Science.gov

Sample records for vertical gradient freeze

  1. Vertical bridgman and gradient freeze growth of III-V compound semiconductors

    SciTech Connect

    Bourret, E.D.

    1990-07-01

    Major improvements in the structural and electrical perfection of single crystals of III-V compound semiconductors have been achieved by using new vertical Bridgman-type and vertical gradient freeze techniques. A general review of experimental set-ups used for growth of large diameter crystals of GaP, InP and GaAs is presented. Crystal properties and characteristic features are discussed to illustrate advantages and disadvantages of the vertical Bridgman-type growth techniques. 22 refs., 5 figs.

  2. Effects of a traveling magnetic field on vertical gradient freeze growth of cadmium zinc telluride

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew; Derby, Jeffrey J.

    2011-09-01

    The effects of a traveling magnetic field (TMF) on vertical gradient freeze (VGF) growth of cadmium zinc telluride (CZT) are studied using a coupled model of magnetic induction, fluid dynamics, and heat transfer. Simulations are performed to determine the influences of current and frequency on melt flow and growth interface shape. A downward traveling electromagnetic wave drives flow downward at the wall, which tends to flatten the interface, whereas an upward traveling wave has the opposite effect. TMF makes a significant impact on interface shape in the absence of thermal buoyancy, but is ineffectual under realistic conditions in a 4 inch diameter ampoule, for which buoyancy dominates Lorentz force throughout the melt.

  3. Comparing modified vertical gradient freezing with rotating magnetic fields or with steady magnetic and electric fields

    NASA Astrophysics Data System (ADS)

    Wang, X.; Ma, N.; Bliss, D. F.; Iseler, G. W.; Becla, P.

    2006-01-01

    This investigation treats the flow of molten gallium-antimonide and the dopant transport during the vertical gradient freezing process using submerged heater growth. A rotating magnetic field or a combination of steady magnetic and steady electric fields is used to control the melt motion. This paper compares the effects of these externally applied fields on the transport in the melt and on the dopant segregation in the crystal. Crystal growth in a combination of steady magnetic and electric fields produces a crystal with more radial and axial dopant homogeneity than growth in a rotating magnetic field.

  4. Design and fabrication of eight zone vertical dynamic gradient freeze system for organic single crystal growth.

    PubMed

    Prabhakaran, S P; Babu, R Ramesh; Ramamurthi, K

    2013-08-01

    Design and construction of the vertical dynamic gradient freeze (VDGF) system operating in the temperature range from 50 °C to 500 °C for growing organic single crystals are described. The design of VDGF system consists of furnace, control system, translation assembly, and image capturing device. Furnace has been constructed with eight zones controlled independently by a dynamic temperature control system for achieving desired thermal environment and multiple temperature gradients, which are essential for the growth of organic single crystals. The transparent furnace enables direct observation to record and monitor the solid-liquid interface and growth of crystals through charge coupled device based video camera. The system is fully computerized hence it is possible to retrieve the complete growth and furnace history. In order to investigate the functioning of the constructed VDGF system for the growth of organic single crystals, a well known organic nonlinear optical single crystal of benzimidazole was grown. The crystalline quality and the optical transmittance of the grown crystal were studied. PMID:24007079

  5. Fluid flow analysis and vertical gradient freeze crystal growth in a travelling magnetic field

    NASA Astrophysics Data System (ADS)

    Lantzsch, R.; Grants, I.; Galindo, V.; Patzold, O.; Gerbeth, G.; Stelter, M.; Croll, A.

    2006-12-01

    In bulk crystal growth of semiconductors the concept of remote flow control by means of alternating magnetic fields has attracted considerable interest (see, e.g., te{1,2,3,4,5,6}). In this way the melt flow can be tailored for growth under optimised conditions to improve the crystal properties and/or the growth yield. A promising option is to apply an axially travelling magnetic wave to the melt (Travelling Magnetic Field - TMF). It introduces a mainly axial Lorentz force, which leads to meridional flow patterns. In recent numerical studies te{3}, te{6} the TMF has been recognised to be a versatile and efficient tool to control the heat and mass transport in the melt. For the Vertical Bridgman/Vertical Gradient Freeze (VB/VGF) growth, the beneficial effect of an adequately adjusted TMF-induced flow was clearly demonstrated in te{6} in terms of the reduction of thermal shear stress at the solid-liquid interface. In this paper, we present experimental and numerical results on the TMF driven convection in an isothermal model fluid as well as first VGF-TMF crystal growth experiments. The model investigations are focused on the transition from laminar to instationary flow conditions that should be avoided in crystal growth applications. The VGF experiments were aimed at growing Ga doped germanium single crystals under the influence of the travelling field in a newly developed VGF-TMF equipment. Figs 4, Refs 10.

  6. Electron Backscatter Diffraction of a Ge Growth Tip from a Vertical Gradient Freeze Furnace

    SciTech Connect

    Henager, Charles H.; Edwards, Danny J.; Schemer-Kohrn, Alan L.; Sundaram, S. K.; Riley, Brian J.; Bliss, Mary

    2008-12-15

    The growth-tip region of a high-purity 4.2-cm diameter Ge boule grown using low-pressure Bridgman methods in a vertical gradient freeze furnace was sectioned and polished in preparation for scanning electron microscopy and was characterized using electron backscatter diffraction (EBSD). The boule had a characteristic conical tip region with cone angle of 40? of a right circular cylinder from which a section was taken along the boule longitudinal centerline with an approximate surface area of 4 cm2. The majority of this surface area was characterized using EBSD and an image collage was assembled for the tip region. The grain structure, grain boundary orientation, twin structure, and overall crystal growth direction were determined. A crystal growth direction of approximately <112> was observed, which was also identified as the growth direction of several prominent twins observed in the tip region. The grain structure of the tip region appeared to be controlled by the sidewall nucleation of a stray grain that competed for dominance during growth. Grain boundaries and triple grain junctions were identified as low-energy coincident-site-lattice (CSL) boundaries and junctions of the ?3 and ?9 types.

  7. Crystal Growth and Characterization of CdTe Grown by Vertical Gradient Freeze

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Lehoczky, S. L.; Raghothamachar, B.; Dudley, M.

    2007-01-01

    In this study, crystals of CdTe were grown from melts by the unseeded vertical gradient freeze method. The quality of grown crystal were studied by various characterization techniques including Synchrotron White Beam X-ray Topography (SWBXT), chemical analysis by glow discharge mass spectroscopy (GDMS), low temperature photoluminescence (PL), and Hall measurements. The SWBXT images from various angles show nearly strain-free grains, grains with inhomogeneous strains, as well as twinning nucleated in the shoulder region of the boule. The GDMS chemical analysis shows the contamination of Ga at a level of 3900 ppb, atomic. The low temperature PL measurement exhibits the characteristic emissions of a Ga-doped sample. The Hall measurements show a resistivity of 1 x l0(exp 7) ohm-cm at room temperature to 3 x 10(exp 9) ohm-cm at 78K with the respective hole and electron concentration of 1.7 x 10(exp 9) cm(exp -3) and 3.9 x 10(exp 7) cm(exp -3) at room temperature.

  8. Electron Backscatter Diffraction Analysis of a CZT Growth Tip from a Vertical Gradient Freeze Furnace

    SciTech Connect

    Sundaram, S. K.; Henager, Charles H.; Edwards, Danny J.; Schemer-Kohrn, Alan L.; Bliss, Mary; Riley, Brian J.

    2011-08-15

    Electronic backscatter diffraction (EBSD) was used to characterize the growth-tip region of a 4.2-cm diameter CdZnTe (CZT) boule grown using low-pressure Bridgman method in a vertical gradient freeze furnace. The boule was sectioned and polished and a section taken along the boule longitudinal centerline with an approximate surface area of 1-cm2 was used for optical and scanning electron microscopy. A collage was assembled using EBSD/SEM images to show morphological features, e.g., twin structure, grain structure, and overall crystal growth direction. Severely twinned regions originating from the tip and side walls were observed. The overall growth orientation was close to <110> and <112> directions. In some regions, the (001) poles of the CZT matrix aligned with the growth direction, while twins aligned such that (111) and (112) poles aligned with the growth direction. In some other areas, (112) or (011) poles of the CZT matrix aligned with the growth direction. New relationships between the CZT matrix and large Te polycrystalline particles were revealed: {11 }CZT{1 00}Te and {001}CZT{0 1}Te.

  9. Synthesis and crystal growth of Mg2Si by the liquid encapsulated vertical gradient freezing method

    NASA Astrophysics Data System (ADS)

    Nakagawa, Reo; Katsumata, Hiroshi; Hashimoto, Satoshi; Sakuragi, Shiro

    2015-08-01

    The synthesis of Mg2Si bulk crystals was performed by the vertical gradient freezing method using a KCl-MgCl2 eutectic liquid encapsulant. Stoichiometric polycrystalline Mg2Si bulk crystals were successfully grown by changing the composition ratio of starting Mg and Si powders (Mg/Si) from 2.0 to 3.5. A chemical reaction between Mg2Si and the crucible materials was inhibited using encapsulant materials, and the contamination by K or Cl originating from the encapsulant materials was not detected in almost all the samples. However, Mg evaporation could not be prevented completely during the synthesis and crystal growth. The optical band-gap energy of Mg2Si bulk crystals became minimal (0.79 eV) at a Mg/Si ratio of 2.5, at which the maximum electron mobility of 202 cm2V-1s-1 was obtained. These results indicate that the composition ratio of Mg/Si = 2.5 for starting Mg and Si powders was optimal for synthesizing Mg2Si bulk crystals with high crystalline quality.

  10. Vertical gradient freezing of doped gallium antimonide semiconductor crystals using submerged heater growth and electromagnetic stirring

    NASA Astrophysics Data System (ADS)

    Ma, Nancy; Bliss, David F.; Iseler, Gerald W.

    2003-11-01

    An investigation of the melt growth of uniformly doped gallium-antimonide (GaSb) semiconductor crystals as well as other III-V alloy crystals with uniform composition are underway at the US Air Force Research Laboratory at Hanscom Air Force Base by the vertical gradient freeze (VGF) method utilizing a submerged heater. Stirring can be induced in the GaSb melt just above the crystal growth interface by applying a small radial electric current in the liquid together with an axial magnetic field. The transport of any dopant and/or alloy component by the stirring can promote better melt homogeneity and allow for more rapid growth rates before the onset of constitutional supercooling. This paper presents a numerical model for the unsteady transport of a dopant during the VGF process by submerged heater growth with a steady axial magnetic field and a steady radial electric current. As the strength of the electromagnetic (EM) stirring increases, the convective dopant transport increases, the dopant transport in the melt reaches a steady state at an earlier time during growth, and the top of the crystal which has solidified after a steady state has been achieved exhibits axial dopant homogeneity. For crystal growth with stronger EM stirring, the crystal exhibits less radial segregation and the axially homogeneous section of the crystal is longer. Dopant distributions in the crystal and in the melt at several different stages during growth are presented.

  11. Investigation on the growth and characterization of 4-aminobenzophenone single crystal by the vertical dynamic gradient freeze technique

    NASA Astrophysics Data System (ADS)

    Prabhakaran, SP.; Ramesh Babu, R.; Sukumar, M.; Bhagavannarayana, G.; Ramamurthi, K.

    2014-03-01

    Growth of bulk single crystal of 4-Aminobenzophenone (4-ABP) from the vertical dynamic gradient freeze (VDGF) setup designed with eight zone furnace was investigated. The experimental parameters for the growth of 4-ABP single crystal with respect to the design of VDGF setup are discussed. The eight zones were used to generate multiple temperature gradients over the furnace, and video imaging system helped to capture the real time growth and solid-liquid interface. 4-ABP single crystal with the size of 18 mm diameter and 40 mm length was grown from this investigation. Structural and optical quality of grown crystal was examined by high resolution X-ray diffraction and UV-visible spectral analysis, respectively and the blue emission was also confirmed from the photoluminescence spectrum. Microhardness number of the crystal was estimated at different loads using Vicker's microhardness tester. The size and quality of single crystal grown from the present investigation are compared with the vertical Bridgman grown 4-ABP.

  12. The prospects for traveling magnetic fields to affect interface shape in the vertical gradient freeze growth of cadmium zinc telluride

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew; Derby, Jeffrey J.

    2013-02-01

    The influence of a traveling magnetic field (TMF) on vertical gradient freeze (VGF) growth of cadmium zinc telluride (CZT) is studied using a coupled model of magnetic induction, fluid dynamics, and heat transfer. Simulations are performed to determine the influences of current, phase shift, and frequency on melt flow and growth interface shape. A downward traveling electromagnetic wave drives flow downward at the wall, which tends to flatten the interface, whereas an upward traveling wave has the opposite effect. An optimum phase shift that maximizes Lorentz force is found to depend only on system geometry. Large currents (˜300 A) and high frequencies (˜500 Hz) make a significant impact on interface shape in the absence of thermal buoyancy, but are ineffectual under realistic conditions in a 4 in.-diameter ampoule, for which buoyancy dominates Lorentz force throughout the melt. The results indicate that interface shape in this CZT growth system is strongly governed by furnace heat transfer and is difficult to modify by TMF-driven forced convection.

  13. Effects of total liquid encapsulation on the characteristics of GaAs single crystals grown by the vertical gradient freeze technique

    NASA Astrophysics Data System (ADS)

    Bourret, E. D.; Merk, E. C.

    1991-03-01

    Total liquid encapsulation with B 2O 3 has been used to grow 50 mm diameter GaAs single crystals in PBN crucibles in a vertical gradient freeze configuration. The B 2O 3 layer efficiently prevents direct contact between the crucible and the GaAs charge and reproducible growth of single crystals can be achieved. The effect of B 2O 3 water content on the structural and electrical characteristics of the crystals was investigated. Water vapor can be trapped betwen the crystal and the crucible affecting the surface morphology of the crystals. The water content of the B 2O 3 encapsulant was found to affect the electrical properties of the crystals in a manner similar to what is observed for growth of GaAs crystals by the liquid encapsulated czochralski technique. Crystals grown encapsulated with dry B 2O 3 have been ion-implanted with silicon. The implant activations are comparable to those obtained on LEC grown crystals. Total liquid encapsulation in vertical gradient freeze can be used to produce device quality substrates.

  14. Property Improvement in CZT via Modeling and Processing Innovations . Te-particles in vertical gradient freeze CZT: Size and Spatial Distributions and Constitutional Supercooling

    SciTech Connect

    Henager, Charles H.; Alvine, Kyle J.; Bliss, Mary; Riley, Brian J.; Stave, Jean A.

    2014-10-01

    A section of a vertical gradient freeze CZT boule approximately 2100-mm3 with a planar area of 300-mm2 was prepared and examined using transmitted IR microscopy at various magnifications to determine the three-dimensional spatial and size distributions of Te-particles over large longitudinal and radial length scales. The boule section was approximately 50-mm wide by 60-mm in length by 7-mm thick and was doubly polished for TIR work. Te-particles were imaged through the thickness using extended focal imaging to locate the particles in thickness planes spaced 15-µm apart and then in plane of the image using xy-coordinates of the particle center of mass so that a true three dimensional particle map was assembled for a 1-mm by 45-mm longitudinal strip and for a 1-mm by 50-mm radial strip. Te-particle density distributions were determined as a function of longitudinal and radial positions in these strips, and treating the particles as vertices of a network created a 3D image of the particle spatial distribution. Te-particles exhibited a multi-modal log-normal size density distribution that indicated a slight preference for increasing size with longitudinal growth time, while showing a pronounced cellular network structure throughout the boule that can be correlated to dislocation network sizes in CZT. Higher magnification images revealed a typical Rayleigh-instability pearl string morphology with large and small satellite droplets. This study includes solidification experiments in small crucibles of 30:70 mixtures of Cd:Te to reduce the melting point below 1273 K (1000°C). These solidification experiments were performed over a wide range of cooling rates and clearly demonstrated a growth instability with Te-particle capture that is suggested to be responsible for one of the peaks in the size distribution using size discrimination visualization. The results are discussed with regard to a manifold Te-particle genesis history as 1) Te-particle direct capture from melt-solid growth instabilities, 2) Te-particle formation from dislocation core diffusion and the formation and breakup of Te-tubes, and 3) Te-particle formation due to classical nucleation and growth as precipitates.

  15. Semiconductor apparatus utilizing gradient freeze and liquid-solid techniques

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Caillat, Thierry F. (Inventor); Borshchevsky, Alexander (Inventor)

    1998-01-01

    Transition metals of Group VIII (Co, Rh and Ir) have been prepared as semiconductor compounds with the general formula TSb.sub.3. The skutterudite-type crystal lattice structure of these semiconductor compounds and their enhanced thermoelectric properties results in semiconductor materials which may be used in the fabrication of thermoelectric elements to substantially improve the efficiency of the resulting thermoelectric device. Semiconductor materials having the desired skutterudite-type crystal lattice structure may be prepared in accordance with the present invention by using vertical gradient freezing techniques and/or liquid phase sintering techniques. Measurements of electrical and thermal transport properties of selected semiconductor materials prepared in accordance with the present invention, demonstrated high Hall mobilities (up to 1200 cm.sup.2.V.sup.-1.s.sup.-1) and good Seebeck coefficients (up to 150 .mu.VK.sup.-1 between 300.degree. C. and 700.degree. C.). Optimizing the transport properties of semiconductor materials prepared from elemental mixtures Co, Rh, Ir and Sb resulted in a substantial increase in the thermoelectric figure of merit (ZT) at temperatures as high as 400.degree. C. for thermoelectric elements fabricated from such semiconductor materials.

  16. Controlled Temperature Gradient Improves Freezing Alloy

    NASA Technical Reports Server (NTRS)

    Schmidt, Deborah; Alter, Wendy S.; Hamilton, William D.

    1991-01-01

    Controlled gradient of temperature in advancing zone of solidification increases fatigue life of directionally solidified nickel-base superalloy. Improved solidification process eliminates, reduces, or controls microstructure of deleterious brittle phases, including carbides and gamma/gamma prime eutectic. Also reduces microsegregation and makes discrete carbides (if present) become fine and blocky. Expected to improve properties of other alloys, of both directionally-solidified polycrystalline and single-crystal forms.

  17. Vertical gradients of sunspot magnetic fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Teuber, D.; West, E. A.; Tandberg-Hanssen, E.; Henze, W., Jr.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; Woodgate, B. E.

    1983-01-01

    The results of a Solar Maximum Mission (SMM) guest investigation to determine the vertical gradients of sunspot magnetic fields for the first time from coordinated observations of photospheric and transition-region fields are described. Descriptions are given of both the photospheric vector field of a sunspot, derived from observations using the NASA Marshall Space Flight Center vector magnetograph, and of the line-of-sight component in the transition region, obtained from the SMM Ultraviolet Spectrometer and Polarimeter instrument. On the basis of these data, vertical gradients of the line-of-sight magnetic field component are calculated using three methods. It is found that the vertical gradient of Bz is lower than values from previous studies and that the transition-region field occurs at a height of approximately 4000-6000 km above the photosphere.

  18. Critique of the vertical gradient of gravity

    NASA Technical Reports Server (NTRS)

    Hammer, Sigmund

    1989-01-01

    Growing interest in high precision studies of the Earth's gravitational field warrant a critical review of precision requirements to yield useful results. Several problems are now under consideration. All of these problems involve, more or less, the precise value of the vertical gradients of gravity. The principle conclusion from this review is that the essential absence of Free Air Vertical Gravity Gradient control and actual values of gravimeter calibrations require serious attention. Large errors in high topography on official published gravity maps also cannot be ignored.

  19. Convective flows in enclosures with vertical temperature or concentration gradients

    NASA Technical Reports Server (NTRS)

    Wang, L. W.; Chai, A. T.; Sun, D. J.

    1989-01-01

    The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.

  20. Convective flows in enclosures with vertical temperature or concentration gradients

    NASA Technical Reports Server (NTRS)

    Wang, L. W.; Chai, A. T.; Sun, D. J.

    1988-01-01

    The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.

  1. Relation between geoidal undulation, deflection of the vertical and vertical gravity gradient revisited

    NASA Astrophysics Data System (ADS)

    Bouman, Johannes

    2012-04-01

    The vertical gradients of gravity anomaly and gravity disturbance can be related to horizontal first derivatives of deflection of the vertical or second derivatives of geoidal undulations. These are simplified relations of which different variations have found application in satellite altimetry with the implicit assumption that the neglected termsusing remove-restoreare sufficiently small. In this paper, the different simplified relations are rigorously connected and the neglected terms are made explicit. The main neglected terms are a curvilinear term that accounts for the difference between second derivatives in a Cartesian system and on a spherical surface, and a small circle term that stems from the difference between second derivatives on a great and small circle. The neglected terms were compared with the dynamic ocean topography (DOT) and the requirements on the GOCE gravity gradients. In addition, the signal root-mean-square (RMS) of the neglected terms and vertical gravity gradient were compared, and the effect of a remove-restore procedure was studied. These analyses show that both neglected terms have the same order of magnitude as the DOT gradient signal and may be above the GOCE requirements, and should be accounted for when combining altimetry derived and GOCE measured gradients. The signal RMS of both neglected terms is in general small when compared with the signal RMS of the vertical gravity gradient, but they may introduce gradient errors above the spherical approximation error. Remove-restore with gravity field models reduces the errors in the vertical gravity gradient, but it appears that errors above the spherical approximation error cannot be avoided at individual locations. When computing the vertical gradient of gravity anomaly from satellite altimeter data using deflections of the vertical, the small circle term is readily available and can be included. The direct computation of the vertical gradient of gravity disturbance from satellite altimeter data is more difficult than the computation of the vertical gradient of gravity anomaly because in the former case the curvilinear term is needed, which is not readily available.

  2. Nitrous Acid Vertical Gradients during SHARP 2009 in Houston, TX

    NASA Astrophysics Data System (ADS)

    Wong, K.; Tsai, J.; Pikelnaya, O.; Stutz, J.

    2010-12-01

    Nitrous acid (HONO) plays a significant role in photochemistry because its rapid photolysis is the major morning source of the hydroxyl radical (OH), which initializes and catalyzes ozone formation. Despite the importance of HONO as an OH precursor, the formation mechanisms of HONO are still not completely understood. In addition, recent field observations of unexpected high daytime HONO concentrations in both urban and rural areas point to unrecognized HONO sources, which may be photolytically enhanced. The vertical distribution of HONO both at night and during the day allows further understanding of HONO formation. However, it is currently poorly characterized by observations and models. Here we present field measurements of HONO, NO2, O3 and other trace gases that were taken at three altitude intervals (30-70m, 70-130 and 130-300 m) using UCLAs long path DOAS instrument in Houston, TX, during the Study of Houston Atmospheric Radical Precursor (SHARP) experiment from April 15 to May 29, 2009. Vertical gradients of HONO and other trace gases were observed during stable and polluted nights. HONO established negative gradients, with higher concentration near the ground than aloft. HONO gradients were positively correlated with NO2. Vertical gradients of HONO were also observed during some days. The observations of HONO profiles will be interpreted using calculations with a 1-D chemistry and transport model that allows to study the possible sources of HONO during the night and the day.

  3. Using absolute gravimeter data to determine vertical gravity gradients

    USGS Publications Warehouse

    Robertson, D.S.

    2001-01-01

    The position versus time data from a free-fall absolute gravimeter can be used to estimate the vertical gravity gradient in addition to the gravity value itself. Hipkin has reported success in estimating the vertical gradient value using a data set of unusually good quality. This paper explores techniques that may be applicable to a broader class of data that may be contaminated with "system response" errors of larger magnitude than were evident in the data used by Hipkin. This system response function is usually modelled as a sum of exponentially decaying sinusoidal components. The technique employed here involves combining the x0, v0 and g parameters from all the drops made during a site occupation into a single least-squares solution, and including the value of the vertical gradient and the coefficients of system response function in the same solution. The resulting non-linear equations must be solved iteratively and convergence presents some difficulties. Sparse matrix techniques are used to make the least-squares problem computationally tractable.

  4. Flow visualization and numerical modeling for the gradient freeze configuration during centrifugation

    NASA Astrophysics Data System (ADS)

    Skudarnov, Peter Victorovich

    A visualization system was constructed for observation of buoyant convection in the gradient freeze configuration during centrifugation. The buoyant convective flow was observed in the tangential cross-section and two horizontal cross-sections of the test cell. Without centrifugation, the usual axisymmetric flow pattern with a toroidal vortex near the bottom of the test cell was observed. With centrifugation, the flow in the test cell was primarily rotational about the cell's vertical axis. Centrifugation also modified the bottom toroidal vortex. This vortex became asymmetric and was pushed toward the bottom of the test cell. A flow pattern transition was observed in the horizontal plane 3 mm above the outer edge of the bottom end cap of the cell. This flow transition occurred at a centrifuge rotation rate of 30 rpm (Taylor number Ta = 5.7 x 105; Grashof number Gr = 8.8 x 103; Froude number Fr = 5.5 x 10-3). A minimum in the flow velocity measured in the 3 mm plane was found at 35 rpm (Ta = 7.8 x 105, Gr = 1.2 x 104; Fr = 6 x 10 -3). This minimum seems to be related to the flow transition. Numerical modeling of the flow visualization experiments was performed using Computational Fluid Dynamics solver FLUENT. Flow patterns calculated in the tangential plane and the 3 mm horizontal plane were in good agreement with those observed in the experiments for rotation rates below 30 rpm (Ta = 5.7 x 105; Gr = 8.8 x 103; Fr = 5.5 x 10-3). The flow velocity computed in the 3 mm plane also agreed well with experiments for rotation rates up to 20 rpm (Ta = 2.5 x 105, Gr = 5.1 x 103; Fr = 3.7 x 10-3). In addition, the numerical modeling predicted a shallow minimum in a mass flow in the vertical direction through surfaces parallel to the bottom of the model cell at a rotation rate of about 10 rpm (Ta = 6.4 x 104, Gr = 4.1 x 103; Fr = 9.8 x 10-4).

  5. Crystal Growth of CdTe by Gradient Freeze in Universal Multizone Crystallizator (UMC)

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Lehoczky, S. L.; Li, C.; Knuteson, D.; Raghothamachar, B.; Dudley, M.; Szoke, J.; Barczy, P.

    2004-01-01

    In the case of unsealed melt growth of an array of II-VI compounds, namely, CdTe, CdZnTe and ZnSe, there is a tremendous amount of experimental data describing the correlations between melt conditions and crystal quality. The results imply that the crystallinity quality can be improved if the melt was markedly superheated or long-time held before growth. It is speculated that after high superheating the associated complex dissociate and the spontaneous nucleation is retarded. In this study, crystals of CdTe were grown from melts which have undergone different thermal history by the unseeded gradient freeze method using the Universal Multizone Crystallizator (UMC). The effects of melt conditions on the quality of grown crystal were studied by various characterization techniques, including Synchrotron White Beam X-ray Topography (SWSXT), infrared microscopy, chemical analysis by glow discharge mass spectroscopy (GDMS), electrical conductivity and Hall measurements.

  6. How important are internal temperature gradients in french straws during freezing of bovine sperm in nitrogen vapor?

    PubMed

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2013-01-01

    The subject of present work was to predict internal temperature gradients developed during freezing of bovine sperm diluted in extender, packaged in 0.5 ml French plastic straws and suspended in static liquid nitrogen vapor at -100 degree C. For this purpose, a mathematical heat transfer model previously developed to predict freezing times (phase change was considered) of semen/extender packaged in straw was extended to predict internal temperature gradients during the cooling/freezing process. Results showed maximum temperature differences between the centre and the periphery of semen/extender "liquid" column was 1.5 degree C for an external heat transfer coefficient, h = 15 W per (m(2) K), and only 0.5 degree C for h = 5 W per (m(2) K). It is concluded that if a thermocouple wire were inserted in a 0.5 ml plastic straw to monitor the freezing process in nitrogen vapor, its radial position would have little importance since expected internal gradients may be safely neglected. This finding facilitates the interpretation of freezing rates in 0.5 ml plastic straws immersed in nitrogen vapor over liquid nitrogen, a widely used method for cryopreservation of bovine spermatozoa. PMID:23625084

  7. On crucible effects during the growth of cadmium zinc telluride in an electrodynamic gradient freeze furnace

    SciTech Connect

    Gasperino, David; Bliss, Mary; Jones, Kelly A.; Lynn, Kelvin G.; Derby, Jeffrey

    2009-01-04

    The CrysMAS code of the Crystal Growth Laboratory, Fraunhofer IISB, is applied to reveal conditions occurring in electrodynamic gradient freeze furnaces during the growth of cadmium zinc telluride crystals. Of particular interest are heat transfer and growth conditions associated with crucibles of different design, one constructed of graphite and the other of pyrolytic boron nitride (PBN). Under identical furnace set-point schedules, the PBN system exhibits very different heat transfer through the cone region of the crucible, resulting in steeper axial thermal profiles and convex solid-interface shapes (rather than the concave shapes computed for the graphite crucible). Both systems exhibit a concave interface during growth through the cylindrical part of the crucible; however, the axial thermal profile through the contents of the graphite crucible is considerably more offset from the set-point profile of the furnace due to the large axial flows of heat through the crucible walls. These conditions argue for advantage to the PBN system; however, comparatively larger radial gradients in the PBN system could lead to higher dislocation levels.

  8. On crucible effects during the growth of cadmium zinc telluride in an electrodynamic gradient freeze furnace

    NASA Astrophysics Data System (ADS)

    Gasperino, David; Bliss, Mary; Jones, Kelly; Lynn, Kelvin; Derby, Jeffrey J.

    2009-04-01

    The CrysMAS code of the Crystal Growth Laboratory, Fraunhofer IISB, is applied to reveal conditions occurring in electrodynamic gradient freeze furnaces during the growth of cadmium zinc telluride crystals. Of particular interest are heat transfer and growth conditions associated with crucibles of different design, one constructed of graphite and the other of pyrolytic boron nitride (PBN). Under identical furnace set-point schedules, the two systems exhibit very different behaviors. Specifically, the temperature field through the cone region of the PBN crucible displays much steeper axial thermal profiles and promotes convex solid-liquid interface shapes (rather than the concave shapes computed for the graphite crucible). Both systems exhibit a concave interface during growth through the cylindrical part of the crucible. However, the axial thermal profile through the graphite-crucible charge is considerably more offset from the set-point profile of the furnace due to significant axial heat flows through the crucible walls. These factors argue in favor of the PBN crucible; however, comparatively larger radial gradients in the PBN system could lead to higher dislocation levels.

  9. Retained functional integrity of bull spermatozoa after double freezing and thawing using PureSperm density gradient centrifugation.

    PubMed

    Maxwell, W M C; Parrilla, I; Caballero, I; Garcia, E; Roca, J; Martinez, E A; Vazquez, J M; Rath, D

    2007-10-01

    The main aim of this study was to compare the motility and functional integrity of bull spermatozoa after single and double freezing and thawing. The viability and morphological integrity of spermatozoa selected by PureSperm density gradient centrifugation after cryopreservation of bovine semen in two commercial extenders (Experiment 1) and the function of bull spermatozoa before and after a second freezing and thawing assisted by PureSperm selection (Experiment 2) were examined. On average, 35.8 +/- 12.1% of sperm loaded onto the PureSperm density gradient were recovered after centrifugation. In Experiment 1, post-thaw motility and acrosome integrity were higher for spermatozoa frozen in Tris-egg yolk extender than in AndroMed, whether the assessments were made immediately after thawing [80.4 +/- 12.7 vs 47.6 +/- 19.0% motile and 78.8 +/- 8.3 vs 50.1 +/- 19.5% normal apical ridge (NAR), p < 0.05] or after preparation on the gradient (83.3 +/- 8.6 vs 69.4 +/- 15.9% motile and 89.5 +/- 7.2 vs 69.1 +/- 11.4% NAR, p < 0.05). For semen frozen in Tris-egg yolk extender, selection on the PureSperm gradient did not influence total motility but significantly improved the proportion of acrosome-intact spermatozoa. After the gradient, both the total motility and percentage of normal acrosomes increased for spermatozoa frozen in AndroMed (Minitb Tiefenbach, Germany). In Experiment 2, there was no difference in sperm motility after the first and second freeze-thawing (82.9 +/- 12.7 vs 68.8 +/- 18.7%). However, the proportion of acrosome-intact spermatozoa was significantly improved by selection through the PureSperm gradient, whether measured by phase contrast microscopy (78.9 +/- 9.7 vs 90.4 +/- 4.0% NAR, p < 0.05) or flow cytometry (53.4 +/- 11.7 vs 76.3 +/- 6.0% viable acrosome-intact spermatozoa, p < 0.001). The improvement in the percentage of spermatozoa with normal acrosomes was maintained after resuspension in the cooling extender and cooling to 4 degrees C (88.2 +/- 6.2) and after re-freezing and thawing (83.6 +/- 6.56% NAR). However, flow cytometric assessment of the sperm membranes revealed a decline in the percentage of viable spermatozoa with intact membranes after the second freezing and thawing compared with after gradient centrifugation (76.3 +/- 6.0% vs 46.6 +/- 6.6%, p < 0.001) to levels equivalent to those obtained after the first round of freeze-thawing (53.4 +/- 11.7% viable acrosome-intact spermatozoa). Sperm movement characteristics assessed by computer-assisted analysis were unaffected in the population selected on the PureSperm gradients but declined after cooling of the selected and extended spermatozoa to 4 degrees C. There was no further change in these kinematic measurements after the cooled spermatozoa had undergone the second round of freeze-thawing. These results demonstrate that bull semen can be frozen and thawed, followed by a second freeze-thawing cycle of a population of spermatozoa selected by PureSperm, with retained motility and functional integrity. This points to the possibility of using double frozen spermatozoa in bovine artificial insemination programmes and to the potential benefits of PureSperm density gradient centrifugation for the application of cryopreserved bull spermatozoa to other biotechnological procedures such as flow cytometric sex sorting followed by re-freezing and thawing. PMID:17845604

  10. Modeling of daytime HONO vertical gradients during SHARP 2009

    NASA Astrophysics Data System (ADS)

    Wong, K. W.; Tsai, C.; Lefer, B.; Grossberg, N.; Stutz, J.

    2013-04-01

    Nitrous acid (HONO) acts as a major precursor of the hydroxyl radical (OH) in the urban atmospheric boundary layer in the morning and throughout the day. Despite its importance, HONO formation mechanisms are not yet completely understood. It is generally accepted that conversion of NO2 on surfaces in the presence of water is responsible for the formation of HONO in the nocturnal boundary layer, although the type of surface on which the mechanism occurs is still under debate. Recent observations of higher than expected daytime HONO concentrations in both urban and rural areas indicate the presence of unknown daytime HONO source(s). Various formation pathways in the gas phase, and on aerosol and ground surfaces have been proposed to explain the presence of daytime HONO. However, it is unclear which mechanism dominates and, in the cases of heterogeneous mechanisms, on which surfaces they occur. Vertical concentration profiles of HONO and its precursors can help in identifying the dominant HONO formation pathways. In this study, daytime HONO and NO2 vertical profiles, measured in three different height intervals (20-70, 70-130, and 130-300 m) in Houston, TX, during the 2009 Study of Houston Atmospheric Radical Precursors (SHARP) are analyzed using a one-dimensional (1-D) chemistry and transport model. Model results with various HONO formation pathways suggested in the literature are compared to the the daytime HONO and HONO/NO2 ratios observed during SHARP. The best agreement of HONO and HONO/NO2 ratios between model and observations is achieved by including both a photolytic source of HONO at the ground and on the aerosol. Model sensitivity studies show that the observed diurnal variations of the HONO/NO2 ratio are not reproduced by the model if there is only a photolytic HONO source on aerosol or in the gas phase from NO2* + H2O. Further analysis of the formation and loss pathways of HONO shows a vertical dependence of HONO chemistry during the day. Photolytic HONO formation at the ground is the major formation pathway in the lowest 20 m, while a combination of gas-phase, photolytic formation on aerosol, and vertical transport is responsible for daytime HONO between 200-300 m a.g.l. HONO removal is dominated by vertical transport below 20 m and photolysis between 200-300 m a.g.l.

  11. Modeling of daytime HONO vertical gradients during SHARP 2009

    NASA Astrophysics Data System (ADS)

    Wong, K. W.; Tsai, C.; Lefer, B.; Grossberg, N.; Stutz, J.

    2012-10-01

    Nitrous Acid (HONO) acts as a major precursor of the hydroxyl radical (OH) in the urban atmospheric boundary layer in the morning and throughout the day. Despite its importance, HONO formation mechanisms are not yet completely understood. It is generally accepted that conversion of NO2 on surfaces in the presence of water is responsible for the formation of HONO in the nocturnal boundary layer, although the type of surface on which the mechanism occurs is still under debate. Recent observations of higher than expected daytime HONO concentrations in both urban and rural areas indicate the presence of unknown daytime HONO source(s). Various formation pathways in the gas-phase and on aerosol and ground surfaces have been proposed to explain the presence of daytime HONO. However, it is unclear which mechanism dominates and, in the cases of heterogeneous mechanisms, on which surfaces they occur. Vertical concentration profiles of HONO and its precursors can help in identifying the dominant HONO formation pathways. In this study, daytime HONO and NO2 vertical profiles, measured in three different height intervals (20-70 m, 70-130 m and 130-300 m) in Houston, TX during the 2009 Study of Houston Atmospheric Radical Precursors (SHARP) are analyzed using a one-dimensional (1-D) chemistry and transport model. Model results with various HONO formation pathways suggested in the literature are compared to the the daytime HONO and HONO/NO2 ratios observed during SHARP. The best agreement of HONO and HONO/NO2 ratios between model and observations is achieved by including both a photolytic source of HONO at the ground and on the aerosol. Model sensitivity studies show that the observed diurnal variations of HONO/NO2 ratio are not reproduced by the model if there is only a photolytic HONO source on aerosol or in the gas-phase from NO2* + H2O. Further analysis of the formation and loss pathways of HONO shows a vertical dependence of HONO chemistry during the day. Photolytic HONO formation at the ground is the major formation pathway in the lowest 20 m, while a combination of gas-phase, photolytic formation on aerosol, and vertical transport is responsible for daytime HONO between 200-300 m a.g.l. HONO removal is dominated by vertical transport below 20 m and photolysis between 200-300 m a.g.l.

  12. Bulk Crystal Growth of Piezoelectric PMN-PT Crystals Using Gradient Freeze Technique for Improved SHM Sensors

    NASA Technical Reports Server (NTRS)

    Aggarwal, Mohan D.; Kochary, F.; Penn, Benjamin G.; Miller, Jim

    2007-01-01

    There has been a growing interest in recent years in lead based perovskite ferroelectric and relaxor ferroelectric solid solutions because of their excellent dielectric, piezoelectric and electrostrictive properties that make them very attractive for various sensing, actuating and structural health monitoring (SHM) applications. We are interested in the development of highly sensitive and efficient PMN-PT sensors based on large single crystals for the structural health monitoring of composite materials that may be used in future spacecrafts. Highly sensitive sensors are needed for detection of defects in these materials because they often tend to fail by distributed and interacting damage modes and much of the damage occurs beneath the top surface of the laminate and not detectable by visual inspection. Research is being carried out for various combinations of solid solutions for PMN-PT piezoelectric materials and bigger size crystals are being sought for improved sensor applications. Single crystals of this material are of interest for sensor applications because of their high piezoelectric coefficient (d33 greater than 1700 pC/N) and electromechanical coefficients (k33 greater than 0.90). For comparison, the commonly used piezoelectric ceramic lead zirconate titanate (PZT) has a d33 of about 600 pC/N and electromechanical coefficients k33 of about 0.75. At the present time, these piezoelectric relaxor crystals are grown by high temperature flux growth method and the size of these crystals are rather small (3x4x5 mm(exp 3). In the present paper, we have attempted to grow bulk single crystals of PMN-PT in a 2 inch diameter platinum crucible and successfully grown a large size crystal of 67%PMN-33%PT using the vertical gradient freeze technique with no flux. Piezoelectric properties of the grown crystals are investigated. PMN-PT plates show excellent piezoelectric properties. Samples were poled under an applied electric field of 5 kV/cm. Dielectric properties at a frequency of 1 kHz are examined. The grown PMN-PT crystals show typical relaxor dielectric properties. Additionally, the thermal properties of the sample are tested. The results are in good agreement with those found in the literature and some are reported for the first time.

  13. Daytime HONO vertical gradients during SHARP 2009 in Houston, TX

    NASA Astrophysics Data System (ADS)

    Wong, K. W.; Tsai, C.; Lefer, B.; Haman, C.; Grossberg, N.; Brune, W. H.; Ren, X.; Luke, W.; Stutz, J.

    2012-01-01

    Nitrous Acid (HONO) plays an important role in tropospheric chemistry as a precursor of the hydroxyl radical (OH), the most important oxidizing agent in the atmosphere. Nevertheless, the formation mechanisms of HONO are still not completely understood. Recent field observations found unexpectedly high daytime HONO concentrations in both urban and rural areas, which point to unrecognized, most likely photolytically enhanced HONO sources. Several gas-phase, aerosol, and ground surface chemistry mechanisms have been proposed to explain elevated daytime HONO, but atmospheric evidence to favor one over the others is still weak. New information on whether HONO formation occurs in the gas-phase, on aerosol, or at the ground may be derived from observations of the vertical distribution of HONO and its precursor nitrogen dioxide, NO2, as well as from its dependence on solar irradiance or actinic flux. Here we present field observations of HONO, NO2 and other trace gases in three altitude intervals (30-70 m, 70-130 m and 130-300 m) using UCLA's long path DOAS instrument, as well as in situ measurements of OH, NO, photolysis frequencies and solar irradiance, made in Houston, TX, during the Study of Houston Atmospheric Radical Precursor (SHARP) experiment from 20 April to 30 May 2009. The observed HONO mixing ratios were often ten times larger than the expected photostationary state with OH and NO. Larger HONO mixing ratios observed near the ground than aloft imply, but do not clearly prove, that the daytime source of HONO was located at or near the ground. Using a pseudo steady-state (PSS) approach, we calculated the missing daytime HONO formation rates, Punknown, on four sunny days. The NO2-normalized Punknown, Pnorm, showed a clear symmetrical diurnal variation with a maximum around noontime, which was well correlated with actinic flux (NO2 photolysis frequency) and solar irradiance. This behavior, which was found on all clear days in Houston, is a strong indication of a photolytic HONO source. [HONO]/[NO2] ratios also showed a clear diurnal profile, with maxima of 2-3% around noon. PSS calculations show that this behavior cannot be explained by the proposed gas-phase reaction of photoexcited NO2 (NO2*) or any other gas-phase or aerosol photolytic process occurring at similar or longer wavelengths than that of HONO photolysis. HONO formation by aerosol nitrate photolysis in the UV also seems to be unlikely. Pnorm correlated better with solar irradiance (average R2 = 0.85/0.87 for visible/UV) than with actinic flux (R2 = 0.76) on the four sunny days, clearly pointing to HONO being formed at the ground rather than on the aerosol or in the gas-phase. In addition, the observed [HONO]/[NO2] diurnal variation can be explained if the formation of HONO depends on solar irradiance, but not if it depends on the actinic flux. The vertical mixing ratio profiles, together with the stronger correlation with solar irradiance, support the idea that photolytically enhanced NO2 to HONO conversion on the ground was the dominant source of HONO in Houston.

  14. Daytime HONO Vertical Gradients during SHARP 2009 in Houston, TX

    NASA Astrophysics Data System (ADS)

    Wong, K. W.; Tsai, C.; Lefer, B.; Haman, C.; Grossberg, N.; Brune, W. H.; Ren, X.; Luke, W.; Stutz, J.

    2011-08-01

    Nitrous Acid (HONO) plays an important role in tropospheric chemistry as a precursor of the hydroxyl radical (OH), the most important oxidizing agent in the atmosphere. Nevertheless, the formation mechanisms of HONO are still not completely understood. Recent field observations found unexpectedly high daytime HONO concentrations in both urban and rural areas, which point to unrecognized, most likely photolytically enhanced HONO sources. Several gas-phase, aerosol, and ground surface chemistry mechanisms have been proposed to explain elevated daytime HONO, but atmospheric evidence to favor one over the others is still weak. New information on whether the HONO formation occurs in the gas-phase, on aerosol, or at the ground may be derived from observations of the vertical distribution of HONO and its precursor nitrogen dioxide, NO2, as well as its dependence on solar radiation or actinic flux. Here we present field observations of HONO, NO2 and other trace gases in three altitude intervals (30-70 m, 70-130 m and 130-300 m) using UCLA's long path DOAS instrument, as well as in situ measurements of OH, NO, photolysis frequencies and solar irradiance, made in Houston, TX, during the Study of Houston Atmospheric Radical Precursor (SHARP) experiment from 20 April to 30 May 2009. The observed HONO mixing ratios were often ten times larger than the expected photostationary state with OH and NO. Larger HONO mixing ratios observed near the ground than aloft, imply, but do not clearly prove, that the daytime source of HONO was located at or near the ground. Using a pseudo steady-state (PSS) approach, we calculated the missing daytime HONO formation rates, Punknown, on four sunny days. The NO2-normalized Punknown, Pnorm, showed a clear symmetrical diurnal variation with a maximum around noontime, which was well correlated with actinic flux (NO2 photolysis) and solar irradiance. This behavior, which was found on all clear days in Houston, is a strong indication of a photolytic HONO source. [HONO]/[NO2] ratios also showed a clear diurnal profile with maxima of 2-3 % around noon. PSS calculations show that this behavior cannot be explained by the proposed NO2?NO2* photolysis or any other gas-phase or aerosol photolytic process occurring at similar or longer wavelengths than that of HONO photolysis. HONO formation by aerosol nitrate photolysis in the UV also seems to be unlikely. Pnorm correlated better with solar irradiance (average R2 = 0.85/0.87 for visible/UV) than with actinic flux (R2 = 0.76) on the four sunny days, clearly pointing to a HONO formation at the ground rather than the aerosol or the gas-phase. In addition, the observed [HONO]/[NO2] diurnal variation can be explained if the formation of HONO depends on solar irradiance but not if it depends on the actinic flux. The vertical mixing ratio profiles together with the stronger correlation of solar irradiance vs. actinic flux support the idea that photolytically enhanced NO2 to HONO conversion on the ground was the dominant source of HONO in Houston.

  15. Importance of closely spaced vertical sampling in delineating chemical and microbiological gradients in groundwater studies

    USGS Publications Warehouse

    Smith, R.L.; Harvey, R.W.; LeBlanc, D.R.

    1991-01-01

    Vertical gradients of selected chemical constituents, bacterial populations, bacterial activity and electron acceptors were investigated for an unconfined aquifer contaminated with nitrate and organic compounds on Cape Cod, Massachusetts, U.S.A. Fifteen-port multilevel sampling devices (MLS's) were installed within the contaminant plume at the source of the contamination, and at 250 and 2100 m downgradient from the source. Depth profiles of specific conductance and dissolved oxygen at the downgradient sites exhibited vertical gradients that were both steep and inversely related. Narrow zones (2-4 m thick) of high N2O and NH4+ concentrations were also detected within the contaminant plume. A 27-fold change in bacterial abundance; a 35-fold change in frequency of dividing cells (FDC), an indicator of bacterial growth; a 23-fold change in 3H-glucose uptake, a measure of heterotrophic activity; and substantial changes in overall cell morphology were evident within a 9-m vertical interval at 250 m downgradient. The existence of these gradients argues for the need for closely spaced vertical sampling in groundwater studies because small differences in the vertical placement of a well screen can lead to incorrect conclusions about the chemical and microbiological processes within an aquifer.Vertical gradients of selected chemical constituents, bacterial populations, bacterial activity and electron acceptors were investigated for an unconfined aquifer contaminated with nitrate and organic compounds on Cape Cod, Massachusetts, USA. Fifteen-port multilevel sampling devices (MLS's) were installed within the contaminant plume at the source of the contamination, and at 250 and 2100 m downgradient from the source. Depth profiles of specific conductance and dissolved oxygen at the downgradient sites exhibited vertical gradients that were both steep and inversely related. Narrow zones (2-4 m thick) of high N2O and NH4+ concentrations were also detected within the contaminant plume. A 27-fold change in bacterial abundance; a 35-fold change in frequency of dividing cells (FDC), an indicator of bacterial growth; a 23-fold change in 3H-glucose uptake, a measure of heterotrophic activity; and substantial changes in overall cell morphology were evident within a 9-m vertical interval at 250 m downgradient. The existence of these gradients argues for the need for closely spaced vertical sampling in ground-water studies because small differences in the vertical placement of a well screen can lead to incorrect conclusions about the chemical and microbiological processes within an aquifer.

  16. Suppression of Hydrophobic Recovery by Plasma Polymer Films with Vertical Chemical Gradients.

    PubMed

    Hegemann, Dirk; Lorusso, Emanuela; Butron-Garcia, Maria-Isabel; Blanchard, Nomi E; Rupper, Patrick; Favia, Pietro; Heuberger, Manfred; Vandenbossche, Marianne

    2016-01-26

    Vertical chemical gradients extending over a few nanometers were explored. The gradients are based on plasma-polymerized oxygen-containing ethylene (ppOEt) films. Using plasma conditions with low CO2/C2H4 ratio and high energy input, cross-linked films were deposited as base layer, while increasing CO2 and lowering energy input resulted in less cross-linked yet highly functional films as applied as top layer. Aging studies indicate that, in particular, for very thin gradient structures, the cross-linked subsurface zone effectively hinders reorientation of the surface functional groups, thus restricting hydrophobic recovery and oxidation effects. PMID:26716609

  17. A wet/wet differential pressure sensor for measuring vertical hydraulic gradient.

    PubMed

    Fritz, Brad G; Mackley, Rob D

    2010-01-01

    Vertical hydraulic gradient is commonly measured in rivers, lakes, and streams for studies of groundwater-surface water interaction. While a number of methods with subtle differences have been applied, these methods can generally be separated into two categories; measuring surface water elevation and pressure in the subsurface separately or making direct measurements of the head difference with a manometer. Making separate head measurements allows for the use of electronic pressure sensors, providing large datasets that are particularly useful when the vertical hydraulic gradient fluctuates over time. On the other hand, using a manometer-based method provides an easier and more rapid measurement with a simpler computation to calculate the vertical hydraulic gradient. In this study, we evaluated a wet/wet differential pressure sensor for use in measuring vertical hydraulic gradient. This approach combines the advantage of high-temporal frequency measurements obtained with instrumented piezometers with the simplicity and reduced potential for human-induced error obtained with a manometer board method. Our results showed that the wet/wet differential pressure sensor provided results comparable to more traditional methods, making it an acceptable method for future use. PMID:19664046

  18. Vertical gradient correction for the oceanographic Atlas of the East Asian Seas

    NASA Astrophysics Data System (ADS)

    Chang, You-Soon; Shin, Hong-Ryeol

    2014-08-01

    Regional climatology around the East Asian Seas has been developed by an international collaboration between the National Oceanic Data Center and the Korea Oceanic Data Center. It provides reliable information on temperature and salinity climatological fields with high resolution (0.1 0.1 by 137 levels). However, there is a problem around near-bottom areas where topographic change is steep and observations are not available near the bottom. This study resolves this problem using a vertical gradient correction method when the profile is statically unstable. The stability is determined based on the Brunt-Visl frequency with individual temperature and salinity profiles. Topographic-following mapping technique employing the potential vorticity constraint term is used to construct a vertical gradient database for the temperature and salinity at every grid point. The results show that the correction is effective for eliminating large erroneous vertical gradients around near-bottom areas. In addition, we show the importance of the optimal length scale to construct a precise vertical gradient database in a particular area such as the northern shelf of Taiwan. We expect that our revised high-resolution climatological mean fields will serve as important data for relevant studies around the East Asian Seas.

  19. Comparison of heat-pulse flow measurements and vertical gradients in a fractured limestone aquifer

    SciTech Connect

    Dearborn, L.L.; Calkin, S.F.; Andolsek, R.H.; Allison, W.S.

    1996-11-01

    Establishing a site-specific relationship between heat-pulse flowmeter (HPFM) data and corresponding vertical gradient data may allow prediction of potential vertical gradients through BPFM logging alone. Vertical gradient and corresponding BPFM rates were determined for 117 test intervals in a fractured limestone bedrock aquifer. From these data, it appears that HPFM data can be used in place of more labor intensive borehole packer testing to provide estimates of vertical gradients in this type of hydrogeologic system. Groundwater conditions in the fractured bedrock were investigated through testing of 66 open boreholes, as part of the hazardous waste remedial investigation at the former Loring Air Force Base (LAFB) in northern Maine, USA. Borehole geophysical logging tools, including BPFM and acoustic televiewer (ATV), in conjunction with air hammer drilling logs, were used to target specific fracture(s) to test using conventional straddle packers. HPFM and head data from 41 boreholes met general requirements for comparison purposes, and a linear correlation trend was identified.

  20. HONO Vertical Gradients during the 2006 TRAMP and the 2009 SHARP experiments in Houston, TX

    NASA Astrophysics Data System (ADS)

    Wong, K.; Tsai, C.; Pikelnaya, O.; Stutz, J.; Fu, D.

    2009-12-01

    Nitrous acid (HONO) plays a significant role in tropospheric photochemistry as a precursor of the hydroxyl radical (OH). Despite the importance of HONO photolysis for the OH budget in the early morning, HONO formation mechanisms are not yet fully understood. In addition, recent observations of higher than expected daytime HONO concentrations are currently unexplained. The vertical distribution of HONO in the morning and during the day can have a considerable impact on its importance for ozone formation in the boundary layer. The observation of vertical profiles is also important to allow a better understanding of HONO formation in the atmosphere. Consequently there is an urgent need to provide observations and detailed model calculations of vertical HONO profiles. During the 2009 SHARP experiment from April 15 to May 29, 2009 in Houston, TX, we performed measurements of HONO, NO2, O3 and other trace gases in three altitude intervals (30-70m, 70 - 130m, and 130 - 300m), using UCLAs long path DOAS instrument. Vertical gradients of all atmospheric trace gases were frequently observed during stable nights. HONO established negative gradients, with higher concentrations near the ground, indicating that the source of HONO is at or near the ground. Daytime HONO gradients were also observed during some days. Here we compare our results with observations made at the same location in 2006 and with results from a 1-D chemical transport model to elucidate the mechanisms forming HONO in urban areas.

  1. Bulk Crystal Growth of Nonlinear Optical Organic Materials Using Inverted Vertical Gradient Freeze Method

    NASA Technical Reports Server (NTRS)

    Choi, J.; Cruz, Magda; Metzl, R.; Wang, W. S.; Aggarwal, M. D.; Penn, Benjamin G.; Frazier, Donald O.

    1998-01-01

    A new process for producing large bulk single crystals of benzil (C6H5COCOC6H5) is reported in this paper. Good quality crystals have been successfully grown using this approach to crystal growth. This method seems to be very promising for other thermally stable NLO organic materials also. The entire contents vycor crucible 1.5 inch in diameter and 2 inch deep was converted to single crystal. Purity of the starting growth material is also an important factor in the final quality of the grown crystals. The entire crystal can be very easily taken out of the crucible by simple maneuvering. Initial characterization of the grown crystals indicated that the crystals are as good as other crystals grown by conventional Bridgman Stockbarger technique.

  2. Vertical two-phase flow regimes and pressure gradients: Effect of viscosity

    SciTech Connect

    Da Hlaing, Nan; Sirivat, Anuvat; Siemanond, Kitipat; Wilkes, James O.

    2007-05-15

    The effect of liquid viscosity on the flow regimes and the corresponding pressure gradients along the vertical two-phase flow was investigated. Experiment was carried out in a vertical transparent tube of 0.019 m in diameter and 3 m in length and the pressure gradients were measured by a U-tube manometer. Water and a 50 vol.% glycerol solution were used as the working fluids whose kinematic viscosities were 0.85 x 10{sup -6} and 4.0 x 10{sup -6} m{sup 2}/s, respectively. In our air-liquid annular two-phase flow, the liquid film of various thicknesses flowed adjacent to the wall and the gas phase flowed at the center of the tube. The superficial air velocity, j{sub air}, was varied between 0.0021 and 58.7 m/s and the superficial liquid velocity, j{sub liquid}, was varied between 0 and 0.1053 m/s. In the bubble, the slug and the slug-churn flow regimes, the pressure gradients decreased with increasing Reynolds number. But in the annular and the mist flow regimes, pressure gradients increased with increasing Reynolds number. Finally, the experimentally measured pressure gradient values were compared and are in good agreement with the theoretical values. (author)

  3. Vertical gradients in the zonal wind observed in the equatorial F-region under postsunset conditions

    NASA Astrophysics Data System (ADS)

    Kiene, A.; Larsen, M. F.; Kudeki, E.

    2014-12-01

    In the early evening sector of the F region near the geomagnetic equator, an eastward pressure gradient as the sun sets reorients the neutral flow toward the east, typically occurring within one hour of local sunset. Very few vertically-resolved measurements of this effect exist. We present recent in-situ chemical tracer results from the EVEX campaign, as well as results from the earlier Guara campaign, that show strong vertical shear in the zonal wind during sunset hours in the F region, up to a 150 m/s westward shift over 60 km altitude. Eastward F-region neutral winds near the geomagnetic equator drive vertical Pedersen currents at sunset that, in turn, drive the prereversal enhancement (PRE) of the eastward electric field in the equatorial F-region that is thought to be a primary driver of equatorial spread-F. Studies of the neutral winds relating to the PRE have been primarily focused on the winds observed from ground-based interferometry and from satellite accelerometer data, techniques which generally lack vertical resolution. We show that eastward winds at one altitude are not necessarily accompanied by eastward winds at higher altitudes, i.e., that the forces that drive the neutral wind are not constant with altitude at sunset. At sunset, solar heating varies significantly with altitude, decreasing at lower altitudes first, which would create a thermal pressure gradient with a similar vertical profile to that observed in the neutral winds. We discuss the magnitude of this effect as well as other factors that could contribute to the observed vertical gradients. We then apply these effects to typical ionospheric conditions at the time of the experiments and examine the resulting neutral forcing in relation to the observed wind profiles.

  4. Vertical gradients and seasonal variation in stem CO2 efflux within a Norway spruce stand.

    PubMed

    Tarvainen, Lasse; Räntfors, Mats; Wallin, Göran

    2014-05-01

    Stem CO2 efflux is known to vary seasonally and vertically along tree stems. However, annual tree- and stand-scale efflux estimates are commonly based on measurements made only a few times a year, during daytime and at breast height. In this study, the effect of these simplifying assumptions on annual efflux estimates and their influence on the estimates of the importance of stems in stand-scale carbon cycling are evaluated. In order to assess the strength of seasonal, diurnal and along-stem variability in CO2 efflux, half-hourly measurements were carried out at three heights on three mature Norway spruce (Picea abies (L.) Karst.) trees over a period of 3 years. Making the common assumption of breast height efflux rates being representative of the entire stem was found to result in underestimations of 10-17% in the annual tree-scale CO2 efflux. Upscaling using only daytime measurements from breast height increased the underestimation to 15-20%. Furthermore, the results show that the strength of the vertical gradient varies seasonally, being strongest in the early summer and non-existent during the cool months. The observed seasonality in the vertical CO2 efflux gradient could not be explained by variation in stem temperature, temperature response of the CO2 efflux (Q10), outer-bark permeability, CO2 transport in the xylem or CO2 release from the phloem. However, the estimated CO2 concentration immediately beneath the bark was considerably higher in the upper stem during the main period of diameter growth, coinciding with the strongest vertical efflux gradient. These results suggest that higher growth rates in the upper stem are the main cause for the observed vertical variation in the stem CO2 effluxes. Furthermore, the results indicate that accounting for the vertical efflux variation is essential for assessments of the importance of stems in stand-scale carbon cycling. PMID:24878562

  5. Vertical gravity gradient surveys: field results and interpretations in British Columbia, Canada

    SciTech Connect

    Agar, C.A.; Liard, J.O.

    1982-06-01

    Two vertical gravity gradient (VGG) surveys were completed during 1977 in British Columbia. The VGG method utilizes a La Coste and Rouberg model D gravity meter in conjunction with a small gradient tripod. The work indicates that the 'free-air' effect ranges between 2600-2800 E for southwestern British Columbia, which is somewhat lower than the theoretical value of 3086 E. The usefulness of the method in mining exploration is doubtful, especially in hilly or mountainous terrain where VGG values are shown to be very terrain-sensitive. However, the importance of knowing the regional VGG variations is emphasized by the work over the Hat Creek coal deposit, B.C.

  6. Cu-Ni composition gradient for the catalytic synthesis of vertically aligned carbon nanofibers

    SciTech Connect

    Klein, Kate L; Melechko, Anatoli Vasilievich; Rack, Philip D; Fowlkes, Jason Davidson; Meyer III, Harry M; Simpson, Michael L

    2005-01-01

    The influence of catalyst alloy composition on the growth of vertically aligned carbon nanofibers was studied using Cu-Ni thin films. Metals were co-sputtered onto a substrate to form a thin film alloy with a wide compositional gradient, as determined by Auger analysis. Carbon nanofibers were then grown from the gradient catalyst film by plasma enhanced chemical vapor deposition. The alloy composition produced substantial differences in the resulting nanofibers, which varied from branched structures at 81%Ni-19%Cu to high aspect ratio nanocones at 80%Cu-20%Ni. Electron microscopy and spectroscopy techniques also revealed segregation of the initial alloy catalyst particles at certain concentrations.

  7. Three-dimensional analysis of heat flow, segregation, and interface shape of gradient-freeze crystal growth in a centrifuge

    NASA Astrophysics Data System (ADS)

    Lan, C. W.; Tu, C. Y.

    2001-06-01

    Three-dimensional (3D) heat flow, dopant segregation, and interface shape during crystal growth by a gradient freeze technique in a centrifuge are analyzed by a finite volume method. The basic flow patterns for a fixed geometry (with a concave interface) at different configurations agree well with the previous report (Friedrich et al., J. Crystal Growth 167 (1996) 45). However, the self-consistent analysis allows us for the first time to further investigate the role of the Coriolis force and centrifugal acceleration on the heat and mass transfer and the interface, simultaneously. Furthermore, the rotation speed found for the weakest convection, where the Coriolis force balances the gravitational and centrifugal forces, turns out to have larger radial segregation, despite having a larger effective segregation coefficient. Rotation about the growth axis is also investigated. For this configuration, it is found that both axial and radial segregation could be reduced under certain conditions.

  8. Vertical gradients in regional lung density and perfusion in the supine human lung: the Slinky effect.

    PubMed

    Hopkins, Susan R; Henderson, A Cortney; Levin, David L; Yamada, Kei; Arai, Tatsuya; Buxton, Richard B; Prisk, G Kim

    2007-07-01

    In vivo radioactive tracer and microsphere studies have differing conclusions as to the magnitude of the gravitational effect on the distribution of pulmonary blood flow. We hypothesized that some of the apparent vertical perfusion gradient in vivo is due to compression of dependent lung increasing local lung density and therefore perfusion/volume. To test this, six normal subjects underwent functional magnetic resonance imaging with arterial spin labeling during breath holding at functional residual capacity, and perfusion quantified in nonoverlapping 15 mm sagittal slices covering most of the right lung. Lung proton density was measured in the same slices using a short echo 2D-Fast Low-Angle SHot (FLASH) sequence. Mean perfusion was 1.7 +/- 0.6 ml x min(-1) x cm(-3) and was related to vertical height above the dependent lung (slope = -3%/cm, P < 0.0001). Lung density averaged 0.34 +/- 0.08 g/cm3 and was also related to vertical height (slope = -4.9%/cm, P < 0.0001). By contrast, when perfusion was normalized for regional lung density, the slope of the height-perfusion relationship was not significantly different from zero (P = 0.2). This suggests that in vivo variations in regional lung density affect the interpretation of vertical gradients in pulmonary blood flow and is consistent with a simple conceptual model: the lung behaves like a Slinky (Slinky is a registered trademark of Poof-Slinky Incorporated), a deformable spring distorting under its own weight. The greater density of lung tissue in the dependent regions of the lung is analogous to a greater number of coils in the dependent portion of the vertically oriented spring. This implies that measurements of perfusion in vivo will be influenced by density distributions and will differ from excised lungs where density gradients are reduced by processing. PMID:17395757

  9. Estimating Effective Vertical Diffusivity in Shallow Ponds by a Constrained Flux-Gradient Method

    NASA Astrophysics Data System (ADS)

    Bean, J. R.; Torgersen, T.

    2004-12-01

    Shallow ponds have been used to mitigate the deleterious effects of storm water run-off by acting as detention/retention basins that sequester run-off associated pollutants in sediments. Studies show that the retention efficiency of these systems can decrease over time as a result of the internal loading of nutrients/contaminants from the sediments back to the water column where they are available for export downstream. Quantifying the vertical transport of gases (down) and sediment derived materials (up) is vital to the modeling and understanding of the processes that contribute to the magnitude of internal loading. A critical parameter is the effective vertical diffusion coefficient: Kz=Dmolecular +Deddy (cm2 sec-1). The flux gradient method for estimating effective vertical thermal diffusivity has been applied with success in large lakes which undergo stratification cycles on seasonal or longer time scales. We offer a constrained version of the flux-gradient method that has been adapted for use in a shallow pond with a daily stratification cycle. The method employs heat as a tracer and assumes that transport in the face of a stable gradient is diffusive. By shrinking the spatial and temporal resolution of measurement to scales appropriate to the system of interest and carefully accounting for internal source and sink terms of heat (e.g solar radiation and sediment heat fluxes) we are able to calculate Kz as a function of time and depth during periods of stable stratification, i.e when the pond is not vertically well-mixed. Results show the magnitude of Kz varies from ca. 10-3 to 10-1 (cm2 sec-1) under stratified conditions depending primarily on the strength of stratification.

  10. The vertical metallicity gradient of the Milky Way disk: transitions in [?/Fe] populations

    SciTech Connect

    Schlesinger, Katharine J.; Johnson, Jennifer A.; Rockosi, Constance M.; Beers, Timothy C.; Harding, Paul; Allende Prieto, Carlos; Bird, Jonathan C.; Schnrich, Ralph; Yanny, Brian; Schneider, Donald P.; Weaver, Benjamin A.; Brinkmann, Jon

    2014-08-20

    Using G dwarfs from the Sloan Extension for Galactic Understanding and Exploration (SEGUE) survey, we have determined the vertical metallicity gradient in the Milky Way's disk and examined how this gradient varies for different [?/Fe] subsamples. Our sample contains over 40,000 stars with low-resolution spectroscopy over 144 lines of sight. It also covers a significant disk volume, between ?0.3 and 1.6 kpc from the Galactic plane, and allows us to examine the disk in situ, whereas previous analyses were more limited in scope. Furthermore, this work does not presuppose a disk structure, whether composed of a single complex population or distinct thin and thick disk components. We employ the SEGUE Stellar Parameter Pipeline to obtain estimates of stellar parameters, [Fe/H], and [?/Fe] and extract multiple volume-complete subsamples of approximately 1000 stars each. Based on SEGUE's target-selection algorithm, we adjust each subsample to determine an unbiased picture of disk chemistry; consequently, each individual star represents the properties of many. The metallicity gradient is 0.243{sub ?0.053}{sup +0.039} dex kpc{sup 1} for the entire sample, which we compare to various literature results. This gradient stems from the different [?/Fe] populations inhabiting different ranges of height above the Galactic plane. Each [?/Fe] subsample shows little change in median [Fe/H] with height. If we associate [?/Fe] with age, the negligible gradients of our [?/Fe] subsamples suggest that stars formed in different epochs exhibit comparable vertical structure, implying similar star formation processes and evolution.

  11. Use of vertical temperature gradients for prediction of tidal flat sediment characteristics

    NASA Astrophysics Data System (ADS)

    Miselis, Jennifer L.; Holland, K. Todd; Reed, Allen H.; Abelev, Andrei

    2012-03-01

    Sediment characteristics largely govern tidal flat morphologic evolution; however, conventional methods of investigating spatial variability in lithology on tidal flats are difficult to employ in these highly dynamic regions. In response, a series of laboratory experiments was designed to investigate the use of temperature diffusion toward sediment characterization. A vertical thermistor array was used to quantify temperature gradients in simulated tidal flat sediments of varying compositions. Thermal conductivity estimates derived from these arrays were similar to measurements from a standard heated needle probe, which substantiates the thermistor methodology. While the thermal diffusivities of dry homogeneous sediments were similar, diffusivities for saturated homogeneous sediments ranged approximately one order of magnitude. The thermal diffusivity of saturated sand was five times the thermal diffusivity of saturated kaolin and more than eight times the thermal diffusivity of saturated bentonite. This suggests that vertical temperature gradients can be used for distinguishing homogeneous saturated sands from homogeneous saturated clays and perhaps even between homogeneous saturated clay types. However, experiments with more realistic tidal flat mixtures were less discriminating. Relationships between thermal diffusivity and percent fines for saturated mixtures varied depending upon clay composition, indicating that clay hydration and/or water content controls thermal gradients. Furthermore, existing models for the bulk conductivity of sediment mixtures were improved only through the use of calibrated estimates of homogeneous end-member conductivity and water content values. Our findings suggest that remotely sensed observations of water content and thermal diffusivity could only be used to qualitatively estimate tidal flat sediment characteristics.

  12. Particle surface area dependence of mineral dust in immersion freezing mode: investigations with freely suspended drops in an acoustic levitator and a vertical wind tunnel

    NASA Astrophysics Data System (ADS)

    Diehl, K.; Debertshuser, M.; Eppers, O.; Schmithsen, H.; Mitra, S. K.; Borrmann, S.

    2014-11-01

    The heterogeneous freezing temperatures of supercooled drops were measured using an acoustic levitator. This technique allows one to freely suspend single drops in the air without any wall contact. Heterogeneous nucleation by two types of illite (illite IMt1 and illite NX) and a montmorillonite sample was investigated in the immersion mode. Drops of 1 mm in radius were monitored by a video camera while cooled down to -28 C to simulate freezing within the tropospheric temperature range. The surface temperature of the drops was contact-free, determined with an infrared thermometer; the onset of freezing was indicated by a sudden increase of the drop surface temperature. For comparison, measurements with one particle type (illite NX) were additionally performed in the Mainz vertical wind tunnel with drops of 340 ?m radius freely suspended. Immersion freezing was observed in a temperature range between -13 and -26 C as a function of particle type and particle surface area immersed in the drops. Isothermal experiments in the wind tunnel indicated that after the cooling stage freezing still proceeds, at least during the investigated time period of 30 s. The results were evaluated by applying two descriptions of heterogeneous freezing, the stochastic and the singular model. Although the wind tunnel results do not support the time-independence of the freezing process both models are applicable for comparing the results from the two experimental techniques.

  13. Light drives vertical gradients of leaf morphology in a sugar maple (Acer saccharum) forest.

    PubMed

    Coble, Adam P; Cavaleri, Molly A

    2014-02-01

    Leaf mass per area (LMA, g m(-2)) is an essential trait for modeling canopy function due to its strong association with photosynthesis, respiration and leaf nitrogen. Leaf mass per area, which is influenced by both leaf thickness and density (LMA = thickness density), generally increases from the bottom to the top of tree canopies, yet the mechanisms behind this universal pattern are not yet resolved. For decades, the light environment was assumed to be the most influential driver of within-canopy variation in LMA, yet recent evidence has shown hydrostatic gradients to be more important in upper canopy positions, especially in tall evergreen trees in temperate and tropical forests. The aim of this study was to disentangle the importance of various environmental drivers on vertical LMA gradients in a mature sugar maple (Acer saccharum Marshall) forest. We compared LMA, leaf density and leaf thickness relationships with height, light and predawn leaf water potential (?Pre) within a closed and an exposed canopy to assess leaf morphological traits at similar heights but different light conditions. Contrary to our expectations and recent findings in the literature, we found strong evidence that light was the primary driver of vertical gradients in leaf morphology. At similar heights (13-23 m), LMA was greater within the exposed canopy than the closed canopy, and light had a stronger influence over LMA compared with ?Pre. Light also had a stronger influence over both leaf thickness and density compared with ?Pre; however, the increase in LMA within both canopy types was primarily due to increasing leaf thickness with increasing light availability. This study provides strong evidence that canopy structure and crown exposure, in addition to height, should be considered as a parameter for determining vertical patterns in LMA and modeling canopy function. PMID:24531298

  14. Vertical two-phase flow regimes and pressure gradients under the influence of SDS surfactant

    SciTech Connect

    Duangprasert, Tanabordee; Sirivat, Anuvat; Siemanond, Kitipat; Wilkes, James O.

    2008-01-15

    Two-phase gas/liquid flows in vertical pipes have been systematically investigated. Water and SDS surfactant solutions at various concentrations were used as the working fluids. In particular, we focus our work on the influence of surfactant addition on the flow regimes, the corresponding pressure gradients, and the bubble sizes and velocity. Adding the surfactant lowers the air critical Reynolds numbers for the bubble-slug flow and the slug flow transitions. The pressure gradients of SDS solutions are lower than those of pure water especially in the slug flow and the slug-churn flow regimes, implying turbulent drag reduction. At low Re{sub air}, the bubble sizes of the surfactant solution are lower than those of pure water due to the increase in viscosity. With increasing and at high Re{sub air}, the bubble sizes of the SDS solution become greater than those of pure water which is attributed to the effect of surface tension. (author)

  15. Depth Estimation of Simple Causative Sources from Gravity Gradient Tensor Invariants and Vertical Component

    NASA Astrophysics Data System (ADS)

    Oru, Blent

    2010-10-01

    The gravity gradient tensor (GGT) is deduced from products of second-order derivatives of the gravitational potential. A new method based on the invariants of the GGT has been proposed in this research to interpret gravity data due to sphere, infinite horizontal cylinder and semi-infinite vertical cylinder. The method estimates the depth of these simple causative sources from the multiplication of the maximum of the gravity vertical component by the maximum value of the invariants I 1 to I 2 ratio. To show the reliability and correctness of the estimated depths on 3-D models, the method has been tested using theoretical data with and without random noise. In addition, I have applied the method to a field-data example in Texas, USA and the depth obtained by the present method is compared with those published in the literature.

  16. Two-Gradient Convection in a Vertical Slot with Maxwell-Cattaneo Heat Conduction

    SciTech Connect

    Papanicolaou, N. C.; Christov, C. I.; Jordan, P. M.

    2009-10-29

    We study the effect of the Maxwell-Cattaneo law of heat conduction (MCHC) on the 1D flow in a vertical slot subject to both vertical and horizontal temperature gradients. The gravitational acceleration is allowed to oscillate, which provides an opportunity to investigate the quantitative contribution of thermal inertia as epitomized by MCHC. The addition of the time derivative in MCHC increases the order of the system. We use a spectral expansion with Rayleigh's beam functions as the basis set, which is especially suited to fourth order boundary value problems (BVP). We show that the time derivative (relaxation of the thermal flux) has a dissipative nature and leads to the appearance of purely real negative eigenvalues. Yet it also increases the absolute value of the imaginary part and decreases the absolute value of the real part of the complex eigenvalues. Thus, the system has a somewhat more oscillatory behavior than the one based on Fourier's heat conduction law (FHC)

  17. Sensitivity of airborne fluorosensor measurements to linear vertical gradients in chlorophyll concentration

    NASA Technical Reports Server (NTRS)

    Venable, D. D.; Punjabi, A. R.; Poole, L. R.

    1984-01-01

    A semianalytic Monte Carlo radiative transfer simulation model for airborne laser fluorosensors has been extended to investigate the effects of inhomogeneities in the vertical distribution of phytoplankton concentrations in clear seawater. Simulation results for linearly varying step concentrations of chlorophyll are presented. The results indicate that statistically significant differences can be seen under certain conditions in the water Raman-normalized fluorescence signals between nonhomogeneous and homogeneous cases. A statistical test has been used to establish ranges of surface concentrations and/or verticl gradients in which calibration by surface samples would by inappropriate, and the results are discussed.

  18. Sunscreening fungal pigments influence the vertical gradient of pendulous lichens in boreal forest canopies.

    PubMed

    Frber, Leonie; Slhaug, Knut Asbjorn; Esseen, Per-Anders; Bilger, Wolfgang; Gauslaa, Yngvar

    2014-06-01

    Pendulous lichens dominate canopies of boreal forests, with dark Bryoria species in the upper canopy vs. light Alectoria and Usnea species in lower canopy. These genera offer important ecosystem services such as winter forage for reindeer and caribou. The mechanism behind this niche separation is poorly understood. We tested the hypothesis that species-specific sunscreening fungal pigments protect underlying symbiotic algae differently against high light, and thus shape the vertical canopy gradient of epiphytes. Three pale species with the reflecting pigment usnic acid (Alectoria sarmentosa, Usnea dasypoga, U. longissima) and three with dark, absorbing melanins (Bryoria capillaris, B. fremontii, B. fuscescens) were compared. We subjected the lichens to desiccation stress with and without light, and assessed their performance with chlorophyll fluorescence. Desiccation alone only affected U. longissima. By contrast, light in combination with desiccation caused photoinhibitory damage in all species. Usnic lichens were significantly more susceptible to light during desiccation than melanic ones. Thus, melanin is a more efficient light-screening pigment than usnic acid. Thereby, the vertical gradient of pendulous lichens in forest canopies is consistent with a shift in type and functioning of sunscreening pigments, from high-light-tolerant Bryoria in the upper to susceptible Alectoria and Usnea in the lower canopy. PMID:25039211

  19. Thermal stratification patterns in urban ponds and their relationships with vertical nutrient gradients.

    PubMed

    Song, Keunyea; Xenopoulos, Marguerite A; Buttle, James M; Marsalek, Jiri; Wagner, Nicole D; Pick, Frances R; Frost, Paul C

    2013-09-30

    Ponds that collect and process stormwater have become a prominent feature of urban landscapes, especially in areas recently converted to residential land use in North America. Given their increasing number and their tight hydrological connection to residential catchments, these small aquatic ecosystems could play an important role in urban biogeochemistry. However, some physicochemical aspects of urban ponds remain poorly studied. Here we assessed the frequency and strength of water column stratification, using measurements of vertical water temperature profiles at high spatial and temporal frequency, in 10 shallow urban stormwater management ponds in southern Ontario, Canada. Many of the ponds were well stratified during much of the summer of 2010 as indicated by relatively high estimates of thermal resistance to mixing (RTRM) indices. Patterns of stratification reflected local weather conditions but also varied among ponds depending on their morphometric characteristics such as maximum water depth and surface area to perimeter ratio. We found greater vertical nutrient gradients and more phosphorus accumulation in bottom waters in ponds with strong and persistent stratification, which likely results from limited particle resuspension and more dissolved phosphorus (P) release from sediments. However, subsequent mixing events in the fall diminished vertical P gradients and possibly accelerated internal loading from the sediment-water interface. Our results demonstrate that stormwater ponds can experience unexpectedly long and strong thermal stratification despite their small size and shallow water depth. Strong thermal stratification and episodic mixing in ponds likely alter the quantity and timing of internal nutrient loading, and hence affect water quality and aquatic communities in downstream receiving waters. PMID:23810965

  20. The horizontal gradients of the recent vertical movements in the Carpatho-Balkan Region

    NASA Astrophysics Data System (ADS)

    Jo, I.

    1993-12-01

    In the countries of the Carpatho-Balkan Region (CBR) intensive research of recent crustal movements has been carried out by repeated geodetic measurements for more than two decades. Within the framework of this programme during the last few years finer tendencies of the movements begin to become resolved in the measured values. For this purpose in the network of about 27,000 km total length, horizontal gradients of the vertical velocities were deduced for each levelling section and the geological sections of the lines were completed. We present the gradients for the whole CBR jointly on a thematical map, scale 1:1,000,000 (Jo et al., 1991a); a separate explanatory description belongs to it. The map was printed in colour together with English and Russian texts. It also presents the morphology. In this work the following countries took part: Czech and Slovak Republics, Poland, part of the earlier Soviet Union, Rumania, Bulgaria and Hungary. The investigations were coordinated by Hungary and the publishing of the map was done there. Within this paper the following will be presented: the method of investigation, the data used, the important intermediate steps of the work and the results including the map of horizontal gradients itself.

  1. Use of sinkhole and specific capacity distributions to assess vertical gradients in a karst aquifer

    USGS Publications Warehouse

    McCoy, K.J.; Kozar, M.D.

    2008-01-01

    The carbonate-rock aquifer in the Great Valley, West Virginia, USA, was evaluated using a database of 687 sinkholes and 350 specific capacity tests to assess structural, lithologic, and topographic influences on the groundwater flow system. The enhanced permeability of the aquifer is characterized in part by the many sinkholes, springs, and solutionally enlarged fractures throughout the valley. Yet, vertical components of subsurface flow in this highly heterogeneous aquifer are currently not well understood. To address this problem, this study examines the apparent relation between geologic features of the aquifer and two spatial indices of enhanced permeability attributed to aquifer karstification: (1) the distribution of sinkholes and (2) the occurrence of wells with relatively high specific capacity. Statistical results indicate that sinkholes (funnel and collapse) occur primarily along cleavage and bedding planes parallel to subparallel to strike where lateral or downward vertical gradients are highest. Conversely, high specific capacity values are common along prominent joints perpendicular or oblique to strike. The similarity of the latter distribution to that of springs suggests these fractures are areas of upward-convergent flow. These differences between sinkhole and high specific capacity distributions suggest vertical flow components are primarily controlled by the orientation of geologic structure and associated subsurface fracturing. ?? 2007 Springer-Verlag.

  2. Impacts of freezing and thawing dynamics on foliar litter carbon release in alpine/subalpine forests along an altitudinal gradient in the eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Fuzhong, W.; Changhui, P.; Jianxiao, Z.; Jian, Z.; Bo, T.; Wanqin, Y.

    2014-11-01

    Carbon (C) release from foliar litter is a primary component in C exchange among the atmosphere, vegetation, soil and water from respiration and leaching, but little information is currently related to the effects of freezing and thawing dynamics on C release of foliar litter in cold regions. A 2-year field litter decomposition experiment was conducted along an altitudinal gradient (~ 2700 to ~ 3600 m) to mimic temperature increases in the eastern Tibetan Plateau. C release was investigated for fresh foliar litter of spruce, fir and birch. The onset of the frozen stage, deep frozen stage and thawing stage was partitioned according to changes in the freezing and thawing dynamics of each winter. More rapid 2-year C released from fresh foliar litter at upper elevations compared to lower elevations in the alpine/subalpine region. However, high C release was observed at low altitudes during winter stages, but high altitudes exhibited high C release during growing season stages. The deep frozen stage showed higher rates of C release than other stages in the second year of decomposition. Negative-degree days showing freezing degrees were correlated to C release rates for the deep frozen stages in both years, and this relationship continued for the duration of the experiment, indicating that changes in freezing can directly modify C release from foliar litter. The results suggested that the changed freezing and thawing dynamics could delay the onset of C release in fresh litter in this cold region in the scenario of climate warming.

  3. Flow regimes in a vertical Taylor-Couette system with a radial thermal gradient

    NASA Astrophysics Data System (ADS)

    Guillerm, R.; Kang, C.; Savaro, C.; Lepiller, V.; Prigent, A.; Yang, K.-S.; Mutabazi, I.

    2015-09-01

    A rich variety of flow regimes in a Newtonian fluid inside a vertical large-aspect ratio and a wide-gap Taylor-Couette system with a radial temperature gradient has been determined in experiments and in direct numerical simulations (DNSs). Compared to previous experiments and numerical studies, a wider range of temperature differences (i.e., of the Grashof number Gr) and of the rotation rate (the Taylor number Ta) has been covered. The combined effect of rotation and of the radial temperature gradient is the occurrence of helicoidal vortices or modulated waves at the onset. Stationary axisymmetric vortices are found for very weak temperature differences. A good agreement was found for critical states between results from experiments, linear stability analysis, and DNS. Higher instability modes have been determined for a wide range of parameters and a state diagram of observable flow regimes has been established in the plane spanned by Gr and Ta. Some higher states observed in experiments were retrieved in DNS.

  4. Numerical simulation of supercritical heat transfer under severe axial density gradient in a narrow vertical tube

    SciTech Connect

    Bae, Y. Y.; Hong, S. D.; Kim, Y. W.

    2012-07-01

    A number of computational works have been performed so far for the simulation of heat transfer in a supercritical fluid. The simulations, however, faced a lot of difficulties when heat transfer deteriorates due either to buoyancy or by acceleration. When the bulk temperature approaches the pseudo-critical temperature the fluid experiences a severe axial density gradient on top of a severe radial one. Earlier numerical calculations showed, without exception, unrealistic over-predictions, as soon as the bulk temperature exceeded the pseudo-critical temperature. The over-predictions might have been resulted from an inapplicability of widely-used turbulence models. One of the major causes for the difficulties may probably be an assumption of a constant turbulent Prandtl number. Recent research, both numerical and experimental, indicates that the turbulent Prandtl number is never a constant when the gradient of physical properties is significant. This paper describes the applicability of a variable turbulent Prandtl number to the numerical simulation of heat transfer in supercritical fluids flowing in narrow vertical tubes. (authors)

  5. Individual and population plasticity of the seagrass Zostera noltii along a vertical intertidal gradient

    NASA Astrophysics Data System (ADS)

    Cabao, Susana; Machs, Raquel; Santos, Rui

    2009-04-01

    The seasonal plasticity of individual Zostera noltii architectural, reproductive and elemental content features, of plant epiphyte load and of meadow biomass-density relationships was investigated along a vertical intertidal gradient at Ria Formosa lagoon, southern Portugal. The vertical variability of the seagrass environment was evident in the sediment characteristics, which showed coarser grain size, less organic matter, lower N content and higher ammonium concentration in the low intertidal than in medium and high intertidal. A clear vertical differentiation in Z. noltii morphology was observed from longer and wider leaves, longer and wider internodes and shorter roots at low intertidal, to shorter and narrow leaves, shorter and narrower internodes and longer roots at high intertidal. The leaf size was negatively related to light availability and positively related to nutrient availability whereas the root size was negatively related to nutrient availability. The lower leaf N and P content found in low intertidal plants may reflect a dilution effect of the nutrients due to higher growth rates. Lower N content of low intertidal leaves supports previous findings that the nitrate reductase activity is lower in plants from this level. The higher epiphyte load observed in Z. noltii leaves of the low intertidal may be a consequence of the lower exposure period, but also of higher hydrodynamics that increase the availability of nutrients. No evidence of the influence of the intertidal level on the flowering shoot density was found. The cyclic temporal pattern of the biomass-density relationship was much wider at low and medium intertidal than at high intertidal. At low intertidal, the decline in shoot density during fall and winter was coincident with a biomass decrease and its increase in spring and summer coincided with the biomass increase. In medium and high intertidal, the biomass and density seasonal variations were decoupled. As a result, only at low intertidal there was a significant positive relationship between biomass and density. This suggests that Z. noltii population structure along the intertidal is regulated by different factors. Light is probably the most important factor regulating the population structure in the low intertidal, whereas desiccation is probably the main factor regulating the populations in upper intertidal. Zostera noltii showed a considerable plasticity at a physiological-, plant- and population-level along the intertidal zone, indicative of the species acclimation to the steep environmental gradient of this particular ecosystem.

  6. Impact of changes in freezing and thawing on foliar litter carbon release in alpine/subalpine forests along an altitudinal gradient in the eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wu, F.; Peng, C.; Zhu, J.; Zhang, J.; Tan, B.; Yang, W.

    2014-06-01

    Carbon (C) release from foliar litter is a primary component in C exchange between the atmosphere and terrestrial ecosystems, but little information is currently related to the effects of freezing and thawing dynamics on C release of foliar litter in cold regions. A two-year field litter decomposition experiment was conducted along an altitudinal gradient (∼2700 m to ∼3600 m) to mimic temperature increases in the eastern Tibetan Plateau. C release was investigated for fresh foliar litter of spruce, fir and birch. The onset of the frozen stage, deep frozen stage, and thawing stage were partitioned according to changes in freezing and thawing dynamics of each winter. High C release was observed in lower altitudes during winter stages, but higher altitudes exhibited high C release during growing season stages. The deep frozen stage showed higher rates of C release than other stages in the second year of decomposition. Negative degree-days showing freezing degree were correlated to C release rates for the deep frozen stages in both years, and this relationship continued for the duration of the experiment, indicating that changes in freezing can directly modify C release from foliar litter. The results suggested that climate warming could delay the onset of C release in fresh litter in this cold region.

  7. Formation of the Galactic bulge from a two-component stellar disc: explaining cylindrical rotation and a vertical metallicity gradient

    NASA Astrophysics Data System (ADS)

    Bekki, Kenji; Tsujimoto, Takuji

    2011-09-01

    Recent observational studies have revealed that the Galactic bulge has cylindrical rotation and a steeper vertical metallicity gradient. We adopt two representative models for the bulge formation and thereby investigate whether the two models can explain both the observed cylindrical rotation and vertical metallicity gradient in a self-consistent manner. One is the 'pure disc scenario' (PDS) in which the bulge is formed from a pure thin stellar disc through spontaneous bar instability. The other is the 'two-component disc scenario' (TCDS) in which the bulge is formed from a disc composed of thin and thick discs through bar instability. Our numerical simulations show that although the PDS can reproduce the cylindrical rotation, it shows a rather flatter vertical metallicity gradient that is inconsistent with observations. The derived flatter metallicity gradient is due to the vertical mixing of stars with different initial metallicities by the stellar bar. This result implies that the bulge cannot be simply formed from a pure thin stellar disc. On the other hand, the bulge formed from the two-component disc in the TCDS can explain both the observed cylindrical rotation and vertical metallicity gradient of the Galactic bulge reasonably well. In the TCDS, more metal-poor stars at higher |z| (vertical distance), which originate from the already dynamically hotter thick disc, cannot be strongly influenced by vertical mixing of the bar so that they can stay in situ for longer time-scales and thus keep the lower metallicity at higher |z|. Consequently, the vertical metallicity gradient of the bulge composed of initially thin and thick disc stars cannot be so flattened, even if the gradient of the thin disc can be flattened significantly by the bar in the TCDS. We therefore suggest that a significant fraction of the present Galactic bulge is composed of stars initially in the inner part of the thick disc and thus that these bulge stars and the thick disc have a common origin. We also suggest that the Galaxy might well have experienced some merger events that could dynamically heat up its inner regions until 10 Gyr ago.

  8. Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield.

    PubMed

    Rime, Thomas; Hartmann, Martin; Brunner, Ivano; Widmer, Franco; Zeyer, Josef; Frey, Beat

    2015-03-01

    Spatial patterns of microbial communities have been extensively surveyed in well-developed soils, but few studies investigated the vertical distribution of micro-organisms in newly developed soils after glacier retreat. We used 454-pyrosequencing to assess whether bacterial and fungal community structures differed between stages of soil development (SSD) characterized by an increasing vegetation cover from barren (vegetation cover: 0%/age: 10 years), sparsely vegetated (13%/60 years), transient (60%/80 years) to vegetated (95%/110 years) and depths (surface, 5 and 20 cm) along the Damma glacier forefield (Switzerland). The SSD significantly influenced the bacterial and fungal communities. Based on indicator species analyses, metabolically versatile bacteria (e.g. Geobacter) and psychrophilic yeasts (e.g. Mrakia) characterized the barren soils. Vegetated soils with higher C, N and root biomass consisted of bacteria able to degrade complex organic compounds (e.g. Candidatus Solibacter), lignocellulolytic Ascomycota (e.g. Geoglossum) and ectomycorrhizal Basidiomycota (e.g. Laccaria). Soil depth only influenced bacterial and fungal communities in barren and sparsely vegetated soils. These changes were partly due to more silt and higher soil moisture in the surface. In both soil ages, the surface was characterized by OTUs affiliated to Phormidium and Sphingobacteriales. In lower depths, however, bacterial and fungal communities differed between SSD. Lower depths of sparsely vegetated soils consisted of OTUs affiliated to Acidobacteria and Geoglossum, whereas depths of barren soils were characterized by OTUs related to Gemmatimonadetes. Overall, plant establishment drives the soil microbiota along the successional gradient but does not influence the vertical distribution of microbiota in recently deglaciated soils. PMID:25533315

  9. AMMONIA AND HYDROGEN SULFIDE FLUX AND DRY DEPOSITION VELOCITY ESTIMATES USING VERTICAL GRADIENT METHOD AT A COMMERCIAL BEEF CATTLE FEEDLOT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ammonia and hydrogen sulfide flux and dry deposition velocity were estimated using micrometeorological vertical gradient flux method at a commercial cattle feedyard of approximately 50,000 head of beef cattle and average 14.4 m2/head (150 ft2/head) stocking density. During summertime, NH3-N emission...

  10. Seasonality of Isoprenoid Vertical Gradient Within a Primary Rainforest in Central Amazonia

    NASA Astrophysics Data System (ADS)

    Alves, E. G.; Jardine, K.; Tota, J.; Jardine, A. B.; Yanez-Serrano, A. M.; Karl, T.; Guenther, A. B.; Tavares, J. V.; Nelson, B. W.

    2014-12-01

    Vertical mixing ratio gradients of isoprene, total monoterpenes (TMt) and total sesquiterpenes (TSt) were quantified, within and above the canopy, in a primary rainforest in central Amazonia , using a Proton Transfer Reaction - Mass Spectrometer (PTR-MS). We also estimated the fluxes of these compounds from the canopy into the atmosphere. Measurements were carried out from the dry season (Sept/2010) to the wet season (Jan/2011), continuously. All compound mixing ratios were higher during the dry season than during the wet season; the same behavior was observed for ambient air temperature and photosynthetically active radiation (PAR). Isoprene and TMt mixing ratios were higher within the canopy as compared to near the ground and above the canopy. Daytime TSt mixing ratios were higher near the ground than within and above the canopy. Isoprene and TMt had a diurnal cycle similar to diurnal cycles of air temperature and PAR suggesting that the emission of these compounds are light dependent and stimulated by increasing temperature. However, this same behavior was not observed for TSt. This is probably due to the fact that sesquiterpene emissions are not strongly light dependent; the ozonolysis of sesquiterpenes during daytime could reduce ambient sesquiterpene concentrations; and a less turbulent atmospheric boundary layer during nighttime could make the mixing ratio of sesquiterpenes higher near the surface at nighttime. Daytime flux estimations also presented seasonal variation for the fluxes of all compounds, such that fluxes of: isoprene ranged from 0.4 to 1.5 mg m-2 h-1, TMt ranged from 0.2 to 0.8 mg m-2 h-1, and TSt ranged from 0.1 to 0.25 mg m-2 h-1, being the highest end during the dry season. These flux estimations suggested that the canopy could be the main source of those compounds for the atmosphere for all seasons. Our results provide the first in situ observations of seasonal mixing ratio gradients of isoprenoids in central Amazonia, and suggest that some of the isoprenoid seasonal variations could be driven by changes in light, temperature and leaf phenology.

  11. The Effect of Vertical Temperature Gradient on the Propagation of Three-dimensional Waves in a Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Lee, Wing-Kit; Gu, Pin-Gao

    2015-11-01

    Excitation and propagation of waves in a thermally stratified disk with an arbitrary vertical temperature profile are studied. Previous analytical studies of three-dimensional waves had been focused on either isothermal or polytropic vertical disk structures. However, at the location in a protoplanetary disk where the dominant heating source is stellar irradiation, the temperature gradient may become positive in the vertical direction. We extend the analysis to study the effects of the vertical temperature structure on the waves that are excited at the Lindblad resonances. For a hotter disk atmosphere, the f-mode contributes less to the torque and remains confined near the midplane as it propagates away from the resonances. On the other hand, the excitation of the g-modes is stronger. As they propagate, they channel to the top of disk atmosphere and their group velocities decrease. The differences compared to previous studies may have implications in understanding the wave dynamics in a realistic disk structure.

  12. Weak vertical canopy gradients of photosynthetic capacities and stomatal responses in a fertile Norway spruce stand.

    PubMed

    Tarvainen, Lasse; Wallin, Gran; Uddling, Johan

    2013-12-01

    The sensitivity of carbon (C) assimilation to within-canopy nitrogen (N) allocation and of stomatal conductance (g s) to environmental variables were investigated along a vertical canopy gradient in a fertile Norway spruce [Picea abies (L.) Karst.] stand. Maximum rates of ribulose bisphosphate-saturated carboxylation (V (cmax)) and electron transport (J (max)) exhibited weak relationships with needle N content. Using these relationships together with a combined stomatal-photosynthesis model, it was found that the sensitivity of C assimilation of 12 1-year old shoots to within-canopy N allocation pattern was very weak. Modelled C assimilation based on optimal compared to observed N allocation pattern increased by only 1-2 %, and altering total needle N content by 30 % resulted in a 2-4 % change in modelled C assimilation. C assimilation was more sensitive to water use and changed by 8-12 % in response to 30 % altered stomatal conductance. No indications of significant limitations of photosynthesis by other nutrients or non-optimal within-canopy allocation of water were detected. The sensitivity of g s to photosynthetic photon flux density (PPFD) was found to be stronger in the lower canopy, while no significant within-canopy variation was observed in light-saturated g( s) or stomatal sensitivity to vapour pressure deficit (VPD). The results of this study show that, at this N rich site, photosynthesis integrated for shoots at different canopy positions is only marginally affected by N allocation pattern and that increased stand-scale N availability would only be truly beneficial to canopy photosynthesis if it resulted in increased leaf area. PMID:23797410

  13. Vertical canopy gradient in photosynthesis and monoterpenoid emissions: An insight into the chemistry and physiology behind

    NASA Astrophysics Data System (ADS)

    Šimpraga, M.; Verbeeck, H.; Bloemen, J.; Vanhaecke, L.; Demarcke, M.; Joó, E.; Pokorska, O.; Amelynck, C.; Schoon, N.; Dewulf, J.; Van Langenhove, H.; Heinesch, B.; Aubinet, M.; Steppe, K.

    2013-12-01

    It is well known that vertical canopy gradients and varying sky conditions influence photosynthesis (Pn), specific leaf area (SLA), leaf thickness (LT) and leaf pigments (lutein, â-carotene and chlorophyll). In contrast, little is known about these effects on monoterpenoid (MT) emissions. Our study examines simultaneously measured Pn, MT emissions and the MT/Pn ratio along the canopy of an adult European beech tree (Fagus sylvatica L.) in natural forest conditions. Dynamic branch enclosure systems were used at four heights in the canopy (7, 14, 21 and 25 m) in order to establish relationships and better understand the interaction between Pn and MT emissions under both sunny and cloudy sky conditions. Clear differences in Pn, MT emissions and the MT/Pn ratio were detected within the canopy. The highest Pn rates were observed in the sun leaves at 25 m due to the higher intercepted light levels, whereas MT emissions (and the MT/Pn ratio) were unexpectedly highest in the semi-shaded leaves at 21 m. The higher Pn rates and, apparently contradictory, lower MT emissions in the sun leaves may be explained by the hypothesis of Owen and Peñuelas (2005), stating synthesis of more photo-protective carotenoids may decrease the emissions of volatile isoprenoids (including MTs) because they both share the same biochemical precursors. In addition, leaf traits like SLA, LT and leaf pigments clearly differed with height in the canopy, suggesting that the leaf's physiological status cannot be neglected in future research on biogenic volatile organic compounds (BVOCs) when aiming at developing new and/or improved emission algorithms.

  14. Large Vertical Gradient of Reactive Nitrogen Oxides in the Boundary Layer: Modeling Analysis of DISCOVER-AQ Observations

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wang, Y.; Chen, G.; Smeltzer, C.; Liu, Z.; Crawford, J. H.; Olson, J. R.; Szykman, J.

    2013-12-01

    An often-used assumption of air pollution studies is the well-mixed planetary boundary layer (PBL), in which pollutants are evenly distributed. Because of the difficulty in obtaining vertically-resolved measurements, the validity of the assumption has not been thoroughly established. In this study, we use more than 200 vertical profiles observed in the DISCOVER-AQ aircraft campaign in 2011 to examine the vertical distributions of air pollutants over the Baltimore area during the summer. Contrary to the well-mixed profile, the observed median vertical profile of NOx, an important ozone precursor, shows a sharp negative gradient in the PBL. Our analysis suggests that the magnitude of NOx gradients is highly sensitive to atmospheric stability. Using a 1-D chemical transport model (REAM), we are able to reproduce the vertical profiles under different PBL stability conditions, classified based on the potential temperature gradient and the PBL height. To investigate how the parameterizations of the PBL and surface processes impact vertical profiles in 3-D chemical transport models, we test PBL mixing properties using two PBL schemes (Yonsei University (YSU) and Mellor-Yamada-Janjic (MYJ)) and two land-surface schemes (Noah and RUC) in the WRF model. Comparisons reveal that the YSU scheme performs better in turbulent and high PBL height conditions while the MYJ scheme performs better in less turbulent conditions. Results also show that the land-surface schemes in WRF do not have as large an influence as the PBL mixing schemes. Using the model results, we evaluate the impact of NOx gradient in the PBL on the calculation of the ozone production rate and satellite NO2 retrieval. We show that using the surface measurements and the well-mixed PBL assumption result in a ~30% high bias in the PBL ozone production rate. Our results also show that biases in the PBL height and the NOx gradient lead to a moderate bias (about 5%) in the retrieval of NO2 tropospheric vertical columns. In addition, we diagnose the isoprene emission flux in the 1-D model, which is constrained by in situ observations of NOx, O3, and VOCs including isoprene, and find it in good agreement with that calculated in the MEGAN model.

  15. [A 61-year-old man with progressive gait disturbance, freezing, and vertical gaze paresis who developed esophagus cancer].

    PubMed

    Miyashita, N; Kondo, T; Wakiya, M; Mori, H; Shirai, T; Takubo, H; Mizuno, Y

    1998-11-01

    We report a 61-year-old Japanese man who died of complications of esophagus cancer surgery. He was well until his 55 years of the age, when he had an onset of speech disturbance and hand writing. He was seen by a neurologist who prescribed Menesit 600 mg/day. His symptoms improved with this medication. In 1993, three years after the onset, he started to show gait disturbance and easy to fall. In 1995, he noted difficulty in eye opening. He visited our clinic on October 26, 1996. On examination, he showed vertical gaze paresis, masked face, nuchal rigidity, small step gait, freezing phenomena, and festination. His mental status was normal. He was treated with 800 mg/day of Menesit, 800 mg/day of L-dops, and 10 mg/day of bromocriptine with little improvement in his symptoms. Cranial CT scan revealed some dilatation of the third ventricle. Subsequent clinical course was one of the slow progression of his parkinsonism. In September of 1997, he noted difficulty in swallowing. He was admitted to the gastrointestinal service of our hospital on October 14, 1997. On admission, neurologic status was essentially similar to the previous one, but he showed more advanced state of his parkinsonism. Upper gastrointestinal series revealed a mass lesion of about 11.5 cm in length protruding into the lower esophagus lumen. Subtotal esophagus resection including the mass was performed on December 2, 1997. The stomach was elevated for anastomosis with the upper esophagus. No metastases were found in the mediastinum except for two lymph nodes in the para-esophageal region. The subsequent course was complicated by marked elevation of GOT, GPT, LDH, total bilirubin as well as direct bilirubin, alkaliphosphatase, and amylase starting in the evening of the surgery. On December 7, leukocytosis and pneumonic shadow were seen involving his right lung. On December 10, he developed cardiopulmonary arrest. He was once resuscitated; however, he developed cardiac arrest again seven hours later and pronounced dead. He was discussed in a neurologic CPC. The chief discussant arrived at the conclusion that the patient had PSP and the cause of the death was ascribed to circulatory disturbance to the liver. The discussant also thought that the terminal course was complicated by cholangitis or cholecystitis, sepsis, and pulmonary embolism. Surgical specimen of the esophagus tumor revealed carcinosarcoma. Postmortem examination revealed yellowish discoloration of the peritoneum and mesenterium, and accumulation of clouded ascites indicating the presence of peritonitis. Inflammatory change extended to the mediastinum. On microscopic examination, various kinds of bacilli and candida spores were seen. The liver was enlarged and a perforation was noted in the gallbladder causing biliary necrosis in the adjacent liver. An extensive infarct was seen in the left lobe of the liver; this was found to be due to obstruction of the hepatic artery at the site of the duodenohepatic mesenterium and obstruction of intrahepatic portal vein secondary to retrograde intrahepatic cholangitis in the left lobe. A piece of surgical threads was seen adjacent to the hepatic artery; foreign body granulomatous reaction was seen surrounding the surgical thread. The rupture of the gallbladder appeared to be due to the obstruction of the left branch of the hepatic artery. Neuropathologic examination revealed extensive degeneration of the pallidum, the substantia nigra, and the subthalamic nucleus and presence of neurofibrillary tangles in the remaining neurons. The neuropathologic findings were consistent with progressive supranuclear palsy, although the pathologic changes in the midbrain tegmentum was only mild gliosis. PMID:9866133

  16. Combining high resolution vertical gradients and sequence stratigraphy to delineate hydrogeologic units for a contaminated sedimentary rock aquifer system

    NASA Astrophysics Data System (ADS)

    Meyer, Jessica R.; Parker, Beth L.; Arnaud, Emmanuelle; Runkel, Anthony C.

    2016-03-01

    Hydrogeologic units (HGUs), representing subsurface contrasts in hydraulic conductivity, form the basis for all conceptual and numerical models of groundwater flow. However, conventionally, delineation of these units relies heavily on data sets indirect with respect to hydraulic properties. Here, we use the spatial and temporal characteristics of the vertical component of hydraulic gradient (i.e., vertical gradient) as the primary line of evidence for delineating HGUs for Cambrian-Ordovician sedimentary rocks at a site in Dane County, Wisconsin. The site includes a 16 km2 area encompassing a 3 km long mixed organic contaminants plume. The vertical gradients are derived from hydraulic head profiles obtained using high resolution Westbay multilevel systems installed at 7 locations along two, orthogonal 4 km long cross-sections and monitoring to depths between 90 and 146 m with an average of 3-4 monitoring zones per 10 m. These vertical gradient cross-sections reveal 11 laterally extensive HGUs with contrasting vertical hydraulic conductivity (Kv). The position and thickness of the Kv contrasts are consistently associated with sequence stratigraphic features (maximum flooding intervals and sequence boundaries) distinguished at the site using cores and borehole geophysical logs. The same sequence stratigraphic features are also traceable across much of the Cambrian-Ordovician aquifer system of the Midwest US. The vertical gradients and sequence stratigraphy were arrived at independently and when combined provide a hydraulically calibrated sequence stratigraphic framework for the site. This framework provides increased confidence in the precise delineation and description of the nature of HGU contacts in each borehole, reduced uncertainty in interpolation of the HGUs between boreholes, and some capability to predict HGU boundaries and thickness in offsite areas where high resolution hydraulic data sets are not available. Consequently, this HGU conceptual model will serve as a better basis for numerical simulations of groundwater flow and contaminant transport needed for continued risk assessment and to evaluate potential remedial technologies for the site. More broadly, the association between Kv contrasts and sequence stratigraphy demonstrated at this site provides valuable insight into the relationship between geology and hydraulic contrasts that can be transferred to other areas of the upper Midwest US and perhaps elsewhere to strata deposited in similar settings.

  17. 3D unconstrained and geologically constrained stochastic inversion of airborne vertical gravity gradient data

    NASA Astrophysics Data System (ADS)

    Tchikaya, Euloge Budet; Chouteau, Michel; Keating, Pierre; Shamsipour, Pejman

    2016-02-01

    We present an inversion tool for airborne gravity gradient data that yields a 3D density model using stochastic methods i.e. cokriging and conditional simulation. This method uses geostatistical properties of the measured gravity gradient to estimate a 3D density model whose gravity response fits the measured gravity gradient anomaly. Linearity between gravity gradient data and density allows estimation of the model (density) covariance using observed data, i.e. we adjust iteratively the density covariance matrix by fitting experimental and theoretical gravity gradient covariance matrices. Inversion can be constrained by including densities known at some locations. In addition we can explore various reasonable solutions that honour both the estimated density covariance model and the gravity gradient data using geostatistical simulation. The proposed method is first tested with two synthetic datasets generated from a sharp-boundary model and a smooth stochastic model respectively. The results show the method to be capable of retrieving models compatible with the true models; it also allows the integration of complex a priori information. The technique is then applied to gravity gradient survey data collected for the Geological Survey of Canada in the area of McFaulds Lake (Ontario, Canada) using the Falcon airborne gravity system. Unconstrained inversion returns a density model that is geologically plausible and the computed response exactly fits the observed gravity gradient anomaly.

  18. Influence of SiC pedestal in the growth of 50 mm CZT by Vertical gradient freeze method

    NASA Astrophysics Data System (ADS)

    Crocco, J.; Bensalah, H.; Zheng, Q.; Carceln, V.; Diguez, E.

    2012-12-01

    Improving the structural, optical, and electronic properties of bulk CZT remains a topic of great interest for producing high quality nuclear imaging material. Consideration must be given to the thermal environment under which crystal growth is carried out. It is important that the furnace and insulation elements are chosen and arranged to promote a convex solid liquid interface. Results are presented for 50 mm CZT ingots grown using furnace elements, which have been shown to be conducive to a convex SLI.

  19. Dynamic impact of the vertical shear of gradient wind on the tropical cyclone boundary layer wind field

    NASA Astrophysics Data System (ADS)

    Cai, Ninghao; Xu, Xin; Song, Lili; Bai, Lina; Ming, Jie; Wang, Yuan

    2014-02-01

    This work studies the impact of the vertical shear of gradient wind (VSGW) in the free atmosphere on the tropical cyclone boundary layer (TCBL). A new TCBL model is established, which relies on fiveforce balance including the pressure gradient force, Coriolis force, centrifugal force, turbulent friction, and inertial deviation force. This model is then employed to idealize tropical cyclones (TCs) produced by DeMaria's model, under different VSGW conditions (non-VSGW, positive VSGW, negative VSGW, and VSGW increase/decrease along the radial direction). The results show that the free-atmosphere VSGW is particularly important to the intensity of TC. For negative VSGW, the total horizontal velocity in the TCBL is somewhat suppressed. However, with the maximum radial inflow displaced upward and outward, the radial velocity notably intensifies. Consequently, the convergence is enhanced throughout the TCBL, giving rise to a stronger vertical pumping at the TCBL top. In contrast, for positive VSGW, the radial inflow is significantly suppressed, even with divergent outflow in the middle-upper TCBL. For varying VSGW along the radial direction, the results indicate that the sign and value of VSGW is more important than its radial distribution, and the negative VSGW induces stronger convergence and Ekman pumping in the TCBL, which favors the formation and intensification of TC.

  20. The photospheric vector magnetic field of a sunspot and its vertical gradient

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; West, E. A.; Tandberg-Hanssen, E.; Smith, J. E.; Henze, W., Jr.; Beckers, J. M.; Bruner, E. C.; Hyder, C. L.; Gurman, J. B.; Shine, R. A.

    1981-01-01

    The results of direct comparisons of photospheric and transition region line-of-sight field observations of sunspots using the SMM UV spectrometer and polarimeter are reported. The analysis accompanying the data is concentrated on demonstrating that the sunspot concentrated magnetic field extends into the transition region. An observation of a sunspot on Oct. 23, 1980 at the S 18 E 03 location is used as an example. Maximum field strengths ranged from 2030-2240 gauss for large and small umbrae viewed and inclination of the field to the line-of-sight was determined for the photosphere and transition region. The distribution of the magnetic field over the sunspot and variation of the line-of-sight gradient are discussed, as are the magnitudes and gradients of the photospheric field across the penumbral-photospheric boundaries.

  1. Helical bundle heat exchanger support plate nonlinear vertical gradient thermal stress analysis. [HTGR

    SciTech Connect

    Kozina, M.M.

    1983-03-01

    This report summarizes a set of simplified structural design equations and parameters for the treatment of in-plane temperature gradients in preliminary design of high-temperature helical-coil tube-bundle support plates. The equations apply only to cases where slope changes occur during linear temperature gradients along the plate height. In addition, they are applicable only for plates whose aspect ratio W/L is between 1.5 and 7.0. It is intended that these equations be included in the overall structural feasibility investigations and calculations for determining a heat-exchanger size or envelope. The goal is to facilitate helical bundle heat-exchanger stress calculations during preliminary design phases. In addition, the simplified method of thermal-stress analysis has been substantiated by extensive finite-element calculations.

  2. Helical bundle heat exchanger support plate nonlinear vertical gradient thermal stress analysis

    SciTech Connect

    Kozina, M.M.

    1983-01-01

    This report summarizes a set of simplified structural design equations and parameters for the treatment of in-plane temperature gradients in preliminary design of high-temperature helical coil tube bundle support plates. The equations apply only to cases where slope changes occur during linear temperature gradients along the plate height. In addition, they are applicable only for plates whose aspect ratio W/L is between 1.5 and 7.0. It is intended that these equations be included in the overall structural feasibility investigations and calculations for determining a heat exchanger size or ''envelope.'' The goal is to facilitate helical bundle heat exchanger stress calculations during preliminary design phases. In addition, the simplified method of thermal stress analysis has been substantiated by extensive finite element calculations. Therefore, the simplified method postulated, when used as a design tool, should provide the engineer with considerable time and cost savings.

  3. Freeze drying apparatus

    DOEpatents

    Coppa, Nicholas V. (Malvern, PA); Stewart, Paul (Youngstown, NY); Renzi, Ernesto (Youngstown, NY)

    2001-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  4. Freeze drying method

    DOEpatents

    Coppa, Nicholas V. (Malvern, PA); Stewart, Paul (Youngstown, NY); Renzi, Ernesto (Youngstown, NY)

    1999-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  5. Behavior of a horizontal air curtain subjected to a vertical pressure gradient

    NASA Astrophysics Data System (ADS)

    Linden, James; Phelps, LeEllen

    2012-09-01

    We present the details on an experiment to investigate the behavior of an air curtain that is subjected to a transverse pressure gradient. The setup simulates the conditions that will be present in the Advanced Technology Solar Telescope (ATST), a 4-meter solar observatory that will be built on Haleakala, Hawaii. A test rig was built to replicate the region at which the optical path crosses a temperature and pressure boundary between the telescope mount region, which is at the ambient temperature and pressure, and a warmer, pressurized lab space directly below. Use of an air curtain in place of an optically-transmitting window at the interface would allow science observations at a wider range of scientific wavelengths. With the air curtain exhibiting transitional flow behavior across the boundary, and applied pressure gradients of up to 6.5 Pa, we found that the air curtain was able to hold a pressure gradient of 0.25 Pa. As the applied pressure was increased, transient turbulent regions formed at the interface, and predictable flow behavior only occurred in the region closest to the air curtain blower. Computer modeling is used to validate the test data, identify laminar regions of the air curtain where minimal image distortion would occur, and explore the relationship between the applied pressure, effective pressure difference, and air curtain profile.

  6. Estimation of the depth to the fresh-water/salt-water interface from vertical head gradients in wells in coastal and island aquifers

    USGS Publications Warehouse

    Izuka, S.K.; Gingerich, S.B.

    1998-01-01

    An accurate estimate of the depth to the theoretical interface between fresh, water and salt water is critical to estimates of well yields in coastal and island aquifers. The Ghyben-Herzberg relation, which is commonly used to estimate interface depth, can greatly underestimate or overestimate the fresh-water thickness, because it assumes no vertical head gradients and no vertical flow. Estimation of the interface depth needs to consider the vertical head gradients and aquifer anisotropy that may be present. This paper presents a method to calculate vertical head gradients using water-level measurements made during drilling of a partially penetrating well; the gradient is then used to estimate interface depth. Application of the method to a numerically simulated fresh-water/salt-water system shows that the method is most accurate when the gradient is measured in a deeply penetrating well. Even using a shallow well, the method more accurately estimates the interface position than does the Ghyben-Herzberg relation where substantial vertical head gradients exist. Application of the method to field data shows that drilling, collection methods of water-level data, and aquifer inhomogeneities can cause difficulties, but the effects of these difficulties can be minimized.

  7. Meridional gradients in aerosol vertical distribution over Indian Mainland: Observations and model simulations

    NASA Astrophysics Data System (ADS)

    Prijith, S. S.; Suresh Babu, S.; Lakshmi, N. B.; Satheesh, S. K.; Krishna Moorthy, K.

    2016-01-01

    Multi-year observations from the network of ground-based observatories (ARFINET), established under the project 'Aerosol Radiative Forcing over India' (ARFI) of Indian Space Research Organization and space-borne lidar 'Cloud Aerosol Lidar with Orthogonal Polarization' (CALIOP) along with simulations from the chemical transport model 'Goddard Chemistry Aerosol Radiation and Transport' (GOCART), are used to characterize the vertical distribution of atmospheric aerosols over the Indian landmass and its spatial structure. While the vertical distribution of aerosol extinction showed higher values close to the surface followed by a gradual decrease at increasing altitudes, a strong meridional increase is observed in the vertical spread of aerosols across the Indian region in all seasons. It emerges that the strong thermal convections cause deepening of the atmospheric boundary layer, which although reduces the aerosol concentration at lower altitudes, enhances the concentration at higher elevations by pumping up more aerosols from below and also helping the lofted particles to reach higher levels in the atmosphere. Aerosol depolarization ratios derived from CALIPSO as well as the GOCART simulations indicate the dominance of mineral dust aerosols during spring and summer and anthropogenic aerosols in winter. During summer monsoon, though heavy rainfall associated with the Indian monsoon removes large amounts of aerosols, the prevailing southwesterly winds advect more marine aerosols over to landmass (from the adjoining oceans) leading to increase in aerosol loading at lower altitudes than in spring. During spring and summer months, aerosol loading is found to be significant, even at altitudes as high as 4km, and this is proposed to have significant impacts on the regional climate systems such as Indian monsoon.

  8. Denitrification in nitrate-contaminated groundwater: Occurrence in steep vertical geochemical gradients

    USGS Publications Warehouse

    Smith, R.L.; Howes, B.L.; Duff, J.H.

    1991-01-01

    A relatively narrow vertical zone (5-6 m thick) of NO3- containing groundwater was identified using multilevel sampling devices in a sand and gravel aquifer on Cape Cod, MA, USA. The aquifer has been chronically contaminated by surface disposal of treated sewage 0.3 km upgradient from the study area. The NO3- zone was anoxic and contained high concentrations of N2O (16.5 ??M), suggesting that it was a zone of active denitrification. Denitrifying activity was confirmed with direct measurement using acetylene block incubations with aquifer core material; the peak rate was 2.4 nmol N reduced (g sed)-1 day-1. Concentrations of dissolved inorganic carbon and N2 were close to atmospheric equilibrium in uncontaminated groundwater, but were more than 2 times higher within the contaminant plume. Excess CO2 and N2 suggested in situ formation with a stoichiometry of C and N mineralized via denitrification of 0.8 (C/N). Denitrification within the aquifer resulted in an increase in the natural ??15N of NO3- (from +13.6 to +42.0%.) and the N2 produced, with an isotopic enrichment factor, ??{lunate}, of -13.9%.. Vertical profiles of NH4+ and ??15N of NH4+ indicated that dissimilatory reduction of NO3- to NH4+ was also occurring but mass balance calculations indicated that denitrification was the predominant process. These results demonstrate that a combination approach using field mass balance, stable isotope analysis, and laboratory incubations yields useful insight as to the significance of denitrification in aquifer sediments and that closely spaced vertical sampling is necessary to adequately quantify the processes controlling C and N transport and transformation within these environments. ?? 1991.

  9. Denitrification in nitrate-contaminated groundwater: Occurrence in steep vertical geochemical gradients

    NASA Astrophysics Data System (ADS)

    Smith, Richard L.; Howes, Brian L.; Duff, John H.

    1991-07-01

    A relatively narrow vertical zone (5-6 m thick) of NO 3- containing groundwater was identified using multilevel sampling devices in a sand and gravel aquifer on Cape Cod, MA, USA. The aquifer has been chronically contaminated by surface disposal of treated sewage 0.3 km upgradient from the study area. The NO 3- zone was anoxic and contained high concentrations of N 2O (16.5 ?M), suggesting that it was a zone of active denitrification. Denitrifying activity was confirmed with direct measurement using acetylene block incubations with aquifer core material; the peak rate was 2.4 nmol N reduced (g sed) -1 day -1. Concentrations of dissolved inorganic carbon and N 2 were close to atmospheric equilibrium in uncontaminated groundwater, but were more than 2 times higher within the contaminant plume. Excess CO 2 and N 2 suggested in situ formation with a stoichiometry of C and N mineralized via denitrification of 0.8 (C/N). Denitrification within the aquifer resulted in an increase in the natural ?15N of NO 3- (from +13.6 to +42.0%.) and the N 2 produced, with an isotopic enrichment factor, ?, of -13.9%.. Vertical profiles of NH 4+ and ?15N of NH 4+ indicated that dissimilatory reduction of NO 3- to NH 4+ was also occurring but mass balance calculations indicated that denitrification was the predominant process. These results demonstrate that a combination approach using field mass balance, stable isotope analysis, and laboratory incubations yields useful insight as to the significance of denitrification in aquifer sediments and that closely spaced vertical sampling is necessary to adequately quantify the processes controlling C and N transport and transformation within these environments.

  10. Feeding and distribution of zooplankton in the desalinated ``lens'' in the Kara Sea: Impact of the vertical salinity gradient

    NASA Astrophysics Data System (ADS)

    Pasternak, A. F.; Drits, A. V.; Abyzova, G. A.; Semenova, T. N.; Sergeeva, V. M.; Flint, M. V.

    2015-11-01

    The feeding rates and distribution of dominant zooplankton in the area of the Kara Sea "lens" (upper desalinated layer) were studied in August 2014. Zooplankton abundance was low along the transect across the center of the lens but noticeably increased at the margin of the lens. Calanus glacialis, C. finmarchicus, Oithona similis, and Pseudocalanus spp. dominated among zooplankton, constituting 60-80% of the total biomass. Within the lens area, chlorophyll peaked at a depth of about 10 m, whereas zooplankton was distributed deeper than 30 m, and no diel vertical migrations were recorded. Outside the lens, zooplankton was distributed in the upper mixed layer. Specific daily rations on phytoplankton within the lens area were considerably higher than outside (5-50 and 0.2-6%, respectively). We hypothesized that accumulation of the suspended matter over a sharp density (salinity) gradient contributes to an increase in daily rations. A significant positive correlation between the values of daily ration and salinity gradients was obtained. The grazing impact of zooplankton on the primary production and the phytoplankton biomass was maximum (94 and 8%) at the lens margin, which was due to the combination of high values of zooplankton abundance and daily rations.

  11. Active bacterial community structure along vertical redox gradients in Baltic Sea sediment

    SciTech Connect

    Jansson, Janet; Edlund, Anna; Hardeman, Fredrik; Jansson, Janet K.; Sjoling, Sara

    2008-05-15

    Community structures of active bacterial populations were investigated along a vertical redox profile in coastal Baltic Sea sediments by terminal-restriction fragment length polymorphism (T-RFLP) and clone library analysis. According to correspondence analysis of T-RFLP results and sequencing of cloned 16S rRNA genes, the microbial community structures at three redox depths (179 mV, -64 mV and -337 mV) differed significantly. The bacterial communities in the community DNA differed from those in bromodeoxyuridine (BrdU)-labeled DNA, indicating that the growing members of the community that incorporated BrdU were not necessarily the most dominant members. The structures of the actively growing bacterial communities were most strongly correlated to organic carbon followed by total nitrogen and redox potentials. Bacterial identification by sequencing of 16S rRNA genes from clones of BrdU-labeled DNA and DNA from reverse transcription PCR (rt-PCR) showed that bacterial taxa involved in nitrogen and sulfur cycling were metabolically active along the redox profiles. Several sequences had low similarities to previously detected sequences indicating that novel lineages of bacteria are present in Baltic Sea sediments. Also, a high number of different 16S rRNA gene sequences representing different phyla were detected at all sampling depths.

  12. Anisotropy gradients from QL surface waves: Evidence for vertically coherent deformation in the Tibet region

    NASA Astrophysics Data System (ADS)

    Chen, Xiaojun; Park, Jeffrey

    2013-11-01

    The India-Eurasia continental collision has not only caused the high uplift of the Tibetan Plateau, but also created a broad diffuse deformation zone in Central Asia. We relate the well-constrained extent of crustal deformation in the Tibet region with underlying mantle deformation by interpreting the quasi-Love (QL) surface wave scattering in the legacy data of Tibet. QL waves are waveform anomalies generated from cross-mode coupling of Earth's free oscillations, mainly through azimuthal anisotropy. Over 50 events with QL observations are identified using recordings in Tibet. The predominant frequency content of the QL waves is near 10 mHz, and reflects peak sensitivity of anisotropy at 150 km depth in the mantle assuming horizontally-oriented symmetry axes. By calculating the delay times between the QL waves and the main Love waves, we back-project the scatterers to cluster in areas like SE Tibet, Sayan Mountain and Iran. Noticeably the spatial distribution of these scatterers borders the crustal deformation pattern quite well, especially at the deformation limits of Central Asia. This linkage suggests a vertically coherent boundary condition through the crust and the upper mantle for the India-Eurasia continental collision in Central Asia.

  13. Measurement of the Vertical Gradient of the Semidiurnal Tidal Wind Phase in Winter at the 95 Km Level

    NASA Technical Reports Server (NTRS)

    Schminder, R.; Kurschner, D.

    1984-01-01

    When supplemented by absolute reflection height measurements, low frequency wind measurements in the 90-100 km height range become truly competitive in comparison with the more widely used radar meteor wind observations. For example, height profiles of the wind parameters in the so-called meteor zone can be obtained due to the considerable interdiurnal variability of the average nighttime reflection heights controlled by geomagnetic activity. The phase of the semidiurnal tidal wind is particularly height-dependent. The measured vertical gradient of 1/4 h/km in winter corresponds to a vertical wavelength of about 50 km. Wind measurements in the upper atmosphere, at heights between 90 and 100 km, were carried out at the Collm Geophysical Observatory of Karl Marx University Leipzig for a number of years. These measurements use the closely-spaced receiver method and three measuring paths, on 179, 227, and 272 kHz. They take place every day between sunset and sunrise, i.e., nightly. A night in this sense may last as long as 18 hours in winter. Both the measurements and their evaluation are completely automatic, and the prevailing winds and tides are separated.

  14. Measurement of the vertical gradient of the semidiurnal tidal wind phase in winter at the 95 km level

    NASA Astrophysics Data System (ADS)

    Schminder, R.; Kurschner, D.

    1984-05-01

    When supplemented by absolute reflection height measurements, low frequency wind measurements in the 90-100 km height range become truly competitive in comparison with the more widely used radar meteor wind observations. For example, height profiles of the wind parameters in the so-called meteor zone can be obtained due to the considerable interdiurnal variability of the average nighttime reflection heights controlled by geomagnetic activity. The phase of the semidiurnal tidal wind is particularly height-dependent. The measured vertical gradient of 1/4 h/km in winter corresponds to a vertical wavelength of about 50 km. Wind measurements in the upper atmosphere, at heights between 90 and 100 km, were carried out at the Collm Geophysical Observatory of Karl Marx University Leipzig for a number of years. These measurements use the closely-spaced receiver method and three measuring paths, on 179, 227, and 272 kHz. They take place every day between sunset and sunrise, i.e., nightly. A night in this sense may last as long as 18 hours in winter. Both the measurements and their evaluation are completely automatic, and the prevailing winds and tides are separated.

  15. Observations of BVOC (Biogenic Volatile Organic Compound) Fluxes and Vertical Gradients in a Ponderosa Pine Forest during BEARPEX 2009

    NASA Astrophysics Data System (ADS)

    Park, J.; Fares, S.; Weber, R.; Goldstein, A.

    2010-12-01

    During summer 2009 an intensive field campaign (Biosphere Effects on AeRosols and Photochemistry EXperiment - BEARPEX) took place in Blodgett Forest, a Ponderosa pine forest in the Sierra Nevada Mountains of California. The campaign aimed to investigate biosphere-atmosphere interactions during a period of intense photochemical activity, to elucidate the fate BVOC (Biogenic Volatile Organic Compounds) in the atmosphere, and explore the processes of secondary organic aerosol formation. In this study, a PTR-MS (Proton Transfer Reaction - Mass Spectrometry) was used to measure 19 compounds (masses) including methanol, isoprene + MBO (2-Methyl-3-butene-2-ol), monoterpenes, sesquiterpenes, and some oxygenated BVOCs at 5 heights of a vertical gradient from the forest floor to above the canopy. Fluxes of the 4 dominant BVOCs were measured above the canopy with the Eddy covariance technique. In parallel with BVOC measurements, ozone fluxes and gradients, and meteorological parameters (PAR, temperature, relative humidity, wind speed, and wind direction) were recorded in order to investigate the dependence of BVOC emissions and chemistry on meteorological conditions and to test the hypothesis that BVOC remove atmospheric ozone through gas-phase reactions. BVOCs which are directly emitted from pine trees generally have the highest concentration at the lowest measurement height and the lowest concentration above the canopy. Sesquiterpenes were observed at lower concentration than monoterpenes, but with very similar vertical gradient patterns, indicating their emission patterns are similar. The observed MBO flux was approximately twice the Monoterpene flux. Measured monoterpene canopy scale flux was consistent with modeled emissions based on scaling up from branch enclosure measurements at this site (basal emission rate F30= 0.61 ±0.14 mgC m-2 hr-1 and temperature response β= 0.15 ±0.09 °C-1). We find that m/z 113, an unidentified OVOCs (oxygenated volatile organic compounds), is clearly produced by both isoprene and terpene oxidation, arriving in air advected to the site from the west indicative of the oxidation of isoprene released by oak trees ~30 km downhill, and also produced from local terpene oxidation and deposited in the pine forest canopy.

  16. Spatio-temporal distribution of the timing of start and end of growing season along vertical and horizontal gradients in Japan.

    PubMed

    Nagai, Shin; Saitoh, Taku M; Nasahara, Kenlo Nishida; Suzuki, Rikie

    2015-01-01

    We detected the spatio-temporal variability in the timing of start (SGS) and end of growing season (EGS) in Japan from 2003 to 2012 by analyzing satellite-observed daily green-red vegetation index with a 500-m spatial resolution. We also examined the characteristics of SGS and EGS timing in deciduous broadleaf and needleleaf forests along vertical and horizontal gradients and then evaluated the relationship between their timing and daily mean air temperature. We found that for the timing of SGS and EGS, changes along the vertical gradient in deciduous broadleaf forest tended to be larger than those in deciduous needleleaf forest. For both forest types, changes along the vertical and horizontal gradients in the timing of EGS tended to be smaller than those of SGS. Finally, in both forest types, the sensitivity of the timing of EGS to air temperature was much less than that of SGS. These results suggest that the spatio-temporal variability in the timing of SGS and EGS detected by satellite data, which may be correlated with leaf traits, photosynthetic capacity, and environment conditions, provide useful ground-truthing information along vertical and horizontal gradients. PMID:24781316

  17. The Effect of Pre-Impact Porosity and Vertical Density Gradients on the Gravity Signature of Lunar Craters as Seen by GRAIL

    NASA Astrophysics Data System (ADS)

    Milbury, C.; Johnson, B. C.; Melosh, H. J.; Collins, G. S.; Blair, D. M.; Soderblom, J. M.; Nimmo, F.; Phillips, R. J.; Bierson, C. J.; Zuber, M. T.

    2015-09-01

    We use iSALE to model complex crater formation on the Moon. We vary initial target porosity and model vertical density/porosity gradients in the crust. We calculate the Bouguer anomaly associated with the craters and match them to GRAIL observations.

  18. An electromagnetic sounding experiment in Germany using the vertical gradient of geomagnetic variations observed in a deep borehole

    NASA Astrophysics Data System (ADS)

    Schmucker, Ulrich; Spitzer, Klaus; Steveling, Erich

    2009-09-01

    We have recorded for 13 d, geomagnetic variations simultaneously on the Earth's surface and in a borehole at 832 m depth straight below, with a sampling rate of 1 Hz. In addition, geoelectric variations were observed at the same site near Bad Königshofen in Frankonia, Germany. The penetrated moderately conductive Triassic sediments lie above highly resistive Permian deposits. A presumably crystalline basement begins at 1500-1900 m depth. The purpose of the experiment is to determine the skin effect of geomagnetic variations and to derive from it the equivalent to the magnetotelluric (MT) surface impedance, using the vertical gradient (VG) method of electromagnetic (EM) sounding. In this way, we were able to reproduce all four elements of the MT impedance tensor, except for an unexplained but consistent downward shift of VG phases against MT phases by roughly 15° for the two off-diagonal elements. Hence, our tensor evaluation goes beyond the common practice, to express the skin effect by a single VG transfer function in response to a layered structure. The otherwise good agreement of VG and MT results implies that at our test site, the MT impedance tensor is largely distortion-free and that, for example, its pronounced anisotropy should be regarded as a genuine characteristic of the EM response for a laterally non-uniform or possibly anisotropic deep structure. The drilling site lies within the range of a widespread induction anomaly. We have observed the resulting variations of the vertical magnetic component at the surface and in the borehole and found them to be identical. The thus established absence of a skin effect for the vertical component allows us to treat the sedimentary layer down to the depth of the borehole instrument as a thin sheet, and the pertinent thin-sheet approximation for EM induction forms the basis of our analysis. We have derived the required estimate of conductance from the skin effect of horizontal components, noting that this estimate has to be real valued and the same for all frequencies. We were unable, however, to verify the resulting value of 76 S with independent geoelectric direct current (DC) measurements in the borehole and at the Earth's surface. A model study shows that the thin-sheet conductance, which is relevant for the skin effect, may be substantially higher than the depth-integrated conductivity from DC data. Robust estimates of transfer functions were derived for 20 frequencies from 5.625 to 0.007 cpm, which corresponds to periods from 10 to 10000 s. Squared skin effect coherencies are above 0.9 for periods longer than 20 s and thereby comparable to MT coherencies.

  19. Marine induction studies based on measurements of vertical gradient of scalar magnetic field. A concept and 3-D model studies

    NASA Astrophysics Data System (ADS)

    Kuvshinov, Alexey

    2014-05-01

    Most of marine EM studies are based on sea-bottom vector measurements which are logistically and instrumentally demanding and rather expensive. Recently Kuvshinov et al (2013) proposed and proved a low-cost and easy-to-deploy magnetic survey concept which exploits sea surface scalar measurements. The concept is based on responses that relate variations of the scalar magnetic field at offshore survey sites with variations of the horizontal magnetic field at onshore base site. These responses are a mixture of elements of tipper and horizontal magnetic tensor, and thus they can be used to probe the electrical conductivity of the Earth. In the present work we introduce alternative responses that relate variations of vertical gradient of the scalar magnetic field at survey sites with variations of the horizontal magnetic field at a base site. We show that these responses are a mixture of elements of inter-site magnetotelluric tensor, and thus they also can be exploited for EM sounding of the Earth. We discuss the results of 3-D model studies aimed to investigate the sensitivity of the newly introduced responses to hypothetic plume structure beneath Hawaii islands.

  20. The Effect of Pre-Impact Porosity and Vertical Density Gradients on the Gravity Signature of Lunar Craters

    NASA Astrophysics Data System (ADS)

    Milbury, Colleen; Johnson, Brandon C.; Melosh, H. Jay; Collins, Gareth S.; Blair, David M.; Soderblom, Jason M.; Nimmo, Francis; Phillips, Roger J.; Bierson, Carver J.; Zuber, Maria T.

    2015-11-01

    As a result of NASA’s dual spacecraft Gravity Recovery And Interior Laboratory (GRAIL) mission [Zuber et al., 2013; doi:10.1126/science.1231507], we now know that the lunar crust is highly porous and that the porosity varies laterally [Wieczorek et al., 2013; doi:10.1126/science.1231530] and vertically [Besserer et al., 2014; doi:10.1002/2014GL060240]. Analysis of complex craters located within the lunar highlands reveals that: 1) craters larger than diameter D~210 have positive Bouguer Anomalies (BAs), 2) craters with D ≲ 100 km have both positive and negative BAs that vary about the (near 0) mean by approximately ± 25 mGal, and, 3) D and BA are anticorrelated for craters with D ≲ 100 km [Soderblom et al., 2015; doi:10.1002/2015GL065022]. Numerical modeling by Milbury et al. [2015, LPSC] shows that pre-impact porosity is the dominant influence on the gravity signature of complex craters with D ≲ 100 km, and mantle uplift dominates the gravity for those with D > 140 km. Phillips et al. [2015, LPSC] showed that complex craters located in the South Pole-Aitken (SPA) basin tend to have more-negative BAs than similar craters in the highlands. We use the iSALE hydrocode including pore space compaction [Wünnemann et al., 2006; doi:10.1016/j.icarus.2005.10.013] and dilatant bulking [Collins, 2014; doi:10.1002/2014JE004708] to understand how the gravity signature of impact craters develop. In this study we vary crustal porosity with depth. We find that simulations that have constant porosity with depth have a lower BA for a given crater diameter than those with the same mean porosity, but that vary with depth. We used two different mean porosities (7% and 14%) and found that the BA increases with increasing porosity, similar to simulations with constant porosity. We reproduce the observed anticorrelation between BA and D for D ≲ 100 km only for simulations where the pre-impact porosity is zero or low. Our results support the observation that SPA has lower overall porosity, but higher vertical gradients, giving craters within SPA more-negative BAs than those within the highlands crust. These simulations demonstrate that the BA and porosities reported here are valid for determining general trends only.

  1. [FeFe]-hydrogenase abundance and diversity along a vertical redox gradient in Great Salt Lake, USA.

    PubMed

    Boyd, Eric S; Hamilton, Trinity L; Swanson, Kevin D; Howells, Alta E; Baxter, Bonnie K; Meuser, Jonathan E; Posewitz, Matthew C; Peters, John W

    2014-01-01

    The use of [FeFe]-hydrogenase enzymes for the biotechnological production of H2 or other reduced products has been limited by their sensitivity to oxygen (O2). Here, we apply a PCR-directed approach to determine the distribution, abundance, and diversity of hydA gene fragments along co-varying salinity and O2 gradients in a vertical water column of Great Salt Lake (GSL), UT. The distribution of hydA was constrained to water column transects that had high salt and relatively low O2 concentrations. Recovered HydA deduced amino acid sequences were enriched in hydrophilic amino acids relative to HydA from less saline environments. In addition, they harbored interesting variations in the amino acid environment of the complex H-cluster metalloenzyme active site and putative gas transfer channels that may be important for both H2 transfer and O2 susceptibility. A phylogenetic framework was created to infer the accessory cluster composition and quaternary structure of recovered HydA protein sequences based on phylogenetic relationships and the gene contexts of known complete HydA sequences. Numerous recovered HydA are predicted to harbor multiple N- and C-terminal accessory iron-sulfur cluster binding domains and are likely to exist as multisubunit complexes. This study indicates an important role for [FeFe]-hydrogenases in the functioning of the GSL ecosystem and provides new target genes and variants for use in identifying O2 tolerant enzymes for biotechnological applications. PMID:25464382

  2. [FeFe]-Hydrogenase Abundance and Diversity along a Vertical Redox Gradient in Great Salt Lake, USA

    PubMed Central

    Boyd, Eric S.; Hamilton, Trinity L.; Swanson, Kevin D.; Howells, Alta E.; Baxter, Bonnie K.; Meuser, Jonathan E.; Posewitz, Matthew C.; Peters, John W.

    2014-01-01

    The use of [FeFe]-hydrogenase enzymes for the biotechnological production of H2 or other reduced products has been limited by their sensitivity to oxygen (O2). Here, we apply a PCR-directed approach to determine the distribution, abundance, and diversity of hydA gene fragments along co-varying salinity and O2 gradients in a vertical water column of Great Salt Lake (GSL), UT. The distribution of hydA was constrained to water column transects that had high salt and relatively low O2 concentrations. Recovered HydA deduced amino acid sequences were enriched in hydrophilic amino acids relative to HydA from less saline environments. In addition, they harbored interesting variations in the amino acid environment of the complex H-cluster metalloenzyme active site and putative gas transfer channels that may be important for both H2 transfer and O2 susceptibility. A phylogenetic framework was created to infer the accessory cluster composition and quaternary structure of recovered HydA protein sequences based on phylogenetic relationships and the gene contexts of known complete HydA sequences. Numerous recovered HydA are predicted to harbor multiple N- and C-terminal accessory iron-sulfur cluster binding domains and are likely to exist as multisubunit complexes. This study indicates an important role for [FeFe]-hydrogenases in the functioning of the GSL ecosystem and provides new target genes and variants for use in identifying O2 tolerant enzymes for biotechnological applications. PMID:25464382

  3. Highly Efficient Organic Solar Cells with Improved Vertical Donor-Acceptor Compositional Gradient Via an Inverted Off-Center Spinning Method.

    PubMed

    Huang, Jiang; Carpenter, Joshua H; Li, Chang-Zhi; Yu, Jun-Sheng; Ade, Harald; Jen, Alex K-Y

    2016-02-01

    A novel, yet simple solution fabrication technique to address the trade-off between photocurrent and fill factor in thick bulk heterojunction organic solar cells is described. The inverted off-center spinning technique promotes a vertical gradient of the donor-acceptor phase-separated morphology, enabling devices with near 100% internal quantum efficiency and a high power conversion efficiency of 10.95%. PMID:26628195

  4. Estimation of the depth to the fresh-water/salt-water interface from vertical head gradients in wells in coastal and island aquifers

    NASA Astrophysics Data System (ADS)

    Izuka, Scot K.; Gingerich, Stephen B.

    An accurate estimate of the depth to the theoretical interface between fresh, water and salt water is critical to estimates of well yields in coastal and island aquifers. The Ghyben-Herzberg relation, which is commonly used to estimate interface depth, can greatly underestimate or overestimate the fresh-water thickness, because it assumes no vertical head gradients and no vertical flow. Estimation of the interface depth needs to consider the vertical head gradients and aquifer anisotropy that may be present. This paper presents a method to calculate vertical head gradients using water-level measurements made during drilling of a partially penetrating well; the gradient is then used to estimate interface depth. Application of the method to a numerically simulated fresh-water/salt-water system shows that the method is most accurate when the gradient is measured in a deeply penetrating well. Even using a shallow well, the method more accurately estimates the interface position than does the Ghyben-Herzberg relation where substantial vertical head gradients exist. Application of the method to field data shows that drilling, collection methods of water-level data, and aquifer inhomogeneities can cause difficulties, but the effects of these difficulties can be minimized. Rsum Une estimation prcise de la profondeur de l'interface thorique entre l'eau douce et l'eau sale est un lment critique dans les estimations de rendement des puits dans les aquifres insulaires et littoraux. La relation de Ghyben-Herzberg, qui est habituellement utilise pour estimer la profondeur de cette interface, peut fortement sous-estimer ou surestimer l'paisseur de l'eau douce, parce qu'elle suppose l'absence de gradient vertical de charge et d'coulement vertical. L'estimation de la profondeur de l'interface requiert de prendre en considration les gradients verticaux de charge et l'ventuelle anisotropie de l'aquifre. Cet article propose une mthode de calcul des gradients verticaux de charge partir des mesures de niveau pizomtrique faites en cours de foration d'un puits incomplet; le gradient est alors utilis pour estimer la profondeur de l'interface. L'application de cette mthode un systme eau douce - eau sale simul numriquement montre que la mthode est la plus prcise lorsque le gradient est mesur dans un puits pntrant profondment dans l'aquifre. Mme en utilisant un puits peu profond, la mthode estime la position de l'interface avec plus de prcision que ne le fait la relation de Ghyben-Herzberg lorsqu'il existe un gradient vertical de charge bien marqu. L'application de la mthode des donnes de terrain montre que la foration, les mthodes de mesure de niveau et les htrognits au sein de l'aquifre peuvent tre la cause de difficults, mais que les effets de ces difficults peuvent tre rduits. Resumen Para la estimacin de la productividad de pozos en acuferos costeros y en islas es necesaria una estimacin precisa de la profundidad de la interfaz terica entre agua dulce y agua salada. La relacin de Ghyben-Herzberg, usada habitualmente para estimar la profundidad de la interfaz, puede subestimar o sobrestimar el espesor de agua dulce, al asumir la ausencia de flujos y gradientes verticales. La estimacin de la profundidad de la interfaz debe considerar tanto estos gradientes verticales, como la posible anisotropa del acufero. En este artculo se presenta un mtodo para calcular los gradientes verticales de niveles a partir de las medidas obtenidas durante la perforacin de un pozo parcialmente penetrante para, a partir de este gradiente, estimar la profundidad de la interfaz. La aplicacin del mtodo a un sistema de agua dulce/agua salada simulado numricamente muestra que el mtodo es ms preciso cuando el gradiente se mide en un pozo profundo. Incluso en el caso de un pozo superficial, el mtodo permite una estimacin ms precisa de la profundidad de la interfaz que la aplicacin de la frmula de Ghyben-Herzberg, en los casos en l

  5. In situ modulation of the vertical distribution in a blend of P3HT and PC60BM via the addition of a composition gradient inducer

    NASA Astrophysics Data System (ADS)

    Moon, Byung Joon; Lee, Gang-Young; Im, Min Jeong; Song, Seulki; Park, Taiho

    2014-01-01

    2,2,3,3,4,4,4-Heptafluoro-N-phenyl-butyr-amide (F-ADD) was synthesized and shown to induce a composition gradient in a blend of P3HT and PC60BM. The addition of small amounts (ca. 0.5 wt%) of F-ADD modulated the chemical distribution in the blend along the vertical direction by controlling the blend component interface energy through selective interactions between F-ADD and PC60BM. A homogeneous compositional distribution along the vertical direction in the nanostructured bulk heterojunction (BHJ) increased the interfacial area, which shortened the exciton path length to the donor-acceptor interface and improved the photovoltaic performance.2,2,3,3,4,4,4-Heptafluoro-N-phenyl-butyr-amide (F-ADD) was synthesized and shown to induce a composition gradient in a blend of P3HT and PC60BM. The addition of small amounts (ca. 0.5 wt%) of F-ADD modulated the chemical distribution in the blend along the vertical direction by controlling the blend component interface energy through selective interactions between F-ADD and PC60BM. A homogeneous compositional distribution along the vertical direction in the nanostructured bulk heterojunction (BHJ) increased the interfacial area, which shortened the exciton path length to the donor-acceptor interface and improved the photovoltaic performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05312a

  6. Long-distance abscisic acid signalling under different vertical soil moisture gradients depends on bulk root water potential and average soil water content in the root zone.

    PubMed

    Puértolas, Jaime; Alcobendas, Rosalía; Alarcón, Juan J; Dodd, Ian C

    2013-08-01

    To determine how root-to-shoot abscisic acid (ABA) signalling is regulated by vertical soil moisture gradients, root ABA concentration ([ABA](root)), the fraction of root water uptake from, and root water potential of different parts of the root zone, along with bulk root water potential, were measured to test various predictive models of root xylem ABA concentration [RX-ABA](sap). Beans (Phaseolus vulgaris L. cv. Nassau) were grown in soil columns and received different irrigation treatments (top and basal watering, and withholding water for varying lengths of time) to induce different vertical soil moisture gradients. Root water uptake was measured at four positions within the column by continuously recording volumetric soil water content (θv). Average θv was inversely related to bulk root water potential (Ψ(root)). In turn, Ψ(root) was correlated with both average [ABA](root) and [RX-ABA](sap). Despite large gradients in θv, [ABA](root) and root water potential was homogenous within the root zone. Consequently, unlike some split-root studies, root water uptake fraction from layers with different soil moisture did not influence xylem sap (ABA). This suggests two different patterns of ABA signalling, depending on how soil moisture heterogeneity is distributed within the root zone, which might have implications for implementing water-saving irrigation techniques. PMID:23387513

  7. Ground freezing

    SciTech Connect

    Kinosita, S.; Fukuda, M.

    1985-01-01

    The authors' discuss how artificial freezing of the ground has been used in increasingly in the last few decades to stabilize earth materials and control groundwater seepage in geotechnical construction. Emphasis is on the relation between theory, design and application of ground freezing in construction: Thermal properties and processes in earth materials; Frost action; Mechanical properties and processes in earth materials; Engineering design and case histories (tunnels, pipelines, foundations, slopes, LNG tanks, shafts).

  8. In situ modulation of the vertical distribution in a blend of P3HT and PC(60)BM via the addition of a composition gradient inducer.

    PubMed

    Moon, Byung Joon; Lee, Gang-Young; Im, Min Jeong; Song, Seulki; Park, Taiho

    2014-02-21

    2,2,3,3,4,4,4-Heptafluoro-N-phenyl-butyr-amide (F-ADD) was synthesized and shown to induce a composition gradient in a blend of P3HT and PC60BM. The addition of small amounts (ca. 0.5 wt%) of F-ADD modulated the chemical distribution in the blend along the vertical direction by controlling the blend component interface energy through selective interactions between F-ADD and PC60BM. A homogeneous compositional distribution along the vertical direction in the nanostructured bulk heterojunction (BHJ) increased the interfacial area, which shortened the exciton path length to the donor-acceptor interface and improved the photovoltaic performance. PMID:24441576

  9. Acclimation of Leaf Nitrogen to Vertical Light Gradient at Anthesis in Wheat Is a Whole-Plant Process That Scales with the Size of the Canopy1[W][OA

    PubMed Central

    Moreau, Delphine; Allard, Vincent; Gaju, Oorbessy; Le Gouis, Jacques; Foulkes, M. John; Martre, Pierre

    2012-01-01

    Vertical leaf nitrogen (N) gradient within a canopy is classically considered as a key adaptation to the local light environment that would tend to maximize canopy photosynthesis. We studied the vertical leaf N gradient with respect to the light gradient for wheat (Triticum aestivum) canopies with the aims of quantifying its modulation by crop N status and genetic variability and analyzing its ecophysiological determinants. The vertical distribution of leaf N and light was analyzed at anthesis for 16 cultivars grown in the field in two consecutive seasons under two levels of N. The N extinction coefficient with respect to light (b) varied with N supply and cultivar. Interestingly, a scaling relationship was observed between b and the size of the canopy for all the cultivars in the different environmental conditions. The scaling coefficient of the b-green area index relationship differed among cultivars, suggesting that cultivars could be more or less adapted to low-productivity environments. We conclude that the acclimation of the leaf N gradient to the light gradient is a whole-plant process that depends on canopy size. This study demonstrates that modeling leaf N distribution and canopy expansion based on the assumption that leaf N distribution parallels that of the light is inappropriate. We provide a robust relationship accounting for vertical leaf N gradient with respect to vertical light gradient as a function of canopy size. PMID:22984122

  10. Large vertical δ13CDIC gradients in Early Triassic seas of the South China craton: Implications for oceanographic changes related to Siberian Traps volcanism

    NASA Astrophysics Data System (ADS)

    Song, Huyue; Tong, Jinnan; Algeo, Thomas J.; Horacek, Micha; Qiu, Haiou; Song, Haijun; Tian, Li; Chen, Zhong-Qiang

    2013-06-01

    Vertical gradients in the δ13C of seawater dissolved inorganic carbon (Δδ13CDIC) can be estimated for paleomarine systems based on δ13Ccarb data from sections representing a range of depositional water depths. An analysis of eight Lower Triassic sections from the northern Yangtze Platform and Nanpanjiang Basin, representing water depths of ~ 50 to 500 m, allowed reconstruction of Δδ13CDIC in Early Triassic seas of the South China craton for seven time slices representing four negative (N) and three positive (P) carbon-isotope excursions: 8.5‰ (N1), 5.8‰ (P1), 3.5‰ (N2), 6.5‰ (P2), 7.8‰ (N3), - 1.9‰ (P3), and 2.2‰ (N4). These values are much larger than vertical δ13CDIC gradients in the modern ocean (~ 1-3‰) due to intensified stratification and reduced vertical mixing in Early Triassic seas. Peaks in Δδ13CDIC around the PTB (N1) and in the early to mid-Smithian (P2-N3) coincided with episodes of strong climatic warming, reduced marine productivity, and expanded ocean anoxia. The Dienerian-Smithian boundary marks the onset of a major mid-Early Triassic disturbance, commencing ~ 1 Myr after the latest Permian mass extinction, that we link to a second eruptive stage of the Siberian Traps. Inhospitable oceanic conditions generally persisted until the early Spathian, when strong climatic cooling caused re-invigoration of global-ocean circulation, leading to an interval of negative Δδ13CDIC values and a sharp increase in δ13Ccarb driven by upwelling of nutrient-rich deepwaters. These developments marked the end of the main eruptive stage of the Siberian Traps.

  11. Eddy covariance fluxes and vertical concentration gradient measurements of NO and NO2 over a ponderosa pine ecosystem: observational evidence for within-canopy chemical removal of NOx

    NASA Astrophysics Data System (ADS)

    Min, K.-E.; Pusede, S. E.; Browne, E. C.; LaFranchi, B. W.; Cohen, R. C.

    2014-06-01

    Exchange of NOx (NO+NO2) between the atmosphere and biosphere is important for air quality, climate change, and ecosystem nutrient dynamics. There are few direct ecosystem-scale measurements of the direction and rate of atmosphere-biosphere exchange of NOx. As a result, a complete description of the processes affecting NOx following emission from soils and/or plants as they transit from within the plant/forest canopy to the free atmosphere remains poorly constrained and debated. Here, we describe measurements of NO and NO2 fluxes and vertical concentration gradients made during the Biosphere Effects on AeRosols and Photochemistry EXperiment 2009. In general, during daytime we observe upward fluxes of NO and NO2 with counter-gradient fluxes of NO. We find that NOx fluxes from the forest canopy are smaller than calculated using observed flux-gradient relationships for conserved tracers and also smaller than measured soil NO emissions. We interpret these differences as primarily due to chemistry converting NOx to higher nitrogen oxides within the forest canopy, which might be part of a mechanistic explanation for the "canopy reduction factor" applied to soil NOx emissions in large-scale models.

  12. Leaf reflectance variation along a vertical crown gradient of two deciduous tree species in a Belgian industrial habitat.

    PubMed

    Khavaninzadeh, Ali Reza; Veroustraete, Frank; Van Wittenberghe, Shari; Verrelst, Jochem; Samson, Roeland

    2015-09-01

    The reflectometry of leaf asymmetry is a novel approach in the bio-monitoring of tree health in urban or industrial habitats. Leaf asymmetry responds to the degree of environmental pollution and reflects structural changes in a leaf due to environmental pollution. This paper describes the boundary conditions to scale up from leaf to canopy level reflectance, by describing the variability of adaxial and abaxial leaf reflectance, hence leaf asymmetry, along the crown height gradients of two tree species. Our findings open a research pathway towards bio-monitoring based on the airborne remote sensing of tree canopies and their leaf asymmetric properties. PMID:26057363

  13. Tailored Height Gradients in Vertical Nanowire Arrays via Mechanical and Electronic Modulation of Metal-Assisted Chemical Etching.

    PubMed

    Otte, M A; Solis-Tinoco, V; Prieto, P; Borrisé, X; Lechuga, L M; González, M U; Sepulveda, B

    2015-09-01

    In current top-down nanofabrication methodologies the design freedom is generally constrained to the two lateral dimensions, and is only limited by the resolution of the employed nanolithographic technique. However, nanostructure height, which relies on certain mask-dependent material deposition or etching techniques, is usually uniform, and on-chip variation of this parameter is difficult and generally limited to very simple patterns. Herein, a novel nanofabrication methodology is presented, which enables the generation of high aspect-ratio nanostructure arrays with height gradients in arbitrary directions by a single and fast etching process. Based on metal-assisted chemical etching using a catalytic gold layer perforated with nanoholes, it is demonstrated how nanostructure arrays with directional height gradients can be accurately tailored by: (i) the control of the mass transport through the nanohole array, (ii) the mechanical properties of the perforated metal layer, and (iii) the conductive coupling to the surrounding gold film to accelerate the local electrochemical etching process. The proposed technique, enabling 20-fold on-chip variation of nanostructure height in a spatial range of a few micrometers, offers a new tool for the creation of novel types of nano-assemblies and metamaterials with interesting technological applications in fields such as nanophotonics, nanophononics, microfluidics or biomechanics. PMID:26033973

  14. Spatial and vertical gradients in the stable carbon isotope composition of Lower Circumpolar Deep Water over the last 900 thousand years

    NASA Astrophysics Data System (ADS)

    Williams, T.; Hillenbrand, C. D.; Piotrowski, A. M.; Smith, J.; Hodell, D. A.; Frederichs, T.; Allen, C. S.

    2014-12-01

    Changes in stable carbon isotopes (δ13C) recorded in benthic foraminiferal calcite reflect that of the dissolved inorganic carbon (DIC) of ambient seawater, and thus are used to reconstruct past changes in water mass mixing. Records of benthic foraminiferal δ13C from the Atlantic Ocean have revealed the development of a sharp vertical δ13C gradient between 2300-2500m water depth during successive glacial periods throughout the Late Quaternary, with extremely negative δ13C values recorded below this depth. It had been hypothesised that this gradient resulted from an increased stratification of water masses within the glacial Atlantic Ocean, and that these extreme δ13C values originated in the Southern Ocean. However the mechanisms behind the formation of this gradient and extreme δ13C depletion have remained unclear. This is in part due to the poor preservation of calcareous microfossils in the corrosive waters below 2500-3000m found in the Southern Ocean, which hampers our understanding of this key region. Here we present a unique new δ13C deep water record measured on benthic foraminifera (Cibicidoides spp.) from a sediment core recovered from 2100m water depth in the Amundsen Sea, south-eastern Pacific sector of the Southern Ocean. The site is bathed in Lower Circumpolar Deep Water (LCDW) today, and combined palaeomagnetic and oxygen isotope stratigraphy show that the sediments continuously span at least the last 890 ka. A comparison of this new δ13C data with other LCDW records from ODP Sites 1089/1090 in the South Atlantic and ODP Site 1123 in the Southwest Pacific demonstrate a clear spatial gradient in circum-Antarctic LCDW during glacial periods. The pool of extremely depleted glacial deep marine δ13C is restricted to the Atlantic Sector of the Southern Ocean, with increasingly positive δ13C values found in the Southwest Pacific and the south-eastern Pacific sector of the Southern Ocean. This implies that the δ13C depletion in the deep glacial Atlantic was sourced in the Atlantic sector of the Southern Ocean, and remained limited to this sector. This finding indicates either increased supply of relatively more positive δ13C deep waters or increased vertical mixing in the Indian and Pacific sectors of the glacial Southern Ocean.

  15. Field-Testing the Suitability of Microrain Radars to Describe the Spatial Gradients of the Vertical Structure of Rainfall in Mountainous Regions

    NASA Astrophysics Data System (ADS)

    Prat, O. P.; Barros, A. P.

    2009-04-01

    A Micro Rain Radar (MRR) was deployed twice in July/August and October/November 2008 for a total duration of three months at the top of a mountain ridge in the Great Smoky Mountains National Park in the Southern Appalachians. For the second period of observation, a second MRR was deployed at a lower altitude in a nearby valley. Observations from rain gauges and the MRR were used along with a microphysical model to simulate the rainfall events observed during the radar deployment. Results from an integrated analysis of the observations are presented here, with emphasis on characterizing the diurnal cycle of rainfall and ridge-valley gradients in vertical structure of rainfall with an emphasis on microphysical properties.

  16. Changes in hydrocarbon groups, soil ecotoxicity and microbiology along horizontal and vertical contamination gradients in an old landfarming field for oil refinery waste.

    PubMed

    Mikkonen, Anu; Hakala, Kati P; Lappi, Kaisa; Kondo, Elina; Vaalama, Anu; Suominen, Leena

    2012-03-01

    Horizontal and vertical contaminant gradients in an old landfarming field for oil refinery waste were characterised with the aim to assess parallel changes in hydrocarbon groups and general, microbiological and ecotoxicological soil characteristics. In the surface soil polar compounds were the most prevalent fraction of heptane-extractable hydrocarbons, superseding GC-FID-resolvable and high-molar-mass aliphatics and aromatics, but there was no indication of their relatively higher mobility or toxicity. The size of the polar fraction correlated poorly with soil physical, chemical and microbiological properties, which were better explained by the total heptane-extractable and total petroleum hydrocarbons (TPH). Deleterious effects on soil microbiology in situ were observed at surprisingly low TPH concentrations (0.3%). Due to the accumulation of polar and complexed degradation products, TPH seems an insufficient measure to assess the quality and monitor the remediation of soil with weathered hydrocarbon contamination. PMID:22243888

  17. Vertical physico-chemical gradients with distinct microbial communities in the hypersaline and heliothermal Lake Ursu (Sovata, Romania).

    PubMed

    Mth, Istvn; Borsodi, Andrea K; Tth, Erika M; Felfldi, Tams; Jurecska, Laura; Krett, Gergely; Kelemen, Zsolt; Elekes, Erzsbet; Barkcs, Katalin; Mrialigeti, Kroly

    2014-05-01

    The effect of vertical physico-chemical stratification on the planktonic microbial community composition of the deep, hypersaline and heliothermal Lake Ursu (Sovata, Romania) was examined in this study. On site and laboratory measurements were performed to determine the physical and chemical variables of the lake water, and culture-based and cultivation-independent techniques were applied to identify the members of microbial communities. The surface of the lake was characterized by a low salinity water layer while the deepest region was extremely saline (up to 300 g/L salinity). Many parameters (e.g. photosynthetically active radiation, dissolved oxygen concentration, pH, redox potential) changed dramatically from 2 to 4 m below the water surface in conjunction with the increasing salinity values. The water temperature reached a maximum at this depth. At around 3 m depth, there was a water layer with high (bacterio) chlorophyll content dominated by Prosthecochloris vibrioformis, a phototrophic green sulfur bacterium. Characteristic microbial communities with various prokaryotic taxa were identified along the different environmental parameters present in the different water layers. Some of these bacteria were known to be heterotrophic and therefore may be involved in the decomposition of lake organic material (e.g. Halomonas, Idiomarina and Pseudoalteromonas) while others in the transformation of sulfur compounds (e.g. Prosthecochloris). Eukaryotic microorganisms identified by molecular methods in the lake water belonged to genera of green algae (Mantionella and Picochlorum), and were restricted mainly to the upper layers. PMID:24531691

  18. Freeze Technology for Nuclear Applications - 13590

    SciTech Connect

    Rostmark, Susanne C.; Knutsson, Sven; Lindberg, Maria

    2013-07-01

    Freezing of soil materials is a complicated process of a number of physical processes: - freezing of pore water in a thermal gradient, - cryogenic suction causing water migration and - ice formation expanding pores inducing frost heave. Structural changes due to increase of effective stress during freezing also take place. The over consolidation gives a powerful dewatering/drying effect and the freeze process causes separation of contaminates. Artificial ground freezing (AGF is a well established technique first practiced in south Wales, as early as 1862. AGF is mostly used to stabilize tunnels and excavations. During the last ten years underwater applications of freeze technologies based on the AGF have been explored in Sweden. The technology can, and has been, used in many different steps in a remediation action. Freeze Sampling where undisturbed samples are removed in both soft and hard sediment/sludge, Freeze Dredging; retrieval of sediment with good precision and minimal redistribution, and Freeze Drying; volume reduction of contaminated sludge/sediment. The application of these technologies in a nuclear or radioactive environment provides several advantages. Sampling by freezing gives for example an advantage of an undisturbed sample taken at a specified depth, salvaging objects by freezing or removal of sludges is other applications of this, for the nuclear industry, novel technology. (authors)

  19. Reconstructing the Late Pleistocene Southern Ocean biological pump using the vertical gradient of Cd/Ca in planktic and benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Charidemou, Miros; Hall, Ian; Ziegler, Martin

    2015-04-01

    The Southern Ocean is a particularly important region in the global carbon cycle because its wind-driven upwelling regime brings CO2-rich deep waters to the ocean surface. However, outgassing of CO2 to the atmosphere is ultimately determined by the efficiency of the soft-tissue biological pump which transfers carbon back into the deep sea. Biological productivity in the Southern Ocean on glacial-interglacial timescales is thought to be influenced by the availability of iron from terrestrial dust sources (Martin, 1990). However, the exact nature of the relationship between productivity and dust flux is still debated (Ziegler et al., 2013; Martinez-Garcia et al., 2014) and remains unclear for earlier times such as during the Middle Pleistocene Transition (MPT). Changes in the strength of the soft-tissue biological pump can be reconstructed with relative ease by measuring carbon isotopes in planktic and benthic foraminifera and quantifying the vertical gradient between them (Ziegler et al., 2013). Our ultimate aim is to use this technique to reconstruct changes in the biological pump in the Southern Ocean during the MPT, when a sharp rise in dust flux is observed in the sedimentary record (Martinez-Garcia et al., 2011). This will allow us to assess the contribution of changes in the Southern Ocean biological pump to the climatic reorganisation that occurred during the MPT. However, before the Δδ13C record is constructed for the MPT it is vital to confirm that this method is indeed a reliable proxy for the soft-tissue biological pump. Records of Δδ13C can be influenced by changes in the whole ocean inventory of δ13C, changes in circulation and changes in the degree of fractionation between the ocean and the atmosphere. The impact of inventory and circulation changes can be minimised by careful selection of study sites and by targeting foraminifera that live within specific water masses. However, deviations of Δδ13C from the biological signal could certainly arise due to δ13C fractionation between the ocean and the atmosphere. Due to the similarity in the distribution of phosphate and cadmium (Cd) in the ocean and the incorporation of this trace metal into the calcite tests of foraminifera, Cd/Ca ratios can provide an additional proxy for reconstructing the vertical nutrient distribution in the ocean in the same way as δ13C. We present downcore records of Cd/Ca in the deep-dwelling planktic species, Globorotalia truncatulinoides (s) and the benthic species, Cibicidoides wuellerstorfi from sediment core MD02-2588. A new core a core-top calibration of Cd/Ca in G. truncatulinoides, combined with the established calibration for benthic species allows us to estimate seawater Cd within intermediate and deep water masses that bath the study site and to reconstruct the vertical seawater Cd gradient (ΔCdsw) over the past 150,000 years. Comparison of ΔCdsw to Δδ13C from the same samples from core MD02-2588 in the Southern Ocean indicate a very similar downcore variability which supports the use of the Δδ13C method to reconstruct the biological pump during the MPT.

  20. New freeze pipe systems for nitrogen freezing

    NASA Astrophysics Data System (ADS)

    Rephan, D.

    A number of field and laboratory experiments have been carried out using new kinds of freezing pipe systems. These systems particularly enable freezing to be performed in stages. They further enable liquid gas consumption to be minimized. One system is particularly suitable for shaft freezing while another lends itself to tunnelling.

  1. Throughfall deposition and canopy exchange processes along a vertical gradient within the canopy of beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst).

    PubMed

    Adriaenssens, Sandy; Hansen, Karin; Staelens, Jeroen; Wuyts, Karen; De Schrijver, An; Baeten, Lander; Boeckx, Pascal; Samson, Roeland; Verheyen, Kris

    2012-03-15

    To assess the impact of air pollution on forest ecosystems, the canopy is usually considered as a constant single layer in interaction with the atmosphere and incident rain, which could influence the measurement accuracy. In this study the variation of througfall deposition and derived dry deposition and canopy exchange were studied along a vertical gradient in the canopy of one European beech (Fagus sylvatica L.) tree and two Norway spruce (Picea abies (L.) Karst) trees. Throughfall and net throughfall deposition of all ions other than H(+) increased significantly with canopy depth in the middle and lower canopy of the beech tree and in the whole canopy of the spruce trees. Moreover, throughfall and net throughfall of all ions in the spruce canopy decreased with increasing distance to the trunk. Dry deposition occurred mainly in the upper canopy and was highest during the growing season for H(+), NH(4)(+), NO(3)(-) and highest during the dormant season for Na(+), Cl(-), SO(4)(2-) (beech and spruce) and K(+), Ca(2+) and Mg(2+) (spruce only). Canopy leaching of K(+), Ca(2+) and Mg(2+) was observed at all canopy levels and was higher for the beech tree compared to the spruce trees. Canopy uptake of inorganic nitrogen and H(+) occurred mainly in the upper canopy, although significant canopy uptake was found in the middle canopy as well. Canopy exchange was always higher during the growing season compared to the dormant season. This spatial and temporal variation indicates that biogeochemical deposition models would benefit from a multilayer approach for shade-tolerant tree species such as beech and spruce. PMID:22325986

  2. Does the Cryogenic Freezing Process Cause Shorter Telomeres?

    PubMed Central

    Jenkins, Edmund C.; Ye, Lingling; Silverman, Wayne P.

    2012-01-01

    We have observed evidence of increased telomere shortening in short-term T-lymphocyte cultures following freezing and thawing of the original inoculum obtained by ficoll-paque gradient centrifugation, compared to T-lymphocytes that were cultured immediately without freezing and thawing from the same blood sample from 3 female and 3 male adults. Because freezing may have similar effects on other cell types, and because telomere shortening may only manifest its effects after many years or decades, we suggest there is a pressing need for evaluation of the effects of freezing on any cells envisioned for clinical applications, including embryo implantation. PMID:22465657

  3. Radiobrightness of diurnally heated, freezing soil

    NASA Technical Reports Server (NTRS)

    England, Anthony W.

    1990-01-01

    Freezing and thawing soils exhibit unique radiometric characteristics. To examine these characteristics, diurnal insolation is modeled as one-dimensional heating of a moist soil half-space during a typical fall at a northern Great Plains site. The one-dimensional heat flow equation is nonlinear because both the enthalpy (the change in internal energy with temperature at constant pressure) and the thermal conductivity of freezing soils are nonlinear functions of temperature. The problem is particularly difficult because phase boundaries propagate in time, and because soils, particularly clay-rich soils, freeze over a range of temperatures rather than at 0 C. Diurnal radiobrightness curves at 10.7, 18.0, and 37.0-GHz were computed for each month. The 37.0-GHz radiobrightness best tracks soil surface temperature; the 10.7-37.0-GHz spectral gradient of thawed soils is strongly positive; the spectral gradient of frozen soils is slightly negative; and the midnight-to-noon spectral gradient is shifted by approximately +0.1 K/GHz by diurnal changes in the surface temperature and the thermal gradient. These observations support the use of the scanning multichannel microwave radiometer 37.0-GHz radiobrightness and its 10.7-37.0-GHz spectral gradient as discriminants in a frozen soil classifier for high-latitude prairie.

  4. The nuclear freeze controversy

    SciTech Connect

    Payne, K.B.; Gray, C.S.

    1984-01-01

    This book presents papers on nuclear arms control. Topics considered include the background and rationale behind the nuclear freeze proposal, nuclear deterrence, national defense, arms races, arms buildup, warfare, the moral aspects of nuclear deterrence, treaty verification, the federal budget, the economy, a historical perspective on Soviet policy toward the freeze, the other side of the Soviet peace offensive, and making sense of the nuclear freeze debate.

  5. Freezing in confined geometries

    NASA Technical Reports Server (NTRS)

    Sokol, P. E.; Ma, W. J.; Herwig, K. W.; Snow, W. M.; Wang, Y.; Koplik, Joel; Banavar, Jayanth R.

    1992-01-01

    Results of detailed structural studies, using elastic neutron scattering, of the freezing of liquid O2 and D2 in porous vycor glass, are presented. The experimental studies have been complemented by computer simulations of the dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls. Results point to a new simple physical interpretation of freezing in confined geometries.

  6. Theoretical and experimental studies on sequential freezing solar water heater

    SciTech Connect

    Jiang Xinian; Tao Zhen; Lu Junsheng; Ge Hongchuan )

    1994-08-01

    This article presents the principle of using sequential freezing for the purpose of freeze protection in a solar water heater. Sequential freezing is accomplished by maintaining a temperature gradient across the collector so that water is squeezed out of the collector rather than being trapped by ice at the ends of the tubes. The authors give the mathematical models of tubular sequential freezing, compare the predicted results of models with the measured data, and investigate the influences of various factors on the tubular sequential freezing state with the model. A series of experiments show that a solar water heater designed according to the principle of sequential freezing can operate effectively in winter without drain-down, electricity, and heat exchanger systems.

  7. Periodic ice banding in freezing colloidal dispersions.

    PubMed

    Anderson, Anthony M; Worster, M Grae

    2012-12-01

    Concentrated colloidal alumina dispersions were frozen in a directional solidification apparatus that provides independent control of the freezing rate and temperature gradient. Two distinct steady-state modes of periodic ice banding were observed in the range of freezing rates examined. For each mode, the wavelength between successive bands of segregated ice decreases with increasing freezing rate. At low freezing rates (0.25-3 ?m s(-1)), the ice segregates from the suspension into ice lenses, which are cracklike in appearance, and there is visible structure in the layer of rejected particles in the unfrozen region ahead of the ice lenses. In this regime, we argue that compressive cryosuction forces lead to the irreversible aggregation of the rejected particles into a close-packed cohesive layer. The temperature in the aggregated layer is depressed below the bulk freezing point by more than 2 C before the ice lenses are encountered; moreover, this undercooled region appears as a light-colored layer. The magnitude of the undercooling and the color change in this region both suggest the presence of pore ice and the formation of a frozen fringe. The possibility of a frozen fringe is supported by a quantitative model of the freezing behavior. At intermediate freezing rates, around 4 ?m s(-1), the pattern of ice segregation is disordered, coinciding with the disappearance of the dark- and light-colored layers. Finally, at high freezing rates (5-10 ?m s(-1)), there is a new mode of periodic ice banding that is no longer cracklike and is absent of any visible structure in the suspension ahead of the ice bands. We discuss the implications of our experimental findings for theories of ice lensing. PMID:23110707

  8. The Freezing Bomb

    ERIC Educational Resources Information Center

    Mills, Allan

    2010-01-01

    The extreme pressures that are generated when water freezes were traditionally demonstrated by sealing a small volume in a massive cast iron "bomb" and then surrounding it with a freezing mixture of ice and salt. This vessel would dramatically fail by brittle fracture, but no quantitative measurement of bursting pressure was available. Calculation

  9. 3 CFR - Pay Freeze

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Pay Freeze Presidential Documents Other Presidential Documents Memorandum of January 21, 2009 Pay Freeze Memorandum for the Assistant to the President and Chief of Staff The United States is in a period of severe economic stress. Too many Americans have...

  10. The Freezing Bomb

    ERIC Educational Resources Information Center

    Mills, Allan

    2010-01-01

    The extreme pressures that are generated when water freezes were traditionally demonstrated by sealing a small volume in a massive cast iron "bomb" and then surrounding it with a freezing mixture of ice and salt. This vessel would dramatically fail by brittle fracture, but no quantitative measurement of bursting pressure was available. Calculation…

  11. Increased spring freezing vulnerability for alpine shrubs under early snowmelt.

    PubMed

    Wheeler, J A; Hoch, G; Corts, A J; Sedlacek, J; Wipf, S; Rixen, C

    2014-05-01

    Alpine dwarf shrub communities are phenologically linked with snowmelt timing, so early spring exposure may increase risk of freezing damage during early development, and consequently reduce seasonal growth. We examined whether environmental factors (duration of snow cover, elevation) influenced size and the vulnerability of shrubs to spring freezing along elevational gradients and snow microhabitats by modelling the past frequency of spring freezing events. We sampled biomass and measured the size of Salix herbacea, Vaccinium myrtillus, Vaccinium uliginosum and Loiseleuria procumbens in late spring. Leaves were exposed to freezing temperatures to determine the temperature at which 50% of specimens are killed for each species and sampling site. By linking site snowmelt and temperatures to long-term climate measurements, we extrapolated the frequency of spring freezing events at each elevation, snow microhabitat and per species over 37 years. Snowmelt timing was significantly driven by microhabitat effects, but was independent of elevation. Shrub growth was neither enhanced nor reduced by earlier snowmelt, but decreased with elevation. Freezing resistance was strongly species dependent, and did not differ along the elevation or snowmelt gradient. Microclimate extrapolation suggested that potentially lethal freezing events (in May and June) occurred for three of the four species examined. Freezing events never occurred on late snow beds, and increased in frequency with earlier snowmelt and higher elevation. Extrapolated freezing events showed a slight, non-significant increase over the 37-year record. We suggest that earlier snowmelt does not enhance growth in four dominant alpine shrubs, but increases the risk of lethal spring freezing exposure for less freezing-resistant species. PMID:24435708

  12. Freezing and Food Safety

    MedlinePLUS

    ... Frozen Food Safe? Does Freezing Destroy Bacteria & Parasites? Freshness & ... freezer — are they safe? Every year, thousands of callers to the USDA Meat and Poultry Hotline aren't sure about the ...

  13. Future freeze forecasting

    NASA Technical Reports Server (NTRS)

    Bartholic, J. F.; Sutherland, R. A.

    1979-01-01

    Real time GOES thermal data acquisition, an energy balance minimum temperature prediction model and a statistical model are incorporated into a minicomputer system. These components make up the operational "Satellite Freeze Forecast System" being used to aid NOAA, NWS forecasters in developing their freeze forecasts. The general concept of the system is presented in this paper. Specific detailed aspects of the system can be found in the reference cited.

  14. Vertical partitioning and controlling factors of gradient-based soil carbon dioxide fluxes in two contrasted soil profiles along a loamy hillslope

    NASA Astrophysics Data System (ADS)

    Wiaux, F.; Vanclooster, M.; Van Oost, K.

    2015-08-01

    In this study we aim to elucidate the role of physical conditions and gas transfer mechanism along soil profiles in the decomposition and storage of soil organic carbon (OC) in subsoil layers. We use a qualitative approach showing the temporal evolution and the vertical profile description of CO2 fluxes and abiotic variables. We assessed soil CO2 fluxes throughout two contrasted soil profiles (i.e. summit and footslope positions) along a hillslope in the central loess belt of Belgium. We measured the time series of soil temperature, soil moisture and CO2 concentration at different depths in the soil profiles for two periods of 6 months. We then calculated the CO2 flux at different depths using Fick's diffusion law and horizon specific diffusivity coefficients. The calculated fluxes allowed assessing the contribution of different soil layers to surface CO2 fluxes. We constrained the soil gas diffusivity coefficients using direct observations of soil surface CO2 fluxes from chamber-based measurements and obtained a good prediction power of soil surface CO2 fluxes with an R2 of 92 %. We observed that the temporal evolution of soil CO2 emissions at the summit position is mainly controlled by temperature. In contrast, at the footslope, we found that long periods of CO2 accumulation in the subsoil alternates with short peaks of important CO2 release. This was related to the high water filled pore space that limits the transfer of CO2 along the soil profile at this slope position. Furthermore, the results show that approximately 90 to 95 % of the surface CO2 fluxes originate from the first 10 cm of the soil profile at the footslope. This indicates that soil OC in this depositional context can be stabilized at depth, i.e. below 10 cm. This study highlights the need to consider soil physical properties and their dynamics when assessing and modeling soil CO2 emissions. Finally, changes in the physical environment of depositional soils (e.g. longer dry periods) may affect the long-term stability of the large stock of easily decomposable OC that is currently stored in these environments.

  15. Oxime Catalysis by Freezing.

    PubMed

    Agten, Stijn M; Suylen, Dennis P L; Hackeng, Tilman M

    2016-01-20

    Chemical reaction rates are generally decreased at lower temperatures. Here, we report that an oxime ligation reaction in water at neutral pH is accelerated by freezing. The freezing method and its rate effect on oxime ligation are systematically studied on a peptide model system, and applied to a larger chemokine protein, containing a single acetyl butyrate group, which is conjugated to an aminooxy-labeled ligand. Our improved ligation protocol now makes it possible to efficiently introduce oxime-bond coupled ligands into proteins under aqueous conditions at low concentrations and neutral pH. PMID:26649643

  16. Freezing and thawing processes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seasonally frozen soil strongly influences runoff and erosion on large areas of land around the world. In many areas, rain or snowmelt on seasonally frozen soil is the single leading cause of severe runoff and erosion events. As soils freeze, ice blocks the soil pores, greatly diminishing the permea...

  17. Modeling soil freezing dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seasonally frozen soil strongly influences runoff and erosion on large areas of land around the world. In many areas, rain or snowmelt on seasonally frozen soil is the single leading cause of severe runoff and erosion events. As soils freeze, ice blocks the soil pores, greatly diminishing the permea...

  18. Heat of freezing for supercooled water: measurements at atmospheric pressure.

    PubMed

    Cantrell, Will; Kostinski, Alexander; Szedlak, Anthony; Johnson, Alexandria

    2011-06-16

    Unlike reversible phase transitions, the amount of heat released upon freezing of a metastable supercooled liquid depends on the degree of supercooling. Although terrestrial supercooled water is ubiquitous and has implications for cloud dynamics and nucleation, measurements of its heat of freezing are scarce. We have performed calorimetric measurements of the heat released by freezing water at atmospheric pressure as a function of supercooling. Our measurements show that the heat of freezing can be considerably below one predicted from a reversible hydrostatic process. Our measurements also indicate that the state of the resulting ice is not fully specified by the final pressure and temperature; the ice is likely to be strained on a variety of scales, implying a higher vapor pressure. This would reduce the vapor gradient between supercooled water and ice in mixed phase atmospheric clouds. PMID:21087023

  19. The freezing bomb

    NASA Astrophysics Data System (ADS)

    Mills, Allan

    2010-03-01

    The extreme pressures that are generated when water freezes were traditionally demonstrated by sealing a small volume in a massive cast iron 'bomb' and then surrounding it with a freezing mixture of ice and salt. This vessel would dramatically fail by brittle fracture, but no quantitative measurement of bursting pressure was available. Calculation suggests a maximum of about 55 MPa (8000 psi) might have been achieved, with some 2.3% of the water frozen into a hollow shell around the interior of the vessel. In a sufficiently strong alloy steel container the pressure might rise to a maximum of 210 MPa (30 460 psi), this limiting figure being due to the collapse of ordinary ice (ice I) to the denser forms ice II or ice III.

  20. Satellite freeze forecast system

    NASA Technical Reports Server (NTRS)

    Martsolf, J. D. (Principal Investigator)

    1983-01-01

    Provisions for back-up operations for the satellite freeze forecast system are discussed including software and hardware maintenance and DS/1000-1V linkage; troubleshooting; and digitized radar usage. The documentation developed; dissemination of data products via television and the IFAS computer network; data base management; predictive models; the installation of and progress towards the operational status of key stations; and digital data acquisition are also considered. The d addition of dew point temperature into the P-model is outlined.

  1. Freezing increment in keratophakia.

    PubMed

    Swinger, C A; Wisnicki, H J

    In homoplastic keratomileusis, keratophakia, and epikeratophakia, the corneal tissue that provides the final refractive lenticule undergoes a conformational change when frozen. Because corneal tissue is composed primarily of water, an assumed value of 9.08% (approximate volumic percentage expansion of water when frozen) is frequently used for the increase in thickness, or freezing increment, rather than measuring it directly. We evaluated 32 cases of clinical keratophakia and found the increase in thickness to average 37 +/- 21%. In this series of 32 cases, the percentage of patients with a greater than 4 D residual refractive error was 16%. If an assumed freezing increment of 9.08% had been used, the percentage would have been 28%, with two-thirds of these 28% manifesting a marked undercorrection. Because of a lack of studies documenting the behavior of corneal tissue following cryoprotection and freezing, it is suggested that measurements be taken during homoplastic surgery to minimize the potential for significant inaccuracy in obtaining the desired optic result. PMID:3915238

  2. Spatiotemporal measurement of freezing-induced deformation of engineered tissues

    PubMed Central

    Teo, Ka Yaw; Dutton, J. Craig; Han, Bumsoo

    2010-01-01

    In order to cryopreserve functional engineered tissues (ETs), the microstructure of the extracellular matrix (ECM) should be maintained as well as the cellular viability since the functionality is closely related to the ECM microstructure. Since the post-thaw ECM microstructure is determined by the deformation of ETs during cryopreservation, freezing-induced deformation of ETs was measured with a newly developed quantum dot (QD)-mediated cell image deformetry system using dermal equivalents as a model tissue. The dermal equivalents were constructed by seeding QD-labeled fibroblasts in type I collagen matrices. After 24 hour incubation, the ETs were directionally frozen by exposing them to a spatial temperature gradient (from 4 °C to −20 °C over a distance of 6 mm). While being frozen, the ETs were consecutively imaged, and consecutive pairs of these images were two-dimensionally cross-correlated to determine the local deformation during freezing. The results showed that freezing induced the deformation of ET, and its magnitude varied with both time and location. The maximum local dilatation was 0.006 s−1 and was always observed at the phase change interface. Due to this local expansion, the unfrozen region in front of the freezing interface experienced compression. This expansion-compression pattern was observed throughout the freezing process. In the unfrozen region, the deformation rate gradually decreased away from the freezing interface. After freezing/thawing, the ET experienced an approximately 28% decrease in thickness and 8% loss in weight. These results indicate that freezing-induced deformation caused the transport of interstitial fluid and the interstitial fluid was extruded. In summary, the results suggest that complex cell-fluid-matrix interactions occur within ETs during freezing, and these interactions determine the post-thaw ECM microstructure and eventual post-thaw tissue functionality. PMID:20459191

  3. Variation and co-variation of PM10, particle number concentration, NOx and NO2 in the urban air - Relationships with wind speed, vertical temperature gradient and weather type

    NASA Astrophysics Data System (ADS)

    Grundstrm, M.; Hak, C.; Chen, D.; Hallquist, M.; Pleijel, H.

    2015-11-01

    Atmospheric ultrafine particles (UFP; diameter<0.1?m) represent a growing global health concern in urban environments and has a strong link to traffic related emissions. UFP is usually the dominating fraction of atmospheric particle number concentrations (PNC) despite being a minor part of total particle mass. The aim of this study was to empirically investigate the relationship between PNC and other air pollutants (NOX, NO2 and PM10) in the urban environment and their dependence on meteorology and weather type, using the Lamb Weather Type (LWT) classification scheme. The study was carried out in Gothenburg, Sweden, at an urban background site during April 2007-May 2008. It was found that daily average [PNC] correlated very well with [NOx] (R2=0.73) during inversion days, to a lesser extent with [NO2] (R2=0.58) and poorly with [PM10] (R2=0.07). Both PNC and NOx had similar response patterns to wind speed and to the strength of temperature inversions. PNC displayed two regimes, one strongly correlated to NOx and a second poorly correlated to NOx which was characterised by high wind speed. For concentration averages based on LWTs, the PNC-[NOx] relationship remained strong (R2=0.70) where the windy LWT W deviated noticeably. Exclusion of observations with wind speed >5ms-1 or ?T<0C from LWTs produced more uniform and stronger relationships (R2=0.90; R2=0.93). Low wind speeds and positive vertical temperature gradients were most common during LWTs A, NW, N and NE. These weather types were also associated with the highest daily means of NOx (?30ppb) and PNC (?10000 # cm-3). A conclusion from this study is that NOx (but not PM10) is a good proxy for PNC especially during calm and stable conditions and that LWTs A, NW, N and NE are high risk weather types for elevated NOx and PNC.

  4. Growth of gallium antimonide by vertical Bridgman technique with planar crystal-melt interface

    NASA Astrophysics Data System (ADS)

    Dutta, P. S.; Sangunni, K. S.; Bhat, H. L.; Kumar, Vikram

    1994-08-01

    High quality single crystals of GaSb were grown using vertical Bridgman technique with a planar melt-solid interface. Various factors affecting the interface shape during growth were investigated. In general, the shape of the freezing isotherm was found to depend on the furnace temperature profile near the melt-solid interface, the ampoule lowering rate, the ampoule geometry, the mode of heat extraction from the tip of the ampoule and the extent of lateral heat loss from the side walls of the ampoule. A critical ratio of temperature gradient of the furnace at the melting point to ampoule lowering rate was found to be necessary for planar interface shape during the growth. The sensitivity of the interface shape was found to decrease with increasing temperature gradient of the furnace and ampoule diameter. Crystals grown by employing the flat melt-solid interface exhibited superior quality than those with non-planar interfaces.

  5. Thermodynamical effects accompanied freezing of two water layers separated by sea ice sheet

    NASA Astrophysics Data System (ADS)

    Bogorodsky, Petr; Marchenko, Aleksey

    2014-05-01

    The process of melt pond freezing is very important for generation of sea ice cover thermodynamic and mass balance during winterperiod. However, due to significant difficulties of field measurements the available data of model estimations still have no instrumental confirmation. In May 2009 the authors carried out laboratory experiment on freezing of limited water volume in the University Centre in Svalbard ice tank. In the course of experiment fresh water layer of 27.5 cm thickness at freezing point poured on the 24 cm sea ice layer was cooled during 50 hours at the temperature -10 C and then once again during 60 hours at -20 C. For revealing process typical characteristics the data of continuous measurements of temperature and salinity in different phases were compared with data of numerical computations obtained with thermodynamic model which was formulated in the frames of 1-D equation system (infinite extension of water freezing layer) and adapted to laboratory conditions. The known surprise of the experiment became proximity of calculated and measured estimates of process dynamics that confirmed the adequacy of the problem mathematical statement (excluding probably process finale stage). This effect can be explained by formation of cracks on the upper layer of ice at sharp decreases of air temperature, which temporary compensated hydrostatic pressure growth during freezing of closed water volume. Another compensated mechanism can be migration of brine through the lower layer of ice under influence of vertical pressure gradient and also rejection of gas dissolved in water which increased its compressibility. During 110 hours cooling thickness of water layer between ice layers reduced approximately to 2 cm. According to computations this layer is not chilled completely but keeps as thin brine interlayer within ice body whose thickness (about units of mm) is determined by temperature fluctuations of cooled surface. Nevertheless, despite good coincidence of experimental and model estimates the question of existence of liquid phase under actual conditions is still open and can be clarified in a continuous laboratory experiment. This work was supported by Russian Foundation for Basic Research (Project # 14-05-00677).

  6. Freeze-Tolerant Condensers

    NASA Technical Reports Server (NTRS)

    Crowley, Christopher J.; Elkouhk, Nabil

    2004-01-01

    Two condensers designed for use in dissipating heat carried by working fluids feature two-phase, self-adjusting configurations such that their working lengths automatically vary to suit their input power levels and/or heat-sink temperatures. A key advantage of these condensers is that they can function even if the temperatures of their heat sinks fall below the freezing temperatures of their working fluids and the fluids freeze. The condensers can even be restarted from the frozen condition. The top part of the figure depicts the layout of the first condenser. A two-phase (liquid and vapor) condenser/vapor tube is thermally connected to a heat sink typically, a radiatively or convectively cooled metal panel. A single-phase (liquid) condensate-return tube (return artery) is also thermally connected to the heat sink. At intervals along their lengths, the condenser/vapor tube and the return artery are interconnected through porous plugs. This condenser configuration affords tolerance of freezing, variable effective thermal conductance (such that the return temperature remains nearly constant, independently of the ultimate sink temperature), and overall pressure drop smaller than it would be without the porous interconnections. An additional benefit of this configuration is that the condenser can be made to recover from the completely frozen condition either without using heaters, or else with the help of heaters much smaller than would otherwise be needed. The second condenser affords the same advantages and is based on a similar principle, but it has a different configuration that affords improved flow of working fluid, simplified construction, reduced weight, and faster recovery from a frozen condition.

  7. Freezing cold injury.

    PubMed

    Granberg, P O

    1991-01-01

    The pathogenesis of freezing cold injuries (FCI) is not yet entirely understood. Two possible hypothesis emerge: 1) Injury is a direct result of cryogenic insult to the cells. 2) Injury is secondary to vascular stasis which leads to anoxia. In clinical congelatio ice crystallization takes place in the EC-space. When water is transformed into ice, the osmolality in this compartment will increase leading to a passive diffusion of water from the IC-space. Cell dehydration modifies protein structure, alters membrane lipids and cellular pH leading to destructions incompatible with cell survival. Cold induces vasoconstriction of both arterioles and venules, which enhances peripheral filtration and raises plasma viscosity. The stability of red corpuscle aggregates increases and showers of emboli course microvessels. Finally progressive thrombosis will end up in anoxia. The indirect vascular effect has earlier been interpreted similar to that found in non-freezing injuries. Recent studies have, however, shown, that endothelial cells are very sensitive to freezing. The rheologic part of the pathogenesis therefore also seems to depend on a direct injury to cells. The development of FCI does not always depend on ambient temperature and duration of exposure but more to the heat loss subjected to exposed skin. Wind chill, humidity and wetness are all of significance in this matter. From a clinical point of view FCI are best subdivided into superficial and deep injuries. The superficial frostbite is limited to the skin and nearest subcutaneous tissue. A stringing, pinching pain is often the first symptom. The affected area becomes pale or waxy-white and numb.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1811585

  8. Poromechanics of freezing materials

    NASA Astrophysics Data System (ADS)

    Coussy, Olivier

    2005-08-01

    When subjected to a uniform cooling below the freezing point a water-infiltrated porous material undergoes a cryo-deformation resulting from various combined actions: (i) the difference of density between the liquid water and the ice crystal, which results in the initial build-up of an in-pore pressure at the onset of crystallization; (ii) the interfacial effects arising between the different constituents, which eventually govern the crystallization process in connection with the pore access radius distribution; (iii) the drainage of the liquid water expelled from the freezing sites towards the air voids; (iv) the cryo-suction process, which drives liquid water towards the already frozen pores as the temperature further decreases; (v) the thermomechanical coupling between the solid matrix, the liquid water and the ice crystal. We work out a comprehensive theory able to encompass this whole set of actions. A macroscopic approach first provides the constitutive equations of freezing poroelastic materials, including the interfacial energy effects. This approach reveals the existence of a thermodynamic state function—namely the liquid saturation degree as a function of the temperature only. The macroscopic ice-dependent poroelastic properties are then upscaled from the knowledge of the elastic properties of the solid matrix, of the pore access radius distribution, and of the capillary curve. The theory is finally illustrated by analysing quantitatively the effects of the cooling rate and of the pore radius distribution upon the cryo-deformation of water-infiltrated porous materials. The theory succeeds in accounting for the experimentally observed shrinkage of embedded air voids, while predicting the partial melting of the ice already formed when the cooling suddenly stops.

  9. Freeze Prediction Model

    NASA Technical Reports Server (NTRS)

    Morrow, C. T. (principal investigator)

    1981-01-01

    Measurements of wind speed, net irradiation, and of air, soil, and dew point temperatures in an orchard at the Rock Springs Agricultural Research Center, as well as topographical and climatological data and a description of the major apple growing regions of Pennsylvania were supplied to the University of Florida for use in running the P-model, freeze prediction program. Results show that the P-model appears to have considerable applicability to conditions in Pennsylvania. Even though modifications may have to be made for use in the fruit growing regions, there are advantages for fruit growers with the model in its present form.

  10. Freezing of Nonwoody Plant Tissue

    PubMed Central

    Brown, M. S.; Pereira, E. Sa B.; Finkle, Bernard J.

    1974-01-01

    Temperature recordings of the freezing of plant tissues include two plateaus or regions of reduced slope. During the second of these, small positive spikes were observed. When a completely frozen tissue was thawed and refrozen, neither the second plateau nor the spikes were recorded. Both were present, however, if the initial freezing had been terminated before the second plateau had been reached. The spikes appear to represent the release of heat of crystallization during the freezing of individual cells. Such a freezing and thawing cycle destroys the ability of the cells to remain supercooled in the presence of the ice that is formed as the first plateau is recorded. PMID:16658774

  11. Role of the stratospheric polar freezing belt in denitrification.

    PubMed

    Tabazadeh, A; Jensen, E J; Toon, O B; Drdla, K; Schoeberl, M R

    2001-03-30

    Homogeneous freezing of nitric acid hydrate particles can produce a polar freezing belt in either hemisphere that can cause denitrification. Computed denitrification profiles for one Antarctic and two Arctic cold winters are presented. The vertical range over which denitrification occurs is normally quite deep in the Antarctic but limited in the Arctic. A 4 kelvin decrease in the temperature of the Arctic stratosphere due to anthropogenic and/or natural effects can trigger the occurrence of widespread severe denitrification. Ozone loss is amplified in a denitrified stratosphere, so the effects of falling temperatures in promoting denitrification must be considered in assessment studies of ozone recovery trends. PMID:11283368

  12. Performance Characteristics of an Isothermal Freeze Valve

    SciTech Connect

    Hailey, A.E.

    2001-08-22

    This document discusses performance characteristics of an isothermal freeze valve. A freeze valve has been specified for draining the DWPF melter at the end of its lifetime. Two freeze valve designs have been evaluated on the Small Cylindrical Melter-2 (SCM-2). In order to size the DWPF freeze valve, the basic principles governing freeze valve behavior need to be identified and understood.

  13. 9 CFR 590.534 - Freezing facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Freezing facilities. 590.534 Section..., and Facility Requirements § 590.534 Freezing facilities. (a) Freezing rooms, either on or off the premises, shall be capable of freezing all liquid egg products in accordance with the freezing...

  14. 9 CFR 590.534 - Freezing facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Freezing facilities. 590.534 Section..., and Facility Requirements § 590.534 Freezing facilities. (a) Freezing rooms, either on or off the premises, shall be capable of freezing all liquid egg products in accordance with the freezing...

  15. 9 CFR 590.534 - Freezing facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Freezing facilities. 590.534 Section..., and Facility Requirements § 590.534 Freezing facilities. (a) Freezing rooms, either on or off the premises, shall be capable of freezing all liquid egg products in accordance with the freezing...

  16. 9 CFR 590.534 - Freezing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Freezing facilities. 590.534 Section..., and Facility Requirements § 590.534 Freezing facilities. (a) Freezing rooms, either on or off the premises, shall be capable of freezing all liquid egg products in accordance with the freezing...

  17. 9 CFR 590.534 - Freezing facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Freezing facilities. 590.534 Section..., and Facility Requirements § 590.534 Freezing facilities. (a) Freezing rooms, either on or off the premises, shall be capable of freezing all liquid egg products in accordance with the freezing...

  18. Freezing of living cells

    SciTech Connect

    Mazur, P.

    1985-01-01

    It can be calculated that a living cell will survive more than 5000 years at -196/sup 0/C. This ability to essentially stop biological time has important implications in medicine and agriculture, and in biological research. In medicine the chief implications are in the banking of transplantable tissues and organs and in in vitro fertilization. In agriculture the applications stem in part from the role of frozen embryos in amplifying the number of calves produced by high quanlity cows. The problem is how can cells survive both the cooling to such very low temperatures and the return to normal temperatures. The answers involve fundamental characteristics of cells such as the permeability of their surface membranes to water and solutes. These characteristics determine whether or not cells undergo lethal internal ice formation and other response during freezing and thawing. 27 refs., 12 figs.

  19. Understanding Slag Freeze Linings

    NASA Astrophysics Data System (ADS)

    Fallah-Mehrjardi, Ata; Hayes, Peter C.; Jak, Evgueni

    2014-09-01

    Slag freeze linings, the formation of protective deposit layers on the inner walls of furnaces and reactors, are increasingly used in industrial pyrometallurgical processes to ensure that furnace integrity is maintained in these aggressive, high-temperature environments. Most previous studies of freeze-linings have analyzed the formation of slag deposits based solely on heat transfer considerations. These thermal models have assumed that the interface between the stationary frozen layer and the agitated molten bath at steady-state deposit thickness consists of the primary phase, which stays in contact with the bulk liquid at the liquidus temperature. Recent experimental studies, however, have clearly demonstrated that the temperature of the deposit/liquid bath interface can be lower than the liquidus temperature of the bulk liquid. A conceptual framework has been proposed to explain the observations and the factors influencing the microstructure and the temperature of the interface at steady-state conditions. The observations are consistent with a dynamic steady state that is a balance between (I) the rate of nucleation and growth of solids on detached crystals in a subliquidus layer as this fluid material moves toward the stagnant deposit interface and (II) the dissolution of these detached crystals as they are transported away from the interface by turbulent eddies. It is argued that the assumption that the interface temperature is the liquidus of the bulk material represents only a limiting condition, and that the interface temperature can be between T liquidus and T solidus depending on the process conditions and bath chemistry. These findings have implications for the modeling approach and boundary conditions required to accurately describe these systems. They also indicate the opportunity to integrate considerations of heat and mass flows with the selection of melt chemistries in the design of future high temperature industrial reactors.

  20. Coil freezing: What a relief!

    SciTech Connect

    Jacobs, T.L.

    1995-12-01

    This article describes why a coil freezes, what happens during the freezing, and what is required to alleviate the damage. Water and steam have been used to cool and heat air in finned-tube heat exchanger coils almost since the inception of heating and air conditioning. Freezing of the fluid and the resultant coil damage have also been around for the same length of time. It is a systematic problem that many times is preventable, but one knows that this is not a perfect world. Nor are the HVAC and process systems that have been in service for decades. It is fairly simple to understand the basics of a liquid phase freeze. The ambient conditions must be at or below 32 F, and that can, in turn cause the water inside the coil to fall below 32 F as well. If kept below the freezing temperature of fluid long enough, the coil may be damaged by this condition.

  1. Radiobrightness decision criteria for freeze/thaw boundaries

    NASA Technical Reports Server (NTRS)

    Zuerndorfer, B.; England, Anthony W.

    1992-01-01

    A freeze indicator (FI), based on a low 37-GHz radiobrightness and a low 10.7, 18, and 37-GHz radiobrightness spectral gradient, has been used to classify frozen surfaces in the northern Great Plains. By modeling the radiometer beampatterns as Gaussian, freeze/thaw boundaries can be located at the (fine) resolution of the 37-GHz channel. The performance of the freeze indicator, and subsequent boundary location estimate, depends on the accuracy of the boundary decision criteria. It is shown that decision criteria based on clustering and unsupervised classification yield good performance. A simple algorithm for registering coarse-resolution FI boundaries to equivalent boundaries in fine-resolution 37-GHz radiobrightness images is also presented.

  2. Biomimetic Materials by Freeze Casting

    NASA Astrophysics Data System (ADS)

    Porter, Michael M.; Mckittrick, Joanna; Meyers, Marc A.

    2013-06-01

    Natural materials, such as bone and abalone nacre, exhibit exceptional mechanical properties, a product of their intricate microstructural organization. Freeze casting is a relatively simple, inexpensive, and adaptable materials processing method to form porous ceramic scaffolds with controllable microstructural features. After infiltration of a second polymeric phase, hybrid ceramic-polymer composites can be fabricated that closely resemble the architecture and mechanical performance of natural bone and nacre. Inspired by the narwhal tusk, magnetic fields applied during freeze casting can be used to further control architectural alignment, resulting in freeze-cast materials with enhanced mechanical properties.

  3. Peripheral Blood Mononuclear Cells: Isolation, Freezing, Thawing, and Culture.

    PubMed

    Riedhammer, Christine; Halbritter, Dagmar; Weissert, Robert

    2016-01-01

    The work with peripheral blood mononuclear cells (PBMCs), which comprise lymphocytes and monocytes, is indispensable in immunological diagnostics and research. The isolation of PBMCs takes advantage of differences in cell density of the different blood components. Density gradient centrifugation of diluted whole blood layered over a density gradient medium yields PBMCs; two subsequent washing steps remove remaining platelets. To store the cells for future assays, they can be frozen and thawed when required. Dimethyl sulfoxide (DMSO) serves as a cryoprotectant for freezing PBMCs, but must be removed by washing after thawing, as it can become toxic to the cells on longer exposure. PMID:25092056

  4. Nuclear freeze: myths and realities

    SciTech Connect

    Weinrod, W.B.

    1983-03-03

    A nuclear freeze would create serious problems for US strategic and political interests, and would not achieve the professed goal of a lower probability of nuclear war. It could increase strategic instability and reinforce the morally questionable Mutual Assured Destruction (MAD) approach of using civilian populations as hostages. Compliance would not be verifiable, and Soviet compliance would be doubtful. A review of the strategic and political implications and the basic assumptions of freeze advocates suggests that the movement has proved useful in forcing advocates of other positions to sharpen and refine their arguments. The challenge for freeze opponents is to make it clear to the public that the proposed freeze would benefit the Soviets and to offer viable alternatives for nuclear policy. 15 references.

  5. Freeze concentration of fruit juices.

    PubMed

    Deshpande, S S; Cheryan, M; Sathe, S K; Salunkhe, D K

    1984-01-01

    Concentration of aqueous foods such as fruit juices, milk, beer, wine, coffee, and tea, is a major unit operation in the food industry. Technically feasible processes that are commercially available for the concentration of liquid foods include evaporation, freeze concentration, reverse osmosis, and ultrafiltration. Evaporation is considered to be the most economical and most widely used method of concentration. However, it is not suited for food products with very delicate flavors. Commercial processes for the concentration of such products by membrane separation techniques are not yet available. As compared to the conventional evaporation processes, concentration by freezing is potentially a superior and economic process for aroma-rich liquid foods. In the past, the process, however, was seldom used because of the investment cost and the considerable loss of concentrate in the withdrawn ice, and hence, the quality. Recent technological developments have minimized these two drawbacks associated with the earlier freeze concentration processes. In the coming decade, freeze concentration is seen as a potentially attractive method for the concentration of aroma-rich liquid foods, including fruit juices, coffee, tea, and selected alcoholic beverages. In this article, several aspects of the theoretical considerations behind freeze concentration of fruit juices, the development of new and cheaper designs, and commercially available freeze concentration processes are reviewed. The economics of the process and its application to several other areas of the food industry are also discussed. PMID:6383717

  6. 7 CFR 58.621 - Freezing tunnels.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Freezing tunnels. 58.621 Section 58.621 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....621 Freezing tunnels. Freezing tunnels for quick freezing at extremely low temperatures shall...

  7. 7 CFR 58.621 - Freezing tunnels.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Freezing tunnels. 58.621 Section 58.621 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....621 Freezing tunnels. Freezing tunnels for quick freezing at extremely low temperatures shall...

  8. 9 CFR 590.536 - Freezing operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Freezing operations. 590.536 Section..., and Facility Requirements § 590.536 Freezing operations. (a) Freezing rooms shall be kept clean and... products shall be examined by organoleptic examination after freezing to determine their fitness for...

  9. 7 CFR 58.621 - Freezing tunnels.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Freezing tunnels. 58.621 Section 58.621 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....621 Freezing tunnels. Freezing tunnels for quick freezing at extremely low temperatures shall...

  10. 7 CFR 58.621 - Freezing tunnels.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Freezing tunnels. 58.621 Section 58.621 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....621 Freezing tunnels. Freezing tunnels for quick freezing at extremely low temperatures shall...

  11. 7 CFR 58.621 - Freezing tunnels.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Freezing tunnels. 58.621 Section 58.621 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....621 Freezing tunnels. Freezing tunnels for quick freezing at extremely low temperatures shall...

  12. 9 CFR 590.536 - Freezing operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Freezing operations. 590.536 Section..., and Facility Requirements § 590.536 Freezing operations. (a) Freezing rooms shall be kept clean and... products shall be examined by organoleptic examination after freezing to determine their fitness for...

  13. 9 CFR 590.536 - Freezing operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Freezing operations. 590.536 Section..., and Facility Requirements § 590.536 Freezing operations. (a) Freezing rooms shall be kept clean and... products shall be examined by organoleptic examination after freezing to determine their fitness for...

  14. 9 CFR 590.536 - Freezing operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Freezing operations. 590.536 Section..., and Facility Requirements § 590.536 Freezing operations. (a) Freezing rooms shall be kept clean and... products shall be examined by organoleptic examination after freezing to determine their fitness for...

  15. 9 CFR 590.536 - Freezing operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Freezing operations. 590.536 Section..., and Facility Requirements § 590.536 Freezing operations. (a) Freezing rooms shall be kept clean and... products shall be examined by organoleptic examination after freezing to determine their fitness for...

  16. Temperature and flow measurements on near-freezing aviation fuels in a wing-tank model

    NASA Technical Reports Server (NTRS)

    Friedman, R.; Stockemer, F. J.

    1980-01-01

    Freezing behavior, pumpability, and temperature profiles for aviation turbine fuels were measured in a 190-liter tank, to simulate internal temperature gradients encountered in commercial airplane wing tanks. Two low-temperature situations were observed. Where the bulk of the fuel is above the specification freezing point, pumpout of the fuel removes all fuel except a layer adhering to the bottom chilled surfaces, and the unpumpable fraction depends on the fuel temperature near these surfaces. Where the bulk of the fuel is at or below the freezing point, pumpout ceases when solids block the pump inlet, and the unpumpable fraction depends on the overall average temperature.

  17. Temperature and flow measurements on near-freezing aviation fuels in a wing-tank model

    NASA Technical Reports Server (NTRS)

    Friedman, R.; Stockemer, F. J.

    1980-01-01

    Freezing behavior, pumpability, and temperature profiles for aviation turbine fuels were measured in a 190-liter tank chilled to simulate internal temperature gradients encountered in commercial airplane wing tanks. When the bulk of the fuel was above the specification freezing point, pumpout of the fuel removed all fuel except a layer adhering to the bottom chilled surfaces, and the unpumpable fraction depended on the fuel temperature near these surfaces. When the bulk of the fuel was at or below the freezing point, pumpout ceased when solids blocked the pump inlet, and the unpumpable fraction depended on the overall average temperature.

  18. THE VERTICAL

    NASA Technical Reports Server (NTRS)

    Albert, Stephen L.; Spencer, Jeffrey B.

    1994-01-01

    'THE VERTICAL' computer keyboard is designed to address critical factors which contribute to Repetitive Motion Injuries (RMI) (including Carpal Tunnel Syndrome) in association with computer keyboard usage. This keyboard splits the standard QWERTY design into two halves and positions each half 90 degrees from the desk. In order to access a computer correctly. 'THE VERTICAL' requires users to position their bodies in optimal alignment with the keyboard. The orthopaedically neutral forearm position (with hands palms-in and thumbs-up) reduces nerve compression in the forearm. The vertically arranged keypad halves ameliorate onset occurrence of keyboard-associated RMI. By utilizing visually-reference mirrored mylar surfaces adjustable to the user's eye, the user is able to readily reference any key indicia (reversed) just as they would on a conventional keyboard. Transverse adjustability substantially reduces cumulative musculoskeletal discomfort in the shoulders. 'THE VERTICAL' eliminates the need for an exterior mouse by offering a convenient finger-accessible curser control while the hands remain in the vertically neutral position. The potential commercial application for 'THE VERTICAL' is enormous since the product can effect every person who uses a computer anywhere in the world. Employers and their insurance carriers are spending hundreds of millions of dollars per year as a result of RMI. This keyboard will reduce the risk.

  19. Heat freezes niche evolution.

    PubMed

    Arajo, Miguel B; Ferri-Yez, Francisco; Bozinovic, Francisco; Marquet, Pablo A; Valladares, Fernando; Chown, Steven L

    2013-09-01

    Climate change is altering phenology and distributions of many species and further changes are projected. Can species physiologically adapt to climate warming? We analyse thermal tolerances of a large number of terrestrial ectotherm (n = 697), endotherm (n = 227) and plant (n = 1816) species worldwide, and show that tolerance to heat is largely conserved across lineages, while tolerance to cold varies between and within species. This pattern, previously documented for ectotherms, is apparent for this group and for endotherms and plants, challenging the longstanding view that physiological tolerances of species change continuously across climatic gradients. An alternative view is proposed in which the thermal component of climatic niches would overlap across species more than expected. We argue that hard physiological boundaries exist that constrain evolution of tolerances of terrestrial organisms to high temperatures. In contrast, evolution of tolerances to cold should be more frequent. One consequence of conservatism of upper thermal tolerances is that estimated niches for cold-adapted species will tend to underestimate their upper thermal limits, thereby potentially inflating assessments of risk from climate change. In contrast, species whose climatic preferences are close to their upper thermal limits will unlikely evolve physiological tolerances to increased heat, thereby being predictably more affected by warming. PMID:23869696

  20. Water Freezing and Ice Melting.

    PubMed

    Ma?olepsza, Edyta; Keyes, Tom

    2015-12-01

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to the freezing of liquid water and the melting of hexagonal and cubic ice. It is confirmed that coexisting states are well-sampled. The statistical temperature as a function of enthalpy, TS(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice ? liquid and cubic ice ? liquid with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. Pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice. PMID:26642983

  1. Basic concepts in freezing cells

    SciTech Connect

    Mazur, P.

    1985-01-01

    Freezing involves the lowering of temperature and the formation of ice. Most cells have not been found to be sensitive to the former; rather injury is a consequence of the removal of water from the system in the form of ice. Some cells such as boar sperm and those of many tropical crops are susceptible to even short-term lowering of temperature to near O/sup 0/C. This susceptiblity, which is independent of the rate of temperature drop, is defined as chilling injury. Other cells are injured by chilling only if the rate of cooling is high, a phenomenon referred to as thermal shock. This paper discusses the physical-chemical events during freezing and on freezing injury will assume that lowered temperature per se is not injurious.

  2. Freeze-in through portals

    SciTech Connect

    Blennow, Mattias; Fernandez-Martínez, Enrique; Zaldívar, Bryan E-mail: enrique.fernandez-martinez@uam.es

    2014-01-01

    The popular freeze-out paradigm for Dark Matter (DM) production, relies on DM-baryon couplings of the order of the weak interactions. However, different search strategies for DM have failed to provide a conclusive evidence of such (non-gravitational) interactions, while greatly reducing the parameter space of many representative models. This motivates the study of alternative mechanisms for DM genesis. In the freeze-in framework, the DM is slowly populated from the thermal bath while never reaching equilibrium. In this work, we analyse in detail the possibility of producing a frozen-in DM via a mediator particle which acts as a portal. We give analytical estimates of different freeze-in regimes and support them with full numerical analyses, taking into account the proper distribution functions of bath particles. Finally, we constrain the parameter space of generic models by requiring agreement with DM relic abundance observations.

  3. Molecular biology of freezing tolerance.

    PubMed

    Storey, Kenneth B; Storey, Janet M

    2013-07-01

    Winter survival for many kinds of animals involves freeze tolerance, the ability to endure the conversion of about 65% of total body water into extracellular ice and the consequences that freezing imposes including interruption of vital processes (e.g., heartbeat and breathing), cell shrinkage, elevated osmolality, anoxia/ischemia, and potential physical damage from ice. Freeze-tolerant animals include various terrestrially hibernating amphibians and reptiles, many species of insects, and numerous other invertebrates inhabiting both terrestrial and intertidal environments. Well-known strategies of freezing survival include accumulation of low molecular mass carbohydrate cryoprotectants (e.g., glycerol), use of ice nucleating agents/proteins for controlled triggering of ice growth and of antifreeze proteins that inhibit ice recrystallization, and good tolerance of anoxia and dehydration. The present article focuses on more recent advances in our knowledge of the genes and proteins that support freeze tolerance and the metabolic regulatory mechanisms involved. Important roles have been identified for aquaporins and transmembrane channels that move cryoprotectants, heat shock proteins and other chaperones, antioxidant defenses, and metabolic rate depression. Genome and proteome screening has revealed many new potential targets that respond to freezing, in particular implicating cytoskeleton remodeling as a necessary facet of low temperature and/or cell volume adaptation. Key regulatory mechanisms include reversible phosphorylation control of metabolic enzymes and microRNA control of gene transcript expression. These help to remodel metabolism to preserve core functions while suppressing energy expensive metabolic activities such as the cell cycle. All of these advances are providing a much more complete picture of life in the frozen state. PMID:23897687

  4. Modification of a variational objective analysis model for new equations for pressure gradient and vertical velocity in the lower troposphere and for spatial resolution and accuracy of satellite data

    NASA Technical Reports Server (NTRS)

    Achtemeier, G. L.

    1986-01-01

    Since late 1982 NASA has supported research to develop a numerical variational model for the diagnostic assimilation of conventional and space-based meteorological data. In order to analyze the model components, four variational models are defined dividing the problem naturally according to increasing complexity. The first of these variational models (MODEL I), the subject of this report, contains the two nonlinear horizontal momentum equations, the integrated continuity equation, and the hydrostatic equation. This report summarizes the results of research (1) to improve the way the large nonmeteorological parts of the pressure gradient force are partitioned between the two terms of the pressure gradient force terms of the horizontal momentum equations, (2) to generalize the integrated continuity equation to account for variable pressure thickness over elevated terrain, and (3) to introduce horizontal variation in the precision modulus weights for the observations.

  5. Transverse freezing of thin liquid films

    NASA Astrophysics Data System (ADS)

    Beerman, Michael

    A pair of coupled non-linear partial differential equations is derived using lubrication theory that govern the morphology of a thin, liquid film of a pure and a binary metal alloy, bounded by the liquid's solid phase and a passive gas phase. The analysis is motivated by the directional freezing of metallic foams, and is a first attempt to model transverse freezing in thin films that form in foam networks, but also applies to thin film layers in general. Both the no-slip crystal-melt and the free melt-gas interfaces are deformable. The governing pair of non-linear differential equations for the most general case incorporate crystal-melt and melt-gas surface tension, latent heat, heat transfer, volume change, molecular interactions, thermocapillary and dilute phase concentration effects. Linear analysis of a uniform film reveals a variety of instabilities. A unique wavenumber is selected at the onset of instability in the case of an applied temperature gradient with vanishing crystal-melt surface tension. This system reproduces the isothermal result for a rigid solid-liquid interface in which a band of wavenumbers is unstable. A new long-wave instability has been identified, for the case with CM surface tension, that is due to the coupling of the interfaces. Numerical solutions of the fully non-linear system provide film evolution and rupture times, and show that, near the critical conditions, rupture can occur by the growth of standing or traveling waves. The numerics also reveals complex non-linear interactions between unstable modes. It is found that for most unstable initial conditions, the crystal-melt interface retreats by melting away from the tip region of the encroaching melt-gas interface due to a rise in heat flux as the film thins near the rupture point.

  6. Peripheral tissue freezing in cryosurgery.

    PubMed

    Song, W J; Jiji, L M

    1988-04-01

    The recently formulated bioheat equation of Weinbaum and Jiji which accounts for the vascular ultrastructure and blood perfusion was applied to the freezing of peripheral tissue. Using quasi-steady approximation the temperature distribution in the two-phase tissue and the motion of the frozen front were determined. Results are in good agreement with Pennes' bioheat equation. PMID:3371060

  7. Non-freezing cold injury.

    PubMed

    Glennie, J S; Milner, R

    2014-01-01

    Non-freezing cold injury can be a diagnostic challenge for clinicians in the United Kingdom Armed Forces. It is associated with operations in adverse climatic conditions, and may result in significant long-term morbidity. In this article we discuss the operational importance of this condition and the current best practice in its management and prevention. PMID:25895405

  8. Waste freezing, remote retrieval technology

    SciTech Connect

    Not Available

    1993-01-01

    Idaho National Engineering Laboratory (INEL) scientists have successfully demonstrated a process of freezing soil and buried waste and retrieving it using remotely operated tools. Early results indicate that this cryogenic retrieval process may reduce risk to workers and protect the environment from airborne and liquid contaminants during actual waste cleanup projects.

  9. The role of the geothermal gradient in the emplacement and replenishment of ground ice on Mars

    NASA Technical Reports Server (NTRS)

    Clifford, Stephen M.

    1993-01-01

    Knowledge of the mechanisms by which ground ice is emplaced, removed, and potentially replenished, are critical to understanding the climatic and hydrologic behavior of water on Mars, as well as the morphologic evolution of its surface. Because of the strong temperature dependence of the saturated vapor pressure of H2O, the atmospheric emplacement or replenishment of ground ice is prohibited below the depth at which crustal temperatures begin to monotonically increase due to geothermal heating. In contrast, the emplacement and replenishment of ground ice from reservoirs of H2O residing deep within the crust can occur by at least three different thermally-driven processes, involving all three phases of water. In this regard, Clifford has discussed how the presence of a geothermal gradient as small as 15 K/km can give rise to a corresponding vapor pressure gradient sufficient to drive the vertical transport of 1 km of water from a reservoir of ground water at depth to the base of the cryosphere every 10(exp 6) - 10(exp 7) years. This abstract expands on this earlier treatment by considering the influence of thermal gradients on the transport of H2O at temperatures below the freezing point.

  10. Barium titanate-polymer composites produced via directional freezing.

    PubMed

    Gorzkowski, Edward P; Pan, Ming-Jen

    2009-08-01

    In this study, we use a freeze casting technique to construct ceramic-polymer composites in which the 2 phases are arranged in an electrically parallel configuration. By doing so, the composites exhibit dielectric constant (K) up to 2 orders of magnitude higher than that of composites with ceramic particles randomly dispersed in a polymer matrix. In this technique, an aqueous ceramic slurry was frozen unidirectionally to form ice platelets and ceramic aggregates that were aligned in the temperature gradient direction. Upon freeze-drying, the ice platelets sublimed and left the lamellar ceramic structure intact. The green ceramic body was fired to retain the microstructure, and then the space between ceramic lamellae was infiltrated with a polymer material. The finished composites exhibit the high dielectric constant (1000) of ferroelectric ceramics while maintaining the unique properties of polymer materials such as graceful failure, low dielectric loss, and high dielectric breakdown. PMID:19686976

  11. Measuring freezing tolerance: Survival and regrowth assays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Screening plants for freezing tolerance under tightly-controlled conditions is an invaluable technique for studying freezing tolerance and selecting for improved winterhardiness. Artificial freezing tests of cereal plants historically have used isolated crown and stem tissue prepared by removing a...

  12. Combined infrared and freeze-drying.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The drying of the combined infrared (IR) and freeze-drying of food materials has been shown to be very rapid compared to regular freeze drying (FD). The resulting tissue structure of products processed with sequential infrared and freeze drying (SIRFD) tends to have higher crispness than those proce...

  13. 7 CFR 51.1562 - Freezing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Freezing. 51.1562 Section 51.1562 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Potatoes 1 Definitions § 51.1562 Freezing. Freezing means that the potato is frozen or shows evidence of having been frozen....

  14. 7 CFR 51.1562 - Freezing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Freezing. 51.1562 Section 51.1562 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Potatoes 1 Definitions § 51.1562 Freezing. Freezing means that the potato is...

  15. 7 CFR 51.1562 - Freezing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Freezing. 51.1562 Section 51.1562 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Potatoes 1 Definitions § 51.1562 Freezing. Freezing means that the potato is frozen or shows evidence of having been frozen....

  16. 7 CFR 51.1562 - Freezing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Freezing. 51.1562 Section 51.1562 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Potatoes 1 Definitions § 51.1562 Freezing. Freezing means that the potato is...

  17. 7 CFR 51.1562 - Freezing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Freezing. 51.1562 Section 51.1562 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Potatoes 1 Definitions § 51.1562 Freezing. Freezing means that the potato is...

  18. The Temperature Dependence of Water's Latent Heat of Freezing

    NASA Astrophysics Data System (ADS)

    Szedlak, A.; Blanchard, A. V.; Kostinski, A. B.; Cantrell, W. H.

    2009-12-01

    Freezing of water in Earth's atmosphere affects cloud dynamics through the release of the latent heat. The latent heat released is a function of how deeply the cloud water is supercooled before freezing begins - the deeper the supercooling, the less heat is released to the atmosphere. We present new measurements of the temperature dependent latent heat of freezing of water, measured using a Perkin Elmer DSC 7 and a Mettler Toledo Polymer DSC. Both instruments have been calibrated against melting transitions of water, dodecane, undecane,and tetradecane, and both agree within the error of the measurements with values in the literature. However, the two measurements show dramatic differences for the latent heat of freezing of water, which we attribute to the different methods used to extract a heat flux. At higher temperatures our measurements with the Perkin Elmer, which is a power compensation type calorimeter, are comparable to those of Bertolini et al. (1985). At lower temperatures, our measurements diverge from those of Bertolini et al. (1985), which we again attribute to the different principle of operation of the calorimeters. We conclude that temperature gradients within the freezing water play a critical role in the quantity of heat eventually exchanged with the surroundings. Finally, we reconcile the measurements with Kirchhoff's relation, which can be written (??H/?T)p = ?cp where ?H is the enthalpy difference between product and reactant (supercooled water and ice in this case) and ?cp is the difference in their heat capacities. [Bertolini, D., M. Cassettari, and G. Salvetti, Anomalies in the latent-heat of solidification of supercooled water. Chem. Phys. Lett., 119, 553-555, 1985.

  19. METALLICITY GRADIENTS OF THICK DISK DWARF STARS

    SciTech Connect

    Carrell, Kenneth; Chen Yuqin; Zhao Gang

    2012-12-01

    We examine the metallicity distribution of the Galactic thick disk using F, G, and K dwarf stars selected from the Sloan Digital Sky Survey, Data Release 8. Using the large sample of dwarf stars with proper motions and spectroscopically determined stellar parameters, metallicity gradients in the radial direction for various heights above the Galactic plane and in the vertical direction for various radial distances from the Galaxy center have been found. In particular, we find a vertical metallicity gradient of -0.113 {+-} 0.010 (-0.125 {+-} 0.008) dex kpc{sup -1} using an isochrone (photometric) distance determination in the range 1 kpc <|Z| < 3 kpc, which is the vertical height range most consistent with the thick disk of our Galaxy. In the radial direction, we find metallicity gradients between +0.02 and +0.03 dex kpc{sup -1} for bins in the vertical direction between 1 kpc <|Z| < 3 kpc. Both of these results agree with similar values determined from other populations of stars, but this is the first time a radial metallicity gradient for the thick disk has been found at these vertical heights. We are also able to separate thin and thick disk stars based on kinematic and spatial probabilities in the vertical height range where there is significant overlap of these two populations. This should aid further studies of the metallicity gradients of the disk for vertical heights lower than those studied here but above the solar neighborhood. Metallicity gradients in the thin and thick disks are important probes into possible formation scenarios for our Galaxy and a consistent picture is beginning to emerge from results using large spectroscopic surveys, such as the ones presented here.

  20. Non Linear Conjugate Gradient

    SciTech Connect

    2006-11-17

    Software that simulates and inverts electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a time harmonic source field excitation arising from the following antenna geometery: loops and grounded bipoles, as well as point electric and magnetic dioples. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria. The software is an upgrade from the code NLCGCS_MP ver 1.0. The upgrade includes the following components: Incorporation of new 1 D field sourcing routines to more accurately simulate the 3D electromagnetic field for arbitrary geologic& media, treatment for generalized finite length transmitting antenna geometry (antennas with vertical and horizontal component directions). In addition, the software has been upgraded to treat transverse anisotropy in electrical conductivity.

  1. Non Linear Conjugate Gradient

    Energy Science and Technology Software Center (ESTSC)

    2006-11-17

    Software that simulates and inverts electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a time harmonic source field excitation arising from the following antenna geometery: loops and grounded bipoles, as well as point electric and magnetic dioples. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria.more » The software is an upgrade from the code NLCGCS_MP ver 1.0. The upgrade includes the following components: Incorporation of new 1 D field sourcing routines to more accurately simulate the 3D electromagnetic field for arbitrary geologic& media, treatment for generalized finite length transmitting antenna geometry (antennas with vertical and horizontal component directions). In addition, the software has been upgraded to treat transverse anisotropy in electrical conductivity.« less

  2. Freeze chromatography method and apparatus

    DOEpatents

    Scott, C.D.

    1987-04-16

    A freeze chromatography method and apparatus are provided which enable separation of the solutes contained in a sample. The apparatus includes an annular column construction comprising cylindrical inner and outer surfaces defining an annular passage therebetween. One of the surfaces is heated and the other cooled while passing an eluent through the annular passageway so that the eluent in contact with the cooled surface freezes and forms a frozen eluent layer thereon. A mixture of solutes dissolved in eluent is passed through the annular passageway in contact with the frozen layer so that the sample solutes in the mixture will tend to migrate either toward or away the frozen layer. The rate at which the mixture flows through the annular passageway is controlled so that the distribution of the sample solutes approaches that at equilibrium and thus a separation between the sample solutes occurs. 3 figs.

  3. Mapping freeze/thaw boundaries with SMMR data

    NASA Technical Reports Server (NTRS)

    Zuerndorfer, B. W.; England, A. W.; Dobson, M. C.; Ulaby, F. T.

    1989-01-01

    Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR) data are used to map daily freeze/thaw patterns in the upper Midwest for the Fall of 1984. The combination of a low 37 GHz radiobrightness and a negative 10.7, 18, and 37 GHz spectral gradient, Partial Derivative of Tb with Respect to f, appears to be an effective discriminant for classifying soil as frozen or thawed. The 37 GHz emissivity is less sensitive to soil moisture than are the lower frequency emissivities so that the 37 GHz radiobrightness appears to track soil surface temperature relatively well. The negative gradient for frozen ground is a consequence of volume scatter darkening at shorter microwave wavelengths. This shorter wavelength darkening is not seen in thawed moist soils.

  4. Freezing Rate Due to Heterogeneous Nucleation.

    NASA Astrophysics Data System (ADS)

    Vali, Gabor

    1994-07-01

    The heterogeneous nucleation of ice from supercooled water is influenced by the nature of the foreign nuclei that serve as the sites for ice embryo formation, and by the stochastic nature of the process of embryo growth to critical size. The relative roles of these two factors have been the subject of some debate, especially as they influence the way nucleation of ice is modeled in clouds. `Freezing rate' is defined as the time-dependent rate at which a population of macroscopically identical samples (e.g., drops in a volume of air) freeze due to the nuclei contained in them. Freezing rate is the combined result of nucleus content and of time dependence. The time-dependent freezing rate model (TDFR) is consistent with available empirical evidence. For droplets cooled at rates of the order of 1C per min, the nucleus content, or nucleus spectrum, predicts the freezing rate with reasonable accuracy. For samples exposed to a fixed temperature, the time dependence of the freezing rate becomes important, but the probability of freezing is not the same for each individual of the sample population. Stochastic models are not supported by the results. Application of the TDFR model and use of measured freezing nucleus data for precipitation provide a basis for the description of ice formation via immersion-freezing nucleation in cloud models. Limitations to full development of these models arise from inadequate knowledge about the freezing nucleus content of cloud water as a function of cloud evolution.

  5. Predicting Freezing for Some Repulsive Potentials

    SciTech Connect

    Khrapak, S. A.; Morfill, G. E.

    2009-12-18

    We propose a simple method to approximately predict the freezing (fluid-solid) phase transition in systems of particles interacting via purely repulsive potentials. The method is based on the striking universality of the freezing curve for the model Yukawa and inverse-power-law interactions. This method is applied to draw an exemplary phase diagram of complex plasmas. We suggest that it can also be used to locate freezing transition in other substances with similar properties of interaction.

  6. Freezing techniques defeat ground water problems

    SciTech Connect

    Not Available

    1983-02-01

    The sinking of a new shaft at Walsum Colliery, West Germany, is described. The 640 m of strata above the coal seams were known to be unstable and include the Bunter Sandstone. The shaft is also within 1 km of the River Rhine. Freezing techniques were therefore adopted. Details of the freezing operation are given, including the drilling of the freezing holes and the determination of the size and strength of the ice wall.

  7. Accurate pressure gradient calculations in hydrostatic atmospheric models

    NASA Technical Reports Server (NTRS)

    Carroll, John J.; Mendez-Nunez, Luis R.; Tanrikulu, Saffet

    1987-01-01

    A method for the accurate calculation of the horizontal pressure gradient acceleration in hydrostatic atmospheric models is presented which is especially useful in situations where the isothermal surfaces are not parallel to the vertical coordinate surfaces. The present method is shown to be exact if the potential temperature lapse rate is constant between the vertical pressure integration limits. The technique is applied to both the integration of the hydrostatic equation and the computation of the slope correction term in the horizontal pressure gradient. A fixed vertical grid and a dynamic grid defined by the significant levels in the vertical temperature distribution are employed.

  8. Mechanism of freeze-drying drug nanosuspensions.

    PubMed

    Chung, Nae-Oh; Lee, Min Kyung; Lee, Jonghwi

    2012-11-01

    Drug nanoparticles prepared in a liquid medium are commonly freeze-dried for the preparation of an oral dosage in solid dosage form. The freezing rate is known to be a critical parameter for redispersible nanoformulations. However, there has been controversy as to whether a fast or slow freezing rate prevents irreversible aggregation. A systematic investigation is presented herein regarding the effect of both the molecular weight of the cryoprotectant and the freezing rate in order to elucidate the mechanism underlying irreversible aggregation. It was found that irreversible aggregation occurred during drying rather than freezing, although a proper freezing rate is critical. A more homogeneous distribution of the cryoprotectant and drug nanoparticles led to more redispersible powders. Thus, keeping the local concentration distribution of the nanoparticles and cryoprotectant fixed during the freezing step plays a critical role in how the freezing rate affects the redispersibility. The kinetic approach of excluding the tendency of ice crystal growth permitted an explanation of the controversial results. This study will facilitate an in-depth understanding of the aggregation process of nanoparticles or proteins during freeze-drying. PMID:22877696

  9. Fundamental Technical Elements of Freeze-fracture/Freeze-etch in Biological Electron Microscopy

    EPA Science Inventory

    Freeze-fracture/freeze-etch describes a process whereby specimens, typically biological or nanomaterial in nature, are frozen, fractured, and replicated to generate a carbon/platinum "cast" intended for examination by transmission electron microscopy. Specimens are subjected to u...

  10. Freeze-drying processes and wind erodibility of a clay loam soil in southern Alberta

    SciTech Connect

    Bullock, M S.; Larney, F. J.; McGinn, Sean M.; Izaurralde, R Cesar C.

    1999-01-01

    Freeze-drying has been implicated as a factor causing soil aggregate breakdown on the Canadian Prairies and northern Great Plains. Aggregates of a Dark Brown Chernozemic clay loam soil sampled in October 1993 and January and April 1994 were subjected to repeated cycles of wetting (to 0.1, 0.2 and 0.3 kg kg-1 water contents) freezing, and freeze-drying under laboratory conditions. The October 1993 samples showed less disruption when initially exposed to freeze-drying cycles compared to samples taken in January and April 1994. Using regression analysis, we predicted that 31 freeze-dry cycles were required for the 0.1 kg kg-1 water content aggregates to reach 60% erodible fraction (EF, % aggregates <0.86 mm), 9 cycles for the 0.2 kg kg-1 aggregates and 2 for 0.3 kg kg-1 aggregates. In a field study, conducted over the 1994-1995 winter on a similar clay loam soil, we estimated the number of freeze-drying cycles using large vapor pressure (VPL) and small vapor pressure (VPS) gradients bet ween the soil surface (which had a mean winter water content of {approx}0.1 kg kg-1) and the atmosphere. With solar energy adjustments, we predicted that the number of freeze-dry cycles required for the soil to reach 60% EF was 60 for VPL and 37 for VPS conditions. The latter number was similar to the 31 cycles predicted in the laboratory study of aggregates at 0.1 water content. Our results demonstrate that freeze-drying is an important overwinter process in the breakdown of soil aggregates and hence wind erosion risk in the Canadian prairie region.

  11. Urban Modification of Freezing-Rain Events.

    NASA Astrophysics Data System (ADS)

    Changnon, Stanley A.

    2003-06-01

    A new national database for freezing-rain occurrences during the 1945-2000 period provided an opportunity for a study of the potential urban effects on freezing-rain events. Numerous past studies of snowfall events in urban areas have defined decreases of 10%-35% related to the urban heat island. The heat island, which acts to elevate near-surface temperatures, could also keep some freezing-rain situations from occurring in the city. The study involved four cities in the Midwest and Northeast for which the average annual number of days with freezing rain are three or more, for which data from in-city stations existed, and for which data for several surrounding rural stations existed. The two largest qualifying cities, New York City, New York, and Chicago, Illinois, had sizable reductions in average and maximum annual freezing-rain-day frequencies, ranging from 16% to 43% less than values of surrounding rural stations, and their freezing-rain `seasons' were 1-2 months shorter than those in surrounding rural areas. The ocean/lake influences at both cities, along with the heat island, also helped to reduce the local incidence of freezing-rain events. Two qualifying smaller urban areas, Washington, District of Columbia, and St. Louis, Missouri, had reductions in freezing-rain-day occurrences but had no shifts in the length of their freezing-rain seasons. Results suggest that freezing-rain occurrences in large cities are decreased between 10% and 30% by the heat island, which acts to keep rain from freezing to urban surfaces.

  12. 47 CFR 64.1190 - Preferred carrier freezes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false Preferred carrier freezes. 64.1190 Section 64....1190 Preferred carrier freezes. (a) A preferred carrier freeze (or freeze) prevents a change in a subscriber's preferred carrier selection unless the subscriber gives the carrier from whom the freeze...

  13. 47 CFR 64.1190 - Preferred carrier freezes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Preferred carrier freezes. 64.1190 Section 64....1190 Preferred carrier freezes. (a) A preferred carrier freeze (or freeze) prevents a change in a subscriber's preferred carrier selection unless the subscriber gives the carrier from whom the freeze...

  14. Mechanisms of deterioration of nutrients. [of freeze dried foods

    NASA Technical Reports Server (NTRS)

    Karel, M.; Flink, J. M.

    1976-01-01

    Methods which produce freeze dried foods of improved quality were examined with emphasis on storage stability. Specific topics discussed include: microstructure of freeze dried systems, investigation of structural changes in freeze dried systems, artificial food matrices, osmotic preconcentration to yield improved quality freeze dried fruits, and storage stability of osmotically preconcentrated freeze dried fruits.

  15. The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability?

    SciTech Connect

    Zipser, E.J.; Lutz, K.R.

    1994-08-01

    Reflectivity data from Doppler radars are used to construct vertical profiles of radar reflectivity (VPRR) of convective cells in mesoscale convective systems (MCSs) in three different environmental regimes. The National Center for Atmospheric Research CP-3 and CP-4 radars are used to calculate median VPRR for MCSs in the Oklahoma-Kansas Preliminary Regional Experiment for STORM-Central in 1985. The National Oceanic and Atmospheric Administration-Tropical Ocean Global Atmosphere radar in Darwin, Australia, is used to calculate VPRR for MCSs observed both in oceanic, monsoon regimes and in continental, break period regimes during the wet seasons of 1987/88 and 1988/89. The midlatitude and tropical continental VPRRs both exhibit maximum reflectivity somewhat above the surface and have a gradual decrease in reflectivity with height above the freezing level. In sharp contrast, the tropical oceanic profile has a maximum reflectivity at the lowest level and a very rapid decrease in reflectivity with height beginning just above the freezing level. The tropical oceanic profile in the Darwin area is almost the same shape as that for two other tropical oceanic regimes, leading to the conclustion that it is characteristic. The absolute values of reflectivity in the 0 to 20 C range are compared with values in the literature thought to represent a threshold for rapid storm electrification leading to lightning, about 40 dBZ at -10 C. The large negative vertical gradient of reflectivity in this temperature range for oceanic storms is hypothesized to be a direct result of the characteristically weaker vertical velocities observed in MCSs over tropical oceans..

  16. The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability?

    NASA Technical Reports Server (NTRS)

    Zipser, Edward J.; Lutz, Kurt R.

    1994-01-01

    Reflectivity data from Doppler radars are used to construct vertical profiles of radar reflectivity (VPRR) of convective cells in mesoscale convective systems (MCSs) in three different environmental regimes. The National Center for Atmospheric Research CP-3 and CP-4 radars are used to calculate median VPRR for MCSs in the Oklahoma-Kansas Preliminary Regional Experiment for STORM-Central in 1985. The National Oceanic and Atmospheric Administration-Tropical Ocean Global Atmosphere radar in Darwin, Australia, is used to calculate VPRR for MCSs observed both in oceanic, monsoon regimes and in continental, break period regimes during the wet seasons of 1987/88 and 1988/89. The midlatitude and tropical continental VPRRs both exhibit maximum reflectivity somewhat above the surface and have a gradual decrease in reflectivity with height above the freezing level. In sharp contrast, the tropical oceanic profile has a maximum reflectivity at the lowest level and a very rapid decrease in reflectivity with height beginning just above the freezing level. The tropical oceanic profile in the Darwin area is almost the same shape as that for two other tropical oceanic regimes, leading to the conclustion that it is characteristic. The absolute values of reflectivity in the 0 to 20 C range are compared with values in the literature thought to represent a threshold for rapid storm electrification leading to lightning, about 40 dBZ at -10 C. The large negative vertical gradient of reflectivity in this temperature range for oceanic storms is hypothesized to be a direct result of the characteristically weaker vertical velocities observed in MCSs over tropical oceans. It is proposed, as a necessary condition for rapid electrification, that a convective cell must have its updraft speed exceed some threshold value. Based upon field program data, a tentative estimate for the magnitude of this threshold is 6-7 m/s for mean speed and 10-12 m/s for peak speed.

  17. Identification, analysis and monitoring of risks of freezing affecting aircraft flying over the Guadarrama Mountains (Spain)

    NASA Astrophysics Data System (ADS)

    Fernndez-Gonzlez, Sergio; Snchez, Jos Luis; Gascn, Estbaliz; Merino, Andrs; Hermida, Luca; Lpez, Laura; Marcos, Jos Luis; Garca-Ortega, Eduardo

    2014-05-01

    Freezing is one of the main causes of aircraft accidents registered over the last few decades. This means it is very important to be able to predict this situation so that aircraft can change their routes to avoid freezing risk areas. Also, by using satellites it is possible to observe changes in the horizontal and vertical extension of cloud cover likely to cause freezing in real time as well as microphysical changes in the clouds. The METEOSAT Second Generation (MSG) makes it possible to create different red-green-blue (RGB) compositions that provide a large amount of information associated with the microphysics of clouds, in order to identify super-cooled water clouds that pose a high risk of freezing to aircraft. During the winter of 2011/12 in the Guadarrama Mountains, in the centre of the Iberian Peninsula, a series of scientific flights (conducted by INTA) were organised in order to study the cloud systems that affected this region during the winter. On the flight of the 1st of February 2012, the aircraft was affected by freezing after crossing over a mountain ridge with supercooled large drops (SLD). Although freezing was not expected during that day's flight, the orography caused a series of mesoscale factors that led to the appearance of localised freezing conditions. By analysing this case, we have been able to conclude that the use of satellite images makes it possible to monitor the risk of freezing, especially under specific mesoscale circumstances. Acknowledgements S. Fernndez-Gonzlez acknowledges the grant supported from the FPU program (AP 2010-2093). This study was supported by the following grants: GRANIMETRO (CGL2010-15930); MICROMETEO (IPT-310000-2010-22). The authors would like to thank the INTA for its scientific flights.

  18. HOST CADAVERS PROTECT ENTOMOPATHOGENIC NEMATODES DURING FREEZING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four species of insect-killing nematodes were exposed to freezing temperatures while inside their hosts. Survival was assessed by observing live and dead nematodes inside cadavers and by counting the infective juveniles (IJs) tht emerged after freezing. We 1) measured the effects of 24 hours of fr...

  19. A Simple Method for Quick-Freezing

    PubMed Central

    BEARER, ELAINE L.; ORCI, LELIO

    2015-01-01

    In conventional freeze-fracture replicas produced from tissue cryoprotected with glycerol, the hydrophobic inner surfaces of membranes are revealed, but hydrophillic structures are obscured in the surrounding ice. Quick-freezing of tissue obviates the need for glycerol, which prevents the removal of this ice by etching or freeze-drying, but the major problem in freezing without glycerol cryoprotection is ice crystal formation. We describe here a simple method for quick-freezing tissue, in the absence of glycerol, on a nitrogen-cooled copper block with a hand-held specimen holder. This method freezes samples well enough to preserve molecular detail that can be revealed by subsequent etching. We show some examples of the quality of this freezing with respect to the visualization of molecular detail in isolated protein molecules such as ferritin and catalase. Furthermore, we show examples of in situ cellular structures that are revealed by this method, and we compare the structure seen in these replicas with structures preserved by quick-freezing at liquid helium temperatures. PMID:26549928

  20. Inherent freeze protection for solar water heaters

    SciTech Connect

    Jeter, S.M.; Leonaitis, L.L.; Leonaitis, L.L.

    1981-05-01

    Research and development of a method for protection of a solar collector from freezing is described. The method is shown to be technically and economically feasible. A prototype water heating system using the inherent freeze protection method was successfully operated during the winter of 1980 to 1981.

  1. Improving Forecasts of Freezing Rain at ECMWF

    NASA Astrophysics Data System (ADS)

    Tsonevsky, Ivan; Forbes, Richard; Hewson, Tim

    2015-04-01

    Freezing rain events, though relatively rare, can be extremely debilitating and dangerous for society, with recovery times of order months or even years. Analysis of forecasts of past events by the operational ECMWF Integrated Forecast System (IFS) showed a strong tendency to incorrectly represent freezing rain as snow. Investigations highlighted that this was primarily because the re-freezing process in IFS, following hydrometeors as they descend, was parametrised with the same time-scale as the melting process. In reality the time-scale for re-freezing should, in general, be much longer. The model physics were changed accordingly, and the results in terms of forecast quality were positive and very striking. Coupled with these physics changes new IFS output was developed for users which shows precipitation type at the surface (rain, snow, wet snow, sleet, freezing rain, ice pellets). The changes to the physics will be described in detail, and their impact will be illustrated by comparing forecast output for past events in new and old model versions, in terms of precipitation type and intensity. Illustrations will include short-range deterministic forecasts from 'HRES' (the high resolution ECMWF model), and longer range probabilistic forecasts of freezing rain occurrence from the ensemble. There will also be reference to issues requiring further work/investigation, such as high level convection in potential freezing rain cases, freezing drizzle generated in supercooled shallow clouds, and IFS retention of the 'warm nose' in which melting occurs.

  2. Bioinspired Design: Magnetic Freeze Casting

    NASA Astrophysics Data System (ADS)

    Porter, Michael Martin

    Nature is the ultimate experimental scientist, having billions of years of evolution to design, test, and adapt a variety of multifunctional systems for a plethora of diverse applications. Next-generation materials that draw inspiration from the structure-property-function relationships of natural biological materials have led to many high-performance structural materials with hybrid, hierarchical architectures that fit form to function. In this dissertation, a novel materials processing method, magnetic freeze casting, is introduced to develop porous scaffolds and hybrid composites with micro-architectures that emulate bone, abalone nacre, and other hard biological materials. This method uses ice as a template to form ceramic-based materials with continuously, interconnected microstructures and magnetic fields to control the alignment of these structures in multiple directions. The resulting materials have anisotropic properties with enhanced mechanical performance that have potential applications as bone implants or lightweight structural composites, among others.

  3. Crosswind Shear Gradient Affect on Wake Vortices

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Ahmad, Nashat N.

    2011-01-01

    Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.

  4. Freezing out early dark energy

    NASA Astrophysics Data System (ADS)

    Bielefeld, Jannis; Wu, W. L. Kimmy; Caldwell, Robert R.; Dor, Olivier

    2013-11-01

    A phenomenological model of dark energy that tracks the baryonic and cold dark matter at early times but resembles a cosmological constant at late times is explored. In the transition between these two regimes, the dark energy density drops rapidly as if it were a relic species that freezes out, during which time the equation of state peaks at +1. Such an adjustment in the dark energy density, as it shifts from scaling to potential domination, could be the signature of a trigger mechanism that helps explain the late-time cosmic acceleration. We show that the non-negligible dark energy density at early times, and the subsequent peak in the equation of state at the transition, leave an imprint on the cosmic microwave background anisotropy pattern and the rate of growth of large scale structure. The model introduces two new parameters, consisting of the present-day equation of state and the redshift of the freeze-out transition. A Monte Carlo Markov chain analysis of a ten-dimensional parameter space is performed to compare the model with pre-Planck cosmic microwave background, large scale structure and supernova data and measurements of the Hubble constant. We find that the transition described by this model could have taken place as late as a redshift z250. We explore the capability of future cosmic microwave background and weak lensing experiments to put tighter constraints on this model. The viability of this model may suggest new directions in dark-energy model building that address the coincidence problem.

  5. Analysis of freezing in an eccentric annulus

    SciTech Connect

    Zhang, Y.; Faghri, A.

    1996-12-31

    Thermal energy storage systems are very important in the harnessing of periodical energy sources, such as solar energy. The phase change thermal energy storage system is the most promising since it can store and release a large amount of heat energy during the melting and freezing process. Freezing in an eccentric annulus is investigated numerically by using a temperature transforming model. Since the effect of the heat conduction along the circular direction on the growth of the freezing layer is very small, an analytical solution by employing integral approximate method is proposed. The freezing rate obtained by the analytical solution agreed very well with that of the numerical solution, although the analytical solution is much simpler than the numerical solution. The effects of the eccentric annulus geometric structure on the freezing process is also investigated.

  6. Homogeneous freezing nucleation of stratospheric solution droplets

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Toon, Owen B.; Hamill, Patrick

    1991-01-01

    The classical theory of homogeneous nucleation was used to calculate the freezing rate of sulfuric acid solution aerosols under stratospheric conditions. The freezing of stratospheric aerosols would be important for the nucleation of nitric acid trihydrate particles in the Arctic and Antarctic stratospheres. In addition, the rate of heterogeneous chemical reactions on stratospheric aerosols may be very sensitive to their state. The calculations indicate that homogeneous freezing nucleation of pure water ice in the stratospheric solution droplets would occur at temperatures below about 192 K. However, the physical properties of H2SO4 solution at such low temperatures are not well known, and it is possible that sulfuric acid aerosols will freeze out at temperatures ranging from about 180 to 195 K. It is also shown that the temperature at which the aerosols freeze is nearly independent of their size.

  7. Split-sample comparison of directional and liquid nitrogen vapour freezing method on post-thaw semen quality in white rhinoceroses (Ceratotherium simum simum and Ceratotherium simum cottoni).

    PubMed

    Reid, C E; Hermes, R; Blottner, S; Goeritz, F; Wibbelt, G; Walzer, C; Bryant, B R; Portas, T J; Streich, W J; Hildebrandt, T B

    2009-01-15

    To increase the quality of cryopreserved sperm in white rhinoceros, the liquid nitrogen vapour (LN vapour) freezing and the multi-thermal gradient directional freezing methods were compared. Sixteen white rhinoceros (Ceratotherium simum sp.) were electro-ejaculated. Semen samples were diluted with cryoextender (Tris, lactose, egg-yolk, DMSO) and aliquoted into straws for LN vapour freezing, and glass hollow tubes for directional freezing. The sperm quality was evaluated before and after freezing by assessing the following parameters: motility, morphologic state, acrosomal integrity and plasma membrane function and integrity (i.e. sperm viability) as defined by the hypo-osmotic swelling. Directional freezing improved the sperm viability by 5.6% (p<0.005), progressive motility score by 34.7% and sperm motility index (SMI) by 8.1% (p<0.005) versus LN vapour freezing. When data was categorized into groups of low (<19%), moderate (20-39%) and high (>40%) percentages of morphologically normal, directional freezing (DF) resulted in 31.4% less abnormal acrosomes for the low quality group as well as 18.7% increase in intact acrosomes and 10.9% increase in motility for the high quality group compared to LN vapour freezing (LN) (p<0.01, p<0.03, p<0.01, respectively). LN showed a significant reduction in sperm head volume (5.7%, p<0.05) compared to the prefreeze; whereas, no significant reduction in head volume was demonstrated after DF. Several additives (xanthenuric acid, cytochalasin D, potassium, EDTA) to the basic cryoextender provided no significant improvement in spermatozoal survival after directional freezing. In conclusion, directional freezing proved to facilitate higher gamete survival compared to LN vapour freezing. This is especially effective in ejaculates of low sperm quality and is important in endangered species where high quality semen donors are often not accessible. These results suggest that directional freezing could be valuable particularly for species with limited freezability of spermatozoa. PMID:18775559

  8. On the freezing precipitation in korea and the basic schemes for its potential prediction

    NASA Astrophysics Data System (ADS)

    Kwon, Sang-Hoon; Byun, Hi-Ryong; Park, Chang-Kyun; Kwon, Hui-Nae

    2016-02-01

    This study aims to improve the forecasting skill for freezing precipitation. A total of 102 freezing precipitation cases were collected in South and North Korea from 2001 onwards. Temperature fields on the ground and in the atmosphere, vertical temperature profiles, geopotential fields, thickness fields and their spatiotemporal variations, and their combinations using the predominant precipitation-type nomograms (P-type nomograms) were classified and investigated to determine whether or not these data could be used as predictors. Results show that 1) the combination of the thicknesses of 1000-850 hPa and 850-700 hPa is recommended for the P-type nomograms for Korea, which is different from that used in the United States in threshold values; 2) 35 out of 72 synoptic situations are possible conditions for freezing precipitation; and 3) 3 groups out of those 35 situations, i.e., the 1000 hPa warmfront group, the mid-level southerly category of 850 hPa, and the mid-layer warm type in the vertical temperature profile, show the greatest frequency. Freezing precipitation occurs only in a small part of a possible area. Therefore, despite the increasing observations in the year-on-year trend, only a few of the cases have been detected. The possibility of observation errors is also one of the biggest problems. Therefore, the need for new equipment, such as a freezing rain detector (FRAD), to detect the phenomenon automatically is required and proposed. A denser observing system of FRADs and an ultra-fine gridded numerical model are suggested as a solution for the prediction of freezing precipitation.

  9. Mesoscale monitoring of the soil freeze/thaw boundary from orbital microwave radiometry

    NASA Technical Reports Server (NTRS)

    Dobson, Craig; Ulaby, Fawwaz T.; Zuerndorfer, Brian; England, Anthony W.

    1990-01-01

    A technique was developed for mapping the spatial extent of frozen soils from the spectral characteristics of the 10.7 to 37 GHz radiobrightness. Through computational models for the spectral radiobrightness of diurnally heated freesing soils, a distinctive radiobrightness signature was identified for frozen soils, and the signature was cast as a discriminant for unsupervised classification. In addition to large area images, local area spatial averages of radiobrightness were calculated for each radiobrightness channel at 7 meteorologic sites within the test region. Local area averages at the meteorologic sites were used to define the preliminary boundaries in the Freeze Indicator discriminate. Freeze Indicator images based upon Nimbus 7, Scanning Multichannel Microwave Radiometer (SMMR) data effectively map temporal variations in the freeze/thaw pattern for the northern Great Plains at the time scale of days. Diurnal thermal gradients have a small but measurable effect upon the SMMR spectral gradient. Scale-space filtering can be used to improve the spatial resolution of a freeze/thaw classified image.

  10. Shadowgraph Study of Gradient Driven Fluctuations

    NASA Technical Reports Server (NTRS)

    Cannell, David; Nikolaenko, Gennady; Giglio, Marzio; Vailati, Alberto; Croccolo, Fabrizio; Meyer, William

    2002-01-01

    A fluid or fluid mixture, subjected to a vertical temperature and/or concentration gradient in a gravitational field, exhibits greatly enhanced light scattering at small angles. This effect is caused by coupling between the vertical velocity fluctuations due to thermal energy and the vertically varying refractive index. Physically, small upward or downward moving regions will be displaced into fluid having a refractive index different from that of the moving region, thus giving rise to the enhanced scattering. The scattered intensity is predicted to vary with scattering wave vector q, as q(sup -4), for sufficiently large q, but the divergence is quenched by gravity at small q. In the absence of gravity, the long wavelength fluctuations responsible for the enhanced scattering are predicted to grow until limited by the sample dimensions. It is thus of interest to measure the mean-squared amplitude of such fluctuations in the microgravity environment for comparison with existing theory and ground based measurements. The relevant wave vectors are extremely small, making traditional low-angle light scattering difficult or impossible because of stray elastically scattered light generated by optical surfaces. An alternative technique is offered by the shadowgraph method, which is normally used to visualize fluid flows, but which can also serve as a quantitative tool to measure fluctuations. A somewhat novel shadowgraph apparatus and the necessary data analysis methods will be described. The apparatus uses a spatially coherent, but temporally incoherent, light source consisting of a super-luminescent diode coupled to a single-mode optical fiber in order to achieve extremely high spatial resolution, while avoiding effects caused by interference of light reflected from the various optical surfaces that are present when using laser sources. Results obtained for a critical mixture of aniline and cyclohexane subjected to a vertical temperature gradient will be presented. The sample was confined between two horizontal parallel sapphire plates with a vertical spacing of 1 mm. The temperatures of the sapphire plates were controlled by independent circulating water loops that used Peltier devices to add or remove heat from the room air as required. For a mixture with a temperature gradient, two effects are involved in generating the vertical refractive index gradient, namely thermal expansion and the Soret effect, which generates a concentration gradient in response to the applied temperature gradient. For the aniline/cyclohexane system, the denser component (aniline) migrates toward the colder surface. Consequently, when heating from above, both effects result in the sample density decreasing with altitude and are stabilizing in the sense that no convective motion occurs regardless of the magnitude of the applied temperature gradient. The Soret effect is strong near a binary liquid critical point, and thus the dominant effect is due to the induced concentration gradient. The results clearly show the divergence at low q and the predicted gravitational quenching. Results obtained for different applied temperature gradients at varying temperature differences from the critical temperature, clearly demonstrate the predicted divergence of the thermal diffusion ratio. Thus, the more closely the critical point is approached, the smaller becomes the temperature gradient required to generate the same signal. Two different methods have been used to generate pure concentration gradients. In the first, a sample cell was filled with a single fluid, ethylene glycol, and a denser miscible fluid, water, was added from below thus establishing a sharp interface to begin the experiment. As time went on the two fluids diffused into each other, and large amplitude fluctuations were clearly observed at low q. The effects of gravitational quenching were also evident. In the second method, the aniline/cyclohexane sample was used, and after applying a vertical temperature gradient for several hours, the top and bottom temperatures were set equal and the thermal

  11. Effective anisotropy gradient in pressure graded [Co/Pd] multilayers

    SciTech Connect

    Kirby, B. J. Maranville, B. B.; Greene, P. K.; Liu, Kai; Davies, J. E.

    2015-02-14

    We have used polarized neutron reflectometry to show that controlled variation of growth pressure during deposition of Co/Pd multilayers can be used to achieve a significant vertical gradient in the effective anisotropy. This gradient is strongly dependent on deposition order (low to high pressure or vice versa), and is accompanied by a corresponding gradient in saturation magnetization. These results demonstrate pressure-grading as an attractively simple technique for tailoring the anisotropy profile of magnetic media.

  12. Exploring the Nature of Contact Freezing

    NASA Astrophysics Data System (ADS)

    Kiselev, A. A.; Hoffmann, N.; Duft, D.; Leisner, T.

    2012-12-01

    The freezing of supercooled water droplets upon contact with aerosol particles (contact nucleation of ice) is the least understood mechanism of ice formation in atmospheric clouds. Although experimental evidences suggest that some aerosols can be better IN in the contact than in the immersion mode (that is, triggering ice nucleation at higher temperature), no final explanation of this phenomena currently exists. On the other hand, the contact freezing is believed to be responsible for the enhanced rate of secondary ice formation occasionally observed in LIDAR measurements in the cold mixed phase clouds. Recently we have been able to show that the freezing of supercooled droplets electrodynamically levitated in the laminar flow containing mineral dust particles (kaolinite) is a process solely governed by a rate of collisions between the supercooled droplet and the aerosol particles. We have shown that the probability of droplet freezing on a single contact with aerosol particle may differ over an order of magnitude for kaolinite particles having different genesis and morphology. In this presentation we extend the study of contact nucleation of ice and compare the IN efficiency measured for DMA-selected kaolinite, illite and hematite particles. We show that the freezing probability increases towards unity as the temperature decreases and discuss the functional form of this temperature dependence. We explore the size dependence of the contact freezing probability and show that it scales with the surface area of the particles, thus resembling the immersion freezing behavior. However, for all minerals investigated so far, the contact freezing has been shown to dominate over immersion freezing on the short experimental time scales. Finally, based on the combined ESEM and electron microprobe analysis, we discuss the significance of particle morphology and variability of chemical composition on its IN efficiency in contact mode.

  13. Freeze Denaturation of Fish Muscle Proteins

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Takahide

    Studies on the freeze denaturation of fish muscle proteins were reviewed with emphasis given to changes in their physicochemical and biochemical properties during frozen storage. Denaturation of actomyosin commonly occurs during frozen storage and side-to-side aggregation of myosin molecules apppears to major role in this reaction. The author's group performed freezing studies with isolated preparations of proteins from carp muscle, namely actomyosin, myosin, H-meromyosin, L-meromyosin, and actin. Freeze denaturation occurred with indvidual proteins as well as with their subunits. Not only aggregation but also some conformational changes were observed. Denaturation was inhibited in the presence of added glutamate.

  14. Hot big bang or slow freeze?

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2014-09-01

    We confront the big bang for the beginning of the universe with an equivalent picture of a slow freeze - a very cold and slowly evolving universe. In the freeze picture the masses of elementary particles increase and the gravitational constant decreases with cosmic time, while the Newtonian attraction remains unchanged. The freeze and big bang pictures both describe the same observations or physical reality. We present a simple crossover model without a big bang singularity. In the infinite past space-time is flat. Our model is compatible with present observations, describing the generation of primordial density fluctuations during inflation as well as the present transition to a dark energy-dominated universe.

  15. About the vertical gradient of composition in Titan's lakes

    NASA Astrophysics Data System (ADS)

    Cordier, D.; Roussel, J.; Rannou, P.

    2015-10-01

    The hydrocarbons seas of Titan, discovered by Cassini/Huygens mission are among the most interesting features of this object. However, their chemical composition remains not well known. Due to the presence of the methane in the atmosphere, only a few indications favoring the existence of some amount of ethane in Ontario Lacus have been brought by observations reported in [2, 10]. Several numerical models have been proposed: Dubouloz et al. (1989), Cordier et al. (2009,2013) based on the Regular Solution Theory, Glein et al. (2013) [4] and Tan et al. (2013) [13] respectively based on a RST family model and on the advanced equation of state PC-SAFT1 [5, 13, 10, 3]. The atmosphere of Titan is dominated by nitrogen and contains a few percents of methane. The latter, photolyzed by solar radiations in the stratosphere, gives rise to a complex organic chemistry yielding to the production of a plethora of compounds [7]. According to numerical models, the most abundant species, produced by photochemistry, should be ethane. Then, the bulk composition of Titan's lakes can reasonably regarded as a mixture of methane and ethane, withsome amount of dissolved N2. This latter has a melting temperature (63.3 K) much below than that for methane (around 91 K) and ethane (101 K determined by Streng, 1971; 89.2 K measured by Timmermans,1935); as the ground temperature of Titan in the range 90-95K, the nitrogenmay play a role of an antifreezing solute.

  16. Neuroimaging of Freezing of Gait.

    PubMed

    Fasano, Alfonso; Herman, Talia; Tessitore, Alessandro; Strafella, Antonio P; Bohnen, Nicolaas I

    2015-01-01

    Functional brain imaging techniques appear ideally suited to explore the pathophysiology of freezing of gait (FOG). In the last two decades, techniques based on magnetic resonance or nuclear medicine imaging have found a number of structural changes and functional disconnections between subcortical and cortical regions of the locomotor network in patients with FOG. FOG seems to be related in part to disruptions in the "executive-attention" network along with regional tissue loss including the premotor area, inferior frontal gyrus, precentral gyrus, the parietal and occipital areas involved in visuospatial functions of the right hemisphere. Several subcortical structures have been also involved in the etiology of FOG, principally the caudate nucleus and the locomotor centers in the brainstem. Maladaptive neural compensation may present transiently in the presence of acute conflicting motor, cognitive or emotional stimulus processing, thus causing acute network overload and resulting in episodic impairment of stepping.In this review we will summarize the state of the art of neuroimaging research for FOG. We will also discuss the limitations of current approaches and delineate the next steps of neuroimaging research to unravel the pathophysiology of this mysterious motor phenomenon. PMID:25757831

  17. Freeze concentration beats the heat

    SciTech Connect

    Rosen, J.

    1990-12-01

    This paper reports on freeze concentration (FC) which saves energy and money in packaging, shipping, and storing food products. FC---in contrast to existing heat-evaporation processes---retains volatile flavor and aroma compounds in food products so that no additives are required to restore the taste and smell of the original product. In recent tests on orange, grapefruit, and pineapple juices, reconstituted FC juices were found to be superior in taste to juices produced by evaporation and similar to the original pasteurized juices. The dairy industry, which is the largest user of energy for concentration in the food sector, is looking to FC for new products such as frozen concentrated milk as well as better use of the milk by-products of cheese production. The biggest potential for new FC applications is in those industries that consume large amounts of energy for separation processing, according to a 1987 report prepared for EPRI. In the food industry, this includes milk, vinegar, and beer producers. Potential applications also abound in the pulp and paper, pharmaceutical, chemical, and petroleum industries. FC separates substances via crystallization at substantial energy savings.

  18. A Closed System for Batch/Continuous Freeze-drying of Liquid Materials

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masakazu; Harashima, Konomi; Ariyama, Hiroichi; Yao, Ai-Ru

    Up to the present, the conventional freeze-drying method for bulk pharmaceticals and other liquid materials has employed a tray/shelf system, while the development of a closed system has been desired for many years, especially for the manufacturing of sterile bulk pharmaceuticals. Seffinga (1964) devised a method, which he called "vertical tube dryer", however, this system was not established due to several drawbacks. Having restudied Seffinga's method, we have succeeded in eliminating the drawbacks of this method and have developed a closed system for the batch/continuous freeze-drying of liquid materials. Two of the drawbacks of Seffinga's method, namely (a) supercooloing followed by sudden freezing and (b) adherence of dried material to the tube surface, have been eliminated by the formation of an ice lining. Another drawback (c) that a substaintial part of the liquid poured into the chamber must be drained has been solved through multistage frozen layer formation. All of the stage of freeze-drying can be performed using the closed system developed in this study. Further, since the interior dose not have a complicated structure, internal cleaning and steam sterilization can be easily performed. This paper discussed the closed system and the behavior of materials in the freeze-drying process.

  19. Evaluation of spin freezing versus conventional freezing as part of a continuous pharmaceutical freeze-drying concept for unit doses.

    PubMed

    De Meyer, L; Van Bockstal, P-J; Corver, J; Vervaet, C; Remon, J P; De Beer, T

    2015-12-30

    Spin-freezing as alternative freezing approach was evaluated as part of an innovative continuous pharmaceutical freeze-drying concept for unit doses. The aim of this paper was to compare the sublimation rate of spin-frozen vials versus traditionally frozen vials in a batch freeze-dryer, and its impact on total drying time. Five different formulations, each having a different dry cake resistance, were tested. After freezing, the traditionally frozen vials were placed on the shelves while the spin-frozen vials were placed in aluminum vial holders providing radial energy supply during drying. Different primary drying conditions and chamber pressures were evaluated. After 2h of primary drying, the amount of sublimed ice was determined in each vial. Each formulation was monitored in-line using NIR spectroscopy during drying to determine the sublimation endpoint and the influence of drying conditions upon total drying time. For all tested formulations and applied freeze-drying conditions, there was a significant higher sublimation rate in the spin-frozen vials. This can be explained by the larger product surface and the lower importance of product resistance because of the much thinner product layers in the spin frozen vials. The in-line NIR measurements allowed evaluating the influence of applied drying conditions on the drying trajectories. PMID:25981618

  20. Freeze-thaw stability of water-in-oil emulsions.

    PubMed

    Ghosh, S; Rousseau, D

    2009-11-01

    Factors influencing water-in-oil emulsion stability during freeze/thaw-cycling, namely interfacial crystallization vs. network crystallization and the sequence of crystallization events (i.e., dispersed vs. continuous phase or vice versa), are assessed. We show that destabilization is most apparent with a liquid-state emulsifier and a continuous oil phase that solidifies prior to the dispersed phase. Emulsions stable to F/T-cycling are obtained when the emulsifier crystallizes at the oil-water interface or in emulsions where the continuous phase crystallizes after the dispersed aqueous phase. The materials used are two food-grade oil-soluble emulsifiers - polyglycerol polyricinoleate (PGPR) and glycerol monostearin (GMS) and two continuous oil phases with differing crystallization temperatures - canola oil and coconut oil. Emulsion stability is assessed with pulsed field gradient NMR droplet size analysis, sedimentation, microscopy and differential scanning calorimetry. This study demonstrates the sequence of crystallization events and the physical state of the surfactant at the oil-water interface strongly impact the freeze-thaw stability of water-in-oil emulsions. PMID:19683718

  1. Automated assessment of pavlovian conditioned freezing and shock reactivity in mice using the video freeze system.

    PubMed

    Anagnostaras, Stephan G; Wood, Suzanne C; Shuman, Tristan; Cai, Denise J; Leduc, Arthur D; Zurn, Karl R; Zurn, J Brooks; Sage, Jennifer R; Herrera, Gerald M

    2010-01-01

    The Pavlovian conditioned freezing paradigm has become a prominent mouse and rat model of learning and memory, as well as of pathological fear. Due to its efficiency, reproducibility and well-defined neurobiology, the paradigm has become widely adopted in large-scale genetic and pharmacological screens. However, one major shortcoming of the use of freezing behavior has been that it has required the use of tedious hand scoring, or a variety of proprietary automated methods that are often poorly validated or difficult to obtain and implement. Here we report an extensive validation of the Video Freeze system in mice, a "turn-key" all-inclusive system for fear conditioning in small animals. Using digital video and near-infrared lighting, the system achieved outstanding performance in scoring both freezing and movement. Given the large-scale adoption of the conditioned freezing paradigm, we encourage similar validation of other automated systems for scoring freezing, or other behaviors. PMID:20953248

  2. Automated Assessment of Pavlovian Conditioned Freezing and Shock Reactivity in Mice Using the Video Freeze System

    PubMed Central

    Anagnostaras, Stephan G.; Wood, Suzanne C.; Shuman, Tristan; Cai, Denise J.; LeDuc, Arthur D.; Zurn, Karl R.; Zurn, J. Brooks; Sage, Jennifer R.; Herrera, Gerald M.

    2009-01-01

    The Pavlovian conditioned freezing paradigm has become a prominent mouse and rat model of learning and memory, as well as of pathological fear. Due to its efficiency, reproducibility and well-defined neurobiology, the paradigm has become widely adopted in large-scale genetic and pharmacological screens. However, one major shortcoming of the use of freezing behavior has been that it has required the use of tedious hand scoring, or a variety of proprietary automated methods that are often poorly validated or difficult to obtain and implement. Here we report an extensive validation of the Video Freeze system in mice, a “turn-key” all-inclusive system for fear conditioning in small animals. Using digital video and near-infrared lighting, the system achieved outstanding performance in scoring both freezing and movement. Given the large-scale adoption of the conditioned freezing paradigm, we encourage similar validation of other automated systems for scoring freezing, or other behaviors. PMID:20953248

  3. Freeze-thaw cycles as drivers of complex ribozyme assembly

    NASA Astrophysics Data System (ADS)

    Mutschler, Hannes; Wochner, Aniela; Holliger, Philipp

    2015-06-01

    The emergence of an RNA catalyst capable of self-replication is considered a key transition in the origin of life. However, how such replicase ribozymes emerged from the pools of short RNA oligomers arising from prebiotic chemistry and non-enzymatic replication is unclear. Here we show that RNA polymerase ribozymes can assemble from simple catalytic networks of RNA oligomers no longer than 30 nucleotides. The entropically disfavoured assembly reaction is driven by iterative freeze-thaw cycles, even in the absence of external activation chemistry. The steep temperature and concentration gradients of such cycles result in an RNA chaperone effect that enhances the otherwise only partially realized catalytic potential of the RNA oligomer pool by an order of magnitude. Our work outlines how cyclic physicochemical processes could have driven an expansion of RNA compositional and phenotypic complexity from simple oligomer pools.

  4. Freeze-thaw cycles as drivers of complex ribozyme assembly

    PubMed Central

    Mutschler, Hannes; Wochner, Aniela; Holliger, Philipp

    2015-01-01

    The emergence of an RNA catalyst capable of self-replication is considered a key transition in the origin of life. However, how such replicase ribozymes emerged from the pools of short RNA oligomers arising from prebiotic chemistry and non-enzymatic replication is unclear. Here we show that RNA polymerase ribozymes can assemble from simple catalytic networks of RNA oligomers no longer than 30 nucleotides. The entropically disfavoured assembly reaction is driven by iterative freeze-thaw cycles even in the absence of external activation chemistry. The steep temperature and concentration gradients of such cycles result in an RNA chaperone effect that enhances the otherwise only partially realized catalytic potential of the RNA oligomer pool by an order of magnitude. Our work outlines how cyclic physicochemical processes could have driven an expansion of RNA compositional and phenotypic complexity from simple oligomer pools. PMID:25991529

  5. Evaluation of anti-freeze viscosity modifier for potential external tank applications

    NASA Technical Reports Server (NTRS)

    Lynn, R. O. L.

    1981-01-01

    Viscosity modifiers and gelling agents were evaluated in combination with ethylene glycol and dimethyl sulfoxide water eutectics. Pectin and agarose are found to gel these eutectics effectively in low concentration, but the anti-freeze protection afforded by these compositions is found to be marginal in simulations of the intended applications. Oxygen vent shutters and vertical metallic surfaces were simulated, with water supplied as a spray, dropwise, and by condensation from the air.

  6. Surface freezing of n-octane nanodroplets

    NASA Astrophysics Data System (ADS)

    Modak, Viraj; Pathak, Harshad; Thayer, Mitchell; Singer, Sherwin; Wyslouzil, Barbara

    2013-05-01

    Surface freezing, at temperatures up to a few degrees above the equilibrium melting point, has been observed for intermediate chain length (16? i? 50) n-alkanes [B. M. Ocko, X. Z. Wu, E. B. Sirota, S. K. Sinha, O. Gang and M. Deutsch, Phys. Rev. E, 1997, 55, 3164-3182]. Our recent experimental results suggest that surface freezing is also the first step when highly supercooled nanodroplets of n-octane crystallize. Our data yield surface and bulk nucleation rates on the order of 1015/cm2.s and 1022/cm3.s, respectively. Complementary molecular dynamics simulations also show that the surface of the droplet freezes almost immediately, and freezing of the remainder of the droplet progresses in a layer-by-layer manner.

  7. Cell-encapsulating droplet formation and freezing

    NASA Astrophysics Data System (ADS)

    Ryoun Youn, Jae; Seok Song, Young

    2012-09-01

    Cell-encapsulating droplets are vitrified for biopreservation applications. The dynamics of micro-droplet formation and its freezing mechanism are analyzed numerically and experimentally. In addition, the microdroplet encapsulation technique is applied to cryopreserve cells.

  8. [Freezing and gait disorders in Parkinson's disease].

    PubMed

    Gonçalves, Giovanna; Pereira, João

    2013-06-01

    More than one third of patients with Parkinson disease experience freezing. It is characterized by the feeling that one's feet are "glued to the floor", and it is more common in the later stages of the disease. The causes of this gait disorder are not yet fully established, but it may lead patients to suffer falls and lose their independence. As a consequence, the development of therapeutic measures which can overcome freezing is of fundamental important for the autonomy of such individuals. There is no consensus in the literature on the most recommended therapeutic measures for the prevention or attenuation of freezing in gait. What seems to be defined are the phenomenological aspects of the disorder and good therapy, represented by the association between drug therapy and sensorial stimuli or motor coordination training geared towards the specificities to avoid motor difficulties of freezing, when triggering factors are present. PMID:24121579

  9. Notes on the freezing of simple substances

    SciTech Connect

    Stishov, S. M.

    2006-08-15

    Experimental data on the freezing of argon and the helium isotopes at high pressures are analyzed. It is found that attractive forces in argon can be adequately described by the van der Waals mean field theory. An analogous approximation may also be applicable to helium, but this cannot be established conclusively because of quantum effects. However, an analysis of experimental results on the freezing of helium intuitively suggests that the solid-phase stability region is enlarged by quantum effects.

  10. Hydrocarbon exclusion from ground water during freezing

    SciTech Connect

    Tumeo, M.A.; Davidson, B. )

    1993-08-01

    Bench-scale studies were conducted using a constant-head ground-water flow chamber and natural soil. Initial experiments with chlorides and dye were conducted to test the hydraulic and adsorptive characteristics of the chamber. A constant flow of phenol was then introduced into the chamber and contaminant movement with time was monitored under freezing and nonfreezing conditions. The chamber was located in a controlled-temperature room, and freezing fronts were induced from the soil surface downward using cooled Freon circulated through freezer pads placed on the surface of the soil. The results conclusively demonstrate that phenol is excluded from the freezing front and pushed downward through the system. Extensive exclusion of the chemical occurs even though the freezing point of phenol (43 C) is significantly higher than water. The information gained through this research is applicable in cold regions outside Alaska and the Arctic where ground water systems may undergo periodic freezing, and may also be of extreme importance in artificial-freezing scenarios such as those currently being investigated by the Environmental Protection Agency (EPA) as a method of contaminant containment.

  11. Chemically grafted carbon nanotube surface coverage gradients.

    PubMed

    Shearer, Cameron J; Ellis, Amanda V; Shapter, Joseph G; Voelcker, Nicolas H

    2010-12-01

    Two approaches to producing gradients of vertically aligned single-walled carbon nanotubes (SWCNTs) on silicon surfaces by chemical grafting are presented here. The first approach involves the use of a porous silicon (pSi) substrate featuring a pore size gradient, which is functionalized with 3-aminopropyltriethoxysilane (APTES). Carboxylated SWCNTs are then immobilized on the topography gradient via carbodiimide coupling. Our results show that as the pSi pore size and porosity increase across the substrate the SWCNT coverage decreases concurrently. In contrast, the second gradient is an amine-functionality gradient produced by means of vapor-phase diffusion of APTES from a reservoir onto a silicon wafer where APTES attachment changes as a function of distance from the APTES reservoir. Carboxylated SWCNTs are then immobilized via carbodiimide coupling to the amine-terminated silicon gradient. Our observations confirm that with decreasing APTES density on the surface the coverage of the attached SWCNTs also decreases. These gradient platforms pave the way for the time-efficient optimization of SWCNT coverage for applications ranging from field emission to water filtration to drug delivery. PMID:20977243

  12. Gradient echo imaging.

    PubMed

    Markl, Michael; Leupold, Jochen

    2012-06-01

    Magnetic resonance imaging (MRI) based on gradient echoes is used in a wide variety of imaging techniques and clinical applications. Gradient echo sequences form the basis for an essential group of imaging methods that find widespread use in clinical practice, particularly when fast imaging is important, as for example in cardiac MRI or contrast-enhanced MR angiography. However, the term "gradient echo sequence" is somewhat unspecific, as even images acquired with the most common sequences employing the gradient echo for data acquisition can significantly differ in signal, contrast, artifact behavior, and sensitivity to, eg, flow. This is due to the different use of sequence timing and basic sequence building blocks such as spoiler gradients or specific radiofrequency (RF) pulse phase patterns. In this article the basic principles of gradient echo formation compared to spin echo imaging are reviewed and the properties of gradient echo imaging in its simplest form (TR ? T(2)) are described. Further, the most common three variants of fast gradient echo sequences (TR < T(2)), namely, unbalanced gradient echo, RF spoiled gradient echo, and balanced steady state free precession; are discussed. For each gradient echo sequence type, examples of applications exploiting the specific properties of the individual technique are presented. PMID:22588993

  13. The effect of density gradients on hydrometers

    NASA Astrophysics Data System (ADS)

    Heinonen, Martti; Sillanp, Sampo

    2003-05-01

    Hydrometers are simple but effective instruments for measuring the density of liquids. In this work, we studied the effect of non-uniform density of liquid on a hydrometer reading. The effect induced by vertical temperature gradients was investigated theoretically and experimentally. A method for compensating for the effect mathematically was developed and tested with experimental data obtained with the MIKES hydrometer calibration system. In the tests, the method was found reliable. However, the reliability depends on the available information on the hydrometer dimensions and density gradients.

  14. A thermobaric instability of Lagrangian vertical coordinate ocean models

    NASA Astrophysics Data System (ADS)

    Hallberg, Robert

    Lagrangian- (and isopycnic-) vertical coordinate ocean models are subject to an exponentially growing numerical instability in weakly stratified regions when thermobaricity is not accurately compensated. Inaccurate compensation for compressibility in the pressure gradient terms leads to pressure gradient truncation errors (due to the vertical discretization) that can drive the Lagrangian coordinate surfaces to reinforce these errors. It is possible to avoid this instability while using the full non-linear equation of state for seawater by using an optimal alternate discretization of the pressure gradient terms and extracting a slowly spatially varying reference compressibility that approximates the compressibility of the ocean's mean state.

  15. Impacts from Time-dependent Freezing of Rain and Wet Hail on Deep Convection Simulated by a Cloud Model with Spectral Bin Microphysics

    NASA Astrophysics Data System (ADS)

    Phillips, V. T.; Khain, A.; Ilotoviz, E.; BenMoshe, N.

    2014-12-01

    Any hydrometeor containing some supercooled liquid can only freeze it as fast as latent heat is dissipated to the ambient air. Consequently, at sub-zero temperatures any given particle in a cloud can contain both ice and liquid water. Wet growth of hail occurs when supercooled cloud-liquid is accreted faster than it can freeze immediately on impact. Equally, raindrops in clear air can take up to a few mins to freeze. A new theory of time-dependent freezing is proposed in this presentation. First, wet growth of hail is represented by treating inhomogeneities of liquid coverage and temperature over the surface of the particle. Radial heat fluxes from the sponge layer through the liquid skin to the air are predicted, as well as heat fluxes between its wet and dry parts. Gradual internal freezing of liquid that soaks the interior of the hail or graupel particle during dry growth ('riming') is represented. The microphysical recycling with alternating episodes of wet and dry growth is predicted. Second, the time-dependent process of raindrop freezing is represented by including thermodynamic effects from accretion of cloud-liquid and -ice. Freezing drops larger than about 0.1 mm are represented as a new microphysical species in a cloud model with spectral bin microphysics. The freezing drops consist of interior water covered by ice initially. Possibilities of both dry and wet growth of freezing drops are represented. Schemes of time-dependent freezing for rain and wet growth of hail and graupel were implemented in a spectral bin microphysics cloud model. The model predicted that accretion of liquid produces giant freezing drops of 0.5-2 cm in diameter, due to downdraft-updraft recirculation and wet growth of freezing drops. Appreciable contents of freezing drops reach a height level of 7 km (-30 degC) in the simulated storm. The critical diameter separating wet and dry growth regimes is predicted to increase with height for freezing drops. It is more vertically uniform for hail. A sensitivity test with the cloud model shows that time-dependent freezing delays formation of the first hail. Later in the mature stage of the storm, it boosts hail amounts. Convection is invigorated. Hail and freezing drops are upwelled to higher levels, and hail grows to sizes up to twice as large, than without time-dependent freezing.

  16. A new freeze casting technique for ceramics

    NASA Astrophysics Data System (ADS)

    Araki, Kiyoshi

    A new freeze casting technique for ceramics capable of manufacturing near room temperature with a sublimable vehicle has been developed in order to eliminate expensive processes under extremely cold temperatures in the conventional freeze casting. Fluid concentrated slurries of Al2O 3 powder in molten camphene (C10H16) were successfully prepared at 55°C with a small amount of a dispersant. These slurries were quickly solidified (frozen) at room temperature to yield a rigid solid green body, where the frozen camphene was easily removed by sublimation (freeze-drying) with negligible shrinkage. Sintering was successfully conducted without any special binder burnout process to yield dense sintered bodies (over 98% T.D). An organic alloy with a eutectic composition in the naphthalene (C 10H8)-camphor (C10H16O) binary system with a eutectic temperature of 31°C was also found to be a successful vehicle for the new ceramic freeze casting. The fabrication processes are almost the same as those with camphene. It was found that vehicles with off-eutectic compositions resulted in large voids in the sintered body due to the ceramic particle rejection by pro-eutectic crystals during freezing. At the eutectic composition, fine lamellar microstructure in the solidified vehicle inhibits the particle rejection. The proposed advantages of the new freeze casting technique with a sublimable vehicle include; (1) elimination of extremely cold temperatures used in conventional freeze casting; (2) elimination of troublesome binder burnout process; and (3) fast manufacturing cycle due to quick solidification. Porous ceramic bodies with unique interconnected pore channels were fabricated by the new freeze casting with lower solid content. The unique channels surrounded by fully dense walls have nearly circular cross-sections unlike conventional aqueous freeze casting. The porosity and the channel diameters are controllable by the solid content in the slurry. The unique channels are replicas of entangled dendrites of frozen camphene, which sublimes during freeze-drying process. The unique porous structure with interconnected pore channels, which is completely new, is considered potentially useful in many applications such as filters and implantable bone scaffolds.

  17. The equilibrated state of freezing as a basis for distinguishing lethal stresses of freezing in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A model for coordination of stresses that limit winterhardiness in plants based on the thermodynamic equilibrated state of freezing and melting provides a rational basis for distinction of freeze-induced energies which can stress and injure living organisms in various ways. The departure from equili...

  18. Freeze Tolerance of Nine Zoysiagrass Cultivars Using Natural Cold Acclimation and Freeze Chambers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter hardiness of zoysiagrass (Zoysia spp.) cultivars is an important attribute throughout the biogeographical transition zone, thus the inability to withstand freezing temperatures may limit the use of these cultivars. The objective of this research was to determine the freeze tolerance (LT50) of...

  19. Freezing and thawing or freezing, thawing, and aging effects on beef tenderness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine the effect of freezing and thawing or freezing and thawing with an additional aging period after frozen storage on the tenderness of longissimus lumborum (LL) and semitendinosus (ST) steaks relative to aged, fresh steaks. Left-side LL and ST (n=35 each) ...

  20. Predicting Arabidopsis Freezing Tolerance and Heterosis in Freezing Tolerance from Metabolite Composition

    PubMed Central

    Korn, Marina; Grtner, Tanja; Erban, Alexander; Kopka, Joachim; Selbig, Joachim; Hincha, Dirk K.

    2010-01-01

    Heterosis, or hybrid vigor, is one of the most important tools in plant breeding and has previously been demonstrated for plant freezing tolerance. Freezing tolerance is an important trait because it can limit the geographical distribution of plants and their agricultural yield. Plants from temperate climates increase in freezing tolerance during exposure to low, non-freezing temperatures in a process termed cold acclimation. Metabolite profiling has indicated a major reprogramming of plant metabolism in the cold, but it has remained unclear in previous studies which of these changes are related to freezing tolerance. In the present study, we have used metabolic profiling to discover combinations of metabolites that predict freezing tolerance and its heterosis in Arabidopsis thaliana. We identified compatible solutes and, in particular, the pathway leading to raffinose as crucial statistical predictors for freezing tolerance and its heterosis, while some TCA cycle intermediates contribute only to predicting the heterotic phenotype. This indicates coordinate links between heterosis and metabolic pathways, suggesting that a limited number of regulatory genes may determine the extent of heterosis in this complex trait. In addition, several unidentified metabolites strongly contributed to the prediction of both freezing tolerance and its heterosis and we present an exemplary analysis of one of these, identifying it as a hexose conjugate. PMID:20026477

  1. A new portable device for automatic controlled-gradient cryopreservation of blood mononuclear cells.

    PubMed

    Hviid, L; Albeck, G; Hansen, B; Theander, T G; Talbot, A

    1993-01-01

    Protection of the functional integrity of mononuclear cells stored in liquid N2 requires careful control of the freezing procedure. Consequently, optimal quality of cryopreserved cells is usually assured by freezing according to a specified time-temperature gradient generated by computer-controlled freezing devices. While such equipment offers large capacity and secures maximum survival and functional integrity of the lymphocytes upon thawing, it is quite costly and strictly stationary. We have previously developed and tested an alternative, manual device for controlled-gradient lymphocyte freezing, which has proved suitable for field conditions. We report here the development and testing of a similar micro-controller regulated device, allowing unattended and automatic controlled-gradient cell freezing. The equipment exploits the temperature gradient present between the liquid N2 surface and the neck in an ordinary liquid N2 refrigerator. The lymphocyte samples are placed in a small elevator, which is moved through the N2 gas phase by a stepper motor. Time and temperature are measured at regular intervals, and the position of the samples adjusted to ensure that the actual measurements closely match encoded ideal values. Results of assays of the functional integrity and phenotypic composition of human mononuclear cells frozen by the new system were comparable to those obtained when using cells frozen by a commercially available, stationary cell-freezing equipment, or fresh autologous cell samples tested in parallel. Furthermore, there was a good correlation between functional and phenotypic data obtained using frozen and autologous fresh samples of mononuclear cells. The equipment described is low weight and has low N2 consumption, and is thus suitable for the collection and cryopreservation of lymphocytes under field conditions. Furthermore, the technique provides an inexpensive alternative for researchers with a limited requirement for the simultaneous freezing of large quantities of cells. PMID:8423356

  2. Freezing of Lennard-Jones-type fluids

    NASA Astrophysics Data System (ADS)

    Khrapak, Sergey A.; Chaudhuri, Manis; Morfill, Gregor E.

    2011-02-01

    We put forward an approximate method to locate the fluid-solid (freezing) phase transition in systems of classical particles interacting via a wide range of Lennard-Jones-type potentials. This method is based on the constancy of the properly normalized second derivative of the interaction potential (freezing indicator) along the freezing curve. As demonstrated recently it yields remarkably good agreement with previous numerical simulation studies of the conventional 12-6 Lennard-Jones (LJ) fluid [S. A. Khrapak, M. Chaudhuri, G. E. Morfill, Phys. Rev. B 134, 052101 (2010)]. In this paper, we test this approach using a wide range of the LJ-type potentials, including LJ n-6 and exp-6 models, and find that it remains sufficiently accurate and reliable in reproducing the corresponding freezing curves, down to the triple-point temperatures. One of the possible application of the methodestimation of the freezing conditions in complex (dusty) plasmas with "tunable" interactionsis briefly discussed.

  3. Freeze-drying of lactic acid bacteria.

    PubMed

    Fonseca, Fernanda; Cenard, Stphanie; Passot, Stphanie

    2015-01-01

    Lactic acid bacteria are of great importance for the food and biotechnology industry. They are widely used as starters for manufacturing food (e.g., yogurt, cheese, fermented meats, and vegetables) and probiotic products, as well as for green chemistry applications. Freeze-drying or lyophilization is a convenient method for preservation of bacteria. By reducing water activity to values below 0.2, it allows long-term storage and low-cost distribution at suprazero temperatures, while minimizing losses in viability and functionality. Stabilization of bacteria via freeze-drying starts with the addition of a protectant solution to the bacterial suspension. Freeze-drying includes three steps, namely, (1) freezing of the concentrated and protected cell suspension, (2) primary drying to remove ice by sublimation, and (3) secondary drying to remove unfrozen water by desorption. In this chapter we describe a method for freeze-drying of lactic acid bacteria at a pilot scale, thus allowing control of the process parameters for maximal survival and functionality recovery. PMID:25428024

  4. Freezing of Lennard-Jones-type fluids

    SciTech Connect

    Khrapak, Sergey A.; Chaudhuri, Manis; Morfill, Gregor E.

    2011-02-07

    We put forward an approximate method to locate the fluid-solid (freezing) phase transition in systems of classical particles interacting via a wide range of Lennard-Jones-type potentials. This method is based on the constancy of the properly normalized second derivative of the interaction potential (freezing indicator) along the freezing curve. As demonstrated recently it yields remarkably good agreement with previous numerical simulation studies of the conventional 12-6 Lennard-Jones (LJ) fluid [S.A.Khrapak, M.Chaudhuri, G.E.Morfill, Phys. Rev. B 134, 052101 (2010)]. In this paper, we test this approach using a wide range of the LJ-type potentials, including LJ n-6 and exp-6 models, and find that it remains sufficiently accurate and reliable in reproducing the corresponding freezing curves, down to the triple-point temperatures. One of the possible application of the method--estimation of the freezing conditions in complex (dusty) plasmas with ''tunable'' interactions--is briefly discussed.

  5. Dissociated Vertical Deviation

    MedlinePLUS

    ... Eye Terms Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Dissociated Vertical Deviation En Español Read in Chinese What is Dissociated Vertical Deviation (DVD)? DVD is ...

  6. Geysering inhibitor for vertical cryogenic transfer piping

    NASA Technical Reports Server (NTRS)

    Howard, F. S.

    1973-01-01

    Geysering (i.e., the expulsion of boiling liquid and its vapor from a vertical tube) has been a problem for the missile industry in long vertical cryogenic propellant feed lines connecting the launch vehicle propellant tank with the rocket engines. A proposed novel method of inhibiting geysering and the associated pressure gradients provides a self-starting self-regulating action that is not dependent on other active systems or components. The inhibiting action is attained by incorporating a concentric tube within the main transfer tube to prevent constriction of natural convective flow.

  7. Vertical Learning Environments.

    ERIC Educational Resources Information Center

    Readdick, Christine A.; Bartlett, Patricia M.

    1995-01-01

    Vertical learning environments (vertical surfaces covered with two- or three-dimensional detachable objects that provide opportunities for perception, manipulation, interaction, construction of knowledge, and representation) offer children rich, interactive learning environments at eye level. Discusses vertical learning environments in a Piagetian

  8. Vertical Map Storage.

    ERIC Educational Resources Information Center

    Perry, Joanne M.

    1982-01-01

    Discusses the superiority of vertical filing of maps in compressor-style vertical units over horizontal filing in drawers, emphasizing such factors as physical protection of the collection, ease of filing and retrieval, and efficient use of space. Disadvantages of vertical filing are also reviewed. (Author/JL)

  9. Effect of vertical magnetic field on convection and segregation in vertical Bridgman crystal growth

    NASA Technical Reports Server (NTRS)

    Kim, Do Hyun; Adornato, Peter M.; Brown, Robert A.

    1988-01-01

    A previous finite-element analysis of vertical Bridgman growth for dilute and nondilute alloys is extended to include the effect of a vertically-aligned magnetic field in the limit of zero magnetic Reynolds number. Calculations are presented for growth of a dilute gallium-germanium alloy in a vertically stabilized Bridgman-Stockbarger system and in a furnace with a uniform temperature gradient imposed along the ampoule. Steady cellular convection driven by radial temperature gradients causes good axial and radial mixing in both systems without a magnetic field. A weak magnetic field decreases the intensity of convection and the effectiveness of solute mixing. The radial nonuniformity is greatest for an intermediate field strength. Stronger fields suppress flow recirculation completely, and lead to uniform solute segregation across the crystal and to diffusion-controlled axial segregation.

  10. Droplet coalescence and freezing on hydrophilic, hydrophobic, and biphilic surfaces

    NASA Astrophysics Data System (ADS)

    Van Dyke, Alexander S.; Collard, Diane; Derby, Melanie M.; Betz, Amy Rachel

    2015-10-01

    Frost and ice formation can have severe negative consequences, such as aircraft safety and reliability. At atmospheric pressure, water heterogeneously condenses and then freezes at low temperatures. To alter this freezing process, this research examines the effects of biphilic surfaces (surfaces which combine hydrophilic and hydrophobic regions) on heterogeneous water nucleation, growth, and freezing. Silicon wafers were coated with a self-assembled monolayer and patterned to create biphilic surfaces. Samples were placed on a freezing stage in an environmental chamber at atmospheric pressure, at a temperature of 295 K, and relative humidities of 30%, 60%, and 75%. Biphilic surfaces had a significant effect on droplet dynamics and freezing behavior. The addition of biphilic patterns decreased the temperature required for freezing by 6 K. Biphilic surfaces also changed the size and number of droplets on a surface at freezing and delayed the time required for a surface to freeze. The main mechanism affecting freezing characteristics was the coalescence behavior.

  11. Heat transfer coefficient of cryotop during freezing.

    PubMed

    Li, W J; Zhou, X L; Wang, H S; Liu, B L; Dai, J J

    2013-01-01

    Cryotop is an efficient vitrification method for cryopreservation of oocytes. It has been widely used owing to its simple operation and high freezing rate. Recently, the heat transfer performance of cryotop was studied by numerical simulation in several studies. However, the range of heat transfer coefficient in the simulation is uncertain. In this study, the heat transfer coefficient for cryotop during freezing process was analyzed. The cooling rates of 40 percent ethylene glycol (EG) droplet in cryotop during freezing were measured by ultra-fast measurement system and calculated by numerical simulation at different value of heat transfer coefficient. Compared with the results obtained by two methods, the range of the heat transfer coefficient necessary for the numerical simulation of cryotop was determined, which is between 9000 W/(m(2)K) and 10000 W/(m (2)K). PMID:23812315

  12. Study on Freezing of a Single Droplet

    NASA Astrophysics Data System (ADS)

    Fumoto, Koji; Yamagishi, Hideaki; Ikegawa, Masahiro

    The freezing characteristics of a single water droplet placed on the column edge were visually investigated using a video camera. The temperatures of the edge face and the environment air were independently controlled. The solidification process of the water droplet was discussed based on the many pictures obtained. The experimental results indicated that the freezing time of droplet was strongly affected by the edge temperature. Furthermore, we found that the water dispersion thermosensitivity slurry was effective for the observation of the temperature of the droplet. Consequently, it was indicated that the heat transfer characteristics of the droplet under freezing condition were mainly affected by both temperature of the air and surface of the flat plate.

  13. UltraViolet freeze-in

    NASA Astrophysics Data System (ADS)

    Elahi, Fatemeh; Kolda, Christopher; Unwin, James

    2015-03-01

    If dark matter is thermally decoupled from the visible sector, the observed relic density can potentially be obtained via freeze-in production of dark matter. Typically in such models it is assumed that the dark matter is connected to the thermal bath through feeble renormalisable interactions. Here, rather, we consider the case in which the hidden and visible sectors are coupled only via non-renormalisable operators. This is arguably a more generic realisation of the dark matter freeze-in scenario, as it does not require the introduction of diminutive renormalisable couplings. We examine general aspects of freeze-in via non-renormalisable operators in a number of toy models and present several motivated implementations in the context of Beyond the Standard Model (BSM) physics. Specifically, we study models related to the Peccei-Quinn mechanism and Z ' portals.

  14. Monitoring active layer thaw and freeze-back in four different periglacial landforms in Svalbard using Electrical Resistivity Tomography (ERT)

    NASA Astrophysics Data System (ADS)

    Juliussen, H.; Oswald, A.; Watanabe, T.; Christiansen, H. H.; Matsuoka, N.

    2012-04-01

    Thawing and freezing of the active layer has an important impact on the underlying permafrost through latent heat effects and changes in effective thermal conductivity and mechanisms of heat transport. Information on the active layer freeze/thaw dynamics is therefore important to understand the permafrost response to climate variability. In addition, active layer deepening may be an early sign of permafrost degradation, making monitoring programs such as the CALM network important. Active layer depths are traditionally measured by mechanical probing in fine-grained sediments or by vertical arrays of ground temperature sensors. The first technique prevents measurements to be made in stony sediments, while the latter technique gives only a point value of the active layer depth. In this study we have tested Electrical Resistivity Tomography (ERT) as a tool to measure and monitor active layer depth and freeze/thaw dynamics. The electrical resistivity of the ground is largely dependent on the unfrozen water content, making resistivity monitoring a potentially valuable tool to delineate freeze and thaw extent, and patterns in soil moisture. The results presented here are part of the IPY 2007-2009 research project 'Permafrost Observatory Project: A Contribution to the Thermal State of Permafrost in Norway and Svalbard' (TSP NORWAY) and the IPA periglacial working group project on 'High-Resolution Periglacial Climate Indicators'. Electrode arrays were installed permanently in four different periglacial landforms in the Adventdalen valley area in central Svalbard; a solifluction slope in May 2007, a loess terrace (the UNISCALM site) in September 2007, and a mudboil site and ice-wedge site in June 2009 (Watanabe et al., submitted). The arrays were 16m long, giving maximum profile depths of 2m, and electrodes were installed with 0.2m spacing. Measurements were made with irregular but approximately two- to four-week time intervals, depending on weather conditions and instrument availability. Data are available until autumn 2009 for all sites, and until autumn 2010 for the mudboil and ice-wedge sites. Ground temperature and soil moisture is monitored at all four sites, and mechanical probing of thaw depth progression was performed along with the resistivity measurements for parts of the period. The apparent resistivity raw data error is low in the summer, but in the wintertime 40 to 50% of the data was excluded in the worst cases. The errors are higher in the dry loess site also in the summer, compared to the other three relatively wet sites. After inverting the raw data to give subsurface models of the specific resistivity, depth of investigation mapping was made to identify model areas that were not well constrained by the data. The models show good reliability except at the model edges, in some cases of steep resistivity gradients and at local resistivity extremes. Preliminary results of this study have been presented (Juliussen et al 2010, Oswald 2010), but here the aim is to (1) quantify the accuracy of ERT-based thaw depth estimates as compared to the probed depths, and (2) to analyze the resistivity values with respect to soil moisture and temperature data and ground ice content obtained from coring.

  15. Vertical bounce of two vertically aligned balls

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2007-11-01

    When a tennis ball rests on top of a basketball and both drop to the floor together, the tennis ball is projected vertically at high speed. A mass-spring model of the impact, as well as air track data, suggest that the tennis ball should be projected at relatively low speed. Measurements of the forces on each ball and the bounce of vertically aligned superballs are used to resolve the discrepancy.

  16. High-speed Imaging of Freezing Drops: Investigating the Role of Point-like Contact in Heterogeneous Ice Nucleation

    NASA Astrophysics Data System (ADS)

    Gurganus, C.; Charnawskas, J.; Shaw, R. A.; Kostinski, A. B.

    2013-12-01

    Formation of ice by contact nucleation remains enigmatic and the possible role of the three-phase boundary (i.e., liquid water-ice-aerosol contact line) is still undetermined. Because aerosol size, surface area, composition and exact region of contact remain difficult to measure, we examine a simpler geometry with a spherical cap droplet resting on a substrate. In this configuration, the droplet simultaneously experiences a two-phase immersion region and a three phase contact region around the perimeter of the droplet. Utilizing high speed imaging of the droplet-substrate plane, we are able to identify nucleation sites in individual droplets. This technique allows for a spatial distribution of freezing sites in addition to a freezing temperature distribution. Our initial study indicated no preference for nucleation originating at the three phase boundary for an atomically smooth homogenous substrate [1]. The nucleation site distribution agreed well with the stochastic view in that the germ sites are distributed uniformly over the surface area. In that study we minimized the thermal variation (?T) across a droplet during cooling to prevent biased observations. We also compared ?T for several experiments in literature using a simple formulation of droplet size (r) and cooling rate (?). Large variations in some experiments could possibly explain observed 'contact nucleation' events in the laboratory as artifacts of radial thermal variations during droplet cooling. As a continuation of this study, we redesigned our system to enable much greater substrate cooling rates, but these experiments too revealed no preference for nucleation in the contact mode. Thermal modeling of the new system confirmed that while a vertical thermal gradient does develop within the droplet, no horizontal gradient is induced in the drop near the substrate. This result argues against a thermodynamic bias toward contact nucleation in substrate cooled geometries. Another possible explanation for this contact phenomenon comes in a lowering of the energy barrier for nucleation due to the existence of a line tension at the point of contact. A scale analysis of the line and surface energy values available in the literature suggests that line tension may become dominant below length scales of ~10 nm [1]. From this simple result we postulate that 'point-like' surface features might play an important role at the three phase boundary. To mimic these features on substrates we introduce chemical and mechanical processes to enhance substrate surface roughness. Using these new substrates we repeat our experimental procedure to compare effectiveness of the immersion (two phase) and contact (three phase) regions for a variety of surface topologies. Here we report the initial findings from this work. 1. Gurganus, C.; Kostinski, A. B.; Shaw, R. A., Fast Imaging of Freezing Drops: No Preference for Nucleation at the Contact Line. J Phys Chem Lett 2011, 2 (12) Identifying nucleation sites with two high speed cameras.

  17. Stratospheric Polar Freezing Belt Causes Denitrification

    NASA Technical Reports Server (NTRS)

    Tabazadeh, A.; Jensen, E. J.; Toon, O. B.; Drdla, K.; Schoeberl, M. R.; Gore, Warren J. (Technical Monitor)

    2001-01-01

    Trajectory cloud model calculations are presented to show that homogeneous freezing of nitric acid hydrates can produce a polar freezing belt in both hemispheres that can cause denitrification. While hydrate cloud microphysical properties are similar over both poles, the shorter persistence of clouds in the Arctic prevents the depth of the denitrified layers from growing beyond a few kilometers. The 1999-2000 Arctic winter is unique in showing a distinct denitrification profile with a depth of approx. 4.5 km that is nearly half as deep as that computed for a typical Antarctic winter.

  18. Vertical axis wind turbine

    SciTech Connect

    Kato, Y.; Seki, K.; Shimizu, Y.

    1981-01-27

    Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with a starting and braking control system. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotary axis by keeping the blade span-wise direction in parallel with the axis and being provided with a low speed control windmill in which the radial position of each operating piece varies with a centrifugal force produced by the rotation of the vertical rotary axis.

  19. Vertical axis wind turbines

    DOEpatents

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  20. Effect of process conditions on recovery of protein activity after freezing and freeze-drying.

    PubMed

    Jiang, S; Nail, S L

    1998-05-01

    The objective of this research was to gain a better understanding of the degree to which recovery of activity of model proteins after freeze-drying can be maximized by manipulation of freeze-dry process conditions in the absence of protective solutes. Catalase, beta-galactosidase and lactate dehydrogenase (LDH) were used as model proteins. All of the three proteins exhibited a concentration-dependent loss of activity after freezing, with significantly higher recovery at higher concentration. The freezing method and the type of buffer were also important, with sodium phosphate buffer and freezing by immersion of vials in liquid nitrogen associated with the lowest recovery of activity. Differential scanning calorimetry was predictive of the onset of collapse during freeze-drying only for beta-galactosidase. For the other proteins, either no Tg' transition was observed, or the apparent glass transition did not correlate with the microscopically-observed collapse temperature. The time course of activity loss for beta-galactosidase and LDH was compared during freeze-drying under conditions which produced collapse of the dried matrix and conditions which produced retention of microstructure in the dried solid. Recovery of activity decreased continuously during primary drying, with no sharp drop in recovery of activity associated with the onset of collapse. The most important drying process variable affecting recovery of activity was residual moisture level, with a dramatic drop in activity recovery associated with residual moisture levels less than about 10%. PMID:9653629

  1. Stereo transparency and the disparity gradient limit

    NASA Technical Reports Server (NTRS)

    McKee, Suzanne P.; Verghese, Preeti

    2002-01-01

    Several studies (Vision Research 15 (1975) 583; Perception 9 (1980) 671) have shown that binocular fusion is limited by the disparity gradient (disparity/distance) separating image points, rather than by their absolute disparity values. Points separated by a gradient >1 appear diplopic. These results are sometimes interpreted as a constraint on human stereo matching, rather than a constraint on fusion. Here we have used psychophysical measurements on stereo transparency to show that human stereo matching is not constrained by a gradient of 1. We created transparent surfaces composed of many pairs of dots, in which each member of a pair was assigned a disparity equal and opposite to the disparity of the other member. For example, each pair could be composed of one dot with a crossed disparity of 6' and the other with uncrossed disparity of 6', vertically separated by a parametrically varied distance. When the vertical separation between the paired dots was small, the disparity gradient for each pair was very steep. Nevertheless, these opponent-disparity dot pairs produced a striking appearance of two transparent surfaces for disparity gradients ranging between 0.5 and 3. The apparent depth separating the two transparent planes was correctly matched to an equivalent disparity defined by two opaque surfaces. A test target presented between the two transparent planes was easily detected, indicating robust segregation of the disparities associated with the paired dots into two transparent surfaces with few mismatches in the target plane. Our simulations using the Tsai-Victor model show that the response profiles produced by scaled disparity-energy mechanisms can account for many of our results on the transparency generated by steep gradients.

  2. Reproducing Black's experiments: freezing point depression and supercooling of water

    NASA Astrophysics Data System (ADS)

    Gmez, J.; Fiolhais, C.; Fiolhais, M.

    2002-01-01

    We carried out two historical experiments referred to by Joseph Black, one on freezing mixtures of salted water with ice and another on freezing supercooled pure water by a small disturbance. The results confirm thermodynamical predictions for the depression of the freezing point of salted water and for the latent heat of freezing of supercooled water respectively, which came after Black. The depression of the freezing point can hardly be fitted in the framework of the caloric theory of heat, which was taken for granted by Black, and the instantaneous freezing of supercooled water also poses some difficulties for that theory.

  3. Physiological responses to freezing in hatchlings of freeze-tolerant and -intolerant turtles.

    PubMed

    Costanzo, Jon P; Baker, Patrick J; Lee, Richard E

    2006-09-01

    Freeze tolerance is a complex cold-hardiness adaptation that has independently evolved in a diverse group of organisms, including several ectothermic vertebrates. Because little is known about the mechanistic basis for freeze tolerance in reptiles, we compared responses to experimental freezing in winter-acclimatized hatchlings representing nine taxa of temperate North American turtles, including ones that tolerated freezing and others that did not. Viability rates of hatchlings frozen to -3 degrees C for 72 h ranged from 0 to 100%. Tolerance to freezing was poor in Sternotherus odoratus, Graptemys geographica and Trachemys scripta, intermediate in Chelydra serpentina, and high in Emydoidea blandingii, Chrysemys picta bellii, C. p. marginata, Malaclemys terrapin, and Terrapene ornata, and generally reflected the winter thermal ecology of each taxon. Plasma activity of lactate dehydrogenase (LDH), a novel in vivo index of freeze/thaw damage, corroborated viability assessments and demonstrated that cryoinjury occurred even in surviving turtles. Irrespective of taxon, cryoinjury tended to be higher in smaller individuals and in those having relatively low water contents; however, bases for these associations were not apparent. Screening for certain organic osmolytes that might promote freezing survival by colligatively reducing ice content and limiting cell dehydration showed that the plasma of unfrozen (control) turtles contained small quantities of glucose (1.3-5.8 mmol l(-1)) and lactate (0.6-3.2 mmol l(-1)) and modest amounts of urea (range of mean values for all taxa 8.2-52.3 mmol l(-1)). Frozen/thawed turtles of all taxa accumulated modest amounts of glucose and lactate that jointly raised the plasma solute concentration by 30-100 mmol l(-1). We conclude that organic osmolytes accumulated both before and during freezing may promote survival in species that have evolved a tolerance to freezing, but are not necessarily accumulated for that purpose. PMID:16758216

  4. Freezing Models For Heterogeneous Drop Freezing In Immersion and Contact Modes

    NASA Astrophysics Data System (ADS)

    Diehl, K.; Wurzler, S.

    Field measurements showed that supercooled liquid water drops and frozen drops can coexist in tropospheric clouds at temperatures down to -40 C with an incidence of ice particles already at -4 C. The freezing behaviour of water drops depends on their sizes, on their content of soluble particles (freezing point depression) and of insoluble particles (potential immersion ice nuclei) as well as on the collision with dry particles (potential contact ice nuclei). In the present model studies, the influence of soluble and insoluble particles on drop freezing in immersion and contact modes are considered. Using a two dimensional field of drop and aerosol particle sizes the numerical simula- tion of the coexistence of similar sized drops with different compositions is possible, also the combination of different collision partners. The freezing point depression of salt solution drops was calculated according to physical chemistry equations. The median freezing temperatures of particles in the immersion and contact modes were derived from laboratory results for typical atmospheric ice nuclei. The collision effi- ciency was calculated based on experimental results and numerical estimations. The results obtained with the freezing models are consistent with experimental results. They show that in the whole temperature range relevant for the troposphere the com- position of the drops has an important influence on their freezing in the immersion mode. The smaller the drop sizes, the more effecting are the soluble particles. A sig- nificant influence of insoluble immersion ice nuclei on atmospheric drop f reezing can be expected at temperatures of -20 C and lower, in the contact freezing mode already at temperatures around -10 C, with the different insoluble particles not showing large deviations. However, the freezing efficiency of contact ice nuclei is restricted by the collision efficiency which is dependant on both, the drop and aerosol particle size.

  5. Ultrastructural study of normal rat glomeruli by the quick-freezing and deep-etching method.

    PubMed

    Hora, K

    1991-09-01

    The ultrastructural features of isolated normal rat glomeruli were investigated using a new splitting technique and the quick-freezing and deep-etching (QF-DE) method. Examinations were also made of in vivo normal rat glomeruli by the QF-DE method to visualize the glomeruli under near natural conditions. Freeze-fractured capillary loops were observed from the capillary lumen or the urinary space. Foot processes were found to be freeze-fractured horizontally, obliquely or vertically to the glomerular basement membrane (GBM), and a glomerular slit diaphragm, which consisted of sheet-like, ladder-like and zipper-like substructures, was clearly identified. The GBM was classified into three zones, which might correspond to those seen in ultrathin sections, including the lamina densa and laminae rarae externa and interna. The lamina densa was composed of a meshwork filled with fine particles, which might represent products of insoluble proteins. In the laminae rarae, filamentous structures consisting of irregular networks could be observed connecting glomerular endothelial or epithelial cells with the lamina densa. Furthermore, the above findings were obtained from investigations at various consecutive levels of freeze-fractured capillary loops from various angles. The three-dimensional ultrastructure of the glomeruli could be demonstrated at high resolution by the QF-DE method. PMID:1774840

  6. How low-permeability rocks freeze: A laboratory study on resistivity pathways of thawed, supercooled and frozen permafrost rocks

    NASA Astrophysics Data System (ADS)

    Krautblatter, M.; Zisser, N.

    2009-04-01

    Resistivity - temperature paths are among the most important proxies in permafrost research. Testing 8 sedimentary, metamorphic and igneous rocks from European permafrost summits, we found evidence that the theoretical background developed in the 70s does not describe the physics of low-permability rocks correctly, which dominate these environments. Saturated rocks with permeabilities below 10 D have an equilibrium freezing point depression of -0.5C to -1.55C and indicate metastable supercooling effects between -0.5 and -1.4 C. Instantaneous freezing from metastable stages occurs with sudden warming of the rock sample with up to 0.9C temperature difference. This is due to the spontaneous dissipation of freezing energy subsequent to supercooling. Warming occurs over tens of seconds to a few minutes and coincides with a jump in resistivity. Unfrozen and frozen temperature-resistivity paths match bilinear functions with an R of 0.88 to 1.00. The frozen temperature-resistivity gradient is 12-34 times steeper that the unfrozen resistivity gradient. Low permeability may decide the ratio of frozen and unfrozen gradients while porosity influences the 0C resistivity value and the unfrozen gradient. Here we show that separate linear approximation of unfrozen, supercooled and frozen temperature-resistivity behaviour provides a better explanation of involved physics than exponential fits.

  7. FREEZE-FRAME: Fast Action Stress Relief.

    ERIC Educational Resources Information Center

    Childre, Doc Lew

    Recent scientific research has proven that we can, not only manage our stress, we can even prevent it. Ways to achieve stress management are presented in this book. It details a method called FREEZE-FRAME, a process in which individuals mentally stop the chaos that surrounds them and then calmly contemplate their situation. The text opens with an

  8. Polybutylene pipe freeze/thaw reliability testing

    SciTech Connect

    Farrington, R.B.

    1987-04-01

    This paper discusses the ability of polybutylene pipe to withstand repeated freezing and thawing. The test apparatus, test procedure, list of chronological events, and results are discussed. Polybutylene piping has potential use in active solar heating systems and integral-collector-storage systems.

  9. Managing damaging freeze events in Louisiana sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exposure of sugarcane to damaging frosts occurs in approximately 25% of the sugarcane producing countries of the world, but is most frequent on the mainland of the United States, especially in the state of Louisiana. The frequent winter freezes that occur in the sugarcane areas of Louisiana have fo...

  10. Unitarity Constraints on Asymmetric Freeze-In

    SciTech Connect

    Hook, Anson; /SLAC

    2011-08-15

    This paper considers unitarity and CPT constraints on asymmetric freeze-in, the use of freeze-in to store baryon number in a dark sector. In this scenario, Sakharov's out of equilibrium condition is satisfied by placing the visible and hidden sectors at different temperatures while a net visible baryon number is produced by storing negative baryon number in a dark sector. It is shown that unitarity and CPT lead to unexpected cancellations. In particular, the transfer of baryon number cancels completely at leading order. This note has shown that if two sectors are in thermal equilibrium with themselves, but not with each other, then the leading effect transferring conserved quantities between the two sectors is of order the the weak coupling connecting them to the third power. When freeze-in is used to produce a net baryon number density, the leading order effect comes from {Omicron}({lambda}{sup 3}) diagrams where the intermediate state that goes on-shell has a different visible baryon number than the final state visible baryon number. Models in which the correct baryon number is generated with freeze-in as the dominant source of abundance, typically require {lambda} {approx}> 10{sup -6} and m{sub bath} {approx}> TeV. m{sub bath} is the mass of the visible particle which communicates with the hidden sector. The lower window is potentially observable at the LHC.

  11. Device and method for determining freezing points

    NASA Technical Reports Server (NTRS)

    Mathiprakasam, Balakrishnan (Inventor)

    1986-01-01

    A freezing point method and device (10) are disclosed. The method and device pertain to an inflection point technique for determining the freezing points of mixtures. In both the method and device (10), the mixture is cooled to a point below its anticipated freezing point and then warmed at a substantially linear rate. During the warming process, the rate of increase of temperature of the mixture is monitored by, for example, thermocouple (28) with the thermocouple output signal being amplified and differentiated by a differentiator (42). The rate of increase of temperature data are analyzed and a peak rate of increase of temperature is identified. In the preferred device (10) a computer (22) is utilized to analyze the rate of increase of temperature data following the warming process. Once the maximum rate of increase of temperature is identified, the corresponding temperature of the mixture is located and earmarked as being substantially equal to the freezing point of the mixture. In a preferred device (10), the computer (22), in addition to collecting the temperature and rate of change of temperature data, controls a programmable power supply (14) to provide a predetermined amount of cooling and warming current to thermoelectric modules (56).

  12. Vertical profiles of condensation nuclei

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.; Hofmann, D. J.; Kaselau, K. H.

    1978-01-01

    Condensation nuclei measurements using a low supersaturation (about 10%) thermal gradient diffusion cloud chamber (TGDCC) and a high supersaturation (about 200%) expansion type instrument were compared on a series of three balloon flights over Laramie, Wyoming. In general, the two instruments produced similar vertical profiles but some discrepancies remain unexplained. Agreement between the two would indicate that the low supersaturations used in the TGDCC were still large enough to cause the instrument to count essentially all of the particles present. The TGDCC condensation nuclei (CN) counter was flown at several sites in both the Northern and Southern Hemispheres. The results indicate the existence of a relative maximum in the CN mixing ratio associated with the upper equatorial troposphere and what appears to be a worldwide constant mixing ratio of CN above 20-25 km.

  13. Investigating the Mpemba Effect: when hot water freezes faster than cold water

    NASA Astrophysics Data System (ADS)

    Ibekwe, R. T.; Cullerne, J. P.

    2016-03-01

    Under certain conditions a body of hot liquid may cool faster and freeze before a body of colder liquid, a phenomenon known as the Mpemba Effect. An initial difference in temperature of 3.2 °C enabled warmer water to reach 0 °C in 14% less time than colder water. Convection currents in the liquid generate a temperature gradient that causes more rapid heat loss by surface radiation and evaporation than obtains for uniform temperature. This more rapid cooling enables the initially warmer liquid to overtake the cooler liquid, reaching 0 °C earlier and freezing first. Liquid cooling under natural convection follows a five-fourths power law (temperature of liquid T , temperature of surroundings {{T}a} , cooling constant k ): \\frac{\\text{d}T}{\\text{d}t}=k{{≤ft(T-{{T}a}\\right)}\\frac{5{4}}} . In this investigation we found that with evaporation this becomes a four-thirds power law:

  14. Canalization of freeze tolerance in an alpine grasshopper.

    PubMed

    Hawes, Timothy C

    2015-10-01

    In the Rock and Pillar Range, New Zealand, the alpine grasshopper, Sigaus australis Hutton, survives equilibrium freezing (EF) all-year round. A comparison of freeze tolerance (FT) in grasshoppers over four austral seasons for a 1 year period finds that: (a) the majority (>70%) of the sample population of grasshoppers survive single freeze-stress throughout the year; (b) exposure to increased freeze stress (multiple freeze-stress events) does not lead to a loss of freeze tolerance; and (c) responses to increased freeze stress reveal seasonal tuning of the FT adaptation to environmental temperatures. The Rock and Pillar sample population provides a clear example of the canalization of the FT adaptation. Seasonal variability in the extent of tolerance of multiple freezing events indicates that physiology is modulated to environmental temperatures by phenotypic plasticity - i.e. the FT adaptation is permanent and adjustable. PMID:26210007

  15. Nucleation Pathways For Freezing Of Two Grades Of Zirconium

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Rulison, Aaron; Bayuzick, Robert; Hofmeister, William; Morton, Craig

    1996-01-01

    Report discusses classical nucleation theory of freezing and describes experimental study of nucleation mechanisms that predominate during freezing of spherical specimens of initially molten zirconium levitated electrostatically in vacuum.

  16. Preservation of flavor in freeze dried green beans

    NASA Technical Reports Server (NTRS)

    Huber, C. S.; Heidelbaugh, N. D.; Davis, D.

    1973-01-01

    Before freeze drying, green beans are heated to point at which their cell structure is altered. Beans freeze dried with altered cell structure have improved rehydration properties and retain color, flavor, and texture.

  17. The influence of freezing and freeze-drying of tissue specimens on enzyme activity.

    PubMed

    Meijer, A E; Benson, D; Scholte, H R

    1977-04-01

    In the presented study the influence of freezing and freeze-drying on enzyme activity is described. Attention is paid to 16 enzymes which can be used for quantitative enzyme histochemical techniques. With the exception of succinate dehydrogenase only, no significant inactivation during freezing and freeze-drying procedures could be demonstrated with lactate dehydrogenase, malate dehydrogenase (NAD+), malate dehydrogenase (decarboxylating) (NADP+), isocitrate dehydrogenase (NADP+), glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, NADH-oxydoreductase, mitochondrial glycerol-3-phosphate dehydrogenase, cytochrome c oxidase, phosphoglucomutase, glucosephosphate isomerase, glucose-6-phosphatase, acid phosphatase, beta-glucuronidase and non specific aryl esterase. Therefore, the results supply a sound foundation for those quantitative enzyme histochemical techniques in which tissue specimens are frozen or frozen-dried before enzyme estimations are performed. PMID:870461

  18. Shadowgraph Study of Gradient Driven Fluctuations

    NASA Astrophysics Data System (ADS)

    Cannell, David; Nikolaenko, Gennady; Giglio, Marzio; Vailati, Alberto; Croccolo, Fabrizio; Meyer, William

    2002-11-01

    A fluid or fluid mixture, subjected to a vertical temperature and/or concentration gradient in a gravitational field, exhibits greatly enhanced light scattering at small angles. This effect is caused by coupling between the vertical velocity fluctuations due to thermal energy and the vertically varying refractive index. Physically, small upward or downward moving regions will be displaced into fluid having a refractive index different from that of the moving region, thus giving rise to the enhanced scattering. The scattered intensity is predicted to vary with scattering wave vector q, as q-4, for sufficiently large q, but the divergence is quenched by gravity at small q. In the absence of gravity, the long wavelength fluctuations responsible for the enhanced scattering are predicted to grow until limited by the sample dimensions. It is thus of interest to measure the mean-squared amplitude of such fluctuations in the microgravity environment for comparison with existing theory and ground based measurements. The relevant wave vectors are extremely small, making traditional low-angle light scattering difficult or impossible because of stray elastically scattered light generated by optical surfaces. An alternative technique is offered by the shadowgraph method, which is normally used to visualize fluid flows, but which can also serve as a quantitative tool to measure fluctuations. A somewhat novel shadowgraph apparatus and the necessary data analysis methods will be described. The apparatus uses a spatially coherent, but temporally incoherent, light source consisting of a super-luminescent diode coupled to a single-mode optical fiber in order to achieve extremely high spatial resolution, while avoiding effects caused by interference of light reflected from the various optical surfaces that are present when using laser sources. Results obtained for a critical mixture of aniline and cyclohexane subjected to a vertical temperature gradient will be presented. The sample was confined between two horizontal parallel sapphire plates with a vertical spacing of 1 mm. The temperatures of the sapphire plates were controlled by independent circulating water loops that used Peltier devices to add or remove heat from the room air as required. For a mixture with a temperature gradient, two effects are involved in generating the vertical refractive index gradient, namely thermal expansion and the Soret effect, which generates a concentration gradient in response to the applied temperature gradient. For the aniline/cyclohexane system, the denser component (aniline) migrates toward the colder surface. Consequently, when heating from above, both effects result in the sample density decreasing with altitude and are stabilizing in the sense that no convective motion occurs regardless of the magnitude of the applied temperature gradient. The Soret effect is strong near a binary liquid critical point, and thus the dominant effect is due to the induced concentration gradient. The results clearly show the divergence at low q and the predicted gravitational quenching. Results obtained for different applied temperature gradients at varying temperature differences from the critical temperature, clearly demonstrate the predicted divergence of the thermal diffusion ratio. Thus, the more closely the critical point is approached, the smaller becomes the temperature gradient required to generate the same signal. Two different methods have been used to generate pure concentration gradients. In the first, a sample cell was filled with a single fluid, ethylene glycol, and a denser miscible fluid, water, was added from below thus establishing a sharp interface to begin the experiment. As time went on the two fluids diffused into each other, and large amplitude fluctuations were clearly observed at low q. The effects of gravitational quenching were also evident. In the second method, the aniline/cyclohexane sample was used, and after applying a vertical temperature gradient for several hours, the top and bottom temperatures were set equal and the thermal gradient died on a time scale of seconds, leaving the Soret induced concentration gradient in place. Again, large-scale fluctuations were observed and died away slowly in amplitude as diffusion destroyed the initial concentration gradient.

  19. GOCE gravity gradient data for lithospheric modeling

    NASA Astrophysics Data System (ADS)

    Bouman, Johannes; Ebbing, Jörg; Meekes, Sjef; Abdul Fattah, Rader; Fuchs, Martin; Gradmann, Sofie; Haagmans, Roger; Lieb, Verena; Schmidt, Michael; Dettmering, Denise; Bosch, Wolfgang

    2015-03-01

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE) is the European Space Agency's (ESA) satellite gravity mission to determine the Earth's mean gravity field. GOCE delivers gravity gradients, a new type of satellite data. We study how these data can improve modeling of the Earth's lithosphere. We discuss the use of the original GOCE gravity gradients versus the use of gravity gradients in grids at satellite altitude or close the Earth's surface and conclude that grids are easier to handle than the original data because one does not have to deal with very different error characteristics of the different gradients, given in a rotating frame at varying heights. The downward continuation to the surface enhances signal and better reflects the near-surface geology. But this does not outweigh the amplification of noise and omission errors, which is why we recommend using the field at mean satellite altitude for lithospheric modeling. The North-East Atlantic region is ideal to analyze the additional value of GOCE gravity gradients because it is a well-studied region in terms of regional geophysics. We calculated the gradient sensitivity for crustal depth slices using a 3D lithospheric model. This reveals that especially interfaces with large density contrasts have a distinct signal in the gravity gradients, but that they are quite insensitive to intra-crustal density sources, which can have quite a large effect on surface gravity data. We also show that the satellite gradients have a depth sensitivity well suited to study the upper mantle density structure, making them complementary to gravity and seismic tomography. In the underexplored Rub'al-Khali area the GOCE vertical gradient was used to invert for crustal thickness. The updated Moho model gives a good fit to four of the six gradients and independent depths from seismic stations. The Moho model was used to update the heat flow model and source rock maturity maps, which are generally consistent with known source rock maturity trends in the surrounding regions. GOCE gradients are therefore useful to map crustal thickness and deep regional structures for frontier areas. In combination with other data, heat flow can be modeled which is essential for basin maturity evaluation.

  20. Vertical Axis Wind Turbine

    Energy Science and Technology Software Center (ESTSC)

    2002-04-01

    Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). VAWT-SAL Vertical Axis Wind Turbine- Stochastic Aerodynamic Loads Ver 3.2 numerically simulates the stochastic (random0 aerodynamic loads of the Vertical-Axis Wind Turbine (VAWT) created by the atomspheric turbulence. The program takes into account the rotor geometry, operating conditions, and assumed turbulence properties.

  1. Objective video quality assessment method for freeze distortion based on freeze aggregation

    NASA Astrophysics Data System (ADS)

    Watanabe, Keishiro; Okamoto, Jun; Kurita, Takaaki

    2006-01-01

    With the development of the broadband network, video communications such as videophone, video distribution, and IPTV services are beginning to become common. In order to provide these services appropriately, we must manage them based on subjective video quality, in addition to designing a network system based on it. Currently, subjective quality assessment is the main method used to quantify video quality. However, it is time-consuming and expensive. Therefore, we need an objective quality assessment technology that can estimate video quality from video characteristics effectively. Video degradation can be categorized into two types: spatial and temporal. Objective quality assessment methods for spatial degradation have been studied extensively, but methods for temporal degradation have hardly been examined even though it occurs frequently due to network degradation and has a large impact on subjective quality. In this paper, we propose an objective quality assessment method for temporal degradation. Our approach is to aggregate multiple freeze distortions into an equivalent freeze distortion and then derive the objective video quality from the equivalent freeze distortion. Specifically, our method considers the total length of all freeze distortions in a video sequence as the length of the equivalent single freeze distortion. In addition, we propose a method using the perceptual characteristics of short freeze distortions. We verified that our method can estimate the objective video quality well within the deviation of subjective video quality.

  2. Vertical axis wind turbine

    SciTech Connect

    Kato, Y.; Seki, K.; Shimizu, Y.

    1981-01-27

    Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with rotational speed control systems. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotating shaft by keeping the blade span-wise direction in parallel with the shaft and being provided with aerodynamic control elements operating manually or automatically to control the rotational speed of the turbine.

  3. 7 CFR 305.7 - Quick freeze treatment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Quick freeze treatment requirements. 305.7 Section 305... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS 305.7 Quick freeze treatment requirements. Quick freeze treatment for fruits and vegetables imported into the United States or...

  4. 47 CFR 64.636 - Prohibition of default provider freezes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Prohibition of default provider freezes. 64.636... Customer Premises Equipment for Persons With Disabilities 64.636 Prohibition of default provider freezes. (a) A default provider freeze prevents a change in an iTRS user's default provider selection...

  5. 7 CFR 305.7 - Quick freeze treatment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Quick freeze treatment requirements. 305.7 Section 305... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS 305.7 Quick freeze treatment requirements. Quick freeze treatment for fruits and vegetables imported into the United States or...

  6. 47 CFR 64.636 - Prohibition of default provider freezes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Prohibition of default provider freezes. 64.636... Customer Premises Equipment for Persons With Disabilities 64.636 Prohibition of default provider freezes. (a) A default provider freeze prevents a change in an iTRS user's default provider selection...

  7. 7 CFR 929.11 - To can, freeze, or dehydrate.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false To can, freeze, or dehydrate. 929.11 Section 929.11... LONG ISLAND IN THE STATE OF NEW YORK Order Regulating Handling Definitions § 929.11 To can, freeze, or dehydrate. To can, freeze, or dehydrate means to convert cranberries into canned, frozen, or...

  8. VISUALIZATION OF FREEZING PROGRESSION IN TURFGRASSES USING INFRARED VIDEO THERMOGRAPHY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Freezing injury can be a significant problem in turfgrasses. Understanding how freezing develops and ramifies throughout the plant could assist in the development of improved management or screening processes for cultivar improvemen. The development of freezing injury is not well understand due pa...

  9. Avoid freeze-up of steam traps and their piping

    SciTech Connect

    O'Keefe, W.

    1993-12-01

    This article addresses the problem of keeping steam traps free of ice in cold weather. The topics of the article include piping configurations and trap types that contribute to freezing, freeze damage, obstructions in piping, insulation of lines to retard freezing, common manifolds for heating of condensate, draining of low points, temperature-actuated devices, and water hammer damage.

  10. Genetics of winter wheat response to two freezing treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inheritance of the ability of winter wheat plants to survive two kinds of freezing stress was investigated in a five-parent diallel cross. Plants were acclimated at +4°C for 5 wks and frozen with or without a –3°C, 16-hour pre-freezing (PF) period prior to freezing to damaging temperatures. The ...

  11. FREEZING-STRESS-RESPONSIVE GENES AND THEIR EXPRESSION IN BARLEY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Injury of barley plants by spring freezing is a major cause of crop loss, but most cold tolerance research has focused on cold acclimation, which confers freezing tolerance upon exposure to low nonfreezing temperatures. In order to address freezing tolerance per se, we have chosen a cold sensitive ...

  12. Modification of physical properties of freeze-dried rice

    NASA Technical Reports Server (NTRS)

    Huber, C. S.

    1971-01-01

    Freeze cycling process consists of alternately freezing and thawing precooked rice for two cycles, rice is then frozen and freeze-dehydrated in vacuum sufficient to remove water from rice by sublimitation. Process modifies rice grain structure and porosity, enabling complete rehydration in one minute in hot water.

  13. 7 CFR 58.638 - Freezing the mix.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Freezing the mix. 58.638 Section 58.638 Agriculture... Procedures § 58.638 Freezing the mix. After the mix enters the freezer, it shall be frozen as rapidly as... and further freezing....

  14. 7 CFR 58.620 - Freezing and packaging rooms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Freezing and packaging rooms. 58.620 Section 58.620 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....620 Freezing and packaging rooms. The rooms used for freezing and packaging frozen desserts shall...

  15. 7 CFR 58.638 - Freezing the mix.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Freezing the mix. 58.638 Section 58.638 Agriculture... Procedures § 58.638 Freezing the mix. After the mix enters the freezer, it shall be frozen as rapidly as... and further freezing....

  16. 7 CFR 58.620 - Freezing and packaging rooms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Freezing and packaging rooms. 58.620 Section 58.620 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....620 Freezing and packaging rooms. The rooms used for freezing and packaging frozen desserts shall...

  17. 7 CFR 58.638 - Freezing the mix.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Freezing the mix. 58.638 Section 58.638 Agriculture... Procedures § 58.638 Freezing the mix. After the mix enters the freezer, it shall be frozen as rapidly as... and further freezing....

  18. 7 CFR 58.620 - Freezing and packaging rooms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Freezing and packaging rooms. 58.620 Section 58.620 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....620 Freezing and packaging rooms. The rooms used for freezing and packaging frozen desserts shall...

  19. 7 CFR 58.620 - Freezing and packaging rooms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Freezing and packaging rooms. 58.620 Section 58.620 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....620 Freezing and packaging rooms. The rooms used for freezing and packaging frozen desserts shall...

  20. 7 CFR 58.620 - Freezing and packaging rooms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Freezing and packaging rooms. 58.620 Section 58.620 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....620 Freezing and packaging rooms. The rooms used for freezing and packaging frozen desserts shall...

  1. Interspecific analysis of xylem freezing responses in Acer and Betula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperate woody plants have evolved two methods for coping with seasonal exposure to sub-zero temperatures. Supercooling is a freeze-avoidance strategy where cells are able to resist the freezing of intracellular water below sub-zero temperatures. Non-supercooling is a freeze-tolerance strategy wh...

  2. Vortex Formation in Vertically Stratified Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Stewart, Glen R.

    2013-10-01

    A central problem of planet formation is how to form large planetesimals in a turbulent protoplanetary disk. Recent work suggests that MRI turbulence would excite such large velocities that the planetesimals would collisionally fragment rather than grow. The structure of chondritic meteorites indicates a gentle nebular environment where chondrules are sorted by size and cemented together rapidly. Although it is well established that anticyclones can concentrate particles that are weakly coupled to the gas in protoplanetary disks, the conditions required for the formation and long-time stability of anticyclones in a vertically stratified disk are still highly uncertain. Fully three dimensional fluid dynamic simulations of protoplanetary disks are computationally expensive when one requires a computational domain that is large compared to the vertical scale height of the disk. An alternative simulation approach is to use potential temperature as the vertical coordinate so that the equations of motion resemble the shallow water equations (Dowling et al. 1998). We have therefore modified a multilayer shallow water simulation code to model the formation of vortices in a vertically stratified protoplanetary disk with a radial entropy gradient. Vertical stratification of the disk is modeled by using multiple layers, where each layer has a different constant value of the entropy. By forcing a slope in the interfaces between the layers, we impose a radial entropy gradient in the disk. Radiative heating and cooling causes vertical mass exchange between adjacent constant entropy layers according to a Newton cooling formula. We find that the formation of anticyclones is robust, and that these vortices actively excite density waves, which in turn, transport angular momentum through the disk. Our simulations therefore yield new insights on how the dusty dead zones of protoplanetary disks can transport angular momentum through the disk by purely hydrodynamic processes. Support from NASA’s Origins of Solar Systems program is gratefully acknowledged.

  3. Type of automatic gradienter

    NASA Astrophysics Data System (ADS)

    Li, Shaohui; He, Liang; Zhang, Gang; Zhang, Zhipeng

    2000-05-01

    Aiming at the requirement that some kinds of big dynamo- electric equipments such as a dam gate of hydro-power plant or a elevator have to keep their balance in the process of being lifted and dropped, a novel and precise gradienter with high resolution and short response time is presented in this article. In this gradienter, the respective hydraulic pressure method is adopted.

  4. Cavitation and water fluxes driven by ice water potential in Juglans regia during freeze-thaw cycles.

    PubMed

    Charra-Vaskou, Katline; Badel, Eric; Charrier, Guillaume; Ponomarenko, Alexandre; Bonhomme, Marc; Foucat, Loïc; Mayr, Stefan; Améglio, Thierry

    2016-02-01

    Freeze-thaw cycles induce major hydraulic changes due to liquid-to-ice transition within tree stems. The very low water potential at the ice-liquid interface is crucial as it may cause lysis of living cells as well as water fluxes and embolism in sap conduits, which impacts whole tree-water relations. We investigated water fluxes induced by ice formation during freeze-thaw cycles in Juglans regia L. stems using four non-invasive and complementary approaches: a microdendrometer, magnetic resonance imaging, X-ray microtomography, and ultrasonic acoustic emissions analysis. When the temperature dropped, ice nucleation occurred, probably in the cambium or pith areas, inducing high water potential gradients within the stem. The water was therefore redistributed within the stem toward the ice front. We could thus observe dehydration of the bark's living cells leading to drastic shrinkage of this tissue, as well as high tension within wood conduits reaching the cavitation threshold in sap vessels. Ultrasonic emissions, which were strictly emitted only during freezing, indicated cavitation events (i.e. bubble formation) following ice formation in the xylem sap. However, embolism formation (i.e. bubble expansion) in stems was observed only on thawing via X-ray microtomography for the first time on the same sample. Ultrasonic emissions were detected during freezing and were not directly related to embolism formation. These results provide new insights into the complex process and dynamics of water movements and ice formation during freeze-thaw cycles in tree stems. PMID:26585223

  5. Size and location of ice crystals in pork frozen by high-pressure-assisted freezing as compared to classical methods.

    PubMed

    Martino, M N; Otero, L; Sanz, P D; Zaritzky, N E

    1998-11-01

    In high-pressure-assisted freezing, samples are cooled under pressure (200 MPa) to - 20 °C without ice formation then pressure is released (0.1 MPa) and the high super-cooling reached (approx. 20 °C), promotes uniform and rapid ice nucleation. The size and location of ice crystals in large meat pieces (Longissimus dorsi pork muscle) as a result of high-pressure-assisted freezing were compared to those obtained by air-blast and liquid N(2). Samples from the surface and centre of the frozen muscle were histologically analysed using an indirect technique (isothermal-freeze fixation). Air-blast and cryogenic fluid freezing, having thermal gradients, showed non-uniform ice crystal distributions. High-pressure-assisted frozen samples, both at the surface and at the central zones, showed similar, small-sized ice crystals. This technique is particularly useful for freezing large pieces of food when uniform ice crystal sizes are required. PMID:22061149

  6. Vertical axis windmill

    SciTech Connect

    Campbell, J.S.

    1980-04-08

    A vertical axis windmill is described which involves a rotatable central vertical shaft having horizontal arms pivotally supporting three sails that are free to function in the wind like the main sail on a sail boat, and means for disabling the sails to allow the windmill to be stopped in a blowing wind.

  7. Study of freezing-point depression of selected food extracts

    SciTech Connect

    Tanaka, Fumihiko; Murata, Satoshi; Habara, Kazuhiro; Amaratunga, K.S.P.

    1996-12-31

    The phenomenon of freezing-point depression that accompanies the solute concentration of selected food extracts was investigated to reveal the characteristics of solid-liquid phase equilibrium. The freezing curves of various food extracts did not exhibit ideal solution behavior in the higher concentration range. The experimental data were fitted to new freezing-point depression equations by the method of nonlinear least squares, and the results clearly indicated that the calculated freezing points at various concentrations were in good agreement with the experimental data. Furthermore, by using the determined parameters, the freezing ratio and the activation coefficient were derived.

  8. Numerical study of two-dimensional freezing in an annulus

    SciTech Connect

    Sablani, S.S.; Venkateshan, S.P.; Sastri, V.M.K. )

    1990-07-01

    An evaluation is made of the results of a numerical study on two-dimensional freezing in an annulus made up of an initially superheated phase-change medium. Numerical results are used to deduce a relation between the nondimensional discharge time and the other parameters. The velocity of the freeze front decreases with time because of the increase of interface area as the freezing proceeds radially outward, followed by a marginal decrease in the freezing rate due to the presence of the adiabatic surface; sensible cooling then occurs only where the freeze front has already reached the adiabatic surface. 6 refs.

  9. Hibernation physiology, freezing adaptation and extreme freeze tolerance in a northern population of the wood frog.

    PubMed

    Costanzo, Jon P; do Amaral, M Clara F; Rosendale, Andrew J; Lee, Richard E

    2013-09-15

    We investigated hibernation physiology and freeze tolerance in a population of the wood frog, Rana sylvatica, indigenous to Interior Alaska, USA, near the northernmost limit of the species' range. Winter acclimatization responses included a 233% increase in the hepatic glycogen depot that was subsidized by fat body and skeletal muscle catabolism, and a rise in plasma osmolality that reflected accrual of urea (to 106±10 μmol ml(-1)) and an unidentified solute (to ~73 μmol ml(-1)). In contrast, frogs from a cool-temperate population (southern Ohio, USA) amassed much less glycogen, had a lower uremia (28±5 μmol ml(-1)) and apparently lacked the unidentified solute. Alaskan frogs survived freezing at temperatures as low as -16°C, some 10-13°C below those tolerated by southern conspecifics, and endured a 2-month bout of freezing at -4°C. The profound freeze tolerance is presumably due to their high levels of organic osmolytes and bound water, which limits ice formation. Adaptive responses to freezing (-2.5°C for 48 h) and subsequent thawing (4°C) included synthesis of the cryoprotectants urea and glucose, and dehydration of certain tissues. Alaskan frogs differed from Ohioan frogs in retaining a substantial reserve capacity for glucose synthesis, accumulating high levels of cryoprotectants in brain tissue, and remaining hyperglycemic long after thawing. The northern phenotype also incurred less stress during freezing/thawing, as indicated by limited cryohemolysis and lactate accumulation. Post-glacial colonization of high latitudes by R. sylvatica required a substantial increase in freeze tolerance that was at least partly achieved by enhancing their cryoprotectant system. PMID:23966588

  10. Studies on Freezing Injury of Plant Cells

    PubMed Central

    Yoshida, Shizuo

    1984-01-01

    The thermotropic transition of plasma membrane of Dactylis glomerata was studied by using fluorescence polarization of embedded fluorophore, 1,6-diphenyl-1,3,5-hexatriene. Under the presence of 35% ethylene glycol, reversible thermotropic transitions were observed in isolated plasma membrane vesicles in nearly the same temperature range as the temperature of freezing injury to cells. In liposomes prepared from isolated plasma membranes, however, the thermotropic transitions occurred at much lower temperatures in comparison with those of intact membrane vesicles. Following treatment with pronase, the thermotropic transition also shifted downward. Thus, the thermotropic properties of plasma membranes appeared to be dependent on the membrane proteins. In vitro freezing of the isolated plasma membrane vesicles without addition of any cryoprotectant, such as sorbitol, resulted in an irreversible alteration both in the fluorescence anisotropy values and the temperatures for the thermotropic transition, suggesting an irreversible alteration in the membrane structure, presumably changes in lipid-protein interactions and protein conformation. PMID:16663597

  11. Biotechnological applications of plant freezing associated proteins.

    PubMed

    Breton, G; Danyluk, J; Ouellet, F; Sarhan, F

    2000-01-01

    Plants use a wide array of proteins to protect themselves against low temperature and freezing conditions. The identification of these freezing tolerance associated proteins and the elucidation of their cryoprotective functions will have important applications in several fields. Genes encoding structural proteins, osmolyte producing enzymes, oxidative stress scavenging enzymes, lipid desaturases and gene regulators have been used to produce transgenic plants. These studies have revealed the potential capacity of different genes to protect against temperature related stresses. In some cases, transgenic plants with significant cold tolerance have been produced. Furthermore, the biochemical characterization of the cold induced antifreeze proteins and dehydrins reveals many applications in the food and the medical industries. These proteins are being considered as food additives to improve the quality and shelf-life of frozen foods, as cryoprotective agents for organ and cell cryopreservation, and as chemical adjuvant in cancer cryosurgery. PMID:11193297

  12. [Non-freezing cold injury in soldiers].

    PubMed

    Melamed, E; Glassberg, E

    2002-12-01

    Non-freezing cold injury (NFCI) is an injury of the hands or feet resulting from exposure to wet conditions and temperatures just above freezing, typically found in soldiers. NFCI is due to microvascular endothelial damage, stasis and vascular occlusion. At first, the tissue is cold and anesthetic, progressing to hyperemia in 24-48 hours. Hyperemia is accompanied by an intense painful burning sensation as well as blisters, redness, and possibly, ulcerations. NFCI management raises frustration in both medical officers and commanders. Most authorities are not aware of or remain unimpressed with the severity of NFCI, nor do they realize that it produces lifelong symptomatology. The following review of the available literature attempts to clear up some issues regarding the definition, pathogenesis, symptoms and preventative measures available in NFCI, including our own experience. PMID:12534203

  13. Freeze-out, Hadronization and Statistical Model

    NASA Astrophysics Data System (ADS)

    Castorina, Paolo

    2016-01-01

    The comparison of the statistical hadronization model with experimental data and lattice QCD results is not always straightforward. Indeed, the interpretation of the ϕ meson production, of the proton to pion multiplicity ratio at LHC and the agreement of the freeze-out curve with the lattice critical line in the T — µB plane, require further analyses. Moreover the dynamics of the hadronization has to be compatible with: 1) the statitical behavior also observed in elementary high energy collisions; 2) a universal hadronization temperature for all high energy collisions; 3) the freeze-out criteria. In these lecture notes the SHM is recalled and some explanations of the puzzling aspects of its comparison with data are discussed.

  14. Freezing and melting water in lamellar structures.

    PubMed Central

    Gleeson, J T; Erramilli, S; Gruner, S M

    1994-01-01

    The manner in which ice forms in lamellar suspensions of dielaidoylphosphatidylethanolamine, dielaidoylphosphatidylcholine, and dioleoylphosphatidylcholine in water depends strongly on the water fraction. For weight fractions between 15 and 9%, the freezing and melting temperatures are significantly depressed below 0 degree C. The ice exhibits a continuous melting transition spanning as much as 20 degrees C. When the water weight fraction is below 9%, ice never forms at temperatures as low as -40 degrees C. We show that when water contained in a lamellar lipid suspension freezes, the ice is not found between the bilayers; it exists as pools of crystalline ice in equilibrium with the bound water associated with the polar lipid headgroups. We have used this effect, together with the known chemical potential of ice, to measure hydration forces between lipid bilayers. We find exponentially decaying hydration repulsion when the bilayers are less than about 7 A apart. For larger separations, we find significant deviations from single exponential decay. PMID:7948683

  15. Freeze-out parameters: lattice meets experiment.

    PubMed

    Borsnyi, S; Fodor, Z; Katz, S D; Krieg, S; Ratti, C; Szab, K K

    2013-08-01

    We present our results for ratios of higher order fluctuations of electric charge as functions of the temperature. These results are obtained in a system of 2+1 quark flavors at physical quark masses and continuum extrapolated. We compare them to preliminary data on higher order moments of the net electric charge distribution from the STAR collaboration. This allows us to determine the freeze-out temperature and chemical potential from first principles. We also show continuum-extrapolated results for ratios of higher order fluctuations of baryon number. These will allow us to test the consistency of the approach, by comparing them to the corresponding experimental data (once they become available) and thus, extracting the freeze-out parameters in an independent way. PMID:23971565

  16. Ground freezing for containment of hazardous waste

    SciTech Connect

    Sayles, F.N.; Iskandar, I.K.

    1998-07-01

    The freezing of ground for the containment of subsurface hazardous waste is a promising method that is environmentally friendly and offers a safe alternative to other methods of waste retention in many cases. The frozen soil method offers two concepts for retaining waste. One concept is to freeze the entire waste area into a solid block of frozen soil thus locking the waste in situ. For small areas where the contaminated soil does not include vessels that would rupture from frost action, this concept may be simpler to install. A second concept, of course, is to create a frozen soil barrier to confine the waste within prescribed unfrozen soil boundaries; initial research in this area was funded by EPA, Cincinnati, OH, and the Army Corps of Engineers. The paper discusses advantages and limitations, a case study from Oak Ridge, TN, and a mesh generation program that simulates the cryogenic technology.

  17. Fast Melting and Freezing for Microgravity Experiments

    NASA Technical Reports Server (NTRS)

    Poorman, Richard M.

    1987-01-01

    Commercial tube welders adapted to metallurgical research. Proposed furnace melts and resolidifies small metal samples during brief periods. In furnace, sample surrounded by large heat sinks and rapidly heated near midlength by intense source of heat. Furnace intended for use in experiments in microgravity: entire melting-and-freezing process requires less than 20 s of near weightlessness experienced in parabolic climb and dive of KC-135 airplane.

  18. Fish antifreeze protein and the freezing and recrystallization of ice.

    PubMed

    Knight, C A; DeVries, A L; Oolman, L D

    Antifreeze glycopeptide and peptides from the blood of polar fishes prevent the growth of ice crystals in water at temperatures down to approximately 1 degree C below freezing point, but do not appreciably influence the equilibrium freezing point. This freezing point hysteresis must be a disequilibrium effect, or it would violate Gibbs' phase rule, but the separate freezing and melting points are experimentally very definite: ice neither melts nor freezes perceptibly within the 'hysteresis gap', for periods of hours or days. We report here unusual crystal faces on ice crystals grown from solutions of very low concentrations of the anti-freeze glycopeptides and peptides. This is a clue to the mechanism of freezing inhibition, and it may be the basis of a simple, very sensitive test for antifreeze material. Very low concentrations of the antifreeze protein are also remarkably effective in preventing the recrystallization of ice. PMID:6700733

  19. Atmospheric freeze drying assisted by power ultrasound

    NASA Astrophysics Data System (ADS)

    Santacatalina, J. V.; Crcel, J. A.; Simal, S.; Garcia-Perez, J. V.; Mulet, A.

    2012-12-01

    Atmospheric freeze drying (AFD) is considered an alternative to vacuum freeze drying to keep the quality of fresh product. AFD allows continuous drying reducing fix and operating costs, but presents, as main disadvantage, a long drying time required. The application of power ultrasound (US) can accelerate AFD process. The main objective of the present study was to evaluate the application of power ultrasound to improve atmospheric freeze drying of carrot. For that purpose, AFD experiments were carried out with carrot cubes (10 mm side) at constant air velocity (2 ms-1), temperature (-10C) and relative humidity (10%) with (20.5 kWm-3,USAFD) and without (AFD) ultrasonic application. A diffusion model was used in order to quantify the influence of US in drying kinetics. To evaluate the quality of dry products, rehydration capacity and textural properties were determined. The US application during AFD of carrot involved the increase of drying rate. The effective moisture diffusivity identified in USAFD was 73% higher than in AFD experiments. On the other hand, the rehydration capacity was higher in USAFD than in AFD and the hardness of dried samples did not show significant (p<0.05) differences. Therefore, US application during AFD significantly (p<0.05) sped-up the drying process preserving the quality properties of the dry product.

  20. Benchmarking numerical freeze/thaw models

    NASA Astrophysics Data System (ADS)

    Rhaak, Wolfram; Anbergen, Hauke; Molson, John; Grenier, Christophe; Sass, Ingo

    2015-04-01

    The modeling of freezing and thawing of water in porous media is of increasing interest, and for which very different application areas exist. For instance, the modeling of permafrost regression with respect to climate change issues is one area, while others include geotechnical applications in tunneling and for borehole heat exchangers which operate at temperatures below the freezing point. The modeling of these processes requires the solution of a coupled non-linear system of partial differential equations for flow and heat transport in space and time. Different code implementations have been developed in the past. Analytical solutions exist only for simple cases. Consequently, an interest has arisen in benchmarking different codes with analytical solutions, experiments and purely numerical results, similar to the long-standing DECOVALEX and the more recent "Geothermal Code Comparison" activities. The name for this freezing/ thawing benchmark consortium is INTERFROST. In addition to the well-known so-called Lunardini solution for a 1D case (case T1), two different 2D problems will be presented, one which represents melting of a frozen inclusion (case TH2) and another which represents the growth or thaw of permafrost around a talik (case TH3). These talik regions are important for controlling groundwater movement within a mainly frozen ground. First results of the different benchmark results will be shown and discussed.

  1. Freeze substitution in 3 hours or less.

    PubMed

    McDonald, K L; Webb, R I

    2011-09-01

    Freeze substitution is a process for low temperature dehydration and fixation of rapidly frozen cells that usually takes days to complete. New methods for freeze substitution have been developed that require only basic laboratory tools: a platform shaker, liquid nitrogen, a metal block with holes for cryotubes and an insulated container such as an ice bucket. With this equipment, excellent freeze substitution results can be obtained in as little as 90 min for cells of small volume such as bacteria and tissue culture cells. For cells of greater volume or that have significant diffusion barriers such as cuticles or thick cell walls, one can extend the time to 3 h or more with dry ice. The 3-h method works well for all manner of specimens, including plants and Caenorhabditis elegans as well as smaller samples. Here, we present the basics of the techniques and some results from Nicotiana leaves, C. elegans adult worms, Escherichia coli and baby hamster kidney tissue culture cells. PMID:21827481

  2. Disaggregating meteorites by automated freeze thaw.

    PubMed

    Charles, Christopher R J

    2011-06-01

    An automated freeze-thaw (AFT) instrument for disaggregating meteorites is described. Meteorite samples are immersed in 18.2 M? water and hermetically sealed in a clean 30 ml Teflon vial. This vial and its contents are dipped between baths of liquid nitrogen and hot water over a number of cycles by a dual-stepper motor system controlled by LabView. Uniform and periodic intervals of freezing and thawing induce multiple expansions and contractions, such that cracks propagate along natural flaws in the meteorite for a sufficient number of AFT cycles. For the CR2 chondrite NWA801, the boundaries between different phases (i.e., silicates, metal, matrix) became progressively weaker and allowed for an efficient recovery of 500 individual chondrules and chondrule fragments spanning 0.2-4.7 mm diameters after 243 AFT cycles over 103.3 h. Further FT experiments on a basalt analog showed that the time required for freezing and thawing the same number of cycles can be reduced by a factor of ?4. PMID:21721725

  3. Steam consumption reduction by eutectic freeze crystallization

    SciTech Connect

    Bichsel, S.E.; Cleary, M.; Barron, T.S.; Heist, J.A.

    1985-01-01

    Steam production in American beet sugar factories can be reduced by 600 pounds per ton of beets by using hydrate freeze crystallization in place of pan evaporators for sugar crystallization. This is a relatively constant number, regardless of current factory energy use. Further reduction is limited by the juice heating needs in the purification operations. Steam for juice heating is 20 to 30% on beets, or 400 to 600 pounds of steam per ton. In efficient factories this is about the steam flow to the evaporators when the pan crystallizers are replaced by freeze crystallization. An approach is described here for a rapid evaluation of effects on the steam balance of basic process changes. It provides a visual guide to restructuring the steam balance that simplifies optimization when such changes are made. The graphic approach is useful in illustrating methods of reducing energy use in a sugar factory, in addition to the current analysis of integration of the hydrate freeze process. For example, membrane and vapor recompression evaporators for juice concentration must be accompanied by major factory modifications to produce any net savings of steam. The reason is the needs for specific steam quantity and quality for the pan evaporators and juice heaters, supplied through the current evaporator trains. Reduction of the steam rate below 25 to 35% on beets will require changes to the conventional juice purification process.

  4. Ambient in-situ immersion freezing measurements - findings from the ZAMBIS 2014 field campaign for three ice nucleation techniques

    NASA Astrophysics Data System (ADS)

    Kohn, Monika; Atkinson, James D.; Lohmann, Ulrike; Kanji, Zamin A.

    2015-04-01

    To estimate the influence of clouds on the Earth's radiation budget, it is crucial to understand cloud formation processes in the atmosphere. A key process, which significantly affects cloud microphysical properties and the initiation of precipitation thus contributing to the hydrological cycle, is the prevailing type of ice nucleation mechanism. In mixed-phase clouds immersion freezing is the dominant ice crystal forming mechanism, whereby ice nucleating particles (INP) first act as cloud condensation nuclei (CCN) and are activated to cloud droplets followed by freezing upon supercooling. There are a number of experimental methods and techniques to investigate the ice nucleating ability in the immersion mode, however most techniques are offline for field sampling or only suitable for laboratory measurements. In-situ atmospheric studies are needed to understand the ice formation processes of 'real world' particles. Laboratory experiments simulate conditions of atmospheric processes like ageing or coating but are still idealized. Our method is able to measure ambient in-situ immersion freezing on single immersed aerosol particles. The instrumental setup consists of the recently developed portable immersion mode cooling chamber (PIMCA) as a vertical extension to the portable ice nucleation chamber (PINC, [1]), where the frozen fraction of activated aerosol particles are detected by the ice optical depolarization detector (IODE, [2]). Two additional immersion freezing techniques based on a droplet freezing array [3,4] are used to sample ambient aerosol particles either in a suspension (fraction larger ~0.6 ?m) or on PM10-filters to compare different ice nucleation techniques. Here, we present ambient in-situ measurements at an urban forest site in Zurich, Switzerland held during the Zurich ambient immersion freezing study (ZAMBIS) in spring 2014. We investigated the ice nucleating ability of natural atmospheric aerosol with the PIMCA/PINC immersion freezing setup as well as a droplet freezing method on aerosol particles either collected in a suspension or on PM10-filters to obtain atmospheric IN concentrations based on the measured ambient aerosol. Investigation of physical properties (number and size distribution) and chemical composition as well as the meteorological conditions provide supplementary information that help to understand the nature of particles and air masses that contribute to immersion freezing. Acknowledgements We thank Hannes Wydler and Hansjrg Frei from ETH Zurich for their technical support. Furthermore, the authors want thank Franz Conen from the University of Basel for sharing equipment and training in the drop freezing experiment. References [1] Chou et al. (2011), Atmos. Chem. Phys., 11, 4725-4738. [2] Nicolet et al. (2010), Atmos. Chem. Phys., 10, 313-325. [3] Conen et al. (2012), Atmos. Meas. Tech., 5, 321-327. [4] Stopelli et al. (2014), Atmos. Meas. Tech., 7, 129-134.

  5. Subsurface temperatures and geothermal gradients on the North Slope, Alaska

    USGS Publications Warehouse

    Collett, Timothy S.; Bird, Kenneth J.; Magoon, Leslie B.

    1989-01-01

    Geothermal gradients as interpreted from a series of high-resolution stabilized well-bore-temperature surveys from 46 North Slope, Alaska, wells vary laterally and vertically throughout the near-surface sediment (0-2,000 m). The data from these surveys have been used in conjunction with depths of ice-bearing permafrost, as interpreted from 102 well logs, to project geothermal gradients within and below the ice-bearing permafrost sequence. The geothermal gradients calculated from the projected temperature profiles are similar to the geothermal gradients measured in the temperature surveys. Measured and projected geothermal gradients in the ice-bearing permafrost sequence range from 1.5??C/100m in the Prudhoe Bay area to 5.1??C/100m in the National Petroleum Reserve in Alaska (NPRA).

  6. Radioluminescence and scintillation results of horizontal gradient freeze grown aliovalently-doped CeBr3.

    SciTech Connect

    Linnick, C.; Harrison, Mark J.; Doty, F. Patrick; McGregor, D. S.; McCreary, M.; Brinton, S.; Montag, B.

    2008-11-01

    Strengthening the crystal lattice of lanthanide halides, which are brittle, anisotropic, ionic crystals, may prove to increase the availability and ruggedness of these scintillators for room-temperature gamma-ray spectroscopy applications. Eight aliovalent dopants for CeBr{sub 3} were explored in an effort to find the optimal aliovalent strengthening agent. Eight dopants, CaBr{sub 2}, SrBr{sub 2}, BaBr{sub 2}, ZrBr{sub 4}, HfBr{sub 4}, ZnBr{sub 2}, CdBr[sub 2}, and PbBr{sub 2}, were explored at two levels of doping, 500 and 1000 ppm. From each ingot, samples were harvested for radioluminescence spectrum measurement and scintillation testing. Of the eight dopants explored, only BaBr{sub 2} and PbBr{sub 2} were found to clearly decrease total light yield. ZnBr{sub 2} and CdBr{sub 2} dopants both affected the radioluminescence emission spectrum very little as compared to undoped CeBr{sub 3}. HfBr{sub 2}- and ZnBr{sub 4}-doped CeBr{sub 3} exhibited the highest light yields.

  7. Response of New zealand mudsnails Potamopyrgus antipodarum to freezing and near freezing fluctuating water temperatures

    USGS Publications Warehouse

    Moffitt, Christine M.; James, Christopher A.

    2012-01-01

    We explored the resilience of the invasive New Zealand mudsnail Potamopyrgus antipodarum to fluctuating winter freezing and near-freezing temperature cycles in laboratory tests. Our goal was to provide data to confirm field observations of mortality and presumed mortality in stream habitats with fluctuating freezing to near-freezing temperatures. We tested individuals from 2 locations with distinctly different thermal regimes and population densities. One location had low snail densities and water temperatures with strong diel and seasonal water variation. The other location had high snail densities and nearly constant water temperatures. Groups of individuals from both locations were tested in each of 3 laboratory-created diel thermal cycles around nominal temperatures of 0, 2, or 4°C. Mortality occurred in cycles around 0°C in both populations, and little to no mortality occurred at temperatures >0°C. Individuals from both sources held in diel 0°C cycles for 72 h showed 100% mortality. Our findings support observations from published field studies that survival was limited in infested habitats subject to freezing temperatures.

  8. Vertical seismic profile at Pike's Peak, Saskatchewan, Canada: turning rays and velocity anisotropy

    NASA Astrophysics Data System (ADS)

    Newrick, Rachel T.; Lawton, Don C.

    2003-12-01

    First-arrival traveltimes from a multi-offset vertical seismic profile (VSP) were used to estimate velocity anisotropy in the presence of a vertical velocity gradient. A numerical model consisting of two layers with vertical velocity gradients of 3.1 and 1.2 s-1, respectively, and global anisotropy parameters of ?=0.120.02 and ?=0.300.06 yielded first-arrival traveltimes that matched the observed traveltimes well. Shallow receivers were found to be crucial for constraining the vertical velocity field and for determining the parameters of anisotropy at depth.

  9. Automated apparatus for producing gradient gels

    DOEpatents

    Anderson, N.L.

    1983-11-10

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  10. Automated apparatus for producing gradient gels

    DOEpatents

    Anderson, Norman L. (Clarendon Hills, IL)

    1986-01-01

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  11. Tunable high-gradient permanent magnet quadrupoles

    NASA Astrophysics Data System (ADS)

    Shepherd, B. J. A.; Clarke, J. A.; Marks, N.; Collomb, N. A.; Stokes, D. G.; Modena, M.; Struik, M.; Bartalesi, A.

    2014-11-01

    A novel type of highly tunable permanent magnet (PM) based quadrupole has been designed by the ZEPTO collaboration. A prototype of the design (ZEPTO-Q1), intended to match the specification for the CLIC Drive Beam Decelerator, was built and magnetically measured at Daresbury Laboratory and CERN. The prototype utilises two pairs of PMs which move in opposite directions along a single vertical axis to produce a quadrupole gradient variable between 15 and 60 T/m. The prototype meets CLIC's challenging specification in terms of the strength and tunability of the magnet.

  12. Freeze-Thaw Injury to Isolated Spinach Protoplasts and Its Simulation at Above Freezing Temperatures 1

    PubMed Central

    Wiest, Steven C.; Steponkus, Peter L.

    1978-01-01

    Possibilities to account for the mechanism of freeze-thaw injury to isolated protoplasts of Spinacia oleracea L. cv. Winter Bloomsdale were investigated. A freeze-thaw cycle to ?3.9 C resulted in 80% lysis of the protoplasts. At ?3.9 C, protoplasts are exposed to the equivalent of a 2.1 osmolal solution. Isolated protoplasts behave as ideal osmometers in the range of concentrations tested (0.35 to 2.75 osmolal), arguing against a minimum critical volume as a mechanism of injury. Average protoplast volume after a freeze-thaw cycle was not greatly different than the volume before freezing, arguing against an irreversible influx of solutes while frozen. A wide variety of sugars and sugar alcohols, none of which was freely permeant, were capable of protecting against injury which occurred when protoplasts were frozen in salt solutions. The extent of injury was also dependent upon the type of monovalent ions present, with Li = Na > K = Rb = Cs and Cl ? Br > I, in order of decreasing protoplast survival. Osmotic conditions encountered during a freeze-thaw cycle were established at room temperature by exposing protoplasts to high salt concentrations and then diluting the osmoticum. Injury occurred only after dilution of the osmoticum and was correlated with the expansion of the plasma membrane. Injury observed in frozen-thawed protoplasts was correlated with the increase in surface area the plasma membrane should have undergone during thawing, supporting the contention that contraction of the plasma membrane during freezing and its expansion during thawing are two interacting lesions which cause protoplast lysis during a freezethaw cycle. PMID:16660588

  13. Micromachined electrostatic vertical actuator

    DOEpatents

    Lee, Abraham P. (Walnut Creek, CA); Sommargren, Gary E. (Santa Cruz, CA); McConaghy, Charles F. (Livermore, CA); Krulevitch, Peter A. (Pleasanton, CA)

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  14. Micromachined electrostatic vertical actuator

    SciTech Connect

    Lee, A.P.; Sommargren, G.E.; McConaghy, C.F.; Krulevitch, P.A.

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion, micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  15. Vertical sleeve gastrectomy

    MedlinePLUS

    ... smaller stomach is about the size of a banana. It limits the amount of food you can ... staples. This creates a long vertical tube or banana-shaped stomach. The surgery does not involve cutting ...

  16. Freeze-thaw Laboratory Column Experiments using Arctic Permafrost Cores: Exploring Controls of Subsurface Heterogeneity on Greenhouse Gas Release

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Kneafsey, T. J.; Nakagawa, S.; Borglin, S. E.; Cook, P.; Tas, N.; Torn, M. S.; Jansson, J.; Hubbard, S. S.

    2013-12-01

    Although warming induced permafrost thaw and greenhouse gas release to the atmosphere is considered to be one of the largest possible ecosystem feedbacks to climate change in the Arctic, there are significant uncertainties associated with subsurface hydrological, geochemical and microbial controls over the magnitude and rate of the greenhouse gas release. Gaining an understanding of the controls of typically heterogeneous subsurface properties on greenhouse gas release is exacerbated by the difficulty in sufficiently quantifying subsurface dynamics and gas exchange in-situ and in response to freeze-thaw perturbations. As a part of the DOE's Next Generation Ecosystem Experiments (NGEE) in the Arctic, we are performing a series of controlled laboratory freeze-thaw experiments to study CO2, CH4, and N2O gas release in vertical permafrost columns as a function of dynamic and vertically heterogeneous hydrological, geochemical and microbial properties. The column studies are being performed using representative ~ 0.75 m cores collected at the NGEE Barrow, AK site from the ground surface into the permafrost. The experimental apparatus was designed to simulate the seasonal freeze-thaw of the Barrow active layer. The column is equipped with several types of sensors and sampling devices, including thermistors, geophysical (seismic and electrical) sensors, and ports that allow sampling for solids, fluids, and gasses. Our preliminary tests simulated seasonal temperature variation from ~ -20°C to +5°C. Our results demonstrated the success of the freeze-thaw control of the experimental apparatus and the capability of the geophysical methods to monitor the freeze-thaw spatiotemporal dynamics. Samples collected during the experiment also revealed the changes of the hydrological and biogeochemical conditions of the column and its linkage to carbon degradation and release in a vertical permafrost soil column. While our initial experiments were conducted to simulate the seasonal freeze thaw of a fairly homogeneous active layer under current climate conditions, subsequent experiments will be designed to (a) investigate thaw of deeper permafrost and associated hydrological, geochemical and microbiological processes, including greenhouse gas release; (b) quantify the effect of vertical subsurface heterogeneity on the integrated above-ground greenhouse gas response.

  17. Structural effects caused by spray- and freeze-drying of liposomes and bilayer disks.

    PubMed

    Wessman, Per; Edwards, Katarina; Mahlin, Denny

    2010-04-01

    Cryo-TEM and dynamic light scattering was used to investigate morphological changes induced by spray- and freeze-drying of liposomes and nanosized bilayer disks composed of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-5000] (DSPE-PEG) from lactose solution. Particular focus was put on the identification of structural alterations that risk influencing the performance of liposomes and bilayer disks as carriers for protein and peptide drugs. Significant changes in the lipid aggregate structure and/or size was noted upon dehydration. Uni-lamellar liposomes tended to shrink in size and become bi-lamellar as a consequence of the drying process. The same transformation was observed upon deliberate establishment of a lactose gradient over the membranes of liposomes in solution. A mechanism based on an osmotically driven invagination of the liposomes is proposed to explain the change from uni- to bi-lamellar structures. PEGylation promoted formation of larger liposomes during spray-drying, and had a similar, but less pronounced, effect also during freeze-drying. The observed structural changes may have important consequences for the bioavailability of protein/peptide drugs bound to, or embedded in, the liposome membranes. The radius of bilayer disks increased upon both spray- and freeze-drying, but the drying procedure did not change the open single-bilayer structure of the disks. PMID:19894278

  18. Measurement of water and solute dynamics in freezing soil columns with time domain reflectometry

    NASA Astrophysics Data System (ADS)

    Sthli, Manfied; Stadler, Daniel

    1997-08-01

    Two soil columns (Davos sand, Alptal loam) were subjected to a cycle of one-dimensional freezing and thawing from both ends towards the middle of the columns. The freezing characteristic curves were determined at different levels in the columns and used to estimate parameters in a physically based mathematical model. Measurements of liquid soil water content with time domain reflectometry (TDR) were influenced by calibration restrictions related to the experimental setup. A model developed by Van Loon et al. (1991, Transp. Porous Media, 6: 391-406) was used to calculate the salt concentration in the liquid water phase from TDR measurements of the soil electrical conductivity. Measured bulk salt concentrations (salt content per volume soil) were found to be very sensitive to the liquid water contents, especially at low values. Results indicate a freezing-induced redistribution of the salt in the column: first, there was a convective flow of salt towards the cold ends; second, diffusion occurred in the opposite direction owing to developing concentration gradients. Conceptually, the setup presented can be applied to field conditions to detect in situ redistribution of salt induced by soil frost.

  19. Advanced Gradient Heating Facility

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Advanced Gradient Heating Facility (AGHF) is a European Space Agency (ESA) developed hardware. The AGHF was flown on STS-78, which featured four European PI's and two NASA PI's. The AGHFsupports the production of advanced semiconductor materials and alloys using the directional process, which depends on establishing a hot side and a cold side in the sample.

  20. Manipulating the Gradient

    ERIC Educational Resources Information Center

    Gaze, Eric C.

    2005-01-01

    We introduce a cooperative learning, group lab for a Calculus III course to facilitate comprehension of the gradient vector and directional derivative concepts. The lab is a hands-on experience allowing students to manipulate a tangent plane and empirically measure the effect of partial derivatives on the direction of optimal ascent. (Contains 7…

  1. Gradient Refractive Index Lenses.

    ERIC Educational Resources Information Center

    Morton, N.

    1984-01-01

    Describes the nature of gradient refractive index (GRIN) lenses, focusing on refraction in these materials, focal length of a thin Wood lens, and on manufacturing of such lenses. Indicates that GRIN lenses of small cross section are in limited production with applications suggested for optical communication and photocopying fields. (JN)

  2. Influence of vertical flows in wells on groundwater sampling

    NASA Astrophysics Data System (ADS)

    McMillan, Lindsay A.; Rivett, Michael O.; Tellam, John H.; Dumble, Peter; Sharp, Helen

    2014-11-01

    Pumped groundwater sampling evaluations often assume that horizontal head gradients predominate and the sample comprises an average of water quality variation over the well screen interval weighted towards contributing zones of higher hydraulic conductivity (a permeability-weighted sample). However, the pumping rate used during sampling may not always be sufficient to overcome vertical flows in wells driven by ambient vertical head gradients. Such flows are reported in wells with screens between 3 and 10 m in length where lower pumping rates are more likely to be used during sampling. Here, numerical flow and particle transport modeling is used to provide insight into the origin of samples under ambient vertical head gradients and under a range of pumping rates. When vertical gradients are present, sample provenance is sensitive to pump intake position, pumping rate and pumping duration. The sample may not be drawn from the whole screen interval even with extended pumping times. Sample bias is present even when the ambient vertical flow in the wellbore is less than the pumping rate. Knowledge of the maximum ambient vertical flow in the well does, however, allow estimation of the pumping rate that will yield a permeability-weighted sample. This rate may be much greater than that recommended for low-flow sampling. In practice at monitored sites, the sampling bias introduced by ambient vertical flows in wells may often be unrecognized or underestimated when drawing conclusions from sampling results. It follows that care should be taken in the interpretation of sampling data if supporting flow investigations have not been undertaken.

  3. Theoretic base of Edge Local Mode triggering by vertical displacements

    SciTech Connect

    Wang, Z. T.; He, Z. X.; Wang, Z. H.; Wu, N.; Tang, C. J.

    2015-05-15

    Vertical instability is studied with R-dependent displacement. For Solovev's configuration, the stability boundary of the vertical instability is calculated. The pressure gradient is a destabilizing factor which is contrary to Rebhan's result. Equilibrium parallel current density, j{sub //}, at plasma boundary is a drive of the vertical instability similar to Peeling-ballooning modes; however, the vertical instability cannot be stabilized by the magnetic shear which tends towards infinity near the separatrix. The induced current observed in the Edge Local Mode (ELM) triggering experiment by vertical modulation is derived. The theory provides some theoretic explanation for the mitigation of type-I ELMS on ASDEX Upgrade. The principle could be also used for ITER.

  4. Immersion freezing of birch pollen washing water

    NASA Astrophysics Data System (ADS)

    Augustin, Stefanie; Hartmann, Susan; Pummer, Bernhard; Grothe, Hinrich; Niedermeier, Dennis; Clauss, Tina; Voigtlnder, Jens; Tomsche, Laura; Wex, Heike; Stratmann, Frank

    2013-04-01

    Up to now, the importance of pollen for atmospheric ice nucleation was considered to be minor, as they are too large to stay in the atmosphere for a long time. But as recent investigations have shown, not the pollen grains themselves are responsible for freezing, but easily suspendable macromolecules on their surfaces (Pummer et al., 2012). Due to the bursting of pollen grains these ice nucleating active (INA) macromolecules could be numerous in the atmosphere. In the present study, the immersion freezing behavior of birch pollen, i.e. its ice nucleating active (INA) macromolecules, was investigated at the Leipzig Aerosol Cloud Interaction Simulator (LACIS, Hartmann et al., 2011). For this, washing water of two different birch pollen samples with different origin (Northern birch and Southern birch) were used. Immersion freezing of droplets generated from the pollen washing water was observed at temperatures higher than -20 C for both samples. The main difference between the Northern and the Southern birch pollen was the temperature dependence of the immersion freezing process. Our results suggest that the ice nucleating potential of the Southern birch is controlled by a single type of INA macromolecule, while the Northern birch pollen seem to feature two distinctively different types of INA macromolecules. We determined the heterogeneous nucleation rates for both INA macromolecule types and thereby consistently describe the ice nucleation behavior of both, the Southern and the Northern birch pollen washing water. Furthermore we will suggest a theoretical framework for describing e.g. single INA macromolecule related ice nucleation in atmospheric models. References: Pummer, B. G., Bauer, H., Bernardi, J., Bleicher, S. and Grothe, H.: Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen. Atmos. Chem. Phys., 12, 2541-2550, doi:10.5194/acp-12-2541-2012, 2012. Hartmann, S., Niedermeier, D., Voigtlnder, J., Clauss, T., Shaw, R. A., Wex, H., Kiselev, A., and Stratmann, F.: Homogeneous and heterogeneous ice nucleation at LACIS: operating principle and theoretical studies, Atmos. Chem. Phys., 11, 1753-1767, doi:10.5194/acp-11-1753-2011, 2011.

  5. Freezing distributed entanglement in spin chains

    SciTech Connect

    D'Amico, Irene; Lovett, Brendon W.; Spiller, Timothy P.

    2007-09-15

    We show how to freeze distributed entanglement that has been created from the natural dynamics of spin chain systems. The technique that we propose simply requires single-qubit operations and isolates the entanglement in specific qubits at the ends of branches. Such frozen entanglement provides a useful resource, for example for teleportation or distributed quantum processing. The scheme can be applied to a wide range of systems--including actual spin systems and alternative qubit embodiments in strings of quantum dots, molecules, or atoms.

  6. Freeze Tolerant Radiator for an Advanced EMU

    NASA Technical Reports Server (NTRS)

    Copeland, Robert J.; Elliott, Jeannine; Weislogel, Mark

    2004-01-01

    During an Extravehicular Activity (EVA), the astronaut s metabolic heat and the heat produced by the Portable Life Support Unit (PLSS) must be rejected. This heat load is currently rejected by a sublimator, which vents up to eight pounds of water each EVA. However, for advanced space missions of the future, water venting to space needs to be minimized because resupply impacts from earth will be prohibitive. If this heat load could be radiated to space from the PLSS, which has enough surface area to radiate most of the heat, the amount of water now vented could be greatly reduced. Unfortunately, a radiator rejects heat at a relatively constant rate, but the astronauts generate a variable heat load depending on how hard they are working. Without a way to vary the heat removal rate, the astronaut would experience cold discomfort or even frostbite. A proven method allowing a radiator to be turned-down is to sequentially allow tubes that carry the heat transfer fluid to the radiator to freeze. A drawback of current freezable radiators using this method is that they are far to heavy for use on a PLSS, because they use heavy construction to prevent the tubes from bursting as they freeze and thaw. This creates the need for a large radiator to reject most of the heat but with a lightweight tube that doesn t burst as it freezes and thaws. The new freezable radiator for the Extravehicular Mobility Unit (EMU) has features to accommodate the expansion of the radiator fluid when it freezes, and still have the high tube to fin conductance needed to minimize the number and weight of the tubes. Radiator fluid candidates are water and a propylene glycol-water mixture. This design maintains all materials within their elastic limits so that large volume changes can be achieved without breaking the tube. This concept couples this elastic expansion with an extremely lightweight, extremely high conductivity carbon fiber fin that can carry the heat needed to thaw a frozen tube. By using most of the exposed surface area of the PLSS as a radiator, the system can reject about 75% of the highest heat load, and reduce the loss of water through sublimation by a factor of four. The proposed radiator and a small water tank can be no heavier than the current system.

  7. Cellularized Cellular Solids via Freeze-Casting.

    PubMed

    Christoph, Sarah; Kwiatoszynski, Julien; Coradin, Thibaud; Fernandes, Francisco M

    2016-02-01

    The elaboration of metabolically active cell-containing materials is a decisive step toward the successful application of cell based technologies. The present work unveils a new process allowing to simultaneously encapsulate living cells and shaping cell-containing materials into solid-state macroporous foams with precisely controlled morphology. Our strategy is based on freeze casting, an ice templating materials processing technique that has recently emerged for the structuration of colloids into macroporous materials. Our results indicate that it is possible to combine the precise structuration of the materials with cellular metabolic activity for the model organism Saccharomyces cerevisiae. PMID:26536388

  8. Hierarchical freezing in a lattice model.

    PubMed

    Byington, Travis W; Socolar, Joshua E S

    2012-01-27

    A certain two-dimensional lattice model with nearest and next-nearest neighbor interactions is known to have a limit-periodic ground state. We show that during a slow quench from the high temperature, disordered phase, the ground state emerges through an infinite sequence of phase transitions. We define appropriate order parameters and show that the transitions are related by renormalizations of the temperature scale. As the temperature is decreased, sublattices with increasingly large lattice constants become ordered. A rapid quench results in a glasslike state due to kinetic barriers created by simultaneous freezing on sublattices with different lattice constants. PMID:22400863

  9. Thermal properties of freezing bound water restrained by polysaccharides.

    PubMed

    Hatakeyama, Tatsuko; Tanaka, Masaru; Hatakeyama, Hyoe

    2010-01-01

    This review focuses on the thermal properties of bound water restrained by various kinds of polysaccharides and several synthetic polymers. The characteristic features of freezing bound water which is closely related with biocompatibility of polymers are summarized based on results obtained by differential scanning calorimetry. Glass transition, cold crystallization and melting of water-polysaccharide systems were observed. Three kinds of water, non-freezing, freezing bound and free water, were quantified from the enthalpy of melting of water in the system. Freezing bound water restrained by polysaccharides is in a metastable state. The equilibrium melting temperature of freezing bound water is lower than 0C and the temperature decreases with decreasing water content. Nucleation and growth rate of freezing bound water were calculated from isothermal crystallization and the values were compared with those of free water. PMID:20557717

  10. Two-dimensional freezing criteria for crystallizing colloidal monolayers

    SciTech Connect

    Wang Ziren; Han Yilong; Alsayed, Ahmed M.

    2010-04-21

    Video microscopy was employed to explore crystallization of colloidal monolayers composed of diameter-tunable microgel spheres. Two-dimensional (2D) colloidal liquids were frozen homogenously into polycrystalline solids, and four 2D criteria for freezing were experimentally tested in thermal systems for the first time: the Hansen-Verlet freezing rule, the Loewen-Palberg-Simon dynamical freezing criterion, and two other rules based, respectively, on the split shoulder of the radial distribution function and on the distribution of the shape factor of Voronoi polygons. Importantly, these freezing criteria, usually applied in the context of single crystals, were demonstrated to apply to the formation of polycrystalline solids. At the freezing point, we also observed a peak in the fluctuations of the orientational order parameter and a percolation transition associated with caged particles. Speculation about these percolated clusters of caged particles casts light on solidification mechanisms and dynamic heterogeneity in freezing.

  11. High-pressure freezing and freeze substitution of Arabidopsis for electron microscopy.

    PubMed

    Austin, Jotham R

    2014-01-01

    The objectives of electron microscopy ultrastructural studies are to examine cellular architecture and relate the cell's structural machinery to dynamic functional roles. This aspiration is difficult to achieve if specimens have not been adequately preserved in a "living state"; hence specimen preparation is of the utmost importance for the success of any electron micrographic study. High-pressure freezing (HPF)/freeze substitution (FS) has long been recognized as the primer technique for the preservation of ultrastructure in biological samples. In most cases a basic HPF/freeze substitution protocol is sufficient to obtain superior ultrastructural preservation and structural contrast, which allows one to use more advanced microscopy techniques such as 3D electron tomography. However, for plant tissues, which have a thick cell wall, large water-filled vacuoles, and air spaces (all of which are detrimental to cryopreservation), these basic HPF/FS protocols often yield undesirable results. In particular, ice crystal artifacts and the staining of membrane systems are often poorly or negatively stained, which make 3D segmentation of a tomogram difficult. To overcome these problems, various aspects of the HPF/FS protocol can be altered, including the cryo-filler(s) used, freeze substitution cocktail, and the resin infiltration process. This chapter will describe these modifications for the preparation of plant tissues for routine electron microscopic studies, immunocytochemistry, and 3D tomographic electron imaging. PMID:24057382

  12. Freezing of gait associated with a corpus callosum lesion.

    PubMed

    Dale, Marian L; Mancini, Martina; Curtze, Carolin; Horak, Fay B; Fling, Brett W

    2016-01-01

    Freezing of gait (FoG) is a debilitating feature of Parkinson's disease and other parkinsonian disorders. This case demonstrates a variant of freezing of gait in a non-parkinsonian patient with a lesion of the anterior corpus callosum. The freezing improved with increased upper extremity sensory input, suggesting that compensatory circuits for use of somatosensory inputs from the arms to postural and locomotor centers were intact. PMID:26835154

  13. Integrated gravity and gravity gradient 3D inversion using the non-linear conjugate gradient

    NASA Astrophysics Data System (ADS)

    Qin, Pengbo; Huang, Danian; Yuan, Yuan; Geng, Meixia; Liu, Jie

    2016-03-01

    Gravity data, which are critical in mineral, oil, and gas exploration, are obtained from the vertical component of the gravity field, while gravity gradient data are measured from changes in the gravity field in three directions. However, few studies have sought to improve exploration techniques by integrating gravity and gravity gradient data using inversion methods. In this study, we developed a new method to integrate gravity and gravity gradient data in a 3D density inversion using the non-linear conjugate gradient (NLCG) method and the minimum gradient support (MGS) functional to regularize the 3D inverse problem and to obtain a clear and accurate image of the anomalous body. The NLCG algorithm, which is suitable for solving large-scale nonlinear optimization problems and requires no memory storage, was compared to the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm and the results indicated that the convergence rate of NLCG is slower, but that the storage requirement and computation time is lower. To counteract the decay in kernel function, we introduced a depth weighting function for anomalous bodies at the same depth, with information about anomalous body depth obtained from well log and seismic exploration data. For anomalous bodies at different depths, we introduced a spatial gradient weighting function to incorporate additional information obtained in the inversion. We concluded that the spatial gradient weighting function enhanced the spatial resolution of the recovered model. Furthermore, our results showed that including multiple components for inversion increased the resolution of the recovered model. We validated our model by applying our inversion method to survey data from Vinton salt dome, Louisiana, USA. The results showed good agreement with known geologic information; thus confirming the accuracy of this approach.

  14. Evidence for a freezing tolerance-growth rate trade-off in the live oaks (Quercus series Virentes) across the tropical-temperate divide.

    PubMed

    Koehler, Kari; Center, Alyson; Cavender-Bares, Jeannine

    2012-02-01

    It has long been hypothesized that species are limited to the north by minimum temperature and to the south by competition, resulting in a trade-off between freezing tolerance and growth rate. We investigated the extent to which the climatic origins of populations from four live oak species (Quercus series Virentes) were associated with freezing tolerance and growth rate, and whether species fitted a model of locally adapted populations, each with narrow climatic tolerances, or of broadly adapted populations with wide climatic tolerances. Acorns from populations of four species across a tropical-temperate gradient were grown under common tropical and temperate conditions. Growth rate, seed mass, and leaf and stem freezing traits were compared with source minimum temperatures. Maximum growth rates under tropical conditions were negatively correlated with freezing tolerance under temperate conditions. The minimum source temperature predicted the freezing tolerance of populations under temperate conditions. The tropical species Q. oleoides was differentiated from the three temperate species, and variation among species was greater than among populations. The trade-off between freezing tolerance and growth rate supports the range limit hypothesis. Limited variation within species indicates that the distributions of species may be driven more strongly by broad climatic factors than by highly local conditions. PMID:22171967

  15. Fast hadron freeze-out generator. II. Noncentral collisions

    SciTech Connect

    Amelin, N. S.; Lednicky, R.; Lokhtin, I. P.; Malinina, L. V.; Snigirev, A. M.; Karpenko, Iu. A.; Sinyukov, Yu. M.; Arsene, I.; Bravina, L.

    2008-01-15

    The fast Monte Carlo procedure of hadron generation developed in our previous work is extended to describe noncentral collisions of nuclei. We consider different possibilities to introduce appropriate asymmetry of the freeze-out hypersurface and flow velocity profile. For comparison with other models and experimental data, we demonstrate the results based on the standard parametrizations of the hadron freeze-out hypersurface and flow velocity profile assuming either a common chemical and thermal freeze-out or the chemically frozen evolution from chemical to thermal freeze-out. The C++ generator code is written under the ROOT framework and is available for public use at http://uhkm.jinr.ru/.

  16. Design of a blood-freezing system for leukemia research

    NASA Technical Reports Server (NTRS)

    Williams, T. E.; Cygnarowicz, T. A.

    1978-01-01

    Leukemia research involves the use of cryogenic freezing and storage equipment. In a program being carried out at the National Cancer Institute (NCI), bone marrow (white blood cells) was frozen using a standard cryogenic biological freezer. With this system, it is difficult to maintain the desired rate of freezing and repeatability from sample to sample. A freezing system was developed that satisfies the requirements for a repeatable, constant freezing rate. The system was delivered to NIC and is now operational. This report describes the design of the major subsystems, the analyses, the operating procedure, and final system test results.

  17. Anoxia tolerance and freeze tolerance in hatchling turtles.

    PubMed

    Dinkelacker, S A; Costanzo, J P; Lee, R E

    2005-04-01

    Freezing survival in hatchling turtles may be limited by ischemic anoxia in frozen tissues and the associated accumulation of lactate and reactive oxygen species (ROS). To determine whether mechanisms for coping with anoxia are also important in freeze tolerance, we examined the association between capacities for freezing survival and anoxia tolerance in hatchlings of seven species of turtles. Tolerance to freezing (-2.5 degrees C) was high in Emydoidea blandingii, Chrysemys picta, Terrapene ornata, and Malaclemys terrapin and low in Graptemys geographica, Chelydra serpentina, and Trachemys scripta. Hatchlings survived in a N(2) atmosphere at 4 degrees C for periods ranging from 17 d (M. terrapin) to 50 d (G. geographica), but survival time was not associated with freeze tolerance. Lactate accumulated during both stresses, but plasma levels in frozen/thawed turtles were well below those found in anoxia-exposed animals. Activity of the antioxidant enzyme catalase in liver increased markedly with anoxia exposure in most species, but increased with freezing/thawing only in species with low freeze tolerance. Our results suggest that whereas oxygen deprivation occurs during somatic freezing, freeze tolerance is not limited by anoxia tolerance in hatchling turtles. PMID:15739066

  18. A molecular dynamics study of freezing in a confined geometry

    NASA Technical Reports Server (NTRS)

    Ma, Wen-Jong; Banavar, Jayanth R.; Koplik, Joel

    1992-01-01

    The dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls is studied by computer simulation. The time development of ordering is quantified and a novel freezing mechanism is observed. The liquid forms layers and subsequent in-plane ordering within a layer is accompanied by a sharpening of the layer in the transverse direction. The effects of channel size, the methods of quench, the liquid-wall interaction and the roughness of walls on the freezing mechanism are elucidated. Comparison with recent experiments on freezing in confined geometries is presented.

  19. Freezing efficiency of Silver Iodide, ATD and Kaolinite in the contact freezing mode

    NASA Astrophysics Data System (ADS)

    Nagare, Baban; Marcolli, Claudia; Stetzer, Olaf; Lohmann, Ulrike

    2014-05-01

    The importance of heterogeneous ice nucleation via contact freezing is one of the open questions in the atmospheric science community. In our laboratory, we built the Collision Nucleation CHamber (CLINCH) (Ladino et al. 2011) in which falling cloud droplets can collide with aerosol particles. In this study, contact freezing experiments are conducted to investigate the ice nucleation ability of silver iodide (AgI), kaolinite and Arizona Test Dust (ATD). Silver iodide has been known for its ice nucleation ability since 1940s (Vonnegut 1947) while kaolinite is a clay mineral and known to be a moderate ice nucleus. ATD is a commercial dust sample used by many groups to compare different setups. In CLINCH, size selected aerosol particles collide with water droplets of 80 m diameter. With the extension in chamber length it is possible to vary the interaction time of ice nuclei and the droplets. Our experiments are performed between -10 to -36 C for various concentrations of ice nuclei and different interaction times. The frozen fraction of the droplets is determined using the custom-made depolarization detector IODE (Nicolet et al., 2010). Depolarization of linearly polarized incident laser light is used to determine the ratio of frozen droplets to all droplets. Frozen fractions of the three particle types with different residence times from CLINCH will be presented in this study. The number of collisions between a single droplet and several aerosol particles can be calculated by accounting for the theoretical collision efficiency at the experimental conditions in order to obtain the freezing efficiency (frozen fraction/number of collisions). Nucleation efficiency is compared with other contact freezing studies and with immersion freezing

  20. Entropy Budgets in Oscillating and Freezing Systems

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2005-12-01

    An interesting spontaneously oscillating system was demonstrated some decades ago by Welander : an open-topped water tank supplied with a continuous supply of heat is exposed to chilled air. A layer of ice forms, as one might expect. However, the ice retards the loss of heat to the air, and the water temperature rises until eventually the ice melts. The enhanced heat loss allows the system to cool again to the point where ice can form, and the cycle repeats. The oscillating behaviour is counterintuitive (like another freezing phenomenon, the Mpemba effect, wherein a warm liquid will begin freezing before a cool one), but is in full accord with the laws of thermodynamics and can be demonstrated in the laboratory and with numerical models. Oscillations occur in specific regions of parameter space (heating rate, heat transfer coefficients etc) - smooth variation, e.g. of the ice:air heat transfer coefficient yields a smooth variation of entropy production, except for a jump to increased entropy production when oscillations begin. A geophysical system where similar oscillations may occur is the icy Jovian satellite Europa, which appears to have a young crust. More generally, where a system is subject to a varying excitation (such as diurnal or seasonal forcing of the climate of Earth or Mars) the presence of phase changes such as melting of water or the condensation of carbon dioxide as frost have an important impact on the entropy budget of the system.

  1. Effect of soil freezing on particulate resuspension

    SciTech Connect

    Duce, S.W.; Shaw, P.G.; Winberg, M.R.

    1988-08-01

    This report presents the results of small scale laboratory tests that were conducted to determine the effect of soil freezing on soil resuspension. Nontransuranic contaminated soil form the Radioactive Waste Management Complex was subjected to a series of test conditions to determine respirable and nonrespirable fractions of airborne dust. A separate fraction of the same soil was spiked with Pu-239 and subjected to the same test conditions. Concentrations of resuspended soil and Pu in air were determined. Test results show that: (a) the largest fraction of soil resuspended is in the nonrespirable size fraction, (b) the concentration of resuspended soil in air is highly dependent on surface air velocity, and (c) freezing is not as effective at reducing resuspension of fine dry soil as it is with coarse soil, and (d) artificially prepared Pu contaminated soil has a high proportion of the total activity distributed on ultrafine material, reacts inversely to the mass movement of soil, and does not adequately imitate Pu movement in an actual contaminated soil. 26 figs., 3 tabs.

  2. Freeze-drying today and tomorrow.

    PubMed

    Leary, J H; Stanford, E A

    1976-10-01

    The freeze-drying process and equipment have been improved over the years; the cycle times have shortened and the dried products have improved as a result. This talk will deal with these improvements and how we have progressed from the early systems to where we are today. Such areas of discussion will include: vacuum pumping systems, how they are sized and designed to meet the needs for general and special applications; heat transfer systems, and their use in maintaining the drying profile; condensing surface design, and what is best for certain types of dryers; controls and instrumentation, and how these have played a big part in the drying process and have made it possible to get repeatability; refrigeration systems, and the part they play in the performance of freeze-drying; and lastly the effect of internal stoppering, bottomless trays, and other items such as these have had on the present state of the art. It goes without saying that there have been many changes and there will continue to be changes and we shall endeavor to look into the future--as to what might well bo some of these changes. Included in the talk will be a number of slides and illustrations to point out the various items as they are discussed. PMID:1030422

  3. Morphological study of endothelial cells during freezing.

    PubMed

    Zhang, A; Xu, L X; Sandison, G A; Cheng, S

    2006-12-01

    Microvascular injury is recognized as a major tissue damage mechanism of ablative cryosurgery. Endothelial cells lining the vessel wall are thought to be the initial target of freezing. However, details of this injury mechanism are not yet completely understood. In this study, ECMatrix 625 was used to mimic the tumour environment and to allow the endothelial cells cultured in vitro to form the tube-like structure of the vasculature. The influence of water dehydration on the integrity of this structure was investigated. It was found that the initial cell shape change was mainly controlled by water dehydration, dependent on the cooling rate, resulting in the shrinkage of cells in the direction normal to the free surface. As the cooling was prolonged and temperature was lowered, further cell shape change could be induced by the chilling effects on intracellular proteins, and focal adhesions to the basement membrane. Quantitative analysis showed that the freezing induced dehydration greatly enhanced the cell surface stresses, especially in the axial direction. This could be one of the major causes of the final breaking of the cell junction and cell detachment. PMID:17110769

  4. Fundamental Boiling and RP-1 Freezing Experiments

    NASA Technical Reports Server (NTRS)

    Goode, Brian; Turner, Larry D. (Technical Monitor)

    2001-01-01

    This paper describes results from experiments performed to help understand certain aspects of the MC-1 engine prestart thermal conditioning procedure. The procedure was constrained by the fact that the engine must chill long enough to get quality LOX at the LOX pump inlet but must be short enough to prevent freezing of RP-1 in the fuel pump. A chill test of an MC-1 LOX impeller was performed in LN2 to obtain data on film boiling, transition boiling and impeller temperature histories. The transition boiling data was important to the chill time so a subsequent experiment was performed chilling simple steel plates in LOX to obtain similar data for LOX. To address the fuel freezing concern, two experiments were performed. First, fuel was frozen in a tray and its physical characteristics were observed and temperatures of the fuel were measured. The result was physical characteristics as a function of temperature. Second was an attempt to measure the frozen thickness of RP-1 on a cold wall submerged in warm RP-1 and to develop a method for calculating that thickness for other conditions.

  5. Spray Irrigation Effects on Surface-Layer Stability in an Experimental Citrus Orchard during Winter Freezes.

    NASA Astrophysics Data System (ADS)

    Cooper, Harry J.; Smith, Eric A.; Martsolf, J. David

    1997-02-01

    Observations taken by two surface radiation and energy budget stations deployed in the University of Florida/Institute for Food and Agricultural Service experimental citrus orchard in Gainesville, Florida, have been analyzed to identify the effects of sprayer irrigation on thermal stability and circulation processes within the orchard during three 1992 winter freeze episodes. Lapse rates of temperature observed from a micrometeorological tower near the center of the orchard were also recorded during periods of irrigation for incorporation into the analysis. Comparisons of the near-surface temperature lapse rates observed with the two energy budget stations show consistency between the two sites and with the tower-based lapse rates taken over a vertical layer from 1.5 to 15 m above ground level. A theoretical framework was developed that demonstrates that turbulent-scale processes originating within the canopy, driven by latent heat release associated with condensation and freezing processes from water vapor and liquid water released from sprayer nozzles, can destabilize lapse rates and promote warm air mixing above the orchard canopy. The orchard data were then analyzed in the context of the theory for evidence of local overturning and displacement of surface-layer air, with warmer air from aloft driven by locally buoyant plumes generated by water vapor injected into the orchard during the irrigation periods. It was found that surface-layer lapse rates were lower during irrigation periods than under similar conditions when irrigation was not occurring, indicating a greater degree of vertical mixing of surface-layer air with air from above treetops, as a result of local convective overturning induced by the condensation heating of water vapor released at the nozzles of the sprinklers. This provides an additional explanation to the well-accepted heat of fusion release effect, of how undertree irrigation of a citrus orchard during a freeze period helps protect crops against frost damage.

  6. Vertical flowline connector

    SciTech Connect

    Saliger, K. C.

    1985-10-01

    Several embodiments are disclosed of a vertical type of flowline connector for providing a fluid connection between a horizontal flowline and an additional subsea facility. The upper and lower portions of the connector can be properly positioned relative to each other by simply lowering an upper female portion of the connector onto a lower male portion thereof. The lower portion of the connector at the subsea facility is provided with at least two vertically positioned, upwardly facing male mandrel connectors. The upper portion of the connector assembly includes at least two vertically positioned, downwardly facing corresponding female connectors designed to be lowered onto the corresponding male mandrel connectors. At least one of the female connectors is mounted on the connector assembly by a free floating mounting. The free floating mounting allows for slight misalignments of the female connectors relative to the corresponding male connectors as the upper connector assembly is lowered onto, and passively positioned relative to, the lower connector assembly.

  7. Expression of freeze-responsive proteins, Fr10 and Li16, from freeze-tolerant frogs enhances freezing survival of BmN insect cells.

    PubMed

    Biggar, Kyle K; Kotani, Eiji; Furusawa, Toshiharu; Storey, Kenneth B

    2013-08-01

    To date, two novel freeze-responsive proteins, Fr10 and Li16, have been discovered in the wood frog, Rana sylvatica, and likely support freezing survival. Although previous studies have established tissue distribution of each protein, there have been no studies that explore their functional consequences in intolerant cells. To assess the ability of Fr10 and Li16 to confer freeze tolerance, we transfected each protein into a freeze-intolerant silkworm cell line (BmN). Selected controls were the transfection of an unrelated protein (CAT) and a no-transfection sample. Li16 and Fr10 showed 1.8 ± 0.1- and 1.7 ± 0.2-fold, respectively, greater survival after freezing at -6°C for 1 h than did transfection controls. To investigate how these novel proteins protect cells from freezing damage, protein structures were predicted from primary amino acid sequences. Analysis of the structures indicated that Fr10 is a secreted protein and may be a new type IV antifreeze protein, whereas Li16 may have intracellular membrane associated functions. This study shows that freezing protection can be provided to intolerant cells by the overexpression of transfected Li16 and Fr10 frog proteins. Results from this study will provide new insights into adapting intolerant cells for medical organ cryoprotection using a natural vertebrate model of tolerance. PMID:23657819

  8. Effect of repeated freeze-thaw cycles on geographically different populations of the freeze-tolerant worm Enchytraeus albidus (Oligochaeta).

    PubMed

    Fisker, Karina Vincents; Holmstrup, Martin; Malte, Hans; Overgaard, Johannes

    2014-11-01

    Freeze-tolerant organisms survive internal ice formation; however, the adaptations to repeated freeze-thaw cycles are often not well investigated. Here we report how three geographically different populations of Enchytraeus albidus (Germany, Iceland and Svalbard) respond to three temperature treatments - constant thawed (0C), constant freezing (-5C) and fluctuating temperature (0 to -5C) - over a period of 42 days. Survival varied between treatments and populations such that enchytraeids from arctic locations had a higher survival following prolonged freeze periods compared with temperate populations. However, enchytraeids from temperate locations had the same survival rate as arctic populations when exposed to repeated freeze-thaw events. Across all populations, metabolic rate decreased markedly in frozen animals (-5C) compared with thawed controls (0C). This decrease is likely due to the lower temperature of frozen animals, but also to the transition to the frozen state per se. Animals exposed to repeated freeze-thaw events had an intermediate metabolic rate and freeze-thaw events were not associated with pronounced excess energetic costs. Overwintering under either condition was not associated with a decrease in lipid content; however, during exposure to constant freezing and repeated freeze-thaw events there was a noticeable decrease in carbohydrate stores over time. Thus, animals exposed to constant freezing showed a decrease in glycogen stores, while both glucose and glycogen content decreased over time when the organisms were exposed to repeated freezing. The results therefore suggest that carbohydrate resources are important as a fuel for E. albidus during freezing whereas lipid resources are of marginal importance. PMID:25214492

  9. Improved vertical scanning interferometry

    NASA Astrophysics Data System (ADS)

    Harasaki, Akiko

    2000-11-01

    Vertical scanning interferometers are routinely used for the measurement of optical fiber connectors. There are increasing needs for measurements of such items as machined surfaces, contact lenses, paint texture, cell structure, and integrated circuit devices, to name a few. These structures have too much depth, or are too rough, to measure with standard interferometry methods. Phase- measurement interferometry methods are limited to surfaces that do not have any discontinuities larger than one quarter of the operating wavelength. On the other hand, vertical scanning interferometers can be very effective, even though they have low height resolution compared to that of phase-measurement interferometers. Improving the height resolution of vertical scanning interferometers from the point of hardware improvement and signal processing has been one of the major research interests in the surface metrology area. This work provides a new algorithm, which called here ``PSI on the Fly'' technique, as a solution for improving height resolution of vertical scanning interferometers. This dissertation begins with a review of white-light interference microscopes. The height and lateral resolutions are derived based on scalar diffraction theory. Next, various well-established. algorithms for finding a topographic map of the small object surface are discussed. The work proceeds with a discussion of the phase change upon reflection and its influence on the coherence envelope. Then phase measurement interferometry methods are reviewed. The emphasis is in errors in phase measurement resulting from using a white light source instead of a monochromatic light source as in the usual case. The following chapter describes and examines an often- observed artifact of vertical-scanning interferometry when applied to step heights. The artifact is called ``bat wings'' because of its appearance. The physical cause of the ``bat wings'' artifact is discussed through a diffraction model. The next chapter proposes an improved vertical-scanning interferometry algorithm. The method, called here ``PSI on the Fly'' technique, has been developed by combining regular vertical-scanning interferometry and a monochromatic phase-shifting interferometry technique. The PSI on the Fly technique improves the surface height resolution of vertical scanning interferometry to that of a phase-shifting interferometry measurement. In addition to the resolution improvement, the algorithm also successfully removes the ``bat wings'' artifact.

  10. Zone Freezing Study for Pyrochemical Process Waste Minimization

    SciTech Connect

    Ammon Williams

    2012-05-01

    Pyroprocessing technology is a non-aqueous separation process for treatment of used nuclear fuel. At the heart of pyroprocessing lies the electrorefiner, which electrochemically dissolves uranium from the used fuel at the anode and deposits it onto a cathode. During this operation, sodium, transuranics, and fission product chlorides accumulate in the electrolyte salt (LiCl-KCl). These contaminates change the characteristics of the salt overtime and as a result, large volumes of contaminated salt are being removed, reprocessed and stored as radioactive waste. To reduce the storage volumes and improve recycling process for cost minimization, a salt purification method called zone freezing has been proposed at Korea Atomic Energy Research Institute (KAERI). Zone freezing is melt crystallization process similar to the vertical Bridgeman method. In this process, the eutectic salt is slowly cooled axially from top to bottom. As solidification occurs, the fission products are rejected from the solid interface and forced into the liquid phase. The resulting product is a grown crystal with the bulk of the fission products near the bottom of the salt ingot, where they can be easily be sectioned and removed. Despite successful feasibility report from KAERI on this process, there were many unexplored parameters to help understanding and improving its operational routines. Thus, this becomes the main motivation of this proposed study. The majority of this work has been focused on the CsCl-LiCl-KCl ternary salt. CeCl3-LiCl-KCl was also investigated to check whether or not this process is feasible for the trivalent species—surrogate for rare-earths and transuranics. For the main part of the work, several parameters were varied, they are: (1) the retort advancement rate—1.8, 3.2, and 5.0 mm/hr, (2) the crucible lid configurations—lid versus no-lid, (3) the amount or size of mixture—50 and 400 g, (4) the composition of CsCl in the salt—1, 3, and 5 wt%, and (5) the temperature differences between the high and low furnace zones—200 and 300 ?C. During each experiment, the temperatures at selected locations around the crucible were measured and recorded to provide temperature profiles. Following each experiment, samples were collected and elemental analysis was done to determine the composition of iii the salt. Several models—non-mixed, well-mixed, Favier, and hybrid—were explored to describe the zone freezing process. For CsCl-LiCl-KCl system, experimental results indicate that through this process up to 90% of the used salt can be recycled, effectively reducing waste volume by a factor of ten. The optimal configuration was found to be a 5.0 mm/hr rate with a lid configuration and a ?T of 200°C. The larger 400 g mixtures had recycle percentages similar to the 50 g mixtures; however, the throughput per time was greater for the 400 g case. As a result, the 400 g case is recommended. For the CeCl3-LiCl-KCl system, the result implies that it is possible to use this process to separate the rare-earth and transuranics chlorides. Different models were applied to only CsCl ternary system. The best fit model was the hybrid model as a result of a solute transport transition from non- mixed to well-mixed throughout the growing process.

  11. Aircraft symmetric flight optimization. [gradient techniques for supersonic aircraft control

    NASA Technical Reports Server (NTRS)

    Falco, M.; Kelley, H. J.

    1973-01-01

    Review of the development of gradient techniques and their application to aircraft optimal performance computations in the vertical plane of flight. Results obtained using the method of gradients are presented for attitude- and throttle-control programs which extremize the fuel, range, and time performance indices subject to various trajectory and control constraints, including boundedness of engine throttle control. A penalty function treatment of state inequality constraints which generally appear in aircraft performance problems is outlined. Numerical results for maximum-range, minimum-fuel, and minimum-time climb paths for a hypothetical supersonic turbojet interceptor are presented and discussed. In addition, minimum-fuel climb paths subject to various levels of ground overpressure intensity constraint are indicated for a representative supersonic transport. A variant of the Gel'fand-Tsetlin 'method of ravines' is reviewed, and two possibilities for further development of continuous gradient processes are cited - namely, a projection version of conjugate gradients and a curvilinear search.

  12. Effect of long-term freezing and freeze-thaw cycles on indigenous and inoculated microorganisms in dewatered blackwater.

    PubMed

    Gunnarsdttir, Ragnhildur; Mller, Karoline; Jensen, Pernille Erland; Jenssen, Petter Deinboll; Villumsen, Arne

    2012-11-20

    Wastewater treatment in many Arctic regions is inadequate, even nonexisting. Natural freezing of wastewater in those areas may be beneficial for reduction of microorganisms. The aim of this study was to investigate the effect of long-term freezing, and repeated freezing and thawing, on indigenous coliforms, fecal streptococci, and antibiotic-resistant (AR) bacteria, and inoculated Salmonella Enteriditis and E. coli bacteriophage ?X174 in dewatered blackwater. At the end of the long-term freezing experiment (10 months), an MPN recovery study was done, including the microbial groups that had shown the largest reduction, using tryptone soy broth at incubation temperatures of 10 and 20 C overnight for the coliforms and AR bacteria, and buffered peptone water at incubation temperature of 37 C for 18-20 h for Salmonella. Fecal streptococci were more resistant to long-term freezing than the coliform group. Total number of AR bacteria decreased slowly but constantly over the 10-month freezing period. Salmonella rapidly decreased and were nondetectable within a week but exhibited some recovery after 10 months of freezing, whereas limited or no recovery of coliforms and AR-bacteria was detected. Bacteriophages showed limited reduction during the long-term freezing. Repeated freezing and thawing increased the reduction of all tested microbial groups markedly. PMID:23113759

  13. Controlled Freeze-thaw Experiments to Study Biogeochemical Process and its Effects on Greenhouse Gas Release in Arctic Soil Columns

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Kneafsey, T. J.; Tas, N.; Bill, M.; Ulrich, C.; Hubbard, S. S.

    2014-12-01

    Greenhouse gas release associated with permafrost thawing is one of the largest uncertainties in future climate prediction. Improvement of such prediction relies on a better representation of the interactions between hydrological, geochemical and microbial processes in the Arctic ecosystem that occur over a wide range of space and time scales and under dynamic freeze-thaw conditions. As part of the Next Generation Ecosystem Experiments in the Arctic (NGEE-Arctic), we conducted controlled laboratory freeze-thaw experiments to study greenhouse gas release in vertical permafrost soil columns with vertically heterogeneous hydrological, geochemical and microbial properties. The studies were performed using soil cores collected from the NGEE Barrow, AK site. Two cores collected next to each other with very similar soil structures were used for the experiment. One of the cores was destructively sampled for baseline characterization, and the second core was used for the freeze-thaw experiments. The core extends from the ground surface into the permafrost with roughly 40 cm of active layer. The column was instrumented with various sensors and sampling devices, including thermocouples, geophysical (electrical) sensors, and sampling ports for solids and fluids. The headspace of the soil column was purged with CO2 free air and the gas samples were collected periodically for greenhouse gas analysis. Our initial tests simulated seasonal temperature variation from ~ -10°C to +10°C at the ground surface. Our results demonstrated that temperature and geophysical data provided real time information on the freeze thaw dynamics of the column and the surface greenhouse gas fluxes correlated with the freeze thaw stages and associated hydrological and biogeochemical processes in the vertical soil column. For example, surface fluxes data revealed an early burst of GHG concentrations during the initial thawing of the surface ice rich layer of the soil, indicating the presence of trapped gases from previous season activities. In addition, the dynamics of the surface flux are closely related to the changes of the geochemical and microbial conditions during the freeze thaw processes.

  14. [Characteristics of soil net nitrogen mineralization in subalpine/alpine forests of west Sichuan, Southwest China during seasonal freeze-thaw period].

    PubMed

    Liu, Jin-Ling; Wu, Fu-Zhong; Yang, Wan-Qin; Shi, Pei-Li; Wang, Ao; Yang, Yu-Lian; Wu, Zhi-Chao

    2012-03-01

    Seasonal freeze-thaw cycle and its change pattern under the scenarios of climate warming might exert strong effects on the soil nitrogen mineralization in alpine forests. In this paper, intact soil cores were collected from the subalpine/alpine forests along an altitudinal gradient in west Sichuan, and an incubation test was conducted to study the soil net nitrogen mineralization rate and the amount of soil mineralized nitrogen in the forests during growth season and seasonal freeze-thaw period under simulated scenarios of global warming. In the test soils, the NH(4+)-N and NO(3-)-N contents both showed a clear tendency of decreased in the period from growth season to the onset stage of freezing, increased at deep freezing stage, and decreased again at the early stage of thawing. The soil net nitrogen mineralization rate and the amount of soil mineralized nitrogen were significantly lower in freeze-thaw period than in growth season, and the soil inorganic nitrogen was obviously immobilized. The soil nitrogen immobilization was stronger at middle altitudes but weaker at high altitudes, as compared with that at low altitudes, possibly due to the variation of soil temperature and its induced different freeze-thaw cycle. During growth period, the soil net nitrogen mineralization rate and the amount of soil mineralized nitrogen showed an obvious increasing trend with the decrease of altitude, and the soil nitrogen mineralization was the strongest at low altitudes, implying that under the scenarios of climate warming, the increase of soil temperature promoted the soil nitrogen mineralization during growth season, and affected the soil nitrogen mineralization rate by increasing the frequency of freeze-thaw cycle and shortening the time period of freeze-thaw. Soil micro-environment could also affect the soil nitrogen mineralization in alpine forest regions. PMID:22720601

  15. Embolism formation during freezing in the wood of Picea abies.

    PubMed

    Mayr, Stefan; Cochard, Herv; Amglio, Thierry; Kikuta, Silvia B

    2007-01-01

    Freeze-thaw events can cause embolism in plant xylem. According to classical theory, gas bubbles are formed during freezing and expand during thawing. Conifers have proved to be very resistant to freeze-thaw induced embolism, because bubbles in tracheids are small and redissolve during thawing. In contrast, increasing embolism rates upon consecutive freeze-thaw events were observed that cannot be explained by the classical mechanism. In this study, embolism formation during freeze-thaw events was analyzed via ultrasonic and Cryo-scanning electron microscope techniques. Twigs of Picea abies L. Karst. were subjected to up to 120 freeze-thaw cycles during which ultrasonic acoustic emissions, xylem temperature, and diameter variations were registered. In addition, the extent and cross-sectional pattern of embolism were analyzed with staining experiments and Cryo-scanning electron microscope observations. Embolism increased with the number of freeze-thaw events in twigs previously dehydrated to a water potential of -2.8 MPa. In these twigs, acoustic emissions were registered, while saturated twigs showed low, and totally dehydrated twigs showed no, acoustic activity. Acoustic emissions were detected only during the freezing process. This means that embolism was formed during freezing, which is in contradiction to the classical theory of freeze-thaw induced embolism. The clustered pattern of embolized tracheids in cross sections indicates that air spread from a dysfunctional tracheid to adjacent functional ones. We hypothesize that the low water potential of the growing ice front led to a decrease of the potential in nearby tracheids. This may result in freezing-induced air seeding. PMID:17041033

  16. Vertical shaft windmill

    NASA Technical Reports Server (NTRS)

    Grana, D. C.; Inge, S. V., Jr. (Inventor)

    1983-01-01

    A vertical shaft has several equally spaced blades mounted. Each blade consists of an inboard section and an outboard section skew hinged to the inboard section. The inboard sections automatically adjust their positions with respect to the fixed inboard sections with changes in velocity of the wind. This windmill design automatically governs the maximum rotational speed of shaft.

  17. Aiding Vertical Guidance Understanding

    NASA Technical Reports Server (NTRS)

    Feary, Michael; McCrobie, Daniel; Alkin, Martin; Sherry, Lance; Polson, Peter; Palmer, Everett; McQuinn, Noreen

    1998-01-01

    A two-part study was conducted to evaluate modern flight deck automation and interfaces. In the first part, a survey was performed to validate the existence of automation surprises with current pilots. Results indicated that pilots were often surprised by the behavior of the automation. There were several surprises that were reported more frequently than others. An experimental study was then performed to evaluate (1) the reduction of automation surprises through training specifically for the vertical guidance logic, and (2) a new display that describes the flight guidance in terms of aircraft behaviors instead of control modes. The study was performed in a simulator that was used to run a complete flight with actual airline pilots. Three groups were used to evaluate the guidance display and training. In the training, condition, participants went through a training program for vertical guidance before flying the simulation. In the display condition, participants ran through the same training program and then flew the experimental scenario with the new Guidance-Flight Mode Annunciator (G-FMA). Results showed improved pilot performance when given training specifically for the vertical guidance logic and greater improvements when given the training and the new G-FMA. Using actual behavior of the avionics to design pilot training and FMA is feasible, and when the automated vertical guidance mode of the Flight Management System is engaged, the display of the guidance mode and targets yields improved pilot performance.

  18. The Effect of Freezing on the Dynamics of Dike Propagation

    NASA Astrophysics Data System (ADS)

    Tait, S.; Taisne, B.

    2007-12-01

    When magma-filled cracks propagate close to the Earth's surface, host rock temperature is well below the magma solidus. Solidification and substantial increase in magma viscosity can occur, are most pronounced near the propagating tip and can slow or arrest the progress of the dike. Quantitative analysis is required to predict whether a given dike will reach the surface to erupt and the duration of the precursor sequence. This challenging physical problem mixes elasticity, fracture mechanics, heat transfer and fluid flow with strong rheologic gradients due to cooling. We describe the propagation behaviour of such a hydraulic fracture using a laboratory experimental system of a crack fed by a constant flux of paraffin wax from a source reservoir propagating through gelatin below the solidus of the wax. The most novel behaviour is an intermittent regime in which cracks periodically stop advancing due to solidification, then swell at constant length while enhancing the elastic deformation in the surrounding solid before propagation resumes. We present a physical model of this system, based on different balances between driving and resistive forces: the former are elastic stress and liquid buoyancy, the latter are fracture resistance at the tip and viscous resistance. The fracture is represented as a head, behind the propagating tip, connected to the source by a narrow tail. Freezing of liquid close to the tip is assumed to enhance fracture resistance according to a cooling law, and propagation is assumed to occur only when the stress exerted by the liquid is enough to overcome fracture resistance. Our theoretical model reproduces intermittent propagation with precise behaviour depending on the controlling stress balances, and provides a tool to analyse natural systems.

  19. 7 CFR 305.18 - Quick freeze treatment schedule.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Quick freeze treatment schedule. 305.18 Section 305.18 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS Quick Freeze Treatments 305.18 Quick...

  20. Logistic Regression Analysis of Freezing Tolerance in Winter Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four winter wheat cultivars, Eltan, Froid, Kestrel, and Tiber, were cold-acclimated for five weeks and then tested for freezing tolerance in a programmable freezer. The temperature of the soil was recorded every two minutes and the freezing episode was described as five parameters: the minimum temp...

  1. 47 CFR 64.1190 - Preferred carrier freezes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... electronic authorization should confirm appropriate verification data (e.g., the subscriber's date of birth... subscriber's date of birth or social security number) and the information required in § 64.1190(d)(3)(ii)(A... carrier administering the freeze and the subscriber in order to lift a freeze. When engaged in...

  2. Generalized motor inhibitory deficit in Parkinson's disease patients who freeze.

    PubMed

    Bissett, Patrick G; Logan, Gordon D; van Wouwe, Nelleke C; Tolleson, Christopher M; Phibbs, Fenna T; Claassen, Daniel O; Wylie, Scott A

    2015-12-01

    Freezing of gait is a disabling symptom of Parkinson's disease (PD) that involves failure to initiate and continue motor activity appropriately. PD disrupts fronto-basal ganglia circuitries that also implement the inhibition of responses, leading to the hypothesis that freezing of gait may involve fundamental changes in both initiation and inhibition of motor actions. We asked whether PD patients who show freezing of gait show selective deficits in their ability to inhibit upper and lower extremity reactions. We compared older healthy controls, older PD controls without freezing of gait, and older PD participants with freezing of gait, in stop-signal tasks that measured the initiation (go trials) and inhibition (stop trials) of both hand and foot responses. When only go trials were presented, all three groups showed similar initiation speeds across lower and upper extremity responses. When stop-signal trials were introduced, both PD groups slowed their reactions nearly twice as much as healthy controls. While this adjustment helped PD controls stop their actions as quickly as healthy controls, PD patients with freezing showed significantly delayed inhibitory control of both upper and lower extremities. When anticipating the need to stop their actions urgently, PD patients show greater adjustments (i.e., slowing) to reaction speed than healthy controls. Despite these proactive adjustments, PD patients who freeze show marked impairments in inhibiting both upper and lower extremity responses, suggesting that freezing may involve a fundamental disruption to the brain's inhibitory control system. PMID:26354102

  3. Using infrared thermography to study freezing in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Factors that determine when and to what extent a plant will freeze are complex. While thermocouples have served as the main method of monitoring the freezing process in plants, infrared thermography offers distinct advantages, and the use of this latter technology has provided new insights on the p...

  4. Savanna Tree Seedlings are Physiologically Tolerant to Nighttime Freeze Events

    PubMed Central

    O’Keefe, Kimberly; Nippert, Jesse B.; Swemmer, Anthony M.

    2016-01-01

    Freeze events can be important disturbances in savanna ecosystems, yet the interactive effect of freezing with other environmental drivers on plant functioning is unknown. Here, we investigated physiological responses of South African tree seedlings to interactions of water availability and freezing temperatures. We grew widely distributed South African tree species (Colophospermum mopane, Combretum apiculatum, Acacia nigrescens, and Cassia abbreviata) under well-watered and water-limited conditions and exposed individuals to nighttime freeze events. Of the four species studied here, C. mopane was the most tolerant of lower water availability. However, all species were similarly tolerant to nighttime freezing and recovered within one week following the last freezing event. We also show that water limitation somewhat increased freezing tolerance in one of the species (C. mopane). Therefore, water limitation, but not freezing temperatures, may restrict the distribution of these species, although the interactions of these stressors may have species-specific impacts on plant physiology. Ultimately, we show that unique physiologies can exist among dominant species within communities and that combined stresses may play a currently unidentified role in driving the function of certain species within southern Africa. PMID:26870065

  5. St. Lawrence River Freeze-Up Forecast Procedure.

    ERIC Educational Resources Information Center

    Assel, R. A.

    A standard operating procedure (SOP) is presented for calculating the date of freeze-up on the St. Lawrence River at Massena, N.Y. The SOP is based on two empirical temperature decline equations developed for Kingston, Ontario, and Massena, N.Y., respectively. Input data needed to forecast freeze-up consist of the forecast December flow rate and…

  6. 7 CFR 305.7 - Quick freeze treatment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Quick freeze treatment requirements. 305.7 Section 305.7 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS § 305.7 Quick freeze...

  7. Savanna Tree Seedlings are Physiologically Tolerant to Nighttime Freeze Events.

    PubMed

    O'Keefe, Kimberly; Nippert, Jesse B; Swemmer, Anthony M

    2016-01-01

    Freeze events can be important disturbances in savanna ecosystems, yet the interactive effect of freezing with other environmental drivers on plant functioning is unknown. Here, we investigated physiological responses of South African tree seedlings to interactions of water availability and freezing temperatures. We grew widely distributed South African tree species (Colophospermum mopane, Combretum apiculatum, Acacia nigrescens, and Cassia abbreviata) under well-watered and water-limited conditions and exposed individuals to nighttime freeze events. Of the four species studied here, C. mopane was the most tolerant of lower water availability. However, all species were similarly tolerant to nighttime freezing and recovered within one week following the last freezing event. We also show that water limitation somewhat increased freezing tolerance in one of the species (C. mopane). Therefore, water limitation, but not freezing temperatures, may restrict the distribution of these species, although the interactions of these stressors may have species-specific impacts on plant physiology. Ultimately, we show that unique physiologies can exist among dominant species within communities and that combined stresses may play a currently unidentified role in driving the function of certain species within southern Africa. PMID:26870065

  8. Stopping biological time: The freezing of living cells

    SciTech Connect

    Mazur, P.

    1987-01-01

    The fundamental physical-chemical events that occur during the freezing and thawing of cells are outlined and the manner in which cell permeability determines the response of the cell to freezing is discussed both in terms of physical response and in terms of survival. 40 refs., 12 figs.

  9. Understanding freeze stress in biological tissues: thermodynamics of interfacial water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A thermodynamic approach to distinguish forms of freeze energy that injure plants as the temperature decreases is developed. The pattern resulting from this analysis dictated the sequence of thermal requirements for water to exist as an independent state. Improvement of freezing tolerance in biolo...

  10. Design of freeze-drying processes for pharmaceuticals: practical advice.

    PubMed

    Tang, Xiaolin; Pikal, Michael J

    2004-02-01

    Design of freeze-drying processes is often approached with a "trial and error" experimental plan or, worse yet, the protocol used in the first laboratory run is adopted without further attempts at optimization. Consequently, commercial freeze-drying processes are often neither robust nor efficient. It is our thesis that design of an "optimized" freeze-drying process is not particularly difficult for most products, as long as some simple rules based on well-accepted scientific principles are followed. It is the purpose of this review to discuss the scientific foundations of the freeze-drying process design and then to consolidate these principles into a set of guidelines for rational process design and optimization. General advice is given concerning common stability issues with proteins, but unusual and difficult stability issues are beyond the scope of this review. Control of ice nucleation and crystallization during the freezing step is discussed, and the impact of freezing on the rest of the process and final product quality is reviewed. Representative freezing protocols are presented. The significance of the collapse temperature and the thermal transition, denoted Tg', are discussed, and procedures for the selection of the "target product temperature" for primary drying are presented. Furthermore, guidelines are given for selection of the optimal shelf temperature and chamber pressure settings required to achieve the target product temperature without thermal and/or mass transfer overload of the freeze dryer. Finally, guidelines and "rules" for optimization of secondary drying and representative secondary drying protocols are presented. PMID:15032301

  11. Prospective Primary School Teachers' Perceptions on Boiling and Freezing

    ERIC Educational Resources Information Center

    Senocak, Erdal

    2009-01-01

    The aim of this study was to investigate the perceptions of prospective primary school teachers on the physical state of water during the processes of boiling and freezing. There were three stages in the investigation: First, open-ended questions concerning the boiling and freezing of water were given to two groups of prospective primary school…

  12. Experimental investigation of molten metal freezing on to a structure

    SciTech Connect

    Mizanur Rahman, M.; Hino, Tomohiko; Morita, Koji; Matsumoto, Tatsuya; Nakagawa, Kiyoshi; Fukuda, Kenji; Maschek, Werner

    2007-10-15

    During core disruptive accidents (CDAs) of Liquid Metal Reactors (LMRs), it is important to understand the freezing phenomena of molten metal, which may prevent fuel dispersal and subsequent shutdown. The present paper describes the freezing behavior of molten metal during interaction with a structure with a view to the safety of LMRs. In this study, Wood's metal (melting point 78.8 C) was used as a simulant melt, while stainless steel and copper were used as freezing structures. A series of simulation experiments was conducted to study the freezing behavior of Wood's metal during pouring on to the freezing structures immersed in a coolant. In the experiments, simulant melt was poured into a stainless steel tube and finally ejected into a coolant through a nozzle so as to observe the freezing behavior of the molten metal. The penetration length and width were measured in the air cooled experiments, whereas penetration length and the proportion of adhering frozen metal were measured in water coolant experiment. The melt flow and distribution were observed in both types of experiment using a high-speed video camera. Distinct freezing modes were observed in the water coolant experiments, whereas only one freezing mode with a longer melt penetration was found in air coolant experiments. The present result will be utilized to create a relevant database for the verification of reactor safety analysis codes. (author)

  13. 7 CFR 305.7 - Quick freeze treatment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Quick freeze treatment requirements. 305.7 Section 305.7 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS 305.7 Quick freeze...

  14. 40 CFR 52.1135 - Regulation for parking freeze.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Regulation for parking freeze. 52.1135 Section 52.1135 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Massachusetts 52.1135 Regulation for parking freeze. (a) Definitions:...

  15. Heat pump with freeze-up prevention

    DOEpatents

    Ecker, Amir L. (Dallas, TX)

    1981-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid prevents freeze up of the second heat exchanger by keeping the temperature above the dew point; and, optionally, provides heat for efficient operation.

  16. STEFINS: a steel freezing integral simulation program

    SciTech Connect

    Frank, M.V.

    1980-09-01

    STEFINS (STEel Freezing INtegral Simulation) is a computer program for the calculation of the rate of solidification of molten steel on solid steel. Such computations arize when investigating core melt accidents in fast reactors. In principle this problem involves a coupled two-dimensional thermal and hydraulic approach. However, by physically reasonable assumptions a decoupled approach has been developed. The transient solidification of molten steel on a cold wall is solved in the direction normal to the molten steel flow and independent from the solution for the molten steel temperature and Nusselt number along the direction of flow. The solutions to the applicable energy equations have been programmed in cylindrical and slab geometries. Internal gamma heating of steel is included.

  17. Depression of soil moisture freezing point

    SciTech Connect

    Fedorov, V.I.

    1996-12-01

    Certain criteria for freezing temperature of clay soil have been found which are a relative moisture content at the soil liquid limit (W/W{sub L}) and maximum hydroscopic moisture (W/W{sub h}). On the strength of test data it has been established that the relative moisture content at the soil liquid limit (W/W{sub L}) may also serve as a criterion on compression pressure and resistance against shearing for soil paste with no structural binding. Linear correlation between the moisture content of natural soil and its paste -- the equation of moisture balance -- has been found which specifies a thermodynamic balance condition. The equation of moisture balance represents a whole set of properties for a certain type of soil, such as strength and compressibility. In this respect, it may be considered as a ``Soil equation`` which allows for further prognosis of its properties.

  18. Crystal structures and freezing of dipolar fluids.

    PubMed

    Groh, B; Dietrich, S

    2001-02-01

    We investigate the crystal structure of classical systems of spherical particles with an embedded point dipole at T=0. The ferroelectric ground state energy is calculated using generalizations of the Ewald summation technique. Due to the reduced symmetry compared to the nonpolar case the crystals are never strictly cubic. For the Stockmayer (i.e., Lennard-Jones plus dipolar) interaction three phases are found upon increasing the dipole moment: hexagonal, body-centered orthorhombic, and body-centered tetragonal. An even richer phase diagram arises for dipolar soft spheres with a purely repulsive inverse power law potential approximately r(-n). A crossover between qualitatively different sequences of phases occurs near the exponent n=12. The results are applicable to electro- and magnetorheological fluids. In addition to the exact ground state analysis we study freezing of the Stockmayer fluid by density-functional theory. PMID:11308482

  19. Freezing of Martian streams under climatic conditions

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1984-01-01

    The valley networks of Mars are widely believed to have formed at a time when climatic conditions on the planet were significantly different from those that currently prevail. This view arises from the following observations: (1) the valleys form integrated branching networks which suggests fluid drainage, and water is the most plausible fluid, (2) the present atmosphere contains only minute amounts of water, (3) the networks appear to be more akin to terrestrial valleys that are eroded by streams of modest discharges than features that form by catastrophic floods, and (4) small streams of water will rapidly freeze under present climatic conditions. Climatic conditions at the time of formation of the valleys are studied based on the assumption that they were cut by running water.

  20. Climatic variability and the evolution of insect freeze tolerance.

    PubMed

    Sinclair, Brent J; Addo-Bediako, A; Chown, Steven L

    2003-05-01

    Insects may survive subzero temperatures by two general strategies: Freeze-tolerant insects withstand the formation of internal ice, while freeze-avoiding insects die upon freezing. While it is widely recognized that these represent alternative strategies to survive low temperatures, and mechanistic understanding of the physical and molecular process of cold tolerance are becoming well elucidated, the reasons why one strategy or the other is adopted remain unclear. Freeze avoidance is clearly basal within the arthropod lineages, and it seems that freeze tolerance has evolved convergently at least six times among the insects (in the Blattaria, Orthoptera, Coleoptera, Hymenoptera, Diptera and Lepidoptera). Of the pterygote insect species whose cold-tolerance strategy has been reported in the literature, 29% (69 of 241 species studied) of those in the Northern Hemisphere, whereas 85 % (11 of 13 species) in the Southern Hemisphere exhibit freeze tolerance. A randomization test indicates that this predominance of freeze tolerance in the Southern Hemisphere is too great to be due to chance, and there is no evidence of a recent publication bias in favour of new reports of freeze-tolerant species. We conclude from this that the specific nature of cold insect habitats in the Southern Hemisphere, which are characterized by oceanic influence and climate variability must lead to strong selection in favour of freeze tolerance in this hemisphere. We envisage two main scenarios where it would prove advantageous for insects to be freeze tolerant. In the first, characteristic of cold continental habitats of the Northern Hemisphere, freeze tolerance allows insects to survive very low temperatures for long periods of time, and to avoid desiccation. These responses tend to be strongly seasonal, and insects in these habitats are only freeze tolerant for the overwintering period. By contrast, in mild and unpredictable environments, characteristic of habitats influenced by the Southern Ocean, freeze tolerance allows insects which habitually have ice nucleators in their guts to survive summer cold snaps, and to take advantage of mild winter periods without the need for extensive seasonal cold hardening. Thus, we conclude that the climates of the two hemispheres have led to the parallel evolution of freeze tolerance for very different reasons, and that this hemispheric difference is symptomatic of many wide-scale disparities in Northern and Southern ecological processes. PMID:12803420

  1. Versatile Aerogel Fabrication by Freezing and Subsequent Freeze-Drying of Colloidal Nanoparticle Solutions.

    PubMed

    Freytag, Axel; Snchez-Paradinas, Sara; Naskar, Suraj; Wendt, Natalja; Colombo, Massimo; Pugliese, Giammarino; Poppe, Jan; Demirci, Cansunur; Kretschmer, Imme; Bahnemann, Detlef W; Behrens, Peter; Bigall, Nadja C

    2016-01-01

    A versatile method to fabricate self-supported aerogels of nanoparticle (NP) building blocks is presented. This approach is based on freezing colloidal NPs and subsequent freeze drying. This means that the colloidal NPs are directly transferred into dry aerogel-like monolithic superstructures without previous lyogelation as would be the case for conventional aerogel and cryogel fabrication methods. The assembly process, based on a physical concept, is highly versatile: cryogelation is applicable for noble metal, metal oxide, and semiconductor NPs, and no impact of the surface chemistry or NP shape on the resulting morphology is observed. Under optimized conditions the shape and volume of the liquid equal those of the resulting aerogels. Also, we show that thin and homogeneous films of the material can be obtained. Furthermore, the physical properties of the aerogels are discussed. PMID:26638874

  2. What happens in freezing bodies? Experimental study of histological tissue change caused by freezing injuries.

    PubMed

    Schfer, A T; Kaufmann, J D

    1999-06-28

    In order to evaluate histological features of freezing damages to human tissue after death, we froze samples of liver and heart tissue to temperatures of -12 degrees C, -28 degrees C and -80 degrees C, and stored them for 24 and 72 h, respectively, at those temperatures. After thawing and routine preparation for histology, the samples were evaluated both by microscope and with an electronic image analyzer. In all cases, we found extended extracellular spaces and shrunken cells resulting from the freeze-thaw cycle. These features were more pronounced in tissues stored for longer durations. Such findings seem to be typical of tissue that has been frozen prior to examination. Two cases of dead bodies found outdoors at subzero temperatures demonstrate that formerly frozen and unfrozen tissues can be distinguished histologically. The findings are examined in relation to the fundamental laws of cryobiology. PMID:10464930

  3. Photomicrographic Investigation of Spontaneous Freezing Temperatures of Supercooled Water Droplets

    NASA Technical Reports Server (NTRS)

    Dorsch, R. G.; Hacker, P. T.

    1950-01-01

    A photomicrographic technique for investigating eupercooled. water droplets has been devised and. used. to determine the spontaneous freezing temperatures of eupercooled. water droplets of the size ordinarily found. in the atmosphere. The freezing temperatures of 4527 droplets ranging from 8.75 to 1000 microns in diameter supported on a platinum surface and 571 droplets supported on copper were obtained. The average spontaneous freezing temperature decreased with decrease in the size of the droplets. The effect of size on the spontaneous freezing temperature was particularly marked below 60 microns. Frequency-distribution curves of the spontaneous freezing temperatures observed for droplets of a given size were obtained. Although no droplet froze at a temperature above 20 0 F, all droplets melted at 32 F. Results obtained with a copper support did not differ essentially from those obtained with a platinum surface.

  4. Energy in density gradient

    SciTech Connect

    Vranjes, J.; Kono, M.

    2015-01-15

    Inhomogeneous plasmas and fluids contain energy stored in inhomogeneity and they naturally tend to relax into lower energy states by developing instabilities or by diffusion. But the actual amount of energy in such inhomogeneities has remained unknown. In the present work, the amount of energy stored in a density gradient is calculated for several specific density profiles in a cylindrical configuration. This is of practical importance for drift wave instability in various plasmas, and, in particular, in its application in models dealing with the heating of solar corona because the instability is accompanied with stochastic heating, so the energy contained in inhomogeneity is effectively transformed into heat. It is shown that even for a rather moderate increase of the density at the axis in magnetic structures in the corona by a factor 1.5 or 3, the amount of excess energy per unit volume stored in such a density gradient becomes several orders of magnitude greater than the amount of total energy losses per unit volume (per second) in quiet regions in the corona. Consequently, within the life-time of a magnetic structure such energy losses can easily be compensated by the stochastic drift wave heating.

  5. Evaluation and Validation of the Messinger Freezing Fraction

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Tsao, Jen-Ching

    2005-01-01

    One of the most important non-dimensional parameters used in ice-accretion modeling and scaling studies is the freezing fraction defined by the heat-balance analysis of Messinger. For fifty years this parameter has been used to indicate how rapidly freezing takes place when super-cooled water strikes a solid body. The value ranges from 0 (no freezing) to 1 (water freezes immediately on impact), and the magnitude has been shown to play a major role in determining the physical appearance of the accreted ice. Because of its importance to ice shape, this parameter and the physics underlying the expressions used to calculate it have been questioned from time to time. Until now, there has been no strong evidence either validating or casting doubt on the current expressions. This paper presents experimental measurements of the leading-edge thickness of a number of ice shapes for a variety of test conditions with nominal freezing fractions from 0.3 to 1.0. From these thickness measurements, experimental freezing fractions were calculated and compared with values found from the Messinger analysis as applied by Ruff. Within the experimental uncertainty of measuring the leading-edge thickness, agreement of the experimental and analytical freezing fraction was very good. It is also shown that values of analytical freezing fraction were entirely consistent with observed ice shapes at and near rime conditions: At an analytical freezing fraction of unity, experimental ice shapes displayed the classic rime shape, while for conditions producing analytical freezing fractions slightly lower than unity, glaze features started to appear.

  6. Multiple glass transitions and freezing events of aqueous citric acid.

    PubMed

    Bogdan, Anatoli; Molina, Mario J; Tenhu, Heikki; Loerting, Thomas

    2015-05-14

    Calorimetric and optical cryo-microscope measurements of 10-64 wt % citric acid (CA) solutions subjected to moderate (3 K/min) and slow (0.5 and 0.1 K/min) cooling/warming rates and also to quenching/moderate warming between 320 and 133 K are presented. Depending on solution concentration and cooling rate, the obtained thermograms show one freezing event and from one to three liquid-glass transitions upon cooling and from one to six liquid-glass and reverse glass-liquid transitions, one or two freezing events, and one melting event upon warming of frozen/glassy CA/H2O. The multiple freezing events and glass transitions pertain to the mother CA/H2O solution itself and two freeze-concentrated solution regions, FCS1 and FCS2, of different concentrations. The FCS1 and FCS2 (or FCS22) are formed during the freezing of CA/H2O upon cooling and/or during the freezing upon warming of partly glassy or entirely glassy mother CA/H2O. The formation of two FCS1 and FCS22 regions during the freezing upon warming to our best knowledge has never been reported before. Using an optical cryo-microscope, we are able to observe the formation of a continuous ice framework (IF) and its morphology and reciprocal distribution of IF/(FCS1 + FCS2). Our results provide a new look at the freezing and glass transition behavior of aqueous solutions and can be used for the optimization of lyophilization and freezing of foods and biopharmaceutical formulations, among many other applications where freezing plays a crucial role. PMID:25482069

  7. Multiple Glass Transitions and Freezing Events of Aqueous Citric Acid

    PubMed Central

    2014-01-01

    Calorimetric and optical cryo-microscope measurements of 1064 wt % citric acid (CA) solutions subjected to moderate (3 K/min) and slow (0.5 and 0.1 K/min) cooling/warming rates and also to quenching/moderate warming between 320 and 133 K are presented. Depending on solution concentration and cooling rate, the obtained thermograms show one freezing event and from one to three liquidglass transitions upon cooling and from one to six liquidglass and reverse glassliquid transitions, one or two freezing events, and one melting event upon warming of frozen/glassy CA/H2O. The multiple freezing events and glass transitions pertain to the mother CA/H2O solution itself and two freeze-concentrated solution regions, FCS1 and FCS2, of different concentrations. The FCS1 and FCS2 (or FCS22) are formed during the freezing of CA/H2O upon cooling and/or during the freezing upon warming of partly glassy or entirely glassy mother CA/H2O. The formation of two FCS1 and FCS22 regions during the freezing upon warming to our best knowledge has never been reported before. Using an optical cryo-microscope, we are able to observe the formation of a continuous ice framework (IF) and its morphology and reciprocal distribution of IF/(FCS1 + FCS2). Our results provide a new look at the freezing and glass transition behavior of aqueous solutions and can be used for the optimization of lyophilization and freezing of foods and biopharmaceutical formulations, among many other applications where freezing plays a crucial role. PMID:25482069

  8. Effect of wettability on sessile drop freezing: when superhydrophobicity stimulates an extreme freezing delay.

    PubMed

    Boinovich, Ludmila; Emelyanenko, Alexandre M; Korolev, Vadim V; Pashinin, Andrei S

    2014-02-18

    An increasing number of studies directed at supercooling water droplets on surfaces with different wettabilities have appeared in recent years. This activity has been stimulated by the recognition that water supercooling phenomena can be effectively used to develop methods for protecting outdoor equipment and infrastructure elements against icing and snow accretion. In this article, we discuss the nucleation kinetics of supercooled sessile water droplets on hydrophilic, hydrophobic, and superhydrophobic surfaces under isothermal conditions at temperatures of -8, -10, and -15 °C and a saturated water vapor atmosphere. The statistics of nucleation events for the ensembles of freezing sessile droplets is completed by the detailed analysis of the contact angle temperature dependence and freezing of individual droplets in a saturated vapor atmosphere. We have demonstrated that the most essential freezing delay is characteristic of the superhydrophobic coating on aluminum, with the texture resistant to contact with ice and water. This delay can reach many hours at T = -8 °C and a few minutes at -23 °C. The observed behavior is analyzed on the basis of different nucleation mechanisms. The dissimilarity in the total nucleation rate, detected for two superhydrophobic substrates having the same apparent contact angle of the water drop but different resistivities of surface texture to the contact with water/ice, is associated with the contribution of heterogeneous nucleation on external centers located at the water droplet/air interface. PMID:24491217

  9. Two-Zone Bridgman Furnace With Sharp Thermal Gradient

    NASA Technical Reports Server (NTRS)

    Borshchevsky, Alex; Caillat, Thierry; Fleurial, Jean-Pierre

    1994-01-01

    Two-zone vertical directional-solidification furnace designed and built to grow crystals from stoichiometric and nonstoichiometric melts and from solutions. Includes conventional wire heater in lower zone, tubular silicon carbide heating element in upper zone, and thermal baffle between zones. Temperature gradients up to 125 degrees centigrade per centimeter achieved in the crystal-growth region. Sharper gradient enables both faster growth and better separation between solid and liquid. Furnace used in laboratory or industrial setting for growth of crystals from congruently melting materials as well as for growth of compounds formed by peritectic reactions.

  10. Simulation of directional solidification with steep thermal gradients

    NASA Astrophysics Data System (ADS)

    Huang, H. W.; Heinrich, J. C.; Poirier, D. R.

    1996-05-01

    The convection and macrosegregation predicted by a simulation of a directionally solidified binary alloy (Pb - 23.2 wt%Sn) are presented, and the simulated macrosegregation is compared with the macrosegregation in an experimental casting. The casting was solidified at a rate of 0965-0393/4/3/001/img6 and a thermal gradient of approximately 0965-0393/4/3/001/img7 such thermal gradients are much greater than those previously simulated. The calculated results showed channels at the vertical casting surfaces and segregated internal pockets in the mushy zone, in agreement with the observation of freckles in the experimental casting.

  11. Physically Accurate Soil Freeze-Thaw Processes in a Global Land Surface Scheme

    NASA Astrophysics Data System (ADS)

    Cuntz, M.; Haverd, V.

    2013-12-01

    Transfer of energy and moisture in frozen soil, and hence the active layer depth, are strongly influenced by the soil freezing curve which specifies liquid moisture content as a function of temperature. However, the curve is typically not represented in global land surface models, with less physically-based approximations being used instead. In this work, we develop a physically accurate model of soil freeze-thaw processes, suitable for use in a global land surface scheme. We incorporated soil freeze-thaw processes into an existing detailed model for the transfer of heat, liquid water and water vapor in soils, including isotope diagnostics - Soil-Litter-Iso (SLI, Haverd & Cuntz 2010), which has been used successfully for water and carbon balances of the Australian continent (Haverd et al. 2013). A unique feature of SLI is that fluxes of energy and moisture are coupled using a single system of linear equations. The extension to include freeze-thaw processes and snow maintains this elegant coupling, requiring only coefficients in the linear equations to be modified. No impedance factor for hydraulic conductivity is needed because of the formulation by matric flux potential rather than pressure head. Iterations are avoided which results in the same computational speed as without freezing. The extended model is evaluated extensively in stand-alone mode (against theoretical predictions, lab experiments and field data) and as part of the CABLE global land surface scheme. SLI accurately solves the classical Stefan problem of a homogeneous medium undergoing a phase change. The model also accurately reproduces the freezing front, which is observed in laboratory experiments (Hansson et al. 2004). SLI was further tested against observations at a permafrost site in Tibet (Weismller et al. 2011). It reproduces seasonal thawing and freezing of the active layer to within 3 K of the observed soil temperature and to within 10% of the observed volumetric liquid soil moisture. Model-data fusion suggests that model performance is improved when the relatively high thermal conductivity of the ice phase is accounted for. However, the permafrost site is very gravelly so that the model equations for thermal conductivity are at the edge of applicability. The freezing-soil formulation is tested in the presence of snow, using measurements at an orchard site in Idaho. The model reproduces well observed snow-water equivalents and soil temperatures. However, it is highly sensitive to snow emissivity and maximum liquid content of the snow, leading both to modified refreezing of melted water. It is possible that the model would benefit from 1-2 more snow layers to permit simulation of density and temperature gradients in the snow-pack. SLI was run globally on 1x1 degree grid as the soil part of the land surface scheme CABLE. We could therefore demonstrate that this detailed and physically-realistic formulation is fast enough to be a feasible alternative to the much simpler default soil-scheme in CABLE. References Hansson et al. (2004) Vadose Zone J 3, 693ff Haverd & Cuntz (2010) J Hydro 388, 434ff Haverd et al. (2013) Biogeosci 10, 2011ff Weismller et al. (2011) The Cryosphere 5, 741ff

  12. Physically Accurate Soil Freeze-Thaw Processes in a Global Land Surface Scheme

    NASA Astrophysics Data System (ADS)

    Cuntz, Matthias; Haverd, Vanessa

    2014-05-01

    Transfer of energy and moisture in frozen soil, and hence the active layer depth, are strongly influenced by the soil freezing curve which specifies liquid moisture content as a function of temperature. However, the curve is typically not represented in global land surface models, with less physically-based approximations being used instead. In this work, we develop a physically accurate model of soil freeze-thaw processes, suitable for use in a global land surface scheme. We incorporated soil freeze-thaw processes into an existing detailed model for the transfer of heat, liquid water and water vapor in soils, including isotope diagnostics - Soil-Litter-Iso (SLI, Haverd & Cuntz 2010), which has been used successfully for water and carbon balances of the Australian continent (Haverd et al. 2013). A unique feature of SLI is that fluxes of energy and moisture are coupled using a single system of linear equations. The extension to include freeze-thaw processes and snow maintains this elegant coupling, requiring only coefficients in the linear equations to be modified. No impedance factor for hydraulic conductivity is needed because of the formulation by matric flux potential rather than pressure head. Iterations are avoided which results in the same computational speed as without freezing. The extended model is evaluated extensively in stand-alone mode (against theoretical predictions, lab experiments and field data) and as part of the CABLE global land surface scheme. SLI accurately solves the classical Stefan problem of a homogeneous medium undergoing a phase change. The model also accurately reproduces the freezing front, which is observed in laboratory experiments (Hansson et al. 2004). SLI was further tested against observations at a permafrost site in Tibet (Weismller et al. 2011). It reproduces seasonal thawing and freezing of the active layer to within 3 K of the observed soil temperature and to within 10% of the observed volumetric liquid soil moisture. Model-data fusion suggests that model performance is improved when the relatively high thermal conductivity of the ice phase is accounted for. However, the permafrost site is very gravelly so that the model equations for thermal conductivity are at the edge of applicability. The freezing-soil formulation is tested in the presence of snow, using measurements at an orchard site in Idaho. The model reproduces well observed snow-water equivalents and soil temperatures. However, it is highly sensitive to snow emissivity and maximum liquid content of the snow, leading both to modified refreezing of melted water. It is possible that the model would benefit from 1-2 more snow layers to permit simulation of density and temperature gradients in the snow-pack. SLI was run globally on 1x1 grid as the soil part of the land surface scheme CABLE. We could therefore demonstrate that this detailed and physically-realistic formulation is fast enough to be a feasible alternative to the much simpler default soil-scheme in CABLE. References Hansson et al. (2004) Vadose Zone J 3, 693ff Haverd & Cuntz (2010) J Hydro 388, 434ff Haverd et al. (2013) Biogeosci 10, 2011ff Weismller et al. (2011) The Cryosphere 5, 741ff

  13. Mesophyll freezing and effects of freeze dehydration visualized by simultaneous measurement of IDTA and differential imaging chlorophyll fluorescence.

    PubMed

    Hacker, Jrgen; Spindelbck, Joachim Paul; Neuner, Gilbert

    2008-11-01

    Infrared differential thermal analysis (IDTA) and differential imaging chlorophyll fluorescence (DIF) were employed simultaneously to study the two-dimensional pattern of ice propagation in leaves and mesophyll freeze dehydration as detected by a significant increase of basic chlorophyll fluorescence (F(0)). IDTA and DIF technique gave different insights into the freezing process of leaves that was highly species-specific. IDTA clearly visualized the freezing process consisting of an initial fast spread of ice throughout the vascular system followed by mesophyll freezing. While mesophyll freezing was homogeneously in Poa alpina, Rhododendron ferrugineum and Senecio incanus as determined by IDTA, DIF showed a distinct pattern only in S. incanus, with the leaf tips being affected earlier. In Cinnamomum camphora, a mottled freezing pattern of small mesophyll compartments was observed by both methods. In IDTA images, a random pattern predominated, while in DIF images, compartments closer to lower order veins were affected earlier. The increase of F(0) following mesophyll freezing started after a species-specific time lag of up to 26 min. The start of the F(0) increase and its slope were significantly enhanced at lower temperatures, which suggest a higher strain on mesophyll protoplasts when freezing occurs at lower temperatures. PMID:18761699

  14. Vertical electron transistor (VET) in GaAs with a heterojunction (AlGaAs-GaAs) cathode

    NASA Astrophysics Data System (ADS)

    Mishra, U.; Maki, P. A.; Wendt, J. R.; Schaff, W.; Kohn, E.; Eastman, L. F.

    1984-02-01

    The successful fabrication of submicrometer channel length (0.75 micron) and gate length (0.15 micron) vertical electron transistors with AlGaAs cathodes is reported. Lack of electron velocity enhancement has been proposed to be due to high operating channel temperatures, and low temperature measurements were hindered by carrier freeze-out.

  15. Magnetic shielding for the Fermilab Vertical Cavity Test Facility

    SciTech Connect

    Ginsburg, Camille M.; Reid, Clark; Sergatskov, Dmitri A.; /Fermilab

    2008-09-01

    A superconducting RF cavity has to be shielded from magnetic fields present during cool down below the critical temperature to avoid freezing in the magnetic flux at localized impurities, thereby degrading the cavity intrinsic quality factor Q{sub 0}. The magnetic shielding designed for the Fermilab vertical cavity test facility (VCTF), a facility for CW RF vertical testing of bare ILC 1.3 GHz 9-cell SRF cavities, was recently completed. For the magnetic shielding design, we used two cylindrical layers: a room temperature 'outer' shield of Amumetal (80% Ni alloy), and a 2K 'inner' shield of Cryoperm 10. The magnetic and mechanical design of the magnetic shielding and measurement of the remanent magnetic field inside the shielding are described.

  16. Reconstructing global overturning from meridional density gradients

    NASA Astrophysics Data System (ADS)

    Butler, E. D.; Oliver, K. I. C.; Hirschi, J. J.-M.; Mecking, J. V.

    2015-07-01

    Despite the complexity of the global ocean system, numerous attempts have been made to scale the strength of the meridional overturning circulation (MOC), principally in the North Atlantic, with large-scale, basin-wide hydrographic properties. In particular, various approaches to scaling the MOC with meridional density gradients have been proposed, but the success of these has only been demonstrated under limited conditions. Here we present a scaling relationship linking overturning to twice vertically-integrated meridional density gradients via the hydrostatic equation and a "rotated" form of the geostrophic equation. This provides a meridional overturning streamfunction as a function of depth for each basin. Using a series of periodically forced experiments in a global, coarse resolution configuration of the general circulation model NEMO, we explore the timescales over which this scaling is temporally valid. We find that the scaling holds well in the upper Atlantic cell (at 1000 m) for multi-decadal (and longer) timescales, accurately reconstructing the relative magnitude of the response for different frequencies and explaining over 85 % of overturning variance on timescales of 64-2048 years. Despite the highly nonlinear response of the Antarctic cell in the abyssal Atlantic, between 76 and 94 % of the observed variability at 4000 m is reconstructed on timescales of 32 years (and longer). The scaling law is also applied in the Indo-Pacific. This analysis is extended to a higher resolution, stochastically forced simulation for which correlations of between 0.79 and 0.99 are obtained with upper Atlantic MOC variability on timescales >25 years. These results indicate that meridional density gradients and overturning are linked via meridional pressure gradients, and that both the strength and structure of the MOC can be reconstructed from hydrography on multi-decadal and longer timescales provided that the link is made in this way.

  17. Method and apparatus for determining vertical heat flux of geothermal field

    DOEpatents

    Poppendiek, Heinz F.

    1982-01-01

    A method and apparatus for determining vertical heat flux of a geothermal field, and mapping the entire field, is based upon an elongated heat-flux transducer (10) comprised of a length of tubing (12) of relatively low thermal conductivity with a thermopile (20) inside for measuring the thermal gradient between the ends of the transducer after it has been positioned in a borehole for a period sufficient for the tube to reach thermal equilibrium. The transducer is thermally coupled to the surrounding earth by a fluid annulus, preferably water or mud. A second transducer comprised of a length of tubing of relatively high thermal conductivity is used for a second thermal gradient measurement. The ratio of the first measurement to the second is then used to determine the earth's thermal conductivity, k.sub..infin., from a precalculated graph, and using the value of thermal conductivity thus determined, then determining the vertical earth temperature gradient, b, from predetermined steady state heat balance equations which relate the undisturbed vertical earth temperature distributions at some distance from the borehole and earth thermal conductivity to the temperature gradients in the transducers and their thermal conductivity. The product of the earth's thermal conductivity, k.sub..infin., and the earth's undisturbed vertical temperature gradient, b, then determines the earth's vertical heat flux. The process can be repeated many times for boreholes of a geothermal field to map vertical heat flux.

  18. Purification of very high density lipoproteins by differential density gradient ultracentrifugation.

    PubMed

    Haunerland, N H; Ryan, R O; Law, J H; Bowers, W S

    1987-03-01

    Differential density gradient ultracentrifugation procedures, utilizing a vertical rotor, were developed for the preparative purification of very high density lipoproteins (VHDL, density greater than 1.21 g/ml). The VHDLs of several insect species were purified as follows. An initial density gradient ultracentrifugation step removed lipoproteins of lower density from the VHDL-fraction, which partially separated from the nonlipoproteins present in the infranatant. A complete separation was achieved by a second centrifugation step employing a modified gradient system. The use of a vertical rotor and specially designed discontinuous gradients allows a relatively fast, efficient, and economical isolation of the class of very high density lipoproteins. Similar gradient systems should be useful for the detection and purification of VHDLs from other sources. PMID:3578796

  19. Vertical organic transistors

    NASA Astrophysics Data System (ADS)

    Lüssem, Björn; Günther, Alrun; Fischer, Axel; Kasemann, Daniel; Leo, Karl

    2015-11-01

    Organic switching devices such as field effect transistors (OFETs) are a key element of future flexible electronic devices. So far, however, a commercial breakthrough has not been achieved because these devices usually lack in switching speed (e.g. for logic applications) and current density (e.g. for display pixel driving). The limited performance is caused by a combination of comparatively low charge carrier mobilities and the large channel length caused by the need for low-cost structuring. Vertical Organic Transistors are a novel technology that has the potential to overcome these limitations of OFETs. Vertical Organic Transistors allow to scale the channel length of organic transistors into the 100 nm regime without cost intensive structuring techniques. Several different approaches have been proposed in literature, which show high output currents, low operation voltages, and comparatively high speed even without sub-μm structuring technologies. In this review, these different approaches are compared and recent progress is highlighted.

  20. Jamming in Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; Steel, Fiona

    2011-03-01

    We study jamming of low aspect-ratio cylindrical Delrin grains in a vertical channel. Grain heights are less than their diameter so the grains resemble antacid tablets, coins, or poker chips. These grains are allowed to fall through a vertical channel with a square cross section where the channel width is greater than the diameter of a grain and constant throughout the length of the channel with no obstructions or constrictions. Grains are sometimes observed to form jams, stable structures supported by the channel walls with no support beneath them. The probability of jam occurrence and the strength or robustness of a jam is effected by grain and channel sizes. We will present experimental measurements of the jamming probability and jam strength in this system and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College.

  1. Jamming in Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; McCausland, Jeffrey; Steel, Fiona

    2010-03-01

    We experimentally study jamming of cylindrical grains in a vertical channel. The grains have a low aspect-ratio (height/diameter < 1) so their shape is like antacid tablets or poker chips. They are allowed to fall through a vertical channel with a square cross section. The channel width is greater than the diameter of a grain and constant throughout the length of the channel with no obstructions or constrictions. It is observed that grains sometimes jam in this apparatus. In a jam, grains form a stable structure from one side of the channel to the other with nothing beneath them. Jams may be strong enough to support additional grains above. The probability of a jam occurring is a function of the grain height and diameter. We will present experimental measurements of the jamming probability in this system and discuss the relationship of these results to other experiments and theories.

  2. Freezing Behavior of Water in Small Pores and the Possible Role in the Freezing of Plant Tissues

    PubMed Central

    Ashworth, Edward N.; Abeles, Fred B.

    1984-01-01

    Two model systems were used to study the freezing of water in small diameter pores. Water in pores having a diameter of less than 100 nanometers froze at lower temperatures than bulk water. Data obtained with a range of pore sizes were consistent with predicted values based on equations developed by Mazur (1965 Ann NY Acad Sci 125: 658-676), and Homshaw (1980 J Soil Sci 31: 399-414). The addition of solutes lowered the freezing point of water in small pores. We propose that the freezing behavior of water in small pores may account for some of the freezing patterns observed in plant tissues. In tissues where cells are tightly packed, share common walls, and lack intercellular spaces, the presence of water in cell wall microcapillaries would alter the freezing temperature of tissue water, impede the spread of ice, and facilitate supercooling. PMID:16663798

  3. 'Endurance' All Around Vertical)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 360-degree view of the terrain surrounding NASA's Mars Exploration Rover Opportunity was taken on the rover's 171st sol on Mars (July 17, 2004). It was assembled from images taken by the rover's navigation camera at a position referred to as 'site 33.' Opportunity had driven 11 meters (36 feet) into 'Endurance Crater.' The view is a vertical projection with geometrical seam correction.

  4. Studies on Freezing RAM Semen in Absence of Glycerol.

    NASA Astrophysics Data System (ADS)

    Abdelnaby, Abdelhady Abdelhakeam

    1988-12-01

    Glycerol is widely used as a major cryoprotective agent for freezing spermatozoa of almost all species. However, it reduces fertility of sheep inseminated cervically compared with intrauterine insemination. Studies were conducted to develop a method and procedure for freezing ram semen in the absence of glycerol. Post -thaw survival of ram spermatozoa frozen in the absence of glycerol was affected by time and temperature after collection and before dilution and time after dilution and before freezing. Increase in time at 5^ circC before or after dilution and before freezing increased both post-thaw motility and number of cells passing through Sephadex filter. A cold dilution method was developed. Slow cooling of fresh ram semen and diluting at 5^circ C 2-3 hr. after collection, then freezing 1 hr. after dilution improved both post-thaw motility and number of cells passing through Sephadex filter compared with immediate dilution at 30-37^circC after collection and freezing 3-4 hr. later (P < 0.05). An extender was developed to freeze ram semen in the absence of glycerol. An increase in post-thaw motility was obtained when semen was extended in TES titrated with Tris to pH 7.0 (TEST) and osmotic pressure of 375-400 mOsm/kg, containing 25-30% (v/v) egg yolk and 10% (v/v) maltose. A special device (boat) for freezing was constructed to insure the same height of the sample above LN _2 and thus the same freezing rate from freeze to freeze. Freezing of semen in 0.25cc straws at 5-10 cm above LN_2 (73.8 to 49.5 ^circC/min) yielded higher post-thaw motility than the rates resulted from freezing at 15 cm above LN_2 or 1 cm above LN _2. Faster Thawing in 37^ circC water for 30 sec. (7.8^ circC/sec.) increased post-thaw motility compared with slower thawing in 5 or 20^circ C water (P < 0.05). A lambing rate of 52.2% was obtained in one fertility trial conducted with ram semen frozen without glycerol and 17.1% in a second trial. One injection (IM) of 15 mg PGF_{2alpha}/ewe for estrus synchronization during breeding season resulted in higher heat response and lambing rate than two injections given 10 days apart.

  5. Vertical bloch line memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R. (Inventor); Stadler, Henry L. (Inventor); Wu, Jiin-chuan (Inventor)

    1995-01-01

    A new read gate design for the vertical Bloch line (VBL) memory is disclosed which offers larger operating margin than the existing read gate designs. In the existing read gate designs, a current is applied to all the stripes. The stripes that contain a VBL pair are chopped, while the stripes that do not contain a VBL pair are not chopped. The information is then detected by inspecting the presence or absence of the bubble. The margin of the chopping current amplitude is very small, and sometimes non-existent. A new method of reading Vertical Bloch Line memory is also disclosed. Instead of using the wall chirality to separate the two binary states, the spatial deflection of the stripe head is used. Also disclosed herein is a compact memory which uses vertical Bloch line (VBL) memory technology for providing data storage. A three-dimensional arrangement in the form of stacks of VBL memory layers is used to achieve high volumetric storage density. High data transfer rate is achieved by operating all the layers in parallel. Using Hall effect sensing, and optical sensing via the Faraday effect to access the data from within the three-dimensional packages, an even higher data transfer rate can be achieved due to parallel operation within each layer.

  6. 3-D radial gravity gradient inversion

    NASA Astrophysics Data System (ADS)

    Oliveira, Vanderlei C.; Barbosa, Valéria C. F.

    2013-11-01

    We have presented a joint inversion of all gravity-gradient tensor components to estimate the shape of an isolated 3-D geological body located in subsurface. The method assumes the knowledge about the depth to the top and density contrast of the source. The geological body is approximated by an interpretation model formed by an ensemble of vertically juxtaposed 3-D right prisms, each one with known thickness and density contrast. All prisms forming the interpretation model have a polygonal horizontal cross-section that approximates a depth slice of the body. Each polygon defining a horizontal cross-section has the same fixed number of vertices, which are equally spaced from 0° to 360° and have their horizontal locations described in polar coordinates referred to an arbitrary origin inside the polygon. Although the number of vertices forming each polygon is known, the horizontal coordinates of these vertices are unknown. To retrieve a set of juxtaposed depth slices of the body, and consequently, its shape, our method estimates the radii of all vertices and the horizontal Cartesian coordinates of all arbitrary origins defining the geometry of all polygons describing the horizontal cross-sections of the prisms forming the interpretation model. To obtain a stable estimate that fits the observed data, we impose constraints on the shape of the estimated body. These constraints are imposed through the well-known zeroth- and first-order Tikhonov regularizations allowing, for example, the estimate of vertical or dipping bodies. If the data do not have enough in-depth resolution, the proposed inverse method can obtain a set of stable estimates fitting the observed data with different maximum depths. To analyse the data resolution and deal with this possible ambiguity, we plot the ℓ2-norm of the residuals (s) against the estimated volume (vp) produced by a set of estimated sources having different maximum depths. If this s × vp curve (s as a function of vp) shows a well-defined minimum of s, the data have enough resolution to recover the shape of the body entirely. Conversely, if the observed data do not have enough resolution, some estimates with different maximum depths produce practically the same minimum value of s on the s × vp curve. In this case, the best estimate among a suite of estimates producing equally data fits is the one fitting the gravity-gradient data and producing the minima of both the source's bottom depth and volume. The histograms of the residuals can be used to quantify and remove systematic errors in the data. After removing these errors, we confirmed the ability of our method to recover the source geometry entirely (or its upper part only), if the data have sufficient (or insufficient) in-depth resolution. By inverting the gravity-gradient data from a survey over the Vinton salt dome (Louisiana, USA) with a density contrast of 0.55 g cm-3, we estimated a massive cap rock whose maximum depth attains 460 ± 10 m and its shallowest portion is elongated in the northeast-southwest direction.

  7. Convection in drying and freezing ground

    NASA Astrophysics Data System (ADS)

    Faizal, Mir; Peppin, Stephen

    2015-06-01

    In this paper, we analyse the drying of a soil composed of particles, water and solute impurities, and study the occurrence of convective instabilities during evaporation. We find that the main driving force for instability is the formation of a concentration gradient at the soil surface due to the evaporation of water. A similar phenomenon may occur during the thawing of frozen ground in Arctic regions.

  8. TEMPERATURE-GRADIENT INCUBATOR FOR DETERMINING THE TEMPERATURE RANGE OF GROWTH OF MICROORGANISMS

    PubMed Central

    Elliott, R. Paul

    1963-01-01

    Elliott, R. Paul (U.S. Department of Agriculture, Albany, Calif.). Temperature-gradient incubator for determining the temperature range of growth of microorganisms. J. Bacteriol. 85:889894. 1963.The temperature-gradient incubator consists of an aluminum bar with troughs for media, with controlled temperatures at each end, and with insulation to prevent heat transfer. The resulting linear temperature gradient provides a means for determining minimal or maximal growth temperatures of microorganisms in any desired range and at any desired gradient. The operation of the incubator is unaffected by line-voltage variations or by ambient temperature. Media do not dehydrate seriously even during prolonged periods of operation. The incubator can be used to determine water activity of media by an adjustment to permit partial freezing. Either thermocouples or thermistors may be used to measure temperatures. Images PMID:14044959

  9. Charge gradient microscopy

    PubMed Central

    Hong, Seungbum; Tong, Sheng; Park, Woon Ik; Hiranaga, Yoshiomi; Cho, Yasuo; Roelofs, Andreas

    2014-01-01

    Here we present a simple and fast method to reliably image polarization charges using charge gradient microscopy (CGM). We collected the current from the grounded CGM probe while scanning a periodically poled lithium niobate single crystal and single-crystal LiTaO3 thin film on the Cr electrode. We observed current signals at the domains and domain walls originating from the displacement current and the relocation or removal of surface charges, which enabled us to visualize the ferroelectric domains at a scan frequency above 78 Hz over 10 ?m. We envision that CGM can be used in high-speed ferroelectric domain imaging and piezoelectric energy-harvesting devices. PMID:24760831

  10. Soil respiration and carbon loss relationship with temperature and land use conversion in freeze-thaw agricultural area.

    PubMed

    Ouyang, Wei; Lai, Xuehui; Li, Xia; Liu, Heying; Lin, Chunye; Hao, Fanghua

    2015-11-15

    Soil respiration (Rs) was hypothesized to have a special response pattern to soil temperature and land use conversion in the freeze-thaw area. The Rs differences of eight types of land use conversions during agricultural development were observed and the impacts of Rs on soil organic carbon (SOC) loss were assessed. The land use conversions during last three decades were categorized into eight types, and the 141 SOC sampling sites were grouped by conversion type. The typical soil sampling sites were subsequently selected for monitoring of soil temperature and Rs of each land use conversion types. The Rs correlations with temperature at difference depths and different conversion types were identified with statistical analysis. The empirical mean error model and the biophysical theoretical model with Arrhenius equation about the Rs sensitivity to temperature were both analyzed and shared the similar patterns. The temperature dependence of soil respiration (Q10) analysis further demonstrated that the averaged value of eight types of land use in this freeze-thaw agricultural area ranged from 1.15 to 1.73, which was lower than the other cold areas. The temperature dependence analysis demonstrated that the Rs in the top layer of natural land covers was more sensitive to temperature and experienced a large vertical difference. The natural land covers exhibited smaller Rs and the farmlands had the bigger value due to tillage practices. The positive relationships between SOC loss and Rs were identified, which demonstrated that Rs was the key chain for SOC loss during land use conversion. The spatial-vertical distributions of SOC concentration with the 1.5-km grid sampling showed that the more SOC loss in the farmland, which was coincided with the higher Rs in farmlands. The analysis of Rs dynamics provided an innovative explanation for SOC loss in the freeze-thaw agricultural area. The analysis of Rs dynamics provided an innovative explanation for SOC loss in the freeze-thaw agricultural area. PMID:26172588

  11. The effect of water-soluble polymers on the microstructure and properties of freeze-cast alumina ceramics

    NASA Astrophysics Data System (ADS)

    Pekor, Christopher Michael

    Porous ceramics can be divided into three separate classes based on their pore size: microporous ceramics with pores less than 2 nm, mesoporous ceramics with pores in the range of 2--50 nm and macroporous ceramics with pores that are greater than 50 nm. In particular, macroporous ceramics are used in a variety of applications such as refractories, molten metal filtration, diesel particulate filters, heterogeneous catalyst supports and biomedical scaffolds. Freeze casting is a novel method used to create macroporous ceramics. In this method growing ice crystals act as a template for the pores and are solidified, often directionally, through a ceramic dispersion and removed from the green body through a freeze drying procedure. This method has attracted some attention over the past few years due to its relative simplicity, flexibility and environmental friendliness. On top of this freeze casting is capable of producing materials with high pore volume fractions, which is an advantage over processing by packing and necking of particles, where the pore volume fraction is typically less than 50%. Many of the basic processing variables that affect the freeze cast microstructure, such as the temperature gradient, interfacial velocity and solid loading of the dispersion have been well established in the literature. On the other hand, areas such as the effect of additives on the microstructure and mechanical properties have not been covered in great detail. In this study the concept of constitutional supercooling from basic solidification theory is used to explain the effects of two water-soluble polymers, polyethylene glycol and polyvinyl alcohol, on the microstructure of freeze cast alumina ceramics. In addition, changes in the observed microstructure will be related to experimentally determined values of permeability and compressive strength.

  12. Immersion freezing on mineral dust particles

    NASA Astrophysics Data System (ADS)

    Zolles, Tobias; Grothe, Hinrich; Pummer, Bernhard

    2013-04-01

    Mineral dust is considered to play a major role in ice cloud nucleation in the troposphere. More than 1.000 Tg of mineral dust are aerosolized from the ground every year, 1-10% of these reach the upper troposphere [1]. At an altitude of about 8 km ice residual particle analysis has shown that about 50% of all ice nuclei (IN) are mineral dust[2]. In principle, natural occurring dusts may either be IN-active themselves or are carriers of organic and/or biological IN. Up to now the ice nucleation, i.e. cloud glaciation, has not been quantized. However, different authors report a high IN-activity for many mineral dust samples, although a systematic comparison between different minerals is still missing. Therefore, we studied selected mineral dust samples which were characterized by X-ray diffraction, FTIR spectroscopy, and scanning electron microscopy before use. Oil immersion measurements were performed on the most common minerals, clay materials and volcanic ash. The median freezing temperatures range from -21C up to homogenous freezing at 38C. Even though quite a few dust samples show a reasonable high IN-activity, their median freezing temperatures are low compared to biological samples [3, 4]. Furthermore, heat treatment of the dusts was applied in order to decompose and to denaturize organic and/or biological surfactants. Finally, some dust samples had a high loss of activity and thus were subjects of further experiments. These mineral dust particles were suspended in water and after an incubation time were removed. In some cases the washing water had become IN-active, but lost its activity after enzymatic treatment. The observed high IN-activity can thus be explained by adsorbed biological materials. The results suggest that some mineral dusts are IN-active, and if it is not intrinsic they may even enhance IN-activity of organic and biological IN if these are adsorbed on the dust particle surface. A relatively high IN-activity of the pure mineral dusts was only observed in quartz, clays, and mixed natural dusts (ATD), which are mainly composed of SiO2 and clays. References. [1] C. S. Zender, R. L. Miller and I. Tegen, Eos Trans. AGU, 2004,85, 509. [2] K. A. Pratt, P. J. DeMott, J. R. French, Z. Wang, D. L. Westphal, A. J. Heymsfield, C. H. Twohy, A. J. Prenni, K. A. Prather, Nat. Geosci., 2009, 2, 397-400. [3] B. Pummer, H. Bauer, J. Bernardi, S. Bleicher and H. Grothe, Atmos. Chem. Phys., 2012, 12, 2541-2550. [4] V. T. J. Phillips, C. Andronache, B. Christner, C. E. Morris, D. C. Sands, A. Bansemer, A. Lauer, C. McNaughton and C. Seman, Biogeosciences, 2009, 6, 987-1014.

  13. Dynamical freeze-out in three-fluid hydrodynamics

    SciTech Connect

    Russkikh, V. N.; Ivanov, Yu. B.

    2007-11-15

    The freeze-out procedure accepted in a model of three-fluid dynamics is analyzed. This procedure is formulated in terms of drain terms in hydrodynamic equations. The dynamics of freeze-out is illustrated by one-dimensional simulations. It is demonstrated that the resulting freeze-out reveals a nontrivial dynamics depending on initial conditions in the expanding 'fireball'. The freeze-out front is not just defined 'geometrically' on the condition of the freeze-out criterion met but rather is a subject of fluid evolution. It competes with the fluid flow and does not always reach the place where the freeze-out criterion is met. Dynamics of the freeze-out in three-dimensional simulations is analyzed. It is demonstrated that the late stage of central nuclear collisions at the top energies available at the CERN Super Proton Synchrotron is of the form of three (two baryon-rich and one baryon-free) fireballs separated from each other.

  14. Water Relations of Pachysandra Leaves during Freezing and Thawing 1

    PubMed Central

    Zhu, Jian-Jun; Beck, Erwin

    1991-01-01

    The evergreen herb Pachysandra terminalis becomes moderately frost-hardy in winter. The water relations of its frost-hardy leaves were studied during a freeze-thaw cycle. Leaf water potentials, measured by psychrometry at subfreezing temperatures, were identical with those of ice, indicating equilibrium freezing. Microscopic observations showed extracellular freezing of tissue water. As evidenced by thermal analysis, the freezing process starts with the crystallization of a minor volume which was identified as apoplasmic water. The following long-lasting exotherm indicated slow export of water from the protoplasts driven by extracellular crystallization. In partially frozen leaves, the fractions of liquid water were measured at several subfreezing temperatures by nuclear magnetic resonance spectroscopy. They were consistently greater than those calculated from the osmotic potentials of cellular fluid, and the differences increased with decreasing temperature. About 50% of the differences could be abolished by freeze-killing of the leaf and was thus ascribed to the effect of a (negative) pressure reinforcing the osmotic potential. The persistent part of the differences may have reflected a matric component. At ?7C, the absolute values of both potentials were ?1.7 megapascals each. The water relations of Pachysandra leaves clearly indicate nonideal equilibrium freezing where negative pressures and matric potentials contribute to the leaf water potential and thus alleviate freeze-dehydration of the tissue. ImagesFigure 1Figure 5 PMID:16668501

  15. Freeze-Thaw Durability of Air-Entrained Concrete

    PubMed Central

    Shang, Huai-Shuai; Yi, Ting-Hua

    2013-01-01

    One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles). The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss) and internal crack growth (characterized by the loss of dynamic modulus of elasticity). The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. The experimental study of C20, C25, C30, C40, and C50 air-entrained concrete specimens was completed according to the test method of long-term and durability on ordinary concrete GB/T 50082-2009. The dynamic modulus of elasticity and weight loss of specimens were measured after different cycles of freeze-thaw. The influence of freeze-thaw cycles on the relative dynamic modulus of elasticity and weight loss was analyzed. The findings showed that the dynamic modulus of elasticity and weight decreased as the freeze-thaw cycles were repeated. They revealed that the C30, C40, and C50 air-entrained concrete was still durable after 300 cycles of freeze-thaw according to the experimental results. PMID:23576906

  16. Cold-Induced Freezing Tolerance in Arabidopsis1

    PubMed Central

    Wanner, Leslie A.; Junttila, Olavi

    1999-01-01

    Changes in the physiology of plant leaves are correlated with enhanced freezing tolerance and include accumulation of compatible solutes, changes in membrane composition and behavior, and altered gene expression. Some of these changes are required for enhanced freezing tolerance, whereas others are merely consequences of low temperature. In this study we demonstrated that a combination of cold and light is required for enhanced freezing tolerance in Arabidopsis leaves, and this combination is associated with the accumulation of soluble sugars and proline. Sugar accumulation was evident within 2 h after a shift to low temperature, which preceded measured changes in freezing tolerance. In contrast, significant freezing tolerance was attained before the accumulation of proline or major changes in the percentage of dry weight were detected. Many mRNAs also rapidly accumulated in response to low temperature. All of the cold-induced mRNAs that we examined accumulated at low temperature even in the absence of light, when there was no enhancement of freezing tolerance. Thus, the accumulation of these mRNAs is insufficient for cold-induced freezing tolerance. PMID:10364390

  17. Metabolic Changes in Avena sativa Crowns Recovering from Freezing

    PubMed Central

    Henson, Cynthia A.; Duke, Stanley H.; Livingston, David P.

    2014-01-01

    Extensive research has been conducted on cold acclimation and freezing tolerance of fall-sown cereal plants due to their economic importance; however, little has been reported on the biochemical changes occurring over time after the freezing conditions are replaced by conditions favorable for recovery and growth such as would occur during spring. In this study, GC-MS was used to detect metabolic changes in the overwintering crown tissue of oat (Avena sativa L.) during a fourteen day time-course after freezing. Metabolomic analysis revealed increases in most amino acids, particularly proline, 5-oxoproline and arginine, which increased greatly in crowns that were frozen compared to controls and correlated very significantly with days after freezing. In contrast, sugar and sugar related metabolites were little changed by freezing, except sucrose and fructose which decreased dramatically. In frozen tissue all TCA cycle metabolites, especially citrate and malate, decreased in relation to unfrozen tissue. Alterations in some amino acid pools after freezing were similar to those observed in cold acclimation whereas most changes in sugar pools after freezing were not. These similarities and differences suggest that there are common as well as unique genetic mechanisms between these two environmental conditions that are crucial to the winter survival of plants. PMID:24675792

  18. Is Enceladus' Internal Ocean Doomed to Freeze?

    NASA Astrophysics Data System (ADS)

    McKinnon, W. B.; Barr, A. C.

    2013-12-01

    Enceladus is geologically hyperactive, with plumes of water vapor, other volatiles such as ammonia, and salty particles erupting from its South Polar Terrain. The plumes are spatially associated with a region of greatly increased local heat flux, with a total power output 15.8 3.1 GW spread over an area of 70,000 km2 (e.g., Spencer and Nimmo 2013, AREPS 41), corresponding to a regional heat flux of 180-270 mW m-2. Tidal strains of the magnitude only possible in an ice shell that is decoupled from a rocky interior by an internal ocean or regional sea are required to generate this much heat (e.g., Behounkova et al. 2012, Icarus 219). Yet, numerous studies conclude that Enceladus' ocean cannot be in present-day thermodynamic steady state with a conductive or convective ice I shell (e.g., Roberts and Nimmo 2008, Icarus 194; Behounkova et al. 2012). Regardless of where Enceladus' tidal heating is concentrated (i.e., the poles), and regardless of whether its outer ice I shell convects, Enceladus' ocean is predicted to freeze on a geologically rapid time scale, implying that activity on Enceladus is only a transient or episodic phenomenon. These arguments strictly apply only to pure water ice oceans, however. We have previously argued that if the presence of salts or ammonia is allowed for, the ocean may be cooler and can be maintained essentially permanently by tidal heating in the ice above (McKinnon and Barr 2008, LPS XXXIX). Here we elaborate on the conditions under which Enceladus' ocean can be stabilized or even increase in thickness due to present-day tidal heating within the ice shell and the presence of salts and ammonia, which we now know are there (Waite et al. 2009, Nature 460; Postberg et al. 2011, Nature 474). As previous work has found, we cannot explain the present-day heat flow, but there is no fundamental reason that Enceladus' ocean or sea should completely freeze for present-day orbital eccentricities.

  19. Sucrose Diffusion in Decellularized Heart Valves for Freeze-Drying.

    PubMed

    Wang, Shangping; Oldenhof, Harritte; Goecke, Tobias; Ramm, Robert; Harder, Michael; Haverich, Axel; Hilfiker, Andres; Wolkers, Willem Frederik

    2015-09-01

    Decellularized heart valves can be used as starter matrix implants for heart valve replacement therapies in terms of guided tissue regeneration. Decellularized matrices ideally need to be long-term storable to assure off-the-shelf availability. Freeze-drying is an attractive preservation method, allowing storage at room temperature in a dried state. However, the two inherent processing steps, freezing and drying, can cause severe damage to extracellular matrix (ECM) proteins and the overall tissue histoarchitecture and thus impair biomechanical characteristics of resulting matrices. Freeze-drying therefore requires a lyoprotective agent that stabilizes endogenous structural proteins during both substeps and that forms a protective glassy state at room temperature. To estimate incubation times needed to infiltrate decellularized heart valves with the lyoprotectant sucrose, temperature-dependent diffusion studies were done using Fourier transform infrared spectroscopy. Glycerol, a cryoprotective agent, was studied for comparison. Diffusion of both protectants was found to exhibit Arrhenius behavior. The activation energies of sucrose and glycerol diffusion were found to be 15.9 and 37.7?kJmol(-1), respectively. It was estimated that 4?h of incubation at 37C is sufficient to infiltrate heart valves with sucrose before freeze-drying. Application of a 5% sucrose solution was shown to stabilize acellular valve scaffolds during freeze-drying. Such freeze-dried tissues, however, displayed pores, which were attributed to ice crystal damage, whereas vacuum-dried scaffolds in comparison revealed no pores after drying and rehydration. Exposure to a hygroscopic sucrose solution (80%) before freeze-drying was shown to be an effective method to diminish pore formation in freeze-dried ECMs: matrix structures closely resembled those of control samples that were not freeze-dried. Heart valve matrices were shown to be in a glassy state after drying, suggesting that they can be stored at room temperature. PMID:25809201

  20. Air-Cooled Stack Freeze Tolerance Freeze Failure Modes and Freeze Tolerance Strategies for GenDriveTM Material Handling Application Systems and Stacks Final Scientific Report

    SciTech Connect

    Hancock, David, W.

    2012-02-14

    Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology for air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.

  1. Vertical dynamical transport of mesospheric constituents by dissipating gravity waves

    NASA Astrophysics Data System (ADS)

    Liu, Alan Z.; Gardner, Chester S.

    2004-02-01

    Over 400h of Na wind/temperature lidar observations, obtained at the Starfire Optical Range, NM, are used to study the vertical dynamical transport of Na in the mesopause region between 85 and 100km. Dynamical transport occurs when dissipating, non-breaking gravity waves impart a net vertical displacement in atmospheric constituents as they propagate through a region. We show that the vertical constituent flux can be related in a simple way to the vertical heat flux. Breaking gravity waves also contribute to eddy transport by generating turbulence. Because eddy transport is a mixing process, it only occurs in the presence of a gradient in the concentration profile of the constituent, while dynamical transport can be sustained even in the absence of such a gradient. The dynamical Na flux is compared with the predicted eddy flux. The maximum downward dynamical flux of Na is -280m/scm3 at 88km. The maximum downward eddy flux is -160m/scm3 at the same altitude assuming the diffusion coefficient is 200m2/s. The observational results are consistent with theoretical predictions below 93km and show that dynamical transport often exceeds the vertical transport associated with eddy diffusion. The theoretical models are used to predict the dynamical and eddy fluxes of atomic oxygen and show that for this constituent, dynamical transport is also a significant transport mechanism.

  2. Freeze Tape Casting of Functionally Graded Porous Ceramics

    NASA Technical Reports Server (NTRS)

    Sofie, Stephen W.

    2007-01-01

    Freeze tape casting is a means of making preforms of ceramic sheets that, upon subsequent completion of fabrication processing, can have anisotropic and/or functionally graded properties that notably include aligned and graded porosity. Freeze tape casting was developed to enable optimization of the microstructures of porous ceramic components for use as solid oxide electrodes in fuel cells: Through alignment and grading of pores, one can tailor surface areas and diffusion channels for flows of gas and liquid species involved in fuel-cell reactions. Freeze tape casting offers similar benefits for fabrication of optimally porous ceramics for use as catalysts, gas sensors, and filters.

  3. Freezing-induced deformation of biomaterials in cryomedicine

    NASA Astrophysics Data System (ADS)

    Ozcelikkale, Altug

    Cryomedicine utilizes low temperature treatments of biological proteins, cells and tissues for cryopreservation, materials processing and cryotherapy. Lack of proper understanding of cryodamage that occurs during these applications remains to be the primary bottleneck for development of successful tissue cryopreservation and cryosurgery procedures. An engineering approach based on a view of biological systems as functional biomaterials can help identify, predict and control the primary cryodamage mechanisms by developing an understanding of underlying freezing-induced biophysical processes. In particular, freezing constitutes the main structural/mechanical origin of cryodamage and results in significant deformation of biomaterials at multiple length scales. Understanding of these freezing-induced deformation processes and their effects on post-thaw biomaterial functionality is currently lacking but will be critical to engineer improved cryomedicine procedures. This dissertation addresses this problem by presenting three separate but related studies of freezing-induced deformation at multiple length scales including nanometer-scale protein fibrils, single cells and whole tissues. A combination of rigorous experimentation and computational modeling is used to characterize post-thaw biomaterial structure and properties, predict biomaterial behavior and assess its post-thaw biological functionality. Firstly, freezing-induced damage on hierarchical extracellular matrix structure of collagen is investigated at molecular, fibril and matrix levels. Results indicate to a specific kind of fibril damage due to freezing-induced expansion of intrafibrillar fluid. This is followed by a study of freezing-induced cell and tissue deformation coupled to osmotically driven cellular water transport. Computational and semi empirical modeling of these processes indicate that intracellular deformation of the cell during freezing is heterogeneous and can interfere with cellular water transport, thereby leading to previously unconsidered mechanisms of cell freezing response. In addition, cellular water transport is identified as the critical limiting factor on the amount of freezing-induced tissue deformation, particularly in native tissues with high cell densities. Finally, effects of cryopreservation on post-thaw biological functionality of collagen engineered tissue constructs is investigated where cell-matrix interactions during fibroblast migration are considered as the functional response. Simultaneous cell migration and extracellular matrix deformation are characterized. Results show diminished cell-matrix coupling by freeze/thaw accompanied by a subtle decrease in cell migration. A connection between these results and freezing-induced collagen fibril damage is also suggested. Overall, this dissertation provides new fundamental knowledge on cryodamage mechanisms and a collection of novel multi-purpose engineering tools that will open the way for rational design of cryomedicine technologies.

  4. The Intrinsic and Extrinsic Aspects of Freezing of Gait

    PubMed Central

    Hallett, Mark

    2016-01-01

    Freezing of gait appears to result from a number of fundamental problems in patients with Parkinson disease. Automaticity is impaired, putting more stress on voluntary mechanisms. Internal drivers of movement are impaired, likely because of deficient basal ganglia function. Deficiency of internal forces to initiate movement is a major factor in freezing. This deficiency gives a greater influence to external or sensory factors. The sensory factors can both help or hinder freezing. Analogous to the problem with set-shifting, there is also some difficulty in regulation of internal versus external factors and in regulation of different external factors. PMID:18668625

  5. Florida Harvester Ant Nest Architecture, Nest Relocation and Soil Carbon Dioxide Gradients

    PubMed Central

    Tschinkel, Walter R.

    2013-01-01

    Colonies of the Florida harvester ant, Pogonomyrmex badius, excavate species-typical subterranean nests up the 3 m deep with characteristic vertical distribution of chamber area/shape, spacing between levels and vertical arrangement of the ants by age and brood stage. Colonies excavate and occupy a new nest about once a year, and doing so requires that they have information about the depth below ground. Careful excavation and mapping of vacated and new nests revealed that there was no significant difference between the old and new nests in any measure of nest size, shape or arrangement. Colonies essentially built a replicate of the just-vacated nest (although details differed), and they did so in less than a week. The reason for nest relocation is not apparent. Tschinkel noted that the vertical distribution of chamber area, worker age and brood type was strongly correlated to the soil carbon dioxide gradient, and proposed that this gradient serves as a template for nest excavation and vertical distribution. To test this hypothesis, the carbon dioxide gradient of colonies that were just beginning to excavate a new nest was eliminated by boring 6 vent holes around the forming nest, allowing the soil CO2 to diffuse into the atmosphere and eliminating the gradient. Sadly, neither the nest architecture nor the vertical ant distribution of vented nests differed from either unvented control or from their own vacated nest. In a stronger test, workers excavated a new nest under a reversed carbon dioxide gradient (high concentration near the surface, low below). Even under these conditions, the new and old nests did not differ significantly, showing that the soil carbon dioxide gradient does not serve as a template for nest construction or vertical worker distribution. The possible importance of soil CO2 gradients for soil-dwelling animals is discussed. PMID:23555829

  6. Florida harvester ant nest architecture, nest relocation and soil carbon dioxide gradients.

    PubMed

    Tschinkel, Walter R

    2013-01-01

    Colonies of the Florida harvester ant, Pogonomyrmex badius, excavate species-typical subterranean nests up the 3 m deep with characteristic vertical distribution of chamber area/shape, spacing between levels and vertical arrangement of the ants by age and brood stage. Colonies excavate and occupy a new nest about once a year, and doing so requires that they have information about the depth below ground. Careful excavation and mapping of vacated and new nests revealed that there was no significant difference between the old and new nests in any measure of nest size, shape or arrangement. Colonies essentially built a replicate of the just-vacated nest (although details differed), and they did so in less than a week. The reason for nest relocation is not apparent. Tschinkel noted that the vertical distribution of chamber area, worker age and brood type was strongly correlated to the soil carbon dioxide gradient, and proposed that this gradient serves as a template for nest excavation and vertical distribution. To test this hypothesis, the carbon dioxide gradient of colonies that were just beginning to excavate a new nest was eliminated by boring 6 vent holes around the forming nest, allowing the soil CO2 to diffuse into the atmosphere and eliminating the gradient. Sadly, neither the nest architecture nor the vertical ant distribution of vented nests differed from either unvented control or from their own vacated nest. In a stronger test, workers excavated a new nest under a reversed carbon dioxide gradient (high concentration near the surface, low below). Even under these conditions, the new and old nests did not differ significantly, showing that the soil carbon dioxide gradient does not serve as a template for nest construction or vertical worker distribution. The possible importance of soil CO2 gradients for soil-dwelling animals is discussed. PMID:23555829

  7. Adaptation to seasonality and the winter freeze.

    PubMed

    Preston, Jill C; Sandve, Simen R

    2013-01-01

    Flowering plants initially diversified during the Mesozoic era at least 140 million years ago in regions of the world where temperate seasonal environments were not encountered. Since then several cooling events resulted in the contraction of warm and wet environments and the establishment of novel temperate zones in both hemispheres. In response, less than half of modern angiosperm families have members that evolved specific adaptations to cold seasonal climates, including cold acclimation, freezing tolerance, endodormancy, and vernalization responsiveness. Despite compelling evidence for multiple independent origins, the level of genetic constraint on the evolution of adaptations to seasonal cold is not well understood. However, the recent increase in molecular genetic studies examining the response of model and crop species to seasonal cold offers new insight into the evolutionary lability of these traits. This insight has major implications for our understanding of complex trait evolution, and the potential role of local adaptation in response to past and future climate change. In this review, we discuss the biochemical, morphological, and developmental basis of adaptations to seasonal cold, and synthesize recent literature on the genetic basis of these traits in a phylogenomic context. We find evidence for multiple genetic links between distinct physiological responses to cold, possibly reinforcing the coordinated expression of these traits. Furthermore, repeated recruitment of the same or similar ancestral pathways suggests that land plants might be somewhat pre-adapted to dealing with temperature stress, perhaps making inducible cold traits relatively easy to evolve. PMID:23761798

  8. Effect of geometrical frustration on inverse freezing.

    PubMed

    Schmidt, M; Morais, C V; Zimmer, F M

    2016-01-01

    The interplay between geometrical frustration (GF) and inverse freezing (IF) is studied within a cluster approach. The model considers first-neighbor (J_{1}) and second-neighbor (J_{2}) intracluster antiferromagnetic interactions between Ising spins on a checkerboard lattice and long-range disordered couplings (J) among clusters. We obtain phase diagrams of temperature versus J_{1}/J in two cases: the absence of J_{2} interaction and the isotropic limit J_{2}=J_{1}, where GF takes place. An IF reentrant transition from the spin-glass (SG) to paramagnetic (PM) phase is found for a certain range of J_{1}/J in both cases. The J_{1} interaction leads to a SG state with high entropy at the same time that can introduce a low-entropy PM phase. In addition, it is observed that the cluster size plays an important role. The GF increases the PM phase entropy, but larger clusters can give an entropic advantage for the SG phase that favors IF. Therefore, our results suggest that disordered systems with antiferromagnetic clusters can exhibit an IF transition even in the presence of GF. PMID:26871062

  9. Estimating collision efficiencies from contact freezing experiments

    NASA Astrophysics Data System (ADS)

    Nagare, B.; Marcolli, C.; Stetzer, O.; Lohmann, U.

    2015-04-01

    Interactions of atmospheric aerosols with clouds influence cloud properties and modify the aerosol life cycle. Aerosol particles act as cloud condensation nuclei and ice nucleating particles or become incorporated into cloud droplets by scavenging. For an accurate description of aerosol scavenging and ice nucleation in contact mode, collision efficiency between droplets and aerosol particles needs to be known. This study derives the collision rate from experimental contact freezing data obtained with the ETH Collision Ice Nucleation Chamber CLINCH. Freely falling 80 μm water droplets are exposed to an aerosol consisting of 200 nm diameter silver iodide particles of concentrations from 500-5000 cm-3, which act as ice nucleating particles in contact mode. The chamber is kept at ice saturation in the temperature range from 236-261 K leading to slow evaporation of water droplets giving rise to thermophoresis and diffusiophoresis. Droplets and particles bear charges inducing electrophoresis. The experimentally derived collision efficiency of 0.13 is around one order of magnitude higher than theoretical formulations which include Brownian diffusion, impaction, interception, thermophoretic, diffusiophoretic and electric forces. This discrepancy is most probably due to uncertainties and inaccuracies in the description of thermophoretic and diffusiophoretic processes acting together. This is to the authors knowledge the first dataset of collision efficiencies acquired below 273 K. More such experiments with different droplet and particle diameters are needed to improve our understanding of collision processes acting together.

  10. Satellite freeze forecast system: Executive summary

    NASA Technical Reports Server (NTRS)

    Martsolf, J. D. (Principal Investigator)

    1983-01-01

    A satellite-based temperature monitoring and prediction system consisting of a computer controlled acquisition, processing, and display system and the ten automated weather stations called by that computer was developed and transferred to the national weather service. This satellite freeze forecasting system (SFFS) acquires satellite data from either one of two sources, surface data from 10 sites, displays the observed data in the form of color-coded thermal maps and in tables of automated weather station temperatures, computes predicted thermal maps when requested and displays such maps either automatically or manually, archives the data acquired, and makes comparisons with historical data. Except for the last function, SFFS handles these tasks in a highly automated fashion if the user so directs. The predicted thermal maps are the result of two models, one a physical energy budget of the soil and atmosphere interface and the other a statistical relationship between the sites at which the physical model predicts temperatures and each of the pixels of the satellite thermal map.

  11. Effect of geometrical frustration on inverse freezing

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Morais, C. V.; Zimmer, F. M.

    2016-01-01

    The interplay between geometrical frustration (GF) and inverse freezing (IF) is studied within a cluster approach. The model considers first-neighbor (J1) and second-neighbor (J2) intracluster antiferromagnetic interactions between Ising spins on a checkerboard lattice and long-range disordered couplings (J ) among clusters. We obtain phase diagrams of temperature versus J1/J in two cases: the absence of J2 interaction and the isotropic limit J2=J1 , where GF takes place. An IF reentrant transition from the spin-glass (SG) to paramagnetic (PM) phase is found for a certain range of J1/J in both cases. The J1 interaction leads to a SG state with high entropy at the same time that can introduce a low-entropy PM phase. In addition, it is observed that the cluster size plays an important role. The GF increases the PM phase entropy, but larger clusters can give an entropic advantage for the SG phase that favors IF. Therefore, our results suggest that disordered systems with antiferromagnetic clusters can exhibit an IF transition even in the presence of GF.

  12. Stochastic flux freezing and magnetic dynamo

    SciTech Connect

    Eyink, Gregory L.

    2011-05-15

    Magnetic flux conservation in turbulent plasmas at high magnetic Reynolds numbers is argued neither to hold in the conventional sense nor to be entirely broken, but instead to be valid in a statistical sense associated to the ''spontaneous stochasticity'' of Lagrangian particle trajectories. The latter phenomenon is due to the explosive separation of particles undergoing turbulent Richardson diffusion, which leads to a breakdown of Laplacian determinism for classical dynamics. Empirical evidence is presented for spontaneous stochasticity, including numerical results. A Lagrangian path-integral approach is then exploited to establish stochastic flux freezing for resistive hydromagnetic equations and to argue, based on the properties of Richardson diffusion, that flux conservation must remain stochastic at infinite magnetic Reynolds number. An important application of these results is the kinematic, fluctuation dynamo in nonhelical, incompressible turbulence at magnetic Prandtl number (Pr{sub m}) equal to unity. Numerical results on the Lagrangian dynamo mechanisms by a stochastic particle method demonstrate a strong similarity between the Pr{sub m}=1 and 0 dynamos. Stochasticity of field-line motion is an essential ingredient of both. Finally, some consequences for nonlinear magnetohydrodynamic turbulence, dynamo, and reconnection are briefly considered.

  13. Adaptation to seasonality and the winter freeze

    PubMed Central

    Preston, Jill C.; Sandve, Simen R.

    2013-01-01

    Flowering plants initially diversified during the Mesozoic era at least 140 million years ago in regions of the world where temperate seasonal environments were not encountered. Since then several cooling events resulted in the contraction of warm and wet environments and the establishment of novel temperate zones in both hemispheres. In response, less than half of modern angiosperm families have members that evolved specific adaptations to cold seasonal climates, including cold acclimation, freezing tolerance, endodormancy, and vernalization responsiveness. Despite compelling evidence for multiple independent origins, the level of genetic constraint on the evolution of adaptations to seasonal cold is not well understood. However, the recent increase in molecular genetic studies examining the response of model and crop species to seasonal cold offers new insight into the evolutionary lability of these traits. This insight has major implications for our understanding of complex trait evolution, and the potential role of local adaptation in response to past and future climate change. In this review, we discuss the biochemical, morphological, and developmental basis of adaptations to seasonal cold, and synthesize recent literature on the genetic basis of these traits in a phylogenomic context. We find evidence for multiple genetic links between distinct physiological responses to cold, possibly reinforcing the coordinated expression of these traits. Furthermore, repeated recruitment of the same or similar ancestral pathways suggests that land plants might be somewhat pre-adapted to dealing with temperature stress, perhaps making inducible cold traits relatively easy to evolve. PMID:23761798

  14. Vertical velocity-CCN correlations

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Noble, S. R.

    2013-12-01

    The realization that smaller cloud droplets evaporate more readily (Xue and Feingold 2006; Jiang et al. 2002) gives rise to an anti-indirect aerosol effect (IAE); less cloudiness with pollution. The greater latent heat exchange of the greater evaporation in more polluted clouds adds TKE and buoyancy gradients that can enhance vertical velocity (W), mixing and entrainment (Zhao and Austin 2005). Stronger W can increase horizontal motions, which can further enhance droplet evaporation, which further enhances latent heat exchange and vertical motions, thus, positive feedback. This could also include latent heat released during condensation (Lee and Feingold 2010), which is more rapid for the greater surface areas of the smaller more numerous droplets. These theories imply a positive relationship between within-cloud W variations; i.e., standard deviation of W (?w) and CCN concentration (NCCN) rather than W and NCCN. This implies greater turbulence in polluted clouds, which could possibly counteract the reduction of cloudiness of anti-IAE. During two stratus cloud projects, 50 cloud penetrations in 9 MASE flights and 34 cloud penetrations in 13 POST flights, within-cloud ?w-NCCN showed correlation coefficients (R) of 0.50 and 0.39. Panel a shows similar within-cloud ?w-NCCN R in all altitude bands for 17 RICO flights in small cumulus clouds. R for W-NCCN showed similar values but only at low altitudes. Out-of-cloud ?w-NCCN showed similar high values except at the highest altitudes. Within-cloud ?w showed higher R than within-cloud W with droplet concentrations (Nc), especially at higher altitudes. Panel b for 13 ICE-T cumulus cloud flights in the same location as RICO but during the opposite season, however, showed ?w and W uncorrelated with NCCN at all altitudes; and W and ?w correlated with Nc only at the highest altitudes. On the other hand, out-of-cloud ?w was correlated with NCCN at all altitudes with R similar to the corresponding R of the other projects. Overall these results are consistent with the theories noted above. Supported by NSF AGS-1035230 and DOE SC0009162. Jiang, H., G. Feingold, and W.R. Cotton, 2002: J. Geophys. Res, 107, D24, 4813. Lee, S.-S., and G. Feingold, 2010: Geophys. Res. Lett., 37, L23806. Xue, H., and G. Feingold, 2006: J. Atmos. Sci., 63, 1605-1622. Zhao, M., and P.H. Austin, 2005: J. Atmos. Sci., 62, 1291-1310. Fig. Correlation coefficients (R) between mean and standard deviations of vertical velocity (W; ?w within and outside of clouds) with CCN concentrations at 1% supersaturation (N1%) measured below the clouds and with droplet concentrations (Nc) within various altitude bands.

  15. Red blood cell preservation by droplet freezing with polyvinyl pyrrolidone or sucrose/dextrose and by bulk freezing with glycerol

    PubMed Central

    Schmid, Pirmin; Huvard, Michael J.; Lee-Stroka, A. Hallie; Lee, Jae Y.; Byrne, Karen M.; Flegel, Willy A.

    2012-01-01

    Background Red blood cell (RBC) preservation is essential to transfusion medicine. Many blood group reference laboratories need a method to preserve rare blood samples for serologic testing at a later date. This study offers a comparison of three common cryoprotective agents and protocols used today: bulk preservation with glycerol and droplet freezing with sucrose/dextrose (S+D) or polyvinyl pyrrolidone (PVP). Study design and methods Human blood from 14 volunteers was collected and frozen at set intervals over two weeks with PVP, S+D, or glycerol. The frozen RBCs were later thawed and the percentage of surviving RBCs was determined. Detailed protocols and an instructional video are supplied. Results Over a two week period, RBCs preserved with glycerol and thawed with a widely used protocol showed a recovery of 41 ± 16 % (mean ± standard deviation) while those thawed with a modified glycerol protocol showed a recovery of 76 ± 8 %. RBCs preserved by droplet freezing with S+D showed a recovery of 56 ± 11 % while those preserved by droplet freezing with PVP showed a recovery of 85 ± 6 %. Recovery values were similar with ethylenediaminetetraacetic acid (EDTA) or heparin anticoagulants, differing freezing rates, and varying droplet volumes. Conclusion Droplet freezing with PVP offered the greatest recovery. While bulk freezing with glycerol can be effective too, droplet freezing may be a more convenient method overall. It requires less effort to thaw, needs much less storage room, and allows blood group laboratories to be frugal with thawing rare samples. PMID:21790629

  16. Amplitude Manipulation Evokes Upper Limb Freezing during Handwriting in Patients with Parkinson’s Disease with Freezing of Gait

    PubMed Central

    Heremans, Elke; Nackaerts, Evelien; Vervoort, Griet; Vercruysse, Sarah; Broeder, Sanne; Strouwen, Carolien; Swinnen, Stephan P.; Nieuwboer, Alice

    2015-01-01

    Background Recent studies show that besides freezing of gait (FOG), many people with Parkinson’s disease (PD) also suffer from freezing in the upper limbs (FOUL). Up to now, it is unclear which task constraints provoke and explain upper limb freezing. Objective To investigate whether upper limb freezing and other kinematic abnormalities during writing are provoked by (i) gradual changes in amplitude or by (ii) sustained amplitude generation in patients with and without freezing of gait. Methods Thirty-four patients with PD, including 17 with and 17 without FOG, performed a writing task on a touch-sensitive writing tablet requiring writing at constant small and large size as well as writing at gradually increasing and decreasing size. Patients of both groups were matched for disease severity, tested while ‘on’ medication and compared to healthy age-matched controls. Results Fifty upper limb freezing episodes were detected in 10 patients, including 8 with and 2 without FOG. The majority of the episodes occurred when participants had to write at small or gradually decreasing size. The occurrence of FOUL and the number of FOUL episodes per patient significantly correlated with the occurrence and severity of FOG. Patients with FOUL also showed a significantly smaller amplitude in the writing parts outside the freezing episodes. Conclusions Corroborating findings of gait research, the current study supports a core problem in amplitude control underlying FOUL, both in maintaining as well as in flexibly adapting the cycle size. PMID:26580556

  17. Gradient boosting machines, a tutorial

    PubMed Central

    Natekin, Alexey; Knoll, Alois

    2013-01-01

    Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods with a strong focus on machine learning aspects of modeling. A theoretical information is complemented with descriptive examples and illustrations which cover all the stages of the gradient boosting model design. Considerations on handling the model complexity are discussed. Three practical examples of gradient boosting applications are presented and comprehensively analyzed. PMID:24409142

  18. Tight junction regulates epidermal calcium ion gradient and differentiation

    SciTech Connect

    Kurasawa, Masumi; Maeda, Tetsuo; Oba, Ai; Yamamoto, Takuya; Sasaki, Hiroyuki; The Center for Advanced Medical Engineering and Infomatics, Osaka University, Osaka 565-0871

    2011-03-25

    Research highlights: {yields} We disrupted epidermal tight junction barrier in reconstructed epidermis. {yields} It altered Ca{sup 2+} distribution and consequentially differentiation state as well. {yields} Tight junction should affect epidermal homeostasis by maintaining Ca{sup 2+} gradient. -- Abstract: It is well known that calcium ions (Ca{sup 2+}) induce keratinocyte differentiation. Ca{sup 2+} distributes to form a vertical gradient that peaks at the stratum granulosum. It is thought that the stratum corneum (SC) forms the Ca{sup 2+} gradient since it is considered the only permeability barrier in the skin. However, the epidermal tight junction (TJ) in the granulosum has recently been suggested to restrict molecular movement to assist the SC as a secondary barrier. The objective of this study was to clarify the contribution of the TJ to Ca{sup 2+} gradient and epidermal differentiation in reconstructed human epidermis. When the epidermal TJ barrier was disrupted by sodium caprate treatment, Ca{sup 2+} flux increased and the gradient changed in ion-capture cytochemistry images. Alterations of ultrastructures and proliferation/differentiation markers revealed that both hyperproliferation and precocious differentiation occurred regionally in the epidermis. These results suggest that the TJ plays a crucial role in maintaining epidermal homeostasis by controlling the Ca{sup 2+} gradient.

  19. Atmospheric gradients from very long baseline interferometry observations

    NASA Technical Reports Server (NTRS)

    Macmillan, D. S.

    1995-01-01

    Azimuthal asymmetries in the atmospheric refractive index can lead to errors in estimated vertical and horizontal station coordinates. Daily average gradient effects can be as large as 50 mm of delay at a 7 deg elevation. To model gradients, the constrained estimation of gradient paramters was added to the standard VLBI solution procedure. Here the analysis of two sets of data is summarized: the set of all geodetic VLBI experiments from 1990-1993 and a series of 12 state-of-the-art R&D experiments run on consecutive days in January 1994. In both cases, when the gradient parameters are estimated, the overall fit of the geodetic solution is improved at greater than the 99% confidence level. Repeatabilities of baseline lengths ranging up to 11,000 km are improved by 1 to 8 mm in a root-sum-square sense. This varies from about 20% to 40% of the total baseline length scatter without gradient modeling for the 1990-1993 series and 40% to 50% for the January series. Gradients estimated independently for each day as a piecewise linear function are mostly continuous from day to day within their formal uncertainties.

  20. 'Endurance' Untouched (vertical)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This navigation camera mosaic, created from images taken by NASA's Mars Exploration Rover Opportunity on sols 115 and 116 (May 21 and 22, 2004) provides a dramatic view of 'Endurance Crater.' The rover engineering team carefully plotted the safest path into the football field-sized crater, eventually easing the rover down the slopes around sol 130 (June 12, 2004). To the upper left of the crater sits the rover's protective heatshield, which sheltered Opportunity as it passed through the martian atmosphere. The 360-degree view is presented in a vertical projection, with geometric and radiometric seam correction.

  1. The vertical motion simulator

    NASA Technical Reports Server (NTRS)

    Hosein, Todd

    1988-01-01

    Today's flight simulators, such as NASA's multimillion dollar Vertical Motion Simulator (VMS), recreate an authentic aircraft environment, and reproduce the sensations of flight by mechanically generating true physical events. In addition to their application as a training tool for pilots, simulators have become essential in the design, construction, and testing of new aircraft. Simulators allow engineers to study an aircraft's flight performance and characteristics without the cost or risk of an actual test flight. Because of their practicality, simulators will become more and more important in the development and design of new, safer aircraft.

  2. The structure of the cytoplasmic matrix preserved by freeze-drying and freeze-substitution.

    PubMed

    Porter, K R; Anderson, K L

    1982-11-01

    This paper reports a study of the cytoplasmic matrix in whole cultured cells examined by high voltage electron microscopy. In order to acquaint ourselves with the influence of preparation procedures on the morphology depicted, PtK2 cells were prepared for examination by first freezing in propane at -185 degrees C and then drying while maintained at -95 degrees C. Other cells of the same type were first fixed with glutaraldehyde and OsO4 and then frozen dried. Others were prepared by freeze-substitution and eventually dried by the critical-point method from CO2. And finally, some were preserved by conventional techniques of glutaraldehyde and OsO4 followed by dehydration in alcohol and critical-point drying. The observations are presented in stereo images. The morphologies after these various procedures are quite similar. All show the characteristic three-dimensional lattice or meshwork of slender filaments called microtrabeculae. In cells rapidly frozen and then dried from the frozen state, there is less evidence of shrinkage and probable change in the trabecular structure than in cells first fixed with glutaraldehyde and then frozen dried. The differences we relate to the demonstrable failure of glutaraldehyde to penetrate the cell quickly and fix instantly any component that is in active motion. Other differences that can be observed between all four types of preparation are not recognizably striking and are thought to reflect as much as anything morphological diversity in the original cells. In some instances, the amorphous ice of the initial freezing at -185 degrees C was allowed to crystallize at -80 degrees C. The small crystals that form push aside the microtrabeculae and leave obvious imprints on the structure. The essential message from these experiments is that the cytomatrix is structured. PMID:6818029

  3. Computation of the gravity field and its gradient: Some applications

    NASA Astrophysics Data System (ADS)

    Dubey, C. P.; Tiwari, V. M.

    2016-03-01

    New measuring instruments of Earth's gravity gradient tensors (GGT) have offered a fresh impetus to gravimetry and its application in subsurface exploration. Several efforts have been made to provide a thorough understanding of the complex properties of the gravity gradient tensor and its mathematical formulations to compute GGT. However, there is not much open source software available. Understanding of the tensor properties leads to important guidelines in the development of real three dimensional geological models. We present a MATLAB computational algorithm to calculate the gravity field and full gravity gradient tensor for an undulated surface followed by regular geometries like an infinite horizontal slab, a vertical sheet, a solid sphere, a vertical cylinder, a normal fault model and a rectangular lamina or conglomerations of such bodies and the results are compared with responses using professional software based on different computational schemes. Real subsurface geometries of complex geological structures of interest are approximated through arrangements of vertical rectangular laminas. The geological application of this algorithm is demonstrated over a horst-type structure of Oklahoma Aulacogen, USA and Vredefort Dome, South Africa, where measured GGT data are available.

  4. Improvement of parameters of freezing medium and freezing protocol for bull sperm using two osmotic supports.

    PubMed

    Chaveiro, A; Machado, L; Frijters, A; Engel, B; Woelders, H

    2006-06-01

    The aim of this study was to improve the freezing protocol of bull sperm, by investigating the influence on sperm viability after freeze/thawing of different freezing medium components, as well as the effect of cooling rates in the different stages of the cooling protocol, in single factor experiments. The experimental variables were: (1) salt-based versus a sugar-based medium (Tris versus sucrose); (2) glycerol concentration; (3) detergent (Equex) concentration; (4) presence of bicarbonate; (5) rate of cooling from 22 degrees C to holding temperature (CR1); (6) holding temperature (HT); (7) rate of cooling from holding temperature to -6 degrees C (CR2); (8) rate of cooling from -10 to -100 degrees C (CR3). All experiments were performed using five bulls per experiment (three ejaculates per bull). Sperm motility after freezing and thawing was assessed by CASA system, and sperm membrane integrity was assessed by flow cytometry. Sucrose-based medium did not offer a clear significant benefit compared to Tris medium. The concentration of Equex that gave the best results in Tris-based media group and sucrose-based media group was in a range between 2-7 and 4-7 g/l, respectively. In both media groups, a glycerol concentration of 800 mM was the best in any post-thaw viability parameters. In the Tris media group, the presence of bicarbonate had a negative effect on sperm viability. CR1 and CR2 had no significant effect on any of the post-thaw sperm viability parameters, but a CR1=0.2 degrees C/min and CR2=4 degrees C/min appeared to give better results in both media. The holding temperature (HT) that gave the best results was found to be in the range of 5-9 degrees C. There was a significant disadvantage of using a low CR3 of 10 degrees C/min, while 150 degrees C/min appeared to be the best cooling rate for either medium. PMID:16310842

  5. Gradient forests: calculating importance gradients on physical predictors.

    PubMed

    Ellis, Nick; Smith, Stephen J; Pitcher, C Roland

    2012-01-01

    In ecological analyses of species and community distributions there is interest in the nature of their responses to environmental gradients and in identifying the most important environmental variables, which may be used for predicting patterns of biodiversity. Methods such as random forests already exist to assess predictor importance for individual species and to indicate where along gradients abundance changes. However, there is a need to extend these methods to whole assemblages, to establish where along the range of these gradients the important compositional changes occur, and to identify any important thresholds or change points. We develop such a method, called "gradient forest," which is an extension of the random forest approach. By synthesizing the cross-validated R2 and accuracy importance measures from univariate random forest analyses across multiple species, sampling devices, and surveys, gradient forest obtains a monotonic function of each predictor that represents the compositional turnover along the gradient of the predictor. When applied to a synthetic data set, the method correctly identified the important predictors and delineated where the compositional change points occurred along these gradients. Application of gradient forest to a real data set from part of the Great Barrier Reef identified mud fraction of the sediment as the most important predictor, with highest compositional turnover occurring at mud fraction values around 25%, and provided similar information for other predictors. Such refined information allows for more accurate capturing of biodiversity patterns for the purposes of bioregionalization, delineation of protected areas, or designing of biodiversity surveys. PMID:22486096

  6. Boundary integral equation technique with application to freezing around a buried pipe

    SciTech Connect

    Sadegh, A.; Jiji, L.M.; Weinbaum, S.

    1985-01-01

    In this paper the use of the boundary integral equation method (BIEM) for multidimensional problems with moving phase change interface is explored. The method is shown to be suited for heat transfer problems where the field equations are linear in each region and the boundary or interface matching conditions are both highly irregular and non-linear. For moving interface problems the BIEM technique both reduces the dimensions of the problem by one, thus decreasing storage requirements, and directly solves for the unknown normal temperature gradient on each side of the interface for the determination of the instantaneous interface velocity. To illustrate the versatility of this technique the BIEM is applied to a previously unsolved problem; the melting/freezing around a pipe buried in a semi-infinite domain where the melting/freezing is initiated at the free surface and the medium is initially not at the phase change temperature. For simplicity a quasi-steady heat conduction is assumed in both the thawed and frozen zones. Solutions are presented for various values of the governing parameters.

  7. Freeze shoe sampler for the collection of hyporheic zone sediments and porewater.

    PubMed

    Bianchin, M; Smith, L; Beckie, R

    2015-01-01

    The Starr and Ingleton (1992) drive point piston sampler (DPPS) design was modified by fitting it with a Murphy and Herkelrath (1996) type sample-freezing drive shoe (SFDS), which uses liquid carbon dioxide as a cryogen. Liquid carbon dioxide was used to freeze sediments in the lower 0.1?m of the core and the drive-point piston sealed the core at the top preserving the reductive-oxidation (redox) sensitive sediments from the atmosphere and maintaining natural stratigraphy. The use of nitrogen gas to provide positive pressure on the gas system blocked the ingress of water which froze on contact with the cryogen thus blocking the gas lines with ice. With this adaptation to the gas system cores could be collected at greater depths beneath the static water level. This tool was used to collect intact saturated sediment cores from the hyporheic zone of the tidally influenced Fraser River in Vancouver, British Columbia, Canada where steep geochemical and microbial gradients develop within the interface between discharging anaerobic groundwater and recharging aerobic river water. In total, 25 cores driven through a 1.5?m sampling interval were collected from the river bed with a mean core recovery of 75%. The ability to deploy this method from a fishing vessel makes the tool more cost effective than traditional marine-based drilling operations which often use barges, tug boats, and drilling rigs. PMID:24825508

  8. Vertical variations of boundary layer chemistry in the urban environment of Boston

    NASA Astrophysics Data System (ADS)

    Wang, S.; Geyer, A.; Stutz, J.

    2003-12-01

    Boundary layer chemistry in urban areas is often strongly influenced by surface emissions of NOx and VOCs. Vertical mixing in combination with chemical transformations leads to distinctive vertical profiles of reactive trace gases. Chemistry, therefore, varies with altitude in the lowest 50 m, in particular in the stable nocturnal boundary layer. The influence of vertical mixing on chemistry in the lowest part of the boundary layer is often not accurately described, and a better understanding is needed to improve our ability to model urban air pollution. During the NEAQS/NAOPEX field campaign in July-August, 2002, vertical distributions of NO2, O3, HONO, HCHO, NO3, and several other trace gases were measured in the lowest 10 - 50 m of the atmosphere with a long-path differential optical absorption spectroscopy instrument in a residential area in Boston, MA. Various meteorological parameters were also monitored at the same location. Clear vertical trace gas concentration gradients were observed. In particular, during nights with strong stabilities, nocturnal boundary layer chemistry was clearly altitude dependent. Positive gradients of O3 and NO3 developed as a result of the fast chemical reactions with NO emitted at the surface. Negative NO2 and HONO gradients point to the vertical variation of the heterogeneous NO2-HONO conversion process, suggesting the importance of heterogeneous chemistry at the ground and building walls. With the transition from the stable boundary layer to a convective layer after sunrise, the vertical profiles regressed. However, vertical gradients of HCHO and O3 were observed in the afternoon on most days of this study. The observations suggest that ground-based emissions and fast photochemistry can lead to vertical profiles of trace gases in an urban boundary layer even during daytime. The vertical stratification of boundary layer chemistry, which depends on many factors including mixing strength, fast photochemistry and the emission strength, will be discussed.

  9. Dynamics of gravity-induced gradients in soap film thicknesses

    NASA Astrophysics Data System (ADS)

    Ropars, G.; Chauvat, D.; Le Floch, A.; O'Sullivan-Hale, M. N.; Boyd, R. W.

    2006-06-01

    We demonstrate a direct measurement of thickness gradients in vertical soap films with a resonant differential interferometer, i.e., the Jamin-Fabry-Perot interferometer. Two regimes are investigated: thick colored films with gravity- and capillarity-induced gradients, and silvery-gray to common black films which are quasi-independent of gravity. In the colored zone, our differential method is an ideal tool with which to isolate the large thickness instabilities of the film reaching 17nm/mm that characterize the end of its drainage. Using the so-called F2 law of such an interferometer, thermal-induced thickness variations as small as 1nm are isolated in the gradient-free common black film.

  10. Atmospheric science: Sea-spray particles cause freezing in clouds

    NASA Astrophysics Data System (ADS)

    Russell, Lynn M.

    2015-09-01

    Ice clouds in marine regions at high latitudes might form in warmer and drier air than was previously believed because of freezing induced by airborne particles that contain organic materials from ocean surface waters. See Letter p.234

  11. Multiphoton imaging of biological samples during freezing and heating

    NASA Astrophysics Data System (ADS)

    Breunig, H. G.; Uchugonova, A.; König, K.

    2014-02-01

    We applied multiphoton microscopic imaging to observe freezing and heating effects in plant- and animal cell samples. The experimental setups consisted of a multiphoton imaging system and a heating and cooling stage which allows for precise temperature control from liquid nitrogen temperature (-196°C 77 K) up to +600°C (873 K) with heating/freezing rates between 0.01 K/min and 150 K/min. Two multiphoton imaging systems were used: a system based on a modified optical microscope and a flexible mobile system. To illustrate the imaging capabilities, plant leafs as well as animal cells were microscopically imaged in vivo during freezing based on autofluorescence lifetime and intensity of intrinsic molecules. The measurements illustrate the usefulness of multiphoton imaging to investigate freezing effects on animal and plant cells.

  12. Fuel Cells Vehicle Systems Analysis (Fuel Cell Freeze Investigation)

    SciTech Connect

    Pesaran, A.; Kim, G.; Markel, T.; Wipke, K.

    2005-05-01

    Presentation on Fuel Cells Vehicle Systems Analysis (Fuel Cell Freeze Investigation) for the 2005 Hydrogen, Fuel Cells & Infrastructure Technologies Program Annual Review held in Arlington, Virginia on May 23-26, 2005.

  13. 19. FIRST FLOOR LEVEL BELOW ICE FREEZING TANKS AND LOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. FIRST FLOOR LEVEL BELOW ICE FREEZING TANKS AND LOWER LEVEL OF ICE DUMP AND LIFT WHERE FROZEN ICE IS BROUGHT INTO STORAGE. - Atlantic Ice & Coal Company, 135 Prince Street, Montgomery, Montgomery County, AL

  14. ARCTIC FOUNDATIONS, INC. FREEZE BARRIER SYSTEM - SITE TECHNOLOGY CAPSULE

    EPA Science Inventory

    Arctic Foundations, Inc. (AFI), of Anchorage, Alaska has developed a freeze barrier technology designed to prevent the migration of contaminants in groundwater by completely isolating contaminant source areas until appropriate remediation techniques can be applied. With this tec...

  15. ARCTIC FOUNDATIONS, INC. FREEZE BARRIER TECHNOLOGY; INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    Arctic Foundations, Inc. (AFI), of Anchorage, Alaska has developed a freeze barrier technology designed to prevent the migration of contaminants in groundwater by completely isolating contaminant source areas until appropriate remediation techniques can be applied. With this tech...

  16. An approximation for homogeneous freezing temperature of water droplets

    NASA Astrophysics Data System (ADS)

    O, K.-T.; Wood, R.

    2015-11-01

    In this work, based on the well-known formulae of classical nucleation theory (CNT), the temperature TNc = 1 at which the mean number of critical embryos inside a droplet is unity is derived and proposed as a new approximation for homogeneous freezing temperature of water droplets. Without consideration of time dependence and stochastic nature of the ice nucleation process, the approximation TNc = 1 is able to reproduce the dependence of homogeneous freezing temperature on drop size and water activity of aqueous drops observed in a wide range of experimental studies. We use the TNc = 1 approximation to argue that the distribution of homogeneous freezing temperatures observed in the experiments may largely be explained by the spread in the size distribution of droplets used in the particular experiment. It thus appears that this approximation is useful for predicting homogeneous freezing temperatures of water droplets in the atmosphere.

  17. Universality of tip singularity formation in freezing water drops.

    PubMed

    Marín, A G; Enríquez, O R; Brunet, P; Colinet, P; Snoeijer, J H

    2014-08-01

    A drop of water deposited on a cold plate freezes into an ice drop with a pointy tip. While this phenomenon clearly finds its origin in the expansion of water upon freezing, a quantitative description of the tip singularity has remained elusive. Here we demonstrate how the geometry of the freezing front, determined by heat transfer considerations, is crucial for the tip formation. We perform systematic measurements of the angles of the conical tip, and reveal the dynamics of the solidification front in a Hele-Shaw geometry. It is found that the cone angle is independent of substrate temperature and wetting angle, suggesting a universal, self-similar mechanism that does not depend on the rate of solidification. We propose a model for the freezing front and derive resulting tip angles analytically, in good agreement with the experiments. PMID:25126922

  18. Optical coherence tomography-based freeze-drying microscopy

    PubMed Central

    Mujat, Mircea; Greco, Kristyn; Galbally-Kinney, Kristin L.; Hammer, Daniel X.; Ferguson, R. Daniel; Iftimia, Nicusor; Mulhall, Phillip; Sharma, Puneet; Pikal, Michael J.; Kessler, William J.

    2011-01-01

    A new type of freeze-drying microscope based upon time-domain optical coherence tomography is presented here (OCT-FDM). The microscope allows for real-time, in situ 3D imaging of pharmaceutical formulations in vials relevant for manufacturing processes with a lateral resolution of <7 μm and an axial resolution of <5 μm. Correlation of volumetric structural imaging with product temperature measured during the freeze-drying cycle allowed investigation of structural changes in the product and determination of the temperature at which the freeze-dried cake collapses. This critical temperature is the most important parameter in designing freeze-drying processes of pharmaceutical products. PMID:22254168

  19. Normal freezing of ideal ternary systems of the pseudobinary type

    NASA Technical Reports Server (NTRS)

    Li, C. H.

    1972-01-01

    Perfect liquid mixing but no solid diffusion is assumed in normal freezing. In addition, the molar compositions of the freezing solid and remaining liquid, respectively, follow the solidus and liquidus curves of the constitutional diagram. For the linear case, in which both the liquidus and solidus are perfectly straight lines, the normal freezing equation giving the fraction solidified at each melt temperature and the solute concentration profile in the frozen solid was determined as early as 1902, and has since been repeatedly published. Corresponding equations for quadratic, cubic or higher-degree liquidus and solidus lines have also been obtained. The equation of normal freezing for ideal ternary liquid solutions solidified into ideal solid solutions of the pseudobinary type is given. Sample computations with the use of this new equation were made and are given for the Ga-Al-As system.

  20. 7 CFR 929.11 - To can, freeze, or dehydrate.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE CRANBERRIES GROWN IN STATES OF... dehydrate. To can, freeze, or dehydrate means to convert cranberries into canned, frozen, or dehydrated cranberries or other cranberry products by any commercial process....