Science.gov

Sample records for vertical closed orbit

  1. Fixing the Closed Orbits in the Debuncher

    SciTech Connect

    Halling, Mike

    1991-04-05

    Without a large number of new trims the best way to fix the closed orbits in the debuncher is to move quads. There are some obvious features in the vertical orbit, Figure 1, that look like they are indeed orbit distortions. The horizontal orbit, Figure 2, also has some systematic features that can be removed by moving a small number of quads. It is likely that removing these orbit distortions will help in improving the aperture. In addition, the second order effects of such large offsets in the closed orbit, like changes in phase advance due to the sextapoles, could improve operations.

  2. Dispersion correction through movement of the closed orbit

    SciTech Connect

    Parzen, G

    1980-01-01

    The closed orbit correction system can be used to correct the vertical dispersion by displacing the orbit at the quadrupoles and sextupoles. The accuracy of the results have been verified by comparison with exact calculations. Results for correcting the horizontal dispersion are also given.

  3. Close up view of the Orbiter Discovery in the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up view of the Orbiter Discovery in the Orbiter Processing Facility at Kennedy Space Center. The view is a detail of the aft, starboard landing gear and a general view of the Thermal Protection System tiles around the landing-gear housing. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  4. Real time closed orbit correction system

    SciTech Connect

    Yu, L.H.; Biscardi, R.; Bittner, J.; Bozoki, E.; Galayda, J.; Krinsky, S.; Nawrocky, R.; Singh, O.; Vignola, G.

    1989-01-01

    We describe a global closed orbit feedback experiment, based upon a real time harmonic analysis of both the orbit movement and the correction magnetic fields. The feedback forces the coefficients of a few harmonics near the betatron tune to vanish, and significantly improves the global orbit stability. We present the results of the experiment in the UV ring using 4 detectors and 4 trims, in which maximum observed displacement was reduced by a factor of between 3 and 4. 4 refs., 3 figs.

  5. Closed Orbit Distortion and the Beam-Beam Interaction

    SciTech Connect

    Furman, M.; Chin, Y.; Eden, J.; Kozanecki, W.; Tennyson, J.L.; Ziemann, V.; /SLAC

    2007-02-23

    We study the applicability of beam-beam deflection techniques as a tuning tool for the SLAC/LBL/LLNL B factory, PEP-II. Assuming that the closed orbits of the two beams are separated vertically at the interaction point by a local orbit bump that is nominally closed, we calculate the residual beam orbit distortions due to the beam-beam interaction. Difference orbit measurements, performed at points conveniently distant from the IP, provide distinct coordinate- or frequency-space signatures that can be used to maintain the beams in collision and perform detailed optical diagnostics at the IP. A proposal to test this method experimentally at the TRISTAN ring is briefly discussed.

  6. Closed loop orbit trim using GPS

    NASA Technical Reports Server (NTRS)

    Parkinson, B. W.; Axelrad, P.

    1989-01-01

    This paper describes an onboard closed-loop navigation and control system capable of executing extremely precise orbit maneuvers. It uses information from the Global Positioning System (GPS) and an onboard controller to perform orbit adjustments. As a result, the system circumvents the need for extensive ground support. The particular application considered is an orbit injection system for NASA's Gravity Probe B (GP-B) spacecraft. Eccentricity adjustments of 0.0004 to 0.005, and inclination and node changes of 0.001 to 0.01 deg are demonstrated. The same technique can be adapted to other satellite missions.

  7. Analytic closed orbit analysis for RHIC insertion

    SciTech Connect

    Lee, S.Y. . Dept. of Physics); Tepikian, S. )

    1991-01-01

    Analytic closed orbit analysis is performed to evaluate the tolerance of quadrupole misalignment and dipole errors (b{sub 0},a{sub 0}) in the RHIC insertion. Sensitivity coefficients of these errors are tabulated for different {beta}{sup 0} values. Using these sensitivity tables, we found that the power supplies ripple of 10{sup {minus}4} can cause closed orbit motion of 0.05 mm at the IP in comparison with the rms beam size of 0.3 mm. It is desirable to have the power supply ripple less than 10{sup {minus}5}. 2 refs., 1 fig., 2 tabs.

  8. Closed orbit response to quadrupole strength variation

    SciTech Connect

    Wolski, Andrzej; Zimmermann, Frank

    2004-01-20

    We derive two formulae relating the variation in closed orbit in a storage ring to variations in quadrupole strength, neglecting nonlinear and dispersive effects. These formulae correct results previously reported [1,2,3]. We compare the results of the formulae applied to the ATF with simulations using MAD, and consider their application to beam-based alignment.

  9. Detail view of the vertical stabilizer of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the vertical stabilizer of the Orbiter Discovery as it sits at Launch Complex 39 A at Kennedy Space Center being prepared for its launch. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  10. Accurate orbit propagation with planetary close encounters

    NASA Astrophysics Data System (ADS)

    Ba, Giulio; Milani Comparetti, Andrea; Guerra, Francesca

    2015-08-01

    We tackle the problem of accurately propagating the motion of those small bodies that undergo close approaches with a planet. The literature is lacking on this topic and the reliability of the numerical results is not sufficiently discussed. The high-frequency components of the perturbation generated by a close encounter makes the propagation particularly challenging both from the point of view of the dynamical stability of the formulation and the numerical stability of the integrator. In our approach a fixed step-size and order multistep integrator is combined with a regularized formulation of the perturbed two-body problem. When the propagated object enters the region of influence of a celestial body, the latter becomes the new primary body of attraction. Moreover, the formulation and the step-size will also be changed if necessary. We present: 1) the restarter procedure applied to the multistep integrator whenever the primary body is changed; 2) new analytical formulae for setting the step-size (given the order of the multistep, formulation and initial osculating orbit) in order to control the accumulation of the local truncation error and guarantee the numerical stability during the propagation; 3) a new definition of the region of influence in the phase space. We test the propagator with some real asteroids subject to the gravitational attraction of the planets, the Yarkovsky and relativistic perturbations. Our goal is to show that the proposed approach improves the performance of both the propagator implemented in the OrbFit software package (which is currently used by the NEODyS service) and of the propagator represented by a variable step-size and order multistep method combined with Cowell's formulation (i.e. direct integration of position and velocity in either the physical or a fictitious time).

  11. 19. Vertical lift span in closed position and north tower, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Vertical lift span in closed position and north tower, facing north - Sault Ste. Marie International Railroad Bridge, Spanning Soo Locks at St. Marys Falls Canal, Sault Ste. Marie, Chippewa County, MI

  12. Dynamics of Orbits Close to Asteroid 4179 Toutatis

    NASA Technical Reports Server (NTRS)

    Scheeres, D. J.; Ostro, S. J.; Hudson, R. S.; DeJong, E. M.; Suzuki, S.

    1998-01-01

    We use a radar-derived physical model of 4179 Toutatis to investigate close-orbit dynamics around that irregularly shaped, non-principal-axis rotator. The orbital dynamics about this body are markedly different than the dynamics about uniformly rotating asteroids. The results of this paper have a wider application to orbit dynamics about bodies in a non-principal-axis rotation state.

  13. Detail view of the vertical stabilizer of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the vertical stabilizer of the Orbiter Discovery Discovery showing the thermal protection system components with the white Advanced Flexible Reusable Surface Insulation (AFSI) Blanket and the black High-temperature Reusable Surface Insulation (HRSI) tiles along the outer edges . The marks seen on the HRSI tiles are injection point marks and holes for the application of waterproofing material. This view also a good detailed view of the two-piece rudder which is used to control the yaw position of orbiter on approach and landing in earth's atmosphere and upon landing the two-piece rudder splays open to both sides of the stabilizer to act as an air brake to help slow the craft to a stop. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  14. Detail view of the vertical stabilizer of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the vertical stabilizer of the Orbiter Discovery looking at the two-piece rudder which is used to control the yaw position of orbiter on approach and landing in earth's atmosphere and upon landing the two-piece rudder splays open to both sides of the stabilizer to act as an air brake to help slow the craft to a stop. Note the thermal protection system components with the white Advanced Flexible Reusable Surface Insulation Blanket and the black High-temperature Reusable Surface Insulation tiles along the outer edges (HRSI tiles). The marks seen on the HRSI tiles are injection point marks and holes for the application of waterproofing material. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  15. 7. Close view of the lower portion of vertical sign ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Close view of the lower portion of vertical sign with the letters "A-G-O" after removal from theatre (Note: the steel I-beam was inserted and sheet metal side panels taken off to facilitate removal from theatre - Chicago Theater, 175 North State Street, Chicago, Cook County, IL

  16. Phobos: Close encounter imaging from the Viking Orbiters

    NASA Technical Reports Server (NTRS)

    Duxbury, T. C.; Callahan, J. D.; Ocampo, A. C.

    1984-01-01

    The shape and orbital characteristics of Phobos, the larger and innermost of Mars' two irregular moons, are discussed and illustrated. Also presented are the high resolution pictures of Phobos that were obtained during the close flybys of Viking Orbiters 1 and 2. The viewing geometry is also given for each picture.

  17. Close up oblique view aft, port side of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up oblique view aft, port side of the Orbiter Discovery in the Vehicle Assembly Building at NASA's Kennedy Space Center. This view shows a close up of the elevons and underside of the port wing. On the aft fuselage in the approximate center rift of the image is the T-0 umbilical panels. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  18. Close up detail of the underside of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up detail of the underside of the Orbiter Discovery in the Vehicle Assembly Building at NASA's Kennedy Space Center. This view is from underneath the aft section looking forward. It is a close-up view of the High-temperature Reusable Surface Insulation tiles showing the wear patterns from the heat of reentry, consequential replacement of worn and damaged tiles. The wear and replacement patters are unique to each Orbiter which can serve as their particular "fingerprint". - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  19. Spin tune dependence on closed orbit in RHIC

    SciTech Connect

    Ptitsyn, V.; Bai, M.; Roser, T.

    2010-05-23

    Polarized proton beams are accelerated in RHIC to 250 GeV energy with the help of Siberian Snakes. The pair of Siberian Snakes in each RHIC ring holds the design spin tune at 1/2 to avoid polarization loss during acceleration. However, in the presence of closed orbit errors, the actual spin tune can be shifted away from the exact 1/2 value. It leads to a corresponding shift of locations of higher-order ('snake') resonances and limits the available betatron tune space. The largest closed orbit effect on the spin tune comes from the horizontal orbit angle between the two snakes. During RHIC Run in 2009 dedicated measurements with polarized proton beams were taken to verify the dependence of the spin tune on the local orbits at the Snakes. The experimental results are presented along with the comparison with analytical predictions.

  20. Close up view under the Orbiter Discovery in the Vehicle ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up view under the Orbiter Discovery in the Vehicle Assembly Building at NASA's Kennedy Space Center. The view is under the port wing looking forward toward the main fuselage showing a detail of the landing gear and landing gear door. This view also shows the patterns of worn and replaced High-temperature Reusable Surface Insulation tiles. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  1. Stellar orbit evolution in close circumstellar disc encounters

    NASA Astrophysics Data System (ADS)

    Muñoz, D. J.; Kratter, K.; Vogelsberger, M.; Hernquist, L.; Springel, V.

    2015-01-01

    The formation and early evolution of circumstellar discs often occurs within dense, newborn stellar clusters. For the first time, we apply the moving-mesh code AREPO, to circumstellar discs in 3D, focusing on disc-disc interactions that result from stellar flybys. Although a small fraction of stars are expected to undergo close approaches, the outcomes of the most violent encounters might leave an imprint on the discs and host stars that will influence both their orbits and their ability to form planets. We first construct well-behaved 3D models of self-gravitating discs, and then create a suite of numerical experiments of parabolic encounters, exploring the effects of pericentre separation rp, disc orientation and disc-star mass ratio (Md/M*) on the orbital evolution of the host stars. Close encounters (2rp ≲ disc radius) can truncate discs on very short time-scales. If discs are massive, close encounters facilitate enough orbital angular momentum extraction to induce stellar capture. We find that for realistic primordial disc masses Md ≲ 0.1M*, non-colliding encounters induce minor orbital changes, which is consistent with analytic calculations of encounters in the linear regime. The same disc masses produce entirely different results for grazing/colliding encounters. In the latter case, rapidly cooling discs lose orbital energy by radiating away the energy excess of the shock-heated gas, thus causing capture of the host stars into a bound orbit. In rare cases, a tight binary with a circumbinary disc forms as a result of this encounter.

  2. Orbit Determination of Hayabusa during Close Proximity Phase

    NASA Astrophysics Data System (ADS)

    Ikeda, Hitoshi; Kominato, Takashi; Matsuoka, Masatoshi; Ohnishi, Takafumi; Yoshikawa, Makoto

    In September 2005, Hayabusa (MUSES-C) spacecraft successfully had a rendezvous with asteroid 25143 Itokawa. After the arrival, Hayabusa made detailed observations of the asteroid during its rendezvous period (about three months). As the results of various kinds of scientific analysis, a variety of physical parameters of Itokawa (e.g. size, volume, mass, and density) were derived. As to the orbit determination of Hayabusa spacecraft, during the cruise phase, the radiometric (2-way X-band range and Doppler) data were used for analysis. On the other hand, during the approach phase or rendezvous phase, we could obtain the optical data by means of star tracker or optical navigation camera, thus both the radiometric and the optical data were used for orbit determination. The present paper will report on the results of the orbit determination of Hayabusa during the close proximity phase. We will also mention about the mass estimation of Itokawa in this period. The data used in this analysis are 2-way X-band Doppler data and the position data, which were calculated from optical navigation camera's data. As well as the large orbital maneuvers and the gravitational acceleration of Itokawa, the effect of solar radiation pressure, and the effect of attitude control are also taken into account for the calculation. As to the gravity model of Itokawa, a spherical-harmonics gravity model or a polyhedron gravity model are used depending on the situation.

  3. Global Vertical Roughness of Mars from Mars Orbiter Laser Altimeter Pulse-Width Measurements

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Frawley, J. J.

    2000-01-01

    The global vertical roughness properties of Mars as measured by the Mars Orbiter Laser Altimeter (MOLA) instrument aboard the Mars Global Surveyor is described. Initial results suggest that vertical roughness is correlated with major physiographic units, including portions of the crustal dichotomy.

  4. Equilibrium, stability, and orbital evolution of close binary systems

    NASA Technical Reports Server (NTRS)

    Lai, Dong; Rasio, Frederic A.; Shapiro, Stuart L.

    1994-01-01

    We present a new analytic study of the equilibrium and stability properties of close binary systems containing polytropic components. Our method is based on the use of ellipsoidal trial functions in an energy variational principle. We consider both synchronized and nonsynchronized systems, constructing the compressible generalizations of the classical Darwin and Darwin-Riemann configurations. Our method can be applied to a wide variety of binary models where the stellar masses, radii, spins, entropies, and polytropic indices are all allowed to vary over wide ranges and independently for each component. We find that both secular and dynamical instabilities can develop before a Roche limit or contact is reached along a sequence of models with decreasing binary separation. High incompressibility always makes a given binary system more susceptible to these instabilities, but the dependence on the mass ratio is more complicated. As simple applications, we construct models of double degenerate systems and of low-mass main-sequence star binaries. We also discuss the orbital evoltuion of close binary systems under the combined influence of fluid viscosity and secular angular momentum losses from processes like gravitational radiation. We show that the existence of global fluid instabilities can have a profound effect on the terminal evolution of coalescing binaries. The validity of our analytic solutions is examined by means of detailed comparisons with the results of recent numerical fluid calculations in three dimensions.

  5. Weighted SVD algorithm for close-orbit correction and 10 Hz feedback in RHIC

    SciTech Connect

    Liu C.; Hulsart, R.; Marusic, A.; Michnoff, R.; Minty, M.; Ptitsyn, V.

    2012-05-20

    Measurements of the beam position along an accelerator are typically treated equally using standard SVD-based orbit correction algorithms so distributing the residual errors, modulo the local beta function, equally at the measurement locations. However, sometimes a more stable orbit at select locations is desirable. In this paper, we introduce an algorithm for weighting the beam position measurements to achieve a more stable local orbit. The results of its application to close-orbit correction and 10 Hz orbit feedback are presented.

  6. 3D plausible orbital stability close to asteroid (216) Kleopatra

    NASA Astrophysics Data System (ADS)

    Chanut, T. G. G.; Winter, O. C.; Amarante, A.; Arajo, N. C. S.

    2015-09-01

    Recent data processing showed the existence of a difference that can reach 25 per cent for the dimensions of asteroid (216) Kleopatra between the radar observations and the light curves. We rebuild the shape of (216) Kleopatra from these new data applying a correction's factor of the size of 1.15 and estimate certain physical features by using the polyhedral model method. In our computations, we use a code that avoids singularities from the line integrals of a homogeneous arbitrary shaped polyhedral source. Then, we find the location of the equilibrium points through the pseudo-potential energy and zero-velocity curves. The behaviour of the zero-velocity curves differ substantially if we apply a scale size of 1.15 relative to the original shape of (216) Kleopatra. Taking the rotation of asteroid (216) Kleopatra into consideration, the aim of this work is to analyse the stability against impact and the dynamics of numerical simulations of 3D initially equatorial and polar orbits near the body. As results, we show that the minimum radii are more suited for the stability against impact. We find also that the minimum radius for direct, equatorial circular orbits that cannot impact with (216) Kleopatra surface is 300 km and the lower limit on radius for polar circular orbits is 240 km. Stable orbits occur at 280 km for equatorial circular orbits despite significant perturbations of its orbit. Moreover, as the orbits suffer less perturbations due to the irregular gravitational potential of (216) Kleopatra in the elliptic case, the most significant result of the analysis is that stable orbits exist at a periapsis radius of 250 km for initial eccentricities ei = 0.2 in both cases. Finally, the polar orbits with eccentricities ranging between 0.1 and 0.2 appear to be more stable.

  7. Optimization and closed loop guidance of drag modulated aeroassisted orbital transfer

    NASA Technical Reports Server (NTRS)

    Kechichian, J. A.; Cruz, M. I.; Rinderle, E. A.; Vinh, N. X.

    1983-01-01

    An analysis of optimal and near optimal atmospheric flight trajectories for drag modulated aeroassisted orbital transfer is presented. An explicit and adaptive closed loop guidance approach for this mode of orbit transfer is also presented with performance near the optimal nominal trajectories. The orbital transfer of interest is for return from high earth orbit to low earth orbit. Most of what is discussed in this paper concerns the aeroassisted or atmospheric segment which lowers the apogee of the high earth orbit to the apogee of the low earth orbit. Minimization of the total impulsive delta-V at this low earth orbit apogee is the optimization criterion. Control about this impulse due to a number of potential error sources in atmospheric braking is the requirement imposed on closed loop guidance.

  8. Vertical Diplopia and Ptosis from Removal of the Orbital Roof in Pterional Craniotomy

    PubMed Central

    Desai, Shilpa J.; Lawton, Michael T.; McDermott, Michael W.; Horton, Jonathan C.

    2014-01-01

    Purpose To describe a newly recognized clinical syndrome consisting of ptosis, diplopia, vertical gaze limitation, and abduction weakness that can occur following orbital roof removal during orbito-zygomatic-pterional craniotomy. Design Case series. Participants Eight study patients, ages 44 – 80 years, 7 female, with neuro-ophthalmic symptoms after pterional craniotomy. Methods Case description of eight study patients. Main Outcome Measures Presence of ptosis, diplopia, and gaze limitation. Results Eight patients had neuro-ophthalmic findings after pterional craniotomy for meningioma removal or aneurysm clipping. The cardinal features were ptosis, limited elevation and hypotropia. Three patients also had limitation of downgaze and two had limitation of abduction. Imaging showed loss of the fat layers which normally envelop the superior rectus/levator palpebrae superioris. The muscles appeared attached to the defect in the orbital roof. Ptosis and diplopia developed in two patients despite Medpor titanium mesh implants. Deficits in all patients showed spontaneous improvement. In two patients a levator advancement was required to repair ptosis. In three patients an inferior rectus recession using an adjustable suture was performed to treat vertical diplopia. Follow-up a mean of 6.5 years later revealed that all patients had a slight residual upgaze deficit, but alignment was orthotropic in primary gaze. Conclusions After pterional craniotomy, ptosis, diplopia and vertical gaze limitation can result from tethering of the superior rectus/levator palpebrae superioris complex to the surgical defect in the orbital roof. Lateral rectus function is sometimes compromised by muscle attachment to the lateral orbital osteotomy. This syndrome occurs in about 1% of patients after removal of the orbital roof and can be treated, if necessary, by prism glasses or surgery. PMID:25439610

  9. Tune shifts caused by horizontal closed orbit deviations in sextupoles

    SciTech Connect

    Ohnuma, S.

    1988-02-01

    One of the uncomfortable features of the Chasman-Green lattice is that the chromaticity-correcting sextupoles are all very strong compared with those in the FODO-type lattice. Because of their strengths, when their arrangement creates certain harmonic components, the dynamic aperture is severely reduced and on is forced to add more sextupoles to eliminate harmful harmonic components.During the course of design studies, S. Kramer has made many computer runs to investigate tune shifts resulting from horizontal orbit deviations in sextupoles. An interesting observation is that the average tune shift is definitely related to the dependence of tunes on the betatron oscillation amplitudes (or, equivalently, the transverse emittances). This note is an ``attempt`` to explain the connection at least qualitatively. It is no more than an attempt since the explanation is not yet quantitative and it may even be somewhat inconsistent.

  10. ORBITAL DISTRIBUTIONS OF CLOSE-IN PLANETS AND DISTANT PLANETS FORMED BY SCATTERING AND DYNAMICAL TIDES

    SciTech Connect

    Nagasawa, M.; Ida, S.

    2011-12-01

    We investigated the formation of close-in planets (hot Jupiters) by a combination of mutual scattering, Kozai effect, and tidal circularization, through N-body simulations of three gas giant planets, and compared the results with discovered close-in planets. We found that in about 350 cases out of 1200 runs ({approx}30%), the eccentricity of one of the planets is excited highly enough for tidal circularization by mutual close scatterings followed by secular effects due to outer planets, such as the Kozai mechanism, and the planet becomes a close-in planet through the damping of eccentricity and semimajor axis. The formation probability of close-in planets by such scattering is not affected significantly by the effect of the general relativity and inclusion of inertial modes in addition to fundamental modes in the tides. Detailed orbital distributions of the formed close-in planets and their counterpart distant planets in our simulations were compared with observational data. We focused on the possibility for close-in planets to retain non-negligible eccentricities ({approx}> 0.1) on timescales of {approx}10{sup 9} yr and have high inclinations, because close-in planets in eccentric or highly inclined orbits have recently been discovered. In our simulations we found that as many as 29% of the close-in planets have retrograde orbits, and the retrograde planets tend to have small eccentricities. On the other hand, eccentric close-in planets tend to have orbits of small inclinations.

  11. Electric-field effects on the closed orbits of the diamagnetic Kepler problem

    NASA Astrophysics Data System (ADS)

    Bleasdale, C.; Bruno-Alfonso, A.; Lewis, R. A.

    2016-02-01

    The nonrelativistic closed orbits of an electron interacting with a unit positive charge in the presence of homogeneous magnetic and electric fields are investigated. A simplified theoretical model is proposed utilizing appropriate initial conditions in semiparabolic coordinates for arbitrary magnetic- and electric-field alignments. The evolution of both the angular spectrum of orbits and the shape and duration of individual orbits, as the electric-field intensity and scaled energy are increased, is shown for the cases of both parallel and crossed fields. Orbit mixing in the high-field regime is investigated in the case of parallel fields, giving an indication of the system moving from the quasi-Landau chaotic regime to the electric-field-induced (Stark effect) regular regime. For crossed fields, it is shown that the Garton-Tomkins orbits lead to a pair of orbits that have opposite behaviors as a function of the electric-field intensity.

  12. Importance of closely spaced vertical sampling in delineating chemical and microbiological gradients in groundwater studies

    USGS Publications Warehouse

    Smith, R.L.; Harvey, R.W.; LeBlanc, D.R.

    1991-01-01

    Vertical gradients of selected chemical constituents, bacterial populations, bacterial activity and electron acceptors were investigated for an unconfined aquifer contaminated with nitrate and organic compounds on Cape Cod, Massachusetts, U.S.A. Fifteen-port multilevel sampling devices (MLS's) were installed within the contaminant plume at the source of the contamination, and at 250 and 2100 m downgradient from the source. Depth profiles of specific conductance and dissolved oxygen at the downgradient sites exhibited vertical gradients that were both steep and inversely related. Narrow zones (2-4 m thick) of high N2O and NH4+ concentrations were also detected within the contaminant plume. A 27-fold change in bacterial abundance; a 35-fold change in frequency of dividing cells (FDC), an indicator of bacterial growth; a 23-fold change in 3H-glucose uptake, a measure of heterotrophic activity; and substantial changes in overall cell morphology were evident within a 9-m vertical interval at 250 m downgradient. The existence of these gradients argues for the need for closely spaced vertical sampling in groundwater studies because small differences in the vertical placement of a well screen can lead to incorrect conclusions about the chemical and microbiological processes within an aquifer.Vertical gradients of selected chemical constituents, bacterial populations, bacterial activity and electron acceptors were investigated for an unconfined aquifer contaminated with nitrate and organic compounds on Cape Cod, Massachusetts, USA. Fifteen-port multilevel sampling devices (MLS's) were installed within the contaminant plume at the source of the contamination, and at 250 and 2100 m downgradient from the source. Depth profiles of specific conductance and dissolved oxygen at the downgradient sites exhibited vertical gradients that were both steep and inversely related. Narrow zones (2-4 m thick) of high N2O and NH4+ concentrations were also detected within the contaminant plume. A 27-fold change in bacterial abundance; a 35-fold change in frequency of dividing cells (FDC), an indicator of bacterial growth; a 23-fold change in 3H-glucose uptake, a measure of heterotrophic activity; and substantial changes in overall cell morphology were evident within a 9-m vertical interval at 250 m downgradient. The existence of these gradients argues for the need for closely spaced vertical sampling in ground-water studies because small differences in the vertical placement of a well screen can lead to incorrect conclusions about the chemical and microbiological processes within an aquifer.

  13. Design considerations for the Shuttle/Orbiter closed-circuit television subsystem

    NASA Technical Reports Server (NTRS)

    Perry, W. E.

    1974-01-01

    The Shuttle/Orbiter Program requirements relative to operational and performance parameters of the CCTV (closed circuit television) subsystem and their influence upon design considerations are presented. The anticipated use of the CCTV for rendezvous, docking, manipulator arm operation, satellite inspection and general orbiter operations is outlined to establish the performance requirements of each subsystem element. Typical physical characteristics, interface parameters, and remote-control design philosophy are briefly described.

  14. On analysis of close encounters of two cosmic bodies in near almost-circular orbits

    NASA Astrophysics Data System (ADS)

    Prokhorenko, V. I.

    2010-12-01

    This paper is devoted to the study of relative motion and close encounters of two cosmic bodies located in near almost-circular orbits. This problem is topical due to the asteroid hazard proceeding from the NEA group asteroids located in the near-Earth orbits. The (99942) Apophis asteroid, a representative of this group discovered in July 2004 by the Kitt Peak observatory (Arizona), is considered as an example.

  15. Closed Loop Guidance with Multiple Constraints for Low Orbit Vehicle Trajectory Optimization

    NASA Astrophysics Data System (ADS)

    Zhang, Rufei; Zhao, Shifan

    Low orbit has features of strong invisibility and penetration, but needs more shutdown energy comparable to high orbit under the same range, which strongly requires studying the problem of delivery capacity optimization for multi-stage launch vehicles. Based on remnant apparent velocity and constraints models, multi-constraint closed-loop guidance with constraints of trajectory maximum height and azimuth was proposed, which adopted elliptical orbit theory and Newton iteration algorithm to optimize trajectory and thrust direction, reached to take full advantage of multi-stage launch vehicle propellant, and guided low orbit vehicle to enter maximum range trajectory. Theory deduction and numerical example demonstrate that the proposed guidance method could extend range and achieve precise control for orbit maximum height and azimuth.

  16. Early excitation of spin-orbit misalignments in close-in planetary systems

    SciTech Connect

    Spalding, Christopher; Batygin, Konstantin

    2014-07-20

    Continued observational characterization of transiting planets that reside in close proximity to their host stars has shown that a substantial fraction of such objects possess orbits that are inclined with respect to the spin axes of their stars. Mounting evidence for the wide-spread nature of this phenomenon has challenged the conventional notion that large-scale orbital transport occurs during the early epochs of planet formation and is accomplished via planet-disk interactions. However, recent work has shown that the excitation of spin-orbit misalignment between protoplanetary nebulae and their host stars can naturally arise from gravitational perturbations in multi-stellar systems as well as magnetic disk-star coupling. In this work, we examine these processes in tandem. We begin with a thorough exploration of the gravitationally facilitated acquisition of spin-orbit misalignment and analytically show that the entire possible range of misalignments can be trivially reproduced. Moreover, we demonstrate that the observable spin-orbit misalignment only depends on the primordial disk-binary orbit inclination. Subsequently, we augment our treatment by accounting for magnetic torques and show that more exotic dynamical evolution is possible, provided favorable conditions for magnetic tilting. Cumulatively, our results suggest that observed spin-orbit misalignments are fully consistent with disk-driven migration as a dominant mechanism for the origin of close-in planets.

  17. Effects and Correction of Closed Orbit Magnet Errors in the SNS Ring

    SciTech Connect

    Bunch, S.C.; Holmes, J.

    2004-01-01

    We consider the effect and correction of three types of orbit errors in SNS: quadrupole displacement errors, dipole displacement errors, and dipole field errors. Using the ORBIT beam dynamics code, we focus on orbit deflection of a standard pencil beam and on beam losses in a high intensity injection simulation. We study the correction of these orbit errors using the proposed system of 88 (44 horizontal and 44 vertical) ring beam position monitors (BPMs) and 52 (24 horizontal and 28 vertical) dipole corrector magnets. Correction is carried out numerically by adjusting the kick strengths of the dipole corrector magnets to minimize the sum of the squares of the BPM signals for the pencil beam. In addition to using the exact BPM signals as input to the correction algorithm, we also consider the effect of random BPM signal errors. For all three types of error and for perturbations of individual magnets, the correction algorithm always chooses the three-bump method to localize the orbit displacement to the region between the magnet and its adjacent correctors. The values of the BPM signals resulting from specified settings of the dipole corrector kick strengths can be used to set up the orbit response matrix, which can then be applied to the correction in the limit that the signals from the separate errors add linearly. When high intensity calculations are carried out to study beam losses, it is seen that the SNS orbit correction system, even with BPM uncertainties, is sufficient to correct losses to less than 10-4 in nearly all cases, even those for which uncorrected losses constitute a large portion of the beam.

  18. Comparison of vertical-takeoff and horizontal-takeoff single-stage-to-orbit ascent performance

    NASA Astrophysics Data System (ADS)

    Nguyen, Hai N.

    1991-10-01

    A study was conducted to examine the ascent performance capability of the vertical-takeoff and horizontal-takeoff single-stage-to-orbit launchers. Both launchers, powered by Space Shuttle Main Engine rockets, were assumed to have a gross liftoff weight of 1,000,000 lb. The horizontal-takeoff launcher was assumed to be capable to take off from a conventional runway on its own power. The optimal ascent profile was designed to honor the dynamic pressure (900 psf), the axial load (3 g), and the normal load (1.25 g) constraints. Results of the study indicate that the vertical-takeoff performance with a burnout weight of 137,568 lb is not a strong function of the vehicle lift or wing area. The wing is required only for the reentry performance such as heating control, crossrange, and landing maneuvers. The horizontal-takeoff launcher has a burnout weight of 138,309 lb, but it will not have any payload capability if the ascent load is supported entirely by the vehicle landing gear at launch. Therefore, in order to make the horizontal-takeoff mode feasible, an undercarriage such as a trolley or a simple truss structure with wheels is required to alleviate the ascent load and, as a result, to reduce the landing gear weight. The horizontal-takeoff launcher, however, offers advantages over the winged vertical-takeoff launcher such as simpler launch preparedness and operation and a better launch abort capability.

  19. New Evidence for Planets on S-type Orbits in Close Binary Systems

    NASA Astrophysics Data System (ADS)

    Trifonov, Trifon; Lee, Man Hoi; Reffert, Sabine; Quirrenbach, Andreas

    2015-12-01

    We present evidence for two Jovian planets orbiting the evolved giant stars 39 Cygni and HR 2877, based on more than 10 years of high-precision Doppler data taken at the Lick Observatory. Both stars are the primary components of compact binary systems, and thus these systems provide important clues on how planets could form and remain stable in S-type orbit around a star under the strong gravitational influence from a close stellar companion. We investigate large sets of orbital fits for both systems by applying systematic χ^2 grid-search techniques coupled with self-consistent dynamical fitting. We also perform long-term dynamical simulations to constrain the permitted orbital configurations. We find that 39 Cygni is accompaniedby a low-mass star having nearly circular orbit at a_B > 7.5 AU. The planet orbiting the primary is well separated (a_b ˜ 1.6 AU) from the secondary and thus the system is generally stable. HR 2877 has astellar companion of at least 0.6 M_⊙ on a highly eccentric orbit with e_b ˜ 0.7. The binary semimajor axis is a_B ˜ 13.6 AU, but the pericentre distance is only 3.7 AU leading to stronginteractions with the planet, which is at a_b ˜ 1.1 AU. If the binary and the planet in this system have prograde and aligned coplanar orbits, there are only narrow regions of stable orbital solutions. For this system we also test dynamical models with the planet having a retrograde orbit, and we find that in this case thesystem is fully stable in a large set of orbital solutions. Only a handful of S-type planetary candidates in compact binary systems are known in the literature, and the 39 Cygni and HR 2877 systems are significant additions to the sample.

  20. Closed loop navigation and guidance for gravity probe B orbit insertion

    NASA Technical Reports Server (NTRS)

    Axelrad, P.; Parkinson, B. W.

    1989-01-01

    This paper addresses the problem of guiding the Gravity Probe B (GP-B) spacecraft from its location after initial insertion to a very precise low earth orbit. Specifically, the satellite orbit is required to be circular to within 0.001 eccentricity, polar to within 0.001 deg inclination, and aligned with the direction of the star Rigel to within 0.001 deg. Navigation data supplied by an on-board GPS receiver is used as feedback to a control algorithm designed to minimize the time to achieve the desired orbit. Translational control is provided by the proportional helium thrusters, which are used for drag-free and attitude control during the remainder of the science mission. Simulations of the guidance system are presented which give an indication of performance characteristics for several types of orbit injection errors. This research is the first reported effort to use GPS as a sensor for a closed loop space guidance system.

  1. Measurement Variability of Vertical Scanning Interferometry Tool Used for Orbiter Window Defect Assessment

    NASA Technical Reports Server (NTRS)

    Padula, Santo, II

    2009-01-01

    The ability to sufficiently measure orbiter window defects to allow for window recertification has been an ongoing challenge for the orbiter vehicle program. The recent Columbia accident has forced even tighter constraints on the criteria that must be met in order to recertify windows for flight. As a result, new techniques are being investigated to improve the reliability, accuracy and resolution of the defect detection process. The methodology devised in this work, which is based on the utilization of a vertical scanning interferometric (VSI) tool, shows great promise for meeting the ever increasing requirements for defect detection. This methodology has the potential of a 10-100 fold greater resolution of the true defect depth than can be obtained from the currently employed micrometer based methodology. An added benefit is that it also produces a digital elevation map of the defect, thereby providing information about the defect morphology which can be utilized to ascertain the type of debris that induced the damage. However, in order to successfully implement such a tool, a greater understanding of the resolution capability and measurement repeatability must be obtained. This work focused on assessing the variability of the VSI-based measurement methodology and revealed that the VSI measurement tool was more repeatable and more precise than the current micrometer based approach, even in situations where operator variation could affect the measurement. The analysis also showed that the VSI technique was relatively insensitive to the hardware and software settings employed, making the technique extremely robust and desirable

  2. Automatic correction of orbital elements using continuous thrust controlled in closed loop

    NASA Astrophysics Data System (ADS)

    Rocco, E. M.

    2013-10-01

    This work aims to study and simulate the control of a spacecraft trajectory in order to correct automatically and simultaneously the orbital elements that define the orbit: semi-major axis, eccentricity, periapse argument, inclination and right ascension of the ascending node. Thus, to perform the control of the trajectory was used a propulsion system able to apply thrust with adjustable magnitude and direction of application. In this study it was considered that the propulsion system is controlled in closed loop, so the adjustments of the magnitude and direction of thrust depends on the error generated by comparing a reference state (position and velocity) and a current state. The reference state is determined according to the final orbital parameters. The current state is estimated at each step of the simulation, therefore, the reference and current states must be determined and compared at each step in order to generate the error signal that is inserted into the trajectory control system. However, the control of the orbital parameters simultaneously can be characterized as a multi-objective problem with conflicting goals. The correction of the semi-major axis causes an eccentricity modification and vice-versa. One possibility to deal with this problem is to define when and where to make adjustments for each of the parameters. Thus, the automatic control seeks the best way to correct each parameter, adjusting each one sequentially. At the end of the process all orbital parameters are automatically adjusted and maintained due to the use of the closed loop control system.

  3. Tidal interactions of a Maclaurin spheroid - II. Resonant excitation of modes by a close, misaligned orbit

    NASA Astrophysics Data System (ADS)

    Braviner, Harry J.; Ogilvie, Gordon I.

    2015-02-01

    We model a tidally forced star or giant planet as a Maclaurin spheroid, decomposing the motion into the normal modes found by Bryan. We first describe the general prescription for this decomposition and the computation of the tidal power. Although this formalism is very general, forcing due to a companion on a misaligned, circular orbit is used to illustrate the theory. The tidal power is plotted for a variety of orbital radii, misalignment angles, and spheroid rotation rates. Our calculations are carried out including all modes of degree l ? 4, and the same degree of gravitational forcing. Remarkably, we find that for close orbits (a/R* ? 3) and rotational deformations that are typical of giant planets (e ? 0.4) the l = 4 component of the gravitational potential may significantly enhance the dissipation through resonance with surface gravity modes. There are also a large number of resonances with inertial modes, with the tidal power being locally enhanced by up to three orders of magnitude. For very close orbits (a/R* ? 3), the contribution to the power from the l = 4 modes is roughly the same magnitude as that due to the l = 3 modes.

  4. Compensation for the effect of vacuum chamber eddy current by digital signal processing for closed orbit feedback

    SciTech Connect

    Chung, Y.; Emery, L.; Kirchman, J.

    1993-07-01

    The Advanced Photon Source (APS) will implement both global and local beam position feedback systems to stabilize the particle and X-ray beams. The relatively thick (1/2 inch) aluminum storage ring vacuum chamber at corrector magnet locations for the local feedback systems will induce significant eddy current. This will reduce the correction bandwidth and could potentially destabilize the feedback systems. This paper describes measurement of the effect of the eddy current induced in the APS storage ring vacuum chamber by a horizontal/vertical corrector magnet and its compensation using digital signal processing at 4 kHz sampling frequency with proportional, integral, and derivative (PID) control algorithm for closed orbit feedback. A theory of digital feedback to obtain the linear system responses and the conditions for optimal control will also be presented. The magnet field in the vacuum chamber shows strong quadrupole and sextupole components varying with frequency, in addition to significant attenuation and phase shift with bandwidth ({minus}3 dB) of 20 Hz for horizontal and 4 Hz for vertical fields relative to the magnet current. Large changes in the magnet resistance and inductance were also observed, as the result of reduced total magnetic energy and increased Ohmic heat loss.

  5. Use of the Amplatzer ASD Occluder for Closing a Persistent Left Vertical Vein

    SciTech Connect

    Zanchetta, Mario Zennaro, Marco; Zecchel, Roberto; Mancuso, Daniela; Pedon, Luigi

    2009-05-15

    We report the case of a very large anomalous connection of the veins draining the upper lobe of the left lung to both the left-sided vertical vein and the left atrium, associated with mild rheumatic mitral valve stenosis, in which the atrial septum was intact and the remaining venous system, including the coronary sinus, was otherwise normal (a variant of Lutembacher's syndrome). In order to abolish the left-to-right shunting, a transcatheter approach to close this venous structure was successfully attempted using an Amplatzer ASD Occluder device. The technical aspects and the alternative options of performing a procedure with a device for a purpose outside the scope of its approved label are discussed.

  6. Boiling characteristics in small vertical tubes with closed bottom for nanofluids and nanoparticle-suspensions

    NASA Astrophysics Data System (ADS)

    Lun-Chun, Lv; Zhen-Hua, Liu

    2008-11-01

    An experimental study was carried out to understand the nucleate boiling characteristics and the critical heat flux (CHF) of water, the water based nanofluids and the water based nanoparticle-suspensions in vertical small heated tubes with a closed bottom. Here, the nanofluids consisted of the base liquid, the CuO nanoparticles and the surfactant. The nanoparticle-suspensions consisted of the base liquid and CuO nanoparticles. The surfactant was sodium dodecyl benzene sulfate. The study focused on the influence of the nanoparticles and surfactant on the nucleate boiling characteristics and the CHF. The experimental results indicated that the nanoparticle concentrations of the nanofluids and nanoparticle-suspensions in the tubes do not change during the boiling processes; the nanoparticles in the evaporated liquid are totally carried away by the steam. The boiling heat transfer rates of nanofluids are poorer than that of the base liquid. However, the boiling heat transfer rates of nanoparticle-suspensions are better than that of the base liquid. Comparing with the base liquid, the CHF of the nanofluids and the nanoparticle-suspensions is higher. The CHF is only related to nanoparticle mass concentration when the tube length and the tube diameter are fixed. The experiment confirm that there is a thin nanoparticle coating layer on the heated surface after the nanofluids boiling test but there is no coating layer on the heated surface after the nanoparticle-suspensions boiling test. This coating layer is the main reason that deteriorates the boiling heat transfer rates of nanofluids. An empirical correlation was proposed for predicting the CHF of nanofluids boiling in the vertical tubes with closed bottom.

  7. Effects of orbit squeezing on ion transport processes close to magnetic axis

    SciTech Connect

    Shaing, K.C.; Hazeltine, R.D.; Zarnstorff, M.C.

    1997-01-01

    It is shown that ion thermal conductivity close to the magnetic axis in tokamaks is reduced by a factor of {vert_bar}S{vert_bar}{sup 5/3} if (M{sub i}/M{sub e}){sup 2/3}(T{sub e}/T{sub i}){sup 4/3}/{vert_bar}S{vert_bar}{sup 5/3} {much_gt} 1. Here, S is the orbit squeezing factor, M{sub i}(M{sub e}) is the ion (electron) mass, and T{sub i}(Te{sub e}) is the ion (electron) temperature. The reduction reflects both the increase of the fraction of trapped particles by a factor of {vert_bar}S{vert_bar}{sup 1/3}, and the decrease of the orbit size in units of the poloidal flux {psi} by a factor of {vert_bar}S{vert_bar}{sup 2/3}.

  8. Strategic optimization of large-scale vertical closed-loop shallow geothermal systems

    NASA Astrophysics Data System (ADS)

    Hecht-Mndez, J.; de Paly, M.; Beck, M.; Blum, P.; Bayer, P.

    2012-04-01

    Vertical closed-loop geothermal systems or ground source heat pump (GSHP) systems with multiple vertical borehole heat exchangers (BHEs) are attractive technologies that provide heating and cooling to large facilities such as hotels, schools, big office buildings or district heating systems. Currently, the worldwide number of installed systems shows a recurrent increase. By running arrays of multiple BHEs, the energy demand of a given facility is fulfilled by exchanging heat with the ground. Due to practical and technical reasons, square arrays of the BHEs are commonly used and the total energy extraction from the subsurface is accomplished by an equal operation of each BHE. Moreover, standard designing practices disregard the presence of groundwater flow. We present a simulation-optimization approach that is able to regulate the individual operation of multiple BHEs, depending on the given hydro-geothermal conditions. The developed approach optimizes the overall performance of the geothermal system while mitigating the environmental impact. As an example, a synthetic case with a geothermal system using 25 BHEs for supplying a seasonal heating energy demand is defined. The optimization approach is evaluated for finding optimal energy extractions for 15 scenarios with different specific constant groundwater flow velocities. Ground temperature development is simulated using the optimal energy extractions and contrasted against standard application. It is demonstrated that optimized systems always level the ground temperature distribution and generate smaller subsurface temperature changes than non-optimized ones. Mean underground temperature changes within the studied BHE field are between 13% and 24% smaller when the optimized system is used. By applying the optimized energy extraction patterns, the temperature of the heat carrier fluid in the BHE, which controls the overall performance of the system, can also be raised by more than 1 C.

  9. Fine structure of the region of initial conditions for close to periodic orbits in the general three-body problem

    NASA Astrophysics Data System (ADS)

    Iasko, P. P.; Orlov, V. V.

    2015-10-01

    The region of initial conditions for close to periodic orbits is studied in the general three-body problem with components of equal mass and zero angular momentum. A method proposed earlier, based on minimization of a functional equal to the sum of the squares of the differences between the initial and current coordinates and velocities of the bodies, is used to search for such orbits. The search was conducted among orbits with periods T ≤ 2 000 τ, where τ is the mean time for a component to cross the triple system. Elongated structures are found in the region of initial conditions, each of which corresponds to a certain periodic orbit. The detected structures seem to be conentrated along characteristic curves corresponding to the exact periodic orbits. A boundary zone of the initial conditions has been discovered, to the left and right of which orbits arising from the Schubart orbit and S orbit lie. Close to periodic orbits in the boundary zone possess the properties of both types of orbits. As a rule, these have periods of ~102 τ. Examples of trajectories of the bodies are presented. Dynamical and geometrical properties of the studied orbits are described.

  10. Calculation of closed orbit errors due to misalignment of combined function magnets with large bend angle

    SciTech Connect

    Bozoki, E.S.

    1990-01-01

    The effects of different misalignments of bending magnets with very small bending radius ({rho} < lm) and very large bending angle ({Phi}{sub b} = 180, in some cases 360{degree}) are discussed. These magnets are represented by n segments. A method is given to calculate misalignments of a segment at any {alpha} < {Phi}{sub b} bend angle from the misalignments of the whole (rigid) magnet. This method is then used to calculate distorted closed orbits for the SXLS ring. 6 refs., 10 figs., 1 tab.

  11. Closed-orbit theory of spatial density oscillations in finite fermion systems.

    PubMed

    Roccia, Jrme; Brack, Matthias

    2008-05-23

    We investigate the particle and kinetic-energy densities for N noninteracting fermions confined in a local potential. Using Gutzwiller's semiclassical Green function, we describe the oscillating parts of the densities in terms of closed nonperiodic classical orbits. We derive universal relations between the oscillating parts of the densities for potentials with spherical symmetry in arbitrary dimensions and a "local virial theorem" valid also for arbitrary nonintegrable potentials. We give simple analytical formulas for the density oscillations in a one-dimensional potential. PMID:18518516

  12. Large-Area Nano-patterning and Fabrication of Vertical Transistor Array by Non-close-packed Polystyrene Spheres.

    PubMed

    Chen, Yen-Ming; Lai, Yu-Yen; Chao, Yu-Chiang; Zan, Hsiao-Wen; Meng, Hsin-Fei; Horng, Sheng-Fu; Chang, Che-Hao

    2015-09-01

    We demonstrated a large-area nanopatterning technique with the help of a non-close-packed PS sphere layer over a large-area substrate. The non-close-packed PS sphere layer is fabricated by blade coating method. It was demonstrated that non-close-packed PS spheres can be achieved within an area of 18 cm × 25 cm on a rigid glass substrate and within an area of 10 cm × 10 cm on a flexible substrate. We also demonstrated that the blade-coated non-close-packed PS sphere layer was suitable for the mass production of vertical organic transistors over a large area. PMID:26278552

  13. Hardware design and implementation of the closed-orbit feedback system at APS

    SciTech Connect

    Barr, D.; Chung, Youngjoo

    1996-10-01

    The Advanced Photon Source (APS) storage ring will utilize a closed-orbit feedback system in order to produce a more stable beam. The specified orbit measurement resolution is 25 microns for global feedback and 1 micron for local feedback. The system will sample at 4 kHz and provide a correction bandwidth of 100 Hz. At this bandwidth, standard rf BPMs will provide a resolution of 0.7 micron, while specialized miniature BPMs positioned on either side of the insertion devices for local feedback will provide a resolution of 0.2 micron (1). The measured BPM noise floor for standard BPMs is 0.06 micron per root hertz mA. Such a system has been designed, simulated, and tested on a small scale (2). This paper covers the actual hardware design and layout of the entire closed-loop system. This includes commercial hardware components, in addition to many components designed and built in-house. The paper will investigate the large-scale workings of all these devices, as well as an overall view of each piece of hardware used.

  14. A closed-orbit suppression circuit for a Main Ring transversal damper

    SciTech Connect

    Ma, H.; Steimel, J.; Marriner, J.; Crisp, J.

    1997-01-01

    The signals of a transversal damper pickup usually have a certain number of common-mode components due to the off-center beam at the location. For the limit in the output power and the required minimum dynamic range of the feedback system, this common-mode component must be suppressed as much as possible. An analog front end is being developed for a transversal damper of the Main Ring at Fermilab (1) for this purpose. The front end features a balanced feedforward circuit and a possible single-ended negative feedback loop. Properly set, the time constant of the feedforward circuit ensures that the slowly changing closed-orbit component will be adaptively canceled, while the betatron oscillation components will survive in the output. {copyright} {ital 1997 American Institute of Physics.}

  15. Fermi orbital derivatives in self-interaction corrected density functional theory: Applications to closed shell atoms

    SciTech Connect

    Pederson, Mark R.

    2015-02-14

    A recent modification of the Perdew-Zunger self-interaction-correction to the density-functional formalism has provided a framework for explicitly restoring unitary invariance to the expression for the total energy. The formalism depends upon construction of Löwdin orthonormalized Fermi-orbitals which parametrically depend on variational quasi-classical electronic positions. Derivatives of these quasi-classical electronic positions, required for efficient minimization of the self-interaction corrected energy, are derived and tested, here, on atoms. Total energies and ionization energies in closed-shell singlet atoms, where correlation is less important, using the Perdew-Wang 1992 Local Density Approximation (PW92) functional, are in good agreement with experiment and non-relativistic quantum-Monte-Carlo results albeit slightly too low.

  16. Vertical Roughness of the Polar Regions of Mars from Mars Orbiter Laser Altimeter Pulse-Width Measurements

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Frawley, J. J.; Sakimoto, S. E. H.

    2000-01-01

    The sub-kilometer scale vertical roughness of the martian surface in the polar regions can be investigated using calibrated, optical pulse width data provided by the Mars Orbiter Laser Altimeter (MOLA). Garvin and others have previously discussed initial observations of what we have called "total vertical roughness" or TVR, as derived from MOLA optical pulse width observations acquired during the pre-mapping phases of the Mars Global Surveyor (MGS) mission. Here we present the first assessment of the Mars polar region properties of the TVR parameter from more than nine months of continuous mapping by MOLA as part of the MGS mapping mission. Other than meter-scale surface properties directly inferred from Mars Orbiter Camera (MOC) images, MOLA measurements of footprint-scale TVR represent the only direct measurements of the local vertical structure of the martian surface at approx. 150 m length scales. These types of data have previously been shown to correlate with geologic process histories for terrestrial desert surfaces on the basis of Shuttle Laser Altimeter (SLA) observations. Additional information is obtained in the original extended abstract.

  17. A General Closed-Form Solution for the Lunar Reconnaissance Orbiter (LRO) Antenna Pointing System

    NASA Technical Reports Server (NTRS)

    Shah, Neerav; Chen, J. Roger; Hashmall, Joseph A.

    2010-01-01

    The National Aeronautics and Space Administration s (NASA) Lunar Reconnaissance Orbiter (LRO) launched on June 18, 2009 from the Cape Canaveral Air Force Station aboard an Atlas V launch vehicle into a direct insertion trajectory to the Moon LRO, designed, built, and operated by the NASA Goddard Space Flight Center in Greenbelt, MD, is gathering crucial data on the lunar environment that will help astronauts prepare for long-duration lunar expeditions. During the mission s nominal life of one year its six instruments and one technology demonstrator will find safe landing site, locate potential resources, characterize the radiation environment and test new technology. To date, LRO has been operating well within the bounds of its requirements and has been collecting excellent science data images taken from the LRO Camera Narrow Angle Camera (LROC NAC) of the Apollo landing sites have appeared on cable news networks. A significant amount of information on LRO s science instruments is provided at the LRO mission webpage. LRO s Attitude Control System (ACS), in addition to controlling the orientation of the spacecraft is also responsible for pointing the High Gain Antenna (HGA). A dual-axis (or double-gimbaled) antenna, deployed on a meter-long boom, is required to point at a selected Earth ground station. Due to signal loss over the distance from the Moon to Earth, pointing precision for the antenna system is very tight. Since the HGA has to be deployed in spaceflight, its exact geometry relative to the spacecraft body is uncertain. In addition, thermal distortions and mechanical errors/tolerances must be characterized and removed to realize the greatest gain from the antenna system. These reasons necessitate the need for an in-flight calibration. Once in orbit around the moon, a series of attitude maneuvers was conducted to provide data needed to determine optimal parameters to load onboard, which would account for the environmental and mechanical errors at any antenna orientation. The nominal geometry for the HGA involves an outer gimbal axis that is exactly perpendicular to the inner gimbal axis, and a target direction that is exactly perpendicular to the outer gimbal axis. For this nominal geometry, closed-form solutions of the desired gimbal angles are simple to get for a desired target direction specified in the spacecraft body fame. If the gimbal axes and the antenna boresight are slightly misaligned, the nominal closed-form solution is not sufficiently accurate for computing the gimbal angles needed to point at a target. In this situation, either a general closed-form solution has to be developed for a mechanism with general geometries, or a correction scheme has to be applied to the nominal closed-form solutions. The latter has been adopted for Solar Dynamics Observatory (SDO) as can be seen in Reference 1, and the former has been used for LRO. The advantage of the general closed-form solution is the use of a small number of parameters for the correction of nominal solutions, especially in the regions near singularities. Singularities here refer to cases when the nominal closed-form solutions have two or more solutions. Algorithm complexity, however, is the disadvantage of the general closed-form solution.

  18. Precision Closed-Loop Orbital Maneuvering System Design and Performance for the Magnetospheric Multiscale Formation

    NASA Technical Reports Server (NTRS)

    Chai, Dean J.; Queen, Steven Z.; Placanica, Samuel J.

    2015-01-01

    NASAs Magnetospheric Multiscale (MMS) mission successfully launched on March 13,2015 (UTC) consists of four identically instrumented spin-stabilized observatories that function as a constellation to study magnetic reconnection in space. The need to maintain sufficiently accurate spatial and temporal formation resolution of the observatories must be balanced against the logistical constraints of executing overly-frequent maneuvers on a small fleet of spacecraft. These two considerations make for an extremely challenging maneuver design problem. This paper focuses on the design elements of a 6-DOF spacecraft attitude control and maneuvering system capable of delivering the high-precision adjustments required by the constellation designers specifically, the design, implementation, and on-orbit performance of the closed-loop formation-class maneuvers that include initialization, maintenance, and re-sizing. The maneuvering control system flown on MMS utilizes a micro-gravity resolution accelerometer sampled at a high rate in order to achieve closed-loop velocity tracking of an inertial target with arc-minute directional and millimeter-per second magnitude accuracy. This paper summarizes the techniques used for correcting bias drift, sensor-head offsets, and centripetal aliasing in the acceleration measurements. It also discusses the on-board pre-maneuver calibration and compensation algorithms as well as the implementation of the post-maneuver attitude adjustments.

  19. Feasibility of a responsive, hybrid propulsion augmented, Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit launch system

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.

    1996-03-01

    A novel, reusable, Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit (VTOL/SSTO) launch system concept, named HYP-SSTO, is presented in this paper. This launch vehicle system concept uses a highly coupled, main high performance liquid oxygen/liquid hydrogen (LOX/LH2) propulsion system, that is used only for launch, with a hybrid auxiliary propulsion system which is used during final orbit insertion, major orbit maneuvering, and landing propulsive burn phases of flight. By using a hybrid propulsion system for major orbit maneuver burns and landing, this launch system concept has many advantages over conventional VTOL/SSTO concepts that use LOX/LH2 propulsion system(s) burns for all phases of flight. Because hybrid propulsion systems are relatively simple and inert by their nature, this concept has the potential to support short turnaround times between launches, be economical to develop, and be competitive in terms of overall system life-cycle cost. This paper provides a technical description of the novel, reusable HYP-SSTO launch system concept. Launch capability performance, as well as major design and operational system attributes, are identified and discussed.

  20. Analytical investigation of the orbital structure close to the 1:1:1 resonance in spheroidal galaxies

    NASA Astrophysics Data System (ADS)

    Breiter, S.; Elipe, A.; Wytrzyszczak, I.

    2005-03-01

    The motion of stars in prolate and oblate spheroidal galaxies is studied. Using a combination of Lissajous and Poincar transformations, we introduce the set of action-angle-like variables. Then, we perturb the problem of the1:1:1 resonance motion in a spherical, homogenous galaxy, assuming the perturbing potential in the polynomial Ferrers form. We find the orbits that are periodic with respect to the radial and vertical oscillations by inspecting the equilibria of a normalized system. Imposing additional constraints, we find orbits that are periodic in all three coordinates with respect to the system that rotates with a galaxy.

  1. Single stage to orbit vertical takeoff and landing concept technology challenges

    NASA Astrophysics Data System (ADS)

    Heald, Daniel A.; Kessler, Thomas L.

    1991-10-01

    General Dynamics has developed a VTOL concept for a single-stage-to-orbit under contract to the Strategic Defense Initiative Organization. This paper briefly describes the configuration and its basic operations. Two key advanced technolgy areas are then discussed: high-performance rocket propulsion employing a plug nozzle arrangement and integrated health management to facilitate very rapid turnaround between flights, more like an aircraft than today's rockets.

  2. Close encounters of a rotating star with planets in parabolic orbits of varying inclination and the formation of hot Jupiters

    NASA Astrophysics Data System (ADS)

    Ivanov, P. B.; Papaloizou, J. C. B.

    2011-10-01

    In this paper we extend the theory of close encounters of a giant planet on a parabolic orbit with a central star developed in our previous work (Ivanov and Papaloizou in MNRAS 347:437, 2004; MNRAS 376:682, 2007) to include the effects of tides induced on the central star. Stellar rotation and orbits with arbitrary inclination to the stellar rotation axis are considered. We obtain results both from an analytic treatment that incorporates first order corrections to normal mode frequencies arising from stellar rotation and numerical treatments that are in satisfactory agreement over the parameter space of interest. These results are applied to the initial phase of the tidal circularisation problem. We find that both tides induced in the star and planet can lead to a significant decrease of the orbital semi-major axis for orbits having periastron distances smaller than 5-6 stellar radii with tides in the star being much stronger for retrograde orbits compared to prograde orbits. Assuming that combined action of dynamic and quasi-static tides could lead to the total circularisation of orbits this corresponds to observed periods up to 4-5 days. We use the simple Skumanich law to characterise the rotational history of the star supposing that the star has its rotational period equal to one month at the age of 5 Gyr. The strength of tidal interactions is characterised by circularisation time scale, t ev , which is defined as a typical time scale of evolution of the planet's semi-major axis due to tides. This is considered as a function of orbital period P obs , which the planet obtains after the process of tidal circularisation has been completed. We find that the ratio of the initial circularisation time scales corresponding to prograde and retrograde orbits, respectively, is of order 1.5-2 for a planet of one Jupiter mass having P obs ~ 4 days. The ratio grows with the mass of the planet, being of order five for a five Jupiter mass planet with the same P orb . Note, however, this result might change for more realistic stellar rotation histories. Thus, the effect of stellar rotation may provide a bias in the formation of planetary systems having planets on close orbits around their host stars, as a consequence of planet-planet scattering, which favours systems with retrograde orbits. The results reported in the paper may also be applied to the problem of tidal capture of stars in young stellar clusters.

  3. Closed Form Solutions for Unsteady Free Convection Flow of a Second Grade Fluid over an Oscillating Vertical Plate

    PubMed Central

    Ali, Farhad; Khan, Ilyas; Shafie, Sharidan

    2014-01-01

    Closed form solutions for unsteady free convection flows of a second grade fluid near an isothermal vertical plate oscillating in its plane using the Laplace transform technique are established. Expressions for velocity and temperature are obtained and displayed graphically for different values of Prandtl number Pr, thermal Grashof number Gr, viscoelastic parameter α, phase angle ωτ and time τ. Numerical values of skin friction τ0 and Nusselt number Nu are shown in tables. Some well-known solutions in literature are reduced as the limiting cases of the present solutions. PMID:24551033

  4. Periodic Orbits Close to 1:1:1 Resonance in Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Wytrzyszczak, I.; Elipe, A.; Breiter, S.

    2004-05-01

    The motion of stars in prolate and oblate spheroidal galaxies is studied. Using a combination of Lissajous and Poincare transformations, we introduce the set of action-angle-like variables. Then, we perturb the problem of the 1:1:1 resonance motion in a spherical, homogenous galaxy, assuming the perturbing potential in the polynomial Ferrers form. We find the orbits that are periodic with respect to the radial and latitudinal oscillations, by inspecting the equilibria of a normalized system. Imposing additional constraints, we find orbits that are periodic in all three coordinates with respect to the system that rotates with a galaxy. Linear stability of orbits is investigated.

  5. Some schemes for on-line correction of the closed orbit, dispersion and beta functions in PEP

    SciTech Connect

    Donald, M.H.R.; Blocker, C.; Chao, A.W.; Hollebeek, R.J.; Lee, M.J.; Linstadt, J.E.; Siegrist, J.L.; Spencer, N.

    1981-02-01

    PEP has been operated successfully under computer control. It is necessary for colliding beam operation that the errors in closed orbits, dispersion and beta functions be corrected. The schemes in the PEP control program for on-line correction of these errors are described in this paper. The orbit control tasks in the PEP control system perform the functions of data gathering, data presentation (color display, printing), calculation and setting of corrector magnets. The tasks are generally small and modular, taking information from the database, processing it, then returning the results to the database. The PEP operator communicates with the tasks through touch panels monitored by the Director program. The display task, which displays orbit and corrector information on a TV color display, provides the main information required by the operator.

  6. Pseudoeigenvalue methods for orbital optimization. General theory and application to closed shell, open shell, and two configuration SCF wave functions

    NASA Astrophysics Data System (ADS)

    Page, Michael; McIver, J. W., Jr.

    1983-11-01

    A general Newton-Raphson based iterative method of orbital optimization is presented. In contrast to the usual exponential transformation technique, the unitary orbital rotation matrix is specified in terms of unconstrained variables through the use of an eigenvalue equation. The method seeks improved orbitals by repeatedly constructing and diagonalizing a single symmetric matrix. The theory is applied to the closed shell, open shell, and two configuration self-consistent field (2CSCF) wave functions. In these cases, simplifying approximations greatly reduce the computational labor without seriously impeding convergence properties. Under these approximations and a particular specification of certain parameters, the closed shell case becomes identical to the traditional Roothaan method. However, an alternative specification gives a method which has superior convergence properties to the Roothaan method. The convergence properties of the general method are examined. The general criterion for the intrinsic convergence of the method and a simple test for the stability of the converged solution are given. Also, an inexpensive enhancement based on an interpolation scheme results in accelerated and forced convergence. Some aspects of the implementation of the method are discussed. Relatively minor modifications to existing closed shell computer programs allow the calculation of open shell and 2CSCF wave functions.

  7. Robust vertical scanning white-light interferometry in close-to-machine applications

    NASA Astrophysics Data System (ADS)

    Tereschenko, Stanislav; Lehmann, Peter; Gollor, Pascal; Kuehnhold, Peter

    2015-05-01

    We present a scanning white-light interferometer (SWLI) for close-to-machine applications in the presence of environmental vibrations. It combines an area measuring white-light interferometer and a punctual measuring laser distance interferometer (LDI) in one device. The measurement spot of the LDI is within the field of view of SWLI. The LDI measures any distance change during the white-light measurement with a high temporal resolution. With the knowledge of the real distance changes during the measurement we can compensate for the influence of environmental vibrations on the white-light correlograms. The reconstruction of the white-light interference signals takes place after measurement by reordering the captured images in accordance with their real positions obtained by the LDI. With this system we are able to reconstruct completely distorted and unusable SWLI signals and to determine the 3D topography of the measurement specimen from these reconstructed signals with high accuracy. We demonstrate the feasibility of the method by examples of practical measurements with and without vibrational disturbances.

  8. [Morphological, microscopic changes in the thyroid gland in the cases of hanging in vertical position with open and closed noose].

    PubMed

    Okłota, Magdalena; Niemcunowicz-Janica, Anna; Dziecioł, Janusz; Ptaszyńska-Sarosiek, Iwona; Klim, Beata; Sackiewicz, Adam; Załuski, Janusz; Szeremeta, Michał

    2011-01-01

    The aim of the morphological study was to search for traumatic changes in the thyroid in the cases of hanging in a vertical position with an open and closed noose. These changes would constitute an additional proof of intravital hanging and they would be useful in postmortem diagnosis of the hangings in which other commonly acknowledged features of intravitality are not discovered. In 33% of all cases, petechiae were observed in the thyroid gland. They appeared in 20% of the hangings with the closed noose, and in 13% of the hangings with the use of the open noose. The study showed that there was no difference between the open or closed, hard noose in terms of changes in the thyroid gland. There was also no correlation between the body position and the injury of the thyroid gland. In all the cases, hyperemia of the thyroid was observed and segmental expansion of blood vessels. The histopathological analysis showed that in one third of all the cases with negative macroscopic examination, it was discovered that microscopic changes indicated hanging alive. PMID:22715676

  9. Simulation of open-loop plasma vertical movement response in the Damavand tokamak using closed-loop subspace system identification

    NASA Astrophysics Data System (ADS)

    Darestani Farahani, N.; Abbasi Davani, F.

    2016-02-01

    The formulation of a multi-input single-output closed-loop subspace method for system identification has been employed for the purpose of obtaining control-relevant model of the open loop response for plasma vertical movement in the Damavand tokamak. Such a model is particularly well suited for the robust controller design. The method described in this paper is a kind of worst-case identification technique, aiming to minimize the error between the identified model and the true plant. The accuracy of the estimation of the plant dynamics has been tested by different experiments. The fitness of the identified model around the defined operating point has been more than 90%, and compared to the physical-based model, it has better root mean squared error (RMSE) measure of the goodness of fitting.

  10. Dynamical tides excited in rotating stars of different masses and ages and the formation of close in orbits

    NASA Astrophysics Data System (ADS)

    Chernov, S. V.; Papaloizou, J. C. B.; Ivanov, P. B.

    2013-09-01

    We study the tidal response of rotating solar-mass stars, as well as more massive rotating stars, of different ages in the context of tidal captures leading to either giant exoplanets on close in orbits, or the formation of binary systems in star clusters. To do this, we adopt approaches based on normal mode and associated overlap integral evaluation, developed in a companion paper by Ivanov et al., and direct numerical simulation, to evaluate energy and angular momentum exchanges between the orbit and normal modes. The two approaches are found to be in essential agreement apart from when encounters occur near to pseudo-synchronization, where the stellar angular velocity and the orbital angular velocity at periastron are approximately matched. We find that the strength of tidal interaction being expressed in dimensionless natural units is significantly weaker for the more massive stars, as compared to the solar-mass stars, because of the lack of significant convective envelopes in the former case. On the other hand, the interaction is found to be stronger for retrograde as opposed to prograde orbits in all cases. In addition, for a given pericentre distance, tidal interactions also strengthen for more evolved stars on account of their radial expansion. In agreement with previous work based on simplified polytropic models, we find that energy transferred to their central stars could play a significant role in the early stages of the circularization of potential `Hot Jupiters'.

  11. Exo-Mercury Analogues and the Roche Limit for Close-Orbiting Rocky Planets

    NASA Astrophysics Data System (ADS)

    Rogers, Leslie A.; Price, Ellen

    2015-12-01

    The origin of Mercury's enhanced iron content is a matter of ongoing debate. The characterization of rocky exoplanets promises to provide new independent insights on this topic, by constraining the occurrence rate and physical and orbital properties of iron-enhanced planets orbiting distant stars. The ultra-short-period transiting planet candidate KOI-1843.03 (0.6 Earth-radius, 4.245 hour orbital period, 0.46 Solar-mass host star) represents the first exo-Mercury planet candidate ever identified. For KOI-1843.03 to have avoided tidal disruption on such a short orbit, Rappaport et al. (2013) estimate that it must have a mean density of at least 7g/cc and be at least as iron rich as Mercury. This density lower-limit, however, relies upon interpolating the Roche limits of single-component polytrope models, which do not accurately capture the density profiles of >1000 km differentiated rocky bodies. A more exact calculation of the Roche limit for the case of rocky planets of arbitrary composition and central concentration is needed. We present 3D interior structure simulations of ultra-short-period tidally distorted rocky exoplanets, calculated using a modified version of Hachisu’s self-consistent field method and realistic equations of state for silicates and iron. We derive the Roche limits of rocky planets as a function of mass and composition, and refine the composition constraints on KOI-1843.03. We conclude by discussing the implications of our simulations for the eventual characterization of short-period transiting planets discovered by K2, TESS, CHEOPS and PLATO.

  12. Orbits of close binaries with CA II H and K in emission. III - Eleven more systems

    NASA Astrophysics Data System (ADS)

    Popper, Daniel M.

    1990-07-01

    Lick spectrograms have been used to derive spectroscopic orbits for the 11 systems CQ Aur, SS Boo, SS Cam, Ru Cnc, UX Com, RT CrB, AW Her, PW Her, GK Hya, RW UMa, and RS UMi, in order to complete an extended analysis of detached subgiant binaries with H and K emission. Features common to nearly all the systems include UV excesses of the cooler components and anomalies in the surface-flux ratios, which are best understood as flux deficits relative to the fluxes expected from the values of B-V of the cooler components. Spottedness can explain the surface flux anomalies.

  13. The orbiter Columbia closes a successful STS-90 mission upon landing on KSC's runway 33.

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The orbiter Columbia touches down on Runway 33 of KSC's Shuttle Landing Facility to complete the nearly 16-day STS-90 mission. Main gear touchdown was at 12:08:59 p.m. EDT on May 3, 1998, landing on orbit 256 of the mission. The wheels stopped at 12:09:58 EDT, completing a total mission time of 15 days, 21 hours, 50 minutes and 58 seconds. The 90th Shuttle mission was Columbia's 13th landing at the space center and the 43rd KSC landing in the history of the Space Shuttle program. During the mission, the crew conducted research to contribute to a better understanding of the human nervous system. The crew of the STS-90 Neurolab mission include Commander Richard Searfoss; Pilot Scott Altman; Mission Specialists Richard Linnehan, D.V.M., Dafydd (Dave) Williams, M.D., with the Canadian Space Agency, and Kathryn (Kay) Hire; and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D.

  14. Shift in principal equilibrium current from a vertical to a toroidal one towards the initiation of a closed flux surface in ECR plasmas in the LATE device

    NASA Astrophysics Data System (ADS)

    Kuroda, Kengoh; Wada, Manato; Uchida, Masaki; Tanaka, Hitoshi; Maekawa, Takashi

    2016-02-01

    In toroidal electron cyclotron resonance (ECR) plasmas under a weak external vertical field {{B}\\text{V}} a part of the pressure driven vertical charge separation current returns along the helical field lines, generating a toroidal current. The rest circulates via the conducting vacuum vessel. Only the toroidal current contributes to the production of a closed flux surface. Both the toroidal and vertical currents are an equilibrium current that provides a radial force by the interaction with the vertical field and the toroidal field, respectively, to counter-balance the outward pressure ballooning force. We have done experiments using 2.45 GHz microwaves in the low aspect ratio torus experiment (LATE) device to investigate in what way and how much the toroidal current is generated towards the initiation of a closed flux surface. In steady discharges by {{P}\\text{inj}}=1.5 kW under various {{B}\\text{V}} both the pressure and the toroidal current become large with {{B}\\text{V}} . When {{B}\\text{V}}=6.8 G, a toroidal current of 290 A is generated and the vertical field is reduced to 1.2 G inside the current channel, being close to the initiation of a closed flux surface. In this plasma the return current does not obey Ohm’s law. Instead, the return current flows so that the electric force on the electron fluid is balanced with the pressure gradient along the field lines. Near the top and bottom boundaries superthermal electrons flow beyond the potential barrier onto the walls along the field lines. In another discharge by the low power of {{P}\\text{inj}}=1.0 kW under {{B}\\text{V}}=8.3 G, both the toroidal current and the pressure steadily increase for an initial duration of 1.1 s and then abruptly jump, generating an initial closed flux surface. While the counter force from the vertical current is initially dominant, that from the toroidal current gradually increases and becomes four times larger than that from the vertical current just before the initiation of a closed flux surface. The results suggest that the conversion ratio to the return current along the field lines from the vertical charge separation current increases as the electron temperature increases. Upon initiation of a closed flux surface the counter force from the toroidal current also jumps by three times and becomes 10 times larger than that from the vertical current.

  15. A Search for Rocky Planets in Close Orbits around White Dwarfs

    NASA Astrophysics Data System (ADS)

    Debes, John; Sandhaus, Phoebe; Ely, Justin

    2015-12-01

    The search for transiting habitable exoplanets has broadened to include several types of stars that are smaller than the Sun in order to increase the observed transit depth and hence the atmospheric signal of the planet. Of all current spectral types, white dwarfs are the most favorable for this type of investigation. The fraction of white dwarfs that possess close-in rocky planets is unknown, but several large angle surveys of stars have the photometric precision and cadence to discover at least one if they are common. Ultraviolet observations of white dwarfs may allow for detection of molecular oxygen or ozone in the atmosphere of a terrestrial planet. We use archival Hubble Space Telescope data from the Cosmic Origins Spectrograph to search for transiting rocky planets around UV-bright white dwarfs. In the process, we discovered unusual variability in the pulsating white dwarf GD~133, which shows slow sinusoidal variations in the UV. While we detect no planets around our small sample of targets, we do place stringent limits on the possibility of transiting planets, down to sub-lunar radii. We also point out that non-transiting small planets in thermal equilibrium are detectable around hotter white dwarfs through infrared excesses, and identify two candidates.

  16. A Search for Rocky Planets in Close Orbits around White Dwarfs with COS

    NASA Astrophysics Data System (ADS)

    Sandhaus, Phoebe; Debes, John H.; Ely, Justin; Hines, Dean C.

    2016-01-01

    The search for transiting habitable exoplanets has broadened to include several types of stars that are smaller than the Sun in order to increase the observed transit depth and hence the atmospheric signal of the planet. Of all current spectral types, white dwarfs are the most favorable for this type of investigation. The fraction of white dwarfs that possess close-in rocky planets is unknown, but several large angle surveys of stars have the photometric precision and cadence to discover at least one if they are common. Ultraviolet observations of white dwarfs may allow for detection of molecular oxygen or ozone in the atmosphere of a terrestrial planet. We use archival Hubble Space Telescope data from the Cosmic Origins Spectrograph to search for transiting rocky planets around UV-bright white dwarfs. In the process, we discovered unusual variability in the pulsating white dwarf GD~133, which shows slow sinusoidal variations in the UV. While we detect no planets around our small sample of targets, we do place stringent limits on the possibility of transiting planets, down to sub-lunar radii.

  17. Precision Closed-Loop Orbital Maneuvering System Design and Performance for the Magnetospheric Multi-Scale Mission (MMS) Formation

    NASA Technical Reports Server (NTRS)

    Chai, Dean; Queen, Steve; Placanica, Sam

    2015-01-01

    NASA's Magnetospheric Multi-Scale (MMS) mission successfully launched on March 13, 2015 (UTC) consists of four identically instrumented spin-stabilized observatories that function as a constellation to study magnetic reconnection in space. The need to maintain sufficiently accurate spatial and temporal formation resolution of the observatories must be balanced against the logistical constraints of executing overly-frequent maneuvers on a small fleet of spacecraft. These two considerations make for an extremely challenging maneuver design problem. This paper focuses on the design elements of a 6-DOF spacecraft attitude control and maneuvering system capable of delivering the high-precision adjustments required by the constellation designers---specifically, the design, implementation, and on-orbit performance of the closed-loop formation-class maneuvers that include initialization, maintenance, and re-sizing. The maneuvering control system flown on MMS utilizes a micro-gravity resolution accelerometer sampled at a high rate in order to achieve closed-loop velocity tracking of an inertial target with arc-minute directional and millimeter-per-second magnitude accuracy. This paper summarizes the techniques used for correcting bias drift, sensor-head offsets, and centripetal aliasing in the acceleration measurements. It also discusses the on-board pre-maneuver calibration and compensation algorithms as well as the implementation of the post-maneuver attitude adjustments.

  18. Importance of Orbital Optimization for Double-Hybrid Density Functionals: Application of the OO-PBE-QIDH Model for Closed- and Open-Shell Systems.

    PubMed

    Sancho-García, J C; Pérez-Jiménez, A J; Savarese, M; Brémond, E; Adamo, C

    2016-03-17

    We assess here the reliability of orbital optimization for modern double-hybrid density functionals such as the parameter-free PBE-QIDH model. We select for that purpose a set of closed- and open-shell strongly and weakly bound systems, including some standard and widely used data sets, to show that orbital optimization improves the results with respect to standard models, notably for electronically complicated systems, and through first-order properties obtained as derivatives of the energy. PMID:26901447

  19. Spin-Orbit Effects in Closed-Shell Heavy and Superheavy Element Monohydrides and Monofluorides with Coupled-Cluster Theory.

    PubMed

    Gao, Dong-Dong; Cao, Zhanli; Wang, Fan

    2016-03-01

    Bond lengths and force constants of a set of closed-shell sixth-row and superheavy element monohydrides and monofluorides are calculated in this work. Kramers restricted coupled-cluster approaches (KR-CC) with spin-orbit coupling (SOC) included at the self-consistent field (SCF) level as well as CC approaches with SOC included in post-SCF treatment (SOC-CC) are employed in calculations. Recently published relativistic effective core potentials are employed, and highly accurate results for superheavy element molecules are achieved with KR-CCSD(T). SOC effects on bond lengths and force constants of these molecules are investigated. Effects of electron correlation are shown to be affected by SOC to a large extent for some superheavy element molecules. Bond lengths and force constants with SOC-CC agree very well with those of KR-CC for most of the sixth-row element molecules. As for superheavy element molecules, SOC-CCSD is able to afford results that are in good agreement with those of KR-CCSD except for 111F, while the error of SOC-CCSD(T) is more pronounced. Large error would be encountered with SOC-CC approaches for molecules when both SOC and electron correlation effects are sizable. PMID:26836109

  20. Wave packet construction in three-dimensional quantum billiards: Visualizing the closed orbit, collapse and revival of wave packets in the cubical billiard

    NASA Astrophysics Data System (ADS)

    Kaur, Maninder; Arora, Bindiya; Mian, Mahmood

    2016-01-01

    We examine the dynamical evolution of wave packets in a cubical billiard where three quantum numbers ($n_x,n_y,n_z$) determine its energy spectrum and consequently its dynamical behavior. We have constructed the wave packet in the cubical billiard and have observed its time evolution for various closed orbits. The closed orbits are possible for certain specific values of quantum numbers ($n_x,n_y,n_z$) and initial momenta ($k_x,k_y,k_z$). We observe that a cubical billiard exhibits degenerate energy levels and the path lengths of the closed orbits for these degenerate energy levels are identical. In spite of the identical path lengths, the shapes of the closed orbits for degenerate levels are different and depend upon angles $\\theta$ and $\\phi$ which we term as the sweep and the elevation angle respectively. These degenerate levels owe their origin to the symmetries prevailing in the cubical billiard and degenerate levels disappear completely or partially for a parallelepiped billiard as the symmetry breaks due to commensurate or incommensurate ratio of sides.

  1. The distribution of ion orbit loss fluxes of ions and energy from the plasma edge across the last closed flux surface into the scrape-off layer

    NASA Astrophysics Data System (ADS)

    Stacey, Weston M.; Schumann, Matthew T.

    2015-04-01

    A more detailed calculation strategy for the evaluation of ion orbit loss of thermalized plasma ions in the edge of tokamaks is presented. In both this and previous papers, the direct loss of particles from internal flux surfaces is calculated from the conservation of canonical angular momentum, energy, and magnetic moment. The previous result that almost all of the ion energy and particle fluxes crossing the last closed flux surface are in the form of ion orbit fluxes is confirmed, and the new result that the distributions of these fluxes crossing the last closed flux surface into the scrape-off layer are very strongly peaked about the outboard midplane is demonstrated. Previous results of a preferential loss of counter current particles leading to a co-current intrinsic rotation peaking just inside of the last closed flux surface are confirmed. Various physical details are discussed.

  2. The distribution of ion orbit loss fluxes of ions and energy from the plasma edge across the last closed flux surface into the scrape-off layer

    SciTech Connect

    Stacey, Weston M.; Schumann, Matthew T.

    2015-04-15

    A more detailed calculation strategy for the evaluation of ion orbit loss of thermalized plasma ions in the edge of tokamaks is presented. In both this and previous papers, the direct loss of particles from internal flux surfaces is calculated from the conservation of canonical angular momentum, energy, and magnetic moment. The previous result that almost all of the ion energy and particle fluxes crossing the last closed flux surface are in the form of ion orbit fluxes is confirmed, and the new result that the distributions of these fluxes crossing the last closed flux surface into the scrape-off layer are very strongly peaked about the outboard midplane is demonstrated. Previous results of a preferential loss of counter current particles leading to a co-current intrinsic rotation peaking just inside of the last closed flux surface are confirmed. Various physical details are discussed.

  3. Electron correlations and spin-orbit interaction in two-photon ionization of closed-shell atoms: A relativistic time-dependent Dirac-Fock approach

    NASA Astrophysics Data System (ADS)

    Fink, Michael G. J.; Johnson, Walter R.

    1990-10-01

    Electron-correlation and spin-orbit-interaction effects are known to play an important role in the quantitative description of multiphoton ionization of heavy atoms. In this paper an ab initio approach to two-photon ionization (2PI) of closed-shell atoms in the framework of the relativistic time-dependent Dirac-Fock theory is proposed. This formulation is known to contain important electron-correlation corrections and includes the spin-orbit interaction by use of relativistic wave functions. Computational results for nonresonant 2PI total cross sections of the rare gases are given. The approach is suitable for calculations of angular distributions, branching ratios, and autoionizing resonances.

  4. Atomic-Orbital Close-Coupling Calculations Of Electron Capture From Hydrogen Atoms Into Highly Excited Rydberg States Of Multiply Charged Ions

    SciTech Connect

    Igenbergs, Katharina; Wallerberger, Markus; Aumayr, Friedrich

    2011-06-01

    Collisions of neutral hydrogen atoms with multiply charged ions have been studied in the past using the semi-classical atomic-orbital close-coupling method. We present total and state-resolved cross sections for charge exchange as well as ionization. The advent of supercomputers and parallel programming facilities now allow treatment of collision systems that have been out of reach before, because much larger basis sets involving high quantum numbers are now feasible.

  5. Maneuver Design Using Relative Orbital Elements

    NASA Astrophysics Data System (ADS)

    Spencer, David A.; Lovell, Thomas A.

    2015-12-01

    Relative orbital elements provide a geometric interpretation of the motion of a deputy spacecraft about a chief spacecraft. The formulation yields an intuitive understanding of how the relative motion evolves with time, and by incorporating velocity changes in the local-vertical, local-horizontal component directions, the change in relative motion due to impulsive maneuvers can be evaluated. This paper utilizes a relative orbital element formulation that characterizes relative motion where the chief spacecraft is assumed to be in a circular orbit. Expressions are developed for changes to the relative orbital elements as a function of the impulsive maneuver components in each coordinate direction. A general maneuver strategy is developed for targeting a set of relative orbital elements, and this strategy is applied to scenarios that are relevant for close proximity operations, including establishing a stationary relative orbit, natural motion circumnavigation, and station-keeping in a leading or trailing orbit.

  6. Retrospective analysis of changes in land uses on vertic soils of closed mesodepressions on the Azov plain

    NASA Astrophysics Data System (ADS)

    Rukhovich, D. I.; Simakova, M. S.; Kulyanitsa, A. L.; Bryzzhev, A. V.; Koroleva, P. V.; Kalinina, N. V.; Vil'chveskaya, E. V.; Dolinina, E. A.; Rukhovich, S. V.

    2015-10-01

    A retrospective analysis of changes in land uses within the bottoms of closed mesodepressions in Azov district of Rostov oblast for the period from 1968 to 2014 was performed. A cartographic analysis of changes in the degree of waterlogging of these depressions and the related changes in the character of land use was based on remote sensing data. This study was performed within the framework of a general problem-oriented system of the retrospective monitoring of the soil and land cover. It was found that the waterlogged area in the mesodepressions in the particular years does not depend on the anthropogenic loads and is subjected to cyclic variations. Temporal intervals for the wetting-drying cycles were determined. The maximum drying of the bottoms of mesodepressions was observed in 1975, 1990, and 2011.

  7. Radio Emission and Orbital Motion from the Close-encounter Star-Brown Dwarf Binary WISE J072003.20-084651.2

    NASA Astrophysics Data System (ADS)

    Burgasser, Adam J.; Melis, Carl; Todd, Jacob; Gelino, Christopher R.; Hallinan, Gregg; Bardalez Gagliuffi, Daniella

    2015-12-01

    We report the detection of radio emission and orbital motion from the nearby star-brown dwarf binary WISE J072003.20-084651.2AB. Radio observations across the 4.5-6.5 GHz band with the Very Large Array identify at the position of the system quiescent emission with a flux density of 15 ± 3 μJy, and a highly polarized radio source that underwent a 2-3 minute burst with peak flux density 300 ± 90 μJy. The latter emission is likely a low-level magnetic flare similar to optical flares previously observed for this source. No outbursts were detected in separate narrow-band Hα monitoring observations. We report new high-resolution imaging and spectroscopic observations that confirm the presence of a co-moving T5.5 secondary and provide the first indications of three-dimensional orbital motion. We used these data to revise our estimates for the orbital period (4.1{}-1.3+2.7 year) and tightly constrain the orbital inclination to be nearly edge-on (93.°6+1.°6-1.°4), although robust measures of the component and system masses will require further monitoring. The inferred orbital motion does not change the high likelihood that this radio-emitting very low-mass binary made a close pass to the Sun in the past 100 kyr. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  8. Atomic-orbital close-coupling calculations for collisions involving fusion relevant highly charged impurity ions using very large basis sets

    SciTech Connect

    Igenbergs, Katharina; Wallerberger, Markus; Schweinzer, Josef; Aumayr, Friedrich

    2012-05-25

    The atomic-orbital close-coupling formalism is a well-known method for the semiclassical treatment of ion-atom collisions. Cross sections for these kinds of collisions are mainly needed in the analysis of certain spectroscopic data from nuclear fusion experiments as well as astrophysical data. We shall outline how the computational implementation can be improved in such a way that collisions involving heavy, highly charged impurity ions, such as Ar{sup 18+} can be treated. Furthermore we show and discuss exemplary results.

  9. A Fixed-Base-Simulator Study of the Ability of a Pilot to Establish Close Orbits Around the Moon

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Riley, Donald R.

    1961-01-01

    A study was made on a six-degree-of-freedom fixed-base simulator of the ability of human pilots to modify ballistic trajectories of a 5 space vehicle approaching the moon to establish a circular orbit about 50 miles above the lunar surface. The unmodified ballistic trajectories had miss distances from the lunar surface of from 40 to 80 miles, and a velocity range of from 8,200 to 8,700 feet per second at closest approach. The pilot was given control of the thrust (along the vehicle longitudinal axis) and torques about all three body axes. The information display given to the pilot was a hodograph of the vehicle rate of descent and circumferential velocity, an altimeter, and vehicle attitude and rate meters.

  10. Natural convection mass transfer at a vertical array of closely-spaced horizontal cylinders with special reference to electrochemical reactor design

    SciTech Connect

    Sedahmed, G.H.; Nirdosh, I.

    1995-06-01

    Many industrial electrochemical processes such as electrowinning of metals, electrochemical pollution control, and electroorganic and electroinorganic syntheses are diffusion-controlled processes whose rates depend on the geometry of the working electrode as well as the prevailing hydrodynamic conditions. Recently much work has been done to develop new electrochemical reactors which are more efficient than the traditional parallel plate electrochemical reactor used in conducting such processes. In line with this, the object of the present work was to study the natural convection mass transfer behavior of a new electrode geometry, namely an array of closely-spaced horizontal tubes. Natural convection mass transfer at a vertical array of closely-spaced horizontal cylinders was studied by an electrochemical technique involving the measurement of the limiting current of the cathodic deposition of copper from acidified copper sulfate solution. Various combinations of solution concentration, cylinder diameter, and number of cylinders per array were used including experiments on single cylinders. The mass transfer coefficient at the array was found to decrease with increasing number of cylinders, pass through a minimum, and then increase with further increase in the number of cylinders per array; the mass transfer coefficient increased with increasing cylinder diameter in the array. Mass transfer data for different arrays were correlated for the range 6.3 {times} 10{sup 9} < ScGr < 3.63 {times} 10{sup 10} by the equation Sh = 0.455(ScGr){sup 0.25} and for the range 6.3 {times} 10{sup 10} < ScGr < 3.63 {times} 10{sup 12} by the equation Sh = 0.0064(ScGr){sup 0.42}. The characteristic length used in the above correlations was obtained by dividing the array area by the perimeter projected onto a horizontal plane. Practical implications of the present results in designing electrochemical reactors with heat transfer facilities are highlighted.

  11. Counter-Orbitals: Another Class of Co-Orbitals

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, Anthony R.

    2012-10-01

    Co-orbital companions share the same orbital period and semi-major axis about a primary (star or planet). Heretofore there have been three recognized classes of co-orbitals: (1) Trojans librate in tadpole-shaped orbits about the equilateral Lagrange points L4 and L5, 60 degrees ahead of or behind the secondary (planet or satellite). (2) Horse-shoe companions librate about both L4 and L5, as well as the L3 Lagrange point diametrically opposite the secondary. (3) ``Quasi-satellites'' appear to be in distant retrograde orbits about the secondary, but actually are in prograde orbits about the primary with the same period as the secondary. Quasi-satellite orbits lie outside the secondary's Hill sphere, and enclose both L1 and L2, and sometimes L4 and L5 as well. In addition, some asteroids and comets are found in hybrid orbits which alternate among the above three classes, or combine some of their features. New research now reveals a fourth class of co-orbitals, which does not appear to be known before, and may be called ``counter-orbitals''. Imagine reversing the inertial velocity of a distant quasi-satellite. Then it remains in orbit about the primary, with the same period, semi-major axis, eccentricity, and orbital plane, although retrograde. But instead of remaining relatively close to the secondary, now it passes the secondary twice per orbit, near periapsis and apoapsis. The attractive impulses at these conjunctions tend to stabilize this arrangement. Numerical simulations of the general three-body problem verify that counter-orbitals can persist for over 10,000 orbits, with small vertical excursions, but a wide range of eccentricities and mass ratios. For example, Charon can maintain counter-orbital companions at least up to 3 percent of its own mass, in eccentric orbits extending from about 7050 km out to 41700 km from the center of Pluto. This may present a collision hazard to the New Horizons spacecraft.

  12. Orbital properties of an unusually low-mass sdB star in a close binary system with a white dwarf

    NASA Astrophysics Data System (ADS)

    Silvotti, R.; stensen, R. H.; Bloemen, S.; Telting, J. H.; Heber, U.; Oreiro, R.; Reed, M. D.; Farris, L. E.; O'Toole, S. J.; Lanteri, L.; Degroote, P.; Hu, H.; Baran, A. S.; Hermes, J. J.; Althaus, L. G.; Marsh, T. R.; Charpinet, S.; Li, J.; Morris, R. L.; Sanderfer, D. T.

    2012-08-01

    We have used 605 days of photometric data from the Kepler spacecraft to study KIC 6614501, a close binary system with an orbital period of 0.157 497 47(25) days (3.779 939 h), that consists of a low-mass subdwarf B (sdB) star and a white dwarf (WD). As seen in many other similar systems, the gravitational field of the WD produces an ellipsoidal deformation of the sdB which appears in the light curve as a modulation at two times the orbital frequency. The ellipsoidal deformation of the sdB implies that the system has a maximum inclination of 40, with i ? 20 being the most likely. The orbital radial velocity (RV) of the sdB star is high enough to produce a Doppler beaming effect with an amplitude of 432 5 ppm, clearly visible in the folded light curve. The photometric amplitude that we obtain, K1 = 85.8 km s-1, is 12 per cent less than the spectroscopic RV amplitude of 97.2 2.0 km s-1. The discrepancy is due to the photometric contamination from a close object at about 5 arcsec north-west of KIC 6614501, which is difficult to remove. The atmospheric parameters of the sdB star, Teff = 23 700 500 K and log g = 5.70 0.10, imply that it is a rare object below the extreme horizontal branch (EHB), similar to HD 188112. The comparison with different evolutionary tracks suggests a mass between 0.18 and 0.25 M?, too low to sustain core helium burning. If the mass was close to 0.18-0.19 M?, the star could be already on the final He-core WD cooling track. A higher mass, up to 0.25 M?, would be compatible with a He-core WD progenitor undergoing a cooling phase in a H-shell flash loop. A third possibility, with a mass between 0.32 and 0.40 M?, cannot be excluded and would imply that the sdB is a 'normal' (but with an unusually low mass) EHB star burning He in its core. In all these different scenarios, the system is expected to merge in less than 3.1 Gyr due to gravitational wave radiation.

  13. Closed-Form and Numerically-Stable Solutions to Problems Related to the Optimal Two-Impulse Transfer Between Specified Terminal States of Keplerian Orbits

    NASA Technical Reports Server (NTRS)

    Senent, Juan

    2011-01-01

    The first part of the paper presents some closed-form solutions to the optimal two-impulse transfer between fixed position and velocity vectors on Keplerian orbits when some constraints are imposed on the magnitude of the initial and final impulses. Additionally, a numerically-stable gradient-free algorithm with guaranteed convergence is presented for the minimum delta-v two-impulse transfer. In the second part of the paper, cooperative bargaining theory is used to solve some two-impulse transfer problems when the initial and final impulses are carried by different vehicles or when the goal is to minimize the delta-v and the time-of-flight at the same time.

  14. Closed loop performance of a brushless dc motor powered electromechanical actuator for flight control applications. [computerized simulation for Shuttle Orbiter applications

    NASA Technical Reports Server (NTRS)

    Demerdash, N. A.; Nehl, T. W.

    1980-01-01

    A comprehensive digital model for the analysis and possible optimization of the closed loop dynamic (instantaneous) performance of a power conditioner fed, brushless dc motor powered, electromechanical actuator system (EMA) is presented. This model was developed for the simulation of the dynamic performance of an actual prototype EMA built for NASA-JSC as a possible alternative to hydraulic actuators for consideration in Space Shuttle Orbiter applications. Excellent correlation was achieved between numerical model simulation and experimental test results obtained from the actual hardware. These results include: various current and voltage waveforms in the machine-power conditioner (MPC) unit, flap position as well as other control loop variables in response to step commands of change of flap position. These results with consequent conclusions are detailed in the paper.

  15. Atmosphere expansion and mass loss of close-orbit giant exoplanets heated by stellar XUV. I. Modeling of hydrodynamic escape of upper atmospheric material

    SciTech Connect

    Shaikhislamov, I. F.; Khodachenko, M. L.; Sasunov, Yu. L.; Lammer, H.; Kislyakova, K. G.; Erkaev, N. V.

    2014-11-10

    In the present series of papers we propose a consistent description of the mass loss process. To study in a comprehensive way the effects of the intrinsic magnetic field of a close-orbit giant exoplanet (a so-called hot Jupiter) on atmospheric material escape and the formation of a planetary inner magnetosphere, we start with a hydrodynamic model of an upper atmosphere expansion in this paper. While considering a simple hydrogen atmosphere model, we focus on the self-consistent inclusion of the effects of radiative heating and ionization of the atmospheric gas with its consequent expansion in the outer space. Primary attention is paid to an investigation of the role of the specific conditions at the inner and outer boundaries of the simulation domain, under which different regimes of material escape (free and restricted flow) are formed. A comparative study is performed of different processes, such as X-ray and ultraviolet (XUV) heating, material ionization and recombination, H{sub 3}{sup +} cooling, adiabatic and Lyα cooling, and Lyα reabsorption. We confirm the basic consistency of the outcomes of our modeling with the results of other hydrodynamic models of expanding planetary atmospheres. In particular, we determine that, under the typical conditions of an orbital distance of 0.05 AU around a Sun-type star, a hot Jupiter plasma envelope may reach maximum temperatures up to ∼9000 K with a hydrodynamic escape speed of ∼9 km s{sup –1}, resulting in mass loss rates of ∼(4-7) · 10{sup 10} g s{sup –1}. In the range of the considered stellar-planetary parameters and XUV fluxes, that is close to the mass loss in the energy-limited case. The inclusion of planetary intrinsic magnetic fields in the model is a subject of the follow-up paper (Paper II).

  16. Closeup view of the Orbiter Discovery as it is suspended ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the Orbiter Discovery as it is suspended vertically by the hoist in the transfer aisle of the Vehicle Assembly Building at Kennedy Space Center. This view is a detail of the starboard wing of the orbiter. Note the Reinforced Carbon-Carbon panels on the leading edge of the wing, the elevons and the elevon seal panels on the wing's trailing edge. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  17. Atmosphere Expansion and Mass Loss of Close-orbit Giant Exoplanets Heated by Stellar XUV. II. Effects of Planetary Magnetic Field; Structuring of Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Khodachenko, M. L.; Shaikhislamov, I. F.; Lammer, H.; Prokopov, P. A.

    2015-11-01

    This is the second paper in a series where we build a self-consistent model to simulate the mass-loss process of a close-orbit magnetized giant exoplanet, so-called hot Jupiter (HJ). In this paper we generalize the hydrodynamic (HD) model of an HJ's expanding hydrogen atmosphere, proposed in the first paper, to include the effects of intrinsic planetary magnetic field. The proposed self-consistent axisymmetric 2D magnetohydrodynamics model incorporates radiative heating and ionization of the atmospheric gas, basic hydrogen chemistry for the appropriate account of major species composing HJ's upper atmosphere and related radiative energy deposition, and {{{H}}}3+ and Ly? cooling processes. The model also takes into account a realistic solar-type X-ray/EUV spectrum for calculation of intensity and column density distribution of the radiative energy input, as well as gravitational and rotational forces acting in a tidally locked planet-star system. An interaction between the expanding atmospheric plasma and an intrinsic planetary magnetic dipole field leads to the formation of a current-carrying magnetodisk that plays an important role for topology and scaling of the planetary magnetosphere. A cyclic character of the magnetodisk behavior, composed of consequent phases of the disk formation followed by the magnetic reconnection with the ejection of a ring-type plasmoid, has been discovered and investigated. We found that the mass-loss rate of an HD 209458b analog planet is weakly affected by the equatorial surface field <0.3 G, but is suppressed by an order of magnitude at the field of 1 G.

  18. Birefringence controlled room-temperature picosecond spin dynamics close to the threshold of vertical-cavity surface-emitting laser devices

    NASA Astrophysics Data System (ADS)

    Li, M. Y.; Jhme, H.; Soldat, H.; Gerhardt, N. C.; Hofmann, M. R.; Ackemann, T.

    2010-11-01

    We analyze the spin-induced circular polarization dynamics at the threshold of vertical-cavity surface-emitting lasers at room-temperature using a hybrid excitation combining electrically pumping without spin preference and spin-polarized optical injection. After a short pulse of spin-polarized excitation, fast oscillations of the circular polarization degree (CPD) are observed within the relaxation oscillations. A theoretical investigation of this behavior on the basis of a rate equation model shows that these fast oscillations of CPD could be suppressed by means of a reduction of the birefringence of the laser cavity.

  19. INTERACTION OF CLOSE-IN PLANETS WITH THE MAGNETOSPHERE OF THEIR HOST STARS. II. SUPER-EARTHS AS UNIPOLAR INDUCTORS AND THEIR ORBITAL EVOLUTION

    SciTech Connect

    Laine, Randy O.; Lin, Douglas N. C. E-mail: randy.laine@normalesup.org

    2012-01-20

    Planets with several Earth masses and orbital periods of a few days have been discovered through radial velocity and transit surveys. Regardless of their formation mechanism, an important evolution issue is the efficiency of their retention in the proximity of their host stars. If these 'super-Earths' attained their present-day orbits during or shortly after the T Tauri phase of their host stars, a large fraction of these planets would have encountered an intense stellar magnetic field. These rocky planets have a higher conductivity than the atmosphere of their host stars and, therefore, the magnetic flux tube connecting them would slip though the envelope of the host stars faster than across the planets. The induced electromotive force across the planet's diameter leads to a potential drop which propagates along a flux tube away from the planet with an Alfven speed. The foot of the flux tube would sweep across the stellar surface and the potential drop across the field lines drives a DC current analogous to that proposed for the electrodynamics of the Io-Jupiter system. The ohmic dissipation of this current produces potentially observable hot spots in the star envelope. It also heats the planet and leads to a torque which drives the planet's orbit to evolve toward both circularization and a state of synchronization with the spin of the star. The net effect is the damping of the planet's orbital eccentricity. Around slowly (or rapidly) spinning stars, this process also causes rocky planets with periods less than a few days to undergo orbital decay (or expansion/stagnation) within a few Myr. In principle, this effect can determine the retention efficiency of short-period hot Earths. We also estimate the ohmic dissipation interior to these planets and show that it can lead to severe structure evolution and potential loss of volatile material in them. However, these effects may be significantly weakened by the reconnection of the induced field.

  20. THE ROCHE LIMIT FOR CLOSE-ORBITING PLANETS: MINIMUM DENSITY, COMPOSITION CONSTRAINTS, AND APPLICATION TO THE 4.2 hr PLANET KOI 1843.03

    SciTech Connect

    Rappaport, Saul; Sanchis-Ojeda, Roberto; Winn, Joshua N.; Rogers, Leslie A.; Levine, Alan E-mail: sar@mit.edu E-mail: larogers@caltech.edu

    2013-08-10

    The requirement that a planet must orbit outside of its Roche limit gives a lower limit on the planet's mean density. The minimum density depends almost entirely on the orbital period and is immune to systematic errors in the stellar properties. We consider the implications of this density constraint for the newly identified class of small planets with periods shorter than half a day. When the planet's radius is accurately known, this lower limit to the density can be used to restrict the possible combinations of iron and rock within the planet. Applied to KOI 1843.03, a 0.6 R{sub Circled-Plus} planet with the shortest known orbital period of 4.245 hr, the planet's mean density must be {approx}> 7 g cm{sup -3}. By modeling the planetary interior subject to this constraint, we find that the composition of the planet must be mostly iron, with at most a modest fraction of silicates ({approx}< 30% by mass)

  1. A COMPARISON OF SEVERAL LATTICE TOOLS FOR COMPUTATION OF ORBIT FUNCTIONS OF AN ACCELERATOR

    SciTech Connect

    COURANT, E.DTRBOJEVIC,D.BERG,S.J.GARREN,A.A.TALMAN, R.

    2003-05-12

    The values of orbit functions for accelerator lattices as computed with accelerator design programs may differ between different programs. For a simple lattice, consisting of identical constant-gradient bending magnets, the functions (horizontal and vertical betatron tunes, dispersions, closed orbit offsets, orbit lengths, chromaticities etc.) can be evaluated analytically. This lattice was studied with the accelerator physics tools SYNCH [1], COSY INFINITY [2], MAD [3], and TEAPOT [4]. It was found that while all the programs give identical results at the central design momentum, the results differ substantially among the various lattice tools for non-zero momentum deviations. Detailed results and comparisons are presented.

  2. Test aspect of single stage to orbit systems

    NASA Astrophysics Data System (ADS)

    Gaubatz, William A.; Nowlan, Daniel R.; Maras, Mathew G.; Copper, John A.; Coleman, Kate A.

    1995-03-01

    The McDonnell Douglas Delta Clipper Team recently completed the initial flight testing of a one third scale version of an operational single stage to orbit vehicle. The Delta Clipper Experimental, DC-X, is a 14 m tall, totally reusable, liquid hydrogen/liquid oxygen fueled test vehicle powered by four P&W RL-lOAS rocket engines. It has totally autonomous on board flight control and mission control systems; flight test mission requirements are simply added through software to the mission controller. The DC X is designed to explore and validate the low speed flight qualities of a vertical take-off and vertical landing spacecraft and its flight characteristics closely duplicate those predicted for the full scale DC-1 vehicle. The DC-1 vehicle would be capable of routinely flying people and/or cargo to and from space and would have a lift capacity for carrying 12 metric tons to low earth orbit.

  3. THE VERTICAL

    NASA Technical Reports Server (NTRS)

    Albert, Stephen L.; Spencer, Jeffrey B.

    1994-01-01

    'THE VERTICAL' computer keyboard is designed to address critical factors which contribute to Repetitive Motion Injuries (RMI) (including Carpal Tunnel Syndrome) in association with computer keyboard usage. This keyboard splits the standard QWERTY design into two halves and positions each half 90 degrees from the desk. In order to access a computer correctly. 'THE VERTICAL' requires users to position their bodies in optimal alignment with the keyboard. The orthopaedically neutral forearm position (with hands palms-in and thumbs-up) reduces nerve compression in the forearm. The vertically arranged keypad halves ameliorate onset occurrence of keyboard-associated RMI. By utilizing visually-reference mirrored mylar surfaces adjustable to the user's eye, the user is able to readily reference any key indicia (reversed) just as they would on a conventional keyboard. Transverse adjustability substantially reduces cumulative musculoskeletal discomfort in the shoulders. 'THE VERTICAL' eliminates the need for an exterior mouse by offering a convenient finger-accessible curser control while the hands remain in the vertically neutral position. The potential commercial application for 'THE VERTICAL' is enormous since the product can effect every person who uses a computer anywhere in the world. Employers and their insurance carriers are spending hundreds of millions of dollars per year as a result of RMI. This keyboard will reduce the risk.

  4. E-Orbit Functions

    NASA Astrophysics Data System (ADS)

    Klimyk, Anatoliy U.; Patera, Jiri

    2008-01-01

    We review and further develop the theory of E-orbit functions. They are functions on the Euclidean space En obtained from the multivariate exponential function by symmetrization by means of an even part We of a Weyl group W, corresponding to a Coxeter-Dynkin diagram. Properties of such functions are described. They are closely related to symmetric and antisymmetric orbit functions which are received from exponential functions by symmetrization and antisymmetrization procedure by means of a Weyl group W. The E-orbit functions, determined by integral parameters, are invariant with respect to even part Weaff of the affine Weyl group corresponding to W. The E-orbit functions determine a symmetrized Fourier transform, where these functions serve as a kernel of the transform. They also determine a transform on a finite set of points of the fundamental ! domain Fe of the group Weaff (the discrete E-orbit function transform).

  5. Examination of trajectories between low planetary orbits and circulation orbits

    NASA Astrophysics Data System (ADS)

    Knoedler, Andrew J.

    Circulating orbits have been investigated to provide regular periodic transfers between the Earth and Mars. The circulating orbits pass close enough to each planet to be considered hyperbolic in planetocentric frame. The large spacecraft (CASTLE) in the circulating orbit is resupplied by a smaller 'Taxi' spacecraft leaving a low planetary orbit. The Taxi follows an optimal three-impulse patched-conic trajectory to travel from its spaceport to the large spacecraft following a hyperbolic fly-by. Examining the parameters of the situation produces a Delta V profile for each planetary fly-by of the circulating orbit.

  6. An orbit fit program for localizing errors in RHIC

    SciTech Connect

    Liu, C.; Minty, M.; Ptitsyn, V.

    2011-11-01

    Many errors in an accelerator are evidenced as transverse kicks to the beam which distort the beam trajectory. Therefore, the information of the errors are imprinted in the distorted orbits, which are different from what would be predicted by the optics model. In this note, we introduce an algorithm for fitting the orbit based on an on-line optics model. By comparing the measured and fitted orbits, we first present results validating the algorithm. We then apply the algorithm and localize the location of the elusive source of vertical diurnal variations observed in RHIC. The difference of two trajectories (linear accelerator) or closed orbits (storage ring) should match exactly a betatron oscillation, which is predictable by the optics model, in an ideal machine. However, in the presence of errors, the measured trajectory deviates from prediction since the model is imperfect. Comparison of measurement to model can be used to detect such errors. To do so the initial conditions (phase space parameters at any point) must be determined which can be done by comparing the difference orbit to prediction using only a few beam position monitors (BPMs). The fitted orbit can be propagated along the beam line based on the optics model. Measurement and model will agree up to the point of an error. The error source can be better localized by additionally fitting the difference orbit using downstream BPMs and back-propagating the solution. If one dominating error source exist in the machine, the fitted orbit will deviate from the difference orbit at the same point.

  7. The Orbital Acceleration Research Experiment

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Hendrix, M. K.; Fox, J. C.; Thomas, D. J.; Nicholson, J.

    1986-01-01

    The hardware and software of NASA's proposed Orbital Acceleration Research Experiment (OARE) are described. The OARE is to provide aerodynamic acceleration measurements along the Orbiter's principal axis in the free-molecular flow-flight regime at orbital attitude and in the transition regime during reentry. Models considering the effects of electromagnetic effects, solar radiation pressure, orbiter mass attraction, gravity gradient, orbital centripetal acceleration, out-of-orbital-plane effects, orbiter angular velocity, structural noise, mass expulsion signal sources, crew motion, and bias on acceleration are examined. The experiment contains an electrostatically balanced cylindrical proofmass accelerometer sensor with three orthogonal sensing axis outputs. The components and functions of the experimental calibration system and signal processor and control subsystem are analyzed. The development of the OARE software is discussed. The experimental equipment will be enclosed in a cover assembly that will be mounted in the Orbiter close to the center of gravity.

  8. Model Calibration and Optics Correction Using Orbit Response Matrix in the Fermilab Booster

    SciTech Connect

    Lebedev, V.A.; Prebys, E.; Petrenko, A.V.; Kopp, S.E.; McAteer, M.J.; /Texas U.

    2012-05-01

    We have calibrated the lattice model and measured the beta and dispersion functions in Fermilab's fast-ramping Booster synchrotron using the Linear Optics from Closed Orbit (LOCO) method. We used the calibrated model to implement ramped coupling, dispersion, and beta-beating corrections throughout the acceleration cycle, reducing horizontal beta beating from its initial magnitude of {approx}30% to {approx}10%, and essentially eliminating vertical beta-beating and transverse coupling.

  9. Orbit Functions

    NASA Astrophysics Data System (ADS)

    Klimyk, Anatoliy; Patera, Jiri

    2006-01-01

    In the paper, properties of orbit functions are reviewed and further developed. Orbit functions on the Euclidean space En are symmetrized exponential functions. The symmetrization is fulfilled by a Weyl group corresponding to a Coxeter-Dynkin diagram. Properties of such functions will be described. An orbit function is the contribution to an irreducible character of a compact semisimple Lie group G of rank n from one of its Weyl group orbits. It is shown that values of orbit functions are repeated on copies of the fundamental domain F of the affine Weyl group (determined by the initial Weyl group) in the entire Euclidean space En. Orbit functions are solutions of the corresponding Laplace equation in En, satisfying the Neumann condition on the boundary of F. Orbit functions determine a symmetrized Fourier transform and a transform on a finite set of points.

  10. [Vascular tumors of the orbit].

    PubMed

    Cophignon, J; d'Hermies, F; Civit, T

    2010-01-01

    Vascular tumors of the orbit include capillary hemangioma, cavernous hemangioma, hemolymphangioma, hemangiopericytoma and a few rare tumors. Capillary hemangioma and hemolymphangioma, occurring mainly in children, are covered in the chapter devoted to childhood tumors. In this chapter, cavernous hemangioma and hemangiopericytoma are discussed as well as rare vascular tumors. Although orbital varix is not a tumor, it is also considered because of the diagnostic problems and the close correlation of orbital varix with a true tumor: hemolymphangioma. PMID:20303554

  11. Flyby orbits and perturbing potential

    NASA Astrophysics Data System (ADS)

    Bootello, Javier

    2015-08-01

    This article checks a perturbing gravitational potential, with the orbit dynamics parameters of hyperbolic flyby trajectories. This potential could be consistent with the collected data of flybys after 2005, however with a wide error range. Results are consistent with the post-Newtonian gravitoelectric accelerations, although starting from a different method approach. The dynamic effects of this quantum gravitational perturbing potential, could be modeled as an orbit precession, similar gravitoelectric effect as in close elliptic orbits.

  12. Localized control of the orbit in the RHIC insertions

    SciTech Connect

    Ohnuma, S.

    1992-08-01

    It is proposed here that, for RHIC92 insertions, we remove the corrector from Ql and the beam position monitor (BPM) from Q2 in order to alleviate difficulties associated with the physical layout of the quadrupole triplet (Ql-Q2-Q3). Furthermore, it is suggested that there should be both (horizontal and vertical) types of BPMs at each end of the free space between Q3 and Q4 and between Q7 and Q8 so that one can measure the direction of the closed orbit. With this model, a localized control of the beam position and angle at the interaction point (IP) with either four or six correctors has been investigated. Similarly, a control of the orbit within an insertion for minimizing the orbit displacements at seven (or eight) BPM locations with nine (or ten) correctors in each transverse direction has been studied. Examples are given for the beta at IP = 2m, 10m, 20m, and 200m. It is shown that the design value of the integrated field strength of 0.3 T-m for each corrector should be sufficient for the tasks considered here except for some cases with extreme parameter values. At the same time, it is emphasized that the overall correction of the closed orbit for the entire ring (arcs and insertions) should be re-examined for RHIC92 lattice with the proposed arrangement of correctors and BPMS.

  13. Orbit selection for a Mars geoscience/climatology orbiter

    NASA Technical Reports Server (NTRS)

    Uphoff, C.

    1984-01-01

    This paper is a presentation of recent work to provide orbit design and selection criteria for a close, nearly polar, nearly circular orbit of Mars. The main aspects of the work are the evaluation of atmospheric drag for altitude selection, the orbit evolution for variations in periapsis altitude, and the interactions of those factors with the science objectives of the MGCO mission. A dynamic model of the Mars atmosphere is available from parallel efforts and the latest estimates of the upper atmospheric density and its time history are incorporated into the analysis to provide a final orbit that satisfies planetary quarantine requirements.

  14. Meteoroids on peculiar orbits

    NASA Astrophysics Data System (ADS)

    Andreev, V.

    2014-07-01

    Analysis of meteor catalogues reveals the presence of meteoroids on orbits different from other small bodies. These orbits are characterized by small sizes (the semi-major axis is less than 1.73 au) and retrograde motions (the inclination is greater than 90 degrees). These meteoroids have the Tisserand invariant relative to Jupiter T_J = 1/a + 2 A_J^{-3/2} ?{a (1 - e^2)} cos i larger than 0.5767 and meteoroid orbit inclination i larger than 90 degrees. The percent ratio varies from 0.6 % (McCrosky and Posen photographic meteor catalogue) to 31 % (Kharkov radiolocation meteor catalogue). In the present time, we do not know evolutional mechanisms changing drastically orbital inclinations other than close encounters with the major planets. Therefore, it is natural to look for the parent bodies for these meteoroids among small bodies already moving on orbits with inclinations greater than 90 degrees. These small bodies known now are comets. The distributions of orbital elements are presented and analyzed.

  15. Antisymmetric Orbit Functions

    NASA Astrophysics Data System (ADS)

    Klimyk, Anatoliy; Patera, Jiri

    2007-02-01

    In the paper, properties of antisymmetric orbit functions are reviewed and further developed. Antisymmetric orbit functions on the Euclidean space En are antisymmetrized exponential functions. Antisymmetrization is fulfilled by a Weyl group, corresponding to a Coxeter-Dynkin diagram. Properties of such functions are described. These functions are closely related to irreducible characters of a compact semisimple Lie group G of rank n. Up to a sign, values of antisymmetric orbit functions are repeated on copies of the fundamental domain F of the affine Weyl group (determined by the initial Weyl group) in the entire Euclidean space En. Antisymmetric orbit functions are solutions of the corresponding Laplace equation in En, vanishing on the boundary of the fundamental domain F. Antisymmetric orbit functions determine a so-called antisymmetrized Fourier transform which is clo! sely related to expansions of central functions in characters of irreducible representations of the group G. They also determine a transform on a finite set of points of F (the discrete antisymmetric orbit function transform). Symmetric and antisymmetric multivariate exponential, sine and cosine discrete transforms are given.

  16. The Hot Orbit: Orbital Cellulitis

    PubMed Central

    Chaudhry, Imtiaz A.; Al-Rashed, Waleed; Arat, Yonca O.

    2012-01-01

    Orbital cellulitis is an uncommon condition previously associated with severe complications. If untreated, orbital cellulitis can be potentially sight and life threatening. It can affect both adults and children but has a greater tendency to occur in the pediatric age group. The infection most commonly originates from sinuses, eyelids or face, retained foreign bodies, or distant soources by hematogenous spread. It is characterized by eyelid edema, erythema, chemosis, proptosis, blurred vision, fever, headache, and double vision. A history of upper respiratory tract infection prior to the onset is very common especially in children. In the era prior to antibiotics, vision loss from orbital cellulitis was a dreaded complication. Currently, imaging studies for detection of orbital abcess, the use of antibiotics and early drainage have mitigated visual morbidity significantly. The purpose of this review is to describe current investigative strategies and management options in the treatment of orbital cellulitis, establish their effectiveness and possible complications due to late intervention. PMID:22346113

  17. The Eccentric Behavior of Nearly Frozen Orbits

    NASA Technical Reports Server (NTRS)

    Sweetser, Theodore H.; Vincent, Mark A.

    2013-01-01

    Frozen orbits are orbits which have only short-period changes in their mean eccentricity and argument of periapse, so that they basically keep a fixed orientation within their plane of motion. Nearly frozen orbits are those whose eccentricity and argument of periapse have values close to those of a frozen orbit. We call them "nearly" frozen because their eccentricity vector (a vector whose polar coordinates are eccentricity and argument of periapse) will stay within a bounded distance from the frozen orbit eccentricity vector, circulating around it over time. For highly inclined orbits around the Earth, this distance is effectively constant over time. Furthermore, frozen orbit eccentricity values are low enough that these orbits are essentially eccentric (i.e., off center) circles, so that nearly frozen orbits around Earth are bounded above and below by frozen orbits.

  18. Orbital cellulitis

    MedlinePLUS

    ... be needed to drain the abscess , or relieve pressure in the space around the eye. An orbital cellulitis infection can get worse very quickly. A person with this condition must be checked every few hours.

  19. Orbiter's Skeleton

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The structure of NASA's Mars Reconnaissance Orbiter spacecraft is constructed from composite panels of carbon layers over aluminum honeycomb, lightweight yet strong. This forms a basic structure or skeleton on which the instruments, electronics, propulsion and power systems can be mounted. The propellant tank is contained in the center of the orbiter's structure. This photo was taken at Lockheed Martin Space Systems, Denver, during construction of the spacecraft.

  20. Study of Abnormal Vertical Emittance Growth in ATF Extraction Line

    SciTech Connect

    Alabau, M.; Faus-Golfe, A.; Alabau, M.; Bambade, P.; Brossard, J.; Le Meur, G.; Rimbault, C.; Touze, F.; Angal-Kalinin, D.; Jones, J.K.; Appleby, R.; Scarfe, A.; Kuroda, S.; White, G.R.; Woodley, M.; Zimmermann, F.; /CERN

    2011-11-04

    Since several years, the vertical beam emittance measured in the Extraction Line (EXT) of the Accelerator Test Facility (ATF) at KEK, that will transport the electron beam from the ATF Damping Ring (DR) to the future ATF2 Final Focus beam line, is significantly larger than the emittance measured in the DR itself, and there are indications that it grows rapidly with increasing beam intensity. This longstanding problem has motivated studies of possible sources of this anomalous emittance growth. One possible contribution is non-linear magnetic fields in the extraction region experimented by the beam while passing off-axis through magnets of the DR during the extraction process. In this paper, simulations of the emittance growth are presented and compared to observations. These simulations include the effects of predicted non-linear field errors in the shared DR magnets and orbit displacements from the reference orbit in the extraction region. Results of recent measurements using closed orbit bumps to probe the relation between the extraction trajectory and the anomalous emittance growth are also presented.

  1. Orbital Evolution of Centaurs

    NASA Astrophysics Data System (ADS)

    Bailey, Brenae; Malhotra, R.

    2007-10-01

    The Centaurs are a transient population of small bodies in the outer solar system which are thought to be a dynamical class intermediate between the Kuiper Belt and the Jupiter family comets. They suffer frequent close encounters with the giant planets and their orbits are strongly chaotic. We are investigating the chaotic behavior of these orbits. Our numerical analysis of the orbital chaos in these orbits shows two types of behavior: (1) intermittent resonance sticking characterized by sudden jumps from one mean motion resonance to another, which may have characteristics similar to Lvy flights, and (2) random walks resulting in anomalous diffusion, in which the mean square deviation of the semimajor axis grows as tH where t is time and H ? 1/2. These results will constrain the possible origins and eventual fates of the Centaurs and will be applicable to the study of chaotic orbital evolution of other small body populations in the solar system. This work is funded by a grant from NASA's Outer Planets Research Program.

  2. Late type close binary system CM Dra

    NASA Astrophysics Data System (ADS)

    Kalomeni, Belinda

    2015-08-01

    In this study, we present new observations of the close binary system CM Dra. We analyzed all the available data of the system and estimated the physical parameters of the system stars highly accurately. Using the newly obtained parameters the distance of the system is determined to be 11.6 pc. A possible giant planet orbiting the close binary system has been detected. This orbital period would likely make it one of the longest known orbital period planet.

  3. [Orbital exenteration].

    PubMed

    Mouriaux, F; Barraco, P; Patentre, P; Pellerin, P

    2001-10-01

    Exenteration of the orbit is a disfiguring and destructive procedure that is usually reserved for treatment of life-threatening orbital malignancy when a less radical operation such as local surgery, chemotherapy, or irradiation are deemed inadequate or have failed. Many methods have been published for managing the socket, but of primary importance is the need to remove all diseased tissue prior to considering any reconstructive efforts. Options include spontaneous granulation, skin grafting, or muscle flaps. This article will describe the development and the indications for this procedure and will outline the surgical techniques and its complications, the various reconstructive efforts, and survival. The success of orbital exenteration depends on recurrence, histological type, tumor size, and tumor-free margins. PMID:11894540

  4. Orbital Debris

    NASA Technical Reports Server (NTRS)

    Kessler, D. J. (Compiler); Su, S. Y. (Compiler)

    1985-01-01

    Earth orbital debris issues and recommended future activities are discussed. The workshop addressed the areas of environment definition, hazards to spacecraft, and space object management. It concluded that orbital debris is a potential problem for future space operations. However, before recommending any major efforts to control the environment, more data are required. The most significant required data are on the population of debris smaller than 4 cm in diameter. New damage criteria are also required. When these data are obtained, they can be combined with hypervelocity data to evaluate the hazards to future spacecraft. After these hazards are understood, then techniques to control the environment can be evaluated.

  5. Autonomous orbital navigation using Kepler's equation

    NASA Technical Reports Server (NTRS)

    Boltz, F. W.

    1974-01-01

    A simple method of determining the six elements of elliptic satellite orbits has been developed for use aboard manned and unmanned spacecraft orbiting the earth, moon, or any planet. The system requires the use of a horizon sensor or other device for determining the local vertical, a precision clock or timing device, and Apollo-type navigation equipment including an inertial measurement unit (IMU), a digital computer, and a coupling data unit. The three elements defining the in-plane motion are obtained from simultaneous measurements of central angle traversed around the planet and elapsed flight time using a linearization of Kepler's equation about a reference orbit. It is shown how Kalman filter theory may also be used to determine the in-plane orbital elements. The three elements defining the orbit orientation are obtained from position angles in celestial coordinates derived from the IMU with the spacecraft vertically oriented after alignment of the IMU to a known inertial coordinate frame.

  6. Vertical Distribution of Water at Phoenix

    NASA Technical Reports Server (NTRS)

    Tamppari, L. K.; Lemmon, M. T.

    2011-01-01

    Phoenix results, combined with coordinated observations from the Mars Reconnaissance Orbiter of the Phoenix lander site, indicate that the water vapor is nonuniform (i.e., not well mixed) up to a calculated cloud condensation level. It is important to understand the mixing profile of water vapor because (a) the assumption of a well-mixed atmosphere up to a cloud condensation level is common in retrievals of column water abundances which are in turn used to understand the seasonal and interannual behavior of water, (b) there is a long history of observations and modeling that conclude both that water vapor is and is not well-mixed, and some studies indicate that the water vapor vertical mixing profile may, in fact, change with season and location, (c) the water vapor in the lowest part of the atmosphere is the reservoir that can exchange with the regolith and higher amounts may have an impact on the surface chemistry, and (d) greater water vapor abundances close to the surface may enhance surface exchange thereby reducing regional transport, which in turn has implications to the net transport of water vapor over seasonal and annual timescales.

  7. Nuclear orbiting

    SciTech Connect

    Shapira, D.

    1988-01-01

    Nuclear orbiting following collisions between sd and p shell nuclei is discussed. The dependence of this process on the real and imaginary parts of the nucleus-nucleus potential is discussed, as well as the evolution of the dinucleus toward a fully equilibrated fused system. 26 refs., 15 figs.

  8. Orbital Mechanics.

    ERIC Educational Resources Information Center

    Dalton, Joel B.

    Three computer programs are presented that allow the high school student to explore and understand the physical forces involved in orbital flight at a greater depth than is usually possible. For each program, introductory material is given including the physics and mathematics involved. This is followed by the computer program in BASIC language.…

  9. From Newton{close_quote}s moon to Einstein{close_quote}s moon

    SciTech Connect

    Nordtvedt, K.

    1996-05-01

    Continuing the lunar orbit{close_quote}s 300-year role as gravity{close_quote}s testing ground, laser ranging to the Moon precisely confirms the foundations and structure of general relativity. {copyright} {ital 1996 American Institute of Physics.}

  10. Newton's hypothetical orbits independently derived.

    NASA Astrophysics Data System (ADS)

    Kenyon, K. E.

    The mathematical results of four hypothetical orbital problems from the Principia are confirmed by an independent physical method. Each orbital problem that Newton posed and solved is characterized as follows. Given the shape of the orbit and the position of the force center, find the functional form of the central attractive force that will keep a body moving around the orbit. None of Newton's hypothetical orbital problems has so far found any apparent practical application, whereas the Kepler problem, also solved by Newton in the Principia, is of great importance to physics. The Kepler problem too can be derived easily by the present method. Newton used primarily geometrical constructions and logical deductions to arrive at his force functions. In contrast to this, the present (inverse) approach is based on a force balance: as a body moves along a curved path the outward centrifugal force always balances the component of the inward attractive force that is perpendicular to the orbit. Taking the functional form for the central force derived by Newton and inserting it into the force balance, the orbital shape can be derived by solving an ordinary second-order differential equation-the forced harmonic oscillator equation. Two of Newton's four force functions examined in this way lead to (different) fully nonlinear differential equations, which, surprisingly, can both be solved analytically and in closed form by means of the elementary functions that describe the shapes of the orbits.

  11. Eye and orbit ultrasound

    MedlinePLUS

    Echography - eye orbit; Ultrasound - eye orbit; Ocular ultrasonography; Orbital ultrasonography ... eye is numbed with medicine (anesthetic drops). The ultrasound wand (transducer) is placed against the front surface ...

  12. Configuration interaction singles natural orbitals: An orbital basis for an efficient and size intensive multireference description of electronic excited states

    SciTech Connect

    Shu, Yinan; Levine, Benjamin G.; Hohenstein, Edward G.

    2015-01-14

    Multireference quantum chemical methods, such as the complete active space self-consistent field (CASSCF) method, have long been the state of the art for computing regions of potential energy surfaces (PESs) where complex, multiconfigurational wavefunctions are required, such as near conical intersections. Herein, we present a computationally efficient alternative to the widely used CASSCF method based on a complete active space configuration interaction (CASCI) expansion built from the state-averaged natural orbitals of configuration interaction singles calculations (CISNOs). This CISNO-CASCI approach is shown to predict vertical excitation energies of molecules with closed-shell ground states similar to those predicted by state averaged (SA)-CASSCF in many cases and to provide an excellent reference for a perturbative treatment of dynamic electron correlation. Absolute energies computed at the CISNO-CASCI level are found to be variationally superior, on average, to other CASCI methods. Unlike SA-CASSCF, CISNO-CASCI provides vertical excitation energies which are both size intensive and size consistent, thus suggesting that CISNO-CASCI would be preferable to SA-CASSCF for the study of systems with multiple excitable centers. The fact that SA-CASSCF and some other CASCI methods do not provide a size intensive/consistent description of excited states is attributed to changes in the orbitals that occur upon introduction of non-interacting subsystems. Finally, CISNO-CASCI is found to provide a suitable description of the PES surrounding a biradicaloid conical intersection in ethylene.

  13. Closing in on Close Reading

    ERIC Educational Resources Information Center

    Boyles, Nancy

    2013-01-01

    "A significant body of research links the close reading of complex text--whether the student is a struggling reader or advanced--to significant gains in reading proficiency and finds close reading to be a key component of college and career readiness" (Partnership for Assessment of Readiness for College and Careers, 2011, p. 7). When the author

  14. Motion of dust in a planetary magnetosphere - Orbit-averaged equations for oblateness, electromagnetic, and radiation forces with application to Saturn's E ring

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas P.

    1993-01-01

    The orbital dynamics of micrometer-sized dust grains is explored numerically and analytically, treating the strongest perturbation forces acting on close circumplanetary dust grains: higher-order gravity, radiation pressure, and the electromagnetic force. The appropriate orbit-average equations are derived and applied to the E ring. Arguments are made for the existence of azimuthal and vertical asymmetries in the E ring. New understanding of the dynamics of E ring dust grains is applied to problems of the ring's breadth and height. The possibility for further ground-based and spacecraft observations is considered.

  15. Orbit analysis

    SciTech Connect

    Michelotti, L.

    1995-01-01

    The past fifteen years have witnessed a remarkable development of methods for analyzing single particle orbit dynamics in accelerators. Unlike their more classic counterparts, which act upon differential equations, these methods proceed by manipulating Poincare maps directly. This attribute makes them well matched for studying accelerators whose physics is most naturally modelled in terms of maps, an observation that has been championed most vigorously by Forest. In the following sections the author sketchs a little background, explains some of the physics underlying these techniques, and discusses the best computing strategy for implementing them in conjunction with modeling accelerators.

  16. Damping of orbital inclinations by bending waves

    NASA Technical Reports Server (NTRS)

    Ward, William R.; Hahn, Joseph M.

    1994-01-01

    An inclined secondary orbiting in a disk will launch bending waves from resonance sites where the Doppler shifted forcing frequency matches the disk's natural frequency for vertical oscillations. These vertical resonances are of two types: external resonances falling interior and exterior to the perturber's semimajor axis that excite its inclination and coorbiting resonances that fall at the perturber's orbit and damp its inclination. We show that torques from coorbiting resonances dominate the bending wave interaction for a constant density disk. In this case the inclination ultimately decay and an estimate of the characteristic time scale for this process is made.

  17. Dissociated Vertical Deviation

    MedlinePLUS

    ... Eye Terms Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Dissociated Vertical Deviation En Español Read in Chinese What is Dissociated Vertical Deviation (DVD)? DVD is ...

  18. Analysis of KEK-ATF Optics And Coupling Using Orbit Response Matrix Analysis

    SciTech Connect

    Wolski, A.; Nelson, J.; Ross, M.; Woodley, M.; Mishra, S.; /Fermilab

    2006-10-13

    LOCO is a code for analysis of the linear optics in a storage ring based on the closed orbit response to steering magnets. The analysis provides information on focusing errors, BPM gain and rotation errors, and local coupling. Here, we report the results of an application of LOCO to the KEK-ATF. Although the analysis appears to have provided useful information on the optics of the machine, it appears that one of the main aims of the study--to reduce the vertical emittance by correcting the local coupling--was not successful, and we discuss some possible reasons for this.

  19. Orbit Correction for the Newly Developed Polarization-Switching Undulator

    SciTech Connect

    Obina, Takashi; Honda, Tohru; Shioya, Tatsuro; Kobayashi, Yukinori; Tsuchiya, Kimichika; Yamamoto, Shigeru

    2007-01-19

    A new scheme of undulator magnet arrangements has been proposed and developed as a polarization-switching radiation source, and its test-stand was installed in the 2.5-GeV Photon Factory storage ring (PF ring) in order to investigate the effects on the beam orbit. The closed orbit distortion (COD) over 200 {mu}m was produced in a vertical direction when we switched the polarization of the radiation from the test-stand. In a horizontal direction, the COD was less than 50{mu}m. The results agreed well with the predictions from the magnetic-field measurement on the bench. In order to suppress the CODs and realize a stable operation of the ring with the polarization-switching, we developed an orbit correction system which consists of an encoder to detect motion of magnets, a pair of beam position monitors (BPMs), signal processing parts, and a pair of steering magnets. We succeeded in suppressing the CODs to the level below 3{mu}m using the system even when we switch the polarization at a maximum frequency of 0.8 Hz.

  20. Vertical Learning Environments.

    ERIC Educational Resources Information Center

    Readdick, Christine A.; Bartlett, Patricia M.

    1995-01-01

    Vertical learning environments (vertical surfaces covered with two- or three-dimensional detachable objects that provide opportunities for perception, manipulation, interaction, construction of knowledge, and representation) offer children rich, interactive learning environments at eye level. Discusses vertical learning environments in a Piagetian

  1. Vertical Map Storage.

    ERIC Educational Resources Information Center

    Perry, Joanne M.

    1982-01-01

    Discusses the superiority of vertical filing of maps in compressor-style vertical units over horizontal filing in drawers, emphasizing such factors as physical protection of the collection, ease of filing and retrieval, and efficient use of space. Disadvantages of vertical filing are also reviewed. (Author/JL)

  2. Vertical bounce of two vertically aligned balls

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2007-11-01

    When a tennis ball rests on top of a basketball and both drop to the floor together, the tennis ball is projected vertically at high speed. A mass-spring model of the impact, as well as air track data, suggest that the tennis ball should be projected at relatively low speed. Measurements of the forces on each ball and the bounce of vertically aligned superballs are used to resolve the discrepancy.

  3. Vertical axis wind turbine

    SciTech Connect

    Kato, Y.; Seki, K.; Shimizu, Y.

    1981-01-27

    Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with a starting and braking control system. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotary axis by keeping the blade span-wise direction in parallel with the axis and being provided with a low speed control windmill in which the radial position of each operating piece varies with a centrifugal force produced by the rotation of the vertical rotary axis.

  4. Vertical axis wind turbines

    DOEpatents

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  5. Orbital Winch

    NASA Technical Reports Server (NTRS)

    Hoyt, Robert (Inventor); Slostad, Jeffrey T. (Inventor); Frank, Scott (Inventor); Barnes, Ian M. (Inventor)

    2016-01-01

    Orbital winch having: lower and upper frames; spool having upper and lower flanges with lower flange attached to lower frame; axial tether guide mounted to upper frame; secondary slewing ring coaxial with spool and rotatably mounted to upper frame, wherein secondary slewing ring's outer surface has gearing; upper tether guide mounted to inner surface of secondary slewing ring; linear translation means having upper end mounted to upper frame and lower end mounted on lower frame; primary slewing ring rotatably mounted within linear translation means allowing translation axially between flanges, wherein primary slewing ring's outer surface has gearing; lower tether guide mounted on primary slewing ring's inner surface; pinion rod having upper end mounted to upper frame and lower end mounted to lower frame, wherein pinion rod's teeth engage primary and secondary slewing rings' outer surface teeth; and tether passing through axial, upper, and lower tether guides and winding around spool.

  6. Small orbits

    NASA Astrophysics Data System (ADS)

    Borsten, L.; Duff, M. J.; Ferrara, S.; Marrani, A.; Rubens, W.

    2012-04-01

    We study both the large and small U-duality charge orbits of extremal black holes appearing in D=5 and D=4 Maxwell-Einstein supergravity theories with symmetric scalar manifolds. We exploit a formalism based on cubic Jordan algebras and their associated Freudenthal triple systems, in order to derive the minimal charge representatives, their stabilizers and the associated moduli spaces. After recalling N=8 maximal supergravity, we consider N=2 and N=4 theories coupled to an arbitrary number of vector multiplets, as well as N=2 magic, STU, ST2 and T3 models. While the STU model may be considered as part of the general N=2 sequence, albeit with an additional triality symmetry, the ST2 and T3 models demand a separate treatment, since their representative Jordan algebras are Euclidean or only admit nonzero elements of rank 3, respectively. Finally, we also consider minimally coupled N=2, matter-coupled N=3, and pure N=5 theories.

  7. Pioneer probe mission with orbiter option

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A spacecraft is described which is based on Pioneer 10 and 11, and existing propulsion technology; it can transport and release a probe for entry into Jupiter's atmosphere, and subsequently maneuver to place the spacecraft in orbit about Jupiter. Orbital operations last 3 years and include maneuvers to provide multiple close satellite encounters which allow the orbit to be significantly changed to explore different parts of the magnetosphere. A mission summary, a guide to related documents, and background information about Jupiter are presented along with mission analysis over the complete mission profile. Other topics discussed include the launch, interplanetary flight, probe release and orbit deflection, probe entry, orbit selection, orbit insertion, periapsis raising, spacecraft description, and the effects of Jupiter's radiation belt on both orbiter and the probe.

  8. [Giant cavernous hemangioma of the orbit (case report)].

    PubMed

    Grusha, Ia O; Ismailova, D S; Eksarenko, O V; Fedorov, A A; Kharlap, S I

    2014-01-01

    The following case demonstrates a successful en bloc removal of a massive cavernous hemangioma of the orbit via vertical transpalpebral approach with postoperative improvement of optic nerve condition and optimal cosmetic result. PMID:24864499

  9. STS-106 orbiter Atlantis rolls over to the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the Vehicle Assembly Building (VAB), overhead cranes move above the orbiter Atlantis in order to lift it to vertical. When vertical, the orbiter will be placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.

  10. Orbital evolution modeling of Damocloides

    NASA Astrophysics Data System (ADS)

    Guliyev, Rustam; Churyumov, Klim; Kovalenko, Nataliya

    In this paper we performed the task of orbital evolution modeling for 93 currently known Damocloids, 1 Gyr backward and forward in time, using the integration package SWIFTER. The package includes seven integration technics. We choosed the SyMBA integrator (Symplectic Massive Body Algorithm), which allows to handle close approaches between test particles and planets. We included the Sun, the eight planets, and Pluto as massive bodies in our simulation. The initial state vectors for test particles and planets were taken from HORIZONS JPL service. The timestep of integration was 7.305 days. The calculations were stopped when the particle reached heliocentric distance 5000 AU. The value is close to the inner boundary of the Oort cloud. It is shown, that dynamical lifetime of the population is about 1-10 myr. We present the Damocloids orbital parameters distributions and discuss the results of the simulation for Damocloids inclinations changes with time. Our results show that the dynamic lifetime of Damocloids population is about 106-107 years. Population of Damocloids retains highly inclined orbits during the integration time into the past and into the future. Thus, the population of Damocloids may indeed represent the dynamical relationship of comets on inclined orbits (Halley-type comets) with a hypothetical spherical Oort Cloud. Some of evolutionary tracks allow transition from retrograde motion to direct and vice versa (e.g.Dioretsa asteroid (20461)). However, for large periods of time, due to close encounters with the giant planets, the simulation results should be considered only statistically.

  11. Orbital and epicyclic frequencies of Maclaurin spheroids

    NASA Astrophysics Data System (ADS)

    Klu?niak, W.; Rosi?ska, D.

    2013-10-01

    We present analytical formulae for the orbital and epicyclic frequencies in orbits around Maclaurin spheroids in Newtonian gravity. The Laplace equation for the gravitational potential implies that the orbital frequency squared is the arithmetic mean of the squares of the epicyclic frequencies, ? _r^2 + ? _z^2 = 2? _o^2. The radial epicyclic frequency has a maximum at radius r=?{2}ae for spheroid ellipticities e>1/?{2}, while for e = 0.834 583 18 it vanishes at the stellar equator (at r = a). For still larger ellipticities the innermost stable circular orbit (ISCO) is separated from the surface of the spheroid by a gap and has radius rms = 1.198 203 ae. The vertical epicyclic frequency is always larger than the orbital one, and always by a factor of ?{2} in the marginally stable orbit. The presence of periastron motion, nodal precession (whose sense is the same as in retrograde orbits in the Kerr metric) and of the ISCO makes the properties of orbital motion around Maclaurin spheroids analogous to those in the Kerr metric. We find that the condition for the existence of circular orbits in test-particle motion is ? _r^2 + ? _z^2 >0, equally for the Maclaurin spheroid and for the Kerr metric.

  12. Vertical Axis Wind Turbine

    Energy Science and Technology Software Center (ESTSC)

    2002-04-01

    Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). VAWT-SAL Vertical Axis Wind Turbine- Stochastic Aerodynamic Loads Ver 3.2 numerically simulates the stochastic (random0 aerodynamic loads of the Vertical-Axis Wind Turbine (VAWT) created by the atomspheric turbulence. The program takes into account the rotor geometry, operating conditions, and assumed turbulence properties.

  13. General view of the mid deck of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the mid deck of the Orbiter Discovery during pre-launch preparations. Note the payload and mission specialists seats. The seats are removed packed and stowed during on-orbit activities. Also not the black panels in the right of the image, they are protective panels used for preparation of the orbiter and astronaut ingress while the orbiter is in its vertical launch position. This image was taken at Kenney Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  14. Shadowing Lemma and chaotic orbit determination

    NASA Astrophysics Data System (ADS)

    Spoto, Federica; Milani, Andrea

    2016-03-01

    Orbit determination is possible for a chaotic orbit of a dynamical system, given a finite set of observations, provided the initial conditions are at the central time. The Shadowing Lemma (Anosov 1967; Bowen in J Differ Equ 18:333-356, 1975) can be seen as a way to connect the orbit obtained using the observations with a real trajectory. An orbit is a shadowing of the trajectory if it stays close to the real trajectory for some amount of time. In a simple discrete model, the standard map, we tackle the problem of chaotic orbit determination when observations extend beyond the predictability horizon. If the orbit is hyperbolic, a shadowing orbit is computed by the least squares orbit determination. We test both the convergence of the orbit determination iterative procedure and the behaviour of the uncertainties as a function of the maximum number of map iterations observed. When the initial conditions belong to a chaotic orbit, the orbit determination is made impossible by numerical instability beyond a computability horizon, which can be approximately predicted by a simple formula. Moreover, the uncertainty of the results is sharply increased if a dynamical parameter is added to the initial conditions as parameter to be estimated. The Shadowing Lemma does not dictate what the asymptotic behaviour of the uncertainties should be. These phenomena have significant implications, which remain to be studied, in practical problems of orbit determination involving chaos, such as the chaotic rotation state of a celestial body and a chaotic orbit of a planet-crossing asteroid undergoing many close approaches.

  15. Shadowing Lemma and chaotic orbit determination

    NASA Astrophysics Data System (ADS)

    Spoto, Federica; Milani, Andrea

    2015-12-01

    Orbit determination is possible for a chaotic orbit of a dynamical system, given a finite set of observations, provided the initial conditions are at the central time. The Shadowing Lemma (Anosov 1967; Bowen in J Differ Equ 18:333-356, 1975) can be seen as a way to connect the orbit obtained using the observations with a real trajectory. An orbit is a shadowing of the trajectory if it stays close to the real trajectory for some amount of time. In a simple discrete model, the standard map, we tackle the problem of chaotic orbit determination when observations extend beyond the predictability horizon. If the orbit is hyperbolic, a shadowing orbit is computed by the least squares orbit determination. We test both the convergence of the orbit determination iterative procedure and the behaviour of the uncertainties as a function of the maximum number of map iterations observed. When the initial conditions belong to a chaotic orbit, the orbit determination is made impossible by numerical instability beyond a computability horizon, which can be approximately predicted by a simple formula. Moreover, the uncertainty of the results is sharply increased if a dynamical parameter is added to the initial conditions as parameter to be estimated. The Shadowing Lemma does not dictate what the asymptotic behaviour of the uncertainties should be. These phenomena have significant implications, which remain to be studied, in practical problems of orbit determination involving chaos, such as the chaotic rotation state of a celestial body and a chaotic orbit of a planet-crossing asteroid undergoing many close approaches.

  16. Vertical axis wind turbine

    SciTech Connect

    Kato, Y.; Seki, K.; Shimizu, Y.

    1981-01-27

    Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with rotational speed control systems. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotating shaft by keeping the blade span-wise direction in parallel with the shaft and being provided with aerodynamic control elements operating manually or automatically to control the rotational speed of the turbine.

  17. GOCE Gravity Gradients in an Orbital Aspect

    NASA Astrophysics Data System (ADS)

    Bobojc, Andrzej; Drozyner, Andrzej

    2014-05-01

    This work includes a study of the possibility of the Gravity Field and Steady-State Ocean Circulation Explorer Mission (GOCE) satellite orbit improvement using gravity gradient observations. The orbit improvement is performed by a dedicated software package, called Orbital Computation System (OCS), which is based on the classical least squares method. In an iterative process, the corrections to the initial state vector components of the satellite are estimated, using dynamical models describing gravitational perturbations. An important component implemented in the OCS package is the Cowell 8th order numerical integration procedure, which directly generates the satellite orbit. Taking into account the GOCE real and simulated gravity gradients, different variants of solution of the orbit improvement process were obtained. The improved orbits were compared to the GOCE reference orbits (Precise Science Orbits of the GOCE satellite delivered by the European Space Agency) using the root mean squares (RMS) of the differences between the satellite positions on the improved orbits and on the reference ones. The comparison between the improved orbits and the reference ones was performed with respect to the inertial reference frame (IRF) at J2000.0 epoch. RMS values for the solutions based on the real gravity gradients measurements are at a level of hundreds of kilometers and more. This means that the orbit improvement using the real gravity gradients is ineffective. However, all solutions using the simulated gravity gradients, have RMS values below the threshold determined by RMS values for the computed orbits (without the improvement). The most promising results have been achieved here in the case of improving of short orbital arcs with the lengths from a few to tens of minutes. For these short arcs, RMS values reach the level of centimeters, which is close to the accuracy of Precise Science Orbit of GOCE satellite. Additional research have provided requirements for the effective orbit improvement in terms of the accuracy and spectral content of measured gravity gradients.

  18. General view of the "top" side of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the "top" side of the Orbiter Discovery as it is being hoisted in a vertical position in the transfer aisle of the Vehicle Assembly Building at Kennedy Space Center - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  19. General view of the "bottom" side of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the "bottom" side of the Orbiter Discovery as it is being hoisted in a vertical position in the transfer aisle of the Vehicle Assembly Building at Kennedy Space Center - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  20. RHIC BPM system average orbit calculations

    SciTech Connect

    Michnoff,R.; Cerniglia, P.; Degen, C.; Hulsart, R.; et al.

    2009-05-04

    RHIC beam position monitor (BPM) system average orbit was originally calculated by averaging positions of 10000 consecutive turns for a single selected bunch. Known perturbations in RHIC particle trajectories, with multiple frequencies around 10 Hz, contribute to observed average orbit fluctuations. In 2006, the number of turns for average orbit calculations was made programmable; this was used to explore averaging over single periods near 10 Hz. Although this has provided an average orbit signal quality improvement, an average over many periods would further improve the accuracy of the measured closed orbit. A new continuous average orbit calculation was developed just prior to the 2009 RHIC run and was made operational in March 2009. This paper discusses the new algorithm and performance with beam.

  1. Vertical axis windmill

    SciTech Connect

    Campbell, J.S.

    1980-04-08

    A vertical axis windmill is described which involves a rotatable central vertical shaft having horizontal arms pivotally supporting three sails that are free to function in the wind like the main sail on a sail boat, and means for disabling the sails to allow the windmill to be stopped in a blowing wind.

  2. Mission orbit design

    NASA Astrophysics Data System (ADS)

    Wu, An-Ming

    In this paper we first describe the relations between space mission and orbit design, and then introduce the basic properties of the orbit. Geopotential representation is used to illustrate the common used Earth orbits, including Sun-synchronous orbits and Molniya orbits. Perturbation concept is used to demonstrate the mission orbits of LISA, ASTROD, and SOHO. Finally, for the interplanetary orbit design, the numerical methods of two-point boundary-value problems, the applications of fly-past, and the considerations of optimization are discussed, and are utilized to preliminary design the mission orbit of ASTROD spacecraft to be launched in 2015.

  3. A Simple Vertical Slab Gel Electrophoresis Apparatus.

    ERIC Educational Resources Information Center

    Carter, J. B.; And Others

    1983-01-01

    Describes an inexpensive, easily constructed, and safe vertical slab gel kit used routinely for sodium dodecyl sulphate-polyacrylamide gel electrophoresis research and student experiments. Five kits are run from a single transformer. Because toxic solutions are used, students are given plastic gloves and closely supervised during laboratory…

  4. A Simple Vertical Slab Gel Electrophoresis Apparatus.

    ERIC Educational Resources Information Center

    Carter, J. B.; And Others

    1983-01-01

    Describes an inexpensive, easily constructed, and safe vertical slab gel kit used routinely for sodium dodecyl sulphate-polyacrylamide gel electrophoresis research and student experiments. Five kits are run from a single transformer. Because toxic solutions are used, students are given plastic gloves and closely supervised during laboratory

  5. Space shuttle: Preliminary pressure distributions on the 049 orbiter, orbiter in presence of H/O tank and orbiter in launch configuration

    NASA Technical Reports Server (NTRS)

    Hamilton, J. T.; Rampy, J. M.; Sims, J. F.

    1973-01-01

    The 049 orbiter and launch configurations were tested in a trisonic wind tunnel to obtain preliminary loads information on the orbiter alone, orbiter in presence of the H/O tank and orbiter in the full launch configuration. The orbiter consisted of the baseline 049 double-delta wing, twin vertical stabilizers, seven degrees of dihedral and included abort rockets. The orbiter was mounted at minus 1.50 degree of incidence (fuselage centerline relative to H/O tank centerline) in the launch configuration. The solid rocket motors were mounted at a radial location of 21 degrees from the horizontal centerline of the H/O tank. The test was conducted over a Mach number range of 0.6 to 4.96. Nominal angle of attack and angle of sideslip ranges of minus 6 to plus 6 degrees were tested. In addition, the orbiter alone was tested over an angle of attack range of minus 6 to plus 26 degrees.

  6. Orbital tumors: operative and therapeutic strategies.

    PubMed

    Pfrtner, R; Mohr, C; Daamen, J; Metz, A

    2014-10-01

    The term "orbital tumors" includes diverse benign or malignant space-occupying lesions of the orbit, often leading to dystopia of the eyeball, motility disturbances, diplopia, visual field defects, and sometimes a complete loss of vision. Removing these tumors in a limited surgical field is challenging. Therefore, the preservation of function is a primary concern. We retrospectively reviewed 671 patients with orbital tumors from October 1999 to June 2014. Diagnosis on referral, presenting symptoms, radiological records, histology of the primary tumor or orbital metastasis, and treatment choice were analyzed. Among the 671 orbital tumors, 40% were accessed anteriorly, 36% via an orbitotomy with temporary osteotomy, and 23.9% underwent an orbital exenteration. As an illustration of the operative strategies with subsequent reconstructions, a distinction was made among the main indication groups: (1) function-preserving therapy for retrobulbar tumors, (2) malignant tumors of the conjunctiva and the eyelids, (3) exenteration of the orbit and subsequent reconstruction, and (4) operative and therapeutic strategy for orbital metastases. Adequate preoperative use of modern imaging techniques and thorough planning of the operation are crucial. Accurate histopathological diagnosis is crucial for planning appropriate therapeutic and surgical interventions. New innovative treatment concepts and surgical techniques arise from the close cooperation of related disciplines such as ophthalmology and neurosurgery. Although an orbital exenteration in patients with eyelid and conjunctival carcinomas can now often be avoided, eye-preserving treatment for locally advanced carcinomas of the conjunctiva and eyelid must be attempted. For extensive orbital malignancies, orbital exenteration is curative. In this context, primary closure of the orbit can improve the patient's quality of life and avoid subsequent complications. Concerning orbital metastasis, early diagnosis can preserve function and fulfil the esthetic demands of the patients. In palliative tumor disease, operative procedures such as orbital decompression or tumor debulking can reduce patient complaints and contribute to improved quality of life. PMID:25397713

  7. Closeup view of the reinforced carboncarbon nose of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the reinforced carbon-carbon nose of the Orbiter Discovery from the service platform in the Orbiter Processing Facility at Kennedy Space Center. Note the clear protective shield around the nose cap, and the reflective insulation protecting the Crew Compartment bulkhead and orbiter structure in the void created by the removal of the Forward Reaction Control Module. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  8. Micromachined electrostatic vertical actuator

    DOEpatents

    Lee, Abraham P. (Walnut Creek, CA); Sommargren, Gary E. (Santa Cruz, CA); McConaghy, Charles F. (Livermore, CA); Krulevitch, Peter A. (Pleasanton, CA)

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  9. Micromachined electrostatic vertical actuator

    SciTech Connect

    Lee, A.P.; Sommargren, G.E.; McConaghy, C.F.; Krulevitch, P.A.

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion, micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  10. Vertical sleeve gastrectomy

    MedlinePLUS

    ... smaller stomach is about the size of a banana. It limits the amount of food you can ... staples. This creates a long vertical tube or banana-shaped stomach. The surgery does not involve cutting ...

  11. Three-dimensional structure of accretion disks in close binary systems

    NASA Astrophysics Data System (ADS)

    Hirose, Masahito; Osaki, Yoji; Mineshige, Shin

    1991-12-01

    Time-dependent, 3D particle simulations of an accretion disk interacting with an incoming stream were performed as a model for disks in close binary systems. The half-thickness of the disk, which is calculated assuming a Gaussian density profile in the vertical direction, is much larger everywhere in the outer portions of the disk than the value expected from hydrostatic balance; the ratio of the vertical height (H) to the radius (r) is on average 10-20 percent, and is especially enhanced at the eclipse phases, above 0.8 and 0.2, where H/r is about 0.15. This is a result of a violent collision of the incoming stream with disk material. The gas in the disk is hit by the stream, thereby being given a vertical velocity component, which results in material moving up and down in the vertical direction with the Keplerian time-scale of the outer rim. Finally, it is suggested that the calculated extended rim structures are quite reminiscent of what is indicated from the orbital X-ray variation in some X-ray binaries, such as the accretion disk corona sources and the dipping sources, and in some dwarf novae, such as U Gem and OY Car.

  12. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    Results from operational OD produced by the NASA Goddard Flight Dynamics Facility for the LRO nominal and extended mission are presented. During the LRO nominal mission, when LRO flew in a low circular orbit, orbit determination requirements were met nearly 100% of the time. When the extended mission began, LRO returned to a more elliptical frozen orbit where gravity and other modeling errors caused numerous violations of mission accuracy requirements. Prediction accuracy is particularly challenged during periods when LRO is in full-Sun. A series of improvements to LRO orbit determination are presented, including implementation of new lunar gravity models, improved spacecraft solar radiation pressure modeling using a dynamic multi-plate area model, a shorter orbit determination arc length, and a constrained plane method for estimation. The analysis presented in this paper shows that updated lunar gravity models improved accuracy in the frozen orbit, and a multiplate dynamic area model improves prediction accuracy during full-Sun orbit periods. Implementation of a 36-hour tracking data arc and plane constraints during edge-on orbit geometry also provide benefits. A comparison of the operational solutions to precision orbit determination solutions shows agreement on a 100- to 250-meter level in definitive accuracy.

  13. Transfer orbit determination accuracy for orbit maneuvers

    NASA Astrophysics Data System (ADS)

    Pinheiro, Mery Passos

    This work intends to show the accuracy of the orbital elements determined during transfer orbit as a function of data span, as well as the feasibility of performance maneuvers. The orbit estimator used is a weighted least squares algorithm. The observation vector is composed of angle data (azimuth and elevation) and range data and are from the Astra IC mission. The state vector is either propagated by Brower model or numerical integration (for small eccentricities and inclination). The complete software to determine the orbit has been developed by Hughes Aircraft and been used for all Hughes satellite mission.

  14. Real-time orbit feedback at the APS.

    SciTech Connect

    Carwardine, J.

    1998-06-18

    A real-time orbit feedback system has been implemented at the Advanced Photon Source in order to meet the stringent orbit stability requirements. The system reduces global orbit motion below 30Hz by a factor of four to below 5{micro}m rms horizontally and 2{micro}m rms vertically. This paper focuses on dynamic orbit stability and describes the all-digital orbit feedback system that has been implemented at the APS. Implementation of the global orbit feedback system is described and its latest performance is presented. Ultimately, the system will provide local feedback at each x-ray source point using installed photon BPMs to measure x-ray beam position and angle directly. Technical challenges associated with local feedback and with dynamics of the associated corrector magnets are described. The unique diagnostic capabilities provided by the APS system are discussed with reference to their use in identifying sources of the underlying orbit motion.

  15. Stable low-altitude orbits around Ganymede considering a disturbing body in a circular orbit

    NASA Astrophysics Data System (ADS)

    Cardoso dos Santos, J.; Carvalho, J. P. S.; Vilhena de Moraes, R.

    2014-10-01

    Some missions are being planned to visit Ganymede like the Europa Jupiter System Mission that is a cooperation between NASA and ESA to insert the spacecraft JGO (Jupiter Ganymede Orbiter) into Ganymedes orbit. This comprehension of the dynamics of these orbits around this planetary satellite is essential for the success of this type of mission. Thus, this work aims to perform a search for low-altitude orbits around Ganymede. An emphasis is given in polar orbits and it can be useful in the planning of space missions to be conducted around, with respect to the stability of orbits of artificial satellites. The study considers orbits of artificial satellites around Ganymede under the influence of the third-body (Jupiter's gravitational attraction) and the polygenic perturbations like those due to non-uniform distribution of mass (J_2 and J_3) of the main body. A simplified dynamic model for these perturbations is used. The Lagrange planetary equations are used to describe the orbital motion of the artificial satellite. The equations of motion are developed in closed form to avoid expansions in eccentricity and inclination. The results show the argument of pericenter circulating. However, low-altitude (100 and 150 km) polar orbits are stable. Another orbital elements behaved variating with small amplitudes. Thus, such orbits are convenient to be applied to future space missions to Ganymede. Acknowledgments: FAPESP (processes n 2011/05671-5, 2012/12539-9 and 2012/21023-6).

  16. STS-95 Discovery undergoes vertical lift in the VAB

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Vehicle Assembly Building, the orbiter Discovery (viewed from behind the Space Shuttle Main Engines) is raised to a vertical position in order to be mated with the external tank. The orbiter displays the recently painted NASA logo, termed the 'meatball,' on its left, or port, wing. The logo also has been painted on both sides of the aft fuselage. Discovery (OV-103), the first of the orbiters to be launched with the new art work, is scheduled for its 25th flight, from Launch Pad 39B, on Oct. 29, 1998, for the STS-95 mission.

  17. STS-95 Discovery undergoes vertical lift in the VAB

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Vehicle Assembly Building, the orbiter Discovery is fully vertical, after being lifted into position for mating with the external tank. The orbiter displays the recently painted NASA logo, termed the 'meatball,' on its left, or port, wing. The logo also has been painted on both sides of the aft fuselage. Discovery (OV-103), the first of the orbiters to be launched with the new art work, is scheduled for its 25th flight, from Launch Pad 39B, on Oct. 29, 1998, for the STS-95 mission.

  18. Impact on Spin Tune From Horizontal Orbital Angle Between Snakes and Orbital Angle Between Spin Rotators

    SciTech Connect

    Bai,M.; Ptitsyn, V.; Roser, T.

    2008-10-01

    To keep the spin tune in the spin depolarizing resonance free region is required for accelerating polarized protons to high energy. In RHIC, two snakes are located at the opposite side of each accelerator. They are configured to yield a spin tune of 1/2. Two pairs of spin rotators are located at either side of two detectors in each ring in RHIC to provide longitudinal polarization for the experiments. Since the spin rotation from vertical to longitudinal is localized between the two rotators, the spin rotators do not change the spin tune. However, due to the imperfection of the orbits around the snakes and rotators, the spin tune can be shifted. This note presents the impact of the horizontal orbital angle between the two snakes on the spin tune, as well as the effect of the vertical orbital angle between two rotators at either side of the collision point on the spin tune.

  19. Revised Orbits of Saturn's Small Inner Satellites

    NASA Technical Reports Server (NTRS)

    Jacobson, R. A.; Spitale, J.; Porco, C. C.; Beurle, K.; Cooper, N. J.; Evans, M. W.; Murray, C. D.

    2007-01-01

    We have updated the orbits of the small inner Saturnian satellites using additional Cassini imaging observations through 2007 March. Statistically significant changes from previously published values appear in the eccentricities and inclinations of Pan and Daphnis, but only small changes have been found in the estimated orbits of the other satellites. We have also improved our knowledge of the masses of Janus and Epimetheus as a result of their close encounter observed in early 2006.

  20. Multi-Body Orbit Architectures for Lunar South Pole Coverage

    NASA Technical Reports Server (NTRS)

    Grebow, D. J.; Ozimek, M. T.; Howell, K. C.; Folta, D. C.

    2006-01-01

    A potential ground station at the lunar south pole has prompted studies of orbit architectures that ensure adequate coverage. Constant communications can be achieved with two spacecraft in different combinations of Earth-Moon libration point orbits. Halo and vertical families, as well as other orbits near L1 and L2 are considered. The investigation includes detailed results using nine different orbits with periods ranging from 7 to 16 days. Natural solutions are generated in a full ephemeris model, including solar perturbations. A preliminary station-keeping analysis is also completed.

  1. Detail view of the lower portion of the vertical stabilizer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the lower portion of the vertical stabilizer of the Orbiter Discovery. The section below the rudder, often referred to as the "stinger", is used to house the orbiter drag chute assembly. The system consisted of a mortar deployed pilot chute, the main drag chute, a controller assembly and an attach/jettison mechanism. This system was a modification to the original design of the Orbiter Discovery to safely reduce the roll to stop distance without adversely affecting the vehicle handling qualities. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  2. Periodic orbits around areostationary points in the Martian gravity field

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Dong; Baoyin, Hexi; Ma, Xing-Rui

    2012-05-01

    This study investigates the problem of areostationary orbits around Mars in three-dimensional space. Areostationary orbits are expected to be used to establish a future telecommunication network for the exploration of Mars. However, no artificial satellites have been placed in these orbits thus far. The characteristics of the Martian gravity field are presented, and areostationary points and their linear stability are calculated. By taking linearized solutions in the planar case as the initial guesses and utilizing the Levenberg-Marquardt method, families of periodic orbits around areostationary points are shown to exist. Short-period orbits and long-period orbits are found around linearly stable areostationary points, but only short-period orbits are found around unstable areostationary points. Vertical periodic orbits around both linearly stable and unstable areostationary points are also examined. Satellites in these periodic orbits could depart from areostationary points by a few degrees in longitude, which would facilitate observation of the Martian topography. Based on the eigenvalues of the monodromy matrix, the evolution of the stability index of periodic orbits is determined. Finally, heteroclinic orbits connecting the two unstable areostationary points are found, providing the possibility for orbital transfer with minimal energy consumption.

  3. Interaction of the Space Shuttle on-orbit autopilot with tether dynamics

    NASA Technical Reports Server (NTRS)

    Bergmann, Edward V.

    1988-01-01

    The effect of Orbiter flight control on tether dynamics is studied by simulation. Open-loop effects of Orbiter jet firing on tether dynamics are shown, and the potential for closed-loop interaction between tether dynamics and Orbiter flight control is determined. The significance of these effects on Orbiter flight control and tether control is assessed.

  4. Vertical flowline connector

    SciTech Connect

    Saliger, K. C.

    1985-10-01

    Several embodiments are disclosed of a vertical type of flowline connector for providing a fluid connection between a horizontal flowline and an additional subsea facility. The upper and lower portions of the connector can be properly positioned relative to each other by simply lowering an upper female portion of the connector onto a lower male portion thereof. The lower portion of the connector at the subsea facility is provided with at least two vertically positioned, upwardly facing male mandrel connectors. The upper portion of the connector assembly includes at least two vertically positioned, downwardly facing corresponding female connectors designed to be lowered onto the corresponding male mandrel connectors. At least one of the female connectors is mounted on the connector assembly by a free floating mounting. The free floating mounting allows for slight misalignments of the female connectors relative to the corresponding male connectors as the upper connector assembly is lowered onto, and passively positioned relative to, the lower connector assembly.

  5. Improved vertical scanning interferometry

    NASA Astrophysics Data System (ADS)

    Harasaki, Akiko

    2000-11-01

    Vertical scanning interferometers are routinely used for the measurement of optical fiber connectors. There are increasing needs for measurements of such items as machined surfaces, contact lenses, paint texture, cell structure, and integrated circuit devices, to name a few. These structures have too much depth, or are too rough, to measure with standard interferometry methods. Phase- measurement interferometry methods are limited to surfaces that do not have any discontinuities larger than one quarter of the operating wavelength. On the other hand, vertical scanning interferometers can be very effective, even though they have low height resolution compared to that of phase-measurement interferometers. Improving the height resolution of vertical scanning interferometers from the point of hardware improvement and signal processing has been one of the major research interests in the surface metrology area. This work provides a new algorithm, which called here ``PSI on the Fly'' technique, as a solution for improving height resolution of vertical scanning interferometers. This dissertation begins with a review of white-light interference microscopes. The height and lateral resolutions are derived based on scalar diffraction theory. Next, various well-established. algorithms for finding a topographic map of the small object surface are discussed. The work proceeds with a discussion of the phase change upon reflection and its influence on the coherence envelope. Then phase measurement interferometry methods are reviewed. The emphasis is in errors in phase measurement resulting from using a white light source instead of a monochromatic light source as in the usual case. The following chapter describes and examines an often- observed artifact of vertical-scanning interferometry when applied to step heights. The artifact is called ``bat wings'' because of its appearance. The physical cause of the ``bat wings'' artifact is discussed through a diffraction model. The next chapter proposes an improved vertical-scanning interferometry algorithm. The method, called here ``PSI on the Fly'' technique, has been developed by combining regular vertical-scanning interferometry and a monochromatic phase-shifting interferometry technique. The PSI on the Fly technique improves the surface height resolution of vertical scanning interferometry to that of a phase-shifting interferometry measurement. In addition to the resolution improvement, the algorithm also successfully removes the ``bat wings'' artifact.

  6. Lunar orbiting prospector

    NASA Technical Reports Server (NTRS)

    1988-01-01

    One of the prime reasons for establishing a manned lunar presence is the possibility of using the potential lunar resources. The Lunar Orbital Prospector (LOP) is a lunar orbiting platform whose mission is to prospect and explore the Moon from orbit in support of early lunar colonization and exploitation efforts. The LOP mission is divided into three primary phases: transport from Earth to low lunar orbit (LLO), operation in lunar orbit, and platform servicing in lunar orbit. The platform alters its orbit to obtain the desired surface viewing, and the orbit can be changed periodically as needed. After completion of the inital remote sensing mission, more ambitious and/or complicated prospecting and exploration missions can be contemplated. A refueled propulsion module, updated instruments, or additional remote sensing packages can be flown up from the lunar base to the platform.

  7. Closed-drift thruster investigations

    NASA Technical Reports Server (NTRS)

    Robinson, Raymond S.; Schemmel, Terry D.; Patterson, Michael J.

    1986-01-01

    Recent data obtained from a second generation closed-drift thruster design, employing Hall current acceleration is outlined. This type device is emphasized for electric propulsion for geocentric mission applications. Because geocentric mission profiles are best achieved with a specific impulse range of 1000 to 2000 s, closed-drift thrusters are well suited for this application, permitting time payload compromises intermediate of those possible with either electrothermal or electrostatic devices. A discussion is presented of the potential advantages of using a 1000 to 2000 s device for one way orbit raising of nonpower payloads. Because closed-drift thruster operation is not space charge limited, and requires only one power circuit for steady state operation, their application is technically advantageous. Beam, plasma and thrust characteristics are detailed for a range of operating conditions.

  8. Traumatic transconjunctival orbital emphysema.

    PubMed

    Stroh, E M; Finger, P T

    1990-06-01

    Orbital emphysema can be produced by trans-conjunctival migration of air from a high pressure airgun. In an industrial accident an 8 mm conjunctival laceration was produced in the superior fornix which acted as a portal of entry for air into the subconjunctival, subcutaneous, and retrobulbar spaces. Computed tomography revealed no evidence of orbital fracture and showed that traumatic orbital emphysema occurred without a broken orbital bone. PMID:2378847

  9. Preliminary orbital parallax catalog

    NASA Technical Reports Server (NTRS)

    Halliwell, M.

    1981-01-01

    The study is undertaken to calibrate the more reliable parallaxes derived from a comparison of visual and spectroscopic orbits and to encourage observational studies of other promising binaries. The methodological techniques used in computing orbital parallaxes are analyzed. Tables summarizing orbital data and derived system properties are then given. Also given is a series of detailed discussions of the 71 individual systems included in the tables. Data are listed for 57 other systems which are considered promising candidates for eventual orbital parallax determination.

  10. Constraints on Triton's Orbital Evolution

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.; Zhang, K.; Agnor, C.

    2005-05-01

    Three models have been proposed for the capture origin of Triton: Collision with a preexisting satellite (Goldreich 1989), Gas drag (McKinnon 1990), and three-body exchange (Agnor and Hamilton 2004). All three scenarios put Triton onto a highly elongated orbit which is subsequently circularized by satellite tides. Our goal here is to use the current state of the Neptunian system to constrain these capture scenarios. Triton strongly affects inner satellites (or an inner disk) directly via close pericenter passages before its orbit circularizes. Since satellite tides nearly conserve angular momentum, a simple tidal model puts Triton's minimum pericenter distance at aT/2 ˜ 7RN, where aT is its current semimajor axis. Our initial simulations show that some satellites orbiting outside Proteus (the outermost of the inner satellites at a=4.67RN) can survive these Triton passages. So why are there no known moonlets beyond 4.67RN? Seeking answers, we have integrated Triton's orbit backwards in time with a more sophisticated model that includes J2, solar perturbations, and satellite tides. We find that Triton's pericenter smoothly descends toward 7RN, as in the simple tidal model, but with superimposed oscillations at i) 1/2 Neptune's orbital period and ii) the nodal and apsidal precession periods. At a ˜ 94RN Triton encounters a Kozai-like resonance between these precession periods which causes its pericenter to dip to ˜ 4.2RN - well within the current orbit of Proteus. If Triton's orbit were ever this large, then the early inner satellite system must have been much smaller than it is today. Additional apsidal and nodal resonances between an early Triton on a highly elliptical orbit and the small inner satellites (with resonant arguments like 2nT - 2Ω sat) are strong enough to drive moonlet inclinations up to several degrees. We are using the stengths and locations of these resonances to further limit possible capture and evolution scenarios and will report on the status of these investigations.

  11. Introducing Earth's Orbital Eccentricity

    ERIC Educational Resources Information Center

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is

  12. Introducing Earth's Orbital Eccentricity

    ERIC Educational Resources Information Center

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  13. Actinomycosis of the orbit.

    PubMed Central

    Sullivan, T J; Aylward, G W; Wright, J E

    1992-01-01

    Actinomycosis is a very rare cause of orbital abscess usually attributable to direct spread from adjacent structures. A case of actinomycosis of the orbit is presented, which was treated as orbital pseudotumour for 3 months before progression of signs and symptoms, despite high dose steroids, led to the diagnosis being reconsidered. Images PMID:1390538

  14. Orbital-Lifetime Program

    NASA Technical Reports Server (NTRS)

    Orr, L. H.

    1986-01-01

    Orbital Lifetime Program (OL) analyzes long-term motion of Earthorbiting spacecraft at altitudes of up to 2,500 km. Models perturbations to orbit caused by solar-radiation pressure, atmospheric drag, and gravitational effects of Sun, Moon, and oblate Earth. Used to predict orbital lifetime and decay rate of satellites. OL written in FORTRAN 77.

  15. SEASAT B orbit synthesis

    NASA Technical Reports Server (NTRS)

    Rea, F. G.; Warmke, J. M.

    1976-01-01

    Addition were made to Battelle's Interactive Graphics Orbit Selection (IGOS) program; IGOS was exercised via telephone lines from JPL, and candidate SEASAT orbits were analyzed by Battelle. The additions to the program enable clear understanding of the implications of a specific orbit to the diverse desires of the SEASAT user community.

  16. Dynamics on the cone: Closed orbits and superintegrability

    SciTech Connect

    Brihaye, Y.; Kosiński, P.

    2014-05-15

    The generalization of Bertrand’s theorem to the case of the motion of point particle on the surface of a cone is presented. The superintegrability of such models is discussed. The additional integrals of motion are analysed for the case of Kepler and harmonic oscillator potentials. -- Highlights: •Bertrand’s theorem is generalized to the case of the motion on a cone. •The superintegrability of the dynamics on a cone is discussed. •The W-algebra of integrals of motion for Kepler and harmonic oscillator problems on a cone is derived.

  17. Linear Optics From Closed Orbits (LOCO): An Introduction

    SciTech Connect

    Safranek, James; /SLAC

    2009-06-18

    The LOCO code is used to find and correct errors in the linear optics of storage rings. The original FORTRAN code was written to correct the optics of the NSLS X-Ray ring, and was applied soon thereafter to debug problems with the ALS optics. The ideas used in the code were developed from previous work at SLAC. Several years ago, LOCO was rewritten in MATLAB. As described in this newsletter, the MATLAB version includes a user-friendly interface, with many useful fitting and analysis options. LOCO has been used at many accelerators. Presently, a search for LOCO in the text of papers on the Joint Accelerator Conferences Website yields 107 papers. A comprehensive survey of applications will not be included here. Details of recent results at a few light sources are included in this newsletter. In the past, the quality of LOCO fitting results varied significantly, depending on the storage ring. In particular, the results were mixed for colliding beam facilities, where there tend to be fewer BPMs that in light sources. Fitting rings with less BPM data to constrain the fit optics parameters often led to unreasonably large fit quadrupole gradient variations. Recently, modifications have been made to the LOCO fitting algorithm which leads to much better results when the BPM data does not tightly constrain the fit parameters. The modifications are described in this newsletter, and an example of results with this new algorithm is included.

  18. On the Stability of Circular Orbits in Galactic Dynamics: Newtonian Thin Disks

    NASA Astrophysics Data System (ADS)

    Vieira, Ronaldo S. S.; Ramos-Caro, Javier

    2015-01-01

    The study of off-equatorial orbits in razor-thin disks is still in its beginnings. Contrary to what was presented in the literature in recent publications, the vertical stability criterion for equatorial circular orbits cannot be based on the vertical epicyclic frequency, because of the discontinuity in the gravitational field on the equatorial plane. We present a rigorous criterion for the vertical stability of circular orbits in systems composed by a razor-thin disk surrounded by a smooth axially symmetric distribution of matter, the latter representing additional structures such as thick disk, bulge and (dark matter) halo. This criterion is satisfied once the mass surface density of the thin disk is positive. Qualitative and quantitative analyses of nearly equatorial orbits are presented. In particular, the analysis of nearly equatorial orbits allows us to construct an approximate analytical third integral of motion in this region of phase-space, which describes the shape of these orbits in the meridional plane.

  19. Vertical shaft windmill

    NASA Technical Reports Server (NTRS)

    Grana, D. C.; Inge, S. V., Jr. (Inventor)

    1983-01-01

    A vertical shaft has several equally spaced blades mounted. Each blade consists of an inboard section and an outboard section skew hinged to the inboard section. The inboard sections automatically adjust their positions with respect to the fixed inboard sections with changes in velocity of the wind. This windmill design automatically governs the maximum rotational speed of shaft.

  20. Aiding Vertical Guidance Understanding

    NASA Technical Reports Server (NTRS)

    Feary, Michael; McCrobie, Daniel; Alkin, Martin; Sherry, Lance; Polson, Peter; Palmer, Everett; McQuinn, Noreen

    1998-01-01

    A two-part study was conducted to evaluate modern flight deck automation and interfaces. In the first part, a survey was performed to validate the existence of automation surprises with current pilots. Results indicated that pilots were often surprised by the behavior of the automation. There were several surprises that were reported more frequently than others. An experimental study was then performed to evaluate (1) the reduction of automation surprises through training specifically for the vertical guidance logic, and (2) a new display that describes the flight guidance in terms of aircraft behaviors instead of control modes. The study was performed in a simulator that was used to run a complete flight with actual airline pilots. Three groups were used to evaluate the guidance display and training. In the training, condition, participants went through a training program for vertical guidance before flying the simulation. In the display condition, participants ran through the same training program and then flew the experimental scenario with the new Guidance-Flight Mode Annunciator (G-FMA). Results showed improved pilot performance when given training specifically for the vertical guidance logic and greater improvements when given the training and the new G-FMA. Using actual behavior of the avionics to design pilot training and FMA is feasible, and when the automated vertical guidance mode of the Flight Management System is engaged, the display of the guidance mode and targets yields improved pilot performance.

  1. Elementary excitations in magnetically ordered systems with orbital degeneracy

    SciTech Connect

    Joshi, A.; Ma, M. ); Mila, F. ); Shi, D.N. College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing, Peoples Republic of ); Zhang, F.C. )

    1999-09-01

    The generalized Holstein-Primakoff transformation is used to develop a quantum flavor wave theory for spin systems with orbital degeneracy. Elementary excitations of ordered ground states consist of spin, orbital, and spin-orbital waves. Spin and spin-orbital waves couple to each other due to orbital anisotropy and Hund[close quote]s rule, resulting in modes observable by inelastic neutron scattering. In the SU(4) limit, flavor waves are dispersionless along one or more directions, and give rise to quantum fluctuations of reduced dimensionality. [copyright] [ital 1999] [ital The American Physical Society

  2. Orbit Software Suite

    NASA Technical Reports Server (NTRS)

    Osgood, Cathy; Williams, Kevin; Gentry, Philip; Brownfield, Dana; Hallstrom, John; Stuit, Tim

    2012-01-01

    Orbit Software Suite is used to support a variety of NASA/DM (Dependable Multiprocessor) mission planning and analysis activities on the IPS (Intrusion Prevention System) platform. The suite of Orbit software tools (Orbit Design and Orbit Dynamics) resides on IPS/Linux workstations, and is used to perform mission design and analysis tasks corresponding to trajectory/ launch window, rendezvous, and proximity operations flight segments. A list of tools in Orbit Software Suite represents tool versions established during/after the Equipment Rehost-3 Project.

  3. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    LRO definitive and predictive accuracy requirements were easily met in the nominal mission orbit, using the LP150Q lunar gravity model. center dot Accuracy of the LP150Q model is poorer in the extended mission elliptical orbit. center dot Later lunar gravity models, in particular GSFC-GRAIL-270, improve OD accuracy in the extended mission. center dot Implementation of a constrained plane when the orbit is within 45 degrees of the Earth-Moon line improves cross-track accuracy. center dot Prediction accuracy is still challenged during full-Sun periods due to coarse spacecraft area modeling - Implementation of a multi-plate area model with definitive attitude input can eliminate prediction violations. - The FDF is evaluating using analytic and predicted attitude modeling to improve full-Sun prediction accuracy. center dot Comparison of FDF ephemeris file to high-precision ephemeris files provides gross confirmation that overlap compares properly assess orbit accuracy.

  4. Studies of Shuttle orbiter arrestment system

    NASA Technical Reports Server (NTRS)

    Davis, Pamela A.; Stubbs, Sandy M.

    1993-01-01

    Scale model studies of the Shuttle Orbiter Arrestment System (AS) were completed with a 1/27.5-scale model at the NASA Langley Research Center. The purpose of these studies was to determine the proper configuration for a net arrestment system to bring the orbiter to a safe stop with minimal damage in the event of a runway overrun. Tests were conducted for runway on-centerline and off-centerline engagements at simulated speeds up to approximately 100 knots (full scale). The results of these tests defined the interaction of the net and the orbiter, the dynamics of off-centerline engagements, and the maximum number of vertical net straps that may become entangled with the nose gear. In addition to these tests, a test program with a 1/8-scale model was conducted by the arrestment system contractor, and the results are presented in the appendix.

  5. Orbital dynamics and equilibrium points around an asteroid with gravitational orbit-attitude coupling perturbation

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Xu, Shijie

    2015-10-01

    The strongly perturbed dynamical environment near asteroids has been a great challenge for the mission design. Besides the non-spherical gravity, solar radiation pressure, and solar tide, the orbital motion actually suffers from another perturbation caused by the gravitational orbit-attitude coupling of the spacecraft. This gravitational orbit-attitude coupling perturbation (GOACP) has its origin in the fact that the gravity acting on a non-spherical extended body, the real case of the spacecraft, is actually different from that acting on a point mass, the approximation of the spacecraft in the orbital dynamics. We intend to take into account GOACP besides the non-spherical gravity to improve the previous close-proximity orbital dynamics. GOACP depends on the spacecraft attitude, which is assumed to be controlled ideally with respect to the asteroid in this study. Then, we focus on the orbital motion perturbed by the non-spherical gravity and GOACP with the given attitude. This new orbital model can be called the attitude-restricted orbital dynamics, where restricted means that the orbital motion is studied as a restricted problem at a given attitude. In the present paper, equilibrium points of the attitude-restricted orbital dynamics in the second degree and order gravity field of a uniformly rotating asteroid are investigated. Two kinds of equilibria are obtained: on and off the asteroid equatorial principal axis. These equilibria are different from and more diverse than those in the classical orbital dynamics without GOACP. In the case of a large spacecraft, the off-axis equilibrium points can exist at an arbitrary longitude in the equatorial plane. These results are useful for close-proximity operations, such as the asteroid body-fixed hovering.

  6. Solar Sail Optimal Orbit Transfers to Synchronous Orbits

    NASA Technical Reports Server (NTRS)

    Powers, Robert B.; Coverstone, Victoria; Prussing, John E.; Lunney, Bryan C. (Technical Monitor)

    1999-01-01

    A constant outward radial thrust acceleration can be used to reduce the radius of a circular orbit of specified period. Heliocentric circular orbits are designed to match the orbital period of Earth or Mars for various radial thrust accelerations and are defined as synchronous orbits. Minimum-time solar sail orbit transfers to these synchronous heliocentric orbits are presented.

  7. Vertical organic transistors

    NASA Astrophysics Data System (ADS)

    Lüssem, Björn; Günther, Alrun; Fischer, Axel; Kasemann, Daniel; Leo, Karl

    2015-11-01

    Organic switching devices such as field effect transistors (OFETs) are a key element of future flexible electronic devices. So far, however, a commercial breakthrough has not been achieved because these devices usually lack in switching speed (e.g. for logic applications) and current density (e.g. for display pixel driving). The limited performance is caused by a combination of comparatively low charge carrier mobilities and the large channel length caused by the need for low-cost structuring. Vertical Organic Transistors are a novel technology that has the potential to overcome these limitations of OFETs. Vertical Organic Transistors allow to scale the channel length of organic transistors into the 100 nm regime without cost intensive structuring techniques. Several different approaches have been proposed in literature, which show high output currents, low operation voltages, and comparatively high speed even without sub-μm structuring technologies. In this review, these different approaches are compared and recent progress is highlighted.

  8. Jamming in Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; Steel, Fiona

    2011-03-01

    We study jamming of low aspect-ratio cylindrical Delrin grains in a vertical channel. Grain heights are less than their diameter so the grains resemble antacid tablets, coins, or poker chips. These grains are allowed to fall through a vertical channel with a square cross section where the channel width is greater than the diameter of a grain and constant throughout the length of the channel with no obstructions or constrictions. Grains are sometimes observed to form jams, stable structures supported by the channel walls with no support beneath them. The probability of jam occurrence and the strength or robustness of a jam is effected by grain and channel sizes. We will present experimental measurements of the jamming probability and jam strength in this system and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College.

  9. Jamming in Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; McCausland, Jeffrey; Steel, Fiona

    2010-03-01

    We experimentally study jamming of cylindrical grains in a vertical channel. The grains have a low aspect-ratio (height/diameter < 1) so their shape is like antacid tablets or poker chips. They are allowed to fall through a vertical channel with a square cross section. The channel width is greater than the diameter of a grain and constant throughout the length of the channel with no obstructions or constrictions. It is observed that grains sometimes jam in this apparatus. In a jam, grains form a stable structure from one side of the channel to the other with nothing beneath them. Jams may be strong enough to support additional grains above. The probability of a jam occurring is a function of the grain height and diameter. We will present experimental measurements of the jamming probability in this system and discuss the relationship of these results to other experiments and theories.

  10. Circular orbits in Einstein-Gauss-Bonnet gravity

    SciTech Connect

    Rosa, Valeria M.; Letelier, Patricio S.

    2008-10-15

    The stability under radial and vertical perturbations of circular orbits associated to particles orbiting a spherically symmetric center of attraction is studied in the context of the n-dimensional: the Newtonian theory of gravitation, Einstein's general relativity, and the Einstein-Gauss-Bonnet theory of gravitation. The presence of a cosmological constant is also considered. We find that this constant as well as the Gauss-Bonnet coupling constant are crucial to have stability for n>4.

  11. STS-106 orbiter Atlantis rolls over to the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Viewed from an upper level in the Vehicle Assembly Building (VAB), the orbiter Atlantis waits in the transfer aisle after its move from the Orbiter Processing Facility. In the VAB it will be lifted to vertical and placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.

  12. STS-106 orbiter Atlantis rolls over to the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    KSC employees accompany the orbiter Atlantis as it is moved aboard an orbiter transporter to the Vehicle Assembly Building (VAB). In the background are OPF bays 1 and 2. In the VAB it will be lifted to vertical and placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.

  13. ORBITS AROUND BLACK HOLES IN TRIAXIAL NUCLEI

    SciTech Connect

    Merritt, David; Vasiliev, Eugene E-mail: eugvas@lpi.ru

    2011-01-10

    We discuss the properties of orbits within the influence sphere of a supermassive black hole (BH), in the case that the surrounding star cluster is non-axisymmetric. There are four major orbit families; one of these, the pyramid orbits, have the interesting property that they can approach arbitrarily closely to the BH. We derive the orbit-averaged equations of motion and show that in the limit of weak triaxiality, the pyramid orbits are integrable: the motion consists of a two-dimensional libration of the major axis of the orbit about the short axis of the triaxial figure, with eccentricity varying as a function of the two orientation angles and reaching unity at the corners. Because pyramid orbits occupy the lowest angular momentum regions of phase space, they compete with collisional loss cone repopulation and with resonant relaxation (RR) in supplying matter to BHs. General relativistic advance of the periapse dominates the precession for sufficiently eccentric orbits, and we show that relativity imposes an upper limit to the eccentricity: roughly the value at which the relativistic precession time is equal to the time for torques to change the angular momentum. We argue that this upper limit to the eccentricity should also apply to evolution driven by RR, with potentially important consequences for the rate of extreme-mass-ratio inspirals in low-luminosity galaxies. In giant galaxies, we show that capture of stars on pyramid orbits can dominate the feeding of BHs, at least until such a time as the pyramid orbits are depleted; however this time can be of order a Hubble time.

  14. 'Endurance' All Around Vertical)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 360-degree view of the terrain surrounding NASA's Mars Exploration Rover Opportunity was taken on the rover's 171st sol on Mars (July 17, 2004). It was assembled from images taken by the rover's navigation camera at a position referred to as 'site 33.' Opportunity had driven 11 meters (36 feet) into 'Endurance Crater.' The view is a vertical projection with geometrical seam correction.

  15. GOCE Satellite Orbit in a Computational Aspect

    NASA Astrophysics Data System (ADS)

    Bobojc, Andrzej; Drozyner, Andrzej

    2013-04-01

    The presented work plays an important role in research of possibility of the Gravity Field and Steady-State Ocean Circulation Explorer Mission (GOCE) satellite orbit improvement using a combination of satellite to satellite tracking high-low (SST- hl) observations and gravity gradient tensor (GGT) measurements. The orbit improvement process will be started from a computed orbit, which should be close to a reference ("true") orbit as much as possible. To realize this objective, various variants of GOCE orbit were generated by means of the Torun Orbit Processor (TOP) software package. The TOP software is based on the Cowell 8th order numerical integration method. This package computes a satellite orbit in the field of gravitational and non-gravitational forces (including the relativistic and empirical accelerations). The three sets of 1-day orbital arcs were computed using selected geopotential models and additional accelerations generated by the Moon, the Sun, the planets, the Earth and ocean tides, the relativity effects. Selected gravity field models include, among other things, the recent models from the GOCE mission and the models such as EIGEN-6S, EIGEN-5S, EIGEN-51C, ITG-GRACE2010S, EGM2008, EGM96. Each set of 1-day orbital arcs corresponds to the GOCE orbit for arbitrary chosen date. The obtained orbits were compared to the GOCE reference orbits (Precise Science Orbits of the GOCE satellite delivered by the European Space Agency) using the root mean squares (RMS) of the differences between the satellite positions in the computed orbits and in the reference ones. These RMS values are a measure of performance of selected geopotential models in terms of GOCE orbit computation. The RMS values are given for the truncated and whole geopotential models. For the three variants with the best fit to the reference orbits, the empirical acceleration models were added to the satellite motion model. It allowed for further improving the fitting of computed orbits to the reference orbits. A linear and non-linear model of empirical accelerations was used. After using the non-linear model, the RMS values were reduced by the factor from about 2 to 3 compared with the linear model. A general form of the non-linear model of empirical accelerations is shown in this work. This model can be scaled to a given set of dynamical data for orbit determination by estimating of 192 parameters. The comparison between the computed orbits and the reference ones was performed with respect to the inertial reference frame (IRF) at J2000.0 epoch. Thus, the given GOCE reference orbits were transformed from ITRF2005 reference frame into IRF frame. It is shown that the velocity components of GOCE reference orbits must be transformed into IRF frame using the full rotation vector of the Earth. In such a case RMS values reach a level of meters.

  16. Simulation studies of alternate longitudinal control systems for the space shuttle orbiter in the landing regime

    NASA Technical Reports Server (NTRS)

    Powers, B. G.; Sarrafian, S. K.

    1986-01-01

    Simulations of the space shuttle orbiter in the landing task were conducted by the NASA Ames-Dryden Flight Research Facility using the Ames Research Center vertical motion simulator (VMS) and the total in-flight simulator (TIFS) variable-stability aircraft. Several new control systems designed to improve the orbiter longitudinal response characteristics were investigated. These systems improved the flightpath response by increasing the amount of pitch-rate overshoot. Reduction in the overall time delay was also investigated. During these evaluations, different preferences were noted for the baseline or the new systems depending on the pilot background. The trained astronauts were quite proficient with the baseline system and found the new systems to be less desirable than the baseline. On the other hand, the pilots without extensive flight training with the orbiter had a strong preference for the new systems. This paper presents the results of the VMS and TIFS simulations. A hypothesis is presented regarding the control strategies of the two pilot groups and how this influenced their control systems preferences. Interpretations of these control strategies are made in terms of open-loop aircraft response characteristics as well as pilot-vehicle closed-loop characteristics.

  17. Vertical bloch line memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R. (Inventor); Stadler, Henry L. (Inventor); Wu, Jiin-chuan (Inventor)

    1995-01-01

    A new read gate design for the vertical Bloch line (VBL) memory is disclosed which offers larger operating margin than the existing read gate designs. In the existing read gate designs, a current is applied to all the stripes. The stripes that contain a VBL pair are chopped, while the stripes that do not contain a VBL pair are not chopped. The information is then detected by inspecting the presence or absence of the bubble. The margin of the chopping current amplitude is very small, and sometimes non-existent. A new method of reading Vertical Bloch Line memory is also disclosed. Instead of using the wall chirality to separate the two binary states, the spatial deflection of the stripe head is used. Also disclosed herein is a compact memory which uses vertical Bloch line (VBL) memory technology for providing data storage. A three-dimensional arrangement in the form of stacks of VBL memory layers is used to achieve high volumetric storage density. High data transfer rate is achieved by operating all the layers in parallel. Using Hall effect sensing, and optical sensing via the Faraday effect to access the data from within the three-dimensional packages, an even higher data transfer rate can be achieved due to parallel operation within each layer.

  18. Spinning compact binary dynamics and chameleon orbits

    NASA Astrophysics Data System (ADS)

    Gergely, Lszl rpd; Keresztes, Zoltn

    2015-01-01

    We analyze the conservative evolution of spinning compact binaries to second post-Newtonian (2PN) order accuracy, with leading-order spin-orbit, spin-spin and mass quadrupole-monopole contributions included. As a main result we derive a closed system of first-order differential equations in a compact form, for a set of dimensionless variables encompassing both orbital elements and spin angles. These evolutions are constrained by conservation laws holding at 2PN order. As required by the generic theory of constrained dynamical systems we perform a consistency check and prove that the constraints are preserved by the evolution. We apply the formalism to show the existence of chameleon orbits, whose local, orbital parameters evolve from elliptic (in the Newtonian sense) near pericenter, towards hyperbolic at large distances. This behavior is consistent with the picture that general relativity predicts stronger gravity at short distances than Newtonian theory does.

  19. Examination of a constrained three-impulse trajectory between low planetary orbits and circulating orbits

    NASA Astrophysics Data System (ADS)

    Knoedler, Andrew J.

    Circulating orbits have been investigated to provide regular periodic transfers between the Earth and Mars. The circulating orbits pass close enough to each planet to be considered hyperbolic in planetocentric frame. The large spacecraft in the circulating orbit is resupplied by a smaller 'Taxi' spacecraft leaving a low planetary orbit. The Taxi follows a three-impulse patched-conic trajectory to travel from its spaceport to the large spacecraft following a hyperbolic fly-by resulting in a Delta V profile for each encounter. When the location of the first impulse of the trajectory is constrained to an arbitrary value then launch windows for each orbit of the spaceport can be determined. The length of the windows depend primarily upon the Delta V capability of the Taxi.

  20. INTERACTING BINARIES WITH ECCENTRIC ORBITS. III. ORBITAL EVOLUTION DUE TO DIRECT IMPACT AND SELF-ACCRETION

    SciTech Connect

    Sepinsky, J. F.; Willems, B.; Kalogera, V.; Rasio, F. A. E-mail: b-willems@northwestern.ed E-mail: rasio@northwestern.ed

    2010-11-20

    The rapid circularization and synchronization of the stellar components in an eccentric binary system at the onset of Roche lobe overflow is a fundamental assumption common to all binary stellar evolution and population synthesis codes, even though the validity of this assumption is questionable both theoretically and observationally. Here we calculate the evolution of the orbital elements of an eccentric binary through the direct three-body integration of a massive particle ejected through the inner Lagrangian point of the donor star at periastron. The trajectory of this particle leads to three possible outcomes: direct accretion onto the companion star within a single orbit, self-accretion back onto the donor star within a single orbit, or a quasi-periodic orbit around the companion star, possibly leading to the formation of a disk. We calculate the secular evolution of the binary orbit in the first two cases and conclude that direct impact accretion can increase as well as decrease the orbital semimajor axis and eccentricity, while self-accretion always decreases the orbital semimajor axis and eccentricity. In cases where mass overflow contributes to circularizing the orbit, circularization can set in on timescales as short as a few percent of the mass-transfer timescale. In cases where mass overflow increases the eccentricity, the orbital evolution is governed by competition between mass overflow and tidal torques. In the absence of tidal torques, mass overflow results in direct impact can lead to substantially subsynchronously rotating donor stars. Contrary to assumptions common in the literature, direct impact accretion furthermore does not always provide a strong sink of orbital angular momentum in close mass-transferring binaries; in fact, we instead find that a significant part can be returned to the orbit during the particle orbit. The formulation presented in this paper together with our previous work can be combined with stellar and binary evolution codes to generate a better picture of the evolution of eccentric, Roche lobe overflowing binary star systems.

  1. Orbit Determination of the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Mazarico, Erwan; Rowlands, D. D.; Neumann, G. A.; Smith, D. E.; Torrence, M. H.; Lemoine, F. G.; Zuber, M. T.

    2011-01-01

    We present the results on precision orbit determination from the radio science investigation of the Lunar Reconnaissance Orbiter (LRO) spacecraft. We describe the data, modeling and methods used to achieve position knowledge several times better than the required 50-100m (in total position), over the period from 13 July 2009 to 31 January 2011. In addition to the near-continuous radiometric tracking data, we include altimetric data from the Lunar Orbiter Laser Altimeter (LOLA) in the form of crossover measurements, and show that they strongly improve the accuracy of the orbit reconstruction (total position overlap differences decrease from approx.70m to approx.23 m). To refine the spacecraft trajectory further, we develop a lunar gravity field by combining the newly acquired LRO data with the historical data. The reprocessing of the spacecraft trajectory with that model shows significantly increased accuracy (approx.20m with only the radiometric data, and approx.14m with the addition of the altimetric crossovers). LOLA topographic maps and calibration data from the Lunar Reconnaissance Orbiter Camera were used to supplement the results of the overlap analysis and demonstrate the trajectory accuracy.

  2. Satellite orbit determination

    NASA Technical Reports Server (NTRS)

    Jordan, J. F.; Boggs, D. H.; Born, G. H.; Christensen, E. J.; Ferrari, A. J.; Green, D. W.; Hylkema, R. K.; Mohan, S. N.; Reinbold, S. J.; Sievers, G. L.

    1973-01-01

    A historic account of the activities of the Satellite OD Group during the MM'71 mission is given along with an assessment of the accuracy of the determined orbit of the Mariner 9 spacecraft. Preflight study results are reviewed, and the major error sources described. Tracking and data fitting strategy actually used in the real time operations is itemized, and Deep Space Network data available for orbit fitting during the mission and the auxiliary information used by the navigation team are described. A detailed orbit fitting history of the first four revolutions of the satellite orbit of Mariner 9 is presented, with emphasis on the convergence problems and the delivered solution for the first orbit trim maneuver. Also included are a solution accuracy summary, the history of the spacecraft orbit osculating elements, the results of verifying the radio solutions with TV imaging data, and a summary of the normal points generated for the relativity experiment.

  3. Curvature in orbital dynamics

    NASA Astrophysics Data System (ADS)

    Nauenberg, Michael

    2005-04-01

    The physical basis and the geometrical significance of the equation for the orbit of a particle moving under the action of external forces is exhibited by deriving this equation in a coordinate-independent representation in terms of the radius of curvature of the orbit. Although this formulation appeared in Newton's Principia, it has been ignored in contemporary classical mechanics textbooks. For small eccentricities, the orbit equation is used to obtain approximate solutions that illustrate the role of curvature. It is shown that this approach leads to a simple graphical method for determining the orbits for central forces. This method is similar to one attributed to Newton, who applied it to a constant central force, and sent a diagram of the orbit to Hooke in 1679. The result is compared to the corresponding orbit of a ball revolving inside an inverted cone which Hooke described in his response to Newton.

  4. Analytic orbit plane targeting for orbit transfers about an oblate planet

    NASA Technical Reports Server (NTRS)

    Mchenry, R. L.

    1992-01-01

    This paper develops closed-form expressions which accurately model variations in orbital inclination and longitude of the ascending node due to the influence of the J2 oblateness perturbation. These analytic expressions are particularly useful in defining perturbed orbit transfer planes which naturally regress into the target intercept position for Lambert-type transfers and in compensating for differential nodal regression between two orbiting vehicles in rendezvous targeting problems. Results of example problems for each of these scenarios demonstrate that they accurately compensate for these oblateness effects.

  5. Closeup view of the aft flight deck of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the aft flight deck of the Orbiter Discovery looking at the aft center control panels A6, A7, A8, A12, A13, A14, A16 and A17. This View was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  6. Design of a Formation of Earth-Orbiting Satellites: The Auroral Lites Mission

    NASA Technical Reports Server (NTRS)

    Hametz, Mark E.; Conway, Darrel J.; Richon, Karen

    1999-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) has proposed a set of spacecraft flying in close formation around the Earth in order to measure the behavior of the auroras. The mission, named Auroral Lites, consists of four spacecraft configured to start at the vertices of a tetrahedron, flying over three mission phases. During the first phase, the distance between any two spacecraft in the formation is targeted at 10 kilometers (km). The second mission phase is much tighter, requiring satellite interrange spacing targeted at 500 meters. During the final phase of the mission, the formation opens to a nominal 100-km interrange spacing. In this paper, we present the strategy employed to initialize and model such a close formation during each of these phases. The analysis performed to date provides the design and characteristics of the reference orbit, the evolution of the formation during Phases I and II, and an estimate of the total mission delta-V budget. AI Solutions' mission design tool, FreeFlyer, was used to generate each of these analysis elements. The tool contains full force models, including both impulsive and finite duration maneuvers. Orbital maintenance can be fully modeled in the system using a flexible, natural scripting language built into the system. In addition, AI Solutions is in the process of adding formation extensions to the system facilitating mission analysis for formations like Auroral Lites. We will discuss how FreeFlyer is used for these analyses.

  7. Design of a Formation of Earth Orbiting Satellites: The Auroral Lites Mission

    NASA Technical Reports Server (NTRS)

    Hametz, Mark E.; Conway, Darrel J.; Richon, Karen

    1999-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) has proposed a set of spacecraft flying in close formation around the Earth in order to measure the behavior of the auroras. The mission, named Auroral Lites, consists of four spacecraft configured to start at the vertices of a tetrahedron, flying over three mission phases. During the first phase, the distance between any two spacecraft in the formation is targeted at 10 kilometers (km). The second mission phase is much tighter, requiring satellite interrange spacing targeted at 500 meters. During the final phase of the mission, the formation opens to a nominal 100-km interrange spacing. In this paper, we present the strategy employed to initialize and model such a close formation during each of these phases. The analysis performed to date provides the design and characteristics of the reference orbit, the evolution of the formation during Phases I and II, and an estimate of the total mission delta-V budget. AI Solutions' mission design tool, FreeFlyer(R), was used to generate each of these analysis elements. The tool contains full force models, including both impulsive and finite duration maneuvers. Orbital maintenance can be fully modeled in the system using a flexible, natural scripting language built into the system. In addition, AI Solutions is in the process of adding formation extensions to the system facilitating mission analysis for formations like Auroral Lites. We will discuss how FreeFlyer(R) is used for these analyses.

  8. Top-down vertical itemset mining

    NASA Astrophysics Data System (ADS)

    Sohrabi, Mohammad Karim; Ghods, Vahid

    2015-03-01

    Vertical itemset mining is an important frequent pattern mining problem with broad applications. It is challenging since one may need to examine a combinatorial explosive number of possible patterns of items of a dataset in a traditional horizontal algorithm. Since high dimensional datasets typically contain a large number of columns and a small number of rows, vertical itemset mining algorithms, which extract the frequent itemsets of dataset by producing all combination of rows ids, are a good alternative for horizontal algorithms in mining frequent itemsets from high dimensional dataset. Since a rowset can be simply produced from its subsets by adding a new row id to a sub rowset, many bottom up vertical itemset mining algorithms are designed and represented in the literature. However, bottom up vertical mining algorithms suffer from a main drawback. Bottom-up algorithms start the process of generating and testing of rowsets from the small rowsets and go on to the larger rowsets, whereas the small rowsets cannot produce a frequent itemsets because they contain less than minimum support threshold number of rows. In this paper, we described a new efficient vertical top down algorithm called VTD (Vertical Top Down) to conduct mining of frequent itemsets in high dimensional datasets. Our top down approach employed the minimum support threshold to prune the rowsets which any itemset could not be extracted from them. Several experiments on real bioinformatics datasets showed that VTD is orders of magnitude better than previous closed pattern mining algorithms. Our performance study showed that this algorithm outperformed substantially the best former algorithms.

  9. Minimal orbits of metrics

    NASA Astrophysics Data System (ADS)

    Maeda, Yoshiaki; Rosenberg, Steven; Tondeur, Philippe

    1997-11-01

    The group of diffeomorphisms of a compact manifold acts isometrically on the space of Riemannian metrics with its L2 metric. Following Arnaudon and Paycha (1995) and Maeda, Rosenberg and Tondeur (1993), we define minimal orbits for this action by a zeta function regularization. We show that odd dimensional isotropy irreducible homogeneous spaces give rise to minimal orbits, the first known examples of minimal submanifolds of infinite dimension and codimension. We also find a flat 2-torus giving a stable minimal orbit. We prove that isolated orbits are minimal, as in finite dimensions.

  10. Introducing Earth's Orbital Eccentricity

    NASA Astrophysics Data System (ADS)

    Oostra, Benjamin

    2015-12-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is small, and its only effect on the seasons is their unequal durations. Here I show a pleasant way to guide students to the actual value of Earth's orbital eccentricity, starting from the durations of the four seasons. The date of perihelion is also found.

  11. Orbital Debris: A Chronology

    NASA Technical Reports Server (NTRS)

    Portree, Davis S. F. (Editor); Loftus, Joseph P., Jr. (Editor)

    1999-01-01

    This chronology covers the 37-year history of orbital debris concerns. It tracks orbital debris hazard creation, research, observation, experimentation, management, mitigation, protection, and policy. Included are debris-producing, events; U.N. orbital debris treaties, Space Shuttle and space station orbital debris issues; ASAT tests; milestones in theory and modeling; uncontrolled reentries; detection system development; shielding development; geosynchronous debris issues, including reboost policies: returned surfaces studies, seminar papers reports, conferences, and studies; the increasing effect of space activities on astronomy; and growing international awareness of the near-Earth environment.

  12. Family of Orbiters

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows the paths of three spacecraft currently in orbit around Mars, as well as the path by which NASA's Phoenix Mars Lander will approach and land on the planet. The t-shaped crosses show where the orbiters will be when Phoenix enters the atmosphere, while the x-shaped crosses show their location at landing time.

    All three orbiters, NASA's Mars Reconnaissance Orbiter, NASA's Mars Odyssey and the European Space Agency's Mars Express, will be monitoring Phoenix during the final steps of its journey to the Red Planet.

    Phoenix will land just south of Mars's north polar ice cap.

  13. Jupiter orbiter lifetime: The hazard of Galilean satellite collision

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.

    1975-01-01

    The four Galilean satellites of Jupiter present a long-term collision hazard to an uncontrolled orbiting spacecraft that repeatedly enters the spatial region occupied by the satellites. Satellite close encounters and the likelihood of collision over a wide range of initial orbit conditions were analyzed. The effect of orbit inclination was of key interest. The scope of the analysis was restricted to orbital dynamic considerations alone, i.e. the question of biological contamination given the event of collision was not considered. A quarantine or orbiter lifetime of 50 years was assumed. This time period begins at spacecraft shutdown following completion of the mission objectives. A numerical approach was adopted wherein each initial orbit is propagated for 50 years, and satellite closest encounter distances recorded on every revolution. The computer program includes approximations of the three major perturbation effects on the long-term motion of the orbiter: (1) Jupiter oblateness, (2) solar gravity, and (3) satellite gravity.

  14. Close supermassive binary black holes

    NASA Astrophysics Data System (ADS)

    Gaskell, C. Martin

    2010-01-01

    It has been proposed that when the peaks of the broad emission lines in active galactic nuclei (AGNs) are significantly blueshifted or redshifted from the systemic velocity of the host galaxy, this could be a consequence of orbital motion of a supermassive blackhole binary (SMB). The AGN J1536+0441 (=SDSS J153636.22+044127.0) has recently been proposed as an example of this phenomenon. It is proposed here instead that 1536+044 is an example of line emission from a disc. If this is correct, the lack of clear optical spectral evidence for close SMBs is significant and argues either that the merging of close SMBs is much faster than has generally been hitherto thought, or if the approach is slow, that when the separation of the binary is comparable to the size of the torus and broad-line region, the feeding of the black holes is disrupted.

  15. Close supermassive binary black holes.

    PubMed

    Gaskell, C Martin

    2010-01-01

    It has been proposed that when the peaks of the broad emission lines in active galactic nuclei (AGNs) are significantly blueshifted or redshifted from the systemic velocity of the host galaxy, this could be a consequence of orbital motion of a supermassive black-hole binary (SMBB). The AGN J1536+0441 ( = SDSS J153636.22+044127.0) has recently been proposed as an example of this phenomenon. It is proposed here instead that J1536+0441 is an example of line emission from a disk. If this is correct, the lack of clear optical spectral evidence for close SMBBs is significant, and argues either that the merging of close SMBBs is much faster than has generally been hitherto thought, or if the approach is slow, that when the separation of the binary is comparable to the size of the torus and broad-line region, the feeding of the black holes is disrupted. PMID:20054358

  16. 16. Perspective view of bascule span in closed position and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Perspective view of bascule span in closed position and vertical left span in open position, facing northeast - Sault Ste. Marie International Railroad Bridge, Spanning Soo Locks at St. Marys Falls Canal, Sault Ste. Marie, Chippewa County, MI

  17. 9. Perspective view of bascule span in closed position and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Perspective view of bascule span in closed position and north tower of vertical left span, facing east - Sault Ste. Marie International Railroad Bridge, Spanning Soo Locks at St. Marys Falls Canal, Sault Ste. Marie, Chippewa County, MI

  18. Optimization of the Helical Orbits in the Tevatron

    SciTech Connect

    Alexahin, Y.; /Fermilab

    2007-06-01

    To avoid multiple head-on collisions the proton and antiproton beams in the Tevatron move along separate helical orbits created by 7 horizontal and 8 vertical electrostatic separators. Still the residual long-range beam-beam interactions can adversely affect particle motion at all stages from injection to collision. With increased intensity of the beams it became necessary to modify the orbits in order to mitigate the beam-beam effect on both antiprotons and protons. This report summarizes the work done on optimization of the Tevatron helical orbits, outlines the applied criteria and presents the achieved results.

  19. STS-106 orbiter Atlantis rolls over to the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The orbiter Atlantis is moved aboard an orbiter transporter from the Orbiter Processing Facility (OPF) bay 3 over to the Vehicle Assembly Building (VAB). In the background (right) are OPF bays 1 and 2. In the VAB it will be lifted to vertical and placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.

  20. 'Endurance' Untouched (vertical)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This navigation camera mosaic, created from images taken by NASA's Mars Exploration Rover Opportunity on sols 115 and 116 (May 21 and 22, 2004) provides a dramatic view of 'Endurance Crater.' The rover engineering team carefully plotted the safest path into the football field-sized crater, eventually easing the rover down the slopes around sol 130 (June 12, 2004). To the upper left of the crater sits the rover's protective heatshield, which sheltered Opportunity as it passed through the martian atmosphere. The 360-degree view is presented in a vertical projection, with geometric and radiometric seam correction.

  1. The vertical motion simulator

    NASA Technical Reports Server (NTRS)

    Hosein, Todd

    1988-01-01

    Today's flight simulators, such as NASA's multimillion dollar Vertical Motion Simulator (VMS), recreate an authentic aircraft environment, and reproduce the sensations of flight by mechanically generating true physical events. In addition to their application as a training tool for pilots, simulators have become essential in the design, construction, and testing of new aircraft. Simulators allow engineers to study an aircraft's flight performance and characteristics without the cost or risk of an actual test flight. Because of their practicality, simulators will become more and more important in the development and design of new, safer aircraft.

  2. Kalman Orbit Optimized Loop Tracking

    NASA Technical Reports Server (NTRS)

    Young, Lawrence E.; Meehan, Thomas K.

    2011-01-01

    Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.

  3. Titan Orbiter with Aerorover Mission (TOAM)

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Cooper, J. F.; Mahaffy, P.; Esper, J.; Fairbrother, D.; Farley, R.; Pitman, J.; Kojiro, D. R.; Acuna, M.; Allen, M.; Bjoraker, G.; Brasunas, J.; Farrell, W.; Burchell, M. J.; Burger, M.; Chin, G.; Coates, A. J.; Farrell, W.; Flasar, M.; Gerlach, B.; Gorevan, S.; Hartle, R. E.; Im, Eastwood; Jennings, D.; Johnson, R. E.

    2007-01-01

    We propose to develop a new mission to Titan called Titan Orbiter with Aerorover Mission (TOAM). This mission is motivated by the recent discoveries of Titan, its atmosphere and its surface by the Huygens Probe, and a combination of in situ, remote sensing and radar mapping measurements of Titan by the Cassini orbiter. Titan is a body for which Astrobiology (i.e., prebiotic chemistry) will be the primary science goal of any future missions to it. TOAM is planned to use an orbiter and balloon technology (i.e., aerorover). Aerobraking will be used to put payload into orbit around Titan. One could also use aerobraking to put spacecraft into orbit around Saturn first for an Enceladus phase of the mission and then later use aerocapture to put spacecraft into orbit around Titan. The Aerorover will probably use a hot air balloon concept using the waste heat from the MMRTG approx. 1000 watts. Orbiter support for the Aerorover is unique to our approach for Titan. Our strategy to use an orbiter is contrary to some studies using just a single probe with balloon. Autonomous operation and navigation of the Aerorover around Titan will be required, which will include descent near to the surface to collect surface samples for analysis (i.e., touch and go technique). The orbiter can provide both relay station and GPS roles for the Aerorover. The Aerorover will have all the instruments needed to sample Titan's atmosphere, surface, possible methane lakes-rivers, use multi-spectral imagers for surface reconnaissance; to take close up surface images; take core samples and deploy seismometers during landing phase. Both active and passive broadband remote sensing techniques will be used for surface topography, winds and composition measurements.

  4. Vertical transport processes in unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Ostendorf, David W.; Reckhow, David A.; Popielarczyk, David J.

    1989-02-01

    We derive simple two-dimensional mathematical models describing the unsteady transport of conservative contaminants through an unconfined aquifer with a gently sloping aquiclude subject to advection, recharge, and vertical dispersion. The inclusion of vertical transport terms permits the proper nonreactive analysis of closed and open chemical systems, with the latter allowing dispersion of volatile constituents across the water table. These systems exhibit conservative and pseudoreactive behavior respectively when the pollution is analyzed on a depth-integrated basis, as is common in present one-dimensional models of groundwater contamination. Vertical and longitudinal chloride and total inorganic carbon observations at the well-documented Babylon, Long Island sanitary landfill plume are used to calibrate and test the analyses with a modest level of accuracy, using the vertical dispersivity as a calibration factor in this testing process. The parameter is important in the determination of reaeration rates across the water table and nutrient mixing from below in the related problem of biological transformations near the free surface.

  5. Exploration of Titan using Vertical Lift Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Young, L. A.

    2001-01-01

    Autonomous vertical lift aerial vehicles (such as rotorcraft or powered-lift vehicles) hold considerable potential for supporting planetary science and exploration missions. Vertical lift aerial vehicles would have the following advantages/attributes for planetary exploration: low-speed and low-altitude detailed aerial surveys; remote-site sample return to lander platforms; precision placement of scientific probes; soft landing capability for vehicle reuse (multiple flights) and remote-site monitoring; greater range, speed, and access to hazardous terrain than a surface rover; greater resolution of surface details than an orbiter or balloons. Exploration of Titan presents an excellent opportunity for the development and usage of such vehicles.

  6. Open field equilibrium current and cross-field passing electrons as an initiator of a closed flux surface in EC-heated toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Maekawa, T.; Yoshinaga, T.; Uchida, M.; Watanabe, F.; Tanaka, H.

    2012-08-01

    A model for the non-inductive initiation of a closed flux surface observed in electron cyclotron (EC) heated toroidal plasmas is presented. First, a pressure-driven equilibrium toroidal current develops under a weak external vertical field so as to counter balance the pressure-ballooning and current-hoop forces. When the self-field from the current almost cancels out the external vertical field, a forward energetic part of electrons in the velocity space begins to make cross-field passing (CFP) orbits. The CFP electrons are generated by the EC heating of bulk electrons and subsequent pitch-angle scattering, which is analyzed using the Fokker-Planck equation. They provide an additional current that closes the field lines. The model is examined for experiments in the small low aspect ratio device of LATE and in the large conventional device of JT-60U with a search for appropriate modes of EC heating. Simultaneous coincidence of the model with these two experiments is obtained in terms of microwave power and driven current. The results predict that initiation of a closed flux surface requires more and more EC power as the plasma major radius increases. In particular, careful injection of high N? EC waves is needed for large devices, both for initiation of a closed flux surface and for subsequent enlargement of the flux surface by the usual EC current drive onto the closed flux area.

  7. Spin-orbit coupling and chaotic rotation for coorbital bodies in quasi-circular orbits

    SciTech Connect

    Correia, Alexandre C. M.; Robutel, Philippe

    2013-12-10

    Coorbital bodies are observed around the Sun sharing their orbits with the planets, but also in some pairs of satellites around Saturn. The existence of coorbital planets around other stars has also been proposed. For close-in planets and satellites, the rotation slowly evolves due to dissipative tidal effects until some kind of equilibrium is reached. When the orbits are nearly circular, the rotation period is believed to always end synchronous with the orbital period. Here we demonstrate that for coorbital bodies in quasi-circular orbits, stable non-synchronous rotation is possible for a wide range of mass ratios and body shapes. We show the existence of an entirely new family of spin-orbit resonances at the frequencies n ± kν/2, where n is the orbital mean motion, ν the orbital libration frequency, and k an integer. In addition, when the natural rotational libration frequency due to the axial asymmetry, σ, has the same magnitude as ν, the rotation becomes chaotic. Saturn coorbital satellites are synchronous since ν << σ, but coorbital exoplanets may present non-synchronous or chaotic rotation. Our results prove that the spin dynamics of a body cannot be dissociated from its orbital environment. We further anticipate that a similar mechanism may affect the rotation of bodies in any mean-motion resonance.

  8. Vertical wind turbine

    SciTech Connect

    Danson, D.P.

    1988-08-16

    This patent describes a wind driven turbine of the vertical axis type comprising: (a) a support base; (b) a generally vertical column rotatably mounted to the support base; (c) upper and lower support means respectively mounted on the column for rotation therewith; wind driven blades connected between the upper and lower support means for rotation about the column and each blade being individually rotatable about a blade axis extending longitudinally through the blade to vary a blade angle of attach thereof relative to wind velocity during rotation about the column; and (e) control means for variably adjusting angles of attack of each blade to incident wind, the control means including a connecting rod means having drive means for rotating each blade about the associated blade axis in response to radial movement of the connecting rod means and control shaft pivotally mounted within the column and having a first shaft portion connected to the connecting rod means and a second shaft portion radially offset from the first shaft portion and pivotally connected to radially displace the first portion and thereby the connecting rod means to vary the blade angles of attack during rotation about the column.

  9. Reticulohistiocytoma of the Orbit

    PubMed Central

    Weissman, Heather M.; Hayek, Brent R.; Grossniklaus, Hans E.

    2015-01-01

    Reticulohistiocytoma is a rare, benign histiocytic proliferation of the skin or soft tissue. While ocular involvement has been documented in the past, there have been no previously reported cases of reticulohistiocytoma of the orbit. In this report, the authors describe a reticulohistiocytoma of the orbit in a middle-aged woman. PMID:24807799

  10. Statistical initial orbit determination

    NASA Astrophysics Data System (ADS)

    Taff, L. G.; Belkin, B.; Schweiter, G. A.; Sommar, K.

    1992-02-01

    For the ballistic missile initial orbit determination problem in particular, the concept of 'launch folders' is extended. This allows to decouple the observational data from the initial orbit determination problem per se. The observational data is only used to select among the possible orbital element sets in the group of folders. Monte Carlo simulations using up to 7200 orbital element sets are described. The results are compared to the true orbital element set and the one a good radar would have been able to produce if collocated with the optical sensor. The simplest version of the new method routinely outperforms the radar initial orbital element set by a factor of two in future miss distance. In addition, not only can a differentially corrected orbital element set be produced via this approach - after only two measurements of direction - but also an updated, meaningful, six-dimensional covariance array for it can be calculated. This technique represents a significant advance in initial orbit determination for this problem, and the concept can easily be extended to minor planets and artificial satellites.

  11. Satellite orbit computation methods

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Mathematical and algorithmical techniques for solution of problems in satellite dynamics were developed, along with solutions to satellite orbit motion. Dynamical analysis of shuttle on-orbit operations were conducted. Computer software routines for use in shuttle mission planning were developed and analyzed, while mathematical models of atmospheric density were formulated.

  12. Orbital Shape Representations.

    ERIC Educational Resources Information Center

    Kikuchi, Osamu; Suzuki, Keizo

    1985-01-01

    Discusses the use of orbital shapes for instructional purposes, emphasizing that differences between polar, contour, and three-dimensional plots must be made clear to students or misconceptions will occur. Also presents three-dimensional contour surfaces for the seven 4f atomic orbitals of hydrogen and discusses their computer generation. (JN)

  13. Analyzing Shuttle Orbiter Trajectories

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1986-01-01

    LRBET4 program best-estimated-of-trajectory (BET) calculation for post-flight trajectory analysis of Shuttle orbiter. Produces estimated measurements for comparing predicted and actual trajectory of Earth-orbiting spacecraft. Kalman filter and smoothing filter applied to input data to estimate state vector, reduce noise, and produce BET. LRBET4 written in FORTRAN IV for batch execution.

  14. Towards GPS orbit accuracy of tens of centimeters

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.

    1990-01-01

    In this paper, CASA Uno orbit results are presented utilizing data from four continents. Refinements in orbit modeling, combined with the availability of a worldwide tracking network and the dense distribution of tracking sites in North and South America, have improved orbit determination precision to about 60 cm (per component) for four of the seven GPS satellites tracked in CASA Uno. The orbit results are consistent with California baseline repeatabilities, which are at the few mm level in horizontal and length, and 1-2 cm in the vertical. Baseline comparisons with VLBI provide a measure of orbit accuracy, showing sub-cm agreement in length and 1.5 cm agreement in the horizontal.

  15. Remote Controlled Orbiter Capability

    NASA Technical Reports Server (NTRS)

    Garske, Michael; delaTorre, Rafael

    2007-01-01

    The Remote Control Orbiter (RCO) capability allows a Space Shuttle Orbiter to perform an unmanned re-entry and landing. This low-cost capability employs existing and newly added functions to perform key activities typically performed by flight crews and controllers during manned re-entries. During an RCO landing attempt, these functions are triggered by automation resident in the on-board computers or uplinked commands from flight controllers on the ground. In order to properly route certain commands to the appropriate hardware, an In-Flight Maintenance (IFM) cable was developed. Currently, the RCO capability is reserved for the scenario where a safe return of the crew from orbit may not be possible. The flight crew would remain in orbit and await a rescue mission. After the crew is rescued, the RCO capability would be used on the unmanned Orbiter in an attempt to salvage this national asset.

  16. Mars Climate Orbiter

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The purpose of this mission is to study the climate history and the water distribution of Mars. Beautiful panoramic views of the shuttle on the launch pad, engine ignition, Rocket launch, and the separation and burnout of the Solid Rocket Boosters are shown. The footage also includes an animation of the mission. Detailed views of the path that the Orbiter traversed were shown. Once the Orbiter lands on the surface of Mars, it will dig a six to eight inch hole and collect samples from the planets' surface. The animation also included the prospective return of the Orbiter to Earth over the desert of Utah. The remote sensor on the Orbiter helps in finding the exact location of the Orbiter so that scientists may collect the sample and analyze it.

  17. Orbital Debris Mitigation

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.; Jarkey, D. R.; Stansbery, G.

    2014-01-01

    Policies on limiting orbital debris are found throughout the US Government, many foreign space agencies, and as adopted guidelines in the United Nations. The underlying purpose of these policies is to ensure the environment remains safe for the operation of robotic and human spacecraft in near- Earth orbit. For this reason, it is important to consider orbital debris mitigation during the design of all space vehicles. Documenting compliance with the debris mitigation guidelines occurs after the vehicle has already been designed and fabricated for many CubeSats, whereas larger satellites are evaluated throughout the design process. This paper will provide a brief explanation of the US Government Orbital Debris Mitigation Standard Practices, a discussion of international guidelines, as well as NASA's process for compliance evaluation. In addition, it will discuss the educational value of considering orbital debris mitigation requirements as a part of student built satellite design.

  18. Hydrodynamic Stability Criteria for Vertically Stratified Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Stewart, Glen R.

    2014-11-01

    Whenever a vertically stratified circumstellar disk has a radial entropy gradient, the balance of forces in the radial and vertical directions implies that the unperturbed orbit frequency is a function of both radius and height above the midplane of the disk. This vertical shear in the orbit frequency can produce baroclinic instabilities that result in slanted convection in the r-z plane, vertical corrugations of the disk midplane, and outward angular momentum transport with an effective alpha of 0.001 (Nelson et al., MNRAS 435, 2610-2632, (2013)). It is difficult to derive a rigorous dispersion relation for this instability due to the inseparable nature of the r and z-dependence of the problem. Previously published stability criteria are limited to small vertical scales because they assume the vertical component of the stars gravity to be independent of z. This limitation can be overcome if one assumes that the vertical structure near the disk midplane is nearly adiabatic, so that the anelastic approximation is valid. For this case, the problem can be reduced to a set of three evolution equations for the z-component of the angular momentum, the potential temperature, and the component of vorticity due to motions in the r-z plane. This reduced dynamical system has a Hamiltonian structure that allows one to readily derive a Liapunov functional that governs the linear and nonlinear stability of the problem. The stability criterion reduces to a statement about the relative slopes in the r-z plane of the surfaces of constant angular momentum and constant potential temperature in the unperturbed disk. This stability condition is analogous to the criterion for symmetric baroclinic instabilities in planetary atmospheres. Support from NASAs Origins of Solar Systems program is gratefully acknowledged.

  19. Closeup view looking forward along the centerline of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view looking forward along the centerline of the Orbiter Discovery looking into the payload bay. This view is a close-up view of the external airlock and the beam-truss attach structure supporting it and attaching it to the payload bay sill longerons. Also note the protective covering over the docking mechanism on top of the airlock assembly. This external airlock configuration was for mating to the International Space Station. This photograph was taken in the Orbiter Processing Facility at Kennedy Space Cente - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  20. Analyses of Shuttle Orbiter approach and landing

    NASA Technical Reports Server (NTRS)

    Ashkenas, I. L.; Hoh, R. H.; Teper, G. L.

    1982-01-01

    A study of the Shuttle Orbiter approach and landing conditions is summarized. The causes of observed PIO-like flight deficiencies are listed, and possible corrective measures are examined. Closed-loop pilot/vehicle analyses are described, and a description is given of path-attitude stability boundaries. The latter novel approach is found to be of great value in delineating and illustrating the basic causes of this multiloop pilot control problem. It is shown that the analytical results are consistent with flight test and fixed-base simulation. Conclusions are drawn concerning possible improvements in the Shuttle Orbiter/Digital Flight Control System.

  1. Pioneer Venus orbiter electron temperature probe

    NASA Technical Reports Server (NTRS)

    Brace, Larry H.

    1994-01-01

    This document lists the scientific accomplishments of the Orbiter Electron Temperature Probe (OETP) group. The OETP instrument was fabricated in 1976, integrated into the PVO spacecraft in 1977, and placed in orbit about Venus in December 1978. The instrument operated flawlessly for nearly 14 years until PVO was lost as it entered the Venusian atmosphere in October 1992. The OETP group worked closely with other PVO investigators to examine the Venus ionosphere and its interactions with the solar wind. After the mission was completed we continued to work with the scientist selected for the Venus Data Analysis Program (VDAP), and this is currently leading to additional publications.

  2. Closeup view of the aft fuselage of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the aft fuselage of the Orbiter Discovery on the starboard side looking forward. This view is of the attach surface for the Orbiter Maneuvering System/Reaction Control System (OMS/RCS) Pod. The OMS/RCS pods are removed for processing and reconditioning at another facility. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  3. Closeup oblique view of the aft fuselage of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up oblique view of the aft fuselage of the Orbiter Discovery looking forward and port with the Space Shuttle Main Engines (SSME) and Orbiter Maneuvering System/Reaction Control System pods still in place. However. the heat shields have been removed from the SSMEs providing a good view toward the interior of the aft fuselage. This image was taken inside the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  4. Closeup oblique view of the aft fuselage of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up oblique view of the aft fuselage of the Orbiter Discovery looking forward and starboard with the Space Shuttle Main Engines (SSME) and Orbiter Maneuvering System/Reaction Control System pods removed. The openings for the SSMEs have been covered with a flexible barrier to create a positive pressure envelope inside of the aft fuselage. This image was taken inside the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  5. Closeup oblique view of the aft fuselage of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up oblique view of the aft fuselage of the Orbiter Discovery looking forward and starboard with the Space Shuttle Main Engines (SSME) and Orbiter Maneuvering System/Reaction Control System pods still in place. However. the heat shields have been removed from the SSMEs providing a good view toward the interior of the aft fuselage. This image was taken inside the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  6. Orbital Evolution of Jupiter-Family Comets

    NASA Technical Reports Server (NTRS)

    Ipatov, S. I.; Mather, J. S.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    We investigated the evolution for periods of at least 5-10 Myr of 2500 Jupiter-crossing objects (JCOs) under the gravitational influence of all planets, except for Mercury and Pluto (without dissipative factors). In the first series we considered N=2000 orbits near the orbits of 30 real Jupiter-family comets with period less than 10 yr, and in the second series we took 500 orbits close to the orbit of Comet 10P Tempel 2. We calculated the probabilities of collisions of objects with the terrestrial planets, using orbital elements obtained with a step equal to 500 yr and then summarized the results for all time intervals and all bodies, obtaining the total probability P(sub sigma) of collisions with a planet and the total time interval T(sub sigma) during which perihelion distance of bodies was less than a semimajor axis of the planet. The values of P = 10(exp 6)P(sub sigma)/N and T = T(sub sigma)/1000 yr are presented in Table together with the ratio r of the total time interval when orbits were of Apollo type (at e less than 0.999) to that of Amor type.

  7. Vertical seismic profiling

    SciTech Connect

    Wyatt, K.D.

    1986-12-02

    A method is described for converting vertical seismic profiling (VSP) seismic data to surface seismic data. The seismic source used to obtain the VSP seismic data was offset a desired distance from a borehole, the method comprising the steps of: (a) selecting a first VSP data trace from the VSP seismic data; (b) mapping segments of the first VSP data trace at respective VSP times into locations on a plot of surface seismic time as a function of distance from the borehole; (c) repeating steps (a) and (b) for at least a portion of the VSP data traces, other than the first VSP data trace, in the VSP seismic data; and (d) summing sections of each VSP data trace which are mapped into the same location in the plot to produce the surface seismic data.

  8. Vertical ramisection for prognathism.

    PubMed

    Broadbent, T R; Woolf, R M

    1977-11-01

    Forty-four patients with Class III malocclusion, who were operated on for prognathism, have been reviewed. In spite of the associated problems of pain, nausea, fear, relapse, additional orthodontia, lip numbness, lip weakness, and 8 weeks with their teeth wired together, only one patient of the 44 said he (or she) would decline this surgery if it were to be considered anew. The surgeon must make a strong effort to keep the vertical cut in the bony ramus posterior to the lingula, to avoid postoperative lip numbness. He should also keep traction on the soft tissues minimal, to avoid postoperative weakness of the lower lip. A significant relapse was uncommon in this series, and the facial symmetry was greatly enhanced. Most of these 44 patients (66 percent) said the improvement in their self-image and personal appearance was far more important to them than the improvement in their bite. PMID:918178

  9. Multicolored Vertical Silicon Nanowires

    SciTech Connect

    Seo, Kwanyong; Wober, Munib; Steinvurzel, P.; Schonbrun, E.; Dan, Yaping; Ellenbogen, T.; Crozier, K. B.

    2011-04-13

    We demonstrate that vertical silicon nanowires take on a surprising variety of colors covering the entire visible spectrum, in marked contrast to the gray color of bulk silicon. This effect is readily observable by bright-field microscopy, or even to the naked eye. The reflection spectra of the nanowires each show a dip whose position depends on the nanowire radii. We compare the experimental data to the results of finite difference time domain simulations to elucidate the physical mechanisms behind the phenomena we observe. The nanowires are fabricated as arrays, but the vivid colors arise not from scattering or diffractive effects of the array, but from the guided mode properties of the individual nanowires. Each nanowire can thus define its own color, allowing for complex spatial patterning. We anticipate that the color filter effect we demonstrate could be employed in nanoscale image sensor devices.

  10. NASA A-Train Vertical Data (Curtains) in Google Earth

    NASA Astrophysics Data System (ADS)

    Chen, A.; Leptoukh, G.; di, L.; Lynnes, C.; Kempler, S.; Nadeau, D.

    2007-12-01

    Google Earth combines satellite imagery, aerial photography, map data, and human-social data to make a real 3D interactive template of the world. It is revolutionizing the way that general public recognize our planet and professional scientists discover, add, and share information about different geographic-related subjects in the world. NASA Goddard Earth Science (GES) Data and Information Service Center (DISC) has done innovative work integrating NASA imagery in Google Earth in order to facilitate scientific research and releasing of geospatial- related public information. The NASA imagery includes two dimensional (2D) flat data and three dimensional (3D) vertical data. Here, a new solution is introduced to integrate the vertical data from the A-Train constellation satellites CloudSat, CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation), and Aqua (mainly MODIS and AIRS products) into Google Earth to vividly expose cloud, aerosol, and H2O characteristics and atmospheric temperature profile in the form of curtain along the satellite orbit. All kinds of vertical data are first processed by GIOVANNI (GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure) A-Train system based on user-selected spatial/temporal range and physical parameters. The resultant image is processed into transparent small image slices with each image slice representing the fixed temporal internal orbit range. A generalized COLLADA (COLLAborative Design Activity) 3D model is designed to render the image slices in the form of 3D. Based on the designed COLLADA models and satellite orbit coordinates, an orbit model is designed and implemented in KML (Keyhole Markup Language) format. The resultant orbit curtain makes vertical data viewable, transparently or opaquely, in Google Earth. Thus, three- dimensional science research data can be made available to scientists and the general public in a popular venue. Also, simultaneous visualization and efficient exploration of the relationships among quantitative geospatial data (e.g. comparing the vertical data profiles with MODIS, AIRS data and TRMM precipitation data) becomes possible. This method allows combining vertical data together with other geospatial data for scientific research and allows better understanding of our planet. A key capability of the system is the ability to visualize and compare diverse, simultaneous data from different providers, revealing new information and knowledge that would otherwise be hidden.

  11. Orbital metastatic osteosarcoma.

    PubMed

    Rajabi, Mohammad Taher; Saeedi-Anari, Ghasem; Ramezani, Farshid; Tabatabaie, Seyed-Ziaeddin; Rajabi, Mohammad Bagher; Asadi Amoli, Fahimeh

    2015-02-01

    At an estimated incidence of 2 cases per million persons per year, osteosarcoma is the most common primary malignant bone tumor in children and adults, excluding hematopoietic intraosseous tumors. Orbital metastases of osteosarcoma are very rare. Only 5 cases of orbital metastasis of osteosarcoma previously reported in the literature. We report the case of a 19-year-old man with known history of osteosarcoma of right distal femur who presented with acute visual loss and progressive protrusion of his left eye. Orbital CT scan and MRI revealed orbital mass eroding orbital walls and intracranial invasion. He underwent superotemporal orbitotomy for debulking of orbital mass. Histopathological examination (HPE) of the specimen was reported as metastatic osteosarcoma with extensive tumor necrosis. Then he underwent adjuvant chemotherapy and palliative radiotherapy. Although orbital metastasis of osteosarcoma is a rare event, it seems it has had an increasing trend recently. so, making efforts to palliate the patient's symptoms by multidisciplinary teamwork and proper interaction among ophthalmologist, orthopedic surgeons and oncologists is necessary. PMID:25644802

  12. Geographically correlated orbit error

    NASA Technical Reports Server (NTRS)

    Rosborough, G. W.

    1989-01-01

    The dominant error source in estimating the orbital position of a satellite from ground based tracking data is the modeling of the Earth's gravity field. The resulting orbit error due to gravity field model errors are predominantly long wavelength in nature. This results in an orbit error signature that is strongly correlated over distances on the size of ocean basins. Anderle and Hoskin (1977) have shown that the orbit error along a given ground track also is correlated to some degree with the orbit error along adjacent ground tracks. This cross track correlation is verified here and is found to be significant out to nearly 1000 kilometers in the case of TOPEX/POSEIDON when using the GEM-T1 gravity model. Finally, it was determined that even the orbit error at points where ascending and descending ground traces cross is somewhat correlated. The implication of these various correlations is that the orbit error due to gravity error is geographically correlated. Such correlations have direct implications when using altimetry to recover oceanographic signals.

  13. Visualization of atom's orbits.

    PubMed

    Kim, Byungwhan

    2014-02-01

    High-resolution imaging techniques have been used to obtain views of internal shapes of single atoms or columns of atoms. This review article focuses on the visualization of internal atomic structures such as the configurations of electron orbits confined to atoms. This is accomplished by applying visualization techniques to the reported images of atoms or molecules as well as static and dynamic ions in a plasma. It was found that the photon and electron energies provide macroscopic and microscopic views of the orbit structures of atoms, respectively. The laser-imaged atoms showed a rugged orbit structure, containing alternating dark and bright orbits believed to be the pathways for an externally supplied laser energy and internally excited electron energy, respectively. By contrast, the atoms taken by the electron microscopy provided a structure of fine electron orbits, systematically formed in increasing order of grayscale representing the energy state of an orbit. This structure was identical to those of the plasma ions. The visualized electronic structures played a critical role in clarifying vague postulates made in the Bohr model. Main features proposed in the atomic model are the dynamic orbits absorbing an externally supplied electromagnetic energy, electron emission from them while accompanying light radiation, and frequency of electron waves not light. The light-accompanying electrons and ionic speckles induced by laser light signify that light is composed of electrons and ions. PMID:24749452

  14. OL- ORBITAL LIFETIME PROGRAM

    NASA Technical Reports Server (NTRS)

    Orr, L. H.

    1994-01-01

    The Orbital Lifetime (OL) program analyzes the long-term motion of Earth-orbiting spacecraft at altitudes of up to 2500 kilometers. It models perturbations to the orbit caused by solar radiation pressure, atmospheric drag, and gravitational effects due to the sun, the moon, and Earth oblateness. OL can be used to predict the orbital lifetime and decay rate of a satellite. The atmospheric density models used in OL are the U.S. Standard Atmosphere for altitudes below 90 km and the Jacchia model for altitudes above 90 km. The Jacchia model requires solar flux and geomagnetic index for the date of orbit. An input file containing these values for 1984 to 1998 is supplied with the OL package. The solar radiation pressure calculations in OL will predict the amount of time a spacecraft is subjected to the Earth's shadow. Input to OL includes spacecraft physical characteristics, initial orbit parameters, and launch date/time. OL calculates time histories of the orbital elements, total lifetime, and decay rates. A spacecraft is considered 'down' at an altitude of 64 km. OL also generates a file of plot data which can be input to a user-supplied graphics program for lifetime plots of altitude against time. OL is written in FORTRAN 77 for interactive or batch execution and has been implemented on a DEC VAX series computer operating under VMS. This program was developed in 1985.

  15. Harmonically excited orbital variations

    SciTech Connect

    Morgan, T.

    1985-08-06

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs.

  16. Orbit Stabilization of Nanosat

    SciTech Connect

    JOHNSON,DAVID J.

    1999-12-01

    An algorithm is developed to control a pulsed {Delta}V thruster on a small satellite to allow it to fly in formation with a host satellite undergoing time dependent atmospheric drag deceleration. The algorithm uses four short thrusts per orbit to correct for differences in the average radii of the satellites due to differences in drag and one thrust to symmetrize the orbits. The radial difference between the orbits is the only input to the algorithm. The algorithm automatically stabilizes the orbits after ejection and includes provisions to allow azimuthal positional changes by modifying the drag compensation pulses. The algorithm gives radial and azimuthal deadbands of 50 cm and 3 m for a radial measurement accuracy of {+-} 5 cm and {+-} 60% period variation in the drag coefficient of the host. Approaches to further reduce the deadbands are described. The methodology of establishing a stable orbit after ejection is illustrated in an appendix. The results show the optimum ejection angle to minimize stabilization thrust is upward at 86{sup o} from the orbital velocity. At this angle the stabilization velocity that must be supplied by the thruster is half the ejection velocity. An ejection velocity of 0.02 m/sat 86{sup o} gives an azimuthal separation after ejection and orbit stabilization of 187 m. A description of liquid based gas thrusters suitable for the satellite control is included in an appendix.

  17. Measurement of ultralow vertical emittance using a calibrated vertical undulator

    NASA Astrophysics Data System (ADS)

    Wootton, K. P.; Boland, M. J.; Rassool, R. P.

    2014-11-01

    Very few experimental techniques are useful for the direct observation of ultralow vertical emittance in electron storage rings. In this work, quantitative measurements of ultralow (pm rad) electron beam vertical emittance using a vertical undulator are presented. An undulator radiation model was developed using the measured magnetic field of the APPLE-II type undulator. Using calibrated experimental apparatus, a geometric vertical emittance of ɛy=0.9 ±0.3 pm rad has been observed. These measurements could also inform modeling of the angular distribution of undulator radiation at high harmonics, for proposed diffraction-limited storage ring light sources.

  18. Superatomic Orbitals under Spin-Orbit Coupling.

    PubMed

    Jiang, De-En; Kühn, Michael; Tang, Qing; Weigend, Florian

    2014-10-01

    The Au25(SR)18(-) cluster has been the poster child of success in applying the superatom complex concept and remains the most studied system of all of the monolayer-protected metal clusters. In this Letter, we try to solve a mystery about this cluster: the low-temperature UV-vis absorption spectrum shows double peaks below 2.0 eV while simulation by scalar relativistic time-dependent density functional theory (TDDFT) shows only one peak in this region. Using a recently implemented two-component TDDFT, we show that spin-orbit coupling (SOC) leads to those two peaks by splitting the 1P superatomic HOMO orbitals. This work highlights the importance of SOC in understanding the electronic structure and optical absorption of thiolated gold nanoclusters, which has not been realized previously. PMID:26278432

  19. Adaptable orbital service for low earth orbits

    NASA Astrophysics Data System (ADS)

    Runavot, J. J.; Tarrieu, C.

    1982-09-01

    Features and details of a two-vehicle space manufacturing system for production of materials in LEO and transfer of the products to earth, in accord with results of the French Solaris study, are described. Technology and operational experience is expected to be gained first from automated systems, followed by automated orbital service and then manned orbital service by the year 2000. Space processing for alloys, metals, optics materials, crystals, laser optics components, and medical products are foreseen in space industrialization. Additional activities would expand for earth observations in scientific, military, and commercial applications. Launch of the payloads would be with the Ariane 4 or a modified Ariane 5, carrying 5000 kg. An attached reentry body would weigh 2500 kg and be configured for land and water landing. Operational and design characteristics of the SAR remote sensing and material science payloads are detailed.

  20. Removal of orbital debris

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J.; Talent, David L.

    1989-01-01

    The several methods presently identified for the reduction of orbital debris populations are broadly classifiable as either preventive or remedial, and fall within distinctive operational regimes. For all particles, (1) in the 250-2000-km altitude band, intelligent sweepers may be used; (2) for large objects, in the 80-250-km altitude band, orbital decay renders removal impractical; (3) for the 250-750-km altitude band, deorbit devices should be used; (4) for 750-2500-km altitude, OMV rendezvous for propulsive deorbit package attachment is foreseeable; and beyond 2500 km, (5) propulsive escape from earth orbit is required.

  1. Shadowing Lemma and Chaotic Orbit Determination

    NASA Astrophysics Data System (ADS)

    Milani Comparetti, Andrea; Spoto, Federica

    2015-08-01

    Orbit determination is possible for a chaotic orbit of a dynamical system, given a finite set of observations, provided the initial conditions are at the central time. We test both the convergence of the orbit determination procedure and the behavior of the uncertainties as a function of the maximum number n of map iterations observed; this by using a simple discrete model, namely the standard map. Two problems appear: first, the orbit determination is made impossible by numerical instability beyond a computability horizon, which can be approximately predicted by a simple formula containing the Lyapounov time and the relative roundoff error. Second, the uncertainty of the results is sharply increased if a dynamical parameter (contained in the standard map formula) is added to the initial conditions as parameter to be estimated. In particular the uncertainty of the dynamical parameter, and of at least one of the initial conditions, decreases like n^a with a<0 but not large (of the order of unity). If only the initial conditions are estimated, their uncertainty decreases exponentially with n, thus it becomes very small. All these phenomena occur when the chosen initial conditions belong to a chaotic orbit (as shown by one of the well known Lyapounov indicators). If they belong to a non-chaotic orbit the computational horizon is much larger, if it exists at all, and the decrease of the uncertainty appears to be polynomial in all parameters, like n^a with a approximately 1/2; the difference between the case with and without dynamical parameter estimated disappears. These phenomena, which we can investigate in a simple model, have significant implications in practical problems of orbit determination involving chatic phenomena, such as the chaotic rotation state of a celestial body and a chaotic orbit of a planet-crossing asteroid undergoing many close approaches.

  2. Statistics of close approaches between asteroids and planets - Project Spaceguard

    NASA Technical Reports Server (NTRS)

    Milani, A.; Carpino, M.; Marzari, F.

    1990-01-01

    A data base of close approaches to the major planets has been generated via numerical integrations for a large number of planet-crossing asteroid orbits over the course of 200,000 yr; these data are then applied to such statistical theories as those of Kessler (1981) and Wetherill (1967). Attention is given to the orbits of the Toro-class asteroids, which violate the assumption of a lack of mean motion resonance locking between target planet and asteroid. A modified form of the Kessler theory is proposed which can address the problem of approaches between orbits that are either nearly coplanar or nearly tangent. A correlation analysis is used to test the assumption that the orbital elements of a planet-crossing orbit change solely due to close approaches.

  3. The orbital record in stratigraphy

    NASA Technical Reports Server (NTRS)

    Fischer, Alfred G.

    1992-01-01

    Orbital signals are being discovered in pre-Pleistocene sediments. Due to their hierarchical nature these cycle patterns are complex, and the imprecision of geochronology generally makes the assignment of stratigraphic cycles to specific orbital cycles uncertain, but in sequences such as the limnic Newark Group under study by Olsen and pelagic Cretaceous sequence worked on by our Italo-American group the relative frequencies yield a definitive match to the Milankovitch hierarchy. Due to the multiple ways in which climate impinges on depositional systems, the orbital signals are recorded in a multiplicity of parameters, and affect different sedimentary facies in different ways. In platform carbonates, for example, the chief effect is via sea-level variations (possibly tied to fluctuating ice volume), resulting in cycles of emergence and submergence. In limnic systems it finds its most dramatic expression in alternations of lake and playa conditions. Biogenic pelagic oozes such as chalks and the limestones derived from them display variations in the carbonate supplied by planktonic organisms such as coccolithophores and foraminifera, and also record variations in the aeration of bottom waters. Whereas early studies of stratigraphic cyclicity relied mainly on bedding variations visible in the field, present studies are supplementing these with instrumental scans of geochemical, paleontological, and geophysical parameters which yield quantitative curves amenable to time-series analysis; such analysis is, however, limited by problems of distorted time-scales. My own work has been largely concentrated on pelagic systems. In these, the sensitivity of pelagic organisms to climatic-oceanic changes, combined with the sensitivity of botton life to changes in oxygen availability (commonly much more restricted in the Past than now) has left cyclic patterns related to orbital forcing. These systems are further attractive because (1) they tend to offer depositional continuity, and (2) presence of abundant microfossils yields close ties to geochronology. A tantalizing possibility that stratigraphy may yield a record of orbital signals unrelated to climate has turned up in magnetic studies of our Cretaceous core. Magnetic secular variations here carry a strong 39 ka periodicity, corresponding to the theoretical obliquity period of that time - Does the obliquity cycle perhaps have some direct influence on the magnetic field?

  4. Orbit Determination Issues for Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Bauer, Frank (Technical Monitor)

    2002-01-01

    Libration point mission designers require knowledge of orbital accuracy for a variety of analyses including station keeping control strategies, transfer trajectory design, and formation and constellation control. Past publications have detailed orbit determination (OD) results from individual libration point missions. This paper collects both published and unpublished results from four previous libration point missions (ISEE (International Sun-Earth Explorer) -3, SOHO (Solar and Heliospheric Observatory), ACE (Advanced Composition Explorer) and MAP (Microwave Anisotropy Probe)) supported by Goddard Space Flight Center's Guidance, Navigation & Control Center. The results of those missions are presented along with OD issues specific to each mission. All past missions have been limited to ground based tracking through NASA ground sites using standard range and Doppler measurement types. Advanced technology is enabling other OD options including onboard navigation using seaboard attitude sensors and the use of the Very Long Baseline Interferometry (VLBI) measurement Delta Differenced One-Way Range (DDOR). Both options potentially enable missions to reduce coherent dedicated tracking passes while maintaining orbital accuracy. With the increased projected loading of the DSN (Deep Space Network), missions must find alternatives to the standard OD scenario.

  5. Mars Reconnaissance Orbiter Accelerometer Experiment Results

    NASA Astrophysics Data System (ADS)

    Keating, G. M.; Bougher, S. W.; Theriot, M. E.; Zurek, R. W.; Blanchard, R. C.; Tolson, R. H.; Murphy, J. R.

    2007-05-01

    The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005, designed for aerobraking, achieved Mars Orbital Insertion (MOI), March 10, 2006. Atmospheric density decreases exponentially with increasing height. By small propulsive adjustments of the apoapsis orbital velocity, periapsis altitude is fine tuned to the density surface that safely used the atmosphere of Mars to aerobrake over 400 orbits. MRO periapsis precessed from the South Pole at 6pm LST to near the equator at 3am LST. Meanwhile, apoapsis was brought dramatically from 40,000km at MOI to 460 km at aerobraking completion (ABX) August 30, 2006. After ABX, a few small propulsive maneuvers established the Primary Science Orbit (PSO), which without aerobraking would have required an additional 400 kg of fuel. Each of the 400 plus aerobraking orbits provided a vertical structure and distribution of density, scale heights, and temperatures, along the orbital path, providing key in situ insight into various upper atmosphere (greater than 100 km) processes. One of the major questions for scientists studying Mars is: "Where did the water go?" Honeywell's substantially improved electronics package for its IMU (QA-2000 accelerometer, gyro, electronics) maximized accelerometer sensitivities at the requests of The George Washington University, JPL, and Lockheed Martin. The improved accelerometer sensitivities allowed density measurements to exceed 200km, at least 40 km higher than with Mars Odyssey (MO). This extended vertical structures from MRO into the neutral lower exosphere, a region where various processes may allow atmospheric gasses to escape. Over the eons, water may have been lost in both near the surface and in the upper atmosphere. Thus the water balance throughout the entire atmosphere from subsurface to exosphere may both be critical. Comparisons of data from Mars Global Surveyor (MGS), MO and MRO help characterize key temporal and spatial cycles including: winter polar warming, planetary scale gravity waves, latitudinal, seasonal, and diurnal variations, and variations from perihelion to aphelion. This will validate and constrain both upper atmospheric circulation models used to understand the nature of high-altitude variability and transport processes, and engineering models used to plan future missions.

  6. Closed-loop nominal and abort atmospheric ascent guidance for rocket-powered launch vehicles

    NASA Astrophysics Data System (ADS)

    Dukeman, Greg A.

    2005-07-01

    An advanced ascent guidance algorithm for rocket-powered launch vehicles is developed. The ascent guidance function is responsible for commanding attitude, throttle and setting during the powered ascent phase of flight so that the vehicle attains target cutoff conditions in a near optimal manner while satisfying path constraints such as maximum allowed bending moment and maximum allowed axial acceleration. This algorithm cyclically solves the calculus-of-variations two-point boundary-value problem starting at vertical rise completion through orbit insertion. This is different from traditional ascent guidance algorithms which operate in an open-loop mode until the high dynamic pressure portion of the trajectory is over, at which time there is a switch to a closed loop guidance mode that operates under the assumption of negligible aerodynamic forces. The main contribution of this research is an algorithm of the predictor-corrector type wherein the state/costate system is propagated with known (navigated) initial state and guessed initial costate to predict the state/costate at engine cutoff. The initial costate guess is corrected, using a multi-dimensional Newton's method, based on errors in the terminal state constraints and the transversality conditions. Path constraints are enforced within the propagation process. A modified multiple shooting method is shown to be a very effective numerical technique for this application. Results for a single stage to orbit launch vehicle are given. In addition, the formulation for the free final time multi-arc trajectory optimization problem is given. Results for a two-stage launch vehicle burn-coast-burn ascent to orbit in a closed-loop guidance mode are shown. An abort to landing site formulation of the algorithm and numerical results are presented. A technique for numerically treating the transversality conditions is discussed that eliminates part of the analytical and coding burden associated with optimal control theory.

  7. Reconstruction of the Orbit With a Temporalis Muscle Flap After Orbital Exenteration

    PubMed Central

    Uyar, Yavuz; Y?ld?r?m, Gven; Kuzdere, Mustafa; Arba?, Hamdi; Jorayev, Chary; K?l?, Mehmet Vefa; Gmrk, Said Serdar

    2015-01-01

    Objectives This study presents the role of the temporalis muscle flap in primary reconstruction after orbital exenteration. Methods A retrospective nonrandomized study of orbital exenterations performed between 1990 and 2010 for malignant tumors of the skin, paranasal sinus, and nasal cavity is presented. Results The study included 13 patients (nine men, four women; age range, 30-82 years) with paranasal sinus, nasal cavity, or skin carcinomas. Primary reconstruction of the cavity was performed in all patients after orbital exenteration. No visible defects in the muscle flap donor site were present. Local recurrences were readily followed up with nasal endoscopy, whereas radiology helped to diagnose intracranial involvement in three patients. Two patients died of systemic metastases and five died for other reasons Conclusion The temporalis muscle flap is readily used to close the defect after orbital exenteration, and does not prevent the detection of recurrence. PMID:25729496

  8. THE FATE OF MOONS OF CLOSE-IN GIANT EXOPLANETS

    SciTech Connect

    Namouni, Fathi

    2010-08-20

    We show that the fate of moons of a close-in giant planet is mainly determined by the migration history of the planet in the protoplanetary disk. As the planet migrates in the disk from beyond the snow line toward a multi-day period orbit, the formed and forming moons become unstable as the planet's sphere of influence shrinks. Disk-driven migration is faster than the moons' tidal orbital evolution. Moons are eventually ejected from around close-in exoplanets or forced into collision with them before tides from the planet affect their orbits. If moons are detected around close-in exoplanets, they are unlikely to have been formed in situ, instead they were captured from the protoplanetary disk on retrograde orbits around the planets.

  9. Orbiter thermal protection system

    NASA Technical Reports Server (NTRS)

    Dotts, R. L.; Curry, D. M.; Tillian, D. J.

    1985-01-01

    The major material and design challenges associated with the orbiter thermal protection system (TPS), the various TPS materials that are used, the different design approaches associated with each of the materials, and the performance during the flight test program are described. The first five flights of the Orbiter Columbia and the initial flight of the Orbiter Challenger provided the data necessary to verify the TPS thermal performance, structural integrity, and reusability. The flight performance characteristics of each TPS material are discussed, based on postflight inspections and postflight interpretation of the flight instrumentation data. Flights to date indicate that the thermal and structural design requirements for the orbiter TPS are met and that the overall performance is outstanding.

  10. Habitability study shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Habitability design concepts for the Shuttle Orbiter Program are provided for MSC. A variety of creative solutions for the stated tasks are presented. Sketches, mock-ups, mechanicals and models are included for establishing a foundation for future development.

  11. Report on orbital debris

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The success of space endeavors depends upon a space environment sufficiently free of debris to enable the safe and dependable operation of spacecraft. An environment overly cluttered with debris would threaten the ability to utilize space for a wide variety of scientific, technological, military, and commercial purposes. Man made space debris (orbital debris) differs from natural meteoroids because it remains in earth orbit during its lifetime and is not transient through the space around the Earth. The orbital debris environment is considered. The space environment is described along with sources of orbital debris. The current national space policy is examined, along with ways to minimize debris generation and ways to survive the debris environment. International efforts, legal issues and commercial regulations are also examined.

  12. Optical lattices: Orbital dance

    NASA Astrophysics Data System (ADS)

    Lewenstein, Maciej; Liu, W. Vincent

    2011-02-01

    Emulating condensed-matter physics with ground-state atoms trapped in optical lattices has come a long way. But excite the atoms into higher orbital states, and a whole new world of exotic states appears.

  13. Neonatal orbital abscess

    PubMed Central

    Gogri, Pratik Y.; Misra, Somen L.; Misra, Neeta S.; Gidwani, Hitesh V.; Bhandari, Akshay J.

    2015-01-01

    Orbital abscess generally occurs in older children but it can rarely affect infants and neonates too. We report a case of community acquired methicillin resistant staphylococcus aureus (CA-MRSA) neonatal orbital abscess in a 12-day-old term female neonate with no significant past medical history or risk factor for developing the infection. The case highlights the importance of consideration of CA-MRSA as a causative agent of neonatal orbital cellulitis even in a neonate without any obvious predisposing condition. Prompt initiation of appropriate medical therapy against MRSA and surgical drainage of the abscess prevents life threatening complications of orbital cellulitis which more often tend to be fatal in neonates. PMID:26622145

  14. Altimetry, Orbits and Tides

    NASA Technical Reports Server (NTRS)

    Colombo, O. L.

    1984-01-01

    The nature of the orbit error and its effect on the sea surface heights calculated with satellite altimetry are explained. The elementary concepts of celestial mechanics required to follow a general discussion of the problem are included. Consideration of errors in the orbits of satellites with precisely repeating ground tracks (SEASAT, TOPEX, ERS-1, POSEIDON, amongst past and future altimeter satellites) are detailed. The theoretical conclusions are illustrated with the numerical results of computer simulations. The nature of the errors in this type of orbits is such that this error can be filtered out by using height differences along repeating (overlapping) passes. This makes them particularly valuable for the study and monitoring of changes in the sea surface, such as tides. Elements of tidal theory, showing how these principles can be combined with those pertinent to the orbit error to make direct maps of the tides using altimetry are presented.

  15. Tethered orbital refueling study

    NASA Technical Reports Server (NTRS)

    Fester, Dale A.; Rudolph, L. Kevin; Kiefel, Erlinda R.; Abbott, Peter W.; Grossrode, Pat

    1986-01-01

    One of the major applications of the space station will be to act as a refueling depot for cryogenic-fueled space-based orbital transfer vehicles (OTV), Earth-storable fueled orbit maneuvering vehicles, and refurbishable satellite spacecraft using hydrazine. One alternative for fuel storage at the space station is a tethered orbital refueling facility (TORF), separated from the space station by a sufficient distance to induce a gravity gradient force that settles the stored fuels. The technical feasibility was examined with the primary focus on the refueling of LO2/LH2 orbital transfer vehicles. Also examined was the tethered facility on the space station. It was compared to a zero-gravity facility. A tethered refueling facility should be considered as a viable alternative to a zero-gravity facility if the zero-gravity fluid transfer technology, such as the propellant management device and no vent fill, proves to be difficult to develop with the required performance.

  16. Management of Orbital Diseases.

    PubMed

    Betbeze, Caroline

    2015-09-01

    Orbital diseases are common in dogs and cats and can present on emergency due to the acute onset of many of these issues. The difficulty with diagnosis and therapy of orbital disease is that the location of the problem is not readily visible. The focus of this article is on recognizing classical clinical presentations of orbital disease, which are typically exophthalmos, strabismus, enophthalmos, proptosis, or intraconal swelling. After the orbital disease is confirmed, certain characteristics such as pain on opening the mouth, acute vs. chronic swelling, and involvement of nearby structures can be helpful in determining the underlying cause. Abscesses, cellulitis, sialoceles, neoplasia (primary or secondary), foreign bodies, and immune-mediated diseases can all lead to exophthalmos, but it can be difficult to determine the cause of disease without advanced diagnostic imaging, such as ultrasound, magnetic resonance imaging, or computed tomography scan. Fine-needle aspirates and biopsies of the retrobulbar space can also be performed. PMID:26494502

  17. Habitability study shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Studies of the habitability of the space shuttle orbiter are briefly summarized. Selected illustrations and descriptions are presented for: crew compartment, hygiene facilities, food system and galley, and storage systems.

  18. Aerobraking orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Scott, Carl D. (Inventor); Nagy, Kornel (Inventor); Roberts, Barney B. (Inventor); Ried, Robert C. (Inventor); Kroll, Kenneth R. (Inventor); Gamble, Joe (Inventor)

    1989-01-01

    An aerobraking orbital transfer vehicle which includes an aerobraking device which also serves as a heat shield in the shape of a raked-off elliptic or circular cone with a circular or elliptical base, and with an ellipsoid or other blunt shape nose. The aerobraking device is fitted with a toroid-like skirt and is integral with the support structure of the propulsion system and other systems of the space vehicle. The vehicle is intended to be transported in components to a space station in lower earth orbit where it is assembled for use as a transportation system from low earth orbit to geosynchronous earth orbit and return. Conventional guidance means are included for autonomous flight.

  19. Mars parking orbit selection

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Braun, Robert D.

    1990-01-01

    For a Mars mission, the selection of a parking orbit is greatly influenced by the precession caused by the oblateness of the planet. This affects the departure condition for earth return, and therefore, the mass required in LEO for a Mars mission. In this investigation, minimum LEO mass penalties were observed for parking orbits characterized by having near-equatorial inclinations, high eccentricities, and requiring a three-dimensional departure burn. However, because near-equatorial inclination orbits have poor planetary coverage characteristics, they are not desirable from a science viewpoint. To enhance these science requirements along with landing-site accessibility, a penalty in initial LEO mass is required. This study shows that this initial LEO mass penalty is reduced for orbits characterized with low to moderate eccentricities, nonequatorial inclinations, and a tangential periapsis arrival and departure burn.

  20. Orbitals from local RDMFT: Are they Kohn-Sham or natural orbitals?

    PubMed

    Theophilou, Iris; Lathiotakis, Nektarios N; Gidopoulos, Nikitas I; Rubio, Angel; Helbig, Nicole

    2015-08-01

    Recently, an approximate theoretical framework was introduced, called local reduced density matrix functional theory (local-RDMFT), where functionals of the one-body reduced density matrix (1-RDM) are minimized under the additional condition that the optimal orbitals satisfy a single electron Schrödinger equation with a local potential. In the present work, we focus on the character of these optimal orbitals. In particular, we compare orbitals obtained by local-RDMFT with those obtained with the full minimization (without the extra condition) by contrasting them against the exact NOs and orbitals from a density functional calculation using the local density approximation (LDA). We find that the orbitals from local-RMDFT are very close to LDA orbitals, contrary to those of the full minimization that resemble the exact NOs. Since local RDMFT preserves the good quality of the description of strong static correlation, this finding opens the way to a mixed density/density matrix scheme, where Kohn-Sham orbitals obtain fractional occupations from a minimization of the occupation numbers using 1-RDM functionals. This will allow for a description of strong correlation at a cost only minimally higher than a density functional calculation. PMID:26254641

  1. Orbitals from local RDMFT: Are they Kohn-Sham or natural orbitals?

    NASA Astrophysics Data System (ADS)

    Theophilou, Iris; Lathiotakis, Nektarios N.; Gidopoulos, Nikitas I.; Rubio, Angel; Helbig, Nicole

    2015-08-01

    Recently, an approximate theoretical framework was introduced, called local reduced density matrix functional theory (local-RDMFT), where functionals of the one-body reduced density matrix (1-RDM) are minimized under the additional condition that the optimal orbitals satisfy a single electron Schrödinger equation with a local potential. In the present work, we focus on the character of these optimal orbitals. In particular, we compare orbitals obtained by local-RDMFT with those obtained with the full minimization (without the extra condition) by contrasting them against the exact NOs and orbitals from a density functional calculation using the local density approximation (LDA). We find that the orbitals from local-RMDFT are very close to LDA orbitals, contrary to those of the full minimization that resemble the exact NOs. Since local RDMFT preserves the good quality of the description of strong static correlation, this finding opens the way to a mixed density/density matrix scheme, where Kohn-Sham orbitals obtain fractional occupations from a minimization of the occupation numbers using 1-RDM functionals. This will allow for a description of strong correlation at a cost only minimally higher than a density functional calculation.

  2. ON-LINE TOOLS FOR PROPER VERTICAL POSITIONING OF VERTICAL SAMPLING INTERVALS DURING SITE ASSESSMENT

    EPA Science Inventory

    This presentation presents on-line tools for proper vertical positioning of vertical sampling intervals during site assessment. Proper vertical sample interval selection is critical for generate data on the vertical distribution of contamination. Without vertical delineation, th...

  3. Spaceport aurora: An orbiting transportation node

    NASA Technical Reports Server (NTRS)

    1990-01-01

    With recent announcements of the development of permanently staffed facilities on the Moon and Mars, the national space plan is in need of an infrastructure system for transportation and maintenance. A project team at the University of Houston College of Architecture and the Sasakawa International Center for Space Architecture, recently examined components for a low Earth orbit (LEO) transportation node that supports a lunar build-up scenario. Areas of investigation included identifying transportation node functions, identifying existing space systems and subsystems, analyzing variable orbits, determining logistics strategies for maintenance, and investigating assured crew return systems. The information resulted in a requirements definition document, from which the team then addressed conceptual designs for a LEO transportation node. The primary design drivers included: orbital stability, maximizing human performance and safety, vehicle maintainability, and modularity within existing space infrastructure. For orbital stability, the power tower configuration provides a gravity gradient stabilized facility and serves as the backbone for the various facility components. To maximize human performance, human comfort is stressed through zoning of living and working activities, maintaining a consistent local vertical orientation, providing crew interaction and viewing areas and providing crew return vehicles. Vehicle maintainability is accomplished through dual hangars, dual work cupolas, work modules, telerobotics and a fuel depot. Modularity is incorporated using Space Station Freedom module diameter, Space Station Freedom standard racks, and interchangeable interior partitions. It is intended that the final design be flexible and adaptable to provide a facility prototype that can service multiple mission profiles using modular space systems.

  4. A tapestry of orbits

    SciTech Connect

    King-Hele, D.

    1992-01-01

    In this book, the author describes how orbital research developed to yield a rich harvest of knowledge about the earth and its atmosphere. King-Hele relates a personal account of this research based on analysis of satellite orbits between 1957 and 1990 conducted from the Royal Aircraft Establishment in Farnborough England. The early research methods used before the launch of Sputnik in 1957 are discussed.

  5. A proposed lunar orbiting gravity gradiometer experiment.

    NASA Technical Reports Server (NTRS)

    Debra, D. B.; Harrison, J. C.; Muller, P. M.

    1972-01-01

    Analysis of the gravity gradiometer developed by Forward and Bell (1970) suggest that an accuracy, in the range 0.1 to 0.5 EU can be expected in a lunar orbiter application. This accuracy will allow gradient anomalies associated with mascons to be mapped with 1% accuracy and should reveal a great deal of new information about the lunar gravity field. The proposed experiment calls for putting such a gradiometer into a closely circular polar orbit at an average height of about 30 km above the lunar surface. This orbit allows the entire lunar surface to be covered in fourteen days, the gradiometer to be checked twice per revolution and results in successive passes above the lunar surface being spaced at about the resolution limit of about 30 km set both by the satellite altitude and instrumental integration time.

  6. Europa Planetary Protection for Juno Jupiter Orbiter

    NASA Technical Reports Server (NTRS)

    Bernard, Douglas E.; Abelson, Robert D.; Johannesen, Jennie R.; Lam, Try; McAlpine, William J.; Newlin, Laura E.

    2010-01-01

    NASA's Juno mission launched in 2011 and will explore the Jupiter system starting in 2016. Juno's suite of instruments is designed to investigate the atmosphere, gravitational fields, magnetic fields, and auroral regions. Its low perijove polar orbit will allow it to explore portions of the Jovian environment never before visited. While the Juno mission is not orbiting or flying close to Europa or the other Galilean satellites, planetary protection requirements for avoiding the contamination of Europa have been taken into account in the Juno mission design.The science mission is designed to conclude with a deorbit burn that disposes of the spacecraft in Jupiter's atmosphere. Compliance with planetary protection requirements is verified through a set of analyses including analysis of initial bioburden, analysis of the effect of bioburden reduction due to the space and Jovian radiation environments, probabilistic risk assessment of successful deorbit, Monte-Carlo orbit propagation, and bioburden reduction in the event of impact with an icy body.

  7. Distant retrograde orbits for the Moon's exploration

    NASA Astrophysics Data System (ADS)

    Sidorenko, Vladislav

    We discuss the properties of the distant retrograde orbits (which are called quasi-satellite orbits also) around Moon. For the first time the distant retrograde orbits were described by J.Jackson in studies on restricted three body problem at the beginning of 20th century [1]. In the synodic (rotating) reference frame distant retrograde orbit looks like an ellipse whose center is slowly drifting in the vicinity of minor primary body while in the inertial reference frame the third body is orbiting the major primary body. Although being away the Hill sphere the third body permanently stays close enough to the minor primary. Due to this reason the distant retrograde orbits are called “quasi-satellite” orbits (QS-orbits) too. Several asteroids in solar system are in a QS-orbit with respect to one of the planet. As an example we can mention the asteroid 2002VE68 which circumnavigates Venus [2]. Attention of specialists in space flight mechanics was attracted to QS-orbits after the publications of NASA technical reports devoted to periodic moon orbits [3,4]. Moving in QS-orbit the SC remains permanently (or at least for long enough time) in the vicinity of small celestial body even in the case when the Hill sphere lies beneath the surface of the body. The properties of the QS-orbit can be studied using the averaging of the motion equations [5,6,7]. From the theoretical point of view it is a specific case of 1:1 mean motion resonance. The integrals of the averaged equations become the parameters defining the secular evolution of the QS-orbit. If the trajectory is robust enough to small perturbations in the simplified problem (i.e., restricted three body problem) it may correspond to long-term stability of the real-world orbit. Our investigations demonstrate that under the proper choice of the initial conditions the QS-orbits don’t escape from Moon or don’t impact Moon for long enough time. These orbits can be recommended as a convenient technique for the large scale browsing of the Moon’s environment. [1] Jackson, J. (1913) MNRAS, 74, 62-82. [2] Mikkola, S., Brasser, R., Wiegert, P., Innanen, K. (2004) MNRAS, 351, L63-L65. [3] Broucke, R.A. (1968) NASA Technical Report 32-1168, JPL. [4] Broucke, R.A. (1969) NASA Technical Report 32-1360, JPL. [5] Kogan, A.I. (1989) Cosmic Research, 26, 705-710. [6] Namouni, F. (1999) Icarus, 6, 293-314. [7] Sidorenko, V.V., Neishtadt, A.I., Artemyev, A.V., Zelenyi, L.M. (2013) Doklady Physics, 58, 207-211.

  8. 4. VIEW OF VERTICAL BORING MACHINE. (Bullard) Vertical turning lathe ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF VERTICAL BORING MACHINE. (Bullard) Vertical turning lathe (VTL). Machining the fixture for GE Turboshroud. G.S. O'Brien, operator. - Juniata Shops, Machine Shop No. 1, East of Fourth Avenue at Third Street, Altoona, Blair County, PA

  9. The vertical structure and thickness of Saturn's rings

    NASA Technical Reports Server (NTRS)

    Cuzzi, J. N.; Burns, J. A.; Durisen, R. H.; Hamill, P. M.

    1979-01-01

    An explanation for the vertical structure and thickness of Saturn's rings compatible with observational data is presented. The model of the rings as being many particles thick is shown to be possible, with random particle motions preventing the complete flattening of the system and a gaussian distribution of particle density with vertical displacement. The model prediction of a maximum ring thickness of tens of meters, however, is in conflict with observations of ring thickness of at least 0.8 km at ring-plane passage. It is shown that perturbations to ring particle orbits caused by the sun and Saturn's large satellites may produce long- and short-period coherent vertical ring displacements and a nonlinear displacement of the ring plane from the equatorial plane with radial distance, leading to an apparent edge-on thickness of a few hundred meters.

  10. The Lunar Orbital Prospector

    NASA Technical Reports Server (NTRS)

    Redd, Frank J.; Cantrell, James N.; Mccurdy, Greg

    1992-01-01

    The establishment of lunar bases will not end the need for remote sensing of the lunar surface by orbiting platforms. Human and robotic surface exploration will necessarily be limited to some proximate distance from the support base. Near real-time, high-resolution, global characterization of the lunar surface by orbiting sensing systems will continue to be essential to the understanding of the Moon's geophysical structure and the location of exploitable minerals and deposits of raw materials. The Lunar Orbital Prospector (LOP) is an orbiting sensing platform capable of supporting a variety of modular sensing packages. Serviced by a lunar-based shuttle, the LOP will permit the exchange of instrument packages to meet evolving mission needs. The ability to recover, modify, and rotate sensing packages allows their reuse in varying combinations. Combining this flexibility with robust orbit modification capabilities and near real-time telemetry links provides considerable system responsiveness. Maintenance and modification of the LOP orbit are accomplished through use of an onboard propulsion system that burns lunar-supplied oxygen and aluminum. The relatively low performance of such a system is more than compensated for by the elimination of the need for Earth-supplied propellants. The LOP concept envisions a continuous expansion of capability through the incorporation of new instrument technologies and the addition of platforms.

  11. The Lunar Orbital Prospector

    NASA Astrophysics Data System (ADS)

    Redd, Frank J.; Cantrell, James N.; McCurdy, Greg

    1992-09-01

    The establishment of lunar bases will not end the need for remote sensing of the lunar surface by orbiting platforms. Human and robotic surface exploration will necessarily be limited to some proximate distance from the support base. Near real-time, high-resolution, global characterization of the lunar surface by orbiting sensing systems will continue to be essential to the understanding of the Moon's geophysical structure and the location of exploitable minerals and deposits of raw materials. The Lunar Orbital Prospector (LOP) is an orbiting sensing platform capable of supporting a variety of modular sensing packages. Serviced by a lunar-based shuttle, the LOP will permit the exchange of instrument packages to meet evolving mission needs. The ability to recover, modify, and rotate sensing packages allows their reuse in varying combinations. Combining this flexibility with robust orbit modification capabilities and near real-time telemetry links provides considerable system responsiveness. Maintenance and modification of the LOP orbit are accomplished through use of an onboard propulsion system that burns lunar-supplied oxygen and aluminum. The relatively low performance of such a system is more than compensated for by the elimination of the need for Earth-supplied propellants. The LOP concept envisions a continuous expansion of capability through the incorporation of new instrument technologies and the addition of platforms.

  12. Kepler-36: a pair of planets with neighboring orbits and dissimilar densities.

    PubMed

    Carter, Joshua A; Agol, Eric; Chaplin, William J; Basu, Sarbani; Bedding, Timothy R; Buchhave, Lars A; Christensen-Dalsgaard, Jrgen; Deck, Katherine M; Elsworth, Yvonne; Fabrycky, Daniel C; Ford, Eric B; Fortney, Jonathan J; Hale, Steven J; Handberg, Rasmus; Hekker, Saskia; Holman, Matthew J; Huber, Daniel; Karoff, Christopher; Kawaler, Steven D; Kjeldsen, Hans; Lissauer, Jack J; Lopez, Eric D; Lund, Mikkel N; Lundkvist, Mia; Metcalfe, Travis S; Miglio, Andrea; Rogers, Leslie A; Stello, Dennis; Borucki, William J; Bryson, Steve; Christiansen, Jessie L; Cochran, William D; Geary, John C; Gilliland, Ronald L; Haas, Michael R; Hall, Jennifer; Howard, Andrew W; Jenkins, Jon M; Klaus, Todd; Koch, David G; Latham, David W; MacQueen, Phillip J; Sasselov, Dimitar; Steffen, Jason H; Twicken, Joseph D; Winn, Joshua N

    2012-08-01

    In the solar system, the planets' compositions vary with orbital distance, with rocky planets in close orbits and lower-density gas giants in wider orbits. The detection of close-in giant planets around other stars was the first clue that this pattern is not universal and that planets' orbits can change substantially after their formation. Here, we report another violation of the orbit-composition pattern: two planets orbiting the same star with orbital distances differing by only 10% and densities differing by a factor of 8. One planet is likely a rocky "super-Earth," whereas the other is more akin to Neptune. These planets are 20 times more closely spaced and have a larger density contrast than any adjacent pair of planets in the solar system. PMID:22722249

  13. Hydrogen atom in a magnetic field: Ghost orbits, catastrophes, and uniform semiclassical approximations

    SciTech Connect

    Main, J.; Wunner, G.

    1997-03-01

    Applying closed-orbit theory to the recurrence spectra of the hydrogen atom in a magnetic field, one can interpret most, but not all, structures semiclassically in terms of closed classical orbits. In particular, conventional closed-orbit theory fails near bifurcations of orbits where semiclassical amplitudes exhibit unphysical divergences. Here we analyze the role of ghost orbits living in complex phase space. The ghosts can explain resonance structures in the spectra of the hydrogen atom in a magnetic field at positions where no real orbits exist. For three different types of catastrophes, viz. fold, cusp, and butterfly catastrophes, we construct uniform semiclassical approximations and demonstrate that these solutions are completely determined by classical parameters of the real orbits and complex ghosts. {copyright} {ital 1997} {ital The American Physical Society}

  14. SECULAR ORBITAL EVOLUTION OF COMPACT PLANET SYSTEMS

    SciTech Connect

    Zhang, Ke; Hamilton, Douglas P.; Matsumura, Soko E-mail: soko@astro.umd.edu

    2013-11-20

    Recent observations have shown that at least some close-in exoplanets maintain eccentric orbits despite tidal circularization timescales that are typically much shorter than stellar ages. We explore gravitational interactions with a more distant planetary companion as a possible cause of these unexpected non-zero eccentricities. For simplicity, we focus on the evolution of a planar two-planet system subject to slow eccentricity damping and provide an intuitive interpretation of the resulting long-term orbital evolution. We show that dissipation shifts the two normal eigenmode frequencies and eccentricity ratios of the standard secular theory slightly, and we confirm that each mode decays at its own rate. Tidal damping of the eccentricities drives orbits to transition relatively quickly between periods of pericenter circulation and libration, and the planetary system settles into a locked state in which the pericenters are nearly aligned or nearly anti-aligned. Once in the locked state, the eccentricities of the two orbits decrease very slowly because of tides rather than at the much more rapid single-planet rate, and thus eccentric orbits, even for close-in planets, can often survive much longer than the age of the system. Assuming that an observed close-in planet on an elliptical orbit is apsidally locked to a more distant, and perhaps unseen companion, we provide a constraint on the mass, semi-major axis, and eccentricity of the companion. We find that the observed two-planet system HAT-P-13 might be in just such an apsidally locked state, with parameters that obey our constraint reasonably well. We also survey close-in single planets, some with and some without an indication of an outer companion. None of the dozen systems that we investigate provides compelling evidence for unseen companions. Instead, we suspect that (1) orbits are in fact circular, (2) tidal damping rates are much slower than we have assumed, or (3) a recent event has excited these eccentricities. Our method should prove useful for interpreting the results of both current and future planet searches.

  15. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two majoryet largely disjunctdevelopments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  16. Vertically reciprocating auger

    NASA Astrophysics Data System (ADS)

    Etheridge, Mark; Morgan, Scott; Fain, Robert; Pearson, Jonathan; Weldi, Kevin; Woodrough, Stephen B., Jr.

    1988-03-01

    The mathematical model and test results developed for the Vertically Reciprocating Auger (VRA) are summarized. The VRA is a device capable of transporting cuttings that result from below surface drilling. It was developed chiefly for the lunar surface, where conventional fluid flushing while drilling would not be practical. The VRA uses only reciprocating motion and transports material through reflections with the surface above. Particles are reflected forward and land ahead of radially placed fences, which prevent the particles from rolling back down the auger. Three input wave forms are considered to drive the auger. A modified sawtooth wave form was chosen for testing, over a modified square wave or sine wave, due to its simplicity and effectiveness. The three-dimensional mathematical model predicted a sand throughput rate of 0.2667 pounds/stroke, while the actual test setup transported 0.075 pounds/stroke. Based on this result, a correction factor of 0.281 is suggested for a modified sawtooth input.

  17. 36 CFR 1194.25 - Self contained, closed products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Self contained, closed... 1194.25 Self contained, closed products. (a) Self contained products shall be usable by people with...) The position of any operable control shall be determined with respect to a vertical plane, which is...

  18. 36 CFR 1194.25 - Self contained, closed products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Self contained, closed... 1194.25 Self contained, closed products. (a) Self contained products shall be usable by people with...) The position of any operable control shall be determined with respect to a vertical plane, which is...

  19. 36 CFR 1194.25 - Self contained, closed products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Self contained, closed... 1194.25 Self contained, closed products. (a) Self contained products shall be usable by people with...) The position of any operable control shall be determined with respect to a vertical plane, which is...

  20. Gluing of branched surfaces by sewing of fermionic string vertices

    NASA Astrophysics Data System (ADS)

    Nilsson, Bengt E. W.; Sundell, Per

    1993-10-01

    We glue together two branched spheres by sewing of two Ramond (dual) two-fermion string vertices and present a rigorous analytic derivation of the closed expression for the four-fermion string vertex. This method treats all oscillator levels collectively and the obtained answer verifies that the closed form of the Ramond four-vertex previously argued for on the basis of explicit results restricted to the first two oscillator levels is the correct one.

  1. [Orbital complications of sinusitis].

    PubMed

    ucha?, M; Hor?k, M; Kaliarik, L; Krempask, S; Kotialov, T; Kova?, J

    2014-12-01

    Orbital complications categorised by Chandler are emergency. They need early diagnosis and agresive treatment. Stage and origin of orbital complications are identified by rhinoendoscopy, ophtalmologic examination and CT of orbite and paranasal sinuses. Periorbital cellulitis and early stage of orbital cellulitis can be treated conservatively with i. v. antibiotics. Monitoring of laboratory parameters and ophtalmologic symptoms is mandatory. Lack of improvement or worsening of symptoms within 24-48 hours and advanced stages of orbital complications are indicated for surgery. The purpose of the study is to evaluate epidemiology, clinical features and management of sinogenic orbital complications. Retrospective data of 8 patients with suspicion of orbital complication admited to hospital from 2008 to 2013 were evaluated. Patients were analyzed in terms of gender, age, CT findings, microbiology, clinical features, stage and treatment. Male and female were afected in rate 1,66:1. Most of patients were young adult in 3rd. and 4th. decade of life (62,5 %). Acute and chronic sinusitis were cause of orbital complication in the same rate. The most common origin of orbital complication was ethmoiditis (62,5 %), than maxillary (25 %) and frontal (12,5 %) sinusitis. Polysinusitis with affection of ethmoidal, maxillary and frontal sinuses (75 %) was usual CT finding. Staphylococcus epidermidis and Staphylococcus aureus were etiological agens in half of cases. Periorbital oedema (100 %), proptosis, chemosis (50 %), diplopia and glaucoma (12,5 %) were observed. Based on examinations, diagnosis of periorbital oedema/preseptal cellulitis was made in 3 (37,5 %), orbital cellulitis in 3 (37,5 %) and subperiosteal abscess in 2 cases (25 %). All patients underwent combined therapy - i. v. antibiotics and surgery within 24 hours. Eradication of disease from ostiomeatal complex (OMC), drainage of affected sinuses and drainage of subperiosteal abscess were done via fuctional endonasal endoscopic surgery (FEES). In case of superior subperiosteal abscess, combined endonasal and external approach (external orbitotomy) was needed. Combined therapy facilitated quick improvement of local and systematic symptoms. Average time of hospitalisation was 7 days. Early diagnosis and agresive combined therapy prevent loss of vision and life threatening complications. PMID:25640234

  2. Overall view of the Orbiter Servicing Structure within the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overall view of the Orbiter Servicing Structure within the Orbiter Processing Facility at Kennedy Space Center. Can you see any hint of the Orbiter Discovery? It is in there. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  3. Theoretical study of valence orbital response to guanine tautomerization in coordinate and momentum spaces

    NASA Astrophysics Data System (ADS)

    Yang, Zejin; Duffy, Patrick; Zhu, Quan; Takahashi, Masahiko; Wang, Feng

    2015-10-01

    The binding energy spectra and electron momentum spectra of eight stable guanine tautomers are calculated in the complete valence space. The present results show that the canonical keto (C=O) guanine N(9)H tautomer (GU1) possesses the largest dipole moment, molecular electronic spatial extent, molecular hardness value, and the minimum first vertical ionization potential (VIP). Valence orbital profile investigations find that several orbitals remain almost unchanged during tautomerization, such as frontier highest occupied molecular orbital 39a and 18a. Several orbitals with interchanged order and inverse direction in charge spatial orientations are also detected. Outer valence orbitals (with smaller VIPs) show more complex orbital shapes in the momentum space than those of inner ones (larger VIPs) due mainly to the relatively strong inter-orbital interaction and delocalized electronic distributions. Proton rotation along C-O(H) and C-N(H) axes within hexagonal ring causes smaller influence to orbital profiles than those of proton migration within pentagonal and/or hexagonal rings. Orbital variation trends between enol (GU3-GU5) and keto (GU1, GU2, GU6-GU8) tautomers are observed, including the signature orbitals of enol form, the variation tendency of total orbital intensity, and the variation order of the maximum orbital intensity. In the outer valence momentum space (outside 26a), orbital composed by pz electrons show single peak with a gradual increasing peak site from 0.5 a.u. of inner valence orbital to 1.0 a.u. of outer valence orbital, whereas orbitals composed by px,y electrons form double peaks with respective sites at about 0.5 and 1.5 a.u., only three px,y-orbitals present single peaks (33a,34a,36a). The general variation trends in the complete valence space for all the valence orbitals on their intensities, peak sites, and orbital components are concluded.

  4. Mars Geoscience Orbiter and Lunar Geoscience Orbiter

    NASA Technical Reports Server (NTRS)

    Fuldner, W. V.; Kaskiewicz, P. F.

    1983-01-01

    The feasibility of using the AE/DE Earth orbiting spacecraft design for the LGO and/or MGO missions was determined. Configurations were developed and subsystems analysis was carried out to optimize the suitability of the spacecraft to the missions. The primary conclusion is that the basic AE/DE spacecraft can readily be applied to the LGO mission with relatively minor, low risk modifications. The MGO mission poses a somewhat more complex problem, primarily due to the overall maneuvering hydrazine budget and power requirements of the sensors and their desired duty cycle. These considerations dictate a modification (scaling up) of the structure to support mission requirements.

  5. SLC vertical survey network

    SciTech Connect

    Friedsam, H.; Goldsmith, T.; Oren, W.; Pietryka, M.; Pitthan, R.; Pushor, T.; Ruland, R.

    1985-12-24

    During 1984 and 1985 the SLC alignment group established and measured a system of elevation benchmarks (BM's) over the whole of the SLAC site, ranging from the injector area to the NGS horizontal control point (surface monument) AA on the hill to the east of the collider hall outside the radiation fence. Precise elevations are needed in general for survey, alignment, placement, and monitoring of SLC tunnels and components. In particular, precise elevations of the survey instruments, mounted over penetrations to the tunnels and over the horizontal control points, are needed for the reductions of measured distances on the surface. Precise elevations were also needed at several other locations, like sector 1, 10, 19, and 30 along the LINAC (for the Global Positioning System measurements), outside of the IR 8 access to PEP (to connect the run from the SLC Master Benchmark R306 close to LINAC station 100 + 00 through the PEP SIT tunnel), and at the south-west adit to the SLC tunnel (to connect the BSY run). Permanent benchmarks were, therefore, installed close to these locations. To minimize errors and simplify re-leveling, turning points were also permanently installed. Figure 1 shows the locations of the elevation benchmark east of LINAC sector 30 and the course of the premanently installed leveling runs.

  6. Vertical deformation at western part of Sumatra

    SciTech Connect

    Febriyani, Caroline Prijatna, Kosasih Meilano, Irwan

    2015-04-24

    This research tries to make advancement in GPS signal processing to estimate the interseismic vertical deformation field at western part of Sumatra Island. The data derived by Continuous Global Positioning System (CGPS) from Badan Informasi Geospasial (BIG) between 2010 and 2012. GPS Analyze at Massachusetts Institute of Technology (GAMIT) software and Global Kalman Filter (GLOBK) software are used to process the GPS signal to estimate the vertical velocities of the CGPS station. In order to minimize noise due to atmospheric delay, Vienna Mapping Function 1 (VMF1) is used as atmospheric parameter model and include daily IONEX file provided by the Center for Orbit Determination in Europe (CODE) as well. It improves GAMIT daily position accuracy up to 0.8 mm. In a second step of processing, the GLOBK is used in order to estimate site positions and velocities in the ITRF08 reference frame. The result shows that the uncertainties of estimated displacement velocity at all CGPS stations are smaller than 1.5 mm/yr. The subsided deformation patterns are seen at the northern and southern part of west Sumatra. The vertical deformation at northern part of west Sumatra indicates postseismic phase associated with the 2010 and 2012 Northern Sumatra earthquakes and also the long-term postseismic associated with the 2004 and 2005 Northern Sumatra earthquakes. The uplifted deformation patterns are seen from Bukit Tinggi to Seblat which indicate a long-term interseismic phase after the 2007 Bengkulu earthquake and 2010 Mentawai earthquake. GANO station shows a subsidence at rate 12.25 mm/yr, indicating the overriding Indo-Australia Plate which is dragged down by the subducting Southeast Asian Plate.

  7. Vertical deformation at western part of Sumatra

    NASA Astrophysics Data System (ADS)

    Febriyani, Caroline; Prijatna, Kosasih; Meilano, Irwan

    2015-04-01

    This research tries to make advancement in GPS signal processing to estimate the interseismic vertical deformation field at western part of Sumatra Island. The data derived by Continuous Global Positioning System (CGPS) from Badan Informasi Geospasial (BIG) between 2010 and 2012. GPS Analyze at Massachusetts Institute of Technology (GAMIT) software and Global Kalman Filter (GLOBK) software are used to process the GPS signal to estimate the vertical velocities of the CGPS station. In order to minimize noise due to atmospheric delay, Vienna Mapping Function 1 (VMF1) is used as atmospheric parameter model and include daily IONEX file provided by the Center for Orbit Determination in Europe (CODE) as well. It improves GAMIT daily position accuracy up to 0.8 mm. In a second step of processing, the GLOBK is used in order to estimate site positions and velocities in the ITRF08 reference frame. The result shows that the uncertainties of estimated displacement velocity at all CGPS stations are smaller than 1.5 mm/yr. The subsided deformation patterns are seen at the northern and southern part of west Sumatra. The vertical deformation at northern part of west Sumatra indicates postseismic phase associated with the 2010 and 2012 Northern Sumatra earthquakes and also the long-term postseismic associated with the 2004 and 2005 Northern Sumatra earthquakes. The uplifted deformation patterns are seen from Bukit Tinggi to Seblat which indicate a long-term interseismic phase after the 2007 Bengkulu earthquake and 2010 Mentawai earthquake. GANO station shows a subsidence at rate 12.25 mm/yr, indicating the overriding Indo-Australia Plate which is dragged down by the subducting Southeast Asian Plate.

  8. Orbits and Interiors of Planets

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin

    2012-05-01

    The focus of this thesis is a collection of problems of timely interest in orbital dynamics and interior structure of planetary bodies. The first three chapters are dedicated to understanding the interior structure of close-in, gaseous extrasolar planets (hot Jupiters). In order to resolve a long-standing problem of anomalously large hot Jupiter radii, we proposed a novel magnetohydrodynamic mechanism responsible for inflation. The mechanism relies on the electro-magnetic interactions between fast atmospheric flows and the planetary magnetic field in a thermally ionized atmosphere, to induce electrical currents that flow throughout the planet. The resulting Ohmic dissipation acts to maintain the interior entropies, and by extension the radii of hot Jupiters at an enhanced level. Using self-consistent calculations of thermal evolution of hot Jupiters under Ohmic dissipation, we demonstrated a clear tendency towards inflated radii for effective temperatures that give rise to significant ionization of K and Na in the atmosphere, a trend fully consistent with the observational data. Furthermore, we found that in absence of massive cores, low-mass hot Jupiters can over-flow their Roche-lobes and evaporate on Gyr time-scales, possibly leaving behind small rocky cores. Chapters four through six focus on the improvement and implications of a model for orbital evolution of the solar system, driven by dynamical instability (termed the "Nice" model). Hydrodynamical studies of the orbital evolution of planets embedded in protoplanetary disks suggest that giant planets have a tendency to assemble into multi-resonant configurations. Following this argument, we used analytical methods as well as self-consistent numerical N-body simulations to identify fully-resonant primordial states of the outer solar system, whose dynamical evolutions give rise to orbital architectures that resemble the current solar system. We found a total of only eight such initial conditions, providing independent constraints for the solar system's birth environment. Next, we addressed a significant drawback of the original Nice model, namely its inability to create the physically unique, cold classical population of the Kuiper Belt. Specifically, we showed that a locally-formed cold belt can survive the transient instability, and its relatively calm dynamical structure can be reproduced. The last four chapters of this thesis address various aspects and consequences of dynamical relaxation of planetary orbits through dissipative effects as well as the formation of planets in binary stellar systems. Using octopole-order secular perturbation theory, we demonstrated that in multi-planet systems, tidal dissipation often drives orbits onto dynamical "fixed points," characterized by apsidal alignment and lack of periodic variations in eccentricities. We applied this formalism towards investigating the possibility that the large orbital eccentricity of the transiting Neptune-mass planet Gliese 436b is maintained in the face of tidal dissipation by a second planet in the system and computed a locus of possible orbits for the putative perturber. Following up along similar lines, we used various permutations of secular theory to show that when applied specifically to close-in low-mass planetary systems, various terms in the perturbation equations become separable, and the true masses of the planets can be solved for algebraically. In practice, this means that precise knowledge of the system's orbital state can resolve the sin( i) degeneracy inherent to non-transiting planets. Subsequently, we investigated the onset of chaotic motion in dissipative planetary systems. We worked in the context of classical secular perturbation theory, and showed that planetary systems approach chaos via the so-called period-doubling route. Furthermore, we demonstrated that chaotic strange attractors can exist in mildly damped systems, such as photo-evaporating nebulae that host multiple planets. Finally, we considered planetary formation in highly inclined binary systems, where orbital excitation due to the Kozai resonance apparently implies destructive collisions among planetesimals. Through a proper account of gravitational interactions within the protoplanetary disk, we showed that fast apsidal recession induced by disk self-gravity tends to erase the Kozai effect, and ensure that the disk's unwarped, rigid structure is maintained, resolving the difficulty in planet-formation. (Abstract shortened by UMI.)

  9. Scale Shrinkage in Vertical Equating.

    ERIC Educational Resources Information Center

    Camilli, Gregory; And Others

    1993-01-01

    Three potential causes of scale shrinkage (measurement error, restriction of range, and multidimensionality) in item response theory vertical equating are discussed, and a more comprehensive model-based approach to establishing vertical scales is described. Test data from the National Assessment of Educational Progress are used to illustrate the

  10. The Gains from Vertical Scaling

    ERIC Educational Resources Information Center

    Briggs, Derek C.; Domingue, Ben

    2013-01-01

    It is often assumed that a vertical scale is necessary when value-added models depend upon the gain scores of students across two or more points in time. This article examines the conditions under which the scale transformations associated with the vertical scaling process would be expected to have a significant impact on normative interpretations

  11. Regional Elevations in the Southern Hemisphere of Mars From the Mars Orbiter Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Zuber, M. T.; Frey, H. V.; Garvin, J. B.; Head, J. W.; Muhleman, D. O.; Neumann, G. A.; Pettengill, G. H.; Phillips, R. J.; Solomon, S. C.

    1999-01-01

    The Mars Orbiter Laser Altimeter (MOLA) is an instrument on the Mars Global Surveyor (MGS) spacecraft that is currently providing the first high vertical and spatial resolution topographic measurements of surface elevations on Mars. The shot size in the mapping orbit is about 100 m and the shot-to-shot spacing is 330 m. The instrument has a vertical precision of 37.5 cm and a vertical accuracy that depends on the radial accuracy of the MGS orbit that is currently in the range 5-30 km. The initial focus on observations in the nominal mapping mission will be on the southern hemisphere, which was not sampled during the MGS aerobraking hiatus and Science Phasing orbits. During the first several weeks of global mapping there will be emphasis on producing a digital terrain model (DTM) of the Mars '98 landing site.

  12. Closed loop electrostatic levitation system

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Saffren, M. M.; Elleman, D. D. (Inventor)

    1985-01-01

    An electrostatic levitation system is described, which can closely control the position of objects of appreciable size. A plurality of electrodes surround the desired position of an electrostatically charged object, the position of the objects is monitored, and the voltages applied to the electrodes are varied to hold the object at a desired position. In one system, the object is suspended above a plate-like electrode which has a concave upper face to urge the object toward the vertical axis of the curved plate. An upper electrode that is also curved can be positioned above the object, to assure curvature of the field at any height above the lower plate. In another system, four spherical electrodes are positioned at the points of a tetrahedron, and the voltages applied to the electrodes are varied in accordance with the object position as detected by two sensors.

  13. Extravehicular activity at geosynchronous earth orbit

    NASA Technical Reports Server (NTRS)

    Shields, Nicholas, Jr.; Schulze, Arthur E.; Carr, Gerald P.; Pogue, William

    1988-01-01

    The basic contract to define the system requirements to support the Advanced Extravehicular Activity (EVA) has three phases: EVA in geosynchronous Earth orbit; EVA in lunar base operations; and EVA in manned Mars surface exploration. The three key areas to be addressed in each phase are: environmental/biomedical requirements; crew and mission requirements; and hardware requirements. The structure of the technical tasks closely follows the structure of the Advanced EVA studies for the Space Station completed in 1986.

  14. Real-time Sub-cm Differential Orbit Determination of two Low-Earth Orbiters with GPS Bias Fixing

    NASA Technical Reports Server (NTRS)

    Wu, Sien-Chong; Bar-Sever, Yoaz E.

    2006-01-01

    An effective technique for real-time differential orbit determination with GPS bias fixing is formulated. With this technique, only real-time GPS orbits and clocks are needed (available from the NASA Global Differential GPS System with 10-20 cm accuracy). The onboard, realtime orbital states of user satellites (few meters in accuracy) are used for orbit initialization and integration. An extended Kalman filter is constructed for the estimation of the differential orbit between the two satellites as well as a reference orbit, together with their associating dynamics parameters. Due to close proximity of the two satellites and of similar body shapes, the differential dynamics are highly common and can be tightly constrained which, in turn, strengthens the orbit estimation. Without explicit differencing of GPS data, double-differenced phase biases are formed by a transformation matrix. Integer-valued fixing of these biases are then performed which greatly strengthens the orbit estimation. A 9-day demonstration between GRACE orbits with baselines of approx.200 km indicates that approx.80% of the double-differenced phase biases can successfully be fixed and the differential orbit can be determined to approx.7 mm as compared to the results of onboard K-band ranging.

  15. Modelling Of Random Vertical Irregularities Of Railway Tracks

    NASA Astrophysics Data System (ADS)

    Podwrna, M.

    2015-08-01

    The study presents state-of-the-art in analytical and numerical modelling of random vertical irregularities of continuously welded ballasted railway tracks. The common model of railway track irregularity vertical profiles is applied, in the form of a stationary and ergodic Gaussian process in space. Random samples of track irregularity vertical profiles are generated with the Monte-Carlo method. Based on the numerical method developed in the study, the minimum and recommended sampling number required in the random analysis of railway bridges and number of frequency increments (harmonic components) in track irregularity vertical profiles simulation are determined. The lower and upper limits of wavelengths are determined based on the literature studies. The approach yields track irregularity random samples close to reality. The track irregularity model developed in the study can be used in the dynamic analysis of railway bridge / track structure / highspeed train systems.

  16. Uncertainties in MARS Meteor Orbit Radar Data

    NASA Astrophysics Data System (ADS)

    Kolomiyets, S. V.

    2015-03-01

    The uncertainties in meteor radar data and the problem of hyperbolic meteors are interconnected. Meteor orbital data, obtained by the Meteor Automatic Radar System (MARS) at the Kharkiv Institute of Radio Electronics, Ukraine, was used to develop the algorithm to determine the uncertainties of the orbital elements obtained by radar systems such as MARS. We have constructed the empirical model of the distribution of uncertainties in the orbital elements of meteor radar data. MARS had a high effective sensitivity (the limiting magnitude of observed meteors was close to 12 ^ M) and was capable to carry out comprehensive geophysical and astronomical studies of meteors. When we register meteor numbers, radiants, meteoroid velocities, we can talk about astronomical observations. The main objective of meteor astronomy research is to determine the orbit of the meteoroid, in other words, to study a meteoroid as an astronomical object of the Solar System. Sometimes meteoroids may have an interstellar origin. Such meteoroids usually have hyperbolic orbits (i.e. with eccentricities e>1). However, hyperbolic orbits of meteoroids may have another origin, e.g. arise due to errors of observations (primarily due to the errors of eccentricities - ?e). To correctly interpret the astronomical data, it is necessary to know how the errors are calculated. In this paper, we estimated the uncertainties in the Kharkiv meteor radar data (the average ?e ~0.2) and discussed their connection to the problem of hyperbolic meteors. We obtained ~0.8% of total number of meteoroid orbits in 1975, which we named "real" hyperboles, i.e. with eccentricities more or equal 1+2?e.

  17. Subjective Visual Vertical and Postural Capability in Children Born Prematurely

    PubMed Central

    Bucci, Maria Pia; Wiener-Vacher, Sylvette; Trousson, Clmence; Baud, Olivier; Biran, Valerie

    2015-01-01

    Purpose We compared postural stability and subjective visual vertical performance in a group of very preterm-born children aged 3-4 years and in a group of age-matched full-term children. Materials and Methods A platform (from TechnoConcept) was used to measure postural control in children. Perception of subjective visual vertical was also recorded with posture while the child had to adjust the vertical in the dark or with visual perturbation. Two other conditions (control conditions) were also recorded while the child was on the platform: for a fixation of the vertical bar, and in eyes closed condition. Results Postural performance was poor in preterm-born children compared to that of age-matched full-term children: the surface area, the length in medio-lateral direction and the mean speed of the center of pressure (CoP) were significantly larger in the preterm-born children group (p < 0.04, p < 0.01, and p < 0.04, respectively). Dual task in both groups of children significantly affected postural control. The subjective visual vertical (SVV) values were more variable and less precise in preterm-born children. Discussion-Conclusions We suggest that poor postural control as well as perception of verticality observed in preterm-born children could be due to immaturity of the cortical processes involved in the motor control and in the treatment of perception and orientation of verticality. PMID:25790327

  18. Vertical velocity estimates in the North Pacific using Argo floats

    NASA Astrophysics Data System (ADS)

    Freeland, Howard J.

    2013-01-01

    Vertical velocity in the oceans is critical for maintenance of the structure of the main thermoclines and the transport of nutrients from deepwater towards the surface and thus is an important variable for understanding the dynamics of the ocean and the transport of scalar variables. In the mid 1970s the author was engaged in discussions with Tom Rossby about how SOFAR floats might be used to observe the vertical component of velocity. This paper in some sense follows on from those discussions almost 40 years later. In this paper the Argo array is used to compute the horizontal volume divergence in a control volume in the North Pacific. Divergence is found and this must be related to a volume flux through the base of the control volume. The implied vertical velocity is large and various tests are proposed to determine whether or not the estimate is plausible. The first test shows that a vertical velocity this large is necessary to close the salt budget. The second test shows that the vertical velocity balances about half of the observed heat divergence, the remainder is then accounted for by heat flux at the sea surface. Finally the time variable vertical velocity is computed and used to compute the evolution of the salt content in the control volume. Thus though the estimated vertical velocity is surprisingly large, it passes plausibility tests.

  19. Management of orbital tumors.

    PubMed

    Char, D H

    1993-11-01

    Orbital tumors are uncommon. In children, both malignant and benign causes of orbital proptosis necessitate urgent assessment; in many cases, emergent intervention is necessary to avoid blindness. In adults, proptosis is most commonly associated with thyroid orbitopathy. Orbital tumors in adults rarely are characterized by the explosive growth and damage that can occur with childhood lesions. In both age-groups, the evolution of better scanning modalities, such as magnetic resonance imaging with fat saturation and gadolinium enhancement, has improved diagnostic accuracy, especially in patients with loss of vision. In more than 95% of cases, noninvasive techniques yield a correct diagnosis. In patients who require nonsurgical intervention, especially if the diagnosis is uncertain, fine-needle aspiration biopsy has an accuracy that exceeds 95%. Combined-modality therapy has improved the control of and decreased the morbidity associated with several orbital tumors. Surgical advances, such as the ancillary use of the CO2 laser, have enhanced the management of some orbital tumors. PMID:8231272

  20. Mars Reconnaissance Orbiter Aerobraking

    NASA Technical Reports Server (NTRS)

    2003-01-01

    December 10, 2003

    NASA's Mars Reconnaissance Orbiter dips into the thin martian atmosphere to adjust its orbit in this artist's concept illustration.

    NASA plans to launch this multipurpose spacecraft in August 2005 for arrival at Mars in March 2006. The plans call for controlled use of atmospheric friction in a process called aerobraking for about six months after arrival to change the initial, very elongated orbit into a rounder shape optimal for science operations.

    Mars Reconnaissance Orbiter is designed to advance our understanding of Mars through detailed observation, to examine potential landing sites for future surface missions and to provide a high-data-rate communications relay for those missions.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter Project for the NASA Office of Space Science, Washington. JPL's main industrial partner in the project, Lockheed Martin Space Systems, Denver, Colo., is building the spacecraft.

  1. ICESat Precision Orbit Determination

    NASA Astrophysics Data System (ADS)

    Rim, H.; Yoon, S.; Webb, C. E.; Kim, Y.; Schutz, B. E.

    2003-12-01

    Following the successful launch of the Ice, Cloud and land Elevation Satellite (ICESat) on January 13, 2003, 00:45 UTC, the GPS receiver on ICESat was turned on successfully on Jan. 17, 2003. High quality GPS data were collected since then to support Precision Orbit Determination (POD) activities. ICESat carries Geoscience Laser Altimeter System (GLAS) to measure ice-sheet topography and associated temporal changes, as well as cloud and atmospheric properties. To accomplish the ICESat science objectives, the position of the GLAS instrument in space should be determined with an accuracy of 5 cm and 20 cm in radial and horizontal components, respectively. This knowledge is acquired by the POD activities using the data collected by the GPS receiver on ICESat and the ground-based satellite laser ranging (SLR) data. It has been shown from pre-launch POD studies that the gravity model error is the dominant source of ICESat orbit errors. The predicted radial orbit errors at the ICESat orbit (600 km altitude) based on pre-launch gravity models, such as TEG-4 and EGM-96, are 7-15 cm. Performance of these gravity models and the recent gravity models from GRACE on ICESat POD were evaluated. The radial orbit accuracy is approaching 1-2 cm level with the GRACE gravity model. This paper also summarizes POD activities at Center for Space Research (CSR), which is responsible to generate ICESat POD products.

  2. Sedna Orbit Comparisons

    NASA Technical Reports Server (NTRS)

    2004-01-01

    These four panels show the location of the newly discovered planet-like object, dubbed 'Sedna,' which lies in the farthest reaches of our solar system. Each panel, moving counterclockwise from the upper left, successively zooms out to place Sedna in context. The first panel shows the orbits of the inner planets, including Earth, and the asteroid belt that lies between Mars and Jupiter. In the second panel, Sedna is shown well outside the orbits of the outer planets and the more distant Kuiper Belt objects. Sedna's full orbit is illustrated in the third panel along with the object's current location. Sedna is nearing its closest approach to the Sun; its 10,000 year orbit typically takes it to far greater distances. The final panel zooms out much farther, showing that even this large elliptical orbit falls inside what was previously thought to be the inner edge of the Oort cloud. The Oort cloud is a spherical distribution of cold, icy bodies lying at the limits of the Sun's gravitational pull. Sedna's presence suggests that this Oort cloud is much closer than scientists believed.

  3. General view of the flight deck of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the flight deck of the Orbiter Discovery looking forward along the approximate center line of the orbiter at the center console. The Multifunction Electronic Display System (MEDS) is evident in the mid-ground center of this image, this system was a major upgrade from the previous analog display system. The commander's station is on the port side or left in this view and the pilot's station is on the starboard side or right tin this view. Not the grab bar in the upper center of the image which was primarily used for commander and pilot ingress with the orbiter in a vertical position on the launch pad. Also note that the forward observation windows have protective covers over them. This image was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  4. Mars Telecommunications Orbiter, Artist's Concept

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This illustration depicts a concept for NASA's Mars Telecommunications Orbiter in flight around Mars. The orbiter is in development to be the first spacecraft with a primary function of providing communication links while orbiting a foreign planet. The project's plans call for launch in September 2009, arrival at Mars in August 2010 and a mission of six to 10 years while in orbit. Mars Telecommunication Orbiter would serve as the Mars hub for an interplanetery Internet, greatly increasing the information payoff from other future Mars missions. The mission is designed to orbit Mars more than 10 times farther from the planet than orbiters dedicated primarily to science. The high-orbit design minimizes the time that Mars itself blocks the orbiter from communicating with Earth and maximizes the time that the orbiter is above the horizon -- thus capable of communications relay -- for rovers and stationary landers on Mars' surface.

  5. Trajectories in Close Proximity to Asteroids

    NASA Technical Reports Server (NTRS)

    Scheeres, D. J.

    2000-01-01

    Spacecraft motion in close proximity to irregularly shaped, rotating bodies such as asteroids presents a unique dynamical environment as compared to most space missions. There are several fundamental novelties in this environment that spacecraft must deal with. These include the possibility of orbital instabilities that can act over very short time spans (on the order of hours for some systems), possible non-uniform rotation of the central gravity field, divergence of traditional gravity field representations when close to the asteroid surface, dominance of perturbing forces, an extremely large asteroid model parameter space that must be prepared for in the absence of reliable information, and the possibility of employing new and novel trajectory control techniques such as hovering and repeated landings on the asteroid surface. An overview of how these novelties impact the space of feasible close proximity operations and how different asteroid model properties will affect their implementation is given. In so doing, four fundamental types of close proximity operations will be defined. Listed in order of increasing technical difficulty these are: (1) close, stable orbits; (2) low-altitude flyovers; (3) landing trajectories; and (4) hovering trajectories. The feasibility and difficulty of implementing these operations will vary as a function of the asteroid shape, size, density, and rotation properties, and as a function of the spacecraft navigation capability. Additional information is contained in the original extended abstract.

  6. Closing the Advising Session.

    ERIC Educational Resources Information Center

    Jeon, Mihyon

    2003-01-01

    This study investigates closing patterns for an institutional conversation in an ELP (English Language Program) at a university in the United States, noting the relationship between the closing patterns of the participants and their level of proficiency in English. By indicating that ESL learners, especially beginners, face difficulty in closing

  7. School Closings in Philadelphia

    ERIC Educational Resources Information Center

    Jack, James; Sludden, John

    2013-01-01

    In 2012, the School District of Philadelphia closed six schools. In 2013, it closed 24. The closure of 30 schools has occurred amid a financial crisis, headlined by the district's $1.35 billion deficit. School closures are one piece of the district's plan to cut expenditures and close its budget gap. The closures are also intended to

  8. B-52 Flight Mission Symbology - Close up

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A close-up view of some of the mission markings that tell the story of the NASA B-52 mothership's colorful history. These particular markings denote some of the experiments the bomber conducted to develop parachute recovery systems for the solid rocket boosters used by the Space Shuttle. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet.. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.

  9. Mars Reconnaissance Orbiter Navigation

    NASA Technical Reports Server (NTRS)

    You, Tung-Han; Halsell, Allen; Highsmith, Dolan; Moriba, Jah; Demcak, Stuart; Higa, Earl; Long, Stacia; Bhaskaran, Shyam

    2004-01-01

    Mars Reconnaissance Orbiter will launch in August 2005 at Cape Canaveral Air Force Station. The heavyweight spacecraft will use a Lockheed-Martin Atlas V-401 launch vehicle. It will be the first mission in a low Mars Orbit to characterize the surface, subsurface, and atmospheric properties. The intensive science operation imposes a great challenge for Navigation to satisfy the stringent requirements. This paper describes navigation key requirements, major challenges, and the sophisticated dynamic modeling. It also details navigation strategy and processes for various mission phases. Mars Reconnaissance Orbiter will return significant amount of scientific data in support of the objectives set by the Mars Exploration Program. A robust and precise navigation is the key to the success of this mission.

  10. Pioneer Venus orbiter

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The orbiter mission of the Pioneer Venus probe is discussed. In accordance with the low-cost Pioneer Venus concept, NASA intends to use the same basic spacecraft, known as the bus, for the execution of the two missions. The bus will be equipped with all of the subsystems common to the probe and orbiter missions (for example, thermal control, solar cells and power supply, attitude measurement and control, telemetry and communication electronics, and auxiliary propulsion unit). For the 1977 mission, the bus will be equipped with the large and small probes and a special antenna system. For the orbiter mission, the bus will be equipped with a retro-propulsion motor and a high-gain antenna. A diagram of the system envisaged is shown.

  11. Cooling Requirements for the Vertical Shear Instability in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Lin, Min-Kai; Youdin, Andrew N.

    2015-09-01

    The vertical shear instability (VSI) offers a potential hydrodynamic mechanism for angular momentum transport in protoplanetary disks (PPDs). The VSI is driven by a weak vertical gradient in the disks orbital motion, but must overcome vertical buoyancy, a strongly stabilizing influence in cold disks, where heating is dominated by external irradiation. Rapid radiative cooling reduces the effective buoyancy and allows the VSI to operate. We quantify the cooling timescale tc needed for efficient VSI growth, through a linear analysis of the VSI with cooling in vertically global, radially local disk models. We find the VSI is most vigorous for rapid cooling with {t}{{c}}\\lt {{{? }}}{{K}}-1h| q| /(? -1) in terms of the Keplerian orbital frequency, {{{? }}}{{K}}, the disks aspect-ratio, h\\ll 1, the radial power-law temperature gradient, q, and the adiabatic index, ?. For longer tc, the VSI is much less effective because growth slows and shifts to smaller length scales, which are more prone to viscous or turbulent decay. We apply our results to PPD models where tc is determined by the opacity of dust grains. We find that the VSI is most effective at intermediate radii, from ?5 to ?50 AU with a characteristic growth time of ?30 local orbital periods. Growth is suppressed by long cooling times both in the opaque inner disk and the optically thin outer disk. Reducing the dust opacity by a factor of 10 increases cooling times enough to quench the VSI at all disk radii. Thus the formation of solid protoplanets, a sink for dust grains, can impede the VSI.

  12. Limits on the Orbits of Possible Eccentric and Inclined Moons of Extrasolar Planets Orbiting Single Stars

    NASA Astrophysics Data System (ADS)

    Donnison, J. R.

    2014-10-01

    Limits are placed on the range of orbits and masses of possible moons orbiting extrasolar planets which orbit single central stars. The Roche limiting radius determines how close the moon can approach the planet before tidal disruption occurs; while the Hill stability of the star-planet-moon system determines stable orbits of the moon around the planet. Here the full three-body Hill stability is derived for a system with the binary composed of the planet and moon moving on an inclined, elliptical orbit relative the central star. The approximation derived here in Eq. (17) assumes the binary mass is very small compared with the mass of the star and has not previously been applied to this problem and gives the criterion against disruption and component exchange in a closed form. This criterion was applied to transiting extrasolar planetary systems discovered since the last estimation of the critical separations (Donnison in Mon Not R Astron Soc 406:1918, 2010a) for a variety of planet/moon ratios including binary planets, with the moon moving on a circular orbit. The effects of eccentricity and inclination of the binary on the stability of the orbit of a moon is discussed and applied to the transiting extrasolar planets, assuming the same planet/moon ratios but with the moon moving with a variety of eccentricities and inclinations. For the non-zero values of the eccentricity of the moon, the critical separation distance decreased as the eccentricity increased in value. Similarly the critical separation decreased as the inclination increased. In both cases the changes though very small were significant.

  13. Spiral Orbit Tribometer

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.; Jones, William R., Jr.; Kingsbury, Edward; Jansen, Mark J.

    2007-01-01

    The spiral orbit tribometer (SOT) bridges the gap between full-scale life testing and typically unrealistic accelerated life testing of ball-bearing lubricants in conjunction with bearing ball and race materials. The SOT operates under realistic conditions and quickly produces results, thereby providing information that can guide the selection of lubricant, ball, and race materials early in a design process. The SOT is based upon a simplified, retainerless thrust bearing comprising one ball between flat races (see figure). The SOT measures lubricant consumption and degradation rates and friction coefficients in boundary lubricated rolling and pivoting contacts. The ball is pressed between the lower and upper races with a controlled force and the lower plate is rotated. The combination of load and rotation causes the ball to move in a nearly circular orbit that is, more precisely, an opening spiral. The spiral s pitch is directly related to the friction coefficient. At the end of the orbit, the ball contacts the guide plate, restoring the orbit to its original radius. The orbit is repeatable throughout the entire test. A force transducer, mounted in-line with the guide plate, measures the force between the ball and the guide plate, which directly relates to the friction coefficient. The SOT, shown in the figure, can operate in under ultra-high vacuum (10(exp -9) Torr) or in a variety of gases at atmospheric pressure. The load force can be adjusted between 45 and 450 N. By varying the load force and ball diameter, mean Hertzian stresses between 0.5 and 5.0 GPa can be obtained. The ball s orbital speed range is between 1 and 100 rpm.

  14. Orbital metastases in Italy

    PubMed Central

    Magliozzi, Patrizio; Strianese, Diego; Bonavolontà, Paola; Ferrara, Mariantonia; Ruggiero, Pasquale; Carandente, Raffaella; Bonavolontà, Giulio; Tranfa, Fausto

    2015-01-01

    AIM To describe a series of Italian patients with orbital metastasis focusing on the outcomes in relation to the different primary site of malignancy. METHODS Retrospective chart review of 93 patients with orbital metastasis collected in a tertiary referral centre in a period of 38y and review of literature. RESULTS Out of 93 patients, 52 were females and 41 were males. Median age at diagnosis was 51y (range 1 to 88y). The patients have been divided into four groups on the basis of the year of diagnosis. The frequency of recorded cases had decreased significantly (P<0.05) during the last 9.5y. Primary tumor site was breast in 36 cases (39%), kidney in 10 (11%), lung in 8 (9%), skin in 6 (6%); other sites were less frequent. In 16 case (17%) the primary tumor remained unknown. The most frequent clinical findings were proptosis (73%), limited ocular motility (55%), blepharoptosis (46%) and blurred vision (43%). The diagnosis were established by history, ocular and systemic evaluation, orbital imaging studies and open biopsy or fine needle aspiration biopsy (FNAB). Treatment included surgical excision, irradiation, chemotherapy, hormone therapy, or observation. Ninety-one percent of patients died of metastasis with an overall mean survival time (OMST) after the orbital diagnosis of 13.5mo. CONCLUSION Breast, kidney and lung are the most frequent primary sites of cancer leading to an orbital metastasis. When the primary site is unknown, gastrointestinal tract should be carefully investigated. In the last decade a decrease in the frequency of orbital metastasis has been observed. Surgery provides a local palliation. Prognosis remains poor with a OMST of 13.5mo ranging from the 3mo in the lung cancer to 24mo in the kidney tumor. PMID:26558220

  15. Orbital maneuvers around irregular shaped bodies

    NASA Astrophysics Data System (ADS)

    Venditti, Flaviane; Rocco, E. M.; Almeida Prado, A. B.

    2013-05-01

    Abstract (2,250 Maximum Characters): In the solar system there are many small bodies called asteroids. The large majority of these bodies are located in the asteroid belt, between the orbits of the planets Mars and Jupiter. The Near- Earth Objects, or NEOs, are objects with perihelion below 1.3AU, which include comets and asteroids. The NEOs are considered to have orbits passing close to the Earths orbit and, in the case of asteroids, are called Near-Earth Asteroids (NEAs). Among the NEAs there are bodies considered potentially hazardous asteroids (PHAs), whose minimum orbit intersection distance with Earth is 0.05AU and that have absolute magnitude (H) of 22, which would mean an asteroid of at least 110-240 meters, depending on its albedo. One of the major characteristic of the asteroids is the irregular shape, causing the dynamics of orbits around these bodies to be different from a spherical shaped one. The fact that an object is not spherical generates a perturbation on the gravitational field. The disturbing force can be determined considering the shape of the specific body. A satellite orbiting this body would suffer the effects of this perturbation, but knowing the disturbing force, its possible to correct and control the orbit according to the desired mission. The polyhedron method is a traditional way to model an asteroid by dividing the object into smaller parts. The data used on this work are composed by a combination of triangular faces. The total disturbing force is a sum of the force on each piece of the model. Therefore, after the simulations are obtained, its possible to apply the desired corrections of the perturbation using continuous low thrust in closed loop, making it possible to perform maneuvers near these bodies. One of the important applications of the study shown above is in the ASTER mission, that is under study by INPE and several other Brazilian academic institutions, which goal is to send a spacecraft to an asteroid and then to remain in orbit around it.

  16. Mars Orbiter Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T.

    1997-01-01

    The objective of this study was to support the rebuild and implementation of the Mars Orbiter Laser Altimeter (MOLA) investigation and to perform scientific analysis of current Mars data relevant to the investigation. The instrument is part of the payload of the NASA Mars Global Surveyor (MGS) mission. The instrument is a rebuild of the Mars Observer Laser Altimeter that was originally flown on the ill-fated Mars Observer mission. The instrument is currently in orbit around Mars and has so far returned remarkable data.

  17. [Mesenchymal orbital tumors].

    PubMed

    Civit, T; Klein, O; Freppel, S; Baylac, F

    2010-01-01

    Mesenchymal tumors grow from pluripotent mesenchymal cells that form the soft orbital tissue. Primary tumors of the orbital walls are discussed in another section. Tumors from muscle and adipose tissue are rare or exceptional, except rhabdomyosarcoma, described in the section dedicated to pediatric tumors. Most frequent tumors are fibrous histiocytomas and solitary fibrous tumors, which often have a retrobulbar location. Fibrous histiocytoma is benign in only 65 % of cases. Fibrous solitary tumor is now better known (Ag CD34): this tumor is generally benign but frequently recurs. PMID:20227093

  18. Tethered orbital refueling study

    NASA Technical Reports Server (NTRS)

    Fester, D. A.

    1986-01-01

    Objectives are to evaluate the feasibility and limitations of fluid acquisition and transfer under an accleration induced in a tethered orbital refueling facility and to provide conceptual designs. Program tasks consist of recommendation of fluid transfer method and parameters; evaluation of disturbances, fluid motion, and damping; selection of passive devices to augment inherent fluid damping and determination of the resultant envelope of operation; assessment of the effect of tether lengths on hazards; and identification of ground and flight tests necessary to prove the tethered orbital refueling concepts.

  19. Pediatric Orbital Fractures

    PubMed Central

    Oppenheimer, Adam J.; Monson, Laura A.; Buchman, Steven R.

    2013-01-01

    It is wise to recall the dictum “children are not small adults” when managing pediatric orbital fractures. In a child, the craniofacial skeleton undergoes significant changes in size, shape, and proportion as it grows into maturity. Accordingly, the craniomaxillofacial surgeon must select an appropriate treatment strategy that considers both the nature of the injury and the child's stage of growth. The following review will discuss the management of pediatric orbital fractures, with an emphasis on clinically oriented anatomy and development. PMID:24436730

  20. Searching sequences of resonant orbits between a spacecraft and Jupiter

    NASA Astrophysics Data System (ADS)

    Formiga, J. K. S.; Prado, A. F. B. A.

    2013-10-01

    This research shows a study of the dynamical behavior of a spacecraft that performs a series of close approaches with the planet Jupiter. The main idea is to find a sequence of resonant orbits that allows the spacecraft to stay in the region of the space near the orbit of Jupiter around the Sun gaining energy from each passage by the planet. The dynamical model considers the existence of only two massive bodies in the systems, which are the Sun and Jupiter. They are assumed to be in circular orbits around their center of mass. Analytical equations are used to obtain the values of the parameters required to get this sequence of close approaches. Those equations are useful, because they show which orbits are physically possible when taking into account that the periapsis distances have to be above the surface of the Sun and that the closest approach distances during the passage by Jupiter have to be above its surface.

  1. Orbital correlation of space objects based on orbital elements

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Hong; Li, Jun-Feng; Du, Xin-Peng; Zhang, Xuan

    2016-03-01

    Orbital correlation of space objects is one of the most important elements in space object identification. Using the orbital elements, we provide correlation criteria to determine if objects are coplanar, co-orbital or the same. We analyze the prediction error of the correlation parameters for different orbital types and propose an orbital correlation method for space objects. The method is validated using two line elements and multisatellite launching data. The experimental results show that the proposed method is effective, especially for space objects in near-circular orbits.

  2. ARTEMIS Lunar Orbit Insertion and Science Orbit Design Through 2013

    NASA Technical Reports Server (NTRS)

    Broschart, Stephen B.; Sweetser, Theodore H.; Angelopoulos, Vassilis; Folta, David; Woodard, Mark

    2015-01-01

    As of late-July 2011, the ARTEMIS mission is transferring two spacecraft from Lissajous orbits around Earth-Moon Lagrange Point #1 into highly-eccentric lunar science orbits. This paper presents the trajectory design for the transfer from Lissajous orbit to lunar orbit insertion, the period reduction maneuvers, and the science orbits through 2013. The design accommodates large perturbations from Earth's gravity and restrictive spacecraft capabilities to enable opportunities for a range of heliophysics and planetary science measurements. The process used to design the highly-eccentric ARTEMIS science orbits is outlined. The approach may inform the design of future planetary moon missions.

  3. Boosting a tethered satellites's orbit around an oblate planet through resonant pumping

    NASA Astrophysics Data System (ADS)

    Gearhart, James Walter

    The center of mass of a satellite, which consists of two masses connected by a rigid, massless tether, moves in a circular non-equatorial orbit about an oblate planet. The satellite is made to tumble forward essentially in the orbital plane such that its average pitch rate relative to the local vertical equals the orbital rate. This tumbling motion is phased such that the tether axis is aligned with the local vertical 1/8th of an orbit prior to each crossing of the equatorial bulge and with the local horizontal 1/8th of an orbit alter each crossing. The angular momentum of the orbit is increased by this phasing of the force from the equatorial bulge with the variations in satellite orientation. Periodic modulation or pump of the tether length in resonance with the equatorial crossings is required to maintain this phasing, and the resulting transfer of energy from the pumping mechanism to the orbit increases the altitude of the mass center. The dynamics of this orbit-boosting effect are examined in detail through a second-order perturbation analysis. Elastic deflections of the tether and the effects of atmospheric drag are neglected. Equations of motion governing the orbital and attitude behavior of the satellite are presented, and a formula for the rate of orbit-boosting is obtained and shown to be maximized for a polar orbit. The correct schedule for varying the tether length is derived through consideration of the rate of work required by the tether-pumping mechanism. The analytical results for the polar orbit case are checked through a numerical simulation which includes a feedback control scheme for maintaining the optimum orbit/attitude phasing. Out-plane deviations from the nominally in-plane tumbling motion are analyzed for the non-polar orbit case and are shown to remain small. The effects of higher-order perturbations and some practical application issues are also discussed.

  4. Global orbit corrections

    SciTech Connect

    Symon, K.

    1987-11-01

    There are various reasons for preferring local (e.g., three bump) orbit correction methods to global corrections. One is the difficulty of solving the mN equations for the required mN correcting bumps, where N is the number of superperiods and m is the number of bumps per superperiod. The latter is not a valid reason for avoiding global corrections, since, we can take advantage of the superperiod symmetry to reduce the mN simultaneous equations to N separate problems, each involving only m simultaneous equations. Previously, I have shown how to solve the general problem when the machine contains unknown magnet errors of known probability distribution; we made measurements of known precision of the orbit displacements at a set of points, and we wish to apply correcting bumps to minimize the weighted rms orbit deviations. In this report, we will consider two simpler problems, using similar methods. We consider the case when we make M beam position measurements per superperiod, and we wish to apply an equal number M of orbit correcting bumps to reduce the measured position errors to zero. We also consider the problem when the number of correcting bumps is less than the number of measurements, and we wish to minimize the weighted rms position errors. We will see that the latter problem involves solving equations of a different form, but involving the same matrices as the former problem.

  5. Mars Climate Orbiter

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Surveyor '98 Climate Orbiter is shown here during acoustic tests that simulate launch conditions. The orbiter was to conduct a two year primary mission to profile the Martian atmosphere and map the surface. To carry out these scientific objectives, the spacecraft carried a rebuilt version of the pressure modulated infrared radiometer, lost with the Mars Observer spacecraft, and a miniaturized dual camera system the size of a pair of binoculars, provided by Malin Space Science Systems, Inc., San Diego, California. During its primary mission, the orbiter was to monitor Mars atmosphere and surface globally on a daily basis for one Martian year (two Earth years), observing the appearance and movement of atmospheric dust and water vapor, as well as characterizing seasonal changes of the planet's surface. Imaging of the surface morphology would also provide important clues about the planet's climate in its early history. The mission was part of NASA's Mars Surveyor program, a sustained program of robotic exploration of the red planet, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, Washington, DC. Lockheed Martin Astronautics was NASA's industrial partner in the mission. Unfortunately, Mars Climate Orbiter burned up in the Martian atmosphere on September 23, 1999, due to a metric conversion error that caused the spacecraft to be off course.

  6. On-orbit refueling

    NASA Astrophysics Data System (ADS)

    Pospisil

    1993-02-01

    The goal of this program is to increase operational availability of space assets by refueling with an expendable launch vehicle (not the Shuttle) in LEO or GEO. Information is drawn from the on-orbit refueling model, COSEMS model, COMA study, and information provided from the San Antonio Air Logistics Center.

  7. Sedna Orbit Animation

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This animation shows the location of the newly discovered planet-like object, dubbed 'Sedna,' in relation to the rest of the solar system. Starting at the inner solar system, which includes the orbits of Mercury, Venus, Earth, and Mars (all in yellow), the view pulls away through the asteroid belt and the orbits of the outer planets beyond (green). Pluto and the distant Kuiper Belt objects are seen next until finally Sedna comes into view. As the field widens the full orbit of Sedna can be seen along with its current location. Sedna is nearing its closest approach to the Sun; its 10,000 year orbit typically takes it to far greater distances. Moving past Sedna, what was previously thought to be the inner edge of the Oort cloud appears. The Oort cloud is a spherical distribution of cold, icy bodies lying at the limits of the Sun's gravitational pull. Sedna's presence suggests that this Oort cloud is much closer than scientists believed.

  8. Lunar Orbit Anomaly

    NASA Astrophysics Data System (ADS)

    Riofrio, L.

    2012-12-01

    Independent experiments show a large anomaly in measurements of lunar orbital evolution, with applications to cosmology and the speed of light. The Moon has long been known to be slowly drifting farther from Earth due to tidal forces. The Lunar Laser Ranging Experiment (LLRE) indicates the Moon's semimajor axis increasing at 3.82 ± .07 cm/yr, anomalously high. If the Moon were today gaining angular momentum at this rate, it would have coincided with Earth less than 2 Gyr ago. Study of tidal rhythmites indicates a rate of 2.9 ± 0.6 cm/yr. Historical eclipse observations independently measure a recession rate of 2.82 ± .08 cm/yr. Detailed numerical simulation of lunar orbital evolution predicts 2.91 cm/yr. LLRE differs from three independent experiments by over12 sigma. A cosmology where speed of light c is related to time t by GM=tc^3 has been suggested to predict the redshifts of Type Ia supernovae, and a 4.507034% proportion of baryonic matter. If c were changing in the amount predicted, lunar orbital distance would appear to increase by an additional 0.935 cm/yr. An anomaly in the lunar orbit may be precisely calculated, shedding light on puzzles of 'dark energy'. In Planck units this cosmology may be summarized as M=R=t.Lunar Recession Rate;

  9. A Neptune Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Wallace, R. A.; Spilker, T. R.

    1998-01-01

    This paper describes the results of new analyses and mission/system designs for a low cost Neptune Orbiter mission. Science and measurement objectives, instrumentation, and mission/system design options are described and reflect an aggressive approach to the application of new advanced technologies expected to be available and developed over the next five to ten years.

  10. Orbit Transfer Programs

    NASA Technical Reports Server (NTRS)

    Breakwell, J. V.

    1986-01-01

    Collection of computer programs developed that solve problem of transfer between noncoplanar circular orbits for spacecraft with chemical propulsion systems. Two basic programs given. First, referred to as "exact solution," gives complete, exact time histories of transfers. Second, or "approximate solution," program gives approximate information on transfer time and fuel cost but provides no detail of trajectory.

  11. Goddard Brouwer Orbit Bulletin

    NASA Technical Reports Server (NTRS)

    Morgan, D. B.; Gordon, R. A.

    1971-01-01

    The bulletin provides operational support for earth space research and technological missions by producing a tape containing pertinent spacecraft orbital information which is provided to a number of cities around the world in support of individual missions. A program description of the main and associated subroutines, and a complete description of the input, output and requirements of the bulletin program are presented.

  12. On-orbit refueling

    NASA Technical Reports Server (NTRS)

    POSPISIL

    1993-01-01

    The goal of this program is to increase operational availability of space assets by refueling with an expendable launch vehicle (not the Shuttle) in LEO or GEO. Information is drawn from the on-orbit refueling model, COSEMS model, COMA study, and information provided from the San Antonio Air Logistics Center.

  13. On-orbit refueling

    NASA Technical Reports Server (NTRS)

    Moore, James S.; Owens, Shelby L.

    1993-01-01

    During the past decade, both NASA and the DOD have conducted numerous space servicing studies. These studies have shown that fluid resupply of on-orbit spacecraft is feasible and would allow for extended spacecraft utilization. In order to prove that the studies have validity, an on-orbit flight demonstration of automatic fluid resupply is required. To embark on this flight demonstration, the system concepts, operational procedures, and conceptual service and target vehicles must be identified. Hernandez Engineering, Inc. (HEI), under the direction of the Space Servicing System Project Office of the NASA/JSC New Initiatives Office, has conducted a systems engineering and integration study. The study objective was to develop preliminary concepts for a flight demonstration of automatic rendezvous, proximity operations, capture, and fluid transfer utilizing servicer and target vehicles. The results show that a servicer vehicle/target kit can be launched to orbit with an ELV and automatically rendezvous and dock with the explorer platform (EP). The servicer vehicle can then separate from the EP/kit, perform proximity maneuvers, redock with the EP/kit, and perform fluid transfer operations. After the on-orbit flight demonstration is completed, the servicer/kit can be separated from the EP and be deorbited into the Earth's atmosphere.

  14. KBO orbits for occultations

    NASA Astrophysics Data System (ADS)

    Buie, Marc

    2013-08-01

    The orbits and physical properties of Kuiper Belt Objects (KBOs) provide valuable constraints on the dynamical and environmental evolution of the outer Solar System. Much progress has been made in the past two decades of KBO observations but we still have limited information on physical sizes of these objects. Thermal observations work well (with Spitzer and Herschel) but the dynamically cold classical KBOs (low inclination, low eccentricity near 45 AU) have proven especially challenging with radiometric techniques. This particular class of object is arguably the most primitive (least disturbed) and are a critical component for study. Stellar occultations can provide the missing sizes but to do so we need more objects with better orbits to make these observations feasible. The cold classical objects are also the most likely to have satellites. Getting an occultation diameter on binary objects will permit getting accurate densities since the system mass is known from the satellite orbit. These proposed observations will collect critical astrometry needed to improve the orbits of under- observed KBOs that are candidates for stellar occultation observations. Where possible, known binaries will be given preference for astrometry. This work is part of a NSF-funded pilot project to secure occultation diameters of KBOs.

  15. Vertical axis wind turbine airfoil

    DOEpatents

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  16. Visualize Vertical Connectedness (Middle Ground).

    ERIC Educational Resources Information Center

    van Allen, Lanny

    1996-01-01

    Discusses the possibility of vertical connectedness in K-12 education through references to journal articles and the author's own reflections. Suggests that middle school teachers may be leaders in a movement toward eliminating redundancy and gaps between grade levels. (TB)

  17. Place Value: A Vertical Perspective.

    ERIC Educational Resources Information Center

    Bove, Sandra P.

    1995-01-01

    Discusses children's place-value understanding, including initial learning interference, vertical number lines, and planned discourse. Describes a learning activity that can guide children from a concrete to a symbolic understanding of place value. (11 references) (MKR)

  18. Precise halo orbit design and optimal transfer to halo orbits from earth using differential evolution

    NASA Astrophysics Data System (ADS)

    Nath, Pranav; Ramanan, R. V.

    2016-01-01

    The mission design to a halo orbit around the libration points from Earth involves two important steps. In the first step, we design a halo orbit for a specified size and in the second step, we obtain an optimal transfer trajectory design to the halo orbit from an Earth parking orbit. Conventionally, the preliminary design for these steps is obtained using higher order analytical solution and the dynamical systems theory respectively. Refinements of the design are carried out using gradient based methods such as differential correction and pseudo arc length continuation method under the of circular restricted three body model. In this paper, alternative single level schemes are developed for both of these steps based on differential evolution, an evolutionary optimization technique. The differential evolution based scheme for halo orbit design produces precise halo orbit design avoiding the refinement steps. Further, in this approach, prior knowledge of higher order analytical solutions for the halo orbit design is not needed. The differential evolution based scheme for the transfer trajectory, identifies the precise location on the halo orbit that needs minimum energy for insertion and avoids exploration of multiple points. The need of a close guess is removed because the present scheme operates on a set of bounds for the unknowns. The constraint on the closest approach altitude from Earth is handled through objective function. The use of these schemes as the design and analysis tools within the of circular restricted three body model is demonstrated through case studies for missions to the first libration point of Sun-Earth system.

  19. Precipitation Sensing in GEO Orbit with High Resolution

    NASA Astrophysics Data System (ADS)

    You, Rui

    2012-07-01

    Now casting of precipitation in geostationary orbit is a strongly requirements , two of difficults are antenna and radiometer receiver,it should satisfies high spatial and time resolution, this paper present two satellites with large scale feed array cofiguration get over 600 spot beams cove 3.5% China area, work in 118GHz for atmospheric temperature vertical profille and 183GHz for humidity vertical profille, two satellites consists of interferometric synthetic aperture it can satisfies weather nowcasting both spatial and time resolution in suspect zone for now casting requirements.

  20. Behavior of Stellar Orbits in a Barred Galaxy Model

    NASA Astrophysics Data System (ADS)

    Barnes, Eric

    2008-05-01

    Since at least half of all sprial galaxies contain barred features, it is important to understand how bars form and evolve. We are particularly interested in the buckling behavior of bars and possible links to pseudobulges. Using a barred galaxy potential derived from an N-body simulation, we are investigating the stellar orbits supported by the bar at different pattern speeds. Specifically, we are focusing on the stability and vertical behavior of singly periodic orbits. This poster will discuss the techniques used in this work and present some preliminary results. This work has been supported in part by a Univ. of Wisconsin - La Crosse Faculty Research Grant.

  1. Space Shuttle Orbiter Digital Outer Mold Line Scanning

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.; Wilson, Brad; Pavek, Mike; Berger, Karen

    2012-01-01

    The Space Shuttle Orbiters Discovery and Endeavor have been digitally scanned to produce post-flight configuration outer mold line surfaces. Very detailed scans of the windward side of these vehicles provide resolution of the detailed tile step and gap geometry, as well as the reinforced carbon carbon nose cap and leading edges. Lower resolution scans of the upper surface provide definition of the crew cabin windows, wing upper surfaces, payload bay doors, orbital maneuvering system pods and the vertical tail. The process for acquisition of these digital scans as well as post-processing of the very large data set will be described.

  2. Observed and real orbital dispersion within meteoroid streams

    NASA Astrophysics Data System (ADS)

    Hajdukov, Mria

    2014-01-01

    The present paper, based on a statistical analysis of orbits obtained from video meteors, shows the orbits' distribution within the meteoroid streams with heliocentric velocities close to the parabolic limit. The high proportion of hyperbolic orbits among the corresponding meteor showers was used to deduce the contribution of the real orbital dispersion within the stream, because an excess of a heliocentric velocity of a stream meteoroid over the parabolic value can be regarded entirely as the result of measuring errors. Four meteor showers, April Lyrids, Perseids, Orionids, and Leonids, were selected for this analysis. The orbital dispersion within the investigated meteoroid streams, based on the distribution of their reciprocal semimajor axes, obtained from different catalogues, were compared. It was shown that the major part of the observed differences in the semimajor axes within meteoroid streams from the European Video Meteor Network data is indeed due to measuring errors.

  3. THE ORBITAL PERIOD OF SWIFT J1626.6-5156

    SciTech Connect

    Baykal, Altan; Goegues, Ersin; Inam, Sitki Cagdas; Belloni, Tomaso

    2010-03-10

    We present the discovery of the orbital period of Swift J1626.6-5156. Since its discovery in 2005, the source has been monitored with Rossi X-Ray Timing Explorer, especially during the early stage of the outburst and into the X-ray modulating episode. Using a data span of {approx}700 days, we obtain the orbital period of the system as 132.9 days. We find that the orbit is close to a circular shape with an eccentricity 0.08, that is one of the smallest among Be/X-ray binary systems. Moreover, we find that the timescale of the X-ray modulations varied, which led to earlier suggestions of orbital periods at about a third and half of the orbital period of Swift J1626.6-5156.

  4. The Orbital Design of Alpha Centauri Exoplanet Satellite (ACESat)

    NASA Technical Reports Server (NTRS)

    Weston, Sasha; Belikov, Rus; Bendek, Eduardo

    2015-01-01

    Exoplanet candidates discovered by Kepler are too distant for biomarkers to be detected with foreseeable technology. Alpha Centauri has high separation from other stars and is of close proximity to Earth, which makes the binary star system 'low hanging fruit' for scientists. Alpha Centauri Exoplanet Satellite (ACESat) is a mission proposed to Small Explorer Program (SMEX) that will use a coronagraph to search for an orbiting planet around one of the stars of Alpha Centauri. The trajectory design for this mission is presented here where three different trajectories are considered: Low Earth Orbit (LEO), Geosynchronous Orbit (GEO) and a Heliocentric Orbit. Uninterrupted stare time to Alpha Centauri is desirable for meeting science requirements, or an orbit that provides 90% stare time to the science target. The instrument thermal stability also has stringent requirements for proper function, influencing trajectory design.

  5. Constraints on circumbinary planet orbits from Kepler single transit events

    NASA Astrophysics Data System (ADS)

    Brown, D. J. A.; Armstrong, D. J.

    2015-10-01

    All the known transiting circumbinary planets orbit very close to coplanar with their host binaries. But circumbinary systems are not, a priori, limited to this configuration; misaligned systems are likely to exist, and their discovery and characterisation of would shed light on the dynamical history of planets on circumbinary orbits, and on the possible migration mechanisms that might be acting on such complex systems. We have identified candidate misaligned circumbinary systems within Kepler data. These candidates show single, non-periodic transits that can be used to place constraints on possible orbital configurations for the third body for given binary star parameters. We have developed tools to identify and model possible planetary orbits, and will present preliminary results for representative binary star cases that illustrate our ability to constrain the planet's orbital period and inclination.

  6. CO-ORBITAL OLIGARCHY

    SciTech Connect

    Collins, Benjamin F.; Sari, Re'em

    2009-04-15

    We present a systematic examination of the changes in semimajor axis of a protoplanet as it interacts with other protoplanets in the presence of eccentricity dissipation. For parameters relevant to the oligarchic stage of planet formation, dynamical friction keeps the typical eccentricities small and prevents orbit crossing. Interactions at impact parameters greater than several Hill radii cause the protoplanets to repel each other; if the impact parameter is instead much less than the Hill radius, the protoplanets shift slightly in semimajor axis but remain otherwise unperturbed. If the orbits of two or more protoplanets are separated by less than a Hill radius, they are each pushed toward an equilibrium spacing between their neighbors and can exist as a stable co-orbital system. In the shear-dominated oligarchic phase of planet formation, we show that the feeding zones contain several oligarchs instead of only one. Growth of the protoplanets in the oligarchic phase drives the disk to an equilibrium configuration that depends on the mass ratio of protoplanets to planetesimals, {sigma}/{sigma}. Early in the oligarchic phase, when {sigma}/{sigma} is low, the spacing between rows of co-orbital oligarchs are about 5 Hill radii wide, rather than the 10 Hill radii cited in the literature. It is likely that at the end of oligarchy, the average number of co-orbital oligarchs is greater than unity. In the outer solar system, this raises the disk mass required to form the ice giants. In the inner solar system, this lowers the mass of the final oligarchs and requires more giant impacts than previously estimated. This result provides additional evidence that Mars is not an untouched leftover from the oligarchic phase, but must be composed of several oligarchs assembled through giant impacts.

  7. Orbital Fluid Transfer System

    NASA Technical Reports Server (NTRS)

    Johnston, A. S., (Nick); Ryder, Mel; Tyler, Tony R.

    1998-01-01

    An automated fluid and power interface system needs to be developed for future space missions which require on orbit consumable replenishment. Current method of fluid transfer require manned vehicles and extravehicular activity. Currently the US does not have an automated capability for consumable transfer on-orbit. This technology would benefit both Space Station and long duration satellites. In order to provide this technology the Automated Fluid Interface System (AFIS) was developed. The AFIS project was an advanced development program aimed at developing a prototype satellite servicer for future space operations. This mechanism could transfer propellants, cryogens, fluids, gasses, electrical power, and communications from a tanker unit to the orbiting satellite. The development of this unit was a cooperative effort between Marshall Space Flight Center in Huntsville, Alabama, and Moog, Inc. in East Aurora, New York. An engineering model was built and underwent substantial development testing at Marshall Space Flight Center (MSFC). While the AFIS is not suitable for spaceflight, testing and evaluation of the AFIS provided significant experience which would be beneficial in building a flight unit. The lessons learned from testing the AFIS provided the foundation for the next generation fluid transfer mechanism, the Orbital Fluid Transfer System (OFTS). The OFTS project was a study contract with MSFC and Moog, Inc. The OFTS was designed for the International Space Station (ISS), but its flexible design could used for long duration satellite missions and other applications. The OFTS was designed to be used after docking. The primary function was to transfer bipropellants and high pressure gases. The other items addressed by this task included propellant storage, hardware integration, safety and control system issues. A new concept for high pressure couplings was also developed. The results of the AFIS testing provided an excellent basis for the OFTS design. The OFTS meet the servicing requirements for ISS and could also provide the automated fluid and power interface system needed for on orbit consumable resupply of spacecraft into the new century.

  8. Technology requirements for advanced earth-orbital transportation systems: Summary report. [single stage to orbit vehicles

    NASA Technical Reports Server (NTRS)

    Haefeli, R. C.; Littler, E. G.; Hurley, J. B.; Winter, M. G.

    1977-01-01

    Areas of advanced technology that are either critical or offer significant benefits to the development of future Earth-orbit transportation systems were identified. Technology assessment was based on the application of these technologies to fully reusable, single-state-to-orbit (SSTO) vehicle concepts with horizontal landing capability. Study guidelines included mission requirements similar to space shuttle, an operational capability beginning in 1995, and main propulsion to be advanced hydrogen-fueled rocket engines. The technical and economic feasibility of this class of SSTO concepts were evaluated as well as the comparative features of three operational take-off modes, which were vertical boost, horizontal sled launch, and horizontal take-off with subsequent inflight fueling. Projections of both normal and accelerated technology growth were made. Figures of merit were derived to provide relative rankings of technology areas. The influence of selected accelerated areas on vehicle design and program costs was analyzed by developing near-optimum point designs.

  9. Kaguya Orbit Determination from JPL

    NASA Technical Reports Server (NTRS)

    Haw, Robert J.; Mottinger, N. A.; Graat, E. J.; Jefferson, D. C.; Park, R.; Menom, P.; Higa, E.

    2008-01-01

    Selene (re-named 'Kaguya' after launch) is an unmanned mission to the Moon navigated, in part, by JPL personnel. Launched by an H-IIA rocket on September 14, 2007 from Tanegashima Space Center, Kaguya entered a high, Earth-centered phasing orbit with apogee near the radius of the Moon's orbit. After 19 days and two orbits of Earth, Kaguya entered lunar orbit. Over the next 2 weeks the spacecraft decreased its apolune altitude until reaching a circular, 100 kilometer altitude orbit. This paper describes NASA/JPL's participation in the JAXA/Kaguya mission during that 5 week period, wherein JPL provided tracking data and orbit determination support for Kaguya.

  10. Pluto Satellite Orbits in Support of New Horizons

    NASA Astrophysics Data System (ADS)

    Buie, Marc

    2013-10-01

    We propose a sequence of observations that will significantlyimprove the orbit of P/2011 P1 and P/2012 P1 and provide useful improvementsto the orbits of other satellites in the Pluto system. The orbit determinationwork for the newest satellite discoveries are critically needed so thatNew Horizons can know where to point its instruments at close approach.These data will also be useful for improved mass constraints on the outersatellites as well as refining our knowledge of the photometric propertiesof all objects in the Pluto system. In particular, lightcurve and color evolution willbe monitored by these observations for use in constrainingmodels of seasonal evolution on Pluto.

  11. Orbital evolution of the PSR1257+12 planetary system

    NASA Technical Reports Server (NTRS)

    Rasio, Frederic A.; Nicholson, Philip D.; Shapiro, Stuart L.; Teukolsky, Saul A.

    1993-01-01

    The detection of orbital perturbation effects in the PSR1257+12 timing data would provide irrefutable confirmation that planets are indeed orbiting the pulsar. Here we give an overview of how perturbation effects are expected to affect the orbital elements of the two planets over the next few years. In particular, we give a simple calculation of resonant perturbations, including the nonlinear effects which could be important if sin i less than about 0.1. We also present a new analysis of the effects of close encounters between the two planets and we discuss their detectability.

  12. Proton spin tracking with symplectic integration of orbit motion

    SciTech Connect

    Luo, Y.; Dutheil, Y.; Huang, H.; Meot, F.; Ranjbar, V.

    2015-05-03

    Symplectic integration had been adopted for orbital motion tracking in code SimTrack. SimTrack has been extensively used for dynamic aperture calculation with beam-beam interaction for the Relativistic Heavy Ion Collider (RHIC). Recently proton spin tracking has been implemented on top of symplectic orbital motion in this code. In this article, we will explain the implementation of spin motion based on Thomas-BMT equation, and the benchmarking with other spin tracking codes currently used for RHIC. Examples to calculate spin closed orbit and spin tunes are presented too.

  13. Accessibility, stabilizability, and feedback control of continuous orbital transfer.

    PubMed

    Gurfil, Pini

    2004-05-01

    This paper investigates the problem of low-thrust orbital transfer using orbital element feedback from a control-theoretic standpoint, concepts of controllability, feedback stabilizability, and their interaction. The Gauss variational equations (GVEs) are used to model the state-space dynamics. First, the notion of accessibility, a weaker form of controllability, is presented. It is then shown that the GVEs are globally accessible. Based on the accessibility result, a nonlinear feedback controller is derived that asymptotically steers a vehicle from an initial elliptic Keplerian orbit to any given elliptic Keplerian orbit. The performance of the new controller is illustrated by simulating an orbital transfer between two geosynchronous Earth orbits. It is shown that the low-thrust controller requires less fuel than an impulsive maneuver for the same transfer time. Closed-form, analytic expressions for the new orbital transfer controller are given. Finally, it is proved, based on a topological nonlinear stabilizability test, that there does not exist a continuous closed-loop controller that can transfer a spacecraft to a parabolic escape trajectory. PMID:15220148

  14. Lunar Exploration Orbiter

    NASA Astrophysics Data System (ADS)

    Henselowsky, Carsten; Jaumann, Ralf; Kummer, Uwe; Claasen, Friedhelm

    Phase 0 investigations for the German Lunar Exploration Orbiter (LEO) mission were carried out during 2007 leading to a sophisticated mission concept currently in phase A to be further detailed. Following an announcement of opportunity, also in 2007, the German Space Agency (DLR) received several proposals for the instrumentation of the LEO mission from the national science community. A board of peers recommended 12 instruments for a further consideration in phase A. Overall premise for the accomplishment of LEO is that the mission will provide high quality scientific output in the fields of geology, geochemistry and geophysics and add value in the context of already operational and foreseeable upcoming lunar missions. Composed of three satellites, a main orbiter and a pair of sub-satellites, the Lunar Exploration Orbiter will investigate the moon in all its facets, including its interior constitution and development by gravity field analysis, its surface in a multifold of aspects, ranging from topography to mineralogy, as well as its direct surrounding in aspects as radiation and dust. To accomplish this challenging mission objective, with respect to the envisaged high spatial and spectral resolution of the global surface mapping and the accuracy of the determination of the gravity field, the mission concept stipulates a mean altitude of 50 km. Due to the request for global coverage, low altitude and the quantity of instruments LEO is designed for a nominal operational lifetime of four years. Necessary mission lifetime and altitude combined with the capricious lunar gravity field yields a less propellant demanding frozen orbit with an inclination of 85 which is envisaged for the first part of the operational period. The LEO main orbiter will change its inclination to polar orbit after three years of operation to complete global coverage during the last nominal year of operation. The two sub-satellites will remain in the stable, initial 50 km orbit. Remaining propellant will be used to deal with uncertainties according to the considered lunar frozen orbits or for an extension of the nominal lifetime and/or scenario. The LEO main orbiter will carry the mapping payloads that will provide global coverage of the moon surface and the environmental examination instruments: Three imaging spectrometers covering a wide spectral range from 200 nm up to 14 m, will provide data for geochemical investigations, a camera for highest resolution stereo imaging will establish a three-dimensional topographic map and a specialized camera for event detection will identify lunar transient events, a microwave and a radar instrument will investigate the lunar subsurface, environmental instruments shall measure the lunar radiation and particle (dust) environment. The two - almost identical - subsatellites together form an instrument to determine the lunar gravity field with unprecedented high accuracy, by conducting range and range-rate measurements. Moreover each sub-satellite is determined to carry also a magnetometer and a sensor measuring the pressure of radiation to assist gravity field measurements. As mentioned above, first and foremost LEO is a scientific driven mission. Over and above the scientific ambition LEO shall be Germany's contribution to future lunar exploration in an international context by providing a global scientific roadmap of the Moon with highest precision. LEO is planed to be launched in 2012 timeframe.

  15. Shuttle on-orbit rendezvous targeting: Circular orbits

    NASA Technical Reports Server (NTRS)

    Bentley, E. L.

    1972-01-01

    The strategy and logic used in a space shuttle on-orbit rendezvous targeting program are described. The program generates ascent targeting conditions for boost to insertion into an intermediate parking orbit, and generates on-orbit targeting and timeline bases for each maneuver to effect rendezvous with a space station. Time of launch is determined so as to eliminate any plane change, and all work was performed for a near-circular space station orbit.

  16. Verification of the naval oceanic vertical aerosol model during FIRE

    NASA Technical Reports Server (NTRS)

    Davidson, K. L.; Deleeuw, G.; Gathman, S. G.; Jensen, D. R.

    1990-01-01

    The value of Naval Oceanic Vertical Aerosol Model (NOVAM) is illustrated for estimating the non-uniform and non-logarithmic extinction profiles, based on a severe test involving conditions close to and beyond the limits of applicability of NOVAM. A more comprehensive evaluation of NOVAM from the FIRE data is presented, which includes a clear-air case. For further evaluation more data are required on the vertical structure of the extinction in the marine atmospheric boundary layer (MABL), preferably for different meteorological conditions and in different geographic areas (e.g., ASTEX).

  17. Close up view of the Commander's Seat on the Flight ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up view of the Commander's Seat on the Flight Deck of the Orbiter Discovery. It appears the Orbiter is in the roll out / launch pad configuration. A protective cover is over the Rotational Hand Controller to protect it during the commander's ingress. Most notable in this view are the Speed Brake/Thrust Controller in the center right in this view and the Translational Hand Controller in the center top of the view. This image was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  18. SPECS: Orbital debris removal

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The debris problem has reached a stage at which the risk to satellites and spacecraft has become substantial in low Earth orbit (LEO). This research discovered that small particles posed little threat to spacecraft because shielding can effectively prevent these particles from damaging the spacecraft. The research also showed that, even though collision with a large piece of debris could destroy the spacecraft, the large pieces of debris pose little danger because they can be tracked and the spacecraft can be maneuvered away from these pieces. Additionally, there are many current designs to capture and remove large debris particles from the space environment. From this analysis, it was decided to concentrate on the removal of medium-sized orbital debris, that is, those pieces ranging from 1 cm to 50 cm in size. The current design incorporates a transfer vehicle and a netting vehicle to capture the medium-sized debris. The system is based near an operational space station located at 28.5 deg inclination and 400 km altitude. The system uses ground-based tracking to determine the location of a satellite breakup or debris cloud. These data are uploaded to the transfer vehicle, which proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the system has the ability to capture 50 pieces of orbital debris. One mission will take approximately six months and the system is designed to allow for a 30 deg inclination change on the outgoing and incoming trips of the transfer vehicle.

  19. SPECS: Orbital debris removal

    NASA Astrophysics Data System (ADS)

    The debris problem has reached a stage at which the risk to satellites and spacecraft has become substantial in low Earth orbit (LEO). This research discovered that small particles posed little threat to spacecraft because shielding can effectively prevent these particles from damaging the spacecraft. The research also showed that, even though collision with a large piece of debris could destroy the spacecraft, the large pieces of debris pose little danger because they can be tracked and the spacecraft can be maneuvered away from these pieces. Additionally, there are many current designs to capture and remove large debris particles from the space environment. From this analysis, it was decided to concentrate on the removal of medium-sized orbital debris, that is, those pieces ranging from 1 cm to 50 cm in size. The current design incorporates a transfer vehicle and a netting vehicle to capture the medium-sized debris. The system is based near an operational space station located at 28.5 deg inclination and 400 km altitude. The system uses ground-based tracking to determine the location of a satellite breakup or debris cloud. These data are uploaded to the transfer vehicle, which proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the system has the ability to capture 50 pieces of orbital debris. One mission will take approximately six months and the system is designed to allow for a 30 deg inclination change on the outgoing and incoming trips of the transfer vehicle.

  20. Helioseismology with Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Löptien, Björn; Birch, Aaron C.; Gizon, Laurent; Schou, Jesper; Appourchaux, Thierry; Blanco Rodríguez, Julián; Cally, Paul S.; Dominguez-Tagle, Carlos; Gandorfer, Achim; Hill, Frank; Hirzberger, Johann; Scherrer, Philip H.; Solanki, Sami K.

    2015-12-01

    The Solar Orbiter mission, to be launched in July 2017, will carry a suite of remote sensing and in-situ instruments, including the Polarimetric and Helioseismic Imager (PHI). PHI will deliver high-cadence images of the Sun in intensity and Doppler velocity suitable for carrying out novel helioseismic studies. The orbit of the Solar Orbiter spacecraft will reach a solar latitude of up to 21∘ (up to 34∘ by the end of the extended mission) and thus will enable the first local helioseismology studies of the polar regions. Here we consider an array of science objectives to be addressed by helioseismology within the baseline telemetry allocation (51 Gbit per orbit, current baseline) and within the science observing windows (baseline 3×10 days per orbit). A particularly important objective is the measurement of large-scale flows at high latitudes (rotation and meridional flow), which are largely unknown but play an important role in flux transport dynamos. For both helioseismology and feature tracking methods convection is a source of noise in the measurement of longitudinally averaged large-scale flows, which decreases as T -1/2 where T is the total duration of the observations. Therefore, the detection of small amplitude signals (e.g., meridional circulation, flows in the deep solar interior) requires long observation times. As an example, one hundred days of observations at lower spatial resolution would provide a noise level of about three m/s on the meridional flow at 80∘ latitude. Longer time-series are also needed to study temporal variations with the solar cycle. The full range of Earth-Sun-spacecraft angles provided by the orbit will enable helioseismology from two vantage points by combining PHI with another instrument: stereoscopic helioseismology will allow the study of the deep solar interior and a better understanding of the physics of solar oscillations in both quiet Sun and sunspots. We have used a model of the PHI instrument to study its performance for helioseismology applications. As input we used a 6 hr time-series of realistic solar magneto-convection simulation (Stagger code) and the SPINOR radiative transfer code to synthesize the observables. The simulated power spectra of solar oscillations show that the instrument is suitable for helioseismology. In particular, the specified point spread function, image jitter, and photon noise are no obstacle to a successful mission.

  1. Orbital Complications of Sinusitis

    PubMed Central

    Radovani, Pjerin; Vasili, Dritan; Xhelili, Mirela; Dervishi, Julian

    2013-01-01

    Background: Despite the modern antibiotherapies applied in the practice of otorhinolaryngology, the orbital complications of sinusitis are still considered a serious threat to essential functions of the eye, including loss of vision, and at worst, life threatening symptoms. Aims: The goal of this study is to consider and analyse patients who were treated for these complications in the last decade in our hospital, which is the only tertiary hospital in our country. Study Design: Retrospective analysis of cases. Methods: In our practice, cases treated in the hospital are rhinosinusitis cases where surgical intervention is necessary, or those with a suspicion of complications. Between the years 1999 and 2009 there were 177 cases, the clinical charts of which were reviewed. The cases that are omitted from this study are those involving soft tissues, bone, and intracranial complications. The diagnoses were determined based on anamnesis, anterior rhinoscopy, x-rays of the sinuses with the Water’s projection or where there was a suspicion of a complication, and CT scans with coronal and axial projections. In all cases, intensive treatment was initiated with a combination of cefalosporines, aminoglycosides and Proetz manoeuvre. When an improvement in the conditions did not occur within 24–48 hours, we intervened with a surgical procedure, preferably the Lynch-Patterson external frontoethmoidectomy. Results: In our study, we encountered 35 cases (19.8%) of orbital complications with an average age of 25 (range: 3–75); Palpebral inflammatory oedema (15), orbital cellulitis (10), subperiosteal abscess (6), orbital abscess (3), and cavernous sinus thrombosis (1 patient). The average time that patients remained in hospital was 4.6 days; for those with orbital complications this was 7 days. Conclusion: Orbital complications of sinusitis are considered to be severe pathologies. The appearance of oedema in the corner of the eye should be evaluated immediately and the means to exclude acute sinusitis should be taken under serious consideration. Early diagnosis and aggressive treatment are key to the reduction of these unwanted manifestations. PMID:25207092

  2. Forbidden tangential orbit transfers between intersecting Keplerian orbits

    NASA Technical Reports Server (NTRS)

    Burns, Rowland E.

    1990-01-01

    The classical problem of tangential impulse transfer between coplanar Keplerian orbits is addressed. A completely analytic solution which does not rely on sequential calculation is obtained and this solution is used to demonstrate that certain initially chosen angles can produce singularities in the parameters of the transfer orbit. A necessary and sufficient condition for such singularities is that the initial and final orbits intersect.

  3. Planets and Brown Dwarfs Orbiting Evolved Binaries

    NASA Astrophysics Data System (ADS)

    Qian, S.-B.; Zhu, L.-Y.; Liao, W.-P.; Zejda, M.; Mikulek, Z.; Fernndez Lajs, E.; Zola, S.; Zhou, X.; Han, Z.-T.

    2015-07-01

    Searches for planets and brown dwarf companions to evolved close binary stars (e.g., detached WD+dM binaries, sdB-type eclipsing binaries, magnetic CVs, and X-ray binaries) can provide insight into the formation and ultimate fate of circumbinary planets and brown dwarfs, as well as shed light on the late evolution of binary stars. The eclipse timing method has most successfully been applied to detect extrasolar planets around binary stars evolved beyond the first red-giant branch. We have monitored different types of evolved eclipsing binaries using this method since 2006. In this paper we review some observational results of circumbinary planets and brown dwarfs orbiting evolved binaries, especially those orbiting sdB-type eclipsing binaries. The fate of the Earth in our solar system is discussed by a comparison of the observational properties of the close-in substellar objects orbiting sdB-type binaries with those of planets in our solar system.

  4. Lessons Learned from Natural Space Debris in Heliocentric Orbit: An Analogue for Hazardous Debris in Earth Orbit

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Wei, Hanying; Connors, Martin; Lai, Hairong; Delzanno, Gian Luca

    Interplanetary Field Enhancements (IFEs) were discovered almost 30 years ago in the PVO magnetic-field records. Our current understanding is that IFEs result from interactions between solar wind and clouds of nanometer-scale charged dust released in interplanetary collisions. These charged dust clouds are then accelerated by the solar wind and moving away from the Sun at near solar wind speed and detected by spacecraft in heliocentric orbit. The dynamics of the debris in heliocentric orbit is analogous to that mankind has placed into Earth orbit. There are lessons here that are worth exploring. The IFE formation hypothesis was supported by the discovery of co-orbiting materials associated with asteroid 2201 Oljato: IFE rate peaked when Oljato was close and IFE occurrence clustered in the longitudes near which the orbit of Oljato intersects the orbital plane of Venus. A followed up study with Venus Express observations suggested that the co-orbiting materials dissipated in 30 years. An important aspect of this evolution is that at collisional speeds of 20 km/s, a small body can destroy one 106 times more massive. This destruction of large debris by small debris could also be important in the evolution of the terrestrial debris. At 1AU, based on ACE and Wind observations, IFEs have a significant cluster in the longitude range between 195 and 225. Thus we use the same IFE technique to identify the parent Near-Earth Objects of co-orbiting materials which should be responsible for those IFEs. There are more than 5000 JPL documented NEOs whose ecliptic plane crossings are near to or inside the Earths orbit and whose orbital periods are less than five years. By comparing their trajectories, we find that the asteroid 138175 is a good candidate for the parent body. This asteroid orbits the Sun in a 5.24 inclined elliptical orbit with a period of 367.96 days. Its descending node is at about 206, where the IFE occurrence rate peaks. We also find that there is a spread of the IFE rate around the descending node, indicating that the co-orbiting materials have significant dispersion about the asteroids orbit. In summary, orbiting debris in orbits intersecting at high speeds can destroy itself quite efficiently, but with a long timescale. In deep space, this process is a step on the path between the asteroidal source population and the creation of solar system dust. This may be true for Earth-orbiting debris as well.

  5. THEMIS Orbits and Data at SPDF

    NASA Astrophysics Data System (ADS)

    Bilitza, D.; McGuire, R. E.; Candey, R. M.; Chimiak, R. A.; Harris, B. T.; Han, D. B.; Kovalick, T. J.; Johnson, R. C.; Leckner, H. A.; Angelopoulos, V.

    2007-12-01

    The Space Physics Data Facility (SPDF) within Goddard's Heliospheric Physics Laboratory has worked closely with the THEMIS team to adapt SPDF's orbit and data tools/services to the special needs of the THEMIS mission. We will explain and demonstrate these systems that now include Level-2 data from the THEMIS ground and space instruments and the latest orbits and orbit predictions. CDAWeb now serves current FluxGate Magnetometer (FGM), ElectroStatic Analyzer (ESA), Solid-State Telescope (SST), Electric Field Instrument (EFI) and Search Coil Magnetometer (SCM) data from all 5 THEMIS spacecraft and magnetometer data from 20+ THEMIS ground stations. CDAWeb displays include line plots and spectrograms and outputs are now also available in PDF and Postscript. The latest version of the 3-D interactive orbit viewer now includes the capability to follow the magnetic ground tracks of the THEMIS satellites and their relation to the THEMIS ground stations making it an excellent tool for the coordinated analysis of THEMIS space and ground data. The SSCWeb system allows complex queries involving magnetic conjunctions between satellites and between satellites and ground stations, and region occupancy. Several THEMIS-specific queries were set up and saved and are now available for easy (one click) usage. THEMIS is utilizing the Common Data Format (CDF) for its data products, a format developed and maintained by SPDF and the backbone of the CDAWeb system. A number of CDF routines were customized for most efficient use by the THEMIS team.

  6. Very Precise Orbits of 1998 Leonid Meteors

    NASA Technical Reports Server (NTRS)

    Betlem, Hans; Jenniskens, Peter; vantLeven, Jaap; terKuile, Casper; Johannink, Carl; Zhao, Hai-Bin; Lei, Chen-Ming; Li, Guan-You; Zhu, Jin; Evans, Steve; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    Seventy-five orbits of Leonid meteors obtained during the 1998 outburst are presented. Thirty-eight are precise enough to recognize significant dispersion in orbital elements. Results from the nights of 1998 November 16/17 and 17/18 differ, in agreement with the dominant presence of different dust components. The shower rate profile of 1998 November 16/17 was dominated by a broad component, rich in bright meteors. The radiant distribution is compact. The semimajor axis is confined to values close to that of the parent comet, whereas the distribution of inclination has a central condensation in a narrow range. On the other hand, 1998 November 17/18 was dominated by dust responsible for a more narrow secondary peak in the flux curve. The declination of the radiant and the inclination of the orbit are more widely dispersed. The argument of perihelion, inclination, and the perihelion distance are displaced. These data substantiate the hypothesis that trapping in orbital resonances is important for the dynamical evolution of the broad component.

  7. Orbits for Eight Hipparcos Double Stars

    NASA Astrophysics Data System (ADS)

    Cvetkovi?, Z.; Pavlovi?, R.; Ninkovi?, S.

    2014-03-01

    In this paper, we analyze new orbital elements and the quantities that follow from them for eight binaries: WDS 00101+3825 = HDS 23Da,Db, WDS 00321-1218 = HDS 71, WDS 04287+2613 = HDS 576, WDS 04389-1207 = HDS 599, WDS 16206+4535 = HDS 2309, WDS 17155+1052 = HDS 2440, WDS 22161-0705 = HDS 3158, and WDS 23167+3441 = HDS 3315. For seven of them, the orbital elements are calculated for the first time. Binaries, denoted as HDS, were discovered during the Hipparcos mission, and their first observational epoch is 1991.25, the same as the mean epoch of the Hipparcos catalog. We found all other measurements of these binaries in databases. They were obtained in the last 15 yr using the speckle interferometric technique. All studied pairs are close, and all measured separations are less than 0.''4. The resulting orbital periods fall within 26 and 80 yr. In addition to the orbital elements, we also give (O - C) residuals in ? and ?, masses, dynamical parallaxes, absolute magnitudes, spectral types, and ephemerides for the next 5 yr.

  8. Orbits for eight Hipparcos double stars

    SciTech Connect

    Cvetkovi?, Z.; Pavlovi?, R.; Ninkovi?, S.

    2014-03-01

    In this paper, we analyze new orbital elements and the quantities that follow from them for eight binaries: WDS 00101+3825 = HDS 23Da,Db, WDS 003211218 = HDS 71, WDS 04287+2613 = HDS 576, WDS 043891207 = HDS 599, WDS 16206+4535 = HDS 2309, WDS 17155+1052 = HDS 2440, WDS 221610705 = HDS 3158, and WDS 23167+3441 = HDS 3315. For seven of them, the orbital elements are calculated for the first time. Binaries, denoted as HDS, were discovered during the Hipparcos mission, and their first observational epoch is 1991.25, the same as the mean epoch of the Hipparcos catalog. We found all other measurements of these binaries in databases. They were obtained in the last 15 yr using the speckle interferometric technique. All studied pairs are close, and all measured separations are less than 0.''4. The resulting orbital periods fall within 26 and 80 yr. In addition to the orbital elements, we also give (O C) residuals in ? and ?, masses, dynamical parallaxes, absolute magnitudes, spectral types, and ephemerides for the next 5 yr.

  9. Autonomous Aerobraking for Mars Orbiters

    NASA Astrophysics Data System (ADS)

    Prince, J. L.

    2012-06-01

    Autonomous Aerobraking is a developing technology that will reduce cost and increase flexibility of an aerobraking orbiter around Mars. Currently in its second phase of development, autonomous aerobraking could be implemented for a 2018 Mars orbiter.

  10. Kepler's Orbit - Duration: 31 seconds.

    NASA Video Gallery

    Kepler does not orbit the Earth, rather it orbits the Sun in concert with the Earth, slowly drifting away from Earth. Every 61 Earth years, Kepler and Earth will pass by each other. Throughout the ...

  11. The BANANA Survey: Spin-Orbit Alignment in Binary Stars

    NASA Astrophysics Data System (ADS)

    Albrecht, Simon; Winn, J. N.; Fabrycky, D. C.; Torres, G.; Setiawan, J.

    2012-04-01

    Binaries are not always neatly aligned. Previous observations of the DI Herculis system showed that the spin axes of both stars are highly inclined with respect to one another and the orbital axis. Here, we report on our ongoing survey to measure relative orientations of spin-axes in a number of eclipsing binary systems. These observations will hopefully lead to new insights into star and planet formation, as different formation scenarios predict different degrees of alignment and different dependencies on the system parameters. Measurements of spin-orbit angles in close binary systems will also create a basis for comparison for similar measurements involving close-in planets.

  12. Tidal evolution in close binary systems.

    NASA Technical Reports Server (NTRS)

    Kopal, Z.

    1972-01-01

    Mathematical outline of the theory of tidal evolution in close binary systems of secularly constant total momentum. Following a general outline of the problem the basic expressions for the energy and momenta of close binaries consisting of components of arbitrary internal structure are established, and the maximum and minimum values of the energy (kinetic and potential) which such systems can attain for a given amount of total momentum are investigated. These results are compared with the actual facts encountered in binaries with components whose internal structure (and, therefore, rotational momenta) are known from evidence furnished by the observed rates of apsidal advance. The results show that all such systems whether of detached or semidetached type - disclose that more than 99% of their total momenta are stored in the orbital momentum. The sum of the rotational momenta of the constituent components amounts to less than 1% of the total -a situation characteristic of a state close to the minimum energy for given total momentum.

  13. Three orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Aerospace engineering students at the Virginia Polytechnic Institute and State University undertook three design projects under the sponsorship of the NASA/USRA Advanced Space Design Program. All three projects addressed cargo and/or crew transportation between low Earth orbit and geosynchronous Earth orbit. Project SPARC presents a preliminary design of a fully reusable, chemically powered aeroassisted vehicle for a transfer of a crew of five and a 6000 to 20000 pound payload. The ASTV project outlines a chemically powered aeroassisted configuration that uses disposable tanks and a relatively small aerobrake to realize propellant savings. The third project, LOCOST, involves a reusable, hybrid laser/chemical vehicle designed for large cargo (up to 88,200 pounds) transportation.

  14. Orbital rhabdomyosarcomas: A review

    PubMed Central

    Jurdy, Lama; Merks, Johanus H.M.; Pieters, Bradly R.; Mourits, Maarten P.; Kloos, Roel J.H.M.; Strackee, Simone D.; Saeed, Peerooz

    2013-01-01

    Rhabdomyosarcoma (RMS) is a highly malignant tumor and is one of the few life-threatening diseases that present first to the ophthalmologist. It is the most common soft-tissue sarcoma of the head and neck in childhood with 10% of all cases occurring in the orbit. RMS has been reported from birth to the seventh decade, with the majority of cases presenting in early childhood. Survival has changed drastically over the years, from 30% in the 1960s to 90% presently, with the advent of new diagnostic and therapeutic modalities. The purpose of this review is to provide a general overview of primary orbital RMS derived from a literature search of material published over the last 10years, as well as to present two representative cases of patients that have been managed at our institute. PMID:24227982

  15. Mercury orbiter transport study

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Feingold, H.

    1977-01-01

    A data base and comparative performance analyses of alternative flight mode options for delivering a range of payload masses to Mercury orbit are provided. Launch opportunities over the period 1980-2000 are considered. Extensive data trades are developed for the ballistic flight mode option utilizing one or more swingbys of Venus. Advanced transport options studied include solar electric propulsion and solar sailing. Results show the significant performance tradeoffs among such key parameters as trip time, payload mass, propulsion system mass, orbit size, launch year sensitivity and relative cost-effectiveness. Handbook-type presentation formats, particularly in the case of ballistic mode data, provide planetary program planners with an easily used source of reference information essential in the preliminary steps of mission selection and planning.

  16. Close to Mosaic Drawings.

    ERIC Educational Resources Information Center

    Zabos, Paul

    2002-01-01

    Describes an art project used with eleventh-grade students called, "Close to Mosaic Drawings." Explains that the students learned about Chuck Close and Robert Silvers. States that the students selected a photograph to use in the project and discusses in detail how they created their artworks. (CMK)

  17. Surviving a School Closing

    ERIC Educational Resources Information Center

    De Witt, Peter M.; Moccia, Josephine

    2011-01-01

    When a beloved school closes, community emotions run high. De Witt and Moccia, administrators in the Averill Park School District in upstate New York, describe how their district navigated through parents' anger and practical matters in closing a small neighborhood elementary school and transferring all its students to another school. With a group

  18. Using DORIS measurements for modeling the vertical total electron content of the Earth's ionosphere

    NASA Astrophysics Data System (ADS)

    Dettmering, Denise; Limberger, Marco; Schmidt, Michael

    2014-12-01

    The Doppler orbitography and radiopositioning integrated by satellite (DORIS) system was originally developed for precise orbit determination of low Earth orbiting (LEO) satellites. Beyond that, it is highly qualified for modeling the distribution of electrons within the Earth's ionosphere. It measures with two frequencies in L-band with a relative frequency ratio close to 5. Since the terrestrial ground beacons are distributed quite homogeneously and several LEOs are equipped with modern receivers, a good applicability for global vertical total electron content (VTEC) modeling can be expected. This paper investigates the capability of DORIS dual-frequency phase observations for deriving VTEC and the contribution of these data to global VTEC modeling. The DORIS preprocessing is performed similar to commonly used global navigation satellite systems (GNSS) preprocessing. However, the absolute DORIS VTEC level is taken from global ionospheric maps (GIM) provided by the International GNSS Service (IGS) as the DORIS data contain no absolute information. DORIS-derived VTEC values show good consistency with IGS GIMs with a RMS between 2 and 3 total electron content units (TECU) depending on solar activity which can be reduced to less than 2 TECU when using only observations with elevation angles higher than . The combination of DORIS VTEC with data from other space-geodetic measurement techniques improves the accuracy of global VTEC models significantly. If DORIS VTEC data is used to update IGS GIMs, an improvement of up to 12 % can be achieved. The accuracy directly beneath the DORIS satellites' ground-tracks ranges between 1.5 and 3.5 TECU assuming a precision of 2.5 TECU for altimeter-derived VTEC values which have been used for validation purposes.

  19. Circular and noncircular nearly horizon-skimming orbits in Kerr spacetimes

    SciTech Connect

    Barausse, Enrico; Hughes, Scott A.; Rezzolla, Luciano

    2007-08-15

    We have performed a detailed analysis of orbital motion in the vicinity of a nearly extremal Kerr black hole. For very rapidly rotating black holes--spin parameter a{identical_to}J/M>0.9524M--we have found a class of very strong-field eccentric orbits whose orbital angular momentum L{sub z} increases with the orbit's inclination with respect to the equatorial plane, while keeping latus rectum and eccentricity fixed. This behavior is in contrast with Newtonian intuition, and is in fact opposite to the normal behavior of black hole orbits. Such behavior was noted previously for circular orbits; since it only applies to orbits very close to the black hole, they were named 'nearly horizon-skimming orbits'. Our current analysis generalizes this result, mapping out the full generic (inclined and eccentric) family of nearly horizon-skimming orbits. The earlier work on circular orbits reported that, under gravitational radiation emission, nearly horizon-skimming orbits exhibit unusual inspiral, tending to evolve to smaller orbit inclination, toward prograde equatorial configuration. Normal orbits, by contrast, always demonstrate slowly growing orbit inclination--orbits evolve toward the retrograde equatorial configuration. Using up-to-date Teukolsky-based fluxes, we have concluded that the earlier result was incorrect - all circular orbits, including nearly horizon-skimming ones, exhibit growing orbit inclination under radiative backreaction. Using kludge fluxes based on a Post-Newtonian expansion corrected with fits to circular and to equatorial Teukolsky-based fluxes, we argue that the inclination grows also for eccentric nearly horizon-skimming orbits. We also find that the inclination change is, in any case, very small. As such, we conclude that these orbits are not likely to have a clear and peculiar imprint on the gravitational waveforms expected to be measured by the space-based detector LISA.

  20. Orbital Debris Modeling

    NASA Technical Reports Server (NTRS)

    Liou, J. C.

    2012-01-01

    Presentation outlne: (1) The NASA Orbital Debris (OD) Engineering Model -- A mathematical model capable of predicting OD impact risks for the ISS and other critical space assets (2) The NASA OD Evolutionary Model -- A physical model capable of predicting future debris environment based on user-specified scenarios (3) The NASA Standard Satellite Breakup Model -- A model describing the outcome of a satellite breakup (explosion or collision)

  1. Small Mercury Relativity Orbiter

    NASA Technical Reports Server (NTRS)

    Bender, Peter L.; Vincent, Mark A.

    1989-01-01

    The accuracy of solar system tests of gravitational theory could be very much improved by range and Doppler measurements to a Small Mercury Relativity Orbiter. A nearly circular orbit at roughly 2400 km altitude is assumed in order to minimize problems with orbit determination and thermal radiation from the surface. The spacecraft is spin-stabilized and has a 30 cm diameter de-spun antenna. With K-band and X-band ranging systems using a 50 MHz offset sidetone at K-band, a range accuracy of 3 cm appears to be realistically achievable. The estimated spacecraft mass is 50 kg. A consider-covariance analysis was performed to determine how well the Earth-Mercury distance as a function of time could be determined with such a Relativity Orbiter. The minimum data set is assumed to be 40 independent 8-hour arcs of tracking data at selected times during a two year period. The gravity field of Mercury up through degree and order 10 is solved for, along with the initial conditions for each arc and the Earth-Mercury distance at the center of each arc. The considered parameters include the gravity field parameters of degree 11 and 12 plus the tracking station coordinates, the tropospheric delay, and two parameters in a crude radiation pressure model. The conclusion is that the Earth-Mercury distance can be determined to 6 cm accuracy or better. From a modified worst-case analysis, this would lead to roughly 2 orders of magnitude improvement in the knowledge of the precession of perihelion, the relativistic time delay, and the possible change in the gravitational constant with time.

  2. Spectrophotovoltaic orbital power generation

    NASA Technical Reports Server (NTRS)

    Onffroy, J. R.

    1980-01-01

    The feasibilty of a spectrophotovoltaic orbital power generation system that optically concentrates solar energy is demonstrated. A dichroic beam-splitting mirror is used to divide the solar spectrum into two wavebands. Absorption of these wavebands by GaAs and Si solar cell arrays with matched energy bandgaps increases the cell efficiency while decreasing the amount of heat that must be rejected. The projected cost per peak watt if this system is $2.50/W sub p.

  3. [Echinococcosis of the orbit].

    PubMed

    Staindl, O; Krenkel, C

    1985-09-01

    A 5 year old girl with an echinococcuscyst in the right orbit is reported. The final diagnosis was made by removal of the cyst. A second cyst was found in the liver. The epidemiology, clinical and diagnostic problems of echinococcosis are reviewed. Radical surgery is still the only reliable treatment. For inoperable cases chemotherapy with Mebendazol seems promising. Many problems of chemotherapy remain to be solved and Mebendazol therapy is still in an experimental stage. PMID:4077595

  4. 'Spider' in Earth Orbit

    NASA Technical Reports Server (NTRS)

    1969-01-01

    View of the Apollo 9 Lunar Module 'Spider' in a lunar landing configuration photographed by Command Module pilot David Scott inside the Command/Service Module 'Gumdrop' on the fifth day of the Apollo 9 earth-orbital mission. The landing gear on 'Spider' has been deployed. lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the 'Spider' were astronauts James A. McDivitt, Apollo 9 Commander; and Russell L. Schweickart, Lunar Module pilot.

  5. Orbits from Two Observations

    NASA Astrophysics Data System (ADS)

    Marsden, Brian G.

    2010-05-01

    Recent years have seen a particular interest in estimating orbital elements and ephemeris uncertainties from just two astrometric observations. Since 1996 the Minor Planet Center has used a two-observation method in which the coordinate system is rotated so that the reference plane passes through the two observations and the origin is at one of them. The selection of appropriate values for the topocentric distance ? at the other observation then immediately provides, not only the components of the heliocentric position vector, but also two components of the heliocentric velocity vector. It therefore remains to select appropriate values for the third velocity component, the value zero yielding ?, the largest reciprocal semimajor axis for the specified ?. The Vaisala (or apsidal) value of the velocity component follows, together with values yielding the two lateral orbits (at most one of which can be elliptical), with the object on the orbital latus rectum. If ? is positive, elliptical solutions exist for values of the velocity component out to ??. It is also the case that ? generally decreases with increasing ?, though not necessarily monotonically. Indeed, for an object at opposition, distances corresponding to a lone parabolic solution readily follow from a cubic equation, there being one or three real roots according as to whether the apparent retrograde motion is greater than or less than some critical value. A very similar quadratic equation can be used to derive the distances corresponding to precisely circular solutions, when the apsidal velocity component is equal to the smaller of the lateral values. Corresponding equations are also derived to describe possible orbits near quadrature.

  6. A dynamics and control algorithm for low Earth orbit precision formation flying satellites

    NASA Astrophysics Data System (ADS)

    Eyer, Jesse Koovik

    An innovative dynamics and control algorithm is developed for a dual-nanosatellite formation flying mission. The principal function of this algorithm is to use regular GPS state measurements to determine the controlled satellite's tracking error from a set of reference trajectories in the local-vertical/local-horizontal reference frame. A linear state-feedback control law---designed using a linear quadratic regulator method---calculates the optimal thrusts necessary to correct this error and communicates the thrust directions to the attitude control system and the thrust durations to the propulsion system. The control system is developed to minimize the conflicting metrics of tracking error and DeltaV requirements. To reconfigure the formation, an optimization algorithm is designed using the analytical solution to the state-space equation and the Hill-Clohessy-Wiltshire state transition matrix to solve for dual-thrust reconfiguration maneuvers. The resulting trajectories require low DeltaV, use finite-time thrusts and are accurate in a fully nonlinear orbital environment. This algorithm will be used to control the CanX-4&5 formation flying demonstration mission. In addition, an iterative method which numerically generates quasi periodic trajectories for a satellite formation is presented. This novel technique utilizes a shooting approach to the Newton method to close the relative deputy trajectory over a specific number of orbits, then fits the actual perturbed motion of the deputy with a Fourier series to enforce periodicity. This process is applied to two well-known satellite formations: a projected circular orbit and a J2-invariant formation. Compared to conventional formations, these resulting quasi-periodic trajectories require a dramatically lower control effort to maintain and could therefore be used to extend DeltaV-limited formation flying missions. Finally, an analytical study of the stability of the formation flying algorithm is conducted. To facilitate the proof, the control algorithm is converted into a discrete-time linear time-varying system. Stability of the system is determined via discrete Floquet theory. This analysis is applied to the CanX-4&5 control laws for tracking along-track orbits, projected circular orbits, and quasi J2-invariant formations.

  7. Orbital cavernous hemangioma of childhood.

    PubMed

    Maheshwari, Rajat; Thool, Alka

    2007-01-01

    Ocular and orbital tumors, both benign and malignant, occur relatively frequently in infants and children. Benign masses are much more common than malignant in the orbital region. However, childhood tumors show great variability and it is difficult to differentiate benign from malignant lesions. Cavernous hemangioma is the most common benign neoplasm of the orbit in adults. We report a case of orbital cavernous hemangioma in a four-year-old girl presenting as unilateral painless proptosis. PMID:17595488

  8. Martian satellite orbits and ephemerides

    NASA Astrophysics Data System (ADS)

    Jacobson, R. A.; Lainey, V.

    2014-11-01

    We discuss the general characteristics of the orbits of the Martian satellites, Phobos and Deimos. We provide a concise review of the various descriptions of the orbits by both analytical theories and direct numerical integrations of their equations of motion. After summarizing the observational data used to determine the orbits, we discuss the results of our latest orbits obtained from a least squares fit to the data.

  9. Tides in Close Binary Systems

    NASA Astrophysics Data System (ADS)

    Burkart, Joshua

    2014-09-01

    We consider three aspects of tidal interactions in close binary systems. 1) We first develop a framework for predicting and interpreting photometric observations of eccentric binaries, which we term tidal asteroseismology. In such systems, the Fourier transform of the observed lightcurve is expected to consist of pulsations at harmonics of the orbital frequency. We use linear stellar perturbation theory to predict the expected pulsation amplitude spectra. Our numerical model does not assume adiabaticity, and accounts for stellar rotation in the traditional approximation. We apply our model to the recently discovered Kepler system KOI-54, a 42-day face-on stellar binary with e=0.83. Our modeling yields pulsation spectra that are semi-quantitatively consistent with observations of KOI-54. KOI-54's spectrum also contains several nonharmonic pulsations, which can be explained by nonlinear three-mode coupling. 2) We next consider the situation of a white dwarf (WD) binary inspiraling due to the emission of gravitational waves. We show that resonance locks, previously considered in binaries with an early-type star, occur universally in WD binaries. In a resonance lock, the orbital and spin frequencies evolve in lockstep, so that the tidal forcing frequency is approximately constant and a particular normal mode remains resonant, producing efficient tidal dissipation and nearly synchronous rotation. We derive analytic formulas for the tidal quality factor and tidal heating rate during a g-mode resonance lock, and verify our results numerically. We apply our analysis to the 13-minute double-WD binary J0651, and show that our predictions are roughly consistent with observations. 3) Lastly, we examine the general dynamics of resonance locking in more detail. Previous analyses of resonance locking, including my own earlier work, invoke the adiabatic (a.k.a. Lorentzian) approximation for the mode amplitude, valid only in the limit of relatively strong mode damping. We relax this approximation, analytically derive conditions under which the fixed point associated with resonance locking is stable, and further check our analytic results with numerical integration of the coupled mode, spin, and orbital evolution equations. These show that resonance locking can sometimes take the form of complex limit cycles or even chaotic trajectories. We also show that resonance locks can accelerate the course of tidal evolution in eccentric systems.

  10. Tidal evolution of close-in exoplanets

    NASA Astrophysics Data System (ADS)

    Correia, A. C. M.; Bou, G.; Laskar, J.; Rodriguez, A.

    2014-04-01

    The continuous action of tides modify the rotation of close-in planets together with its orbit until an equilibrium situation is reached. It is often believed that synchronous motion is the most probable outcome of the tidal evolution process, since synchronous rotation is observed for the majority of the satellites in the solar system. However, in the 19th century, Schiaparelli also assumed synchronous motion for the rotations of Mercury and Venus, and was later proven wrong. Rather, for planets in eccentric orbits, synchronous rotation is very unlikely. Based on the well-studied cases in the solar system, we can make some predictions for close-in planets. Here we describe in detail the main tidal effects that modify the secular evolution of the spin and the orbit of a planet. We then apply our knowledge acquired from solar system situations to exoplanet cases. In particular, we will focus on two classes of planets, hot Jupiters (fluid) and super-Earths (rocky with atmosphere).

  11. STS-106 orbiter Atlantis rolls over to the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The orbiter Atlantis heads toward the open door of the Vehicle Assembly Building (VAB) on the north side. In the VAB it will be lifted to vertical and placed aboard the mobile launcher platform (MLP) for stacking with the solid rocket boosters and external tank. Atlantis is scheduled to launch Sept. 8 on mission STS-106, the fourth construction flight to the International Space Station, with a crew of seven.

  12. Orbiter Autoland reliability analysis

    NASA Technical Reports Server (NTRS)

    Welch, D. Phillip

    1993-01-01

    The Space Shuttle Orbiter is the only space reentry vehicle in which the crew is seated upright. This position presents some physiological effects requiring countermeasures to prevent a crewmember from becoming incapacitated. This also introduces a potential need for automated vehicle landing capability. Autoland is a primary procedure that was identified as a requirement for landing following and extended duration orbiter mission. This report documents the results of the reliability analysis performed on the hardware required for an automated landing. A reliability block diagram was used to evaluate system reliability. The analysis considers the manual and automated landing modes currently available on the Orbiter. (Autoland is presently a backup system only.) Results of this study indicate a +/- 36 percent probability of successfully extending a nominal mission to 30 days. Enough variations were evaluated to verify that the reliability could be altered with missions planning and procedures. If the crew is modeled as being fully capable after 30 days, the probability of a successful manual landing is comparable to that of Autoland because much of the hardware is used for both manual and automated landing modes. The analysis indicates that the reliability for the manual mode is limited by the hardware and depends greatly on crew capability. Crew capability for a successful landing after 30 days has not been determined yet.

  13. An Orbit Plan toward AKATSUKI Venus Reencounter and Orbit Injection

    NASA Technical Reports Server (NTRS)

    Kawakatsu, Yasuhiro; Campagnola, Stefano; Hirose, Chikako; Ishii, Nobuaki

    2012-01-01

    On December 7, 2010, AKATSUKI, the Japanese Venus explorer reached its destination and tried to inject itself into Venus orbit. However, due to a malfunction of the propulsion system, the maneuver was interrupted and AKATSUKI again escaped out from the Venus into an interplanetary orbit. Telemetry data from AKATSUKI suggests the possibility to perform orbit maneuvers to reencounter the Venus and retry Venus orbit injection. Reported in this paper is an orbit plan investigated under this situation. The latest results reflecting the maneuvers conducted in the autumn 2011 is introduced as well.

  14. Circular-Orbit Maintenance Strategies for Primitive Body Orbiters

    NASA Technical Reports Server (NTRS)

    Wallace, Mark S.; Broschart, Stephen

    2013-01-01

    For missions to smaller primitive bodies, solar radiation pressure (SRP) is a significant perturbation to Keplerian dynamics. For most orbits, SRP drives large oscillations in orbit eccentricity, which leads to large perturbations from the irregular gravity field at periapsis. Ultimately, chaotic motion results that often escapes or impacts that body. This paper presents an orbit maintenance strategy to keep the orbit eccentricity small, thus avoiding the destabilizing secondary interaction with the gravity field. An estimate of the frequency and magnitude of the required maneuvers as a function of the orbit and body parameters is derived from the analytic perturbation equations.

  15. Orbiter KU-band transmitter

    NASA Technical Reports Server (NTRS)

    Halterman, R.

    1976-01-01

    The design, build, and test of an engineering breadboard Ku band quadraphase shift keyed and wideband frequency modulated transmitter are described. This orbiter Ku band transmitter drawer is to simulate the orbiter transmitter and meet the functional requirements of the orbiter communication link.

  16. Radiation Propulsion For Maintaining Orbits

    NASA Technical Reports Server (NTRS)

    Richter, Robert

    1995-01-01

    Brief report proposes radiative propulsion systems for maintaining precise orbits of spacecraft. Radiation from electrical heaters directed outward by paraboloidal reflectors to produce small forces to oppose uncontrolled drag and solar-radiative forces perturbing orbits. Minimizes or eliminates need to fire rocket thrusters to correct orbits.

  17. Practical aspects of transfer from GTO to lunar orbit

    NASA Technical Reports Server (NTRS)

    Uphoff, Chauncey

    1993-01-01

    This paper is a presentation of some practical aspects of orbital transfer from Geosynchronous Transfer Orbit (GTO) to close, near-circular orbits of the Moon. The intent is to identify the important parameters affecting the problem and to bound (approximately) the range of required delta V for a spacecraft that has been placed in GTO. The basic geometric relationships are described and the dynamics are simulated by use of the Zero-Sphere-of Influence Patched Conic method. It is found that the inclination of the transfer orbit to the Earth-Moon plane is relatively unimportant while the position of the line of apsides with respect to the Moon's orbit is the main geometric parameter of interest. It is shown that this parameter can be controlled by selecting the time of day for launch and that two launch windows of approximately 45 minutes duration are available each day of the year if use is made of the recommended phasing orbit transfer. The phasing orbit transfer not only provides twice-daily launch windows, but also provides a mechanism for efficacious correction of GTO injection errors. Delta V penalties for out-of-plane transfer and for late launch are evaluated and the method is recommended for use as an affordable means of achieving lunar orbit.

  18. Periodic Trojan-type orbits in the earth-sun system

    NASA Technical Reports Server (NTRS)

    Weissman, P. R.; Wetherill, G. W.

    1974-01-01

    Periodic orbits about the triangular equilibrium points are found for the planar restricted three-body problem using the earth-sun system. The maximum semimajor axis for tadpole orbits ranges from the infinitesimal orbit at 1.000 AU to the near-limiting orbit at 1.00285 AU. Horseshoe orbits are found for 1.0029 to 1.0080 AU, larger horseshoes being unstable because of close approaches to the earth. Using stability tests devised by Rabe (1961, 1962), the limit of stability for nonperiodic orbits is found to occur for maximum semimajor axes near 1.0020 AU. In addition, near-periodic tadpole orbits appear to be stable against perturbations by Jupiter and Venus for periods of at least 10,000 yr. The possibility that minor planets actually exist in such orbits is considered.

  19. Near vertical view of Birmingham, Alabama as seen from Apollo 9

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Near vertical view of the Birmingham, Alabama area extending to Gadeden, as photographed from the Apollo 9 spacecraft during its earth-orbital mission. The city spreads out between ridges of the folded southern Appalachien Mountains. The major stream in the picture is the Coosa River.

  20. Orbital Motions in Binary Protostellar Systems

    NASA Astrophysics Data System (ADS)

    Rodrguez, L. F.

    2004-08-01

    Using high-resolution ( 0to z @. hss ''1), multi-epoch Very Large Array observations, we have detected orbital motions in several low-luminosity protobinary systems in the Taurus and ? Ophiuchus molecular complexes. The masses obtained from Kepler's third law are of the order of 0.5 to 2 M?, as expected for such low-mass protostars. The relatively large bolometric luminosities of these young systems corroborates the notion that protostars obtain most of their luminosity from accretion and not from nuclear reactions. In addition, in one of the sources studied (a multiple system in Taurus), a low-mass young star has shown a drastic change in its orbit after a close approach with another component of the system, presumed to be a double star. The large proper motion achieved by this low mass protostar (20 km s-1), suggests an ejection from the system.

  1. Research Study to Identify Technology Requirements for Advanced Earth-Orbital Transportation Systems, Dual-Mode Propulsion

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The results of a study of dual mode propulsion concepts applied to advanced earth orbital transportation systems using reuseable single stage to orbit vehicle concepts were summarized. Both series burn and parallel burn modes of propulsion were analyzed for vertical takeoff, horizontal landing vehicles based on accelerated technology goals. A major study objective was to assess the merits of dual mode main propulsion concepts compared to single mode concepts for carrying payloads of Space Shuttle type to orbit.

  2. Vertical and adiabatic electronic excitations in biphenylene: A theoretical study

    NASA Astrophysics Data System (ADS)

    Beck, M. E.; Rebentisch, R.; Hohlneicher, G.; Flscher, M. P.; Serrano-Andrs, L.; Roos, B. O.

    1997-12-01

    The low-lying singlet states of biphenylene have been studied using ab initio methods. Vertical excitation energies were calculated by multiconfigurational perturbation theory (CASPT2), starting from a complete active space self-consistent field (CASSCF) reference. The geometries of the most important low-lying excited states were individually optimized at the CASSCF level to study the difference between vertical and adiabatic excitations. Extended atomic natural orbital (ANO)-type basis sets were used to calculate state energies. Geometry optimizations were done with smaller ANO-type basis sets. Excitations from the ground state to the 1 1B3g and 1 1B2u excited singlet states lead to pronounced geometry changes which alter the bond alternation pattern. The theoretical results provide a solid basis for the assignment and interpretation of experimental spectra.

  3. A Third Exoplanetary System with Misaligned Orbital and Stellar Spin Axes

    NASA Technical Reports Server (NTRS)

    Johnosn, John A.; Winn, Joshua N.; Albrecht, Simon; Howard, Andrew W.; Marcy, Geoffrey W.; Gazak, J. Zachary

    2009-01-01

    We presented evidence that the WASP-14 exoplanetary system has misaligned orbital and stellar-rotational axes, with an angle of 33.1 plus or minus 7.4 degrees between their sky projections. At the time of this publication, WASP-14 was the third system known to have a significant spin-orbit misalignment, and all three systems had super- Jupiter planets and eccentric orbits. Therefore we hypothesized that the migration and subsequent orbital evolution of massive, eccentric exoplanets is somehow different from that of less massive close-in Jupiters, the majority of which have well-aligned orbits.

  4. RHIC VERTICAL AC DIPOLE COMMISSIONING.

    SciTech Connect

    BAI,M.; DELONG,J.; HOFF,L.; PAI,C.; PEGGS,S.; PIACENTINO,J.; OERTER,B.; ODDO,P.; ROSER,T.; SATOGATA,T.; TRBOJEVIC,D.; ZALTSMAN,A.

    2002-06-02

    The RHIC vertical ac dipole was installed in the summer of 2001. The magnet is located in the interaction region between sector 3 and sector 4 common to both beams. The resonant frequency of the ac dipole was first configured to be around half of the beam revolution frequency to act as a spin flipper. At the end of the RHIC 2002 run, the ac dipole frequency was reconfigured for linear optics studies. A 0.35 mm driven betatron oscillation was excited with the vertical ac dipole and the vertical betatron functions and phase advances at each beam position monitor (BPM) around the RHIC yellow ring were measured using the excited coherence. We also recorded horizontal turn-by-turn beam positions at each BPM location to investigate coupling effects. Analysis algorithms and measurement results are presented.

  5. Dehumidification -- Closed loop systems

    SciTech Connect

    Wyatt, C.H.; Crowe, A.R.

    1995-12-01

    Dehumidification is the removal of water from the air. Dehumidification equipment treats the ambient air before the air is introduced to the enclosure. A closed loop system, is one that theoretically routes all the air exiting an enclosure through the appropriate filter media and treatment equipment and then returns it to the enclosure. By establishing a closed loop system, the ``treated`` air is continuously processed which improves the efficiency of this operation. The generic types of dehumidification equipment and their application in a closed loop system will be presented.

  6. Dehumidification -- Closed loop systems

    SciTech Connect

    Wyatt, C.H.; Crowe, A.R.

    1996-05-01

    Dehumidification is the removal of water from the air. Dehumidification equipment treats the ambient air before it is introduced to the enclosure. A closed loop system is one that theoretically routes all the air exiting an enclosure through the appropriate filter media and treatment equipment and then returns it to the enclosure. By establishing a closed loop system, the ``treated`` air is continuously processed, which improves the efficiency of this operation. The generic types of dehumidification equipment and their application in a closed loop system will be presented. This article will deal solely with the use of dehumidification and other related equipment used to control the environment within the work enclosure.

  7. Vertical motion simulator familiarization guide

    NASA Technical Reports Server (NTRS)

    Danek, George L.

    1993-01-01

    The Vertical Motion Simulator Familiarization Guide provides a synoptic description of the Vertical Motion Simulator (VMS) and descriptions of the various simulation components and systems. The intended audience is the community of scientists and engineers who employ the VMS for research and development. The concept of a research simulator system is introduced and the building block nature of the VMS is emphasized. Individual sections describe all the hardware elements in terms of general properties and capabilities. Also included are an example of a typical VMS simulation which graphically illustrates the composition of the system and shows the signal flow among the elements and a glossary of specialized terms, abbreviations, and acronyms.

  8. Measurements of vertical bar Vcb vertical bar and vertical bar Vub vertical bar at BaBar

    SciTech Connect

    Rotondo, M.

    2005-10-12

    We report results from the BABAR Collaboration on the semileptonic B decays, highlighting the measurements of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix elements Vub and Vcb. We describe the techniques used to obtain the matrix element |Vcb| using the measurement of the inclusive B {yields} Xclv process and a large sample of exclusive B {yields} D*lv decays. The vertical bar Vub vertical bar matrix elements has been measured studying different kinematic variables of the B {yields} Xulv process, and also with the exclusive reconstruction of B {yields} {pi}({rho})lv decays.

  9. Pumps and compressors/Applying vertical turbine pumps

    SciTech Connect

    Griffith, J.M.

    1980-01-14

    A discussion of vertical canned turbine pumps and their applications covers reasons for using them, including the ability to adjust their net positive suction head (by digging a hole in the ground and reducing the distance between pump and fluid), their suitability for underground caverns and hydrocarbon liquid storage, space savings, and low capital investment requirements; 15 sets of options as to shaft, spacer coupling, impeller, bearings, etc. in process turbine pump selection and the advantages and disadvantages of each; the desirability of using vertical turbine pumps with fluids that have good lubricating properties at pumping temperatures; problems associated with the use of vertical pumps (e.g., wear-ring wear on closed impellers) and procedures for eliminating these problems; and the problem of wear-ring and bushing seizure in pumps handling water-saturated LPG in cavern service.

  10. Vertical structures induced by embedded moonlets in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Hoffmann, Holger; Sei, Martin; Salo, Heikki; Spahn, Frank

    2015-05-01

    We study the vertical extent of propeller structures in Saturn's rings (i) by extending the model of Spahn and Srem?evi? (Spahn, F., Srem?evi?, M. [2000]. Astron. Astrophys., 358, 368-372) to include the vertical direction and (ii) by performing N-body box simulations of a perturbing moonlet embedded into the rings. We find that the gravitational interaction of ring particles with a non-inclined moonlet does not induce considerable vertical excursions of ring particles, but causes a considerable thermal motion in the ring plane. We expect ring particle collisions to partly convert the lateral induced thermal motion into vertical excursions of ring particles in the course of a quasi-thermalization. The N-body box simulations lead to maximal propeller heights of about 0.6-0.8 Hill radii of the embedded perturbing moonlet. Moonlet sizes estimated by this relation are in good agreement with size estimates from radial propeller scalings for the propellers Blriot and Earhart. For large propellers, the extended hydrodynamical propeller model predicts an exponential propeller height relaxation, confirmed by N-body box simulations of non-self gravitating ring particles. Exponential cooling constants, calculated from the hydrodynamical propeller model agree fairly well with values from fits to the tail of the azimuthal height decay of the N-body box simulations. From exponential cooling constants, determined from shadows cast by the propeller Earhart and imaged by the Cassini spacecraft, we estimate collision frequencies of about 6 collisions per particle per orbit in the propeller gap region and about 11 collisions per particle per orbit in the propeller wake region.

  11. Enceladus' Influence on the Vertical Structure of Saturn's E Ring

    NASA Astrophysics Data System (ADS)

    Burns, Joseph A.; Agarwal, M.; Hedman, M. M.; Tiscareno, M. S.

    2013-10-01

    Within ~+/- 20,000 km of Enceladus' orbit, Saturn's tenuous E ring has a double-banded appearance, with the number of particles depleted by a few percent within +/- 1000 km of the planet’s equatorial plane (Hedman et al. 2012). We wish to understand this vertical structure, to learn if it might indicate launch speeds or a sweeping effect of Enceladus. We have combined order-of-magnitude analytical estimates and numerical simulations that include Enceladus and Saturn's gravity up to J6 in short-term (1-2 days) and longer-term 200-yr) integrations. Because most particles emanating from the surface geysers will fall back on the moon, the E ring must be dominated by particles that barely escaped. Hence we follow the orbits of many hundreds of particles launched near Enceladus' southern pole with speeds between ~ 0.8 to 2 times the nominal escape speed (i.e., that from an isolated sphere). We illustrate some contorted trajectories within the three-body problem for such launch conditions. Typically, gravitational deceleration after launch followed by a few gravitational kicks from the moon induce many particles to attain orbital inclinations corresponding to a maximum height of ~4rE (rE = radius of Enceladus = 250 km), or about one Hill radius for Enceladus. The vertical epicyclic motions of such inclined orbits account the observed two-banded structure. Simultaneous gravitational interactions will scatter particles to produce a two-banded, radially extended (+/-10,000km) Gaussian core on either side of Enceladus, as observed. In our simple model, particles are lost by collisions into Enceladus in ~ 100 yrs; mutual impacts are ignored. Since gravity alone can generate in short order the most prominent features in the observed structures, non-gravitational forces (cf. Kempf et al. 2010) mostly affect other aspects of the E ring structure and evolution.

  12. Orbital maneuvers and space rendezvous

    NASA Astrophysics Data System (ADS)

    Butikov, Eugene I.

    2015-12-01

    Several possibilities of launching a space vehicle from the orbital station are considered and compared. Orbital maneuvers discussed in the paper can be useful in designing a trajectory for a specific space mission. The relative motion of orbiting bodies is investigated on examples of spacecraft rendezvous with the space station that stays in a circular orbit around the Earth. An elementary approach is illustrated by an accompanying simulation computer program and supported by a mathematical treatment based on fundamental laws of physics and conservation laws. Material is appropriate for engineers and other personnel involved in space exploration, undergraduate and graduate students studying classical physics and orbital mechanics.

  13. Global Orbit Feedback in RHIC

    SciTech Connect

    Minty, M.; Hulsart, R.; Marusic, A.; Michnoff, R.; Ptitsyn, V.; Robert-Demolaize, G.; Satogata, T.

    2010-05-23

    For improved reproducibility of good operating conditions and ramp commissioning efficiency, new dual-plane slow orbit feedback during the energy ramp was implemented during run-10 in the Relativistic Heavy Ion Collider (RHIC). The orbit feedback is based on steering the measured orbit, after subtraction of the dispersive component, to either a design orbit or to a previously saved reference orbit. Using multiple correctors and beam position monitors, an SVD-based algorithm is used for determination of the applied corrections. The online model is used as a basis for matrix computations. In this report we describe the feedback design, review the changes made to realize its implementation, and assess system performance.

  14. Cysticercosis isolated to the orbit.

    PubMed

    Walrath, Joseph D; Lalin, Sean C; Leib, Martin L

    2003-05-01

    A 55-year-old woman who underwent orbital fat excision for cosmesis was incidentally found to have an isolated orbital cysticercus identified by histopathologic examination. The ensuing workup was negative for disseminated cysticercal infection and further treatment was deferred. Although uncommon, orbital cysticercosis should be considered in the differential diagnosis of an asymptomatic orbital mass. Symptomatic orbital myocysticercosis has been effectively treated with albendazole at a dosage of 30 mg/kg for 15 days combined with simultaneous low-dose steroids. PMID:12918564

  15. Dissociative electron attachment in nonplanar chlorocarbons with ??/??-coupled molecular orbitals

    NASA Astrophysics Data System (ADS)

    Aflatooni, K.; Gallup, G. A.; Burrow, P. D.

    2010-03-01

    Total absolute cross sections for the dissociative electron attachment (DEA) process are reported for a series of nonplanar ethylenic and phenylic compounds monosubstituted with (CH2)nCl groups, where n=1-4. Coupling between the local ?? molecular orbitals provided by the unsaturated moieties and the ?? (C-Cl) orbital is thus examined as a function of the separation of these groups. In particular, the coupling is viewed from the perspective of the interacting temporary negative ions formed by short lived occupation of these orbitals and their decay into the DEA channel. A theoretical treatment of "remote" bond breaking, presented elsewhere, satisfactorily accounts for DEA in the chloroethylenic compounds presented here and emphasizes not only the delocalization of the coupled anionic wave functions but the importance of their relative phases. The dependence of the cross sections on the vertical attachment energies, measured by electron transmission spectroscopy, is also explored and compared to that found previously in chlorinated alkanes.

  16. Orbital Phase Environments and Stereoselectivities

    NASA Astrophysics Data System (ADS)

    Ohwada, Tomohiko

    Facial selections are reviewed to propose a new theory, orbital phase environment, for stereoselectivities of organic reactions. The orbital phase environment is a generalized idea of the secondary orbital interaction between the non-reacting centers and the unsymmetrization of the orbitals at the reacting centers arising from in-phase and out-of-phase overlapping with those at the neighboring non-reacting sites. In this context, the nucleophilic addition preferentially occurs on the face of the carbonyl functionality opposite to the better electron-donating orbital at the β position. In a similar manner to the carbonyl cases, the preferred reaction faces of olefins in electrophilic addition reactions are opposite to the better electron-donating orbitals at the β positions. The orbital phase environments in Diels-Alder reactions are also reviewed.

  17. Orbital Debris: A Policy Perspective

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2007-01-01

    A viewgraph presentation describing orbital debris from a policy perspective is shown. The contents include: 1) Voyage through near-Earth Space-animation; 2) What is Orbital Debris?; 3) Orbital Debris Detectors and Damage Potential; 4) Hubble Space Telescope; 5) Mir Space Station Solar Array; 6) International Space Station; 7) Space Shuttle; 8) Satellite Explosions; 9) Satellite Collisions; 10) NASA Orbital Debris Mitigation Guidelines; 11) International Space Station Jettison Policy; 12) Controlled/Uncontrolled Satellite Reentries; 13) Return of Space Objects; 14) Orbital Debris and U.S. National Space Policy; 15) U.S Government Policy Strategy; 16) Bankruptcy of the Iridium Satellite System; 17) Inter-Agency Space Debris Coordination Committee (IADC); 18) Orbital Debris at the United Nations; 19) Chinese Anti-satellite System; 20) Future Evolution of Satellite Population; and 21) Challenge of Orbital Debris

  18. DISCOVERING HABITABLE EARTHS, HOT JUPITERS, AND OTHER CLOSE PLANETS WITH MICROLENSING

    SciTech Connect

    Di Stefano, R.

    2012-06-20

    Searches for planets via gravitational lensing have focused on cases in which the projected separation, a, between planet and star is comparable to the Einstein radius, R{sub E} . This paper considers smaller orbital separations and demonstrates that evidence of close-orbit planets can be found in the low-magnification portion of the light curves generated by the central star. We develop a protocol for discovering hot Jupiters as well as Neptune-mass and Earth-mass planets in the stellar habitable zone. When planets are not discovered, our method can be used to quantify the probability that the lens star does not have planets within specified ranges of the orbital separation and mass ratio. Nearby close-orbit planets discovered by lensing can be subject to follow-up observations to study the newly discovered planets or to discover other planets orbiting the same star. Careful study of the low-magnification portions of lensing light curves should produce, in addition to the discoveries of close-orbit planets, definite detections of wide-orbit planets through the discovery of 'repeating' lensing events. We show that events exhibiting extremely high magnification can effectively be probed for planets in close, intermediate, and wide distance regimes simply by adding several-time-per-night monitoring in the low-magnification wings, possibly leading to gravitational lensing discoveries of multiple planets occupying a broad range of orbits, from close to wide, in a single planetary system.

  19. Applicability of the control configured design approach to advanced earth orbital transportation systems

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Zeck, H.; Walker, W. H.; Shafer, D. E.

    1978-01-01

    The applicability of the control configured design approach (CCV) to advanced earth orbital transportation systems was studied. The baseline system investigated was fully reusable vertical take-off/horizontal landing single-stage-to-orbit vehicle and had mission requirements similar to the space shuttle orbiter. Technical analyses were made to determine aerodynamic, flight control and subsystem design characteristics. Figures of merit were assessed on vehicle dry weight and orbital payload. The results indicated that the major parameters for CCV designs are hypersonic trim, aft center of gravity, and control surface heating. Optimized CCV designs can be controllable and provide substantial payload gains over conventional non-CCV design vertical take-off vehicles.

  20. The parallax and astrometric orbit of Mu Cassiopeiae

    NASA Technical Reports Server (NTRS)

    Russell, J. L.; Gatewood, G. D.

    1984-01-01

    A total of 371 photographic plates were made of the binary Mu Cassiopeia (Mu Cas) region with a 76 cm refractor. An astrometric orbit of nearly 22.09 yr was calculated, accompanied by an eccentricity of close to 0.58 and a semimajor axis close to 0.19 arcsec. The absolute magnitude was approximately 5.83 and the radial velocity 164 km/sec.

  1. Warner Prize Lecture: A New View on Planetary Orbital Dynamics

    NASA Astrophysics Data System (ADS)

    Ford, Eric B.

    2013-01-01

    Prior to the discovery of exoplanets, astronomers fine tuned theories of planet formation to explain detailed properties of the solar system. Doppler planet searches revealed that many giant planets orbit close to their host star or in highly eccentric orbits. These and subsequent observations inspired new theories of planet formation that invoke strong mutual gravitation interactions in multiple planet systems to explain the excitation of orbital eccentricities and even short-period giant planets. NASA's Kepler mission has identified over 300 systems with multiple transiting planet candidates, including many potentially rocky planets. Most of these systems include multiple planets with sizes between Earth and Neptune and closely-spaced orbits. These systems represent another new and unexpected class of planetary systems and provide an opportunity to test the theories developed to explain the properties of giant exoplanets. I will describe how transit timing observations by Kepler are characterizing the gravitational effects of mutual planetary perturbations for hundreds of planets and providing precise (but complex) constraints on planetary masses, densities and orbits, even for planetary systems with faint host stars. I will discuss early efforts to translate these observations into new constraints on the formation and orbital evolution of planetary systems with low-mass planets.

  2. Orbital objects detection algorithm using faint streaks

    NASA Astrophysics Data System (ADS)

    Tagawa, Makoto; Yanagisawa, Toshifumi; Kurosaki, Hirohisa; Oda, Hiroshi; Hanada, Toshiya

    2016-02-01

    This study proposes an algorithm to detect orbital objects that are small or moving at high apparent velocities from optical images by utilizing their faint streaks. In the conventional object-detection algorithm, a high signal-to-noise-ratio (e.g., 3 or more) is required, whereas in our proposed algorithm, the signals are summed along the streak direction to improve object-detection sensitivity. Lower signal-to-noise ratio objects were detected by applying the algorithm to a time series of images. The algorithm comprises the following steps: (1) image skewing, (2) image compression along the vertical axis, (3) detection and determination of streak position, (4) searching for object candidates using the time-series streak-position data, and (5) selecting the candidate with the best linearity and reliability. Our algorithm's ability to detect streaks with signals weaker than the background noise was confirmed using images from the Australia Remote Observatory.

  3. Optimal Lorentz-augmented spacecraft formation flying in elliptic orbits

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Yan, Ye; Zhou, Yang

    2015-06-01

    An electrostatically charged spacecraft accelerates as it moves through the Earth's magnetic field due to the induced Lorentz force, providing a new means of propellantless electromagnetic propulsion for orbital maneuvers. The feasibility of Lorentz-augmented spacecraft formation flying in elliptic orbits is investigated in this paper. Assuming the Earth's magnetic field as a tilted dipole corotating with Earth, a nonlinear dynamical model that characterizes the orbital motion of Lorentz spacecraft in the vicinity of arbitrary elliptic orbits is developed. To establish a predetermined formation configuration at given terminal time, pseudospectral method is used to solve the optimal open-loop trajectories of hybrid control inputs consisted of Lorentz acceleration and thruster-generated control acceleration. A nontilted dipole model is also introduced to analyze the effect of dipole tilt angle via comparisons with the tilted one. Meanwhile, to guarantee finite-time convergence and system robustness against external perturbations, a continuous fast nonsingular terminal sliding mode controller is designed and the closed-loop system stability is proved by Lyapunov theory. Numerical simulations substantiate the validity of proposed open-loop and closed-loop control schemes, and the results indicate that an almost propellantless formation establishment can be achieved by choosing appropriate objective function in the pseudospectral method. Furthermore, compared to the nonsingular terminal sliding mode controller, the closed-loop controller presents superior convergence rate with only a bit more control effort. And the proposed controller can be applied in other Lorentz-augmented relative orbital control problems.

  4. Mars orbits with daily repeating ground traces

    NASA Technical Reports Server (NTRS)

    Noreen, Gary K.; Kerridge, Stuart; Diehl, Roger; neelon, Joseph; Ely, Todd; Turner, Andrew

    2003-01-01

    This paper derives orbits at Mars with ground traces that repeat at the same times every solar day (sol). A relay orbiter in such an orbit would pass over insitu probes at the same times every sol, ensuring consistent coverage and simplifying mission design and operations. 42 orbits in five classes are characteried: 14 cicular equatorial prograde orbits; 14 circular equatorial retrograde orbits; 11 circular sun synchrounous orbits; 2 eccentroc equatorial orbits; 1 eccentric critcally inclined orbit. the paper reports on the performance of a relay orbiter in some of the orbits.

  5. Vertical Sextants give Good Sights

    NASA Astrophysics Data System (ADS)

    Dixon, Mark

    Many texts stress the need for marine sextants to be held precisely vertical at the instant that the altitude of a heavenly body is measured. Several authors lay particular emphasis on the technique of the instrument in a small arc about the horizontal axis to obtain a good sight. Nobody, to the author's knowledge, however, has attempted to quantify the errors involved, so as to compare them with other errors inherent in determining celestial position lines. This paper sets out to address these issues and to pose the question: what level of accuracy of vertical alignment can reasonably be expected during marine sextant work at sea ?When a heavenly body is brought to tangency with the visible horizon it is particularly important to ensure that the sextant is held in a truly vertical position. To this end the instrument is rocked gently about the horizontal so that the image of the body describes a small arc in the observer's field of vision. As Bruce Bauer points out, tangency with the horizon must be achieved during the process of rocking and not a second or so after rocking has been discontinued. The altitude is recorded for the instant that the body kisses the visible horizon at the lowest point of the rocking arc, as in Fig. 2. The only other visual clue as to whether the sextant is vertical is provided by the right angle made by the vertical edge of the horizon glass mirror with the horizon. There may also be some input from the observer's sense of balance and his hand orientation.

  6. Skin localization at wells drilled in a vertical fault zone.

    PubMed

    Bardenhagen, I

    1999-01-01

    The efficiency of wells drilled into fractured zones that act as draining conduits in hard rock aquifers can be strongly reduced by skin effects. In such aquifers, skin effects (well losses) can appear in close proximity to the well and/or at the contact between fracture and formation. In this paper it is shown how to locate those skin conditions in the case of two wells that have been drilled in a single vertical fault with infinite conductivity. PMID:19125930

  7. Free convection over a vertical porous plate with transpiration

    NASA Technical Reports Server (NTRS)

    Parikh, P. G.; Moffat, R. J.; Kays, W. M.; Bershader, D.

    1974-01-01

    The problem of free convection over an isothermal vertical porous plate with transpiration is studied both numerically and experimentally. Numerical solutions to the variable-property transpired free-convection boundary layer equations have been obtained using the finite difference procedure of Patankar and Spalding (1967). The effects of uniform transpiration on heat transfer and on temperature and velocity profiles are predicted. Interferometrically measured nondimensional temperature profiles for the uniform wall temperature and transpiration case agreed closely with these numerical predictions.

  8. Single pass collider memo: Dispersive effects of orbit errors in the SLC arcs

    SciTech Connect

    Weng, W.; Sands, M.

    1986-11-14

    An analytical attempt is made to estimate the perturbations of eta-functions after orbit correction of the SLC arcs. Emphasis is on the effects caused by the orbit errors created by misalignments. It is shown that the 'non-dispersive' property of a 'magnet mover' is not true whenever the vertical off-energy function is non-zero. The north arc is used as an example for numerical calculation. (LEW)

  9. Periodic orbits for three and four co-orbital bodies

    NASA Astrophysics Data System (ADS)

    Verrier, P. E.; McInnes, C. R.

    2014-08-01

    We investigate the natural families of periodic orbits associated with the equilibrium configurations of the planar-restricted 1 + n-body problem for the case 2 ? n ? 4 equal-mass satellites. Such periodic orbits can be used to model both trojan exoplanetary systems and parking orbits for captured asteroids within the Solar system. For n = 2, there are two families of periodic orbits associated with the equilibria of the system: the well-known horseshoe and tadpole orbits. For n = 3, there are three families that emanate from the equilibrium configurations of the satellites, while for n = 4, there are six such families as well as numerous additional connecting families. The families of periodic orbits are all of the horseshoe or tadpole type, and several have regions of neutral linear stability.

  10. Altitudinal dependence of evening equatorial F region vertical plasma drifts

    NASA Astrophysics Data System (ADS)

    Fejer, B. G.; Hui, D.; Chau, J. L.; Kudeki, E.

    2014-07-01

    We use Jicamarca incoherent scatter radar measurements to study for the first time the altitudinal variations of late afternoon and early night equatorial F region vertical plasma drifts. We also present the initial vertical drift measurements over the altitudinal range from about 200 to 2000 km. These data show that the afternoon drifts decrease weakly with altitude. Near their evening prereversal enhancements, the vertical drifts generally increase with altitude below about the F layer peak, decrease with height near the F layer peak and above, and are nearly height independent in the (solar flux dependent) topside ionosphere. The transition altitudes from height-decreasing to height-independent evening upward drifts decrease with altitude from solar maximum to solar minimum. After their reversal to downward, the vertical drifts do not change much with height. The altitudinal dependence of the evening vertical drifts has large day-to-day variability and is closely related to the time dependence of the zonal drifts, as expected from the curl-free electric field condition.

  11. Role of long quantum orbits in high-order harmonic generation

    SciTech Connect

    Milosevic, D.B.; Becker, W.

    2002-12-01

    Single-atom high-order harmonic generation is considered in the strong-field approximation, as formulated in the Lewenstein model, and analyzed in terms of quantum orbits. Orbits are classified according to the solutions of the saddle-point equations. The results of a numerical integration are compared with the saddle-point approximation and the uniform approximation. Approximate analytical solutions for long orbits are presented. The formalism developed is used to analyze the enhancement of high-order harmonic generation near channel closings. The enhancements exactly at the channel closings are extremely narrow and built up by the constructive interference of a very large number of quantum orbits. Additional broader enhancements occur slightly below channel closings. They are generated by the interplay of a medium number of orbits.

  12. Precise science orbits for the Swarm satellite constellation

    NASA Astrophysics Data System (ADS)

    van den IJssel, Jose; Encarnação, João; Doornbos, Eelco; Visser, Pieter

    2015-09-01

    The European Space Agency (ESA) Swarm mission was launched on 22 November 2013 to study the dynamics of the Earth's magnetic field and its interaction with the Earth system. The mission consists of three identical satellites, flying in carefully selected near polar orbits. Two satellites fly almost side-by-side at an initial altitude of about 480 km, and will descend due to drag to around 300 km during the mission lifetime. The third satellite was placed in a higher orbit of about 530 km altitude, and therefore descends much more slowly. To geolocate the Swarm observations, each satellite is equipped with an 8-channel, dual-frequency GPS receiver for Precise Orbit Determination (POD). Onboard laser retroreflectors provide the opportunity to validate the orbits computed from the GPS observations using Satellite Laser Ranging (SLR) data. Precise Science Orbits (PSOs) for the Swarm satellites are computed by the Faculty of Aerospace Engineering at Delft University of Technology in the framework of the Swarm Satellite Constellation Application and Research Facility (SCARF). The PSO product consists of both a reduced-dynamic and a kinematic orbit solution. After a short description of the Swarm GPS data characteristics, the adopted POD strategy for both orbit types is explained and first PSO results from more than one year of Swarm GPS data are presented. Independent SLR validation shows that the reduced-dynamic Swarm PSOs have an accuracy of better than 2 cm, while the kinematic orbits have a slightly reduced accuracy of about 4-5 cm. Orbit comparisons indicate that the consistency between the reduced-dynamic and kinematic Swarm PSO for most parts of the Earth is at the 4-5 cm level. Close to the geomagnetic poles and along the geomagnetic equator, however, the kinematic orbits show larger errors, which are probably due to ionospheric scintillations that affect the Swarm GPS receivers over these areas.

  13. Finite thrust orbital transfers

    NASA Astrophysics Data System (ADS)

    Mazzini, Leonardo

    2014-07-01

    The finite thrust optimal transfer in the presence of the Earth's shadow and oblate planet perturbations is a problem of strong interest in modern telecommunication satellite design with plasmic propulsion. The Maximum Principle cannot be used in its standard form to deal with the Earth's shadow. In this paper, using a regularization of the Hamiltonian which expands the Maximum Principle application domain, we provide for the first time, the necessary conditions in a very general context for the finite thrust optimal transfer with limited power around an oblate planet. The costate in such problems is generally discontinuous. To obtain fast numerical solutions, the averaging of the Hamiltonian is introduced. Two classes of boundary conditions are analyzed and numerically solved: the minimum time and the minimum fuel at a fixed time. These two problems are the basic tools for designing the orbit raising of a satellite after the launcher injection into its separation orbit. Numerical solutions have been calculated for the more important applications of LEO to GEO/MEO missions and the results have been reported and discussed.

  14. Booster and orbiter configurations

    NASA Technical Reports Server (NTRS)

    Wilhite, A. W.; Powell, R. W.; Naftel, J. C.; Phillips, W. P.

    1983-01-01

    In the recent Future Space Transportation System (FSFS) study, a mission model was selected and a baseline vehicle which best met model requirements was shaped. This baseline was then analyzed for flight performance, structural and subsystem weight, and operation. Figures related to a payload of 150,000 lb in a 20-ft-diam by 90-ft-long envelope became the baseline. The existence of both space-based orbital transfer vehicles (OTVs) and a space station was assumed, taking into account a transfer of the payload from the launch vehicle to OTVs at the space station for final delivery to geosynchronous orbit (GEO). A computer-aided engineering system called Aerospace Vehicle Interactive Design (AVID) was employed in connection with baseline vehicle development. It was found that approximately three-fifth of the payload weight would be cryogenic propellants for OTVs. Attention is given to problems regarding the packaging of cryogenic tankage, a payload shroud, and studies of staging for two different booster propulsion units.

  15. Orbital construction demonstration study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A conceptual design and program plan for an Orbital Construction Demonstration Article (OCDA) was developed that can be used for evaluating and establishing practical large structural assembly operations. A flight plan for initial placement and continued utility is presented as a basic for an entirely new shuttle payload line-item having great future potential benefit for space applications. The OCDA is a three-axis stabilized platform in low-earth orbit with many structural nodals for mounting large construction and fabrication equipments. This equipment would be used to explore methods for constructing the large structures for future missions. The OCDA would be supported at regular intervals by the shuttle. Construction experiments and consumables resupply are performed during shuttle visit periods. A 250 kw solar array provides sufficient power to support the shuttle while attached to the OCDA and to run construction experiments at the same time. Wide band communications with a Telemetry and Data Relay Satellite compatible high gain antenna can be used between shuttle revisits to perform remote controlled, TV assisted construction experiments.

  16. [Endoscopic approaches to the orbit].

    PubMed

    Cebula, H; Lahlou, A; De Battista, J C; Debry, C; Froelich, S

    2010-01-01

    During the last decade, the use of endoscopic endonasal approaches to the pituitary has increased considerably. The endoscopic endonasal and transantral approaches offer a minimally invasive alternative to the classic transcranial or transconjunctival approaches to the medial aspect of the orbit. The medial wall of the orbit, the orbital apex, and the optic canal can be exposed through a middle meatal antrostomy, an anterior and posterior ethmoidectomy, and a sphenoidotomy. The inferomedial wall of the orbit can be also perfectly visualized through a sublabial antrostomy or an inferior meatal antrostomy. Several reports have described the use of an endoscopic approach for the resection or the biopsy of lesions located on the medial extraconal aspect of the orbit and orbital apex. However, the resection of intraconal lesions is still limited by inadequate instrumentation. Other indications for the endoscopic approach to the orbit are the decompression of the orbit for Graves' ophthalmopathy and traumatic optic neuropathy. However, the optimal management of traumatic optic neuropathy remains very controversial. Endoscopic endonasal decompression of the optic nerve in case of tumor compression could be a more valid indication in combination with radiation therapy. Finally, the endoscopic transantral treatment of blowout fracture of the floor of the orbit is an interesting option that avoids the eyelid or conjunctive incision of traditional approaches. The collaboration between the neurosurgeon and the ENT surgeon is mandatory and reduces the morbidity of the approach. Progress in instrumentation and optical devices will certainly make this approach promising for intraconal tumor of the orbit. PMID:20347457

  17. Forbidden tangential orbit transfers between intersecting Keplerian orbits

    NASA Technical Reports Server (NTRS)

    Burns, Rowland E.

    1989-01-01

    The classical problem of tangential impulse transfer between coplanar Keplerian orbits is addressed. A completely analytic solution which does not rely on sequential calculation is obtained and this solution is used to demonstrate that certain choices of initial true anomaly can produce singularities in the parameters of the transfer orbit. A necessary and sufficient condition for the existence of such singularities is that the initial and final orbits intersect.

  18. Neptune Orbiter Mission Scenario Based on Nuclear Electric Propulsion and Aerocapture Orbital Insertion

    NASA Astrophysics Data System (ADS)

    Jits, R.

    2002-01-01

    insertion of spacecraft into elliptical orbit around target planet is proposed for Neptune orbiter mission. The primary goal of combining nuclear electric propulsion (NEP) and aerocapture orbital insertion is a reduction of a trip time comparing to that of similar mission, which would use nuclear electric propulsion only. One of the limitations of the all NEP orbiter is that at the planetary approach it must match its arrival velocity with Neptune's orbital speed in order to initiate slow capture into the desired orbit using low thrust electric propulsion. Use of aerocapture for insertion into closed elliptical orbit around Neptune through a single aerodynamically controlled atmospheric pass gives advantage of having higher entry velocities than it would be possible in case of all NEP scenario, thus reducing trip time required for interplanetary transfer. propulsion and thermal protection systems. Moreover, because faster interplanetary trip times for combined NEP/Aerocapture orbiter result in a higher entry velocities into the Neptune's atmosphere, they will also drive the increase in aerobrake mass fraction. In addition, aerocapture at Neptune also presents a challenge for aerobrake's guidance system which must target vehicle to the desired atmospheric exit conditions in the presence of significant uncertainties in Neptune's atmospheric density. Hence, there is a need to design a robust nominal aerocapture trajectory capable of accommodating density dispersions and also optimized for minimum thermal protection mass, thus contributing to overall reduction of aerobrake mass fraction. determine the optimal combination between reduction of the trip time and increase in aerobrake mass fraction was undertaken. The initial assumptions on aerobrake thermal protection materials and NEP system characteristics were based on near term state of the art technology, corresponding to 2007-2010 time frame, when such a mission to Neptune could be launched. interplanetary trajectory simulation including capture into orbit around Neptune. In these low thrust trajectory simulations the trust level and the specific impulse of a single electric rocket engine were fixed, thus allowing to optimize number of engines and their thrust time history for a rapid transfer to Neptune. Therefore, for combined NEP/Aerocapture mission use of this approach made possible to determine the change in NEP mass fraction, comparing to that one of all NEP mission scenario where spacecraft velocity at its arrival would have to be matched with Neptune's orbital speed. atmosphere, where vehicle was captured into a highly elliptical orbit, which insures periodical close fly-by of the biggest Neptune's moon Triton, thus allowing its scientific observation. Nominal trajectories found in the process of aerocapture simulations were optimized for minimum mass of aerobrake's thermal protection system and were also shown to withstand significant density variations which are likely to be encountered in Neptune's atmosphere. These nominal trajectories were used to determine sensitivity of aerobrake's thermal protection system mass fraction to the variation of atmospheric entry velocity resulted from shorter trip times to Neptune. that for the same initial mass at the low earth orbit, all NEP mission flight time is 11-12 years, when as for the mission scenario which combines NEP and aerocapture flight time can be reduced to 5-6 years. Such a reduction in mission flight time represents much faster scientific return and it also translates into a higher chance of mission success and significant operational cost savings due to much shorter mission time.

  19. Closeup oblique view of the aft fuselage of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up oblique view of the aft fuselage of the Orbiter Discovery looking forward and starboard as the last Space Shuttle Main Engine is being removed, it can be seen on the right side of the image frame. Note that one of the Orbiter Maneuvering System/ Reaction Control System has been removed while one of them remains. Also note that the body flap, below the engine positions has a protective covering to prevent damage to the High-temperature Reusable Surface Insulation tiles. This image was taken inside the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  20. Closeup oblique view of the aft fuselage of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up oblique view of the aft fuselage of the Orbiter Discovery looking forward and port as the last Space Shuttle Main Engine is being removed, it can be seen on the left side of the image frame. Note that one of the Orbiter Maneuvering System/ Reaction Control System has been removed while one of them remains. Also note that the body flap, below the engine positions has a protective covering to prevent damage to the High-temperature Reusable Surface Insulation tiles. This image was taken inside the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  1. Speckle Interferometry and Orbits of "Fast" Visual Binaries

    NASA Astrophysics Data System (ADS)

    Tokovinin, Andrei

    2012-08-01

    Results of speckle observations at the 4.1 m SOAR telescope in 2012 (158 measures of 121 systems, 27 non-resolutions) are reported. The aim is to follow fast orbital motion of recently discovered or neglected close binaries and sub-systems. Here, eight previously known orbits are defined better, two more are completely revised, and five orbits are computed for the first time. Using differential photometry from Hipparcos or speckle and the standard relation between mass and absolute magnitude, the component's masses and dynamical parallaxes are estimated for all 15 systems with new or updated orbits. Two astrometric binaries HIP 54214 and 56245 are resolved here for the first time, another eight are measured. We highlight several unresolved pairs that may actually be single despite multiple historic measures, such as 104 Tau and f Pup AB. Continued monitoring is needed to understand those enigmatic cases.

  2. Cometary orbital evolution in the outer planetary region

    NASA Technical Reports Server (NTRS)

    Manara, Allesandro; Valsecchi, G. B.

    1992-01-01

    Numerical integrations of fictitious objects are carried out in order to elucidate the dynamical behavior of potential short-period comets when they move in orbits at distances from the Sun comparable to those of Uranus and Neptune. As in the case of observed short-period comets, close encounters with the planets play a major role for the orbital evolution, and this is especially true for encounters with initial orbits nearly tangent to that of the planet. A comparison with integrations in which the planetary masses are larger by a factor 10 shows that, in the latter case, the orbital evolution is greatly accelerated, but the dynamical paths in phase space followed by the comets are altered.

  3. SPECKLE INTERFEROMETRY AND ORBITS OF 'FAST' VISUAL BINARIES

    SciTech Connect

    Tokovinin, Andrei

    2012-08-15

    Results of speckle observations at the 4.1 m SOAR telescope in 2012 (158 measures of 121 systems, 27 non-resolutions) are reported. The aim is to follow fast orbital motion of recently discovered or neglected close binaries and sub-systems. Here, eight previously known orbits are defined better, two more are completely revised, and five orbits are computed for the first time. Using differential photometry from Hipparcos or speckle and the standard relation between mass and absolute magnitude, the component's masses and dynamical parallaxes are estimated for all 15 systems with new or updated orbits. Two astrometric binaries HIP 54214 and 56245 are resolved here for the first time, another eight are measured. We highlight several unresolved pairs that may actually be single despite multiple historic measures, such as 104 Tau and f Pup AB. Continued monitoring is needed to understand those enigmatic cases.

  4. General view of the Orbiter Discovery in the Orbiter Processing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Orbiter Discovery in the Orbiter Processing Facility at Kennedy Space Center showing the payload bay doors open exposing the heat-dissipating radiator panels located on the inside of the payload bay doors. Also in the view is the boom portion of the boom sensor system deployed as part of the return to flight procedures after STS-107 to inspect the orbiter's thermal protection system. The Remote Manipulator System, the "Canadarm", and the airlock are seen in the background of the image. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  5. Orbital Evolution and Impact Hazard of Asteroids on Retrograde Orbits

    NASA Astrophysics Data System (ADS)

    Kankiewicz, P.; Włodarczyk, I.

    2014-07-01

    We present the past evolutional scenarios of known group of asteroids in retrograde orbits. Applying the latest observational data, we determined their nominal and averaged orbital elements. Next, we studied the behaviour of their orbital motion 1~My in the past (100~My in the future for two NEAs) taking into account the limitations of observational errors. It has been shown that the influence of outer planets perturbations in many cases can import small bodies on high inclination or retrograde orbits into the inner Solar System.

  6. The distributions of positions of Minimal Orbit Intersection Distances among Near Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Mar?eta, Duan; egan, Stevo

    2012-07-01

    This paper presents the distributions of the positions of the Minimal Orbit Intersection Distances (MOID) among three subgroups of the Near Earth Asteroids (NEAs). This includes 683 Atens, 4185 Apollos and 3538 Amors which makes over 15 millions combinations of the pairs of orbits. The results which are obtained in this analysis show very interesting distributions of positions of the MOIDs and circumstances of close approaches of the asteroids and emphasize influence of different orbital elements on these distributions.

  7. Orbit correction in a linear nonscaling fixed field alternating gradient accelerator

    DOE PAGESBeta

    Kelliher, D. J.; Machida, S.; Edmonds, C. S.; Kirkman, I. W.; Jones, J. K.; Muratori, B. D.; Garland, J. M.; Berg, J. S.

    2014-11-20

    In a linear non-scaling FFAG the large natural chromaticity of the machine results in a betatron tune that varies by several integers over the momentum range. In addition, orbit correction is complicated by the consequent variation of the phase advance between lattice elements. Here we investigate how the correction of multiple closed orbit harmonics allows correction of both the COD and the accelerated orbit distortion over the momentum range.

  8. Simple control laws for low-thrust orbit transfers

    NASA Technical Reports Server (NTRS)

    Petropoulos, Anastassios E.

    2003-01-01

    Two methods are presented by which to determine both a thrust direction and when to apply thrust to effect specified changes in any of the orbit elements except for true anomaly, which is assumed free. The central body is assumed to be a point mass, and the initial and final orbits are assumed closed. Thrust, when on, is of a constant value, and specific impulse is constant. The thrust profiles derived from the two methods are not propellant-optimal, but are based firstly on the optimal thrust directions and location on the osculating orbit for changing each of the orbit elements and secondly on the desired changes in the orbit elements. Two examples of transfers are presented, one in semimajor axis and inclination, and one in semimajor axis and eccentricity. The latter compares favourably with a propellant-optimized transfer between the same orbits. The control laws have few input parameters, but can still capture the complexity of a wide variety of orbit transfers.

  9. Close up view of the center console on the flight ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up view of the center console on the flight deck of the Orbiter Discovery showing the console's instrumentation and controls. The commanders station is located to the left in this view and the pilot's station is to the right in the view. The handle and lever located on the right side of the center console and towards its front is one of a pair, the commander has one on the left of his seat in his station, of Speed Brake/Thrust Controllers. These are dual purpose controllers. During ascent the controller can be use to throttle the main engines and during entry the controllers can be used to control aerodynamic drag by opening or closing the orbiter's speed brake. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  10. The Orbital Workshop Trash Disposal Airlock

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This is a close-up photograph of the Orbital Workshop (OWS) trash disposal airlock located on the floor of the lower level of the OWS. It provided a means of passing trash from the pressurized habitable area into the unpressurized waste tank. The crewman opened a valve which brought the airlock to the same pressure as that within the workshop. He then opened the lid, placed the bagged trash inside, closed the lid and locked it. By turning the valve handle, he reduced the pressure within the airlock until it reached the vacuum of the waste tank. The crewman then operated an ejector handle that caused a scissors-type mechanism to push the bagged trash from the airlock into the tank.

  11. Close up view of the Commander's Seat on the Flight ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up view of the Commander's Seat on the Flight Deck of the Orbiter Discovery. Toward the right of the view and in front of te seat is the commander's Rotational Hand Controller. The pilot station has an identical controller. These control the acceleration in the roll pitch and yaw directions via the reaction control system and/or the orbiter maneuvering system while outside of Earth's atmosphere or via the orbiter's aerosurfaces wile in Earth's atmosphere when the atmospheric density permits the surfaces to be effective. There are a number of switches on the controller, most notably a trigger switch which is a push-to-talk switch for voice communication and a large button on top of the controller which is a switch to engage the backup flight system. This view was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  12. A Concept of Two-Stage-To-Orbit Reusable Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Wang, Xiaojun; Tang, Yihua

    2002-01-01

    Reusable Launch Vehicle (RLV) has a capability of delivering a wide rang of payload to earth orbit with greater reliability, lower cost, more flexibility and operability than any of today's launch vehicles. It is the goal of future space transportation systems. Past experience on single stage to orbit (SSTO) RLVs, such as NASA's NASP project, which aims at developing an rocket-based combined-cycle (RBCC) airplane and X-33, which aims at developing a rocket RLV, indicates that SSTO RLV can not be realized in the next few years based on the state-of-the-art technologies. This paper presents a concept of all rocket two-stage-to-orbit (TSTO) reusable launch vehicle. The TSTO RLV comprises an orbiter and a booster stage. The orbiter is mounted on the top of the booster stage. The TSTO RLV takes off vertically. At the altitude about 50km the booster stage is separated from the orbiter, returns and lands by parachutes and airbags, or lands horizontally by means of its own propulsion system. The orbiter continues its ascent flight and delivers the payload into LEO orbit. After completing orbit mission, the orbiter will reenter into the atmosphere, automatically fly to the ground base and finally horizontally land on the runway. TSTO RLV has less technology difficulties and risk than SSTO, and maybe the practical approach to the RLV in the near future.

  13. Orbital State Uncertainty Realism

    NASA Astrophysics Data System (ADS)

    Horwood, J.; Poore, A. B.

    2012-09-01

    Fundamental to the success of the space situational awareness (SSA) mission is the rigorous inclusion of uncertainty in the space surveillance network. The *proper characterization of uncertainty* in the orbital state of a space object is a common requirement to many SSA functions including tracking and data association, resolution of uncorrelated tracks (UCTs), conjunction analysis and probability of collision, sensor resource management, and anomaly detection. While tracking environments, such as air and missile defense, make extensive use of Gaussian and local linearity assumptions within algorithms for uncertainty management, space surveillance is inherently different due to long time gaps between updates, high misdetection rates, nonlinear and non-conservative dynamics, and non-Gaussian phenomena. The latter implies that "covariance realism" is not always sufficient. SSA also requires "uncertainty realism"; the proper characterization of both the state and covariance and all non-zero higher-order cumulants. In other words, a proper characterization of a space object's full state *probability density function (PDF)* is required. In order to provide a more statistically rigorous treatment of uncertainty in the space surveillance tracking environment and to better support the aforementioned SSA functions, a new class of multivariate PDFs are formulated which more accurately characterize the uncertainty of a space object's state or orbit. The new distribution contains a parameter set controlling the higher-order cumulants which gives the level sets a distinctive "banana" or "boomerang" shape and degenerates to a Gaussian in a suitable limit. Using the new class of PDFs within the general Bayesian nonlinear filter, the resulting filter prediction step (i.e., uncertainty propagation) is shown to have the *same computational cost as the traditional unscented Kalman filter* with the former able to maintain a proper characterization of the uncertainty for up to *ten times as long* as the latter. The filter correction step also furnishes a statistically rigorous *prediction error* which appears in the likelihood ratios for scoring the association of one report or observation to another. Thus, the new filter can be used to support multi-target tracking within a general multiple hypothesis tracking framework. Additionally, the new distribution admits a distance metric which extends the classical Mahalanobis distance (chi^2 statistic). This metric provides a test for statistical significance and facilitates single-frame data association methods with the potential to easily extend the covariance-based track association algorithm of Hill, Sabol, and Alfriend. The filtering, data fusion, and association methods using the new class of orbital state PDFs are shown to be mathematically tractable and operationally viable.

  14. A vertical resonance heating model for X- or peanut-shaped galactic bulges

    NASA Astrophysics Data System (ADS)

    Quillen, Alice C.; Minchev, Ivan; Sharma, Sanjib; Qin, Yu-Jing; Di Matteo, Paola

    2014-01-01

    We explore a second-order Hamiltonian vertical resonance model for X-shaped or peanut-shaped galactic bulges. The X- or peanut-shape is caused by the 2:1 vertical Lindblad resonance with the bar, with two vertical oscillation periods per orbital period in the bar frame. We examine N-body simulations and find that due to the bar slowing down and disc thickening during bar buckling, the resonance and associated peanut-shape moves outward. The peanut-shape is consistent with the location of the 2:1 vertical resonance, independent of whether the bar buckled or not. We estimate the resonance width from the potential m = 4 Fourier component and find that the resonance is narrow, affecting orbits over a narrow range in the angular momentum distribution, dL/L 0.05. As the resonance moves outward, stars originally in the mid-plane are forced out of the mid-plane and into orbits just within the resonance separatrix. The height of the separatrix orbits, estimated from the Hamiltonian model, is approximately consistent with the peanut-shape height. The peanut- or X-shape is comprised of stars in the vicinity of the resonance separatrix. The velocity distributions from the simulations illustrate that low-inclination orbits are depleted within resonance. Within resonance, the vertical velocity distribution is broad, consistent with resonant heating caused by the passage of the resonance through the disc. In the Milky Way bulge, we relate the azimuthally averaged mid-plane mass density near the vertical resonance to the rotation curve and bar pattern speed. At an estimated vertical resonance galactocentric radius of 1.3 kpc, we confirm a mid-plane density of 5 108 M? kpc-3, consistent with recently estimated mass distributions. We find that the rotation curve, bar pattern speed, 2:1 vertical resonance location, X-shaped tips and mid-plane mass density, are all self-consistent in the Milky Way galaxy bulge.

  15. Galileo: seven years in orbit at Jupiter

    NASA Astrophysics Data System (ADS)

    Johnson, T.

    The Galileo spacecraft has been in orbit around Jupiter since December, 1995. During that time it has greatly expanded our knowledge of the entire Jupiter system and raised fascinating new questions about planetary formation, evolution and processes. Among the major discoveries from the mission are: 1. The first detailed analysis of the composition of Jupiter's atmosphere, revealing strong meteorologically controlled variations in clouds and water abundance, 2. The first planetary satellite with an intrinsic magnetic field, Ganymede, 3. Io's ubiquitous volcanic eruptions are primarily controlled by silicate volcanism and high temperatures indicate extreme ultra-maffic compositions, 4. Geological and geophysical evidence for a global liquid water ocean kilometers to tens of kilometers beneath Europa's icy crust, and 4. Magnetic field induction signatures from each of the icy satellites suggesting a global electrically conducting layer, probably salty liquid, at reasonably shallow depths. Galileo is now preparing for its final two orbits of the giant planet, one an extremely close pass within the outer edges of the gossamer ring and within about 500 kilometers of the moon Amalthea and then the final orbit destined to impact Jupiter in the fall of 2003.

  16. LSST: Comprehensive NEO detection, characterization, and orbits

    NASA Astrophysics Data System (ADS)

    Ivezic, Zeljko; Jones, Lynne

    2014-11-01

    The Large Synoptic Survey Telescope (LSST) has Solar System mapping as one of its four key scientific design drivers, with emphasis on efficient Near-Earth Object (NEO) and Potentially Hazardous Asteroid (PHA) detection, orbit determination, and characterization. The baseline design satisfies strong constraints on the cadence of observations mandated by PHAs such as closely spaced pairs of observations to link different detections and short exposures to avoid trailing losses. Due to frequent repeat visits LSST will effectively provide its own follow-up to derive orbits for detected moving objects. We will describe detailed modeling of LSST operations, incorporating real historical weather and seeing data from Cerro Pachon in Chile, the LSST site, which shows that LSST using its baseline design cadence could find 90% of the PHAs with diameters larger than 250 m, and 75% of those greater than 140 m within ten years. However, simulations also show that LSST can reach the completeness of 90% of PHAs larger than 140m by optimizing observing cadence andextending the survey lifetime to 12 years. In addition to detecting and determining orbits for these PHAs, LSST will also provide valuable data on their physical characteristics through accurate color and variability measurements, which can be used to determine approximate taxonomical types, better size estimates by constraining albedos, rotation periods, and shape characteristics; thus constraining PHA properties relevant for risk mitigation strategies.

  17. Direct and inverse spin-orbit torques

    NASA Astrophysics Data System (ADS)

    Freimuth, Frank; Blügel, Stefan; Mokrousov, Yuriy

    2015-08-01

    In collinear magnets lacking inversion symmetry, application of electric currents induces torques on the magnetization and conversely magnetization dynamics induces electric currents. The two effects, which both rely on spin-orbit interaction, are reciprocal to each other and denoted direct spin-orbit torque (SOT) and inverse spin-orbit torque (ISOT), respectively. We derive expressions for SOT and ISOT within the Kubo linear-response formalism. We show that expressions suitable for density-functional theory calculations can be derived either starting from a Kohn-Sham Hamiltonian with time-dependent exchange field or by expressing general susceptibilities in terms of the Kohn-Sham susceptibilities. For the case of magnetic bilayer systems we derive the general form of the ISOT current induced under ferromagnetic resonance. Using ab initio calculations within density-functional theory, we investigate SOT and ISOT in Co/Pt(111) magnetic bilayers. We determine the spatial distribution of spin and charge currents as well as torques in order to expose the mechanisms underlying SOT and ISOT and to highlight their reciprocity on the microscopic level. We find that the spin Hall effect is position dependent close to interfaces.

  18. Multiple Poincar sections method for finding the quasiperiodic orbits of the restricted three body problem

    NASA Astrophysics Data System (ADS)

    Kolemen, Egemen; Kasdin, N. Jeremy; Gurfil, Pini

    2012-01-01

    A new fully numerical method is presented which employs multiple Poincar sections to find quasiperiodic orbits of the Restricted Three-Body Problem (RTBP). The main advantages of this method are the small overhead cost of programming and very fast execution times, robust behavior near chaotic regions that leads to full convergence for given family of quasiperiodic orbits and the minimal memory required to store these orbits. This method reduces the calculations required for searching two-dimensional invariant tori to a search for closed orbits, which are the intersection of the invariant tori with the Poincar sections. Truncated Fourier series are employed to represent these closed orbits. The flow of the differential equation on the invariant tori is reduced to maps between the consecutive Poincar maps. A Newton iteration scheme utilizes the invariance of the circles of the maps on these Poincar sections in order to find the Fourier coefficients that define the circles to any given accuracy. A continuation procedure that uses the incremental behavior of the Fourier coefficients between close quasiperiodic orbits is utilized to extend the results from a single orbit to a family of orbits. Quasi-halo and Lissajous families of the Sun-Earth RTBP around the L2 libration point are obtained via this method. Results are compared with the existing literature. A numerical method to transform these orbits from the RTBP model to the real ephemeris model of the Solar System is introduced and applied.

  19. Kinematic Fitting of Detached Vertices

    SciTech Connect

    Paul Mattione

    2007-05-01

    The eg3 experiment at the Jefferson Lab CLAS detector aims to determine the existence of the $\\Xi_{5}$ pentaquarks and investigate the excited $\\Xi$ states. Specifically, the exotic $\\Xi_{5}^{--}$ pentaquark will be sought by first reconstructing the $\\Xi^{-}$ particle through its weak decays, $\\Xi^{-}\\to\\pi^{-}\\Lambda$ and $\\Lambda\\to\\pi^{-}$. A kinematic fitting routine was developed to reconstruct the detached vertices of these decays, where confidence level cuts on the fits are used to remove background events. Prior to fitting these decays, the exclusive reaction $\\gamma D\\rightarrow pp\\pi^{-}$ was studied in order to correct the track measurements and covariance matrices of the charged particles. The $\\Lambda\\rightarrow p\\pi^{-}$ and $\\Xi^{-}\\to\\pi^{-}\\Lambda$ decays were then investigated to demonstrate that the kinematic fitting routine reconstructs the decaying particles and their detached vertices correctly.

  20. Vertically Integrated Circuits at Fermilab

    SciTech Connect

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2009-01-01

    The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.