These are representative sample records from related to your search topic.
For comprehensive and current results, perform a real-time search at

A Versatile Method for Functionalizing Surfaces with Bioactive Glycans  

PubMed Central

Microarrays and biosensors owe their functionality to our ability to display surface-bound biomolecules with retained biological function. Versatile, stable, and facile methods for the immobilization of bioactive compounds on surfaces have expanded the application of high-throughput ‘omics’-scale screening of molecular interactions by non-expert laboratories. Herein, we demonstrate the potential of simplified chemistries to fabricate a glycan microarray, utilizing divinyl sulfone (DVS)-modified surfaces for the covalent immobilization of natural and chemically derived carbohydrates, as well as glycoproteins. The bioactivity of the captured glycans was quantitatively examined by surface plasmon resonance imaging (SPRi). Composition and spectroscopic evidence of carbohydrate species on the DVS-modified surface were obtained by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), respectively. The site-selective immobilization of glycans based on relative nucleophilicity (reducing sugar vs. amine- and sulfhydryl-derived saccharides) and anomeric configuration was also examined. Our results demonstrate straightforward and reproducible conjugation of a variety of functional biomolecules onto a vinyl sulfone-modified biosensor surface. The simplicity of this method will have a significant impact on glycomics research, as it expands the ability of non-synthetic laboratories to rapidly construct functional glycan microarrays and quantitative biosensors. PMID:21142056

Cheng, Fang; Shang, Jing; Ratner, Daniel M.



Bioactive lipid mediators in skin inflammation and immunity.  


The skin is the primary barrier from the outside environment, protecting the host from injury, infectious pathogens, water loss and solar ultraviolet radiation. In this role, it is supported by a highly organized system comprising elements of innate and adaptive immunity, responsive to inflammatory stimuli. The cutaneous immune system is regulated by mediators such as cytokines and bioactive lipids that can initiate rapid immune responses with controlled inflammation, followed by efficient resolution. However, when immune responses are inadequate or mounted against non-infectious agents, these mediators contribute to skin pathologies involving unresolved or chronic inflammation. Skin is characterized by active lipid metabolism and fatty acids play crucial roles both in terms of structural integrity and functionality, in particular when transformed to bioactive mediators. Eicosanoids, endocannabinoids and sphingolipids are such key bioactive lipids, intimately involved in skin biology, inflammation and immunity. We discuss their origins, role and influence over various cells of the epidermis, dermis and cutaneous immune system and examine their function in examples of inflammatory skin conditions. We focus on psoriasis, atopic and contact dermatitis, acne vulgaris, wound healing and photodermatology that demonstrate dysregulation of bioactive lipid metabolism and examine ways of using this insight to inform novel therapeutics. PMID:23124022

Kendall, Alexandra C; Nicolaou, Anna



Diphenylthiourea, a common rubber chemical, is bioactivated to potent skin sensitizers.  


Diphenylthiourea (DPTU) is a known skin sensitizer commonly used as a vulcanization accelerator in the production of synthetic rubber, for example, neoprene. The versatile usage of neoprene is due to the multifaceted properties of the material; for example, it is stretchable, waterproof, and chemical- and abrasion-resistant. The wide application of neoprene has resulted in numerous case reports of dermatitis patients allergic to DPTU. The mechanism by which DPTU works as a contact allergen has not been described; thus, the aim of the present study was to investigate if DPTU is a prohapten that can be activated by skin metabolism. The metabolic activation and covalent binding of (14)C-labeled DPTU to proteins were tested using a skinlike cytochrome P450 (P450) cocktail containing the five most abundant P450s found in human skin (CYP1A1, 1B1, 2B6, 2E1, and 3A5) and human liver microsomes. The incubations were carried out in the presence or absence of the metabolite trapping agents glutathione, methoxylamine, and benzylamine. The metabolism mixtures were analyzed by LC-radiochromatography, LC-MS, and LC-MS/MS. DPTU was mainly metabolically activated to reactive sulfoxides resulting in desulfurated adducts in both enzymatic systems used. Also, phenylisothiocyanate and phenylisocyanate were found to be metabolites of DPTU. The sensitizing capacity of the substrate (DPTU) and three metabolites was tested in the murine local lymph node assay. Two out of three metabolites tested were strong skin sensitizers, whereas DPTU itself, as previously known, was negative using this mouse model. In conclusion, DPTU forms highly reactive metabolites upon bioactivation by enzymes present in the skin. These metabolites are able to induce skin sensitization and are probable causes for DPTU allergy. To increase the possibilities of diagnosing contact allergy to DPTU-containing items, we suggest that suitable metabolites of DPTU should be used for screening testing. PMID:21073181

Samuelsson, Kristin; Bergström, Moa Andresen; Jonsson, Charlotte A; Westman, Gunnar; Karlberg, Ann-Therese



Versatile Use of Rhomboid Flaps for Closure of Skin Defects  

PubMed Central

Objective: The aim of this study is to present our clinical experience with rhomboid flaps. Materials and Methods: Twenty-four patients who were operated on between January 2006 and October 2010 were included in the study. All defects were reconstructed using rhomboid flaps. Results: Twenty-four patients were operated on for various reasons, and 26 rhomboid flaps were performed. Eleven of the 24 cases were male, and the median age of participants was 47.5 years. Eight cases were operated on under general anesthesia, and 13 were locally anesthetized; the remaining cases were operated on under regional anesthesia. In 17 cases, the defect was due to a benign or malignant tumor excision, and five cases were operated on due to burn contracture. There were no occurrences of partial or total flap necrosis or hematoma in our series. Conclusion: Our series indicates that rhomboid flaps can be safely used to reconstruct small to moderately sized skin defects.

Aydin, Osman Enver; Tan, Onder; Algan, Said; Kuduban, Selma Denktas; Cinal, Hakan; Barin, Ensar Zafer



Healing effect of bioactive glass ointment on full-thickness skin wounds.  


This study aimed to investigate the effect of bioactive glasses on cutaneous wound healing in both normal rats and streptozotocin-induced diabetic rats. Bioactive glass ointments, prepared by mixing the sol-gel bioactive glass 58S (SGBG-58S), nanobioactive glass (NBG-58S) and the melt-derived 45S5 bioactive glass (45S5) powder with Vaseline (V) at 18% weight percentage, were used to heal full thickness excision wounds. Pure V was used as control in this study. Compared to SGBG-58S, NBG-58S consists of relatively dispersible nanoparticles with smaller size. The analysis of wound healing rate and wound healing time showed that bioactive glasses promoted wound healing. The ointments containing SGBG-58S and NBG-58S healed the wounds more quickly and efficiently than the ointment containing 45S5. Histological examination indicated that bioactive glasses promoted the proliferation of fibroblasts and growth of granulation tissue. Immunohistochemical staining showed that the production of two growth factors, VEGF and FGF2, which are beneficial to wound healing, was also stimulated during the healing process. Transmission electron microscope observations showed that fibroblasts in wounds treated with bioactive glasses contained more rough endoplasmic reticula and had formed new capillary microvessels by the seventh day. The effects of SGBG-58S and NBG-58S were better than those of 45S5. All results suggest that bioactive glasses, especially SGBG-58S and NBG-58S, can accelerate the recovery of skin wounds in both normal and diabetes-impaired healing models and have a great potential for use in wound repair in the future. PMID:22736113

Lin, Cai; Mao, Cong; Zhang, Juanjuan; Li, Yuli; Chen, Xiaofeng



Cocoa Bioactive Compounds: Significance and Potential for the Maintenance of Skin Health  

PubMed Central

Cocoa has a rich history in human use. Skin is prone to the development of several diseases, and the mechanisms in the pathogenesis of aged skin are still poorly understood. However, a growing body of evidence from clinical and bench research has begun to provide scientific validation for the use of cocoa-derived phytochemicals as an effective approach for skin protection. Although the specific molecular and cellular mechanisms of the beneficial actions of cocoa phytochemicals remain to be elucidated, this review will provide an overview of the current literature emphasizing potential cytoprotective pathways modulated by cocoa and its polyphenolic components. Moreover, we will summarize in vivo studies showing that bioactive compounds of cocoa may have a positive impact on skin health. PMID:25116848

Scapagnini, Giovanni; Davinelli, Sergio; Di Renzo, Laura; De Lorenzo, Antonino; Olarte, Hector Hugo; Micali, Giuseppe; Cicero, Arrigo F.; Gonzalez, Salvador



House dust bioactivities predict skin prick test reactivity for children with high risk of allergy  

PubMed Central

Background Although evidence suggests that ambient exposures to endotoxin and other immunostimulants during early life influence allergic risk, efforts to understand this host-environment relationship have been hampered by a paucity of relevant assays. Objectives These investigations determined whether parameters of house dust extract (HDE) bioactivity were predictive of allergen skin prick test (SPT) reactivity for infants at high risk of allergy participating in the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS). Methods We conducted a nested case-control study, selecting 99 CCAAPS children who had positive SPT results to at least 1 aeroallergen at age 3 years and 101 subjects with negative SPT results. HDEs were prepared from dust samples collected from the subjects' homes at age 1 year. Murine splenocytes and bone marrow–derived dendritic cells were incubated with HDEs, and supernatant cytokine concentrations were determined by means of ELISA. Alternatively, bone marrow–derived dendritic cells were preincubated with HDEs, and then LPS-induced IL-6 responses were assessed. HDE endotoxin levels were determined by using the limulus amebocyte lysate assay. Results HDEs derived from the homes of children with positive (cases) and negative (control subjects) SPT results had similar bioactivities. However, when cases were considered in isolation, HDEs with higher levels of bioactivity were significantly associated with children who had lower numbers of positive SPT results. Analogous statistical analyses did not identify any association between HDE endotoxin levels and the aeroallergen sensitization profiles of children included in this study. Conclusion HDE immunostimulatory activities predicted the aeroallergen sensitization status of CCAAPS subjects better than HDE endotoxin levels. These results provide the first published evidence that HDE bioassays have clinical relevance in predicting atopic risk. PMID:22385634

Kim, Haejin; Tse, Kevin; Levin, Linda; Bernstein, David; Reponen, Tiina; LeMasters, Grace; Lummus, Zana; Horner, Anthony A.



Nanoparticles based on naturally-occurring biopolymers as versatile delivery platforms for delicate bioactive molecules: An application for ocular gene silencing.  


Nanoparticles based on naturally-occurring biopolymers, most of them endogenous macromolecules, were designed as a versatile generation of delivery platforms for delicate bioactive molecules. The design of these nanosystems was specifically based on our recent finding about the ability of endogenous polyamine spermine (SPM) to interact with anionic biopolymers (ABs) generating ionically cross-linked nanosystems. The initial first generation of these delivery platforms, based on glycosaminoglycans and other polysaccharides, showed a very high association capacity for some delicate bioactive proteins such as growth factors, but a limited capacity to associate negatively charged molecules, such as pDNA and siRNA. However, the versatility of these nanosystems in terms of composition allowed us to customise the association of active ingredients and their physicochemical characteristics. Concretely, we prepared and incorporated gelatine cationized with spermine (CGsp) to their composition. The resulting modified formulations were characterised by a nanometric size (150-340nm) and offer the possibility to modulate their zeta potential (from -35 to 28mV), providing an efficient association of nucleic acids. The biological evaluation of these optimised nanosystems revealed that they are able to be internalised in vivo into corneal and conjunctival tissues and also to provide a significant siRNA gene silencing effect. PMID:25275936

Parraga, Jenny E; Zorzi, Giovanni K; Diebold, Yolanda; Seijo, Begoña; Sanchez, Alejandro



Healing effect of bioactive glass ointment on full-thickness skin wounds  

Microsoft Academic Search

This study aimed to investigate the effect of bioactive glasses on cutaneous wound healing in both normal rats and streptozotocin-induced diabetic rats. Bioactive glass ointments, prepared by mixing the sol–gel bioactive glass 58S (SGBG-58S), nanobioactive glass (NBG-58S) and the melt-derived 45S5 bioactive glass (45S5) powder with Vaseline (V) at 18% weight percentage, were used to heal full thickness excision wounds.

Cai Lin; Cong Mao; Juanjuan Zhang; Yuli Li; Xiaofeng Chen



Full-Thickness Skin Wound Healing Using Human Placenta-Derived Extracellular Matrix Containing Bioactive Molecules  

PubMed Central

The human placenta, a complex organ, which facilitates exchange between the fetus and the mother, contains abundant extracellular matrix (ECM) components and well-preserved endogenous growth factors. In this study, we designed a new dermal substitute from human placentas for full-thickness wound healing. Highly porous, decellularized ECM sheets were fabricated from human placentas via homogenization, centrifugation, chemical and enzymatic treatments, molding, and freeze-drying. The physical structure and biological composition of human placenta-derived ECM sheets dramatically supported the regeneration of full-thickness wound in vivo. At the early stage, the ECM sheet efficiently absorbed wound exudates and tightly attached to the wound surface. Four weeks after implantation, the wound was completely closed, epidermic cells were well arranged and the bilayer structure of the epidermis and dermis was restored. Moreover, hair follicles and microvessels were newly formed in the ECM sheet-implanted wounds. Overall, the ECM sheet produced a dermal substitute with similar cellular organization to that of normal skin. These results suggest that human placenta-derived ECM sheets provide a microenvironment favorable to the growth and differentiation of cells, and positive modulate the healing of full-thickness wounds. PMID:22891853

Choi, Ji Suk; Kim, Jae Dong; Yoon, Hyun Soo



Versatility of full thickness skin-subcutaneous fat grafts as interpositional material in the management of temporomandibular joint ankylosis.  


The authors present a review of seven patients (eight joints) with temporomandibular ankylosis treated between 2007 and 2008. The aim of this retrospective study was to present the experience of using full thickness skin-subcutaneous fat grafts, harvested from the patient's abdomen as interpositional material after gap arthroplasty. All patients presented with osseous ankylosis and were graded according to Topazian's classification. Postoperative follow up ranged from 12 to 24 months. Maximal inter-incisal opening (MIO) on presentation ranged from 0 to 8mm, which stabilized to 27-44mm at follow up. There was no evidence of re-ankylosis. This study found merit in the use of autogenous full thickness skin-subcutaneous fat graft as an interpositional material for up to 2 years following ankylosis release. PMID:20952163

Thangavelu, A; Santhosh Kumar, K; Vaidhyanathan, A; Balaji, M; Narendar, R



Extracellular matrix formation in self-assembled minimalistic bioactive hydrogels based on aromatic peptide amphiphiles  

PubMed Central

The hitherto inconsistency in clinical performance for engineered skin drives the current development of novel cell-scaffolding materials; one challenge is to only extract essential characteristics from the complex native ECM (extracellular matrix) and incorporate them into a scaffold with minimal complexity to support normal cell functions. This study involved small-molecule-based bioactive hydrogels produced by the co-assembly of two aromatic peptide amphiphiles: Fmoc-FF (Fluorenylmethoxycarbonyl-diphenylalanine) and Fmoc-RGD (arginine–glycine–aspartic acid). Three-dimensionally cultured human dermal fibroblasts deposited dense ECM networks including fibronectin and collagen I within the hydrogels in a 14-day culture. The fibroblasts organized the fibrous ECM and contracted the gel without differentiating into myofibroblasts. The stiffness of the cell-gel constructs increased dramatically due to ECM formation and gel contraction. This created an economical biomimetic model-scaffold to further understand skin reconstruction in vitro and supplied a design pathway to create versatile cell-scaffolds with varied bioactivities and simplicity. PMID:24812581

Zhou, Mi; Ulijn, Rein V



Apigenin, a bioactive flavonoid from Lycopodium clavatum, stimulates nucleotide excision repair genes to protect skin keratinocytes from ultraviolet B-induced reactive oxygen species and DNA damage.  


In this study, we examined the antioxidative and the DNA protective potentials of apigenin, a flavonoid polyphenol isolated from Lycopodium clavatum, in both in-vitro (HaCaT skin keratinocytes) and in-vivo (mice) models against UV-B radiation. We used DAPI staining in UV-B-irradiated HaCaT skin keratinocytes pre-treated with and without apigenin to assess DNA damage. We also used a flow-cytometric analysis in mice exposed to UV-B radiation with or without topical application of apigenin to assess, through a comet assay, chromosomal aberrations and quanta from reactive oxygen species (ROS) generation. Data from the stability curves for the Gibb's free energy determined from a melting-temperature profile study indicated that apigenin increased the stability of calf thymus DNA. Immunofluorescence studies revealed that apigenin caused a reduction in the number of cyclobutane pyrimidine dimers (CPDs) after 24 h, the time at which the nucleotide excision repair (NER) genes were activated. Thus, apigenin accelerated reversal of UV-B-induced CPDs through up-regulation of NER genes, removal of cyclobutane rings, inhibition of ROS generation, and down-regulation of NF-?B and MAPK, thereby revealing the precise mechanism of DNA repair. PMID:24139463

Das, Sreemanti; Das, Jayeeta; Paul, Avijit; Samadder, Asmita; Khuda-Bukhsh, Anisur Rahman



Versatile telemonitoring system  

NASA Technical Reports Server (NTRS)

Small scale versatile multichannel telemonitoring can be installed economically with considerable expansion capabilities. This system contains a data transmitter, control transmitter, control receiver, display of readout units, a sync generator, and some remote control features.

Fergus, R. W.



Versatile communications terminal  

NASA Technical Reports Server (NTRS)

Widely-separated parties are linked into efficient communications network by versatile control terminal. Terminal handles voice and data communications via both telephone lines and radio-frequency channels. It includes telephone-to-radio "patch", telephone autodialer, and other advanced features to provide rapid communications for applications such as emergency medical services (EMS) operations.

Belasco, N.; Pool, S. L.; Sinderson, R. L.



VAC: Versatile Advection Code  

NASA Astrophysics Data System (ADS)

The Versatile Advection Code (VAC) is a freely available general hydrodynamic and magnetohydrodynamic simulation software that works in 1, 2 or 3 dimensions on Cartesian and logically Cartesian grids. VAC runs on any Unix/Linux system with a Fortran 90 (or 77) compiler and Perl interpreter. VAC can run on parallel machines using either the Message Passing Interface (MPI) library or a High Performance Fortran (HPF) compiler.

Tóth, Gábor; Keppens, Rony



Bioactivation of particles  


Particles are bioactivated by attaching bioactivation peptides to the particle surface. The bioactivation peptides are peptide-based compounds that impart one or more biologically important functions to the particles. Each bioactivation peptide includes a molecular or surface recognition part that binds with the surface of the particle and one or more functional parts. The surface recognition part includes an amino-end and a carboxy-end and is composed of one or more hydrophobic spacers and one or more binding clusters. The functional part(s) is attached to the surface recognition part at the amino-end and/or said carboxy-end.

Pinaud, Fabien (Berkeley, CA); King, David (San Francisco, CA); Weiss, Shimon (Los Angeles, CA)



The Role of Melanocortins in Skin Homeostasis  

Microsoft Academic Search

Melanocortins are structurally related bioactive peptides which are produced by many extra-neural tissues including the skin. All of the melanocortins (?, ?, and ?-melanocyte-stimulating hormone and adrenocorticotropin) have melanotropic activity but can elicit many other effects on skin cells. On the basis of in vitro and in vivo findings melanocortins have been shown to regulate immune and inflammatory responses, hair

Markus Böhm; Thomas A. Luger



Dry skin  


Skin - dry; Winter itch ... Dry skin is common. It happens more often in the winter when cold air outside and heated air inside cause low humidity. Forced-air furnaces make skin even drier. The skin loses moisture and may ...


Skin Cancer  


... Diseases and treatments Q - T Skin cancer Skin cancer It is possible to find skin cancer early. ... a dermatologist. Learn more. Common types of skin cancer Basal cell carcinoma (BCC) This is the most ...


Human amniotic membrane: a versatile wound dressing.  

PubMed Central

Human amniotic membrane proved to be a versatile and useful temporary biologic dressing in studies involving 120 patients. Wounds, both traumatic and nontraumatic in origin, responded to a protocol that allowed coverage of tissues as diverse as exposed bowel, pleura, pericardium, blood vessels, tendon, nerve and bone. Wounds unresponsive to usual therapeutic measures responded to membrane application. Ease of availability, negligible cost and facilitated wound healing make this temporary biologic dressing generally superior to either cadaver skin allograft or pigskin xenograft. Human amniotic membrane dressings are therefore a useful adjunct in the care of the complicated wound. Images FIG. 1A FIG. 1B FIG. 1C FIG. 2A FIG. 2B FIG. 3 PMID:647542

Gruss, J. S.; Jirsch, D. W.



Bioactive oligosaccharide natural products.  


Covering up to December 2013. Oligosaccharide natural products target a wide spectrum of biological processes including disruption of cell wall biosynthesis, interference of bacterial translation, and inhibition of human ?-amylase. Correspondingly, oligosaccharides possess the potential for development as treatments of such diverse diseases as bacterial infections and type II diabetes. Despite their potent and selective activities and potential clinical relevance, isolated bioactive secondary metabolic oligosaccharides are less prevalent than other classes of natural products and their biosynthesis has received comparatively less attention. This review highlights the unique modes of action and biosynthesis of four classes of bioactive oligosaccharides: the orthosomycins, moenomycins, saccharomicins, and acarviostatins. PMID:24883430

McCranie, Emilianne K; Bachmann, Brian O



Skin optics  

Microsoft Academic Search

Quantitative dosimetry in the treatment of skin disorders with (laser) light requires information on propagation of light in the skin related to the optical properties of the individual skin layers. This involves the solution of the integro-differential equation of radiative transfer in a model representing skin geometry, as well as experimental methods to determine the optical properties of each skin

M. J. C. Van Gemert; S. L. Jacques; H. J. C. M. Sterenborg; W. M. Star



DVD - digital versatile disks  

SciTech Connect

An international standard has emerged for the first true multimedia format. Digital Versatile Disk (by its official name), you may know it as Digital Video Disks. DVD has applications in movies, music, games, information CD-ROMS, and many other areas where massive amounts of digital information is needed. Did I say massive amounts of data? Would you believe over 17 gigabytes on a single piece of plastic the size of an audio-CD? That`s the promise, at least, by the group of nine electronics manufacturers who have agreed to the format specification, and who hope to make this goal a reality by 1998. In this major agreement, which didn`t come easily, the manufacturers will combine Sony and Phillip`s one side double-layer NMCD format with Toshiba and Matsushita`s double sided Super-Density disk. By Spring of this year, they plan to market the first 4.7 gigabyte units. The question is: Will DVD take off? Some believe that read-only disks recorded with movies will be about as popular as video laser disks. They say that until the eraseable/writable DVD arrives, the consumer will most likely not buy it. Also, DVD has a good market for replacement of CD- Roms. Back in the early 80`s, the international committee deciding the format of the audio compact disk decided its length would be 73 minutes. This, they declared, would allow Beethoven`s 9th Symphony to be contained entirely on a single CD. Similarly, today it was agreed that playback length of a single sided, single layer DVD would be 133 minutes, long enough to hold 94% of all feature-length movies. Further, audio can be in Dolby`s AC-3 stereo or 5.1 tracks of surround sound, better than CD-quality audio (16-bits at 48kHz). In addition, there are three to five language tracks, copy protection and parental ``locks`` for R rated movies. DVD will be backwards compatible with current CD-ROM and audio CD formats. Added versatility comes by way of multiple aspect rations: 4:3 pan-scan, 4:3 letterbox, and 16:9 widescreen. MPEG-2 is the selected image compression format, with full ITU Rec. 601 video resolution (72Ox480). MPEG-2 and AC-3 are also part of the U.S. high definition Advance Television standard (ATV). DVD has an average video bit rate of 3.5 Mbits/sec or 4.69Mbits/sec for image and sound. Unlike digital television transmission, which will use fixed length packets for audio and video, DVD will use variable length packets with a maximum throughput of more than 1OMbits/sec. The higher bit rate allows for less compression of difficult to encode material. Even with all the compression, narrow-beam red light lasers are required to significantly increase the physical data density of a platter by decreasing the size of the pits. This allows 4.7 gigabytes of data on a single sided, single layer DVD. The maximum 17 gigabyte capacity is achieved by employing two reflective layers on both sides of the disk. To read the imbedded layer of data, the laser`s focal length is altered so that the top layer pits are not picked up by the reader. It will be a couple of years before we have dual-layer, double-sided DVDS, and it will be achieved in four stages. The first format to appear will be the single sided, single layer disk (4.7 gigabytes). That will allow Hollywood to begin releasing DVD movie titles. DVD-ROM will be the next phase, allowing 4.7 gigabytes of CD-ROM-like content. The third stage will be write-once disks, and stage four will be rewritable disks. These last stages presents some issues which have yet to be resolved. For one, copyrighted materials may have some form of payment system, and there is the issue that erasable disks reflect less light than today`s DVDS. The problem here is that their data most likely will not be readable on earlier built players.

Gaunt, R.



Skin Conditions  


Your skin is your body's largest organ. It covers and protects your body. Your skin Holds body fluids in, preventing dehydration Keeps harmful ... it Anything that irritates, clogs, or inflames your skin can cause symptoms such as redness, swelling, burning, ...


New bioactive fatty acids  

Technology Transfer Automated Retrieval System (TEKTRAN)

Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to the new compounds, 7,10-dihydroxy-8(E)-octad...


New bioactive lipids  

Technology Transfer Automated Retrieval System (TEKTRAN)

Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to the new compounds, 7,10-dihydroxy-8(E)-octad...


Electrostatic Control of Bioactivity  

SciTech Connect

The power of independence: When exhibited on the surface of self-assembling peptide-amphiphile nanofibers, the hydrophobic laminin-derived IKVAV epitope induced nanofiber bundling through interdigitation with neighboring fibers and thus decreased the bioactivity of the resulting materials. The inclusion of charged amino acids in the peptide amphiphiles disrupted the tendency to bundle and led to significantly enhanced neurite outgrowth.

Goldberger, Joshua E.; Berns, Eric J.; Bitton, Ronit; Newcomb, Christina J.; Stupp, Samuel I. (NWU)



New Bioactive Fatty Acids  

Technology Transfer Automated Retrieval System (TEKTRAN)

Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to new compounds, 7,10-dihydroxy-8(E)-octadecen...


Porous bioactive materials  

NASA Astrophysics Data System (ADS)

Bioactive materials chemically bond to tissues through the development of biologically active apatite. Porous structures in biomaterials are designed to enhance bioactivity, grow artificial tissues and achieve better integration with host tissues in the body. The goal of this research is to design, fabricate and characterize novel porous bioactive materials. 3D ordered macroporous bioactive glasses (3DOM-BGs, pore size: 200--1000 nm) were prepared using a sol-gel process and colloidal crystal templates. 3DOM-BGs are more bioactive and degradable than mesoporous (pore size <50 nm) sol-gel BGs in simulated body fluid (SBF). Apatite formation and 3DOM-BG degradation rates increased with the decrease of soaking ratio. Apatite induction time in SBF increased with 3DOM-BG calcination temperature (600--800°C). Apatite formation and 3DOMBG degradation were slightly enhanced for a phosphate containing composition. Large 3DOM-BG particles formed less apatite and degraded less completely as compared with small particles. An increase in macropore size slowed down 3DOM-BG degradation and apatite formation processes. After heating the converted apatite at a temperature higher than 700°C, highly crystalline hydroxyapatite and a minor tri-calcium phosphate phase formed. 3DOM-BGs have potential applications as bone/periodontal fillers, and drugs and biological factors delivery agents. Anchoring artificial soft tissues (e.g., cartilage) to native bone presents a challenge. Porous polymer/bioactive glass composites are candidate materials for engineering artificial soft tissue/bone interfaces. Porous composites consisting of polymer matrices (e.g., polysulfone, polylactide, and polyurethane) and bioactive glass particles were prepared by polymer phase separation techniques adapted to include ceramic particles. Composites (thickness: 200--500 mum) have asymmetric structures with dense top layers and porous structures beneath. Porous structures consist of large pores (>100 mum) in a network of smaller (<10 mum) interconnected pores. Dense layers can be removed and large pores exposed by abrasion or salt leaching techniques. Composite modulus was enhanced with the increase of glass content, due to the change in composition and pore content. The growth of bone-like apatite on and inside composites after soaking in SBF demonstrated their potential for integration with bone. Cell culture studies revealed that composite surfaces were suitable for attachment, spreading and proliferation of chondrocytes.

Zhang, Kai


Quantification and bioaccessibility of california pistachio bioactives.  


The content of carotenoids, chlorophylls, phenolics, and tocols in pistachios ( Pistacia vera L.) has not been methodically quantified. The objective of this study was to first optimize extraction protocols for lipophilic nutrients and then quantify the content of two phenolic acids, nine flavonoids, four carotenoids, two chlorophylls, and three tocols in the skin, nutmeat, and whole nut of California pistachios. The dominant bioactives in whole pistachios are lutein [42.35 ?g/g fresh weight (FW)], chlorophyll a (142.24 ?g/g FW), ?-tocopherol (182.20 ?g/g FW), flavan-3-ols (catechins) (199.18 ?g/g FW), luteolin (217.89 ?g/g FW), myricetin (135.18 ?g/g FW), and cyanidin-3-galactose (38.34 ?g/g FW) in each nutrient class. Most phenolics are present in the skin, while the lipophilic nutrients are dominantly present in the nutmeat. Digestion with a gastrointestinal mimic showed <10% of most hydrophilic compounds are released from pistachio matrices. In conclusion, 9 lipophilic and 11 hydrophilic bioactives in pistachios are systematically quantified. PMID:24460079

Liu, Yuntao; Blumberg, Jeffrey B; Chen, C-Y Oliver



Bioactive glass in tissue engineering  

PubMed Central

This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.



Skin Graft  

PubMed Central

Skin graft is one of the most indispensable techniques in plastic surgery and dermatology. Skin grafts are used in a variety of clinical situations, such as traumatic wounds, defects after oncologic resection, burn reconstruction, scar contracture release, congenital skin deficiencies, hair restoration, vitiligo, and nipple-areola reconstruction. Skin grafts are generally avoided in the management of more complex wounds. Conditions with deep spaces and exposed bones normally require the use of skin flaps or muscle flaps. In the present review, we describe how to perform skin grafting successfully, and some variation of skin grafting. PMID:22570780

Shimizu, Ruka; Kishi, Kazuo



Bacterial Skin Infections  


... Disorders Pigment Disorders Blistering Diseases Parasitic Skin Infections Bacterial Skin Infections Fungal Skin Infections Viral Skin Infections Sunlight and Skin Damage Noncancerous Skin Growths Skin Cancers Nail Disorders Topics in Bacterial Skin ...


Fungal Skin Infections  


... Disorders Pigment Disorders Blistering Diseases Parasitic Skin Infections Bacterial Skin Infections Fungal Skin Infections Viral Skin Infections Sunlight and Skin Damage Noncancerous Skin Growths Skin Cancers Nail Disorders Topics in Fungal Skin ...


A versatile scattering model for deciduous leaves  

Microsoft Academic Search

A versatile, multi-frequency scattering model is developed for deciduous leaves. The model gains its versatility from estimating the field inside the leaves, which are represented by elliptic discs, through employing a technique bridging the generalized Rayleigh-Gans (GRG) and the physical optics (PO) approximations. Analytic and numerical results are presented to illustrate the model versatility

Mostafa A. Karam; GenCorp Aerojet



Department of Mechanical Engineering Fall 2012 Intelligent Building Skin Design  

E-print Network

PENNSTATE Department of Mechanical Engineering Fall 2012 Intelligent Building Skin Design Overview and patents on existing intelligent building skins Brainstormed and selected a concept design based to display patterns and lettering The versatile design allows intelligent, autonomous or manual control #12;

Demirel, Melik C.


Broad spectrum bioactive sunscreens.  


The development of sunscreens containing reduced concentration of chemical UV filters, even though, possessing broad spectrum effectiveness with the use of natural raw materials that improve and infer UV absorption is of great interest. Due to the structural similarities between polyphenolic compounds and organic UV filters, they might exert photoprotection activity. The objective of the present research work was to develop bioactive sunscreen delivery systems containing rutin, Passiflora incarnata L. and Plantago lanceolata extracts associated or not with organic and inorganic UV filters. UV transmission of the sunscreen delivery system films was performed by using diffuse transmittance measurements coupling to an integrating sphere. In vitro photoprotection efficacy was evaluated according to the following parameters: estimated sun protection factor (SPF); Boot's Star Rating category; UVA/UVB ratio; and critical wavelength (lambda(c)). Sunscreen delivery systems obtained SPF values ranging from 0.972+/-0.004 to 28.064+/-2.429 and bioactive compounds interacted with the UV filters positive and negatively. This behavior may be attributed to: the composition of the delivery system; the presence of inorganic UV filter and quantitative composition of the organic UV filters; and the phytochemical composition of the P. incarnata L. and P. lanceolata extracts. Among all associations of bioactive compounds and UV filters, we found that the broad spectrum sunscreen was accomplished when 1.68% (w/w) P. incarnata L. dry extract was in the presence of 7.0% (w/w) ethylhexyl methoxycinnamate, 2.0% (w/w) benzophenone-3 and 2.0% (w/w) TiO(2). It was demonstrated that this association generated estimated SPF of 20.072+/-0.906 and it has improved the protective defense against UVA radiation accompanying augmentation of the UVA/UVB ratio from 0.49 to 0.52 and lambda(c) from 364 to 368.6nm. PMID:18662760

Velasco, Maria Valéria Robles; Sarruf, Fernanda Daud; Salgado-Santos, Idalina Maria Nunes; Haroutiounian-Filho, Carlos Alberto; Kaneko, Telma Mary; Baby, André Rolim



Skin Aging  


... too. Sunlight is a major cause of skin aging. You can protect yourself by staying out of ... person has smoked. Many products claim to revitalize aging skin or reduce wrinkles, but the Food and ...


Skin Complications  


... drugs that can help clear up this condition. Day-to-Day Skin Care See our tips for daily skin ... Risk? Diagnosis Lower Your Risk Risk Test Alert Day Prediabetes My Health Advisor Tools to Know Your ...


Bioactivity in Organic Chemistry Courses.  

ERIC Educational Resources Information Center

Presented are three ways in which bioactivity of organic compounds has been introduced in organic chemistry courses. One is to point out a typical bioactivity of a given functional group. A second is to discuss biorganic mechanisms. A third is to draw structure-activity correlations (SAR). (Author/HM)

Ferguson, Lloyd N.



Analytical investigations of poly(acrylic acid) coatings electrodeposited on titanium-based implants: a versatile approach to biocompatibility enhancement  

Microsoft Academic Search

A polyacrylic acid film was synthesized on titanium substrates from aqueous solutions via an electroreductive process for\\u000a the first time. This work was done in order to develop a versatile coating for titanium-based orthopaedic implants that acts\\u000a as both an effective bioactive surface and an effective anti-corrosion barrier. The chemical structure of the PAA coating\\u000a was investigated by X-ray photoelectron

E. De Giglio; S. Cometa; N. Cioffi; L. Torsi; L. Sabbatini



Skin Diseases: Skin Health and Skin Diseases  


... to flares, and treat symptoms when they occur. Rosacea © 2008 Logical Images, Inc. Rosacea — Frequent redness (flushing) of the face; small red ... and thicker skin. Your physician can usually diagnose rosacea with a thorough medical history and physical exam. ...


Gamma Radiation Effects on Peanut Skin Antioxidants  

PubMed Central

Peanut skin, which is removed in the peanut blanching process, is rich in bioactive compounds with antioxidant properties. The aims of this study were to measure bioactive compounds in peanut skins and evaluate the effect of gamma radiation on their antioxidant activity. Peanut skin samples were treated with 0.0, 5.0, 7.5, or 10.0 kGy gamma rays. Total phenolics, condensed tannins, total flavonoids, and antioxidant activity were evaluated. Extracts obtained from the peanut skins were added to refined-bleached-deodorized (RBD) soybean oil. The oxidative stability of the oil samples was determined using the Oil Stability Index method and compared to a control and synthetic antioxidants (100 mg/kg BHT and 200 mg/kg TBHQ). Gamma radiation changed total phenolic content, total condensed tannins, total flavonoid content, and the antioxidant activity. All extracts, gamma irradiated or not, presented increasing induction period (h), measured by the Oil Stability Index method, when compared with the control. Antioxidant activity of the peanut skins was higher than BHT. The present study confirmed that gamma radiation did not affect the peanut skin extracts’ antioxidative properties when added to soybean oil. PMID:22489142

de Camargo, Adriano Costa; de Souza Vieira, Thais Maria Ferreira; Regitano-D’Arce, Marisa Aparecida Bismara; Calori-Domingues, Maria Antonia; Canniatti-Brazaca, Solange Guidolin



Gene activation by bioactive glasses  

Microsoft Academic Search

Bioactive glasses have been shown to regulate gene expression in both hard and soft tissue repair. New resorbable bioactive\\u000a glass constructs are now being developed that can influence gene expression in the local environment by manipulating material\\u000a properties such as the surface chemistry, topography and the release of dissolution ions. The success of these scaffolds,\\u000a however, may depend upon a

G. Jell; M. M. Stevens



Bioactive composite for keratoprosthesis skirt  

Microsoft Academic Search

In this study, the fabrication and properties of a synthetic keratoprosthesis skirt for use in osteo-odonto-keratoprosthesis (OOKP) surgery are discussed. In the search for a new material concept, bioactive glass and polymethyl methacrylate (PMMA)-based composites were prepared. Three different bioactive glasses (i.e. 45S5, S53P4 and 1–98) and one slowly resorbing glass, FL107, with two different forms (i.e. particles and porous

Kaisa Laattala; Reeta Huhtinen; Mervi Puska; Hanna Arstila; Leena Hupa; Minna Kellomäki; Pekka K. Vallittu


Highly versatile tapeout automation system  

NASA Astrophysics Data System (ADS)

Developing a tapeout automation system that works in a static environment where inputs and outputs can be defined - as in a vertically integrated Semiconductor Company - is relatively straightforward. In an environment with a large variety of inputs and outputs, a more versatile system must be developed. The key elements of such a system must be flexibility and ease of maintenance. In order to accomplish this, D2W has developed a software-independent suite of tools which employs a highly modular approach and dynamic variable substitution to enable everything from multi-processing to customer-specific documentation. This system routinely manages tapeout flows with several thousand variables in a highly accurate, high speed, fully automated mode. These tools have been developed and refined over a period of 10 years and deployed for tapeouts to more than 40 companies, implementing in excess of 100 technologies, and successfully interfacing with 14 or more commercial and captive mask shops worldwide

Morse, Richard D.



The versatility and universality of calcium signalling  

Microsoft Academic Search

The universality of calcium as an intracellular messenger depends on its enormous versatility. Cells have a calcium signalling toolkit with many components that can be mixed and matched to create a wide range of spatial and temporal signals. This versatility is exploited to control processes as diverse as fertilization, proliferation, development, learning and memory, contraction and secretion, and must be

Michael J. Berridge; Peter Lipp; Martin D. Bootman




Microsoft Academic Search

The effect of multiple thermal cycles on the weldability of Alloy 718 was investigated using the Versatile Varestraint test. Metallography, SEM fractography, and EDAX analysis were also utilized to study the nature and cause of the fissures occurred during the weldability testing. The results of the Spot-On-Bead (SOB) test, conducted using the Versatile Varestraint test device, showed an adverse effect

C. P. Chou; C. H. Chao


A Versatile Genetic Algorithm for Network Planning  

E-print Network

A Versatile Genetic Algorithm for Network Planning Anton Riedl Institute of Communication Networks, a new genetic algorithm is introduced which is used as a versatile tool for solving different types of optimization problems arising in the field of network planning. The genetic algorithm is applied to the minimum

Riedl, Anton


Skin Substitutes  

PubMed Central

In a relatively short timespan, a wealth of new skin substitutes made of synthetic and biologically derived materials have arisen for the purpose of wound healing of various etiologies. This review article focuses on providing an overview of skin substitutes including their indications, contraindications, benefits, and limitations. The result of this overview was an appreciation of the vast array of options available for clinicians, many of which did not exist a short time ago. Yet, despite the rapid expansion this field has undergone, no ideal skin substitute is currently available. More research in the field of skin substitutes and wound healing is required not only for the development of new products made of increasingly complex biomolecular material, but also to compare the existing skin substitutes. PMID:25371771

Howe, Nicole; Cohen, George



BIOCHEMISTRY: Versatile Collagens in Invertebrates  

NSDL National Science Digital Library

Access to the article is free, however registration and sign-in are required. In his Perspective, Engel discusses the diverse structural features of collagens, a ubiquitous fibrillar protein that forms the main support of skin and tendons. A unique example is reported in this issue by Coyne et al., who describe the amino acid sequence of the specialized collagen that forms the byssal threads that anchor mussels to rocks.

Jürgen Engel (Biozentrum of the University; Department of Biophysical Chemistry)



Skin Cancer in Skin of Color  

PubMed Central

Skin cancers in skin of color often present atypically or with advanced stage in comparison to Caucasian patients. Health care providers must maintain a high index of suspicion when examining skin lesions in skin of color. PMID:19691228

Bradford, Porcia T.



The future of bioactive ceramics.  


Two important worldwide needs must be satisfied in the future; (1) treatment of the deteriorating health of an aging population and, (2) decreasing healthcare costs to meet the needs of an increased population. The ethical and economic dilemma is how to achieve equality in quality of care while at the same time decreasing cost of care for an ever-expanding number of people. The limited lifetime of prosthetic devices made from first-generation nearly inert biomaterials requires new approaches to meet these two large needs. This paper advises an expanded emphasis on: (1) regeneration of tissues and (2) prevention of tissue deterioration to meet this growing need. Innovative use of bioactive ceramics with genetic control of in situ tissue responses offers the potential to achieve both tissue regeneration and prevention. Clinical success of use of bioactive glass for bone regeneration is evidence that this concept works. Likewise the use of micron sized bioactive glass powders in a dentifrice for re-mineralization of teeth provides evidence that prevention of tissue deterioration is also possible. This opinion paper outlines clinical needs that could be met by innovative use of bioactive glasses and ceramics in the near future; including: regeneration of skeletal tissues that is patient specific and genetic based, load-bearing bioactive glass-ceramics for skeletal and ligament and tendon repair, repair and regeneration of soft tissues, and rapid low-cost analysis of human cell-biomaterial interactions leading to patient specific diagnoses and treatments using molecularly tailored bioceramics. PMID:25644100

Hench, Larry L



Bioactive composite for keratoprosthesis skirt.  


In this study, the fabrication and properties of a synthetic keratoprosthesis skirt for use in osteo-odonto-keratoprosthesis (OOKP) surgery are discussed. In the search for a new material concept, bioactive glass and polymethyl methacrylate (PMMA)-based composites were prepared. Three different bioactive glasses (i.e. 45S5, S53P4 and 1-98) and one slowly resorbing glass, FL107, with two different forms (i.e. particles and porous glass structures) were employed in the fabrication of specimens. In in vitro studies, the dissolution behaviour in simulated aqueous humour, compressive properties, and pore formation of the composites were investigated. According to the results, FL107 dissolved very slowly (2.4% of the initial glass content in three weeks); thus, the pore formation of the FL107 composite was also observed to be restricted. The dissolution rates of the bioactive glass-PMMA composites were greater (12%-17%). These faster dissolving bioactive glass particles caused some porosity on the outermost surfaces of the composite. The slight surface porosity was also confirmed by a decrease in compressive properties. During six weeks' in vitro dissolution, the compressive strength of the test specimens containing particles decreased by 22% compared to values in dry conditions (90-107 MPa). These results indicate that the bioactive composites could be stable synthetic candidates for a keratoprosthesis skirt in the treatment of severely damaged or diseased cornea. PMID:22098870

Laattala, Kaisa; Huhtinen, Reeta; Puska, Mervi; Arstila, Hanna; Hupa, Leena; Kellomäki, Minna; Vallittu, Pekka K



Skin Pigment  


... their way into the skin. Diseases such as hemochromatosis or hemosiderosis or some drugs and chemicals that ... C. Schalock, MD VIEW STUDENT STORIES Pronunciations bilirubin hemochromatosis hemosiderosis hypopigmentation malaria melanin melanocytes siderosis tinea versicolor ...


Skin turgor  


... decreased tearing )? Tests that may be performed: Blood chemistry (such as a chem-20 ) CBC Urinalysis Intravenous fluids may be needed for severe dehydration. You may need medicines to treat other conditions that affect skin turgor and elasticity.


Mature Skin  


... Media contacts Public service advertisements Stats and facts Gold Triangle Awards Stories and news News releases Press ... Teenage skin Tropical travel Vitamin D Cosmetic treatments Gold Triangle Awards Home Media resources Stats and facts ...


Skin Cancer  


... States. The two most common types are basal cell cancer and squamous cell cancer. They usually form on the head, face, ... If not treated, some types of skin cancer cells can spread to other tissues and organs. Treatments ...


Senescent Skin  

PubMed Central

The cutaneous surface is continually influenced by aging and environmental factors. A longer life span is accompanied by an increase in the frequency of problems associated with aging skin. Although most of these changes and lesions are not life threatening, the premalignant lesions must be recognized and treated. The common aging and actinic skin changes are discussed and appropriate management is described. ImagesFig. 1Fig. 2Fig. 3Fig. 4 PMID:20469067

Kushniruk, William



Skin Diseases  

Microsoft Academic Search

In assigning health priorities, skin diseases are sometimes thought of, in planning terms, as small-time players in the global league of illness compared with diseases that cause signif- icant mortality, such as HIV\\/AIDS, community-acquired pneu- monias, and tuberculosis. However, skin problems are generally among the most common diseases seen in primary care settings in tropical areas, and in some regions

Roderick Hay; Sandra E. Bendeck; Suephy Chen; Roberto Estrada; Anne Haddix; Tonya McLeod; Antoine Mahé


Skin care and incontinence  


Incontinence - skin care ... in a wheelchair, regular chair, or bed TAKING CARE OF THE SKIN Using diapers and other products ... skin. Over time, the skin breaks down. Special care must be taken to keep the skin clean ...


Versatile machine mills, saws light materials  

NASA Technical Reports Server (NTRS)

Versatile milling/sawing machine performs angle cuts, flat and profile milling, machining of grooves and slots, and edge trimming of phenolic panels. The machine is mounted on rails above a table equipped with vacuum capability for holding workpieces.

Rauschl, J. A.



Methanol: A Versatile Fuel for Immediate Use  

ERIC Educational Resources Information Center

Advocates the large-scale production and use of methanol as a substitute for the diminishing reserves of low-cost petroleum resources. Describes the manufacturing process and advantages of the versatile fuel. (JR)

Reed, T. B.; Lerner, R. M.



Bare Bones of Bioactive Glass  

NASA Technical Reports Server (NTRS)

Paul Ducheyne, a principal investigator in the microgravity materials science program and head of the University of Pernsylvania's Center for Bioactive Materials and Tissue Engineering, is leading the trio as they use simulated microgravity to determine the optimal characteristics of tiny glass particles for growing bone tissue. The result could make possible a much broader range of synthetic bone-grafting applications. Even in normal gravity, bioactive glass particles enhance bone growth in laboratory tests with flat tissue cultures. Ducheyne and his team believe that using the bioactive microcarriers in a rotating bioreactor in microgravity will produce improved, three-dimensional tissue cultures. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: NASA and University of Pennsylvania Center for Bioactive Materials and Tissue Engineering.



Bioactive compounds produced by cyanobacteria  

Microsoft Academic Search

Cyanobacteria produce a large number of compounds with varying bioactivities. Prominent among these are toxins: hepatotoxins such as microcystins and nodularins and neurotoxins such as anatoxins and saxitoxins. Cytotoxicity to tumor cells has been demonstrated for other cyanobacterial products, including 9-deazaadenosine, dolastatin 13 and analogs. A number of compounds in cyanobacteria are inhibitors of proteases — micropeptins, cyanopeptolins, oscillapeptin, microviridin,

M Namikoshi; KL Rinehart



[Nutrigenomics--bioactive dietary components].  


Nutrigenomics analyzes relations between diet and genes, and identifies mechanisms in which food and nutrition affect health and lifestyles and noncommunicable diseases (R. Chadwick, 2004). Bioactive dietary components are signal molecules that carry information from the external environment and affect in terms of quantity and quality in the process of gene expression. The biological effect of bioactive dietary components depends on various of physiological processes that can occur within a few genes. Polymorphism of genes can change their function and physiological response of the body for nutrients. Bioactive dietary components work on at least two levels of the expression of genes as factors regulating chromatin structure and as factors directly regulate the activity of nuclear receptors. The processes of synthesis and DNA repair are regulated by some of vitamins, macro-and micro-elements. They provide, among others, cofactors of enzymes that catalyze the replication of DNA methylation and its repair. DNA methylation profile may change under the influence of diet, single nucleotide polymorphisms and environmental factors. Bioactive dietary components may directly affect the process of gene expression by acting as ligands for nuclear receptors. Sensitive to dietary group of nuclear receptors are sensory receptors. This group includes, among others receptor PPAR (peroxisome proliferator activated), responsible for energy metabolism and receptors LXR (liver X receptor), FXR (farnesoid X receptor) and RXR, which is responsible for the metabolism of cholesterol. PMID:23619224

G?tek, Monika; Czech, Natalia; Fizia, Katarzyna; Bia?ek-Dratwa, Agnieszka; Muc-Wierzgo?, Ma?gorzata; Kokot, Teresa; Nowakowska-Zajdel, Ewa



Unmasking Skin  

NSDL National Science Digital Library

This Web site is the online companion to Unmasking Skin, a feature article in the November 2000 issue of National Geographic Magazine, which offers an in-depth look at the body's largest organ. Visitors are invited to "go skin deep and beyond" with a photo gallery, a multimedia interview with the story's photographer, and related Web sites. The site also includes a portion of the feature article, a related Online Extra article, and a short piece about goosebumps. While not as comprehensive as the print article itself, this Web site provides an intriguing look at a part of the body that's often taken for granted.



Intravital insights in skin wound healing using the mouse dorsal skin fold chamber.  


The skin fold chamber is one of the most accepted animal models for studying the microcirculation both in health and disease. Here we describe for the first time the alternative use of the skin fold chamber in mice for intravital microscopic investigation of skin regeneration after creating a full dermal thickness wound. The dorsal skin fold chamber was implanted in hairless SKH1-hr mice and a full dermal thickness wound (area approximately 4 mm2) was created. By means of intravital fluorescence microscopy, the kinetics of wound healing were analyzed for 12 days post wounding with assessment of epithelialization and nutritive perfusion. The morphology of the regenerating skin was characterized by hematoxylin-eosin histology and immunohistochemistry for proliferation and microvessel density. The model allows the continuous visualization of wound closure with complete epithelialization at day 12. Furthermore, a sola cutis se reficientis could be described by an inner circular ring of vessels at the wound margin surrounded by outer radial passing vessels. Inner circular vessels presented initially with large diameters and matured towards diameters of less than 15 microm for conversion into radial spreading outer vessels. Furthermore, wound healing showed all diverse core issues of skin repair. In summary, we were able to establish a model for the analysis of microcirculation in the healing skin of the mouse. This versatile model allows distinct analysis of new vessel formation and maturation in regenerating skin as well as evaluation of skin healing under different pathologic conditions. PMID:18005122

Sorg, Heiko; Krueger, Christian; Vollmar, Brigitte



Skinning maps  

Microsoft Academic Search

Let M be a hyperbolic $3$ -manifold with nonempty totally geodesic boundary. We prove that there are upper and lower bounds on the diameter of the skinning map of M that depend only on the volume of the hyperbolic structure with totally geodesic boundary, answering a question of Minsky. This is proved via a filling theorem, which states that as

Richard Peabody Kent



Allergy testing - skin  


Patch tests - allergy; Scratch tests - allergy; Skin tests - allergy; RAST test ... There are three common methods of allergy skin testing. The skin prick test involves: Placing a small amount of substances that may be causing your symptoms on the skin, ...


Skin Allergy Quiz  


Share | Skin Allergy Quiz Skin irritations can be very frustrating. Identifying the cause of a skin ailment is essential in order ... can be caused by several things including an allergy, infection or skin problem like eczema or psoriasis. ...


Bare Bones of Bioactive Glass  

NASA Technical Reports Server (NTRS)

Paul Ducheyne, a principal investigator in the microgravity materials science program and head of the University of Pernsylvania's Center for Bioactive Materials and Tissue Engineering, is leading the trio as they use simulated microgravity to determine the optimal characteristics of tiny glass particles for growing bone tissue. The result could make possible a much broader range of synthetic bone-grafting applications. Bioactive glass particles (left) with a microporous surface (right) are widely accepted as a synthetic material for periodontal procedures. Using the particles to grow three-dimensional tissue cultures may one day result in developing an improved, more rugged bone tissue that may be used to correct skeletal disorders and bone defects. The work is sponsored by NASA's Office of Biological and Physical Research.



Bioactive naphthoquinones from Cordyceps unilateralis  

Microsoft Academic Search

Six bioactive naphthoquinone derivatives, erythrostominone, deoxyerythrostominone, 4-O-methyl erythrostominone, epierythrostominol, deoxyerythrostominol and 3,5,8-trihydroxy-6-methoxy-2-(5-oxohexa-1,3-dienyl)-1,4-naphthoquinone, were isolated from the insect pathogenic fungus Cordyceps unilateralis BCC1869. While the latter is synthetically known, both it and 4-O-methyl erythrostominone are products of fungus strain C. unilateralis BCC1869.

Prasat Kittakoop; Juntira Punya; Palangpon Kongsaeree; Yuwapin Lertwerawat; Amnuay Jintasirikul; Morakot Tanticharoen; Yodhathai Thebtaranonth



Amphibian Skin  

NSDL National Science Digital Library

In this activity, learners explore the concept of permeability to better understand why amphibians are extremely sensitive to pollution. Learners soak one regular hard-boiled egg and one peeled hard-boiled egg in dyed water and then record how the eggs' circumference and appearance change after 24 hours. Learners investigate how the peeled egg represents amphibian skin and how amphibians are affected by pollution.

Aquarium, Omaha'S H.



Cutaneous skin tag  


Skin tag; Acrochordon; Fibroepithelial polyp ... have diabetes. They are thought to occur from skin rubbing against skin. ... The tag sticks out of the skin and may have a short, narrow stalk connecting it to the surface of the skin. Some skin tags are as long as ...


Laser cladding of bioactive glass coatings  

Microsoft Academic Search

Laser cladding by powder injection has been used to produce bioactive glass coatings on titanium alloy (Ti6Al4V) substrates. Bioactive glass compositions alternative to 45S5 Bioglass® were demonstrated to exhibit a gradual wetting angle–temperature evolution and therefore a more homogeneous deposition of the coating over the substrate was achieved. Among the different compositions studied, the S520 bioactive glass showed smoother wetting

R. Comesaña; F. Quintero; F. Lusquiños; M. J. Pascual; M. Boutinguiza; A. Durán; J. Pou



Bioactive glass-coated silicone for percutaneous devices with improved tissue interaction  

NASA Astrophysics Data System (ADS)

The discovery of bioactive glasses, in the early 1970s, has produced a material that develops a strong adherent bond with soft tissue. Many medical applications currently use silicone as an implant material, but are hindered by the formation of fibrous scar tissue surrounding the device. This fibrous scar tissue can lead to pain, infection, and/or extrusion of these devices. Bioactive ceramic materials are inherently brittle and can not be used in applications where a flexible material is needed. Therefore, the coating of existing flexible silicone medical devices, like catheters, with a bioactive glass material would give the advantages of both. The research presented here is of methods used to coat silicone with a bioactive glass powder (Bioglass°ler) and the in vitro testing of those coatings. The bioactivity of these coatings was measured using scanning electron microscopy, inductively coupled plasma spectroscopy, and Fourier transform infrared spectroscopy. It was observed that hydroxyapatite, a bonelike apatite, was formed in vitro on both the bioactive glass particles and the silicone surface between these particles. From these results a new theory was developed that related the distance between particles on a surface with the formation of an apatite layer. A critical distance between particles for the formation of an apatite layer on the substrate exists. This critical distance is a function of both the particle size and composition. In addition, a method to coat silicone catheters with bioactive glass powder is also discussed. This coated catheter could ultimately be used for improved percutaneous access in peritoneal dialysis. The one barrier to greater peritoneal dialysis use and the reason many patients switch from peritoneal to hemodialysis is recurrent exit-site infections and subsequent peritonitis. These infections are caused by the lack of a tight seal and downgrowth of epidermal tissue around the catheter at the catheter-skin interface.

Marotta, James Scott


Bioactivity of tape cast and sintered bioactive glass-ceramic in simulated body fluid  

Microsoft Academic Search

A common ceramic processing technique, tape casting, was used to produce thin, flexible sheets of bioactive glass (Bioglass® 45S5) particulate in an organic matrix. Tape casting offers the possibility of producing three-dimensional shapes, as the final material is built up layer by layer. Bioactive glass tapes were sintered together to form small discs for in vitro bioactivity testing in simulated

Daniel C. Clupper; John J. Mecholsky; Guy P. LaTorre; David C. Greenspan



Guinea Pigs: Versatile Animals for the Classroom  

ERIC Educational Resources Information Center

Guinea pigs are presented as versatile classroom animals. Suggestions for animal behavior and genetics studies are given. Also included is information concerning sex determination and the breeding of guinea pigs, and hints on keeping these animals in the classroom. References and illustrations complete the article. (MA)

Barman, Charles R.



Functional versatility supports coral reef biodiversity  

E-print Network

Functional versatility supports coral reef biodiversity D. R. Bellwood1,*, P. C. Wainwright2 , C. J. Fulton1 and A. S. Hoey1 1 Department of Marine Biology, Centre for Coral Reef Biodiversity, James Cook of high biodiversity on coral reefs. Keywords: coral reef fishes; specialist; generalist; functional

Wainwright, Peter C.


Decoder Banks: Versatility, Automation, and High Accuracy  

E-print Network

Decoder Banks: Versatility, Automation, and High Accuracy without Supervised Training Prateek {psarkar|baird} Abstract A methodology using decoder banks is proposed for high-accuracy, fully properties of document image decoding (DID) technology: (1) it is trainable for high accuracy across a wide

Baird, Henry S.


Enabling service adaptability with versatile anycast  

Microsoft Academic Search

SUMMARY We present versatile anycast, which allows a service running on a varying collection of nodes scattered over a wide-area network to present itself to the clients as one running on a single node. Providing a single logical address enables the client-side software to preserve the traditional service access model based on single access points. At the same time, the

Michal Szymaniak; Guillaume Pierre; Mariana Simons-nikolova; Maarten Van Steen



Versatile, Fully Automated, Microfluidic Cell Culture System  

E-print Network

Versatile, Fully Automated, Microfluidic Cell Culture System Rafael Go´mez-Sjo1berg, Anne A. Leyrat and quantita- tive cell culture technology, driven both by the intense activity in stem cell biology and by the emergence of systems biology. We built a fully automated cell culture screening system based

Chen, Christopher S.


On the Intellectual Versatility of Karl Pearson  

Microsoft Academic Search

This paper displays the impressive versatility of Karl Pearson, focusing not only on his contributions to statistics and other quantitative disciplines but also on his research and publications in religion, politics, literary criticism, philosophy of science, Darwinism, biology, history, freethought, evolution, genetics, socialism, anthropology, eugenics, and emancipation of women. Being the chairman of a first class academic department and the

Richard H. Williams; Bruno D. Zumbo; Donald Ross; W. Zimmerman


A Versatile Technique for Solving Quintic Equations  

ERIC Educational Resources Information Center

In this paper we present a versatile technique to solve several types of solvable quintic equations. In the technique described here, the given quintic is first converted to a sextic equation by adding a root, and the resulting sextic equation is decomposed into two cubic polynomials as factors in a novel fashion. The resultant cubic equations are…

Kulkarni, Raghavendra G.



Bioactivity of electro-thermally poled bioactive silicate glass  

Microsoft Academic Search

A 45S5 bioactive glass (nominal composition: 46.1mol.% SiO2, 2.6mol.% P2O5, 26.9mol.% CaO, 24.4mol.% Na2O) was electrothermally poled by applying voltages up to 750V for 45min at 200°C, and the thermally stimulated depolarization currents (TSDCs) were recorded. Changes in chemical composition and electrical properties after poling were investigated by TSDC measurements, impedance spectroscopy and scanning electron microscopy with energy dispersive X-ray

C. R. Mariappan; D. M. Yunos; A. R. Boccaccini; B. Roling



Bioactivity evolution of the surface functionalized bioactive glasses.  


The formation of a calcium phosphate layer on the surface of the SiO2 -CaO-P2 O5 glasses after immersion in simulated body fluid (SBF) generally demonstrates the bioactivity of these materials. Grafting of the surface by chemical bonding can minimize the structural changes in protein adsorbed on the surface. Therefore, in this study our interest was to evaluate the bioactivity and blood biocompatibility of the SiO2 -CaO-P2 O5 glasses after their surface modification by functionalization with aminopropyl-triethoxysilane and/or by fibrinogen. It is shown that the fibrinogen adsorbed on the glass surfaces induces a growing of the apatite-like layer. It is also evidenced that the protein content from SBF influences the growth of the apatite-like layer. Furthermore, the good blood compatibility of the materials after fibrinogen and bovine serum albumin adsorption is proved from the assessment of the ?-sheet-?-turn ratio. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 261-272, 2015. PMID:24820252

Magyari, Klára; Baia, Lucian; Vulpoi, Adriana; Simon, Simion; Popescu, Octavian; Simon, Viorica



Quinazoline derivatives: synthesis and bioactivities  

PubMed Central

Owing to the significant biological activities, quinazoline derivatives have drawn more and more attention in the synthesis and bioactivities research. This review summarizes the recent advances in the synthesis and biological activities investigations of quinazoline derivatives. According to the main method the authors adopted in their research design, those synthetic methods were divided into five main classifications, including Aza-reaction, Microwave-assisted reaction, Metal-mediated reaction, Ultrasound-promoted reaction and Phase-transfer catalysis reaction. The biological activities of the synthesized quinazoline derivatives also are discussed. PMID:23731671



Bioactive thiazole and benzothiazole derivatives.  


The heterocycles are the versatile compounds existing in almost all natural products and synthetic organic compounds, usually associated with one or the other biological activity. Among the heterocycles the thiazoles and benzothiazoles occupy a prominent position. They possess a broad range of biological activities and are found in many potent biologically active molecules and drugs such as vitamin thiamine, sulfathiazol (antimicrobial drug), ritonavir (antiretroviral drug), abafungin (antifungal drug) and tiazofurin (antineoplastic drug). The thiazole moiety is abundantly found in natural products while benzothiazole moiety is rare. In this review we disclose the literature reports of thiazoles and benzothiazoles possessing different biological activities. PMID:25455640

Rouf, Abdul; Tanyeli, Cihangir



Versatile microfluidic droplets array for bioanalysis.  


We propose a novel method to obtain versatile droplets arrays on a regional hydrophilic chip that is fabricated by PDMS soft lithography and regional plasma treatment. It enables rapid liquid dispensation and droplets array formation just making the chip surface in contact with solution. By combining this chip with a special Christmas Tree structure, the droplets array with concentrations in gradient is generated. It possesses the greatly improved performance of convenience and versatility in bioscreening and biosensing. For example, high throughput condition screening of toxic tests of CdSe quantum dots on HL-60 cells are conducted and cell death rates are successfully counted quickly and efficiently. Furthermore, a rapid biosensing approach for cancer biomarkers carcinoma embryonic antigen (CEA) is developed via magnetic beads (MBs)-based sandwich immunoassay methods. PMID:25525675

Hu, Shan-Wen; Xu, Bi-Yi; Ye, Wei-Ke; Xia, Xing-Hua; Chen, Hong-Yuan; Xu, Jing-Juan



A parallel, portable and versatile treecode  

SciTech Connect

Portability and versatility are important characteristics of a computer program which is meant to be generally useful. We describe how we have developed a parallel N-body treecode to meet these goals. A variety of applications to which the code can be applied are mentioned. Performance of the program is also measured on several machines. A 512 processor Intel Paragon can solve for the forces on 10 million gravitationally interacting particles to 0.5% rms accuracy in 28.6 seconds.

Warren, M.S. [Los Alamos National Lab., NM (United States); Salmon, J.K. [Australian National Univ., Canberra, ACT (Australia)]|[California Inst. of Technology, Pasadena, CA (United States)



Correlations between chromatographic parameters and bioactivity predictors of potential herbicides.  


Different liquid chromatography techniques, including reversed-phase liquid chromatography on Purosphere RP-18e, IAM.PC.DD2 and Cosmosil Cholester columns and micellar liqud chromatography with a Purosphere RP-8e column and using buffered sodium dodecyl sulfate-acetonitrile as the mobile phase, were applied to study the lipophilic properties of 15 newly synthesized phenoxyacetic and carbamic acid derivatives, which are potential herbicides. Chromatographic lipophilicity descriptors were used to extrapolate log k parameters (log kw and log km) and log k values. Partitioning lipophilicity descriptors, i.e., log P coefficients in an n-octanol-water system, were computed from the molecular structures of the tested compounds. Bioactivity descriptors, including partition coefficients in a water-plant cuticle system and water-human serum albumin and coefficients for human skin partition and permeation were calculated in silico by ACD/ADME software using the linear solvation energy relationship of Abraham. Principal component analysis was applied to describe similarities between various chromatographic and partitioning lipophilicities. Highly significant, predictive linear relationships were found between chromatographic parameters and bioactivity descriptors. PMID:23872809

Janicka, Ma?gorzata



Nutritional compositions and bioactivities of Dacryodes species: a review.  


Dacryodes species are evergreen, perennial trees with fleshy fruits and belong to the family Buseraseae. Many Dacryodes species are underutilized but are widely applied in traditional folk medicine to treat malaria, fever and skin diseases. The nutritional compositions, phytochemicals and biological activities of Dacryodes edulis, Dacryodes rostrata, Dacryodes buettneri, Dacryodes klaineana and Dacryodes hexandra are presented. The edible fruits of D. edulis are rich in lipids, proteins, vitamins, fatty acids and amino acids. Its extracts (leaf, fruit and resin) exhibit antioxidant, anti-microbial, anti-carcinogenic and other bioactivities. D. rostrata fruit has significant nutrient content, and is rich in proteins, lipids and minerals. These fruits are also highly rich in polyphenols, anthocyanins and antioxidant activities. This comprehensive review will assist the reader in understanding the nutritional benefits of Dacryodes species and in identifying current research needs. PMID:25038673

Tee, Lee Hong; Yang, Bao; Nagendra, Krishnamurthy Prasad; Ramanan, Ramakrishnan Nagasundara; Sun, Jian; Chan, Eng-Seng; Tey, Beng Ti; Azlan, Azrina; Ismail, Amin; Lau, Cheng Yuon; Jiang, Yueming



CSD skin test  


Cat scratch disease skin test ... cat scratch disease is injected just under the skin. After 48 to 72 hours, a health care ... no special preparation. People with dermatitis or other skin irritations should have the test performed on an ...


Skin (Pressure) Sores  


... Topic Skin dryness Next Topic Sleep problems Skin (pressure) sores A skin or pressure sore develops when the blood supply to an ... is bedridden or always in a wheelchair puts pressure on the same places much of the time. ...


Investigating the protective properties of milk phospholipids against ultraviolet light exposure in a skin equivalent model  

NASA Astrophysics Data System (ADS)

Current research on bioactive molecules in milk has documented health advantages of bovine milk and its components. Milk Phospholipids, selected for this study, represent molecules with great potential benefit in human health and nutrition. In this study we used confocal reflectance and multiphoton microscopy to monitor changes in skin morphology upon skin exposure to ultraviolet light and evaluate the potential of milk phospholipids in preventing photodamage to skin equivalent models. The results suggest that milk phospholipids act upon skin cells in a protective manner against the effect of ultraviolet (UV) radiation. Similar results were obtained from MTT tissue viability assay and histology.

Russell, Ashley; Laubscher, Andrea; Jimenez-Flores, Rafael; Laiho, Lily H.



Skin Cancer in Skin of Color  

Microsoft Academic Search

\\u000a Skin cancer is the most common malignancy in the United States.1 While skin cancer is less common in people with skin of color,\\u000a it is more often associated with an increased incidence of morbidity and mortality as compared to white counterparts.2,3 This\\u000a imbalance has significant public health concerns. Current skin cancer campaigns focus on Caucasian patients in high-risk groups.\\u000a There

Brooke A. Jackson


Phase II enzymes and bioactivation.  


A colloquium entitled Phase II enzymes and bioactivation was held during the 10th International Symposium on Microsomes and Drug Oxidations in Toronto, Ont., on July 20, 1994. This colloquium was a tribute in recognition of the contributions by Dr. James R. Gillette in advancing our understanding of drug metabolism and chemical toxicity. A major focus of the colloquium was formation of conjugates such as those with glutathione (GSH) that may not lead to detoxification but to bioactivation. The GSH conjugates may be further metabolized to reactive species that cause toxicity. The nephrotoxicity of hydroquinone and bromobenzene is mediated via quinone - glutathione conjugates, and is manifested in cellular changes, including induction of the gadd-153 and hsp-70 mRNA. The formation of GSH conjugates is also involved in the bioactivation of the vicinal dihalopropane 1,2-dibromo-3-chloropropane; cytotoxic lesions are observed in the kidney and testes The evidence indicates that conjugation is mediated by the GSH S-transferases. The symposium also covered aspects of the importance of conjugation in the pharmacokinetics of certain drugs. Conjugation reactions including sulfation are markedly influenced by the manner in which the liver processes the drug. Characteristics such as erythrocyte binding, as in the case of acetaminophen, become limiting factors in the conjugation reactions. Conjugation reactions can lead to a different outcome, such as acquired drug resistance. Conjugation of metallothioneins with the alkylating mustard drugs melphalan and chlorambucil can lead to the formation of protein adducts. Conjugation of reactive intermediates with these small molecular weight proteins may be considered as a phase II reaction and a mechanism of detoxification. A different pathway for the metabolism of xenobiotics is catalyzed by the carboxylesterases, a family of enzymes that is involved in hydrolysis of chemical compounds, generally leading to detoxification. Three rat esterases have been purified, cloned, and characterized. Two forms, hydrolase A and hydrolase B, are present in liver microsomes in a number of species, including the human. These are also detected in extrahepatic tissues. A third esterase, hydrolase S, is found in rat liver microsomes and rat serum, and may be a serum carboxylesterase secreted from the liver. A better knowledge of esterases will advance our understanding of pharmacokinetics and mechanisms of the effects of chemicals such as phenacetin and acetaminophen, two drugs that Dr. Gillette has worked with extensively. The data presented herein reflect the new and innovative approaches that have been adopted to investigate various aspects of chemical toxicity and drug metabolism. These data also indicate that significant insights are likely to come from integrated approaches utilizing established toxicological techniques together with those from other disciplines, including molecular biology and analytical chemistry. PMID:8748931

Hinson, J A; Forkert, P G



Artificial Skin in Robotics.  

E-print Network

??Artificial Skin - A comprehensive interface for system-environment interaction - This thesis investigates a multifunctional artificial skin as touch sensitive whole-body cover for robotic systems.… (more)

Strohmayr, Michael



Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine  

PubMed Central

Polymer hydrogels have been widely explored as therapeutic delivery matrices because of their ability to present sustained, localized and controlled release of bioactive factors. Bioactive factor delivery from injectable biopolymer hydrogels provides a versatile approach to treat a wide variety of diseases, to direct cell function and to enhance tissue regeneration. The innovative development and modification of both natural-(e.g., alginate (ALG), chitosan, hyaluronic acid (HA), gelatin, heparin (HEP), etc.) and synthetic-(e.g., polyesters, polyethyleneimine (PEI), etc.) based polymers has resulted in a variety of approaches to design drug delivery hydrogel systems from which loaded therapeutics are released. This review presents the state-of-the-art in a wide range of hydrogels that are formed though self-assembly of polymers and peptides, chemical crosslinking, ionic crosslinking and biomolecule recognition. Hydrogel design for bioactive factor delivery is the focus of the first section. The second section then thoroughly discusses release strategies of payloads from hydrogels for therapeutic medicine, such as physical incorporation, covalent tethering, affinity interactions, on demand release and/or use of hybrid polymer scaffolds, with an emphasis on the last 5 years. PMID:25242831

Nguyen, Minh Khanh; Alsberg, Eben



Putting bioactivation reactions to work: Targeting antioxidants to mitochondria  

Microsoft Academic Search

The goal of this research was to test the hypothesis that bioactivation reactions could be exploited to deliver and activate mitochondria-targeted antioxidant prodrugs. The concept that bioactivation reactions could be used for prodrug delivery and activation has received little attention. Most bioactivation reactions result in the conversion of the parent drug to a reactive electrophilic metabolite, but bioactivating enzymes that

M. W. Anders



Functional Significance of Bioactive Peptides Derived from Milk Proteins  

Microsoft Academic Search

Bioactive peptides can be defined as protein fragments with potential biological activities. Milk proteins are precursors of many different biologically active peptides. Bioactive peptides from milk proteins are considered potential modulators of various regulatory processes in the body. They mediate physiological functions in cardiovascular, nervous, gastro intestinal and immune systems. The functional significance of bioactivities depends on peptide fragment. Bioactive

Samuel Mburu Kamau; Rong-Rong Lu; Wei Chen; Xiao-Ming Liu; Feng-Wei Tian; Yi Shen; Ting Gao



Three-dimensional, bioactive, biodegradable, polymerbioactive glass composite scaffolds with  

E-print Network

(3-D), porous composite of polylactide-co-glycolide (PLAGA) and 45S5 bioactive glass (BGThree-dimensional, bioactive, biodegradable, polymer­bioactive glass composite scaffolds, with mechanical properties superior to PLAGA alone. The addition of bioactive glass granules to the PLAGA matrix

Lu, Helen H.


Sol-gel derived porous bioactive nanocomposites: Synthesis and in vitro bioactivity  

NASA Astrophysics Data System (ADS)

Porous bioactive composites consisting of SiO2-CaO-Na2O-P2O5 bioactive glass-ceramic and synthetic water soluble polymer Polyvinylpyrrolidone [PVP (C6H9NO)n, MW˜40000 g/mol] have been synthesized by sol-gel route. As-prepared polymeric composites were characterized by X-ray diffraction (XRD) technique. Two major bone mineral phases, viz., hydroxyapatite [Ca10(PO4)6(OH)2] and wollastonite [calcium silicate (CaSiO3)] have been identified in the XRD patterns of the composites. Presence of these bone minerals indicates the bioactive nature of the composites. In vitro bioactivity tests confirm bioactivity in the porous composites. The flexibility offered by these bioactive polymer composites is advantageous for its application as implant material.

Shankhwar, Nisha; Kothiyal, G. P.; Srinivasan, A.



Fabrication of a nanofibrous mat with a human skin pattern.  


A number of studies on skin tissue regeneration and wound healing have been conducted. Electrospun nanofibers have numerous advantages for use in wound healing dressings. Here, we present an electrospinning method for alteration of the surface morphological properties of electrospun mats because most previous studies focused on the materials used or the introduction of bioactive healing agents. In this study, a micromachined human skin pattern mold was used as a collector in an electrospinning setup to replicate the pattern onto the surface of the electrospun mat. We demonstrated the successful fabrication of a nanofibrous mat with a human skin pattern. To verify its suitability for wound healing, a 14-day in vitro cell culture was carried out. The results indicated that the fabricated mat not only induces equivalent cell viability to the conventional electrospun mat, but also exhibits guidance of cells along the skin pattern without significant deterioration of pattern geometry. PMID:25479420

Kim, Jeong Hwa; Jang, Jinah; Jeong, Young Hun; Ko, Tae Jo; Cho, Dong-Woo



Nanofibrous structured biomimetic strategies for skin tissue regeneration.  


Mimicking porous topography of natural extracellular matrix is advantageous for successful regeneration of damaged tissues or organs. Nanotechnology being one of the most promising and growing technology today shows an extremely huge potential in the field of tissue engineering. Nanofibrous structures that mimic the native extracellular matrix and promote the adhesion of various cells are being developed as tissue-engineered scaffolds for skin, bone, vasculature, heart, cornea, nervous system, and other tissues. A range of novel biocomposite materials has been developed to enhance the bioactive or therapeutic properties of these nanofibrous scaffolds via surface modifications, including the immobilization of functional cell-adhesive ligands and bioactive molecules such as drugs, enzymes, and cytokines. In skin tissue engineering, usage of allogeneic skin is avoided to reestablish physiological continuity and also to address the challenge of curing acute and chronic wounds, which remains as the area of exploration with various biomimetic approaches. Two-dimensional, three-dimensional scaffolds and stem cells are presently used as dermal regeneration templates for the treatment of full-thickness skin defects resulting from injuries and severe burns. The present review elaborates specifically on the fabrication of nanofibrous structured strategies for wound dressings, wound healing, and controlled release of growth factors for skin tissue regeneration. PMID:23126632

Jayarama Reddy, Venugopal; Radhakrishnan, Sridhar; Ravichandran, Rajeswari; Mukherjee, Shayanti; Balamurugan, Ramalingam; Sundarrajan, Subramanian; Ramakrishna, Seeram



Synthesis and evaluation of novel bioactive composite starch\\/bioactive glass microparticles  

Microsoft Academic Search

The aim of the development of composite mate- rials is to combine the most desired properties of two or more materials. In this work, the biodegradable character, good controlled-release properties, and natural origin of starch-based biomaterials are combined with the bioactive and bone-bonding properties of bioactive glass (BG). Novel, bioactive composite starch-BG microparticles were synthe- sized starting from a blend

G. A. Silva; F. J. Costa; O. P. Coutinho; S. Radin; P. Ducheyne; R. L. Reis



Novel bioresorbable and bioactive composites based on bioactive glass and polylactide foams for bone tissue engineering  

Microsoft Academic Search

Bioresorbable and bioactive tissue engineering scaffolds based on bioactive glass (45S5 Bioglass®) particles and macroporous poly(DL-lactide) (PDLLA) foams were fabricated. A slurry dipping technique in conjunction with pretreatment in ethanol was used to achieve reproducible and well adhering bioactive glass coatings of uniform thickness on the internal and external surfaces of the foams. In vitro studies in simulated body fluid

J. A. Roether; J. E. Gough; A. R. Boccaccini; L. L. Hench; V. Maquet; R. Jérôme



Natural Bioactive Compounds from Winery By-Products as Health Promoters: A Review  

PubMed Central

The relevance of food composition for human health has increased consumers’ interest in the consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals. This fact has led to a growing attention of suppliers on reuse of agro-industrial wastes rich in healthy plant ingredients. On this matter, grape has been pointed out as a rich source of bioactive compounds. Currently, up to 210 million tons of grapes (Vitis vinifera L.) are produced annually, being the 15% of the produced grapes addressed to the wine-making industry. This socio-economic activity generates a large amount of solid waste (up to 30%, w/w of the material used). Winery wastes include biodegradable solids namely stems, skins, and seeds. Bioactive compounds from winery by-products have disclosed interesting health promoting activities both in vitro and in vivo. This is a comprehensive review on the phytochemicals present in winery by-products, extraction techniques, industrial uses, and biological activities demonstrated by their bioactive compounds concerning potential for human health. PMID:25192288

Teixeira, Ana; Baenas, Nieves; Dominguez-Perles, Raul; Barros, Ana; Rosa, Eduardo; Moreno, Diego A.; Garcia-Viguera, Cristina



A Versatile Rocket Engine Hot Gas Facility  

NASA Technical Reports Server (NTRS)

The capabilities of a versatile rocket engine facility, located in the Rocket Laboratory at the NASA Lewis Research Center, are presented. The gaseous hydrogen/oxygen facility can be used for thermal shock and hot gas testing of materials and structures as well as rocket propulsion testing. Testing over a wide range of operating conditions in both fuel and oxygen rich regimes can be conducted, with cooled or uncooled test specimens. The size and location of the test cell provide the ability to conduct large amounts of testing in short time periods with rapid turnaround between programs.

Green, James M.



Skin Pigmentation Disorders  


Pigmentation means coloring. Skin pigmentation disorders affect the color of your skin. Your skin gets its color from a pigment called melanin. Special cells in ... damaged or unhealthy, it affects melanin production. Some pigmentation disorders affect just patches of skin. Others affect ...


Skin Cancer: Signs and Symptoms  


... treatments Q - T Skin cancer Signs, symptoms Skin cancer: Signs and symptoms The most common warning sign ... appears in many ways. Learn more about skin cancer: Skin cancer Skin cancer: Who gets and causes ...


Novel bioactive materials with different mechanical properties.  


Some ceramics, such as Bioglass, sintered hydroxyapatite, and glass-ceramic A-W, spontaneously bond to living bone. They are called bioactive materials and are already clinically used as important bone substitutes. However, compared with human cortical bone, they have lower fracture toughness and higher elastic moduli. Therefore, it is desirable to develop bioactive materials with improved mechanical properties. All the bioactive materials mentioned above form a bone-like apatite layer on their surfaces in the living body, and bond to bone through this apatite layer. The formation of bone-like apatite on artificial material is induced by functional groups, such as Si-OH, Ti-OH, Zr-OH, Nb-OH, Ta-OH, -COOH, and PO(4)H(2). These groups have specific structures revealing negatively charge, and induce apatite formation via formations of an amorphous calcium compound, e.g., calcium silicate, calcium titanate, and amorphous calcium phosphate. These fundamental findings provide methods for preparing new bioactive materials with different mechanical properties. Tough bioactive materials can be prepared by the chemical treatment of metals and ceramics that have high fracture toughness, e.g., by the NaOH and heat treatments of titanium metal, titanium alloys, and tantalum metal, and by H(3)PO(4) treatment of tetragonal zirconia. Soft bioactive materials can be synthesized by the sol-gel process, in which the bioactive silica or titania is polymerized with a flexible polymer, such as polydimethylsiloxane or polytetramethyloxide, at the molecular level to form an inorganic-organic nano-hybrid. The biomimetic process has been used to deposit nano-sized bone-like apatite on fine polymer fibers, which were textured into a three-dimensional knit framework. This strategy is expected to ultimately lead to bioactive composites that have a bone-like structure and, hence, bone-like mechanical properties. PMID:12699652

Kokubo, Tadashi; Kim, Hyun-Min; Kawashita, Masakazu




Technology Transfer Automated Retrieval System (TEKTRAN)

Consumption of tree nuts such as almonds has been associated with a reduced risk of coronary heart disease. Flavonoids, found predominantly in the skin, may contribute to this putative health benefit of almonds, but their bioactivity and bioavailability have not previously been studied. Almond skin ...


Biomolecule immobilization techniques for bioactive paper fabrication.  


Research into paper-based sensors or functional materials that can perform analytical functions with active recognition capabilities is rapidly expanding, and significant research effort has been made into the design and fabrication of bioactive paper at the biosensor level to detect potential health hazards. A key step in the fabrication of bioactive paper is the design of the experimental and operational procedures for the immobilization of biomolecules such as antibodies, enzymes, phages, cells, proteins, synthetic polymers and DNA aptamers on a suitably prepared paper membrane. The immobilization methods are concisely categorized into physical absorption, bioactive ink entrapment, bioaffinity attachment and covalent chemical bonding immobilization. Each method has individual immobilization characteristics. Although every biomolecule-paper combination has to be optimized before use, the bioactive ink entrapment method is the most commonly used approach owing to its general applicability and biocompatibility. Currently, there are four common applications of bioactive paper: (1) paper-based bioassay or paper-based analytical devices for sample conditioning; (2) counterfeiting and countertempering in the packaging and construction industries; (3) pathogen detection for food and water quality monitoring; and (4) deactivation of pathogenic bacteria using antimicrobial paper. This article reviews and compares the different biomolecule immobilization techniques and discusses current trends. Current, emerging and future applications of bioactive paper are also discussed. PMID:22367243

Kong, Fanzhi; Hu, Yim Fun



Bioactivity-guided study of antiproliferative activities of Salvia extracts.  


The cytotoxic activities of the n-hexane, chloroform and aqueous methanolic fractions prepared from the methanolic extract of the leaves of 23 Salvia taxa were studied for their cell growth-inhibitory activity against human cervix adenocarcinoma (HeLa), skin carcinoma (A431) and breast adenocarcinoma (MCF7) cells using the MTT assay. The n-hexane fractions of six Salvia taxa (S. hispanica, S. nemorosa, S. nemorosa 1. albiflora, S. pratensis, S. recognita and S. ringens) and the chloroform fraction ofS. officinalis 1. albiflora produced over 50% growth inhibition of the skin carcinoma cell line. None of the tested extracts showed substantial (above 50%) antiproliferative effects against HeLa and MCF7 cells. S. ringens was the most powerful among the studied Salvia species with a 61.8% cell growth inhibitory activity on A431 cells. In the case of S. ringens, other plant parts were also tested for antiproliferative effect, and the highest activities were recorded for the root extract. This was subjected to bioactivity-guided fractionation, which yielded four abietane diterpenes (royleanone, horminone, 7-O-methyl-horminone and 7-acetyl-horminone), one triterpene (erythrodiol-3-acetate) and beta-sitosterol. Horminone, 7-acetyl-horminone and erythrodiol-3-acetate displayed marked concentration-dependent antiproliferative effects, while royleanone and 7-O-methyl-horminone produced weaker activities. PMID:21615011

Janicsák, Gábor; Zupkó, István; Nikolovac, Milena T; Forgo, Peter; Vasas, Andrea; Mathé, Imre; Blunden, Gerald; Hohmann, Judit



A Versatile Ion Injector at KACST  

SciTech Connect

A versatile ion-beam injector is presently being constructed at the National Centre for Mathematics and Physics (NCMP) at the King Abdul-Aziz City for Science and Technology (KACST), Saudi Arabia. This versatile injector will provide an electrostatic storage ring with high-quality ion beams of energies up to 30 keV per charge q. It will also allow for crossed-beams experiments in single-pass setups. The injector has been designed to include beams from two different ion sources, switched by a 90 deg. deflection setup, and to allow for matching of the beam parameters to the Twiss parameters of the ring. The injector is equipped with two crossed beam-lines (inlets), with duplicated beam extraction and acceleration systems. As part of the initial setup, a simple electric discharge ion source has been developed for commissioning of the whole injector. In this paper, we report on the ion optics layout and the design parameters of the injector.

El Ghazaly, M. O. A. [NCMP, KACST, 11442 Riyadh (Saudi Arabia); Department of Physics, Faculty of science, King Khalid University, PO Box 9003 Abha (Saudi Arabia); Behery, S. A.; Almuqhim, A. A. [NCMP, KACST, 11442 Riyadh (Saudi Arabia); Papash, A. I. [Max Planck Institute for Nuclear Physics, 69117 Heidelberg (Germany); Welsch, C. P. [Cockcroft Institute and University of Liverpool, Liverpool (United Kingdom)



A Versatile Ion Injector at KACST  

NASA Astrophysics Data System (ADS)

A versatile ion-beam injector is presently being constructed at the National Centre for Mathematics and Physics (NCMP) at the King Abdul-Aziz City for Science and Technology (KACST), Saudi Arabia. This versatile injector will provide an electrostatic storage ring with high-quality ion beams of energies up to 30 keV per charge q. It will also allow for crossed-beams experiments in single-pass setups. The injector has been designed to include beams from two different ion sources, switched by a 90° deflection setup, and to allow for matching of the beam parameters to the Twiss parameters of the ring. The injector is equipped with two crossed beam-lines (inlets), with duplicated beam extraction and acceleration systems. As part of the initial setup, a simple electric discharge ion source has been developed for commissioning of the whole injector. In this paper, we report on the ion optics layout and the design parameters of the injector.

El Ghazaly, M. O. A.; Behery, S. A.; Almuqhim, A. A.; Papash, A. I.; Welsch, C. P.



Bioactive Constituents of Indigofera spicata  

PubMed Central

Four new flavanones, designated as (+)?5?-deacetylpurpurin (1), (+)?5-methoxypurpurin (2), (2S)-2,3-dihydrotephroglabrin (3), and (2S)-2,3-dihydrotephroapollin C (4), together with two known flavanones (5 and 6), three known rotenoids (7–9), and one known chalcone (10) were isolated from a chloroform-soluble partition of a methanol extract from the combined flowers, fruits, leaves, and twigs of Indigofera spicata, collected in Vietnam. The compounds were obtained by bioactivity-guided isolation using HT-29 human colon cancer, 697 human acute lymphoblastic leukemia, and Raji human Burkitt’s lymphoma cell lines. The structures of 1–4 were established by extensive 1D- and 2D-NMR experiments and the absolute configurations were determined by the measurement of specific rotations and CD spectra. The cytotoxic activities of the isolated compounds were tested against the HT-29, 697, Raji and the CCD-112CoN human normal colon cells. Also, the quinone reductase induction activities of the isolates were determined using the Hepa 1c1c7 murine hepatoma cell line. In addition, cis-6a??12a?-hydroxyrotenone (7) was evaluated in an in vivo hollow fiber bioassay using HT-29, MCF-7 human breast cancer, and MDA-MB-435 human melanoma cells. PMID:23895019

Pérez, Lynette Bueno; Li, Jie; Lantvit, Daniel D.; Pan, Li; Ninh, Tran Ngoc; Chai, Hee-Byung; Soejarto, Djaja Djendoel; Swanson, Steven M.; Lucas, David M.; Kinghorn, A. Douglas



The Cilium Secretes Bioactive Ectosomes  

PubMed Central

Summary The release of membrane vesicles from the surface of cells into their surrounding environment is now recognized as an important pathway for the delivery of proteins to extracellular sites of biological function. Membrane vesicles of this kind, termed exosomes and ectosomes, are the result of active processes and have been shown to carry a wide array of biological effector molecules that can play roles in cell-to-cell communication and remodeling of the extracellular space [1–7]. Degradation of the extracellular matrix (ECM) through the regulated release of proteolytic enzymes is a key process for development, morphogenesis and cell migration in animal and plant cells. Here we show that the unicellular alga, Chlamydomonas, achieves the timely degradation of its mother cell wall, a type of ECM, through the budding of ectosomes directly from the membranes of their flagella. Using a combination of immunoelectron microscopy, immunofluorescence microscopy, and functional analysis, we demonstrate that these vesicles, which we term ciliary ectosomes, act as carriers of the proteolytic enzyme necessary for the liberation of daughter cells following mitosis [8, 9]. Chlamydomonas has proven to be the key unicellular model for the highly conserved mechanisms of mammalian cilia, and our results suggest that cilia may be an under-appreciated source of bioactive, extracellular membrane vesicles. PMID:23623554

Wood, CR; Huang, K; Diener, DR; Rosenbaum, JL



The cilium secretes bioactive ectosomes.  


The release of membrane vesicles from the surface of cells into their surrounding environment is now recognized as an important pathway for the delivery of proteins to extracellular sites of biological function. Membrane vesicles of this kind, termed exosomes and ectosomes, are the result of active processes and have been shown to carry a wide array of biological effector molecules that can play roles in cell-to-cell communication and remodeling of the extracellular space. Degradation of the extracellular matrix (ECM) through the regulated release of proteolytic enzymes is a key process for development, morphogenesis, and cell migration in animal and plant cells. Here we show that the unicellular alga Chlamydomonas achieves the timely degradation of its mother cell wall, a type of ECM, through the budding of ectosomes directly from the membranes of its flagella. Using a combination of immunoelectron microscopy, immunofluorescence microscopy, and functional analysis, we demonstrate that these vesicles, which we term ciliary ectosomes, act as carriers of the proteolytic enzyme necessary for the liberation of daughter cells following mitosis. Chlamydomonas has proven to be the key unicellular model for the highly conserved mechanisms of mammalian cilia, and our results suggest that cilia may be an underappreciated source of bioactive, extracellular membrane vesicles. PMID:23623554

Wood, Christopher R; Huang, Kaiyao; Diener, Dennis R; Rosenbaum, Joel L



Bioactive evaluation of 45S5 bioactive glass fibres and preliminary study of human osteoblast attachment  

Microsoft Academic Search

Bioactive glass fibres can be used as tissue engineering scaffolds. In this investigation, the bioactive response of 45S5 glass fibres was assessed in simulated body fluid (SBF). Preliminary attachment of osteoblasts to the fibre surface was assessed, as were the fibre tensile strength and fracture toughness. Fourier transform infrared spectroscopy (FTIR) analysis revealed that hydroxyapatite (HA) was formed on the

Daniel C. Clupper; Julie E. Gough; Papy M. Embanga; Ioan Notingher; Larry L. Hench; Matthew M. Hall



Bioactive toxins from stinging jellyfish.  


Jellyfish blooms occur throughout the world. Human contact with a jellyfish induces a local reaction of the skin, which can be painful and leave scaring. Systemic symptoms are also observed and contact with some species is lethal. A number of studies have evaluated the in vitro biological activity of whole jellyfish venom or of purified fractions. Hemolytic, cytotoxic, neurotoxic or enzymatic activities are commonly observed. Some toxins have been purified and characterized. A family of pore forming toxins specific to Medusozoans has been identified. There remains a need for detailed characterization of jellyfish toxins to fully understand the symptoms observed in vivo. PMID:25286397

Badré, Sophie



PRALINE: a versatile multiple sequence alignment toolkit.  


Profile ALIgNmEnt (PRALINE) is a versatile multiple sequence alignment toolkit. In its main alignment protocol, PRALINE follows the global progressive alignment algorithm. It provides various alignment optimization strategies to address the different situations that call for protein multiple sequence alignment: global profile preprocessing, homology-extended alignment, secondary structure-guided alignment, and transmembrane aware alignment. A number of combinations of these strategies are enabled as well. PRALINE is accessible via the online server The server facilitates extensive visualization possibilities aiding the interpretation of alignments generated, which can be written out in pdf format for publication purposes. PRALINE also allows the sequences in the alignment to be represented in a dendrogram to show their mutual relationships according to the alignment. The chapter ends with a discussion of various issues occurring in multiple sequence alignment. PMID:24170407

Bawono, Punto; Heringa, Jaap



Versatile aluminum alloy surface with various wettability  

NASA Astrophysics Data System (ADS)

Various geometric microstructures on aluminum alloy surfaces were fabricated simply through SiC paper rubbing, and the wettability of the obtained surfaces was investigated thoroughly. The water contact angle increased firstly with the increasing particle size of the sandpaper, and then declined with further increase of the grits size, exhibiting a hydrophilic-hydrophobic-hydrophilic transition. The effect of surface geometric microstructure on the wetting behavior of aluminum alloy can be well rationalized in terms of the Cassie-Baxter model by considering the surface energy gradient. The present results not only enhance the in-depth understanding of the mechanism for the significant role of surface microstructure on the wettability of aluminum alloy, but also explore promising applications of versatile metallic surface in industries.

Lu, Baiping; Li, Ning



Spaser as Novel Versatile Biomedical Tool  

E-print Network

Fluorescence imaging and spectroscopy remain the most powerful tools for visualization with chemical and immunological specificity of labeled biomolecules, viruses, cellular organelles, and living cells in complex biological backgrounds. However, a common drawback of fluorescence labels is that their brightness is limited by optical saturation and photobleaching. As an alternative, plasmonic metal nanoparticles are very promising as optical labels with no photobleaching and low optical saturation at realistic exciting intensities as was demonstrated in photoacoustic and photothermal sensing, imaging, and theranostics. However, plasmonic nanoparticles have wide absorption spectra and are not fluorescent, which limits their spectral selectivity and multimodal functionality, respectively. Here we demonstrate experimentally, both in vitro and in vivo, that spaser (surface plasmon amplification by stimulated emission of radiation) provides unprecedented efficiency as a versatile tool in biomedical research and app...

Galanzha, Ekaterina I; Nedosekin, Dmitry A; Sarimollaoglu, Mustafa; Kuchyanov, Alexander S; Parkhomenko, Roman G; Plekhanov, Alexander I; Stockman, Mark I; Zharov, Vladimir P



Performance of BTX degraders under substrate versatility conditions  

Microsoft Academic Search

A microbial consortium acclimatized with benzene, toluene or xylene (BTX) was employed to study the degradation pattern of these compounds individually under aerobic conditions. Batch and continuous experiments were conducted to evaluate the adaptability of the enriched cultures under substrate versatility conditions. The bio-kinetic parameters obtained under substrate versatility conditions were compared with those of a single substrate condition. Similar

Shihabudeen M. Maliyekkala; Eldon R. Rene; Ligy Philip; T. Swaminathan




E-print Network

VERSATILE VACUUM PACKAGING FOR EXPERIMENTAL STUDY OF RESONANT MEMS Adam R. Schofield, Alexander A a versatile sub-mTorr vacuum packaging approach ideally suited for R&D of high performance dynamic MEMS gyroscope con- cept optimized to minimize substrate energy dissipa- tion were packaged using the presented

Tang, William C


Whatâs On My Skin?  

NSDL National Science Digital Library

In this lesson, based on the Science Friday segment Life on Our Skin, students will formulate a hypothesis about which area of skin on their bodies may have the most or least amount or kinds of bacteria.

Science, Talking



Studying Our Skin  

NSDL National Science Digital Library

Investigative activities enabling students to explore the many purposes of our skin can create meaningful understanding of its functions. These activities can also help children construct an understanding of the skin as an always present but constantly ch

Sunal, Cynthia S.; Walters, Jeffrey J.



Skin of Color  


... of color Stress and skin Sunscreens Tattoos and body piercings Teenage skin Tropical travel Vitamin D Cosmetic treatments ... is the key to alleviating scarring problems. Avoid body piercing and unnecessary surgeries. If a wound does occur, ...


Components of skin  

MedlinePLUS Videos and Cool Tools

... skin layers from the outside environment and contains cells that make keratin, a substance that waterproofs and strengthens the skin. The epidermis also has cells that contain melanin, the dark pigment that gives ...


Squamous cell skin cancer  


... occur on skin that is regularly exposed to sunlight or other ultraviolet radiation. The earliest form of ... skin cancer is to reduce your exposure to sunlight. Always use sunscreen: Apply sunscreen with sun protection ...


Tissue viability imaging for quantification of skin erythema and blanching  

NASA Astrophysics Data System (ADS)

Naked eye observation has up to recently been the main method of determining skin erythema (vasodilatation) and blanching (vasoconstriction) in skin testing. Since naked eye observation is a highly subjective and investigatordependent method, it is difficult to attain reproducibility and to compare results reported by different researchers performing their studies at different laboratories. Consequently there is a need for more objective, quantitative and versatile methods in the assessment of alterations in skin erythema and blanching caused by internal and external factors such as the intake of vasoactive drugs, application of agents on the skin surface and by constituents in the environment. Since skin microcirculation is sensitive to applied pressure and heat, such methods should preferably be noninvasive and designed for remote use without touching the skin. As skin microcirculation further possesses substantial spatial variability, imaging techniques are to be preferred before single point measurements. An emerging technology based on polarization digital camera spectroscopy - Tissue Viability Imaging (TiVi) - fulfills these requirements. The principles of TiVi (1) and some of its early applications (2-5) are addressed in this paper.

Nilsson, Gert E.; Leahy, Martin J.



Incorporation of bioactive materials into integrated systems  

NASA Astrophysics Data System (ADS)

Sandia is exploring two classes of integrated systems involving bioactive materials: 1) microfluidic systems that can be used to manipulate biomolecules for applications ranging from counter-terrorism to drug delivery systems, and 2) fluidic systems in which active biomolecules such as motor proteins provide specific functions such as active transport. An example of the first class involves the development of a reversible protein trap based on the integration of the thermally-switchable polymer poly(N-isopropylacrylamide)(PNIPAM) into a micro-hotplate device. To exemplify the second class, we describe the technical challenges associated with integrating microtubules and motor proteins into microfluidic systems for: 1) the active transport of nanoparticle cargo, or 2) templated growth of high-aspect ratio nanowires. These examples illustrate the functions of bioactive materials, synthesis and fabrication issues, mechanisms for switching surface chemistry and active transport, and new techniques such as the interfacial force microscope (IFM) that can be used to characterize bioactive surfaces.

Bunker, Bruce C.; Huber, Dale L.; Manginell, Ronald P.; Kim, Byung-Il; Boal, Andrew K.; Bachand, George D.; Rivera, Susan B.; Bauer, Joseph M.; Matzke, Carolyn M.



Caring for Tattooed Skin  


... releases Press kits Sign in Account Home Skin health tips Caring for tattooed skin Caring for tattooed skin ... getting a piercing or tattoo. Risks Explains common health risks associated with tattoos and piercings. Safety tips What you should know before getting a piercing ...


Bioactive metals: preparation and properties.  


Some ceramics, such as Bioglass, sintered hydroxyapatite, and glass-ceramic A-W, spontaneously form a bone-like apatite layer on their surface in the living body, and bond to bone through the apatite layer. These materials are called bioactive ceramics, and are clinically important for use as bone-repairing materials. However, they cannot be used at high-load sites, such as is found in femoral and tibial bones, because their fracture toughness values are not as high as that of human cortical bone. Titanium metal and its alloys have high fracture toughness, and form a sodium titanate layer on its surface when soaked in a 5 M-NaOH solution at 60 degrees C for 24 h, followed by a heat treatment at 600 degrees C for 1 h. On moving toward the metal interior, the sodium titanate layer gradually changes into the pure metal within a distance of 1 microm from the surface. The mechanical strength of the titanium metal or a titanium alloy is not adversely affected by these chemical and thermal treatments. The titanium metal and its alloys resulting from the above treatment can release Na+ ions from its surface into a surrounding body fluid via an ion exchange reaction with H3O+ ions, resulting in many Ti-OH groups forming on its surface. These Ti-OH groups initially combine with Ca2+ ions to form amorphous calcium titanate in the body environment, and later the calcium titanate combines with phosphate ions to form amorphous calcium phosphate. The amorphous calcium phosphate eventually transforms into bone-like apatite, and by this process the titanium metals are soon tightly bonded to the surrounding living bone through the bone-like apatite layer. The treated metals have already been subjected to clinical trials for applications in artificial total hip joints. Metallic tantalum has also been found to bond to living bone after it has been subjected to the NaOH and heat treatment to form a sodium tantalate layer on its surface. PMID:15330042

Kokubo, T; Kim, H M; Kawashita, M; Nakamura, T



Microbial biotransformation of bioactive flavonoids.  


The bioactive flavonoids are considered as the most important phytochemicals in food, which exert a wide range of biological benefits for human being. Microbial biotransformation strategies for production of flavonoids have attracted considerable interest because they allow yielding novel flavonoids, which do not exist in nature. In this review, we summarize the existing knowledge on the production and biotransformation of flavonoids by various microbes. The main reactions during microbial biotransformation are hydroxylation, dehydroxylation, O-methylation, O-demethylation, glycosylation, deglycosylation, dehydrogenation, hydrogenation, C ring cleavage of the benzo-?-pyrone system, cyclization, and carbonyl reduction. Cunninghamella, Penicillium, and Aspergillus strains are very popular to biotransform flavonoids and they can perform almost all the reactions with excellent yields. Aspergillus niger is one of the most applied microorganisms in the flavonoids' biotransformation; for example, A. niger can transfer flavanone to flavan-4-ol, 2'-hydroxydihydrochalcone, flavone, 3-hydroxyflavone, 6-hydroxyflavanone, and 4'-hydroxyflavanone. The hydroxylation of flavones by microbes usually happens on the ortho position of hydroxyl group on the A ring and C-4' position of the B ring and microbes commonly hydroxylate flavonols at the C-8 position. The microorganisms tend to hydroxylate flavanones at the C-5, 6, and 4' positions; however, for prenylated flavanones, dihydroxylation often takes place on the C4?=C5? double bond on the prenyl group (the side chain of A ring). Isoflavones are usually hydroxylated at the C-3' position of the B ring by microorganisms. The microbes convert flavonoids to their 7-O-glycosides and 3-O-glycosides (when flavonoids have a hydroxyl moiety at the C-3 position). The demethylation of multimethoxyl flavonoids by microbes tends to happen at the C-3' and C-4' positions of the B ring. Multimethoxyl flavanones and isoflavone are demethylated at the C-7 and C-4' positions. The O-methylation of flavonols happens at the C-3' and C-4' and microorganisms O-methylate flavones at the C-6 position and the O-methylation of flavanones, usually took place on the hydroxyl groups of the A ring. The prenyl flavanones were cyclized at the prenyl side chain to form a new five-member ring attached to the A ring. Chalcones were regioselectively cyclized to flavanones. Hydrogenation of flavonoids was only reported on transformation of chalcones to dihydrochalcones. The dehydrogenation of flavanoids to flavonoids was not comprehensively studied. PMID:25447420

Cao, Hui; Chen, Xiaoqing; Jassbi, Amir Reza; Xiao, Jianbo



Anyone Can Get Skin Cancer

No matter if your skin is light, dark, or somewhere in between, everyone is at risk for skin cancer. Learn what skin cancer looks like, how to find it early, and how to lower the chance of skin cancer.


Investigation of bioactivity and cell effects of nano-porous sol-gel derived bioactive glass film  

NASA Astrophysics Data System (ADS)

In orthopedic surgery, bioactive glass film coating is extensively studied to improve the synthetic performance of orthopedic implants. A lot of investigations have confirmed that nano-porous structure in bioactive glasses can remarkably improve their bioactivity. Nevertheless, researches on preparation of nano-porous bioactive glasses in the form of film coating and their cell response activities are scarce. Herein, we report the preparation of nano-porous bioactive glass film on commercial glass slide based on a sol-gel technique, together with the evaluation of its in vitro bioactivity through immersion in simulated body fluid and monitoring the precipitation of apatite-like layer. Cell responses of the samples, including attachment, proliferation and osteogenic differentiation, were also investigated using BMSCS (bone marrow derived mesenchymal stem cells) as a model. The results presented here provide some basic information on structural influence of bioactive glass film on the improvement of bioactivity and cellular effects.

Ma, Zhijun; Ji, Huijiao; Hu, Xiaomeng; Teng, Yu; Zhao, Guiyun; Mo, Lijuan; Zhao, Xiaoli; Chen, Weibo; Qiu, Jianrong; Zhang, Ming




Technology Transfer Automated Retrieval System (TEKTRAN)

Public health concerns related to heart disease and other chronic diseases have led to successful developments of bioactive food ingredients including Oatrim and Nutrim. The bioactive properties of soluble oat beta-glucan are well recognized for their health benefits. New bioactive oat hydrocolloi...


Monopolar radiofrequency skin tightening.  


The development of nonablative monopolar capacitive radiofrequency technology (ThermaCool System, Thermage, Inc., Hayward, California) has contributed to the noninvasive trend in facial skin rejuvenation. In contrast to traditional ablative resurfacing techniques, the ThermaCool System protects the skin surface from injury while selectively heating the underlying dermis. Preservation of epidermal integrity minimizes recovery and the risk of complications. Published clinical evidence documents the efficacy of monopolar capacitive radiofrequency skin tightening and supports its use for mild to moderate facial skin laxity and rhytides. Currently, monopolar capacitive radiofrequency represents the gold standard of treatments designed to tighten skin in a noninvasive fashion. PMID:17544932

Abraham, Manoj T; Mashkevich, Grigoriy



Type IV Pilin Proteins: Versatile Molecular Modules  

PubMed Central

Summary: Type IV pili (T4P) are multifunctional protein fibers produced on the surfaces of a wide variety of bacteria and archaea. The major subunit of T4P is the type IV pilin, and structurally related proteins are found as components of the type II secretion (T2S) system, where they are called pseudopilins; of DNA uptake/competence systems in both Gram-negative and Gram-positive species; and of flagella, pili, and sugar-binding systems in the archaea. This broad distribution of a single protein family implies both a common evolutionary origin and a highly adaptable functional plan. The type IV pilin is a remarkably versatile architectural module that has been adopted widely for a variety of functions, including motility, attachment to chemically diverse surfaces, electrical conductance, acquisition of DNA, and secretion of a broad range of structurally distinct protein substrates. In this review, we consider recent advances in this research area, from structural revelations to insights into diversity, posttranslational modifications, regulation, and function. PMID:23204365

Giltner, Carmen L.; Nguyen, Ylan



Skin Bacteria and Skin Disinfection Reconsidered  

Microsoft Academic Search

Large discrepancies in the available data on skin microbiology stimulated investigations of the number, interactions, and location of commensals and the true efficiency of disinfection by using skin biopsy, culture of frozen sections, and other methods.Most current procedures were less than 0·5% as sensitive as the biopsy method described. This gave mean bacterial counts ranging from 4,400\\/cm2 on the breast

Sydney Selwyn; Harold Ellis



Inhibition of TRPV1 for the treatment of sensitive skin.  


During the past years, the topic sensitive skin became one of the most important fields in dermatology. The tremendous interest is based on several studies showing that about 50% of the population declares to have sensitive skin. The human thermoreceptor hTRPV1 was previously identified to contribute to this skin condition while facilitating neurogenic inflammation leading to hyperalgesia. Furthermore, skin sensitivity towards capsaicin, a natural activator of TRPV1, was shown to correlate with sensitive skin. In a screening campaign based on recombinant HEK293-cells stably transfected with hTRPV1, the selective antagonist trans-4-tert-butylcyclohexanol was identified. This antagonist is able to inhibit capsaicin-induced hTRPV1 activation with an IC(50) value of 34 ± 5 ?m tested in HEK293-cells as well as in electrophysiological recordings performed in oocytes expressing hTRPV1. Strikingly, in a clinical study with 30 women using topical treatment with o/w emulsions containing 31.6 ppm capsaicin, we were able to show that 0.4% of this inhibitor significantly reduces capsaicin-induced burning (P < 0.0001) in vivo. Thus trans-4-tert-butylcyclohexanol has the potential as a novel bioactive for the treatment of sensitive skin. PMID:20626462

Kueper, Thomas; Krohn, Michael; Haustedt, Lars Ole; Hatt, Hanns; Schmaus, Gerhard; Vielhaber, Gabriele



A potential wound-healing-promoting peptide from salamander skin.  


Although it is well known that wound healing proceeds incredibly quickly in urodele amphibians, such as newts and salamanders, little is known about skin-wound healing, and no bioactive/effector substance that contributes to wound healing has been identified from these animals. As a step toward understanding salamander wound healing and skin regeneration, a potential wound-healing-promoting peptide (tylotoin; KCVRQNNKRVCK) was identified from salamander skin of Tylototriton verrucosus. It shows comparable wound-healing-promoting ability (EC50=11.14 ?g/ml) with epidermal growth factor (EGF; NSDSECPLSHDGYCLHDGVCMYIEALDKYACNCVVGYIGERCQYRDLKWWELR) in a murine model of full-thickness dermal wound. Tylotoin directly enhances the motility and proliferation of keratinocytes, vascular endothelial cells, and fibroblasts, resulting in accelerated reepithelialization and granulation tissue formation in the wound site. Tylotoin also promotes the release of transforming growth factor ?1 (TGF-?1) and interleukin 6 (IL-6), which are essential in the wound healing response. Gene-encoded tylotoin secreted in salamander skin is possibly an effector molecule for skin wound healing. This study may facilitate understanding of the cellular and molecular events that underlie quick wound healing in salamanders.-Mu, L., Tang, J., Liu, H., Shen, C., Rong, M., Zhang, Z., Lai, R. A potential wound-healing-promoting peptide from salamander skin. PMID:24868009

Mu, Lixian; Tang, Jing; Liu, Han; Shen, Chuanbin; Rong, Mingqiang; Zhang, Zhiye; Lai, Ren



Electrophoretic deposition of carbon nanotubes and bioactive glass particles for bioactive composite coatings  

Microsoft Academic Search

The production of bioactive coatings consisting of 45S5 Bioglass® and mutli-walled carbon nanotubes (CNTs) by electrophoretic deposition (EPD) was investigated. In addition to pure Bioglass® coatings, the co-deposition and sequential deposition of Bioglass® particles (size <5?m) and CNTs on stainless steel substrates were carried out in order to fabricate bioactive, nanostructured composite layers. The optimal experimental conditions were determined using

M. Charlotte Schausten; Decheng Meng; Rainer Telle; Aldo R. Boccaccini



Surface Modification of Bioactive Glasses and Preparation of PDLLA\\/Bioactive Glass Composite Films  

Microsoft Academic Search

In order to improve the homogeneous dispersion of particles in the polymeric matrix, 45S5, mesoporous 58S, and 58S bioactive glasses were surface modified by esterification reactions with dodecyl alcohol at reflux temperature of 260°C (named as m-45S5, m-mesoporous 58S, and m-58S, respectively). The modified particles showed better hydrophobicity and longer time of suspension in organic matrix. The PDLLA\\/bioactive glass composite

Yuan Gao; Jiang Chang



Estimating error rates in bioactivity databases.  


Bioactivity databases are routinely used in drug discovery to look-up and, using prediction tools, to predict potential targets for small molecules. These databases are typically manually curated from patents and scientific articles. Apart from errors in the source document, the human factor can cause errors during the extraction process. These errors can lead to wrong decisions in the early drug discovery process. In the current work, we have compared bioactivity data from three large databases (ChEMBL, Liceptor, and WOMBAT) who have curated data from the same source documents. As a result, we are able to report error rate estimates for individual activity parameters and individual bioactivity databases. Small molecule structures have the greatest estimated error rate followed by target, activity value, and activity type. This order is also reflected in supplier-specific error rate estimates. The results are also useful in identifying data points for recuration. We hope the results will lead to a more widespread awareness among scientists on the frequencies and types of errors in bioactivity data. PMID:24160896

Tiikkainen, Pekka; Bellis, Louisa; Light, Yvonne; Franke, Lutz



Bioactive alkaloids from medicinal plants of Bhutan  

Microsoft Academic Search

Natural products had been indispensably used by many cultures and traditions in folklore medicines for thousands of years. These traditional medicines cater to about 85% of the world population for their primary health care needs. Natural products have been intensively explored also for their bioactive pharmacophores by modern pharmaceutical companies. In fact they are the skeletal framework of about 60%

Phurpa Wangchuk



Marine Bioactives and Potential Application in Sports  

PubMed Central

An enriched diet with antioxidants, such as vitamin E, vitamin C, ?-carotene and phenolic compounds, has always been suggested to improve oxidative stress, preventing related diseases. In this respect, marine natural product (MNP), such as COX inhibitors, marine steroids, molecules interfering with factors involved in the modulation of gene expression (such as NF-?B), macrolides, many antioxidant agents, thermogenic substances and even substances that could help the immune system and that result in the protection of cartilage, have been recently gaining attention. The marine world represents a reserve of bioactive ingredients, with considerable potential as functional food. Substances, such as chitin, chitosan, n-3 oils, carotenoids, vitamins, minerals and bioactive peptides, can provide several health benefits, such as the reduction of cardiovascular diseases, anti-inflammatory and anticarcinogenic activities. In addition, new marine bioactive substances with potential anti-inflammatory, antioxidant and thermogenic capacity may provide health benefits and performance improvement, especially in those who practice physical activity, because of their increased free radical and Reacting Oxygen Species (ROS) production during exercise, and, particularly, in athletes. The aim of this review is to examine the potential pharmacological properties and application of many marine bioactive substances in sports. PMID:24796298

Gammone, Maria Alessandra; Gemello, Eugenio; Riccioni, Graziano; D’Orazio, Nicolantonio



Citrus Limonoids: Analysis, Bioactivity, and Biomedical Prospects  

Technology Transfer Automated Retrieval System (TEKTRAN)

This publication is a review of the chemistry, biochemistry and bioactivity of limonoids occurring in citrus. The review chronologically relates the evolution of research in citrus limonoids beginning with their association with bitterness development in citrus juices. The chemical and biochemical...


Effect of nanoparticulate bioactive glass particles on bioactivity and cytocompatibility of poly(3-hydroxybutyrate) composites  

PubMed Central

This work investigated the effect of adding nanoparticulate (29 nm) bioactive glass particles on the bioactivity, degradation and in vitro cytocompatibility of poly(3-hydroxybutyrate) (P(3HB)) composites/nano-sized bioactive glass (n-BG). Two different concentrations (10 and 20 wt %) of nanoscale bioactive glass particles of 45S5 Bioglass composition were used to prepare composite films. Several techniques (Raman spectroscopy, scanning electron microscopy, atomic force microscopy, energy dispersive X-ray) were used to monitor their surface and bioreactivity over a 45-day period of immersion in simulated body fluid (SBF). All results suggested the P(3HB)/n-BG composites to be highly bioactive, confirmed by the formation of hydroxyapatite on material surfaces upon immersion in SBF. The weight loss and water uptake were found to increase on increasing bioactive glass content. Cytocompatibility study (cell proliferation, cell attachment, alkaline phosphatase activity and osteocalcin production) using human MG-63 osteoblast-like cells in osteogenic and non-osteogenic medium showed that the composite substrates are suitable for cell attachment, proliferation and differentiation. PMID:19640877

Misra, Superb K.; Ansari, Tahera; Mohn, Dirk; Valappil, Sabeel P.; Brunner, Tobias J.; Stark, Wendelin J.; Roy, Ipsita; Knowles, Jonathan C.; Sibbons, Paul D.; Jones, Eugenia Valsami; Boccaccini, Aldo R.; Salih, Vehid



Thermal analysis and in vitro bioactivity of bioactive glass-alumina composites  

SciTech Connect

Bioactive glass-alumina composite (BA) pellets were fabricated in the range 95/5-60/40 wt.% respectively and were heat-treated under a specific thermal treatment up to 950 {sup o}C. Control (unheated) and heat-treated pellets were immersed in Simulated Body Fluid (SBF) for bioactivity testing. All pellets before and after immersion in SBF were studied by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM-EDS) and X-ray Diffraction (XRD) analysis. All composite pellets presented bioactive response. On the surface of the heat-treated pellets the development of a rich biological hydroxyapatite (HAp) layer was delayed for one day, compared to the respective control pellets. Independent of the proportion of the two components, all composites of each group (control and heat-treated) presented the same bioactive response as a function of immersion time in SBF. It was found that by the applied methodology, Al{sub 2}O{sub 3} can be successfully applied in bioactive glass composites without obstructing their bioactive response. - Research Highlights: {yields} Isostatically pressed glass-alumina composites presented apatite-forming ability. {yields} The interaction with SBF resulted in an aluminium phosphate phase formation. {yields} The formation of an aluminium phosphate phase enhanced the in vitro apatite growth.

Chatzistavrou, Xanthippi, E-mail: [Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kantiranis, Nikolaos, E-mail: [School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kontonasaki, Eleana, E-mail: [School of Dentistry, Department of Fixed Prosthesis and Implant Prosthodontics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Chrissafis, Konstantinos, E-mail: [Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Papadopoulou, Labrini, E-mail: [School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Koidis, Petros, E-mail: [School of Dentistry, Department of Fixed Prosthesis and Implant Prosthodontics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Boccaccini, Aldo R., E-mail: [Department of Materials, Faculty of Engineering, Imperial College, SW7 2AZ London (United Kingdom); Paraskevopoulos, Konstantinos M., E-mail: [Solid State Physics Section, Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)



The versatility of the free lateral arm flap in head and neck soft tissue reconstruction: clinical experience of 210 cases.  


A study of the authors' experience with 210 free lateral arm flaps used to repair head and neck oncological defects over an 8-year period. Patients' ages ranged from 4 to 83 years (average: 49.7 years). One hundred and forty-one were male and 66 female. Three patients received two consecutive flaps each. They were used to reconstruct: the tongue, 53 cases; retromolar trigone, 42 cases; soft/hard palate, 34 cases; skin/facial contour, 19 cases; hypopharynx, 17 cases; buccal mucosa, 12 cases; lips, five cases. Flap cutaneous dimensions ranged from 4 x 2 cm to 17 x 8 cm. Flap was composed of: skin and fascia, 18 cases; sensate (neurovascular) skin, six cases; subcutaneous fat tissue, five cases; skin and vascularised nerve graft, three cases, skin and partial triceps muscle, three cases. Nerve coaptations were performed for all lip reconstructions. All flaps survived except for nine (success rate: 95.2%). Severe postoperative clinical complications preceded flap failure and death in two cases. All but six donor sites were closed primarily. Complications related to the donor site were: paresthesia of the forearm, 210 cases; dog ear, 16 cases; hypertropic scar, 14 cases; weakness, nine cases; haematoma, five cases; seroma, three cases; dehiscence, one case. Radial nerve injury was not observed in this series. The lateral arm flap can be considered safe and versatile for most soft tissue head and neck microsurgical reconstructions. The possibility of sensory recovery through neural anastomoses and low donor site morbidity enhances its efficiency. PMID:18042444

Marques Faria, Jose Carlos; Rodrigues, Mônica Lucia; Scopel, Gean Paulo; Kowalski, Luiz Paulo; Ferreira, Marcus Castro



Recombinant expression of bioactive peptide lunasin in Escherichia coli.  


Lunasin, a cancer-preventive peptide, was isolated from soybean, barley, and wheat. Previous studies showed that this 43-amino acid peptide has the ability to suppress chemical carcinogen-induced transformation in mammalian cells and skin carcinogenesis in mice. In this study, we attempted to use the Escherichia coli T7 expression system for expression of lunasin. The lunasin gene was synthesized by overlapping extension polymerase chain reaction and expressed in E. coli BL21(DE3) with the use of vector pET29a. The recombinant lunasin containing his-tag at the C-terminus was expressed in soluble form which could be purified by immobilized metal affinity chromatography. After 4 h, the expression level is above 4.73 mg of recombinant his-tagged lunasin/L of Luria-Bertani broth. It does not affect the bacterial growth and expression levels. This is the first study that successfully uses E. coli as a host to produce valuable bioactive lunasin. The result of in vitro bioassay showed that the purified recombinant lunasin can inhibit histone acetylation. Recombinant lunasin also inhibits the release of pro-inflammatory cytokines (tumor necrosis factor-alpha, interleukin-1beta, and nitric oxide production). Compared with other research methods on extraction or chemical synthesis to produce lunasin, our method is very efficient in saving time and cost. In the future, it could be applied in medicine and structure-function determination. PMID:20625716

Liu, Chin-Feng; Pan, Tzu-Ming



The skin microbiome  

PubMed Central

The skin is the human body’s largest organ, colonized by a diverse milieu of microorganisms, most of which are harmless or even beneficial to their host. Colonization is driven by the ecology of the skin surface, which is highly variable depending on topographical location, endogenous host factors and exogenous environmental factors. The cutaneous innate and adaptive immune responses can modulate the skin microbiota, but the microbiota also functions in educating the immune system. The development of molecular methods to identify microorganisms has led to an emerging view of the resident skin bacteria as highly diverse and variable. An enhanced understanding of the skin microbiome is necessary to gain insight into microbial involvement in human skin disorders and to enable novel promicrobial and antimicrobial therapeutic approaches for their treatment. PMID:21407241

Grice, Elizabeth A.; Segre, Julia A.



A versatile synthetic approach to grandisol monoterpene pheromone.  


A versatile and efficient synthetic procedure for the grandisol pheromone library has been established. The key feature of our synthesis involves a versatile and highly regioselective Pd(0)-catalyzed intramolecular allylic alkylation for the key cyclobutane skeleton of grandisol. In this connection, the concise synthesis of (±)-grandisol as well as mechanism study of Pd(0)-catalyzed regioselective cyclization as a key reaction have also been accomplished. PMID:21975804

Han, Young Taek; Kim, Nam-Jung; Jung, Jong-Wha; Yun, Hwayoung; Lee, Sujin; Suh, Young-Ger



Universal Seed Skin Segmentation  

Microsoft Academic Search

\\u000a We present a principled approach for general skin segmentation using graph cuts. We present the idea of a highly adaptive\\u000a universal seed thereby exploiting the positive training data only. We model the skin segmentation as a min-cut problem on\\u000a a graph defined by the image color characteristics. The prior graph cuts based approaches for skin segmentation do not provide\\u000a general

Rehanullah Khan; Allan Hanbury; Julian Stöttinger



[History of skin graft].  


Skin graft is the most common and simple procedure to cover superficial defect. Skin of variable thickness and size is completely detached from its origin (donor site) to cover a defect (recipient site). This simple procedure is the result of a long and eventful technical and theoretical evolvement. The aim of this article is to re-trace the history of skin grafting, from its discovery until today. PMID:19939539

Boudana, D; Wolber, A; Coeugniet, E; Martinot-Duquennoy, V; Pellerin, P



Skin as an Organ  

NSDL National Science Digital Library

This lesson is part of the Skin Deep Project, which examines the science behind skin. Skin Deep is developed by AAAS and funded by NeutrogenaIn this lesson, students will examine the skin and how it functions as an organ and as part of a larger body system. By taking a closer look at the anatomy and function of the integumentary system, students will further their general knowledge of organ systems in general. Further, they will benefit from realizing that any part of a system may itself be considered as a systema subsystemwith its own internal parts and interactions. Additional links are given for further inquiry.

American Association for the Advancement of Science (; )



Skin disease in antiquity.  


Dermatological conditions and treatment in antiquity can be assessed by studying ancient skin, artefacts illustrating medical disorders and literature from the classified period as well as Egyptian papyri, cuneiform tablets and the Bible. It is often more useful and informative to study naturally preserved skin rather than artificially mummified skin. Great care must be taken in making retrospective diagnosis. Skin manifestations of internal diseases are, and have always been, of the greatest clinical importance. Study of the past may give an insight into the epidemiological aspects of diseases such as TB, leprosy and syphilis which have spread across the world with serious social consequences. PMID:16521362

Liddell, Keith



Contribution to the Determination of In Vivo Mechanical Characteristics of Human Skin by Indentation Test  

PubMed Central

This paper proposes a triphasic model of intact skin in vivo based on a general phenomenological thermohydromechanical and physicochemical (THMPC) approach of heterogeneous media. The skin is seen here as a deforming stratified medium composed of four layers and made out of different fluid-saturated materials which contain also an ionic component. All the layers are treated as linear, isotropic materials described by their own behaviour law. The numerical simulations of in vivo indentation test performed on human skin are given. The numerical results correlate reasonably well with the typical observations of indented human skin. The discussion shows the versatility of this approach to obtain a better understanding on the mechanical behaviour of human skin layers separately. PMID:24324525

Zahouani, Hassan



Polyamines and nonmelanoma skin cancer  

Microsoft Academic Search

Elevated levels of polyamines have long been associated with skin tumorigenesis. Tightly regulated metabolism of polyamines is critical for cell survival and normal skin homeostasis, and these controls are dysregulated in skin tumorigenesis. A key enzyme in polyamine biosynthesis, ornithine decarboxylase (ODC) is upregulated in skin tumors compared to normal skin. Use of transgenic mouse models has demonstrated that polyamines

Susan K. Gilmour; Susan K



A novel bioactive peptide from wasp venom  

PubMed Central

Wasp venoms contain a number of pharmacologically active biomolecules, undertaking a wide range of functions necessary for the wasp's survival. We purified and characterized a novel bioactive peptide (vespin) from the venoms of Vespa magnifica (Smith) wasps with unique primary structure. Its amino acid sequence was determined to be CYQRRVAITAGGLKHRLMSSLIIIIIIRINYLRDNSVIILESSY. It has 44 residues including 15 leucines or isoleucines (32%) in the sequence. Vespin showed contractile activity on isolated ileum smooth muscle. The cDNA encoding vespin precursor was cloned from the cDNA library of the venomous glands. The precursor consists of 67 amino acid residues including the predicted signal peptide and mature vespin. A di-basic enzymatic processing site (-KR-) is located between the signal peptide and the mature peptide. Vespin did not show similarity with any known proteins or peptides by BLAST search, suggesting it is a novel bioactive peptide from wasp venoms. PMID:21544181

Chen, Lingling; Chen, Wenlin; Yang, Hailong; Lai, Ren



Bioactivation of inert alumina ceramics by hydroxylation.  


Alumina ceramics (Al(2)O(3)) are frequently used for medical implants and prostheses because of the excellent biocompatibility, and the high mechanical reliability of the material. Inauspiciously alumina is not suitable for implant components with bone contact, because the material is bioinert and thereby no bony ongrowth, and subsequently loosening of the implant occurs. Here, we present a new method to bioactivate the surface of the material. Specimens made of high purity alumina were treated in sodium hydroxide. Cell culture tests with osteoblast-like cells as well as spectroscopical and mechanical tests were performed. Aluminium hydroxide groups were detected on the surface of the treated specimens. Enhanced cell adhesion, proliferation and secretion of osteocalcin were determined after hydroxylation. The bioactivating treatment had no deteriorating effect on the short- and long-term strength behaviour. Our results indicate that the described surface technique could be used to develop a new class of osseointegrative high-strength ceramic implants. PMID:15927249

Fischer, Horst; Niedhart, Christopher; Kaltenborn, Nadine; Prange, Andreas; Marx, Rudolf; Niethard, Fritz Uwe; Telle, Rainer



Microencapsulated Bioactive Agents and Method of Making  

NASA Technical Reports Server (NTRS)

The invention is directed to microcapsules encapsulating an aqueous solution of a protein, drug or other bioactive substance inside a semi-permeable membrane. The microcapsules are formed by interfacial coacervation where shear forces are limited to 0-100 dynes per square centimeter. The resulting uniform microcapsules can then be subjected to dewatering in order to cause the internal solution to become supersaturated with the dissolved substance. This dewatering allows controlled nucleation and crystallization of the dissolved substance. The crystal-filled microcapsules can be stored, keeping the encapsulated crystals in good condition for further direct use in x-ray crystallography or as injectable formulations of the dissolved drug, protein or other bioactive substance.

Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)



Synthesis, self-aggregation and bioactivity properties of a cationic aminoacyl surfactant, based on a new class of highly functionalized nucleolipids.  


A highly functionalized aminoacyl nucleolipid based on uridine is here proposed as a novel cationic surfactant. To achieve this, a straightforward, high yielding and versatile protocol has been devised, in principle providing synthetic access to a variety of different, related analogs. Self-aggregation properties of this nucleolipid were determined by using a combined approach, including surface tension, conductivity and DLS measurements. Above the critical micellar concentration of 4 × 10(-5) mol kg(-1), large supramolecular assemblies with a counterion condensation degree of 0.25 were observed. The bioactivity profile of this new compound was investigated on cancer and non cancer cell lines. PMID:22818038

Simeone, Luca; Irace, Carlo; Di Pascale, Antonio; Ciccarelli, Donato; D'Errico, Gerardino; Montesarchio, Daniela



Skin Diseases: Skin and Sun—Not a good mix  


... Current Issue Past Issues Skin Diseases Skin and Sun —Not a good mix Past Issues / Fall 2008 ... turn Javascript on. Good skin care begins with sun safety. Whether it is something as simple as ...


The skin microbiome  

Microsoft Academic Search

The skin is the human body's largest organ, colonized by a diverse milieu of microorganisms, most of which are harmless or even beneficial to their host. Colonization is driven by the ecology of the skin surface, which is highly variable depending on topographical location, endogenous host factors and exogenous environmental factors. The cutaneous innate and adaptive immune responses can modulate

Elizabeth A. Grice; Julia A. Segre



Ballistic skin simulant  

Microsoft Academic Search

Hydrogels prepared from water solutions containing 10–20 mass% gelatine are generally accepted muscle tissue simulants in terminal ballistic research. They, however, do not have a surface layer which simulates the effect of human skin. The purpose of this research was to find a suitable skin simulant for enhancing the testing fidelity and the credibility of the results with gelatine-based materials

Jorma Jussila; Ari Leppäniemi; Mikael Paronen; Erkki Kulomäki



Skin Effect in Semiconductors  

Microsoft Academic Search

This paper deals with the theory of skin effect in semiconductor materials including the effect of displacement currents, which are generally neglected in the skin-effect theory for metallic conductors. In the case of flat plates, formulas are derived for the field distribution, the impedance and the eddy-current power losses, considering symmetrical electric as well as magnetic fields. Impedance as a

A. H. Frei; M. J. O. Strutt



Occupational skin diseases.  


Occupational skin diseases are the most commonly reported notifiable occupational diseases. In Germany, 23 596 out of a total of 71 263 reported occupational diseases in 2010 were classified as occupational skin diseases (BK No. 5101: "severe or recurrent skin diseases which have forced the person to discontinue all occupational activities that caused or could cause the development, worsening, or recurrence of the disease"). Contact dermatitis (allergic, irritant) of the hands is the most common skin disease and atopic skin diathesis is often an important co-factor. The number of work-related skin diseases is many times higher than the number of notified occupational dermatoses. This CME article explains the legal framework of occupational diseases, the tasks and obligations of the legal statutory work insurance. Typical allergens and irritants of high risk professions are also presented as are the important steps from diagnosis to compensation. Early prevention of occupational skin diseases is very important to avoid severe chronic hand eczema. Therefore the "dermatologist's report" is crucial. Other occupational dermatoses (outside of BK 5101) are briefly mentioned. In recent years the number of notifications of occupational skin cancer due to occupational UV-irradiation has increased. According to recent epidemiological findings, there is a significant and consistent positive association between occupational UV-irradiation and squamous cell carcinoma. Therefore, an important criterion for a new occupational disease is fulfilled. PMID:22455666

Diepgen, Thomas L



Screening for skin cancer  

Microsoft Academic Search

Context: Malignant melanoma is often lethal, and its incidence in the United States has increased rapidly over the past 2 decades. Nonmelanoma skin cancer is seldom lethal, but, if advanced, can cause severe disfigurement and morbidity. Early detection and treatment of melanoma might reduce mortality, while early detection and treatment of nonmelanoma skin cancer might prevent major disfigurement and to

Mark Helfand; Susan M Mahon; Karen B Eden; Paul S Frame; C. Tracy Orleans



Bleeding into the skin  


Bleeding under the skin can occur from broken blood vessels that form tiny pinpoint red dots (called ... Aside from the common bruise, bleeding into the skin or mucous membranes is a very significant sign and should always be checked out by a health care ...


Bioactive calcium silicate ceramics and coatings  

Microsoft Academic Search

CaO–SiO2 based ceramics have been regarded as potential candidates for artificial bone due to their excellent bone bioactivity and biocompatibility. However, they cannot be used as implants under a heavy load because of their poor mechanical properties, in particular low fracture toughness. Plasma spraying CaO–SiO2 based ceramic coatings onto titanium alloys can expand their application to the hard tissue replacement

Xuanyong Liu; Marco Morra; Angelo Carpi; Baoe Li



Bioactive constituents from gum guggul (Commiphora wightii).  


Bioactivity-directed fractionation and purification afforded cytotoxic components of Commiphora wightii. The exudates of C. wightii were extracted with EtOAc and the extract was subjected to repeated column chromatography. A fraction showing cytotoxic activity was characterized as a mixture of two ferulates with an unusual skeleton by spectral and chemical methods, including by NMR, GC-MS and chemical derivatization. This fraction also showed moderate scavenging effect against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. PMID:11314959

Zhu, N; Rafi, M M; DiPaola, R S; Xin, J; Chin, C K; Badmaev, V; Ghai, G; Rosen, R T; Ho, C T



Human Milk Composition: Nutrients and Bioactive Factors  

PubMed Central

Synopsis The composition of human milk is the biologic norm for infant nutrition. Human milk also contains many hundreds to thousands of distinct bioactive molecules that protect against infection and inflammation and contribute to immune maturation, organ development, and healthy microbial colonization. Some of these molecules, e.g., lactoferrin, are being investigated as novel therapeutic agents. A dynamic, bioactive fluid, human milk changes in composition from colostrum to late lactation, and varies within feeds, diurnally, and between mothers. Feeding infants with expressed human milk is increasing. Pasteurized donor milk is now commonly provided to high risk infants and most mothers in the U.S. express and freeze their milk at some point in lactation for future infant feedings. Many milk proteins are degraded by heat treatment and freeze-thaw cycles may not have the same bioactivity after undergoing these treatments. This article provides an overview of the composition of human milk, sources of its variation, and its clinical relevance. PMID:23178060

Ballard, Olivia; Morrow, Ardythe L.



Plant bioactives for ruminant health and productivity.  


Plants have been used throughout history for their medicinal properties. This use has often focused on human health but plants have also been, and still are, applied in ethnoveterinary practice and animal health management. In recent times, the use of synthetic chemicals has become prevalent. Public awareness of the potential environmental and health risks associated with heavy chemical use has also increased. This has put pressure on regulatory bodies to reduce the use of chemicals in agriculture. The most striking example is the 2006 banning of antibiotics in animal feed by the European Union. Moves such as this have increased the drive to find alternatives to synthetic chemicals and research has again turned to the use of plant bioactives as a means of improving animal health. Current scientific evidence suggests there is significant potential to use plants to enhance animal health in general and that of ruminants (cattle, deer, sheep, etc.) in particular. Active areas of research for plant bioactives (particularly saponin and tannin containing plants) include reproductive efficiency, milk and meat quality improvement, foam production/bloat control and methane production. Nematode control is also a significant area of research and the evidence suggests a much broader range of phytochemicals may be effective. This review presents a summary of the literature and examines international research efforts towards the development of plant bioactives for animal health. PMID:17919666

Rochfort, Simone; Parker, Anthony J; Dunshea, Frank R



[Multiple emulsions; bioactive compounds and functional foods].  


The continued appearance of scientific evidence about the role of diet and/or its components in health and wellness, has favored the emergence of functional foods which currently constitute one of the chief factors driving the development of new products. The application of multiple emulsions opens new possibilities in the design and development of functional foods. Multiple emulsions can be used as an intermediate product (food ingredient) into technological strategies normally used in the optimization of the presence of bioactive compounds in healthy and functional foods. This paper presents a summary of the types, characteristics and formation of multiple emulsions, possible location of bioactive compounds and their potential application in the design and preparation of healthy and functional foods. Such applications are manifested particularly relevant in relation to quantitative and qualitative aspects of lipid material (reduced fat/calories and optimization of fatty acid profile), encapsulation of bioactive compounds mainly hydrophilic and sodium reduction. This strategy offers interesting possibilities regarding masking flavours and improving sensory characteristics of foods. PMID:24160194

Jiménez-Colmenero, Francisco



[Skin and sun exposure].  


Fisherman commonly experience a significant number of cutaneous problems, related to the exposure to environmental factors due to their working conditions. Among these factors, sun exposure is able to determine both acute and chronic skin damage, mostly linked to the effects of the ultraviolet (UV) radiation on epidermal and dermal structures. In particular, UV-A appears to play a major role in the deterioration of dermal structure leading to the photoaged appearance of the skin, while UV-B is mainly responsible for skin cancers. Peculiar clinical features of skin damage in fishermen include dryness, irregular pigmentation, wrinkling, stellate pseudoscars, elastosis, inelasticity, telangiectasia, comedones and sebaceous hyperplasia. Furtheremore, the high incidence of non-melanoma skin cancers, on sun-exposed areas, confirms the need for occupational health policies focusing on issues such as photoprotection. PMID:24303699

Cannavò, Serafinella Patrizia; Borgia, Francesco; Trifirò, Caterina; Aragona, Emanuela



You and Your Skin  

NSDL National Science Digital Library

The You and Your Skin interactive was developed by Science NetLinks with funding from Neutrogena as part of the Skin Deep project. This resource provides an introduction to the basic structure of the skin, information about how the skin protects us, and some information on how to care for the skin. There are four main sections to the resource: Function, Anatomy, Protection, and Care. When you click on one of the main sections, you'll be taken to an enlarged view of that section, which contains several subsections represented by the highlighted ring around the circle. Roll your mouse over the ring to see the subsections. To go to one of the subsections, simply click on it. To move from one of the main sections to another, simply click on one of the red arrows found by the ring.

Science NetLinks (AAAS; )



Miniaturized Bioaffinity Assessment Coupled to Mass Spectrometry for Guided Purification of Bioactives from Toad and Cone Snail  

PubMed Central

A nano-flow high-resolution screening platform, featuring a parallel chip-based microfluidic bioassay and mass spectrometry coupled to nano-liquid chromatography, was applied to screen animal venoms for nicotinic acetylcholine receptor like (nAChR) affinity by using the acetylcholine binding protein, a mimic of the nAChR. The potential of this microfluidic platform is demonstrated by profiling the Conus textile venom proteome, consisting of over 1,000 peptides. Within one analysis (<90 min, 500 ng venom injected), ligands are detected and identified. To show applicability for non-peptides, small molecular ligands such as steroidal ligands were identified in skin secretions from two toad species (Bufo alvarius and Bufo marinus). Bioactives from the toad samples were subsequently isolated by MS-guided fractionation. The fractions analyzed by NMR and a radioligand binding assay with ?7-nAChR confirmed the identity and bioactivity of several new ligands. PMID:24833338

Heus, Ferry; Otvos, Reka A.; Aspers, Ruud L. E. G.; van Elk, Rene; Halff, Jenny I.; Ehlers, Andreas W.; Dutertre, Sébastien; Lewis, Richard J.; Wijmenga, Sybren; Smit, August B.; Niessen, Wilfried M. A.; Kool, Jeroen



Bioengineering the skin-implant interface: the use of regenerative therapies in implanted devices.  


This discussion and review article focuses on the possible use of regenerative techniques applied to the interfaces between skin and medical implants. As is widely known, the area of contact between an implant and the skin--the skin-implant interface--is prone to recurrent and persistent problems originated from the lack of integration between the material of the implant and the skin. Producing a long-term successful biointerface between skin and the implanted device is still an unsolved problem. These complications have prevented the development of advanced prosthetics and the evolution of biointegrated devices with new technologies. While previous techniques addressing these issues have relied mostly on the coating of the implants or the modification of the topology of the devices, recent in vitro developed techniques have shown that is possible to introduce biocompatible and possibly regenerative materials at the skin-device interface. These techniques have also shown that the process of delivering the materials has biological effects on the skin surrounding the implant, thus converting bioinert into bioactive, dynamic interfaces. Given that the best clinical outcome is the long-term stabilization and integration of the soft tissue around the implant, this article presents the basis for the selection of regenerative materials and therapies for long-term use at the skin-device interface, with focus on the use of natural biopolymers and skin cell transplantation. PMID:20140520

Peramo, Antonio; Marcelo, Cynthia L



A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior.  


Composite scaffolds of mesoporous bioactive glass (MBG)/polycaprolactone (PCL) and conventional bioactive glass (BG)/PCL were fabricated by a solvent casting-particulate leaching method, and the structure and properties of the composite scaffolds were characterized. The measurements of the water contact angles suggest that the incorporation of either MBG or BG into PCL can improve the hydrophilicity of the composites, and the former is more effective than the later. The bioactivity of the composite scaffold is evaluated by soaking the scaffolds in a simulated body fluid (SBF) and the results show that the MBG/PCL composite scaffolds can induce a dense and continuous layer of apatite after soaking in SBF for 3 weeks, as compared with the scattered and discrete apatite particles on the BG/PCL composite scaffolds. Such improvements (improvements of the hydrophilicity and apatite forming ability) should be helpful for the extensive applications of PCL scaffold in tissue engineering. PMID:17600329

Li, Xia; Shi, Jianlin; Dong, Xiaoping; Zhang, Lingxia; Zeng, Hongyu



6 Common Cancers - Skin Cancer  


... Bar Home Current Issue Past Issues 6 Common Cancers - Skin Cancer Past Issues / Spring 2007 Table of Contents For ... AP Photo/Herald-Mail, Kevin G. Gilbert Skin Cancer Skin cancer is the most common form of ...


Mom and Baby Skin Care  


... and baby skin care Mom and baby skin care Skin care concerns during and after pregnancy Melasma Also known ... chilled product can help alleviate the itch. Hair care concerns during and after pregnancy Excessive hair growth ...


Structure, dynamics, and surface reactions of bioactive glasses  

Microsoft Academic Search

Three bioactive glasses (45S5, 55S4.3, and 60S3.8) have been investigated using atomic-scale molecular dynamics simulations in attempt to explain differences in observed macroscopic bioactivity. Bulk and surface structures and bulk dynamics have been characterized. Ion exchange and hydrolysis reactions, the first two stages in Hench's model describing the reactions of bioactive glass surfaces in vivo, have been investigated in detail.

Todd R. Zeitler



Proangiogenic Potential of a Collagen\\/Bioactive Glass Substrate  

Microsoft Academic Search

Purpose  Previous attempts to stimulate angiogenesis have focused on the delivery of growth factors and cytokines, genes encoding for\\u000a specific angiogenic inductive proteins or transcription factors, or participating cells. While high concentrations of bioactive\\u000a glasses have exhibited osteogenic potential, recent studies have demonstrated that low concentrations of particular bioactive\\u000a glasses are angiogenic. We hypothesized that a well known bioactive glass (Bioglass®

Ann Leu; J. Kent Leach



The Ontogeny of Skin  

PubMed Central

Significance: During gestation, fetal skin progresses from a single layer derived from ectoderm to a complex, multi-layer tissue with the stratum corneum (SC) as the outermost layer. Innate immunity is a conferred complex process involving a balance of pro- and anti-inflammatory cytokines, structural proteins, and specific antigen-presenting cells. The SC is a part of the innate immune system as an impermeable physical barrier containing anti-microbial lipids and host defense proteins. Postnatally, the epidermis continually replenishes itself, provides a protective barrier, and repairs injuries. Recent Advances: Vernix caseosa protects the fetus during gestation and facilitates development of the SC in the aqueous uterine environment. The anti-infective, hydrating, acidification, and wound-healing properties post birth provide insights for the development of strategies that facilitate SC maturation and repair in the premature infant. Critical Issues: Reduction of infant mortality is a global health priority. Premature infants have an incompetent skin barrier putting them at risk for irritant exposure, skin compromise and life-threatening infections. Effective interventions to accelerate skin barrier maturation are compelling. Future Directions: Investigations to determine the ontogeny of barrier maturation, that is, SC structure, composition, cohesiveness, permeability, susceptibility to injury, and microflora, as a function of gestational age are essential. Clinicians need to know when the premature skin barrier becomes fully competent and comparable to healthy newborn skin. This will guide the development of innovative strategies for optimizing skin barrier development. PMID:24761361

Visscher, Marty; Narendran, Vivek



Archaea on Human Skin  

PubMed Central

The recent era of exploring the human microbiome has provided valuable information on microbial inhabitants, beneficials and pathogens. Screening efforts based on DNA sequencing identified thousands of bacterial lineages associated with human skin but provided only incomplete and crude information on Archaea. Here, we report for the first time the quantification and visualization of Archaea from human skin. Based on 16 S rRNA gene copies Archaea comprised up to 4.2% of the prokaryotic skin microbiome. Most of the gene signatures analyzed belonged to the Thaumarchaeota, a group of Archaea we also found in hospitals and clean room facilities. The metabolic potential for ammonia oxidation of the skin-associated Archaea was supported by the successful detection of thaumarchaeal amoA genes in human skin samples. However, the activity and possible interaction with human epithelial cells of these associated Archaea remains an open question. Nevertheless, in this study we provide evidence that Archaea are part of the human skin microbiome and discuss their potential for ammonia turnover on human skin. PMID:23776475

Probst, Alexander J.; Auerbach, Anna K.; Moissl-Eichinger, Christine



Skin and antioxidants.  


It is estimated that total sun exposure occurs non-intentionally in three quarters of our lifetimes. Our skin is exposed to majority of UV radiation during outdoor activities, e.g. walking, practicing sports, running, hiking, etc. and not when we are intentionally exposed to the sun on the beach. We rarely use sunscreens during those activities, or at least not as much and as regular as we should and are commonly prone to acute and chronic sun damage of the skin. The only protection of our skin is endogenous (synthesis of melanin and enzymatic antioxidants) and exogenous (antioxidants, which we consume from the food, like vitamins A, C, E, etc.). UV-induced photoaging of the skin becomes clinically evident with age, when endogenous antioxidative mechanisms and repair processes are not effective any more and actinic damage to the skin prevails. At this point it would be reasonable to ingest additional antioxidants and/or to apply them on the skin in topical preparations. We review endogenous and exogenous skin protection with antioxidants. PMID:23384037

Poljsak, Borut; Dahmane, Raja; Godic, Aleksandar



Bioactive Peptides from Muscle Sources: Meat and Fish  

PubMed Central

Bioactive peptides have been identified in a range of foods, including plant, milk and muscle, e.g., beef, chicken, pork and fish muscle proteins. Bioactive peptides from food proteins offer major potential for incorporation into functional foods and nutraceuticals. The aim of this paper is to present an outline of the bioactive peptides identified in the muscle protein of meat to date, with a focus on muscle protein from domestic animals and fish. The majority of research on bioactives from meat sources has focused on angiotensin-1-converting enzyme (ACE) inhibitory and antioxidant peptides. PMID:22254123

Ryan, Joseph Thomas; Ross, Reynolds Paul; Bolton, Declan; Fitzgerald, Gerald F.; Stanton, Catherine



Soluble starch and composite starch Bioactive Glass 45S5 particles: Synthesis, bioactivity, and interaction with rat bone marrow cells  

Microsoft Academic Search

For many biomedical applications, biodegradable and simultaneously bioactive materials are desired. These materials should at the same time be able to support cell function and co-exist with the organism without triggering a relevant immune response.In this work, the synthesis as well as the bioactivity evaluation of newly developed polymer soluble potato starch and composite (with Bioactive Glass 45S5) micron-size particles

G. A. Silva; A. Pedro; F. J. Costa; N. M. Neves; O. P. Coutinho; R. L. Reis



Electrospinning of Bioactive Dex-PAA Hydrogel Fibers  

NASA Astrophysics Data System (ADS)

In this work, a novel method is developed for making nano- and micro-fibrous hydrogels capable of preventing the rejection of implanted materials. This is achieved by either (1) mimicking the native cellular environment, to exert fine control over the cellular response or (2) acting as a protective barrier, to camouflage the foreign nature of a material and evade recognition by the immune system. Comprehensive characterization and in vitro studies described here provide a foundation for developing substrates for use in clinical applications. Hydrogel dextran and poly(acrylic acid) (PAA) fibers are formed via electrospinning, in sizes ranging from nanometers to microns in diameter. While "as-electrospun" fibers are continuous in length, sonication is used to fragment fibers into short fiber "bristles" and generate nano- and micro- fibrous surface coatings over a wide range of topographies. Dex-PAA fibrous surfaces are chemically modified, and then optimized and characterized for non-fouling and ECM-mimetic properties. The non-fouling nature of fibers is verified, and cell culture studies show differential responses dependent upon chemical, topographical and mechanical properties. Dex-PAA fibers are advantageously unique in that (1) a fine degree of control is possible over three significant parameters critical for modifying cellular response: topography, chemistry and mechanical properties, over a range emulating that of native cellular environments, (2) the innate nature of the material is non-fouling, providing an inert background for adding back specific bioactive functionality, and (3) the fibers can be applied as a surface coating or comprise the scaffold itself. This is the first reported work of dex-PAA hydrogel fibers formed via electrospinning and thermal cross-linking, and unique to this method, no toxic solvents or cross-linking agents are needed to create hydrogels or for surface attachment. This is also the first reported work of using sonication to fragment electrospun hydrogel fibers, and in which surface coatings were made via simple electrostatic interaction and dehydration. These versatile features enable fibrous surface coatings to be applied to virtually any material. Results of this research broadly impact the design of biomaterials which contact cells in the body by directing the consequent cell-material interaction.

Louie, Katherine Boyook


Skin Diseases: Cross-section of human skin  


Skip Navigation Bar Home Current Issue Past Issues Skin Diseases Cross-section of human skin Past Issues / Fall 2008 Table of Contents For ... Logical Images, Inc. I n the areas of skin health and skin diseases, the NIH's National Institute ...


Necrotizing Skin Infections  


... warm to the touch, and sometimes swollen, and gas bubbles may form under the skin. The person ... those caused by Clostridia and mixed bacteria, produce gas (see see Gas Gangrene ). The gas creates bubbles ...


Layers of the Skin  


... now called squamous cells, or keratinocytes. Keratinocytes produce keratin, a tough, protective protein that makes up the majority of the structure of the skin, hair, and nails. The squamous cell layer is the ...


Designing building skins  

E-print Network

This thesis involves framing criteria and discerning issues to be considered in the design of building skins in an urban environment. The 'information age' has paradoxically seen the demise of the facade as an important ...

Desai, Arjun



Aging changes in skin  


... sun exposure with areas that are protected from sunlight. Natural pigments seem to provide some protection against ... Exposures to industrial and household chemicals Indoor heating Sunlight can cause: Loss of elasticity (elastosis) Noncancerous skin ...


Men's Skin Care  


... Tattoo removal Lasers can remove tattoos without scarring. Dark blue, red, some lighter blues, and green inks ... best option. People who have light skin and dark hair are ideal candidates for laser hair removal. ...


Skin color - patchy  


... wounds, insect bites and minor skin infections Erythrasma Melasma Melanoma Moles ( nevi ), bathing trunk nevi, or giant nevi Mongolian blue spots Pityriasis alba Radiation therapy Rashes Sensitivity to the sun due to medication ...


Healthy Skin Matters  


... won’t last all day! What about tanning beds? Tanning beds don’t offer a safe alternative to natural ... your skin, whether the exposure comes from tanning beds or natural sunlight. This damage increases the risk ...


Hormones and the Skin  


... Media contacts Public service advertisements Stats and facts Gold Triangle Awards Stories and news News releases Press ... Teenage skin Tropical travel Vitamin D Cosmetic treatments Gold Triangle Awards Home Media resources Stats and facts ...


Children's Skin Care  


... Media contacts Public service advertisements Stats and facts Gold Triangle Awards Stories and news News releases Press ... Teenage skin Tropical travel Vitamin D Cosmetic treatments Gold Triangle Awards Home Media resources Stats and facts ...


Influence of barium substitution on bioactivity, thermal and physico-mechanical properties of bioactive glass.  


Barium with low concentration in the glasses acts as a muscle stimulant and is found in human teeth. We have made a primary study by substituting barium in the bioactive glass. The chemical composition containing (46.1-X) SiO2--24.3 Na2O-26.9 CaO-2.6 P2O5, where X=0, 0.4, 0.8, 1.2 and 1.6mol% of BaO was chosen and melted in an electric furnace at 1400±5°C. The glasses were characterized to determine their use in biomedical applications. The nucleation and crystallization regimes were determined by DTA and the controlled crystallization was carried out by suitable heat treatment. The crystalline phase formed was identified by using XRD technique. Bioactivity of these glasses was assessed by immersion in simulated body fluid (SBF) for various time periods. The formation of hydroxy carbonate apatite (HCA) layer was identified by FTIR spectrometry, scanning electron microscope (SEM) and XRD which showed the presence of HCA as the main phase in all tested bioactive glass samples. Flexural strength and densities of bioactive glasses have been measured and found to increase with increasing the barium content. The human blood compatibility of the samples was evaluated and found to be pertinent. PMID:25686983

Arepalli, Sampath Kumar; Tripathi, Himanshu; Vyas, Vikash Kumar; Jain, Shubham; Suman, Shyam Kumar; Pyare, Ram; Singh, S P



Chemoprevention of Skin Cancer  

Microsoft Academic Search

\\u000a Non-melanoma skin cancer (NMSC) is the most prevalent of all malignancies diagnosed in men and women in the US and its incidence\\u000a is rising rapidly. It has been estimated that between 900,000 and 1,200,000 new skin cancers arise in the Unites States each\\u000a year (1). The large majority of these are NMSC’s. Melanoma, with an estimated 44,200 new cases in

Meyer A. Horn; Gordon Kenneth B


Nicotinamide and the skin.  


Nicotinamide, an amide form of vitamin B3, boosts cellular energy and regulates poly-ADP-ribose-polymerase 1, an enzyme with important roles in DNA repair and the expression of inflammatory cytokines. Nicotinamide shows promise for the treatment of a wide range of dermatological conditions, including autoimmune blistering disorders, acne, rosacea, ageing skin and atopic dermatitis. In particular, recent studies have also shown it to be a potential agent for reducing actinic keratoses and preventing skin cancers. PMID:24635573

Chen, Andrew C; Damian, Diona L



Equine skin transplants  

E-print Network

. skin biopsy punch. Daily temperatures were recorded while animals were hospital- ized. Swabs taken from all sites where autografts failed to survive were cultured and antibiotic sensitivity was determined. Wounds were surgically produced... following transplantation. ~ Clinistix, Ames Co. , Inc. , Elkhart, Indiana Skin biopsies from the transplants were subjected to histo- pathological examination on the thirtieth day following transplantation. Biopsies were obtained by the use of a 6mm...

Boyd, Charles Leroy



Bioactivation and hepatotoxicity of nitroaromatic drugs.  


Certain drugs containing a nitroaromatic moiety (e.g., tolcapone, nimesulide, nilutamide, flutamide, nitrofurantoin) have been associated with organ-selective toxicity including rare cases of idiosyncratic liver injury. What they have in common is the potential for multistep nitroreductive bioactivation (6-electron transfer) that produces the potentially hazardous nitroanion radical, nitroso intermediate, and N-hydroxy derivative. These intermediates have been associated with increased oxidant stress and targeting of nucleophilic residues on proteins and nucleic acids. However, other mechanisms including the formation of oxidative metabolites and mitochondrial liability, as well as inherent toxicokinetic properties, also determine the drugs' overall potency. Therefore, structural modification not only of the nitro moiety but also of ring substituents can greatly reduce toxicity. Novel concepts have revealed that, besides the classical microsomal nitroreductases, cytosolic and mitochondrial enzymes including nitric oxide synthase can also bioactivate certain nitroarenes (nilutamide). Furthermore, animal models of silent mitochondrial dysfunction have demonstrated that a mitochondrial oxidant stress posed by certain nitroaromatic drugs (nimesulide) can produce significant mitochondrial injury if superimposed on a genetic mitochondrial abnormality. Finally, there may be mechanisms for all nitroaromatic drugs that do not involve bioactivation of the nitro group, e.g., AHR interactions with flutamide. Taken together, the focus of research on the hepatic toxicity of nitroarene-containing drugs has shifted over the past years from the identification of the reactive intermediates generated during the bioreductive pathway to the underlying biomechanisms of liver injury. Most likely one of the next paradigm shifts will include the identification of determinants of susceptibility to nitroaromatic drug-induced hepatotoxicity. PMID:17073576

Boelsterli, Urs A; Ho, Han Kiat; Zhou, Shufeng; Leow, Koon Yeow



Effect of nitrogen and fluorine on mechanical properties and bioactivity in two series of bioactive glasses.  


Bioactive glasses are able to bond to bone through formation of carbonated hydroxyapatite in body fluids, and fluoride-releasing bioactive glasses are of interest for both orthopaedic and, in particular, dental applications for caries inhibition. However, because of their poor strength their use is restricted to non-load-bearing applications. In order to increase their mechanical properties, doping with nitrogen has been performed on two series of bioactive glasses: series (I) was a "bioglass" composition (without P2O5) within the quaternary system SiO2-Na2O-CaO-Si3N4 and series (II) was a simple substitution of CaF2 for CaO in series (I) glasses keeping the Na:Ca ratio constant. The objective of this work was to evaluate the effect of the variation in nitrogen and fluorine content on the properties of these glasses. The density, glass transition temperature, hardness and elastic modulus all increased linearly with nitrogen content which indicates that the incorporation of nitrogen stiffens the glass network because N is mainly in 3-fold coordination with Si atoms. Fluorine addition significantly decreases the thermal property values but the mechanical properties of these glasses remain unchanged with fluorine. The combination of both nitrogen and fluorine in oxyfluoronitride glasses gives better mechanical properties at much lower melting temperatures since fluorine reduces the melting point, allows higher solubility of nitrogen and does not affect the higher mechanical properties arising from incorporation of nitrogen. The characterization of these N and F substituted bioactive glasses using (29)Si MAS NMR has shown that the increase in rigidity of the glass network can be explained by the formation of SiO3N, SiO2N2 tetrahedra and Q(4) units with extra bridging anions at the expense of Q(3) units. Bioactivity of the glasses was investigated in vitro by examining apatite formation on the surface of glasses treated in acellular simulated body fluid (SBF) with ion concentrations similar to those in human blood plasma. Formation of a bioactive apatite layer on the samples treated in SBF was confirmed by grazing incidence X-ray diffraction and scanning electron microscopy (SEM) combined with energy dispersive X-ray spectroscopy (EDS). The crystallinity of this layer decreases with increasing N content suggesting that N may decrease bioactivity slightly. PMID:23676624

Bachar, Ahmed; Mercier, Cyrille; Tricoteaux, Arnaud; Hampshire, Stuart; Leriche, Anne; Follet, Claudine



Pregnancy and Skin  

PubMed Central

Pregnancy is associated with complex of endocrinological, immunological, metabolic, and vascular changes that may influence the skin and other organs in various ways. Pregnancy is a period in which more than 90% women have significant and complex skin changes that may have great impact on the woman's life. The dermatoses of pregnancy represent a heterogeneous group of skin diseases related to pregnancy and/or the postpartum period. The dermatoses of pregnancy can be classified into the following three groups: Physiologic skin changes in pregnancy, pre-existing dermatoses affected by pregnancy, and specific dermatoses of pregnancy. Though most of these skin dermatoses are benign and resolve in postpartum period, a few can risk fetal life and require antenatal surveillance. Most of the dermatoses of pregnancy can be treated conservatively but a few require intervention in the form of termination of pregnancy. Correct diagnosis is essential for the treatment of these disorders. This article discusses the current knowledge of various skin changes during pregnancy and the evaluation of the patient with pregnancy dermatoses with special emphasis on clinical features, diagnostic tests, maternal and fetal prognosis, therapy, and management.

Vora, Rita V.; Gupta, Rajat; Mehta, Malay J.; Chaudhari, Arvind H.; Pilani, Abhishek P.; Patel, Nidhi



Marine Nucleosides: Structure, Bioactivity, Synthesis and Biosynthesis  

PubMed Central

Nucleosides are glycosylamines that structurally form part of nucleotide molecules, the building block of DNA and RNA. Both nucleosides and nucleotides are vital components of all living cells and involved in several key biological processes. Some of these nucleosides have been obtained from a variety of marine resources. Because of the biological importance of these compounds, this review covers 68 marine originated nucleosides and their synthetic analogs published up to June 2014. The review will focus on the structures, bioactivities, synthesis and biosynthetic processes of these compounds. PMID:25474189

Huang, Ri-Ming; Chen, Yin-Ning; Zeng, Ziyu; Gao, Cheng-Hai; Su, Xiangdong; Peng, Yan



Bioactive borate glass coatings for titanium alloys  

Microsoft Academic Search

Bioactive borate glass coatings have been developed for titanium and titanium alloys. Glasses from the Na2O–CaO–B2O3 system, modified by additions of SiO2, Al2O3, and P2O5, were characterized and compositions with thermal expansion matches to titanium were identified. Infrared and X-ray diffraction\\u000a analyses indicate that a hydroxyapatite surface layer forms on the borate glasses after exposure to a simulated body fluid

Laxmikanth Peddi; Richard K. Brow; Roger F. Brown



Marine Nucleosides: Structure, Bioactivity, Synthesis and Biosynthesis.  


Nucleosides are glycosylamines that structurally form part of nucleotide molecules, the building block of DNA and RNA. Both nucleosides and nucleotides are vital components of all living cells and involved in several key biological processes. Some of these nucleosides have been obtained from a variety of marine resources. Because of the biological importance of these compounds, this review covers 68 marine originated nucleosides and their synthetic analogs published up to June 2014. The review will focus on the structures, bioactivities, synthesis and biosynthetic processes of these compounds. PMID:25474189

Huang, Ri-Ming; Chen, Yin-Ning; Zeng, Ziyu; Gao, Cheng-Hai; Su, Xiangdong; Peng, Yan



Possible bioactive conformations of alpha-melanotropin.  


By comparing the results of energy calculation for alpha-MSH and its semirigid analogues Ac-[ Cys4 , Cys10 ]-alpha- MSH4 -10-NH2, Ac-[ Cys4 , Cys10 ]-alpha- MSH4 -13-NH2, and [ Cys4 - Cys10 ]-alpha-MSH, a detailed description of two possible bioactive conformations for the 'specific' central site of alpha- MSH6 -9 is proposed representing variants of chain-reversal structure. A possible explanation of the rise in melanotropic activity of the latter two semirigid analogues is presented. PMID:6723968

Nikiforovich, G V; Rozenblit, S A; Shenderovich, M D; Chipens, G I



Sensory properties of fruit skins  

Microsoft Academic Search

The sensory characteristics of fruit skins were determined for a range of produce including large fruit (apples, pears, and tomatoes) and small fruit (grapes, strawberries, blueberries, and cherry tomatoes). These results provided a context within which to study the sensory properties of skins from novel kiwifruit (Actinidia). The kiwifruit skins ranged from the edible skins of grape-sized Actinidia arguta through

Rachel L. Amos



Thyroid hormone action on skin  

PubMed Central

The skin characteristics associated with thyroid hormone are classic. The name “myxedema” refers to the associated skin condition caused by increased glycosaminoglycan deposition in the skin. Generalized myxedema is still the classic cutaneous sign of hypothyroidism. It is caused by deposition of dermal acid mucopolysaccharides, notably hyaluronic acid. Despite its appearance, the skin does not pit with pressure. PMID:22110782



Delivery of bioactive molecules to mitochondria in vivo  

Microsoft Academic Search

Mitochondrial dysfunction contributes to many human degenerative diseases but specific treatments are hampered by the difficulty of delivering bioactive molecules to mitochondria in vivo. To overcome this problem we developed a strategy to target bioactive molecules to mitochondria by attachment to the lipophilic triphenylphosphonium cation through an alkyl linker. These molecules rapidly permeate lipid bilayers and, because of the large

Robin A. J. Smith; Carolyn M. Porteous; Alison M. Gane; Michael P. Murphy



Distribution of bioactive substances from Hypericum brasiliense during plant growth  

Microsoft Academic Search

Extracts from Hypericum brasiliense, a herb growing in the southern and southeastern part of Brazil, have pharmacological properties because the presence of known bioactive compounds. In this study bioactive substances from roots of H. brasiliense were isolated and identified as 1,5-dihydroxyxanthone, isouliginosin B and betulinic acid. The production of these substances by plants of H. brasiliense was then characterized in

Ilka Nacif Abreu; André L. M. Porto; Anita J. Marsaioli; Paulo Mazzafera



Mechanical properties of biodegradable polymer sutures coated with bioactive glass  

Microsoft Academic Search

Combining commercially available Polyglactin 910 (Vicryl®) sutures with bioactive glass powder offers new possibilities for application of composite materials in tissue engineering. Commercial bioactive glass (45S5 Bioglass®) powder was used to coat Vicryl® sutures and the tensile strength of the sutures was tested before and after immersion in simulated body fluid (SBF) as a means to assess the effect of

A. Stamboulis; L. L. Hench; A. R. Boccaccini



Versatile Desktop Experiment Module (DEMo) on Heat Transfer  

ERIC Educational Resources Information Center

This paper outlines a new Desktop Experiment Module (DEMo) engineered for a chemical engineering junior-level Heat Transfer course. This new DEMo learning tool is versatile, fairly inexpensive, and portable such that it can be positioned on student desks throughout a classroom. The DEMo system can illustrate conduction of various materials,…

Minerick, Adrienne R.



Printed reflectarrays as versatile solution for multibeam applications  

Microsoft Academic Search

Printed reflectarrays are proposed as a versatile solution for multibeam applications. The design of architecturally complex feed networks is avoided, since the prescribed beam features are simply obtained by an appropriate selection of radiating elements. A phase-only synthesis based on the iterative projection method is applied to impose the correct phase distribution on the array elements. Numerical results validating the

Francesca Venneri; Sandra Costanzo; Giuseppe Di Massa



Gender and the versatile learning of trigonometry using computer software  

Microsoft Academic Search

This empirical study tests the hypothesis that the versatile learning of trigonometry using interactive computer graphics would lead to a greater improvement in the performance of girls over boys. The experiment was carried out with 15 year old pupils in two schools with matched entry standards, each subdivided by ability into four corresponding mixed gender groups. In every case, experimental

Norman Blackett; David Tall


Criminal Careers and Cognitive Scripts: An Investigation into Criminal Versatility  

ERIC Educational Resources Information Center

"Criminal careers" denotes ways in which offenders develop specialisms and versatility, but studies linking delinquency to social skills deficits have not attempted to explore cognitive, internalised processes by which such "careers" might be chosen. This study investigated criminal minds via script theory: "internal" scripts are used to guide…

Gavin, Helen; Hockey, David



Titanium Enolates of Thiazolidinethione Chiral Auxiliaries: Versatile Tools for  

E-print Network

Titanium Enolates of Thiazolidinethione Chiral Auxiliaries: Versatile Tools for Asymmetric Aldol of titanium tetrachloride and nature of the amine employed.3 However, more easily cleavable auxiliaries than (Figure 2). Formation of the enolate at 0 °C using titanium tetrachlo- ride and the appropriate amine base


Promoting Versatility in Mentor Teachers' Use of Supervisory Skills  

ERIC Educational Resources Information Center

Mentor teachers need a versatile supervisory skills repertoire. Besides taking the prevalent role of daily advisor and instructor, mentor teachers should also be able to stimulate reflection in student teachers. Video recordings of 60 mentoring dialogues were analysed, both before and after a mentor teacher training aimed at developing the…

Crasborn, Frank; Hennissen, Paul; Brouwer, Niels; Korthagen, Fred; Bergen, Theo



A versatile surface channel concept for microfluidic applications  

Microsoft Academic Search

MEMS fluidic devices often require the integration of transducer structures with freely suspended microchannels. In this paper a versatile microchannel fabrication concept is presented, allowing for easy fluidic interfacing and integration of transducer structures in close proximity to the fluid. This is achieved by the reliable fabrication of completely sealed microchannels directly below the substrate surface. The resulting planar substrate

M. Dijkstra; M J de Boer; J. W. Berenschot; T. S. J. Lammerink; R. J. Wiegerink; M. Elwenspoek



Breakthrough Makes LED Lights More Versatile Author: Andrea Thompson  

E-print Network

Breakthrough Makes LED Lights More Versatile Author: Andrea Thompson Source: LEDs have started to blink on all over the place in recent years, from car taillights to roadside these limitations by combining the best of two worlds of LEDs to make ultrathin, ultrasmall and flexible light

Rogers, John A.


Density Ratio Estimation: A New Versatile Tool for Machine Learning  

E-print Network

Density Ratio Estimation: A New Versatile Tool for Machine Learning Masashi Sugiyama Department based on the ratio of prob- ability densities has been proposed recently and gathers a great deal of attention in the machine learning and data mining communities [1­17]. This density ratio framework includes

Sugiyama, Masashi


Recurrence time statistics: Versatile tools for genomic DNA sequence analysis  

E-print Network

enables us to carry out sequence analysis on the whole genomic scale by a PC. Keywords Genomic DNARecurrence time statistics: Versatile tools for genomic DNA sequence analysis Yinhe Cao1, Wen from DNA sequences. One of the more important structures in a DNA se- quence is repeat-related. Often

Gao, Jianbo


An Efficient and Versatile Scheduling Algorithm Based On SDC Formulation  

E-print Network

An Efficient and Versatile Scheduling Algorithm Based On SDC Formulation Jason Cong and Zhiru Zhang that converts a rich set of scheduling constraints into a system of difference constraints (SDC) and performs show that our SDC-based scheduling algorithm can efficiently support resource constraints, frequency

Cong, Jason "Jingsheng"


Bioactive glasses: Importance of structure and properties in bone regeneration  

NASA Astrophysics Data System (ADS)

This review provides a brief background on the applications, mechanisms and genetics involved with use of bioactive glass to stimulate regeneration of bone. The emphasis is on the role of structural changes of the bioactive glasses, in particular Bioglass, which result in controlled release of osteostimulative ions. The review also summarizes the use of Raman spectroscopy, referred to hereto forward as bio-Raman spectroscopy, to obtain rapid, real time in vitro analysis of human cells in contact with bioactive glasses, and the osteostimulative dissolution ions that lead to osteogenesis. The bio-Raman studies support the results obtained from in vivo studies of bioactive glasses, as well as extensive cell and molecular biology studies, and thus offers an innovative means for rapid screening of new bioactive materials while reducing the need for animal testing.

Hench, Larry L.; Roki, Niksa; Fenn, Michael B.



[Progress in the study of some important natural bioactive cyclopeptides].  


Natural cyclopeptides are hot spots in chemical and pharmaceutical fields because of the wide spreading bio-resources, complex molecular structures and various bioactivities. Bio-producers of cyclopeptides distribute over almost every kingdom from bacteria to plants and animals. Many cyclopeptides contain non-coded amino acids and non-pepditic bonds. Most exciting characteristic of cyclopeptides is a range of interesting bioactivities such as antibiotics gramicidin-S (2), vancomycin (3) and daptomycin (4), immunosuppressive cyclosporin-A (1) and astin-C (8), and anti-tumor aplidine (5), RA-V (6) and RA-VII (7). Compounds 1-4 are being used in clinics; compounds 5-8 are in the stages of clinical trial or as a candidate for drug research. In this review, the progress in chemical and bioactive studies on these important natural bioactive cyclopeptides 1-8 are introduced, mainly including discovery, bioactivity, mechanism, QSAR and synthesis. PMID:22645749

Xu, Wen-Yan; Zhao, Si-Meng; Zeng, Guang-Zhi; He, Wen-Jun; Xu, Hui-Min; Tan, Ning-Hu



The TopClosure® 3S System, for skin stretching and a secure wound closure.  


The principle of stretching wound margins for primary wound closure is commonly practiced and used for various skin defects, leading at times to excessive tension and complications during wound closure. Different surgical techniques, skin stretching devices and tissue expanders have been utilized to address this issue. Previously designed skin stretching devices resulted in considerable morbidity. They were invasive by nature and associated with relatively high localized tissue pressure, frequently leading to necrosis, damage and tearing of skin at the wound margins. To assess the clinical effectiveness and performance and, to determine the safety of TopClosure® for gradual, controlled, temporary, noninvasive and invasive applications for skin stretching and secure wound closing, the TopClosure® device was applied to 20 patients for preoperative skin lesion removal and to secure closure of a variety of wound sizes. TopClosure® was reinforced with adhesives, staples and/or surgical sutures, depending on the circumstances of the wound and the surgeon's judgment. TopClosure® was used prior to, during and/or after surgery to reduce tension across wound edges. No significant complications or adverse events were associated with its use. TopClosure® was effectively used for preoperative skin expansion in preparation for dermal resection (e.g., congenital nevi). It aided closure of large wounds involving significant loss of skin and soft tissue by mobilizing skin and subcutaneous tissue, thus avoiding the need for skin grafts or flaps. Following surgery, it was used to secure closure of wounds under tension, thus improving wound aesthetics. A sample case study will be presented. We designed TopClosure®, an innovative device, to modify the currently practiced concept of wound closure by applying minimal stress to the skin, away from damaged wound edges, with flexible force vectors and versatile methods of attachment to the skin, in a noninvasive or invasive manner. PMID:22719176

Topaz, Moris; Carmel, Narin-Nard; Silberman, Adi; Li, Ming Sen; Li, Yong Zhong



Discovering new bioactive molecules from microbial sources  

PubMed Central

There is an increased need for new drug leads to treat diseases in humans, animals and plants. A dramatic example is represented by the need for novel and more effective antibiotics to combat multidrug-resistant microbial pathogens. Natural products represent a major source of approved drugs and still play an important role in supplying chemical diversity, despite a decreased interest by large pharmaceutical companies. Novel approaches must be implemented to decrease the chances of rediscovering the tens of thousands of known natural products. In this review, we present an overview of natural product screening, focusing particularly on microbial products. Different approaches can be implemented to increase the probability of finding new bioactive molecules. We thus present the rationale and selected examples of the use of hypersensitive assays; of accessing unexplored microorganisms, including the metagenome; and of genome mining. We then focus our attention on the technology platform that we are currently using, consisting of approximately 70?000 microbial strains, mostly actinomycetes and filamentous fungi, and discuss about high-quality screening in the search for bioactive molecules. Finally, two case studies are discussed, including the spark that arose interest in the compound: in the case of orthoformimycin, the novel mechanism of action predicted a novel structural class; in the case of NAI-112, structural similarity pointed out to a possible in vivo activity. Both predictions were then experimentally confirmed. PMID:24661414

Monciardini, Paolo; Iorio, Marianna; Maffioli, Sonia; Sosio, Margherita; Donadio, Stefano



Mechanisms of human erythrocytic bioactivation of nitrite.  


Nitrite signaling likely occurs through its reduction to nitric oxide (NO). Several reports support a role of erythrocytes and hemoglobin in nitrite reduction, but this remains controversial, and alternative reductive pathways have been proposed. In this work we determined whether the primary human erythrocytic nitrite reductase is hemoglobin as opposed to other erythrocytic proteins that have been suggested to be the major source of nitrite reduction. We employed several different assays to determine NO production from nitrite in erythrocytes including electron paramagnetic resonance detection of nitrosyl hemoglobin, chemiluminescent detection of NO, and inhibition of platelet activation and aggregation. Our studies show that NO is formed by red blood cells and inhibits platelet activation. Nitric oxide formation and signaling can be recapitulated with isolated deoxyhemoglobin. Importantly, there is limited NO production from erythrocytic xanthine oxidoreductase and nitric-oxide synthase. Under certain conditions we find dorzolamide (an inhibitor of carbonic anhydrase) results in diminished nitrite bioactivation, but the role of carbonic anhydrase is abrogated when physiological concentrations of CO2 are present. Importantly, carbon monoxide, which inhibits hemoglobin function as a nitrite reductase, abolishes nitrite bioactivation. Overall our data suggest that deoxyhemoglobin is the primary erythrocytic nitrite reductase operating under physiological conditions and accounts for nitrite-mediated NO signaling in blood. PMID:25471374

Liu, Chen; Wajih, Nadeem; Liu, Xiaohua; Basu, Swati; Janes, John; Marvel, Madison; Keggi, Christian; Helms, Christine C; Lee, Amber N; Belanger, Andrea M; Diz, Debra I; Laurienti, Paul J; Caudell, David L; Wang, Jun; Gladwin, Mark T; Kim-Shapiro, Daniel B



Micropatterning of bioactive self-assembling gels†  

PubMed Central

Microscale topographical features have been known to affect cell behavior. An important target in this area is to integrate top down techniques with bottom up self-assembly to create three-dimensional (3D) patterned bioactive mimics of extracellular matrices. We report a novel approach toward this goal and demonstrate its use to study the behavior of human mesenchymal stem cells (hMSCs). By incorporating polymerizable acetylene groups in the hydrophobic segment of peptide amphiphiles (PAs), we were able to micro-pattern nanofiber gels of these bioactive materials. PAs containing the cell adhesive epitope arginine–glycine–aspartic acid–serine (RGDS) were allowed to self-assemble within microfabricated molds to create networks of either randomly oriented or aligned ~30 nm diameter nanofiber bundles that were shaped into topographical patterns containing holes, posts, or channels up to 8 ?m in height and down to 5 ?m in lateral dimensions. When topographical patterns contained nanofibers aligned through flow prior to gelation, the majority of hMSCs aligned in the direction of the nanofibers even in the presence of hole microtextures and more than a third of them maintained this alignment when encountering perpendicular channel microtextures. Interestingly, in topographical patterns with randomly oriented nanofibers, osteoblastic differentiation was enhanced on hole microtextures compared to all other surfaces. PMID:20047022

Mata, Alvaro; Hsu, Lorraine; Capito, Ramille; Aparicio, Conrado; Henrikson, Karl



Exploring marine resources for bioactive compounds.  


Biodiversity in the seas is only partly explored, although marine organisms are excellent sources for many industrial products. Through close co-operation between industrial and academic partners, it is possible to successfully collect, isolate and classify marine organisms, such as bacteria, fungi, micro- and macroalgae, cyanobacteria, and marine invertebrates from the oceans and seas globally. Extracts and purified compounds of these organisms can be studied for several therapeutically and industrially significant biological activities, including anticancer, anti-inflammatory, antiviral, antibacterial, and anticoagulant activities by applying a wide variety of screening tools, as well as for ion channel/receptor modulation and plant growth regulation. Chromatographic isolation of bioactive compounds will be followed by structural determination. Sustainable cultivation methods for promising organisms and biotechnological processes for selected compounds can be developed, as well as biosensors for monitoring the target compounds. The (semi)synthetic modification of marine-based bioactive compounds produces their new derivatives, structural analogs and mimetics that could serve as hit or lead compounds and be used to expand compound libraries based on marine natural products. The research innovations can be targeted for industrial product development in order to improve the growth and productivity of marine biotechnology. Marine research aims at a better understanding of environmentally conscious sourcing of marine biotechnology products and increased public awareness of marine biodiversity. Marine research is expected to offer novel marine-based lead compounds for industries and strengthen their product portfolios related to pharmaceutical, nutraceutical, cosmetic, agrochemical, food processing, material and biosensor applications. PMID:25203732

Kiuru, Paula; D?Auria, M Valeria; Muller, Christian D; Tammela, Päivi; Vuorela, Heikki; Yli-Kauhaluoma, Jari



Spiritual and religious aspects of skin and skin disorders  

PubMed Central

Skin and skin disorders have had spiritual aspects since ancient times. Skin, hair, and nails are visible to self and others, and touchable by self and others. The skin is a major sensory organ. Skin also expresses emotions detectable by others through pallor, coldness, “goose bumps”, redness, warmth, or sweating. Spiritual and religious significances of skin are revealed through how much of the skin has been and continues to be covered with what types of coverings, scalp and beard hair cutting, shaving and styling, skin, nail, and hair coloring and decorating, tattooing, and intentional scarring of skin. Persons with visible skin disorders have often been stigmatized or even treated as outcasts. Shamans and other spiritual and religious healers have brought about healing of skin disorders through spiritual means. Spiritual and religious interactions with various skin disorders such as psoriasis, leprosy, and vitiligo are discussed. Religious aspects of skin and skin diseases are evaluated for several major religions, with a special focus on Judaism, both conventional and kabbalistic. PMID:25120377

Shenefelt, Philip D; Shenefelt, Debrah A



Skin conditions: common skin rashes in infants.  


Infants exhibit many skin rashes. Erythema toxicum neonatorum presents as erythematous macules, papules, and pustules on the face, trunk, and extremities; it typically resolves spontaneously within 1 week. Neonatal acne presents as comedones or erythematous papules on the face, scalp, chest, and back. Infantile acne is similar but starts after the neonatal period. Both conditions typically resolve spontaneously; failure to resolve within 1 year warrants evaluation for androgen excess. Neonatal cephalic pustulosis is an acne variant caused by hypersensitivity to Malassezia furfur. It is typically self-limited, but severe cases are managed with topical ketoconazole. Miliaria and milia are caused by sweat retention and present as tiny vesicles or papules; they resolve spontaneously. Contact diaper dermatitis is managed by keeping the diaper area clean and with open air exposure. Diaper dermatitis due to Candida albicans is managed with topical antifungals. Seborrheic dermatitis causes scaling on the scalp. Management involves shampooing and removing scales with a soft brush after applying mineral oil or petrolatum; severe cases are managed with tar or ketoconazole shampoo. Atopic dermatitis is related to food allergy in approximately one-third of children. Food allergy can be confirmed with oral food challenges or skin prick tests. Management includes elimination of irritants and triggers and use of low-potency topical steroids. PMID:23600337

Zuniga, Ramiro; Nguyen, Tam



[Skin diseases with photosensitivity].  


Skin diseases associated with photosensitivity are numerous and may be divided into three main groups: photo-aggravated dermatoses, genophotodermatoses and metabolic photodermatoses. Photo-aggravated dermatoses are autonomous skin diseases in which exposure to sunlight may make the disease worse or precipitate its onset and/or its progressiveness; this group includes lupus erythematosus, autoimmune bullous diseases, acantolytic dyskeratoses, acne vulgaris, rosacea and cutaneous lymphoid infiltrates. To these must be added photosensitive forms of autonomous dermatoses such as atopic dermatitis, psoriasis, herpes labialis, erythema multiforme, granuloma and disseminated superficial actinic porokeratosis. Genophotodermatoses are genodermatoses which are made photosensitive by a recognized or as yet unidentified deficiency of the natural photoprotection system. In this group are albinism, vitiligo, xeroderma pigmentosum and poikiloderma. Metabolic photodermatoses are diseases in which photosensitization reactions, often revealing, are due to the accumulation in the skin of an endogenous chromophore as a result of a congenital (porphyria) or acquired (pellagra) enzymatic disorder. PMID:1529248

Amblard, P; Leccia, M T



Sprayed skin turbine component  


Fabricating a turbine component (50) by casting a core structure (30), forming an array of pits (24) in an outer surface (32) of the core structure, depositing a transient liquid phase (TLP) material (40) on the outer surface of the core structure, the TLP containing a melting-point depressant, depositing a skin (42) on the outer surface of the core structure over the TLP material, and heating the assembly, thus forming both a diffusion bond and a mechanical interlock between the skin and the core structure. The heating diffuses the melting-point depressant away from the interface. Subsurface cooling channels (35) may be formed by forming grooves (34) in the outer surface of the core structure, filling the grooves with a fugitive filler (36), depositing and bonding the skin (42), then removing the fugitive material.

Allen, David B



Skin friction balance  

NASA Technical Reports Server (NTRS)

A skin friction balance uses a parallel linkage mechanism to avoid inaccuracies in skin friction measurement attributable to off-center normal forces. The parallel linkage mechanism includes a stationary plate mounted in a cage, and an upper and lower movable plate which are linked to each other and to the stationary plate throught three vertical links. Flexure pivots are provided for pivotally connecting the links and the plates. A sensing element connected to the upper plate moves in response to skin friction, and the lower plate moves in the opposite direction of the upper plate. A force motor maintains a null position of the sensing element by exerting a restoring force in response to a signal generated by a linear variable differential transformer (LVDT).

Ping, Tcheng (inventor); Supplee, Frank H., Jr. (inventor)



Update on skin allergy.  


Skin diseases with an allergic background such as atopic dermatitis, allergic contact dermatitis, and urticaria are very common. Moreover, diseases arising from a dysfunction of immune cells and/or their products often manifest with skin symptoms. This review aims to summarize recently published articles in order to highlight novel research findings, clinical trial results, and current guidelines on disease management. In recent years, an immense progress has been made in understanding the link between skin barrier dysfunction and allergic sensitization initiating the atopic march. In consequence, new strategies for treatment and prevention have been developed. Novel pathogenic insights, for example, into urticaria, angioedema, mastocytosis, led to the development of new therapeutic approaches and their implementation in daily patient care. By understanding distinct pathomechanisms, for example, the role of IL-1, novel entities such as autoinflammatory diseases have been described. Considerable effort has been made to improve and harmonize patient management as documented in several guidelines and position papers. PMID:25283085

Schlapbach, C; Simon, D



Extreme skin depth waveguides  

E-print Network

Recently, we introduced a paradigm shift in light confinement strategy and introduced a class of extreme skin depth (e-skid) photonic structures (S. Jahani and Z. Jacob, "Transparent sub-diffraction optics: nanoscale light confinement without metal," Optica 1, 96-100 (2014)). Here, we analytically establish that figures of merit related to light confinement in dielectric waveguides are fundamentally tied to the skin depth of waves in the cladding. We contrast the propagation characteristics of the fundamental mode of e-skid waveguides and conventional waveguides to show that the decay constant in the cladding is dramatically larger in e-skid waveguides, which is the origin of sub-diffraction confinement. Finally, we propose an approach to verify the reduced skin depth in experiment using the decrease in the Goos-H\\"anchen phase shift.

Jahani, Saman



Skin tears: prevention and treatment.  


While skin tears are common among the elderly in general, and residents of long-term care facilities in particular, there has been limited research into their treatment. Many facilities voluntarily track skin tears, and some states require facilities to report these events. Risk factors include age, xerosis (abnormal eye, skin, or mouth dryness), need for help in activities of daily living, presence of senile purpura, visual impairment, and poor nutrition. Plans to prevent skin tears that employ skin sleeves, padded side rails, gentle skin cleansers, moisturizing lotions, as well as staff education, can decrease by half the number of skin tears incurred in a long-term care facility. Although the treatment process seems simple, it is time consuming and can be painful for the patient. Residents with dementia or agitation often try to remove bulky dressings used to cover skin tears. Dressing changes may injure the fragile wound via skin stripping. PMID:18764669

Wick, Jeannette Y; Zanni, Guido R



Skin and Sports  

NSDL National Science Digital Library

In this lesson, students learn about the importance of proper protection from common skin conditions when they engage in sports-related activities. This lesson draws attention to fact that the body's own first line of defense against infectious agents is to keep them from entering or settling in the body. The students break into groups to provide a list of risk factors for each sports-related activity. They come together and compare notes. This sparks the lesson and instruction on how one should protect the skin when participating in sports. Links to other resources for further inquiry are given.

American Association for the Advancement of Science (; )



Effect of certain indigenous processing methods on the bioactive compounds of ten different wild type legume grains.  


In recent years, research efforts are under-way on the possibilities of utilization of natural source of bioactive compounds for the dietary management of certain chronic diseases such as diabetes, obesity, cardiovascular diseases, cancer etc. In this connection, seed materials of promising wild type under-utilized food legume grains such as Acacia nilotica (L.) Willd. Ex Delile, Bauhinia purpurea L., Canavalia ensiformis (L.) DC., Cassia hirsuta L., Caesalpinia bonducella F., Erythrina indica L., Mucuna gigantea (Willd.) DC., Pongamia pinnata (L.) Pierre, Sebania sesban (L.) Merr. and Xylia xylocarpa Roxb. Taub., collected from South India, were investigated for certain bioactive compounds. All the samples were found to constitute a viable source of total free phenolics (3.12-6.69 g/100 g DM), tannins (1.10-4.41 g/100 g DM), L-Dopa (1.34-5.45 g/100 g DM) and phytic acid (0.98-3.14 g/100 g DM). In general, the seed materials of X. xylocarpa recorded high levels of total free phenolics and tannins, whereas the maximum levels of L-Dopa and phytic acid were noticed in M. gigantea and S. sesban, respectively. Further, presently investigated all the bioactive compounds were drastically reduced during soaking in tamarind solution + cooking as well as soaking in alkaline solution + cooking, and thus these treatments were considered to be more aggressive practices. Open-pan roasting also demonstrated a significant reduction of total free phenolics, tannins and moderate loss of L-Dopa and phytic acid. Alternatively, sprouting + oil-frying showed significant level of increase of total free phenolics (9-27%) and tannins (12-28%), but diminishing effect on phytic acid and L-Dopa. Hence, among the presently employed treatments, sprouting + oil-frying could be recommended as a suitable treatment for the versatile utilization of these wild under-utilized legume grains for the dietary management of certain chronic diseases. PMID:24293686

Vadivel, Vellingiri; Biesalski, Hans K



Nano-Hydroxyapatite/Fluoridated and Unfluoridated Bioactive Glass Composites: Structural Analysis and Bioactivity Evaluation  

NASA Astrophysics Data System (ADS)

Biphasic bioceramic composites containing nano-hydroxyapatite (HAP) and nanosized bioactive glasses have been prepared in the form of pellets and have been examined for the effects of bioglass concentrations and sintering temperature on the structural transformations and bioactivity behavior. Pure stoichiometric nano-HAP was synthesized using sol-gel technique. Two bioglasses synthesized in this work—fluoridated bioglass (Cao-P2O5-Na2O3-CaF2) and unfluoridated bioglass (Cao-P2O5-Na2O3) designated as FBG and UFBG respectively, were added to nano-HAP with concentrations of 5, 10, 12 and 15%. The average particle sizes of synthesized HAP and bioglasses were 23 nm and 35 nm, respectively. The pellets were sintered at four different temperatures i.e. 1000 °C, 1150 °C, 1250 °C and 1350 °C. The investigations involved study of structural and bioactivity behavior of green and sintered pellets and their deviations from original materials i.e. HAP, FBG and UFBG, using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The phase composition of the sintered pellets was found to be non-stoichiometric HAP with ?-TCP (tricalcium phosphate) and ?-TCP. It was revealed from SEM images that bonding mechanism was mainly solid state sintering for all pellets sintered at 1000 °C and 1150 °C and also for pellets with lower concentrations of bioglass i.e. 5% and 10% sintered at 1250 °C. Partly liquid phase sintering was observed for pellets with higher bioglass concentrations of 12% and 15% sintered at 1250 °C and same behaviour was noted for pellets at all concentrations of bioglasses at 1350 °C. The sintered density, hardness and compression strength of pellets have been influenced both by the concentration of the bioglasses and sintering temperature. It was observed that the biological HAP layer formation was faster on the green pellets surface than on pure HAP and sintered pellets, showing higher bioactivity in the green pellets.

Batra, Uma; Kapoor, Seema; Sharma, J. D.



Environmental versatility promotes modularity in genome-scale metabolic networks  

PubMed Central

Background The ubiquity of modules in biological networks may result from an evolutionary benefit of a modular organization. For instance, modularity may increase the rate of adaptive evolution, because modules can be easily combined into new arrangements that may benefit their carrier. Conversely, modularity may emerge as a by-product of some trait. We here ask whether this last scenario may play a role in genome-scale metabolic networks that need to sustain life in one or more chemical environments. For such networks, we define a network module as a maximal set of reactions that are fully coupled, i.e., whose fluxes can only vary in fixed proportions. This definition overcomes limitations of purely graph based analyses of metabolism by exploiting the functional links between reactions. We call a metabolic network viable in a given chemical environment if it can synthesize all of an organism's biomass compounds from nutrients in this environment. An organism's metabolism is highly versatile if it can sustain life in many different chemical environments. We here ask whether versatility affects the modularity of metabolic networks. Results Using recently developed techniques to randomly sample large numbers of viable metabolic networks from a vast space of metabolic networks, we use flux balance analysis to study in silico metabolic networks that differ in their versatility. We find that highly versatile networks are also highly modular. They contain more modules and more reactions that are organized into modules. Most or all reactions in a module are associated with the same biochemical pathways. Modules that arise in highly versatile networks generally involve reactions that process nutrients or closely related chemicals. We also observe that the metabolism of E. coli is significantly more modular than even our most versatile networks. Conclusions Our work shows that modularity in metabolic networks can be a by-product of functional constraints, e.g., the need to sustain life in multiple environments. This organizational principle is insensitive to the environments we consider and to the number of reactions in a metabolic network. Because we observe this principle not just in one or few biological networks, but in large random samples of networks, we propose that it may be a generic principle of metabolic network organization. PMID:21864340



Calcium and potassium addition to facilitate the sintering of bioactive glasses  

Microsoft Academic Search

Nowadays bioactive glasses are diffused in medical practice due to their excellent bioactivity. However high temperature treatments, which are commonly required in several processing routes, may induce the glass to crystallize into a glass-ceramic, with possible negative effects on its bioactivity. In this work a new bioactive glass composition, inspired by the widely used Bioglass® 45S5, was formulated by increasing

Devis Bellucci; Valeria Cannillo; Antonella Sola



Temporal zeta potential variations of 45S5 bioactive glass immersed in an electrolyte solution  

E-print Network

Temporal zeta potential variations of 45S5 bioactive glass immersed in an electrolyte solution Received 6 May 1999; revised 28 October 1999; accepted 16 November 1999 Abstract: 45S5 bioactive glass (BG potential; calcium phosphate layer INTRODUCTION 45S5 bioactive glass (BG) is a bioactive material ca- pable

Lu, Helen H.


About Skin-to-Skin Care (Kangaroo Care)  


... Care Ages & Stages Listen About Skin-to-Skin Care Article Body You may be able to hold ... care, also called kangaroo care. What is Kangaroo Care? Kangaroo care was developed in South America as ...


Bioactive compounds from Rhodiola rosea (Crassulaceae).  


The methanol extract of the underground part of Rhodiola rosea was found to show inhibitory activity against Staphylococcus aureus. Bioactivity-guided fractionation of a 95% ethanol extract from the stems of R. rosea led to the isolation of five compounds: gossypetin-7-O-L-rhamnopyranoside (1), rhodioflavonoside (2), gallic acid (3), trans-p-hydroxycinnamic acid (4) and p-tyrosol (5). Their structures were elucidated by UV, IR, MS and NMR data, as well as by comparison with those of the literature. Compounds 1 and 2 were evaluated for their antibacterial and antiprostate cancer cell activities. Compounds 1 and 2 exhibited activity against Staphylococcus aureus with minimum inhibitory concentrations of 50 microg/mL and 100 microg/mL, respectively. Cytotoxicity studies of 1 and 2 also displayed activity against the prostate cancer cell line with IC(50) values of 50 microg/mL and 80 microg/mL, respectively. PMID:16220564

Ming, Dong Sheng; Hillhouse, Brian J; Guns, Emma S; Eberding, Andy; Xie, Sherwin; Vimalanathan, Selvarani; Towers, G H Neil



Secondary metabolites and bioactivities of Myrtus communis  

PubMed Central

Background: Myrtus species are characterized by the presence of phenolic acids, flavonoids, tannins, volatile oils and fatty acids. They are remedies for variety of ailments. This study therefore investigated medicinal effects of Myrtus communis L. Methods: Bioactivity studies of Myrtus communis L. leaves were carried out on volatile oil, 7% methanol and aqueous extracts and the isolated compounds myricetin 3-O-?-glucopyranoside, myricetin 3-O-?–rhamnopyranoside and gallic acid. Results: Determination of the median lethal dose (LD50) revealed that the volatile oil, alcoholic and aqueous extracts were practically nontoxic and highly safe as no lethality was observed. The tested materials (volatile oil, alcoholic and aqueous extracts, myricetin 3-O-?-glucopyranoside, myricetin 3-O-?–rhamnopyranoside and gallic acid) showed significant antihyperglycemic, anti-inflammatory and antinociceptive effects as compared with control groups and reference drugs. Conclusion: Administration of extracts of M. communis leaves could be safe at the dose used in this study. PMID:21713133

Nassar, Mahmoud I.; Aboutabl, El-Sayed A.; Ahmed, Rania F.; El-Khrisy, Ezzel-Din A.; Ibrahim, Khaled M.; Sleem, Amany A.



Bioactivity of grape chemicals for human health.  


Grapevine (Vitis vinifera) products, grape and grape juice, represent a valuable source of bioactive phytochemicals, synthesized by three secondary metabolic pathways (phenylpropanoid, isoprenoid and alkaloid biosynthetic routes) and stored in different plant tissues. In the last decades, compelling evidence suggested that regular consumption of these products may contribute to reducing the incidence of chronic illnesses, such as cancer, cardiovascular diseases, ischemic stroke, neurodegenerative disorders and aging, in a context of the Mediterranean dietary tradition. The health benefits arising from grape product intake can be ascribed to the potpourri of biologically active chemicals occurring in grapes. Among them, the recently discovered presence of melatonin adds a new element to the already complex grape chemistry. Melatonin, and its possible synergistic action with the great variety of polyphenols, contributes to further explaining the observed health benefits associated with regular grape product consumption. PMID:19445314

Iriti, Marcello; Faoro, Franco



Bioactive glass coatings for orthopedic metallic implants  

SciTech Connect

The objective of this work is to develop bioactive glass coatings for metallic orthopedic implants. A new family of glasses in the SiO2-Na2O-K2O-CaO-MgO-P2O5 system has been synthesized and characterized. The glass properties (thermal expansion, softening and transformation temperatures, density and hardness) are in line with the predictions of established empirical models. The optimized firing conditions to fabricate coatings on Ti-based and Co-Cr alloys have been determined and related to the glass properties and the interfacial reactions. Excellent adhesion to alloys has been achieved through the formation of 100-200 nm thick interfacial layers (Ti5Si3 on Ti-based alloys and CrOx on Co-Cr). Finally, glass coatings, approximately 100 mu m thick, have been fabricated onto commercial Ti alloy-based dental implants.

Lopez-Esteban, Sonia; Saiz, Eduardo; Fujino, Sigheru; Oku, Takeo; Suganuma, Katsuaki; Tomsia, Antoni P.



Secondary metabolites and bioactivities of Albizia anthelmintica  

PubMed Central

Background: Albizia species are rich in phenolics and terpenes in the different plant organs. They are widely used in traditional Chinese medicine. So this study investigated the phytochemical and biological activities of Albizia Anthelmintica. Materials and Methods: Column chromatography has been performed for the isolation of compounds. Bioactivity studies of A. anthelmintica leaves were carried out on aqueous ethanol extract and some pure compounds were tested for their antioxidant activities. Results: Eight compounds have been isolated for the first time from A. anthelmintica. The aqueous ethanol extract of A. anthelmintica showed moderate anti-inflammatory activity and significant for both analgesic and antioxidant activities. Quercetin-3-O-?-D-glucopyranoside, kaempferol-3-O-?-D-glucopyranoside, kaempferol-3-O-(6?-O-galloyl-?-D-glucopyranoside and quercetin-3-O-(6?-O-galloyl-?-D-glucopyranoside) exhibited potent antioxidant scavenging activity towards diphenyl-picrylhydrazine. PMID:23798881

Mohamed, Tahia K.; Nassar, Mahmoud I.; Gaara, Ahmed H.; El-Kashak, Walaa A.; Brouard, Iñaki; El-Toumy, Sayed A.



Bioactive supramolecular Peptide nanofibers for regenerative medicine.  


Recent advances in understanding of cell-matrix interactions and the role of the extracellular matrix (ECM) in regulation of cellular behavior have created new perspectives for regenerative medicine. Supramolecular peptide nanofiber systems have been used as synthetic scaffolds in regenerative medicine applications due to their tailorable properties and ability to mimic ECM proteins. Through designed bioactive epitopes, peptide nanofiber systems provide biomolecular recognition sites that can trigger specific interactions with cell surface receptors. The present Review covers structural and biochemical properties of the self-assembled peptide nanofibers for tissue regeneration, and highlights studies that investigate the ability of ECM mimetic peptides to alter cellular behavior including cell adhesion, proliferation, and/or differentiation. PMID:24574311

Arslan, Elif; Garip, I Ceren; Gulseren, Gulcihan; Tekinay, Ayse B; Guler, Mustafa O



Three-dimensional chemical imaging of skin using stimulated Raman scattering microscopy  

NASA Astrophysics Data System (ADS)

Stimulated Raman scattering (SRS) microscopy is used to generate structural and chemical three-dimensional images of native skin. We employed SRS microscopy to investigate the microanatomical features of skin and penetration of topically applied materials. Image depth stacks are collected at distinct wavelengths corresponding to vibrational modes of proteins, lipids, and water in the skin. We observed that corneocytes in stratum corneum are grouped together in clusters, 100 to 250 ?m in diameter, separated by 10- to 25-?m-wide microanatomical skin-folds called canyons. These canyons occasionally extend down to depths comparable to that of the dermal-epidermal junction below the flat surface regions in porcine and human skin. SRS imaging shows the distribution of chemical species within cell clusters and canyons. Water is predominately located within the cell clusters, and its concentration rapidly increases at the transition from stratum corneum to viable epidermis. Canyons do not contain detectable levels of water and are rich in lipid material. Oleic acid-d34 applied to the skin surface lines the canyons down to a depth of 50 ?m below the surface of the skin. This observation could have implications on the evaluation of penetration profiles of bioactive materials measured using traditional methods, such as tape-stripping.

Drutis, Dane M.; Hancewicz, Thomas M.; Pashkovski, Eugene; Feng, Lin; Mihalov, Dawn; Holtom, Gary; Ananthapadmanabhan, Kavssery P.; Xie, X. Sunney; Misra, Manoj



Influence of mental stress on platelet bioactivity  

PubMed Central

It is well established that various mental stress conditions contribute, or at least influence, underlying pathophysiological mechanisms in somatic, as well as in psychiatric disorders; blood platelets are supposed to represent a possible link in this respect. The anculeated platelets are the smallest corpuscular elements circulating in the human blood. They display different serotonergic markers which seem to reflect the central nervous serotonin metabolism. They are known as main effectors in haematological processes but recent research highlights their role in the innate and adaptive immune system. Platelets are containing a multitude of pro-inflammatory and immune-modulatory bioactive compounds in their granules and are expressing immune-competent surface markers. Research gives hint that platelets activation and reactivity is increased by mental stress. This leads to enhanced cross talk with the immune system via paracrine secretion, receptor interaction and formation of platelet leucocyte-aggregates. Recently it has been demonstrated that the immune system can have a remarkable impact in the development of psychiatric disorders. Therefore platelets represent an interesting research area in psychiatry and their role as a possible biomarker has been investigated. We review the influence of mental stress on what is termed platelet bioactivity in this article, which subsumes the mainly immune-modulatory activity of platelets in healthy volunteers, elderly persons with chronic care-giving strain, patients with cardiovascular diseases who are prone to psychosocial stress, as well as in patients with posttraumatic stress disorder. Research data suggest that stress enhances platelet activity, reactivity and immune-modulatory capacities. PMID:24175179

Koudouovoh-Tripp, Pia; Sperner-Unterweger, Barbara



Rowanberry phenolics: compositional analysis and bioactivities.  


Berries contain a large variety of different phenolic compounds such as anthocyanins, flavonols, tannins, and phenolic acids. Due to variation in the nature and content of the phenolic compounds, the antioxidant effect and other bioactivities of berry phenolics are strongly dependent on the berry raw material as the activities differ between the different phenolic constituents. In the present study, wild rowanberries ( Sorbus aucuparia ) and four cultivated sweet rowanberries, Burka, Granatnaja, Titan, and Zoltaja, were characterized for their phenolic composition and screened for antioxidant, antimicrobial, and antiadhesive activities. The HPLC and LC-MS analyses of phenolic composition revealed that the main phenolic constituents were caffeoylquinic acids, varying from 56 to 80% total phenolics. The cultivated species contained less caffeoylquinic acids and more anthocyanins (up to 28.5%). The phenolics derived from wild rowanberries were significantly effective at inhibiting lipid oxidation both in liposomes and in emulsions, especially when assessed by inhibition of the formation of hexanal (86-97% inhibition depending on concentration). The increase in anthocyanin content in the cultivated species did not result in significantly increased antioxidant activity. Both wild and cultivated rowanberry phenolics exhibited a bacteriostatic effect toward Staphylococcus aureus . In addition, the phenolic extract from Zoltaja was weakly inhibitory toward Salmonella sv. Typhimurium, whereas both Zoltaja- and Granatnaja-derived phenolics retarded Escherichia coli growth. The phenolic extracts of wild rowanberries and Burka showed an inhibitory effect on hemagglutination of E. coli HB101 (pRR7), which expresses the M hemagglutinin. It can be concluded that cultivation of rowanberries resulted in increased anthocyanin content, but this did not diminish their bioactivity in comparison to wild rowanberries rich in caffeoylquinic acids. PMID:21038891

Kylli, Petri; Nohynek, Liisa; Puupponen-Pimiä, Riitta; Westerlund-Wikström, Benita; McDougall, Gordon; Stewart, Derek; Heinonen, Marina



Review of bioactive glass: from Hench to hybrids.  


Bioactive glasses are reported to be able to stimulate more bone regeneration than other bioactive ceramics but they lag behind other bioactive ceramics in terms of commercial success. Bioactive glass has not yet reached its potential but research activity is growing. This paper reviews the current state of the art, starting with current products and moving onto recent developments. Larry Hench's 45S5 Bioglass® was the first artificial material that was found to form a chemical bond with bone, launching the field of bioactive ceramics. In vivo studies have shown that bioactive glasses bond with bone more rapidly than other bioceramics, and in vitro studies indicate that their osteogenic properties are due to their dissolution products stimulating osteoprogenitor cells at the genetic level. However, calcium phosphates such as tricalcium phosphate and synthetic hydroxyapatite are more widely used in the clinic. Some of the reasons are commercial, but others are due to the scientific limitations of the original Bioglass 45S5. An example is that it is difficult to produce porous bioactive glass templates (scaffolds) for bone regeneration from Bioglass 45S5 because it crystallizes during sintering. Recently, this has been overcome by understanding how the glass composition can be tailored to prevent crystallization. The sintering problems can also be avoided by synthesizing sol-gel glass, where the silica network is assembled at room temperature. Process developments in foaming, solid freeform fabrication and nanofibre spinning have now allowed the production of porous bioactive glass scaffolds from both melt- and sol-gel-derived glasses. An ideal scaffold for bone regeneration would share load with bone. Bioceramics cannot do this when the bone defect is subjected to cyclic loads, as they are brittle. To overcome this, bioactive glass polymer hybrids are being synthesized that have the potential to be tough, with congruent degradation of the bioactive inorganic and the polymer components. Key to this is creating nanoscale interpenetrating networks, the organic and inorganic components of which have covalent coupling between them, which involves careful control of the chemistry of the sol-gel process. Bioactive nanoparticles can also now be synthesized and their fate tracked as they are internalized in cells. This paper reviews the main developments in the field of bioactive glass and its variants, covering the importance of control of hierarchical structure, synthesis, processing and cellular response in the quest for new regenerative synthetic bone grafts. The paper takes the reader from Hench's Bioglass 45S5 to new hybrid materials that have tailorable mechanical properties and degradation rates. PMID:22922331

Jones, Julian R



Cephalopod behaviour: Skin flicks.  


Cephalopods, such as octopus and squid, can change their coloration in an instant, and even produce moving patterns on their skin. A new study describes these wavelike patterns in a colourful tropical cuttlefish, providing insights into the neural mechanisms that generate them. PMID:25093557

Osorio, Daniel



Measuring and Protecting Skin  

NSDL National Science Digital Library

In this activity, students learn about their skin and the importance of protecting it. It is part of the My World activities from Baylor College of Medicine. Additional activities can be accessed at

Baylor College of Medicine (Baylor College of Medicine Human Genome Sequencing Center)



Chemokines and Skin Diseases.  


Chemokines are small molecules that induce chemotaxis and activation of certain subsets of leukocytes. The expression patterns of chemokines and chemokine receptors are specific to certain organs and cells. Therefore, chemokines are important to elucidate the mechanism of organ-specific human diseases. CCL17 expressed by Langerhans cells, blood endothelial cells, and fibroblasts plays a key role in attracting Th2 cells and tumor cells of adult T-cell leukemia/lymphoma and mycosis fungoides/Sézary syndrome into the skin, developing various Th2-type inflammatory skin diseases as well as cutaneous lymphoma. CCL11 and CCL26 expressed by skin-resident cells, such as fibroblasts, blood endothelial cells, and keratinocytes, induce infiltration of CCR3-expressing cells such as Th2 cells and eosinophils. CCL11 may also serve as an autocrine as well as a paracrine in anaplastic large cell lymphoma. CX3CL1 expressed on blood endothelial cells leads to infiltration of CX3CR1(+) immune cells, such as mast cells, neutrophils, and macrophages, playing important roles in wound healing, tumor immunity, and vasculitis. Biologics targeting chemokines and their receptors are promising strategies for various skin diseases that are resistant to the current therapy. PMID:25182982

Sugaya, Makoto



Immunity and skin cancer  

SciTech Connect

Observations in humans and animal studies support the theory that immunologic surveillance plays an important role in limiting the development of skin malignancies. These immune responses undergo progressive diminution with age. In addition, other factors, such as bereavement, poor nutrition, and acute and chronic exposure to ultraviolet light, can further diminish immune mechanisms.

Smith, E.B.; Brysk, M.M.



Research and development of a versatile portable speech prosthesis  

NASA Technical Reports Server (NTRS)

The Versatile Portable Speech Prosthesis (VPSP), a synthetic speech output communication aid for non-speaking people is described. It was intended initially for severely physically limited people with cerebral palsy who are in electric wheelchairs. Hence, it was designed to be placed on a wheelchair and powered from a wheelchair battery. It can easily be separated from the wheelchair. The VPSP is versatile because it is designed to accept any means of single switch, multiple switch, or keyboard control which physically limited people have the ability to use. It is portable because it is mounted on and can go with the electric wheelchair. It is a speech prosthesis, obviously, because it speaks with a synthetic voice for people unable to speak with their own voices. Both hardware and software are described.



Robust and versatile ionic liquid microarrays achieved by microcontact printing  

NASA Astrophysics Data System (ADS)

Lab-on-a-chip and miniaturized systems have gained significant popularity motivated by marked differences in material performance at the micro-to-nano-scale realm. However, to fully exploit micro-to-nano-scale chemistry, solvent volatility and lack of reproducibility need to be overcome. Here, we combine the non-volatile and versatile nature of ionic liquids with microcontact printing in an attempt to establish a facile protocol for high throughput fabrication of open microreactors and microfluidics. The micropatterned ionic liquid droplets have been demonstrated as electrochemical cells and reactors for microfabrication of metals and charge transfer complexes, substrates for immobilization of proteins and as membrane-free high-performance amperometric gas sensor arrays. The results suggest that miniaturized ionic liquid systems can be used to solve the problems of solvent volatility and slow mass transport in viscous ionic liquids in lab-on-a-chip devices, thus providing a versatile platform for a diverse number of applications.

Gunawan, Christian A.; Ge, Mengchen; Zhao, Chuan



Toward the Development of a Versatile Functionalized Silicone Coating.  


The development of a versatile silicone copolymer coating prepared by the chemical coupling of trichlorosilane (TCS) to the vinyl groups of poly(vinylmethylsiloxane) (PVMS) is reported. The resultant PVMS-TCS copolymer can be deposited as a functional organic layer on a hydrophobic poly(dimethylsiloxane) substrate and its mechanical modulus can be regulated by varying the TCS coupling ratio. In this paper, several case studies demonstrating the versatile properties of these PVMS-TCS functional coatings on PDMS elastomer substrates are presented. Numerous experimental probes, including optical microscopy, Fourier-transform infrared spectroscopy, surface contact angle, ellipsometry, and nanoindentation, are utilized to interrogate the physical and chemical characteristics of these PVMS-TCS coatings. PMID:25426681

Ozçam, A Evren; Spontak, Richard J; Genzer, Jan



New Laser Labeling Technology for Recordable Digital Versatile Disc  

NASA Astrophysics Data System (ADS)

A new labeling technology, i.e., “LabelflashTM”, is reported. This technology uses the digital versatile disc (DVD) drive data recording head to burn high-quality images directly into a specialized dye layer on the label side of DVD discs. The basic structure of the disc is similar to a conventional double-sided recordable digital versatile disc (DVD-R). Consequently, a Labelflash disc shows various features as follows: non consumable, no special optical path or drive control system, the same working distance as that for data recording, manufactured using conventional equipment for double-sided DVD-R, fast drawing speed, high durability, and professional appearance. Moreover, four color variation types and mat-type discs were developped. The graphic quality performance index for Labelflash was newly proposed. The values were closely matched by the subjective evaluations of contrast.

Kubo, Hiroshi; Shibata, Michihiro; Yamada, Seiya; Itoga, Hisanori; Fushiki, Tatsuo



Versatile matrix for constructing enzyme-based biosensors.  


A versatile matrix was fabricated and utilized as a universal interface for the construction of enzyme-based biosensors. This matrix was formed on the gold electrode via combining self-assembled monolayer of 2,3-dimercaptosuccinic acid with gold nanoparticles. Gold nanoparticles were electrochemically deposited. Electrochemistry of three redox enzymes (catalase, glucose oxidase, and horseradish peroxidase) was investigated on such a matrix. The electrocatalytic monitoring of hydrogen peroxide and glucose was conducted on this matrix after being coated with those enzymes. On them the monitoring of hydrogen peroxide and glucose shows rapid response times, wide linear working ranges, low detection limits, and high enzymatic affinities. This matrix is thus a versatile and suitable platform to develop highly sensitive enzyme-based biosensors. PMID:25208242

Wang, Zhaohao; Luo, Xi; Wan, Qijin; Wu, Kangbing; Yang, Nianjun



Versatile module for experiments with focussing neutron guides  

NASA Astrophysics Data System (ADS)

We report the development of a versatile module that permits fast and reliable use of focussing neutron guides under varying scattering angles. A simple procedure for setting up the module and neutron guides is illustrated by typical intensity patterns to highlight operational aspects as well as typical parasitic artefacts. Combining a high-precision alignment table with separate housings for the neutron guides on kinematic mounts, the change-over between neutron guides with different focussing characteristics requires no readjustments of the experimental setup. Exploiting substantial gain factors, we demonstrate the performance of this versatile neutron scattering module in a study of the effects of uniaxial stress on the domain populations in the transverse spin density wave phase of single crystal Cr.

Adams, T.; Brandl, G.; Chacon, A.; Wagner, J. N.; Rahn, M.; Mühlbauer, S.; Georgii, R.; Pfleiderer, C.; Böni, P.



In Vitro Bioactivity and Antimicrobial Tuning of Bioactive Glass Nanoparticles Added with Neem (Azadirachta indica) Leaf Powder  

PubMed Central

Silica and phosphate based bioactive glass nanoparticles (58SiO2-33CaO-9P2O5) with doping of neem (Azadirachta indica) leaf powder and silver nanoparticles were prepared and characterised. Bioactive glass nanoparticles were produced using sol-gel technique. In vitro bioactivity of the prepared samples was investigated using simulated body fluid. X-ray diffraction (XRD) pattern of prepared glass particles reveals amorphous phase and spherical morphology with a particle size of less than 50?nm. When compared to neem doped glass, better bioactivity was attained in silver doped glass through formation of hydroxyapatite layer on the surface, which was confirmed through XRD, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) analysis. However, neem leaf powder doped bioactive glass nanoparticles show good antimicrobial activity against Staphylococcus aureus and Escherichia coli and less bioactivity compared with silver doped glass particles. In addition, the biocompatibility of the prepared nanocomposites reveals better results for neem doped and silver doped glasses at lower concentration. Therefore, neem doped bioactive glass may act as a potent antimicrobial agent for preventing microbial infection in tissue engineering applications. PMID:25276834

Prabhu, M.; Ruby Priscilla, S.; Kavitha, K.; Manivasakan, P.; Rajendran, V.; Kulandaivelu, P.



In vitro bioactivity and antimicrobial tuning of bioactive glass nanoparticles added with neem (Azadirachta indica) leaf powder.  


Silica and phosphate based bioactive glass nanoparticles (58SiO2-33CaO-9P2O5) with doping of neem (Azadirachta indica) leaf powder and silver nanoparticles were prepared and characterised. Bioactive glass nanoparticles were produced using sol-gel technique. In vitro bioactivity of the prepared samples was investigated using simulated body fluid. X-ray diffraction (XRD) pattern of prepared glass particles reveals amorphous phase and spherical morphology with a particle size of less than 50 nm. When compared to neem doped glass, better bioactivity was attained in silver doped glass through formation of hydroxyapatite layer on the surface, which was confirmed through XRD, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) analysis. However, neem leaf powder doped bioactive glass nanoparticles show good antimicrobial activity against Staphylococcus aureus and Escherichia coli and less bioactivity compared with silver doped glass particles. In addition, the biocompatibility of the prepared nanocomposites reveals better results for neem doped and silver doped glasses at lower concentration. Therefore, neem doped bioactive glass may act as a potent antimicrobial agent for preventing microbial infection in tissue engineering applications. PMID:25276834

Prabhu, M; Ruby Priscilla, S; Kavitha, K; Manivasakan, P; Rajendran, V; Kulandaivelu, P



Compatible optical pickup actuator for next generation versatile disc system  

Microsoft Academic Search

Nowadays, high-density disc and high-speed optical disk drive have become popular as optical disc has many merits such as cost effectiveness, high data transfer rate, large storage capacity, removability and compatibility. In this paper, we presented a compatible optical pickup actuator for next generation versatile disc (NVD) system. This actuator has high AC sensitivities and good 2nd resonance frequency through

Lei Zhong; Jianshe Ma; Xuemin Cheng; Buqing Zhang



Coiled coils: a highly versatile protein folding motif  

Microsoft Academic Search

The ?-helical coiled coil is one of the principal subunit oligomerization motifs in proteins. Its most characteristic feature is a heptad repeat pattern of primarily apolar residues that constitute the oligomer interface. Despite its simplicity, it is a highly versatile folding motif: coiled-coil-containing proteins exhibit a broad range of different functions related to the specific ‘design’ of their coiled-coil domains.

Peter Burkhard; Jörg Stetefeld; Sergei V Strelkov



Evolutionary Versatile Printable RFID Antennas for “Green” Electronics  

Microsoft Academic Search

The development of low cost directly printable RFID tag antennas is essential for item level tracking. We present evolutionary design approach to achieve robust extremely versatile RFID antennas on paper\\/flexible substrates which allow a simple integration directly on, e.g., paperboard in a roll-to-roll production line. Fully integrated printed tags for “green” electronics are designed for operability in frequencies 866–868 MHz

Y. Amin; Q. Chen; H. Tenhunen; L. R. Zheng



Versatile roles for sonic hedgehog in gut development  

Microsoft Academic Search

Sonic hedgehog   (Shh) is a gene encoding a protein that can be secreted and act as a morphogen. The protein exerts versatile and important effects\\u000a on the surrounding cells by binding a specific receptor, named patched. So far Shh has been shown to be involved in the morphogenesis and cytodifferentiation of many organ systems, such as notochord, floor\\u000a plate, limb,

Kimiko Fukuda; Sadao Yasugi



Coffee and Skin Cancer Risk  


... the lower right-hand corner of the player. Coffee and Skin Cancer Risk HealthDay January 21, 2015 ... Pages Caffeine Melanoma Skin Cancer Transcript Could drinking coffee lower your risk for the most serious kind ...


Laser microporation of the skin: prospects for painless application of protective and therapeutic vaccines  

PubMed Central

Introduction: In contrast to muscle and subcutaneous tissue, the skin is easily accessible and provides unique immunological properties. Increasing knowledge about the complex interplay of skin-associated cell types in the development of cutaneous immune responses has fueled efforts to target the skin for vaccination as well as for immunotherapy. Areas covered: This review provides an overview on skin layers and their resident immunocompetent cell types. Advantages and shortcomings of standard methods and innovative technologies to circumvent the outermost skin barrier are addressed. Studies employing fractional skin ablation by infrared lasers for cutaneous delivery of drugs, as well as high molecular weight molecules such as protein antigens or antibodies, are reviewed, and laserporation is introduced as a versatile transcutaneous vaccination platform. Specific targeting of the epidermis or the dermis by different laser settings, the resulting kinetics of uptake and transport and the immune response types elicited are discussed, and the potential of this transcutaneous delivery platform for allergen-specific immunotherapy is demonstrated. Expert opinion: Needle-free and painless vaccination approaches have the potential to replace standard methods due to their improved safety and optimal patient compliance. The use of fractional laser devices for stepwise ablation of skin layers might be advantageous for both vaccination against microbial pathogens, as well as immunotherapeutic approaches, such as allergen-specific immunotherapy. Thorough investigation of the underlying immunological mechanisms will help to provide the knowledge for a rational design of transcutaneous protective/therapeutic vaccines. PMID:23425032

Scheiblhofer, Sandra; Thalhamer, Josef; Weiss, Richard



Angiotensin-I converting enzyme inhibitory peptides from antihypertensive skate (Okamejei kenojei) skin gelatin hydrolysate in spontaneously hypertensive rats.  


The aim of this study was to investigate antihypertensive effect of bioactive peptides from skate (Okamejei kenojei) skin gelatin. The Alcalase/protease gelatin hydrolysate below 1kDa (SAP) exhibited the highest angiotensin-I converting enzyme (ACE) inhibition compared to other hydrolysates. SAP can decrease systolic blood pressure significantly in spontaneously hypertensive rats. SAP inhibited vasoconstriction via PPAR-? expression, activation and phosphorylation of eNOS in lungs. Moreover, the expression levels of endothelin-1, RhoA, ?-smooth muscle actin, cleaved caspase 3 and MAPK were decreased by SAP in lungs. Vascularity, muscularization and cellular proliferation in lungs were detected by immunohistochemical staining. Finally, two purified peptides (LGPLGHQ, 720Da and MVGSAPGVL, 829Da) showed potent ACE inhibition with IC50 values of 4.22 and 3.09?M, respectively. These results indicate that bioactive peptides isolated from skate skin gelatin may serve as candidates against hypertension and could be used as functional food ingredients. PMID:25529649

Ngo, Dai-Hung; Kang, Kyong-Hwa; Ryu, BoMi; Vo, Thanh-Sang; Jung, Won-Kyo; Byun, Hee-Guk; Kim, Se-Kwon



Skin Cancers of the Feet  


... resemble non-cancerous skin tumors or benign ulcers. Squamous Cell Carcinoma : Squamous cell carcinoma is the most common form of cancer on ... skin of the feet. Most types of early squamous cell carcinoma are confined to the skin and do not ...


Skin Pedagogies and Abject Bodies  

ERIC Educational Resources Information Center

How does the beauty industry "narrate the skin"? What does it teach women from different cultural groups about the female body? How does skin function as a site where female subjection and abjection are produced and reproduced? In this paper we examine the skin industry pointing to its extreme commodification of the female body and to the…

Kenway, Jane; Bullen, Elizabeth



Beauvericin, a bioactive compound produced by fungi: a short review.  


Beauvericin is a cyclic hexadepsipeptide mycotoxin, which has insecticidal, antimicrobial, antiviral and cytotoxic activities. It is a potential agent for pesticides and medicines. This paper reviews the bioactivity, fermentation and biosynthesis of the fungal product beauvericin. PMID:22367030

Wang, Qinggui; Xu, Lijian



Bioactive ceramic-reinforced composites for bone augmentation  

PubMed Central

Biomaterials have been used to repair the human body for millennia, but it is only since the 1970s that man-made composites have been used. Hydroxyapatite (HA)-reinforced polyethylene (PE) is the first of the ‘second-generation’ biomaterials that have been developed to be bioactive rather than bioinert. The mechanical properties have been characterized using quasi-static, fatigue, creep and fracture toughness testing, and these studies have allowed optimization of the production method. The in vitro and in vivo biological properties have been investigated with a range of filler content and have shown that the presence of sufficient bioactive filler leads to a bioactive composite. Finally, the material has been applied clinically, initially in the orbital floor and later in the middle ear. From this initial combination of HA in PE other bioactive ceramic polymer composites have been developed. PMID:20591846

Tanner, K. E.



Bioactivity of phenolic acids: Metabolites versus parent compounds: A review.  


Phenolic acids are present in our diet in different foods, for example mushrooms. Due to their bioactive properties, phenolic acids are extensively studied and there is evidence of their role in disease prevention. Nevertheless, in vivo, these compounds are metabolized and circulate in the organism as glucuronated, sulphated and methylated metabolites, displaying higher or lower bioactivities. To clarify the importance of the metabolism of phenolic acids, knowledge about the bioactivity of metabolites is extremely important. In this review, chemical features, biosynthesis and bioavailability of phenolic acids are discussed, as well as the chemical and enzymatic synthesis of their metabolites. Finally, metabolite bioactive properties are compared with that of the corresponding parental compounds. PMID:25466052

Heleno, Sandrina A; Martins, Anabela; Queiroz, Maria João R P; Ferreira, Isabel C F R



Current Strategies to Improve the Bioactivity of PEEK  

PubMed Central

The synthetic thermoplastic polymer polyetheretherketone (PEEK) is becoming a popular component of clinical orthopedic and spinal applications, but its practical use suffers from several limitations. Although PEEK is biocompatible, chemically stable, radiolucent and has an elastic modulus similar to that of normal human bone, it is biologically inert, preventing good integration with adjacent bone tissues upon implantation. Recent efforts have focused on increasing the bioactivity of PEEK to improve the bone-implant interface. Two main strategies have been used to overcome the inert character of PEEK. One approach is surface modification to activate PEEK through surface treatment alone or in combination with a surface coating. Another strategy is to prepare bioactive PEEK composites by impregnating bioactive materials into PEEK substrate. Researchers believe that modified bioactive PEEK will have a wide range of orthopedic applications. PMID:24686515

Ma, Rui; Tang, Tingting



Bioactive and Biodegradable Nanocomposites and Hybrid Biomaterials for Bone Regeneration  

PubMed Central

Strategies for bone tissue engineering and regeneration rely on bioactive scaffolds to mimic the natural extracellular matrix and act as templates onto which cells attach, multiply, migrate and function. Of particular interest are nanocomposites and organic-inorganic (O/I) hybrid biomaterials based on selective combinations of biodegradable polymers and bioactive inorganic materials. In this paper, we review the current state of bioactive and biodegradable nanocomposite and O/I hybrid biomaterials and their applications in bone regeneration. We focus specifically on nanocomposites based on nano-sized hydroxyapatite (HA) and bioactive glass (BG) fillers in combination with biodegradable polyesters and their hybrid counterparts. Topics include 3D scaffold design, materials that are widely used in bone regeneration, and recent trends in next generation biomaterials. We conclude with a perspective on the future application of nanocomposites and O/I hybrid biomaterials for regeneration of bone. PMID:24955542

Allo, Bedilu A.; Costa, Daniel O.; Dixon, S. Jeffrey; Mequanint, Kibret; Rizkalla, Amin S.



Marine actinobacteria: an important source of bioactive natural products.  


Marine environment is largely an untapped source for deriving actinobacteria, having potential to produce novel, bioactive natural products. Actinobacteria are the prolific producers of pharmaceutically active secondary metabolites, accounting for about 70% of the naturally derived compounds that are currently in clinical use. Among the various actinobacterial genera, Actinomadura, Actinoplanes, Amycolatopsis, Marinispora, Micromonospora, Nocardiopsis, Saccharopolyspora, Salinispora, Streptomyces and Verrucosispora are the major potential producers of commercially important bioactive natural products. In this respect, Streptomyces ranks first with a large number of bioactive natural products. Marine actinobacteria are unique enhancing quite different biological properties including antimicrobial, anticancer, antiviral, insecticidal and enzyme inhibitory activities. They have attracted global in the last ten years for their ability to produce pharmaceutically active compounds. In this review, we have focused attention on the bioactive natural products isolated from marine actinobacteria, possessing unique chemical structures that may form the basis for synthesis of novel drugs that could be used to combat resistant pathogenic microorganisms. PMID:24959957

Manivasagan, Panchanathan; Kang, Kyong-Hwa; Sivakumar, Kannan; Li-Chan, Eunice C Y; Oh, Hyun-Myung; Kim, Se-Kwon



Bioactive chemical nanopatterns impact human mesenchymal stem cell fate.  


We present a method of preparing and characterizing nanostructured bioactive motifs using a combination of nanoimprint lithography and surface functionalization. Nanodots were fabricated on silicon surfaces and modified with a cell-adhesive RGD peptide for studies in human mesenchymal stem cell adhesion and differentiation. We report that bioactive nanostructures induce mature focal adhesions on human mesenchymal stem cells with an impact on their behavior and dynamics specifically in terms of cell spreading, cell-material contact, and cell differentiation. PMID:23905702

Cheng, Zhe A; Zouani, Omar F; Glinel, Karine; Jonas, Alain M; Durrieu, Marie-Christine



Ageing of pulsed-laser-deposited bioactive glass films  

Microsoft Academic Search

Bioactive glasses are osteoinductive biomaterials of great interest for medical applications as filler material in bone defects and as coating of implants.Bioactive glass thin films have been deposited on silicon plates by ArF laser ablation of silica-based glass targets (53% SiO2, 23% Na2O, 20% CaO, 4% P2O5). Ablation experiments have been carried out in vacuum (10?4mbar) and in a reactive

P González; J Serra; S Liste; S Chiussi; B León; M Pérez-Amor



Antimicrobial Effect of Nanometric Bioactive Glass 45S5  

Microsoft Academic Search

Most recent advances in nanomaterials fabrication have given access to complex materials such as SiO2-Na2O-CaO-P2O5 bioactive glasses in the form of amorphous nanoparticles of 20-to 60-nm size. The clinically interesting antimicrobial properties of commercially available, micron-sized bioactive glass 45S5 have been attributed to the continuous liberation of alkaline species during application. Here, we tested the hypothesis that, based on its

T. Waltimo; T. J. Brunner; M. Vollenweider; W. J. Stark; M. Zehnder



Fine-tuning of Bioactive Glass for Root Canal Disinfection  

Microsoft Academic Search

An ideal preparation of 45S5 bioactive glass suspensions\\/slurries for root canal disinfection should combine high pH induction with capacity for continuing release of alkaline species. The hypothesis of this study was that more material per volume of bioactive glass slurry is obtained with a micrometric material (< 5 µm particle size) or a micrometric\\/ nanometric hybrid, rather than a solely

T. Waltimo; D. Mohn; F. Paqué; T. J. Brunner; W. J. Stark; M. Schätzle; M. Zehnder



Gentle Skin Care Helps Control Rosacea  


... recommend: Avoid scrubbing or rubbing skin affected by rosacea. Rubbing or scrubbing irritates the skin and tends ... prone skin can be too irritating. Gently cleanse rosacea-prone skin. Following these guidelines can help reduce ...


New Itchy Skin Rashes in Adults  


newsletter | contact Share | New Itchy Skin Rashes in Adults A A A There are many types of skin rashes. A rash is an ... or virus can be the cause of a new rash on the skin. Determining that the skin ...


Glycation and transglutaminase mediated glycosylation of fish gelatin peptides with glucosamine enhance bioactivity.  


A mixture of novel glycopeptides from glycosylation between cold water fish skin gelatin hydrolysates and glucosamine (GlcN) via transglutaminase (TGase), as well as glycation between fish gelatin hydrolysate and GlcN were identified by their pattern of molecular distribution using MALDI-TOF-MS. Glycated/glycosylated hydrolysates showed superior bioactivity to their original hydrolysates. Alcalase-derived fish skin gelatin hydrolysate glycosylated with GlcN in the presence of TGase at 25°C (FAT25) possessed antioxidant activity when tested in a linoleic acid oxidation system, when measured according to its 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and when tested at the cellular level with human hepatocarcinoma (HepG2) cells as target cells. In addition, Alcalase-derived glycosylated hydrolysates showed specificity toward the inhibition of Escherichia coli (E. coli). The Flavourzyme-derived glycopeptides prepared at 37°C (FFC37 and FFT37) showed better DPPH scavenging activity than their native hydrolysates. The glycated Flavourzyme-derived hydrolysates were found to act as potential antimicrobial agents when incubated with E. coli and Bacillus subtilis. PMID:24001843

Hong, Pui Khoon; Gottardi, Davide; Ndagijimana, Maurice; Betti, Mirko



Nonmelanoma Skin Cancer  

PubMed Central

Nonmelanoma skin cancer (NMSC) represents the most common form of cancer in Caucasians, with continuing increase in incidence worldwide. Basal cell carcinoma (BCC) accounts for 75% of cases of NMSC, and squamous cell carcinoma (SCC) accounts for the remaining majority of NMSC cases. Whilst metastasis from BCC is extremely rare, metastasis from high-risk SCC may be fatal. In this article, we review the aetiology, diagnosis and management of NMSC. PMID:22557848

Samarasinghe, Venura; Madan, Vishal



Skin Cancer Protection Concepts  

Microsoft Academic Search

\\u000a The consensus meeting on “educational needs for primary and secondary prevention of melanoma in Europe” by the EORTC Melanoma\\u000a group, published in 1991 [1] as well as a consensus conference on “early melanoma” by the National Institutes of Health, USA, in 1992 and the consensus\\u000a meeting “How to decrease morbidity and mortality of skin cancer” by the “Commission of Early

E. W. Breitbart; M. Breitbart


Soil as Living Skin  

NSDL National Science Digital Library

In this two-minute radio program, a soil scientist introduces listeners to reasons why soil is crucial to the planet. The scientist lists functions of soil that include nutrient cycling and water filtration, and he also uses living skin as an analogy for soil. The program, part of the Pulse of the Planet radio show, is available here in text and audio formats. Copyright 2005 Eisenhower National Clearinghouse

Pulse of the Planet



Radiotherapy of skin tumors.  


The incidence of cancers of the skin is increasing, as is life expectancy among most of the population. Besides surgery, all skin cancers can be treated with radiotherapy, with excellent results. Unfortunately, both less training and less equipment are available than earlier, which means that dermatologists also have less experience in this field. We would like to propose radiotherapy for medium-sized or larger lesions, especially on the face in elderly people. Good indications are keratoacanthomas, extensive actinic keratoses, Bowen's disease including erythroplasia of Queyrat, basal cell and squamous cell carcinomas, but also lentigo maligna and lentigo maligna melanomas. These tumors can be treated in a curative way. Excellent results of palliative X-ray therapy are achieved in Kaposi's sarcoma and in lymphomas, and also in Merkel cell tumors. After 100 years of treatment of skin cancers by radiotherapy, dermatologists should not forget that if appropriate principles are followed and precautions are taken, X-ray treatment is still a safe and effective method. PMID:12079218

Panizzon, R G



Effect of particle size on the in vitro bioactivity, hydrophilicity and mechanical properties of bioactive glass-reinforced polycaprolactone composites  

Microsoft Academic Search

Polycaprolactone (PCL) composite films containing 5wt.% bioactive glass (BG) particles of different sizes (6?m, 250nm, <100nm) were prepared by solvent casting methods. The ultra-fine BG particles were prepared by high-energy mechanical milling of commercial 45S5 Bioglass® particles. The characteristics of bioactive glass particles were studied by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), and

E. Tamjid; R. Bagheri; M. Vossoughi; A. Simchi



Utility of High-Frequency Ultrasound: Moving Beyond the Surface to Detect Changes in Skin Integrity  

PubMed Central

Ultrasound imaging is a versatile modality frequently used in clinical medicine, most likely due to its low cost, low risk to patients, and the ability to provide images in real time. Ultrasound used typically in clinical settings has frequencies between 2 and 12 MHz. Lower frequencies produce greater resolution but are limited in depth penetration; higher frequencies produce greater resolution, but depth of penetration is limited. High-frequency ultrasound (HFUS) shows promise for detection of certain changes in the skin and this has implications for early detection of changes associated with pressure ulcer formation and wound healing. The purpose of this article was to provide an overview of where HFUS has been used with the skin and provide some discussion on its utility with detecting skin changes related to pressure. PMID:24583666

Lucas, Valentina S.; Burk, Ruth S.; Creehan, Sue; Grap, Mary Jo



Adhesion of new bioactive glass coating.  


A valuable alternative to the existing biomedical implant coatings is a bioactive glass (BAG) coating that is produced by reactive plasma spraying. A mechanical performance requirement that is of the utmost importance is the adhesion strength of the coating. Considering the application as dental implant, a new adhesion test (shear test), which was close to the service conditions, was designed. A Ti6Al4V rod (3 mm) with a sprayed BAG coating of 50 microm was glued with an epoxy glue to a hollow cylindrical counterpart and was used as such in the tensile machine. This test was evaluated by finite element analysis (FEA). Preliminary experiments showed that a conversion from shear to tensile adhesion strength is possible by using the Von Mises criterion (sigma = 3(1/2)tau), indicating that thin coatings of brittle materials can behave as a ductile material. The new coating technique was proved to produce a high quality coating with an adhesion strength of 40.1 +/- 4.8 MPa in shear and 69.4 +/- 8.4 MPa in tension. The FEA revealed that no one homogeneously distributed shear stress is present but several nonhomogeneously distributed stress components (shear and tensile) are present in the coating. This analysis indicated that real service conditions are much more complicated than standard adhesion tests. PMID:10397926

Schrooten, J; Van Oosterwyck, H; Vander Sloten, J; Helsen, J A



Cognition, dopamine and bioactive lipids in schizophrenia  

PubMed Central

Schizophrenia is a remarkably complex disorder with a multitude of behavioral and biological perturbations. Cognitive deficits are a core feature of this disorder, and involve abnormalities across multiple domains, including memory, attention, and perception. The complexity of this debilitating illness has led to a view that the key to unraveling its pathophysiology lies in deconstructing the clinically-defined syndrome into pathophysiologically distinct intermediate phenotypes. Accumulating evidence suggests that one of these intermediate phenotypes may involve phospholipid signaling abnormalities, particularly in relation to arachidonic acid (AA). Our data show relationships between levels of AA and performance on tests of cognition for schizophrenia patients, with defects in AA signaling associated with deficits in cognition. Moreover, dopamine may moderate these relationships between AA and cognition. Taken together, cognitive deficits, dopaminergic neurotransmission, and bioactive lipids have emerged as related features of schizophrenia. Existing treatment options for cognitive deficits in schizophrenia do not specifically target lipid-derived signaling pathways; understanding these processes could inform efforts to identify novel targets for treatment innovation. PMID:21196378

Condray, Ruth; Yao, Jeffrey K.



Cocoa flavanols - measurement, bioavailability and bioactivity.  


There has been growing interest in the potential cardiovascular benefits associated with cocoa consumption. As a result of accurate analytical methodologies, there is evidence to support that the flavanols in cocoa can be absorbed, are bioactive, and may be responsible for the cardiovascular benefits associated with regular cocoa consumption. The flavanols in cocoa exist in a multitude of different stereochemical configurations, thus giving rise to a unique and complex mixture of compounds. Given this complexity, the quantitative analysis of cocoa flavanols in foods can be challenging. While there are published methods suitable for the analysis of these compounds, these methods require sophisticated instrumentation and can be challenging to set up. As such, simpler techniques that measure such things as total phenolic content or antioxidant potential have been used as indicators of flavanol content. However, as these simpler assays are prone to interferences and are not specific for flavanols, these methods are not appropriate for use in studies that aim to examine the physiological effects of cocoa flavanols. It is only through the use of methods that can accurately quantify these flavanols that it will be possible to make meaningful dietary recommendations regarding the consumption of cocoa flavanol containing foods. PMID:18296356

Kwik-Uribe, Catherine; Bektash, Roger M



Burchellin: study of bioactivity against Aedes aegypti  

PubMed Central

Background The dengue mosquito Aedes aegypti Linnaeus, 1762 is a widespread insect pest of serious medical importance. Since no effective vaccine is available for treating dengue, the eradication or control of the main mosquito vector is regarded as essential. Since conventional insecticides have limited success, plants may be an alternative source of larvicidal agents, since they contain a rich source of bioactive chemicals. The aim of this study was to evaluate the larvicidal activity of the neolignan burchellin isolated from Ocotea cymbarum (Lauraceae), a plant from the Amazon region, against third instar larvae of A. aegypti. Methods Burchellin obtained from O. cymbarum was analyzed. The inhibitory activity against A. aegypti eggs and larvae and histological changes in the digestive system of treated L3 larvae were evaluated. In addition, nitric oxide synthase activity and nitric oxide levels were determined, and cytotoxicity bioassays performed. Results The data showed that burchellin interfered with the development cycle of the mosquito, where its strongest toxic effect was 100% mortality in larvae (L3) at concentrations???30 ppm. This compound did not show target cell toxicity in peritoneal macrophages from BALB/c mice, and proved to have molecular stability when dissolved in water. The L3 and L4 larvae treated with the compound showed cellular destruction and disorganization, cell spacing, and vacuolization of epithelial cells in small regions of the midgut. Conclusion The neolignan burchellin proved to be a strong candidate for a natural, safe and stable phytolarvicidal to be used in population control of A. aegypti. PMID:24713267



Microencapsulated Bioactive Agents and Method of Making  

NASA Technical Reports Server (NTRS)

Microcapsules prepared by encapsulating an aqueous solution of a protein, drug or other bioactive substance inside a semi-permeable membrane by are disclosed. The microcapsules are formed by interfacial coacervation under conditions where the shear forces are limited to 0- 100 dynes per sq cm at the interface. By placing the microcapsules in a high osmotic watering solution, the protein solution is gradually made saturated and then supersaturated, and the controlled nucleation and crystallization of the protein is achieved. The crystal-filled microcapsules prepared by this method can be conveniently harvested and stored while keeping the encapsulated crystals in essentially pristine condition due to the rugged, protective membrane. Because the membrane components themselves are x-ray transparent, large crystal-containing microcapsules can be individually selected. mounted in x-ray capillary tubes and subjected to high energy x-ray diffraction studies to determine the 3-D structure of the protein molecules. Certain embodiments of the microcapsules of the invention have composite polymeric outer membranes which are somewhat elastic, water insoluble, permeable only to water, salts, and low molecular weight molecules and are structurally stable in fluid shear forces typically encountered in the human vascular system.

Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)



Bifidobacterium fermented milk and galacto-oligosaccharides lead to improved skin health by decreasing phenols production by gut microbiota.  


A questionnaire survey found that women suffering from abnormal bowel movements have many skin problems such as a high frequency of dry skin. Although there are similarities between the structure and barrier function mechanism of the gut and skin, experimental data are insufficient to show an association between the intestinal environment and skin conditions. Phenols, for example phenol and p-cresol, as metabolites of aromatic amino acids produced by gut bacteria, are regarded as bioactive toxins and serum biomarkers of a disturbed gut environment. Recent studies have demonstrated that phenols disturb the differentiation of monolayer-cultured keratinocytes in vitro, and that phenols produced by gut bacteria accumulate in the skin via the circulation and disrupt keratinocyte differentiation in hairless mice. Human studies have demonstrated that restriction of probiotics elevated serum free p-cresol levels and harmed skin conditions (reduced skin hydration, disrupted keratinisation). In contrast, daily intake of the prebiotic galacto-oligosaccharides (GOS) restored serum free p-cresol levels and skin conditions in adult women. Moreover, a double-blind placebo-controlled trial demonstrated that the daily intake of fermented milk containing the probiotic Bifidobacterium breve strain Yakult and prebiotic GOS reduced serum total phenol levels and prevented skin dryness and disruption of keratinisation in healthy adult women. It is concluded that phenols produced by gut bacteria are one of the causes of skin problems. Probiotics and/or prebiotics, such as B. breve strain Yakult and/or GOS, are expected to help maintain a healthy skin by decreasing phenols production by gut microbiota. These findings support the hypothesis that probiotics and prebiotics provide health benefits to the skin as well as the gut. PMID:23685373

Miyazaki, K; Masuoka, N; Kano, M; Iizuka, R



Versatile supramolecular organogel with outstanding stability toward aqueous interfaces.  


In this communication, we report on a novel and versatile low-molecular-weight organogelator. The methanolic gel exhibits an exceptional water-enhanced stability as evidenced by a 30 °C increase in Tg with up to 10%v/v of water. This atypical property not observed with other solvents makes of this supramolecular gel a highly stable matrix compatible with aqueous interfaces. As a proof of principle we present the sensing performance of a symmetric tricarbocyanine fluorophore bearing a Zn(II)chelator unit. The system retained its remarkable physical integrity for a long period of time opening new possibilities for other organic-aqueous interface applications. PMID:24912100

Bonifazi, Evelyn L; Edelsztein, Valeria C; Menéndez, Guillermo O; Samaniego López, Cecilia; Spagnuolo, Carla C; Di Chenna, Pablo H



Exploiting cholera vaccines as a versatile antigen delivery platform  

PubMed Central

The development of safe, immunogenic and protective cholera vaccine candidates makes possible their use as a versatile antigen delivery platform. Foreign antigens can be delivered to the immune system with cholera vaccines by expressing heterologous antigens in live attenuated vectors, as fusion proteins with cholera toxin subunits combined with inactivated Vibrio cholerae whole cells or by exposing them on the surface of V. cholerae ghosts. Progress in our understanding of the genes expressed by V. cholerae during infection creates unprecedented opportunities to develop an improved generation of vaccine vectors to induce immune protection against a broad range of pathogenic organisms. PMID:18008168

Eko, Francis O.; Benitez, Jorge A.



Engineering organic macrocycles and cages: versatile bonding approaches.  


The emergence of supramolecular chemistry has led to the discovery of a rising number of macrocycles and cages with a range of functionalities. Most of these supramolecular aggregates are metal coordination networks, whereas pure organic assemblies are less developed. Organic macrocycles and cages have the advantages of chemical robustness, processability in organic solvents, and suitability for pilot-scale applications. They are constructed primarily from covalent bonds, with irreversible and reversible bond types. We herein highlight the use of different versatile bonding approaches in engineering these soft materials, as well as their emerging applications, such as gas storage, thin films, liquid crystals, and catalysis. PMID:25403872

Huang, Sheng-Li; Jin, Guo-Xin; Luo, He-Kuan; Hor, T S Andy



Versatile cold atom source for multi-species experiments  

NASA Astrophysics Data System (ADS)

We present a dual-species oven and Zeeman slower setup capable of producing slow, high-flux atomic beams for loading magneto-optical traps. Our compact and versatile system is based on electronic switching between different magnetic field profiles and is applicable to a wide range of multi-species experiments. We give details of the vacuum setup, coils, and simple electronic circuitry. In addition, we demonstrate the performance of our system by optimized, sequential loading of magneto-optical traps of lithium-6 and cesium-133.

Paris-Mandoki, A.; Jones, M. D.; Nute, J.; Wu, J.; Warriar, S.; Hackermüller, L.



DESIGN NOTE: A linear, low cost and versatile FM demodulator  

NASA Astrophysics Data System (ADS)

The experimental behaviour of a low cost and versatile FM demodulator is described, designed for field applications where high linearity of the device is required in order to obtain a very low harmonic distortion of the signal to be measured. The circuit solutions which have been taken in order to reduce noise effects and to improve the dynamic range of the device are also discussed with reference to a vibration measuring system. A linearity uncertainty of less than 0957-0233/7/11/018/img1 can be attained with reference to a frequency decade with input frequency to the demodulator in the range 50 kHz to 25 MHz.

D'Emilia, Giulio



Versatility of Aminoglycosides and Prospects for Their Future  

PubMed Central

Aminoglycoside antibiotics have had a major impact on our ability to treat bacterial infections for the past half century. Whereas the interest in these versatile antibiotics continues to be high, their clinical utility has been compromised by widespread instances of resistance. The multitude of mechanisms of resistance is disconcerting but also illuminates how nature can manifest resistance when bacteria are confronted by antibiotics. This article reviews the most recent knowledge about the mechanisms of aminoglycoside action and the mechanisms of resistance to these antibiotics. PMID:12857776

Vakulenko, Sergei B.; Mobashery, Shahriar



A versatile detector for total fluorescence and electron yield experiments  

SciTech Connect

The combination of a non-coated silicon photodiode with electron repelling meshes makes a versatile detector for total fluorescence yield and electron yield techniques highly suitable for x-ray absorption spectroscopy. In particular, a copper mesh with a bias voltage allows to suppress or transmit the electron yield signal. The performance of this detection scheme has been characterized by near edge x-ray absorption fine structure studies of thermal oxidized silicon and sapphire. The results show that the new detector probes both electron yield and for a bias voltage exceeding the maximum photon energy the total fluorescence yield.

Thielemann, N. [Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstrasse 15, 12489 Berlin (Germany); Hoffmann, P. [Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Foehlisch, A. [Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institut fuer Physik und Astronomie, Universitaet Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam (Germany)



Parallel optics technology assessment for the versatile link project  

SciTech Connect

This poster describes the assessment of commercially available and prototype parallel optics modules for possible use as back end components for the Versatile Link common project. The assessment covers SNAP12 transmitter and receiver modules as well as optical engine technologies in dense packaging options. Tests were performed using vendor evaluation boards (SNAP12) as well as custom evaluation boards (optical engines). The measurements obtained were used to compare the performance of these components with single channel SFP+ components operating at a transmission wavelength of 850 nm over multimode fibers.

Chramowicz, J.; Kwan, S.; Rivera, R.; Prosser, A.; /Fermilab



Surface plasmon resonance-enabled antibacterial digital versatile discs  

NASA Astrophysics Data System (ADS)

We report the achievement of effective sterilization of exemplary bacteria including Escherichia coli and Geobacillus stearothermophilus spores on a digital versatile disc (DVD). The spiral arrangement of aluminum-covered pits generates strong surface plasmon resonance (SPR) absorption of near-infrared light, leading to high surface temperature that could even damage the DVD plastics. Localized protein denaturation and high sterilization efficiency have been demonstrated by using a fluorescence microscope and cell cultures. Numerical simulations have also been conducted to model the SPR properties and the surface temperature distribution of DVDs under laser illumination. The theoretical predictions agree reasonably well with the experimental results.

Dou, Xuan; Chung, Pei-Yu; Jiang, Peng; Dai, Jianli



Skin-to-skin parental contact with fragile preterm infants.  


Skin-to-skin contact has been implemented recently to facilitate maternal-infant bonding of preterm infants. The technique allows the removal of fragile preterm infants from an incubator to the bare chest of a parent or caretaker. When specific guidelines are followed, thermal stability can be maintained, parent-infant bonding can be facilitated, and parental satisfaction can be enhanced. We illustrate a case in which a preterm infant has skin-to-skin contact while being monitored for physiologic parameters, including heart and respiratory rate, oxyhemoglobin saturation, and nasal airflow. Improvements in breathing patterns in this infant during skin-to-skin care and maintenance of a normal temperature suggest that this technique may not only be safe and psychologically beneficial, but it may also promote physiologic improvement. PMID:9284613

Cleary, G M; Spinner, S S; Gibson, E; Greenspan, J S



Bioactive and Thermally Compatible Glass Coating on Zirconia Dental Implants.  


The healing time of zirconia implants may be reduced by the use of bioactive glass coatings. Unfortunately, existing glasses are either bioactive like Bioglass 45S5 but thermally incompatible with the zirconia substrate, or they are thermally compatible but exhibit only a very low level of bioactivity. In this study, we hypothesized that a tailored substitution of alkaline earth metals and alkaline metals in 45S5 can lead to a glass composition that is both bioactive and thermally compatible with zirconia implants. A novel glass composition was analyzed using x-ray fluorescence spectroscopy, dilatometry, differential scanning calorimetry, and heating microscopy to investigate its chemical, physical, and thermal properties. Bioactivity was tested in vitro using simulated body fluid (SBF). Smooth and microstructured glass coatings were applied using a tailored spray technique with subsequent thermal treatment. Coating adhesion was tested on implants that were inserted in bovine ribs. The cytocompatibility of the coating was analyzed using L929 mouse fibroblasts. The coefficient of thermal expansion of the novel glass was shown to be slightly lower (11.58·10(-6) K(-1)) than that of the zirconia (11.67·10(-6) K(-1)). After storage in SBF, the glass showed reaction layers almost identical to the bioactive glass gold standard, 45S5. A process window between 800 °C and 910 °C was found to result in densely sintered and amorphous coatings. Microstructured glass coatings on zirconia implants survived a minimum insertion torque of 60 Ncm in the in vitro experiment on bovine ribs. Proliferation and cytotoxicity of the glass coatings was comparable with the controls. The novel glass composition showed a strong adhesion to the zirconia substrate and a significant bioactive behavior in the SBF in vitro experiments. Therefore, it holds great potential to significantly reduce the healing time of zirconia dental implants. PMID:25421839

Kirsten, A; Hausmann, A; Weber, M; Fischer, J; Fischer, H



Porous Surface Modified Bioactive Bone Cement for Enhanced Bone Bonding  

PubMed Central

Background Polymethylmethacrylate bone cement cannot provide an adhesive chemical bonding to form a stable cement-bone interface. Bioactive bone cements show bone bonding ability, but their clinical application is limited because bone resorption is observed after implantation. Porous polymethylmethacrylate can be achieved with the addition of carboxymethylcellulose, alginate and gelatin microparticles to promote bone ingrowth, but the mechanical properties are too low to be used in orthopedic applications. Bone ingrowth into cement could decrease the possibility of bone resorption and promote the formation of a stable interface. However, scarce literature is reported on bioactive bone cements that allow bone ingrowth. In this paper, we reported a porous surface modified bioactive bone cement with desired mechanical properties, which could allow for bone ingrowth. Materials and Methods The porous surface modified bioactive bone cement was evaluated to determine its handling characteristics, mechanical properties and behavior in a simulated body fluid. The in vitro cellular responses of the samples were also investigated in terms of cell attachment, proliferation, and osteoblastic differentiation. Furthermore, bone ingrowth was examined in a rabbit femoral condyle defect model by using micro-CT imaging and histological analysis. The strength of the implant–bone interface was also investigated by push-out tests. Results The modified bone cement with a low content of bioactive fillers resulted in proper handling characteristics and adequate mechanical properties, but slightly affected its bioactivity. Moreover, the degree of attachment, proliferation and osteogenic differentiation of preosteoblast cells was also increased. The results of the push-out test revealed that higher interfacial bonding strength was achieved with the modified bone cement because of the formation of the apatite layer and the osseointegration after implantation in the bony defect. Conclusions Our findings suggested a new bioactive bone cement for prosthetic fixation in total joint replacement. PMID:22905143

Huang, Li; Dong, Jingjing; Guo, Dagang; Mao, Mengmeng; Kong, Liang; Li, Yang; Wu, Zixiang; Lei, Wei



Protective effect of detoxified Rhus verniciflua stokes on human keratinocytes and dermal fibroblasts against oxidative stress and identification of the bioactive phenolics.  


Oxidative stress due to the over-production of reactive oxygen species (ROS) is associated with human skin aging. This study was designed to identify the bioactive phenolics in detoxified Rhus verniciflua Stokes (DRVS) that may protect human skin against oxidative stress. Under oxidative stress caused by H?O?, the 40% (v/v) aqueous methanol extract of DRVS protected human keratinocytes in a dose-dependent manner. The expression of matrix metalloproteinase-1 (MMP-1) was also inhibited by the DRVS extract in human dermal fibroblasts-neonatal cells exposed to ultraviolet A. The major bioactive phenolics of DRVS were tentatively identified by LC/Q-TOF-ESI-MS/MS, and included gallic acid, 2-(ethoxymethoxy)-3-hydroxyphenol, fustin, a fustin isomer, tetragalloyl glucose, pentagalloyl glucose, fisetin, sulfuretin, a sulfuretin isomer, and butein. The results suggest that a DRVS extract may be effective in slowing skin aging through its antioxidative properties and by down-regulating MMP-1 expression. Further studies are needed to examine whether this effect would be mediated by the phenolics identified in this study. PMID:23924730

Liu, Chun-Shan; Nam, Tae-Gyu; Han, Min-Woo; Ahn, Soo-mi; Choi, Han Seok; Kim, Tae Young; Chun, Ock K; Koo, Sung I; Kim, Dae-Ok



Climate change and skin.  


Global climate appears to be changing at an unprecedented rate. Climate change can be caused by several factors that include variations in solar radiation received by earth, oceanic processes (such as oceanic circulation), plate tectonics, and volcanic eruptions, as well as human-induced alterations of the natural world. Many human activities, such as the use of fossil fuel and the consequent accumulation of greenhouse gases in the atmosphere, land consumption, deforestation, industrial processes, as well as some agriculture practices are contributing to global climate change. Indeed, many authors have reported on the current trend towards global warming (average surface temperature has augmented by 0.6 °C over the past 100 years), decreased precipitation, atmospheric humidity changes, and global rise in extreme climatic events. The magnitude and cause of these changes and their impact on human activity have become important matters of debate worldwide, representing climate change as one of the greatest challenges of the modern age. Although many articles have been written based on observations and various predictive models of how climate change could affect social, economic and health systems, only few studies exist about the effects of this change on skin physiology and diseases. However, the skin is the most exposed organ to environment; therefore, cutaneous diseases are inclined to have a high sensitivity to climate. For example, global warming, deforestation and changes in precipitation have been linked to variations in the geographical distribution of vectors of some infectious diseases (leishmaniasis, lyme disease, etc) by changing their spread, whereas warm and humid environment can also encourage the colonization of the skin by bacteria and fungi. The present review focuses on the wide and complex relationship between climate change and dermatology, showing the numerous factors that are contributing to modify the incidence and the clinical pattern of many dermatoses. PMID:23407083

Balato, N; Ayala, F; Megna, M; Balato, A; Patruno, C



In-vivo differentiation of photo-aged epidermis skin by texture-based classification  

NASA Astrophysics Data System (ADS)

Two sets of in vivo female cheek skin epidermis images were analyzed through gray level co-occurrence matrix (GLCM) and fast fourier transform (FFT). One set was derived from women in their 20s and the other from women more than 60 years of age. GLCM was used to evaluate the texture features of the regions of interest within the cheek epidermis, and texture classification was subsequently performed. During texture classification, 25 images (320×240 pixels) in each age set were randomly selected. Three texture features, i.e., energy, contrast, and correlation, were obtained from the skin images and analyzed at four orientations (0°, 45°,90°, and 135°), accompanied by different distances between two pixels. The textures of the different aging skins were characterized by FFT, which provides the dermatoglyph orientation index. The differences in the textures between the young and old skin samples can be well described by the FFT dermatoglyph orientation index. The texture features varied among the different aging skins, which provide a versatile platform for differentiating the statuses of aging skins.

Zhang, Xiaoman; Weng, Cuncheng; Yu, Biying; Li, Hui



Improved Skin Friction Interferometer  

NASA Technical Reports Server (NTRS)

An improved system for measuring aerodynamic skin friction which uses a dual-laser-beam oil-film interferometer was developed. Improvements in the optical hardware provided equal signal characteristics for each beam and reduced the cost and complexity of the system by replacing polarization rotation by a mirrored prism for separation of the two signals. An automated, objective, data-reduction procedure was implemented to eliminate tedious manual manipulation of the interferometry data records. The present system was intended for use in two-dimensional, incompressible flows over a smooth, level surface without pressure gradient, but the improvements discussed are not limited to this application.

Westphal, R. V.; Bachalo, W. D.; Houser, M. H.



Skin Care: Acne  

NSDL National Science Digital Library

In this lesson from Science NetLinks, students are asked to think about what they already know about how the body changes as people age. More specifically, they are asked to talk about acne and what they consider to be the most effective ways of treating it and preventing its spread. Using online resources, they discover that there are many misconceptions about the exact causes and best treatments for acne. After completing the lesson, they have a good understanding of how to prevent and treat acne, and take care of their skin in general.

Science Netlinks;



Comparison of the bioactivity of mometasone furoate 0.1% fatty cream, betamethasone dipropionate 0.05% cream and betamethasone valerate 0.1% cream in humans. Inhibition of UV-B-induced inflammation monitored by laser Doppler blood flowmetry.  


The bioactivity of a novel topical glucocorticosteroid, mometasone furoate 0.1% fatty cream was compared with betamethasone dipropionate 0.05% cream and betametasone valerate 0.1% cream. An ultraviolet light (UV-B)-induced inflammation assay in humans was used, and the combined effect of a single, open application of the corticosteroids was evaluated. Reduction of UV-B induced inflammation was monitored by laser Doppler blood flowmetry, clinical skin scoring and skin reflectance spectrophotometry. Skin scoring and reflectance spectrophotometry were found unsuitable because one of the cream vehicles contained titanium dioxide which shielded skin erythema. Laser Doppler blood flowmetry showed that mometasone furoate 0.1% fatty cream was more than twofold better in reducing UV-B-induced inflammation than betamethasone dipropionate 0.05% cream and betametasone valerate 0.1% cream, and that the effect was sustained for at least 24 h after a single application. PMID:8274288

Bjerring, P



[Youth Healthcare guideline 'Skin disorders'].  


There is a high incidence of skin disorders; these are also frequently encountered within Youth Healthcare (YHC). Some skin disorders are caused by an underlying disease, syndrome or child abuse. Therefore, detection of these causes in an early stage is important. Skin disorders can have a huge psychosocial impact on both child and parents. This is one of the reasons why prevention, detection, diagnosis, treatment, referral, and uniform advice and guidance are of great importance. The YHC Guideline examines counselling and advice, criteria for referral to primary or secondary healthcare, and skincare in general. It also describes the disorders that should be actively detected. The Guideline also looks at specific aspects of dark skins and ethnic diversity, and the impact of skin disorders on general wellbeing. The accompanying web-based tool includes argumentation and opinions from experts on more than 75 skin disorders, including illustrations and decision trees, to aid the drawing up of a treatment plan. PMID:23151335

Deurloo, Jacqueline A; van Gameren-Oosterom, Helma B M; Kamphuis, Mascha



Role of phototherapy in patients with skin of color.  


Phototherapy has proven to be one of the most versatile and effective treatment options for a variety of inflammatory and pigmentary skin diseases. However, the use of these treatment modalities in patients of color requires some special considerations. The modality chosen, the dosing of the treatment and duration of treatment are all issues to be considered for patients of color treated with ultraviolet phototherapy. In addition, there are some diseases which are more commonly seen in patients of color. These diseases may have better treatment outcomes using newer phototherapeutic options such as the long pulsed Nd:YAG laser or UVA1. As our population in the United States becomes more diverse it would behoove all dermatologists to acquaint themselves with the special circumstances of treating ethnic patients with phototherapy. PMID:22123415

Syed, Zain U; Hamzavi, Iltefat H



Bioactivity studies on Musa seminifera Lour  

PubMed Central

Background: Musa seminifera Lour is a tree-like perennial herb that has been used in folk medicine in Bangladesh to heal a number of ailments. Objective: To evaluate the antioxidant, analgesic, antidiarrheal, anthelmintic activities, and general toxicity of the ethanol extract of the roots. Materials and Methods: The extract was assessed for free-radical-scavenging activity by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, total phenolic content (TPC) by the Folin Ciocalteu reagent, antioxidant activity by the ferric reducing power assay, analgesic activity by the acetic acid-induced writhing and hot-plate tests, antidiarrheal activity by the castor oil-induced diarrhea model in mice, anthelmintic activity on Paramphistomum cervi and Haemonchus contortus, and general toxicity by the brine shrimp lethality assay. Results: The extract showed free-radical-scavenging activity with an IC50 value of 44.86 ?g/mL. TPC was 537.89 mg gallic acid equivalent/100 g of dried plant material. It showed concentration-dependent reducing power, and displayed 42.11 and 69.32% writhing inhibition at doses of 250 and 500 mg/kg body weight, respectively. The extract also significantly raised the pain threshold at the above-mentioned dose levels. In vivo antidiarrheal property was substantiated by significant prolongation of latent period and decrease in total number of stools compared with the control. The LC50 against brine shrimp nauplii was 36.21 ?g/mL. The extract exhibited dose-dependent decrease in paralysis and death time of the helminths. Conclusion: The above results demonstrated that the plant possesses notable bioactivities and somewhat supports its use in folk medicine. PMID:24124283

Saha, Sanjib; Shilpi, Jamil A.; Mondal, Himangsu; Gofur, Royhan; Billah, Morsaline; Nahar, Lutfun; Sarker, Satyajit D.



A versatile optoelectronic aid for low vision patients.  


The purpose of this work is to describe a versatile optoelectronic aid for low vision rehabilitation based on reconfigurable hardware. This aid is easily adaptable to diverse pathologies (with different associated processing tasks) and to the progression of the visual impairment. This platform has a mobile configuration that uses a see-through head-mounted display (Nomad). We have implemented different types of vision enhancement on this versatile platform, and briefly summarize here their computational costs (in terms of hardware resource requirements). We have evaluated two representative capabilities of this aid (Augmented View and digital zoom) with measurements of visual acuity, contrast sensitivity and visual field. We have tested the Nomad head-mounted display and the Augmented View modality, in eight subjects with retinitis pigmentosa: the digital zoom was tested in six low vision subjects and nine normally-sighted subjects. We show that the Nomad display with Augmented View configuration does not impair the residual vision; and that there is an increase in visual acuity (VA) with the digital zoom configuration. The major advantage of this platform is that it can easily embed different image processing tasks and since it is based on a FPGA device, it can be specifically configured to tasks requiring real-time processing. PMID:19689551

Peláez-Coca, María Dolores; Vargas-Martín, Fernando; Mota, Sonia; Díaz, Javier; Ros-Vidal, Eduardo



The high versatility of silicon based micro-optical modulators  

NASA Astrophysics Data System (ADS)

"One product, one process": This MEMS law is true for micro-optical modulators, too and thus puts a high load on every product and technology development team. On the other hand the law expresses nothing but the high versatility of the underlying usually silicon based technology. A huge variety of applications where an electromagnetic wave experiences a spatial-temporal modulation makes use of this technology: High resolution as well as ultra-compact displays, optical switches in telecommunication as well as data storage devices, spectrometers e. g. for quality control, as well as adaptive optics and pattern generation to mention only a few. The applications completely differ with regard to the requirements in almost all aspects. The most important drivers to use silicon based micro-optical modulators are high accuracy, high bandwidth and high miniaturization. A continuous further development of the technology can be reported. Novel optical, mechanical and electrical working principles are investigated to meet future requirements. After a short overview of the most typical applications of silicon based micro-optical modulators the high versatility of this technology is detailed by means of selected devices and applications. Single 1D and 2D micro mirrors with diameters of up to 4 mm e. g. for projection, imaging and spectroscopy are as well presented and discussed as micro mirror arrays comprising up to 1 million analog deflectable mirrors for image generation and phase modulation in microlithography and adaptive optics.

Schenk, Harald



Versatile Low Level RF System For Linear Accelerators  

SciTech Connect

The Low Level RF (LLRF) system is the source of all of the rf signals required for an rf linear accelerator. These signals are amplified to drive accelerator and buncher cavities. It can even provide the synchronizing signal for the rf power for a synchrotron. The use of Direct Digital Synthesis (DDS) techniques results in a versatile system that can provide multiple coherent signals at the same or different frequencies with adjustable amplitudes and phase relations. Pulsing the DDS allows rf switching with an essentially infinite on/off ratio. The LLRF system includes a versatile phase detector that allows phase-locking the rf frequency to a cavity at any phase angle over the full 360 deg. range. With the use of stepper motor driven slug tuners multiple cavity resonant frequencies can be phase locked to the rf source frequency. No external phase shifters are required and there is no feedback loop phase setup required. All that is needed is to turn the frequency feedback on. The use of Digital Signal Processing (DSP) allows amplitude and phase control over the entire rf pulse. This paper describes the basic principles of a LLRF system that has been used for both proton accelerators and electron accelerators, including multiple tank accelerators, sub-harmonic and fundamental bunchers, and synchrotrons.

Potter, James M. [JP Accelerator Works, Inc., 2245 47th Street, Los Alamos, NM 87544 (United States)



Versatile optical coherence tomography for imaging the human eye.  


We demonstrated the feasibility of a CMOS-based spectral domain OCT (SD-OCT) for versatile ophthalmic applications of imaging the corneal epithelium, limbus, ocular surface, contact lens, crystalline lens, retina, and full eye in vivo. The system was based on a single spectrometer and an alternating reference arm with four mirrors. A galvanometer scanner was used to switch the reference beam among the four mirrors, depending on the imaging application. An axial resolution of 7.7 ?m in air, a scan depth of up to 37.7 mm in air, and a scan speed of up to 70,000 A-lines per second were achieved. The approach has the capability to provide high-resolution imaging of the corneal epithelium, contact lens, ocular surface, and tear meniscus. Using two reference mirrors, the zero delay lines were alternatively placed on the front cornea or on the back lens. The entire ocular anterior segment was imaged by registering and overlapping the two images. The full eye through the pupil was measured when the reference arm was switched among the four reference mirrors. After mounting a 60 D lens in the sample arm, this SD-OCT was used to image the retina, including the macula and optical nerve head. This system demonstrates versatility and simplicity for multi-purpose ophthalmic applications. PMID:23847729

Tao, Aizhu; Shao, Yilei; Zhong, Jianguang; Jiang, Hong; Shen, Meixiao; Wang, Jianhua



Immense Essence of Excellence: Marine Microbial Bioactive Compounds  

PubMed Central

Oceans have borne most of the biological activities on our planet. A number of biologically active compounds with varying degrees of action, such as anti-tumor, anti-cancer, anti-microtubule, anti-proliferative, cytotoxic, photo protective, as well as antibiotic and antifouling properties, have been isolated to date from marine sources. The marine environment also represents a largely unexplored source for isolation of new microbes (bacteria, fungi, actinomycetes, microalgae-cyanobacteria and diatoms) that are potent producers of bioactive secondary metabolites. Extensive research has been done to unveil the bioactive potential of marine microbes (free living and symbiotic) and the results are amazingly diverse and productive. Some of these bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities are being intensely used as antibiotics and may be effective against infectious diseases such as HIV, conditions of multiple bacterial infections (penicillin, cephalosporines, streptomycin, and vancomycin) or neuropsychiatric sequelae. Research is also being conducted on the general aspects of biophysical and biochemical properties, chemical structures and biotechnological applications of the bioactive substances derived from marine microorganisms, and their potential use as cosmeceuticals and nutraceuticals. This review is an attempt to consolidate the latest studies and critical research in this field, and to showcase the immense competence of marine microbial flora as bioactive metabolite producers. In addition, the present review addresses some effective and novel approaches of procuring marine microbial compounds utilizing the latest screening strategies of drug discovery. PMID:21116414

Bhatnagar, Ira; Kim, Se-Kwon



Skin care for the newborn  

Microsoft Academic Search

Skin of the newborn differs from that of an adult in several ways. It is more susceptible to trauma and infection and requires\\u000a special care. Certain principles of skin care have to be emphasized to the mother or caregiver such as gentle cleansing, adequate\\u000a hydration and moisturization of the skin, preventing friction and maceration in body folds, and protection from

Rashmi Sarkar; Srikanta Basu; R. K. Agrawal; Piyush Gupta



Molecular tumorigenesis of the skin.  


Skin tumors are supposed to develop through accumulations of genetic and/or epigenetic events in normal cells of the skin. Among them, we focus on common skin tumors, including benign, seborrheic keratosis, and malignant, squamous cell carcinoma and melanoma. Many important molecules have been detected on the molecular tumorigenesis of each of them to date, and some drugs targeted for their molecules have been already developed. We review updates on the molecular tumorigenesis of these tumors with our current works. PMID:24705742

Kubo, Yoshiaki; Matsudate, Yoshihiro; Fukui, Nozomi; Nakasuka, Ayaka; Sogawa, Maiko; Oshima, Mika; Mizutani, Tomoya; Otsu, Masanobu; Murao, Kazutoshi; Hashimoto, Ichiro



Fractional laser skin resurfacing.  


Laser skin resurfacing (LSR) has evolved over the past 2 decades from traditional ablative to fractional nonablative and fractional ablative resurfacing. Traditional ablative LSR was highly effective in reducing rhytides, photoaging, and acne scarring but was associated with significant side effects and complications. In contrast, nonablative LSR was very safe but failed to deliver consistent clinical improvement. Fractional LSR has achieved the middle ground; it combined the efficacy of traditional LSR with the safety of nonablative modalities. The first fractional laser was a nonablative erbium-doped yttrium aluminum garnet (Er:YAG) laser that produced microscopic columns of thermal injury in the epidermis and upper dermis. Heralding an entirely new concept of laser energy delivery, it delivered the laser beam in microarrays. It resulted in microscopic columns of treated tissue and intervening areas of untreated skin, which yielded rapid reepithelialization. Fractional delivery was quickly applied to ablative wavelengths such as carbon dioxide, Er:YAG, and yttrium scandium gallium garnet (2,790 nm), providing more significant clinical outcomes. Adjustable laser parameters, including power, pitch, dwell time, and spot density, allowed for precise determination of percent surface area, affected penetration depth, and clinical recovery time and efficacy. Fractional LSR has been a significant advance to the laser field, striking the balance between safety and efficacy. PMID:23135075

Alexiades-Armenakas, Macrene R; Dover, Jeffrey S; Arndt, Kenneth A



Versatility of cyclodextrins in self-assembly systems of amphiphiles Lingxiang Jiang, Yun Yan, Jianbin Huang  

E-print Network

Versatility of cyclodextrins in self-assembly systems of amphiphiles Lingxiang Jiang, Yun Yan Keywords: Surfactants Cyclodextrins Self-assembly H-bonds Unamphiphilic Recently, cyclodextrins (CDs) were

Huang, Jianbin


Variations in Human Skin Color  

NSDL National Science Digital Library

In this lesson, the students examine their skin types, similarities, differences, etc. and discuss the social implications of each group. They also examine the factors that influence variations in skin color in greater depth. The class is separated into groups and work on presentations, designed to foster peer-teaching with guidance from the instructor. The presentations to be worked on by the students are: Modern Human Variation: Overview, Skin Color Adaptation, and A new Light on Skin Color. All of the resources needed for the students presentations are included. Following each presentation, tips for review and discussion of the learning objectives are given.

American Association for the Advancement of Science (;)



The future of skin metagenomics.  


Metagenomics, the direct exploitation of environmental microbial DNA, is complementary to traditional culture-based approaches for deciphering taxonomic and functional microbial diversity in a plethora of ecosystems, including those related to the human body such as the mouth, saliva, teeth, gut or skin. DNA extracted from human skin analyzed by sequencing the PCR-amplified rrs gene has already revealed the taxonomic diversity of microbial communities colonizing the human skin ("skin microbiome"). Each individual possesses his/her own skin microbial community structure, with marked taxonomic differences between different parts of the body and temporal evolution depending on physical and chemical conditions (sweat, washing etc.). However, technical limitations due to the low bacterial density at the surface of the human skin or contamination by human DNA still has inhibited extended use of the metagenomic approach for investigating the skin microbiome at a functional level. These difficulties have been overcome in part by the new generation of sequencing platforms that now provide sequences describing the genes and functions carried out by skin bacteria. These methodological advances should help us understand the mechanisms by which these microorganisms adapt to the specific chemical composition of each skin and thereby lead to a better understanding of bacteria/human host interdependence. This knowledge will pave the way for more systemic and individualized pharmaceutical and cosmetic applications. PMID:24361423

Mathieu, Alban; Vogel, Timothy M; Simonet, Pascal



In vitro bioactivity, cytocompatibility, and antibiotic release profile of gentamicin sulfate-loaded borate bioactive glass/chitosan composites.  


Borate bioactive glass-based composites have been attracting interest recently as an osteoconductive carrier material for local antibiotic delivery. In the present study, composites composed of borate bioactive glass particles bonded with a chitosan matrix were prepared and evaluated in vitro as a carrier for gentamicin sulfate. The bioactivity, degradation, drug release profile, and compressive strength of the composite carrier system were studied as a function of immersion time in phosphate-buffered saline at 37 °C. The cytocompatibility of the gentamicin sulfate-loaded composite carrier was evaluated using assays of cell proliferation and alkaline phosphatase activity of osteogenic MC3T3-E1 cells. Sustained release of gentamicin sulfate occurred over ~28 days in PBS, while the bioactive glass converted continuously to hydroxyapatite. The compressive strength of the composite loaded with gentamicin sulfate decreased from the as-fabricated value of 24 ± 3 MPa to ~8 MPa after immersion for 14 days in PBS. Extracts of the soluble ionic products of the borate glass/chitosan composites enhanced the proliferation and alkaline phosphatase activity of MC3T3-E1 cells. These results indicate that the gentamicin sulfate-loaded composite composed of chitosan-bonded borate bioactive glass particles could be useful clinically as an osteoconductive carrier material for treating bone infection. PMID:23820937

Cui, Xu; Gu, Yifei; Li, Le; Wang, Hui; Xie, Zhongping; Luo, Shihua; Zhou, Nai; Huang, Wenhai; Rahaman, Mohamed N



Synthesis of nano-bioactive glass-ceramic powders and its in vitro bioactivity study in bovine serum albumin protein  

NASA Astrophysics Data System (ADS)

Bioactive glasses and ceramics have proved to be able to chemically bond to living bone due to the formation of an apatite-like layer on its surface. The aim of this work was preparation and characterization of bioactive glass-ceramic by sol-gel method. Nano-bioglass-ceramic material was crushed into powder and its bioactivity was examined in vitro with respect to the ability of hydroxyapatite layer to form on the surface as a result of contact with bovine serum albumin (BSA) protein. The obtained nano-bioactive glass-ceramic was analyzed before and after contact with BSA solution. This study used scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis to examine its morphology, crystallinity and composition. The TEM images showed that the NBG particles size were 10-40 nm. Bioactivity of nanopowder was confirmed by SEM and XRD due to the presence of a rich bone-like apatite layer. Therefore, this nano-BSA-bioglass-ceramic composite material is promising for medical applications such as bone substitutes and drug carriers.

Nabian, Nima; Jahanshahi, Mohsen; Rabiee, Sayed Mahmood



Beta-conglycinins among sources of bioactives in soybean hydrolysates that inhibited leukemia cells in vitro  

Technology Transfer Automated Retrieval System (TEKTRAN)

Soybean is a complex matrix containing several potentially bioactive components. The objective was to build a statistical model to predict the anticancer potential of soybean based on the composition of bioactive components in soybean hydrolysates produced by simulated gastrointestinal digestion. ...


Dentine remineralization induced by two bioactive glasses developed for air abrasion purposes  

Microsoft Academic Search

ObjectivesThe present study aimed to evaluate dentine remineralization through a 7-day period of artificial saliva (AS) storage induced by bioactive glass 45S5 (BAG) and by bioactive glass modified with soda-lime spherical glass.

Zhejun Wang; Tao Jiang; Salvatore Sauro; Yining Wang; Ian Thompson; Timothy F. Watson; Yue Sa; Wenzhong Xing; Ya Shen; Markus Haapasalo



Bioactive Molecules in Soil Ecosystems: Masters of the Underground  

PubMed Central

Complex biological and ecological processes occur in the rhizosphere through ecosystem-level interactions between roots, microorganisms and soil fauna. Over the past decade, studies of the rhizosphere have revealed that when roots, microorganisms and soil fauna physically contact one another, bioactive molecular exchanges often mediate these interactions as intercellular signal, which prepare the partners for successful interactions. Despite the importance of bioactive molecules in sustainable agriculture, little is known of their numerous functions, and improving plant health and productivity by altering ecological processes remains difficult. In this review, we describe the major bioactive molecules present in below-ground ecosystems (i.e., flavonoids, exopolysaccharides, antibiotics and quorum-sensing signals), and we discuss how these molecules affect microbial communities, nutrient availability and plant defense responses. PMID:23615474

Zhuang, Xuliang; Gao, Jie; Ma, Anzhou; Fu, Shenglei; Zhuang, Guoqiang



Quantitative studies on roast kinetics for bioactives in coffee.  


Quantitative analysis of the bioactives trigonelline (1), N-methylpyridinium (2), caffeine (3), and caffeoylquinic acids (4) in a large set of roasted Arabica (total sample size n = 113) and Robusta coffees (total sample size n = 38) revealed that the concentrations of 1 and 4 significantly correlated with the roasting color (P < 0.001, two tailed), whereas that of 2 significantly correlated inversely with the color (P < 0.001, two tailed). As dark-roasted coffees were rich in N-methylpyridinium whereas light-roasted coffees were rich in trigonelline and caffeoylquinic acids, manufacturing of roast coffees rich in all four bioactives would therefore necessitate blending of two or even more coffees of different roasting colors. Additional experiments on the migration rates during coffee brewing showed that all four bioactives were nearly quantitatively extracted in the brew (>90%) when a water volume/coffee powder ratio of >16 was used. PMID:24274681

Lang, Roman; Yagar, Erkan Firat; Wahl, Anika; Beusch, Anja; Dunkel, Andreas; Dieminger, Natalie; Eggers, Rudolf; Bytof, Gerhard; Stiebitz, Herbert; Lantz, Ingo; Hofmann, Thomas



Functional significance of bioactive peptides derived from soybean.  


Biologically active peptides play an important role in metabolic regulation and modulation. Several studies have shown that during gastrointestinal digestion, food processing and microbial proteolysis of various animals and plant proteins, small peptides can be released which possess biofunctional properties. These peptides are to prove potential health-enhancing nutraceutical for food and pharmaceutical applications. The beneficial health effects of bioactive peptides may be several like antihypertensive, antioxidative, antiobesity, immunomodulatory, antidiabetic, hypocholesterolemic and anticancer. Soybeans, one of the most abundant plant sources of dietary protein, contain 36-56% of protein. Recent studies showed that soy milk, an aqueous extract of soybean, and its fermented product have great biological properties and are a good source of bioactive peptides. This review focuses on bioactive peptides derived from soybean; we illustrate their production and biofunctional attributes. PMID:24508378

Singh, Brij Pal; Vij, Shilpa; Hati, Subrota



Surface characterization of silver-doped bioactive glass.  


A bioactive glass belonging to the system SiO(2)-CaO-Na(2)O was doped with silver ions by ion exchange in molten salts as well as in aqueous solution. The ion exchange in the solution was done to check if it is possible to prepare an antimicrobial material using a low silver content. The doped glass was characterized by means of X-ray diffraction, SEM observation, EDS analysis, bioactivity test (soaking in a simulated body fluid), leaching test (GFAAS analyses) and cytotoxicity test. It is demonstrated that these surface silver-doped glasses maintain, or even improve, the bioactivity of the starting glass. The measured quantity of released silver into simulated body fluid compares those reported in literature for the antibacterial activity and the non-cytotoxic effect of silver. Cytotoxicity tests were carried out to understand the effect of the doped surfaces on osteogenic cell adhesion and proliferation. PMID:15792537

Vernè, E; Di Nunzio, S; Bosetti, M; Appendino, P; Brovarone, C Vitale; Maina, G; Cannas, M



Application of novel extraction technologies for bioactives from marine algae.  


Marine algae are a rich source of bioactive compounds. This paper outlines the main bioactive compounds in marine algae and recent advances in novel technologies for extracting them. Novel extraction technologies reviewed include enzyme-assisted extraction, microwave-assisted extraction, ultrasound-assisted extraction, supercritical fluid extraction, and pressurized liquid extraction. These technologies are reviewed with respect to principles, benefits, and potential applications for marine algal bioactives. Advantages of novel technologies include higher yield, reduced treatment time, and lower cost compared to traditional solvent extraction techniques. Moreover, different combinations of novel techniques used for extraction and technologies suitable for thermolabile compounds are identified. The limitations of and challenges to employing these novel extraction technologies in industry are also highlighted. PMID:23634989

Kadam, Shekhar U; Tiwari, Brijesh K; O'Donnell, Colm P



Edible berries: bioactive components and their effect on human health.  


The importance of food consumption in relation to human health has increased consumer attention in nutraceutical components and foods, especially fruits and vegetables. Berries are a rich source of a wide variety of non-nutritive, nutritive, and bioactive compounds such as flavonoids, phenolics, anthocyanins, phenolic acids, stilbenes, and tannins, as well as nutritive compounds such as sugars, essential oils, carotenoids, vitamins, and minerals. Bioactive compounds from berries have potent antioxidant, anticancer, antimutagenic, antimicrobial, anti-inflammatory, and antineurodegenerative properties, both in vitro and in vivo. The following is a comprehensive and critical review on nutritional and non-nutritional bioactive compounds of berries including their absorption, metabolism, and biological activity in relation to their potential effect on human health. PMID:24012283

Nile, Shivraj Hariram; Park, Se Won



Combining xanthan and chitosan membranes to multipotent mesenchymal stromal cells as bioactive dressings for dermo-epidermal wounds.  


The association between tridimensional scaffolds to cells of interest has provided excellent perspectives for obtaining viable complex tissues in vitro, such as skin, resulting in impressive advances in the field of tissue engineering applied to regenerative therapies. The use of multipotent mesenchymal stromal cells in the treatment of dermo-epidermal wounds is particularly promising due to several relevant properties of these cells, such as high capacity of proliferation in culture, potential of differentiation in multiple skin cell types, important paracrine and immunomodulatory effects, among others. Membranes of chitosan complexed with xanthan may be potentially useful as scaffolds for multipotent mesenchymal stromal cells, given that they present suitable physico-chemical characteristics and have adequate tridimensional structure for the adhesion, growth, and maintenance of cell function. Therefore, the purpose of this work was to assess the applicability of bioactive dressings associating dense and porous chitosan-xanthan membranes to multipotent mesenchymal stromal cells for the treatment of skin wounds. The membranes showed to be non-mutagenic and allowed efficient adhesion and proliferation of the mesenchymal stromal cells in vitro. In vivo assays performed with mesenchymal stromal cells grown on the surface of the dense membranes showed acceleration of wound healing in Wistar rats, thus indicating that the use of this cell-scaffold association for tissue engineering purposes is feasible and attractive. PMID:25281644

Bellini, Márcia Z; Caliari-Oliveira, Carolina; Mizukami, Amanda; Swiech, Kamilla; Covas, Dimas T; Donadi, Eduardo A; Oliva-Neto, Pedro; Moraes, Ângela M



Strength and toughness of tape cast bioactive glass 45S5 following heat treatment  

Microsoft Academic Search

Tape cast and sintered (TCS) bioactive glass 45S5 has been shown to exhibit in vitro bioactivity in SBF and Tris, despite the formation of a crystalline phase (Na2Ca2Si3O9) during heat treatment. In this work, the effective porosity, hardness and flexural strength of TCS bioactive ceramic (composed of bioactive glass 45S5 prior to heat treatment) was determined as a function of

D. C Clupper; L. L Hench; J. J Mecholsky



Fabrication and characterization of bioactive glass (45S5)\\/titania biocomposites  

Microsoft Academic Search

Bioactive glass (BG) (45S5) has been used successfully as bone-filling material in orthopedic and dental surgery but its lean mechanical strength limits its applications in load-bearing positions. Approaches to strengthen these materials decreased their bioactivity. In order to realize the optimal matching between mechanical and bioactivity properties, bioactive glass (45S5) was reinforced by introducing titania (TiO2) in anatase form and

Hanan H. Beherei; Khaled R. Mohamed; Gehan T. El-Bassyouni



ZK30-bioactive glass composites for orthopedic applications: A comparative study on fabrication method and characteristics  

Microsoft Academic Search

Previous in vivo studies on biodegradable magnesium alloys for orthopedic implant applications showed the need to improve early-stage bioactivity. Introducing bioactive particles into a magnesium alloy to form a metal matrix composite (MMC) represents an effective way to enhance the bioactivity of the alloy. In this study, composites with the ZK30 alloy as the matrix and the 45S5 bioactive glass

Z. G. Huan; M. A. Leeflang; J. Zhou; J. Duszczyk



Food-Derived Bioactive Peptides on Inflammation and Oxidative Stress  

PubMed Central

Chronic diseases such as atherosclerosis and cancer are now the leading causes of morbidity and mortality worldwide. Inflammatory processes and oxidative stress underlie the pathogenesis of these pathological conditions. Bioactive peptides derived from food proteins have been evaluated for various beneficial effects, including anti-inflammatory and antioxidant properties. In this review, we summarize the roles of various food-derived bioactive peptides in inflammation and oxidative stress and discuss the potential benefits and limitations of using these compounds against the burden of chronic diseases. PMID:24527452



Corrosion protection of mesoporous bioactive glass coating on biodegradable magnesium  

NASA Astrophysics Data System (ADS)

A mesoporous bioactive glass (MBG) coating was synthesized and coated on pure Mg substrate using a sol-gel dip-coating method. The MBG coating uniformly covered the Mg substrate with a thickness of ˜1.5 ?m. Electrochemical and immersion tests were performed in order to investigate the biodegradation performance of Mg with and without different surface coatings in simulated body fluids (SBF) at 37 °C. Results revealed that the MBG coated Mg displayed a significantly lower biodegradation rate, in comparison with normal bioactive glass (BG) coated and uncoated Mg samples.

Wang, Xiaojian; Wen, Cuie



Silicon Utilizing Microbial Bioactivities in the Biosphere  

NASA Astrophysics Data System (ADS)

Diatoms are unicellular eukaryotic algae and an important member of the silicon utilizing organisms, that generate ~20% of the ~100 billion metric tons of organic carbon produced through photosynthesis on Earth each year. Fragilariopsis is a dominating psychrophilic diatom genus in polar sea ice. The two species Fragilariopsis cylindrus and Fragilariopsis curta are able to grow and divide below freezing temperature. Antifreeze proteins (AFPs), involved in cold adaptation in several psychrophilic organisms, are widespread in this two polar species. Achanthes minutissima isolated as dominant diatom has degradable effects involving petroleum hydocarbons. Phaeodactylum tricornutum, have antibacterial activity and the fatty acid, eicosapentaenoic acid (EPA), has been identified as one compound responsible for this activity. Other antibacterial compounds are monounsaturated fatty acid (9Z)-hexadecenoic acid (palmitoleic acid; C16:1 n-7) and the relatively unusual polyunsaturated fatty acid (6Z, 9Z, 12Z)-hexadecatrienoic acid (HTA; C16:3 n-4). Both are active against Gram-positive bacteria and many Gram-negative pathogen. Palmitoleic acid is active at micro-molar concentrations, kills bacteria rapidly, and is highly active against multidrug-resistant Staphylococcus aureus. Domoic acid -a neurotoxin produced by Pseudo-nitzschia accumulates in marine invertebrates. Evidences of sea lion (Zalophus californianus) and human poisoning following consumption of contaminated blue mussels (Mytilus edulis) is mainly due to this toxin. Among the most prominent features described in human beings was memory impairment which led to the name Amnesic Shellfish Poisoning [ASP]. Silicon utilizing organisms can act as a bioindicator of environmental contamination, thus a rapid change in phytochelatins to both the increase in and the withdrawal of environmental Cd stress was found in Thalassiosira nordenskioeldii. Some of them also can produce biofuels particularly diatoms have significant potential as a source of biomass for the production of biofuels, due to their high growth rates and high cellular lipid content. Petroleum pollutant degradation can also be done by these organisms-Achanthes minutissima has degradable effects involving petroleum hydocarbons. Stephanopyxis turris a silicon utilizing organism releases a blend of chlorinated C8 hydrocarbons. This adds a fundamentally new pathway to the limited set of halogenating enzymatic activities known from nature. Many silicon utilizing organisms can produce PUFA from saturated fatty acids which ultimately produce many important bioactive chemicals like hormosirene, finaverrene, heptadienal, dietyopterene, cystophorene, decadienal. Trienoic acid, octadiene and many other important agents. Similarly terpenoid biosynthetic pathway is activated by them with formation of diterpenoids, sesterpenoids, triterpenoids and sterols.

Sen, M. M.; Das, S.



78 FR 63220 - Guidance for Industry on Acute Bacterial Skin and Skin Structure Infections: Developing Drugs for...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Industry on Acute Bacterial Skin and Skin Structure Infections: Developing Drugs for Treatment...entitled ``Acute Bacterial Skin and Skin Structure Infections: Developing Drugs for treat acute bacterial skin and skin structure infections (ABSSSI). This...



Skin health in older age.  


As people age, their skin undergoes changes which result in reduced elasticity, increased fragility and an altered immune response; in essence it becomes frail. As life expectancy is increasing the health of older skin is becoming a progressively more important facet of overall care. In addition to the consequences of ageing for otherwise healthy skin, the relative incidence of some dermatological conditions is age-dependent. In particular, xerosis (dry skin), cutaneous malignancies and skin injuries are more common in older people. In this review we describe the functional consequences of skin ageing and discuss the current evidence on how skin health may be maintained and dermatological conditions prevented in an ageing population. The future of dermatological health-care provision in the older population relies on the development of coordinated pathways of care, which start from a young age. Better quality research coordinated by the establishment of institutions dealing with skin health and ageing would be a method of addressing these needs. PMID:25213594

Al-Nuaimi, Yusur; Sherratt, Michael J; Griffiths, Christopher E M



Rheological behaviour of reconstructed skin.  


Reconstructed skins have been developed to replace skin when the integrity of tissue has been compromised following severe injury, and to provide alternative methods validating the innocuousness and effectiveness of dermatological and cosmetic products. However the functional properties of tissue substitutes have not been well characterised, mainly since mechanical measurement devices have not been designed to test cell culture materials in vitro. From the mechanical standpoint, reconstructed skin is a heterogeneous multi-layer viscoelastic material. To characterise the time-dependent behaviour of reconstructed skin, spherical indentation load-relaxation tests were performed with a specific original device adapted to measure small soft tissue samples. Load-relaxation indentation tests were performed on a standard reconstructed skin model and on sub-components of the reconstructed skin (3D-scaffold alone and dermal equivalent). Generalised Maxwell and Kelvin-Voigt rheological models are proposed for analysing the mechanical behaviour of each biological tissue. The results indicated a modification of the rheological behaviour of the samples tested as a function of their biological structure. The 3D-scaffold was modelled using the one-branch Maxwell model, while the dermis equivalent and the reconstructed skin were modeled using a one-branch and a two-branch Kelvin-Voigt model, respectively. Finally, we demonstrated that skin cells contribute to global mechanical behaviour through an increase of the instantaneous relaxation function, while the 3D-scaffold alone influences the mechanical response of long relaxation times. PMID:24956159

Pailler-Mattei, C; Laquièze, L; Debret, R; Tupin, S; Aimond, G; Sommer, P; Zahouani, H



Skin Signs in Anorexia nervosa  

Microsoft Academic Search

Background: Eating disorders are becoming an epidemic in Europe, particularly among young women, but European studies concerning this topic are few. In eating disorders, significant medical complications occur in all of the primary human organ systems, including the skin. Objective: The purpose of this study was to improve the knowledge of skin signs in anorexia nervosa (AN) and verify whether

R. Strumìa; E. Varotti; E. Manzato; M. Gualandi



Skin lesions in diabetic patients  

Microsoft Academic Search

Objective It is yet unknown the relationship between diabetes and determinants or triggering factors of skin lesions in diabetic patients. The purpose of the present study was to investigate the presence of unreported skin lesions in diabetic patients and their relationship with metabolic control of diabetes. Methods A total of 403 diabetic patients, 31% type 1 and 69% type 2,

N T Foss; D P Polon; M H Takada; M C Foss-Freitas; M C Foss


Genetics of Skin Cancer (PDQ®)

Expert-reviewed information summary about the genetics of skin cancer — basal cell carcinoma, squamous cell carcinoma, and melanoma — including information about specific gene mutations and related cancer syndromes. The summary also contains information about interventions that may influence the risk of developing skin cancer in individuals who may be genetically susceptible to these syndromes.


Occupational skin diseases in Korea.  


Skin disease is the most common occupational disease, but the reported number is small in Korea due to a difficulty of detection and diagnosis in time. We described various official statistics and data from occupational skin disease surveillance system, epidemiological surveys and cases published in scientific journals. Until 1981, 2,222 cases of occupational skin disease were reported by Korean employee's regular medical check-up, accounting for 4.9% of the total occupational diseases. There was no subsequent official statistics to figure out occupational skin diseases till 1998. From 1999, the Korea Occupational Safety and Health Agency (KOSHA) published the number of occupational skin diseases through the statistics of Cause Investigation for Industrial Accidents. A total of 301 cases were reported from 1999 to 2007. Recent one study showed the figures of compensated occupational skin diseases. Many of them belonged to daily-paid workers in the public service, especially forestry workers. Also, it described the interesting cases such as vitiligo and trichloroethylene-induced Stevens-Johnson Syndrome. Skin diseases are still important though the number of cases has decreased, and therefore it is recommended to grasp the status of occupational skin diseases through continuous surveillance system and to make policy protecting high-risk group. PMID:21258591

Ahn, Yeon-Soon; Kim, Min-Gi



Moisturizing Different Racial Skin Types  

PubMed Central

The skin is a complex organ involved in thermoregulation, gas exchange, protection against pathogens, and barrier function to maintain proper hydration. When dry, the ability for skin to execute these tasks becomes impaired. Dry skin affects almost everyone as we age, but it is also dependent on external factors, such as dry climate, colder temperatures, and repeated washing. In addition, increasing evidence has shown racial variability in the physiological properties of skin, which directly impacts water content of the stratum corneum and sensitivity to exogenously applied agents. A multitude of products have been developed to treat dry skin, and as a group, moisturizers have been designed to either impart or restore hydration in the stratum corneum. Given the large number of moisturizers presently available, depending on individual components, several different mechanisms may be employed to promote skin hydration. As there exists dramatic racial variability in skin properties, certain moisturizers may thus be more effective in some and less effective in others to treat the common condition of dry skin. PMID:25013536

Wong, Victor W.; Longaker, Michael T.; Yang, George P.



Ingested hyaluronan moisturizes dry skin.  


Hyaluronan (HA) is present in many tissues of the body and is essential to maintain moistness in the skin tissues, which contain approximately half the body's HA mass. Due to its viscosity and moisturizing effect, HA is widely distributed as a medicine, cosmetic, food, and, recently marketed in Japan as a popular dietary supplement to promote skin moisture. In a randomized, double-blind, placebo-controlled clinical study it was found that ingested HA increased skin moisture and improved treatment outcomes for patients with dry skin. HA is also reported to be absorbed by the body distributed, in part, to the skin. Ingested HA contributes to the increased synthesis of HA and promotes cell proliferation in fibroblasts. These effects show that ingestion of HA moisturizes the skin and is expected to improve the quality of life for people who suffer from dry skin. This review examines the moisturizing effects of dry skin by ingested HA and summarizes the series of mechanisms from absorption to pharmacological action. PMID:25014997

Kawada, Chinatsu; Yoshida, Takushi; Yoshida, Hideto; Matsuoka, Ryosuke; Sakamoto, Wakako; Odanaka, Wataru; Sato, Toshihide; Yamasaki, Takeshi; Kanemitsu, Tomoyuki; Masuda, Yasunobu; Urushibata, Osamu



Bioactive Glass Particles Field-Assisted Sealing to Titanium Implant Glass-Based Coatings  

Microsoft Academic Search

This paper reports for the first time the use of field-assisted sealing for bioactive implant coating applications. Field-assisted sealing (anodic bonding) of bioactive glass particles to bioinert glass enamel coating of titanium implant was investigated. Biocompatible titanium oxide interlayer was fabricated by deep thermal oxidation of 80 nm thick Ti thin film previously vacuum evaporated onto polished bioactive glass surface.

Piotr Mrozek



Effect of crystallinity on crack propagation and mineralization of bioactive glass 45S5  

Microsoft Academic Search

Bioactive glasses are a type of ceramic material designed to be used as bioresorbable therapeutic bone implants. Thermal treatment of bioactive glass ceramics dictates many important features such as microstructure, degree of crystallinity, mechanical properties, and mineralization. This study investigates the effects of temperature, time, and heating rates on the crystallization kinetics of melt cast bioactive glass 45S5. Bulk crystallization

Satadru Kashyap



Bioactive Stratified Polymer Ceramic-Hydrogel Scaffold for Integrative Osteochondral Repair  

E-print Network

of polylactide- co-glycolide (PLGA) and 45S5 bioactive glass (BG) was fabricated and optimized for chondrocyte. Keywords--Osteochondral, Tissue engineering, Bioactive glass, Interface, Hydrogel, MicrosphereBioactive Stratified Polymer Ceramic-Hydrogel Scaffold for Integrative Osteochondral Repair JIE

Lu, Helen H.


Broad-Spectrum Bactericidal Activity of Ag2O-Doped Bioactive Glass  

Microsoft Academic Search

Bioactive glass has found extensive application as an orthopedic and dental graft material and most recently also as a tissue engineering scaffold. Here we report an initial investigation of the in vitro antibacterial properties of AgBG, a novel bioactive glass composition doped with Ag2O. The bacteriostatic and bactericidal properties of this new material and of two other bioactive glass compositions,

Maria Bellantone; Huw D. Williams; Larry L. Hench



Crystallization kinetics, mineralization and crack propagation in partially crystallized bioactive glass 45S5  

Microsoft Academic Search

Thermal treatment of bioactive glass ceramics dictates many important features such as microstructure, degree of crystallinity, mechanical properties, and biological response. This report investigates the heat treating conditions and the Avrami crystallization kinetics of melt cast bioactive glass 45S5 at 680°C. Glass discs were found to follow three dimensional bulk crystallization kinetics (Avrami exponent n=3). Partially crystallized bioactive glass samples

Satadru Kashyap; Kyle Griep; John A. Nychka



Accepted Manuscript Title: Thermal investigations of Ti and Ag-doped bioactive  

E-print Network

for biomedical use. Hench has discovered the first bioactive glass: 45S5 or Bioglass® in the quaternary SiO2, Na2Accepted Manuscript Title: Thermal investigations of Ti and Ag-doped bioactive glasses Author: EB. LefeuvreB. BureauO. Merdrignac- Conanec Thermal investigations of Ti and Ag-doped bioactive glasses (2014

Paris-Sud XI, Université de


Preparation of a Versatile Bifunctional Zeolite for Targeted Imaging Applications  

PubMed Central

Bifunctional zeolite Y was prepared for use in targeted in vivo molecular imaging applications. The strategy involved functionalization of the external surface of zeolite Y with chloropropyltriethoxysilane followed by reaction with sodium azide to form azide-functionalized NaY, which is amenable to copper(1) catalyzed click chemistry. In this study, a model alkyne (4-pentyn-1-ol) was attached to the azide-terminated surface via click chemistry to demonstrate feasibility for attachment of molecular targeting vectors (e.g., peptides, aptamers) to the zeolite surface. The modified particle efficiently incorporates the imaging radioisotope gallium-68 (68Ga) into the pores of the azide-functionalized NaY zeolite to form a stable bifunctional molecular targeting vector. The result is a versatile “clickable” zeolite platform that can be tailored for future in vivo molecular targeting and imaging modalities. PMID:21306141

Ndiege, Nicholas; Raidoo, Renugan; Schultz, Michael K.; Larsen, Sarah



Aeroelastic Analysis of Versatile Thermal Insulation Panels for Launcher Applications  

NASA Astrophysics Data System (ADS)

The aeroelastic behavior of a Versatile Thermal Insulation (VTI) has been investigated. Among the various loadings acting on the panels in this work the attention is payed to fluid structure interaction. e.g. panel flutter phenomena. Known available results from open literature, related to similar problems, permit to analyze the effect of various Mach regimes, including boundary layers thickness effects, in- plane mechanical and thermal loadings, nonlinear effect and amplitude of so called limit cycle oscillations. Dedicated finite element model is developed for the supersonic regime. The model used for coupling orthotropic layered structural model with to Piston Theory aerodynamic models allows the calculations of flutter conditions in case of curved panels supported in a discrete number of points. Through this approach the flutter boundaries of the VTI-panel have been investigated.

Carrera, E.; Zappino, E.; Augello, G.; Ferrarese, A.; Montabone, M.



Sorghum - a versatile, multi-purpose biomass crop  

SciTech Connect

Sorghums are versatile, energy-efficient plants that exhibit excellent potentials for multi-product use. Grain sorghum, although already a major feed and food crop, offers promise as a source of starch and sugar for fermentation alcohol, as well as a number of fiber products. Sweet sorghum, a variety rich in extractable fermentable sugars, is now in limited production, but can be a major sugar, grain, forage, fuel and industrial products raw material. Sorghums can be grown in virtually every state. The need for multi-product crops to improve agricultural land productivities and to offset increasing cultural costs is detailed. Results of continuing plant breeding work to enhance sorghum varieties for multiple uses are discussed.

Clark, J.W.; Jolts, E.J.; Miller, F.R.



Metagenome of a Versatile Chemolithoautotroph from Expanding Oceanic Dead Zones  

SciTech Connect

Oxygen minimum zones (OMZs), also known as oceanic"dead zones", are widespread oceanographic features currently expanding due to global warming and coastal eutrophication. Although inhospitable to metazoan life, OMZs support a thriving but cryptic microbiota whose combined metabolic activity is intimately connected to nutrient and trace gas cycling within the global ocean. Here we report time-resolved metagenomic analyses of a ubiquitous and abundant but uncultivated OMZ microbe (SUP05) closely related to chemoautotrophic gill symbionts of deep-sea clams and mussels. The SUP05 metagenome harbors a versatile repertoire of genes mediating autotrophic carbon assimilation, sulfur-oxidation and nitrate respiration responsive to a wide range of water column redox states. Thus, SUP05 plays integral roles in shaping nutrient and energy flow within oxygen-deficient oceanic waters via carbon sequestration, sulfide detoxification and biological nitrogen loss with important implications for marine productivity and atmospheric greenhouse control.

Walsh, David A.; Zaikova, Elena; Howes, Charles L.; Song, Young; Wright, Jody; Tringe, Susannah G.; Tortell, Philippe D.; Hallam, Steven J.



A versatile photoelectron spectrometer for pressures up to 30 mbar  

NASA Astrophysics Data System (ADS)

High-pressure photoelectron spectroscopy is a rapidly developing technique with applications in a wide range of fields ranging from fundamental surface science and catalysis to energy materials, environmental science, and biology. At present the majority of the high-pressure photoelectron spectrometers are situated at synchrotron end stations, but recently a small number of laboratory-based setups have also emerged. In this paper we discuss the design and performance of a new laboratory based high pressure photoelectron spectrometer equipped with an Al K? X-ray anode and a hemispherical electron energy analyzer combined with a differentially pumped electrostatic lens. The instrument is demonstrated to be capable of measuring core level spectra at pressures up to 30 mbar. Moreover, valence band spectra of a silver sample as well as a carbon-coated surface (graphene) recorded under a 2 mbar nitrogen atmosphere are presented, demonstrating the versatility of this laboratory-based spectrometer.

Eriksson, Susanna K.; Hahlin, Maria; Kahk, Juhan Matthias; Villar-Garcia, Ignacio J.; Webb, Matthew J.; Grennberg, Helena; Yakimova, Rositza; Rensmo, Hâkan; Edström, Kristina; Hagfeldt, Anders; Siegbahn, Hans; Edwards, Mârten O. M.; Karlsson, Patrik G.; Backlund, Klas; Åhlund, John; Payne, David J.



AOTF microscope for imaging with increased speed and spectral versatility.  

PubMed Central

We have developed a new fluorescence microscope that addresses the spectral and speed limitations of current light microscopy instrumentation. In the present device, interference and neutral density filters normally used for fluorescence excitation and detection are replaced by acousto-optic tunable filters (AOTFs). Improvements are described, including the use of a dispersing prism in conjunction with the imaging AOTF and an oblique-illumination excitation scheme, which together enable the AOTF microscope to produce images comparable to those obtained with conventional fluorescence instruments. The superior speed and spectral versatility of the AOTF microscope are demonstrated by a ratio image pair acquired in 3.5 ms and a micro-spectral absorbance measurement of hemoglobin through a cranial window in a living mouse. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 PMID:9284289

Wachman, E S; Niu, W; Farkas, D L



Tudor: a versatile family of histone methylation ‘readers’  

PubMed Central

The Tudor domain comprises a family of motifs that mediate protein-protein interactions required for various DNA-templated biological processes. Emerging evidence demonstrates a versatility of the Tudor family domains by identifying their specific interactions to a wide variety of histone methylation marks. Here, we discuss novel functions of a number of Tudor-containing proteins (including JMJD2A, 53BP1, SGF29, Spindlin1, UHRF1, PHF1, PHF19 and SHH1) in ‘reading’ unique methylation events on histones in order to facilitate DNA damage repair or regulate transcription. This review covers our recent understanding of the molecular bases for histone-Tudor interactions and their biological outcomes. As deregulation of Tudor-containing proteins is associated with certain human disorders, pharmacological targeting of Tudor interactions could provide new avenues for therapeutic intervention. PMID:24035451

Lu, Rui; Wang, Gang Greg



The versatility and adaptation of bacteria from the genus Stenotrophomonas  

SciTech Connect

The genus Stenotrophomonas comprises at least eight species. These bacteria are found throughout the environment, particularly in close association with plants. Strains of the most predominant species, Stenotrophomonas maltophilia, have an extraordinary range of activities that include beneficial effects for plant growth and health, the breakdown of natural and man-made pollutants that are central to bioremediation and phytoremediation strategies and the production of biomolecules of economic value, as well as detrimental effects, such as multidrug resistance, in human pathogenic strains. Here, we discuss the versatility of the bacteria in the genus Stenotrophomonas and the insight that comparative genomic analysis of clinical and endophytic isolates of S. maltophilia has brought to our understanding of the adaptation of this genus to various niches.

Ryan, R.P.; van der Lelie, D.; Monchy, S.; Cardinale, M.; Taghavi, S.; Crossman, L.; Avison, M. B.; Berg, G.; Dow, J. M.



A versatile photoelectron spectrometer for pressures up to 30 mbar.  


High-pressure photoelectron spectroscopy is a rapidly developing technique with applications in a wide range of fields ranging from fundamental surface science and catalysis to energy materials, environmental science, and biology. At present the majority of the high-pressure photoelectron spectrometers are situated at synchrotron end stations, but recently a small number of laboratory-based setups have also emerged. In this paper we discuss the design and performance of a new laboratory based high pressure photoelectron spectrometer equipped with an Al K? X-ray anode and a hemispherical electron energy analyzer combined with a differentially pumped electrostatic lens. The instrument is demonstrated to be capable of measuring core level spectra at pressures up to 30 mbar. Moreover, valence band spectra of a silver sample as well as a carbon-coated surface (graphene) recorded under a 2 mbar nitrogen atmosphere are presented, demonstrating the versatility of this laboratory-based spectrometer. PMID:25085185

Eriksson, Susanna K; Hahlin, Maria; Kahk, Juhan Matthias; Villar-Garcia, Ignacio J; Webb, Matthew J; Grennberg, Helena; Yakimova, Rositza; Rensmo, Håkan; Edström, Kristina; Hagfeldt, Anders; Siegbahn, Hans; Edwards, Mårten O M; Karlsson, Patrik G; Backlund, Klas; Åhlund, John; Payne, David J



Oriented mesoporous nanopyramids as versatile plasmon-enhanced interfaces.  


We developed a facile interfacial oriented growth and self-assembly process to fabricate three-dimensional (3D) aligned mesoporous iron oxide nanopyramid arrays (NPAs). The unique NPAs possess a 3D mesostructure with multiple features, including high surface area (~175 m(2)/g), large pore size (~20 nm), excellent flexibility (bent over 150 times), and scalability at the foot scale for practical applications. More importantly, these NPAs structures enable versatile enhancement of localized surface plasmon resonance and photoelectrochemical conversion. The integration of plasmonic gold with 3D NPAs remarkably improves the performance of photoelectrochemical conversion, leading to ~6- and 83-fold increases of the photocurrent under simulated solar and visible-light illumination, respectively. The fabrication and investigation of NPAs provide a new paradigm for preparing unconventional mesoporous oriented thin films and further suggest a new strategy for designing plasmonic metal/semiconductor systems for effective solar energy harvesting. PMID:24786963

Kong, Biao; Tang, Jing; Selomulya, Cordelia; Li, Wei; Wei, Jing; Fang, Yin; Wang, Yongcheng; Zheng, Gengfeng; Zhao, Dongyuan



FLUTE: A versatile linac-based THz source  

SciTech Connect

A new compact versatile linear accelerator named FLUTE is currently being designed at the Karlsruhe Institute of Technology. This paper presents the status of this 42 MeV machine. It will be used to generate strong (several 100 MV/m) ultra-short ({approx}1 ps) THz pulses (up to {approx}4-25 THz) for photon science experiments, as well as to conduct a variety of accelerator studies. The latter range from comparing different coherent THz radiation generation schemes to compressing electron bunches and studying the electron beam stability. The bunch charge will cover a wide range ({approx}100 pC-3 nC). Later we plan to also produce ultra-short x-ray pulses from the electron bunches, which, for example, could then be combined for THz pump-x-ray probe experiments.

Nasse, M. J.; Schuh, M.; Schwarz, M. [Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany); Naknaimueang, S.; Mathis, Y.-L.; Rossmanith, R.; Wesolowski, P.; Huttel, E. [ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Plech, A. [Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Schmelling, M. [Max Planck Institute for Nuclear Physics (MPIK), 69117 Heidelberg (Germany); Mueller, A.-S. [Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany); ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany)



Extraordinary phylogenetic diversity and metabolic versatility in aquifer sediment.  


Microorganisms in the subsurface represent a substantial but poorly understood component of the Earth's biosphere. Subsurface environments are complex and difficult to characterize; thus, their microbiota have remained as a 'dark matter' of the carbon and other biogeochemical cycles. Here we deeply sequence two sediment-hosted microbial communities from an aquifer adjacent to the Colorado River, CO, USA. No single organism represents more than ~1% of either community. Remarkably, many bacteria and archaea in these communities are novel at the phylum level or belong to phyla lacking a sequenced representative. The dominant organism in deeper sediment, RBG-1, is a member of a new phylum. On the basis of its reconstructed complete genome, RBG-1 is metabolically versatile. Its wide respiration-based repertoire may enable it to respond to the fluctuating redox environment close to the water table. We document extraordinary microbial novelty and the importance of previously unknown lineages in sediment biogeochemical transformations. PMID:23979677

Castelle, Cindy J; Hug, Laura A; Wrighton, Kelly C; Thomas, Brian C; Williams, Kenneth H; Wu, Dongying; Tringe, Susannah G; Singer, Steven W; Eisen, Jonathan A; Banfield, Jillian F



Limestone - A Crucial and Versatile Industrial Mineral Commodity  

USGS Publications Warehouse

Limestone, as used by the minerals industry, is any rock composed mostly of calcium carbonate (CaCO3). Although limestone is common in many parts of the United States, it is critically absent from some. Limestone is used to produce Portland cement, as aggregate in concrete and asphalt, and in an enormous array of other products, making it a truly versatile commodity. Portland cement is essential to the building industry, but despite our Nation's abundance of limestone, there have been cement shortages in recent years. These have been caused in part by a need to find new areas suitable for quarrying operations. To help manage our Nation's resources of such essential mineral commodities, the U.S. Geological Survey (USGS) provides crucial data and scientific information to industry, policymakers, and the public.

Bliss, James D.; Hayes, Timothy S.; Orris, Greta J.



Common skin conditions during pregnancy.  


Common skin conditions during pregnancy generally can be separated into three categories: hormone-related, preexisting, and pregnancy-specific. Normal hormone changes during pregnancy may cause benign skin conditions including striae gravidarum (stretch marks); hyperpigmentation (e.g., melasma); and hair, nail, and vascular changes. Preexisting skin conditions (e.g., atopic dermatitis, psoriasis, fungal infections, cutaneous tumors) may change during pregnancy. Pregnancy-specific skin conditions include pruritic urticarial papules and plaques of pregnancy, prurigo of pregnancy, intrahepatic cholestasis of pregnancy, pemphigoid gestationis, impetigo herpetiformis, and pruritic folliculitis of pregnancy. Pruritic urticarial papules and plaques of pregnancy are the most common of these disorders. Most skin conditions resolve postpartum and only require symptomatic treatment. However, there are specific treatments for some conditions (e.g., melasma, intrahepatic cholestasis of pregnancy, impetigo herpetiformis, pruritic folliculitis of pregnancy). Antepartum surveillance is recommended for patients with intrahepatic cholestasis of pregnancy, impetigo herpetiformis, and pemphigoid gestationis. PMID:17263216

Tunzi, Marc; Gray, Gary R



Conservative procedures in skin reconstitution  

PubMed Central

Skin exerts a number of essential protective functions ensuring homeostasis of the whole body. In the present review barrier function of skin and its expression of antimicrobial peptides are discussed. Barrier function is provided by the dynamic stratum corneum structure composed of lipids and corneocytes. Stratum corneum is a conditio sine qua non for terrestrial life. Impairment of barrier function can be due to injury and inflammatory skin diseases. Therapeutic options are discussed with special emphasis of radiodermatitis and irritant contact dermatitis in patients with hearing device. The use of antimicrobial peptides is illustrated by facial inflammatory skin diseases. In wound healing new developments include biotechnological developments of matrix- and growth factors and tissue-engineered skin substitutes. In everyday wound care of chronic wounds the concept of wound bed preparation (TIME) constitutes the base of successful treatment. PMID:22073065

Wollina, Uwe



Versatile RNA interference nanoplatform for systemic delivery of RNAs.  


Development of nontoxic, tumor-targetable, and potent in vivo RNA delivery systems remains an arduous challenge for clinical application of RNAi therapeutics. Herein, we report a versatile RNAi nanoplatform based on tumor-targeted and pH-responsive nanoformulas (NFs). The NF was engineered by combination of an artificial RNA receptor, Zn(II)-DPA, with a tumor-targetable and drug-loadable hyaluronic acid nanoparticle, which was further modified with a calcium phosphate (CaP) coating by in situ mineralization. The NF can encapsulate small-molecule drugs within its hydrophobic inner core and strongly secure various RNA molecules (siRNAs, miRNAs, and oligonucleotides) by utilizing Zn(II)-DPA and a robust CaP coating. We substantiated the versatility of the RNAi nanoplatform by demonstrating effective delivery of siRNA and miRNA for gene silencing or miRNA replacement into different human types of cancer cells in vitro and into tumor-bearing mice in vivo by intravenous administration. The therapeutic potential of NFs coloaded with an anticancer drug doxorubicin (Dox) and multidrug resistance 1 gene target siRNA (siMDR) was also demonstrated in this study. NFs loaded with Dox and siMDR could successfully sensitize drug-resistant OVCAR8/ADR cells to Dox and suppress OVCAR8/ADR tumor cell proliferation in vitro and tumor growth in vivo. This gene/drug delivery system appears to be a highly effective nonviral method to deliver chemo- and RNAi therapeutics into host cells. PMID:24779637

Choi, Ki Young; Silvestre, Oscar F; Huang, Xinglu; Min, Kyung Hyun; Howard, Gregory P; Hida, Naoki; Jin, Albert J; Carvajal, Nicole; Lee, Sang Wook; Hong, Jong-In; Chen, Xiaoyuan



Frog skin opioid peptides: a case for environmental mimicry.  

PubMed Central

Naturally occurring environmental substances often mimic endogenous substances found in mammals and are capable of interacting with specific proteins, such as receptors, with a high degree of fidelity and selectivity. Narcotic alkaloids and amphibian skin secretions, introduced into human society through close association with plants and animals through folk medicine and religious divination practices, were incorporated into the armamentarium of the early pharmacopoeia. These skin secretions contain a myriad of potent bioactive substances, including alkaloids, biogenic amines, peptides, enzymes, mucus, and toxins (noxious compounds notwithstanding); each class exhibits a broad range of characteristic properties. One specific group of peptides, the opioids, containing the dermorphins (dermal morphinelike substances) and the deltorphins (delta-selective opioids), display remarkable analgesic properties and include an amino acid with the rare (in a mammalian context) D-enantiomer in lieu of the normal L-isomer. Synthesis of numerous stereospecific analogues and conformational analyses of these peptides provided essential insights into the tertiary composition and microenvironment of the receptor "pocket" and the optimal interactions between receptor and ligand that trigger a biological response; new advances in the synthesis and receptor-binding properties of the deltorphins are discussed in detail. These receptor-specific opioid peptides act as more than mimics of endogenous opioids: their high selectivity for either the mu or delta receptor makes them formidable environmentally derived agents in the search for new antagonists for treating opiate addiction and in the treatment of a wide variety of human disorders. Images p648-a Figure 2. Figure 3. PMID:7895704

Lazarus, L H; Bryant, S D; Attila, M; Salvadori, S



Versatility of Pedicled Tensor Fascia Lata Flap: A Useful and Reliable Technique for Reconstruction of Different Anatomical Districts  

PubMed Central

Aims and Objectives. The aim of this study was to evaluate the versatility of pedicled tensor fascia lata flap for reconstruction of various anatomical regions. Materials and Methods. In this retrospective study a total of 34 patients with defects over various anatomical regions were included. The defects were located over the trochanter (n = 12), groin (n = 8), perineum (n = 6), lower anterior abdomen (n = 6), gluteal region (n = 1), and ischial region (n = 1). The etiology of defects included trauma (n = 12), infection (n = 8), pressure sores (n = 8), and malignancy (n = 6). Reconstruction was performed using pedicled tensor fascia lata flaps. Patients were evaluated in terms of viability of the flap and donor site morbidity. The technical details of the operative procedure have also been outlined. Results. All the flaps survived well except 5 patients in which minor complications were noted and 1 who experienced complete flap loss. Of those with minor complications, 1 patient developed distal marginal necrosis and 1 developed infection which subsided within three days by dressings and antibiotics and in 2 patients partial loss of the skin graft occurred at the donor site out of which 1 required regrafting and another one healed completely with dressing and antibiotics. All the patients were followed up for an average period of 6 months, ranging from 1 to 12 months. Donor site morbidity was minimal. Conclusion. It was concluded that the pedicled tensor fascia lata flap is a versatile, reliable, easy, and less time consuming procedure for the coverage of defects around trochanter, groin, lower anterior abdomen, perineum, and ischial region. PMID:25485149

Akhtar, Md. Sohaib; Khurram, Mohd Fahud; Khan, Arshad Hafeez



Versatility of pedicled tensor fascia lata flap: a useful and reliable technique for reconstruction of different anatomical districts.  


Aims and Objectives. The aim of this study was to evaluate the versatility of pedicled tensor fascia lata flap for reconstruction of various anatomical regions. Materials and Methods. In this retrospective study a total of 34 patients with defects over various anatomical regions were included. The defects were located over the trochanter (n = 12), groin (n = 8), perineum (n = 6), lower anterior abdomen (n = 6), gluteal region (n = 1), and ischial region (n = 1). The etiology of defects included trauma (n = 12), infection (n = 8), pressure sores (n = 8), and malignancy (n = 6). Reconstruction was performed using pedicled tensor fascia lata flaps. Patients were evaluated in terms of viability of the flap and donor site morbidity. The technical details of the operative procedure have also been outlined. Results. All the flaps survived well except 5 patients in which minor complications were noted and 1 who experienced complete flap loss. Of those with minor complications, 1 patient developed distal marginal necrosis and 1 developed infection which subsided within three days by dressings and antibiotics and in 2 patients partial loss of the skin graft occurred at the donor site out of which 1 required regrafting and another one healed completely with dressing and antibiotics. All the patients were followed up for an average period of 6 months, ranging from 1 to 12 months. Donor site morbidity was minimal. Conclusion. It was concluded that the pedicled tensor fascia lata flap is a versatile, reliable, easy, and less time consuming procedure for the coverage of defects around trochanter, groin, lower anterior abdomen, perineum, and ischial region. PMID:25485149

Akhtar, Md Sohaib; Khurram, Mohd Fahud; Khan, Arshad Hafeez



Microencapsulation of Bioactive Principles with an Airless Spray-Gun Suitable for Processing High Viscous Solutions  

PubMed Central

Purpose: to design, assemble and test a prototype of a novel production plant, suitable for producing microparticles (MPs) by processing highly viscous feed solutions (FSs). Methods: the prototype has been built using a commercial air compressor, a piston pump, an airless spray-gun, a customized air-treatment section, a timer, a rotating base, and a filtration section. Preliminary prototype parameter setting was carried out to individuate the best performing nozzle’s dimension, the nebulization timing, and the CaCl2 concentration in the gelation fluid. In addition, prototype throughput (1 L to 5 L) and the range of practicable feed solution (FS) viscosities were assayed. A set of four batches was prepared in order to characterize the MPs, in terms of mean particle size and distribution, flow properties, swelling, encapsulation efficiency and release. Results: according to a qualitative scoring, the large nozzle was suitable to nebulize FSs at a higher alginate concentration. Conversely, the small nozzle performed better in the processing of FSs with an alginate concentration up to 2% w/v. Only at the highest degree of viscosity, corresponding to 5% w/v of alginate, the FS processing was not technically possible. Among the CaCl2 concentrations considered, 15% w/v was recognized as the most versatile. The prototype appears to be convenient and suitable to grant a high yield starting from 2 L of FS. The flow behavior of the FSs assayed can be satisfactorily described with the Carreau-Yasuda equation and the throughput begins to slightly decrease for FSs at alginate concentrations exceeding 3% w/v. MP morphology was irregular with crumpled shape. The angle of repose indicates a good flowability and the release studies showed gastro-resistance and potential prolonged release applications. Conclusions: the novel prototype of production plant is suitable to process large amounts (2 L or more) of FSs, characterized by a high viscosity, to produce MPs suitable for bioactive principle delivery. PMID:24956192

Cocchietto, Moreno; Blasi, Paolo; Lapasin, Romano; Moro, Chiara; Gallo, Davide; Sava, Gianni



Laser speckle and skin cancer: skin roughness assessment  

NASA Astrophysics Data System (ADS)

Incidence of skin cancer has been increasing rapidly since the last few decades. Non-invasive optical diagnostic tools may improve the diagnostic accuracy. In this paper, skin structure, skin cancer statistics and subtypes of skin cancer are briefly reviewed. Among the subtypes, malignant melanoma is the most aggressive and dangerous; early detection dramatically improves the prognosis. Therefore, a non-invasive diagnostic tool for malignant melanoma is especially needed. In addition, in order for the diagnostic tool to be useful, it must be able to differentiate melanoma from common skin conditions such as seborrheic keratosis, a benign skin disease that resembles melanoma according to the well known clinical-assessment ABCD rule. The key diagnostic feature between these two diseases is surface roughness. Based on laser speckle contrast, our research team has recently developed a portable, optical, non-invasive, in-vivo diagnostic device for quantifying skin surface roughness. The methodology of our technique is described in details. Examining the preliminary data collected in a pilot clinical study for the prototype, we found that there was a difference in roughness between melanoma and seborrheic keratosis. In fact, there was a perfect cutoff value for the two diseases based on our initial data.

Lee, Tim K.; Tchvialeva, Lioudmila; Zeng, Haishan; McLean, David I.; Lui, Harvey



Single-domain antibodies: a versatile and rich source of binders for breast cancer diagnostic approaches  

E-print Network

cancer patients has been improved by the development of screening and treatment methods. While the 1980sSingle-domain antibodies: a versatile and rich source of binders for breast cancer diagnostic: a versatile and rich source of binders for breast cancer diagnostic approaches Klervi Even-Desrumeaux1

Paris-Sud XI, Université de


Understanding offense specialization and versatility: A reapplication of the rational choice perspective  

Microsoft Academic Search

An understanding of offender specialization and versatility offers benefit to both criminal justice policy and theoretical foundations. The majority of research examining offending specialization\\/versatility, however, sought to inform crime policy. Accordingly, there was little theoretical insight as to why individuals might engage in more specialized offending, or instead, diversify in their criminal participation. An earlier application of rational choice theory

Rob T. Guerette; Vanja M. K. Stenius; Jean M. McGloin



Fucoxanthin, a Marine Carotenoid Present in Brown Seaweeds and Diatoms: Metabolism and Bioactivities Relevant to Human Health  

PubMed Central

The marine carotenoid fucoxanthin can be found in marine brown seaweeds, the macroalgae, and diatoms, the microalgae, and has remarkable biological properties. Numerous studies have shown that fucoxanthin has considerable potential and promising applications in human health. In this article, we review the current available scientific literature regarding the metabolism, safety, and bioactivities of fucoxanthin, including its antioxidant, anti-inflammatory, anticancer, anti-obese, antidiabetic, antiangiogenic and antimalarial activities, and its protective effects on the liver, blood vessels of the brain, bones, skin, and eyes. Although some studies have shown the bioavailability of fucoxanthin in brown seaweeds to be low in humans, many studies have suggested that a dietary combination of fucoxanthin and edible oil or lipid could increase the absorption rate of fucoxanthin, and thus it might be a promising marine drug. PMID:22072997

Peng, Juan; Yuan, Jian-Ping; Wu, Chou-Fei; Wang, Jiang-Hai



Exact Volume Preserving Skinning with Shape Control  

E-print Network

Exact Volume Preserving Skinning with Shape Control Damien ROHMER, Stefanie HAHMANN, Marie, Cani (Grenoble) Constant Volume Skinning SCA'09 1 / 22 #12;Classical character animation pipeline (Grenoble) Constant Volume Skinning SCA'09 2 / 22 #12;Motivations: character animation Fits

Hahmann, Stefanie


Itchy, Scaly Skin? Living with Psoriasis  


... exit disclaimer . Subscribe Itchy, Scaly Skin? Living With Psoriasis The thick, red, scaly skin of psoriasis can ... Diet Itchy, Scaly Skin? Wise Choices Links Treating Psoriasis Doctors often use a trial-and-error approach ...


Sun’s effect on skin  

MedlinePLUS Videos and Cool Tools

... detrimental. Within the skin’s epidermal (outer) layer are cells that contain the pigment melanin. Melanin protects skin ... and to darken. The tan fades as these cells move toward the surface and are sloughed off. ...


Skin hygiene practices, emollient therapy and skin vulnerability.  


The promotion and maintenance of skin integrity is one of the most common challenges for nurses in every sphere of practice, but particularly for those caring for patients with chronic inflammation of the skin (such as in eczema and psoriasis), and to those at risk of skin breakdown due to immobility, circulatory disease, or incontinence. A significant amount of nursing time is spent washing patients, or assisting them to wash. However, little attention has been given to a scientific appraisal or evidence of the effectiveness of these activities. PMID:15719795

Voegeli, David


Skin and glucocorticoids: effects of local skin glucocorticoid impairment on skin homeostasis.  


The role of skin as a de novo source of glucocorticoids and the importance of cutaneous glucocorticoidogenesis as a homeostatic mechanism in human skin is highlighted by Slominski et al. in a recently published issue. Impairment of glucocorticoidogenesis through noxious stimuli, such as UVB, can explain pathophysiology of skin diseases (e.g. rosacea). In addition to keratinocytes, melanocytes and fibroblasts, cutaneous adnexes also play a significant role as targets and sources of glucocorticoids, because they express most of the enzymes required for steroidogenesis. Glucocorticoids are also involved in the pathogenesis of acne lesions, affecting sebum production in vivo and in vitro. Certain steroidogenic enzymes, such as 11?-hydroxysteroid dehydrogenase, are upregulated in acne lesions. On this background, the paper by Slominski et al. provides further insights into dermatoendocrinology, with emphasis on the importance of an impairment of the skin's own hypothalamic-pituitary-adrenal-like axis in the pathophysiology of several skin diseases. PMID:25056134

Nikolakis, Georgios; Zouboulis, Christos C




Technology Transfer Automated Retrieval System (TEKTRAN)

It has been shown that the enzymatic breakdown of milk proteins leads to the release of bioactive peptides. Two such peptides are the 11-residue antimicrobial peptide from bovine lactoferrin (BL-11) and the 12-residue antihypertensive peptide from s1-casein (C-12). This report summarizes the clonin...


Cranberries and their bioactive constituents in human health  

Technology Transfer Automated Retrieval System (TEKTRAN)

Recent observational and clinical studies have raised interest in the potential health effects of cranberry consumption, an association that appears due to the phytochemical content of this fruit. The profile of cranberry bioactives is distinct from other berry fruit, being rich in A-type proanthocy...


Dereplication of phorbol bioactives: Lyngbya majuscula and Croton cuneatus  

SciTech Connect

Lyngbya majuscula and Croton cuneatus were used as prototypes for the dereplication of phorbol ester receptor binding activity using a combination of hplc-uv and online phorbol dibutyrate (PDBu) receptor binding and batch fractionation over either Si gel or diolbonded Si gel. Debromoaplysiatoxin was responsible for the bioactivity of Lyngbya, whereas a complex of potent phorbol esters was detected in C. cuneatus.

Beutler, J.A.; Alvarado, A.B.; Schaufelberger, D.E.; Andrews, P.; McCloud, T.G. (Developmental Therapeutics Program, National Cancer Institute, Frederick, Maryland (USA))



New bioactive and biobased product applications of pectin  

Technology Transfer Automated Retrieval System (TEKTRAN)

Pectin is well known for its bioactive health-promoting properties and use in biobased products. Recent reports have demonstrated that pectin and pectic fractions have potential as prebiotics, prevent pathogenic bacterial adhesion, increase prostate specific antigen doubling time in patients with re...


Bioactivity and Structure of Biophenols as Mediators of Chronic Diseases  

Microsoft Academic Search

Biophenols and their associated activity have generated intense interest. Current topics of debate are their bioavailability and bioactivity. It is generally assumed that their plasma concentrations are insufficient to produce the health benefits previously attributed to their consumption. However, data on localized in vivo concentrations are not available and many questions remain unanswered. Potential mechanisms by which they may exert

Gregory Tucker; Kevin Robards



Hydrogeologic Controls on Bioactive Zone Development in Biostimulated Aquifers  

E-print Network

.............................................................................................................. 98 5.1.5: Aqueous CO2, N2O, and CH4 Concentrations ............................................................................ 99 5.1.6: Biomass Estimation.... ................................................................................................... 62 Table 5.1: Saturation indicies for calcite and dissolved gasses (CO2, N2O, CH4). ....................... 128 xiii This Page Intentionally Left Blank 1 1 Introduction 1.0: Bioactive Zone Development in Aquifer...

Schillig, Peter Curtis



Plastids of Marine Phytoplankton Produce Bioactive Pigments and Lipids  

PubMed Central

Phytoplankton is acknowledged to be a very diverse source of bioactive molecules. These compounds play physiological roles that allow cells to deal with changes of the environmental constrains. For example, the diversity of light harvesting pigments allows efficient photosynthesis at different depths in the seawater column. Identically, lipid composition of cell membranes can vary according to environmental factors. This, together with the heterogenous evolutionary origin of taxa, makes the chemical diversity of phytoplankton compounds much larger than in terrestrial plants. This contribution is dedicated to pigments and lipids synthesized within or from plastids/photosynthetic membranes. It starts with a short review of cyanobacteria and microalgae phylogeny. Then the bioactivity of pigments and lipids (anti-oxidant, anti-inflammatory, anti-mutagenic, anti-cancer, anti-obesity, anti-allergic activities, and cardio- neuro-, hepato- and photoprotective effects), alone or in combination, is detailed. To increase the cellular production of bioactive compounds, specific culture conditions may be applied (e.g., high light intensity, nitrogen starvation). Regardless of the progress made in blue biotechnologies, the production of bioactive compounds is still limited. However, some examples of large scale production are given, and perspectives are suggested in the final section. PMID:24022731

Heydarizadeh, Parisa; Poirier, Isabelle; Loizeau, Damien; Ulmann, Lionel; Mimouni, Virginie; Schoefs, Benoît; Bertrand, Martine



Optical control over bioactive ligands at supramolecular surfaces.  


In this communication we report for the first time the use of azobenzene modified glycoconjugates to establish optical control over bioactive ligands at a supramolecular ?-cyclodextrin (?-CD) surface. Several studies were conducted to investigate the photoresponsive immobilization of proteins and bacteria on these supramolecular surfaces. PMID:24975925

Voskuhl, J; Sankaran, S; Jonkheijm, P



Preparation of bioactive titanium metal via anodic oxidation treatment  

Microsoft Academic Search

Titania with specific structures of anatase and rutile was found to induce apatite formation in vitro. In this study, anodic oxidation in H2SO4 solution, which could form anatase and rutile on titanium metal surface by conditioning the process, was employed to modify the structure and bioactivity of biomedical titanium. After the titanium metal was subjected to anodic oxidation treatment, thin

Bangcheng Yang; Masaiki Uchida; Hyun-Min Kim; Xingdong Zhang; Tadashi Kokubo



Bioactivity of essential oils and their volatile aroma components: Review  

Microsoft Academic Search

The bioactivity of essential oils and their flavor and fragrance components have been known since ancient times. Essential oils are a mixture of numerous compounds characterized by an essence of aromatic plants. Currently, approximately 3000 essential oils are known, 300 of which are commercially important, in particular for the pharmaceutical, food, household and cosmetic industries. Essential oils have been known

Hamdy A. E. Shaaban; Ahmed H. El-Ghorab; Takayuki Shibamoto



Bioactivity-guided mapping and navigation of chemical space  

Microsoft Academic Search

The structure- and chemistry-based hierarchical organization of library scaffolds in tree-like arrangements provides a valid, intuitive means to map and navigate chemical space. We demonstrate that scaffold trees built using bioactivity as the key selection criterion for structural simplification during tree construction allow efficient and intuitive mapping, visualization and navigation of the chemical space defined by a given library, which

Steffen Renner; Willem A L van Otterlo; Marta Dominguez Seoane; Sabine Möcklinghoff; Bettina Hofmann; Stefan Wetzel; Ansgar Schuffenhauer; Peter Ertl; Tudor I Oprea; Dieter Steinhilber; Luc Brunsveld; Daniel Rauh; Herbert Waldmann



Bioactivity of cedarwood oil and cedrol against arthropod pests  

Technology Transfer Automated Retrieval System (TEKTRAN)

Heartwood samples from Juniperus virginiana, were extracted with liquid carbon dioxide and the bioactivity of carbon dioxide-derived cedarwood oil (CWO) towards several species of arthropods was investigated. Repellency or toxicity was tested for ants, ticks, and cockroaches. Ants in an outdoor bi...


Analysis of bioactive fluoride-containing calcium aluminosilicate glasses  

Microsoft Academic Search

Different decomposition methods in aqueous solutions were evaluated on their accuracy and reproducibility for the quantitative determination of the constituents of bioactive fluoride-containing glasses used in dental glass ionomer cements. The concentrations of metals can be determined rapidly and accurately by atomic absorption spectrophotometry after degrading the sample in hydrochloric or hydrofluoric acid. The latter degradation method is also suited

E. A. P De Maeyer; R. M. H Verbeeck



Potassium-based composition for a bioactive glass  

Microsoft Academic Search

The increasing need for biomedical devices, required to face dysfunctions of natural tissues and organs caused by traumatic events, diseases and simple ageing, has drawn attention onto new materials, that could be able to positively interact with the human body. Among them, Bioglass® is firmly diffused in medical practice, thanks to its high bioactivity. In particular, due to its brittleness,

V. Cannillo; A. Sola



Nano/macro porous bioactive glass scaffold  

NASA Astrophysics Data System (ADS)

Bioactive glass (BG) and ceramics have been widely studied and developed as implants to replace hard tissues of the musculo-skeletal system, such as bones and teeth. Recently, instead of using bulk materials, which usually do not degrade rapidly enough and may remain in the human body for a long time, the idea of bioscaffold for tissue regeneration has generated much interest. An ideal bioscaffold is a porous material that would not only provide a three-dimensional structure for the regeneration of natural tissue, but also degrade gradually and, eventually be replaced by the natural tissue completely. Among various material choices the nano-macro dual porous BG appears as the most promising candidate for bioscaffold applications. Here macropores facilitate tissue growth while nanopores control degradation and enhance cell response. The surface area, which controls the degradation of scaffold can also be tuned by changing the nanopore size. However, fabrication of such 3D structure with desirable nano and macro pores has remained challenging. In this dissertation, sol-gel process combined with spinodal decomposition or polymer sponge replication method has been developed to fabricate the nano-macro porous BG scaffolds. Macropores up to 100microm are created by freezing polymer induced spinodal structure through sol-gel transition, while larger macropores (>200um) of predetermined size are obtained by the polymer sponge replication technique. The size of nanopores, which are inherent to the sol-gel method of glass fabrication, has been tailored using several approaches: Before gel point, small nanopores are generated using acid catalyst that leads to weakly-branched polymer-like network. On the other hand, larger nanopores are created with the base-catalyzed gel with highly-branched cluster-like structure. After the gel point, the nanostructure can be further modified by manipulating the sintering temperature and/or the ammonia concentration used in the solvent exchange process. Although both techniques lower the surface area of BG scaffolds, the temperature-dependent sintering process closes nanopores through densification, while the concentration-dependent solvent exchange process enlarges nanopores through Ostwald-ripening type coarsening. Therefore, nanopore size and surface area of BG scaffold are independently controlled using these methods. In vitro cell and in vivo animal tissue responses have been investigated to evaluate the performance of the nano-macro porous BG scaffold. The cells are found to migrate and penetrate deep into the 3D nano-macro porous structure, while exhibiting excellent adhesion to the bioscaffold surface. Importantly, the new tissue with both blood vessels and collagen fibers is formed deep inside the implanted scaffolds without obvious inflammatory reaction. Furthermore, our observations show biological benefits of the nanopores in the BG scaffold. In comparison to BG scaffold without nanopores, cells migrate and penetrate into nano-macro dual-porous BG scaffold faster and deeper mainly because of the increase of surface area. To study the effect of nanopore topography, we fabricated BG scaffolds with the same surface area but different nanopore sizes. It is found that the initial cell attachment is significantly enhanced on the BG scaffold with the same surface area but smaller nanopores size, indicating that the nanopore topography strongly influences the performance of BG scaffold. In conclusion, the present results demonstrate most clearly the usefulness of our nano-macro dual-porous BG as a novel and superior 3D bioscaffold for regenerative medicine and hard tissue engineering.

Wang, Shaojie


Identification and characterisation of water and alkali soluble oligosaccharides from hazelnut skin (Corylus avellana L.).  


Hazelnut skins are a good example of agricultural by-product with the potential to become a valuable source of functional ingredients. In this work, the fibre from hazelnut skins was extracted by using water and alkali solution and characterised by a suite of analytical tools (MALDI-FTICR, nano LC-Chip-Q-ToF and gas chromatography). Over thirty complex free oligosaccharides, composed mainly of galacturonic acid and N-acetylgalactosamine, were characterised for the first time in the present study. Their concentration ranged between 16 and 34mg per g of extract. The oligosaccharides isolated from this agricultural by-product are mainly hexose oligosaccharides (potentially galacto-oligosaccharides,) and xyloglucans. The identified composition could justify the bioactive activity of the extracts, namely prebiotic activity, previously demonstrated. PMID:23692758

Montella, Rosa; Coïsson, Jean Daniel; Travaglia, Fabiano; Locatelli, Monica; Bordiga, Matteo; Meyrand, Mickael; Barile, Daniela; Arlorio, Marco



Pre-bottling use of dehydrated waste grape skins to improve colour, phenolic and aroma composition of red wines.  


Different dehydrated waste grape skins from the juice industry were added into aged and young red wines as an innovative way of compensating for colour loss before bottling. After addition of grape skins, colour intensity of wines increased a mean 11% and a maximum of 31% with predominance of the red component. Total polyphenols mean increase was 10% with a maximum value of 20%. Analysis of low molecular weight phenolic compounds by HPLC-DAD showed a significant (p<0.05) content increase of the bioactive compounds gallic acid, (+)-catechin, (-)-epicatechin, and (E)-resveratrol. Anthocyanins content also increased at an average of 50mg/l. The volatile profile of wines analysed by SBSE-GC-MS was only moderately influenced by the treatments. Mixtures of dehydrated waste grape skins were useful to improve the colour and polyphenol profile of red wines, considering them a useful tool for correcting colour loss before bottling. PMID:23017417

Pedroza, Miguel Angel; Carmona, Manuel; Alonso, Gonzalo Luis; Salinas, Maria Rosario; Zalacain, Amaya



Optimization and characterization of bioactive glass nanofibers and nanocomposites  

NASA Astrophysics Data System (ADS)

Disease affects different areas of the bone and can impact individuals of all pathologies and ethnicities. These bone diseases can result in weakening which leads to trauma during ordinary function, the need for reconstructive surgery, and eventual bone replacement. Tissue engineering can provide a less traumatic and more fundamental solution to the current therapies. Bioactive glasses are promising materials in tissue engineering applications because of their ability to form hydroxycarbonate apatite in the presence of simulated body fluid, support cell adhesion, growth, and differentiation, induce bone formation, and concentrate bone morphogenic proteins in vivo. The research in this dissertation will attempt to improve the quality, yield, and toughness of bioactive glass nanofibrous scaffolds. The three specific aims of this research include, (1) Optimization and Characterization of Surfactant Modified Bioactive Glass (2) Optimization of Direct Synthesis Bioactive glass Nanofibers from Sols (3) Mechanical Properties and In-vitro Biomineralization of Bioglass-loaded Polyglyconate Nanocomposites Created Using the Particulate Leaching Method. The purpose of the first specific aim was to optimize the processing of bioactive glass nanofibers, resulting in greater fiber uniformity with a reduction in beading. The increase in viscosity coupled with the ability of the surfactant to limit polymeric secondary bonding led to improved fiber quality. The focal point of the second specific aim is the production of sol-gel derived glass fibers with high bioactivity prepared by electrospinning without the use of any polymer carrier system. Advantages of this method include decreased processing time, increased production of fibers, and a decrease in the loss of material due to the calcining process. The solvent cast/ particulate leaching method was used to create a nanocomposite of bioglass and the co-polymer polyglyconate (MaxonRTM) for bone tissue scaffolds The biocompatibility of the composite foams was observed and calcium phosphate presence was quantified. The incorporation of bioglass into the polymer matrix improved the strength (modulus - 21.47 MPa) and biocompatibility of the polyglyconate foam. Keywords: Bioactive glass, Electrospinning, Solvent Casting/Particulate Leaching Method, Nanocomposites

Scarber, Reginna E.


Normal and abnormal skin color.  


The varieties of normal skin color in humans range from people of "no color" (pale white) to "people of color" (light brown, dark brown, and black). Skin color is a blend resulting from the skin chromophores red (oxyhaemoglobin), blue (deoxygenated haemoglobin), yellow-orange (carotene, an exogenous pigment), and brown (melanin). Melanin, however, is the major component of skin color ; it is the presence or absence of melanin in the melanosomes in melanocytes and melanin in keratinocytes that is responsible for epidermal pigmentation, and the presence of melanin in macrophages or melanocytes in the dermis that is responsible for dermal pigmentation. Two groups of pigmentary disorders are commonly distinguished: the disorders of the quantitative and qualitative distribution of normal pigment and the abnormal presence of exogenous or endogenous pigments in the skin. The first group includes hyperpigmentations, which clinically manifest by darkening of the skin color, and leukodermia, which is characterized by lightening of the skin. Hypermelanosis corresponds to an overload of melanin or an abnormal distribution of melanin in the skin. Depending on the color, melanodermia (brown/black) and ceruloderma (blue/grey) are distinguished. Melanodermia correspond to epidermal hypermelanocytosis (an increased number of melanocytes) or epidermal hypermelanosis (an increase in the quantity of melanin in the epidermis with no modification of the number of melanocytes). Ceruloderma corresponds to dermal hypermelanocytosis (abnormal presence in the dermis of cells synthesizing melanins) ; leakage in the dermis of epidermal melanin also exists, a form of dermal hypermelanosis called pigmentary incontinence. Finally, dyschromia can be related to the abnormal presence in the skin of a pigment of exogenous or endogenous origin. PMID:23522626

Ortonne, J P



Bioactive hydrogels with enhanced initial and sustained cell interactions  

PubMed Central

The highly tunable properties of poly(ethylene glycol) (PEG)-based hydrogel systems permit their use in a wide array of regenerative medicine and drug delivery applications. One of the most valuable properties of PEG hydrogels is their intrinsic resistance to protein adsorption and cell adhesion, as it allows for a controlled introduction of desired bioactive factors including proteins, peptides, and drugs. Acrylate-PEG-N-hydroxysuccinimide (Acr-PEG-NHS) is widely utilized as a PEG linker to functionalize bioactive factors with photocrosslinkable groups. This enables their facile incorporation into PEG hydrogel networks or the use of PEGylation strategies for drug delivery. However, PEG linkers can sterically block integrin binding sites on functionalized proteins and reduce cell-material interactions. In this study we demonstrate that reducing the density of PEG linkers on protein backbones during functionalization results in significantly improved cell adhesion and spreading to bioactive hydrogels. However, this reduction in functionalization density also increases protein loss from the matrix over time due to ester hydrolysis of the Acr-PEG-NHS linkers. To address this, a novel PEG linker, acrylamide-PEG-isocyanate (Aam-PEG-I), with enhanced hydrolytic stability was synthesized. It was found that decreasing functionalization density with Aam-PEG-I resulted in comparable increases in cell adhesion and spreading to Acr-PEG-NHS systems while maintaining protein and bioactivity levels within the hydrogel network over a significantly longer time frame. Thus, Aam-PEG-I provides a new option for protein functionalization for use in a wide range of applications that improves initial and sustained cell-material interactions to enhance control of bioactivity. PMID:23758437

Browning, Mary Beth; Russell, Brooke; Rivera, Jose; Höök, Magnus; Cosgriff-Hernandez, Elizabeth M.



Morphology of aged skin.  


Despite an overall thinning of the epidermis and focal areas of cytologic atypia, there was no morphologic evidence that the protective function of this tissue was compromised by age. The characteristic morphologic markers associated with the keratinization process were not altered either in appearance or in amounts. A well-formed stratum corneum was present, suggestive that barrier ability is not compromised in senile skin. Whereas alterations in the aged epidermis are slight, the dermal-epidermal changes are marked and have greater physiologic consequences. The major change is a relatively flat dermal-epidermal junction because of retraction of the epidermal papillae as well as the microprojections of basal cells into the dermis. This flattening results in a more fragile tissue less resistant to shearing forces. Retraction of the epidermal downgrowths may also explain the loss in proliferative capacity associated with the aged epidermis. The major alterations in the aged dermis concern the architecture of the collagen and elastin networks. Both fibrous components appear more compact because of a decrease in the voids or spaces between the fibers; the spaces resulted from a loss of ground substance. Collagen bundles appear to unravel, and the individual elastic fibers show signs of elastolysis. The net effect of these fibrous rearrangements and alterations is a dermis that is less stretchable, less resilient, more lax, and prone to wrinkling. PMID:3521984

Lavker, R M; Zheng, P S; Dong, G



Morphology of aged skin.  


Despite an overall thinning of the epidermis and focal areas of cytologic atypia, there was no morphologic evidence that the protective function of this tissue was compromised by age. The characteristic morphologic markers associated with the keratinization process were not altered either in appearance or in amounts. A well-formed stratum corneum was present, suggestive that barrier ability is not compromised in senile skin. Whereas alterations in the aged epidermis are slight, the dermal-epidermal changes are marked and have greater physiologic consequences. The major change is a relatively flat dermal-epidermal junction because of retraction of the epidermal papillae as well as the microprojections of basal cells into the dermis. This flattening results in a more fragile tissue that is less resistant to shearing forces. Retraction of the epidermal downgrowths may also explain the loss in proliferative capacity associated with the aged epidermis. The major alterations in the aged dermis concern the architecture of the collagen and elastin networks. Both fibrous components appear more compact because of a decrease in the voids or spaces between the fibers; the spaces resulted from a loss of ground substance. Collagen bundles appear to unravel, and the individual elastic fibers show signs of elastolysis. The net effect of these fibrous rearrangements and alterations is a dermis that is less stretchable, less resilient, more lax, and prone to wrinkling. PMID:2646002

Lavker, R M; Zheng, P S; Dong, G



Molecular basis for action of bioactive glasses as bone graft substitute.  


Bone grafting procedures are undergoing a major shift from autologous and allogeneic bone grafts to synthetic bone graft substitutes. Bioactive glasses are a group of synthetic silica-based bioactive materials with bone bonding properties first discovered by Larry Hench. They have several unique properties compared with other synthetic bioresorbable bioactive ceramics, such as calcium phosphates, hydroxyapatite (HA) and tricalcium phosphate (TCP). Bioactive glasses have different rates of bioactivity and resorption rates depending on their chemical compositions. The critical feature for the rate of bioactivity is a SiO2 content < 60% in weight. In vivo, the material is highly osteoconductive and it seems to promote the growth of new bone on its surface. In a recent study, the activity of the material was found even to overshadow the effect of BMP-2 gene therapy. In vivo, there is a dynamic balance between intramedullary bone formation and bioactive glass resorption. Recent studies of molecular biology have shown that bioactive glass induces a high local turnover of bone formation and resorption. Many osteoporotic fracture patients are candidates for concurrent treatment with bisphosphonates and bioceramic bone graft substitutes. Since osteopromotive silica-based bioactive glasses induce accelerated local bone turnover, adjunct antiresorptive agents may affect the process. However, a recent study showed that an adjunct antiresorptive therapy (zoledronic acid) is even beneficial for bone incorporation of bioactive glass. Based on these observations, bioactive glasses are a promising group of unique biomaterials to act as bone graft substitutes. PMID:16821652

Välimäki, V V; Aro, H T



45S5 Bioactive glass surface charge variations and the formation of a surface calcium phosphate layer in a  

E-print Network

45S5 Bioactive glass surface charge variations and the formation of a surface calcium phosphate- phate (Ca-P) layer formation kinetics on the surface of 45S5 bioactive glass (BG). We hypothesize a surface calcium phosphate layer in vivo, bioactive materials, such as 45S5 bioactive glass (BG), are able

Lu, Helen H.


Skin microbiome and skin disease: the example of rosacea.  


The imbalance and/or the perturbation of the microbial populations that colonize the skin and that contribute to its defense may represent one of the causes of the development of noninfectious skin diseases. Atopic dermatitis, psoriasis, acne, and rosacea can be listed among these kinds of pathologies. In particular, considering that microbes have been long addressed as having a role in rosacea, this common dermatosis can be an interesting model to evaluate the correlation between microbiome alterations and the occurrence of clinical manifestations. Different microorganisms have been suggested to have a role in rosacea, but no direct correlation with the incidence of the pathology has been clearly defined. Skin microbiome composition is crucial for the correct skin immune functions and recent findings indicate an abnormal activation of innate immune system associated with the rosacea. The enhanced expression of toll-like receptor 2 in the epidermis of rosacea patients can represent a possible explanation for the amplified inflammatory response to external stimuli observed during the disease. In addition, significantly higher small intestinal bacterial overgrowth prevalence in rosacea subjects has been found and its eradication has been associated with a regression of the skin lesions. In conclusion, both skin and gut microbiome seem to have a role, even if synergistic with other factors, in the pathogenesis of rosacea. A deeper knowledge of human microbiome composition and microbe-host interactions will contribute to clarify the mechanism of development of rosacea and possibly will provide innovative therapeutic approaches. PMID:25291137

Picardo, Mauro; Ottaviani, Monica



Interaction of dermatologically relevant nanoparticles with skin cells and skin  

PubMed Central

Summary The investigation of nanoparticle interactions with tissues is complex. High levels of standardization, ideally testing of different material types in the same biological model, and combinations of sensitive imaging and detection methods are required. Here, we present our studies on nanoparticle interactions with skin, skin cells, and biological media. Silica, titanium dioxide and silver particles were chosen as representative examples for different types of skin exposure to nanomaterials, e.g., unintended environmental exposure (silica) versus intended exposure through application of sunscreen (titanium dioxide) or antiseptics (silver). Because each particle type exhibits specific physicochemical properties, we were able to apply different combinations of methods to examine skin penetration and cellular uptake, including optical microscopy, electron microscopy, X-ray microscopy on cells and tissue sections, flow cytometry of isolated skin cells as well as Raman microscopy on whole tissue blocks. In order to assess the biological relevance of such findings, cell viability and free radical production were monitored on cells and in whole tissue samples. The combination of technologies and the joint discussion of results enabled us to look at nanoparticle–skin interactions and the biological relevance of our findings from different angles.

Rancan, Fiorenza; Ahlberg, Sebastian; Nazemi, Berouz; Choe, Chun Sik; Darvin, Maxim E; Hadam, Sabrina; Blume-Peytavi, Ulrike; Loza, Kateryna; Diendorf, Jörg; Epple, Matthias; Graf, Christina; Rühl, Eckart; Meinke, Martina C; Lademann, Jürgen



In vitro study of transdermal penetration and iontophoresis of hepatitis B vaccines through rat skin.  


In vitro percutaneous delivery of hepatitis B vaccines was investigated in order to assess the penetration of vaccine under passive diffusion and iontophoresis conditions. The study was carried out using Franz vertical diffusion cell through the hairless abdominal skin of Sprague-Dawley (SD) rats. Enzyme-linked immunosorbent assay (ELISA) was used to determine the cumulative amount of permeation and the retention amount of drug in skin. Passive diffusion alone resulted in less skin permeation and retention of hepatitis B vaccines, only (2.1 +/- 0.1) ng x cm(-2) and (2.3 +/- 0.1) ng x cm(-2) after 24 h when the initial concentration of vaccine in the donor compartment was 23 microg x mL(-1) and 46 microg x mL(-1), respectively. After removing the stratum corneum, the permeation and retention amount of hepatitis B vaccines increased to (383.7 +/- 86.2) ng x cm(-2) and (16.8 +/- 4.6) ng x cm(-2), respectively, 171.6-folds and 2.1-folds more than that from its intact skin with the drug loaded at 46 microg x mL(-1). Iontophoresis induced a significant increase of cumulative and retention amount of hepatitis B vaccines through the skin (P < 0.05). Application of iontophoresis significantly enhanced the permeation of hepatitis B vaccines (P < 0.05) by 2.7-folds and 6.6-folds for the intact skin, and by 1.6-folds and 1.8-folds for the tape-stripped skin with initial drug loading of 23 microg x mL(-1) and 46 microg x mL(-1), respectively. Iontophoresis also significantly increased the amount of drug retained in the skin. After applying iontophoresis for 6 h, the amount of skin retention was nearly the same as passive diffusion for 24 h both from intact skin [(16.8 +/- 4.6) ng x cm(-2) vs (13.3 +/- 5.4) ng x cm(-2)] (P > 0.05) and tape-stripped skin [(36.7 +/- 14.1) ng x cm(-2) vs (26.8 +/- 11.2) ng x cm(-2)] (P > 0.05). Overall, these findings revealed that the transportation efficiency of bioactive substance like hepatitis B vaccines may be improved by iontophoresis, which can be potentially used in the field of transcutaneous immunization. PMID:21882534

Xu, Ting; Xu, Yue-Hong; Wei, Min-Yan; Deng, Li-He; Wu, Chuan-Bin



Chemical and bioactive quality traits during fruit ripening in eggplant (S. melongena L.) and allied species.  


A chemical and bioactive quality evaluation of phytochemicals content of 10 eggplant lines and three allied species (S. sodomaeum, S. aethiopicum and S. integrifolium) was performed. The eggplant lines were divided into the two subgroups of delphinidin-3-rutinoside (D3R) and nasunin (NAS) typologies, on the basis of the anthocyanin detected in their fruit skin. The allied species had higher glycoalkaloids content, lower soluble solids and PPO activity and absence of anthocyanins compared to the eggplant lines; S. sodomaeum stood out for high phenols content. Orthogonal contrast revealed a higher sugar content and low PPO activity in NAS- compared to D3R-typologies, whereas higher chlorogenic acid and anthocyanin contents were present in D3R-typologies. The main effect of the ripening was a decrease in phenols and in the PPO activity, not evidenced in S. sodomaeum, and an increase of glycoalkaloids in overripe fruits. A good relationship was found between superoxide anion scavenging capacity and chlorogenic acid. This study highlighted the pattern of accumulation, also evidencing variations, of several phytochemicals during the eggplant fruit development and ripening. PMID:23134376

Mennella, Giuseppe; Lo Scalzo, Roberto; Fibiani, Marta; D'Alessandro, Antonietta; Francese, Gianluca; Toppino, Laura; Acciarri, Nazzareno; de Almeida, Adelia Emilia; Rotino, Giuseppe Leonardo



Vermicomposting grape marc yields high quality organic biofertiliser and bioactive polyphenols.  


Grape is the largest fruit crop in the world, and most (80%) of the harvested fruit is used to make wine. The main by-product of the wine industry is called grape marc, which consists of the stalks, skin, pulp and seeds that remain after pressing the grapes. The aim of this study was to evaluate whether grape marc could be processed by vermicomposting on an industrial scale to yield both a high-quality organic, polyphenol-free fertiliser and grape seeds (as a source of bioactive polyphenols). Vermicomposting reduced the biomass of grape marc substantially (by 58%), mainly as a result of the loss of volatile solids. After 2?weeks, the process yielded a nutrient-rich, microbiologically active and stabilised peat-like material that was easily separated from the seeds by sieving. Although the polyphenol content of the seeds was considerably reduced, this disadvantage was outweighed by the ease of separation of the seeds. Separation of the seeds also eliminated the polyphenol-associated phytotoxicity from the vermicompost. The seeds still contained useful amounts of polyphenols, which could be directly extracted for use in the pharmaceutical, cosmetic and food industries. The procedure described is effective, simple and economical, and could easily be scaled up for industrial application. PMID:25349068

Domínguez, Jorge; Martínez-Cordeiro, Hugo; Alvarez-Casas, Marta; Lores, Marta



Bioactivity-guided isolation of antiproliferative compounds from the roots of Onopordum acanthium.  


Onopordum acanthium has been considered in traditional medicine to be effective against different cancers. The chloroform extracts of the root, which displayed antiproliferative effect against human tumor cell lines, was subjected to bioactivity-guided multistep chromatographic separation. This experiment resulted in the isolation of the sesquiterpene lactones 4beta,14-dihydro-3-dehydrozaluzanin C (1), zaluzanin C (2) and 4beta,15,11beta,13-tetrahydrozaluzanin C (3), the neolignan nitidanin-diisovalerianate (4), besides 13-oxo-9Z,11 E-octadecadienoic acid (5), 24-methylenecholesterol (6), alpha-linolenic acid, linoleic acid, stigmasterol and beta-sitosterol. The structures of the isolated compounds were established through analytical data (NMR, MS), and by comparison of these with those reported in the literature. All the aforementioned compounds were detected for the first time from this plant. The antiproliferative activities of compounds 1-6 were assessed on cervix adenocarcinoma HeLa, breast adenocarcinoma MCF7 and skin epidermoid carcinoma A431 cells by using the MTT assay. It was found that, 4beta,14-dihydro-3-dehydrozaluzanin C (1), the most active antiproliferative compound of the extract, exerted remarkable tumor cell growth inhibitory activity (IC50 2.7-15.1 microM). PMID:24689209

Csupor-Löffler, Boglárka; Zupkó, István; Molnár, Judit; Forgo, Peter; Hohmann, Judit



General Information about Skin Cancer  


... that is not helped by lip balm or petroleum jelly . Tests or procedures that examine the skin ... and is not helped by lip balm or petroleum jelly . Treatment Option Overview There are different types ...


Sun Safety: Save Your Skin!  


... who work outdoors need to take precautions, too. SUN SAFETY Save Your Skin! 2 / FDA Consumer Health ... may increase sun sensitivity. Reduce Time in the Sun It’s important to limit sun exposure between 10 ...


Tropical Travel and Skin Infections  


... military in developing countries has exposed thousands of soldiers and supporting personnel to dermatologic diseases unusual in ... Jiggers This infection is caused when a fertilized female sand flea penetrates a traveler's skin and burrows ...


Sun Safety: Save Your Skin  

MedlinePLUS Videos and Cool Tools

... Articulos en Espanol Sun Safety: Save Your Skin (video) Search the Consumer Updates Section Get Consumer Updates ... Feed Read this article In this Consumer Update video, FDA Dermatologist Jane Liedtka, M.D., and FDA ...


Skin Diseases and the Adolescent  

ERIC Educational Resources Information Center

Discusses such concerns as acne, syphilis, drug abuse, and tatoos. Indicates need for physician not only to treat skin diseases but to help adolescents to accept themselves and find constructive directions. (CJ)

Bauer, Marjorie



[Skin disorders in diabetes mellitus].  


Diabetes mellitus is one of the most common diseases in the Western industrialized countries with about 300 million affected patients worldwide. The hyperglycemic state of diabetes mellitus leads to changes in practically every cell type and organ of the human body. Skin changes are considered the most common manifestations of diabetes mellitus. As skin changes can manifest before onset of diabetes mellitus they may have a diagnostic relevance. Other changes and diseases of the skin develop during the course of diabetes mellitus and may be associated with complications in internal organs or may occur as an adverse effect of antidiabetic therapy. In particular the presence of the diabetic foot syndrome is associated with significantly increased morbidity and mortality of diabetes patients as well as with markedly elevated direct and indirect costs for the health care system. In this article the most common skin diseases of patients with diabetes mellitus as well as their pathophysiology and current treatment are reviewed. PMID:25262886

Gkogkolou, Paraskevi; Böhm, Markus



Toward the first class of suicide inhibitors of kallikreins involved in skin diseases.  


The inhibition of kallikreins 5 and 7, and possibly kallikrein 14 and matriptase, (that initiates the kallikrein proteolytic cascade) constitutes an innovative way to treat some skin diseases such as Netherton syndrome. We present here the inhibitory properties of coumarin-3-carboxylate derivatives against these enzymes. Our small collection of these versatile organic compounds was enriched by newly synthesized derivatives in order to obtain molecules selective against one, two, three enzymes or acting on the four ones. We evidenced a series of compounds with IC50 values in the nanomolar range. A suicide mechanism was observed against kallikrein 7 whereas the inactivation was either definitive (suicide type) or transient for kallikreins 5 and 14, and matriptase. Most of these potent inhibitors were devoid of cytotoxicity toward healthy human keratinocytes. In situ zymography investigations on skin sections from human kallikrein 5 transgenic mouse revealed significant reduction of the global proteolytic activity by several compounds. PMID:25489658

Tan, Xiao; Soualmia, Feryel; Furio, Laetitia; Renard, Jean-François; Kempen, Isabelle; Qin, Lixian; Pagano, Maurice; Pirotte, Bernard; El Amri, Chahrazade; Hovnanian, Alain; Reboud-Ravaux, Michèle



Skin: Behavior and Health Connection  

NSDL National Science Digital Library

In this lesson, students become better aware of how their personal behavior and the environment can have a considerable impact on their health in general, particularly the health of their skin. In this exercise, students draw a model of a healthy and unhealthy person. This prompts a discussion on behavior and environmental behaviors that affect health. They also learn what good health is and the benefits of a healthy lifestyle. Finally, the students determine their skin types.

American Association for the Advancement of Science (American Association for the Advancement of Science;)



Drug Hypersensitivity Reactions Involving Skin  

Microsoft Academic Search

Immune reactions to drugs can cause a variety of diseases involving the skin, liver, kidney, lungs, and other organs. Beside\\u000a immediate, IgE-mediated reactions of varying degrees (urticaria to anaphylactic shock), many drug hypersensitivity reactions\\u000a appear delayed, namely hours to days after starting drug treatment, showing a variety of clinical manifestations from solely\\u000a skin involvement to fulminant systemic diseases which may

Oliver Hausmann; Benno Schnyder; Werner J. Pichler


Update on pathological skin picking  

Microsoft Academic Search

Pathological skin picking (PSP) is a disabling disorder characterized by repetitive picking of the skin that causes tissue\\u000a damage. Estimated to affect 2% to 5.4% of the population, PSP is currently listed as an impulse control disorder not otherwise\\u000a specified. However, the repetitive and compulsive behaviors seen in PSP are phenomenologically and clinically similar to the\\u000a behaviors seen in obsessive-compulsive

Jon E. Grant; Brian L. Odlaug



Cell death in the skin  

Microsoft Academic Search

The skin is the largest organ of the body and protects the organism against external physical, chemical and biological insults,\\u000a such as wounding, ultraviolet radiation and micro-organisms. The epidermis is the upper part of the skin that is continuously\\u000a renewed. The keratinocytes are the major cell type in the epidermis and undergo a specialized form of programmed cell death,\\u000a called

Saskia Lippens; Esther Hoste; Peter Vandenabeele; Patrizia Agostinis; Wim Declercq



PLGA/gelatin hybrid nanofibrous scaffolds encapsulating EGF for skin regeneration.  


The novel strategies of skin regenerative treatment are aimed at the development of biologically responsive scaffolds capable of delivering multiple bioactive agents and cells to the target tissues. In this study, nanofibers of poly(lactic-co-glycolic acid) (PLGA) and gelatin were electrospun and the effect of parameters viz polymer concentration, acid concentration, flow rate and voltage on the morphology of the fibers were investigated. PLGA nanofibers encapsulating epidermal growth factor were also prepared through emulsion electrospinning. The core-sheath structure of the nanofibers was verified by transmission electron microscopy. The hemostatic attributes and the biocompatibility of the scaffolds for human fibroblast cell were scrutinized. Furthermore, gene expression of collagen type I and type III by the cells on the scaffolds was quantified using real-time reverse transcriptase polymerase chain reaction. The results indicated desirable bioactivity and hemostasis of the scaffolds with the capability of encapsulation and controlled release of the protein which can be served as skin tissue engineering scaffolds and wound dressings. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2014. PMID:25345387

Norouzi, Mohammad; Shabani, Iman; Ahvaz, Hana H; Soleimani, Masoud



Skin disorders and thyroid diseases.  


Thyroid disorders have a high prevalence in medical practice; they are associated with a wide range of diseases with which they may or may not share etiological factors. One of the organs which best show this wide range of clinical signs is the skin. This review is an attempt to approach most of the dermopathies reflecting several degrees of harmfulness, coming directly or indirectly from thyroid abnormalities, as well as to update current knowledge on the relationship between the thyroid and skin. We have proposed a primary classification of skin disorders, regarding thyroid involvement, into two main groups: 1) dermopathies associated with thyroid abnormalities, mainly with autoimmune thyroid diseases, like melasma, vitiligo, Sjogren's syndrome, alopecia, idiopathic hirsutism, pre-menstrual acne, bullous diseases, connective tissue diseases, hamartoma syndrome, atopy, leprosy and DiGeorge anomaly; and 2) dermopathies depending on the nature of the thyroid disorder, in which the evolution and outcome of the skin disorder depend on the thyroidal treatment in most cases, such as trophism and skin blood flow, myxedema, alopecia, onychodystrophy, hypo- and hyperhidrosis, xanthomas, intraepidermal bullae, carotenodermia, pruritus, flushing, pyodermitis, palmoplantar keratoderma, ecchymosis, etc. In some other cases, the skin disease which developed as a consequence of the thyroid abnormality can remain unaltered despite functional treatment of the thyroid problem, such as pretibial myxedema, thyroid acropachy and some cutaneous manifestations of multiple endocrine neoplasia types 2A and 2B. PMID:11686547

Niepomniszcze, H; Amad, R H



Smart-skin antenna technology  

NASA Astrophysics Data System (ADS)

Using smart materials and skins, one could design a smart structure with suitable feedback system architecture. This paper is designed to address some technical advances and applications of smart materials, smart skins and coatings covering a broad spectrum of electromagnetic fields. The Smart Skin Antenna Technology Program's objectives are to (1) use smart skin technologies to develop an antenna system architecture which is structurally integratable, wideband, and embedded/conformal; (2) design, develop, and fabricate a thin, wideband, conformal/arrayable radiator that is structurally integratable and which uses advanced Penn State dielectric and absorber materials to achieve wideband ground planes, and together with low RCS, wideband radomes; (3) implement a smart skin antenna system architecture. Traditional practice has been to design radome and antenna as separate entities and then resolve any interface problems during an integration phase. A structurally integratable conformal antenna, however, demands that the functional components be highly integrated both conceptually and in practice. Our concept is to use the lower skin of the radome as a substrate on which the radiator can be made using standard photolithography, thick film, or LTCC techniques.

Varadan, Vijay K.; Varadan, Vasundara V.



Protective Skins for Composite Airliners  

NASA Technical Reports Server (NTRS)

Traditional composite aircraft structures are designed for load bearing and then overdesigned for impact damage and hot humid environments. Seeking revolutionary improvement in the performance and weight of composite structures, Cessna Aircraft Company, with sponsorship from the NASA Fundamental Aeronautics Program/Subsonic Fixed Wing Project, has developed and tested a protective skin concept which would allow the primary composite structure to carry only load and would meet the impact, hot and humid, and other requirements through protective skins. A key requirement for the protective skins is to make any impact damage requiring repair visible. Testing from the first generation of skins helped identify the most promising materials which were used in a second generation of test articles. This report summarizes lessons learned from the first generation of protective skins, the design and construction of the second-generation test articles, test results from the second generation for impact, electromagnetic effects, aesthetics and smoothing, thermal, and acoustic (for the first time), and an assessment of the feasibility of the protective skin concept.

Johnson, Vicki S.; Boone, Richard L.; Jones, Shannon; Pendse, Vandana; Hayward, Greg



Collinear technology for holographic versatile disc (HVD) system  

NASA Astrophysics Data System (ADS)

Holographic Versatile Disc (HVD TM) using Collinear TM Technologies is proposed by OPTWARE Corporation, in which the information and reference beams are displayed co-axially by the same SLM. With this unique configuration the optical pickup can be designed as small as the DVD's, and can be placed on one side of the recording disc. In HVD TM structure, the pre-formatted meta-data reflective layer is used for the focus/tracking servo and reading address information, and the dichroic mirror layer is used for detecting holographic recording information without interfering with the preformatted information. A 2-dimensional digital page data format is used and the shift-multiplexing method is employed to increased recording density of HVD TM. Experimental and theoretical studies suggest that the holographic material is very effective to increased recording density of the system. As the servo technology is being introduced to control the objective lens to be maintained precisely to the disc in the recording and the reconstructing process, a vibration isolator is no longer necessary. HVD TM will be compatible with existing disc storage systems, like CD and DVD, and enable us to expand its applications into other optical information storage systems.

Tan, Xiaodi; Horimai, Hideyoshi; Shimura, Tsutomu; Ichimura, Shotaro; Fujimura, Ryushi; Kuroda, Kazuo



Scalable and versatile graphene functionalized with the Mannich condensate.  


The functionalized graphene (JTPG) is fabricated by chemical conversion of graphene oxide (GO), using tea polyphenols (TP) as the reducer and stabilizer, followed by further derivatization through the Mannich reaction between the pyrogallol groups on TP and Jeffamine M-2070. JTPG exhibits solubility in a broad spectrum of solvents, long-term stability and single-layered dispersion in water and organic solvents, which are substantiated by AFM, TEM, and XRD. The paper-like JTPG hybrids prepared by vacuum-assisted filtration exhibits an unusual combination of high toughness (tensile strength of ~275 MPa and break strain of ~8%) and high electrical conductivity (~700 S/m). Still, JTPG is revealed to be very promising in the fabrication of polymer/graphene composites due to the excellent solubility in the solvent with low boiling point and low toxicity. Accordingly, as an example, nitrile rubber/JTPG composites are fabricated by the solution compounding in acetone. The resulted composite shows low threshold percolation at 0.23 vol.% of graphene. The versatilities both in dispersibility and performance, together with the scalable process of JTPG, enable a new way to scale up the fabrication of the graphene-based polymer composites or hybrids with high performance. PMID:23465413

Liao, Ruijuan; Tang, Zhenghai; Lin, Tengfei; Guo, Baochun



Versatile and Sensitive Dual Comb Fourier Transform Spectroscopy  

NASA Astrophysics Data System (ADS)

Fourier transform spectroscopy based on time-domain interferences between two slightly detuned frequency comb sources holds much promise for the real-time diagnostic of gaseous, liquid or solid-state samples. In one very recent example, cavity-enhanced absorption spectroscopy with two infrared frequency combs has demonstrated a dramatically enhanced sensitivity, compared to conventional Fourier spectroscopy, with intriguing implications for instantaneous trace gas analysis. It however remains challenging to match continuously the comb and cavity modes across a broad spectral bandwidth during the time of a measurement. An obvious alternative for reaching a long interaction path is a conventional multipass cell. Additionally, differential detection schemes may be devised to increase the dynamic range of the interferometric measurements, thus providing enhanced signal to noise ratio. Experimental demonstrations will be given in the 1.5 ?m region with a dual comb set-up based on two Er-doped fiber femtosecond lasers. The versatility and performances of these solutions will be compared to the cavity-enhanced dual comb technique and other state-of-the-art alternatives. P. Jacquet, J. Mandon, B. Bernhardt, R. Holzwarth, G. Guelachvili, T. W. Hänsch, N. Picqué, Frequency Comb Fourier Transform Spectroscopy with kHz Optical Resolution, The Optical Society of America, Washington, DC 2009, paper FMB2 (2009). B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Hänsch, N. Picqué, Cavity-enhanced dual-comb spectroscopy, Nature Photonics 4, 55-57 (2010),

Jacquey, M.; Jacquet, P.; Mandon, J.; Thon, R.; Guelachvili, G.; Hänsch, T. W.; Picqué, N.



Versatile data acquisition system and the ISOL facility TRISTAN  

SciTech Connect

The on-line mass separator, TRISTAN, is located at Brookhaven's High Flux Beam Reactor. A Nielsen-type ion source, which can contain up to 8g. of /sup 235/U in an external beam with a flux of approx. 2 x 10/sup 9/ n/cm/sup 2//sec is used to generate short-lived fission products. A Users Group has been formed to coordinate research between University groups and BNL. Developments planned for TRISTAN include FEBIAD, surface ionization and negative-surface ionization-type ion sources, and a He-jet system as well as construction of new experimental facilities. An off-line separator, ISTU, is available for the development program. A versatile, modular data acquisition system to service experiments on TRISTAN and other nuclear research facilities at the HFBR using Camac interfacing is described. Standard, commercially-available electronic instruments and computer programs, such as FORTRAN and system routines, are used throughout. Simple interfaces have been built to adapt non-Camac equipment to Camac input registers.

Gill, R.L.; Stelts, M.L.; Chrien, R.E.; Manzella, V.; Liou, H.I.; Shostak, S.



Predatory versatility in the water bug Diplonychus indicus.  


First instar Diplonychus indicus Venk. et Rao (Heteroptera:Belostomatidae) larvae possess a behavioural plasticity similar to that of adults. This highly versatile predator alternates frequently from foraging actively to ambushing and vice versa. No significant variations in the use of these two predatory modes during post-embryonic development could be evidenced. The present study stresses similarities between the use of different predatory modes by young and old larvae and by adults. Changes per unit time from one predatory mode to the other increased with age, as frequency of attempts increased with age. Adults changed predatory modes approximately seven times per hour. Most changes were made after one, two, or, more rarely, three predatory attempts of the same mode. The maximum number of consecutive attempts of one predatory mode increased with age. There was no evidence that any specialization occurred during development. No proximal causes for these changes of predatory mode were found. Changes were not correlated with the outcome of previous predatory attempts, nor did changing predatory mode increase the probability that the next attempt would be successful. PMID:24923518

Cloarec, A



Robust and Versatile Black-Box Certification of Quantum Devices  

NASA Astrophysics Data System (ADS)

Self-testing refers to the fact that, in some quantum devices, both states and measurements can be assessed in a black-box scenario, on the sole basis of the observed statistics, i.e., without reference to any prior device calibration. Only a few examples of self-testing are known, and they just provide nontrivial assessment for devices performing unrealistically close to the ideal case. We overcome these difficulties by approaching self-testing with the semidefinite programing hierarchy for the characterization of quantum correlations. This allows us to improve dramatically the robustness of previous self-testing schemes; e.g., we show that a Clauser-Horne-Shimony-Holt violation larger than 2.57 certifies a singlet fidelity of more than 70%. In addition, the versatility of the tool brings about self-testing of hitherto impossible cases, such as the robust self-testing of nonmaximally entangled two-qutrit states in the Collins-Gisin-Linden-Massar-Popescu scenario.

Yang, Tzyh Haur; Vértesi, Tamás; Bancal, Jean-Daniel; Scarani, Valerio; Navascués, Miguel



Attached shuttle payload carriers: Versatile and affordable access to space  

NASA Technical Reports Server (NTRS)

The shuttle has been primarily designed to be a versatile vehicle for placing a variety of scientific and technological equipment in space including very large payloads; however, since many large payloads do not fill the shuttle bay, the space and weight margins remaining after the major payloads are accommodated often can be made available to small payloads. The Goddard Space Flight Center (GSFC) has designed standardized mounting structures and other support systems, collectively called attached shuttle payload (ASP) carriers, to make this additional space available to researchers at a relatively modest cost. Other carrier systems for ASP's are operated by other NASA centers. A major feature of the ASP carriers is their ease of use in the world of the Space Shuttle. ASP carriers attempt to minimized the payload interaction with Space Transportation System (STS) operations whenever possible. Where this is not possible, the STS services used are not extensive. As a result, the interfaces between the carriers and the STS are simplified. With this near autonomy, the requirements for supporting documentation are considerably lessened and payload costs correspondingly reduced. The ASP carrier systems and their capabilities are discussed in detail. The range of available capabilities assures that an experimenter can select the simplest, most cost-effective carrier that is compatible with his or her experimental objectives. Examples of payloads which use ASP basic hardware in nonstandard ways are also described.



Substrate versatility of polyhydroxyalkanoate producing glycerol grown bacterial enrichment culture.  


Waste-based polyhydroxyalkanoate (PHA) production by bacterial enrichments generally follows a three step strategy in which first the wastewater is converted into a volatile fatty acid rich stream that is subsequently used as substrate in a selector and biopolymer production units. In this work, a bacterial community with high biopolymer production capacity was enriched using glycerol, a non-fermented substrate. The substrate versatility and PHA production capacity of this community was studied using glucose, lactate, acetate and xylitol as substrate. Except for xylitol, very high PHA producing capacities were obtained. The PHA accumulation was comparable or even higher than with glycerol as substrate. This is the first study that established a high PHA content (?70 wt%) with glucose as substrate in a microbial enrichment culture. The results presented in this study support the development of replacing pure culture based PHA production by bacterial enrichment cultures. A process where mixtures of substrates can be easily handled and the acidification step can potentially be avoided is described. PMID:25213684

Moralejo-Gárate, Helena; Kleerebezem, Robbert; Mosquera-Corral, Anuska; Campos, José Luis; Palmeiro-Sánchez, Tania; van Loosdrecht, Mark C M



The versatile link, a common project for super-LHC  

SciTech Connect

Radiation tolerant, high speed optoelectronic data transmission links are fundamental building blocks in today's large scale High Energy Physics (HEP) detectors, as exemplified by the four experiments currently under commissioning at the Large Hadron Collider (LHC), see for example. New experiments or upgrades will impose even more stringent demands on these systems from the point of view of performance and radiation tolerance. This can already be seen from the developments underway for the Super Large Hadron Collider (SLHC) project, a proposed upgrade to the LHC aiming at increasing the luminosity of the machine by factor of 10 to 10{sup 35} cm{sup -2}s{sup -1}, and thus providing a better chance to see rare processes and improving statistically marginal measurements. In the past, specific data transmission links have been independently developed by each LHC experiment for data acquisition (DAQ), detector control as well as trigger and timing distribution (TTC). This was justified by the different types of applications being targeted as well as by technological limitations preventing one single solution from fitting all requirements. However with today's maturity of optoelectronic and CMOS technologies it is possible to envisage the development of a general purpose optical link which can cover most transmission applications: a Versatile Link. Such an approach has the clear advantage of concentrating the development effort on one single project targeting an optical link whose final functionality will only result from the topology and configuration settings adopted.

Amaral, Luis; Dris, Stefanos; Gerardin, Alexandre; Huffman, Todd; Issever, Cigdem; Pacheco, Alberto Jimenez; Jones, Mark; Kwan, Simon; Lee, Shih-Chang; Lian, Zhijun; Liu, Tiankuan; /CERN /Oxford U. /Fermilab /Taipei, Computing Ctr. /Southern Methodist U.



Joint decorrelation, a versatile tool for multichannel data analysis.  


We review a simple yet versatile approach for the analysis of multichannel data, focusing in particular on brain signals measured with EEG, MEG, ECoG, LFP or optical imaging. Sensors are combined linearly with weights that are chosen to provide optimal signal-to-noise ratio. Signal and noise can be variably defined to match the specific need, e.g. reproducibility over trials, frequency content, or differences between stimulus conditions. We demonstrate how the method can be used to remove power line or cardiac interference, enhance stimulus-evoked or stimulus-induced activity, isolate narrow-band cortical activity, and so on. The approach involves decorrelating both the original and filtered data by joint diagonalization of their covariance matrices. We trace its origins; offer an easy-to-understand explanation; review a range of applications; and chart failure scenarios that might lead to misleading results, in particular due to overfitting. In addition to its flexibility and effectiveness, a major appeal of the method is that it is easy to understand. PMID:24990357

de Cheveigné, Alain; Parra, Lucas C



Representation of device knowledge for versatile fault diagnosis  

SciTech Connect

Diagnosis in the circuit domain is the task of localizing a fault to a specific component or connection. Based on the requirements of expressibility, buildability, computer-usability, and expandability, a device in the circuit domain is modeled as a hierarchically arranged set of subparts from both logical and physical perspectives. A new mechanism for connecting components is developed to preserve the special features of wires and points of contact so as to make the common connection problems diagnosable. The idea of an expandable component library is introduced. The work leads to a device-representation formalism, which not only provides the system with necessary knowledge for diagnosing a wide range of faults,but also makes the system adaptable to new devices, e.g., different circuits in the electronic domain. The representation scheme was used to represents a six-channel pulse-code modulation board for telecommunications and several adder/multiplier boards in a fault-diagnosis system, which successfully locates the faults on these devices. The research results in a better understanding of knowledge-representation issues in versatile fault diagnosis, and provides a prototype of developing device representation schemes for such systems in both circuit and non-circuit domains.

Taie, M.R.



microRNAs, an active and versatile group in cancers  

PubMed Central

microRNAs (miRNAs) are a class of non-coding RNAs that function as endogenous triggers of the RNA interference pathway. Studies have shown that thousands of human protein-coding genes are regulated by miRNAs, indicating that miRNAs are master regulators of many important biological processes, such as cancer development. miRNAs frequently have deregulated expression in many types of human cancers, and play critical roles in tumorigenesis, which functions either as tumor suppressors or as oncogenes. Recent studies have shown that miRNAs are highly related with cancer progression, including initiating, growth, apoptosis, invasion, and metastasis. Furthermore, miRNAs are shown to be responsible for the cancer-related inflammation, anti-cancer drug resistance, and regulation of cancer stem cells. Therefore, miRNAs have generated great interest as a novel strategy in cancer diagnosis and therapy. Here we review the versatile roles of miRNAs in cancers and their potential applications for diagnosis, prognosis, and treatment as biomarkers. PMID:22010574

Liu, Jeffrey; Zheng, Min; Tang, Ya-ling; Liang, Xin-hua; Yang, Qin



Characteristics of pulsed power generator by versatile inductive voltage adder  

NASA Astrophysics Data System (ADS)

A pulsed power generator by inductive voltage adder, versatile inductive voltage adder (VIVA-I), which features a high average potential gradient (2.5 MV/m), was designed and is currently in operation,. It was designed to produce an output pulse of 4 MV/60 ns by adding 2 MV pulses in two-stages of induction cells, where amorphous cores are installed. As a pulse forming line, we used a Blumlein line with the switching reversed, where cores are automatically biased due to the presence of prepulse. Good reproducibility was obtained even in the absence of the reset pulse. Within [similar]40% of full charge voltage, pulsed power characteristics of Marx generator, pulse forming line (PFL), transmission line (TL), and induction cells were tested for three types of loads; open-circuit, dummy load of liquid (CuSO4) resistor, and electron beam diode. In the open-circuit test, [similar]2.0 MV of output voltage was obtained with good reproducibility. Dependences of output voltage on diode impedances were evaluated by using various dummy loads, and the results were found as expected. An electron-beam diode was operated successfully, and [similar]18 kA of beam current was obtained at the diode voltage of [similar]1 MV.

Yatsui, Kiyoshi; Shimiya, Kouichi; Masugata, Katsumi; Shigeta, Masao; Shibata, Kazuhiko



A versatile omnibus test for detecting mean and variance heterogeneity.  


Recent research has revealed loci that display variance heterogeneity through various means such as biological disruption, linkage disequilibrium (LD), gene-by-gene (G × G), or gene-by-environment interaction. We propose a versatile likelihood ratio test that allows joint testing for mean and variance heterogeneity (LRT(MV)) or either effect alone (LRT(M) or LRT(V)) in the presence of covariates. Using extensive simulations for our method and others, we found that all parametric tests were sensitive to nonnormality regardless of any trait transformations. Coupling our test with the parametric bootstrap solves this issue. Using simulations and empirical data from a known mean-only functional variant, we demonstrate how LD can produce variance-heterogeneity loci (vQTL) in a predictable fashion based on differential allele frequencies, high D', and relatively low r² values. We propose that a joint test for mean and variance heterogeneity is more powerful than a variance-only test for detecting vQTL. This takes advantage of loci that also have mean effects without sacrificing much power to detect variance only effects. We discuss using vQTL as an approach to detect G × G interactions and also how vQTL are related to relationship loci, and how both can create prior hypothesis for each other and reveal the relationships between traits and possibly between components of a composite trait. PMID:24482837

Cao, Ying; Wei, Peng; Bailey, Matthew; Kauwe, John S K; Maxwell, Taylor J



A Tree Distribution for Skin Detection  

Microsoft Academic Search

Skin detection consists in detecting human skin pixels from an image. Skin detection plays an important role in various applications such as face detection, searching and filtering image content on the web. In this paper we propose a novel skin detection algorithm based on tree distribution. A tree distribution that is more general then a bayesian network, can represent a



Skin Segmentation Based on Graph Cuts  

Microsoft Academic Search

Skin segmentation is widely used in many computer vision tasks to improve automated visualization. This paper presents a graph cuts algorithm to segment arbitrary skin regions from images. The detected face is used to determine the foreground skin seeds and the background non-skin seeds with the color probability distributions for the foreground represented by a single Gaussian model and for

Zhilan Hu; Guijin Wang; Xinggang Lin; Hong Yan



Peptidomic analysis of antimicrobial peptides in skin secretions of Amolops mantzorum.  


Amphibian skin secretions contain abundant bioactive peptides that are valuable natural resources for human beings. However, many amphibians are disappearing from the world, making relevant scientific studies even more important. In this study, 24 cDNA sequences encoding antimicrobial peptide (AMP) precursors were initially cloned by screening a cDNA library derived from the skin of the Sichuan torrent frog, Amolops mantzorum. Eighteen mature AMPs belonging to 11 different families were deduced from these cDNA clones. Biological function was confirmed in each family of these AMPs. Some of them were purified from the skin secretions, and their molecular structures were determined by Edman degradation. Liquid chromatography in conjunction with tandem mass spectrometry (LC-MS/MS)-based peptidomics was used to further confirm the actual presence and characteristics of mature AMPs in the skin secretions of A. mantzorum. Incomplete tryptic digestion and gas-phase fractionation (GPF) analysis were used to increase the peptidome coverage and reproducibility of peptide ion selection. PMID:24601776

Hu, Yuhong; Yu, Zhijun; Xu, Shiqi; Hu, Yonghong; Guo, Chao; Li, Fengjiao; Li, Jing; Liu, Jingze; Wang, Hui



Self-assembled rosette nanotubes and poly(2-hydroxyethyl methacrylate) hydrogels promote skin cell functions.  


The next generation skin of wound healing materials should stimulate skin regeneration by actively promoting appropriate cellular adhesion and proliferation. As materials with novel self-assembling and solidification properties when transitioning from room to body temperatures, rosette nanotubes (RNTs) may be such a proactive material. RNTs resemble naturally occurring nanostructures in the skin (such as collagen and keratin) assembling with noncovalent forces in physiological environments. Presenting desirable bioactive properties, RNTs have been used for various tissue engineering applications including increasing in vivo bone and cartilage regeneration. The objective of the current in vitro study was, for the first time, to improve properties of a commonly used hydrogel (poly(2-hydroxyethyl methacrylate) or pHEMA) for skin regeneration by incorporating one type of novel self-assembled RNTs, called TBL. Results showed for the first time increased keratinocyte and fibroblast proliferation on hydrogels coated with TBLs compared to those not coated with TBL. In this manner, this study provides the first evidence that TBL RNTs are promising for wound healing applications due to their optimal cytocompatibility, solidification, and mechanical properties and, thus, should be further studied for such applications. PMID:24178366

Sun, Linlin; Li, Dongni; Hemraz, Usha D; Fenniri, Hicham; Webster, Thomas J



Sintered porous DP-bioactive glass and hydroxyapatite as bone substitute.  


There is extensive experimental and surgical experience with the use of bone tissue to fill defects in the skeleton, to bridge non-union sites, and to pack defects in bone created from cyst curettage. DP-bioactive glass with a chemical composition of Na2O 8.4%, SiO2 39.6%, P2O5 12% and CaO 40% has been reported as an alternative bone substitute of high mechanical strength, good biocompatibility. and which has a tight bond with living tissue. The bonding layer between DP-bioactive glass and bone tissue was considered to be formed by dissolution of calcium and phosphate ions from the DP-bioactive glass into the surrounding body fluids. The biological hydroxyapatite was suspected to deposit directly onto the bonding layer. In order to confirm the interaction between the DP-bioactive glass and bone tissue, the developed bioactive glass was implanted into rabbit femur condyle for 2-32 weeks. The histological evaluation of DP-bioactive glass as a bone substitute was also investigated in the study. Porous hydroxyapatite bioceramic was used in the control group and the results were compared with those of DP-bioactive glass. The interface between the DP-bioactive glass and bone tissue examined with SEM-EPMA showed that the bioactive glass formed a reaction layer on the surface within 2 weeks after operation and formed a direct bond with natural bone. The elements contained in the bioactive glass apparently interdiffuse with the living bone and biological hydroxyapatite deposited onto the diffusion area, which was proved by EPMA and TEM. After implantation for over 8 weeks, the DP-bioactive glass was gradually biodegraded and absorbed by the living bone. Histological examination using the optical microscope showed that osteocytes grow into the inside of the DP-bioactive glass and the bioactive glass would be expected to be a part of bone. PMID:7888580

Lin, F H; Lin, C C; Liu, H C; Huang, Y Y; Wang, C Y; Lu, C M



Human Skin Aryl Hydrocarbon Hydroxylase  

PubMed Central

Coal tar products, which are widely used in treating dermatologic disease, contain numerous polycyclic aromatic hydrocarbons, including 3,4-benzo[a]pyrene (BP). BP is among the most potent environmental chemical carcinogens and is known to evoke tumors in the skin of experimental animals and perhaps also of man. In this study the effect of cutaneous application of coal tar solution (U. S. Pharmacopeia) on aryl hydrocarbon hydroxylase (AHH) activity in the skin of patients usually treated with this drug was investigated. AHH, a cytochrome P-450 dependent carcinogen-metabolizing enzyme appears to play an important role in the activation of polycyclic hydrocarbons into reactive moieties that can bind to DNA and that may directly induce cancer. Application of coal tar solution to human skin caused a two to five-fold induction of cutaneous AHH in nine subjects. In further studies, the incubation of human skin with coal tar solution in vitro also caused variable induction of cutaneous AHH. Maximum responses in both systems occurred after 24 h and enzyme activity in vitro was time- and tissue- and substrate-concentration dependent. Studies in experimental animals showed that topical application of coal tar solution caused induction of AHH in skin and, after percutaneous absorption, in liver as well. Assay of several defined constituents of coal tar for AHH induction showed that BP was the most potent inducer of AHH tested. These studies indicate that topical application of coal tar solution in doses ordinarily used in treating dermatologic disease causes induction of AHH in human skin and suggest that such induced enzymatic activity could relate to carcinogenic responses to this agent in skin or, after percutaneous absorption, in other tissues as well. PMID:711851

Bickers, David R.; Kappas, Attallah



Tannin rich peanut skins lack anthelmintic properties  

Technology Transfer Automated Retrieval System (TEKTRAN)

Gastrointestinal nematode (GIN) resistance to synthetic anthelmintics in small ruminants has led to the evaluation of feed sources containing naturally occurring bioactive secondary metabolites that lessen parasite activity. Plants rich in condensed tannins (CT) can have beneficial anthelmintic pro...


Synthesis and in vitro bioactivity of bredigite powders.  


Pure bredigite (Ca7MgSi4O16) powders are synthesized by the sol-gel method. The bredigite powders are composed of polycrystalline particles with dimensions of 1-10 micro m. The in vitro bioactivity of the bredigite powders are examined by evaluation of hydroxyapatite (HAp) formation ability in simulated body fluid (SBF) and the effect of ionic products from bredigite dissolution on osteoblast proliferation. The results showed that bredigite induced the formation of nanocrystalline HAp after soaking in SBF for 10 days. The Ca, Si, and Mg ions from bredigite dissolution at a certain concentration range stimulates osteoblast proliferation. Our study indicates that bredigite is bioactive and might be used for preparation of new biomaterials. PMID:16543286

Wu, Chengtie; Chang, Jiang



In-fiber photo-immobilization of a bioactive surface  

NASA Astrophysics Data System (ADS)

We demonstrate the first in-fiber light-induced bioactive biotin-functionalization via photobleaching fluorophore-conjugated biotin. Photobleaching the fluorophores generated free radicals that bind to the albumin-passivated inner surface of pure silica photonic crystal fiber. The subsequent attachment of dye-conjugated streptavidin to the bound biotin qualified the photo-immobilization process and demonstrated a potential for the construction of in-fiber macromolecular assemblies or multiplexes. Compared with other in-fiber bioactive coating methods, the proposed light-induced technique requires only a low-power light source, without the need for additional preactivation steps or toxic chemical reagents. This method, hence, enables a simple and compact implementation for potential biomedical applications.

Lee, Elizabeth; Yong, Derrick; Yu, Xia; Li, Hao; Chan, Chi Chiu



Bayesian Models Leveraging Bioactivity and Cytotoxicity Information for Drug Discovery  

PubMed Central

SUMMARY Identification of unique leads represents a significant challenge in drug discovery. This hurdle is magnified in neglected diseases such as tuberculosis. We have leveraged public high-throughput screening (HTS) data, to experimentally validate virtual screening approach employing Bayesian models built with bioactivity information (single-event model) as well as bioactivity and cytotoxicity information (dual-event model). We virtually screen a commercial library and experimentally confirm actives with hit rates exceeding typical HTS results by 1-2 orders of magnitude. The first dual-event Bayesian model identified compounds with antitubercular whole-cell activity and low mammalian cell cytotoxicity from a published set of antimalarials. The most potent hit exhibits the in vitro activity and in vitro/in vivo safety profile of a drug lead. These Bayesian models offer significant economies in time and cost to drug discovery. PMID:23521795

Ekins, Sean; Reynolds, Robert C.; Kim, Hiyun; Koo, Mi-Sun; Ekonomidis, Marilyn; Talaue, Meliza; Paget, Steve D.; Woolhiser, Lisa K.; Lenaerts, Anne J.; Bunin, Barry A.; Connell, Nancy; Freundlich, Joel S.



Bioactive factors for tissue regeneration: state of the art  

PubMed Central

Summary There are three components for the creation of new tissues: cell sources, scaffolds, and bioactive factors. Unlike conventional medical strategies, regenerative medicine requires not only analytical approaches but also integrative ones. Basic research has identified a number of bioactive factors that are necessary, but not sufficient, for organogenesis. In skeletal development, these factors include bone morphogenetic proteins (BMPs), transforming growth factor ? TGF-?, Wnts, hedgehogs (Hh), fibroblast growth factors (FGFs), insulin-like growth factors (IGFs), SRY box-containing gene (Sox) 9, Sp7, and runt-related transcription factors (Runx). Clinical and preclinical studies have been extensively performed to apply the knowledge to bone and cartilage regeneration. Given the large number of findings obtained so far, it would be a good time for a multi-disciplinary, collaborative effort to optimize these known factors and develop appropriate drug delivery systems for delivering them. PMID:23738297

Ohba, Shinsuke; Hojo, Hironori; Chung, Ung-il



Nanocellulose-based composites and bioactive agents for food packaging.  


Global environmental concern, regarding the use of petroleum-based packaging materials, is encouraging researchers and industries in the search for packaging materials from natural biopolymers. Bioactive packaging is gaining more and more interest not only due to its environment friendly nature but also due to its potential to improve food quality and safety during packaging. Some of the shortcomings of biopolymers, such as weak mechanical and barrier properties can be significantly enhanced by the use of nanomaterials such as nanocellulose (NC). The use of NC can extend the food shelf life and can also improve the food quality as they can serve as carriers of some active substances, such as antioxidants and antimicrobials. The NC fiber-based composites have great potential in the preparation of cheap, lightweight, and very strong nanocomposites for food packaging. This review highlights the potential use and application of NC fiber-based nanocomposites and also the incorporation of bioactive agents in food packaging. PMID:24188266

Khan, Avik; Huq, Tanzina; Khan, Ruhul A; Riedl, Bernard; Lacroix, Monique



Sulfated polysaccharides as bioactive agents from marine algae.  


Recently, much attention has been paid by consumers toward natural bioactive compounds as functional ingredients in nutraceuticals. Marine algae are considered as valuable sources of structurally diverse bioactive compounds. Marine algae are rich in sulfated polysaccharides (SPs) such as carrageenans in red algae, fucoidans in brown algae and ulvans in green algae. These SPs exhibit many health beneficial nutraceutical effects such as antioxidant, anti-allergic, anti-human immunodeficiency virus, anticancer and anticoagulant activities. Therefore, marine algae derived SPs have great potential to be further developed as medicinal food products or nutraceuticals in the food industry. This contribution presents an overview of nutraceutical effects and potential health benefits of SPs derived from marine algae. PMID:23994790

Ngo, Dai-Hung; Kim, Se-Kwon