Soviet Union began develop long-lived lander on surface of Venus. The basic problem were extreme conditions on a surface: P=10MPa, T=500 C . Then operations have been stopped and have renewed in 2006 already in new Russia. Mission "VENERA (VENUS) - D" is included into the Federal space program of Russia on 2006 - 2015 with launch in 2016. To this date Russia alone can't create a reliable electronics for 500 C, but we have got examples GaN electronics for 350 C. Cooling technology with boiling water is offered for interior devices of lander at pressure 10 MPa and temperature 310 C. As the power source of an electronics we use high-temperature galvanic cells on the base of Li4Si [LiCl, KCl, LiF] FeS2 which are released in Russia as reserve power sources. They are capable to work directly on a surface of Venus without any thermal protection. At lander two kinds of vacuum technology can be used: 1) in multilayer (MLI ) thermal blanket for lander, 2) in electro-vacuum devices, for example transmitter . For creation and maintenance of vacuum at temperature 400-500 C: chemical gas absorbers ( getter materials ) are used, they actively absorb both carbon dioxide and nitrogen .

Ekonomov, 1.; Korablev, O.; Zasova, L.

2007-08-01

367

Pioneer Venus radar mapper experiment  

USGS Publications Warehouse

Altimetry and radar scattering data for Venus, obtained from 10 of the first 13 orbits of the Pioneer Venus orbiter, have disclosed what appears to be a rift valley having vertical relief of up to 7 kilometers, as well as a neighboring, gently rolling plain. Planetary oblateness appears unlikely to exceed 112500 and may be substantially smaller. Copyright ?? 1979 AAAS.

Pettengill, G.H.; Ford, P.G.; Brown, W.E.; Kaula, W.M.; Keller, C.H.; Masursky, H.; McGill, G.E.

1979-01-01

368

The magnetic barrier at Venus  

Microsoft Academic Search

The magnetic barrier at Venus is a region within which the magnetic pressure dominates all other pressure contributions. The barrier is formed in the inner region of the dayside magnetosheath to transfer solar wind momentum flux to the ionosphere. Passes through the dayside magnetosheath and ionopause with Pioneer Venus have allowed us to probe the magnetic barrier directly. These passes

T. L. Zhang; J. G. Luhmann; C.T. Russell

1991-01-01

369

Stagnant lid convection on Venus  

Microsoft Academic Search

The effect of strongly temperature-dependent viscosity on convection in the interior of Venus is studied systematically with the help of finite element numerical models. For viscosity contrasts satisfying experimental constraints on the rheology of rocks, Venus is likely to be in the regime of stagnant lid convection. This regime is characterized by the formation of a slowly creeping, very viscous

V. S. Solomatov; L.-N. Moresi

1996-01-01

370

Outstanding aeronomy problems at Venus  

Microsoft Academic Search

Of all the non-terrestrial ionospheres and thermospheres in our solar system those of Venus have been explored and studied the most. This is mainly because of the 14 year exploration of the well-instrumented Pioneer Venus spacecraft and the theoretical studies prompted by the resulting observational information. However, there are still a number of areas where there are important scientific questions

O. Witasse; A. F. Nagy

2006-01-01

371

Venus Atmospheric Maneuverable Platform (VAMP)  

NASA Astrophysics Data System (ADS)

VAMP is a long lived, semi-buoyant, atmospheric “rover” that deploys in orbit, enters the Venus atmosphere and flies in the Venus atmosphere between 55 and 70 km for up to one year as a platform to address VEXAG goals I.A, I.B, and I.C.

Polidan, R.; Lee, G.; Sokol, D.; Griffin, K.; Bolisay, L.

2014-05-01

372

Basalt-Atmosphere Interactions on Venus -  

E-print Network

Basalt-Atmosphere Interactions on Venus - The Rocks' Perspective Allan Treiman Susanne Schwenzer on Venus rock-atmosphere interactions ­ 1. Basalt-atmosphere reaction theory ­ 2. Basalt-atmosphere reaction experiment ­ 3. Carbonate-sulfate magma in Venus' crust? ­ 4. Carbonate formation in Venus' crust

Treiman, Allan H.

373

Atmospheric evolution on Venus Bruce Fegley, Jr.  

E-print Network

1 Atmospheric evolution on Venus Bruce Fegley, Jr. Planetary Chemistry Laboratory Department and Ancient Environments Edited by Vivien Gornitz January 2004 #12;2 ATMOSPHERIC EVOLUTION ON VENUS Overview Venus and Earth are generally regarded as sister planets because Venus is the planet with mass, size

Fegley Jr., Bruce

374

Current Status of Venus orbiter Akatsuki  

E-print Network

Current Status of Venus orbiter Akatsuki Takeshi Imamura (JAXA, Japan) and AKATSUKI Project Team #12;Venus orbiter Akatsuki ·! Science target : `Weather of Venus' ­! Mechanism of `super was launched in May 2010. The Venus orbit insertion scheduled for December 2010 has failed. Now Akatsuki

Widemann, Thomas

375

A model experiment of the Venus balloon  

Microsoft Academic Search

In order to explore the Venus atmosphere, characteristics of several types of Venus balloons have been investigated. Water vapor in the balloon gives buoyancy in the carbon dioxide atmosphere of Venus. In this case the phase transition of vapor to liquid occurs as the temperature changes with the altitude of the Venus atmosphere. Thus, the phase transition of vapor to

Jun Nishimura; Nobuyuki Yajima; Masami Fujii; Rikio Yokota

1990-01-01

376

A model experiment of the Venus balloon  

Microsoft Academic Search

In order to explore the dynamics and composition of the Venus atmosphere, characteristics of several types of Venus balloons have been investigated. Vapor of a suitable liquid in the balloon gives buoyancy in the carbon dioxide atmosphere of Venus. In this case the phase transition of vapor to liquid occurs as the temperature changes with the altitude within the Venus

J. Nishimura; N. Yajima; M. Fujii; R. Yokota

1993-01-01

377

Ballistic mode Mercury orbiter mission opportunity handbook  

NASA Technical Reports Server (NTRS)

Significant payloads in Mercury orbit can be achieved through use of high-thrust, chemical propulsion systems on ballistic trajectories. Interplanetary trajectory characteristics are presented, for Venus swingbys to Mercury, were multiple revolutions about the sun are allowed on each leg to provide low energy mission in 1977, 1980, 1985 and 1988. Guidance and navigation results are shown for each opportunity. Additionally, the use of midcourse maneuvers and multiple Venus swingbys are explored as means of further reducing the energy requirements.

Hollenbeck, G. R.; Roos, D. G.; Lewis, P. S.

1973-01-01

378

VENUS-2 Experimental Benchmark Analysis  

SciTech Connect

The VENUS critical facility is a zero power reactor located at SCK-CEN, Mol, Belgium, which for the VENUS-2 experiment utilized a mixed-oxide core with near-weapons-grade plutonium. In addition to the VENUS-2 Core, additional computational variants based on each type of fuel cycle VENUS-2 core (3.3 wt. % UO{sub 2}, 4.0 wt. % UO{sub 2}, and 2.0/2.7 wt.% MOX) were also calculated. The VENUS-2 critical configuration and cell variants have been calculated with MCU-REA, which is a continuous energy Monte Carlo code system developed at Russian Research Center ''Kurchatov Institute'' and is used extensively in the Fissile Materials Disposition Program. The calculations resulted in a k{sub eff} of 0.99652 {+-} 0.00025 and relative pin powers within 2% for UO{sub 2} pins and 3% for MOX pins of the experimental values.

Pavlovichev, A.M.

2001-09-28

379

Solar Wind Driven Plasma Fluxes from the Venus Ionosphere  

NASA Astrophysics Data System (ADS)

SOLAR WIND DRIVEN PLASMA FLUXES FROM THE VENUS IONOSPHERE H. Pérez-de-Tejada (1), R. Lundin (2), H. Durand-Manterola (1), S. Barabash (2), T. L. Zhang (3), J. A., Sauvaud (4), and M. Reyes-Ruiz (5) 1 - Institute of Geophysics, UNAM, México, D. F. 2 - Swedish Institute of Space Physics, Kiruna, Sweden 3 - Space Research Institute, Graz, Austria 4 - CESR, Toulouse, France 5 - Institute of Astronomy, UNAM, Ensenada, México Measurements conducted with the ASPERA-4 instrument and the magnetometer of the Venus Express spacecraft show that the kinetic pressure of planetary O+ ion fluxes measured in the Venus wake can be significantly larger than the local magnetic pressure and, as a result, those ions are not being driven by magnetic forces but by the kinetic energy of the solar wind. Beams of planetary O+ ions with those properties have been detected in several orbits of the Venus Express through the wake as the spacecraft traverses by the noon-midnight plane along its near polar trajectory. The momentum flux of the O+ ions leads to superalfvenic flow conditions. It is suggested that such O+ ion beams are produced in the vicinity of the magnetic polar regions of the Venus ionosphere where the solar wind erodes the local plasma leading to plasma channels that extend downstream from those regions.

Perez De Tejada, H. A.; Lundin, R. N.; Zhang, T.; Sauvaud, J. A.; Reyes-Ruiz, M.

2012-12-01

380

Escape of volatiles from Venus  

NASA Astrophysics Data System (ADS)

A model for describing the loss of atmosphere in Venus in the geologic time is presented. The amount of volatiles degassed from Venus in 4.6 Ga is in the order of 286.9 Terrestrial Atmospheric Masses (TAM) (1 TAM = 5.28x1018 kg). If the drag of the solar wind acted since the birth of Venus, 4.6 Ga ago, a minimum limit of the amount of atmosphere lost by the planet is 6.76 TAM. The current atmosphere of Venus has 88.44 TAM of mass. The sum of the lost and the current atmosphere is 95.2 TAM. This result is 191.7 TAM smaller than the estimation of the mass degassed in all the history of Venus. Then we have a deficit of 191.7 TAM of volatiles on Venus. It is well known that the surface of Venus is geologically young (? 500 Ma) In all this period the model predicts that Venus lost, by the solar wind, only 0.08 TAM of atmosphere. From this we can assume that the deficit of volatiles is due to events that occur before that time or perhaps at that time. It is possible to speculate that the resurfacing of Venus, the massive loss of volatiles, and a change from prograde to retrograde rotation of the planet occur at the same time and could be produced by a gigantic impact with a planetary-size body. In this catastrophic event the angular momentum of the planet could change from the original (possibly prograde) to the current one, all the surface of Venus could be melt producing a resurfacing and the water and part of the CO2 in the atmosphere could be ejected to space.

Durand-Manterola, H. J.

381

The Mercury dual orbiter mission  

Microsoft Academic Search

The Mercury Orbiter (MeO) will carry out a full range of particles, fields, and planetary imaging science at Mercury. Present mission plans call for a launch in 1999 with a flight time of about 4.5 years. By means of multiple Venus and Mercury gravitational assists, the mission can be accomplished with present U.S. launch vehicles and a very large payload

D. N. Baker; J. A. Slavin

1990-01-01

382

Venus Surface Sample Return: A Weighty High-Pressure Challenge  

NASA Technical Reports Server (NTRS)

A mission to return a sample to Earth from the surface of Venus faces a multitude of multidisciplinary challenges. In addition to the complications inherent in any sample return mission, Venus presents the additional difficulties of a deep gravity well essentially equivalent to Earth's and a hot-house atmosphere which generates extremes of high temperature, density, and pressure unmatched at any other known surface in the solar system. The Jet Propulsion Laboratory of the California Institute of Technology recently conducted a study to develop an architecture for such a mission; a major goal of this study was to identify technology developments which would need to be pursued in order to make such a mission feasible at a cost much less than estimated in previous. The final design of this mission is years away but the study results presented here show our current mission architecture as it applies to a particular mission opportunity, give a summary of the engineering and science trades which were made in the process of developing it, and identify the main technology development efforts needed.

Sweetser, Ted; Cameron, Jonathon; Chen, Gun-Shing; Cutts, Jim; Gershman, Bob; Gilmore, Martha S.; Hall, Jeffrey L.; Kerzhanovich, Viktor; McRonald, Angus; Nilsen, Erik

1999-01-01

383

Hansen, V.L., and Young, D.A., 2007, Venus's evolution: A synthesis, in Cloos, M., Carlson, W.D., Gilbert, M.C., Liou, J.G., and Sorensen, S.S., eds., Convergent Margin Terranes and Associated Regions: A Tribute to W.G. Ernst: Geological Society of Americ  

E-print Network

255 Hansen, V.L., and Young, D.A., 2007, Venus's evolution: A synthesis, in Cloos, M., Carlson, W. Geological Society of America Special Paper 419 2007 Venus's evolution: A synthesis V.L. Hansen Department (National Aeronautics and Space Administration) Magellan mission to Venus was the preservation of ~970

Hansen, Vicki

384

Mesoscale roughness of Venus  

NASA Technical Reports Server (NTRS)

The global distribution of multi-kilometer (approx. 9 km) length scale 'roughness' (hereafter mesoscale roughness or MR) on Venus can be estimated from the Magellan global altimetry dataset (GxDR) and then compared with MR data derived for Earth from 5' ETOP5 data and for Mars (from USGS Mars DTM dataset). The mesoscale roughness parameter (MR) represents the RMS variance in meters of the actual planetary surface topography relative to the best fitting tangent plane defined on the basis of a 3x3 pixel sliding window. The best-fit plane was computed using a least-squares solution which minimizes delta H, the sum of the squares of the differences between the 9 local elevation values (H(sub i)), and the elevation of best-fit plane at the same grid location. Using the best-fit plane and delta H, we have computed the RMS 'roughness' var(delta R), where this parameter is always minimized on the basis of its calculation using least squares. We have called this 'ruggedness' parameter the Mesoscale Roughness (MR) because it is directly related to the high-frequency variance of topography after mesoscale slopes and tilts (i.e., for Venus, the baseline over which MR is computed (dx) is approx. 8.8 km and dx for Earth is approx. 9.3 km) are removed. As such, MR represents the degree to which a planetary surface is more rugged than approximately 10 km scale facets or tilts. It should not be confused with the radar 'RMS Roughness' parameter computed at 0.1 to 10 m length scales on the basis of the Magellan radar altimeter echo. We will use our MR parameter to investigate the global ruggedness properties of Venus as they relate to geological provinces and in comparison with the spatial pattern of MR for Earth and Mars.

Garvin, J. B.; Frawley, James J.

1994-01-01

385

Ground-based Observations of Venus in the Ultraviolet and Infrared Light  

NASA Astrophysics Data System (ADS)

Parallel to the Venus Express mission, ESA has initiated an observing campaign that incorporates a number of professional and amateur observers. Since the cameras onboard Venus Express have only a small field of view, ground based observations can provide important context information on Venus's dense atmosphere as a whole. Permanent observations by professional and amateur telescopes are therefore useful, e.g., to monitor daily changes occurring in the very dynamic upper part of the Venusian atmosphere. Typically, apertures of amateur telescopes vary between 8 and 16 inches, but occasionally Newton- and Cassegrain-type telescopes with apertures from 24 up to even 47 inches are in use at large public observatories. During the last couple of years, engaged amateur astronomers have benefited from the rapid development in the field of video-astronomy. By selecting and adding thousands of only shortly-exposed video-frames, it is possible to freeze atmospheric turbulence, thereby circumventing problems commonly attributed to devastating atmospheric seeing conditions. With that method of "Lucky Imaging", it is possible to nearly achieve the theoretical limit of telescopic resolution. Furthermore, cheaper and more efficient UV-filters in as