Science.gov

Sample records for vertical hydraulic fracture

  1. Hydrodynamics of a vertical hydraulic fracture

    SciTech Connect

    Narasimhan, T.N.

    1987-03-24

    We have developed a numerical algorithm, HUBBERT, to simulate the hydrodynamics of a propagating vertical, rectangular fracture in an elastic porous medium. Based on the IFD method, this algorithm assumes fracture geometry to be prescribed. The breakdown and the creation of the incipient fracture is carried out according to the Hubbert-Willis theory. The propagation of the fracture is based on the criterion provided by Griffith, based on energy considerations. The deformation properties of the open fracture are based on simple elasticity solutions. The fracture is assumed to have an elliptical shape to a distance equal to the fracture height, beyond which the shape is assumed to be parallel plate. A consequence of Griffith's criterion is that the fracture must propagate in discrete steps. The parametric studies carried out suggest that for a clear understanding of the hydrodynamics of the hydraulic fracture many hitherto unrecognized parameters must be better understood. Among these parameters one might mention, efficiency, aperture of the newly formed fracture, stiffness of the newly formed fracture, relation between fracture aperture and permeability, and well bore compliance. The results of the studies indicate that the patterns of pressure transients and the magnitudes of fracture length appear to conform to field observations. In particular, the discrete nature of fracture propagation as well as the relevant time scales of interest inferred from the present work seem to be corroborated by seismic monitoring in the field. The results suggest that the estimation of least principal stress can be reliably made either with shut in data or with reinjection data provided that injection rates are very small.

  2. Evaluation of rock/fracture interactions during steam injection through vertical hydraulic fractures

    SciTech Connect

    Kovscek, A.R.; Johnston, R.M.; Patzek, T.W.

    1997-05-01

    The design, results, and analysis of a steamdrive pilot in the South Belridge diatomite, Kern County, California, are reviewed. Pilot results demonstrate that steam can be injected across a 1,000-ft-tall diatomite column using hydraulically fractured wells and that significant oil is produced in response to steaming. A computationally simple numerical model is proposed and used to analyze reservoir heating and volumetric sweep by steam. Results from the analysis show that hydraulic fractures undergoing steam injection can be dynamic and asymmetrical.

  3. Hydraulic fracturing-1

    SciTech Connect

    Not Available

    1990-01-01

    This book contains papers on hydraulic fracturing. Topics covered include: An overview of recent advances in hydraulic fracturing technology; Containment of massive hydraulic fracture; and Fracturing with a high-strength proppant.

  4. Comparison of Heterogeneously-Propped Hydraulic Fractures for Vertical and Lateral Wells

    NASA Astrophysics Data System (ADS)

    Morris, J.; Chugunov, N.

    2014-12-01

    Heterogeneous proppant placement (HPP) technologies offer improved hydraulic fracturing performance through the creation of channels within propped fractures (see figure). Such schemes, however, can suffer from reduced performance due to uncertainty in reservoir properties (e.g.: embedment and moduli). This is particularly true of unconventional reservoirs where properties can be highly heterogeneous. We demonstrate that the mechanisms controlling uncertainty in HPP performance differ between vertical and lateral wells. For computational efficiency, we combine the boundary element method to simulate formation deformation with a detailed discretization of the proppant within the fracture to predict conductivity of the HPP channels. We performed an extensive parameter study with thousands of scenarios relevant to HPP, including placement geometries consistent with both vertical and lateral wells. Global sensitivity analysis (GSA) was then applied to quantify and rank contributions from uncertain input parameters to variance in fracture conductivity. We were able to rigorously quantify the impact of parametric uncertainty. We found that for lateral wells the uncertainty in the conductivity is dominated by the uncertainty in diffusion of the proppant. For vertical wells, the dominant factors causing uncertainty in the performance change with stress. At low stress, performance is controlled by factors that dictate pillar geometry. At high stress, parameters that help preserve channels against closure stress control conductivity. Our results highlight the robustness of the HPP concept and quantify the sources of uncertainty in HPP performance. Further, we can clearly identify the fundamental parameters that control HPP conductivity and reveal that they are different for wellbore geometries that are typical of unconventional wells in North America. This implies that optimal HPP strategies will differ between vertical and lateral wells.

  5. Fluid filtration in a porous medium with wells with vertical hydraulic fracture of the formation

    NASA Astrophysics Data System (ADS)

    Davletbaev, A. Ya.

    2012-09-01

    Consideration is given to the problem on propagation of a pressure field in a low-permeability porous medium with two wells that are connected by a technogenic hydraulic fracture. The approximate numerical solution of this problem is obtained; an analysis of the influence of the above fracture on the system's parameters is made; responses of the pressure in a well are modeled. The inverse problem is solved with the numerical model developed, and the system's parameters are evaluated from the field data measured in the process of hydrodynamic investigation by the method of pressure interference testing.

  6. Hydraulic fracture design optimization

    SciTech Connect

    Lee, Tae-Soo; Advani, S.H.

    1992-01-01

    This research and development investigation, sponsored by US DOE and the oil and gas industry, extends previously developed hydraulic fracture geometry models and applied energy related characteristic time concepts towards the optimal design and control of hydraulic fracture geometries. The primary objective of this program is to develop rational criteria, by examining the associated energy rate components during the hydraulic fracture evolution, for the formulation of stimulation treatment design along with real-time fracture configuration interpretation and control.

  7. Hydraulic fracture design optimization

    SciTech Connect

    Lee, Tae-Soo; Advani, S.H.

    1992-06-01

    This research and development investigation, sponsored by US DOE and the oil and gas industry, extends previously developed hydraulic fracture geometry models and applied energy related characteristic time concepts towards the optimal design and control of hydraulic fracture geometries. The primary objective of this program is to develop rational criteria, by examining the associated energy rate components during the hydraulic fracture evolution, for the formulation of stimulation treatment design along with real-time fracture configuration interpretation and control.

  8. Hydraulic Fracturing Sand

    Fine-grained silica sand is mixed with chemicals and water before being pumped into rock formations to prevent the newly created artificial fractures from closing after hydraulic fracturing is completed....

  9. Suspensions in hydraulic fracturing

    SciTech Connect

    Shah, S.N.

    1996-12-31

    Suspensions or slurries are widely used in well stimulation and hydraulic fracturing processes to enhance the production of oil and gas from the underground hydrocarbon-bearing formation. The success of these processes depends significantly upon having a thorough understanding of the behavior of suspensions used. Therefore, the characterization of suspensions under realistic conditions, for their rheological and hydraulic properties, is very important. This chapter deals with the state-of-the-art hydraulic fracturing suspension technology. Specifically it deals with various types of suspensions used in well stimulation and fracturing processes, their rheological characterization and hydraulic properties, behavior of suspensions in horizontal wells, review of proppant settling velocity and proppant transport in the fracture, and presently available measurement techniques for suspensions and their merits. Future industry needs for better understanding of the complex behavior of suspensions are also addressed. 74 refs., 21 figs., 1 tab.

  10. Mechanics of Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Detournay, Emmanuel

    2016-01-01

    Hydraulic fractures represent a particular class of tensile fractures that propagate in solid media under pre-existing compressive stresses as a result of internal pressurization by an injected viscous fluid. The main application of engineered hydraulic fractures is the stimulation of oil and gas wells to increase production. Several physical processes affect the propagation of these fractures, including the flow of viscous fluid, creation of solid surfaces, and leak-off of fracturing fluid. The interplay and the competition between these processes lead to multiple length scales and timescales in the system, which reveal the shifting influence of the far-field stress, viscous dissipation, fracture energy, and leak-off as the fracture propagates.

  11. Hydraulic fracturing propping agent

    SciTech Connect

    Lunghofer, E. P.

    1985-06-11

    A high strength propping agent for use in hydraulic fracturing of subterranean formations comprising solid, spherical particles having an alumina content of between 40 and 60%, a density of less than 3.0 gm/cc and an ambient temperature permeability of 100,000 or more millidarcies at 10,000 psi.

  12. Verification and monitoring of deep granular iron permeable reactive barriers emplaced by vertical hydraulic fracturing and injection for groundwater remediation

    NASA Astrophysics Data System (ADS)

    Hubble, David Wallace

    This study evaluated the use of vertical hydraulic fracturing and injection (VHFI) to emplace granular iron as a deep passive treatment system to remove organic contaminants from groundwater at the Massachusetts Military Reservation on Cape Cod, Massachusetts. It was the first permeable reactive barrier (PRB) constructed at a depth greater than 15 m below the ground surface. VHFI propagates a vertical fracture from a slot cut through the injection-well casing at a selected depth and orientation. Granular iron is suspended in a viscous fluid using a biodegradable guar polymer and pumped through the slot to form a thin vertical sheet. Two PRBs were emplaced 6 m apart and perpendicular to the groundwater flow direction with mid-depths of about 30 m below the ground surface. Due to the depth, all of the emplacement and verification methods used down-hole tools. Resistivity imaging used salt added to the guar as an electrical tracer to map the spread of the VHFI fluid for propagation control and to estimate the extent of the completed PRB. Radar tomography before and after emplacement also provided images of the PRBs and hydraulic pulse testing and electromagnetic logging provided additional data. One PRB consisted of 40 tonnes of granular iron and was estimated to be an average of 80 mm thick. Based on geophysical imaging, the 100% iron PRB was 15 m long and extended from about 24.5 to 35.5 m depth. The second PRB consisted of a mixture of 5.6 tonnes of well sand and 4.4 tonnes of iron, but was only partially completed. Based on imaging, the sand/iron PRB comprised an area 9 m long extending from about 27 to 34.5 m below the ground surface. The proximity of screened wells, which deviated significantly from vertical toward the PRB alignment, resulted in loss of VHFI control. A sub-horizontal layer of iron formed between the 100% iron PRB and several of the wells. Similarly, piping failure zones formed between the sand/iron PRB and two geophysical wells. Selected groundwater constituents were monitored up- and down-gradient of the two PRBs for 11 months before the PRB emplacement and for 48 months afterwards. Temporary elevated levels of sodium, chloride, and conductance (from the salt tracer), total organic carbon (from the guar) and lowered DO were observed down-gradient of the PRBs. Although the various verification methods confirmed the presence of the 100% iron PRB and its overall continuity, the groundwater data showed no evidence of flow through the granular iron (PCE degradation, elevated pH, dissolved oxygen removal and reducing conditions). This suggests that the groundwater flows around the 100% iron PRB. It is possible that the guar used for the VHFI remained cross-linked, creating a low-permeability barrier. In contrast, the partially completed sand/iron wall did affect the groundwater chemistry in several down-gradient wells. Reducing conditions, zero DO, high pH, and high levels of dissolved iron were noted. A reduction in PCE concentrations and formation of degradation products were observed. (Abstract shortened by UMI.)

  13. Recent advances in hydraulic fracturing

    SciTech Connect

    Gidley, J.L.

    1989-01-01

    This book is a reference to the application of significant technological advances in hydraulic fracturing. It features illustrative problems to demonstrate specific applications of advanced technologies. Chapters examine pretreatment formation evaluation, rock mechanics and fracture geometry, 2D and 3D fracture-propagation models, propping agents and fracture conductivity, fracturing fluids and additives, fluid leakoff, flow behavior, proppant transport, treatment design, well completions, field implementation, fracturing-pressure analysis, postfracture formation evaluation, fracture azimuth and geometry determination, and economics of fracturing.

  14. Height control technique in hydraulic fracturing treatments

    SciTech Connect

    Nolte, K. G.; Smith, M. B.

    1984-10-23

    To control adverse vertical height growth of the fracture created during hydraulic fracturing treatments of subterranean formations, a nonproppant fluid stage is injected during the treatment. The nonproppant stage comprises a transport fluid and a flow block material. The flow block material can be any particulate used as a fracture proppant, and has a particle size distribution which is sufficient to form a substantially impermeable barrier to fluid flow into the vertical extremities of the fracture. The particle size distribution preferably comprises at least two different particles sizes.

  15. Hydraulic fracturing in a naturally fractured reservoir

    SciTech Connect

    Britt, L.K.; Hager, C.J.; Thompson, J.W.

    1994-12-31

    Hydraulic fracturing of wells in naturally fractured reservoirs can differ dramatically from fracturing wells in conventional isotropic reservoirs. Fluid leakoff is the primary difference. In conventional reservoirs, fluid leakoff is controlled by reservoir matrix and fracture fluid parameters. The fluid leakoff rate in naturally fractured reservoirs is typically excessive and completely dominated by the natural fractures. This paper presents several field examples of a fracture stimulation program performed on the naturally fractured Devonia carbonate of West Texas. Qualitative pressure decline analysis and net treating pressure interpretation techniques were utilized to evaluate the existence of natural fractures in the Devonian Formation. Quantitative techniques were utilized to assess the importance of the natural fractures to the fracturing process. This paper demonstrates that bottomhole pressure monitoring of fracture stimulations has benefits over conducting minifrac treatments in naturally fractured reservoirs. Finally, the results of this evaluation were used to redesign fracture treatments to ensure maximum productivity and minimize costs.

  16. Effect of Natural Fractures on Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Ben, Y.; Wang, Y.; Shi, G.

    2012-12-01

    Hydraulic Fracturing has been used successfully in the oil and gas industry to enhance oil and gas production in the past few decades. Recent years have seen the great development of tight gas, coal bed methane and shale gas. Natural fractures are believed to play an important role in the hydraulic fracturing of such formations. Whether natural fractures can benefit the fracture propagation and enhance final production needs to be studied. Various methods have been used to study the effect of natural fractures on hydraulic fracturing. Discontinuous Deformation Analysis (DDA) is a numerical method which belongs to the family of discrete element methods. In this paper, DDA is coupled with a fluid pipe network model to simulate the pressure response in the formation during hydraulic fracturing. The focus is to study the effect of natural fractures on hydraulic fracturing. In particular, the effect of rock joint properties, joint orientations and rock properties on fracture initiation and propagation will be analyzed. The result shows that DDA is a promising tool to study such complex behavior of rocks. Finally, the advantages of disadvantages of our current model and future research directions will be discussed.

  17. Hydraulic-fracture-treatment design simulation

    SciTech Connect

    Acharya, R.

    1988-02-01

    Hydraulic fracturing is a technique for simulating wells completed in low-permeability reservoirs. The process involves the pressurization of an isolated perforated section of the wellbore with a viscous fluid until the induced stresses exceed the formation strength, which causes a failure and thus creates the fracture. Proppants are then pumped into the newly created fracture with viscous fracturing fluid as a carrier. Once initiated, the fracture propagates as additional fracturing fluid is injected. Following the release of the fracturing pressure, the proppants hold the fracture open and provide a conductive channel through which the reservoir fluids flow to the wellbore. Only vertical fractures are considered here. Hydraulic-fracturing simulators are used to design the treatment volume, proppant size and type, and pumping schedules to obtain the desired fracture geometry and conductivities. The pumping schedules are designed by running these simulators on a trial-and-error basis until a desired propped geometry is obtained that will ensure maximum proppant coverage at the end of pumping. With these propped fracture geometry and conductivity data, an economic estimate is usually made for the treatment for a given fracture length and an optimal design is selected for the maximum return of the well.

  18. Three-dimensional simulation of hydraulic fracturing

    SciTech Connect

    Settari, A.; Cleary, M.P.

    1982-01-01

    A comprehensive 3-dimensional simulator of hydraulic fracturing has been developed. The model formulation couples 3-dimensional, 2-phase flow in the reservoir, with 3-dimensional fracture model in a vertical place, proppant transport, and heat transfer. The numerical implementation is in finite differences using several integrated grid systems. The model is computationally efficient and increases greatly the realism of modeling compared to 2-dimensional simulators. The new features that are important for applications include treatment of proppant transport and closure process, simulation of fracture growth after shut-in, and in particular the vertical fracture propagation, and capability of the model to predict fracturing pressure increase or decline depending on the degree of containment. Various examples show the sensitivity of the model to design parameters and properties of confining strata, and give comparisons between simulations using different models of fracture geometry. 19 references.

  19. Method for enhancement of sequential hydraulic fracturing using control pulse fracturing

    SciTech Connect

    Jennings, A.R. Jr.; Strubhar, M.K.

    1993-07-20

    A method is described for creating multiple sequential hydraulic fractures via hydraulic fracturing combined with controlled pulse fracturing where two wells are utilized comprising: (a) drilling and completing a first and second well so that the wells will be in fluid communication with each other after subsequent fracturing in each well; (b) creating more than two simultaneous multiple vertical fractures via a controlled pulse fracturing method in the second well; (c) thereafter hydraulically fracturing the reservoir via the first well thereby creating fractures in the reservoir and afterwards shutting-in the first well without any induced pressure; (d) applying thereafter hydraulic pressure to the reservoir via the second well in an amount sufficient to fracture the reservoir thereby forming a first hydraulic fracture perpendicular to the least principal in-situ stress; (e) maintaining the hydraulic pressure on the reservoir while pumping via the second well alternate slugs of a thin-fluid spacer and a temporary blocking agent having a proppant therein whereupon a second hydraulic fracture is initiated; (f) maintaining the hydraulic pressure on the second well while pumping alternate slugs of spacer and blocking agent into the second hydraulic fracture thereby causing the second hydraulic fracture to propagate away from the first hydraulic fracture in step (e) in a curved trajectory which intersects a fracture created in the first well; (g) maintaining the hydraulic pressure while pumping as in step (f) whereupon another hydraulic fracture initiates causing another curved fracture trajectory to form and intersect the fracture created in the first well; and (h) repeated steps (f) and (g) until a desired number of hydraulic fractures are created which allows a substantial improvement in removing a natural resource from the reservoir.

  20. Hydraulic Characterization of a Fractured Granitic Aquifer

    NASA Astrophysics Data System (ADS)

    Murray, W. A.

    2006-12-01

    Hydrogeologic testing has been conducted in a fractured granitic (quartz monzonite) bedrock aquifer to determine the hydraulic characteristics of the bedrock aquifer, determine the efficiency and performance characteristics of four extraction wells, and determine the pumping rates for the extraction wells pumping simultaneously that will provide containment of a small solvent plume under ambient conditions and under conditions of pumping a nearby water supply well. Investigative testing was conducted by drilling more than 20 deep and shallow bedrock wells and geophysical logging of two deep bedrock boreholes using caliper, conductivity, temperature, acoustic borehole televiewer, and heat-pulse borehole flowmeter. This was followed by step-drawdown testing of four deep bedrock wells, 24-hr duration constant rate pumping tests of four deep wells, and a 72-hr aquifer test with the four deep wells pumping simultaneously to complete the site characterization. These tests have revealed that a) the extraction wells are very efficient with little to no "well loss", b) the sparsely fractured bedrock has a surprisingly well-interconnected system of fractures both horizontally and vertically, c) the vertical hydraulic conductivity is generally much smaller than the horizontal but there is extensive vertical hydraulic connection throughout the aquifer, d) the aquifer exhibits anisotropic behavior with the hydraulic conductivity being approximately 6 times greater in the NW-SE direction than in the NE-SW direction, and e) the aquifer has a trend of increasing transmissivity across the site from southwest to northeast.. The hydraulic connection between two of the extraction wells is particularly good, indicating that the two are connected by a highly transmissive fracture; other anomalies in the site area have revealed a patch of nearly constant and very large hydraulic conductivity beneath a small residential development, and one bedrock well that was essentially a "dry hole". Capture zone analysis was accomplished using the data from aquifer testing and simple two-dimensional groundwater flow modeling.

  1. Selective perceptions of hydraulic fracturing.

    PubMed

    Sarge, Melanie A; VanDyke, Matthew S; King, Andy J; White, Shawna R

    2015-01-01

    Hydraulic fracturing (HF) is a focal topic in discussions about domestic energy production, yet the American public is largely unfamiliar and undecided about the practice. This study sheds light on how individuals may come to understand hydraulic fracturing as this unconventional production technology becomes more prominent in the United States. For the study, a thorough search of HF photographs was performed, and a systematic evaluation of 40 images using an online experimental design involving N = 250 participants was conducted. Key indicators of hydraulic fracturing support and beliefs were identified. Participants showed diversity in their support for the practice, with 47 percent expressing low support, 22 percent high support, and 31 percent undecided. Support for HF was positively associated with beliefs that hydraulic fracturing is primarily an economic issue and negatively associated with beliefs that it is an environmental issue. Level of support was also investigated as a perceptual filter that facilitates biased issue perceptions and affective evaluations of economic benefit and environmental cost frames presented in visual content of hydraulic fracturing. Results suggested an interactive relationship between visual framing and level of support, pointing to a substantial barrier to common understanding about the issue that strategic communicators should consider. PMID:26399946

  2. Method for directional hydraulic fracturing

    DOEpatents

    Swanson, David E.; Daly, Daniel W.

    1994-01-01

    A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

  3. Gravity-Driven Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; Garagash, D.; Murdoch, L. C.; Robinowitz, M.

    2014-12-01

    This study is motived by a new method for disposing of nuclear waste by injecting it as a dense slurry into a hydraulic fracture that grows downward to great enough depth to permanently isolate the waste. Disposing of nuclear waste using gravity-driven hydraulic fractures is mechanically similar to the upward growth of dikes filled with low density magma. A fundamental question in both applications is how the injected fluid controls the propagation dynamics and fracture geometry (depth and breadth) in three dimensions. Analog experiments in gelatin [e.g., Heimpel and Olson, 1994; Taisne and Tait, 2009] show that fracture breadth (the short horizontal dimension) remains nearly stationary when the process in the fracture "head" (where breadth is controlled) is dominated by solid toughness, whereas viscous fluid dissipation is dominant in the fracture tail. We model propagation of the resulting gravity-driven (buoyant or sinking), finger-like fracture of stationary breadth with slowly varying opening along the crack length. The elastic response to fluid loading in a horizontal cross-section is local and can be treated similar to the classical Perkins-Kern-Nordgren (PKN) model of hydraulic fracturing. The propagation condition for a finger-like crack is based on balancing the global energy release rate due to a unit crack extension with the rock fracture toughness. It allows us to relate the net fluid pressure at the tip to the fracture breadth and rock toughness. Unlike the PKN fracture, where breadth is known a priori, the final breadth of a finger-like fracture is a result of processes in the fracture head. Because the head is much more open than the tail, viscous pressure drop in the head can be neglected leading to a 3D analog of Weertman's hydrostatic pulse. This requires relaxing the local elasticity assumption of the PKN model in the fracture head. As a result, we resolve the breadth, and then match the viscosity-dominated tail with the 3-D, toughness-dominated head to obtain a complete closed-form solution. We then analyze the gravity fracture propagation in conditions of either continuous injection or finite volume release for sets of parameters representative of dense waste injection technique and low viscosity magma diking.

  4. Hydraulic conductivity of rock fractures

    SciTech Connect

    Zimmerman, R.W.; Bodvarsson, G.S.

    1994-10-01

    Yucca Mountain, Nevada contains numerous geological units that are highly fractured. A clear understanding of the hydraulic conductivity of fractures has been identified as an important scientific problem that must be addressed during the site characterization process. The problem of the flow of a single-phase fluid through a rough-walled rock fracture is discussed within the context of rigorous fluid mechanics. The derivation of the cubic law is given as the solution to the Navier-Stokes equations for flow between smooth, parallel plates, the only fracture geometry that is amenable to exact treatment. The various geometric and kinetic conditions that are necessary in order for the Navier-Stokes equations to be replaced by the more tractable lubrication or Hele-Shaw equations are studied and quantified. Various analytical and numerical results are reviewed pertaining to the problem of relating the effective hydraulic aperture to the statistics of the aperture distribution. These studies all lead to the conclusion that the effective hydraulic aperture is always less than the mean aperture, by a factor that depends on the ratio of the mean value of the aperture to its standard deviation. The tortuosity effect caused by regions where the rock walls are in contact with each other is studied using the Hele-Shaw equations, leading to a simple correction factor that depends on the area fraction occupied by the contact regions. Finally, the predicted hydraulic apertures are compared to measured values for eight data sets from the literature for which aperture and conductivity data were available on the same fracture. It is found that reasonably accurate predictions of hydraulic conductivity can be made based solely on the first two moments of the aperture distribution function, and the proportion of contact area. 68 refs.

  5. Hydraulic fracturing process and compositions

    SciTech Connect

    Constien, V. G.; King, M. T.

    1985-09-17

    Improved fracturing processes are described which use novel aqueous hydraulic fracturing fluids. The fluids comprise: (a) an aqueous medium, and (b) a thickening amount of a thickener composition comprising (i) a water-soluble or water-dispersible interpolymer having pendant hydrophobic groups chemically bonded thereto, (ii) a nonionic surfactant having a hydrophobic group(s) that is capable of associating with the hydrophobic groups on said organic polymer, and (iii) a water-soluble electrolyte. Additionally, the fluids preferably contain a stabilizing amount of a thiosulfate salt. As an example, an interpolymer of acrylamide and dodecyl acrylate was used in combination with a nonionic surfactant (HLB of about 10 to about 14) to thicken a dilute aqueous solution of KCl and sodium thiosulfate; the aqueous solution had excellent properties for use as a high temperature hydraulic fracturing fluid.

  6. Monitoring hydraulic fracture growth: Laboratory experiments

    SciTech Connect

    Groenenboom, J.; Dam, D.B. van

    2000-04-01

    The authors carry out small-scale hydraulic fracture experiments to investigate the physics of hydraulic fracturing. The laboratory experiments are combined with time-lapse ultrasonic measurements with active sources using both compressional and shear-wave transducers. For the time-lapse measurements they focus on ultrasonic measurement changes during fracture growth. As a consequence they can detect the hydraulic fracture and characterize its shape and geometry during growth. Hence, this paper deals with fracture characterization using time-lapse acoustic data. Hydraulic fracturing is used in the oil and gas industry to stimulate reservoir production.

  7. Observations of Fractures Induced by Hydraulic Fracturing in Anisotropic Granite

    NASA Astrophysics Data System (ADS)

    Chen, Youqing; Nagaya, Yuya; Ishida, Tsuyoshi

    2015-07-01

    To investigate how the viscosity of the fracturing fluid affects fracture propagation, hydraulic fracturing experiments using three fluids with different viscosities (supercritical CO2, water, and viscous oil) under the true tri-axial condition were conducted on anisotropic granite specimens, and then the induced fractures were microscopically observed via a fluorescent method. Fractures induced by hydraulic fracturing are considerably tortuous from a microscopic view. A higher viscosity creates a smoother fracture pattern. The tortuosity, which is defined as the total fracture length along a pathway divided by the direct length of the two ends of a fracture, ranges from 1.05 to 1.13, demonstrating that the viscosity of fracturing fluid influences the fracture propagation pattern due to the different pathways of fracture propagation. In addition, hydraulic fracturing can induce many derivative pathways around the main fracture. Hydraulic fracturing with a lower viscosity fluid forms a more complex fracture network in rocks; the fracture induced by supercritical CO2 has the most branches along the main fracture. From these observations, fracture propagation by hydraulic fracturing sometimes develops by the shear fracture mode. This shear fracturing is often observed for a low-viscosity supercritical CO2 injection, which agrees with our results from AE monitoring and waveform analysis.

  8. Hydraulic-fracture propagation in layered rock: experimental studies of fracture containment

    SciTech Connect

    Teufel, L.W.; Clark, J.A.

    1981-01-01

    Fracture geometry is an important concern in the design of a massive hydraulic fracture treatment for improved natural gas recovery from tight gas sands. Possible prediction of vertical fracture growth and containment in layered rock requires an improved understanding of the parameters which may control fracture growth across layer interfaces. We have conducted laboratory hydraulic fracture experiments and elastic finite element studies which show that at least two distinct geologic conditions may inhibit or contain the vertical growth of hydraulic fractures in layered rock; (1) a weak interfacial shear strength of the layers and (2) a compressional increase in the minimum horizontal stress in the bounding layer. The second condition is more important and more likely to occur at depth. Variations in the horizontal stress can result from differences in elastic properties of individual layers in a layered rock sequence. A compressional increase in the minimum horizontal stress can occur in going from high shear modulus into low shear modulus layers.

  9. Hydraulic fracture during epithelial stretching

    PubMed Central

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-01-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells’ cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression maneuvers. After pressure equilibration cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics. PMID:25664452

  10. Hydraulic fracture during epithelial stretching

    NASA Astrophysics Data System (ADS)

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-03-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells’ cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here, we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression manoeuvres. After pressure equilibration, cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics.

  11. Hydraulic fracturing of jointed formations

    SciTech Connect

    Murphy, H.D.; Fehler, M.C.

    1986-01-01

    Measured by volume, North America's largest hydraulic fracturing operations have been conducted at Fenton Hill, New Mexico to create geothermal energy reservoirs. In the largest operation 21,000 m/sup 3/ of water were injected into jointed granitic rock at a depth of 3.5 km. Microearthquakes induced by this injection were measured with geophones placed in five wells drilled into, or very close, to the reservoir, as well as 11 surface seismometers. The large volume of rock over which the microearthquakes were distributed indicates a mechanism of hydraulic stimulation which is at odds with conventional fracturing theory, which predicts failure along a plane which is perpendicular to the least compressive earth stress. A coupled rock mechanics/fluid flow model provides much of the explanation. Shear slippage along pre-existing joints in the rock is more easily induced than conventional tensile failure, particularly when the difference between minimum and maximum earth stresses is large and the joints are oriented at angles between 30 and 60 degrees to the principal earth stresses, and a low viscosity fluid like water is injected. Shear slippage results in local redistribution of stresses, which allows a branching, or dendritic, stimulation pattern to evolve, in agreement with the patterns of microearthquake locations. These results are qualitatively similar to the controversial process known as ''Kiel'' fracturing, in which sequential injections and shut-ins are repeated to create dendritic fractures for enhanced oil and gas recovery. However, we believe that the explanation is shear slippage of pre-existing joints and stress redistribution, not proppant bridging and fluid blocking as suggested by Kiel. 15 refs., 10 figs.

  12. Hydraulic fracturing experiments in the Great Northern Coal seam

    SciTech Connect

    Jeffrey, R.G.; Weber, C.R.; Vlahovic, W.; Enever, J.R.

    1994-12-31

    Two field-scale hydraulic fracturing experiments were performed in vertical boreholes on the lease of Munmorah Colliery located south of Newcastle, NSW. The treatments fractured the 3-meter thick, 220-meter deep Great Northern coal seam and were designed to provide a direct comparison between a borate-crosslinked gel and a water treatment. The fracture geometries were mapped during mining of the coal seam. Geologic mapping disclosed a well-defined coal face cleat and systematic full-seam joints perpendicular to bedding and trending NW. The vertical hydraulic fractures extended along the joint and face cleat direction. Evidence that an early slurry stage of fine mesh proppant acted to block off one of two competing parallel fractures was found at one of the mineback sites.

  13. DEMONSTRATION BULLETIN: HYDRAULIC FRACTURING OF CONTAMINATED SOIL

    EPA Science Inventory

    Hydraulic fracturing is a physical process that creates fractures in silty clay soil to enhance its permeability. The technology, developed by the Risk Reduction Engineering Laboratory (RREL) and the University of Cincinnati, creates sand-filled horizontal fractures up to 1 in. i...

  14. Acoustic-emission monitoring during hydraulic fracturing

    SciTech Connect

    Stewart, L. ); Cassell, B.R. ); Bol, G.M. )

    1992-06-01

    This paper reports that microseismic events or acoustic emissions associated with hydraulic fracturing are recorded with a borehole seismic tool in a deviated well during multirate injection, shut-in, and flowback. The event locations indicate that fracture orientation, length, and height are compatible with regional stress directions and estimates of the fracture size that are based on pressure decline.

  15. Modeling of Interaction of Hydraulic Fractures in Complex Fracture Networks

    NASA Astrophysics Data System (ADS)

    Kresse, O. 2; Wu, R.; Weng, X.; Gu, H.; Cohen, C.

    2011-12-01

    A recently developed unconventional fracture model (UFM) is able to simulate complex fracture network propagation in a formation with pre-existing natural fractures. Multiple fracture branches can propagate at the same time and intersect/cross each other. Each open fracture exerts additional stresses on the surrounding rock and adjacent fractures, which is often referred to as "stress shadow" effect. The stress shadow can cause significant restriction of fracture width, leading to greater risk of proppant screenout. It can also alter the fracture propagation path and drastically affect fracture network patterns. It is hence critical to properly model the fracture interaction in a complex fracture model. A method for computing the stress shadow in a complex hydraulic fracture network is presented. The method is based on an enhanced 2D Displacement Discontinuity Method (DDM) with correction for finite fracture height. The computed stress field is compared to 3D numerical simulation in a few simple examples and shows the method provides a good approximation for the 3D fracture problem. This stress shadow calculation is incorporated in the UFM. The results for simple cases of two fractures are presented that show the fractures can either attract or expel each other depending on their initial relative positions, and compares favorably with an independent 2D non-planar hydraulic fracture model. Additional examples of both planar and complex fractures propagating from multiple perforation clusters are presented, showing that fracture interaction controls the fracture dimension and propagation pattern. In a formation with no or small stress anisotropy, fracture interaction can lead to dramatic divergence of the fractures as they tend to repel each other. However, when stress anisotropy is large, the fracture propagation direction is dominated by the stress field and fracture turning due to fracture interaction is limited. However, stress shadowing still has a strong effect on fracture width, which affects the injection rate distribution into multiple perforation clusters, and hence overall fracture network geometry and proppant placement.

  16. Hydraulic Fracturing and the Environment

    NASA Astrophysics Data System (ADS)

    Ayatollahy Tafti, T.; Aminzadeh, F.; Jafarpour, B.; de Barros, F.

    2013-12-01

    In this presentation, we highlight two key environmental concerns of hydraulic fracturing (HF), namely induced seismicity and groundwater contamination (GC). We examine the induced seismicity (IS) associated with different subsurface fluid injection and production (SFIP) operations and the key operational parameters of SFIP impacting it. In addition we review the key potential sources for possible water contamination. Both in the case of IS and GC we propose modeling and data analysis methods to quantify the risk factors to be used for monitoring and risk reduction. SFIP include presents a risk in hydraulic fracturing, waste water injection, enhanced oil recovery as well as geothermal energy operations. Although a recent report (NRC 2012) documents that HF is not responsible for most of the induced seismicities, we primarily focus on HF here. We look into vaious operational parameters such as volume and rate of water injection, the direction of the well versus the natural fracture network, the depth of the target and the local stress field and fault system, as well as other geological features. The latter would determine the potential for triggering tectonic related events by small induced seismicity events. We provide the building blocks for IS risk assessment and monitoring. The system we propose will involve adequate layers of complexity based on mapped seismic attributes as well as results from ANN and probabilistic predictive modeling workflows. This leads to a set of guidelines which further defines 'safe operating conditions' and 'safe operating zones' which will be a valuable reference for future SFIP operations. We also illustrate how HF can lead to groundwater aquifer contamination. The source of aquifer contamination can be the hydrocarbon gas or the chemicals used in the injected liquid in the formation. We explore possible pathways of contamination within and discuss the likelihood of contamination from each source. Many of the chemical compounds used in HF fluids are carcinogenic and may pose risk to humans. In addition, recovered HF fluids can be contaminated. We illustrate how different pathways can lead to the risk of aquifer contamination and consequently, risk to human health.

  17. Dynamics of Hydraulic-Fracturing Controlled Microseismicity

    NASA Astrophysics Data System (ADS)

    Shapiro, S. A.; Dinske, C.; Rothert, E.

    2006-12-01

    Several dynamic processes related to propagation of hydraulic fracture modify the stress state in rocks and, therefore, they are relevant for triggering of microseismicity. For instance, these are the creation of a new fracture volume, fracturing fluid loss and its infiltration into reservoir rocks as well as diffusion of the injection pressure into the pore space of surrounding rocks and inside the fracture. Using real data, we show that some of these processes can be seen from features of spatio-temporal distributions of the induced microseismicity. Especially, the initial stage of fracture volume opening as well as the back front of the induced seismicity starting to propagate after termination of the fluid injection can be well identified and used for reservoir engineering. We have observed these signatures in many data sets of hydraulic fracturing in tight gas reservoirs. Evaluation of spatio-temporal dynamics of induced microseismicity can contribute to estimate important physical characteristics of hydraulic fractures, e.g., penetration rate of the hydraulic fracture, its permeability as well as the permeability of the reservoir rock. The quality of location of microseismicity is of tremendous importance for such applications. Understanding of fluid-induced seismicity by hydraulic fracturing in boreholes can help us to understand natural fracture processes related to dehydration and degassing phenomena by subduction and faulting.

  18. Hydraulic fracturing utilizing a refractory proppant

    SciTech Connect

    Jennings, A.R.; Stowe, L.R.

    1990-01-01

    This patent describes a method for hydraulically fracturing a formation where a fused refractory proppant is used. It comprises: placing into a fracturing fluid a fused refractory proppant consisting essentially of silicon carbide or silicon nitride having a mohs hardness of about 9 and in an amount sufficient to prop a created fracture where the proppant is substantially crush and acid resistant; injecting into the formation the fracturing fluid with the proppant therein under a pressure sufficient to fracture the formation; and fracturing the formation and thereafter causing the pressure to be released thereby propping at least one fracture which proppant provides for increased heat transfer into the formation.

  19. Computer simulations of proppant transport in a hydraulic fracture

    SciTech Connect

    Unwin, A.T.; Hammond, P.S.

    1995-12-31

    The equations of motion of a slurry in a narrow slot, such as a hydraulic fracture, are presented and solved numerically to obtain an estimate of the amount of gravity-driven vertical motion of proppant that can occur within a fracture during placement. Two types of gravity-driven motion are studied: settling of heavy proppant particles; and convective proppant transport, which refers to the motion driven by large-scale density differences between regions of different proppant concentration. Computer simulations are performed using realistic parameter values. In particular, the authors compare the vertical motion of proppant in a slurry in which the proppant particles are uniformly distributed across the fracture width (referred to as homogeneous flow) with that in a slurry in which some unspecified, but rapid, process has caused all the proppant to migrate across the fracture width into a close-packed sheet at the fracture center (referred to as sheet flow).

  20. Hydraulic Fracturing in Saturated Cohesionless Materials

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; Hurt, R. S.; Huang, H.

    2007-12-01

    Based on the developed experimental techniques, hydraulic fracturing in particulate materials has been directly observed in the laboratory. As a result, we suggested several mechanisms of hydraulic fracturing in particulate materials and determined relevant scaling relationships (e.g., the interplay between elastic and plastic processes). While the ongoing work is likely to change at least some conclusions, it is important that the results reported in this work appear to form the framework for modeling and, perhaps, even for (qualitative) interpretation of field data. The observed fracture geometry and the measured pressure injection curves suggest that hydraulic fracturing occurs in soft sediments in the following sequence: (i) cavity expansion, (ii) fracture front initiation, and (iii) propagation of the developed fracture. Our experiments show that liquid can indeed propagate as a crack-like feature when injected into cohesionless saturated materials. Laboratory observations suggest that at the initial stage, the cavity expansion process ends with fracture initiation. Sometimes, the growing fracture resembles penetration of one movable material into another less movable material, which may be a manifestation of the Taylor-like instability. An important conclusion of our work is that all parts of the cohesionless particulate material (including the tip zone of hydraulic fracture) are likely to be in compression. The compressive stress state is an important characteristic of hydraulic fracturing in particulate materials with low, or no, cohesion (such as were used in our experiments). At present, two kinematic mechanisms of fracture propagation, consistent with the compressive stress regime, can be offered. The first mechanism is based on shear bands propagating ahead of the tip of an open fracture. The second is based on the tensile strain ahead of the fracture tip and reduction of the effective stresses to zero within the leak-off zone. Additionally, an important characteristic feature of fractures in our experiments is the bluntness of the fracture tip, which suggests that plastic deformation at the fracture tip is important. Scaling indicates that fluid pressure does not decrease considerably along the fracture, due to the wide fracture aperture. However, there is a high pressure gradient in the leak-off zone in the direction normal to the fracture. Scaling also suggests the importance of fluid leaf-off in the cavity expansion and, possibly, in the fracture propagation process. First estimates show that large openings at the fracture tip correspond to large fracture energy, an order or two greater than for typical rocks. Unfortunately, it is not currently clear what defines the characteristic dimension at the process (tip) zone, which does not allow devising a comprehensive theoretical model. Without a model, it is not clear how to estimate an in-situ value of the fracture energy (or the corresponding value of the effective fracture toughness), that is, how to "extract" the fracture energy from available data of hydraulic fracturing tests or observations on natural hydraulic fractures (e.g., sand dikes propagated through unconsolidated sediments). However, it may still be possible that the fracture in field conditions is similar to that in conventional cohesive materials. Since what have been observed so far does not contradict to the condition of autonomity at the fracture tip (front), a tip-scale (local) fracture criterion still may be feasible to develop.

  1. Method for hydraulic fracturing cased wellbores

    SciTech Connect

    Schmidt, J.H.

    1991-12-24

    This patent describes a method of hydraulically fracturing a cased wellbore in an earth formation. It comprises determining the angle with respect to the wellbore axis and a reference point on the circumference of the wellbore which will provide for initiation of a hydraulic fracture in the formation which will turn with the largest radius of curvature into a fracture plane normal to the minimum in situ stress in the formation; perforating the wellbore casing at the angle with respect to the reference point; initiating a hydraulic fracture in the formation by pumping a liquid through the perforation and into the formation to force the initiation of a fracture in the formation at a point which develops the highest tensile stress in the formation in relation to increasing the hydraulic pressure in the wellbore; extending the fracture by pumping a relatively proppant-free quantities of proppant per unit volume of pumped fluid and in successive discrete stages of increasing proppant density to provide a propped portion of increasing proppant density to provide a propped portion of the fracture in the near wellbore region of the fracture which will prevent reclosing of the fracture in the near wellbore region.

  2. Numerical model of massive hydraulic fracture. Final report. [SYMFRAC1

    SciTech Connect

    Palmer, I.D.; Craig, H.R.; Luiskutty, C.T.

    1985-03-01

    This project has involved development of a hydraulic fracture simulator which calculates fracture height as a function of distance from the wellbore in a situation in which a payzone is bounded by two zones in which the minimum in-situ stress is higher (the fracture is vertical). The fracture must be highly elongated (length/height ratio approximately greater than 4) and variations in elastic modulus across zones are ignored. First, we describe the leakoff and spurt loss calculations employed in the modeling. Second, we discuss a revised version of the vertically symmetric simulator (bounding zone stresses equal). The addition of non-Newtonian flow and leakoff (including spurt loss) is described in detail. An illustrative result is given. Third, we describe in detail the vertically asymmetric simulator (bounding zone stresses not equal). To illustrate the last results, we present design calculations for a 30,000 gallon fracture, which was the first stimulation in the Multi-Well Experiment. The 80 ft fracture interval in the Paludal zone has at its upper edge a 520 psi stress contrast, and at its lower edge a 1195 psi contrast. Computed fracture height growth above and below the perforated interval, bottomhole pressure, and width profiles in vertical sections are displayed. Comparison is made with diagnostic measurements of fracture length, height, and bottomhole pressure. The appropriate computer codes are included in this report. 21 references, 11 figures, 4 tables.

  3. Vertical root fracture in nonendodontically treated teeth.

    PubMed

    Yang, S F; Rivera, E M; Walton, R E

    1995-06-01

    Vertical root fractures have been reported to occur primarily in endodontically treated teeth due to condensation forces and/or with post placement. This study describes 11 Chinese patients with 12 molars that developed vertical root fractures without endodontic or post procedures. These showed characteristics of a true vertical root fracture as confirmed after extraction. Fractured teeth showed a consistent pattern. The majority were severely attrited mandibular molars in males. All had clinically intact crowns with no or minimal restorations. PMID:7673845

  4. New proppant for deep hydraulic fracturing

    SciTech Connect

    Das, K.; Underdown, D.R.

    1985-01-01

    Much work has focused on developing and evaluating various materials for use as proppants for hydraulic fracturing. Sand is used most often as a fracturing proppant in shallow wells. Deep wells with high closure stresses require a proppant, such as sintered bauxite, that will not crush under adverse conditions. Ceramic and zirconium oxide beads and resin-coated sand proppants also have been developed for deep hydraulic fracturing. A new fracturing proppant has been developed that exhibits the properties necessary for use in deep hydraulic fracturing. This proppant is produced by precuring a specially modified phenolformaldehyde resin onto sand. The new proppant maintains conductivity and resists crushing much better than does sand. The new proppant was compared to intermediate-density sintered bauxitic proppants and cured-in-place proppants and the tests were confirmed by an independent laboratory.

  5. Self-potential observations during hydraulic fracturing

    SciTech Connect

    Moore, Jeffrey R.; Glaser, Steven D.

    2007-09-13

    The self-potential (SP) response during hydraulic fracturing of intact Sierra granite was investigated in the laboratory. Excellent correlation of pressure drop and SP suggests that the SP response is created primarily by electrokinetic coupling. For low pressures, the variation of SP with pressure drop is linear, indicating a constant coupling coefficient (Cc) of -200 mV/MPa. However for pressure drops >2 MPa, the magnitude of the Cc increases by 80% in an exponential trend. This increasing Cc is related to increasing permeability at high pore pressures caused by dilatancy of micro-cracks, and is explained by a decrease in the hydraulic tortuosity. Resistivity measurements reveal a decrease of 2% prior to hydraulic fracturing and a decrease of {approx}35% after fracturing. An asymmetric spatial SP response created by injectate diffusion into dilatant zones is observed prior to hydraulic fracturing, and in most cases this SP variation revealed the impending crack geometry seconds before failure. At rupture, injectate rushes into the new fracture area where the zeta potential is different than in the rock porosity, and an anomalous SP spike is observed. After fracturing, the spatial SP distribution reveals the direction of fracture propagation. Finally, during tensile cracking in a point load device with no water flow, a SP spike is observed that is caused by contact electrification. However, the time constant of this event is much less than that for transients observed during hydraulic fracturing, suggesting that SP created solely from material fracture does not contribute to the SP response during hydraulic fracturing.

  6. Hydraulic Fracturing Mineback Experiment in Complex Media

    NASA Astrophysics Data System (ADS)

    Green, S. J.; McLennan, J. D.

    2012-12-01

    Hydraulic fracturing (or "fracking") for the recovery of gas and liquids from tight shale formations has gained much attention. This operation which involves horizontal well drilling and massive hydraulic fracturing has been developed over the last decade to produce fluids from extremely low permeability mudstone and siltstone rocks with high organic content. Nearly thirteen thousand wells and about one hundred and fifty thousand stages within the wells were fractured in the US in 2011. This operation has proven to be successful, causing hundreds of billions of dollars to be invested and has produced an abundance of natural gas and is making billions of barrels of hydrocarbon liquids available for the US. But, even with this commercial success, relatively little is clearly known about the complexity--or lack of complexity--of the hydraulic fracture, the extent that the newly created surface area contacts the high Reservoir Quality rock, nor the connectivity and conductivity of the hydraulic fractures created. To better understand this phenomena in order to improve efficiency, a large-scale mine-back experiment is progressing. The mine-back experiment is a full-scale hydraulic fracture carried out in a well-characterized environment, with comprehensive instrumentation deployed to measure fracture growth. A tight shale mudstone rock geologic setting is selected, near the edge of a formation where one to two thousand feet difference in elevation occurs. From the top of the formation, drilling, well logging, and hydraulic fracture pumping will occur. From the bottom of the formation a horizontal tunnel will be mined using conventional mining techniques into the rock formation towards the drilled well. Certain instrumentation will be located within this tunnel for observations during the hydraulic fracturing. After the hydraulic fracturing, the tunnel will be extended toward the well, with careful mapping of the created hydraulic fracture. Fracturing fluid will be traceable, as will injected proppant, in order to demarcate in-situ fracture paths and fluid and proppant progression. This underground experiment is referred to as a "mine-back experiment". Several mine-back experiments have been conducted in the past, and have demonstrated complex, diffuse fracture systems in coals and bundled fracture systems in some sandstones. No mine-back experiment has been conducted in the tight shales; but, economics and environmental considerations dictate that more definitive measurements will be extremely helpful to establish fracture growth patterns and to validate monitoring methods such as micro-seismic measurements. This presentation discusses the mine-back experiment and presents details of geologic setting, hydraulic fracturing, and the excavation required before and after the hydraulic fracture. The mine-back experiment will provide ground-truth assessment of hydraulic fracturing, geologic forecasting, micro-seismicity, and other information.

  7. Investigation of Possible Wellbore Cement Failures During Hydraulic Fracturing Operations

    SciTech Connect

    Kim, Jihoon; Moridis, George

    2014-11-01

    We model and assess the possibility of shear failure, using the Mohr-Coulomb model ? along the vertical well by employing a rigorous coupled flow-geomechanic analysis. To this end, we vary the values of cohesion between the well casing and the surrounding cement to representing different quality levels of the cementing operation (low cohesion corresponds to low-quality cement and/or incomplete cementing). The simulation results show that there is very little fracturing when the cement is of high quality.. Conversely, incomplete cementing and/or weak cement can causes significant shear failure and the evolution of long fractures/cracks along the vertical well. Specifically, low cohesion between the well and cemented areas can cause significant shear failure along the well, but the same cohesion as the cemented zone does not cause shear failure. When the hydraulic fracturing pressure is high, low cohesion of the cement can causes fast propagation of shear failure and of the resulting fracture/crack, but a high-quality cement with no weak zones exhibits limited shear failure that is concentrated near the bottom of the vertical part of the well. Thus, high-quality cement and complete cementing along the vertical well appears to be the strongest protection against shear failure of the wellbore cement and, consequently, against contamination hazards to drinking water aquifers during hydraulic fracturing operations.

  8. Microseismic logging: A new hydraulic fracture diagnostic method

    SciTech Connect

    Mahrer, K.D. )

    1993-03-01

    Hydraulic fracture treatments and fluid injections into fractured wells induce cloud of microseismic sources in the fractured zone. This induced seismicity can last for hours after pumping and pervades the fracture. The source-size population distribution ranges from a countable (50 to 500) number of large, individually distinguishable event to a din of background events. Each source radiates wave motion, which can be recorded only in and near the fracture. A new method uses these motion data, recorded in the cased treatment well, to determine the fracture height and azimuth. The height is found by delineating the location and vertical extent of a spatial anomaly in the background-motion data. The azimuth is derived from the particle-motion polarization of the largest events of the microseismic event population. This paper describes the method, exemplary data sets, theory, and simulations that substantiate this method.

  9. Hydraulic fracturing with chlorine dioxide cleanup

    SciTech Connect

    Williams, D.A.; Newlove, J.C.; Horton, R.L.

    1990-10-23

    This patent describes a method for fracturing a subterranean formation penetrated by a wellbore. It comprises: injecting a fracturing fluid into the formation to form a vertical fracture therein, the fracturing fluid being gelled with a polymer selected from guar, guar derivatives, acrylamide, acrylamide derivatives, cellulose, cellulose derivatives, and mixtures thereof and crosslinked with an organometallic crosslinking compound and having temperature stability above about 175{degrees} F.; packing the fracture with particulate propping agent; backflowing fluids from the formation through the propped fracture to remove a portion of the polymer; injecting at matrix rates sufficient aqueous solution of chlorine dioxide down the wellbore and into the propped fracture to penetrate at least 60 feet of the propped fracture length and contact polymer in the fracturing fluid and polymer residue in the propped fracture and on the fracture walls, the amount of the chlorine dioxide in the aqueous medium being sufficient to degrade polymer in the fracturing fluid and polymer residue; permitting the chlorine dioxide to remain in contact with the polymer in the fracturing fluid and with the polymer residue on the fracture walls and in the fracture for sufficient time to degrade the polymer thereby reducing the fracturing fluid viscosity and dissolving portions of the polymer residue; and flowing formation fluid from the formation through the propped fracture and into the wellbore to remove substantial portions of the polymer and degraded polymer from the fracture.

  10. Hydraulic fracturing in tight, fissured media

    SciTech Connect

    Warpinski, N.R. )

    1991-02-01

    Large volumes of natural gas are found in tight, fissured reservoirs. Hydraulic fracturing can enhance recovery, but many complications, such as pressure-sensitive or accelerated leakoff, damage, and complex fracturing, arise during treatment of such reservoirs. This paper reports that special procedures generally should be considered during breakdown and fracturing of these reservoirs. In addition, the use of alternative stimulation strategies may be beneficial.

  11. Hydraulic fracturing slurry transport in horizontal pipes

    SciTech Connect

    Shah, S.N.; Lord, D.L. )

    1990-09-01

    Horizontal-well activity has increased throughout the industry in the past few years. To design a successful hydraulic fracturing treatment for horizontal wells, accurate information on the transport properties of slurry in horizontal pipe is required. Limited information exists that can be used to estimate critical deposition and resuspension velocities when proppants are transported in horizontal wells with non-Newtonian fracturing gels. This paper presents a study of transport properties of various hydraulic fracturing slurries in horizontal pipes. Flow data are gathered in three transparent horizontal pipes with different diameters. Linear and crosslinked fracturing gels were studied, and the effects of variables--e.g., pipe size; polymer-gelling-agent concentration; fluid rheological properties; crosslinking effects; proppant size, density, and concentrations; fluid density; and slurry pump rate--on critical deposition and resuspension velocities were investigated. Also, equations to estimate the critical deposition and resuspension velocities of fracturing gels are provided.

  12. Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures

    SciTech Connect

    Mike L. Laue

    1998-05-29

    This project attempts to demonstrate the effectiveness of exploiting thin-layered, low energy deposits at the distal end of a protruding turbidite complex through use of hydraulically fractured horizontal of high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than conventional vertical wells while maintaining vertical communication between thin interbedded layers and the well bore.

  13. Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures

    SciTech Connect

    Laue, M.L.

    1999-11-01

    This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a prograding turbidite complex through the use of hydraulically fractured horizontal or high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore.

  14. Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures

    SciTech Connect

    Mike L. Laue

    1997-05-08

    This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a propagating turbidite complex through the use of hydraulically-fractured horizontal or high-angle wells. The combination of a horizontal or high-angled well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thininterbedded layers and the well bore.

  15. New proppant for deep hydraulic fracturing

    SciTech Connect

    Underdown, D.R.; Das, K.

    1982-01-01

    Much work has been done in the development and evaluation of various materials for use as proppants for hydraulic fracturing. Sand is most often used as a frac proppant in shallow wells. Deep wells having high closure stresses require a proppant such as sintered bauxite which will not crush under such adverse conditions. Proppants such as ceramic and zirconium oxide beads and resin coated sand have been developed for deep hydraulic fracturing; however, use of these materials has been limited. A new frac proppant has been developed which exhibits the properties necessary for use in deep hydraulic fracturing. This frac proppant is produced by precuring a specially modified phenol-formaldehyde resin onto sand. The new frac proppant maintains conductivity and resists crushing, similar to that of sintered bauxite at high closure stress. 11 references.

  16. Formation stability after hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Papanastasiou, Panos

    1999-12-01

    This paper investigates stress changes resulting from fracturing in a weak formation and estimates the reduced risk of formation failure. The analysis is based on fracture propagation and closure of a plane strain elasto-plastic fracture. It is shown that during fracture propagation the area near the fracture tip undergoes plastic deformation, with the result that the in situ stresses there are significantly reduced from the original compressive state. The stress relief is driven by the reduction of the minimum in situ stress and the consistency condition which requires the stress state to remain on the yield or failure envelope. After fracture closure, due to permanent deformation the stress state does not return to its original state, as in the case of elastic material. The risk of formation failure, which is quantified with the introduction of a yield factor, is significantly reduced after fracturing and closure. The residual width from plastic deformation results in a non-uniform closure stress on proppant with higher values near the tip and lower value near the wellbore which is detrimental to the stability of proppant. The closure stress becomes more uniform with increasing fracture length.

  17. The hydraulic fracturing of geothermal formations

    SciTech Connect

    Naceur, K. Ben; Economides, M.J.; Schlumberger, Dowell

    1988-01-01

    Hydraulic fracturing has been attempted in geothermal formations as a means to stimulate both production and injection wells. Since most geothermal formations contain fissures and on occasion massive natural fissures, the production behavior of the man-made fractures results in certain characteristic trends. A model is offered that allows the presence of a finite or infinite conductivity fracture intercepting a fissured medium. The method is based on a numerical discretization of the formation allowing transient interporosity flow. Type curves for pressure drawdown and cumulative production are given for infinite acting and closed reservoirs. Since most of the fissured formations exhibit a degree of anisotropy, the effects of the orientation of the hydraulic fracture with respect to the fissure planes, and of the ratio between the directional permeabilities are then discussed. Guidelines are offered as to the size of appropriate stimulation treatments based on the observed fissured behavior of the reservoir.

  18. Hydraulic fracturing water use variability in the United States and potential environmental implications

    PubMed Central

    Varela, Brian A.; Haines, Seth S.; Engle, Mark A.

    2015-01-01

    Abstract Until now, up‐to‐date, comprehensive, spatial, national‐scale data on hydraulic fracturing water volumes have been lacking. Water volumes used (injected) to hydraulically fracture over 263,859 oil and gas wells drilled between 2000 and 2014 were compiled and used to create the first U.S. map of hydraulic fracturing water use. Although median annual volumes of 15,275 m3 and 19,425 m3 of water per well was used to hydraulically fracture individual horizontal oil and gas wells, respectively, in 2014, about 42% of wells were actually either vertical or directional, which required less than 2600 m3 water per well. The highest average hydraulic fracturing water usage (10,000−36,620 m3 per well) in watersheds across the United States generally correlated with shale‐gas areas (versus coalbed methane, tight oil, or tight gas) where the greatest proportion of hydraulically fractured wells were horizontally drilled, reflecting that the natural reservoir properties influence water use. This analysis also demonstrates that many oil and gas resources within a given basin are developed using a mix of horizontal, vertical, and some directional wells, explaining why large volume hydraulic fracturing water usage is not widespread. This spatial variability in hydraulic fracturing water use relates to the potential for environmental impacts such as water availability, water quality, wastewater disposal, and possible wastewater injection‐induced earthquakes. PMID:26937056

  19. Hydraulic fracturing water use variability in the United States and potential environmental implications

    USGS Publications Warehouse

    Gallegos, Tanya J.; Varela, Brian A.; Haines, Seth S.; Engle, Mark A.

    2015-01-01

    Until now, up-to-date, comprehensive, spatial, national-scale data on hydraulic fracturing water volumes have been lacking. Water volumes used (injected) to hydraulically fracture over 263,859 oil and gas wells drilled between 2000 and 2014 were compiled and used to create the first U.S. map of hydraulic fracturing water use. Although median annual volumes of 15,275 m3 and 19,425 m3 of water per well was used to hydraulically fracture individual horizontal oil and gas wells, respectively, in 2014, about 42% of wells were actually either vertical or directional, which required less than 2600 m3 water per well. The highest average hydraulic fracturing water usage (10,000−36,620 m3 per well) in watersheds across the United States generally correlated with shale-gas areas (versus coalbed methane, tight oil, or tight gas) where the greatest proportion of hydraulically fractured wells were horizontally drilled, reflecting that the natural reservoir properties influence water use. This analysis also demonstrates that many oil and gas resources within a given basin are developed using a mix of horizontal, vertical, and some directional wells, explaining why large volume hydraulic fracturing water usage is not widespread. This spatial variability in hydraulic fracturing water use relates to the potential for environmental impacts such as water availability, water quality, wastewater disposal, and possible wastewater injection-induced earthquakes.

  20. Hydraulic fracturing water use variability in the United States and potential environmental implications

    NASA Astrophysics Data System (ADS)

    Gallegos, Tanya J.; Varela, Brian A.; Haines, Seth S.; Engle, Mark A.

    2015-07-01

    Until now, up-to-date, comprehensive, spatial, national-scale data on hydraulic fracturing water volumes have been lacking. Water volumes used (injected) to hydraulically fracture over 263,859 oil and gas wells drilled between 2000 and 2014 were compiled and used to create the first U.S. map of hydraulic fracturing water use. Although median annual volumes of 15,275 m3 and 19,425 m3 of water per well was used to hydraulically fracture individual horizontal oil and gas wells, respectively, in 2014, about 42% of wells were actually either vertical or directional, which required less than 2600 m3 water per well. The highest average hydraulic fracturing water usage (10,000-36,620 m3 per well) in watersheds across the United States generally correlated with shale-gas areas (versus coalbed methane, tight oil, or tight gas) where the greatest proportion of hydraulically fractured wells were horizontally drilled, reflecting that the natural reservoir properties influence water use. This analysis also demonstrates that many oil and gas resources within a given basin are developed using a mix of horizontal, vertical, and some directional wells, explaining why large volume hydraulic fracturing water usage is not widespread. This spatial variability in hydraulic fracturing water use relates to the potential for environmental impacts such as water availability, water quality, wastewater disposal, and possible wastewater injection-induced earthquakes.

  1. Laboratory imaging of hydraulic fractures using microseismicity

    NASA Astrophysics Data System (ADS)

    Zeng, Zhengwen

    2002-09-01

    This dissertation starts with an investigation of the industry's needs for future research and development of hydraulic fracturing (HF) technology. Based on the investigation results of a questionnaire answered by some industrial experts, it was found that reliable hydraulic fracturing diagnostic techniques are in need. Further critical review showed that the microseismic method was one of the most promising techniques that needed further development. Developing robust algorithms and software for locating the coordinates of hydraulic fracturing-induced microseismic events, and for simulating the first motion of the induced waveforms were central tasks for this research. In addition, initiation and propagation characteristics of asymmetrical hydraulic fractures were investigated; a recent discovered tight gas sandstone was systematically characterized; a method for measuring Mode-I fracture toughness was upgraded; and the packer influence on the initiation of asymmetrical fractures was numerically simulated. By completing this research, the following contributions have been made: (1) Development of a simplex-based microseismic LOCATION program. This program overcame the shortcoming of ill-conditioning-prone conditions encountered in conventional location programs. (2) Development of a variance-based computer program, ArrTime, to automatically search the first arrival times from the full waveform data points. (3) Development of the first motion simulator of the induced microseismic waveforms. Using this program, the first motion waveform amplitude in any direction at any location induced from seismic sources at an arbitrary location in a known fracturing mode can be calculated. (4) Complete characterization of a newly discovered tight gas formation, the Jackfork sandstone. (5) Upgrade of a core sample-based method for the measurement of fracture toughness. Mode-I fracture toughness of common core samples in any direction can be measured using this method. (6) Discern of the packer influence on HF initiation. It is numerically shown that a properly functioning packer would transfer tensile stress concentrations from the sealed ends to the borehole wall in the maximum principal stress direction. In contrast, a malfunctioning packer would induce tensile stress concentrations at the sealed ends that, in turn, induces transverse fractures. (7) Image of dynamics of the asymmetrical hydraulic fracture initiation and propagation.

  2. Characterizing the dynamic behavior of hydraulically-induced fracture networks associated with hydraulic fracture stimulations (Invited)

    NASA Astrophysics Data System (ADS)

    Urbancic, T.; Baig, A. M.

    2013-12-01

    Seismic Moment Tensor Inversion (SMTI) analysis of microseismicity recorded with multi-well multi-array configurations allows for the potential determination of fracture growth, both spatially and temporally away from a treatment well, as well as the identification of fracture interactions within the reservoir. Based on these analyses, it may be possible to identify the role of pre-existing fracture networks in fracture development as well as, for example, failure type, fracture connectivity, and fracture intensity. Here, we present our observations based on evaluating event sequences associated with multiple injection programs in shale plays throughout North America. In our analysis we identify that, generally, local hydraulically induced variations in the stress-strain field during stimulation result in mixed-mode shear/tensile failures along predominantly pre-existing fractures/joints emplaced during current- and paleo-stress regimes rather than in the creation of new fractures. Away from treatment intervals, failures tend to be dominated by shear and are heavily influenced by the regional stress conditions. Utilizing Hudson plots (k-T), it appears that the fracture process can be further broken down into four types of activity relative to the treatment well and the start of the injection, namely initiation/reactivation of fractures (k ~ 0, double couple dominated), breakout into formation (explosive isotropic), progression of fracture from the treatment well (mostly explosive isotropic), and fracture infill behind the fracture front (decreasing k with treatment time, i.e., explosive to implosive). Breakout events comprised of crack-opening type failures followed by closure events close to the treatment well could be considered to be a canonical fracture, and that the observed behavior can be thought of as the superposition of many of these canonical fractures. Based on our observations, we suggest that by mapping these mechanisms, we can begin to delineate the development of hydraulically-induced fracture networks during hydraulic fracture stimulations and further establish the underlying fracturing process.

  3. Monitoring hydraulic fracturing with seismic emission volume

    NASA Astrophysics Data System (ADS)

    Niu, F.; Tang, Y.; Chen, H.; TAO, K.; Levander, A.

    2014-12-01

    Recent developments in horizontal drilling and hydraulic fracturing have made it possible to access the reservoirs that are not available for massive production in the past. Hydraulic fracturing is designed to enhance rock permeability and reservoir drainage through the creation of fracture networks. Microseismic monitoring has been proven to be an effective and valuable technology to image hydraulic fracture geometry. Based on data acquisition, seismic monitoring techniques have been divided into two categories: downhole and surface monitoring. Surface monitoring is challenging because of the extremely low signal-to-noise ratio of the raw data. We applied the techniques used in earthquake seismology and developed an integrated monitoring system for mapping hydraulic fractures. The system consists of 20 to 30 state-of-the-art broadband seismographs, which are generally about hundreds times more sensible than regular geophones. We have conducted two experiments in two basins with very different geology and formation mechanism in China. In each case, we observed clear microseismic events, which may correspond to the induced seismicity directly associated with fracturing and the triggered ones at pre-existing faults. However, the magnitude of these events is generally larger than magnitude -1, approximately one to two magnitudes larger than those detected by downhole instruments. Spectrum-frequency analysis of the continuous surface recordings indicated high seismic energy associated with injection stages. The seismic energy can be back-projected to a volume that surrounds each injection stage. Imaging seismic emission volume (SEV) appears to be an effective way to map the stimulated reservior volume, as well as natural fractures.

  4. Linking earthquakes and hydraulic fracturing operations

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-01-01

    Hydraulic fracturing, also known as fracking, to extract oil and gas from rock, has been a controversial but increasingly common practice; some studies have linked it to groundwater contamination and induced earthquakes. Scientists discussed several studies on the connection between fracking and earthquakes at the AGU Fall Meeting in San Francisco in December.

  5. Potential of hydraulically induced fractures to communicate with existing wellbores

    NASA Astrophysics Data System (ADS)

    Montague, James A.; Pinder, George F.

    2015-10-01

    The probability that new hydraulically fractured wells drilled within the area of New York underlain by the Marcellus Shale will intersect an existing wellbore is calculated using a statistical model, which incorporates: the depth of a new fracturing well, the vertical growth of induced fractures, and the depths and locations of existing nearby wells. The model first calculates the probability of encountering an existing well in plan view and combines this with the probability of an existing well-being at sufficient depth to intersect the fractured region. Average probability estimates for the entire region of New York underlain by the Marcellus Shale range from 0.00% to 3.45% based upon the input parameters used. The largest contributing parameter on the probability value calculated is the nearby density of wells meaning that due diligence by oil and gas companies during construction in identifying all nearby wells will have the greatest effect in reducing the probability of interwellbore communication.

  6. Particle laden fluids in hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Lecampion, Brice

    2015-11-01

    The aim of hydraulic fracturing is to create a highly conductive pathway in the reservoir formation of interest. This is typically achieved by ``propping'' the created fracture with solid particles (i.e. proppant) in order to prevent complete closure of the created fracture due to in-situ stresses when pumping stops. The placement of proppant is therefore the main goal of any fracturing treatment. It involves a number of interesting fluid dynamics problem (suspensions flow with settling, complex rheologies of the base fluid, effect of the fracture roughness etc.). In this talk, we will review the different class of fluids used to achieve proppant placement in fracture particularly focusing on their widely varied rheological properties. We will also discuss the different flow regimes that are typically encountered during a hydraulic fracturing job. In particular, we will notably present in details how recent advances in our understanding of dense suspensions flow can improve predictions of proppant placement in the Stokesian regime. Second author: Dmtiry Garagash, Dalhousie University.

  7. Proppant rock impairment during hydraulic fracturing

    SciTech Connect

    Roodhart, L.; Kuiper, T.O.; Davies, D.R.

    1986-01-01

    Equipment has been constructed to give a realistic laboratory simulation of the in-situ conditions during and after a hydraulic fracturing treatment of tight gas reservoirs. The equipment measures the permeability of both the 'natural' core material and the proppant pack with gas under in-situ conditions before and after exposure to fracturing fluid. The rate of clean-up of the proppant pack and the core sample is measured after the fracturing fluid has broken. Various fracturing fluids commercially available from the major service companies have been evaluated. Little damage to the proppant/rock interface has been measured but massive damage to the proppant pack was observed. The damage is caused by frac fluid residue, filter cake and non-Darcy flow effects. This damage is observed only in the experiments described above and has not been reported in other, less sophisticated laboratory simulations of the fracturing process. The least damaging of the commercially available products tested has been identified. procedures have been developed for placing ''over-designed'' (or increased conductivity) proppant packs during field hydraulic fracturing treatments. This has resulted in large increases in well productivity during field treatment, and is particularly marked during the early (transient) production phase. It is concluded that there is scope for the development of less damaging fracturing fluids in order to optimise the economics.

  8. Hydraulic fracture model comparison study: Complete results

    SciTech Connect

    Warpinski, N.R.; Abou-Sayed, I.S.; Moschovidis, Z.; Parker, C.

    1993-02-01

    Large quantities of natural gas exist in low permeability reservoirs throughout the US. Characteristics of these reservoirs, however, make production difficult and often economic and stimulation is required. Because of the diversity of application, hydraulic fracture design models must be able to account for widely varying rock properties, reservoir properties, in situ stresses, fracturing fluids, and proppant loads. As a result, fracture simulation has emerged as a highly complex endeavor that must be able to describe many different physical processes. The objective of this study was to develop a comparative study of hydraulic-fracture simulators in order to provide stimulation engineers with the necessary information to make rational decisions on the type of models most suited for their needs. This report compares the fracture modeling results of twelve different simulators, some of them run in different modes for eight separate design cases. Comparisons of length, width, height, net pressure, maximum width at the wellbore, average width at the wellbore, and average width in the fracture have been made, both for the final geometry and as a function of time. For the models in this study, differences in fracture length, height and width are often greater than a factor of two. In addition, several comparisons of the same model with different options show a large variability in model output depending upon the options chosen. Two comparisons were made of the same model run by different companies; in both cases the agreement was good. 41 refs., 54 figs., 83 tabs.

  9. Performance of vertical fractured wells with multiple finite-conductivity fractures

    NASA Astrophysics Data System (ADS)

    Ren, Junjie; Guo, Ping

    2015-12-01

    Multiple fractures originating from a vertical wellbore are usually observed in hydraulic fracturing treatments. Most of the previous models for vertical fractured wells are based on single-planar fractures that may be symmetric or asymmetric about the wellbore, but few studies have been devoted to multiple-planar fractures. This paper presents a new semi-analytical solution in Laplace space for the pressure responses of a vertical fractured well, producing at a constant flow rate through multiple finite-conductivity fractures. The solution is presented in Laplace space so that the effects of the wellbore storage and skin factor can be easily incorporated by Duhamel’s principle, and then the solution in real space can be obtained using the numerical inversion algorithm proposed by Stehfest. Pressure response curves are plotted and the effects of the relevant parameters on these are analyzed. It is found that with the increase of the fracture number, smaller pressure depletion will appear under the same conditions, and the interaction between fractures takes place much earlier and becomes much stronger. We find that with the increase of the fracture number, the duration of the wellbore storage period becomes shorter, and the bilinear flow appears earlier. Decreasing the angles between fractures and increasing the fracture asymmetry coefficient will lead to a stronger interaction between them, and will then affect the bilinear flow and linear flow behaviors. The present model can be used to interpret the pressure data of the vertical fractured wells with multiple fractures and to provide more accurate dynamic parameters.

  10. Uncertainty Analysis of Simulated Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Chen, M.; Sun, Y.; Fu, P.; Carrigan, C. R.; Lu, Z.

    2012-12-01

    Artificial hydraulic fracturing is being used widely to stimulate production of oil, natural gas, and geothermal reservoirs with low natural permeability. Optimization of field design and operation is limited by the incomplete characterization of the reservoir, as well as the complexity of hydrological and geomechanical processes that control the fracturing. Thus, there are a variety of uncertainties associated with the pre-existing fracture distribution, rock mechanics, and hydraulic-fracture engineering that require evaluation of their impact on the optimized design. In this study, a multiple-stage scheme was employed to evaluate the uncertainty. We first define the ranges and distributions of 11 input parameters that characterize the natural fracture topology, in situ stress, geomechanical behavior of the rock matrix and joint interfaces, and pumping operation, to cover a wide spectrum of potential conditions expected for a natural reservoir. These parameters were then sampled 1,000 times in an 11-dimensional parameter space constrained by the specified ranges using the Latin-hypercube method. These 1,000 parameter sets were fed into the fracture simulators, and the outputs were used to construct three designed objective functions, i.e. fracture density, opened fracture length and area density. Using PSUADE, three response surfaces (11-dimensional) of the objective functions were developed and global sensitivity was analyzed to identify the most sensitive parameters for the objective functions representing fracture connectivity, which are critical for sweep efficiency of the recovery process. The second-stage high resolution response surfaces were constructed with dimension reduced to the number of the most sensitive parameters. An additional response surface with respect to the objective function of the fractal dimension for fracture distributions was constructed in this stage. Based on these response surfaces, comprehensive uncertainty analyses were conducted among input parameters and objective functions. In addition, reduced-order emulation models resulting from this analysis can be used for optimal control of hydraulic fracturing. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Micromechanical Aspects of Hydraulic Fracturing Processes

    NASA Astrophysics Data System (ADS)

    Galindo-torres, S. A.; Behraftar, S.; Scheuermann, A.; Li, L.; Williams, D.

    2014-12-01

    A micromechanical model is developed to simulate the hydraulic fracturing process. The model comprises two key components. Firstly, the solid matrix, assumed as a rock mass with pre-fabricated cracks, is represented by an array of bonded particles simulated by the Discrete Element Model (DEM)[1]. The interaction is ruled by the spheropolyhedra method, which was introduced by the authors previously and has been shown to realistically represent many of the features found in fracturing and communition processes. The second component is the fluid, which is modelled by the Lattice Boltzmann Method (LBM). It was recently coupled with the spheropolyhedra by the authors and validated. An advantage of this coupled LBM-DEM model is the control of many of the parameters of the fracturing fluid, such as its viscosity and the injection rate. To the best of the authors' knowledge this is the first application of such a coupled scheme for studying hydraulic fracturing[2]. In this first implementation, results are presented for a two-dimensional situation. Fig. 1 shows one snapshot of the LBM-DEM coupled simulation for the hydraulic fracturing where the elements with broken bonds can be identified and the fracture geometry quantified. The simulation involves a variation of the underground stress, particularly the difference between the two principal components of the stress tensor, to explore the effect on the fracture path. A second study focuses on the fluid viscosity to examine the effect of the time scales of different injection plans on the fracture geometry. The developed tool and the presented results have important implications for future studies of the hydraulic fracturing process and technology. references 1. Galindo-Torres, S.A., et al., Breaking processes in three-dimensional bonded granular materials with general shapes. Computer Physics Communications, 2012. 183(2): p. 266-277. 2. Galindo-Torres, S.A., A coupled Discrete Element Lattice Boltzmann Method for the simulation of fluid-solid interaction with particles of general shapes. Computer Methods in Applied Mechanics and Engineering, 2013. 265(0): p. 107-119.

  12. Hydraulic fracturing in granite under geothermal conditions

    USGS Publications Warehouse

    Solberg, P.; Lockner, D.; Byerlee, J.D.

    1980-01-01

    The experimental hydraulic fracturing of granite under geothermal conditions produces tensile fracture at rapid fluid injection rates and shear fracture at slow injection rates and elevated differential stress levels. A sudden burst of acoustic emission activity accompanies tensile fracture formation whereas the acoustic emission rate increases exponentially prior to shear fracture. Temperature does not significantly affect the failure mechanism, and the experimental results have not demonstrated the occurrence of thermal fracturing. A critical result of these experiments is that fluid injection at intermediate rates and elevated differential stress levels increases permeability by more than an order of magnitude without producing macroscopic fractures, and low-level acoustic emission activity occurs simultaneously near the borehole and propagates outward into the specimen with time. Permeability measurements conducted at atmospheric pressure both before and after these experiments show that increased permeability is produced by permanent structural changes in the rock. Although results of this study have not demonstrated the occurrence of thermal fracturing, they suggest that fluid injection at certain rates in situ may markedly increase local permeability. This could prove critical to increasing the efficiency of heat exchange for geothermal energy extraction from hot dry rock. ?? 1980.

  13. Solving vertical and horizontal well hydraulics problems analytically in Cartesian coordinates with vertical and horizontal anisotropies

    NASA Astrophysics Data System (ADS)

    Batu, Vedat

    2012-01-01

    SummaryA new generalized three-dimensional analytical solution is developed for a partially-penetrating vertical rectangular parallelepiped well screen in a confined aquifer by solving the three-dimensional transient ground water flow differential equation in x- y- z Cartesian coordinates system for drawdown by taking into account the three principal hydraulic conductivities ( Kx, Ky, and Kz) along the x- y- z coordinate directions. The fully penetrating screen case becomes equivalent to the single vertical fracture case of Gringarten and Ramey (1973). It is shown that the new solution and Gringarten and Ramey solution (1973) match very well. Similarly, it is shown that this new solution for a horizontally tiny fully penetrating parallelepiped rectangular parallelepiped screen case match very well with Theis (1935) solution. Moreover, it is also shown that the horizontally tiny partially-penetrating parallelepiped rectangular well screen case of this new solution match very well with Hantush (1964) solution. This new analytical solution can also cover a partially-penetrating horizontal well by representing its screen interval with vertically tiny rectangular parallelepiped. Also the solution takes into account both the vertical anisotropy ( azx = Kz/ Kx) as well as the horizontal anisotropy ( ayx = Ky/ Kx) and has potential application areas to analyze pumping test drawdown data from partially-penetrating vertical and horizontal wells by representing them as tiny rectangular parallelepiped as well as line sources. The solution has also potential application areas for a partially-penetrating parallelepiped rectangular vertical fracture. With this new solution, the horizontal anisotropy ( ayx = Ky/ Kx) in addition to the vertical anisotropy ( azx = Kz/ Kx) can also be determined using observed drawdown data. Most importantly, with this solution, to the knowledge of the author, it has been shown the first time in the literature that some well-known well hydraulics problems can also be solved in Cartesian coordinates with some additional advantages other than the conventional cylindrical coordinates method.

  14. Reactivation of a Propped Hydraulic Fracture

    NASA Astrophysics Data System (ADS)

    Sarvaramini, E.; Garagash, D.

    2014-12-01

    The problem of massive fluid injection into a pre-existing fracture has many applications in petroleum industry including underground liquid waste disposal and waterflooding to increase recovery from a hydrocarbon reservoir. Understanding the conditions leading to the re-activation of pre-existing fractures and ensuing propagation is critical for a successful injection project design, and it may also help to mitigate potential environmental hazards, such as contamination of underground aquifers and induced seismicity. The problem of injection of a low viscosity fluid into a permeable formation can be distinguished from conventional hydraulic fracture by the mechanism of fluid leak-off. In conventional fracturing, high viscosity and cake building properties of injected fluid limit leak-off to a 1-D boundary layer incasing the crack. In the case of injection of low viscosity fluid into a fracture, leak-off and related pore fluid diffusion will take place over wider range of scales, from 1-D to 2 or 3-D. We consider a pre-existing stationary propped hydraulic fracture with constrained height into which a fluid is injected under constant flow rate. Although the net effective stress on the crack is initially compressive, the proppant keeps the crack open. It is worthwhile to note that during injection and related pressurization of a propped crack, the fracture breakdown is to be achieved prior to the fracture re-opening. Therefore, the effect of the change of the propped fracture storage on the pressurization dynamics can be neglected. The objective of this work is to study the transient pressurization and the onset of the propagation for a propped fracture. To the end, we formulate and solve a general problem of injection into a fracture accounting for viscous dissipation (i.e. non-uniform pressure distribution). We quantify how the fracture breakdown condition depends upon the rock and fluid properties, the in-situ stress and the fluid injection rate. We also establish a criterion when the assumption of negligible viscous dissipation is justified. The obtained solution is also transportable to the production well test analysis of a fractured well (Cinco et al., SPE 1978).

  15. Seismic characteristics of tensile fracture growth induced by hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Eaton, D. W. S.; Van der Baan, M.; Boroumand, N.

    2014-12-01

    Hydraulic fracturing is a process of injecting high-pressure slurry into a rockmass to enhance its permeability. Variants of this process are used for unconventional oil and gas development, engineered geothermal systems and block-cave mining; similar processes occur within volcanic systems. Opening of hydraulic fractures is well documented by mineback trials and tiltmeter monitoring and is a physical requirement to accommodate the volume of injected fluid. Numerous microseismic monitoring investigations acquired in the audio-frequency band are interpreted to show a prevalence of shear-dominated failure mechanisms surrounding the tensile fracture. Moreover, the radiated seismic energy in the audio-frequency band appears to be a miniscule fraction (<< 1%) of the net injected energy, i.e., the integral of the product of fluid pressure and injection rate. We use a simple penny-shaped crack model as a predictive framework to describe seismic characteristics of tensile opening during hydraulic fracturing. This model provides a useful scaling relation that links seismic moment to effective fluid pressure within the crack. Based on downhole recordings corrected for attenuation, a significant fraction of observed microseismic events are characterized by S/P amplitude ratio < 5. Despite the relatively small aperture of the monitoring arrays, which precludes both full moment-tensor analysis and definitive identification of nodal planes or axes, this ratio provides a strong indication that observed microseismic source mechanisms have a component of tensile failure. In addition, we find some instances of periodic spectral notches that can be explained by an opening/closing failure mechanism, in which fracture propagation outpaces fluid velocity within the crack. Finally, aseismic growth of tensile fractures may be indicative of a scenario in which injected energy is consumed to create new fracture surfaces. Taken together, our observations and modeling provide evidence that failure mechanisms documented by passive monitoring of hydraulic fractures may contain a significant component of tensile failure, including fracture opening and closing, although creation of extensive new fracture surfaces may be a seismically inefficient process that radiates at sub-audio frequencies.

  16. Hydraulic Fracturing Return Waters and Legacy Landscapes

    NASA Astrophysics Data System (ADS)

    Bain, D. J.; Michanowicz, A. R.; Ferrar, K. J.

    2010-12-01

    Hydraulic fracturing of gas-bearing shales to enhance recovery is growing increasingly common globally. However, disposal of return water remains a challenge, particularly in humid environments where evapoconcentration potential is limited. Further, return water typical of recent activity in the Marcellus Shale in the eastern United States is substantially saltier relative to other shales where hydraulic fracturing has been employed. This presentation explores scenarios of both traditional return water disposal and accidental releases of return water to fluvial systems using simple exchange modeling, with particular attention to conditions in landscapes typical of Marcellus country. That is, these simulations will incorporate a historic context, acknowledging decades of coal extraction from surface and sub-surface mines and energy production via combustion of said coal. The interactions between “naturally attenuated” historic contamination and rapidly changing water chemistry are critical to accurate risk assessment in this uncertain environment.

  17. Rheological characterization of hydraulic fracturing slurries

    SciTech Connect

    Shah, S.N. . Research and Engineering Dept.)

    1993-05-01

    Few studies have dealt with the flow behavior of concentrated suspensions or slurries prepared with non-Newtonian carrier fluids. Therefore, the purpose of this investigation is to present experimental results obtained by pumping various hydraulic fracturing slurries into a fracture model and gathering data on differential pressure vs. flow rate. Several concentrations of hydroxypropyl guard (HPG), a wide range of proppant concentrations, and three test temperatures were studies. The effects of such variables as polymer gelling-agent concentration, proppant concentration, test temperature, and fracture-flow shear rate on the rheological properties of slurries were investigated. The correlations for predicting the relative slurry viscosity for these HPG fluids are presented. Substantial increases in viscosity of fracturing gels were observed, and results are discussed in light of several affecting variables. Results also are compared with those available for Newtonian and non-Newtonian concentrated suspensions. Applications of these correlations to estimate the hindered particle-settling velocity in the fracture caused by the presence of surrounding particles also is discussed. The correlations presented can easily be included in any currently available 2D or 3D fracture-design simulators; thus, the information can be applied directly to predict fracture geometry and extension.

  18. New groups focus on hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-04-01

    The Scientific Advisory Board of the U.S. Environmental Protection Agency (EPA) has formed a 31-member expert panel to conduct a peer review of the agency's upcoming draft report on the potential effects of hydraulic fracturing on drinking water resources, EPA announced on 24 March. Panel members include experts in a number of areas, including petroleum/natural gas engineering, geology/geophysics, and waste water and drinking water treatment.

  19. Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures

    SciTech Connect

    Mike L. Laue

    1997-05-30

    The distal fan margin in the northeast portion of the Yowlumne field contains significant reserves but is not economical to develop using vertical wells. Numerous interbedded shales and deteriorating rock properties limit producibility. In addition, extreme depths (13,000 ft) present a challenging environment for hydraulic fracturing and artificial lift. Lastly, a mature waterflood increases risk because of the uncertainty with size and location of flood fronts. This project attempts to demonstrate the effectiveness of exploiting the distal fan margin of this slope-basin clastic reservoir through the use of a high-angle well completed with multiple hydraulic-fracture treatments. The combination of a high-angle (or horizontal) well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three vertical wells are anticipated at one-half to two-thirds the cost.

  20. Influence of Rock Fabric on Hydraulic Fracture Propagation: Laboratory Study

    NASA Astrophysics Data System (ADS)

    Stanchits, S. A.; Desroches, J.; Burghardt, J.; Surdi, A.; Whitney, N.

    2014-12-01

    Massive hydraulic fracturing is required for commercial gas production from unconventional reservoirs. These reservoirs are often highly fractured and heterogeneous, which may cause significant fracture complexity and also arrest propagation of hydraulic fractures, leading to production decrease. One of the goals of our study was to investigate the influence of rock fabric features on near-wellbore fracture geometry and complexity. We performed a series of laboratory tests on Niobrara outcrop shale blocks with dimensions of 30 x 30 x 36 inches in a true-triaxial loading frame. Acoustic Emission (AE) technique was applied to monitor hydraulic fracture initiation and dynamics of fracture propagation. After the tests, the shape of the created hydraulic fracture was mapped by goniometry technique. To estimate fracture aperture, particles of different sizes were injected with fracturing fluid. In all tests, AE analysis indicated hydraulic fracture initiation prior to breakdown or the maximum of wellbore pressure. In most tests, AE analysis revealed asymmetrical hydraulic fracture shapes. Post-test analysis demonstrated good correspondence of AE results with the actual 3D shape of the fracture surface map. AE analysis confirmed that in some of these tests, the hydraulic fracture approached one face of the block before the maximum wellbore pressure had been reached. We have found that in such cases the propagation of hydraulic fracture in the opposite direction was arrested by the presence of mineralized interfaces. Mapping the distribution of injected particles confirmed the creation of a narrow-width aperture in the vicinity of pre-existing interfaces, restricting fracture conductivity. Based on the results of our study, we concluded that the presence of planes of weakness, such as mineralized natural fractures, can result in the arrest of hydraulic fracture propagation, or in poor fracture geometries with limited aperture, that in turn could lead to high net pressure and low fracture conductivity, restricted proppant delivery, and decreased production.

  1. Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures

    SciTech Connect

    Mike L. Laue

    1998-02-05

    This project attempts to demonstrate the effectivensss of exploiting thin-layered, low energy deposits at the distal margin of a propagating turbinite complex through u se of hydraulically fractgured horizontal of high-angle wells. TGhe combinaton of a horizontal or high-angle weoo and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore.

  2. Phenomenological approach to simulating hydraulic fracturing of a stratum

    NASA Astrophysics Data System (ADS)

    Pen'kovskii, V. I.; Korsakova, N. K.

    2015-09-01

    A mathematical model for hydraulic fracturing is proposed. The model is based on the presentation of the fractured portion of the stratum adjacent to the well as a heterogeneous fractured porous medium. Assumptions usually used in the theory of elastic flow are applied. Formulas for determining the size of the hydraulic fracturing zone and the degree of fracture opening under conditions of relative equilibrium are derived.

  3. Potential contaminant pathways from hydraulically fractured shale to aquifers.

    PubMed

    Myers, Tom

    2012-01-01

    Hydraulic fracturing of deep shale beds to develop natural gas has caused concern regarding the potential for various forms of water pollution. Two potential pathways-advective transport through bulk media and preferential flow through fractures-could allow the transport of contaminants from the fractured shale to aquifers. There is substantial geologic evidence that natural vertical flow drives contaminants, mostly brine, to near the surface from deep evaporite sources. Interpretative modeling shows that advective transport could require up to tens of thousands of years to move contaminants to the surface, but also that fracking the shale could reduce that transport time to tens or hundreds of years. Conductive faults or fracture zones, as found throughout the Marcellus shale region, could reduce the travel time further. Injection of up to 15,000,000 L of fluid into the shale generates high pressure at the well, which decreases with distance from the well and with time after injection as the fluid advects through the shale. The advection displaces native fluids, mostly brine, and fractures the bulk media widening existing fractures. Simulated pressure returns to pre-injection levels in about 300 d. The overall system requires from 3 to 6 years to reach a new equilibrium reflecting the significant changes caused by fracking the shale, which could allow advective transport to aquifers in less than 10 years. The rapid expansion of hydraulic fracturing requires that monitoring systems be employed to track the movement of contaminants and that gas wells have a reasonable offset from faults. PMID:22509908

  4. Description and analysis of cored hydraulic fractures -- Lost Hills field, Kern County, California

    SciTech Connect

    Fast, R.E.; Murer, A.S.; Timmer, R.S. )

    1994-05-01

    An inclined observation well was drilled in shallow (2,000 ft) Opal-A diatomite. Seven sand-propped hydraulic fractures were cored and recovered. The hydraulic fractures were found within 5[degree] of the azimuth measured with tilt meters and were tilted 15[degree] from vertical, oriented perpendicular to the formation bedding dip. Hydraulic fractures widths ranged from less than one sand grain (40/60 mesh) to 0.4 in. Scanning electron microscopy (SEM) examination of fracture faces showed no damage to the matrix from proppant embedment or compaction, and no evidence of guard residue was detected in the proppant pack or on the formation face. Fractures appear to be considerably longer than modeled. Three closely spaced fractures are interpreted to be branches of a single hydraulic fracture treatment. This paper presents a description of the fractures recovered during coring in Well OO2. Findings related to fracture dimensions and orientations, fracture sources, fracture permeability measurements, and fracture characteristics (proppant embedment, presence of gel residue) are presented. Implications related to field development are discussed.

  5. Microseismic signatures of hydraulic fracture growth in sediment formations: Observations and modeling

    NASA Astrophysics Data System (ADS)

    Fischer, T.; Hainzl, S.; Eisner, L.; Shapiro, S. A.; Le Calvez, J.

    2008-02-01

    We analyzed a microseismic data set from hydraulic fracture stimulation of the gas field in west Texas. We used an automated wave-picking algorithm and obtained a high-density image of induced microseismic events accompanying the hydraulic fracture growth. The microseismic locations delineated a planar fracture growing predominantly in the horizontal direction; the vertical growth was limited by shale layers. A strongly asymmetric fracture with a twice longer eastern wing containing 80% of the located events was observed. Owing to the planarity of the microseismic cloud, it was possible to reduce the location problem to two dimensions and to use only S waves for event localization. Thus, because of the larger amplitudes of S waves, a fourfold increase in the number of located events was achieved. We find that the length of the hydraulic fracture increased, for different depth intervals, both linear and nonlinear in time. We use hydraulic fracture models to explain the spreading of the microseismic front, whose nonlinear time dependence could indicate either a diffusive fluid flow or a two-dimensional growth of the hydraulic fracture. By the maximum-likelihood fitting of the observed fracture growth and by inverting for its parameters, we find that the fracture was 7-10 mm wide and that nearly the whole injected volume was used for creating the new fracture, that is a negligible diffusive infiltration of the injected fluid into the reservoir rock occurred.

  6. Fracture size scaling of hydraulic fracture stimulations in shale reservoirs

    NASA Astrophysics Data System (ADS)

    Urbancic, T.; Baig, A. M.

    2014-12-01

    It is becoming widely evident that hydraulic fracture stimulations in shale reservoirs can result in the generation of events with magnitudes M>0. These events are of concern both to the public as potential geo-hazards possibly affecting groundwater conditions and surface infra-structure, and to engineers for optimizing productivity and engineering design. Typically, in these environments, recording bandwidth limitations has resulted in a bias towards the consideration of events with M<0. This in turn has limited the observable fracture sizes to those constrained within lithological units. By extending the recording bandwidth to lower frequencies, the dimensions of the observable fractures are also extended to include larger fractures/faults activated during the stimulation. Our observations suggest that these larger-scale events can contribute upwards of 80% of the overall seismic budget or energy release associated with the stimulation process. Effective analysis of scaling relations independent of recording further suggests that breakdowns in scaling can be related to the presence of barriers to growth such as contrasts in rock properties associated with different lithological units. Generally, detected larger-magnitude events are associated with smaller-magnitude events, M<0, suggesting that these latter events can be used to characterize aspects of the rupture process whereas their associated signals observed with the low-frequency network can be used to characterize the overall fracture/fault behavior. By accounting for the presence of larger events, additional activated fracture surface area within the reservoir results in a significant increase in surface area. In an example provided, these events account for a further ~10 km2 of additional activated fracture surface area than estimated based on only utilizing high-frequency band-limited recordings. Overall, the identification of the actual discrete fracture network over many size scales allows for a better understanding of the fracturing processes and size scaling associated with stimulations and their impact on production.

  7. Application of the acoustic televiewer to the characterization of hydraulic fractures in geothermal wells

    SciTech Connect

    Keys, W.S.; Crichlow, H.B.

    1980-02-07

    Two wells in the Raft River geothermal reservoir, Idaho, were hydraulically fractured in an attempt to increase productivity. The US Geological Survey made geophysical logs of these wells both before and after fracturing. A high temperature version of the acoustic televiewer was the most useful tool for obtaining data on the location, orientation, and character of the fractures produced. In RR-4 (Raft River well 4), a hydraulic fracture was logged with the televiewer from a depth of 4682.5 to 4873.9 feet, a total of 191.4 feet. This fracture was largely due to the propping and possible extending of a previously logged fracture which is thought to have been accidentally induced during drilling or testing. The fracture is essentially vertical, strikes an average of N. 72 degrees E., and has an average apparent maximum width of 0.4 inch. The fracture is complex, branching, or en echelon, and in one place curves to parallel a natural fracture. In RR-5 (Raft River well 5), a new hydraulic fracture was logged from a depth of 4562 feet to approximately 4705 feet, a vertical extent of approximately 143 feet. There is no evidence that this fracture follows a pre-existing break except for intervals where the orientation is affected by natural fractures. The hydraulic fracture is nearly vertical, strikes an average of N. 29 degrees E., and has an average apparent maxmum width of 0.6 inch. The character of this fracture is apparently affected by a change in lithology.

  8. Prop transport in vertical fractures

    SciTech Connect

    Clark, P.E.; Manning, F.S.; Quadir, J.A.; Guler, N.

    1981-01-01

    The settling velocity of particles falling through a fracturing fluid determines, in part, the final distribution of propping agent in a fracture. In this study, two different experimental models have been used to obtain particle settling data. One model consists of a parallel plate apparatus in which the shear on the fluid is provided by a moving belt and the other consists of a concentric cylinder device. Data from each device are reported. Initial results from each method have been found to be comparable. A comparison of the experimental settling velocities with settling velocities calculated by Stokes' Law are also presented. 17 refs.

  9. Vertical root fractures and their management

    PubMed Central

    Khasnis, Sandhya Anand; Kidiyoor, Krishnamurthy Haridas; Patil, Anand Basavaraj; Kenganal, Smita Basavaraj

    2014-01-01

    Vertical root fractures associated with endodontically treated teeth and less commonly in vital teeth represent one of the most difficult clinical problems to diagnose and treat. In as much as there are no specific symptoms, diagnosis can be difficult. Clinical detection of this condition by endodontists is becoming more frequent, where as it is rather underestimated by the general practitioners. Since, vertical root fractures almost exclusively involve endodontically treated teeth; it often becomes difficult to differentiate a tooth with this condition from an endodontically failed one or one with concomitant periodontal involvement. Also, a tooth diagnosed for vertical root fracture is usually extracted, though attempts to reunite fractured root have been done in various studies with varying success rates. Early detection of a fractured root and extraction of the tooth maintain the integrity of alveolar bone for placement of an implant. Cone beam computed tomography has been shown to be very accurate in this regard. This article focuses on the diagnostic and treatment strategies, and discusses about predisposing factors which can be useful in the prevention of vertical root fractures. PMID:24778502

  10. Coupling Hydraulic Fracturing Propagation and Gas Well Performance for Simulation of Production in Unconventional Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, C.; Winterfeld, P. H.; Wu, Y. S.; Wang, Y.; Chen, D.; Yin, C.; Pan, Z.

    2014-12-01

    Hydraulic fracturing combined with horizontal drilling has made it possible to economically produce natural gas from unconventional shale gas reservoirs. An efficient methodology for evaluating hydraulic fracturing operation parameters, such as fluid and proppant properties, injection rates, and wellhead pressure, is essential for the evaluation and efficient design of these processes. Traditional numerical evaluation and optimization approaches are usually based on simulated fracture properties such as the fracture area. In our opinion, a methodology based on simulated production data is better, because production is the goal of hydraulic fracturing and we can calibrate this approach with production data that is already known. This numerical methodology requires a fully-coupled hydraulic fracture propagation and multi-phase flow model. In this paper, we present a general fully-coupled numerical framework to simulate hydraulic fracturing and post-fracture gas well performance. This three-dimensional, multi-phase simulator focuses on: (1) fracture width increase and fracture propagation that occurs as slurry is injected into the fracture, (2) erosion caused by fracture fluids and leakoff, (3) proppant subsidence and flowback, and (4) multi-phase fluid flow through various-scaled anisotropic natural and man-made fractures. Mathematical and numerical details on how to fully couple the fracture propagation and fluid flow parts are discussed. Hydraulic fracturing and production operation parameters, and properties of the reservoir, fluids, and proppants, are taken into account. The well may be horizontal, vertical, or deviated, as well as open-hole or cemented. The simulator is verified based on benchmarks from the literature and we show its application by simulating fracture network (hydraulic and natural fractures) propagation and production data history matching of a field in China. We also conduct a series of real-data modeling studies with different combinations of hydraulic fracturing parameters and present the methodology to design these operations with feedback of simulated production data. The unified model aids in the optimization of hydraulic fracturing design, operations, and production.

  11. Experimental Investigation into Hydraulic Fracture Network Propagation in Gas Shales Using CT Scanning Technology

    NASA Astrophysics Data System (ADS)

    Yushi, Zou; Shicheng, Zhang; Tong, Zhou; Xiang, Zhou; Tiankui, Guo

    2016-01-01

    Multistage fracturing of the horizontal well is recognized as the main stimulation technology for shale gas development. The hydraulic fracture geometry and stimulated reservoir volume (SRV) is interpreted by using the microseismic mapping technology. In this paper, we used a computerized tomography (CT) scanning technique to reveal the fracture geometry created in natural bedding-developed shale (cubic block of 30 cm × 30 cm × 30 cm) by laboratory fracturing. Experimental results show that partially opened bedding planes are helpful in increasing fracture complexity in shale. However, they tend to dominate fracture patterns for vertical stress difference Δ σ v ≤ 6 MPa, which decreases the vertical fracture number, resulting in the minimum SRV. A uniformly distributed complex fracture network requires the induced hydraulic fractures that can connect the pre-existing fractures as well as pulverize the continuum rock mass. In typical shale with a narrow (<0.05 mm) and closed natural fracture system, it is likely to create complex fracture for horizontal stress difference Δ σ h ≤ 6 MPa and simple transverse fracture for Δ σ h ≥ 9 MPa. However, high naturally fractured shale with a wide open natural fracture system (>0.1 mm) does not agree with the rule that low Δ σ h is favorable for uniformly creating a complex fracture network in zone. In such case, a moderate Δ σ h from 3 to 6 MPa is favorable for both the growth of new hydraulic fractures and the activation of a natural fracture system. Shale bedding, natural fracture, and geostress are objective formation conditions that we cannot change; we can only maximize the fracture complexity by controlling the engineering design for fluid viscosity, flow rate, and well completion type. Variable flow rate fracturing with low-viscosity slickwater fluid of 2.5 mPa s was proved to be an effective treatment to improve the connectivity of induced hydraulic fracture with pre-existing fractures. Moreover, the simultaneous fracturing can effectively reduce the stress difference and increase the fracture number, making it possible to generate a large-scale complex fracture network, even for high Δ σ h from 6 MPa to 12 MPa.

  12. Interpretation of hydraulic fracture mapping experiments

    SciTech Connect

    Warpinski, N.R.

    1994-12-31

    Simple mechanical models of the response of a reservoir to hydraulic fracturing have been developed in order to interpret the response of microseismic and downhole-tiltmeter diagnostic systems and determine the important reservoir and treatment parameters that influence the response. For microseisms, results of this study can be used to delineate the width of the seismically active zone and possibly distinguish different types of signals. For downhole tiltmeters, the results can be used to interpret the measured tilt response and provide information on height growth, closure pressure and proppant placement.

  13. Hydraulic Fracturing and Drinking Water Resources: Update on EPA Hydraulic Fracturing Study

    EPA Science Inventory

    Natural gas plays a key role in our nation's energy future and the process known as hydraulic fracturing (HF) is one way of accessing that resource. Over the past few years, several key technical, economic, and energy developments have spurred increased use of HF for gas extracti...

  14. Fracture characterization from vertical seismic profiling data

    SciTech Connect

    Cicerone, R.D.; Toksoez, M.N.

    1995-03-10

    In vertical seismic profiling (VSP) data, large-amplitude borehole Stoneley waves are observed at depths where fractures intersect the borehole. The authors present a model which predicts the amplitudes of these Stoneley waves as a function of certain parameters of the fractures, namely, the fracture aperture (width), the orientation, and the degree of stiffness and roughness of the fracture. The proposed mechanism for the generation of these borehole Stoneley waves is coupling of a guided mode, induced in the fracture by an incident plane wave (typically a P wave), to the borehole. The model expresses the borehole Stoneley wave amplitude, normalized by the amplitude of the direct P wave, as a function of frequency, in terms of the fracture parameters. The model is used as the basis for an inversion scheme, employing a nonlinear least squares algorithm to estimate the fracture parameters. The inversion is then applied to VSP data where borehole Stoneley waves are observed at depths where fractures are known to intersect the borehole. The results of the inversion indicate that the aperture and vertical component of the orientation (i.e., dip) of the fracture can be accurately estimated but the horizontal component of the orientation (i.e., strike) is not well resolved. These conclusions are based on comparisons with independent estimates of these parameters from flow tests and borehole televiewer measurements. In addition, stiffness and roughness of the fractures are important effects which must be considered in order to obtain realistic estimates for the other parameters, especially the fracture aperture. 27 refs., 14 figs., 21 tabs.

  15. INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS

    SciTech Connect

    David S. Schechter

    2005-04-27

    This report describes the work performed during the fourth year of the project, ''Investigating of Efficiency Improvements during CO{sub 2} Injection in Hydraulically and Naturally Fractured Reservoirs.'' The objective of this project is to perform unique laboratory experiments with artificially fractured cores (AFCs) and X-ray CT scanner to examine the physical mechanisms of bypassing in hydraulically fractured reservoirs (HFR) and naturally fractured reservoirs (NFR) that eventually result in more efficient CO{sub 2} flooding in heterogeneous or fracture-dominated reservoirs. In Chapter 1, we worked with DOE-RMOTC to investigate fracture properties in the Tensleep Formation at Teapot Dome Naval Reserve as part of their CO{sub 2} sequestration project. In Chapter 2, we continue our investigation to determine the primary oil recovery mechanism in a short vertically fractured core. Finally in Chapter 3, we report our numerical modeling efforts to develop compositional simulator with irregular grid blocks.

  16. Numerical solution of the coefficient inverse problems on nonstationary filtration to a well intersected by a hydraulic fracture

    NASA Astrophysics Data System (ADS)

    Badertdinova, E. R.; Salim'yanov, I. T.; Khairullin, M. Kh.; Shamsiev, M. N.

    2012-05-01

    A computational algorithm is proposed to determine the reservoir and hydraulic fracture properties from the results of nonstationary hydrodynamic studies of vertical wells. The problem of oil flow to a well intersected by a fracture is solved numerically. Averaged permeabilities are used for cells through which the fracture propagates.

  17. Veining Failure and Hydraulic Fracturing in Shales

    NASA Astrophysics Data System (ADS)

    Mighani, S.; Sondergeld, C. H.; Rai, C. S.

    2014-12-01

    During the hydraulic fracturing, the pressurized fluid creates new fractures and reactivates existing natural fractures forming a highly conductive Stimulated Reservoir Volume (SRV) around the borehole. We extend the previous work on Lyons sandstone and pyrophyllite to anisotropic shale from the Wolfcamp formation. We divide the rock anisotropy into two groups: a) conventional and b) unconventional (shaly) anisotropy. X-ray Computed Tomography (CT), compressional velocity anisotropy, and SEM analysis are used to identify three causes of anisotropy: bedding planes, clay lamination, and calcite veins. Calcite vein is a subsequently filled with calcite bonded weakly to the matrix. Velocity anisotropy and visual observations demonstrate the calcite filled veins to be mostly subparallel to the fabric direction. Brazilian tests are carried out to observe the fracture initiation and propagation under tension. High speed photography (frame rate 300,000 frame/sec) was used to capture the failure. Strain gauges and Acoustic Emission (AE) sensors recorded the deformation leading up to and during failure. SEM imaging and surface profilometry were employed to study the post-failure fracture system and failed surface topology. Fracture permeability was measured as a function of effective stress. Brazilian tests on small disks containing a centered single vein revealed the shear strength of the veins. We interpret the strain data and number, frequency, and amplitude of AE events which are correlated well with the observed fracture process zone, surface roughness, and permeability. The unpropped fracture has enhanced permeability by two orders of magnitude. The observed anisotropic tensile failure seems to have a universal trend with a minimum strength occurring at 15o orientation with respect to the loading axis. The veins at 15o orientation with respect to the loading axis were easily activated at 30% of the original failure load. The measured strength of the vein is as low as 6% of the matrix. Surface roughness measurements show the vein to be as rough as the main tensile fracture in the matrix. The observations suggest that fracking through a deviated well reduces the breakdown pressure significantly and can activate a large number of veins with enhanced conductivity without the need for excessive proppant injection.

  18. Analytical Modeling of Shale Hydraulic Fracturing and Gas Production

    NASA Astrophysics Data System (ADS)

    Xu, W.

    2012-12-01

    Shale gas is abundant all over the world. Due to its extremely low permeability, extensive stimulation of a shale reservoir is always required for its economic production. Hydraulic fracturing has been the primary method of shale reservoir stimulation. Consequently the design and optimization of a hydraulic fracturing treatment plays a vital role insuring job success and economic production. Due to the many variables involved and the lack of a simple yet robust tool based on fundamental physics, horizontal well placement and fracturing job designs have to certain degree been a guessing game built on previous trial and error experience. This paper presents a method for hydraulic fracturing design and optimization in these environments. The growth of a complex hydraulic fracture network (HFN) during a fracturing job is equivalently represented by a wiremesh fracturing model (WFM) constructed on the basis of fracture mechanics and mass balance. The model also simulates proppant transport and placement during HFN growth. Results of WFM simulations can then be used as the input into a wiremesh production model (WPM) constructed based on WFM. WPM represents gas flow through the wiremesh HFN by an elliptic flow and the flow of gas in shale matrix by a novel analytical solution accounting for contributions from both free and adsorbed gases stored in the pore space. WPM simulation is validated by testing against numerical simulations using a commercially available reservoir production simulator. Due to the analytical nature of WFM and WPM, both hydraulic fracturing and gas production simulations run very fast on a regular personal computer and are suitable for hydraulic fracturing job design and optimization. A case study is presented to demonstrate how a non-optimized hydraulic fracturing job might have been optimized using WFM and WPM simulations.Fig. 1. Ellipsoidal representation of (a) stimulated reservoir and (b) hydraulic fracture network created by hydraulic fracturing treatment. Fig. 2. Gas flow represented by (a) elliptical flow through fracture network and (b) linear flow within reservoir matrix.

  19. Disclosure of hydraulic fracturing fluid chemical additives: analysis of regulations.

    PubMed

    Maule, Alexis L; Makey, Colleen M; Benson, Eugene B; Burrows, Isaac J; Scammell, Madeleine K

    2013-01-01

    Hydraulic fracturing is used to extract natural gas from shale formations. The process involves injecting into the ground fracturing fluids that contain thousands of gallons of chemical additives. Companies are not mandated by federal regulations to disclose the identities or quantities of chemicals used during hydraulic fracturing operations on private or public lands. States have begun to regulate hydraulic fracturing fluids by mandating chemical disclosure. These laws have shortcomings including nondisclosure of proprietary or "trade secret" mixtures, insufficient penalties for reporting inaccurate or incomplete information, and timelines that allow for after-the-fact reporting. These limitations leave lawmakers, regulators, public safety officers, and the public uninformed and ill-prepared to anticipate and respond to possible environmental and human health hazards associated with hydraulic fracturing fluids. We explore hydraulic fracturing exemptions from federal regulations, as well as current and future efforts to mandate chemical disclosure at the federal and state level. PMID:23552653

  20. [Hydraulic fracturing - a hazard for drinking water?].

    PubMed

    Ewers, U; Gordalla, B; Frimmel, F

    2013-11-01

    Hydraulic fracturing (fracking) is a technique used to release and promote the extraction of natural gas (including shale gas, tight gas, and coal bed methane) from deep natural gas deposits. Among the German public there is great concern with regard to the potential environmental impacts of fracking including the contamination of ground water, the most important source of drinking water in Germany. In the present article the risks of ground water contamination through fracking are discussed. Due to the present safety requirements and the obligatory geological and hydrogeological scrutiny of the underground, which has to be performed prior to fracking, the risk of ground water contamination by fracking can be regarded as very low. The toxicity of chemical additives of fracking fluids is discussed. It is recommended that in the future environmental impact assessment and approval of fracs should be performed by the mining authorities in close cooperation with the water authorities. Furthermore, it is recommended that hydraulic fracturing in the future should be accompanied by obligatory ground water monitoring. PMID:24285158

  1. Experimental study of step-displacement hydraulic fracturing on naturally fractured shale outcrops

    NASA Astrophysics Data System (ADS)

    Cheng, Wan; Jin, Yan; Chen, Mian

    2015-08-01

    Low porosity and permeability make it extremely difficult to develop shale oil and gas reservoirs. The stimulated reservoir volume is believed to have potential to obtain industry production by multi-stage or simultaneous fracturing in horizontal wells. The formation mechanism of network hydraulic fractures in fractured shale reservoirs remains poorly understood. In this article, a true tri-axial hydraulic fracturing system associated acoustic emission monitor was deployed to simulate hydraulic fracturing on shale outcrops. Results showed that the properties of natural fractures (such as aperture, orientation), compared to the viscosity and displacement of the fracturing fluid, affect the propagation direction of hydraulic fractures more predominantly. Each natural fracture in a natural fracture network can independently affect the hydraulic fracture. Low displacement (below the diffusion ability of a reservoir) fracturing tends to connect pre-existing fractures, while high displacement (surpass the diffusion ability of a reservoir) tends to create new fractures. After the breakdown pressure, an increase in injection rate results in more acoustic emission energy and induces new fractures. These results suggest that step-displacement fracturing technology is a possible mechanism to obtain effective fracture networks. Such an understanding would help to avoid unproductive, or sometimes destructive, costly segments of the hydraulic fracturing treatment design.

  2. Analysis of the Influence of a Natural Fracture Network on Hydraulic Fracture Propagation in Carbonate Formations

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyuan; Chen, Mian; Zhang, Guangqing

    2014-03-01

    A new experimental model has been designed to simulate the influence of a natural fracture network on the propagation geometry of hydraulic fractures in naturally fractured formations using a tri-axial fracturing system. In this model, a parallel and symmetrical pre-fracture network was created by placing cement plates in a cubic mold and filling the mold with additional cement to create the final testing block. The surface of the plates will thus be weakly cemented and form pre-fractures. The dimension and direction of the pre-fractures can be controlled using the plates. The experiments showed that the horizontal differential stress and the angle between the maximum horizontal principal in situ stress and the pre-fracture are the dominating factors for the initiation and propagation of hydraulic fractures. For and or and , the direction of the initiation and propagation of the hydraulic fractures are consistent with or deviate from the normal direction of the pre-fracture. When the hydraulic fractures approach the pre-fractures, the direction of the hydraulic fracture propagation will be consistent with the normal direction of the pre-fracture. Otherwise, the hydraulic fracture will deflect and perpendicularly cross the parallel and symmetric pre-fracture network. For and , and or and , before the hydraulic fracture and the pre-fractures intersect, the direction of the hydraulic fracture propagation remains unchanged, and the pre-fractures open or dilate when the hydraulic fracture propagates to the intersection point, forming a complicated hydraulic fracture network with the propagation region of the overall hydraulic fracture network taking the shape of an ellipse. In this condition, the complexity level of the hydraulic fracture is controlled by the net pressure, the compressive normal stress acting on the pre-fractures, the shearing strength and the cohesion strength of the planes of weakness. The conclusions of this research are inconsistent with the formulation of the approach angle that has been widely accepted by previous studies. The principle of hydraulic fracture propagation is that it follows the least resistance, the most preferential propagation, and the shortest propagation path.

  3. 78 FR 55253 - Notification of Public Teleconference of the Hydraulic Fracturing Research Advisory Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-10

    ... AGENCY Notification of Public Teleconference of the Hydraulic Fracturing Research Advisory Panel AGENCY...) Science Advisory Board (SAB) Staff Office announces a public teleconference of the Hydraulic Fracturing... information related to hydraulic fracturing and drinking water resources. DATES: The public...

  4. FEASIBILITY OF HYDRAULIC FRACTURING OF SOILS TO IMPROVE REMEDIAL ACTIONS

    EPA Science Inventory

    Hydraulic fracturing, a technique commonly used to increase the yields of oil wells, could improve the effectiveness of several methods of in situ remediation. This project consisted of laboratory and field tests in which hydraulic fractures were created in soil. Laboratory te...

  5. Hydraulic fracture height limits and fault interactions in tight oil and gas formations

    NASA Astrophysics Data System (ADS)

    Flewelling, Samuel A.; Tymchak, Matthew P.; Warpinski, Norm

    2013-07-01

    widespread use of hydraulic fracturing (HF) has raised concerns about potential upward migration of HF fluid and brine via induced fractures and faults. We developed a relationship that predicts maximum fracture height as a function of HF fluid volume. These predictions generally bound the vertical extent of microseismicity from over 12,000 HF stimulations across North America. All microseismic events were less than 600 m above well perforations, although most were much closer. Areas of shear displacement (including faults) estimated from microseismic data were comparatively small (radii on the order of 10 m or less). These findings suggest that fracture heights are limited by HF fluid volume regardless of whether the fluid interacts with faults. Direct hydraulic communication between tight formations and shallow groundwater via induced fractures and faults is not a realistic expectation based on the limitations on fracture height growth and potential fault slip.

  6. Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells Multiple Hydraulic Fractures

    SciTech Connect

    Mike L. Laue

    1997-10-30

    This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a prograding turbidite complex through the use of hydraulically fractured horizontal or high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. A high-angle well will be drilled in the fan-margin portion of a slope-basin clastic reservoir and will be completed with multiple hydraulic-fracture treatments. Geologic modeling, reservoir characterization, and fine-grid reservoir simulation will be used to select the well location and orientation. Design parameters for the hydraulic-fracture treatments will be determined, in part, by fracturing an existing test well. Fracture azimuth will be predicted by passive seismic monitoring of a fracture-stimulation treatment in the test well using logging tools in an offset well.

  7. A magnetic method for determining the geometry of hydraulic fractures

    USGS Publications Warehouse

    Byerlee, J.D.; Johnston, M.J.S.

    1976-01-01

    We propose a method that may be used to determine the spatial orientation of the fracture plane developed during hydraulic fracture. In the method, magnetic particles are injected into the crack with the fracturing fluid so as to generate a sheet of magnetized material. Since the magnetization of a body with extreme dimension ratios, such as a crack, exceeds that of an equidimensional body and since this magnetization is sensitive both to orientation and geometry, this could be used to obtain information about the crack. By measuring the vertical and horizontal components of the magnetic field and field gradients at the earth's surface surrounding the injection well with superconducting magnetometers having 10-4 gamma sensitivity and also by measuring field direction within the well itself, it should be possible to calculate the orientation and perhaps infer the approximate geometry of the fracture surface. Experiments on electric field potential operated in conjunction with this experiment could further constrain estimates of shape and orientation. ?? 1976 Birkha??user Verlag.

  8. Subcritical growth of natural hydraulic fractures

    NASA Astrophysics Data System (ADS)

    Garagash, D.

    2014-12-01

    Joints are the most common example of brittle tensile failure in the crust. Their genesis at depth is linked to the natural hydraulic fracturing, which requires pore fluid pressure in excess of the minimum in situ stress [Pollard and Aidyn, JSG1988]. Depending on the geological setting, high pore pressure can result form burial compaction of interbedded strata, diagenesis, or tectonics. Common to these loading scenarios is slow build-up of pore pressure over a geological timescale, until conditions for initiation of crack growth are met on favorably oriented/sized flaws. The flaws can vary in size from grain-size cracks in igneous rocks to a fossil-size flaws in clastic rock, and once activated, are inferred to propagate mostly subcritically [Segall JGR 1984; Olson JGR 1993]. Despite many observational studies of natural hydraulic fractures, the modeling attempts appear to be few [Renshaw and Harvey JGR 1994]. Here, we use boundary integral formulation for the pore fluid inflow from the permeable rock into a propagating joint [Berchenko et al. IJRMMS 1997] coupled with the criteria for subcritical propagation assisted by the environmental effects of pore fluid at the crack tip to solve for the evolution of a penny-shape joint, which, in interbedded rock, may eventually evolve to short-blade geometry (propagation confined to a bed). Initial growth is exceedingly slow, paced by the stress corrosion reaction kinetics at the crack tip. During this stage the crack is fully-drained (i.e. the fluid pressure in the crack is equilibrated with the ambient pore pressure). This "slow" stage is followed by a rapid acceleration, driven by the increase of the mechanical stress intensity factor with the crack length, towards the terminal joint velocity. We provide an analytical expression for the latter as a function of the rock diffusivity, net pressure loading at the initiation (or flaw lengthscale), and parameters describing resistance to fracture growth. Due to a much slower rate of the crack volume expansion of short-blade joints compared to that of penny-shape joints, the former would propagate much faster than the latter under otherwise identical conditions. Finally, we speculate about possible relation of the predicted patterns of joint development with morphology of joint fracture surfaces observed in sedimentary rock.

  9. High Speed Strain Measurements Surrounding Hydraulic Fracture in Brittle Hydrogel

    NASA Astrophysics Data System (ADS)

    Steinhardt, Will; Rubinstein, Shmuel

    2015-11-01

    Hydraulic fractures of oil and gas shales occur miles underground, below complex, layered rocks, making measurements of their dynamics, extent, or structure difficult to impossible. Rocks are heterogeneous at a wide range of length scales, and investigating how these non-uniformities affect the propagation and extent of fractures is vital to improving both the safety and efficiency of hydraulic fracturing operations. To study these effects we have developed a model system using brittle, heavily cross-linked hydrogels that we can fracture with fluids and observe with a fast camera. By embedding tracer particles within the gel and using laser sheet microscopy, we obtain three dimensional stress and strain maps of the zone surrounding a hydraulic fracture tip. Gels can also be set in layers or interfaces with tunable strengths or with designed heterogeneities, allowing us to understand the fundamental science of hydraulic fractures and investigate the dynamics of controllably complex materials.

  10. Public health and high volume hydraulic fracturing.

    PubMed

    Korfmacher, Katrina Smith; Jones, Walter A; Malone, Samantha L; Vinci, Leon F

    2013-01-01

    High-volume horizontal hydraulic fracturing (HVHF) in unconventional gas reserves has vastly increased the potential for domestic natural gas production. HVHF has been promoted as a way to decrease dependence on foreign energy sources, replace dirtier energy sources like coal, and generate economic development. At the same time, activities related to expanded HVHF pose potential risks including ground- and surface water contamination, climate change, air pollution, and effects on worker health. HVHF has been largely approached as an issue of energy economics and environmental regulation, but it also has significant implications for public health. We argue that public health provides an important perspective on policymaking in this arena. The American Public Health Association (APHA) recently adopted a policy position for involvement of public health professionals in this issue. Building on that foundation, this commentary lays out a set of five perspectives that guide how public health can contribute to this conversation. PMID:23552646

  11. Advanced hydraulic fracturing methods to create in situ reactive barriers

    SciTech Connect

    Murdoch, L. |; Siegrist, B.; Meiggs, T.

    1997-12-31

    This article describes the use of hydraulic fracturing to increase permeability in geologic formations where in-situ remedial action of contaminant plumes will be performed. Several in-situ treatment strategies are discussed including the use of hydraulic fracturing to create in situ redox zones for treatment of organics and inorganics. Hydraulic fracturing methods offer a mechanism for the in-situ treatment of gently dipping layers of reactive compounds. Specialized methods using real-time monitoring and a high-energy jet during fracturing allow the form of the fracture to be influenced, such as creation of assymmetric fractures beneath potential sources (i.e. tanks, pits, buildings) that should not be penetrated by boring. Some examples of field applications of this technique such as creating fractures filled with zero-valent iron to reductively dechlorinate halogenated hydrocarbons, and the use of granular activated carbon to adsorb compounds are discussed.

  12. Studies investigate effects of hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-11-01

    The use of hydraulic fracturing, also known as fracking, to enhance the retrieval of natural gas from shale has been increasing dramatically—the number of natural gas wells rose about 50% since 2000. Shale gas has been hailed as a relatively low-cost, abundant energy source that is cleaner than coal. However, fracking involves injecting large volumes of water, sand, and chemicals into deep shale gas reservoirs under high pressure to open fractures through which the gas can travel, and the process has generated much controversy. The popular press, advocacy organizations, and the documentary film Gasland by Josh Fox have helped bring this issue to a broad audience. Many have suggested that fracking has resulted in contaminated drinking water supplies, enhanced seismic activity, demands for large quantities of water that compete with other uses, and challenges in managing large volumes of resulting wastewater. As demand for expanded domestic energy production intensifies, there is potential for substantially increased use of fracking together with other recovery techniques for "unconventional gas resources," like extended horizontal drilling.

  13. New fluids help increase effectiveness of hydraulic fracturing

    SciTech Connect

    Ebinger, C.D.; Hunt, E.

    1989-06-05

    It is important to choose the most effective fluid for hydraulic fracturing a particular formation. Fracturing fluids are used to initiate formation parting, extend the fracture into the reservoir, and to transport and distribute proppant. This paper discusses the fundamental of fluid types, viscosifiers, and fluid rheology.

  14. Hydraulic Fracturing of Heterogeneous Rock Monitored by Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Stanchits, Sergey; Burghardt, Jeffrey; Surdi, Aniket

    2015-11-01

    In this paper, the results of laboratory studies of hydraulic fracture in homogeneous sandstone blocks with man-made interfaces and heterogeneous shale blocks with weak natural interfaces are reported. Tests were conducted under similar stress conditions, with fluids of different viscosity and at different injection rates. The measurements and analysis allows the identification of fracture initiation and behavior. Fracturing with high-viscosity fluids resulted in stable fracture propagation initiated before breakdown, while fracturing with low-viscosity fluids resulted in unstable fracture propagation initiated almost simultaneously with breakdown. Analysis also allows us to measure the fluid volume entering the fracture and the fracture volume. Monitoring of acoustic emission hypocenter localizations, indicates the development of created fractured area including the intersection with interfaces, fluid propagation along interfaces, crossing interfaces, and approaching the boundaries of the block. We observe strong differences in hydraulic fracture behavior, fracture geometry and fracture propagation speed, when fracturing with water and high-viscosity fluids. We also observed distinct differences between sandstone blocks and shale blocks, when a certain P-wave velocity ray path is intersected by the hydraulic fracture. The velocity increases in sandstones and decreases in shale.

  15. In situ stress estimates from hydraulic fracturing and direct observation of crack orientation

    NASA Astrophysics Data System (ADS)

    Warren, William E.; Smith, Carl W.

    1985-07-01

    Estimates of in situ stress in G Tunnel, Rainier Mesa, Nevada Test Site, have been obtained with hydraulic fracturing techniques. This work represents a nontraditional use of hydraulic fracturing in that it was performed primarily in horizontal boreholes drilled into the formation from access drifts tunneled into the mesa rather than the usual operation performed at depth in vertical boreholes drilled from the surface. Several operations were performed in essentially orthogonal triads of boreholes located at a point. A significant feature of this work is the mineback operation in which the borehole is mined out to reveal the actual fracture. During the hydraulic fracturing operation, colored dye was added to the fracturing fluid which left an easily detectable stain on the fracture surface. Direct observation of the fracture orientation away from the borehole establishes the direction of the minimum compressive in situ stress and the plane of the other two principal stresses. In one borehole, which was not aligned along a principal stress direction, a modified mineback operation revealed a fracture plane that twisted as it grew away from the borehole, aligning itself finally in a plane determined by the in situ stresses. This twisting is consistent with theoretical predictions of borehole stresses under these conditions. This same mineback also showed that fracture of the formation initiated at or under one of the packers, indicating that the packers may have an effet on in situ stress estimates. General observations of over 100 tests performed in G Tunnel show that under the sloping portion of the mesa, fracture planes are not vertical but dip in a direction tending to parallel the mesa slope. Deep into the tunnel and well under the flat part of the mesa, fractures are essentially vertical with strikes approximately N45°E, which substantiates the usual vertical fracture assumption in traditional fracture operations performed at depth in vertical boreholes. Advantages, limitations, and problem areas associated with extracting in situ stress fields from hydraulic fracture pressure records are discussed in detail.

  16. Active and passive seismic imaging of a hydraulic fracture in diatomite

    SciTech Connect

    Vinegar, H.J.; Wills, P.B.; De Martini, D.C. )

    1992-01-01

    This paper reports on a comprehensive set of experiments including remote- and treatment-well microseismic monitoring, interwell shear-wave shadowing, and surface tiltmeter arrays, that was used to monitor the growth of a hydraulic fracture in the Belridge diatomite. To obtain accurate measurements, and extensive subsurface network of geophones was cemented spanning the diatomite formation in three closely spaced observation wells around the well to be fracture treated. Data analysis indicates that the minifracture and main hydraulic fracture stimulations resulted in a nearly vertical fracture zone (striking N26{degrees}E) vertically segregated into two separate elements, the uppermost of which grew 60 ft above the perforated interval. The interwell seismic effects are consistent with a side process zone of reduced shear velocity, which remote-well microseismic data independently suggest may be as wide as 40 ft. The experiments indicate complicated processes occurring during hydraulic fracturing that have significant implications for stimulation, waterflooding, in fill drilling, and EOR. These processes are neither well understood nor included in current hydraulic fracture models.

  17. Hydraulic fracture energy budget: Insights from the laboratory

    NASA Astrophysics Data System (ADS)

    Goodfellow, S. D.; Nasseri, M. H. B.; Maxwell, S. C.; Young, R. P.

    2015-05-01

    In this paper we present results from a series of laboratory hydraulic fracture experiments designed to investigate various components of the energy budget. The experiments involved a cylindrical sample of Westerly granite being deformed under various triaxial stress states and fractured with distilled water, which was injected at a range of constant rates. Acoustic emission sensors were absolutely calibrated, and the radiated seismic energy was estimated. The seismic energy was found to range from 7.02E-8% to 1.24E-4% of the injection energy which is consistent with a range of values for induced seismicity from field-scale hydraulic fracture operations. The deformation energy (crack opening) of the sample during hydraulic fracture propagation was measured using displacement sensors and ranged from 18% to 94% of the injection energy. Our results support the conclusion that aseismic deformation is a significant term in the hydraulic fracture energy budget.

  18. Stress measurements in rock salt using hydraulic fracturing

    SciTech Connect

    Wawersik, W.R.; Stone, C.M.

    1986-01-01

    Hydraulic fracturing was applied in horizontal drillholes in the Salado salt formation near Carlsbad, New Mexico. Testing took place approximately 650 m below surface in order to support the design of a Waste Isolation Pilot Plant (WIPP) for the disposal of radioactive waste from defense activities of the United States. Hydraulic fracturing was performed primarily to determine whether the virgin in situ stress state at the WIPP site is isotropic and whether the magnitudes of the the virgin in situ stresses correspond to the weight of the overburden. Beyond these limited objectives, measurements are being analyzed to evaluate the usefulness of hydraulic fracturing in salt formations in general. Such measurements are desirable to determine stresses induced by mining and to monitor time-dependent stress changes around underground excavations in salt masses. Hydraulic fracturing measurements are also relevant to the evaluation of allowable pressures before fracturing is induced in pressurized boreholes and storage caverns.

  19. Estimating the fracture density of small-scale vertical fractures when large-scale vertical fractures are present

    NASA Astrophysics Data System (ADS)

    Liu, Yuwei; Dong, Ning; Fehler, Mike; Fang, Xinding; Liu, Xiwu

    2015-06-01

    Fractures in reservoirs significantly affect reservoir flow properties in subsequent years, which means that fracture characteristics such as preferred orientation, crack density or fracture compliance, what filling is in the fractures and so on are of great importance for reservoir development. When fractures are vertical, aligned and their dimensions are small relative to the seismic wavelength, the medium can be considered to be an equivalent horizontal transverse isotropic (HTI) medium. However, geophysical data acquired over naturally fractured reservoirs often reveal the presence of multiple fracture sets. We investigate a case where there are two vertical sets of fractures having differing length scales. One fracture set has length scale that is much smaller than the seismic wavelength but the other has length scale that is similar to the seismic wavelength. We use synthetic data to investigate the ability to infer the properties of the small-scale fractures in the presence of the large-scale fracture set. We invert for the Thomsen-type anisotropic coefficients of the small-scale fracture set by using the difference of the P wave amplitudes at two azimuths, which makes the inversion convex. Then we investigate the influence of the presence of the large-scale fractures on our ability to infer the properties of the small-scale fracture set. Surprisingly, we find that we can reliably infer the fracture density of the small-scale fractures even in the presence of large-scale fractures having significant compliance values. Although the inversion results for Thomsen-type anisotropic coefficients of small-scale fractures for one model are not good enough to figure out whether it is gas-filled or fluid-filled, we can find a big change of Thomsen-type anisotropic coefficient {{\\varepsilon}(V)} between the models in which small-scale fractures are filled with gas and fluid.

  20. Hydraulic fracturing: paving the way for a sustainable future?

    PubMed

    Chen, Jiangang; Al-Wadei, Mohammed H; Kennedy, Rebekah C M; Terry, Paul D

    2014-01-01

    With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays. In this review, we examined current hydraulic fracturing literature including associated wastewater management on quantity and quality of groundwater. We conclude that proper documentation/reporting systems for wastewater discharge and spills need to be enforced at the federal, state, and industrial level. Furthermore, Underground Injection Control (UIC) requirements under SDWA should be extended to hydraulic fracturing operations regardless if diesel fuel is used as a fracturing fluid or not. One of the biggest barriers that hinder the advancement of our knowledge on the hydraulic fracturing process is the lack of transparency of chemicals used in the practice. Federal laws mandating hydraulic companies to disclose fracturing fluid composition and concentration not only to federal and state regulatory agencies but also to health care professionals would encourage this practice. The full disclosure of fracturing chemicals will allow future research to fill knowledge gaps for a better understanding of the impacts of hydraulic fracturing on human health and the environment. PMID:24790614

  1. Hydraulic Fracturing: Paving the Way for a Sustainable Future?

    PubMed Central

    Chen, Jiangang; Al-Wadei, Mohammed H.; Kennedy, Rebekah C. M.; Terry, Paul D.

    2014-01-01

    With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays. In this review, we examined current hydraulic fracturing literature including associated wastewater management on quantity and quality of groundwater. We conclude that proper documentation/reporting systems for wastewater discharge and spills need to be enforced at the federal, state, and industrial level. Furthermore, Underground Injection Control (UIC) requirements under SDWA should be extended to hydraulic fracturing operations regardless if diesel fuel is used as a fracturing fluid or not. One of the biggest barriers that hinder the advancement of our knowledge on the hydraulic fracturing process is the lack of transparency of chemicals used in the practice. Federal laws mandating hydraulic companies to disclose fracturing fluid composition and concentration not only to federal and state regulatory agencies but also to health care professionals would encourage this practice. The full disclosure of fracturing chemicals will allow future research to fill knowledge gaps for a better understanding of the impacts of hydraulic fracturing on human health and the environment. PMID:24790614

  2. Review of hydraulic fracture mapping using advanced accelerometer-based receiver systems

    SciTech Connect

    Warpinski, N.R.; Uhl, J.E.; Engler, B.P.

    1997-03-01

    Hydraulic fracturing is an important tool for natural gas and oil exploitation, but its optimization has been impeded by an inability to observe how the fracture propagates and what its overall dimensions are. The few experiments in which fractures have been exposed through coring or mineback have shown that hydraulic fractures are complicated multi-stranded structures that may behave much differently than currently predicted by models. It is clear that model validation, fracture optimization, problem identification and solution, and field development have all been encumbered by the absence of any ground truth information on fracture behavior in field applications. The solution to this problem is to develop techniques to image the hydraulic fracture in situ from either the surface, the treatment well, or offset wells. Several diagnostic techniques have been available to assess individual elements of the fracture geometry, but most of these techniques have limitations on their usefulness. For example, tracers and temperature logs can only measure fracture height at the wellbore, well testing and production history matching provide a productive length which may or may not be different from the true fracture length, and tiltmeters can provide accurate information on azimuth and type of fracture (horizontal or vertical), but length and height can only be extracted from a non-unique inversion of the data. However, there is a method, the microseismic technique, which possesses the potential for imaging the entire hydraulic fracture and, more importantly, its growth history. This paper discusses application of advanced technology to the microseismic method in order to provide detailed accurate images of fractures and their growth processes.

  3. Transport efficiency and dynamics of hydraulic fracture networks

    NASA Astrophysics Data System (ADS)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique

    2015-08-01

    Intermittent fluid pulses in the Earth's crust can explain a variety of geological phenomena, for instance the occurrence of hydraulic breccia. Fluid transport in the crust is usually modeled as continuous darcian flow, ignoring that sufficient fluid overpressure can cause hydraulic fractures as fluid pathways with very dynamic behavior. Resulting hydraulic fracture networks are largely self-organized: opening and healing of hydraulic fractures depends on local fluid pressure, which is, in turn, largely controlled by the fracture network. We develop a crustal-scale 2D computer model designed to simulate this process. To focus on the dynamics of the process we chose a setup as simple as possible. Control factors are constant overpressure at a basal fluid source and a constant 'viscous' parameter controlling fracture-healing. Our results indicate that at large healing rates hydraulic fractures are mobile, transporting fluid in intermittent pulses to the surface and displaying a 1/fα behavior. Low healing rates result in stable networks and constant flow. The efficiency of the fluid transport is independent from the closure dynamics of veins or fractures. More important than preexisting fracture networks is the distribution of fluid pressure. A key requirement for dynamic fracture networks is the presence of a fluid pressure gradient.

  4. Abnormal treating pressures in massive hydraulic fracturing treatments

    SciTech Connect

    Medlin, W.L.; Fitch, J.L.

    1988-05-01

    Abnormal treating pressures were observed during massive hydraulic fracturing (MHF) treatments in the Mesa Verde formation of the Piceance basin, CO. Data from three widely separated wells and in several zones per well showed a pressure increase during MHF treatments that the authors call ''pressure growth.'' This pressure growth was at least semipermanent. The elevated instantaneous shut-in pressures (ISIP's) did not return to initial values over periods of several days. The magnitude of this pressure growth is highly variable. When its value is less than about 2,300 psi (15.9 MPa), the MHF treatments are usually completed and results are obtained that are within normal expectations. When its value exceeds 2,300 psi (15.9 MPa), sandout occurs and the fracture length estimated from production data is much less than that calculated with crack propagation models. Temperature logs indicate little or only modest vertical extension of the fractures above the perforations. These data, along with sandouts, point to a large increase in fracture width in response to pressure growth. One possible cause of pressure growth is fracture branching. A multiplicity of branches could produce a plastic-like effect. Laboratory measurements have ruled out plasticity as the cause. The stress/strain behavior of the rock is similar to that of rocks where no pressure growth occurs. Pressure growth seems to depend on both pumping rate and fluid viscosity. Thus, there is some hope for its mitigation through treatment design. Also, pressure growth appears to correlate negatively with pay-zone quality. This suggests that the phenomenon can be exploited as a fluid-diversion technique.

  5. Microseismicity Induced by Hydraulic Fracturing in Oil and Gas Wells

    NASA Astrophysics Data System (ADS)

    Warpinski, N. R.; Maxwell, S.; Waltman, C.

    2006-12-01

    The detection and analysis of microseismicity induced by injection of fluids at high pressure has proved to be an effective technology for monitoring the placement of the fluid in applications such as hydraulic fracture stimulation of oil and gas wells, "shear-dilation" enhancement of hot-dry-rock reservoirs, waterflooding and tertiary recovery processes in oil reservoirs, CO2 injection for sequestration, drill cuttings injection, and many others. Microseismic mapping of hydraulic fractures, in particular, has grown into an extensive industry that provides critical information on many facets of fracture behavior and the overall geometry, with the results showing both expected and unexpected behavior in various tests. These industrial fractures are typically mapped with arrays of downhole tri-axial receivers placed in one or more wells at the reservoir level. With the number of microseismically mapped fractures now exceeding 1,000, numerous observations and inferences about fracture mechanisms can be made. In a large group of reservoirs, the created hydraulic fractures are mostly planar and follow a consistent azimuth. In other reservoirs, such as naturally fractured shales similar to the Barnett shale in the Fort Worth basin, the created fracture is highly dependent on the treatment. In these shale reservoirs, the use of viscous gels results in a mostly planar geometry, but stimulations with high-rate, large-volume "waterfracs" result in network fractures that may exceed 400 m by 1200 m in areal extent. In horizontal wells where several stages of these waterfracs are commonly pumped, the stages are found to often interfere and redirect subsequent stages. In many reservoirs, the heights of the hydraulic fractures have been found to be less than the expected heights based on known or inferred in situ stress contrasts between the reservoir layer and the bounding rocks, suggesting that some properties of the layering are important for limiting height growth. In lenticular sandstones, fractures are commonly observed to follow the sandstone lithologies and migrate upward or downward to remain within the accreted sandstone beds. A number of mapping tests have been performed in environments where the hydraulic fracture has interacted with faults. In such cases, the log-scale relative magnitudes of the events may suddenly increase by two or more. The faults often extend hundreds of meters upward or downward out of zone, or in directions different from the initial hydraulic fracture. Overall, the orientations and dimensions of the mapped fractures are providing the necessary information to optimize field development and improve hydraulic fracture effectiveness. In addition, these tests are providing important clues to help understand the geomechanical conditions of the reservoir and the changes induced by hydraulic fracturing.

  6. Measurement and Analysis of Full-Scale Hydraulic Fracture Initiation and Reorientation

    NASA Astrophysics Data System (ADS)

    Jeffrey, R. G.; Chen, Z. R.; Zhang, X.; Bunger, A. P.; Mills, K. W.

    2015-11-01

    Hydraulic fracture breakdown and reorientation data collected from two instrumented test borehole sites have been analyzed to assess the effect of the initiation type (axial or transverse) on the treating pressure. Vertical boreholes were drilled and fractures were placed in a conglomerate at depths of 140-180 m in a far-field stress field that favored horizontal fracture growth. Axial initiation resulted in high injection pressure, which was attributed to near-borehole tortuosity generated as the hydraulic fracture reoriented to align with the far-field stresses. Acoustic scanner logging of the boreholes after fracturing demonstrated that, in many cases, axial initiation occurred and when this was the case, treating pressures were high and consistent with near-borehole tortuous fracture paths. A fracture initiation analysis determined that initiation at abrasively cut circumferential slots should occur before axial initiation. Slots were cut to locate the initiation sites and to make transverse fracture initiation more likely. Transverse initiation from the vertical boreholes at pre-cut slots lowered the injection pressures during the fracture treatment by up to 12 MPa for water injected at approximately 500 L per minute.

  7. Overview of current hydraulic fracturing design and treatment technology. Part 2

    SciTech Connect

    Veatch, R.V. Jr.

    1983-05-01

    Hydraulic fracturing has played a major role in enhancing petroleum reserves and daily production. The ''typical'' fracturing process consists of blending special chemicals to make the appropriate fracturing fluid, then mixing it with a propping agent (usually sand) and pumping it into the pay zone at sufficiently high rates and pressures that the fluid hydraulically wedges and extends a fracture. At the same time, the fluids carry the proppant deeply into the fracture. When done successfully, the propped open fracture creates a ''superhighway'' for oil and/or gas to flow easily from the extremities of the formation into the well. Note that the fracture has two wings extending in opposite directions from the well and that it is oriented more or less in the vertical plane. Other types (e.g., horizontal fractures) are known to exist. Some have been observed at relatively shallow depths (<2,000 ft (600 m)), but they comprise a relatively low percentage of the situations experienced to date. Hence, the discussion is directed primarily to vertical fractures.

  8. Nucleation of Dynamic Slip on a Hydraulically Fractured Fault

    NASA Astrophysics Data System (ADS)

    Azad, M. H.; Garagash, D.; Satish, M.

    2014-12-01

    This work is concerned with the relationship between hydraulic fracturing injection and induced seismicity on a fault. This is applicable to safety hazard assessment of the nucleation of dynamic slip along the fault as a result of hydraulic fracturing injection into or near the fault. The hydraulic fracture (HF) injection into the fault can be purposeful, for instance to trigger an earthquake in more controllable conditions than would happen otherwise; or in order to use the open portion of the fault as a reservoir heat exchanger for the extraction of geothermal heat. It can be unintentional due to lack of accurate subsurface characterization prior to the injection. Injection with constant flow rate into an impermeable fault will initiate slip along the fault. The slip occurs due to the lack of frictional strength along the open part of the fault (the hydraulic fracture) as well as from the reduction of the normal stress ahead of the hydraulic fracture front. Slip in front of the hydraulic fracture is assumed to degrade the tensile strength of the fault to zero, so that the hydraulic fracture propagation takes place in the viscous-dominated regime (i.e. dominated by viscous losses in the fluid flow inside the fracture). In our model, the nucleation of dynamic slip is related to the slip-weakening nature of the friction, and depends on in-situ stresses, pressure distribution inside the hydraulic fracture, and the evolving length of the hydraulic fracture. The results of this study show that the growth of the fault slipping patch remains stable, with no episode of dynamic rupture, when the background shear stress τb is smaller than the residual shear strength τr of the fault under ambient conditions. Otherwise (τb > τr), nucleation takes place when the extent of the hydraulic fracture reaches the critical length ~ (μ/τp) δc, where μ is the elastic shear modulus of the rock, τp is the peak shear strength of the fault, and δc is the characteristic slip weakening distance. The size of the slipping patch ahead of the HF tip obeys roughly similar scaling. This scaling changes when τb is just slightly larger than τr in which case both critical hydraulic fracture and slipping patch lengths increase strongly with diminishing τb, and become unbounded when stress stability boundary (τb= τr) is approached.

  9. Linear Elastic and Cohesive Fracture Analysis to Model Hydraulic Fracture in Brittle and Ductile Rocks

    NASA Astrophysics Data System (ADS)

    Yao, Yao

    2012-05-01

    Hydraulic fracturing technology is being widely used within the oil and gas industry for both waste injection and unconventional gas production wells. It is essential to predict the behavior of hydraulic fractures accurately based on understanding the fundamental mechanism(s). The prevailing approach for hydraulic fracture modeling continues to rely on computational methods based on Linear Elastic Fracture Mechanics (LEFM). Generally, these methods give reasonable predictions for hard rock hydraulic fracture processes, but still have inherent limitations, especially when fluid injection is performed in soft rock/sand or other non-conventional formations. These methods typically give very conservative predictions on fracture geometry and inaccurate estimation of required fracture pressure. One of the reasons the LEFM-based methods fail to give accurate predictions for these materials is that the fracture process zone ahead of the crack tip and softening effect should not be neglected in ductile rock fracture analysis. A 3D pore pressure cohesive zone model has been developed and applied to predict hydraulic fracturing under fluid injection. The cohesive zone method is a numerical tool developed to model crack initiation and growth in quasi-brittle materials considering the material softening effect. The pore pressure cohesive zone model has been applied to investigate the hydraulic fracture with different rock properties. The hydraulic fracture predictions of a three-layer water injection case have been compared using the pore pressure cohesive zone model with revised parameters, LEFM-based pseudo 3D model, a Perkins-Kern-Nordgren (PKN) model, and an analytical solution. Based on the size of the fracture process zone and its effect on crack extension in ductile rock, the fundamental mechanical difference of LEFM and cohesive fracture mechanics-based methods is discussed. An effective fracture toughness method has been proposed to consider the fracture process zone effect on the ductile rock fracture.

  10. ECONOMIC RECOVERY OF OIL TRAPPED AT FAN MARGINS USING HIGH ANGLE WELLS AND MULTIPLE HYDRAULIC FRACTURES

    SciTech Connect

    Mike L. Laue

    2001-09-28

    This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a prograding turbidite complex through the use of hydraulically fractured horizontal or high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. A high-angle well will be drilled in the fan-margin portion of a slope-basin clastic reservoir and will be completed with multiple hydraulic-fracture treatments. Geologic modeling, reservoir characterization, and fine-grid reservoir simulation will be used to select the well location and orientation. Design parameters for the hydraulic-fracture treatments will be determined, in part, by fracturing an existing test well. Fracture azimuth will be predicted by passive seismic monitoring of a fracture-stimulation treatment in the test well using logging tools in an offset well. The long radius, near horizontal well was drilled during the first quarter of 1996. Well conditions resulted in the 7 in. production liner sticking approximately 900 ft off bottom. Therefore, a 5 in. production liner was necessary to case this portion of the target formation. Swept-out sand intervals and a poor cement bond behind the 5 in. liner precluded two of the three originally planned hydraulic fracture treatments. As a result, all pay intervals behind the 5 in. liner were perforated and stimulated with a non-acid reactive fluid. Following a short production period, the remaining pay intervals in the well (behind the 7 in. liner) were perforated. The well was returned to production to observe production trends and pressure behavior and assess the need to stimulate the new perforations.

  11. Propagation of Hydraulically Induced Fractures with Proppant Transport.

    NASA Astrophysics Data System (ADS)

    Ouyang, Shaoze

    1994-01-01

    In hydraulic fracturing, a mixture of proppant and fluid is injected into the fracture to maintain the opening of the fracture during and after the operation. A model for describing the distribution of proppant in a propagating hydraulic fracture is developed in this study. The governing equation for proppant concentration is derived by applying the conservation law of mass to the proppant and to the proppant-laden fluid. Shah's empirical equation, which relates the proppant concentration and the indices of the non-Newtonian fluid, is used to describe the proppant -laden fluid. The proppant distribution inside a hydraulic fracture can then be obtained by solving the proppant concentration equation together with the governing equations of fluid and elasticity for a hydraulic fracture. A finite element analysis is developed and implemented in a computer program (GYCO-PT) to carry out the calculations. In order to ensure the accuracy of the computed results and produce a more robust method capable of full simulation, a grid generation scheme is developed and incorporated into the computer program. The grid scheme encompasses unstructured Delaunay triangulation with the convection, insertion and redistribution of nodal points. The behavior of the fracture and the grid depend on the distribution of the in-situ stresses. Four examples covering different types of in-situ stress distribution are carried out to demonstrate the distribution of proppant and the construction of the grid for the hydraulic fracture.

  12. EPA Study of Hydraulic Fracturing and Drinking Water Resources

    EPA Science Inventory

    In its FY2010 Appropriations Committee Conference Report, Congress directed EPA to study the relationship between hydraulic fracturing and drinking water, using: • Best available science • Independent sources of information • Transparent, peer-reviewed process • Consultatio...

  13. Non-double-couple mechanisms of microearthquakes induced by hydraulic fracturing

    USGS Publications Warehouse

    Sileny, J.; Hill, D.P.; Eisner, L.; Cornet, F.H.

    2009-01-01

    We have inverted polarity and amplitude information of representative microearthquakes to investigate source mechanisms of seismicity induced by hydraulic fracturing in the Carthage Cotton Valley, east Texas, gas field. With vertical arrays of four and eight three-component geophones in two monitoring wells, respectively, we were able to reliably determine source mechanisms of the strongest events with the best signal-to-noise ratio. Our analysis indicates predominantly non-double-couple source mechanisms with positive volumetric component consistent with opening cracks oriented close to expected hydraulic fracture orientation. Our observations suggest the induced events are directly the result of opening cracks by fluid injection, in contrast to many previous studies where the seismicity is interpreted to be primarily shearing caused by pore pressure diffusion into the surrounding rock or associated with shear stresses created at the hydraulic fracture tip. Copyright 2009 by the American Geophysical Union.

  14. Shear and tension hydraulic fractures in low permeability rocks

    USGS Publications Warehouse

    Solberg, P.; Lockner, D.; Byerlee, J.

    1977-01-01

    Laboratory hydrofracture experiments were performed on triaxially stressed specimens of oil shale and low-permeability granite. The results show that either shear or tension fractures could develop depending on the level of differentials stress, even in specimens containing preexisting fractures. With 1 kb of confining pressure and differential stress greater than 2kb, hydraulic fluid diffusion into the specimens reduced the effective confining pressure until failure occurred by shear fracture. Below 2kb of differential stress, tension fractures occurred. These results suggest that hydraulic fracturing in regions of significant tectonic stress may produce shear rather than tension fractures. In this case in situ stress determinations based on presumed tension fractures would lead to erroneous results. ?? 1977 Birkha??user Verlag.

  15. Method for monitoring the hydraulic fracturing of a subsurface formation

    SciTech Connect

    Stromswold, D.C.

    1990-05-22

    This patent describes a method for monitoring the hydraulic fracturing of a subsurface formation of interest. It comprises: logging a subsurface formation through a measurement of delayed gamma rays from the neutron activation of a characteristic element of the formation, injecting a fracturing fluid into the formation to hydraulically create a fracture within the formation, injecting a proppant into the fracture containing the element which emits delayed gamma rays in response to neutron activation, logging the proppant containing the fractured formation through a measurement of delayed gamma rays from the neutron activation of the proppant containing fractured formation, and identifying the extent of proppant deposition within the fractured formation from the difference in the delayed gamma ray measurements of the formation before and after the proppant injection.

  16. EPA releases progress report on hydraulic fracturing study

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-01-01

    The U.S. Environmental Protection Agency (EPA) provided a 21 December progress report on its ongoing national study about the potential impacts of hydraulic fracturing on drinking water resources. The agency said that a draft of the congressionally requested study will be released in 2014 for public and peer review and that its progress report does not draw conclusions about the potential impacts of hydraulic fracturing, often referred to as fracking.

  17. Hydraulic Fracture Along Glacier Beds by Turbulent Flow of Meltwater

    NASA Astrophysics Data System (ADS)

    Tsai, V. C.; Rice, J. R.

    2008-12-01

    The problem of hydraulic fracture has been studied extensively, with focus ranging from enhanced hydrocarbon flow to boreholes, to water-driven glacial cracking, to magma eruption through Earth's crust. Although some of this work has addressed fast-flowing fracture, the work applied to glaciers has, so far, focused either on static or relatively long timescale conditions. However, glaciological observations suggest that the fluid-induced fracture process may occur quickly, possibly driven by turbulently flowing water during crack growth. Here, we take the approximation of a fully turbulent flow into an elastic ice medium with small fracture toughness to derive an approximate expression for the crack-tip speed. We accomplish this by first showing that a Manning channel model for wall resistance to turbulent flow leads to the same mathematical structure as for resistance to laminar flow of a power-law viscous fluid. We then make use of the asymptotic crack solution for that case by Desroches et al. [Proc. R. Soc. Lond. A, 1994], and finally estimate the pressure scale appropriate for a finite crack. Comparison of this estimated solution with an exact self-similar solution of Adachi and Detournay [Int. J. Numer. Anal. Meth. Geomech., 2002] validates the approximation. To apply this model, we use parameter values thought appropriate for a basal crack driven by the rapid drainage of a surface meltwater lake near the margin of the Greenland Ice Sheet (Das et al. [Science, 2008]). Thus, we take a maximum excess crack inlet pressure of 0.9 MPa, corresponding to neglect of any hydraulic head loss in flow from the glacier surface to crack entry at the bed, a horizontal basal crack length of 1 km, and a wall roughness scale for flow resistance of 10 mm, and hence estimate a crack-tip speed of about 8 m/s. Loss of ten percent of the surface head on descent to the bed would reduce that speed by slightly more than ten percent. Making various plate theory and linear elastic fracture mechanics approximations perhaps relevant to this setting, we additionally model both vertical and horizontal surface displacements and find rough agreement with the meter-scale displacements observed through GPS by Das et al. [Science, 2008].

  18. An integrated geophysical and hydraulic investigation to characterize a fractured-rock aquifer, Norwalk, Connecticut

    USGS Publications Warehouse

    Lane, J.W., Jr.; Williams, J.H.; Johnson, C.D.; Savino, D.M.; Haeni, F.P.

    2002-01-01

    The U.S. Geological Survey conducted an integrated geophysical and hydraulic investigation at the Norden Systems, Inc. site in Norwalk, Connecticut, where chlorinated solvents have contaminated a fractured-rock aquifer. Borehole, borehole-to-borehole, surface-geophysical, and hydraulic methods were used to characterize the site bedrock lithology and structure, fractures, and transmissive zone hydraulic properties. The geophysical and hydraulic methods included conventional logs, borehole imagery, borehole radar, flowmeter under ambient and stressed hydraulic conditions, and azimuthal square-array direct-current resistivity soundings. Integrated interpretation of geophysical logs at borehole and borehole-to-borehole scales indicates that the bedrock foliation strikes northwest and dips northeast, and strikes north-northeast to northeast and dips both southeast and northwest. Although steeply dipping fractures that cross-cut foliation are observed, most fractures are parallel or sub-parallel to foliation. Steeply dipping reflectors observed in the radar reflection data from three boreholes near the main building delineate a north-northeast trending feature interpreted as a fracture zone. Results of radar tomography conducted close to a suspected contaminant source area indicate that a zone of low electromagnetic (EM) velocity and high EM attenuation is present above 50 ft in depth - the region containing the highest density of fractures. Flowmeter logging was used to estimate hydraulic properties in the boreholes. Thirty-three transmissive fracture zones were identified in 11 of the boreholes. The vertical separation between transmissive zones typically is 10 to 20 ft. Open-hole and discrete-zone transmissivity was estimated from heat-pulse flowmeter data acquired under ambient and stressed conditions. The open-hole transmissivity ranges from 2 to 86 ft2/d. The estimated transmissivity of individual transmissive zones ranges from 0.4 to 68 ft2/d. Drawdown monitoring in nearby boreholes under pumping conditions identified hydraulic connections along a northeast-southwest trend between boreholes as far as 560 ft apart. The vertical distribution of fractures can be described by power law functions, which suggest that the fracture network contains transmissive zones consisting of closely spaced fractures surrounded by a less fractured and much less permeable rock mass.

  19. A practical hydraulic fracturing model simulating necessary fracture geometry, fluid flow and leakoff, and proppant transport

    SciTech Connect

    Ahmed, U.

    1984-05-01

    Hydraulic fracturing model using various sets of fracture flow/geometry equations are available in the industry. The majority of these models assume a constant fracture height selected at the start of the design, and simulate two-dimensional fracture geometry (width and length) and one dimensional fluid flow in both the fracture and the formation. The two-dimensional fracture geometry simulation can lead to optimistic estimates of fracture lengths and the one-dimensional flow may not allow adequate representation of proppant transport and fluid loss. Highly sophisticated hydraulic fracturing models are available that simulate three-dimensional fracture height and two-dimensional fluid flow throughout the entire fracture process. These models are versatile and are recommended for highly complex, layered reservoirs where rock material properties, in-situ stress distribution, and flow properties are variable at the wellbore and also throughout the reservoir. compensated for two-dimensional fluid flow which

  20. Fracture opening/propagation behavior and their significance on pressure-time records during hydraulic fracturing

    SciTech Connect

    Takashi Kojima; Yasuhiko Nakagawa; Koji Matsuki; Toshiyuki Hashida

    1992-01-01

    Hydraulic fracturing with constant fluid injection rate was numerically modeled for a pair of rectangular longitudinal fractures intersecting a wellbore in an impermeable rock mass, and numerical calculations have been performed to investigate the relations among the form of pressure-time curves, fracture opening/propagation behavior and permeability of the mechanically closed fractures. The results have shown that both permeability of the fractures and fluid injection rate significantly influence the form of the pressure-time relations on the early stage of fracture opening. Furthermore it has been shown that wellbore pressure during fracture propagation is affected by the pre-existing fracture length.

  1. Results of hydraulic fracturing treatment BHP analysis in Peru

    SciTech Connect

    Erdle, J.C.; Bell, J.; Bezier, C.

    1981-01-01

    Eight fracture treatments conducted without packers were monitored in Peru. Horizontal and vertical fractures were detected. The fracture geometry model characterizing the bottomhole pressure (BHP) behavior of the vertically fractured zones depended on depth. BHP increase with time was exhibited between 1500 and 2000 ft. BHP increase with time occurred at depths greater than 2000 ft. The horizontal fractures were created at depths less than 1500 ft. Measured tubing friction gradients for both crosslinked and non-crosslinked guar gum based frac fluids correlated well with published pipe loop data. The experiments indicated a critical need for an appropriate rheological model and laboratory test apparatus for gelled fluids. 7 refs.

  2. Hydraulic fracture and resilience of epithelial monolayers under stretch

    NASA Astrophysics Data System (ADS)

    Arroyo, Marino; Lucantonio, Alessandro; Noselli, Giovanni; Casares, Laura; Desimone, Antonio; Trepat, Xavier

    Epithelial monolayers are very simple and prevalent tissues. Their functions include delimiting distinct physicochemical containers and protecting us from pathogens. Epithelial fracture disrupts the mechanical integrity of this barrier, and hence compromises these functions. Here, we show that in addition to the conventional fracture resulting from excessive tissue tension, epithelia can hydraulically fracture under stretch as a result of the poroelastic nature of the matrix. We will provide experimental evidence of this counterintuitive mechanism of fracture, in which cracks appear under compression. Intriguingly, unlike tensional fracture, which is localized and catastrophic, hydraulic epithelial fracture is distributed and reversible. We will also describe the active mechanisms responsible for crack healing, and the physical principles by which the poroelastic matrix contributes to this resilient behavior.

  3. Calculation Method and Distribution Characteristics of Fracture Hydraulic Aperture from Field Experiments in Fractured Granite Area

    NASA Astrophysics Data System (ADS)

    Cao, Yang-Bing; Feng, Xia-Ting; Yan, E.-Chuan; Chen, Gang; Lü, Fei-fei; Ji, Hui-bin; Song, Kuang-Yin

    2016-05-01

    Knowledge of the fracture hydraulic aperture and its relation to the mechanical aperture and normal stress is urgently needed in engineering construction and analytical research at the engineering field scale. A new method based on the in situ borehole camera measurement and borehole water-pressure test is proposed for the calculation of the fracture hydraulic aperture. This method comprises six steps. The first step is to obtain the equivalent hydraulic conductivity of the test section from borehole water-pressure tests. The second step is a tentative calculation to obtain the qualitative relation between the reduction coefficient and the mechanical aperture obtained from borehole camera measurements. The third step is to choose the preliminary reduction coefficient for obtaining the initial hydraulic aperture. The remaining three steps are to optimize, using the genetic algorithm, the hydraulic apertures of fractures with high uncertainty. The method is then applied to a fractured granite engineering area whose purpose is the construction of an underground water-sealed storage cavern for liquefied petroleum gas. The probability distribution characteristics of the hydraulic aperture, the relationship between the hydraulic aperture and the mechanical aperture, the hydraulic aperture and the normal stress, and the differences between altered fractures and fresh fractures are all analyzed. Based on the effects of the engineering applications, the method is proved to be feasible and reliable. More importantly, the results of the hydraulic aperture obtained in this paper are different from those results elicited from laboratory tests, and the reasons are discussed in the paper.

  4. Numerical solution of sand transport in hydraulic fracturing

    SciTech Connect

    Daneshy, A.A.; Crichlow, H.B.

    1980-02-07

    A numerical solution is developed for the deposition of a propping agent inside a hydraulic fracture. Such parameters as fluid leak-off into the formation, increase in sand concentration caused by leak-off, non-Newtonian fracturing fluids, hindered settling velocity, and an up-to-date geometry are taken into consideration. Three examples investigate the proppant deposition for low-, medium-, and high-viscosity fracturing fluids.

  5. Evaluation of a downhole tiltmeter array for monitoring hydraulic fractures

    SciTech Connect

    Warpinski, N.R.; Engler, B.P.; Branagan, P.T.; Wilmer, R.; Wolhart, S.L.

    1997-03-01

    A series of hydraulic-fracture experiments using a downhole tiltmeter array, called an inclinometer array, was conducted at the Department of Energy (DOE)/Gas Research Institute (GRI) Multi-Site facility in Colorado. The inclinometer array was used to measure the deformation of the reservoir rock in response to hydraulic fracture opening and confirm microseismically measured results. In addition, the inclinometer array was found to be a useful tool for accurately measuring closure stress, measuring residual widths of both propped and unpropped fractures, estimating proppant distribution, and evaluating values of in situ moduli.

  6. Optimizing hydraulic fracture design in the diatomite formation, Lost Hills Field

    SciTech Connect

    Nelson, D.G.; Klins, M.A.; Manrique, J.F.

    1996-12-31

    Since 1988, over 1.3 billion pounds of proppant have been placed in the Lost Hills Field of Kern County. California in over 2700 hydraulic fracture treatments involving investments of about $150 million. In 1995, systematic reevaluation of the standard, field trial-based fracture design began. Reservoir, geomechanical, and hydraulic fracture characterization; production and fracture modeling; sensitivity analysis; and field test results were integrated to optimize designs with regard to proppant volume, proppant ramps, and perforating strategy. The results support a reduction in proppant volume from 2500 to 1700 lb/ft which will save about $50,000 per well, totalling over $3 million per year. Vertical coverage was found to be a key component of fracture quality which could be optimized by eliminating perforations from lower stress intervals, reducing the total number of perforations, and reducing peak slurry loading from 16 to 12 ppa. A relationship between variations in lithology, pore pressure, and stress was observed. Point-source, perforating strategies were investigated and variable multiple fracture behavior was observed. The discussed approach has application in areas where stresses are variable; pay zones are thick; hydraulic fracture design is based primarily on empirical, trial-and-error field test results; and effective, robust predictive models involving real-data feedback have not been incorporated into the design improvement process.

  7. A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

    SciTech Connect

    Ahmad Ghassemi

    2003-06-30

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are defined from the numerical solution of a complex hypersingular integral equation written for a given fracture configuration and loading. The fracture propagation studies include modeling interaction of induced fractures with existing discontinuities such as faults and joints. In addition to the fracture propagation studies, two- and three-dimensional heat extraction solution algorithms have been developed and used to estimate heat extraction and the variations of the reservoir stress with cooling. The numerical models have been developed in a user-friendly environment to create a tool for improving fracture design and investigating single or multiple fracture propagation in rock.

  8. Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks

    NASA Astrophysics Data System (ADS)

    Chen, Mingjie; Sun, Yunwei; Fu, Pengcheng; Carrigan, Charles R.; Lu, Zhiming; Tong, Charles H.; Buscheck, Thomas A.

    2013-08-01

    Hydraulic fracturing has been used widely to stimulate production of oil, natural gas, and geothermal energy in formations with low natural permeability. Numerical optimization of fracture stimulation often requires a large number of evaluations of objective functions and constraints from forward hydraulic fracturing models, which are computationally expensive and even prohibitive in some situations. Moreover, there are a variety of uncertainties associated with the pre-existing fracture distributions and rock mechanical properties, which affect the optimized decisions for hydraulic fracturing. In this study, a surrogate-based approach is developed for efficient optimization of hydraulic fracturing well design in the presence of natural-system uncertainties. The fractal dimension is derived from the simulated fracturing network as the objective for maximizing energy recovery sweep efficiency. The surrogate model, which is constructed using training data from high-fidelity fracturing models for mapping the relationship between uncertain input parameters and the fractal dimension, provides fast approximation of the objective functions and constraints. A suite of surrogate models constructed using different fitting methods is evaluated and validated for fast predictions. Global sensitivity analysis is conducted to gain insights into the impact of the input variables on the output of interest, and further used for parameter screening. The high efficiency of the surrogate-based approach is demonstrated for three optimization scenarios with different and uncertain ambient conditions. Our results suggest the critical importance of considering uncertain pre-existing fracture networks in optimization studies of hydraulic fracturing.

  9. Prediction of effects of hydraulic fracturing using reservoir and well flow simulation

    SciTech Connect

    Mineyuki Hanano; Tayuki Kondo

    1992-01-01

    This paper presents a method to predict and evaluate effects of hydraulic fracturing jobs by using reservoir and well flow numerical simulation. The concept of the method i5 that steam production rate at the operating well head pressure is predicted with different fracture conditions which would be attained by the hydraulic fracturing jobs. Then, the effects of the hydraulic fracturing is evaluated by comparing the predicted steam production rate and that before the hydraulic fracturing. This course of analysis will suggest how large fracture should be created by the fracturing job to attain large enough increase in steam production at the operating condition and the best scheme of the hydraulic fracturing job.

  10. Quantifying Representative Hydraulic Conductivity for Three-Dimensional Fractured Formations

    NASA Astrophysics Data System (ADS)

    Lee, I.; Ni, C.

    2013-12-01

    The fractures and pores in rock formations are the fundamental units for flow and contaminant transport simulations. Due to technical and logical limitations it is difficult in reality to account for such small units to model flow and transport in large-scale problems. The concept of continuum representations of fractured rocks is then used as an alternative to solve for flow and transport in complex fractured formations. For these types of approaches the determinations of the representative parameters such as hydraulic conductivity and dispersion coefficient play important roles in controlling the accuracy of simulation results for large-scale problems. The objective of this study is to develop a discrete fracture network (DFN) model and the associated unstructured mesh generation system to characterize the continuum hydraulic conductivity for fractured rocks on different scales. In this study a coupled three-dimensional model of water flow, thermal transport, solute transport, and geochemical kinetic/equilibrium reactions in saturated/unsaturated porous media (HYDROGEOCHEM) is employed to be the flow simulator to analyze the flow behaviors in fracture formations. The fracture network model and the corresponding continuum model are simulated for same scale problems. Based on the concept of mass conservation in flow, the correlations between statistics of fracture structure and the representative continuum parameters are quantified for a variety of fracture distribution scenarios and scales. The results of this study are expected to provide general insight into the procedures and the associated techniques for analyzing flow in complex large-scale fractured rock systems.

  11. Using seismic tomography to characterize fracture systems induced by hydraulic fracturing

    SciTech Connect

    Fehler, M.; Rutledge, J.

    1995-01-01

    Microearthquakes induced by hydraulic fracturing have been studied by many investigators to characterize fracture systems created by the fracturing process and to better understand the locations of energy resources in the earth`s subsurface. The pattern of the locations often contains a great deal of information about the fracture system stimulated during the hydraulic fracturing. Seismic tomography has found applications in many areas for characterizing the subsurface of the earth. It is well known that fractures in rock influence both the P and S velocities of the rock. The influence of the fractures is a function of the geometry of the fractures, the apertures and number of fractures, and the presence of fluids in the fractures. In addition, the temporal evolution of the created fracture system can be inferred from the temporal changes in seismic velocity and the pattern of microearthquake locations. Seismic tomography has been used to infer the spatial location of a fracture system in a reservoir that was created by hydraulic fracturing.

  12. Estimating regional-scale fractured bedrock hydraulic conductivity using discrete fracture network (DFN) modeling

    NASA Astrophysics Data System (ADS)

    Voeckler, H.; Allen, D. M.

    2012-09-01

    Estimating bedrock hydraulic conductivity of regional fractured aquifers is challenging due to a lack of aquifer testing data and the presence of small and large-scale heterogeneity. This study provides a novel approach for estimating the bedrock hydraulic conductivity of a regional-scale fractured bedrock aquifer using discrete fracture network (DFN) modeling. The methodology is tested in the mountainous Okanagan Basin, British Columbia, Canada. Discrete fractures were mapped in outcrops, and larger-scale fracture zones (corresponding to lineaments) were mapped from orthophotos and LANDSAT imagery. Outcrop fracture data were used to generate DFN models for estimating hydraulic conductivity for the fractured matrix ( K m). The mountain block hydraulic conductivity ( K mb) was estimated using larger-scale DFN models. Lineament properties were estimated by best fit parameters for a simulated pumping test influenced by a fracture zone. Unknown dip angles and directions for lineaments were estimated from the small-scale fracture sets. Simulated K m and K mb values range from 10-8 to 10-7 m/s and are greatest in a N-S direction, coinciding with the main strike direction of Okanagan Valley Fault Zone. K mb values also decrease away from the fault, consistent with the decrease in lineament density. Simulated hydraulic conductivity values compare well with those estimated from pumping tests.

  13. Impact of ductility on hydraulic fracturing in shales

    NASA Astrophysics Data System (ADS)

    Auton, Lucy; MacMinn, Chris

    2015-11-01

    Hydraulic fracturing is a method for extracting natural gas and oil from low-permeability rocks such as shale via the injection of fluid at high pressure. This creates fractures in the rock, providing hydraulic access deeper into the reservoir and enabling gas to be collected from a larger region of the rock. Fracture is the tensile failure of a brittle material upon reaching a threshold tensile stress, but some shales have a high clay content and may yield plastically before fracturing. Plastic deformation is the shear failure of a ductile material, during which stress relaxes through irreversible rearrangements of the particles of the material. Here, we investigate the impact of the ductility of shales on hydraulic fracturing. We consider a simple, axisymmetric model for radially outward fluid injection from a wellbore into a ductile porous rock. We solve the model semi-analytically at steady state, and numerically in general. We find that plastic deformation greatly reduces the maximum tensile stress, and that this maximum stress does not always occur at the wellbore. These results imply that hydraulic fracturing may fail in ductile rocks, or that the required injection rate for fracking may be much larger than the rate predicted from purely elastic models.

  14. Rate control method for hydraulic fracturing

    SciTech Connect

    Pearson, C.M.

    1991-10-08

    This paper describes a method of forming a fracture in an earth formation, the fracture extending from a wellbore, the fracture being formed for the eventual production of fluids from the formation through the fracture and into the wellbore. It comprises: pumping a liquid into the wellbore at a pressure sufficient to extend a fracture having opposed faces and a tip portion into the formation until a predetermined fracture length is indicated; injecting a liquid containing a proppant of relatively low concentration and decreasing the rate of injection to a rate approximately equal to the fluid leak off rate from the faces; and injecting liquid containing higher concentrations of proppant than previously mentioned until screenout of the tip portion.

  15. Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs

    SciTech Connect

    Stephen Holditch; A. Daniel Hill; D. Zhu

    2007-06-19

    The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of this project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical issues in tight gas fracturing, in particular the roles of gel damage, polymer loading (water-frac versus gel frac), and proppant concentration on the created fracture conductivity. To achieve this objective, we have designed the experimental apparatus to conduct the dynamic fracture conductivity tests. The experimental apparatus has been built and some preliminary tests have been conducted to test the apparatus.

  16. Hydraulic fracture monitoring using active and passive seismic sources

    NASA Astrophysics Data System (ADS)

    Seher, T.; Rondenay, S.; Djikpesse, H.

    2010-12-01

    Numerous experiments have acquired seismic data for reservoir characterization in general and for hydraulic fracture monitoring (HFM) in particular. HFM is commonly used to stimulate production in natural gas reservoirs. A fluid is injected into the formation in order to open fractures and increase reservoir permeability. This is followed by injection of a sand-fluid mixture that prevents the newly formed fracture from closing. This process creates numerous micro-seismic events and causes significant changes in subsurface properties. Today, both active and passive seismic data are recorded during HFM to characterize subsurface changes. These data are mostly interpreted separately and afterwards integrated qualitatively. A quantitative integration of these data promises a significant improvement of existing subsurface models. We will present the processing sequence, that allows us to derive a consistent image for these two data types. In this study we use active surface and borehole sources and receivers located within a single receiver well, to construct a well-log-calibrated background velocity model that characterizes the subsurface before hydraulic fracturing. Next, we relocate the passively recorded micro-seismic events related to hydraulic fracturing using the background velocity model. The event relocation poses a technical challenge, since all receivers are located within a single receiver well. The micro-seismic sources allow us to create a post-fracture velocity model valid after the termination of each fracturing stage. Last, to test our velocity models we compare common depth point gathers using sources at the surface and receivers within a single borehole before and after hydraulic fracturing using the pre- and post-fracture velocity models, respectively.

  17. Overview of microseismic monitoring of hydraulic fracturing for unconventional oil and gas plays

    NASA Astrophysics Data System (ADS)

    Shemeta, J. E.

    2011-12-01

    The exponential growth of unconventional resources for oil and gas production has been driven by the use of horizontal drilling and hydraulic fracturing. These drilling and completion methods increase the contact area of the low permeability and porosity hydrocarbon bearing formations and allow for economic production in what was previously considered uncommercial rock. These new resource plays have sparked an enormous interest in microseismic monitoring of hydraulic fracture treatments. As a hydraulic fracture is pumped, microseismic events are emitted in a volume of rock surrounding the stimulated fracture. The goal of the monitoring is to identify and locate the microseismic events to a high degree of precision and to map the position of the induced hydraulic fracture in time and space. The microseismic events are very small, typically having a moment-magnitude range of -4 to 0. The microseismic data are collected using a variety of seismic array designs and instrumentation, including borehole, shallow borehole, near-surface and surface arrays, using either of three-component clamped 15 Hz borehole sondes to simple vertical 10 Hz geophones for surface monitoring. The collection and processing of these data is currently under rapid technical development. Each monitoring method has technical challenges which include accurate velocity modeling, correct seismic phase identification and signal to noise issues. The microseismic locations are used to guide hydrocarbon exploration and production companies in crucial reservoir development decisions such as the direction to drill the horizontal well bores and the appropriate inter-well spacing between horizontal wells to optimally drain the resource. The fracture mapping is also used to guide fracture and reservoir engineers in designing and calibrating the fluid volumes and types, injection rates and pressures for the hydraulic fracture treatments. The microseismic data can be located and mapped in near real-time during an injection and used to assist the operators in the avoidance of geohazards (such as a karst feature or fault) or fracture height growth into undesirable formations such as water-bearing zones (that could ruin the well). An important objective for hydraulic fracture mapping is to map the effective fracture geometry: the specific volume of rock that is contributing to hydrocarbon flow in to the well. This, however, still remains an elusive goal that has yet to be completely understood with the current mapping technology.

  18. Dynamic Response in Transient Stress-Field Behavior Induced by Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Jenkins, Andrew

    Hydraulic fracturing is a technique which is used to exploit geologic features and subsurface properties in an effort to increase production in low-permeability formations. The process of hydraulic fracturing provides a greater surface contact area between the producing formation and the wellbore and thus increases the amount of recoverable hydrocarbons from within the reservoir. The use of this stimulation technique has brought on massive applause from the industry due to its widespread success and effectiveness, however the dynamic processes that take part in the development of hydraulic fractures is a relatively new area of research with respect to the massive scale operations that are seen today. The process of hydraulic fracturing relies upon understanding and exploiting the in-situ stress distribution throughout the area of study. These in-situ stress conditions are responsible for directing fracture orientation and propagation paths throughout the period of injection. The relative magnitude of these principle stresses is key in developing a successful stimulation plan. In horizontal well plan development the interpretation of stress within the reservoir is required for determining the azimuth of the horizontal well path. These horizontal laterals are typically oriented in a manner such that the well path lies parallel to the minimum horizontal stress. This allows for vertical fractures to develop transversely to the wellbore, or normal to the least principle stress without the theoretical possibility of fractures overlapping, creating the most efficient use of the fluid energy during injection. The orientation and magnitude of these in-situ stress fields however can be dynamic, controlled by the subsequent fracture propagation and redistribution of the surrounding stresses. That is, that as the fracture propagates throughout the reservoir, the relative stress fields surrounding the fractures may see a shift and deviate from their original direction or magnitude. These types of shifts are of great concern because they can impact subsequent fracture development causing non-uniform fracture propagation and the potential overlapping of fracture paths as they extend from the wellbore at the point of injection. The dynamics of stress variation that occur with respect to hydraulic fracturing is a somewhat new area of study. In order to accomplish the goals of this thesis and continue future research in this area a new transient model has been developed in order to asses these dynamic systems and determine their influence on fracture behavior. This applies the use of a fully coupled finite element method in 2-D using linear elastic fracture mechanics which is then expanded using displacement discontinuity to a cohesive zone model in 3-D. A static boundary element model was also used to determine stress fields surrounding static, predetermined fracture geometries. These models have been verified against analytical solutions for simple cases and are now being applied to more detailed case studies and analysis. These models have been briefly discussed throughout this thesis in order to give insight on their current capabilities and application as well as their future potential within this area of research. The majority of this work introduces transient stress field prediction to cases of single and multiple hydraulic fractures. The static assessment of these stresses is determined for verification of results to those found in publication which leads into these transient stress field variations. A new method has been developed and applied to the stress state prediction for the first time in a transient fracture model which is partly based upon a critical distance theory. These dynamic interactions can provide useful insight to pertinent issues within the petroleum and natural gas industry such as those to hydraulic fracturing fluid loss and induced seismic events, as well as to applications of efficiency and optimization of the stimulation treatment plan.

  19. Determining the distribution of hydraulic conductivity in a fractured limestone aquifer by simultaneous injection and geophysical logging

    USGS Publications Warehouse

    Morin, R.H.; Hess, A.E.; Paillet, F.L.

    1988-01-01

    A field technique for assessing the vertical distribution of hydraulic conductivity in an aquifer was applied to a fractured carbonate formation in southeastern Nevada. The technique combines the simultaneous use of fluid injection and geophysical logging to measure in situ vertical distributions of fluid velocity and hydraulic head down the borehole; these data subsequently are analyzed to arrive at quantitative estimates of hydraulic conductivity across discrete intervals in the aquifer. The results of this analysis identified the contact margin between the Anchor and Dawn Members of the Monte Cristo Limestone as being the dominant transmissive unit. -from Authors

  20. Occupational exposures to respirable crystalline silica during hydraulic fracturing.

    PubMed

    Esswein, Eric J; Breitenstein, Michael; Snawder, John; Kiefer, Max; Sieber, W Karl

    2013-01-01

    This report describes a previously uncharacterized occupational health hazard: work crew exposures to respirable crystalline silica during hydraulic fracturing. Hydraulic fracturing involves high pressure injection of large volumes of water and sand, and smaller quantities of well treatment chemicals, into a gas or oil well to fracture shale or other rock formations, allowing more efficient recovery of hydrocarbons from a petroleum-bearing reservoir. Crystalline silica ("frac sand") is commonly used as a proppant to hold open cracks and fissures created by hydraulic pressure. Each stage of the process requires hundreds of thousands of pounds of quartz-containing sand; millions of pounds may be needed for all zones of a well. Mechanical handling of frac sand creates respirable crystalline silica dust, a potential exposure hazard for workers. Researchers at the National Institute for Occupational Safety and Health collected 111 personal breathing zone samples at 11 sites in five states to evaluate worker exposures to respirable crystalline silica during hydraulic fracturing. At each of the 11 sites, full-shift samples exceeded occupational health criteria (e.g., the Occupational Safety and Health Administration calculated permissible exposure limit, the NIOSH recommended exposure limit, or the ACGIH threshold limit value), in some cases, by 10 or more times the occupational health criteria. Based on these evaluations, an occupational health hazard was determined to exist for workplace exposures to crystalline silica. Seven points of dust generation were identified, including sand handling machinery and dust generated from the work site itself. Recommendations to control exposures include product substitution (when feasible), engineering controls or modifications to sand handling machinery, administrative controls, and use of personal protective equipment. To our knowledge, this represents the first systematic study of work crew exposures to crystalline silica during hydraulic fracturing. Companies that conduct hydraulic fracturing using silica sand should evaluate their operations to determine the potential for worker exposure to respirable crystalline silica and implement controls as necessary to protect workers. PMID:23679563

  1. Numerical Modeling of Hydraulic Fractures Interaction in Complex Naturally Fractured Formations

    NASA Astrophysics Data System (ADS)

    Kresse, Olga; Weng, Xiaowei; Gu, Hongren; Wu, Ruiting

    2013-05-01

    A recently developed unconventional fracture model (UFM) is able to simulate complex fracture network propagation in a formation with pre-existing natural fractures. A method for computing the stress shadow from fracture branches in a complex hydraulic fracture network (HFN) based on an enhanced 2D displacement discontinuity method with correction for finite fracture height is implemented in UFM and is presented in detail including approach validation and examples. The influence of stress shadow effect from the HFN generated at previous treatment stage on the HFN propagation and shape at new stage is also discussed.

  2. Hydraulic tomography offers improved imaging of heterogeneity in fractured rocks.

    PubMed

    Illman, Walter A

    2014-01-01

    Fractured rocks have presented formidable challenges for accurately predicting groundwater flow and contaminant transport. This is mainly due to our difficulty in mapping the fracture-rock matrix system, their hydraulic properties and connectivity at resolutions that are meaningful for groundwater modeling. Over the last several decades, considerable effort has gone into creating maps of subsurface heterogeneity in hydraulic conductivity (K) and specific storage (Ss ) of fractured rocks. Developed methods include kriging, stochastic simulation, stochastic inverse modeling, and hydraulic tomography. In this article, I review the evolution of various heterogeneity mapping approaches and contend that hydraulic tomography, a recently developed aquifer characterization technique for unconsolidated deposits, is also a promising approach in yielding robust maps (or tomograms) of K and Ss heterogeneity for fractured rocks. While hydraulic tomography has recently been shown to be a robust technique, the resolution of the K and Ss tomograms mainly depends on the density of pumping and monitoring locations and the quality of data. The resolution will be improved through the development of new devices for higher density monitoring of pressure responses at discrete intervals in boreholes and potentially through the integration of other data from single-hole tests, borehole flowmeter profiling, and tracer tests. Other data from temperature and geophysical surveys as well as geological investigations may improve the accuracy of the maps, but more research is needed. Technological advances will undoubtedly lead to more accurate maps. However, more effort should go into evaluating these maps so that one can gain more confidence in their reliability. PMID:24749939

  3. Crosslinker composition for high temperature hydraulic fracturing fluids

    SciTech Connect

    Williams, D. A.

    1985-08-13

    A transition metal complex useful as a crosslinking agent for high temperature, high pH, water-based fracturing fluids incorporating polysaccharide polymers is provided. The crosslinker comprises a zirconium/triethanolamine complex having a Zr/TEA molar ratio of between about 1/6.0 and 1/10.0, with 1/6.5 to 1/9.5 being preferred. Methods for preparing the zirconium/triethanolamine crosslinker are also provided. The methods comprise mixing effective amounts of either n-butyl zirconate or n-propyl zirconate with triethanolamine until a uniform blend is obtained. Further, an improved hydraulic fracturing fluid incorporating a polysaccharide polymer, buffer, crosslinker, pH adjusting agent and antioxidant is provided wherein the improvement is utilizing a zirconium/triethanolamine crosslinker. Improved methods for crosslinking fracturing fluids and for hydraulically fracturing well formations are also provided.

  4. Forms and Analysis of Hydraulic Fractures at Shallow Depth

    NASA Astrophysics Data System (ADS)

    Tan, Q.; Richardson, J. R.; Murdoch, L. C.

    2003-12-01

    The form of a hydraulic fracture plays a key role in the performance of the fracture during environmental remediation projects. Fractures that are relatively thick and flat lying are suited to improve the performance of remediation wells, whereas fractures that are steeply dipping may be suited to the creation of reactive barriers. To sharpen the resolution of the details of fracture form at shallow depth in Piedmont soil, the vicinity of four hydraulic fractures initiated at 1.5 m depth was excavated and mapped on trench exposures. The data from these maps were used to characterize fracture form, including geometry, sand thickness, distribution of sand within the fracture, and ground surface deformation during fracturing. The fractures were roughly elliptical in plain view, and the centers of the fractures were offset from the injection casing. In general, they were shaped like gentle bowls whose sides dip from 12 to 16 degrees. A peculiar aspect of the fracture form occurred in the vicinity of the injection casings, where three of the fractures curved downward and then back up to produce gentle trough-like structures around the casings. The finite element code FRANC2D was modified to simulate fluid flow in a propagating fracture. The modified code predicts curved fracture traces that are gentle bowl-like forms, where the enveloping medium is uniform and characterized by material properties similar to field conditions, and ambient stresses result from body forces. Another model was created using two layers, where the elastic modulus of the upper layer was greater than that of the lower layer. Fractures simulated using this model curve downward toward the softer layer, and then curve upward as they become longer to produce a trough-like form similar to the field. The fractures were created in a layer of relatively stiff clayey silt that was underlain by softer saprolite, and this layering may be able to explain the downward propagation observed in the field. Additional simulations have been conducted to evaluate the effects of fracture toughness and in situ state of stress on fracture form, and preliminary results suggest that these parameters can explain field observations from a variety of sites.

  5. Method for formation stimulation in horizontal wellbores using hydraulic fracturing

    SciTech Connect

    Jennings, A.R. Jr.

    1990-07-03

    This patent describes a method for stimulating a formation penetrated by a horizontal wellbore. It comprises: perforating a horizontal wellbore along its top side at desired intervals so as to enable fluid communication with the formation; fracturing hydraulically the formation through perforations in the wellbore with a fracturing fluid containing a substantially lightweight proppant which has a density substantially equal to the fluid thereby creating a fracture within a first interval of the formation and maximizing multilayer proppant placement within the fracture; releasing hydraulic pressure on the formation thereby causing the fracture to be propped with the proppant; placing ball sealers in the fracturing fluid in an amount sufficient to close perforations in the wellbore adjacent the first interval; applying pressure in an amount sufficient to fracture the formation in an area adjacent to the first interval. This causes the ball sealers to seal off perforations in the first interval and direct fluid into a second perforated interval of the wellbore thereby fracturing the formation adjacent to the second interval; and releasing pressure applied to the fluid thereby maximizing multilayer proppant placement and causing the ball sealers to float upwardly with the fluid through the wellbore where they are recovered.

  6. The use of broadband microseisms for hydraulic fracture mapping

    SciTech Connect

    Sleefe, G.E.; Warpinski, N.R.; Engler, B.P.

    1993-08-01

    When a hydrocarbon reservoir is subjected to a hydraulic fracture treatment, the cracking and slipping of the formation results in the emission of seismic energy. The objective of this study was to determine the advantages of using broadband (100 Hz to 1500 M) microseismic emissions to map a hydraulic fracture treatment. A hydraulic fracture experiment was performed in the Piceance Basin of Western Colorado to induce and record broadband microseismic events. The formation was subjected to four processes; break-down/ballout, step-rate test, KCL mini-fracture, and linear-gel mini-fracture. Broadband microseisms were successfully recorded by a novel three-component wall-locked seismic accelerometer package, placed in an observation well 211 ft (64 m) offset from the treatment well. During the two hours of formation treatment, more than 1200 significant microseismic events were observed. The occurrences of the events strongly correlated with the injection bore-bole pressures during the treatments. Using both hodogram analysis and time of arrival information, estimates of the origination point of the seismic events were computed. A map of the event locations yielded a fracture orientation estimate consistent with the known orientation of the field in the formation. This paper describes the technique for acquiring and analyzing broadband microseismic events and illustrate how the new broadband approach can enhance signal detectability and event location resolution.

  7. Field experiments in a fractured clay till. 1. Hydraulic conductivity and fracture aperture

    NASA Astrophysics Data System (ADS)

    McKay, Larry D.; Cherry, John A.; Gillham, Robert W.

    1993-04-01

    Field values of horizontal hydraulic conductivity measured in the upper 1.5-5.5 m of a weathered and fractured clay-rich till were strongly influenced by smearing around piezometer intakes, which occurs during augering, and by the physical scale of the measuring device. Values measured in conventional augered piezometers were typically 1-2 orders of magnitude lower than those measured in piezometers designed to reduce smearing. Measurements of hydraulic conductivity in small-scale seepage collectors or piezometers, which typically intersect fewer than 10 fractures, vary over a much greater range, 10-10 to 10-6 m/s, than large-scale values based on infiltration into 5.5-m-deep trenches which intersect thousands of fractures (range 10-7 to 3×10-7 m/s). Values of hydraulic fracture aperture, 1-43 μm, and fracture porosity, 3×10-5 to 2×10-3, were calculated using the cubic law with fracture orientation/distribution measurements and the small-scale hydraulic conductivity measurements. This paper provides the first reliable determination of the magnitude and spatial distribution of hydraulically derived fracture parameters in a clay deposit. The absence of such data has, until now, severely limited the application of quantitative groundwater flow and contaminant transport models in this type of deposit.

  8. Laboratory hydraulic fracturing experiments in intact and pre-fractured rock

    USGS Publications Warehouse

    Zoback, M.D.; Rummel, F.; Jung, R.; Raleigh, C.B.

    1977-01-01

    Laboratory hydraulic fracturing experiments were conducted to investigate two factors which could influence the use of the hydrofrac technique for in-situ stress determinations; the possible dependence of the breakdown pressure upon the rate of borehole pressurization, and the influence of pre-existing cracks on the orientation of generated fractures. The experiments have shown that while the rate of borehole pressurization has a marked effect on breakdown pressures, the pressure at which hydraulic fractures initiate (and thus tensile strength) is independent of the rate of borehole pressurization when the effect of fluid penetration is negligible. Thus, the experiments indicate that use of breakdown pressures rather than fracture initiation pressures may lead to an erroneous estimate of tectonic stresses. A conceptual model is proposed to explain anomalously high breakdown pressures observed when fracturing with high viscosity fluids. In this model, initial fracture propagation is presumed to be stable due to large differences between the borehole pressure and that within the fracture. In samples which contained pre-existing fractures which were 'leaky' to water, we found it possible to generate hydraulic fractures oriented parallel to the direction of maximum compression if high viscosity drilling mud was used as the fracturing fluid. ?? 1977.

  9. Analytic crack solutions for tilt fields around hydraulic fractures

    SciTech Connect

    Warpinski, N.R.

    2000-01-05

    The recent development of downhole tiltmeter arrays for monitoring hydraulic fractures has provided new information on fracture growth and geometry. These downhole arrays offer the significant advantages of being close to the fracture (large signal) and being unaffected by the free surface. As with surface tiltmeter data, analysis of these measurements requires the inversion of a crack or dislocation model. To supplement the dislocation models of Davis [1983], Okada [1992] and others, this work has extended several elastic crack solutions to provide tilt calculations. The solutions include constant-pressure 2D, penny-shaped, and 3D-elliptic cracks and a 2D-variable-pressure crack. Equations are developed for an arbitrary inclined fracture in an infinite elastic space. Effects of fracture height, fracture length, fracture dip, fracture azimuth, fracture width and monitoring distance on the tilt distribution are given, as well as comparisons with the dislocation model. The results show that the tilt measurements are very sensitive to the fracture dimensions, but also that it is difficult to separate the competing effects of the various parameters.

  10. Potential Relationships Between Hydraulic Fracturing and Drinking Water Resources

    EPA Science Inventory

    The conferees urge the Agency to carry out a study on the relationship between hydraulic fracturing and drinking water, using a credible approach that relies on the best available science, as well as independent sources of information. The conferees expect the study to be conduct...

  11. FEASIBILITY OF HYDRAULIC FRACTURING OF SOILS TO IMPROVE REMEDIAL ACTIONS

    EPA Science Inventory

    Hydraulic fracturing, a method of increasing fluid flow within the subsurface, should improve the effectiveness of several remedial techniques, including pump and treat, vapor extraction, bio-remediation, and soil-flushing. he technique is widely used to increase the yields of oi...

  12. Imaging hydraulic fractures using temperature transients in the Belridge Diatomite

    SciTech Connect

    Shahin, G.T.; Johnston, R.M.

    1995-12-31

    Results of a temperature transient analysis of Shell`s Phase 1 and Phase 2 Diatomite Steamdrive Pilots are used to image hydraulic injection fracture lengths, angles, and heat injectivities into the low-permeability formation. The Phase 1 Pilot is a limited-interval injection test. In Phase 2, steam is injected into two 350 ft upper and lower zones through separate hydraulic fractures. Temperature response of both pilots is monitored with sixteen logging observation wells. A perturbation analysis of the non-linear pressure diffusion and heat transport equations indicates that at a permeability of about 0.1 md or less, heat transport in the Diatomite tends to be dominated by thermal diffusivity, and pressure diffusion is dominated by the ratio of thermal expansion to fluid compressibility. Under these conditions, the temperature observed at a logging observation well is governed by a dimensionless quantity that depends on the perpendicular distance between the observation well and the hydraulic fracture, divided by the square root of time. Using this dependence, a novel method is developed for imaging hydraulic fracture geometry and relative heat injectivity from the temperature history of the pilot.

  13. Monitoring hydraulic fractures: state estimation using an extended Kalman filter

    NASA Astrophysics Data System (ADS)

    Alves Rochinha, Fernando; Peirce, Anthony

    2010-02-01

    There is considerable interest in using remote elastostatic deformations to identify the evolving geometry of underground fractures that are forced to propagate by the injection of high pressure viscous fluids. These so-called hydraulic fractures are used to increase the permeability in oil and gas reservoirs as well as to pre-fracture ore-bodies for enhanced mineral extraction. The undesirable intrusion of these hydraulic fractures into environmentally sensitive areas or into regions in mines which might pose safety hazards has stimulated the search for techniques to enable the evolving hydraulic fracture geometries to be monitored. Previous approaches to this problem have involved the inversion of the elastostatic data at isolated time steps in the time series provided by tiltmeter measurements of the displacement gradient field at selected points in the elastic medium. At each time step, parameters in simple static models of the fracture (e.g. a single displacement discontinuity) are identified. The approach adopted in this paper is not to regard the sequence of sampled elastostatic data as independent, but rather to treat the data as linked by the coupled elastic-lubrication equations that govern the propagation of the evolving hydraulic fracture. We combine the Extended Kalman Filter (EKF) with features of a recently developed implicit numerical scheme to solve the coupled free boundary problem in order to form a novel algorithm to identify the evolving fracture geometry. Numerical experiments demonstrate that, despite excluding significant physical processes in the forward numerical model, the EKF-numerical algorithm is able to compensate for the un-modeled dynamics by using the information fed back from tiltmeter data. Indeed the proposed algorithm is able to provide reasonably faithful estimates of the fracture geometry, which are shown to converge to the actual hydraulic fracture geometry as the number of tiltmeters is increased. Since the location of tiltmeters can affect the resolution of the method, the algorithm can also be used to design the deployment of tiltmeters to optimize the resolution in regions of particular interest.

  14. 40 CFR 147.52 - State-administered program-Hydraulic Fracturing of Coal Beds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) The Program Description for the Regulation of Hydraulic Fracturing of Coal Beds As required by 40 CFR... PROGRAMS Alabama § 147.52 State-administered program—Hydraulic Fracturing of Coal Beds. The UIC program for hydraulic fracturing of coal beds in the State of Alabama, except those on Indian lands, is the...

  15. 78 FR 25267 - Request for Information To Inform Hydraulic Fracturing Research Related to Drinking Water Resources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... AGENCY Request for Information To Inform Hydraulic Fracturing Research Related to Drinking Water... research on the potential impacts of hydraulic fracturing on drinking water resources from April 30, 2013... research to examine the relationship between hydraulic fracturing and drinking water resources. The...

  16. 40 CFR 147.52 - State-administered program-Hydraulic Fracturing of Coal Beds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) The Program Description for the Regulation of Hydraulic Fracturing of Coal Beds As required by 40 CFR... PROGRAMS Alabama § 147.52 State-administered program—Hydraulic Fracturing of Coal Beds. The UIC program for hydraulic fracturing of coal beds in the State of Alabama, except those on Indian lands, is the...

  17. 75 FR 35023 - Informational Public Meetings for Hydraulic Fracturing Research Study

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... AGENCY Informational Public Meetings for Hydraulic Fracturing Research Study AGENCY: Environmental... between hydraulic fracturing and drinking water. The meetings are open to all interested parties and will... Hydraulic Fracturing Study informational meetings are as follows: July 8, 2010, from 6 p.m. to 10 p.m.,...

  18. 40 CFR 147.52 - State-administered program-Hydraulic Fracturing of Coal Beds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) The Program Description for the Regulation of Hydraulic Fracturing of Coal Beds As required by 40 CFR... PROGRAMS Alabama § 147.52 State-administered program—Hydraulic Fracturing of Coal Beds. The UIC program for hydraulic fracturing of coal beds in the State of Alabama, except those on Indian lands, is the...

  19. 78 FR 31635 - Oil and Gas; Hydraulic Fracturing on Federal and Indian Lands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-24

    ...; Well Stimulation, Including Hydraulic Fracturing, on Federal and Indian Lands'' (77 FR 27691). The...; Hydraulic Fracturing on Federal and Indian Lands; Proposed Rule #0;#0;Federal Register / Vol. 78 , No. 101... Part 3160 RIN 1004-AE26 Oil and Gas; Hydraulic Fracturing on Federal and Indian Lands AGENCY: Bureau...

  20. 40 CFR 147.52 - State-administered program-Hydraulic Fracturing of Coal Beds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) The Program Description for the Regulation of Hydraulic Fracturing of Coal Beds As required by 40 CFR... PROGRAMS Alabama § 147.52 State-administered program—Hydraulic Fracturing of Coal Beds. The UIC program for hydraulic fracturing of coal beds in the State of Alabama, except those on Indian lands, is the...

  1. 77 FR 27691 - Oil and Gas; Well Stimulation, Including Hydraulic Fracturing, on Federal and Indian Lands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... Hydraulic Fracturing, on Federal and Indian Lands AGENCY: Bureau of Land Management, Interior. ACTION... in hydraulic fracturing on public land and Indian land, strengthen regulations related to well-bore... information to the public and to assure that hydraulic fracturing is conducted in a way that...

  2. 40 CFR 147.52 - State-administered program-Hydraulic Fracturing of Coal Beds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) The Program Description for the Regulation of Hydraulic Fracturing of Coal Beds As required by 40 CFR... PROGRAMS Alabama § 147.52 State-administered program—Hydraulic Fracturing of Coal Beds. The UIC program for hydraulic fracturing of coal beds in the State of Alabama, except those on Indian lands, is the...

  3. 77 FR 67361 - Request for Information To Inform Hydraulic Fracturing Research Related to Drinking Water Resources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ... AGENCY Request for Information To Inform Hydraulic Fracturing Research Related to Drinking Water... impacts of hydraulic fracturing on drinking water resources. DATES: EPA will accept data and literature in... scientific research to examine the relationship between hydraulic fracturing and drinking water...

  4. Hydraulic-fracturing controlled dynamics of microseismic clouds

    NASA Astrophysics Data System (ADS)

    Shapiro, S. A.; Dinske, C.; Rothert, E.

    2006-07-01

    Several dynamic processes related to propagation of hydraulic fracture modify the stress state in rocks and, therefore, they are relevant for triggering of microseismicity. For instance, these are the creation of a new fracture volume, fracturing fluid loss and its infiltration into reservoir rocks as well as diffusion of the injection pressure into the pore space of surrounding rocks and inside the fracture. Using real data, we show that some of these processes can be seen from features of spatio-temporal distributions of the induced microseismicity. Especially, the initial stage of fracture volume opening as well as the back front of the induced seismicity starting to propagate after termination of the fluid injection can be well identified and used for reservoir engineering.

  5. Frequency-Magnitude Relationship of Hydraulic Fracture Microseismicity (Invited)

    NASA Astrophysics Data System (ADS)

    Maxwell, S.

    2009-12-01

    Microseismicity has become a common imaging technique for hydraulic fracture stimulations in the oil and gas industry, offering a wide range of microseismic data sets in different settings. Typically, arrays of 3C sensors are deployed in single monitoring wells presenting processing challenges associated with the limited acquisition geometry. However, the proximity of the sensors to the fracture network results in good sensitivity to detect small magnitude microseisms (down to about moment magnitude -3 in some cases). This sensitivity allows a comparison of the magnitude-frequency relationship between microseisms attributed to hydraulic fracturing with those related to activation of interaction with a pre-existing fault. A case study will be presented showing a clear change in the frequency-magnitude characteristics as the injection interacts with a known fault.

  6. Hydraulic Aperture Reduction of Shale Fractures Due to Mechanical Stressing, with Characterization of Physical Fracture Evolution Using Comuted Tomography

    NASA Astrophysics Data System (ADS)

    Crandall, D.; Gill, M.; Moore, J.

    2014-12-01

    Flow in fractured shale is a topic of interest for both production from non-traditional fractured shale reservoirs and for estimating the leakage potential of sealing formations above geologic carbon dioxide repositories. The hydraulic aperture of a fracture quantifies how much fluid can be transported through a fracture, similarly to how permeability describes fluid flow through porous media. The advantage of defining the fracture hydraulic aperture as opposed to permeability, is that this property can be easily scaled up to fracture reservoir simulators. Many parameters affect the hydraulic aperture, however, including the fracture roughness, the physical aperture distribution, and the tortuosity of flow paths within the fracture.The computed tomography (CT) and flow facility at NETL has conducted an analysis of the changes in both physical and hydraulic aperture as fractures were subjected to varying external confining stresses. Changes in fracture geometry were tracked through the use of non-destructive CT imaging, allowing the determination of the physical aperture distribution, while hydraulic fracture apertures were derived from experimental fracture flow measurements. In order to evaluate the effects of fracture roughness and geometry, two fractures with different degrees of roughness were used. Tests were conducted with locally sourced shale.Experimental results show that the volume change in the fracture is a non-linear function of the confining pressure, and both physical and hydraulic apertures decrease rapidly as the fracture is first compressed.

  7. Injection-Sensitive Mechanics of Hydraulic Fracture Interaction with Discontinuities

    NASA Astrophysics Data System (ADS)

    Chuprakov, D.; Melchaeva, O.; Prioul, R.

    2014-09-01

    We develop a new analytical model, called OpenT, that solves the elasticity problem of a hydraulic fracture (HF) contact with a pre-existing discontinuity natural fracture (NF) and the condition for HF re-initiation at the NF. The model also accounts for fluid penetration into the permeable NFs. For any angle of fracture intersection, the elastic problem of a blunted dislocation discontinuity is solved for the opening and sliding generated at the discontinuity. The sites and orientations of a new tensile crack nucleation are determined based on a mixed stress- and energy-criterion. In the case of tilted fracture intersection, the finite offset of the new crack initiation point along the discontinuity is computed. We show that aside from known controlling parameters such stress contrast, cohesional and frictional properties of the NFs and angle of intersection, the fluid injection parameters such as the injection rate and the fluid viscosity are of first-order in the crossing behavior. The model is compared to three independent laboratory experiments, analytical criteria of Blanton, extended Renshaw-Pollard, as well as fully coupled numerical simulations. The relative computational efficiency of OpenT model (compared to the numerical models) makes the model attractive for implementation in modern engineering tools simulating hydraulic fracture propagation in naturally fractured environments.

  8. Aerobic biodegradation of organic compounds in hydraulic fracturing fluids.

    PubMed

    Kekacs, Daniel; Drollette, Brian D; Brooker, Michael; Plata, Desiree L; Mouser, Paula J

    2015-07-01

    Little is known of the attenuation of chemical mixtures created for hydraulic fracturing within the natural environment. A synthetic hydraulic fracturing fluid was developed from disclosed industry formulas and produced for laboratory experiments using commercial additives in use by Marcellus shale field crews. The experiments employed an internationally accepted standard method (OECD 301A) to evaluate aerobic biodegradation potential of the fluid mixture by monitoring the removal of dissolved organic carbon (DOC) from an aqueous solution by activated sludge and lake water microbial consortia for two substrate concentrations and four salinities. Microbial degradation removed from 57 % to more than 90 % of added DOC within 6.5 days, with higher removal efficiency at more dilute concentrations and little difference in overall removal extent between sludge and lake microbe treatments. The alcohols isopropanol and octanol were degraded to levels below detection limits while the solvent acetone accumulated in biological treatments through time. Salinity concentrations of 40 g/L or more completely inhibited degradation during the first 6.5 days of incubation with the synthetic hydraulic fracturing fluid even though communities were pre-acclimated to salt. Initially diverse microbial communities became dominated by 16S rRNA sequences affiliated with Pseudomonas and other Pseudomonadaceae after incubation with the synthetic fracturing fluid, taxa which may be involved in acetone production. These data expand our understanding of constraints on the biodegradation potential of organic compounds in hydraulic fracturing fluids under aerobic conditions in the event that they are accidentally released to surface waters and shallow soils. PMID:26037076

  9. Vibrational modes of hydraulic fractures: Inference of fracture geometry from resonant frequencies and attenuation

    NASA Astrophysics Data System (ADS)

    Lipovsky, Bradley P.; Dunham, Eric M.

    2015-02-01

    Oscillatory seismic signals arising from resonant vibrations of hydraulic fractures are observed in many geologic systems, including volcanoes, glaciers and ice sheets, and hydrocarbon and geothermal reservoirs. To better quantify the physical dimensions of fluid-filled cracks and properties of the fluids within them, we study wave motion along a thin hydraulic fracture waveguide. We present a linearized analysis, valid at wavelengths greater than the fracture aperture, that accounts for quasi-static elastic deformation of the fracture walls, as well as fluid viscosity, inertia, and compressibility. In the long-wavelength limit, anomalously dispersed guided waves known as crack or Krauklis waves propagate with restoring force from fracture wall elasticity. At shorter wavelengths, the waves become sound waves within the fluid channel. Wave attenuation in our model is due to fluid viscosity, rather than seismic radiation from crack tips or fracture wall roughness. We characterize viscous damping at both low frequencies, where the flow is always fully developed, and at high frequencies, where the flow has a nearly constant velocity profile away from viscous boundary layers near the fracture walls. Most observable seismic signals from resonating fractures likely arise in the boundary layer crack wave limit, where fluid-solid coupling is pronounced and attenuation is minimal. We present a method to estimate the aperture and length of a resonating hydraulic fracture using both the seismically observed quality factor and characteristic frequency. Finally, we develop scaling relations between seismic moment and characteristic frequency that might be useful when interpreting the statistics of hydraulic fracture events.

  10. Influence of Natural Fractures Cohesive Properties on Geometry of Hydraulic Fracture Networks

    NASA Astrophysics Data System (ADS)

    Gonzalez-Chavez, M. A.; Dahi Taleghani, A.; Puyang, P.

    2014-12-01

    An integrated modeling methodology is proposed to analyze hydraulic fracturing jobs in the presence of the natural fracture network in the formation. A propagating hydraulic fracture may arrest, cross, or diverts into a preexisting natural crack depending on fracture properties of rock and magnitude and direction of principal rock stresses. Opening of natural fractures during fracturing treatment could define the effectiveness of the stimulation technique. Here, we present an integrated methodology initiated with lab scale fracturing properties using Double Cantilever Beam tests (DCB) to determine cohesive properties of rock and natural fractures. We used cohesive finite element models to reproduce laboratory results to verify the numerical model for the interaction of the hydraulic fracture and individual cemented natural fractures. Based on the initial investigations, we found out that distribution of pre-existing natural fractures could play a significant role in the final geometry of the induced fracture network; however in practice, there is not much information about the distribution of natural fractures in the subsurface due to the limited access. Hence, we propose a special optimization scheme to generate natural fracture geometry from the location of microseismic events. Accordingly, the criteria of evaluating the fitness of natural fracture realizations is defined as the total minimum distance squares of all microseismic events, which is the sum of minimum square distance for all microseismic events. Moreover, an additional constraint in this problem is that we need to set a minimum distance between fracture grids. Using generated natural fracture realizations, forward field-scale simulations are implemented using cohesive finite element analysis to find the best match with the recorded bottomhole pressure. To show the robustness of the proposed workflow for real field problem, we implemented this technique on available data from several well Chicontepec basin to forecast post-treatment production rate. Our results show a constructive approach to integrate microseismic maps with lab mechanical measurements and bottomhole pressure to estimate the geometry of induced fracture network in the subsurface which does not suffer from any limiting assumption about fracture geometries.

  11. Characterization of Hydraulically Induced Fractures from Monitoring and Production Data Using Ensemble Kalman Filtering

    NASA Astrophysics Data System (ADS)

    Hakim Elahi, S.; Jafarpour, B.

    2014-12-01

    Characterization of hydraulically induced fractures in unconventional oil and gas development can significantly improve production efficiency and reduce the related environmental impacts. Microseismic monitoring is the primary technology for imaging the initiation and growth of the induced fractures. While fracture geometric attributes and distribution can be inferred from recorded microseismic measurements, delineating the open fractures that contribute to production and quantifying their hydraulic properties require complementary flow and transport data such as tracer and production measurements. We consider estimating fracture geometric attribute and conductivity from combined microseismic, production, and tracer data. To this end, we use a forward model with geomechanical considerations to predict the microseismic and tracer response for hydraulically fractured formations and apply a hierarchical ensemble Kalman filtering approach to update the fracture geometric and hydraulic properties. We investigate the applicability of our estimation approach by consider several case studies with different number of fracture stages, fracture length scales, and hydraulic conductivity. We first update fracture dimensions using microseismic and tracer data that do not contain any information about flow properties. We then estimate the hydraulic conductivity of the fractures from tracer and production data. The proposed fracture imaging framework can be applied in real-time to guide the fracturing process, to monitor the fracture growth, and to optimize the hydraulic fracturing design and minimize potential environmental impacts. Moreover, calibration of the fracture conductivity can be used to predict future production and identify candidate regions for re-fracturing.

  12. Engineering geological characteristics and the hydraulic fracture propagation mechanism of the sand-shale interbedded formation in the Xu5 reservoir

    NASA Astrophysics Data System (ADS)

    Lu, Cong; Li, Mei; Guo, Jian-Chun; Tang, Xu-Hai; Zhu, Hai-Yan; Yong-Hui, Wang; Liang, Hao

    2015-06-01

    In the Xu5 formation the sandstone reservoir and the shale reservoir are interbedded with each other. The average thickness of each formation is about 8 m, which increases the difficulty of the hydraulic fracturing treatment. The shale thickness ratio (the ratio of shale thickness to formation thickness) is 55-62.5%. The reservoir is characterized by ultra-low porosity and permeability. The brittleness index of sandstone is 0.5-0.8, and the brittleness index of shale is 0.3-0.8. Natural fractures are poorly developed and are mainly horizontal and at a low angle. The formation strength is medium and the reservoir is of the hybrid strike-slip fault and reverse fault stress regime. The difference between the minimum principal stress and the vertical stress is small, and the maximum horizontal principal stress is 20 MPa higher than the minimum horizontal principal stress and vertical stress. A mechanical model of a hydraulic fracture encountering natural fractures is built according to geological characteristics. Fracture mechanics theory is then used to establish a hydraulic fracturing model coupling the seepage-stress-damage model to simulate the initiation and propagation of a fracture. The hydraulic fracture geometry is mainly I-shaped and T-shaped, horizontal propagation dominates the extension, and vertical propagation is limited. There is a two to three meter stress diversion area around a single hydraulic fracture. The stress diversion between a hydraulic fracture and a natural fracture is advantageous in forming a complex fracture. The research results can provide theoretical guidance for tight reservoir fracturing design.

  13. Locating microearthquakes induced by hydraulic fracturing in crystalline rock

    NASA Astrophysics Data System (ADS)

    House, Leigh

    1987-09-01

    Microearthquakes induced by hydraulic fracturing in crystalline rock at a depth of 3.5 km were located with a precision of better than 30 m to obtain information about the geometry and dimensions of the fracture system produced. The induced microseismicity was monitored by a network of five borehole seismic stations; a total of about 800 induced events were reliably located from arrival times. Event locations show a tabular distribution that strikes 350° and dips 65° east, subparallel to the injection well. The injection was intended to produce a fracture system that would hydraulically connect two subparallel wells. A lack of fluid communication between them is consistent with a lack of induced microearthquakes near the target wellbore. The 150 m thickness of the zone of seismicity far exceeds the relative locational uncertainties. The injected fluid appears to have stimulated a zone of rock, rather than simply a single fracture. The distribution of microseismic events presumably envelops the zone of fluid paths created by the fracture experiment.

  14. Treatment of hydraulic fracturing wastewater by wet air oxidation.

    PubMed

    Wang, Wei; Yan, Xiuyi; Zhou, Jinghui; Ma, Jiuli

    2016-01-01

    Wastewater produced by hydraulic fracturing for oil and gas production is characterized by high salinity and high chemical oxygen demand (COD). We applied a combination of flocculation and wet air oxidation technology to optimize the reduction of COD in the treatment of hydraulic fracturing wastewater. The experiments used different values of flocculant, coagulant, and oxidizing agent added to the wastewater, as well as different reaction times and treatment temperatures. The use of flocculants for the pretreatment of fracturing wastewater was shown to improve treatment efficiency. The addition of 500 mg/L of polyaluminum chloride (PAC) and 20 mg/L of anionic polyacrylamide (APAM) during pretreatment resulted in a COD removal ratio of 8.2% and reduced the suspended solid concentration of fracturing wastewater to 150 mg/L. For a solution of pretreated fracturing wastewater with 12 mL of added H2O2, the COD was reduced to 104 mg/L when reacted at 300 °C for 75 min, and reduced to 127 mg/L when reacted at the same temperature for 45 min while using a 1 L autoclave. An optimal combination of these parameters produced treated wastewater that met the GB 8978-1996 'Integrated Wastewater Discharge Standard' level I emission standard. PMID:26942530

  15. Mechanical stability of propped hydraulic fractures: A numerical study

    SciTech Connect

    Asgian, M.I.; Cundall, P.A.; Brady, B.H.

    1995-03-01

    Proppant is sometimes produced along with hydrocarbons in hydraulically fractured petroleum wells. Sometimes 10% to 20% of the proppant is backproduced, which can lead to damaged equipment and downtime. Furthermore, proppant flowback can lead to a substantial loss of fracture conductivity. A numerical study was conducted to help understand what conditions are likely to lead to proppant flowback. In the simulations, the mechanical interaction of a larger number (several thousand) individual proppant grains was modeled with a distinct-element-type code. The numerical simulations show that hydraulic fractures propped with cohesionless, unbonded proppant fail under closure stress at a critical ratio of mean grain diameter to fracture width. This is consistent with published laboratory studies. The simulations identify the mechanism (arch failure) that triggers the mechanical instability and also show that the primary way that drawdowns (less than {approx} 75 psi/ft) affect proppant flowback is to transport loose proppant grains in front of the stable arch to the wellbore. Drawdowns > 75 psi/ft are sufficient to destabilize the arch and to cause progressive failure of the propped fractures.

  16. Hydraulics of horizontal wells in fractured shallow aquifer systems

    NASA Astrophysics Data System (ADS)

    Park, Eungyu; Zhan, Hongbin

    2003-09-01

    An analysis of groundwater hydraulic head in the vicinity of a horizontal well in fractured or porous aquifers considering confined, leaky confined, and water-table aquifer boundary conditions is presented. Solutions for hydraulic heads in both leaky confined and water table aquifers are provided. The fracture model used in this study is the standard double-porosity model. The aquitard storage is included in the formula. Solutions for the confined and unconfined conditions, fractured and porous conditions, wellbore storage, and skin effect are compared. Several findings of this study are, (1) the influence of wellbore storage and skin upon the drawdown for a fractured confined aquifer is similar to that for a porous confined aquifer, (2) aquitard storage affects the intermediate time the most by delaying the drawdown, and (3) there is a significant difference between the type curves of fractured and porous confined aquifers in most aquifer boundary conditions because of the contribution of matrix storage, and such a difference disappears at the later time.

  17. Abnormal treating pressures in MHF (massive hydraulic fracturing) treatments

    SciTech Connect

    Medlin, W.L.; Fitch, J.L.

    1983-01-01

    Abnormal treating pressures are observed during massive hydraulic fracturing (MHF) treatments in the Mesa Verde Formation of the Piceance Basin, Colorado. Data from 3 widely separated wells and in several zones per well all show a pressure increase during MHF treatments, called pressure growth. This pressure growth is at least semi-permanent. The elevated instantaneous shut-in pressures do not return to initial values over periods of several days. The magnitude of this pressure growth is highly variable. One possible cause of pressure growth is fracture branching. Pressure growth seems to be dependent on both pumping rate and fluid viscosity. 16 references.

  18. Scintillation gamma spectrometer for analysis of hydraulic fracturing waste products.

    PubMed

    Ying, Leong; O'Connor, Frank; Stolz, John F

    2015-01-01

    Flowback and produced wastewaters from unconventional hydraulic fracturing during oil and gas explorations typically brings to the surface Naturally Occurring Radioactive Materials (NORM), predominantly radioisotopes from the U238 and Th232 decay chains. Traditionally, radiological sampling are performed by sending collected small samples for laboratory tests either by radiochemical analysis or measurements by a high-resolution High-Purity Germanium (HPGe) gamma spectrometer. One of the main isotopes of concern is Ra226 which requires an extended 21-days quantification period to allow for full secular equilibrium to be established for the alpha counting of its progeny daughter Rn222. Field trials of a sodium iodide (NaI) scintillation detector offers a more economic solution for rapid screenings of radiological samples. To achieve the quantification accuracy, this gamma spectrometer must be efficiency calibrated with known standard sources prior to field deployments to analyze the radioactivity concentrations in hydraulic fracturing waste products. PMID:25734826

  19. Hydraulic fracturing with a refractory proppant combined with salinity control

    SciTech Connect

    Jennings, A.R. Jr.; Stowe, L.R.

    1989-08-01

    This patent describes a method for controlling fines or sand in an unconsolidated or loosely consolidated formation, or reservoir which method additionally improves heat transfer. It comprises: placing at least one wellbore in the formation; hydraulically fracturing the formation via the wellbore via a fracturing fluid which creates at least one fracture; placing a fused refractory proppant consisting essentially of silicon carbide or silicon nitride into the fracture which proppant gravel packs the fracture while providing for increased heat transfer into the formation; determining the critical salinity rate and the critical fluid flow velocity of the formation or reservoir surrounding the wellbore; injecting a saline solution into the formation or reservoir at a velocity exceeding the critical fluid flow velocity and at a saline concentration sufficient to cause the fines or clay particles to be transferred and fixed deep within the formation or reservoir without plugging the formation, fracture or wellbore; and producing via a thermal oil recovery method a hydrocarbonaceous fluid from the formation or reservoir at a velocity such that the critical flow velocity is not exceeded deep within the formation, fracture or wellbore.

  20. Mathematical modeling of hydraulic fracturing in coal seams

    SciTech Connect

    Olovyanny, A.G.

    2005-02-01

    Hydraulic fracturing of coal seam is considered as a process of development of discontinuities in rock mass elements due to change in hydrogeomechanical situation on filtration of fluid under pressure. Failure is associated with excess of the effective stresses over the rock tension strength. The problem on filtration and failure of massif is solved by the finite-element method using the procedure of fictitious nodal forces.

  1. Are sills really elastic hydraulic fractures?

    NASA Astrophysics Data System (ADS)

    Spacapan, Juán B.; Galland, Olivier; Leanza, Héctor A.; Planke, Sverre

    2015-04-01

    Seismic reflection data and field observations have over the past few decades revealed the presence of voluminous igneous sill complexes in sedimentary basins worldwide. The implications of sill emplacement in sedimentary basins are numerous: they trigger maturation of organic-rich formations, they produce large quantities of greenhouse gases that trigger dramatic climate change and mass extinctions, and they produce small- and large-scale structures that affect fluid flow. Therefore, a proper understanding of their emplacement mechanism is essential. Most models of sill and laccolith emplacement account for purely elastic host rock, and their propagation mechanism is dominantly assumed to be according to the Linear Elastic Fracture Mechanics (LEFM) theory. Recent field and seismic observations, however, demonstrated that part, if not all, sill- and laccolith-induced deformation is accommodated by inelastic deformation, strongly questioning the relevance of the LEFM theory applied for igneous intrusions. In this contribution, we present detailed structural observations from spectacularly well-exposed sills in the northern Neuquén Basin, Argentina. We studied a 50-m outcrop that exhibits very clearly three sills of different sizes, the shapes of their tips, and the associated structures in their sedimentary host rock, i.e. the calcareous pelites of the organic-rich Vaca Muerta Fm. This formation is adequate to map the structures at the outcrop scale, as it consists in fine layers of mudstone inter-bedded with weak shale, such that it is possible to map each layer along the entire outcrop. Detailed structural mapping evidence that the sedimentary layers have not been opened, i.e. pushed away by the emplacement of the sills, as expected from the LEFM theory. Indeed, some of the sedimentary layers are not present at the location of the sills, but they appear duplicated several times ahead of the tips of the three observed sills; the relative movements between the duplicated segments are clearly associated with shortening. Therefore, our field observations show that the host rock is pushed and shortened ahead of the sill tips, in total contradiction with the extensional features predicted by the LEFM theory. The structures described above strongly suggest instead that these sills were emplaced according to the viscous indenter model, in good agreement with recent laboratory models (Abdelmalak et al., 2012). These detailed observations strongly question the geological relevance of the LEFM theory applied to igneous sheet intrusions, and call for more field observations to better constrain the dynamics of sill and dyke emplacement mechanisms. Abdelmalak, M.M., Mourgues, R., Galland, O., Bureau, D., 2012. Fracture mode analysis and related surface deformation during dyke intrusion: Results from 2D experimental modelling. Earth Planet. Sci. Lett. 359-360, 93-105.

  2. Effects of skin and hydraulic fractures on SVE wells

    NASA Astrophysics Data System (ADS)

    Bradner, Graham C.; Murdoch, Lawrence C.

    2005-05-01

    Soil vapor extraction (SVE) systems are intended to cause substantial volumes of air to flow through the subsurface with the purpose of removing volatile contaminants. The effectiveness of SVE can be influenced by any effect that changes the specific gas capacity (discharge as a function of vacuum) of a well. Skins of low permeability material enveloping a well bore are widely recognized to affect the performance of wells used to recover water, natural gas, or petroleum, and skin can also significantly diminish the performance of an SVE well. Skins a few mm thick consisting of material whose gas phase permeability is 0.01 of the formation can reduce the specific gas capacity of an SVE well by factors of 2 to 10 or more. Hydraulic fractures created in the vicinities of shallow wells commonly resemble sand-filled layers shaped like flat-lying disks or gently dipping saucers. The contrast between the gas-phase permeability of the sand in the fracture and that of the formation is particularly important, with significant effects requiring the ratio to be greater than approximately 50. Shallow hydraulic fractures filled with several tenths of m 3 of sand in formations that are several orders of magnitude less permeable than that of the enveloping formation should increase specific gas capacity by factors of 10 or more. Field tests of the effects of hydraulic fractures on the performance of SVE were conducted by creating four wells intersecting fractures and a suite of control wells created using conventional methods in silty saprolite. Specific gas capacities ranged over more than an order of magnitude for 10 wells completed within a small area (2 m 2) and at the same depth. Specific capacities correlate to the drilling method that was used to create the bore for the well: lowest values occurred in wells drilled with a machine auger, slightly better results were obtained using a Shelby tube, and the best results were obtained from conventional wells bored with a hand auger. Skin factors determined for wells created with a machine auger could be explained by a layer 1 cm thick that has 0.007 times the permeability of the enveloping material, which could readily have been created during the drilling procedure. Specific capacities of wells intersecting hydraulic fractures were 5 to 100 times more than those of conventional wells. The large difference in performance appears to be due in part to the beneficial effects of the fracture, and in part to the detrimental effects of well skin.

  3. Numerical Simulation of Potential Groundwater Contaminant Pathways from Hydraulically Fractured Oil Shale in the Nevada Basin and Range Province

    NASA Astrophysics Data System (ADS)

    Rybarski, S.; Pohll, G.; Pohlmann, K.; Plume, R.

    2014-12-01

    In recent years, hydraulic fracturing (fracking) has become an increasingly popular method for extraction of oil and natural gas from tight formations. Concerns have been raised over a number of environmental risks associated with fracking, including contamination of groundwater by fracking fluids, upwelling of deep subsurface brines, and methane migration. Given the potentially long time scale for contaminant transport associated with hydraulic fracturing, numerical modeling remains the best practice for risk assessment. Oil shale in the Humboldt basin of northeastern Nevada has now become a target for hydraulic fracturing operations. Analysis of regional and shallow groundwater flow is used to assess several potential migration pathways specific to the geology and hydrogeology of this basin. The model domain in all simulations is defined by the geologic structure of the basin as determined by deep oil and gas well bores and formation outcrops. Vertical transport of gaseous methane along a density gradient is simulated in TOUGH2, while fluid transport along faults and/or hydraulic fractures and lateral flow through more permeable units adjacent to the targeted shale are modeled in FEFLOW. Sensitivity analysis considers basin, fault, and hydraulic fracturing parameters, and results highlight key processes that control fracking fluid and methane migration and time scales under which it might occur.

  4. Time-lapse Evolution of Fracture Normal/Tangential Compliance Ratios During Hydraulic Fracture Stimulation

    NASA Astrophysics Data System (ADS)

    Verdon, J.; Baird, A. F.; Wuestefeld, A.; Kendall, J.

    2012-12-01

    The speeds of seismic waves propagating through a fractured rock are modulated by the physical properties of the fracture network. The effect of a fracture network on seismic wavespeeds is determined by its compliance, which in turn is controlled by a variety of physical properties of the fractures. The compliance of a fracture set can be further resolved into the compliance of the fractures under normal and under tangential deformation - the normal and tangential compliances, Zn and Zt. This paper is focused on measuring timelapse variations in their ratio, Zn/Zt, and on what this can tell us about changes to the physical properties of fractures. Rock physics models and lab experiments have revealed that the ratio Zn/Zt is sensitive to the stiffness of the fluid saturating the fracture, as well as aspects of the internal architecture of the fracture: the roughness of the fracture faces, the number and size of any asperities, and the presence of detrital or diagenetic material (or proppant) between fracture faces. Typically, fracture characterization aims to image the orientation and number density of fracture sets, but does not provide information about the properties of the fracture set. Given that the fluid flow properties of the fracture network will be influenced by the above properties, to which Zn/Zt is sensitive, the capability of measuring Zn/Zt will significantly improve efforts to characterize fractures in the field. Rock physics models show that the time-delay and polarization of S-wave splitting measurements made on waves traveling at oblique angles to the fracture faces will be strongly sensitive to Zn/Zt. Therefore, SWS measurements can be used to invert for the Zn/Zt ratio of an aligned fracture set. Microseismic events during hydraulic fracture stimulation typically produce a strong S-wave component, and when measured on downhole geophone arrays they cover a wide range of propagation angles. Therefore, microseismic events recorded on downhole geophones during hydraulic fracture stimulation make ideal candidates for Zn/Zt analysis. We demonstrate this approach using data from 2 hydraulic fracture stimulations. For the first data set, we invert SWS for Zn/Zt for the first stage, and then for subsequent stages of a stimulation. The initial stage had Zn/Zt = 0.33, and during the subsequent stages it increases to Zn/Zt = 0.92. We interpret the increase as being a manifestation of the 'Stage 1 effect', where the initial fracture stimulation stage, which acts on 'virgin' rock, tends to produce suboptimal fracturing (in terms of screen-out, proppant volumes and resulting production) in comparison to subsequent stages. Our measurements of Zn/Zt reflect the changes in fracture properties between Stage 1 and the later stages. For the second data set, we window the SWS measurements by time and invert for temporal variations of Zn/Zt during the stimulation. Zn/Zt is initially low, but increases to values as high as 2 when proppant injection begins. This temporal correlation implies that measurement of Zn/Zt has the potential to image the penetration of proppant into the fractures. We conclude that using SWS to measure the temporal variations in ZnZt has shown the potential to significantly improve the characterization of fractures during a range of geological processes.

  5. Simulations of pressure fluctuations and acoustic emission in hydraulic fracturing

    SciTech Connect

    Tzschichholz, F.; Herrmann, H.J.

    1995-03-01

    We consider a two-dimensional lattice model to describe the opening of a crack in hydraulic fracturing. In particular, we consider that the material only breaks under tension and the fluid has no pressure drop inside the crack. For the case in which the material is completely homogeneous (no disorder), we present results for pressure and elastic energy as a function of time and compare our findings with some analytic results from continuum fracture mechanics. Then we investigate fracture processes in strongly heterogeneous cohesive environments. We determine the cumulative probability distribution for breaking events of a given energetical magnitude (acoustic emission). Further, we estimate the probability distribution of emission free time intervals. Finally, we determine the fractal dimension(s) of the cracks.

  6. Hydraulic fracturing with a refractory proppant for sand control

    SciTech Connect

    Jennings, A.R. Jr.; Stowe, L.R.

    1989-04-04

    A sand control and heat transfer method is described for use in a borehole having an unconsolidated or loosely consolidated oil or gas reservoir which is otherwise likely to introduce substantial amounts of sand into the borehole, comprising: (a) providing a borehole casing through the reservoir; (b) perforating the casing at preselected intervals therealong to form at least one of longitudinal, in-line perforations; (c) hydraulically fracturing the reservoir by injecting a fracturing fluid containing a fine grain fused refractory material which comprises substantially silicon carbide or silicon nitride, and a clay stabilizing agent; (d) injecting a proppant comprising a gravel packing fused refractory material comprised substantially of silicon carbide or silicon nitride into the fracture, whereby a first layer of fine grain fused refractory material is held in place along the entire face of the fracture by a second layer of gravel packing fused refractory material also extending along the entire length of the fracture thereby excluding fines; and (e) producing oil or gas from the reservoir through the fracture into the borehole casing via a thermal oil recovery method which proppant and layers provide for increased heat transfer into the formation.

  7. Method for enhancing heavy oil production using hydraulic fracturing

    SciTech Connect

    Jennings, A.R. Jr.; Smith, R.C.

    1991-04-09

    This patent describes a method for producing viscous substantially fines-free hydrocarbonaceous fluids from an unconsolidated or loosely consolidated formation. It comprises drilling into the formation at least one well into a first productive interval of the formation; fracturing hydraulically the well with a viscous fracturing fluid containing a proppant therein which is of a size sufficient to prop a created fracture and restrict fines movement into the fracture which proppant comprises silicon carbide, silicon nitride, or garnet; injecting a pre-determined volume of steam into the well in an amount sufficient to soften the viscous fluid and lower the viscosity of the fluid adjacent a fracture face producing the well at a rate sufficient to allow formation fines to build up on a fracture face communicating with the well thereby resulting in a filter screen sufficient to substantially remove formation fines from the hydrocarbonaceous fluids; injecting a second volume of steam into the well and producing substantially fines free hydrocarbonaceous fluids to the surface; repeating steps until a desired amount of hydrocarbonaceous fluids have been produced from the first interval; and isolating mechanically the first interval and repeating steps in a second productive interval of the formation.

  8. Hydraulic fracture characterization resulting from low-viscosity fluid injection: Implications for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Burbey, T. J.; Zhou, X.

    2013-12-01

    The initiation of hydraulic fractures during CO2 sequestration can be either engineered or induced unintentionally. Some fractures may be desirable such as horizontal fractures that can facilitate fluid injection and migration; whereas some fractures may be unfavorable if the fractures tend to extend vertically above a certain limit, thus creating a potential leaking condition. Historically, carbon dioxide as a liquefied gas has been used in oil and gas field stimulation since the early1960s because it eliminates formation damage and residual fluids. Carbon dioxide injection is considered to be one of the most effective technologies for improving oil recovery from hard-to-extract oil reserves because CO2 is effective in penetrating the formation due to its high diffusivity, while the rock associated with petroleum-containing formations is generally porous. However, low viscosity and high compressibility fluids such as CO2 exhibit different effects on the hydraulic fracture initiation/propagation behavior in comparison with high viscosity and low compressibility fluids. Laboratory tests show that viscous fluids tend to generate thick and planar cracks with few branches, while low viscosity fluids tend to generate narrow and wavelike cracks with many secondary branches. A numerical comparison between water and supercritical CO2-like fluid has been made to investigate the influence of fluids to fracture propagation behavior. Simulation results indicate that the pore pressure fields are very different for different pore fluids even when the initial field conditions and injection schemes (rate and time) are kept the same. Thin fluids with properties of supercritical CO2 will create relatively thin and much shorter fractures in comparison to fluids exhibiting properties of water under similar injection schemes. Two significant times are recognized during fracture propagation. One is the time at which a crack ceases opening, and he other is the time at which a crack ceases propagating, with the former always occurring before the latter. These times are very different for different fluids. Both fluid compressibility and viscosity are important in the behavior of fracture propagation with viscosity being the most important property. Viscosity can greatly affect the magnitude of hydraulic conductivity and the value of the leak-off coefficient. This study has important implications for CO2 sequestration.

  9. Characteristics of Fracture Networks and Hydrogeologic Units: Implications Provided by Detailed Hydraulic Head Profiles

    NASA Astrophysics Data System (ADS)

    Meyer, J. R.; Parker, B. L.; Cherry, J. A.

    2009-05-01

    Plume characterization in fractured rock is particularly challenging because of the inherent complexity that is difficult to characterize using conventional data. This field study demonstrates how exceptionally detailed head profiles provide definition of the hydrogeologic framework for a sedimentary rock aquifer system impacted by an extensive mixed organic contaminant plume. The site is located in south central Wisconsin and overlies nearly flat lying fractured Paleozoic sandstones and dolostones. Many of these bedrock geologic units were deposited in a marine setting and as a result are laterally extensive across the cratonic interior of North America. Several regional groundwater flow models exist for south central Wisconsin. In the hydrogeologic framework for these models, the various bedrock units are lumped into a lower aquifer, an aquitard, and an upper aquifer. While this framework may be sufficient for regional groundwater flow models, historical data from the field site indicate it is not an appropriate framework for contaminant transport at the site scale. As a result, field studies were designed to collect detailed data from continuous core, geophysical and hydrophysical logging of the corehole, and detailed multilevel systems (MLSs) to define the hydrogeologic framework for the site. A preliminary study by Meyer et al. (2008) involved the installation of one very detailed MLS, 36 monitoring zones over 120.7 m, in the MP-6 corehole upgradient of the plume. The MP-6 hydraulic head profile is characterized by segments with minimal vertical hydraulic gradient separated by distinct inflections. Meyer et al. (2008) concluded that the sharp inflections observed in the MP-6 head profile delineated the positions of low vertical hydraulic conductivity interfaces which are not distinguishable based on stratigraphy, geophysics, or other conventional indirect indicators alone. The inflections in the head profile were interpreted as the contacts between hydrogeologic units (HGUs) and were used to delineate 11 HGUs at the MP-6 location. The sections of the head profile with minimal vertical gradient indicate an interconnected fracture network and a dominance of horizontal flow within each HGU. In the current study, seven additional detailed multilevel systems were installed across the site to investigate the lateral continuity of the hydraulic head inflections observed at MP-6. The head profiles measured from all eight MLSs have similar simple geometries: sections of minimal hydraulic gradient separated by sharp vertical inflections. The elevations of the hydraulic head inflections at each of the eight coreholes are strongly correlated despite separation distances of up to 3 km. The inflections observed in the detailed head profiles allow for the delineation of up to 13 bedrock HGUs at the site in contrast to the three bedrock HGUs commonly used in regional groundwater flow models. These 13 bedrock HGUs will provide the framework for site scale numerical modeling of groundwater flow and contaminant transport. The results of this study demonstrate that pre-existing regional stratigraphic frameworks are generally not an appropriate hydrogeologic framework, particularly in dual porosity/permeability systems where contaminant transport and fate is a concern. In addition, the simple geometry of the head profiles suggests an ordered and interconnected fracture network within each HGU and a poor vertical hydraulic connection between the fracture networks of adjacent HGUs.

  10. Application of a 3D hydraulic-fracturing simulator for design of acid-fracturing treatments

    SciTech Connect

    Morgenthaler, L.N. )

    1994-02-01

    Field experience during 1989--90 shows that application of a 3D hydraulic-fracturing simulator increases success of acid-fracturing well treatments. Fracture extension can be limited to the oil-bearing pay, maximum lateral extension can be realized within the height constraint, and acid/rock contact time can be increased by a factor of between 3 and 30. Oil-production response can be improved over other stimulation designs while water-production response can be limited. These methods have been applied in mature waterfloods of the Permian Basin and Cedar Creek anticline.

  11. Microseismic Evidence for the Interaction of Faulting and Fluid Flow During Hydraulic Fracture Injection

    NASA Astrophysics Data System (ADS)

    Rutledge, J.; Sileny, J.; Vavrycuk, V.; Jechumtalova, Z.; Eisner, L.

    2006-12-01

    Microearthquake induced during hydraulic fracture treatments were precisely located using data from two borehole arrays of 3-component geophones. The treatments were conducted within interbedded sands and shales of the Upper Cotton Valley formation, located in east Texas. The microearthquakes occurred within narrow horizontal bands that correspond to sandstone layers that were specifically targeted for gas production. Double couple (DC), composite focal mechanism inversions indicate strike-slip faulting occurring uniformly along vertical fractures trending close to maximum horizontal stress direction. The banding of events and the slip-plane orientations are close to the reservoir's prevalent natural fractures, known to be isolated within the sands and trending subparallel to the expected hydraulic fracture orientation. Full moment tensor solutions were also attempted by amplitude inversion using higher signal-to-noise events. Significant non-DC components are possible including tensional crack components, but are often poorly resolved due to limited focal sphere coverage. Assuming Coulomb failure criteria, the observation of horizontal slip along fractures subparallel to maximum-horizontal stress implies a relatively high critical pore pressure. Thus, it is reasonable to expect fracture opening is accompanying slip and that the seismicity is directly associated with the activated fluid-flow paths. Faulting, in turn, appears to affect the fluid flow, as evident from the time-space patterns of seismicity. Anomalous event counts and moment release sometimes occur within dense clusters that delineate bends or jogs in the fracture zones. The dense clusters show location patterns diverging in time, suggesting the expulsion of fluid from compressive fault jogs. These jogs likely form choke points where the slip-induced loading tends to lock up and concentrate stress at the jogs, as evident by fewer but larger events populating the structures as injection proceeds.

  12. Numerical investigation of hydraulic fracture network propagation in naturally fractured shale formations

    NASA Astrophysics Data System (ADS)

    Zou, Yushi; Zhang, Shicheng; Ma, Xinfang; Zhou, Tong; Zeng, Bo

    2016-03-01

    Hydraulic fracture network (HFN) propagation in naturally fractured shale formations is investigated numerically using a 3D complex fracturing model based on the discrete element method. To account for the plastic deformation behavior of shales, the Drucker-Prager plasticity model is incorporated into the fracturing model. Parametric studies are then conducted for different Young's moduli, horizontal differential stresses, natural fracture (NF) properties, injection rates, and number and spacing of perforation clusters. Numerical results show that horizontal differential stress primarily determines the generation of a complex HFN. The plastic deformation of shale can reduce the stimulated reservoir volume; this is more obvious with Young's modulus of less than 20 GPa. In addition, a higher injection rate could largely increase the fracture complexity index (FCI). Moreover, increasing perforation cluster numbers per fracturing stage is beneficial for increasing the FCI, but it also increases the potential merging of neighboring fractures, which may lead to non-uniform development of HFN in far-wellbore regions. To achieve uniform development of HFN within a fracturing stage, the distribution of NFs should be fully considered. The results presented here may provide improved understanding of HFN generation and are favorable for optimizing fracturing treatment designs for shale formations.

  13. Hydraulic fracturing: insights from field, lab, and numerical studies

    NASA Astrophysics Data System (ADS)

    Walsh, S. D.; Johnson, S.; Fu, P.; Settgast, R. R.

    2011-12-01

    Hydraulic fracturing has become an increasingly important technique in stimulating reservoirs for gas, oil, and geothermal energy production. In use commercially since the 1950's, the technique has been widely lauded, when combined with other techniques, for enabling the development of shale gas resources in the United States, providing a valuable and extensive source of domestic energy. However, the technique has also drawn a degree of notoriety from high-profile incidents involving contamination of drinking water associated with gas extraction operations in the Marcellus shale region. This work highlights some of the insights on the behavior of subsurface hydraulic fracturing operations that have been derived from field and laboratory observations as well as from numerical simulations. The sensitivity of fracture extent and orientation to parameters such as matrix material heterogeneity, presence and distribution of discontinuities, and stress orientation is of particular interest, and we discuss this in the context of knowledge derived from both observation and simulation. The limitations of these studies will also be addressed in terms of resolution, uncertainty, and assumptions as well as the balance of fidelity to cost, both in computation time (for numerical studies) and equipment / operation cost (for observational studies). We also identify a number of current knowledge gaps and propose alternatives for addressing those gaps. We especially focus on the role of numerical studies for elucidating key concepts and system sensitivities. The problem is inherently multi-scale in both space and time as well as highly coupled hydromechanically, and, in several applications, thermally as well. We will summarize the developments to date in analyzing these systems and present an approach for advancing the capabilities of our models in the short- to long-term and how these advances can help provide solutions to reduce risk and improve efficiency of hydraulic fracturing operations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Anaerobic Biodegradation of Ethylene Glycol within Hydraulic Fracturing Fluid

    NASA Astrophysics Data System (ADS)

    Heyob, K. M.; Mouser, P. J.

    2014-12-01

    Ethylene glycol (EG) is a commonly used organic additive in hydraulic fracturing fluids used for shale gas recovery. Under aerobic conditions, this compound readily biodegrades to acetate and CO2 or is oxidized through the glycerate pathway. In the absence of oxygen, organisms within genera Desulfovibrio, Acetobacterium, and others can transform EG to acetaldehyde, a flammable and suspected carcinogenic compound. Acetaldehyde can then be enzymatically degraded to ethanol or acetate and CO2. However, little is known on how EG degrades in the presence of other organic additives, particularly under anaerobic conditions representative of deep groundwater aquifers. To better understand the fate and attenuation of glycols within hydraulic fracturing fluids we are assessing their biodegradation potential and pathways in batch anaerobic microcosm treatments. Crushed Berea sandstone was inoculated with groundwater and incubated with either EG or a synthetic fracturing fluid (SFF) containing EG formulations. We tracked changes in dissolved organic carbon (DOC), EG, and its transformation products over several months. Approximately 41% of bulk DOC in SFF is degraded within 21 days, with 58% DOC still remaining after 63 days. By comparison, this same SFF degrades by 70% within 25 days when inoculated with sediment-groundwater microbial communities, suggesting that bulk DOC degradation occurs at a slower rate and to a lesser extent with bedrock. Aerobic biodegradation of EG occurs rapidly (3-7 days); however anaerobic degradation of EG is much slower, requiring several weeks for substantial DOC loss to be observed. Ongoing experiments are tracking the degradation pathways of EG alone and in the presence of SFF, with preliminary data showing incomplete glycol transformation within the complex hydraulic fracturing fluid mixture. This research will help to elucidate rates, processes, and pathways for EG biodegradation and identify key microbial taxa involved in its degradation.

  15. Importance of Stratabound Fracture Networks for Seismic Hazard Assessment of Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Eaton, D. W.; Davidsen, J.; Pedersen, P. K.; Boroumand, N.

    2013-12-01

    Hydraulic fracturing, a powerful completion technique used to enhance oil or gas production from impermeable strata, may trigger unintended earthquake activity. The primary basis for assessment of triggered and natural seismic hazard is the classic Gutenberg-Richter (G-R) relation, which expresses scale-independent behavior of earthquake magnitudes. Using a stochastic approach to simulate microseismicity from three monitoring programs in North America, we show that magnitude-distance trends for microearthquakes induced by hydraulic fracturing may deviate significantly from the G-R relation. This apparent breakdown in the power-law scaling paradigm, coupled with unusually high values for the b-parameter (slope) of the G-R relation, can be explained by a new model based on activation of stratabound fracture networks in which fracture height growth is limited by mechanical bed thickness. For the three areas considered, mechanical bed thickness is well represented by a lognormal distribution, which leads asymptotically to a Gaussian decay for induced magnitudes that fits the observations remarkably well. This new relationship has profound implications for understanding the scaling behavior of induced microearthquakes, as well as for forecasting the probability of larger earthquakes triggered by hydraulic fracturing in oil and gas development.

  16. Constraints on Upward Migration of Hydraulic Fracturing Fluid and Brine

    PubMed Central

    Flewelling, Samuel A; Sharma, Manu

    2014-01-01

    Recent increases in the use of hydraulic fracturing (HF) to aid extraction of oil and gas from black shales have raised concerns regarding potential environmental effects associated with predictions of upward migration of HF fluid and brine. Some recent studies have suggested that such upward migration can be large and that timescales for migration can be as short as a few years. In this article, we discuss the physical constraints on upward fluid migration from black shales (e.g., the Marcellus, Bakken, and Eagle Ford) to shallow aquifers, taking into account the potential changes to the subsurface brought about by HF. Our review of the literature indicates that HF affects a very limited portion of the entire thickness of the overlying bedrock and therefore, is unable to create direct hydraulic communication between black shales and shallow aquifers via induced fractures. As a result, upward migration of HF fluid and brine is controlled by preexisting hydraulic gradients and bedrock permeability. We show that in cases where there is an upward gradient, permeability is low, upward flow rates are low, and mean travel times are long (often >106 years). Consequently, the recently proposed rapid upward migration of brine and HF fluid, predicted to occur as a result of increased HF activity, does not appear to be physically plausible. Unrealistically high estimates of upward flow are the result of invalid assumptions about HF and the hydrogeology of sedimentary basins. PMID:23895673

  17. Constraints on upward migration of hydraulic fracturing fluid and brine.

    PubMed

    Flewelling, Samuel A; Sharma, Manu

    2014-01-01

    Recent increases in the use of hydraulic fracturing (HF) to aid extraction of oil and gas from black shales have raised concerns regarding potential environmental effects associated with predictions of upward migration of HF fluid and brine. Some recent studies have suggested that such upward migration can be large and that timescales for migration can be as short as a few years. In this article, we discuss the physical constraints on upward fluid migration from black shales (e.g., the Marcellus, Bakken, and Eagle Ford) to shallow aquifers, taking into account the potential changes to the subsurface brought about by HF. Our review of the literature indicates that HF affects a very limited portion of the entire thickness of the overlying bedrock and therefore, is unable to create direct hydraulic communication between black shales and shallow aquifers via induced fractures. As a result, upward migration of HF fluid and brine is controlled by preexisting hydraulic gradients and bedrock permeability. We show that in cases where there is an upward gradient, permeability is low, upward flow rates are low, and mean travel times are long (often >10⁶  years). Consequently, the recently proposed rapid upward migration of brine and HF fluid, predicted to occur as a result of increased HF activity, does not appear to be physically plausible. Unrealistically high estimates of upward flow are the result of invalid assumptions about HF and the hydrogeology of sedimentary basins. PMID:23895673

  18. Friction pressures of proppant-laden hydraulic fracturing fluids

    SciTech Connect

    Shah, S.N.; Lee, Y.N.

    1986-11-01

    Friction-pressure calculations of proppant-laden fluids are very important not only in the design of any hydraulic fracturing treatment but also in real-time monitoring of fracturing treatments. Recent advances in real-time fracture analysis have necessitated an accurate knowledge of bottomhole treating pressure (BHTP). To estimate BHTP, an accurate prediction of friction pressures of fluids in the flow conduit is required. This paper presents a new approach for predicting friction pressures of proppant-laden fracturing fluids that is based on an analytical method and uses nondimensional quantities in the analysis of flow data. From the flow data with various proppant-laden gels in multiple pipes, generalized correlations are developed and presented that incorporate such variables as proppant size, proppant density, proppant concentration, fluid density, flow rate, polymer gel concentration, and pipe size. These correlations are valid for a wide range of terminal Froude number, N/sub Fr/* (8.4 x 10/sup -3/ to 1.3 x 10/sup -4/), and particle Froude number, N/sub Frp/ (20 to 200). These ranges include the calculated values of N/sub Fr/* and N/sub Frp/ for the majority of hydraulic fracturing treatments conducted today. The correlations are verified by comparison of the estimations with data gathered in field-size tubing and field-gathered data. The predictions agree more closely with field data than previously published methods. Unlike previous studies, this investigation indicates that besides other factors, proppant size, pump rate, flow geometry, and polymer gel concentration play a significant role in the friction-pressure predictions of proppant-laden fluids.

  19. The Role of the Rock on Hydraulic Fracturing of Tight Shales

    NASA Astrophysics Data System (ADS)

    Suarez-Rivera, R.; Green, S.; Stanchits, S.; Yang, Y.

    2011-12-01

    Successful economic production of oil and gas from nano-darcy-range permeability, tight shale reservoirs, is achieved via massive hydraulic fracturing. This is so despite their limited hydrocarbon in place, on per unit rock volume basis. As a reference, consider a typical average porosity of 6% and an average hydrocarbon saturation of 50% to 75%. The importance of tight shales results from their large areal extent and vertical thickness. For example, the areal extent of the Anwar field in Saudi Arabia of 3230 square miles (and 300 ft thick), while the Marcellus shale alone is over 100,000 square miles (and 70 to 150 ft thick). The low permeability of the rock matrix, the predominantly mineralized rock fabric, and the high capillary forces to both brines and hydrocarbons, restrict the mobility of pore fluids in these reservoirs. Thus, one anticipates that fluids do not move very far within tight shales. Successful production, therefore results from maximizing the surface area of contact with the reservoir by massive hydraulic fracturing from horizontal bore holes. This was the conceptual breakthrough of the previous decade and the one that triggered the emergence of gas shales, and recently oily shales, as important economic sources of energy. It is now understood that the process can be made substantially more efficient, more sustainable, and more cost effective by understanding the rock. This will be the breakthrough of this decade. Microseismic monitoring, mass balance calculations, and laboratory experiments of hydraulic fracturing on tight shales indicate the development of fracture complexity and fracture propagation that can not be explained in detail in this layered heterogeneous media. It is now clear that in tight shales the large-scale formation fabric is responsible for fracture complexity. For example, the presence and pervasiveness of mineralized fractures, bed interfaces, lithologic contacts, and other types of discontinuities, and their orientation in relation to the in-situ stresses, have a dominant role in promoting fracture branching and abrupt changes in direction. In general, the problem can be conceptualized as a competition between the effect of stresses (traditional mechanics of homogeneous media) and the effect of rock fabric (the mechanics of heterogeneous media). When the stress difference is low and the rock fabric pronounced, the rock fabric defines the direction of propagation. When the stress difference is high and the fabric is weak, the stress contrast dominates the process. In real systems, both effects compete and result in the complexity that we infer from indirect observations. In this paper we discuss the role of rock fabric on fracture complexity during hydraulic fracture propagation. We show that understanding the far field stresses is not enough to understand fracture propagation and complexity. Understanding the rock-specifically the larger-scale textural features that define the reservoir fabric-is fundamental to understand fracture complexity and fracture containment. We use laboratory experiments with acoustic emission localization to monitor fracturing and making inferences about the large-scale rock behavior. We also show that the fracture geometry, even for the same connected surface area, has significant well production and reservoir recovery implications.

  20. Field investigation of heat transfer in hydraulic fractures and the effect of heat transfer on fracturing fluid design

    SciTech Connect

    Craig, D.P.; Brown, T.D.; Ely, J.W.

    1996-12-31

    Fracturing fluid temperature is a key variable in the design of hydraulic fracturing treatments and the formulation of fracturing fluids. Heat transfer in a hydraulic fracture dictates the fluid formulation and the concentration of chemical {open_quotes}breakers{close_quotes} used to degrade the fluid and maximize proppant pack conductivity. This paper contains the results of an investigation of heat transfer in hydraulic fractures, and documents the recording of bottomhole temperature during Piceance Basin Mesaverde fracturing treatments and during immediate flow back ({open_quotes}forced closure{close_quotes}). Bottomhole temperature was measured with a gauge set in a perforated interval, and the data shows minimal {open_quotes}cool down{close_quotes} of fracturing fluids, i.e., flow back temperatures increased rapidly to near bottomhole static temperature. Computer simulations are also presented and a fracturing fluid design methodology is suggested which balances fluid rheological requirements with degradation requirements, for maximizing proppant pack conductivity.

  1. Estimation of response of fracture system to hydraulic stimulation by induced microseismic multiplet analysis

    NASA Astrophysics Data System (ADS)

    Asanuma, H.; Kenmoku, Y.; Kawamura, Y.; Niitsuma, H.; Wyborn, D.

    2009-12-01

    Development of a commercial geothermal power plant using an artificially stimulated reservoir is underway at Cooper Basin, Australia. In 2003, they have made the first stimulation where openhole section from 3667-4421m inside granitic basement was stimulated. Researchers in Tohoku University have collected more than 32,000 microseismic events while the stimulation using a monitoring network consists of 4 near surface stations (horizontal offset around 5-7 km from the injection well) and one downhole station near the injection well. Sub-horizontal hypocentral cloud with a thickness around 100-200m have been obtained by JHD in the previous studies (Asanuma et al., SEG Exp. Abst., 2005). In this study, the authors clustered and re-located microseismic multiplets using coherence evaluation in the frequency domain and DD relocation technique. Evaluation of coherency of the seismic traces at the onset of P-wave revealed that 99.9% of the events, which are not saturated and overlapped two events, were clustered into one multiplet cluster. This is because of strong low-pass characteristics of the earth transfer function and simple rupture process. The events were then sub-clustered into 26 groups by their polarity of the first break of P wave at each station. Integrated interpretation of the multiplets using fault plane solutions (FPS) by the composite focal mechanism, spatio-temporal distribution of the hypocenter, and critical stress state for shear slip was made in this study. Results from the analyses revealed that most of the multiplets occurred on sub-horizontal fractures, and some of the multiplet events (a few percent) are very likely to origin from sub-vertical fractures which connect the sub-horizontal fractures. It has been also showed that the events from sub-vertical fracture started to occur after seismic activity in one sub-horizontal fracture became high, and other sub-horizontal fracture was seismically activated after appearance of sub-vertical seismic structure. Kumano et al. (SEG Exp. Abst., 2006) have made coherence analysis of multiplets including coda, and reported that two or three sub-parallel and sub-horizontal fractures were mainly stimulated at this site. It has been reported that several sub-horizontal permeable fractures have been found inside the basement rock while drilling of the injection well, and most of the pre-existing fractures were plugged by cement except for one. Integrated interpretation of the observed facts and results from the microseismic analysis is that (a) an existing fracture connected to the injection well was firstly stimulated, then (b) increased pore-pressure in the fracture induced shear slip on sub-vertical fractures and permeability improved, and (c) horizontal fractures, which were hydraulically connected by the sub-vertical fractures, were stimulated and seismically activated. A combination of multiplet analysis, FPS, and critical pore pressure was effectively used to interpret behavior of simulated fracture system.

  2. Investigation of Cross-Correlations between Fracture Frequencies and Results of the Vertical Flowmeter Test

    NASA Astrophysics Data System (ADS)

    Kim, T.; Shin, J.; Hwang, S.; Kim, K.; Chae, B.; Kim, Y.

    2004-12-01

    In, general, it is one of the well-known phenomena in fractured media that there is no explicit correlation between fracture densities and bulk hydraulic conductivity. However, in most cases, the meaning of ør¡Æfractureør¡_ does not have a unique sense in hydrogeology. ør¡ÆFractureør¡_ simultaneously means as ør¡Æbedding planeør¡_, ør¡Ætectonic jointør¡_, ør¡Æcooling jointør¡_, ør¡Æweathering jointør¡_ and so on. All types of these ør¡Æfracturesør¡_ have different origins and different properties. In addition, there are a plenty of the conceptual models for fractured media with the hydrogeological sense; equivalent porous medium model, discrete model, dual porosity model, discrete percolation model, continuum percolation model, fractal model, linear programming methods and so forth. Which factors should be characterized is totally dependent on which conceptual model would be applied. The applied conceptual model is continuum percolation model in this study, and the purpose of this study is the investigation of cross-correlations between fracture frequency and the variation of vertical flow rate in borehole to check up how the REV of fractured medium can be determined in the field scale. We measured the relative vertical flow rates in two testing boreholes under the natural condition and the artificially stressed conditions, and collected the information of detectible fractures in the boreholes with a acoustic televiewer logging. And then we evaluated the change of vertical flow rates in surveyed boreholes and categorized the surveyed fractures based on their depths and orientations, and counted the frequency of fractures along with the borehole depth (1m interval) with various widths of surveyed windows, 1 ˜10m. Using the results of frequency survey, cross-correlations between the changes of flow rate and the fracture frequency with various widths of windows were calculated. Results of this analysis show that 7m width of surveyed window has the highest cross-correlation. Even if more studies and investigations should be needed, 7m width can provide the important information to determine the REV of fractured medium in the tested site.

  3. Mapping the Isotropic Component of Focal Mechanisms in Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Baig, A. M.; Urbancic, T. I.

    2009-12-01

    We present the results of a hydraulic fracture monitoring study where the events induced by the treatment are recorded with a three-dimensional sensor distribution. The fact that the microseismicity is recorded over multiple azimuths allows not only for better convergence of the location algorithm, but also acheives sufficient coverage of the focal sphere to reliably invert for the full moment tensor. Unlike in tectonic settings, many of these focal mechanisms have very strong non-double-couple components, due to the intrusion of proppants into the surrounding rock, and are thus characterized by mechanisms consistant with tensile cracks opening or closing. Mapping these mechanisms in time and space offers insight into both the processes responsible for the fracturing, but also how effectively the treatment propped open the rock and identifying which areas may have opened and subsequently closed.

  4. Hydraulic Fracturing, Wastewater Injection and Unintended Earthquakes (Invited)

    NASA Astrophysics Data System (ADS)

    Ellsworth, W. L.

    2013-12-01

    It has long been known that increasing the pore pressure within a pre-stressed fault can induce an earthquake by reducing the effective normal stress and thereby the frictional strength of the fault. Underground fluid pressures are routinely modified by a wide range of industrial activities including impoundment of reservoirs, mining, and petroleum production, all of which are known to have potential for inducing earthquakes. Recently, attention has been drawn to the earthquake hazard associated with the production of oil and gas from previously unproductive formations. Earthquakes can be induced as part of the process to stimulate the production from tight shale formations, or by disposal of wastewater associated with stimulation and production. In this talk, I review recent investigations of both activities with a focus on the emerging understanding of the development of predictive models for both seismicity and risk. By design, hydraulic fracturing induces numerous high-frequency microseismic events as part of the process of creating a connected fracture network to enhance formation permeability. During the brief time (hours) that high fluid pressure is applied to the well bore, seismic events occur as a combination tensile (hydrofracture) and shear (hydroshear) failures. The fluid volume injected in a single hydrofrac stage is commonly of the order of several thousand cubic meters. Growth of the fracture network typically follows square-root scaling with time, suggesting a diffusive growth mechanism. Magnitudes are normally below zero for events in the target formation. Larger, unintended events sometimes occur and available evidence points to shear failure of pre-existing faults as their source. Earthquakes with magnitudes as large as Mw 3.6 occurred during hydraulic fracturing operations in the Horn River Basin, B. C., Canada. Some of these occurred before the diffusive pressure front would have reached the hypocenter, suggesting rapid transmission of pore pressure through conductive fractures or faults. In contrast with hydraulic fracturing treatments, wastewater wells commonly inject fluid for years or decades, with cumulative volumes occasionally in excess of 1 million cubic meters. By design, wastewater injection should never induce hydraulic fractures, as regulations require injection pressures to be less than the fracture pressure. Avoiding earthquakes has proven to be more problematic, at least for a small percentage of the more than 30,000 UIC Class II wells in the U.S. that are licensed for wastewater disposal. Case studies of some of the larger of the recent earthquakes induced by wastewater injection suggest triggering by transmission of the pore pressure increase to well-oriented faults in the basement. Ultimately, better knowledge of the stress and pressure conditions at depth; the hydrogeologic framework, including the presence and geometry of faults; and the location and mechanisms of natural seismicity at a few sites will be needed to develop a predictive understanding of the hazard posed by induced earthquakes.

  5. Boundary element simulation of petroleum reservoirs with hydraulically fractured wells

    NASA Astrophysics Data System (ADS)

    Pecher, Radek

    The boundary element method is applied to solve the linear pressure-diffusion equation of fluid-flow in porous media. The governing parabolic partial differential equation is transformed into the Laplace space to obtain the elliptic modified-Helmholtz equation including the homogeneous initial condition. The free- space Green's functions, satisfying this equation for anisotropic media in two and three dimensions, are combined with the generalized form of the Green's second identity. The resulting boundary integral equation is solved by following the collocation technique and applying the given time-dependent boundary conditions of the Dirichlet or Neumann type. The boundary integrals are approximated by the Gaussian quadrature along each element of the discretized domain boundary. Heterogeneous regions are represented by the sectionally-homogeneous zones of different rock and fluid properties. The final values of the interior pressure and velocity fields and of their time-derivatives are found by numerically inverting the solutions from the Laplace space by using the Stehfest's algorithm. The main extension of the mostly standard BEM-procedure is achieved in the modelling of the production and injection wells represented by internal sources and sinks. They are treated as part of the boundary by means of special single-node and both-sided elements, corresponding to the line and plane sources respectively. The wellbore skin and storage effects are considered for the line and cylindrical sources. Hydraulically fractured wells of infinite conductivity are handled directly according to the specified constraint type, out of the four alternatives. Fractures of finite conductivity are simulated by coupling the finite element model of their 1D-interior with the boundary element model of their 2D- exterior. Variable fracture width, fractures crossing zone boundaries, ``networking'' of fractures, fracture-tip singularity handling, or the 3D-description are additional advanced formulations of the proposed model of the hydraulically fractured wells. Another strong emphasis is put on the realization of the numerical model on a computer using the object-oriented programming. In addition to the graphical editor of input data, a higher-level language is designed to facilitate a universal data interface to the numerical simulator. The final version of the simulator is supplied on a CD-ROM together with the 35 solved example problems.

  6. MEASURING VERTICAL PROFILES OF HYDRAULIC CONDUCTIVITY WITH IN SITU DIRECT-PUSH METHODS

    EPA Science Inventory

    U.S. EPA (Environmental Protection Agency) staff developed a field procedure to measure hydraulic conductivity using a direct-push system to obtain vertical profiles of hydraulic conductivity. Vertical profiles were obtained using an in situ field device-composed of a
    Geopr...

  7. Hydraulic Fracturing Treatment Controls on Induced Microseismicity Attributes

    NASA Astrophysics Data System (ADS)

    Reyes-Montes, J. M.; Kelly, C.; Huang, J.; Zhao, X.; Young, R. P.

    2014-12-01

    Hydraulic fracturing imposes stress changes in the treated rock through the injection of a mix of fluid and proppant at variable rates and can result in stimulated microseismicity (induced or triggered) with a wide range of magnitudes associated to the opening of new cracks or the mobilisation of pre-existing fractures. Optimizing the treatment is vital for the economic and sustainable development of hydrocarbon reservoir and for the minimization of potential environmental impacts. The analysis of the induced seismicity and of event parameters provide an estimate of the effect of the treatment and the extent of the changes in the rock reservoir properties affecting fluid conductivity. This gives critical feedback for the optimization of the treatment, especially during real-time monitoring. In this study, we correlate microseismic attributes such as the fracture dimensions, event distribution and b-values with the fluid treatment parameters such as the pumping pressure and the slurry rate across different reservoir treatments. Although the microseismic attributes are influenced by many different factors such as the reservoir elastic properties, the stress regime and in-situ fracturing, we consistently observed positive correlations between the slurry rate, plateau treatment pressure and the fracture dimensions. In addition, the variation and systematic deviation of b-value from the natural average of 1.0 gives an insight into the geomechanical behavior of the reservoir. Similar to b-value, another fractal dimension, D-value, indicates the fracture spatial propagation from linear advancement (D=1.0) to planar distribution (D=2.0) to full space occurrence (D=3.0). By merging microseismic events from multiple treatment stages, we statistically analyzed magnitude distribution and spatial and temporal structure of the microseismic cloud induced during the stimulation of a range of different reservoirs with a total population of ~20,000 MS events. Analysis on multiple treatment projects can provide a first order guidance on selecting optimal treatment parameters.

  8. 3D geostatistical modeling of fracture system in a granitic massif to characterize hydraulic properties and fracture distribution

    NASA Astrophysics Data System (ADS)

    Koike, Katsuaki; Kubo, Taiki; Liu, Chunxue; Masoud, Alaa; Amano, Kenji; Kurihara, Arata; Matsuoka, Toshiyuki; Lanyon, Bill

    2015-10-01

    This study integrates 3D models of rock fractures from different sources and hydraulic properties aimed at identifying relationships between fractures and permeability. The Tono area in central Japan, chiefly overlain by Cretaceous granite, was examined because of the availability of a unique dataset from deep borehole data at 26 sites. A geostatistical method (GEOFRAC) that can incorporate orientations of sampled data was applied to 50,900 borehole fractures for spatial modeling of fractures over a 12 km by 8 km area, to a depth of 1.5 km. GEOFRAC produced a plausible 3D fracture model, in that the orientations of simulated fractures correspond to those of the sample data and the continuous fractures appeared near a known fault. Small-scale fracture distributions with dominant orientations were also characterized around the two shafts using fracture data from the shaft walls. By integrating the 3D model of hydraulic conductivity using sequential Gaussian simulation with the GEOFRAC fractures from the borehole data, the fracture sizes and directions that strongly affect permeable features were identified. Four fracture-related elements: lineaments from a shaded 10-m DEM, GEOFRAC fractures using the borehole and shaft data, and microcracks from SEM images, were used for correlating fracture attributes at different scales. The consistency of the semivariogram models of distribution densities was identified. Using an experimental relationship between hydraulic conductivity and fracture length, the fractures that typically affect the hydraulic properties at the drift scale were surmised to be in the range 100-200 m. These results are useful for a comprehensive understanding of rock fracture systems and their hydraulic characteristics at multiple scales in a target area.

  9. Characteristics of microseismic events induced during hydraulic fracturing experiments at the Hijiori hot dry rock geothermal energy site, Yamagata, Japan

    NASA Astrophysics Data System (ADS)

    Sasaki, Shunji

    1998-04-01

    Microseismicity accompanying hydraulic injection experiments at the Hijiori hot dry rock site was monitored by a network of ten borehole seismic stations deployed at an average distance of 2 km from the injection well. While expanding hydraulic fractures are almost aseismic, they can induce microseismic events. These events are probably caused by shear failures induced by high pore fluid pressures occurring on planes of weakness in the rock surrounding the main hydraulic fracture. Thus we can use these induced events to locate the hydraulic fracture and follow its growth. Microseismic events induced during the 1988 hydraulic fracturing experiment with a high injection pressure were located near the injection point in the early stage of the experiment and clearly migrated towards the east and distributed along a vertical plane. The strike of seismicity is nearly parallel to the direction of the maximum principal stress. The vertical orientation and east-west strike of the seismic events are essentially coplanar with the caldera ring-fault structure in the southern portion of the Hijiori Caldera. This indicates that a preexisting fracture zone was being re-opened and developed in the direction of the maximum principal stress, although microseismic events were caused by shear failures. The space-time distribution of the microseismic events shows that the events migrated at a rate proportional to time to the power 2/3. Assuming that migration of events is attributed to fracture propagation, the propagation of the hydraulically stimulated fracture can be explained by one of two petroleum industry models tested. Seismicity accompanying the 1989 circulation test with a low injection pressure was diffuse and showed a seismic cloud. The permeability was estimated from the hypocenter migration as 10 -16 m 2, which is intermediate between the permeability of core samples of granodiorite taken from the production well and the permeability of fractured rocks obtained by an injection test between the injection well and the production well. It is therefore concluded that the seismic cloud accompanying the circulation test is due to the permeation of water into joints which slip when the effective stress is reduced by the increased pore fluid pressure accompanying the hydraulic injection. Microseismic events occur and migrate along those joints.

  10. Pressure-gradient singularity and production enhancement for hydraulically fractured wells

    NASA Astrophysics Data System (ADS)

    Chen, Kang Ping; Jin, Yan; Chen, Mian

    2013-11-01

    When a hydraulic fracture is modelled as a slit, the flow of the reservoir fluid towards the fracture develops a pressure-gradient singularity at the sharp fracture tips for both steady and transient flows. This pressure-gradient singularity also creates a flux-density singularity of the same type at the fracture tips. We study this pressure-gradient/flux singularity and its role in the production enhancement for hydraulically fractured wells in detail for the stabilized flow regime. Analytical solutions for slit, rectangular and elliptical shape fractures in the limit of infinite dimensionless fracture conductivity are used to analyse the flow physics. Our analyses reveal the exact mathematical nature of the pressure-gradient tip singularity and its regularization by the elliptical geometry. We show that this pressure-gradient tip singularity causes the flow from the region ahead of the fracture tip to converge and focus at the fracture tip. This flow pattern concentrates the production to the region near the fracture tip and increases the flux along the entire fracture surface. The singularity in the reservoir pressure-gradient is inherent for all fractures with sharp ends in both steady and transient flows regardless of the fracture conductivity. Our results establish pressure-gradient tip singularity as a universal and primary mechanism for enhanced productivity from hydraulically fractured wells. The large suction forces at the fracture tips induce the fluid to flow from an ultra-low permeability reservoir into a hydraulic fracture.

  11. The evolution of an applied hydraulic fracture project, Frontier Formation Moxa Arch, Wyoming

    SciTech Connect

    Harkrider, J.D.; Aud, W.W.; Cipolla, C.L.; Hansen, J.T.

    1994-12-31

    This paper demonstrates a methodical approach in the implementation of current hydraulic fracturing technologies. Specific examples illustrating the evolution of a consistent reservoir/hydraulic fracturing interpretation are presented in a case history of three GRI-Industry Technology Transfer wells. Detailed modeling of these project wells provided an overall reservoir and hydraulic fracture description that was consistent with respect to all observations. Based on identification of the fracturing mechanisms occurring, the second and third project wells show the capabilities of real-time diagnostics in the implementation of hydraulic fracture treatments. By optimizing the pad volume and fluid integrity to avoid premature screenouts, significant cost savings and improved proppant placement were achieved. The production and pressure build-up response in the first project well verifies the overall interpretation of the reservoir/hydraulic fracture model and provides the basis for eliminating the use of moderate strength/higher cost proppant over sand in low permeability/higher closure stress environments.

  12. Numerical modeling of the productivity of vertical to shallowly dipping fractured zones in crystalline rocks

    NASA Astrophysics Data System (ADS)

    Leray, S.; de Dreuzy, J.-R.; Bour, O.; Bresciani, E.

    2013-02-01

    SummaryGroundwater resources in crystalline rock are typically associated with the weathered zone and regional sub-vertical faults that are well connected to the surface. However, some sub-horizontal and shallowly dipping fractured zones can also be highly-productive aquifers. In this paper, numerical simulations of a conceptual hydrogeological model show that the flow to such strongly transmissive fractured zones is controlled by their transmissivity or by their deepening structure. While leakage through the overlying rock units is generally the limiting factor, recharge always occurs at least close to the outcrop of the fractured zone where the overlying rock is thinner and guarantees the availability of some groundwater. At small dip angles, recharge extends spatially and the flow within the fractured zone may even become the limiting factor when the hydraulic conductivity of the overlying rock is not less than two orders of magnitude smaller than the fractured zone transmissivity. This is precisely the case of the Plœmeur aquifer (Brittany, France) located in a crystalline rock geologic setting, where groundwater in a shallowly dipping fractured zone is used as the source of water supply for a nearby city of 20,000 people. Simulation results show that the fractured zones may represent potential aquifers under a large variety of hydrogeological conditions. Aquifers in shallowly dipping structures differ strongly from those located in regional sub-vertical fault zones in terms of flow patterns, and thus supposedly in terms of management of the groundwater resource. They are more local than regional in scale, and consequently do not require regional fracture connectivity. The leakage through the overlying rock unit enhances water quality. Finally, we argue that the potential widespread occurrence of these alternative and possibly less accessible resources should promote the development of appropriate identification methods.

  13. Fate of hydraulic fracturing chemicals under down-hole conditions

    NASA Astrophysics Data System (ADS)

    Blotevogel, J.; Kahrilas, G.; Corrin, E. R.; Borch, T.

    2013-12-01

    Hydraulic fracturing is a method to increase the yield of oil and natural gas extraction from unconventional rock formations. The process of hydrofracturing occurs via injecting water, sand, and chemicals into the production well and subjecting this mixture to high pressures to crack the rock shale, allowing increased amounts of gas and oil to seep out of the target formation. Typical constituents of the chemical mixtures are biocides, which are applied to inhibit growth of sulfate reducing bacteria in order to prevent pipe corrosion and production of hazardous gases. However, very little is known about the persistence, fate, and activity of biocides when subjected to the high temperatures and pressures of down-hole conditions. Thus, the objective of this talk is to present data from ongoing experiments focused on determining the fate of biocides commonly used for hydraulic fracturing under conditions simulating down-hole environments. Using stainless steel reactors, the high pressures and temperatures of down-hole conditions in the Marcellus shale are simulated, while concentration, speciation, and degradation of priority biocides are observed as a function of time, using primarily LC/MS techniques. The impact of water quality, shale, temperature, and pressure on the transformation kinetics and pathways of biocides will be discussed. Finally, field samples (both sediments and flowback brine) from the Marcellus shale are analyzed to verify that our lab simulations mirror real-life conditions and results.

  14. Periodontal healing after bonding treatment of vertical root fracture.

    PubMed

    Sugaya, T; Kawanami, M; Noguchi, H; Kato, H; Masaka, N

    2001-08-01

    Vertical root fractures lead to advanced periodontal breakdown with deep periodontal pockets and vertical bone defects. The purpose of this study is to evaluate clinically the periodontal healing of root fracture treatment using adhesive resin cement. In 22 patients, 23 teeth with vertical root fractures were treated with 4-META/MMA-TBB resin cement. Eleven fractured roots were bonded through the root canal (group A) and 12 fractured roots were bonded extra-orally and replanted (group B). All teeth were then restored with full cast crowns (n=20) or coping (n=3). Mean probing depth was 6.6 mm at pre-treatment and 4.4 mm 6 months after the treatment in group A, and 7.4 mm and 4.6 mm, respectively, in group B. Bleeding scores were 100% at pre-treatment and 36.4% after 6 months in group A and 91.7% and 8.3%, respectively in group B. Radiographic bone level was 56.8% at pretreatment and 59.1% after 6 months in group A, and 18.8% and 29.2%, respectively, in group B. Two roots of group A and three roots of group B were extracted due to refracture, deterioration of periodontal inflammation, mobility, and luxation. The remaining roots (n=18) presented no discomfort to the patients and there was no deterioration of periodontal conditions over a mean period of 33 months (range 14-74 months) in group A and over a mean period of 22 months (range 6-48 months) in group B. There was no ankylosed teeth nor was any root resorption detected. The results suggested that the treatment of vertical root fracture using 4-META/MMA-TBB resin has good prognostic possibilities. PMID:11585144

  15. Microcomputer analysis of hydraulic fracture behavior with a pseudo-three-dimensional simulator

    SciTech Connect

    Morales, R.H.

    1989-02-01

    The theory describing a pseudo-three-dimensional (pseudo-3D) hydraulic fracturing model that solves the coupled fluid-flow and elastic-rock-deformation problem associated with a fracture propagating into a zone composed of three or more layers is presented. The fracture is initiated in the center layer. Fracture growth is formulated from the critical-stress-intensity-factor criterion, and fracture width is obtained from plane-strain elasticity solutions. Fluid fronts and proppant settling during fracture closure are tracked during the treatment. Fracture parameters obtained by this model show excellent agreement (6% maximum difference) with the solution given by a 3D simulator. Also, designs of hydraulic fracturing treatments depicting ways to minimize fracture growth and to optimize proppant distribution are described. The explicit expressions developed for modeling the fracture growth and fracture opening have reduced the complexity of the formulation and the computational effort.

  16. a Mixed-Fractal Flow Model for Stimulated Fractured Vertical Wells in Tight Oil Reservoirs

    NASA Astrophysics Data System (ADS)

    Su, Yuliang; Sheng, Guanglong; Wang, Wendong; Zhang, Qi; Lu, Mingjing; Ren, Long

    2016-02-01

    Stimulated reservoir volume (SRV) with large fracture networks can be generated near hydraulic fractured vertical wells (HFVWs) in tight oil reservoirs. Statistics show that natural microfractures and fracture networks stimulated by SRV were self-similar in statistical sense. Currently, various analytical models have been presented to study pressure behaviors of HFVWs in tight oil reservoirs. However, most of the existing models did not take the distribution and self-similarity of fractures into consideration. To account for stimulated characteristic and self-similarity of fractures in tight oil reservoirs, a mixed-fractal flow model was presented. In this model, there are two distinct regions, stimulated region and unstimulated region. Dual-porosity model and single porosity model were used to model stimulated and unstimulated regions, respectively. Fractal geometry is employed to describe fractal permeability and porosity relationship (FPPR) in tight oil reservoirs. Solutions for the mixed-fractal flow model were derived in the Laplace domain and were validated among range of the reservoir parameters. The pressure transient behavior and production rate derivative were used to analyze flow regimes. The type curves show that the fluid flow in HFVWs can be divided into six main flow periods. Finally, effect of fractal parameters and SRV size on flow periods were also discussed. The results show that the SRV size and fractal parameters of fracture network have great effect on the former periods and fractal parameters of matrix mainly influence the later flow periods.

  17. Simplified hydraulic model of French vertical-flow constructed wetlands.

    PubMed

    Arias, Luis; Bertrand-Krajewski, Jean-Luc; Molle, Pascal

    2014-01-01

    Designing vertical-flow constructed wetlands (VFCWs) to treat both rain events and dry weather flow is a complex task due to the stochastic nature of rain events. Dynamic models can help to improve design, but they usually prove difficult to handle for designers. This study focuses on the development of a simplified hydraulic model of French VFCWs using an empirical infiltration coefficient--infiltration capacity parameter (ICP). The model was fitted using 60-second-step data collected on two experimental French VFCW systems and compared with Hydrus 1D software. The model revealed a season-by-season evolution of the ICP that could be explained by the mechanical role of reeds. This simplified model makes it possible to define time-course shifts in ponding time and outlet flows. As ponding time hinders oxygen renewal, thus impacting nitrification and organic matter degradation, ponding time limits can be used to fix a reliable design when treating both dry and rain events. PMID:25225940

  18. Approach to estimating the maximum depth for glacially induced hydraulic jacking in fractured crystalline rock at Forsmark, Sweden

    NASA Astrophysics Data System (ADS)

    Lönnqvist, M.; Hökmark, H.

    2013-09-01

    Hydraulic jacking is a significant dilation of a fracture that occurs when the pore pressure within it exceeds the sum of the fracture's normal stress and tensile strength. This phenomenon may occur during a glacial period because of changes in hydraulic and mechanical boundary conditions. Since hydraulic jacking may alter flow patterns and the transport capacity of the rock mass, its possible effects on the long-term performance of a nuclear waste repository should be considered. We develop an approach to assess glacially induced hydraulic jacking in fractured crystalline rock and establish bounding estimates of the maximum jacking depth for the Swedish Nuclear Fuel and Waste Management Company's (SKB) repository site at Forsmark. The pore pressure is estimated using mechanically uncoupled two-dimensional poroelastic continuum models with hydraulic and mechanical conditions based on SKB's reconstruction of the Weichselian glaciation at this site (120-0 ka B.P.). For warm-based conditions, the water pressure at the ice/bed interface is set at 98% of the mechanical load, whereas for glacial conditions with extensive proglacial permafrost, the corresponding water pressure is set at a (lower) annual average value. We demonstrate that the pore pressure within the uppermost kilometer of rock is mainly governed by the water pressure at the ice/bed interface and that the mechanical impact of the ice load on the pore pressure is sufficiently small to be ignored. Given the current and estimated future stress conditions at Forsmark, hydraulic jacking is mainly of concern for subhorizontal fractures, i.e., it is sufficient to consider situations when the pore pressure exceeds the vertical stress. We conclude that hydraulic jacking at Forsmark will be confined to the uppermost 200 m of the rock mass.

  19. Hydraulic characterization for steam enhanced remediation conducted in fractured rock.

    PubMed

    Stephenson, Kyle M; Novakowski, Kent; Davis, Eva; Heron, Gorm

    2006-01-10

    To explore the viability of Steam Enhanced Remediation (SER) in fractured rock a small-scale steam injection and water/vapour extraction pilot study was conducted at the former Loring Air Force Base in northern Maine, USA. A detailed well testing program was undertaken to assist in the design of the injection and extraction well array, and to assess the possibility of off-site heat and contaminant migration. A structurally complex limestone having low matrix porosity and a sparse distribution of fractures underlies the study site. To characterize the groundwater and steam flow pathways, single-well slug tests and more than 100 pulse interference tests were conducted. The results of the well testing indicate that the study site is dominated by steeply dipping bedding plane fractures that are interconnected only between some wells in the injection/extraction array. The SER system was designed to take advantage of interconnected fractures located at depth in the eastern end of the site. An array of 29 wells located in an area of 60 by 40 m was used for steam injection and water/vapour extraction. The migration of heat was monitored in several wells using thermistor arrays having a 1.5 m vertical spacing. Temperature measurements obtained during and after the 3 month steam injection period showed that heat migration generally occurred along those fracture features identified by the pulse interference testing. Based on these results, it is concluded that the pulse interference tests were valuable in assisting with the design of the injection/extraction well geometry and in predicting the migration pathways of the hot water associated with the steam injection. The pulse interference test method should also prove useful in support of any other remedial method dependant on the fracture network for delivery of remedial fluid or extraction of contaminants. PMID:16310888

  20. Hydraulic fracturing and wellbore completion of coalbed methane wells in the Powder River Basin, Wyoming: Implications for water and gas production

    SciTech Connect

    Colmenares, L.B.; Zoback, M.D.

    2007-01-15

    Excessive water production (more than 7000 bbl/month per well) from many coalbed methane (CBM) wells in the Powder River Basin of Wyoming is also associated with significant delays in the time it takes for gas production to begin. Analysis of about 550 water-enhancement activities carried out during well completion demonstrates that such activities result in hydraulic fracturing of the coal. Water-enhancement activities, consists of pumping 60 bbl of water/min into the coal seam during approximately 15 min. This is done to clean the well-bore and to enhance CBM production. Hydraulic fracturing is of concern because vertical hydraulic fracture growth could extend into adjacent formations and potentially result in excess CBM water production and inefficient depressurization of coals. Analysis of the pressure-time records of the water-enhancement tests enabled us to determine the magnitude of the least principal stress (S{sub 3}) in the coal seams of 372 wells. These data reveal that because S{sub 3} switches between the minimum horizontal stress and the overburden at different locations, both vertical and horizontal hydraulic fracture growth is inferred to occur in the basin, depending on the exact location and coal layer. Relatively low water production is observed for wells with inferred horizontal fractures, whereas all of the wells associated with excessive water production are characterized by inferred vertical hydraulic fractures. The reason wells with exceptionally high water production show delays in gas production appears to be inefficient depressurization of the coal caused by water production from the formations outside the coal. To minimize CBM water production, we recommend that in areas of known vertical fracture propagation, the injection rate during the water-enhancement tests should be reduced to prevent the propagation of induced fractures into adjacent water-bearing formations.

  1. Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources (Monterey, CA)

    EPA Science Inventory

    A summary of EPA's research relating to potential impacts of hydraulic fracturing on drinking water resources will be presented. Background about the study plan development will be presented along with an analysis of the water cycle as it relates to hydraulic fracturing processe...

  2. Final Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

    EPA Science Inventory

    The overall purpose of this study is to elucidate the relationship, if any, between hydraulic fracturing and drinking water resources. More specifically, the study has been designed to assess the potential impacts of hydraulic fracturing on drinking water resources and to identif...

  3. 75 FR 36387 - Informational Public Meetings for Hydraulic Fracturing Research Study; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... AGENCY Informational Public Meetings for Hydraulic Fracturing Research Study; Correction AGENCY... Hydraulic Fracturing Research Study. The document contained an incorrect EPA Web site address in two places..., 2010, in FR doc. 2010-14897, on page 35023, in the third Column, correct the Web site addresses...

  4. 78 FR 34611 - Oil and Gas; Hydraulic Fracturing on Federal and Indian Lands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... Bureau of Land Management 43 CFR Part 3160 RIN 1004-AE26 Oil and Gas; Hydraulic Fracturing on Federal and...) published in the Federal Register a proposed rule to regulate hydraulic fracturing on Federal and Indian... initial comment period. DATES: The comment period for the proposed rule published May 24, 2013 (78...

  5. Compilation of Physicochemical and Toxicological Information About Hydraulic Fracturing-Related Chemicals (Draft Database)

    EPA Science Inventory

    The purpose of this product is to make accessible the information about the 1,173 hydraulic fracturing-related chemicals that were listed in the external review draft of the Hydraulic Fracturing Drinking Water Assessment that was released recently. The product consists of a serie...

  6. 77 FR 38024 - Oil and Gas; Well Stimulation, Including Hydraulic Fracturing, on Federal and Indian Lands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ...On May 11, 2012, the Bureau of Land Management (BLM) published in the Federal Register a proposed rule to regulate hydraulic fracturing on public land and Indian land. The rule would require disclosure to the public of chemicals used in hydraulic fracturing on public land and Indian land, strengthen regulations related to well- bore integrity, and address issues related to flowback water. This......

  7. 78 FR 20637 - Notification of Public Meeting and a Public Teleconference of the Hydraulic Fracturing Research...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ...The Environmental Protection Agency (EPA) Science Advisory Board (SAB) Staff Office announces a public meeting and public teleconference of the Hydraulic Fracturing Research Advisory Panel to provide an opportunity for independent expert members of the ad hoc Panel to provide comment on EPA's Study of the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources: Progress Report,......

  8. Predictable Factors for Dural Tears in Lumbar Burst Fractures with Vertical Laminar Fractures

    PubMed Central

    Park, Jin-Kyu; Park, Jin-Woo; Sung, Joo-Kyung

    2011-01-01

    Objective The purpose of the present study was to determine the incidence of dural tears and predictable factors suggesting dural tears in patients who had lumbar burst fractures with vertical laminar fractures. Methods A retrospective review was done on thirty-one patients who underwent operative treatment for lumbar burst fractures with vertical laminar fractures between January 2003 and December 2008. All patients were divided into two groups according to existence of dural tears, which were surgically confirmed; 21 patients with dural tears and 10 patients without dural tears. Clinical and radiographic findings were analyzed for their association with dural tears. Results Among a total of 31 patients, dural tears were detected in 21 (67%) patients. A preoperative neurological deficits and mean separation distances of the edges in laminar fractures were found to be the reliable factors of dural tears (p=0.001 and 0.002, respectively). Decreased ratio of the central canal diameter and interpedicular distance were also the reliable factors suggesting dural tears (p=0.006 and 0.015, respectively). However, dural tears showed no significant association with age, sex, level of injury, absence of a posterior fat pad signal, the angle of retropulsed segment, or site of laminar fracture. Conclusion Our study of lumbar burst fracture combined laminar fracture revealed that dural tears should be ruled out in cases of a preoperative neurological deficits, wide separation of the laminar fracture, severe canal encroachment, and wider interpedicular distance. PMID:21892398

  9. Identifying fracture-zone geometry using simulated annealing and hydraulic-connection data

    USGS Publications Warehouse

    Day-Lewis, F. D.; Hsieh, P.A.; Gorelick, S.M.

    2000-01-01

    A new approach is presented to condition geostatistical simulation of high-permeability zones in fractured rock to hydraulic-connection data. A simulated-annealing algorithm generates three-dimensional (3-D) realizations conditioned to borehole data, inferred hydraulic connections between packer-isolated borehole intervals, and an indicator (fracture zone or background-K bedrock) variogram model of spatial variability. We apply the method to data from the U.S. Geological Survey Mirror Lake Site in New Hampshire, where connected high-permeability fracture zones exert a strong control on fluid flow at the hundred-meter scale. Single-well hydraulic-packer tests indicate where permeable fracture zones intersect boreholes, and multiple-well pumping tests indicate the degree of hydraulic connection between boreholes. Borehole intervals connected by a fracture zone exhibit similar hydraulic responses, whereas intervals not connected by a fracture zone exhibit different responses. Our approach yields valuable insights into the 3-D geometry of fracture zones at Mirror Lake. Statistical analysis of the realizations yields maps of the probabilities of intersecting specific fracture zones with additional wells. Inverse flow modeling based on the assumption of equivalent porous media is used to estimate hydraulic conductivity and specific storage and to identify those fracture-zone geometries that are consistent with hydraulic test data.

  10. Combined Finite-Discrete Element Method for Simulation of Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Yan, Chengzeng; Zheng, Hong; Sun, Guanhua; Ge, Xiurun

    2016-04-01

    Hydraulic fracturing is widely used in the exploitation of unconventional gas (such as shale gas).Thus, the study of hydraulic fracturing is of particular importance for petroleum industry. The combined finite-discrete element method (FDEM) proposed by Munjiza is an innovative numerical technique to capture progressive damage and failure processes in rock. However, it cannot model the fracturing process of rock driven by hydraulic pressure. In this study, we present a coupled hydro-mechanical model based on FDEM for the simulation of hydraulic fracturing in complex fracture geometries, where an algorithm for updating hydraulic fracture network is proposed. The algorithm can carry out connectivity searches for arbitrarily complex fracture networks. Then, we develop a new combined finite-discrete element method numerical code (Y-flow) for the simulation of hydraulic fracturing. Finally, several verification examples are given, and the simulation results agree well with the analytical or experimental results, indicating that the newly developed numerical code can capture hydraulic fracturing process correctly and effectively.

  11. Direct Imaging of Natural Fractures and Stress Compartments Stimulated by Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Lacazette, A.; Vermilye, J. M.

    2014-12-01

    This contribution will present results from passive seismic studies of hydraulic fracture treatments in North American and Asian basins. One of the key data types is a comparatively new surface-based seismic imaging product - "Tomographic Fracture Images®" (TFI®). The procedure is an extension of Seismic Emission Tomography (SET), which is well-established and widely used. Conventional microseismic results - microearthquake hypocenter locations, magnitudes, and focal mechanism solutions - are also obtained from the data via a branch of the processing workflow. TFI is accomplished by summing the individual time steps in a multidimensional SET hypervolume over extended periods of time, such as an entire frac stage. The dimensions of a SET hypervolume are the X, Y, and Z coordinates of the voxels, the time step (typically on the order of 100 milliseconds), and the seismic activity value. The resulting summed volume is skeletonized to produce images of the main fracture surfaces, which are known to occupy the maximum activity surfaces of the high activity clouds from theory, field studies, and experiments. The orientation vs. area of the resulting TFIs can be analyzed in detail and compared with independent data sets such as volumetric structural attributes from reflection seismic data and borehole fracture data. We find that the primary effect of hydraulic fracturing is to stimulate preexisting natural fracture networks and faults. The combination of TFIs with hypocenter distributions and microearthquake focal mechanisms provides detailed information on subsurface stress compartmentalization. Faults are directly imaged which allows discrimination of fault planes from auxiliary planes of focal mechanism solutions. Examples that will be shown include simultaneous movement on a thrust fault and tear fault and examples of radically different stress compartments (e.g. extensional vs. wrench faulting) stimulated during a single hydraulic fracture treatment. The figure shows a TFI of a single frac stage in the Eagle Ford FmFm that is unusually symmetrical and smooth near the perforations. Color shows intensity of cumulative seismic activity (red = high, violet = low). Note that the energy decreases and the complexity increases as the frac quenches in the natural fracture system.

  12. A statistical model for seismic hazard assessment of hydraulic-fracturing-induced seismicity

    NASA Astrophysics Data System (ADS)

    Hajati, T.; Langenbruch, C.; Shapiro, S. A.

    2015-12-01

    We analyze the interevent time distribution of hydraulic-fracturing-induced seismicity collected during 18 stages at four different regions. We identify a universal statistical process describing the distribution of hydraulic-fracturing-induced events in time. The distribution of waiting times between subsequently occurring events is given by the exponential probability density function of the homogeneous Poisson process. Our findings suggest that hydraulic-fracturing-induced seismicity is directly triggered by the relaxation of stress and pore pressure perturbation initially created by the injection. Therefore, compared to this relaxation, the stress transfer caused by the occurrence of preceding seismic events is mainly insignificant for the seismogenesis of subsequently occurring events. We develop a statistical model to compute the occurrence probability of hydraulic-fracturing-induced seismicity. This model can be used to assess the seismic hazard associated with hydraulic fracturing operations. No aftershock triggering has to be included in the statistical model.

  13. Economic reocvery of oil trapped at fan margins using high angle wells and multiple hydraulic fractures. Quarterly report, July 1 - September 30, 1996

    SciTech Connect

    Niemeyer, B.L.

    1996-10-01

    This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a prograding turbitide complex through the use of hydraulically- fractured, horizontal, or high-angle wells. The combination of horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. A high-angle well will be drilled in the fan-margin portion of a slope-basin clastic reservoir and will be completed with multiple hydraulic-fracture treatments. Geologic modeling, reservoir characterization, and fine-grid reservoir simulation will be used to select the well location and orientation. Design parameters for the hydraulic-fracture treatments will be determined by fracturing an existing test well. Fracture azimuth will be predicted, in part, by passive seismic monitoring from an offset well during fracture stimulation of the test well. The fine-grid reservoir simulation of the northeast fan-margin region of the Yowlumne field was completed during third quarter 1996. A variety of development alternatives were investigated aimed at optimizing project economics. Model forecasts, compared slant well performance to more conventional development options and quantified rate impacts due to changes in well location, orientation, and completion technique. Project economics were then updated with the production forecasts from the simulation model.

  14. TECHNOLOGY EVALUATION AND APPLICATIONS ANALYSIS REPORT: UNIVERSITY OF CINCINNATI/RISK REDUCTION ENGINEERING LABORATORY - HYDRAULIC FRACTURING TECHNOLOGY

    EPA Science Inventory

    Two pilot-scale demonstrations of the hydraulic fracturing technology for enhancing the permeability of contaminated silty clays have been evaluated under the Superfund Innovative Technology Evaluation (SITE) Program.The hydraulic fracturing technology was demonstrated in 1991 an...

  15. Coordinated studies in support of hydraulic fracturing of coalbed methane. Final report, July 1990-May 1995

    SciTech Connect

    Penny, G.S.; Conway, M.W.

    1996-02-01

    The primary objective of this project is to provide laboratory data that is pertinent to designing hydraulic fracturing treatments for coalbed methane. Coal fluid interactions studies, fracture conductivity, fluid leak-off through cleats, rheology, and proppant transport are designed to respresent Black Warrior and San Juan treatments. A second objective is to apply the information learned in laboratory testing to actual hydraulic fracturing treatments in order to improve results. A final objective is to review methods currently used to catalog well performance following hydraulic fracturing for the purpose of placing the data in a useable database that can be accessed by users to determine the success of various treatment scenarios.

  16. In-situ stress from hydraulic fracture measurements in G Tunnel, Nevada Test Site

    SciTech Connect

    Smith, C.; Vollendorf, W. C.; Warren, W. E.

    1981-04-01

    Hydraulic fracture work in G Tunnel, Nevada Test Site, performed to obtain the in-situ stress state is discussed. Field equipment and procedures are described; analysis is developed to relate the hydraulic fracture pressures to the in-situ stress state. Pressure data are analyzed to provide estimates of the stress state at a number of locations in the tunnel complex. A unique feature of the work is the mineback - a mining process in which the rock is cut away to reveal the actual plane of the fracture. Advantages, limitations, and problem areas associated with extracting in-situ stress fields from hydraulic fracture pressure records are discussed in detail.

  17. Hydraulic Fracture Extending into Network in Shale: Reviewing Influence Factors and Their Mechanism

    PubMed Central

    Ren, Lan; Zhao, Jinzhou; Hu, Yongquan

    2014-01-01

    Hydraulic fracture in shale reservoir presents complex network propagation, which has essential difference with traditional plane biwing fracture at forming mechanism. Based on the research results of experiments, field fracturing practice, theory analysis, and numerical simulation, the influence factors and their mechanism of hydraulic fracture extending into network in shale have been systematically analyzed and discussed. Research results show that the fracture propagation in shale reservoir is influenced by the geological and the engineering factors, which includes rock mineral composition, rock mechanical properties, horizontal stress field, natural fractures, treating net pressure, fracturing fluid viscosity, and fracturing scale. This study has important theoretical value and practical significance to understand fracture network propagation mechanism in shale reservoir and contributes to improving the science and efficiency of shale reservoir fracturing design. PMID:25032240

  18. Hydraulic fracture extending into network in shale: reviewing influence factors and their mechanism.

    PubMed

    Ren, Lan; Zhao, Jinzhou; Hu, Yongquan

    2014-01-01

    Hydraulic fracture in shale reservoir presents complex network propagation, which has essential difference with traditional plane biwing fracture at forming mechanism. Based on the research results of experiments, field fracturing practice, theory analysis, and numerical simulation, the influence factors and their mechanism of hydraulic fracture extending into network in shale have been systematically analyzed and discussed. Research results show that the fracture propagation in shale reservoir is influenced by the geological and the engineering factors, which includes rock mineral composition, rock mechanical properties, horizontal stress field, natural fractures, treating net pressure, fracturing fluid viscosity, and fracturing scale. This study has important theoretical value and practical significance to understand fracture network propagation mechanism in shale reservoir and contributes to improving the science and efficiency of shale reservoir fracturing design. PMID:25032240

  19. Application of characteristic time concepts for hydraulic fracture configuration design, control, and optimization

    SciTech Connect

    Advani, S.H.; Lee, T.S. ); Moon, H. )

    1992-10-01

    The analysis of pertinent energy components or affiliated characteristic times for hydraulic stimulation processes serves as an effective tool for fracture configuration designs optimization, and control. This evaluation, in conjunction with parametric sensitivity studies, provides a rational base for quantifying dominant process mechanisms and the roles of specified reservoir properties relative to controllable hydraulic fracture variables for a wide spectrum of treatment scenarios. Results are detailed for the following multi-task effort: (a) Application of characteristic time concept and parametric sensitivity studies for specialized fracture geometries (rectangular, penny-shaped, elliptical) and three-layered elliptic crack models (in situ stress, elastic moduli, and fracture toughness contrasts). (b) Incorporation of leak-off effects for models investigated in (a). (c) Simulation of generalized hydraulic fracture models and investigation of the role of controllable vaxiables and uncontrollable system properties. (d) Development of guidelines for hydraulic fracture design and optimization.

  20. Application of characteristic time concepts for hydraulic fracture configuration design, control, and optimization. Final report

    SciTech Connect

    Advani, S.H.; Lee, T.S.; Moon, H.

    1992-10-01

    The analysis of pertinent energy components or affiliated characteristic times for hydraulic stimulation processes serves as an effective tool for fracture configuration designs optimization, and control. This evaluation, in conjunction with parametric sensitivity studies, provides a rational base for quantifying dominant process mechanisms and the roles of specified reservoir properties relative to controllable hydraulic fracture variables for a wide spectrum of treatment scenarios. Results are detailed for the following multi-task effort: (a) Application of characteristic time concept and parametric sensitivity studies for specialized fracture geometries (rectangular, penny-shaped, elliptical) and three-layered elliptic crack models (in situ stress, elastic moduli, and fracture toughness contrasts). (b) Incorporation of leak-off effects for models investigated in (a). (c) Simulation of generalized hydraulic fracture models and investigation of the role of controllable vaxiables and uncontrollable system properties. (d) Development of guidelines for hydraulic fracture design and optimization.

  1. Numerical assessment of potential impacts of hydraulically fractured Bowland Shale on overlying aquifers

    NASA Astrophysics Data System (ADS)

    Cai, Zuansi; Ofterdinger, Ulrich

    2014-07-01

    Natural gas extracted from hydraulically fractured shale formations potentially has a big impact on the global energy landscape. However, there are concerns of potential environmental impacts of hydraulic fracturing of the shale formations, particularly those related to water quality. To evaluate the potential impact of hydraulically fractured shale on overlying aquifers, we conduct realizations of numerical modeling simulations to assess fluid flow and chloride transport from a synthetic Bowland Shale over a period of 11,000 years. The synthetic fractured shale was represented by a three-dimensional discrete fracture model that was developed by using the data from a Bowland Shale gas exploration in Lancashire, UK. Chloride mass exchange between fractures and the rock matrix was fully accounted for in the model. The assessment was carried out to investigate fluid and chloride mass fluxes before, during, and after hydraulic fracturing of the Bowland Shale. Impacts of the upward fracture height and aperture, as well as hydraulic conductivity of the multilayered bedrock system, are also included this assessment. This modeling revealed that the hydraulically fractured Bowland Shale is unlikely to pose a risk to its overlying groundwater quality when the induced fracture aperture is ≤200 µm. With the fracture aperture ≥1000 µm, the upward chloride flux becomes very sensitive to the upward fracture height growth and hydraulic conductivity of the multilayered bedrock system. In the extremely unlikely event of the upward fracture growth directly connecting the shale formation to the overlying Sherwood Sandstone aquifer with the fracture aperture ≥1000 µm, the upward chloride mass flux could potentially pose risks to the overlying aquifer in 100 years. The model study also revealed that the upward mass flux is significantly intercepted by the horizontal mass flux within a high permeable layer between the Bowland Shale and its overlying aquifers, reducing further upward flux toward the overlying aquifers.

  2. Elastic Rock Heterogeneity Controls Brittle Rock Failure during Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Langenbruch, C.; Shapiro, S. A.

    2014-12-01

    For interpretation and inversion of microseismic data it is important to understand, which properties of the reservoir rock control the occurrence probability of brittle rock failure and associated seismicity during hydraulic stimulation. This is especially important, when inverting for key properties like permeability and fracture conductivity. Although it became accepted that seismic events are triggered by fluid flow and the resulting perturbation of the stress field in the reservoir rock, the magnitude of stress perturbations, capable of triggering failure in rocks, can be highly variable. The controlling physical mechanism of this variability is still under discussion. We compare the occurrence of microseismic events at the Cotton Valley gas field to elastic rock heterogeneity, obtained from measurements along the treatment wells. The heterogeneity is characterized by scale invariant fluctuations of elastic properties. We observe that the elastic heterogeneity of the rock formation controls the occurrence of brittle failure. In particular, we find that the density of events is increasing with the Brittleness Index (BI) of the rock, which is defined as a combination of Young's modulus and Poisson's ratio. We evaluate the physical meaning of the BI. By applying geomechanical investigations we characterize the influence of fluctuating elastic properties in rocks on the probability of brittle rock failure. Our analysis is based on the computation of stress fluctuations caused by elastic heterogeneity of rocks. We find that elastic rock heterogeneity causes stress fluctuations of significant magnitude. Moreover, the stress changes necessary to open and reactivate fractures in rocks are strongly related to fluctuations of elastic moduli. Our analysis gives a physical explanation to the observed relation between elastic heterogeneity of the rock formation and the occurrence of brittle failure during hydraulic reservoir stimulations. A crucial factor for understanding seismicity in unconventional reservoirs is the role of anisotropy of rocks. We evaluate an elastic VTI rock model corresponding to a shale gas reservoir in the Horn River Basin to understand the relation between stress, event occurrence and elastic heterogeneity in anisotropic rocks.

  3. Hydraulic Fracture Propagation through Preexisting Discontinuity Monitored by Acoustic Emission and Ultrasonic Transmission

    NASA Astrophysics Data System (ADS)

    Stanchits, S.; Lund, J.; Surdi, A.; Edelman, E.; Whitney, N.; Eldredge, R.; Suarez-Rivera, R.

    2011-12-01

    Hydraulic fracturing is critical to enhance hydrocarbon production from ultra-low permeability unconventional reservoirs, and is the common completion methodology for tight formations around the world. Unfortunately, these reservoirs are often highly heterogeneous and their heterogeneity imparts a degree of geometrical complexity in hydraulic fractures that is poorly understood. Fracture complexity (e.g. branching) results in higher surface area and could be beneficial to production provided it remains conductive. Understanding the sources and consequences of fracture complexity is thus of high importance to completion and production operations. In this study we postulate that textural complexity in tight heterogeneous formations induces fracture complexity, and that the main sources of textural complexity are associated with veins, bed boundaries, lithologic contacts, and geologic interfaces. We thus study the effect of interfaces on hydraulic fracture propagation under laboratory conditions by Acoustic Emission (AE) and Ultrasonic Transmission (UT) monitoring techniques. The experiments were conducted on low permeability sandstone blocks of 279 x 279 x 381 mm length with saw cut discontinuities oriented orthogonally to the expected direction of fracture propagation. The rock is loaded in a poly-axial test frame to representative effective in-situ stress conditions of normal and deviatoric stress. Hydraulic fracturing was initiated by injection of silicon oil into a borehole drilled off center from the block. Acoustic emission (AE) events were continuously monitored during testing using nineteen P-wave sensors. Additional sensors were installed to periodically monitor ultrasonic transmission (UT) along various directions oblique and perpendicular to the fracture and the interface. The AE and UT data were recorded using a Vallen AMSY-6 system, with 16-bit amplitude resolution and 5 MHz sampling rate. Detailed analysis of AE localizations allowed us to identify various stages of hydraulic fracturing, including fracture initiation, fracture interaction with the preexisting interface, fracture propagation and fracture closing. Observed variations in UT amplitudes and velocities, during fracture propagation, were related to fracture propagation, as well as to the penetration of fracturing fluid to the conductive interface. Analysis of the combined AE and UT data provides additional insight into the fracturing process and significantly improved our understanding of the dynamics of hydraulic fracture propagation. Detailed post-test 3D mapping of the final fracture allowed us to make an independent comparison of actual fracture and the fracture monitored by the AE and UT measurements. This comparison is essential for validating the interpretation of microseismic monitoring during hydraulic fracturing in the lab and in the field.

  4. 77 FR 27451 - Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel Fuels-Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-10

    ... AGENCY Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel Fuels--Draft... oil- and gas-related hydraulic fracturing (HF) using diesel fuels where the U.S. Environmental... Underground Injection Control Program's Hydraulic Fracturing and the Safe Drinking Water Act Web site,...

  5. 77 FR 36273 - Public Meeting on Draft Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... AGENCY Public Meeting on Draft Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using... agency has developed on the use of diesel fuels in oil and gas hydraulic fracturing and to solicit input... discuss ``Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel...

  6. Determination of Hydraulically Activated Fractures and Field Stress Tensors in the Barnett Shale Using Microseismic Events Data

    NASA Astrophysics Data System (ADS)

    Busetti, S.

    2012-12-01

    Seismic moment and stress tensor inversions are applied to microseismic events data to investigate the mechanical behavior of activated fractures during hydraulic fracturing in tight reservoirs. The goal is to understand the likelihood of different mechanisms for induced microseismicity, including low pressure fluid leak-off or stress shadowing adjacent to bi-wing parent hydraulic fractures, and pressurized network flow with no parent fracture. The data includes 7,444 microseismic events generated from 18 sequential pumping stages in two adjacent horizontal wells in the Barnett Shale, recorded from two down-hole monitor wells. A tensile source model is used to derive parameters such as nodal plane orientations and slip vectors from the six component moment tensor for each microseismic event. Three-dimensional stress analysis techniques and a linearized stress inversion scheme are used to calculate geomechanical parameters. Four scenarios are considered. The first case considers fractures seismically activated in the in-situ stress field, which is determined from wellbore break-out data in the vertical wells. Fracture activation is assumed to occur by minor stress perturbations with no stress rotation. The second case also considers that the most unstable fractures in the wellbore state of stress activated, but to determine the induced stress state, stress inversion on only the unstable fractures is used. The third case assumes that all of the nodal planes are mechanically valid but that the plane with the lowest misfit, the angle between the observed and predicted slip vector, is the correct one. In this case, the wellbore stress state is ignored entirely and stress inversion on all of the nodal planes is used to solve for the activation stress. The fourth case expands case three by selecting the correct fault plane as the one with the highest instability in the inversion stress state and a second inversion is used on only the unstable fractures. Preliminary results indicate the nodal planes for all events define two fracture sets, which are consistent with natural fracture orientations from image logs and cores in the Barnett. The first set at 044°/70° has the highest instability in the wellbore stress state (case 1: σ1=Sv = vertical; σ2=SHmax=042°). The second set at 125°/68° is most unstable in the stress states calculated from the stress inversions (case 2: σ1=Sv ≈ vertical; σ2=SHmax=154°; case 3: σ1=Sv ≈ vertical; σ2=SHmax=130°; case 4: σ1=Sv = vertical; σ2=SHmax=134°). Cases 2-4 show insignificant change in σ1, around 10 MPa reduction in σ2, and significant reduction in σ3 to around 1-4 MPa in tension. The latter suggests conditions of high fluid pressure in a hydraulically connected fracture network, and is consistent with observations that (a) about half of all events show a positive tensile source parameter α, indicating a dilatant shear mechanism, and (b) in the wellbore stress regime the most critically stressed nodal planes require greater than 2-5 MPa excess fracture/pore fluid pressure to fail in shear. While instability predictions eliminate case 1 as a likely mechanism for activation, to discern cases 2-4, additional work to compare instability, misfit angles, frictional properties, and models for hydraulic fracture development is required.

  7. Using the Semi-Circular Bending Test to Investigate the Interaction Between Hydraulic and Natural Fractures

    NASA Astrophysics Data System (ADS)

    Wang, W.; Olson, J. E.; Prodanovic, M.

    2014-12-01

    Micro-seismic data shows that hydraulic fracture propagation is a complex process. When hydraulic fractures interact with pre-existing natural fractures, it can result in a complex fracture network. The interaction depends on in-situ stresses, rock and natural fracture mechanical properties, approach angle and hydraulic fracture treatment parameters. Most simulation studies treat natural fractures as frictional interfaces with cohesive properties. However, from core observation, partially cemented and fully cemented natural fractures are widely present and it is not clear that whether they fit the common description or not. In this study, semi-circular bending experiments are utilized to examine the fracture propagation paths. Synthetic hydrostone samples with embedded inclusions of different mechanical properties are used to mimic rock and cemented natural fractures. Simulation results are generated using finite element software ABAQUS. The extended finite element method (XFEM) capability of ABAQUS allows the fracture initiation and propagation along a solution dependent path without the need for re-meshing. The simulation results are used to explain the experimental observations. In a series of experiment and modeling work, we assess the influence of the fracture approach angle, inclusion strength, and inclusion thickness on fracture propagation. Current results indicate the fracture propagation direction is strongly influenced by pre-existing inclusions. The propagating fractures tend to cross the inclusion when the approach angle is high and divert into the inclusion when the approach angle is low. The crossing surface is thus not a clean cut, but with a jog distance that depends on the inclusion thickness and approach angle. Results imply that if hydraulic fractures have lower approach angles to pre-existing natural fractures, the ultimate fracture network is going to have higher complexity. The thickness of natural fractures can also add to the complexity.

  8. Application of microseismic technology to hydraulic fracture diagnostics: GRI/DOE Field Fracturing Multi-Sites Project

    SciTech Connect

    Wilmer, R.; Warpinski, N.R.; Wright, T.B.; Branagan, P.T.; Fix, J.E.

    1995-06-01

    The objective of the Field Fracturing Multi-Sites Project (M-Site) is to conduct field experiments and analyze data that will result in definitive determinations of hydraulic fracture dimensions using remote well and treatment well diagnostic techniques. In addition, experiments will be conducted to provide data that will resolve significant unknowns with regard to hydraulic fracture modeling, fracture fluid rheology and fracture treatment design. These experiments will be supported by a well-characterized subsurface environment as well as surface facilities and equipment conducive to acquiring high-quality data. It is anticipated that the project`s research advancements will provide a foundation for a fracture diagnostic service industry and hydraulic fracture optimization based on measured fracture response. The M-Site Project is jointly sponsored by the Gas Research Institute (GRI) and the US Department of Energy (DOE). The site developed for M-Site hydraulic fracture experimentation is the former DOE Multiwell Experiment (MWX) site located near Rifle, Colorado. The MWX project drilled three closely-spaced wells (MWX-1, MWX-2 and MWX-3) which were the basis for extensive reservoir analyses and tight gas sand characterizations in the blanket and lenticular sandstone bodies of the Mesaverde Group. The research results and background knowledge gained from the MWX project are directly applicable to research in the current M-Site Project.

  9. Vertical arrays for fracture mapping in geothermal systems

    SciTech Connect

    Albright, J.N.; Rutledge, J.T.; Fairbanks, T.D.; Thomson, J.C.; Stevenson, M.A.

    1998-12-01

    In collaboration with UNOCAL Geothermal Operations, Los Alamos National Laboratory assessed the feasibility of using vertical arrays of borehole seismic sensors for mapping of microseismicity in The Geysers geothermal field. Seismicity which arises from minute displacements along fracture or fault surfaces has been shown in studies of seismically active oil reservoirs to be useful in identifying fractures affected by and possibly contributing to production. Use of retrievable borehole seismic packages at The Geysers was found to reduce the threshold for detection of microearthquakes by an estimated 2--3 orders of magnitude in comparison to surface-based sensors. These studies led to the design, materials selection, fabrication, and installation of a permanent array of geophones intended for long term seismic monitoring and mapping of fractures in the vicinity of the array at The Geysers.

  10. Laboratory imaging of stimulation fluid displacement from hydraulic fractures

    SciTech Connect

    Tidwell, V.; Parker, M.

    1996-11-01

    Laboratory experiments were conducted to physically investigate the processes governing stimulation fluid displacement from hydraulic fractures. Experiments were performed on two scales: meter-scale in a 1500 cm{sup 2} sand pack and core-scale in a 65 cm{sup 2} API linear conductivity cell. High-resolution light transmission imaging was employed at the meter-scale to visualize and quantify processes governing fluid displacement. For comparison, complimentary tests were performed using an API conductivity cell under ambient test conditions and at elevated closure stress. In these experiments viscous fingering and gravity drainage were identified as the dominant processes governing fluid displacement. Fluid viscosity was found to dictate the relative importance of the competing displacement processes and ultimately determine the residual liquid saturation of the sand pack. The process by which fluid displacement occurs was seen to effect the shape of both the gas and liquid phase relative permeability functions. Knowledge of such viscosity/relative permeability relationships may prove useful in bounding predictions of post-stimulation recovery of gels from the fracture pack.

  11. Formation of Network Fractures During Hydraulic Fracturing of the Barnett Shale, a Tight Gas Shale with Preexisting Fractures

    NASA Astrophysics Data System (ADS)

    Busetti, S.; Reches, Z.

    2007-12-01

    Hydraulic fracturing operations generate new fractures as well as dilate preexisting fractures, creating networks of fractures. Here we model the complexity of the created network fractures and apply the results to wellbore log data and hydrofracture operations in the Barnett Shale, a tight gas-shale that requires artificial fracture stimulation to produce. It is shown that the resulting fracture geometry is related to the state of local stress, orientations of the existing fractures, and qualities of the hydraulic fracturing operation. The model assumes that preexisting fractures dilate when the hydrofracture pressure is larger than the normal stress across them. The orientations of the dilating fractures can be presented as 2θw and 2θL (width and length of the dilating fracture population on a stereographic projection). The model indicates that sin2θw /sin2θL = (σ2 - σ3)/(σ1 - σ3) and sin2θw = (Pm - σ3)/(σ1 - σ3), where σ1, σ2, and σ3, are the principal stresses of the local stress field and Pm is the hydrofracture fluid pressure. We expect the shape of the stimulated rock volume to vary (e.g., spheroidal, elliptical, penny- shaped) under different local conditions corresponding to 2θw and 2θL. We apply the above relations to hydrofracturing data from the Barnett Shale, Fort Worth Basin, Texas. We combined the pressure data of the hydrofracture operations with pre- and post-treatment fracture orientations determined on down-hole image logs to characterize the local stress magnitude and orientation. It was found that in the studied wells: (1) σ1 =Sv, calculated from overburden at the depth of fluid penetration; (2) σ2 =SH from the inversion of borehole sonic data (run as a post-drilling logging tool) or from solving the stress state around a borehole; and (3) σ3 =Sh, calculated as the instantaneous shut-in pressure from pressure-time curves. The direction of SH corresponds to the orientation of drilling-induced fractures, interpreted from formation multi-imaging logs (FMI). We use the spatial distribution of micro-seismic events recorded during the hydrofracture operations as a proxy for the shape of the stimulated rock volume. We use these observed volumes to test our model predictions based on monitored hydrofracture fluid pressure and the calculated local stresses. It is shown that at sites where near-field stresses are highly anisotropic, SH ≫ Sh, stimulation is restricted to preferentially oriented fractures and the volumetric zone of stimulation is a prolate spheroid, elongated in the direction of the far-field maximum horizontal stress. Under conditions of low near-field stress anisotropy, SH=Sh, dilation of multiple fracture orientations is possible and the volumetric zone of stimulation is an oblate spheroid. Additionally, we show that when detailed fracture orientation data is available, the stimulation model can be used to back-calculate the stress state.

  12. EVALUATION OF METHOD FOR DETERMINING THE VERTICAL DISTRIBUTION OF HYDRAULIC CONDUCTIVITY

    EPA Science Inventory

    Six borehole methods for determining the vertical distribution of hydraulic conductivity in unconsolidated geologic formations are evaluated. taddle packer tests are inappropriate of there is a hydraulic path around the packer on the outside of the well screen. Methods based on g...

  13. Characterization of a remotely intersected set of hydraulic fractures: Results of intersection well no. 1-B, GRI/DOE multi-site project

    SciTech Connect

    Branagan, P.T.; Peterson, R.E.; Warpinski, N.R.; Wright, T.B.

    1996-12-31

    A deviated observation or {open_quotes}intersection{close_quotes} well (IW 1-B) was drilled, cored, logged and tested through an area in a fluvial sandstone reservoir that had previously been hydraulically fractured. The point of intersection with the fractured interval was located 126 ft from the fracture well along one wing of the fracture(s) at a measured depth of 4,675 ft. Direct observations from core and borehole imagery logs in IW 1-B indicate that a total of 11 far-field vertical fractures were created. Clustered in a narrow 2.6-ft-wide interval, these 11 fractures are the direct result of 6 experimental fracture treatments executed in the distant frac well over a 4-month period. Diagnostic data acquired through IW I-B included direct core observations and measurements, borehole log imagery, gamma ray (GR) tracer identification, well-to-well pressure transient and fracture conductivity tests, and production logging surveys. The explicit intent in the emplacement of IW 1-B was to provide direct observations and information to characterize the hydraulic fracture(s) in support of a remote-sensing fracture diagnostic program that included microseismic monitoring and inclinometer measurements.

  14. Economic recovery of oil trapped at fan margins using high-angle wells and multiple hydraulic fractures. [Quarterly report], January 1--March 31, 1996

    SciTech Connect

    Niemeyer, B.L.

    1996-04-29

    This project attempts to demonstrate the effectiveness of exploiting thin, layered, low-energy, deposits at the distal margin of a prograding turbidite complex through use of fractured horizontal or high-angle wells. The combination of hydraulic fracturing and horizontal drilling will allow greater pay exposure than conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. A high-angle well will be drilled in the fan margin portion of a slope-basin clastic reservoir and will be completed with multiple hydraulic fracture treatments. Geologic modeling, reservoir characterization, and fine-grid reservoir simulation will be used to select the well location and orientation. Design parameters for hydraulic fracture treatments will be determined by fracturing an existing test well. Fracture azimuth will be predicted, in part, by passive seismic monitoring from an offset well during fracture stimulation of the test wellbore. An existing vertical well in the Yowlumne Field, Kern Co., California was hydraulically fractured. Microseismic and pressure data collected from this work are being used to predict fracture geometry and azimuth for future treatments in the proposed high-angle well. A detailed reservoir characterization of the field demonstration site is complete. This work include interpretation of a 3-D seismic survey, analysis of all available well logs, description of three whole cores, petrographic analysis of thin sections and incorporation of pressure and production data. A partial-field fine-grid model base on the reservoir characterization has been constructed and initialized. Efforts to history match the model to actual production and pressure data are underway.

  15. The EPA's Study on the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

    NASA Astrophysics Data System (ADS)

    Burden, Susan

    2013-03-01

    Natural gas plays a key role in our nation's clean energy future. The United States has vast reserves of natural gas that are commercially viable as a result of advances in horizontal drilling and hydraulic fracturing technologies, which enable greater access to gas in rock formations deep underground. These advances have spurred a significant increase in the production of both natural gas and oil across the country. However, as the use of hydraulic fracturing has increased, so have concerns about its potential human health and environmental impacts, especially for drinking water. In response to public concern, the US Congress requested that the US Environmental Protection Agency (EPA) conduct scientific research to examine the relationship between hydraulic fracturing and drinking water resources. In 2011, the EPA began research to assess the potential impacts of hydraulic fracturing on drinking water resources, if any, and to identify the driving factors that may affect the severity and frequency of such impacts. The study is organized around the five stages of the hydraulic fracturing water cycle, from water acquisition through the mixing of chemicals and the injection of fracturing fluid to post-fracturing treatment and/or disposal of wastewater. EPA scientists are using a transdisciplinary research approach involving laboratory studies, computer modeling, toxicity assessments, and case studies to answer research questions associated with each stage of the water cycle. This talk will provide an overview of the EPA's study, including a description of the hydraulic fracturing water cycle and a summary of the ongoing research projects.

  16. Source analysis of a potential hydraulic-fracturing-induced earthquake near Fox Creek, Alberta

    NASA Astrophysics Data System (ADS)

    Wang, Ruijia; Gu, Yu Jeffrey; Schultz, Ryan; Kim, Ahyi; Atkinson, Gail

    2016-01-01

    An earthquake with a reported magnitude of 4.4 (ML) was detected on 13 June 2015 in western central Alberta, Canada. This event was the third felt earthquake this year near Fox Creek, a shale gas exploration region. Our results from full moment tensor inversions of regional broadband data show a strong strike-slip mechanism with near-vertical fault plane solutions. The decomposition of the moment tensor solution is overwhelmingly double couple, while only a modest (˜20%) contribution is attributed to compensated-linear-vector-dipole. The depth of this earthquake is 3-4 km, near the base of the sedimentary layer, and the moment magnitude (M = 3.9) of this event is considerably smaller than the initial reported ML value. The hypocenter location, depth, and mechanism are favorable to a possible association between this earthquake and hydraulic fracturing operations within the Duvernay shale.

  17. Shallow hydraulic fracturing measurements in Korea support tectonic and seismic indicators of regional stress.

    SciTech Connect

    Haimson, Bezalel Cecil; Lee, Moo Yul; Song, I.

    2003-07-01

    We have conducted five hydraulic fracturing stress measurement campaigns in Korea, involving 13 test holes ranging in depth from 30 to 250 m, at locations from North Seoul to the southern coast of the peninsula. The measurements reveal consistent crustal stress magnitudes and directions that suggest persistence throughout western and southern Korea. The maximum horizontal stress {sigma}{sub H} is oriented between ENE-WSW and E-W, in accord with plate movement and deformation, and with directions indicated by both focal mechanism solutions from earthquakes inland and offshore as well as borehole breakouts in mainland China close to its eastern coast. With respect to magnitudes, the vertical stress is the overall minimum stress at all tested locations, suggesting a thrust faulting regime within the relatively shallow depths reached by our tests. Typically, such a stress regime becomes one favoring strike-slip at greater depths, as is also indicated by the focal mechanism solutions around Korea.

  18. Understanding Hydraulic Fracture Stimulations in Oil-Gas Developments Using Microseismicity (M<0)

    NASA Astrophysics Data System (ADS)

    Urbancic, T.; Baig, A. M.

    2011-12-01

    Microseismic monitoring is widely recognized as a powerful production optimization tool in the oil and gas industry. In particular, microseismic imaging has been shown to provide insight into the dynamic behavior of reservoirs during hydraulic fracture stimulations. In this presentation, we explore ideas and provide examples of preliminary work linking microseismicity, geology and engineering to build predictive reservoir models and to assist with their calibration and validation. Generally, microseismic imaging of hydraulic fractures focuses on mapping event locations. By simply examining the spatial and temporal variations in microseismicity, overall geometric measures such as orientation, fracture extent (height, length, and width) and fracture growth can be assessed. Examining fracture growth in the context of traditional hydraulic fracture models, estimates of fracture geometry based on microseismic data have been used to support the accepted fracture behavior. In hydraulic fracture stimulations, fractures are generally considered to develop along a single fracture azimuth or along a plane of fracturing controlled by regional stresses (i.e. along the direction of maximum principle stress), even within the context of a three-dimensional fracture network. In this study, we show how seismic moment tensors and source parameters have been used to assess the orientation of newly formed or reactivated fractures, as well as evaluate their size or time-dependent response to fluid injections. As well, using nearest-neighbor statistics, events can be grouped into behavioral domains, such as near-treatment-well and fracture extension regions, and used to outline a Discrete Fracture Network (DFN). Evaluating the spatial-temporal development of the DFN within the defined volumes can then be used to assess the fracture connectivity and enhanced permeability associated with the treatment. With moment tensor analysis, we show how petroleum engineers can also assess the effectiveness of different stimulation programs, and define the "effective fracture zone" associated with the stimulation. Knowledge of the effective fracture zone can then be used to estimate the Stimulated Reservoir Area (SRA) or Volume (SRV) associated with the treatment program and enable enhanced calculations of productivity. Using Hudson plots, changes in fracture behaviour from an opening dominated, fracture-extension regime to an ineffective closure-dominant regime, can identify Points of Diminishing Returns (PDR) as temporal points where continued stimulation of the reservoir with the same pumping regime will no longer extend the fracture network. Understanding when a fracture stage reaches a PDR enables engineers to adjust treatment plans to re-initiate fracture extension, achieve better proppant distribution or design future fracture networks to realize higher conductivity. This ability to integrate microseismic analysis with knowledge of the fracture treatment program serves as an invaluable tool for engineers who are trying to design and perform optimal fracture stimulations.

  19. Preliminary stress measurements in central California using the hydraulic fracturing technique

    USGS Publications Warehouse

    Zoback, M.D.; Healy, J.H.; Roller, J.C.

    1977-01-01

    Use of the hydraulic fracturing technique for determining in situ stress is reviewed, and stress measurements in wells near the towns of Livermore, San Ardo, and Menlo Park, California are described in detail. In the Livermore well, four measurements at depths between 110 and 155 m indicate that the least principal compressive stress is horizontal and increases from 1.62 to 2.66 MPa. The apparent direction of maximum compression is N 70?? E (??40??). At the San Ardo site the least principal stress is that due to the overburden weight. At depths of 240.2 and 270.7 m the minimum and maximum horizontal stresses are estimated to be 11.4 and 22.5 MPa, and 12.0 (??1.1) and 15.8 (??3.3) MPa, respectively. From an impression of the fracture at 240.2 m, the direction of maximum compression appears to be about N 15?? E. The rock in the Menlo Park well is too highly fractured to yield a reliable measurement of the horizontal stresses. The data indicate, however, that the least principal stress is vertical (due to the overburden weight) to a depth of 250 m. ?? 1977 Birkha??user Verlag.

  20. Inverse modeling of hydraulic tests in fractured crystalline rock based on a transition probability geostatistical approach

    NASA Astrophysics Data System (ADS)

    Blessent, Daniela; Therrien, René; Lemieux, Jean-Michel

    2011-12-01

    This paper presents numerical simulations of a series of hydraulic interference tests conducted in crystalline bedrock at Olkiluoto (Finland), a potential site for the disposal of the Finnish high-level nuclear waste. The tests are in a block of crystalline bedrock of about 0.03 km3 that contains low-transmissivity fractures. Fracture density, orientation, and fracture transmissivity are estimated from Posiva Flow Log (PFL) measurements in boreholes drilled in the rock block. On the basis of those data, a geostatistical approach relying on a transitional probability and Markov chain models is used to define a conceptual model based on stochastic fractured rock facies. Four facies are defined, from sparsely fractured bedrock to highly fractured bedrock. Using this conceptual model, three-dimensional groundwater flow is then simulated to reproduce interference pumping tests in either open or packed-off boreholes. Hydraulic conductivities of the fracture facies are estimated through automatic calibration using either hydraulic heads or both hydraulic heads and PFL flow rates as targets for calibration. The latter option produces a narrower confidence interval for the calibrated hydraulic conductivities, therefore reducing the associated uncertainty and demonstrating the usefulness of the measured PFL flow rates. Furthermore, the stochastic facies conceptual model is a suitable alternative to discrete fracture network models to simulate fluid flow in fractured geological media.

  1. Monitoring increases in fracture connectivity during hydraulic stimulations from temporal variations in shear wave splitting polarization

    NASA Astrophysics Data System (ADS)

    Baird, Alan F.; Kendall, J.-Michael; Verdon, James P.; Wuestefeld, Andreas; Noble, Todd E.; Li, Yongyi; Dutko, Martin; Fisher, Quentin J.

    2013-11-01

    Hydraulic overpressure can induce fractures and increase permeability in a range of geological settings, including volcanological, glacial and petroleum reservoirs. Here we consider an example of induced hydraulic fracture stimulation in a tight-gas sandstone. Successful exploitation of tight-gas reservoirs requires fracture networks, either naturally occurring, or generated through hydraulic stimulation. The study of seismic anisotropy provides a means to infer properties of fracture networks, such as the dominant orientation of fracture sets and fracture compliances. Shear wave splitting from microseismic data acquired during hydraulic fracture stimulation allows us to not only estimate anisotropy and fracture properties, but also to monitor their evolution through time. Here, we analyse shear wave splitting using microseismic events recorded during a multistage hydraulic fracture stimulation in a tight-gas sandstone reservoir. A substantial rotation in the dominant fast polarization direction (ψ) is observed between the events of stage 1 and those from later stages. Although large changes in ψ have often been linked to stress-induced changes in crack orientation, here we argue that it can better be explained by a smaller fracture rotation coupled with an increase in the ratio of normal to tangential compliance (ZN/ZT) from 0.3 to 0.6. ZN/ZT is sensitive to elements of the internal architecture of the fracture, as well as fracture connectivity and permeability. Thus, monitoring ZN/ZT with shear wave splitting can potentially allow us to remotely detect changes in permeability caused by hydraulic stimulation in a range of geological settings.

  2. Fontenelle Field hydraulic fracturing stimulation of the Frontier Formation: Case history

    SciTech Connect

    Martinez, A.D.; Ruffin, B.D.

    1994-12-31

    This paper is a case history of the Frontier Formation hydraulic fracture stimulations applied since 1984 in the Fontenelle Field located in Sweetwater County, Wyoming. The hydraulic fracture treatments have undergone several design changes that have led to a 25% increase in production and a 66% decrease in completion costs. Design changes that have been incorporated to reduce costs include reduction in pad volumes, use of sand versus intermediate strength proppant, reduced pump rates, and the use of water based gels instead of CO{sub 2} foams. Improved production is attributed to improved fracture geometry resulting from 3-D fracture model analysis.

  3. Real-time and post-frac' 3-D analysis of hydraulic fracture treatments in geothermal reservoirs

    SciTech Connect

    Wright, C.A.; Tanigawa, J.J.; Hyodo, Masami; Takasugi, Shinji

    1994-01-20

    Economic power production from Hot Dry Rock (HDR) requires the establishment of an efficient circulation system between wellbores in reservoir rock with extremely low matrix permeability. Hydraulic fracturing is employed to establish the necessary circulation system. Hydraulic fracturing has also been performed to increase production from hydrothermal reservoirs by enhancing the communication with the reservoir's natural fracture system. Optimal implementation of these hydraulic fracturing applications, as with any engineering application, requires the use of credible physical models and the reconciliation of the physical models with treatment data gathered in the field. Analysis of the collected data has shown that 2-D models and 'conventional' 3-D models of the hydraulic fracturing process apply very poorly to hydraulic fracturing in geothermal reservoirs. Engineering decisions based on these more 'conventional' fracture modeling techniques lead to serious errors in predicting the performance of hydraulic fracture treatments. These errors can lead to inappropriate fracture treatment design as well as grave errors in well placement for hydrothermal reservoirs or HDR reservoirs. This paper outlines the reasons why conventional modeling approaches fall short, and what types of physical models are needed to credibly estimate created hydraulic fracture geometry. The methodology of analyzing actual measured fracture treatment data and matching the observed net fracturing pressure (in realtime as well as after the treatment) is demonstrated at two separate field sites. Results from an extensive Acoustic Emission (AE) fracture diagnostic survey are also presented for the first case study aS an independent measure of the actual created hydraulic fracture geometry.

  4. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs

    EPA Science Inventory

    We have conducted numerical simulation studies to assess the potential for injection-induced fault reactivation and notable seismic events associated with shale-gas hydraulic fracturing operations. The modeling is generally tuned toward conditions usually encountered in the Marce...

  5. Imbibition of hydraulic fracturing fluids into partially saturated shale

    NASA Astrophysics Data System (ADS)

    Birdsell, Daniel T.; Rajaram, Harihar; Lackey, Greg

    2015-08-01

    Recent studies suggest that imbibition of hydraulic fracturing fluids into partially saturated shale is an important mechanism that restricts their migration, thus reducing the risk of groundwater contamination. We present computations of imbibition based on an exact semianalytical solution for spontaneous imbibition. These computations lead to quantitative estimates of an imbibition rate parameter (A) with units of LT-1/2 for shale, which is related to porous medium and fluid properties, and the initial water saturation. Our calculations suggest that significant fractions of injected fluid volumes (15-95%) can be imbibed in shale gas systems, whereas imbibition volumes in shale oil systems is much lower (3-27%). We present a nondimensionalization of A, which provides insights into the critical factors controlling imbibition, and facilitates the estimation of A based on readily measured porous medium and fluid properties. For a given set of medium and fluid properties, A varies by less than factors of ˜1.8 (gas nonwetting phase) and ˜3.4 (oil nonwetting phase) over the range of initial water saturations reported for the Marcellus shale (0.05-0.6). However, for higher initial water saturations, A decreases significantly. The intrinsic permeability of the shale and the viscosity of the fluids are the most important properties controlling the imbibition rate.

  6. Selective oxidation of bromide in wastewater brines from hydraulic fracturing.

    PubMed

    Sun, Mei; Lowry, Gregory V; Gregory, Kelvin B

    2013-07-01

    Brines generated from oil and natural gas production, including flowback water and produced water from hydraulic fracturing of shale gas, may contain elevated concentrations of bromide (~1 g/L). Bromide is a broad concern due to the potential for forming brominated disinfection byproducts (DBPs) during drinking water treatment. Conventional treatment processes for bromide removal is costly and not specific. Selective bromide removal is technically challenging due to the presence of other ions in the brine, especially chloride as high as 30-200 g/L. This study evaluates the ability of solid graphite electrodes to selectively oxidize bromide to bromine in flowback water and produced water from a shale gas operation in Southwestern PA. The bromine can then be outgassed from the solution and recovered, as a process well understood in the bromine industry. This study revealed that bromide may be selectively and rapidly removed from oil and gas brines (~10 h(-1) m(-2) for produced water and ~60 h(-1) m(-2) for flowback water). The electrolysis occurs with a current efficiency between 60 and 90%, and the estimated energy cost is ~6 kJ/g Br. These data are similar to those for the chlor-alkali process that is commonly used for chlorine gas and sodium hydroxide production. The results demonstrate that bromide may be selectively removed from oil and gas brines to create an opportunity for environmental protection and resource recovery. PMID:23726709

  7. Development of an Advanced Hydraulic Fracture Mapping System

    SciTech Connect

    Norm Warpinski; Steve Wolhart; Larry Griffin; Eric Davis

    2007-01-31

    The project to develop an advanced hydraulic fracture mapping system consisted of both hardware and analysis components in an effort to build, field, and analyze combined data from tiltmeter and microseismic arrays. The hardware sections of the project included: (1) the building of new tiltmeter housings with feedthroughs for use in conjunction with a microseismic array, (2) the development of a means to use separate telemetry systems for the tilt and microseismic arrays, and (3) the selection and fabrication of an accelerometer sensor system to improve signal-to-noise ratios. The analysis sections of the project included a joint inversion for analysis and interpretation of combined tiltmeter and microseismic data and improved methods for extracting slippage planes and other reservoir information from the microseisms. In addition, testing was performed at various steps in the process to assess the data quality and problems/issues that arose during various parts of the project. A prototype array was successfully tested and a full array is now being fabricated for industrial use.

  8. Quantification of rock stress heterogeneity: Application to hydraulic fracturing of hydrocarbon reservoirs

    NASA Astrophysics Data System (ADS)

    Langenbruch, Cornelius; Shapiro, Serge A.

    2015-04-01

    Fluid injection-induced earthquakes occur due to opening of new and re-activation of pre-existing fractures contained in the rock volume stress-perturbed by the fluid injection. We compare elastic rock heterogeneity measured by borehole logging to the occurrence of seismic events caused by hydraulic fracturing of the corresponding rock sections. Our observations made from two hydraulic fracturing case studies suggest that elastic rock heterogeneity controls the occurrence of fluid injection-induced earthquakes. The seismic events occur preferentially in rock sections characterized by low Poisson's ratio and high Young's modulus. Fracture opening and re-activation probability and the occurrence of associated seismic events should be strongly related to the initial state of stress in the unperturbed reservoir rock. We describe the sedimentary reservoir rock by a perfectly layered linear elastic medium in equilibrium to an externally applied homogeneous far field stress and quantify the relation between stress changes leading to fracture opening and re-activation and elastic rock heterogeneity. We extend existing analytic solutions of stress fluctuations in heterogeneous linear elastic media consisting of elastically isotropic layers to the case of vertical transverse isotropic layers. This allows application to unconventional shale gas reservoirs, which are usually characterized by a high intrinsic anisotropy. We find that magnitudes of rock stress fluctuations originating from elastic rock heterogeneity are significant. Moreover, we show that stress changes leading to fracture opening and re-activation in rocks undergo scale invariance spatial fluctuations. The scale invariant nature of rock stress fluctuations is caused by scale invariant fluctuations of elastic rock properties measured along the borehole. This gives a physical explanation for scale invariance of seismogenic processes. Based on our model, we analyze the physical meaning of a heterogeneity index of rocks, which indicates rocks sections of high Young's modulus and low Poisson's ratio. This index is an indicator of occurrence probability of brittle rock failure during hydraulic reservoir stimulations in the analyzed cases. However, our quantitative study demonstrates that rock failure indicator, which are based solely on elastic properties of rocks cannot have a universal physical meaning. In addition, our results suggest that even though the intermediate principal stress magnitude is not directly involved in the Mohr Coulomb failure criterion, it has a significant influence on the stress changes leading to re-activation and opening of fractures. This finding coincides with observations made during fracturing tests of rock samples in laboratory. In summary, our study demonstrates that stress fluctuations resulting from elastic rock heterogeneity are of significant importance for the seismogenesis of fluid injection-induced earthquakes. The physics of seismogenic processes can be understood by analyzing the physical origin of rock stress fluctuations and their relation to brittle rock failure processes.

  9. Detecting Low-Frequency Seismic Signals From Surface Microseismic Monitoring of Hydraulic Fracturing of a Tight-Sand Gas Reservoir

    NASA Astrophysics Data System (ADS)

    Yu, H.; Zhang, H.; Zeng, X.

    2013-12-01

    For both surface and downhole microseismic monitoring, generally geophones with resonance frequency greater than 4.5 Hz are used. Therefore, useful information below 4.5 Hz may not be detected. In a recent experiment, we installed14 3-component broadband seismic sensors on the surface to monitor the process of hydraulic fracturing of tight sand gas reservoirs. The sensor has a broad frequency range of 30 s to 100 Hz with a very high sensitivity of 2400 m/v/s. The reservoirs are located around 1.5 km depth. There are two fracturing stages along a vertical well, lasting for about 2 hours. We recorded the data continuously during the fracturing process at a sampling rate of 50 Hz. From time-frequency analysis of continuous data, we found some high-energy signals at resonance frequencies between 10 and 20 Hz and a relatively weaker signal at a resonance frequency of ~27 Hz during the hydraulic fracturing. These signals with various resonance frequencies are likely caused by vibrations of high-pressure pipes. In addition to the resonance frequencies, the time-frequency analysis also showed consistent low frequency signals between 3 and 4 Hz at different time. The move-out analysis showed that these signals traveled at shear-wave speeds. We have detected 77 effective low frequency events during the 2-hour hydraulic fracturing process, among which 42 were located by a grid-search location method. The horizontal distribution of the events aligns with the maximum horizontal compressive stress direction. Because of the uncertainty in the velocity model, the low-frequency seismic events are not located in the fracturing depths. Recently, long-period, long-duration seismic events in the frequency band of 10 to 80 Hz were detected during hydraulic fracture stimulation of a shale gas reservoir, which may be caused by slow slip along faults/fractures (Das and Zoback, 2011). In the active volcanic areas, monochromatic events that are related to circulation of hydrothermal fluids are often detected. Our detected low frequency seismic signals have waveforms and frequency contents resembling the monochromatic events detected in volcanic areas, therefore we believe they are also likely caused by movement of fracturing fluids.

  10. Non-destructive evaluation of laboratory scale hydraulic fracturing using acoustic emission

    NASA Astrophysics Data System (ADS)

    Hampton, Jesse Clay

    The primary objective of this research is to develop techniques to characterize hydraulic fractures and fracturing processes using acoustic emission monitoring based on laboratory scale hydraulic fracturing experiments. Individual microcrack AE source characterization is performed to understand the failure mechanisms associated with small failures along pre-existing discontinuities and grain boundaries. Individual microcrack analysis methods include moment tensor inversion techniques to elucidate the mode of failure, crack slip and crack normal direction vectors, and relative volumetric deformation of an individual microcrack. Differentiation between individual microcrack analysis and AE cloud based techniques is studied in efforts to refine discrete fracture network (DFN) creation and regional damage quantification of densely fractured media. Regional damage estimations from combinations of individual microcrack analyses and AE cloud density plotting are used to investigate the usefulness of weighting cloud based AE analysis techniques with microcrack source data. Two granite types were used in several sample configurations including multi-block systems. Laboratory hydraulic fracturing was performed with sample sizes ranging from 15 x 15 x 25 cm3 to 30 x 30 x 25 cm 3 in both unconfined and true-triaxially confined stress states using different types of materials. Hydraulic fracture testing in rock block systems containing a large natural fracture was investigated in terms of AE response throughout fracture interactions. Investigations of differing scale analyses showed the usefulness of individual microcrack characterization as well as DFN and cloud based techniques. Individual microcrack characterization weighting cloud based techniques correlated well with post-test damage evaluations.

  11. Simulation of hydraulic fracture networks in three dimensions utilizing massively parallel computing platforms

    NASA Astrophysics Data System (ADS)

    Settgast, R. R.; Johnson, S.; Fu, P.; Walsh, S. D.; Ryerson, F. J.; Antoun, T.

    2012-12-01

    Hydraulic fracturing has been an enabling technology for commercially stimulating fracture networks for over half of a century. It has become one of the most widespread technologies for engineering subsurface fracture systems. Despite the ubiquity of this technique in the field, understanding and prediction of the hydraulic induced propagation of the fracture network in realistic, heterogeneous reservoirs has been limited. A number of developments in multiscale modeling in recent years have allowed researchers in related fields to tackle the modeling of complex fracture propagation as well as the mechanics of heterogeneous materials. These developments, combined with advances in quantifying solution uncertainties, provide possibilities for the geologic modeling community to capture both the fracturing behavior and longer-term permeability evolution of rock masses under hydraulic loading across both dynamic and viscosity-dominated regimes. Here we will demonstrate the first phase of this effort through illustrations of fully three-dimensional, tightly coupled hydromechanical simulations of hydraulically induced fracture network propagation run on massively parallel computing scales, and discuss preliminary results regarding the mechanisms by which fracture interactions and the accompanying changes to the stress field can lead to deleterious or beneficial changes to the fracture network.

  12. Interpretation of hydraulic conductivity in a fractured-rock aquifer over increasingly larger length dimensions

    NASA Astrophysics Data System (ADS)

    Shapiro, Allen M.; Ladderud, Jeffery A.; Yager, Richard M.

    2015-11-01

    A comparison of the hydraulic conductivity over increasingly larger volumes of crystalline rock was conducted in the Piedmont physiographic region near Bethesda, Maryland, USA. Fluid-injection tests were conducted on intervals of boreholes isolating closely spaced fractures. Single-hole tests were conducted by pumping in open boreholes for approximately 30 min, and an interference test was conducted by pumping a single borehole over 3 days while monitoring nearby boreholes. An estimate of the hydraulic conductivity of the rock over hundreds of meters was inferred from simulating groundwater inflow into a kilometer-long section of a Washington Metropolitan Area Transit Authority tunnel in the study area, and a groundwater modeling investigation over the Rock Creek watershed provided an estimate of the hydraulic conductivity over kilometers. The majority of groundwater flow is confined to relatively few fractures at a given location. Boreholes installed to depths of approximately 50 m have one or two highly transmissive fractures; the transmissivity of the remaining fractures ranges over five orders of magnitude. Estimates of hydraulic conductivity over increasingly larger rock volumes varied by less than half an order of magnitude. While many investigations point to increasing hydraulic conductivity as a function of the measurement scale, a comparison with selected investigations shows that the effective hydraulic conductivity estimated over larger volumes of rock can either increase, decrease, or remain stable as a function of the measurement scale. Caution needs to be exhibited in characterizing effective hydraulic properties in fractured rock for the purposes of groundwater management.

  13. Physical Controls on Potential Upward Migration of Hydraulic Fracturing Fluid and Brine from Tight Oil and Gas Formations

    NASA Astrophysics Data System (ADS)

    Flewelling, S. A.; Tymchak, M. P.; Sharma, M.

    2013-12-01

    The widespread use of hydraulic fracturing (HF) has raised concerns about potential upward migration of HF fluid and brine through the rocks that overlay tight oil and gas formations (permeability ≤ 10-16 m2). The pathways along which potential fluid migration might occur include the primary porosity, induced and natural fractures, and preexisting faults. In this presentation, we evaluate the physical mechanisms that control whether HF fluid and brine can migrate upward along these pathways and, if so, the approximate magnitude of the fluxes and timescales over which such migration might occur. Our analysis focuses first on potential hydraulic communication between tight formations and shallow potable aquifers via induced fractures and preexisting faults. We developed a relationship that predicts maximum fracture height as a function of HF fluid volume and compared these predictions to the vertical extent of microseismicity from over 12,000 HF stimulations across North America. Virtually all microseisms were within the bounds of the theoretical relationship (a simple power law). The microseismic data were also used to estimate the size of shear displacement areas (including along preexisting faults), which were on the order of 10 m or less. These findings suggest that fracture heights are limited by HF fluid volume regardless of whether the fluid interacts with faults and that direct hydraulic communication between tight formations and shallow potable groundwater via induced fractures and preexisting faults is not a realistic expectation. Apart from these pathways, the only other avenue for fluid migration is through the unmodified overlying rock. Due to the low permeability of targeted formations and surrounding strata, the pressure pulse applied during an HF stimulation is localized to the immediate vicinity of the fracture network and unable to drive large scale vertical flow. Thus, upward flow, if it occurs, would be controlled by the preexisting distribution of vertical permeabilities and head gradients. We show that in cases where there is an upward gradient, permeability is low, upward fluxes are low, and mean travel times are often greater than one million years. Consequently, it does not appear to be physically plausible for HF fluid and brine to migrate upward through overlying rock and affect shallow potable groundwater.

  14. The Depths of Hydraulic Fracturing and Accompanying Water Use Across the United States.

    PubMed

    Jackson, Robert B; Lowry, Ella R; Pickle, Amy; Kang, Mary; DiGiulio, Dominic; Zhao, Kaiguang

    2015-08-01

    Reports highlight the safety of hydraulic fracturing for drinking water if it occurs "many hundreds of meters to kilometers underground". To our knowledge, however, no comprehensive analysis of hydraulic fracturing depths exists. Based on fracturing depths and water use for ∼44,000 wells reported between 2010 and 2013, the average fracturing depth across the United States was 8300 ft (∼2500 m). Many wells (6900; 16%) were fractured less than a mile from the surface, and 2600 wells (6%) were fractured above 3000 ft (900 m), particularly in Texas (850 wells), California (720), Arkansas (310), and Wyoming (300). Average water use per well nationally was 2,400,000 gallons (9,200,000 L), led by Arkansas (5,200,000 gallons), Louisiana (5,100,000 gallons), West Virginia (5,000,000 gallons), and Pennsylvania (4,500,000 gallons). Two thousand wells (∼5%) shallower than one mile and 350 wells (∼1%) shallower than 3000 ft were hydraulically fractured with >1 million gallons of water, particularly in Arkansas, New Mexico, Texas, Pennsylvania, and California. Because hydraulic fractures can propagate 2000 ft upward, shallow wells may warrant special safeguards, including a mandatory registry of locations, full chemical disclosure, and, where horizontal drilling is used, predrilling water testing to a radius 1000 ft beyond the greatest lateral extent. PMID:26196164

  15. Finite Element Code For 3D-Hydraulic Fracture Propagation Equations (3-layer).

    Energy Science and Technology Software Center (ESTSC)

    1992-03-24

    HYFRACP3D is a finite element program for simulation of a pseudo three-dimensional fracture geometries with a two-dimensional planar solution. The model predicts the height, width and winglength over time for a hydraulic fracture propagating in a three-layered system of rocks with variable rock mechanics properties.

  16. Water sources and disposal related to hydraulic fracturing in the Barnett Shale: a historical perspective

    NASA Astrophysics Data System (ADS)

    Nicot, J.; Scanlon, B. R.

    2013-12-01

    During the past few years, hydraulic fracturing (HF) has become a hotly debated topic particularly related to volume of water used and potential for contamination of shallow aquifers. In this communication, we focused on water use in the oldest shale play in the world as an example for an analysis of historical patterns of water use, consumption, and disposal. The Barnett Shale play in Texas provides an ideal case to assess some of the issues related to shale gas production. It was the first shale play to submit to intense slick-water HF (first horizontal wells in 2003, ~15,000 horizontal wells completed to date). An estimated 200, 000 acre-feet (247 million m3) of water has been used so far in the play (included for vertical wells), mostly in the 4-5 counties making up the core area. More than 90% of the water used is consumed and relatively little recycling occurs in the play. Most of the flowback / produced water is disposed of through injection wells. The median Barnett horizontal well produces back ~100% of the amount of water injected for fracturing in the course of the few years following completion, an amount larger than other well-known shale gas plays. The communication will provide detailed material documenting these findings.

  17. Combined use of straddle packer testing and FLUTe profiling for hydraulic testing in fractured rock boreholes

    NASA Astrophysics Data System (ADS)

    Quinn, Patryk; Cherry, John A.; Parker, Beth L.

    2015-05-01

    A combination of high resolution hydraulic tests using straddle packers and transmissivity (T) profiling using the FLUTe flexible liner method (liner profiling) in densely fractured rock boreholes is shown to be efficient for the determination of the vertical distribution of T along the entire hole. The liner T profiling method takes a few hours or less to scan the entire borehole length resulting in a T profile. Under favorable conditions this method has good reliability for identifying the highest T zones identified by distinct decreases in liner velocity when these zones are covered by the descending liner. In contrast, for one short test interval (e.g., 1-2 m) the multiple-test, straddle-packer method takes a few hours to measure T with good precision and accuracy using a combination of steady-state and transient tests (e.g., constant head step tests, slug tests, and constant rate pumping tests). Because of the time consuming aspect of this multiple-test method, it is most efficient in each borehole to conduct straddle packer testing only in priority zones selected after assessment of other borehole data collected prior to packer testing. The T profile from the liner method is instrumental in selecting high permeable zones for application of the multiple-test method using straddle packers, which in turn, refines the T estimation from the liner profile. Results from three boreholes in densely fractured sandstone demonstrate this approach showing the synergistic use of the methods with emphasis on information important for determining hydraulic apertures.

  18. Analysis of Non-Planar Multi-Fracture Propagation from Layered-Formation Inclined-Well Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyuan; Jin, Yan; Chen, Mian; Hou, Bing

    2016-05-01

    Current research shows that layered formation barriers can have a significant impact on the extension of fracture height; however, there are few studies on inclined-well near-wellbore fracture propagation shapes and penetrating patterns near the interface. We performed a true triaxial hydraulic fracturing experiment to study the layered formation of inclined-well near-wellbore and interface fracture propagation geometries influenced by formation conditions and perforation schemes. The results revealed that horizontal stress differences, perforation phase angles, borehole azimuths, and interlayer minimum horizontal in situ stress differences were the main factors that controlled the fracture propagation geometry. Under the conditions of large differences in horizontal stress, large perforation phase angles, and large angles between the borehole azimuth and the maximum horizontal in situ stress azimuth, the near-wellbore cracks presented a single main fracture with a large number of secondary fractures; in addition, the main and secondary fractures changed orientations. With moderate horizontal stress differences and less severe angle parameters, the fracture propagation geometry was simplified, forming a single main fracture. When all three parameters were small, the cracks displayed multiple main or network fractures. The surface morphology of spatial distribution was complex and the seam surface was rough. Under a crossing condition, the pattern of the penetrating fractures was highly affected by the near-wellbore fractures when the interlayer minimum horizontal in situ stress differences were small. Under large interlayer minimum horizontal in situ stress differences, the interface fractures began to deflect and generate new branches. The fluctuation and increase in fracturing pressure was caused by the dispersion of the fracturing fluid flow from multi-fractures and the large number of seam surfaces.

  19. Modelling Subduction Zone Magmatism Due to Hydraulic Fracture

    NASA Astrophysics Data System (ADS)

    Lawton, R.; Davies, J. H.

    2014-12-01

    The aim of this project is to test the hypothesis that subduction zone magmatism involves hydraulic fractures propagating from the oceanic crust to the mantle wedge source region (Davies, 1999). We aim to test this hypothesis by developing a numerical model of the process, and then comparing model outputs with observations. The hypothesis proposes that the water interconnects in the slab following an earthquake. If sufficient pressure develops a hydrofracture occurs. The hydrofracture will expand in the direction of the least compressive stress and propagate in the direction of the most compressive stress, which is out into the wedge. Therefore we can calculate the hydrofracture path and end-point, given the start location on the slab and the propagation distance. We can therefore predict where water is added to the mantle wedge. To take this further we have developed a thermal model of a subduction zone. The model uses a finite difference, marker-in-cell method to solve the heat equation (Gerya, 2010). The velocity field was prescribed using the analytical expression of cornerflow (Batchelor, 1967). The markers contained within the fixed grid are used to track the different compositions and their properties. The subduction zone thermal model was benchmarked (Van Keken, 2008). We used the hydrous melting parameterization of Katz et.al., (2003) to calculate the degree of melting caused by the addition of water to the wedge. We investigate models where the hydrofractures, with properties constrained by estimated water fluxes, have random end points. The model predicts degree of melting, magma productivity, temperature of the melt and water content in the melt for different initial water fluxes. Future models will also include the buoyancy effect of the melt and residue. Batchelor, Cambridge UP, 1967. Davies, Nature, 398: 142-145, 1999. Gerya, Cambridge UP, 2010. Katz, Geochem. Geophys. Geosy, 4(9), 2003 Van Keken et.al. Phys. Earth. Planet. In., 171:187-197, 2008.

  20. Hydraulic fracturing for natural gas: impact on health and environment.

    PubMed

    Carpenter, David O

    2016-03-01

    Shale deposits exist in many parts of the world and contain relatively large amounts of natural gas and oil. Recent technological developments in the process of horizontal hydraulic fracturing (hydrofracturing or fracking) have suddenly made it economically feasible to extract natural gas from shale. While natural gas is a much cleaner burning fuel than coal, there are a number of significant threats to human health from the extraction process as currently practiced. There are immediate threats to health resulting from air pollution from volatile organic compounds, which contain carcinogens such as benzene and ethyl-benzene, and which have adverse neurologic and respiratory effects. Hydrogen sulfide, a component of natural gas, is a potent neuro- and respiratory toxin. In addition, levels of formaldehyde are elevated around fracking sites due to truck traffic and conversion of methane to formaldehyde by sunlight. There are major concerns about water contamination because the chemicals used can get into both ground and surface water. Much of the produced water (up to 40% of what is injected) comes back out of the gas well with significant radioactivity because radium in subsurface rock is relatively water soluble. There are significant long-term threats beyond cancer, including exacerbation of climate change due to the release of methane into the atmosphere, and increased earthquake activity due to disruption of subsurface tectonic plates. While fracking for natural gas has significant economic benefits, and while natural gas is theoretically a better fossil fuel as compared to coal and oil, current fracking practices pose significant adverse health effects to workers and near-by residents. The health of the public should not be compromized simply for the economic benefits to the industry. PMID:26943595

  1. An Investigation of Hydraulic Fracturing Initiation and Near-Wellbore Propagation from Perforated Boreholes in Tight Formations

    NASA Astrophysics Data System (ADS)

    Fallahzadeh, S. H.; Rasouli, V.; Sarmadivaleh, M.

    2015-03-01

    In this study, hydraulic fracturing tests were conducted on 10 and 15 cm synthetically manufactured cubic tight mortar samples. The use of cube samples allowed application of three independent stresses to mimic real far field stress conditions. A true triaxial stress cell was used for this purpose. The lab test parameters were scaled to simulate the operations at field scale. The hole and perforations were made into the sample after casting and curing were completed. Various scenarios of vertical and horizontal wells and in situ stress regimes were modeled. These factors are believed to play a significant role in fracture initiation and near-wellbore propagation behavior; however, they are not independent parameters, hence should be analyzed simultaneously. In addition to experimental studies, analytical solutions were developed to simulate the mechanism of fracture initiation in perforated boreholes in tight formations. Good agreements were observed between the experimental and analytical results. The results of this study showed that a lower initiation pressure is observed when the minimum stress component is perpendicular to the axis of the perforations. It was also seen that, even when the cement sheath behind the casing fails, the orientation of the perforations may affect the initiation of the induced fracture noticeably. Furthermore, it was found that stress anisotropy influences the fracturing mechanism in a perforated borehole, and affects the geometry of the initiated near-wellbore fracture.

  2. A hybrid, neuro-genetic approach to hydraulic fracture treatment design and optimization

    SciTech Connect

    Mohaghegh, S.; Balan, B.; Ameri, S.; McVey, D.S.

    1996-12-31

    This paper summarizes the efforts conducted toward the development of a new and novel methodology for optimal design of hydraulic fracture treatments in a gas storage field. What makes this methodology unique is its capability to provide engineers with a near optimum design of a frac job despite very little (almost none) reservoir data availability. Lack of engineering data for hydraulic fracture design and evaluation had made use of 2D or 3D hydraulic fracture simulators impractical. As a result, prior designs of hydraulic frac jobs had been reduced to guess works and in some cases dependent on engineers with many years of experience on this particular field, who had developed an intuition about this formation and its possible response to different treatments. This was the main cause of several frac job failures every year. On the other hand, in case of relocation of engineers with experience on this particular field the risk of even more frac job failures was imminent.

  3. Microearthquakes induced during hydraulic fracturing at the Fenton Hill HDR site: the 1982 experiments

    SciTech Connect

    Keppler, H.; Pearson, C.F.; Potter, R.M.; Albright, J.N.

    1983-01-01

    The on-site real-time processing of microearthquake signals that occur during massive hydraulic fracturing provides a notion of the location and growth of the fracture system being created. This enables quick decisions to be made in regard to the ongoing operations. The analytical results and impact of the hypocenter mapping during the 1982 fracturing experiments in the Fenton Hill Phase II Hot Dry Rock geothermal reservoir are reported.

  4. Vertical cross contamination of trichloroethylene in a borehole in fractured sandstone

    USGS Publications Warehouse

    Sterling, S.N.; Parker, B.L.; Cherry, J.A.; Williams, J.H.; Lane, J.W., Jr.; Haeni, F.P.

    2005-01-01

    Boreholes drilled through contaminated zones in fractured rock create the potential for vertical movement of contaminated ground water between fractures. The usual assumption is that purging eliminates cross contamination; however, the results of a field study conducted in a trichloroethylene (TCE) plume in fractured sandstone with a mean matrix porosity of 13% demonstrates that matrix-diffusion effects can be strong and persistent. A deep borehole was drilled to 110 m below ground surface (mbgs) near a shallow bedrock well containing high TCE concentrations. The borehole was cored continuously to collect closely spaced samples of rock for analysis of TCE concentrations. Geophysical logging and flowmetering were conducted in the open borehole, and a removable multilevel monitoring system was installed to provide hydraulic-head and ground water samples from discrete fracture zones. The borehole was later reamed to complete a well screened from 89 to 100 mbgs; persistent TCE concentrations at this depth ranged from 2100 to 33,000 ??g/L. Rock-core analyses, combined with the other types of borehole information, show that nearly all of this deep contamination was due to the lingering effects of the downward flow of dissolved TCE from shallower depths during the few days of open-hole conditions that existed prior to installation of the multilevel system. This study demonstrates that transfer of contaminant mass to the matrix by diffusion can cause severe cross contamination effects in sedimentary rocks, but these effects generally are not identified from information normally obtained in fractured-rock investigations, resulting in potential misinterpretation of site conditions. Copyright ?? 2005 National Ground Water Association.

  5. Coordinated studies in support of hydraulic fracturing of coalbed methane. Annual report, January 1993-April 1994

    SciTech Connect

    Penny, G.S.; Conway, M.W.

    1994-08-01

    The production of natural gas from coal typically requires stimulation in the form of hydraulic fracturing and, more recently, cavity completions. The results of hydraulic fracturing treatments have ranged from extremely successful to less than satisfactory. The purpose of this work is to characterize common and potential fracturing fluids in terms of coal-fluid interactions to identify reasons for less than satisfactory performance and to ultimately devise alternative fluids and treatment procedures to optimize production following hydraulic fracturing. The laboratory data reported herein has proven helpful in designing improved hydraulic fracturing treatments and remedial treatments in the Black Warrior Basin. Acid inhibitors, scale inhibitors, additives to improve coal relative permeability to gas, and non-damaging polymer systems for hydraulic fracturing have been screened in coal damage tests. The optimum conditions for creating field-like foams in the laboratory have been explored. Tests have been run to identify minimum polymer and surfactant concentrations for applications of foam in coal. The roll of 100 mesh sand in controlling leakoff and impairing conductivity in coal has been investigated. The leakoff and proppant transport of fluids with breaker has been investigated and recommendations have been made for breaker application to minimize damage potential in coal. A data base called COAL`S has been created in Paradox (trademark) for Windows to catalogue coalbed methane activities in the Black Warrior and San Juan Basins.

  6. Effect of reeds and feeding operations on hydraulic behaviour of vertical flow constructed wetlands under hydraulic overloads.

    PubMed

    Molle, P; Liénard, A; Grasmick, A; Iwema, A

    2006-02-01

    Vertical flow constructed wetlands (VFCWs) have been very successful in France over the last 5 years. The sizing of VFCWs is still roughly based on organic load acceptance with slight clear water intrusion into the sewerage system which is often wrong in the context of small communities. To specify the hydraulic limits would be of great help to Water Authorities in deciding at what point is it preferable to build separate sewers rather than adapt the wastewater treatment plant. The study of the hydraulic limits of reed beds, based on the knowledge of hydrodynamics in unsaturated porous media, shows the ability of the system to accept flow overloads. Measuring different parameters (flow, pollutant removal, infiltration rate (IR), pressure head profiles) in pilot and full-scale studies, we explain the hydraulic behaviour of the filter, and the role of reeds and batch frequency on the IRs. Consequently, new hydraulic limits with accompanying sizing rules and operational recommendations according to the level of deposit on the filter surface are suggested. The study shows the robustness of reed beds systems as designed in France to accept hydraulic overloads. Overloads up to ten times the dry weather flow are possible whilst still complying with the European standards. PMID:16436290

  7. Simultaneous initiation and growth of multiple radial hydraulic fractures from a horizontal wellbore

    NASA Astrophysics Data System (ADS)

    Lecampion, Brice; Desroches, Jean

    2015-09-01

    Multi-stage fracturing is the current preferred method of completion of horizontal wells in unconventional hydrocarbon reservoirs. Its core component consists in simultaneously initiating and propagating an array of hydraulic fractures. We develop a numerical model for the initiation and growth of an array of parallel radial hydraulic fractures. The solution accounts for fracture growth, coupling between elastic deformation and fluid flow in the fractures, elastic stress interactions between fractures and fluid flow in the wellbore. We also take into account the presence of a local pressure drop (function of the entering flow rate) at the connection between the well and the fracture, i.e., a choke-like effect due to current well completion practices, also referred to as entry friction. The partitioning of the fluid into the different fractures at any given time is part of the solution and is a critical indicator of simultaneous (balanced fluid partitioning) versus preferential growth. We validate our numerical model against reference solutions and a laboratory experiment for the initiation and growth of a single radial hydraulic fracture. We then investigate the impact of stress interaction on preferential growth of a subset of fractures in the array. Our results show that a sufficiently large local entry friction provides a strong feedback in the system and thus can counteract elastic stress interaction between fractures, thereby ensuring simultaneous growth. We propose a dimensionless number capturing the competition between stress interaction and local entry friction. This dimensionless number is a function of rock properties, fracture spacing and injection parameters. We verify that it captures the transition from the case of simultaneous growth (entry friction larger than interaction stress) to the case of preferential growth of some fractures (interaction stress larger than entry friction). We also discuss the implication of these results for multi-stage fracturing engineering practices.

  8. Coordinated studies in support of hydraulic fracturing of coalbed methane. Annual report, November 1991-December 1992

    SciTech Connect

    Not Available

    1993-04-01

    The purpose of the work is to characterize common and potential fracturing fluids in terms of coal-fluid interactions to identify reasons for less than satisfactory performance and to ultimately devise alternative fluids and treatment procedures to optimize production following hydraulic fracturing. The laboratory data reported herein has proven helpful in designing improved hydraulic fracturing treatments and remedial treatments in the Black Warrior Basin. Acid inhibitors, scale inhibitors, additives to improve coal relative permeability to gas, and non-damaging polymer systems for hydraulic fracturing have been screened in coal damage tests. The optimum conditions for creating field-like foams in the laboratory have been explored. Tests have been run to identify minimum polymer and surfactant concentrations for applications of foam in coal. The roll of 100 mesh sand in controlling leakoff and impairing conductivity in coal has been investigated.

  9. Fully Coupled Geomechanics and Discrete Flow Network Modeling of Hydraulic Fracturing for Geothermal Applications

    SciTech Connect

    Fu, P; Johnson, S M; Hao, Y; Carrigan, C R

    2011-01-18

    The primary objective of our current research is to develop a computational test bed for evaluating borehole techniques to enhance fluid flow and heat transfer in enhanced geothermal systems (EGS). Simulating processes resulting in hydraulic fracturing and/or the remobilization of existing fractures, especially the interaction between propagating fractures and existing fractures, represents a critical goal of our project. To this end, we are continuing to develop a hydraulic fracturing simulation capability within the Livermore Distinct Element Code (LDEC), a combined FEM/DEM analysis code with explicit solid-fluid mechanics coupling. LDEC simulations start from an initial fracture distribution which can be stochastically generated or upscaled from the statistics of an actual fracture distribution. During the hydraulic stimulation process, LDEC tracks the propagation of fractures and other modifications to the fracture system. The output is transferred to the Non-isothermal Unsaturated Flow and Transport (NUFT) code to capture heat transfer and flow at the reservoir scale. This approach is intended to offer flexibility in the types of analyses we can perform, including evaluating the effects of different system heterogeneities on the heat extraction rate as well as seismicity associated with geothermal operations. This paper details the basic methodology of our approach. Two numerical examples showing the capability and effectiveness of our simulator are also presented.

  10. Implementation of Linear Pipe Channel Network to Estimate Hydraulic Parameters of Fractured Rock Masses

    NASA Astrophysics Data System (ADS)

    Han, J.; Um, J. G.; Wang, S.

    2014-12-01

    Modeling of fluid flow is important in geological, petroleum, environmental, civil and mining engineering. Fluid flow through fractured hard rock is very much dependent on the fracture network pattern in the rock mass and on the flow behavior through these fractures. This research deals with fluid flow behavior through fractures at an abandoned copper mine in southeast Korea. An injection well and three observation wells were installed at the mine site to monitor the hydraulic heads induced by injection of fresh water. A series of packer tests were performed to estimate the rock mass permeability and corresponding effective hydraulic aperture of the fractures. The three dimensional stochastic fracture network model was built and validated for the mine site. The two dimensional linear pipe network systems were constructed in directions of the observation wells using the fracture network model. A procedure of the fluid flow analysis on two dimensional discrete domain was applied to estimate the conductance, flow quantity and nodal head in the 2-D linear pipe channel network. The present results indicate that fracture geometry parameters (orientation, density and size) play an important role in the hydraulic characteristics of fractured rock masses.

  11. Measuring the hydraulic fracture-induced deformation of reservoirs and adjacent rocks employing a deeply buried inclinometer array: GRI/DOE multi-site project

    SciTech Connect

    Branagan, P.T.; Warpinski, N.R.; Engler, B.; Wilmer, R.

    1996-12-31

    A vertical inclinometer array consisting of six biaxial tiltmeters was cemented behind pipe at depths between 4,273 and 4,628 ft. This wide-aperture array provided real-time tilt profiles corresponding to a series of seven hydraulic fractures being conducted in a nearby offset well in a fluvial sandstone reservoir. Array profiles for three KCl water fracs indicated that height growth was confined to the gross thickness of the reservoir despite extensive fracture length extension. Long-term monitoring of the array suggests that a substantial residual frac: width remained long after fracture closure occurred. For two 400-bbl linear gel minifracs, some height growth was observed but it was not extensive. Tilt amplitudes related to expanded frac widths were found to increase as would be expected with these thicker frac fluids. When cross-linker and proppant were included in the last fracture, tilt-derived heights were seen to grow rapidly extending into the bounding layers as the more complex fluids entered the fracture system. This inclinometer array was one of several independent, yet complimentary, fracture diagnostics tools that included crosswell multilevel microseismic arrays, FRACPRO{reg_sign} and a remote fracture intersection well. Their purpose was to provide integrated field-scale data regarding hydraulic fracture dynamics and geometry that would be used to construct accurate fracture mapping and diagnostic techniques.

  12. Crosswell seismic investigation of hydraulically conductive, fracture bedrock near Mirror Lake, New Hampshire

    USGS Publications Warehouse

    Ellefsen, K.J.; Hsieh, P.A.; Shapiro, A.M.

    2002-01-01

    Near Mirror Lake, New Hampshire (USA), hydraulically conductive, fractured bedrock was investigated with the crosswell seismic method to determine whether this method could provide any information about hydraulic conductivity between wells. To this end, crosswell seismic data, acoustic logs from boreholes, image logs from boreholes, and single borehole hydraulic tests were analyzed. The analysis showed that, first, the P-wave velocities from the acoustic logs tended to be higher in schist than they were in granite. (Schist and granite were the dominant rock types). Second, the P-wave velocities from the acoustic logs tended to be low near fractures. Third, the hydraulic conductivity was always low (always less than to 10-8 m/s) where no fractures intersected the borehole, but the hydraulic conductivity ranged from low to high (from less than to 10-10 m/s to 10-4 m/s) where one or more fractures intersected the borehole. Fourth, high hydraulic conductivities were slightly more frequent when the P-wave velocity was low (less than 5200 m/s) than when it was high (greater than or equal to 5200 m/s). The interpretation of this statistical relation was that the fractures tended to increase the hydraulic conductivity and to lower the P-wave velocity. This statistical relation was applied to a velocity tomogram to create a map showing the probability of high hydraulic conductivity; the map was consistent with results from independent hydraulic tests. ?? 2002 Elsevier Science B.V. All rights reserved.

  13. Violation of the Kaiser effect by hydraulic-fracturing-related microseismicity

    NASA Astrophysics Data System (ADS)

    Shapiro, S. A.; Dinske, C.

    2007-12-01

    Application of a load to different materials and rocks induces acoustic and seismic emission. If the load has a cyclic character, then as a rule such an emission will vanish for loads less than the maximum previously reached load level. This is the so-called Kaiser effect, which is an expression of memorized stress history of materials and rocks. Usually, this effect is assumed to be valid also in the case of fluid-induced seismicity. Here, we show that microseismicity occurring during hydraulic fracturing violates the Kaiser effect. In material sciences, such a breakdown of the Kaiser effect is termed the felicity effect. We observe that the felicity effect can be directly related to reopening of the hydraulic fracture forced by fluid injection in loading cycles. In contrast, closing of the hydraulic fracture following injection cessations seems to be governed by the Kaiser effect. We explain such a contrasting behaviour of microseismicity by an aseismic character of a slow fracture closing and by rubbing and pore pressure diffusion during a quick fracture reopening. This violation of the Kaiser effect for tensile fracturing due to hydraulic forcing on rocks is similar to the absence of this effect in the case of shear fracturing by seismogenic processes. Possibly, the felicity effect is a common feature of ongoing active faulting.

  14. Hydraulic fracturing stress measurements at Yucca Mountain, Nevada, and relationship to the regional stress field

    SciTech Connect

    Stock, J.M.; Healy, J.H.; Hickman, S.H.; Zoback, M.D.

    1985-09-10

    Hydraulic fracturing stress measurements and acoustic borehole televiewer logs were run in holes USW G-1 and USW G-2 at Yucca Mountain as part of the Nevada Nuclear Waste Storage Investigations for the U. S. Department of Energy. Eight tests in the saturated zone, at depths from 646 to 1288 m, yielded values of the least horizontal stress S/sub h/ that are considerably lower than the vertical principal stress S/sub v/. In tests for which the greatest horizontal principal stress S/sub H/ could be determined, it was found to be less than S/sub v/, indicating a normal faulting stress regime. The borehole televiewer logs showed the presence of long (in excess of 10 m), vertical, drilling-induced fractures in the first 300 m below the water table. These are believed to form by the propagation of small preexisting cracks under the excess downhole fluid pressures (up to 5.2 MPa) applied during drilling. The presence of these drilling-induced hydrofractures provides further confirmation of the low value of the least horizontal stresses. A least horizontal principal stress direction of N60{sup 0}W--N65{sup 0}W is indicated by the orientation of the drilling-induced hydrofractures (N25{sup 0}E--N30{sup 0}E), and the orientation of stress-induced well bore breakouts in the lower part of USW G-2 (N65 {sup 0}W). This direction is in good agreement with indicators of stress direction from elsewhere at the Neva da Test Site. The observed stress magnitudes and directions were examined for the possibility of slip on preexisting faults. Using these data, the Coulomb criterion for frictional sliding suggests that for coefficients of friction close to 0.6, movement on favorably oriented faults could be expected.

  15. Hydraulic fracturing stress measurements at Yucca Mountain, Nevada, and relationship to the regional stress field

    NASA Astrophysics Data System (ADS)

    Stock, J. M.; Healy, J. H.; Hickman, S. H.; Zoback, M. D.

    1985-09-01

    Hydraulic fracturing stress measurements and acoustic borehole televiewer logs were run in holes USW G-1 and USW G-2 at Yucca Mountain as part of the Nevada Nuclear Waste Storage Investigations for the U.S. Department of Energy. Eight tests in the saturated zone, at depths from 646 to 1288 m, yielded values of the least horizontal stress Sh that are considerably lower than the vertical principal stress Sv. In tests for which the greatest horizontal principal stress SH could be determined, it was found to be less than Sv, indicating a normal faulting stress regime. The borehole televiewer logs showed the presence of long (in excess of 10 m), vertical, drilling-induced fractures in the first 300 m below the water table. These are believed to form by the propagation of small preexisting cracks under the excess downhole fluid pressures (up to 5.2 MPa) applied during drilling. The presence of these drilling-induced hydrofractures provides further confirmation of the low value of the least horizontal stresses. A least horizontal principal stress direction of N60°W-N65°W is indicated by the orientation of the drilling-induced hydrofractures (N25°E-N30°E), and the orientation of stress-induced well bore breakouts in the lower part of USW G-2 (N65°W). This direction is in good agreement with indicators of stress direction from elsewhere at the Nevada Test Site. The observed stress magnitudes and directions were examined for the possibility of slip on preexisting faults. Using these data, the Coulomb criterion for frictional sliding suggests that for coefficients of friction close to 0.6, movement on favorably oriented faults could be expected. For coefficients of friction of 1.0, preexisting faults of all orientations should be stable. Laboratory studies on the Yucca Mountain tuffs, reported elsewhere, yield coefficients of friction ranging from 0.6 to 0.9.

  16. A model for turbulent hydraulic fracture and application to crack propagation at glacier beds

    NASA Astrophysics Data System (ADS)

    Tsai, Victor C.; Rice, James R.

    2010-09-01

    Glaciological observations of under-flooding suggest that fluid-induced hydraulic fracture of an ice sheet from its bed sometimes occurs quickly, possibly driven by turbulently flowing water in a broad sheet flow. Taking the approximation of a fully turbulent flow into an elastic ice medium with small fracture toughness, we derive an approximate expression for the crack-tip speed, opening displacement and pressure profile. We accomplish this by first showing that a Manning-Strickler channel model for resistance to turbulent flow leads to a mathematical structure somewhat similar to that for resistance to laminar flow of a power law viscous fluid. We then adapt the plane-strain asymptotic crack solution of Desroches et al. (1994) and the power law self-similar solution of Adachi and Detournay (2002) for that case to calculate the desired quantities. The speed of crack growth is shown to scale as the overpressure (in excess of ice overburden) to the power 7/6, inversely as ice elastic modulus to the power 2/3, and as the ratio of crack length to wall roughness scale to the power 1/6. We tentatively apply our model by choosing parameter values thought appropriate for a basal crack driven by the rapid drainage of a surface meltwater lake near the margin of the Greenland Ice Sheet. Making various approximations perhaps relevant to this setting, we estimate fluid inflow rate to the basal fracture and vertical and horizontal surface displacements and find order-of-magnitude agreement with observations by Das et al. (2008) associated with lake drainage. Finally, we discuss how these preliminary estimates could be improved.

  17. Acoustic emission in a fluid saturated heterogeneous porous layer with application to hydraulic fracture

    SciTech Connect

    Nelson, J.T. . Dept. of Mechanical Engineering Lawrence Berkeley Lab., CA )

    1988-11-01

    A theoretical model for acoustic emission in a vertically heterogeneous porous layer bounded by semi-infinite solid regions is developed using linearized equations of motion for a fluid/solid mixture and a reflectivity method. Green's functions are derived for both point loads and moments. Numerically integrated propagators represent solutions for intermediate heterogeneous layers in the porous region. These are substituted into a global matrix for solution by Gaussian elimination and back-substitution. Fluid partial stress and seismic responses to dislocations associated with fracturing of a layer of rock with a hydraulically conductive fracture network are computed with the model. A constitutive model is developed for representing the fractured rock layer as a porous material, using commonly accepted relationships for moduli. Derivations of density, tortuosity, and sinuosity are provided. The main results of the model application are the prediction of a substantial fluid partial stress response related to a second mode wave for the porous material. The response is observable for relatively large distances, on the order of several tens of meters. The visco-dynamic transition frequency associated with parabolic versus planar fluid velocity distributions across micro-crack apertures is in the low audio or seismic range, in contrast to materials with small pore size, such as porous rocks, for which the transition frequency is ultrasonic. Seismic responses are predicted for receiver locations both in the layer and in the outlying solid regions. In the porous region, the seismic response includes both shear and dilatational wave arrivals and a second-mode arrival. The second-mode arrival is not observable outside of the layer because of its low velocity relative to the dilatational and shear wave propagation velocities of the solid region.

  18. Assessing Microbial Activity in Marcellus Shale Hydraulic Fracturing Fluids

    NASA Astrophysics Data System (ADS)

    Wishart, J. R.; Morono, Y.; Itoh, M.; Ijiri, A.; Hoshino, T.; Inagaki, F.; Verba, C.; Torres, M. E.; Colwell, F. S.

    2014-12-01

    Hydraulic fracturing (HF) produces millions of gallons of waste fluid which contains a microbial community adapted to harsh conditions such as high temperatures, high salinities and the presence of heavy metals and radionuclides. Here we present evidence for microbial activity in HF production fluids. Fluids collected from a Marcellus shale HF well were supplemented with 13C-labeled carbon sources and 15N-labeled ammonium at 25°C under aerobic or anaerobic conditions. Samples were analyzed for 13C and 15N incorporation at sub-micrometer scale by ion imaging with the JAMSTEC NanoSIMS to determine percent carbon and nitrogen assimilation in individual cells. Headspace CO2 and CH4 were analyzed for 13C enrichment using irm-GC/MS. At 32 days incubation carbon assimilation was observed in samples containing 1 mM 13C-labeled glucose under aerobic and anaerobic conditions with a maximum of 10.4 and 6.5% total carbon, respectively. Nitrogen assimilation of 15N ammonium observed in these samples were 0.3 and 0.8% of total nitrogen, respectively. Head space gas analysis showed 13C enrichment in CH4 in anaerobic samples incubated with 1mM 13C-labeled bicarbonate (2227 ‰) or methanol (98943 ‰). Lesser 13C enrichment of CO2 was observed in anaerobic samples containing 1 mM 13C-labeled acetate (13.7 ‰), methanol (29.9 ‰) or glucose (85.4 ‰). These results indicate metabolic activity and diversity in microbial communities present in HF flowback fluids. The assimilation of 13C-labeled glucose demonstrates the production of biomass, a critical part of cell replication. The production of 13CO2 and 13CH4 demonstrate microbial metabolism in the forms of respiration and methanogenesis, respectively. Methanogenesis additionally indicates the presence of an active archaeal community. This research shows that HF production fluid chemistry does not entirely inhibit microbial activity or growth and encourages further research regarding biogeochemical processes occurring in Marcellus shale HF wells. Biogeochemical activity may impact the efficacy of HF and natural gas production as well as the chemistry of produced fluids which have become an environmental and public health concern.

  19. Hydraulic fracture orientation and production/injection induced reservoir stress changes in diatomite waterfloods

    SciTech Connect

    Wright, C.A.; Conant, R.A.; Golich, G.M.; Bondor, P.L.; Murer, A.S.; Dobie, C.A.

    1995-12-31

    This paper summarizes the (preliminary) findings from extensive field studies of hydraulic fracture orientation in diatomite waterfloods and related efforts to monitor the induced surface subsidence. Included are case studies from the Belridge and Lost Hills diatomite reservoirs. The primary purpose of the paper is to document a large volume of tiltmeter hydraulic fracture orientation data that demonstrates waterflood-induced fracture reorientation--a phenomenon not previously considered in waterflood development planning. Also included is a brief overview of three possible mechanisms for the observed waterflood fracture reorientation. A discussion section details efforts to isolate the operative mechanism(s) from the most extensive case study, as well as suggesting a possible strategy for detecting and possibly mitigating some of the adverse effects of production/injection induced reservoir stress changes--reservoir compaction and surface subsidence as well as fracture reorientation.

  20. Test plan: Hydraulic fracturing and hydrologic tests in Marker Beds 139 and 140

    SciTech Connect

    Wawersik, W.R.; Beauheim, R.L.

    1991-03-01

    Combined hydraulic fracturing and hydrological measurements in this test plan are designed to evaluate the potential influence of fracture formation in anhydrite Marker Beds 139 and 140 on gas pressure in and gas flow from the disposal rooms in the Waste Isolation Pilot Plant with time. The tests have the further purpose of providing comparisons of permeabilities of anhydrite interbeds in an undisturbed (virgin) state and after fracture development and/or opening and dilation of preexisting partially healed fractures. Three sets of combined hydraulic fracturing and hydrological measurements are planned. A set of trial measurements is expected to last four to six weeks. The duration of each subsequent experiment is anticipated to be six to eight weeks.

  1. Single-well interference slug tests to assess the vertical hydraulic conductivity of unconsolidated aquifers

    NASA Astrophysics Data System (ADS)

    Paradis, Daniel; Lefebvre, René

    2013-01-01

    SummaryMeaningful understanding of flow and solute transport in general requires the knowledge of hydraulic conductivity and its anisotropy. Various field methods allow the measurement of the horizontal component (Kh), but vertical hydraulic conductivity (Kv) is rarely measured, for lack of practical field tests. This paper proposes vertical interference slug tests, an adaptation of inter-well interference slug tests to a single well, for the efficient field measurement of Kv. The test is carried out in a single well between a stress and an observation interval that are vertically isolated with a three-packer assembly. An instantaneous pressure pulse is induced in the stress interval and resulting drawdowns are recorded in both the stress and the observation intervals. In a proof-of-concept field study, 12 vertical interference tests were carried out sequentially along a fully-screened well across a moderately heterogeneous and highly anisotropic aquifer made up of littoral silts and sands. A direct-push method was used to install the well, which was completed without sand-pack to allow the natural collapse of sediments in the thin annular space around the screen. Direct-push wells allow the measurement of in situ hydraulic properties of sediments and minimize well construction interferences with hydraulic tests. Drawdowns measured in stress and observation intervals of multiple tests were simultaneously inverted numerically to reconstruct heterogeneous profiles of Kh, hydraulic conductivity anisotropy (Kv/Kh), and specific storage (Ss). Results were validated by comparison of observed versus predicted drawdowns and with field and laboratory measurements of Kh and Kv made along the tested well. Results indicate that the profile of Kv values obtained with vertical interference slug tests follows a similar pattern with depth than the profile with lab measurements made with a permeameter on soil samples collected in the same intervals as the interference tests, which demonstrates that vertical interference slug tests could provide an efficient method for the field measurement of well-scale Kv values.

  2. Characterization of hydraulic fractures and reservoir properties of shale using natural tracers

    NASA Astrophysics Data System (ADS)

    Heath, J. E.; Gardner, P.; Kuhlman, K. L.; Malama, B.

    2013-12-01

    Hydraulic fracturing plays a major role in the economic production of hydrocarbon from shale. Current fracture characterization techniques are limited in diagnosing the transport properties of the fractures on the near wellbore scale to that of the entire stimulated reservoir volume. Microseismic reveals information on fracture geometries, but not transport properties. Production analysis (e.g., rate transient analysis using produced fluids) estimates fracture and reservoir flow characteristics, but often relies on simplified models in terms of fracture geometries and fluid storage and transport. We present the approach and potential benefits of incorporating natural tracers with production data analysis for fracture and reservoir characterization. Hydraulic fracturing releases omnipresent natural tracers that accumulate in low permeability rocks over geologic time (e.g., radiogenic 4He and 40Ar). Key reservoir characteristics govern the tracer release, which include: the number, connectivity, and geometry of fractures; the distribution of fracture-surface-area to matrix-block-volume; and the nature of hydrocarbon phases within the reservoir (e.g., methane dissolved in groundwater or present as a separate gas phase). We explore natural tracer systematics using numerical techniques under relevant shale-reservoir conditions. We evaluate the impact on natural tracer transport due to a variety of conceptual models of reservoir-transport properties and boundary conditions. Favorable attributes for analysis of natural tracers include the following: tracer concentrations start with a well-defined initial condition (i.e., equilibrium between matrix and any natural fractures); there is a large suite of tracers that cover a range of at least 7x in diffusion coefficients; and diffusive mass-transfer out of the matrix into hydraulic fractures will cause elemental and isotopic fractionation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Fracture prediction in hydraulic bulging of AISI 304 austenitic steel sheets based on a modified ductile fracture criterion

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Song, H. W.; Zhang, S. H.; Cheng, M.

    2011-08-01

    The demand for weight reduction in modern vehicle construction has resulted in an increase in the application of hydroforming processes for the manufacture of automotive lightweight components. This trend led to the research of evaluation on formability of the sheet or tube hydroforming to be noted, particularly the prediction of fracture. In this study, a new proposed approach based on damage theory for fracture prediction considering the deformation history was introduced. And the modified ductile fracture criterion was applied to predict the failure for hydraulic bulging of AISI 304 austenitic steel sheets. The material parameters in terms of the function of strain rate in the failure criterion were determined from the equivalent fracture strains corresponding tensile tests under different stress conditions. Then, in the finite element simulation the effect of strain rates and their distribution as well during practical sheet metal forming process was considered. The hydraulic bulging tests were carried out to identify the fracture behavior predicted from FE analysis. A comparison between the prediction and experimental results showed that the proposed approach with a modified ductile fracture criteria can give better fracture predictions than traditional ways.

  4. A Lagrangian Approach to Modelling Proppant Transport with Tip Screen-Out in KGD Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Dontsov, E. V.; Peirce, A. P.

    2015-11-01

    This study introduces a continuum approach to model proppant transport in hydraulic fractures in a Lagrangian frame of reference. The model for the proppant transport is based on the recently obtained slurry flow solution inside a channel, where the latter utilizes a phenomenological constitutive relationship for a slurry. This approach allows us to describe the transition from Poiseuille flow with an effective viscosity to Darcy flow as the particle concentration increases towards the maximum value. The algorithm is presented for the one-dimensional case, for which propagation of a symmetric Kristinovich-Zheltov-Geertsma-De Klerk fracture is considered. To examine the effectiveness of the Lagrangian approach for proppant transport modelling, a set of parameters, for which proppant particles reach the fracture tip and cause the development of a proppant plug is selected. In this situation, the coupling between the hydraulic fracture propagation and proppant transport is the most significant. To estimate the accuracy of the Lagrangian proppant transport model, the results are compared to the predictions of an Eulerian proppant transport model, which utilizes the same algorithm for hydraulic fracture propagation. It is shown that, although both approaches have the same convergence rate, the error of the Lagrangian approach is three to five times smaller, which depends on the number of proppant elements used in the Lagrangian approach. This permits us to use a coarser mesh for hydraulic fracture propagation, and to obtain results with similar accuracy up to a hundred times faster.

  5. Pressure-dependent Production Efficiency of an Enhanced Geothermal System (EGS): Stimulation Results and Implications for Hydraulic Fracture Treatments

    NASA Astrophysics Data System (ADS)

    Zimmermann, Günter; Tischner, Torsten; Legarth, Björn; Huenges, Ernst

    2009-07-01

    A series of stimulation experiments were carried out at the geothermal research well in Groß Schönebeck (EGrSk 3/90) located in the northeastern part of Germany. The intended purpose of these experiments was to develop concepts for a productivity increase of the geothermal well to create an Enhanced Geothermal System (EGS). Two different kinds of stimulation types were performed. Hydraulic gel-proppant stimulations were conducted in sandstone sections with high initial permeability. Then a different fracturing concept was applied injecting high amounts of water. This waterfrac stimulation was realized in the entire open section including sandstones and volcanic rocks. Evidence of the creation and properties of a very long vertical fracture was retrieved from pressure response analyses demonstrating a bilinear flow regime. The production efficiency of the produced artificial fractures shows a strong dependence on reservoir pressure. At increased reservoir pressure the artificial fractures of all stimulated intervals are highly conductive and subsequently become less conductive during pressure decline. Hence the range of a suitable reservoir pressure is constrained by this fracture efficiency and limits the usage of this well as an injection well for geothermal power production.

  6. Pore-fluid effects on seismic waves in vertically fractured earth with orthotropic symmetry

    SciTech Connect

    Berryman, J.G.

    2010-05-15

    For elastically noninteracting vertical-fracture sets at arbitrary orientation angles to each other, a detailed model is presented in which the resulting anisotropic fractured medium generally has orthorhombic symmetry overall. Some of the analysis methods and ideas of Schoenberg are emphasized, together with their connections to other similarly motivated and conceptually related methods by Sayers and Kachanov, among others. Examples show how parallel vertical-fracture sets having HTI (horizontal transversely isotropic) symmetry transform into orthotropic fractured media if some subsets of the vertical fractures are misaligned with the others, and then the fractured system can have VTI (vertical transversely isotropic) symmetry if all of the fractures are aligned randomly or half parallel and half perpendicular to a given vertical plane. An orthotropic example having vertical fractures in an otherwise VTI earth system (studied previously by Schoenberg and Helbig) is compared with the other examples treated and it is finally shown how fluids in the fractures affect the orthotropic poroelastic system response to seismic waves. The key result is that fracture-influence parameters are multiplied by a factor of (1-B), where 0 {le} B < 1 is Skempton's second coefficient for poroelastic media. Skempton's B coefficient is itself a measurable characteristic of fluid-saturated porous rocks, depending on porosity, solid moduli, and the pore-fluid bulk modulus. For heterogeneous porous media, connections between the present work and earlier related results of Brown and Korringa are also established.

  7. Hydraulic anisotropy characterization of pneumatic-fractured sediments using azimuthal self potential gradient

    USGS Publications Warehouse

    Wishart, D.N.; Slater, L.D.; Schnell, D.L.; Herman, G.C.

    2009-01-01

    The pneumatic fracturing technique is used to enhance the permeability and porosity of tight unconsolidated soils (e.g. clays), thereby improving the effectiveness of remediation treatments. Azimuthal self potential gradient (ASPG) surveys were performed on a compacted, unconsolidated clay block in order to evaluate their potential to delineate contaminant migration pathways in a mechanically-induced fracture network. Azimuthal resistivity (ARS) measurements were also made for comparative purposes. Following similar procedures to those used in the field, compressed kaolinite sediments were pneumatically fractured and the resulting fracture geometry characterized from strike analysis of visible fractures combined with strike data from optical borehole televiewer (BHTV) imaging. We subsequently injected a simulated treatment (electrolyte/dye) into the fractures. Both ASPG and ARS data exhibit anisotropic geoelectric signatures resulting from the fracturing. Self potentials observed during injection of electrolyte are consistent with electrokinetic theory and previous laboratory results on a fracture block model. Visual (polar plot) analysis and linear regression of cross plots show ASPG lobes are correlated with azimuths of high fracture strike density, evidence that the ASPG anisotropy is a proxy measure of hydraulic anisotropy created by the pneumatic fracturing. However, ARS data are uncorrelated with fracture strike maxima and resistivity anisotropy is probably dominated by enhanced surface conduction along azimuths of weak 'starter paths' formed from pulverization of the clay and increases in interfacial surface area. We find the magnitude of electrokinetic SP scales with the applied N2 gas pressure gradient (??PN2) for any particular hydraulically-active fracture set and that the positive lobe of the ASPG anomaly indicates the flow direction within the fracture network. These findings demonstrate the use of ASPG in characterizing the effectiveness of (1) pneumatic fracturing and (2) defining likely flow directions of remedial treatments in unconsolidated sediments and rock. ?? 2008 Elsevier B.V. All rights reserved.

  8. An Adaptive Finite Element Scheme for Hydraulic Fracturing with Proppant Transport

    NASA Astrophysics Data System (ADS)

    Ouyang, S.; Carey, G. F.; Yew, C. H.

    1997-04-01

    A mathematical model and adaptive finite element scheme are developed for describing the distribution of proppant in a propagating hydraulic fracture. The governing equation for proppant concentration is derived by applying the conservation law of mass to the proppant and to the proppant-laden fluid. Shah's empirical equation, which relates the proppant concentration and the indices of the non-Newtonian fluid, is used to describe the proppant-laden fluid. The proppant distribution inside a hydraulic fracture can then be obtained by solving the proppant concentration equation together with the governing equations of fluid and elasticity for a hydraulic fracturing. A novel moving grid scheme is developed that combines grid point insertion with redistribution. Four examples corresponding to different in situ stress distributions are computed to demonstrate the scheme.

  9. Mapping acoustic emissions from hydraulic fracture treatments using coherent array processing: Concept

    SciTech Connect

    Harris, D.B.; Sherwood, R.J.; Jarpe, S.P.; Harben, P.E.

    1991-09-01

    Hydraulic fracturing is a widely-used well completion technique for enhancing the recovery of gas and oil in low-permeability formations. Hydraulic fracturing consists of pumping fluids into a well under high pressure (1000--5000 psi) to wedge-open and extend a fracture into the producing formation. The fracture acts as a conduit for gas and oil to flow back to the well, significantly increasing communication with larger volumes of the producing formation. A considerable amount of research has been conducted on the use of acoustic (microseismic) emission to delineate fracture growth. The use of transient signals to map the location of discrete sites of emission along fractures has been the focus of most research on methods for delineating fractures. These methods depend upon timing the arrival of compressional (P) or shear (S) waves from discrete fracturing events at one or more clamped geophones in the treatment well or in adjacent monitoring wells. Using a propagation model, the arrival times are used to estimate the distance from each sensor to the fracturing event. Coherent processing methods appear to have sufficient resolution in the 75 to 200 Hz band to delineate the extent of fractures induced by hydraulic fracturing. The medium velocity structure must be known with a 10% accuracy or better and no major discontinuities should be undetected. For best results, the receiving array must be positioned directly opposite the perforations (same depths) at a horizontal range of 200 to 400 feet from the region to be imaged. Sources of acoustic emission may be detectable down to a single-sensor SNR of 0.25 or somewhat less. These conclusions are limited by the assumptions of this study: good coupling to the formation, acoustic propagation, and accurate knowledge of the velocity structure.

  10. Particle-based simulation of hydraulic fracture and fluid/heat flow in geothermal reservoirs

    NASA Astrophysics Data System (ADS)

    Mora, Peter; Wang, Yucang; Alonso-Marroquin, Fernando

    2013-06-01

    Realizing the potential of geothermal energy as a cheap, green, sustainable resource to provide for the planet's future energy demands that a key geophysical problem be solved first: how to develop and maintain a network of multiple fluid flow pathways for the time required to deplete the heat within a given region. We present the key components for micro-scale particle-based numerical modeling of hydraulic fracture, and fluid and heat flow in geothermal reservoirs. They are based on the latest developments of ESyS-Particle - the coupling of the Lattice Solid Model (LSM) to simulate the nonlinear dynamics of complex solids with the Lattice Boltzmann Method (LBM) applied to the nonlinear dynamics of coupled fluid and heat flow in the complex solid-fluid system. The coupled LSM/LBM can be used to simulate development of fracture systems in discontinuous media, elastic stress release, fluid injection and the consequent slip at joint surfaces, and hydraulic fracturing; heat exchange between hot rocks and water within flow pathways created through hydraulic fracturing; and fluid flow through complex, narrow, compact and gouge-or powder-filled fracture and joint systems. We demonstrate the coupled LSM/LBM to simulate the fundamental processes listed above, which are all components for the generation and sustainability of the hot-fractured rock geothermal energy fracture systems required to exploit this new green-energy resource.

  11. Modeling the Interaction Between Hydraulic and Natural Fractures Using Dual-Lattice Discrete Element Method

    SciTech Connect

    Zhou, Jing; Huang, Hai; Deo, Milind

    2015-10-01

    The interaction between hydraulic fractures (HF) and natural fractures (NF) will lead to complex fracture networks due to the branching and merging of natural and hydraulic fractures in unconventional reservoirs. In this paper, a newly developed hydraulic fracturing simulator based on discrete element method is used to predict the generation of complex fracture network in the presence of pre-existing natural fractures. By coupling geomechanics and reservoir flow within a dual lattice system, this simulator can effectively capture the poro-elastic effects and fluid leakoff into the formation. When HFs are intercepting single or multiple NFs, complex mechanisms such as direct crossing, arresting, dilating and branching can be simulated. Based on the model, the effects of injected fluid rate and viscosity, the orientation and permeability of NFs and stress anisotropy on the HF-NF interaction process are investigated. Combined impacts from multiple parameters are also examined in the paper. The numerical results show that large values of stress anisotropy, intercepting angle, injection rate and viscosity will impede the opening of NFs.

  12. Coordinated studies in support of hydraulic fracturing of coalbed methane. Annual report, June 1990-October 1991

    SciTech Connect

    Penny, G.S.; Conway, M.W.

    1992-04-01

    The production of natural gas coal typically requires stimulation in the form of hydraulic fracturing. The results of hydraulic fracturing treatments have ranged from highly successful to less than satisfactory. The approach in the work has been to experimentally evaluate parameters that pertain to coal fluid interactions during hydraulic fracturing and post-frac production and then apply the findings to the selection of fracturing fluids and treatment design. Evaluated parameters include leakoff through cleats, pressure drops through cleated slots with slurries, proppant transport, conductivity, and coal matrix damage due to fracturing fluids. Some conclusions from the work include (1) 100 mesh sand alone can control leakoff through cleats; (2) coal faces alone do not increase pressure drop through fractures with slurries; (3) restrictions approaching 2 proppant diameters are required to see pressure increases; (4) borate fluid pH's of 9.5 are required for transport; (5) mixed proppant conductivities of 100 mesh and 16/30 can be 50% lower than the larger proppant; (6) guar based fracturing fluids can cause up to 90% permeability damage to the coal matrix; (7) HEC containing foams provide the best cleanup in the laboratory (only 10 to 30% damage and have shown excellent results in field trials); and (8) expanded use of COMPAS is recommended to document field results.

  13. Onset of Hydraulic Fracture Initiation Monitored by Acoustic Emission and Volumetric Deformation Measurements

    NASA Astrophysics Data System (ADS)

    Stanchits, Sergey; Surdi, Aniket; Gathogo, Patrick; Edelman, Eric; Suarez-Rivera, Roberto

    2014-09-01

    In this paper, the results of laboratory studies of fracture initiation, early propagation and breakdown are reported. Three experiments were conducted on a low permeability sandstone block, loaded in a polyaxial test frame, to representative effective in situ stress conditions. The blocks were instrumented with acoustic emission (AE) and volumetric deformation sensors. In two experiments, fluids of different viscosity were injected into the wellbore, fluid injection was interrupted soon after the breakdown pressure had been reached. This allowed us to investigate hydraulic fracture initiation. In the third test, fracture initiation criteria were applied to stop hydraulic fracture propagation significantly earlier, prior to breakdown, and as it propagated a short distance from the wellbore. The analysis of AE results shows an increase in AE activity and a change in the AE spatial correlation, during the fracture initiation. This early stage of fracturing correlates strongly with the onset of rock volumetric deformation, and is confirmed by the analysis of ultrasonic transmission monitoring. The rock microstructure, after the test, was investigated by analysis of scanning electron microscope images. These indicated the development of leak-off zone near the wellbore and a dry hydraulic fracture at the farther distance from the wellbore.

  14. HYDRAULIC CHARACTERIZATION FOR STEAM ENHANCED REMEDIATION CONDUCTED IN FRACTURED ROCK

    EPA Science Inventory

    Remediation of fractured rock sites contaminated by non-aqueous phase liquids has long been recognized as the most difficult undertaking of any site clean-up. This is primarily the result of the complexity of the fracture framework, which governs the groundwater flow pathways and...

  15. Using flowmeter pulse tests to define hydraulic connections in the subsurface: A fractured shale example

    USGS Publications Warehouse

    Williams, J.H.; Paillet, F.L.

    2002-01-01

    Cross-borehole flowmeter pulse tests define subsurface connections between discrete fractures using short stress periods to monitor the propagation of the pulse through the flow system. This technique is an improvement over other cross-borehole techniques because measurements can be made in open boreholes without packers or previous identification of water-producing intervals. The method is based on the concept of monitoring the propagation of pulses rather than steady flow through the fracture network. In this method, a hydraulic stress is applied to a borehole connected to a single, permeable fracture, and the distribution of flow induced by that stress monitored in adjacent boreholes. The transient flow responses are compared to type curves computed for several different types of fracture connections. The shape of the transient flow response indicates the type of fracture connection, and the fit of the data to the type curve yields an estimate of its transmissivity and storage coefficient. The flowmeter pulse test technique was applied in fractured shale at a volatile-organic contaminant plume in Watervliet, New York. Flowmeter and other geophysical logs were used to identify permeable fractures in eight boreholes in and near the contaminant plume using single-borehole flow measurements. Flowmeter cross-hole pulse tests were used to identify connections between fractures detected in the boreholes. The results indicated a permeable fracture network connecting many of the individual boreholes, and demonstrated the presence of an ambient upward hydraulic-head gradient throughout the site.

  16. An Innovative Approach for Management of Vertical Coronal Fracture in Molar: Case Report

    PubMed Central

    Kathuria, Ambica; Kavitha, M.; Ravishankar, P.

    2012-01-01

    Unlike anterior teeth, acute exogenous trauma is an infrequent cause of posterior coronal vertical tooth fractures. Endodontic and restorative management of such fractures is a great challenge for the clinician. Newer advancements in adhesive techniques can provide successful intracoronal splinting of such teeth to reinforce the remaining tooth structure. This paper describes the diagnosis and management of a case of complicated vertical coronal fracture in mandibular first molar induced by a traffic accident. PMID:22567453

  17. Discussion of comparison study of hydraulic fracturing models -- Test case: GRI Staged Field Experiment No. 3

    SciTech Connect

    Cleary, M.P.

    1994-02-01

    This paper provides comments to a companion journal paper on predictive modeling of hydraulic fracturing patterns (N.R. Warpinski et. al., 1994). The former paper was designed to compare various modeling methods to demonstrate the most accurate methods under various geologic constraints. The comments of this paper are centered around potential deficiencies in the former authors paper which include: limited actual comparisons offered between models, the issues of matching predictive data with that from related field operations was lacking or undocumented, and the relevance/impact of accurate modeling on the overall hydraulic fracturing cost and production.

  18. The importance of in-situ-stress profiles in hydraulic-fracturing applications

    SciTech Connect

    Hopkins, C.W.

    1997-09-01

    In-situ stresses define the local forces acting on lithologic layers in the subsurface. Knowledge of these stresses is important in drilling, wellbore-stability, and, especially, hydraulic-fracturing applications. The measurement of in-situ stress is not straightforward and, therefore, often goes unmeasured. As such, one often assumes values of in-situ stress or estimate in-situ stresses from logging parameters. This article illustrates the importance of in-situ-stress estimates as they relate to hydraulic fracturing and outlines several techniques for estimating in-situ-stress magnitudes.

  19. A method to evaluate hydraulic fracture using proppant detection.

    PubMed

    Liu, Juntao; Zhang, Feng; Gardner, Robin P; Hou, Guojing; Zhang, Quanying; Li, Hu

    2015-11-01

    Accurate determination of the proppant placement and propped fracture height are important for evaluating and optimizing stimulation strategies. A technology using non-radioactive proppant and a pulsed neutron gamma energy spectra logging tool to determine the placement and height of propped fractures is proposed. Gd2O3 was incorporated into ceramic proppant and a Monte Carlo method was utilized to build the logging tools and formation models. Characteristic responses of the recorded information of different logging tools to fracture widths, proppant concentrations and influencing factors were studied. The results show that Gd capture gamma rays can be used to evaluate propped fractures and it has higher sensitivity to the change of fracture width and traceable proppant content compared with the exiting non-radioactive proppant evaluation techniques and only an after-fracture measurement is needed for the new method; The changes in gas saturation and borehole size have a great impact on determining propped fractures when compensated neutron and pulsed neutron capture tool are used. A field example is presented to validate the application of the new technique. PMID:26296059

  20. Rock deformation models and fluid leak-off in hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Yarushina, Viktoriya M.; Bercovici, David; Oristaglio, Michael L.

    2013-09-01

    Fluid loss into reservoir rocks during hydraulic fracturing is modelled via a poro-elastoplastic pressure diffusion equation in which the total compressibility is a sum of fluid, rock and pore space compressibilities. Inclusion of pore compressibility and porosity-dependent permeability in the model leads to a strong pressure dependence of leak-off (i.e. drainage rate). Dilation of the matrix due to fluid invasion causes higher rates of fluid leak-off. The present model is appropriate for naturally fractured and tight gas reservoirs as well as for soft and poorly consolidated formations whose mechanical behaviour departs from simple elastic laws. Enhancement of the leak-off coefficient by dilation, predicted by the new model, may help explain the low percentage recovery of fracturing fluid (usually between 5 and 50 per cent) in shale gas stimulation by hydraulic fracturing.

  1. Dynamic fluid loss in hydraulic fracturing under realistic shear conditions in high-permeability rocks

    SciTech Connect

    Navarrete, R.C.; Cawiezel, K.E.; Constien, V.G.

    1996-08-01

    A study of the dynamic fluid loss of hydraulic fracturing fluids under realistic shear conditions is presented. During a hydraulic fracturing treatment, a polymeric solution is pumped under pressure down the well to create and propagate a fracture. Part of the fluid leaks into the rock formation, leaving a skin layer of polymer or polymer filter cake, at the rock surface or in the pore space. This study focuses on the effects of shear rate and permeability on dynamic fluid-loss behavior of crosslinked and linear fracturing gels. Previous studies of dynamic fluid loss have mainly been with low-permeability cores and constant shear rates. Here, the effect of shear history and fluid-loss additive on the dynamic leakoff of high-permeability cores is examined.

  2. Assessing and improving steam-assisted gravity drainage: Reservoir heterogeneities, hydraulic fractures, and mobility control foams

    NASA Astrophysics Data System (ADS)

    Chen, Qing

    Steam-assisted gravity drainage (SAGD) is a promising approach for recovering heavy and viscous oil resources. In SAGD, two closely-spaced horizontal wells, one above the other, form a steam-injector and producer pair. The reservoir oil is heated by the injected steam and drains to the producer under the effect of gravity. The success of steam-assisted gravity drainage has been demonstrated by both field and laboratory studies mostly based on homogeneous reservoirs and reservoir models. A comprehensive understanding of the effects of reservoir heterogeneities on SAGD performance, however, is required for wider and more successful implementation. This dissertation presents an investigation of the effects of reservoir heterogeneities on SAGD. In addition, two potential methods, hydraulic fracturing and mobility control using foamed steam, are proposed and reported here to enhance SAGD performance, especially for heterogeneous reservoirs. Reservoir simulations of SAGD are conducted with a number of realizations of Athabasca-type oilsand reservoirs that contain randomly-distributed shales geostatistically generated with a stochastic model. We interpret the complex effects of reservoir heterogeneities by identifying two flow regions, the near well region (NWR) and the above well region (AWR). Our simulations indicate that the drainage flow of hot fluids within the NWR, characterized by short flow length, is very sensitive to the presence of shale, whereas the expansion of the steam chamber in the AWR, characterized by long flow length, is affected adversely only when the AWR contains long, continuous shale or a high fraction of shale. Vertical hydraulic fractures are found to improve steam chamber development considerably for reservoirs with poor vertical communication. For the synthetic reservoir under study, an increase in the oil production rate by a factor of two and considerable improvement of energy efficiency with the cumulative oil-steam ratio lifted from 0.2 to 0.3 bbl oil/bbl CWE steam are achieved by adding a vertical fracture. The new concept of foam-assisted SAGD (FA-SAGD) is evaluated numerically with a foam simulator that incorporates the physical mechanisms of foam generation, destruction, and transport. To reduce computational costs, we develop a simplified foam model based on the assumption of local equilibrium of foam generation and coalescence at field scale. Foam displacements in a linear sandstone core are measured using pressure transducers, X-ray Computed Tomography (CT), and a visualization cell to quantify foam bubble texture. The local equilibrium approximation is validated, and good agreement between the experimental results and the predictions of the simplified model is found, with a minor mismatch in the entrance region. For the scenario under study, numerical simulation of the FA-SAGD process shows considerable improvement in the process efficiency over the conventional SAGD process. Live steam production is reduced by a factor of 5 for FA-SAGD compared to conventional SAGD. Consequently, cumulative oil production is increased by about 30% when production versus the volume of steam injected is compared for cases with and without foam.

  3. Optimizing Hydraulic Fracture Spacing and Frac Timing in Unconventionals - Taking Advantage of Time-Dependent Pressure Diffusion

    NASA Astrophysics Data System (ADS)

    Sheibani, F.

    2014-12-01

    Due to low natural gas prices, low production rates, and increased development costs, many operators have shifted operations from shale gas to liquid-rich shale plays. One means to make shale gas plays more attractive is to enhance well production through stimulation optimization. In numerous previous works, the authors have highlighted the geomechanical causes and important parameters for hydraulic fracture optimization in naturally fractured shale plays. The authors have, for example, emphasized the impact that stress shadows, from multiple hydraulic fractures, has on increasing the resistance of natural fractures and weakness planes to shear stimulation. The authors have also shown the critical role that in-situ pressure and pressure changes have on natural fracture shear stimulation.In this paper, we present the results of a discrete element model numerical study of both hydraulic fracture spacing and hydraulic fracture timing in a fully hydro-mechanical coupled fashion. The pressure changes in the natural fracture system of an unconventional play, due to hydraulic fracturing, often follow a diffusion-type process, which means the pressure changes are time dependent. As shown in previous works of the authors and others, the time-dependent changes in the in-situ pressure can have a marked impact on shear stimulation. The study performed quantitatively looked at the impact of hydraulic fracture spacing as a function of in-situ pressure change and time for key parameters such as the in-situ stress ratio, natural fracture characteristics, and natural fracture mechanical properties. The results of the study help improve the understanding of in-situ pressure and hydraulic fracture timing on stimulation optimization and enhanced hydrocarbon production. The study also provides a means to optimize hydraulic fracture spacing and increase shear stimulation for unconventional wells.

  4. Hydraulic-fracture growth in dipping anisotropic strata as viewed through the surface deformation field

    SciTech Connect

    Holzhausen, G.R.; Haase, C.S.; Stow, S.H.; Gazonas, G.

    1985-01-01

    In 1983 and 1984 Oak Rdige National Laboratory conducted a series of precision ground deformation measurements before, during, and after the generation of several large hydraulic fractures in a dipping member of the Cambrian Conasauga Shale. Each fracture was produced by the injection of approximately 500,000 L of slurry on a single day. Injection depth was 300 m. Leveling surveys were run several days before and several days after the injections. An array of eight high-precision borehole tiltmeters monitored ground deformations continuously for a period of several weeks. Analysis of the leveling and the tilt measurements revealed surface uplifts as great as 25 mm and tilts of tens of microradians during each injection. Furthermore, partial recovery (subsidence) of the ground took place during the days following an injection, accompanied by shifts in the position of maximum resultant uplift. Interpretation of the tilt measurements is consistent with stable widening and extension of hydraulic fractures with subhorizontal orientations. Comparison of the measured tilt patterns with fracture orientations established from logging of observation wells suggests that shearing parallel to the fracture planes accompanied fracture dilation. This interpretation is supported by measured tilts and ground uplifts that were as much as 100 percent greater than those expected from fracture dilation alone. Models of elastically anisotropic overburden rock do not explain the measured tilt patterns in the absence of shear stresses in the fracture planes. This work represents the first large-scale hydraulic-fracturing experiment in which the possible effects of material anisotropy and fracture-parallel shears have been measured and interpreted.

  5. IDENTIFYING HYDRAULICALLY CONDUCTIVE FRACTURES WITH A SLOW-VELOCITY BOREHOLE FLOWMETER.

    USGS Publications Warehouse

    Hess, Alfred E.

    1986-01-01

    The U. S. Geological Survey used a recently developed heat-pulse flowmeter to measure very slow borehole axial water velocities in granitic rock at a site near Lac du Bonnet, Manitoba, Canada. The flowmeter was used with other geophysical measurements to locate and identify hydraulically conducting fractures contributing to the very slow vertical water flow in the two boreholes selected for study. The heat-pulse flowmeter has a flow-measuring range in water of 0. 06-6m/min, and can resolve velocity differences as slow as 0. 01 m/min. This is an order of magnitude slower than the stall speed of spinner flowmeters. The flowmeter is 1. 16 m long and 44 mm in diameter. It was calibrated in columns of 76 and 152 mm diameter, to correspond to the boreholes studied. The heat-pulse flowmeter system is evaluated, and problems peculiar to the measurement of very slow axial water velocities in boreholes are discussed.

  6. Failure of a gas well to respond to a foam hydraulic fracturing treatment

    SciTech Connect

    Rauscher, B.D.

    1996-12-31

    Well No. 1 (not the real name of the well) is not producing gas at maximum capacity following a foam hydraulic fracturing treatment performed upon completion of the well in 1987. The failure of the stimulation treatment, which has affected other wells throughout the field, was due to a combination of three factors: (1) downward fracture growth and proppant settling during injection (2) embedment due to a high pressure drawdown in the wellbore during flowback procedures, and (3) poor cleanup of the fracture fluid due to high capillary pressures. The following are recommendations to help improve future fracturing treatments throughout the field: (1) Fracture at lower treating pressures; (2) Improve perforating techniques; (3) Change flowback procedures; and (4) Evaluate using N{sub 2} as a fracture fluid.

  7. Hydraulic fracture stimulation treatment of Well Baca 23. Geothermal Reservoir Well-Stimulation Program

    SciTech Connect

    Not Available

    1981-06-01

    Well Stimulation Experiment No. 5 of the Geothermal Reservoir Well Stimulation Program (GRWSP) was performed on March 22, 1981 in Baca 23, located in Union's Redondo Creek Project Area in Sandoval County, New Mexico. The treatment selected was a large hydraulic fracture job designed specifically for, and utilizing frac materials chosen for, the high temperature geothermal environment. The well selection, fracture treatment, experiment evaluation, and summary of the job costs are presented herein.

  8. Final Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources (02-24-2012)

    EPA Science Inventory

    The overall purpose of this study is to elucidate the relationship, if any, between hydraulic fracturing and drinking water resources. More specifically, the study has been designed to assess the potential impacts of hydraulic fracturing on drinking water resources and to identif...

  9. Theoretical relation between water flow rate in a vertical fracture and rock temperature in the surrounding massif

    NASA Astrophysics Data System (ADS)

    Marchal, Jean-Christophe; Perrochet, Pierre

    2001-12-01

    A steady-state analytical solution is given describing the temperature distribution in a homogeneous massif perturbed by cold water flow through a discrete vertical fracture. A relation is derived to express the flow rate in the fracture as a function of the temperature measured in the surrounding rock. These mathematical results can be useful for tunnel drilling as it approaches a vertical cold water bearing structure that induces a thermal anomaly in the surrounding massif. During the tunnel drilling, by monitoring this anomaly along the tunnel axis one can quantify the flow rate in the discontinuity ahead before intersecting the fracture. The cases of the Simplon, Mont Blanc and Gotthard tunnels (Alps) are handled with this approach which shows very good agreement between observed temperatures and the theoretical trend. The flow rates before drilling of the tunnel predicted with the theoretical solution are similar in the Mont Blanc and Simplon cases, as well as the flow rates observed during the drilling. However, the absence of information on hydraulic gradients (before and during drilling) and on fracture specific storage prevents direct predictions of discharge rates in the tunnel.

  10. The evolution of hydraulic fracturing in the Almond formation

    SciTech Connect

    Cramer, D.D.

    1995-12-31

    This study draws from a database of over 600 wells to evaluate reservoir, production and treatment characteristics in the low-permeability, naturally-fractured Almond formation. Treatment-induced damage can be significant; damage mechanisms are discussed and ways are shown to mitigate these problems. An effective fracture stimulation design combines proppant scheduling of the late 1970`s with fluid and gel-breaker systems of today.

  11. Proppant-pack and formation impairment during gas-well hydraulic fracturing

    SciTech Connect

    Roodhart, L.P. ); Kupler, T.O.H.; Davies, D.R.

    1988-11-01

    Equipment has been constructed to give a realistic laboratory simulation of the in-situ conditions during and after a hydraulic fracturing treatment of tight gas reservoirs (TIGRE). The equipment measures the permeability of both the ''natural'' core material and the proppant pack with gas under in-situ conditions before and after exposure to fracturing fluid. The rate of cleanup of the proppant pack and the core sample is measured after the fracturing fluid has broken. Various fracturing fluids commercially available from the major service companies have been evaluated. Little damage to the proppant/rock interface has been measured, but massive damage to the proppant pack was observed. The damage is caused by fracturing-fluid residue, filter cake, and non-Darcy flow effects. This damage is observed only in the experiments described above and has not been reported in other less sophisticated laboratory simulations of the fracturing process. The least damaging of the commercially available products tested has been identified. Procedures have been developed for placing ''overdesigned'' (or increased-conductivity) proppant packs during field hydraulic fracturing treatments. This has resulted in large increases in well productivity during field treatment, which is particularly noticeable during the early (transient) production phase. It is concluded that there is scope for the development of less damaging fracturing fluids to optimize economics.

  12. Elucidating hydraulic fracturing impacts on groundwater quality using a regional geospatial statistical modeling approach.

    PubMed

    Burton, Taylour G; Rifai, Hanadi S; Hildenbrand, Zacariah L; Carlton, Doug D; Fontenot, Brian E; Schug, Kevin A

    2016-03-01

    Hydraulic fracturing operations have been viewed as the cause of certain environmental issues including groundwater contamination. The potential for hydraulic fracturing to induce contaminant pathways in groundwater is not well understood since gas wells are completed while isolating the water table and the gas-bearing reservoirs lay thousands of feet below the water table. Recent studies have attributed ground water contamination to poor well construction and leaks in the wellbore annulus due to ruptured wellbore casings. In this paper, a geospatial model of the Barnett Shale region was created using ArcGIS. The model was used for spatial analysis of groundwater quality data in order to determine if regional variations in groundwater quality, as indicated by various groundwater constituent concentrations, may be associated with the presence of hydraulically fractured gas wells in the region. The Barnett Shale reservoir pressure, completions data, and fracture treatment data were evaluated as predictors of groundwater quality change. Results indicated that elevated concentrations of certain groundwater constituents are likely related to natural gas production in the study area and that beryllium, in this formation, could be used as an indicator variable for evaluating fracturing impacts on regional groundwater quality. Results also indicated that gas well density and formation pressures correlate to change in regional water quality whereas proximity to gas wells, by itself, does not. The results also provided indirect evidence supporting the possibility that micro annular fissures serve as a pathway transporting fluids and chemicals from the fractured wellbore to the overlying groundwater aquifers. PMID:26745299

  13. Effect of rock rheology on fluid leak- off during hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Yarushina, V. M.; Bercovici, D.; Oristaglio, M. L.

    2012-04-01

    In this communication, we evaluate the effect of rock rheology on fluid leak­off during hydraulic fracturing of reservoirs. Fluid leak-off in hydraulic fracturing is often nonlinear. The simple linear model developed by Carter (1957) for flow of fracturing fluid into a reservoir has three different regions in the fractured zone: a filter cake on the fracture face, formed by solid additives from the fracturing fluid; a filtrate zone affected by invasion of the fracturing fluid; and a reservoir zone with the original formation fluid. The width of each zone, as well as its permeability and pressure drop, is assumed to remain constant. Physical intuition suggests some straightforward corrections to this classical theory to take into account the pressure dependence of permeability, the compressibility or non-Newtonian rheology of fracturing fluid, and the radial (versus linear) geometry of fluid leak­off from the borehole. All of these refinements, however, still assume that the reservoir rock adjacent to the fracture face is non­deformable. Although the effect of poroelastic stress changes on leak-off is usually thought to be negligible, at the very high fluid pressures used in hydraulic fracturing, where the stresses exceed the rock strength, elastic rheology may not be the best choice. For example, calculations show that perfectly elastic rock formations do not undergo the degree of compaction typically seen in sedimentary basins. Therefore, pseudo-elastic or elastoplastic models are used to fit observed porosity profiles with depth. Starting from balance equations for mass and momentum for fluid and rock, we derive a hydraulic flow equation coupled with a porosity equation describing rock compaction. The result resembles a pressure diffusion equation with the total compressibility being a sum of fluid, rock and pore-space compressibilities. With linear elastic rheology, the bulk formation compressibility is dominated by fluid compressibility. But the possibility of permanent, time-independent (plastic) rock deformation significantly increases the pore space compressibility (compaction), which becomes a leading term in the total compressibility. Inclusion of rock and fluid compressibilities in the model can explain both linear and nonlinear leak­off. In particular, inclusion of rock compaction and decompaction may be important for description of naturally fractured and tight gas reservoirs for which very strong dependence of permeability on porosity has been reported. Carter R.D. Derivation of the general equation for estimating the extent of the fractured area. Appendix I of "Optimum fluid characteristics for fracture extension", Drilling and Production Practice, G.C. Howard and C.R.Fast, New York, New York, USA, American Petroleum Institute (1957), 261-269.

  14. Simulation of quasi-static hydraulic fracture propagation in porous media with XFEM

    NASA Astrophysics Data System (ADS)

    Juan-Lien Ramirez, Alina; Neuweiler, Insa; Löhnert, Stefan

    2015-04-01

    Hydraulic fracturing is the injection of a fracking fluid at high pressures into the underground. Its goal is to create and expand fracture networks to increase the rock permeability. It is a technique used, for example, for oil and gas recovery and for geothermal energy extraction, since higher rock permeability improves production. Many physical processes take place when it comes to fracking; rock deformation, fluid flow within the fractures, as well as into and through the porous rock. All these processes are strongly coupled, what makes its numerical simulation rather challenging. We present a 2D numerical model that simulates the hydraulic propagation of an embedded fracture quasi-statically in a poroelastic, fully saturated material. Fluid flow within the porous rock is described by Darcy's law and the flow within the fracture is approximated by a parallel plate model. Additionally, the effect of leak-off is taken into consideration. The solid component of the porous medium is assumed to be linear elastic and the propagation criteria are given by the energy release rate and the stress intensity factors [1]. The used numerical method for the spatial discretization is the eXtended Finite Element Method (XFEM) [2]. It is based on the standard Finite Element Method, but introduces additional degrees of freedom and enrichment functions to describe discontinuities locally in a system. Through them the geometry of the discontinuity (e.g. a fracture) becomes independent of the mesh allowing it to move freely through the domain without a mesh-adapting step. With this numerical model we are able to simulate hydraulic fracture propagation with different initial fracture geometries and material parameters. Results from these simulations will also be presented. References [1] D. Gross and T. Seelig. Fracture Mechanics with an Introduction to Micromechanics. Springer, 2nd edition, (2011) [2] T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Meth. Engng. 45, 601-620, (1999)

  15. What does hydraulic tomography tell us about fractured geological media? A field study and synthetic experiments

    NASA Astrophysics Data System (ADS)

    Zha, Yuanyuan; Yeh, Tian-Chyi J.; Illman, Walter A.; Tanaka, Tatsuya; Bruines, Patrick; Onoe, Hironori; Saegusa, Hiromitsu

    2015-12-01

    Between 2005 and 2010, Japan Atomic Energy Agency conducted four long-term, independent pumping tests in a fractured granite formation at the Mizunami Underground Research Laboratory (MIU) site in Mizunami city, central Japan. During these tests, drawdowns were monitored at different depths along several deep boreholes. These tests become one of the few, if not the only, hydraulic tomographic survey conducted in the world over thousands of meters in a fractured geologic medium with several fault zones. We analyzed the drawdown-time data set associated with each pumping test independently, and then the data sets from all pumping tests jointly to derive the spatial distributions of hydraulic conductivity (K) and specific storage (Ss) of the medium. These estimated distributions revealed some large-scale high K and low K zones. While the low K zones corroborated well with known low permeable layers and fault based on geological investigations, there were no clear geological features that can be related to the large-scale high K zones. In order to understand and substantiate these high and low K zones, we simulated a hydraulic tomographic survey in a synthetic fractured aquifer, which bears similar geologic features (i.e., formations, fractures, and faults) at the MIU site, with exception that the hydraulic properties, fracture and fault distributions were known exactly. Results of the simulation show that not only are the identified high K zones related to fracture networks connected with pumping and observation locations of each pumping test but also their values reflect the degree of connectivity of the network. Afterward, we investigated the extent of the improvement of characterization of the fault and fractures through the use of deploying dense monitoring intervals and late-time flux measurements.

  16. A New Physics-Based Modeling of Multiple Non-Planar Hydraulic Fractures Propagation

    SciTech Connect

    Zhou, Jing; Huang, Hai; Deo, Milind; Jiang, Shu

    2015-10-01

    Because of the low permeability in shale plays, closely spaced hydraulic fractures and multilateral horizontal wells are generally required to improve production. Therefore, understanding the potential fracture interaction and stress evolution is critical in optimizing fracture/well design and completion strategy in multi-stage horizontal wells. In this paper, a novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple non-planar fractures propagation. The numerical model from Discrete Element Method (DEM) is used to simulate the mechanics of fracture propagations and interactions, while a conjugate irregular lattice network is generated to represent fluid flow in both fractures and formation. The fluid flow in the formation is controlled by Darcy’s law, but within fractures it is simulated by using cubic law for laminar flow through parallel plates. Initiation, growth and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. We investigate the fracture propagation path in both homogeneous and heterogeneous reservoirs using the simulator developed. Stress shadow caused by the transverse fracture will change the orientation of principal stress in the fracture neighborhood, which may inhibit or alter the growth direction of nearby fracture clusters. However, the initial in-situ stress anisotropy often helps overcome this phenomenon. Under large in-situ stress anisotropy, the hydraulic fractures are more likely to propagate in a direction that is perpendicular to the minimum horizontal stress. Under small in-situ stress anisotropy, there is a greater chance for fractures from nearby clusters to merge with each other. Then, we examine the differences in fracture geometry caused by fracturing in cemented or uncemented wellbore. Moreover, the impact of intrinsic reservoir heterogeneity caused by the rock fabric and mineralogy on fracture nucleation and propagation paths is examined through a three-layered reservoir. Finally, we apply the method to a realistic heterogeneous dataset.

  17. Risks to Water Resources from Shale Gas Development and Hydraulic Fracturing in the United States

    NASA Astrophysics Data System (ADS)

    Vengosh, Avner; Jackson, Robert B.; Warner, Nathaniel; Darrah, Thomas H.; Kondash, Andrew

    2014-05-01

    The rise of shale gas development through horizontal drilling and high volume hydraulic fracturing has expanded oil and gas exploration in the USA. The rapid rate of shale gas exploration has triggered an intense public debate regarding the potential environmental and human health effects. A review of the updated literature has identified four potential risks for impacts on water resources: (1) stray gas contamination of shallow aquifers near shale gas sites; (2) contamination of surface water and shallow groundwater from spills, leaks, and disposal of inadequately treated wastewater or hydraulic fracturing fluids; (3) accumulation of toxic and radioactive residues in soil or stream sediments near disposal or spill sites; and (4) over-extraction of water resources for drilling and hydraulic fracturing that could induce water shortages and conflicts with other water users, particularly in water-scarce areas. As part of a long-term research on the potential water contamination associated with shale gas development, new geochemical and isotopic techniques have been developed for delineating the origin of gases and contaminants in water resource. In particular, multiple geochemical and isotopic (carbon isotopes in hydrocarbons, noble gas, strontium, boron, radium isotopes) tracers have been utilized to distinguish between naturally occurring dissolved gas and salts in water and contamination directly induced from shale gas drilling and hydraulic fracturing operations.

  18. Identification, characterization, and analysis of hydraulically conductive fractures in granitic basement rocks, Millville, Massachusetts

    USGS Publications Warehouse

    Paillet, F.L.; Ollila, P.W.

    1994-01-01

    A suite of geophysical logs designed to identify and characterize fractures and water production in fractures was run in six bedrock boreholes at a ground-water contamination site near the towns of Millville and Uxbridge in south-central Massachusetts. The geophysical logs used in this study included conventional gamma, single-point resistance, borehole fluid resistivity, caliper, spontaneous potential, and temperature; and the borehole televiewer and heat-pulse flowmeter, which are not usually used to log bedrock water-supply wells. Downward flow under ambient hydraulic-head conditions was measured in three of the boreholes at the site, and the profile of fluid column resistivity inferred from the logs indicated downward flow in all six boreholes. Steady injection tests at about 1.0 gallon per minute were used to identify fractures capable of conducting flow under test conditions. Sixteen of 157 fracturesidentified on the televiewer logs and interpreted as permeable fractures in the data analysis were determined to conduct flow under ambient hydraulic-head conditions or during injection. Hydraulic-head monitoring in the bedrock boreholes indicated a consistent head difference between the upper and lower parts of the boreholes. This naturally occurring hydraulic-head condition may account, in part, for the transport of contaminants from the overlying soil into the bedrock aquifer. The downward flow may also account for the decrease in contaminant concentrations found in some boreholes after routine use of the boreholes as water-supply wells was discontinued.

  19. Experimental validation of microseismic emissions from a controlled hydraulic fracture in a synthetic layered medium

    NASA Astrophysics Data System (ADS)

    Roundtree, Russell

    A controlled hydraulic fracture experiment was performed on two medium sized (11" x 11" x 15") synthetic layered blocks of low permeability, low porosity Lyons sandstone sandwiched between cement. The purpose of the research was to better understand and characterize the fracture evolution as the fracture tip impinged upon the layer boundaries between the well bonded layers. It is also one of the first documented uses of passive microseismic used in a laboratory environment to characterize hydraulic fracturing. A relatively low viscosity fluid of 1000 centipoise, compared to properly scaled previous work (Casas 2005, and Athavale 2007), was pumped at a constant rate of 10 mL/minute through a steel cased hole landed and isolated in the sandstone layer. Efforts were made to contain the hydraulic fracture within the confines of the rock specimen to retain the created hydraulic fracture geometry. Two identical samples and treatment schedules were created and differed only in the monitoring system used to characterize the microseismic activity during the fracture treatment. The first block had eight embedded P-wave transducers placed in the sandstone layer to record the passive microseismic emissions and localize the location and time of the acoustic event. The second block had six compressional wave transducers and twelve shear wave transducers embedded in the sandstone layer of the block. The intention was to record and process the seismic data using conventional P-wave to S-wave difference timing techniques well known in industry. While this goal ultimately not possible due to the geometry of the receiver placements and the limitations of the Vallene acquisition processing software, the data received and the events localized from the 18 transducer test were of much higher numbers and quality than on the eight transducer test. This experiment proved conclusively that passive seismic emission recording can yield positive results in the laboratory. Just as in the field, this provides one of the best far field (away from the well bore) measurements to assess hydraulic fracture behavior. It also provides a calibration tool to extend laboratory results to field scale endeavors. The identification of strong microseismic activity at stress states far below fracture initiation confirms that rocks are critically stressed meta-stable materials and that microseismicity is caused by stress changes, not fractures directly. Advancements are necessary to fully exploit the potential of the microseismic method in laboratory sized samples. Both processing and visualization enhancements are necessary to realize the full benefits of this promising technology in the laboratory environment.

  20. Experimental and theoretical study of hydraulic fracturing in impermeable and permeable materials. Final report. [Hydrostone

    SciTech Connect

    Rubin, M.B.

    1981-10-01

    Experiments were conducted to study hydraulic fracture propagation in impermeable and permeable materials. The complicating effects of fluid leak-off and proppant transport were separated by conducting experiments on an impermeable material without proppants, on a permeable material without proppants, and, finally, on the same permeable material with proppants. Borehole pressure, pressure in the fracture, fracture width, and fracture length were measured in both impermeable and permeable experiments. In addition, the extent of fluid penetration into the permeable material was measured in the permeable experiments. It was observed that both the borehole pressure and the pressure gradient in the fracture were considerably larger in the experiments with proppants than in the experiments without proppants. The results of the impermeable and permeable experiments were compared with the corresponding predictions of a solution developed here as well as those of other simple formulas for hydraulic fracture propagation. Although the predictions of the present solution are an improvement over those of the other simple solutions, future research is needed to reduce the discrepancy between theory and experiment. This discrepancy is attributed to the effect of fluid penetration on the fracture mechanics of the permeable medium.

  1. Techniques for determining subsurface stress direction and assessing hydraulic fracture azimuth

    SciTech Connect

    Hill, R.E.; Peterson, R.E.; Warpinski, N.R.; Lorenz, J.C.; Teufel, L.W.; Aslakson, J.K.

    1994-12-31

    This reference paper reviews and describes 15 techniques for determining hydraulic fracture azimuth. The techniques described are categorized into core-based, borehole-based, near-wellbore, and regional geologic indicators that can be used to predict or measure hydraulic fracture azimuth. The core based methods include: (1) circumferential velocity anisotropy, (2) anelastic strain recovery, (3) differential strain curve analysis, (4) axial point load tests, (5) petrographic examination of microcracks, (6) overcoming of archived core, (7) drilling-induced fractures in core, and (8) direct observation of over-cored open-hole stress test fractures. The borehole based techniques include: (9) borehole breakouts, (10) borehole deformation, (11) borehole imaging of drilling induced fractures, and (12) directional gamma ray logging. The near-wellbore techniques provided data on the orientation of the fracture induced during an actual fracture treatment and include: (13) microseismic logging and (14) earth tilt surveys. Finally there are the geologic indicators (Method 15) including earthquake focal mechanisms, fault slip data, surface mapping of neotectonic joints, and volcanic vent alignment. These regional data have been compiled for the World Stress Mapping Project and many maps are available that can be used as a first approximation of stress direction. Experience has shown that the more techniques that can be used in a single well or field, the more reliable the result. The concept or theoretical basis for each technique as well as the benefits and limitations of the techniques are described.

  2. Microseismic mapping of hydraulic fractures using multi-level wireline receivers

    SciTech Connect

    Warpinski, N.R.; Engler, B.P.; Young, C.J.; Peterson, R.; Branagan, P.T.; Fix, J.E.

    1995-07-01

    Hydraulic fracture diagnostic experiments are being conducted at the GRI/DOE Multi-Site (M-Site) located in the Piceance basin of Colorado. Tests described in this paper use a multi-level advanced-receiver system to build on previous work that showed the advantages of using a single advanced receiver to monitor microseisms. The current test has a four-level receiver system monitoring four separate fracture experiments conducted over a one week period, and includes a velocity tomographic survey and detailed orientation survey. Hydraulic fractures were monitored from an offset well 210 ft away from the treatment well. The results of these monitoring tests show a fracture developing asymmetrically with time, yielding a fracture-wing asymmetry of 2:1. The fracture initially grows within the pay zone to essentially its total length, and then begins to grow upward, and later in time grow downward. Comparison with fracture models gives only a partial agreement in the final size.

  3. Correlating laboratory observations of fracture mechanical properties to hydraulically-induced microseismicity in geothermal reservoirs.

    SciTech Connect

    Stephen L. Karner, Ph.D

    2006-02-01

    To date, microseismicity has provided an invaluable tool for delineating the fracture network produced by hydraulic stimulation of geothermal reservoirs. While the locations of microseismic events are of fundamental importance, there is a wealth of information that can be gleaned from the induced seismicity (e.g. fault plane solutions, seismic moment tensors, source characteristics). Closer scrutiny of the spatial and temporal evolution of seismic moment tensors can shed light on systematic characteristics of fractures in the geothermal reservoir. When related to observations from laboratory experiments, these systematic trends can be interpreted in terms of mechanical processes that most likely operate in the fracture network. This paper reports on mechanical properties that can be inferred from observations of microseismicity in geothermal systems. These properties lead to interpretations about fracture initiation, seismicity induced after hydraulic shut-in, spatial evolution of linked fractures, and temporal evolution of fracture strength. The correlations highlight the fact that a combination of temperature, stressing rate, time, and fluid-rock interactions can alter the mechanical and fluid transport properties of fractures in geothermal systems.

  4. Three Dimensional Stress Maps of Dynamic Hydraulic Fracture within Heavily Cross-Linked Hydrogels

    NASA Astrophysics Data System (ADS)

    Steinhardt, W.; Rubinstein, S.; Weitz, D.

    2014-12-01

    Hydraulic fractures (HFs) of oil and gas shales occur miles underground, below complex, layered heterogeneous rocks making any measurements of their dynamics, extent, or structure difficult to impossible. As such, model lab systems such as blocks of PMMA or rocks fractured with air or fluid (Bunger et al [2013], Alpern et al [2012]) are studied in order to understand the intricacies of HFs. However, due to the extreme energies necessary to fracture these materials the experiments are difficult, have little flexibility in the materials, and offer little no measure of the dynamics of the fracture. Heavily cross-linked hydrogels have been shown to be a good model to study brittle fracture (Livne et al [2004]). I will discuss a new system, which we have developed to study HFs within tough hydrogels which have the benefits of having highly tunable rheology, being optically clear, and having slower fracture speeds and breakdown pressures. By embedding fluorescent tracer particles within the gel together with laser sheet microscopy, we obtain the three dimensional stress and strain maps of the zone surrounding a hydraulic fracture tip.

  5. Experimental and theoretical study of hydraulic fracturing in impermeable and permeable materials

    NASA Astrophysics Data System (ADS)

    Rubin, M. B.

    1981-10-01

    Hydraulic fracture propagation in impermeable and permeable materials was studied. The complicating effects of fluid leak-off and proppant transport were separated by conducting experiments on an impermeable material without proppants, on a permeable material without proppants, and, finally, on the same permeable material with proppants. Borehole pressure, pressure in the fracture, fracture width, and fracture length were measured in both impermeable and permeable experiments. In addition, the extent of fluid penetration into the permeable material was measured in the permeable experiments. It was observed that both the borehole pressure and the pressure gradient in the fracture were considerably larger in the experiments with proppants than in the experiments without proppants. The results of the impermeable and permeable experiments were compared with the corresponding predictions of a solution developed here as well as those of other simple formulas for hydraulic fracture propagation. Although the predictions of the present solution are an improvement over those of the other simple solutions, future research is needed to reduce the discrepancy between theory and experiment. This discrepancy is attributed to the effect of fluid penetration on the fracture mechanics of the permeable medium.

  6. Mathematical modeling and simulation analysis of hydraulic fracture propagation in three-layered poro-elastic media

    SciTech Connect

    Moon, H.Y. ); Advani, S.H.; Lee, T.S. )

    1992-11-01

    Hydraulic fracturing plays a pivotal role in the enhancement of oil and gas production recovery from low permeability reservoirs. The process of hydraulic fracturing entails the generation of a fracture by pumping fluids blended with special chemicals and proppants into the payzone at high injection rates and pressures to extend and wedge fractures. The mathematical modeling of hydraulically induced fractures generally incorporates coupling between the formation elasticity, fracture fluid flow, and fracture mechanics equations governing the formation structural responses, fluid pressure profile, and fracture growth. Two allied unsymmetric elliptic fracture models are developed for fracture configuration evolutions in three-layered rock formations. The first approach is based on a Lagrangian formulation incorporating pertinent energy components associated with the formation structural responses and fracture fluid flow. The second model is based on a generalized variational principle, introducing an energy rate related functional. These models initially simulate a penny-shaped fracture, which becomes elliptic if the crack tips encounters (upper and/or lower) barriers with differential reservoir properties (in situ stresses, 16 elastic moduli, and fracture toughness-contrasts and fluid leak-off characteristics). The energy rate component magnitudes are determined to interpret the governing hydraulic fracture mechanisms during fracture evolution. The variational principle is extended to study the phenomenon and consequences of fluid lag in fractures. Finally, parametric sensitivity and energy rate investigations to evaluate the roles of controllable hydraulic treatment variables and uncontrollable reservoir property characterization parameters are performed. The presented field applications demonstrate the overall capabilities of the developed models. These studies provide stimulation treatment guidelines for fracture configuration design, control, and optimization.

  7. Hydraulic fracture and toughening of a brittle layer bonded to a hydrogel

    NASA Astrophysics Data System (ADS)

    Lucantonio, Alessandro; Noselli, Giovanni; Trepat, Xavier; Desimone, Antonio; Arroyo, Marino

    Brittle materials fracture under tensile or shear stress. When stress attains a critical threshold, crack propagation becomes unstable and proceeds dynamically. In the presence of several precracks, a brittle material always propagates only the weakest crack, leading to catastrophic failure. Here, we show that all these features of brittle fracture are radically modified when the material susceptible to cracking is bonded to a poroelastic medium, such as a hydrogel, a common situation in biological tissues. In particular, we show that the brittle material can fracture in compression and can resist cracking in tension, thanks to the hydraulic coupling with the hydrogel. In the case of multiple cracks, we find that localized fracture occurs when the permeability of the hydrogel is high, whereas decreased permeability leads to toughening by promoting multiple cracking. Our results may contribute to the understanding of fracture in biological tissues and provide inspiration for the design of tough, biomimetic materials.

  8. INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS

    SciTech Connect

    David S. Schechter

    2004-04-26

    This report describes the work performed during the second year of the project, ''Investigating of Efficiency Improvements during CO{sub 2} Injection in Hydraulically and Naturally Fractured Reservoirs.'' The objective of this project is to perform unique laboratory experiments with artificial fractured cores (AFCs) and X-ray CT to examine the physical mechanisms of bypassing in HFR and NFR that eventually result in less efficient CO{sub 2} flooding in heterogeneous or fracture-dominated reservoirs. To achieve this objective, in this period we concentrated our effort on investigating the effect of CO{sub 2} injection rates in homogeneous and fractured cores on oil recovery and a strategy to mitigate CO{sub 2} bypassing in a fractured core.

  9. INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS

    SciTech Connect

    David S. Schechter

    2003-10-01

    This report describes the work performed during the second year of the project, ''Investigating of Efficiency Improvements during CO{sub 2} Injection in Hydraulically and Naturally Fractured Reservoirs.'' The objective of this project is to perform unique laboratory experiments with artificial fractured cores (AFCs) and X-ray CT to examine the physical mechanisms of bypassing in HFR and NFR that eventually result in less efficient CO{sub 2} flooding in heterogeneous or fracture-dominated reservoirs. To achieve this objective, in this period we concentrated our effort on modeling the fluid flow in fracture surface, examining the fluid transfer mechanisms and describing the fracture aperture distribution under different overburden pressure using X-ray CT scanner.

  10. Hydraulic fracturing tests in anhydrite interbeds in the WIPP, Marker Beds 139 and 140

    SciTech Connect

    Howard, C L [RE Wawersik, W. R.; Carlson, L. V.; Henfling, J. A.; Borns, D. J.; Beauheim, R. L.; Roberts, R. M.

    1997-05-01

    Hydraulic fracturing tests were integrated with hydrologic tests to estimate the conditions under which gas pressure in the disposal rooms in the Waste Isolation Pilot Plant, Carlsbad, NM (WIPP) will initiate and advance fracturing in nearby anhydrite interbeds. The measurements were made in two marker beds in the Salado formation, MB139 and MB140, to explore the consequences of existing excavations for the extrapolation of results to undisturbed ground. The interpretation of these measurements is based on the pressure-time records in two injection boreholes and several nearby hydrologic observation holes. Data interpretations were aided by post-test borehole video surveys of fracture traces that were made visible by ultraviolet illumination of fluorescent dye in the hydraulic fracturing fluid. The conclusions of this report relate to the upper- and lower-bound gas pressures in the WIPP, the paths of hydraulically and gas-driven fractures in MB139 and MB140, the stress states in MB139 and MB140, and the probable in situ stress states in these interbeds in undisturbed ground far away from the WIPP.

  11. Investigation of Hydraulic Fracture Propagation Using a Post-Peak Control System Coupled with Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Chen, Li-Hsien; Chen, Wei-Chih; Chen, Yao-Chung; Benyamin, Leo; Li, An-Jui

    2015-05-01

    This study investigates the fracture mechanism of fluid coupled with a solid resulting from hydraulic fracture. A new loading machine was designed to improve upon conventional laboratory hydraulic fracture testing and to provide a means of better understanding fracture behavior of solid media. Test specimens were made of cement mortar. An extensometer and acoustic emission (AE) monitoring system recorded the circumferential deformation and crack growth location/number during the test. To control the crack growth at the post-peak stage the input fluid rate can be adjusted automatically according to feedback from the extensometer. The complete stress-deformation curve, including pre- and post-peak stages, was therefore obtained. The crack extension/growth developed intensively after the applied stress reached the breakdown pressure. The number of cracks recorded by the AE monitoring system was in good agreement with the amount of deformation (expansion) recorded by the extensometer. The results obtained in this paper provide a better understanding of the hydraulic fracture mechanism which is useful for underground injection projects.

  12. Correlation between Induced Seismic Events and Hydraulic Fracturing activities in California

    NASA Astrophysics Data System (ADS)

    Walker, R.; Aminzadeh, F.; Tiwari, A.

    2014-12-01

    Induced seismicity observed in Oklahoma and Ohio have raised environmental concern to an alarming level and thus any plausible correlation between subsurface injection and production activities have become an significant area of study. As per US Seismic Hazard map, California lies in highly sensitive zone, which makes understanding of stimulation induced seismic events critically important. The copious number of seismic events due to presence of numerous faults in California benefits understanding seismicity of the region but makes it difficult to distinguish induced seismic events from naturally occurring seismic events. Since regional models are considered more effective in understanding the seismicity of the region, this study aims in understanding impact of hydraulic fracturing activities in various oilfields in California. The focus of the study is to identify sensitive zones in California which might have observed seismic activities induced due to hydraulic fracturing. This has been done using the criteria of spatial and temporal co-relation between fracturing activities and seismic events for oilfields with significant number of fracturing activities. The seismic and well data used for this study is acquired from public sources and have been integrated in an efficient manner using the GIS tool and iterative querying. The two step methodology implemented for this work involves segregating the induced seismic events from natural events based on the depth of the event and seismic history of the region and then spatially and temporally studying it with regards to hydraulic fracturing in vicinity of the seismic event.

  13. Current Summary of Hydraulic Fracturing Experiments in Phase II Reservoir

    SciTech Connect

    Matsunaga, Isao; Kadowake, M.; Murphy, Hugh D.

    1983-03-01

    To aid those interested in wading through the old experimental data regarding Phase II fracturing, we have compiled the following summary of the experiments. A similar summary, but one slanted from a surface operations viewpoint, was reported by A. Richard Sinclair in reference 1. Our summary is abstracted from the individual experiment reports, when available, the daily status report, and other available information.

  14. Influence of Concentration and Salinity on the Biodegradability of Organic Additives in Hydraulic Fracturing Fluid

    NASA Astrophysics Data System (ADS)

    Mouser, P. J.; Kekacs, D.

    2014-12-01

    One of the risks associated with the use of hydraulic fracturing technologies for energy development is the potential release of hydraulic fracturing-related fluids into surface waters or shallow aquifers. Many of the organic additives used in hydraulic fracturing fluids are individually biodegradable, but little is know on how they will attenuate within a complex organic fluid in the natural environment. We developed a synthetic hydraulic fracturing fluid based on disclosed recipes used by Marcellus shale operators to evaluate the biodegradation potential of organic additives across a concentration (25 to 200 mg/L DOC) and salinity gradient (0 to 60 g/L) similar to Marcellus shale injected fluids. In aerobic aqueous solutions, microorganisms removed 91% of bulk DOC from low SFF solutions and 57% DOC in solutions having field-used SFF concentrations within 7 days. Under high SFF concentrations, salinity in excess of 20 g/L inhibited organic compound biodegradation for several weeks, after which time the majority (57% to 75%) of DOC remained in solution. After SFF amendment, the initially biodiverse lake or sludge microbial communities were quickly dominated (>79%) by Pseudomonas spp. Approximately 20% of added carbon was converted to biomass while the remainder was respired to CO2 or other metabolites. Two alcohols, isopropanol and octanol, together accounted for 2-4% of the initial DOC, with both compounds decreasing to below detection limits within 7 days. Alcohol degradation was associated with an increase in acetone at mg/L concentrations. These data help to constrain the biodegradation potential of organic additives in hydraulic fracturing fluids and guide our understanding of the microbial communities that may contribute to attenuation in surface waters.

  15. Hydraulic fracturing and the Crooked Lake Sequences: Insights gleaned from regional seismic networks

    NASA Astrophysics Data System (ADS)

    Schultz, Ryan; Stern, Virginia; Novakovic, Mark; Atkinson, Gail; Gu, Yu Jeffrey

    2015-04-01

    Within central Alberta, Canada, a new sequence of earthquakes has been recognized as of 1 December 2013 in a region of previous seismic quiescence near Crooked Lake, ~30 km west of the town of Fox Creek. We utilize a cross-correlation detection algorithm to detect more than 160 events to the end of 2014, which is temporally distinguished into five subsequences. This observation is corroborated by the uniqueness of waveforms clustered by subsequence. The Crooked Lake Sequences have come under scrutiny due to its strong temporal correlation (>99.99%) to the timing of hydraulic fracturing operations in the Duvernay Formation. We assert that individual subsequences are related to fracturing stimulation and, despite adverse initial station geometry, double-difference techniques allow us to spatially relate each cluster back to a unique horizontal well. Overall, we find that seismicity in the Crooked Lake Sequences is consistent with first-order observations of hydraulic fracturing induced seismicity.

  16. Mechanisms and impact of damage resulting from hydraulic fracturing. Topical report, May 1995-July 1996

    SciTech Connect

    Penny, G.S.; Conway, M.W.; Almond, S.W.; Himes, R.; Nick, K.E.

    1996-08-01

    This topical report documents the mechanisms of formation damage following hydraulic fracturing and their impact upon gas well productivity. The categories of damage reviewed include absolute or matrix permeability damage, relative permeability alterations, the damage of natural fracture permeability mechanisms and proppant conductivity impairment. Case studies are reviewed in which attempts are made to mitigate each of the damage types. Industry surveys have been conducted to determine the perceptions of the industry on the topic of formation damage following hydraulic fracturing and to identify key formations in which formation damage is a problem. From this information, technical hurdles and new technology needs are identified and estimates are made of the benefits of developing and applying minimum formation damage technology.

  17. Microseismic monitoring of the B-sand hydraulic fracture experiment at the DOE/GRI multi-site project

    SciTech Connect

    Warpinski, N.R.; Drozda, P.M.; Wright, T.B.

    1996-12-31

    Six hydraulic-fracture injections into a fluvial sandstone at a depth of 4500 ft were monitored with multi-level triaxial seismic receivers in two wells, resulting in maps of the growth and final geometry of each fracture based upon microseismic activity. These diagnostic images show that the hydraulic fractures are highly contained for smaller-volume KCI-water injections, but height growth is significant for the larger-volume, higher-rate, higher-viscosity treatments. Fracture lengths for most injections are similar. Final results are also compared with fracture models.

  18. Microseismic monitoring of the B-sand hydraulic fracture experiment at the DOE/GRI multi-site project

    SciTech Connect

    Warpinski, N.R. |; Wright, T.B.; Peterson, R.E.; Branagan, P.T.

    1996-11-01

    Six hydraulic-fracture injections into a fluvial sandstone at a depth of 4500 ft were monitored with multi-level triaxial seismic receivers in two wells, resulting in maps of the growth and final geometry of each fracture based upon microseismic activity. These diagnostic images show that the hydraulic fractures are highly contained for smaller-volume KCl-water injections, but height growth is significant for the larger-volume, higher-rate, higher-viscosity treatments. Fracture lengths for most injections are similar. Final results are also compared with fracture models.

  19. Hydraulic fracturing and associated stress modeling for the Eastern Gas Shales Project. Final report

    SciTech Connect

    Advani, S.H.

    1980-12-01

    Frac fluid flow, structure, and fracture mechanics simulations are developed for predicting and optimizing fracture dimensions and fluid leak-offs. Roles of in situ stress and material properties for possible vertical migration of fractures from the pay zone are discussed. Rationale for foam and dendritic fracturing experiments is presented along with numerical experiments for examining the phenomena of spalling of the fracture faces and conditions for secondary fracture initiation. Assignment of conventional, foam, cyrogenic, dendritic, and explosive fracturing treatments for specific reservoir properties is considered. Variables include fracture density and extent, shale thickness, in-situ stress gradients, energy assist mechanisms, well clean-up, shale-frac fluid interaction, proppant selection, and fracture height control. The analysis suggests that correlation with prevailing in situ stress gradients are promising diagnostic indicators for fracture treatment selection and design. In conclusion, the comprehensive development of an economical strategy requires extensive and controlled field testing with supporting predictive analyses of reservoir responses. Finite element modeling of reservoir in situ stress trajectories and the flow and fracture responses in the reservoir is recommended.

  20. Micromechanical fracture modeling on underground nuclear waste storage: Coupled mechanical, thermal, and hydraulic effects

    NASA Astrophysics Data System (ADS)

    Leem, Junghun

    Coupling effects between thermal, hydraulic, chemical and mechanical (THCM) processes for rock materials are one of major issues in Geological engineering, Civil engineering, Hydrology, Petroleum engineering, and Environmental engineering. In all of these fields, at least two mechanisms of THCM coupling are considered. For an example, thermal, hydraulic, and mechanical coupling effects are important in Geological engineering and Civil engineering. The THM coupling produces effects on underground structures, since the underground structures are under influences of geothermal gradient, groundwater, gravitational stresses, and tectonic forces. In particular, underground repository of high-level nuclear waste involves all four of the THCM coupling processes. Thermo-hydro-mechanical coupling model for fractured rock media has been developed based on micromechanical fracture model [Kemeny 1991, Kemeny & Cook 1987]. The THM coupling model is able to simulate time- and rate-dependent fracture propagation on rock materials, and quantify characteristics of damage by extensile and shear fracture growth. The THM coupling model can also simulate coupled thermal effects on underground structures such as high-level nuclear waste repository. The results of thermo-mechanical coupling model are used in conducting a risk analysis on the structures. In addition, the THM coupling model is able to investigate variations of fluid flow and hydraulic characteristics on rock materials by measuring coupled anisotropic permeability. Later, effects of chemical coupling on rock materials are investigated and modified in the THM coupling model in order to develop a thermo-hydro-chemo-mechanical coupling model on fractured rocks. The THCM coupling model is compared with thermal, hydraulic, chemical, and mechanical coupling tests conducted at the University of Arizona. The comparison provides a reasonable prediction for the THCM coupling tests on various rock materials. Finally, the THCM coupling model for fractured rocks simulates the underground nuclear waste storage in Yucca Mountain, Nevada, and conducted performance and risk analysis on the repository.

  1. Permeability Distribution In A Confined Fracture Flow Aquifer Using Hydraulic Testing and Borehole Geophysics

    NASA Astrophysics Data System (ADS)

    Hartmann, S.; Odling, N. E.; West, L. J.

    Groundwater is one of the main drinking water resources in the United Kingdom and the Chalk aquifer contributes over 50 % of the abstracted amount. The Chalk consists of a highly porous matrix which is intersected by hydraulically conductive fractures representing the main flow pathways. Hydraulic testing and borehole geophysics were carried out at a test site in East Yorkshire (Northern England), in order to characterise the permeability distribution at the site prior to conducting tracer tests. The Chalk at the fieldsite is confined by about 11m glacial and postglacial lacustrine deposits, and the upper 12m of Chalk has been affected by periglacial weathering. Five boreholes were drilled to 70 to 80m depth; one of these was cored. The intact Chalk contains stylolites (pressure dissolution surfaces), marl bands up to 1.5cm thick, faults, and several sets of inclined joints. The core and acoustic televiewer images from all five boreholes show a high fracture density in the depth interval from 25 to 32m, and discrete fractured zones below this depth. Packer tests on the cored borehole yielded hydraulic conductivities of 6.6OE10-5 to 3.7OE10-6m/s, which agree with the average hydraulic conductivity obtained from the pumping test. Fluid temperature and con- ductivity logging combined with static and pumped borehole flow logging showed that minor inflows and outflows were present throughout, but that several horizons of higher inflow/outflow were detected, which corresponded to highly fractured zones seen in acoustic televiewer images. Both packer tests and borehole geophysical log- ging indicate that most of the permeability of the aquifer is in the upper, highly frac- tured zone, but that discrete zones of high permeability are also present at depth. The acoustic televiewer was able to detect steep fractures that were not recognisable in the core, because the core was broken and fragmented during drilling due to the presence of these fractures.

  2. Measuring well hydraulic connectivity in fractured bedrock using periodic slug tests

    NASA Astrophysics Data System (ADS)

    Guiltinan, Eric; Becker, Matthew W.

    2015-02-01

    Periodic hydraulic experiments were conducted in a five-spot well cluster completed in a single bedding plane fracture. Tests were performed by using a winch-operated slug (submerged solid cylinder) to create a periodic head disturbance in one well and observing the phase shift and attenuation of the head response in the remaining wells. Transmissivity (T) and storativity (S) were inverted independently from head response. Inverted T decreased and S increased with oscillation period. Estimated S was more variable among well pairs than T, suggesting S may be a better estimator of hydraulic connectivity among closely spaced wells. These estimates highlighted a zone of poor hydraulic connection that was not identified by a constant rate test conducted in the same wells. Periodic slug tests appear to be a practical and effective technique for establishing local scale spatial variability in hydraulic parameters.

  3. METHOD DEVELOPMENT FOR DETERMINING THE HYDRAULIC CONDUCTIVITY OF FRACTURED POROUS MEDIA

    SciTech Connect

    Dixon, K.

    2013-09-30

    Plausible, but unvalidated, theoretical model constructs for unsaturated hydraulic conductivity of fractured porous media are currently used in Performance Assessment (PA) modeling for cracked saltstone and concrete (Flach 2011). The Nuclear Regulatory Commission (NRC) has expressed concern about the lack of model support for these assumed Moisture Characteristic Curves (MCC) data, as noted in Requests for Additional Information (RAIs) PA-8 and SP-4 (Savannah River Remediation, LLC, 2011). The objective of this task was to advance PA model support by developing an experimental method for determining the hydraulic conductivity of fractured cementitious materials under unsaturated conditions, and to demonstrate the technique on fractured saltstone samples. The task was requested through Task Technical Request (TTR) HLW-SSF-TTR-2012-0016 and conducted in accordance with Task Technical & Quality Assurance Plan (TTQAP) SRNL-TR-2012-00090. Preliminary method development previously conducted by Kohn et al. (2012) identified transient outflow extraction as the most promising method for characterizing the unsaturated properties of fractured porous media. While the research conducted by Kohn et al. (2012) focused on fractured media analogs such as stacked glass slides, the current task focused directly on fractured saltstone. For this task, four sample types with differing fracture geometries were considered: 1) intact saltstone, 2) intact saltstone with a single saw cut, smooth surface fracture, 3) micro-fractured saltstone (induced by oven drying), and 4) micro-fractured saltstone with a single, fully-penetrating, rough-surface fracture. Each sample type was tested initially for saturated hydraulic conductivity following method ASTM D 5084 using a flexible wall permeameter. Samples were subsequently tested using the transient outflow extraction method to determine cumulative outflow as a function of time and applied pressure. Of the four sample types tested, two yielded datasets suitable for analysis (sample types 3 and 4). The intact saltstone sample (sample type 1) did not yield any measureable outflow over the pressure range of the outflow test (0-1000 cm H{sub 2}O). This was expected because the estimated air entry pressure for intact saltstone is on the order of 100,000 cm H{sub 2}O (Dixon et al., 2009). The intact saltstone sample with a single saw cut smooth surface fracture (sample type 2) did not produce useable data because the fracture completely drained at less than 10 cm H{sub 2}O applied pressure. The cumulative outflow data from sample types 3 and 4 were analyzed using an inverse solution of the Richard’s equation for water flow in variably saturated porous media. This technique was implemented using the computer code Hydrus-1D (Šimůnek et al., 2008) and the resulting output included the van Genuchten-Mualem water retention and relative permeability parameters and predicted saturated hydraulic conductivity (Van Genuchten, 1980; Van Genuchten et al., 1991). Estimations of relative permeability and saturated conductivity are possible because the transient response of the sample to pressure changes is recorded during the multi-step outflow extraction test. Characteristic curves were developed for sample types 3 and 4 based on the results of the transient outflow method and compared to that of intact saltstone previously reported by Dixon et al. (2009). The overall results of this study indicate that the outflow extraction method is suitable for measuring the hydraulic properties of micro-fractured porous media. The resulting cumulative outflow data can be analyzed using the computer code Hydrus-1D to generate the van Genuchten curve fitting parameters that adequately describe fracture drainage. The resulting characteristic curves are consistent with blended characteristic curves that combine the behaviors of low pressure drainage associated with fracture flow with high pressure drainage from the bulk saltstone matrix.

  4. Numerical evaluation of effective unsaturated hydraulic properties for fractured rocks

    SciTech Connect

    Lu, Zhiming; Kwicklis, Edward M

    2009-01-01

    To represent a heterogeneous unsaturated fractured rock by its homogeneous equivalent, Monte Carlo simulations are used to obtain upscaled (effective) flow properties. In this study, we present a numerical procedure for upscaling the van Genuchten parameters of unsaturated fractured rocks by conducting Monte Carlo simulations of the unsaturated flow in a domain under gravity-dominated regime. The simulation domain can be chosen as the scale of block size in the field-scale modeling. The effective conductivity is computed from the steady-state flux at the lower boundary and plotted as a function of the averaging pressure head or saturation over the domain. The scatter plot is then fitted using van Genuchten model and three parameters, i.e., the saturated conductivity K{sub s}, the air-entry parameter {alpha}, the pore-size distribution parameter n, corresponding to this model are considered as the effective K{sub s}, effective {alpha}, and effective n, respectively.

  5. Current Summary of Hydraulic Fracturing Experiments in Phase II Reservoir

    SciTech Connect

    Matsunaga, Isao; Kadowake, M.; Murphy, Hugh D.

    1983-03-01

    To aid those interested in wading through the old experimental data regarding Phase II fracturing, we have compiled the following summary of the experiments. A similar summary, but one slanted from a surface operations viewpoint, was reported by A. Richard Sinclair in reference 1. Our summary is abstracted from the individual experiment reports, when available, the daily status reports, and other available information. Whenever possible we have tried to acknowledge individual authors, but occasionally we may have been incomplete in our attribution, and in the cases we offer our apologies. In the near future we intend to compile temperature and friction-corrected downhole pressures so that a complete categorization of fracture pressures will be available.

  6. FINAL REPORT. CONTROL OF BIOLOGICALLY ACTIVE DEGRADATION ZONES BY VERTICAL HETEROGENEITY: APPLICATIONS IN FRACTURED MEDIA

    EPA Science Inventory

    The key objective of this research was to determine the distribution of biologically active contaminant degradation zones in a fractured, subsurface medium with respect to vertical heterogeneities. Our expectation was that
    hydrogeological properties would determine the size, d...

  7. Overview of Chronic Oral Toxicity Values for Chemicals Present in Hydraulic Fracturing Fluids, Flowback, and Produced Waters.

    PubMed

    Yost, Erin E; Stanek, John; DeWoskin, Robert S; Burgoon, Lyle D

    2016-05-01

    Concerns have been raised about potential public health effects that may arise if hydraulic fracturing-related chemicals were to impact drinking water resources. This study presents an overview of the chronic oral toxicity values-specifically, chronic oral reference values (RfVs) for noncancer effects, and oral slope factors (OSFs) for cancer-that are available for a list of 1173 chemicals that the United States (U.S.) Environmental Protection Agency (EPA) identified as being associated with hydraulic fracturing, including 1076 chemicals used in hydraulic fracturing fluids and 134 chemicals detected in flowback or produced waters from hydraulically fractured wells. The EPA compiled RfVs and OSFs using six governmental and intergovernmental data sources. Ninety (8%) of the 1076 chemicals reported in hydraulic fracturing fluids and 83 (62%) of the 134 chemicals reported in flowback/produced water had a chronic oral RfV or OSF available from one or more of the six sources. Furthermore, of the 36 chemicals reported in hydraulic fracturing fluids in at least 10% of wells nationwide (identified from EPA's analysis of the FracFocus Chemical Disclosure Registry 1.0), 8 chemicals (22%) had an available chronic oral RfV. The lack of chronic oral RfVs and OSFs for the majority of these chemicals highlights the significant knowledge gap that exists to assess the potential human health hazards associated with hydraulic fracturing. PMID:27050380

  8. Hydrophobic Organic Compounds in Hydraulic Fracturing Flowback Waters: Identification and Source Apportionment

    NASA Astrophysics Data System (ADS)

    Plata, D.; Shregglman, K.; Elsner, M.; Getzinger, G.; Ferguson, L.; Drollette, B.; Karatum, O.; Nelson, R. K.; Reddy, C. M.

    2014-12-01

    Current hydraulic fracturing technologies rely on organic chemicals to serve multiple critical functions, including corrosion inhibition, in situ gel formation, and friction reduction. While industrial users have disclosed several hundreds of compound and mixture identities, it is unclear which of these are used and where, in what proportion, and with what frequency. Furthermore, while flowback and production waters contain both fracturing additive and geogenic compounds, they may contain potential reaction byproducts as well. Here, we identified several hundred organic compounds present in six hydraulic fracturing flowback waters over the Fayetteville shale. Identifications were made via non-target analysis using two-dimensional gas chromatography with time of flight mass spectrometry for hydrophobic organic compounds and liquid chromatography- orbitrap mass spectrometry. Compound identities were confirmed using purchased standards when available. Using the SkyTruth database and the Waxman list of disclosed compounds, we assigned compounds as either fracturing-fluid-derived or geogenic (or both), or a putative transformation products thereof. Several unreported halogenated compounds were detected, including chlorinated, brominated, and iodated species that have no known natural sources. Control studies indicated that these could not be formed under typical laboratory or field storage conditions, suggesting that halogenation reactions may give rise to novel compounds in the subsurface, presumably via reaction between fracturing fluid additives and shale-derived brines. Further, the six samples were strikingly heterogeneous, reflecting the diversity in fracturing fluid composition and flowback handling procedures at the time of the study.

  9. Crack Extension in Hydraulic Fracturing of Shale Cores Using Viscous Oil, Water, and Liquid Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Bennour, Ziad; Ishida, Tsuyoshi; Nagaya, Yuya; Chen, Youqing; Nara, Yoshitaka; Chen, Qu; Sekine, Kotaro; Nagano, Yu

    2015-07-01

    We performed hydraulic fracturing experiments on cylindrical cores of anisotropic shale obtained by drilling normal to the sedimentary plane. Experiments were conducted under ambient condition and uniaxial stresses, using three types of fracturing fluid: viscous oil, water, and liquid carbon dioxide (L-CO2). In the experiments using water and oil, cracks extended along the loading direction normal to the sedimentary plane under the uniaxial loading and extended along the sedimentary plane without loading. These results suggest that the direction of crack extension is strongly affected by in situ stress conditions. Fluorescent microscopy revealed that hydraulic fracturing with viscous oil produced linear cracks with few branches, whereas that with water produced cracks with many branches inclining from the loading axis. Statistical analysis of P wave polarity of acoustic emission waveforms showed that viscous oil tended to induce Mode I fracture, whereas both water and L-CO2 tended to induce Mode II fracture. Crack extension upon injection of L-CO2 was independent of loading condition unlike extension for the other two fluids. This result seemed attributable to the low viscosity of L-CO2 and was consistent with previous observations for granite specimens that low-viscosity fluids like CO2 tend to induce widely extending cracks with many branches, with Mode II fractures being dominant. These features are more advantageous for shale gas production than those induced by injection of conventional slick water.

  10. Effect of Different Instrumentation Techniques on Vertical Root Fracture Resistance of Endodontically Treated Teeth

    PubMed Central

    Tavanafar, Saeid; Karimpour, Azadeh; Karimpour, Hamideh; Mohammed Saleh, Abdulrahman; Hamed Saeed, Musab

    2015-01-01

    Statement of the Problem Vertical root fractures are catastrophic events that often result in tooth extraction. Many contributing factor are associated with increasing incidence of vertical root fracture. Root canal preparation is one of the predisposing factors which can increase the root susceptibility to vertical fracture. Purpose The aim of this study was to compare the effects of three different instrumentation techniques on vertical root fracture resistance of endodontically treated teeth. Materials and Methods In this study, 120 freshly extracted mandibular premolar teeth of similar dimensions were decoronated and randomly divided into control (n=30), nickel-titanium hand K-file (HF, n=30), BioRaCe rotary file (BR, n=30), and WaveOne reciprocating single-file (WO, n=30) groups. After cleaning and shaping the root canals, AH26 was used as canal sealer, and obturation was completed using the continuous wave technique. The root canals were embedded vertically in standardised autopolymerising acrylic resin blocks, and subjected to a vertical load to cause vertical root fracture. The forces required to induce fractures were measured using a universal testing machine. ANOVA and Tukey’s post-hoc test were used to analyse the data. Results All experimental groups showed statistically significant reductions in fracture resistance as compared with the control group. There was a statistically significant difference between the HF and BR groups. The WO group did not differ significantly from the HF group or the BR group. Conclusion All three instrumentation techniques caused weakening of the structure of the roots, and rendered them susceptible to fracture under lesser load than unprepared roots. The fracture resistance of roots prepared with the single-file reciprocating technique was similar to that of those prepared with NiTi hand and rotary instrumentation techniques. PMID:26106635

  11. A Methodology to Hydraulically Parameterize Deformation Zones and Fracture Networks in Fractured Crystalline Rock Using Fracture Borehole Data and Inflow Data from Single- Hole Tests

    NASA Astrophysics Data System (ADS)

    Follin, S.; Hartley, L.; Rhen, I.; Selroos, J.

    2008-12-01

    Three-dimensional, regional, numerical models of groundwater flow and solute transport in fractured crystalline rock are used for two sites in Sweden that are considered for geological disposal of spent nuclear fuel. The models are used to underpin the conceptual modeling that is based on multi-disciplinary data and include descriptions of the geometry of geological features (deformation zones and fracture networks), transient hydrological and chemical boundary conditions, strong spatial heterogeneity in the hydraulic properties, density driven flow, solute transport including rock matrix diffusion, and mixing of different water types in a palaeo-hydrogeological perspective (last 10,000 years). The general approach applied in the numerical modeling was to first parameterize the deformation zones and fracture networks hydraulically using fracture and inflow data from single-hole tests. Second, a confirmatory step was attempted using essentially the same groundwater flow and solute transport model in terms of grid discretization and parameter settings for matching three types of independent field data: 1) large-scale cross-hole (interference) tests, 2) long- term monitoring of groundwater levels, and 3) hydrochemical composition of fracture water and matrix pore water in deep boreholes. We demonstrate here the adopted modelling approach for the first step, i.e. hydraulic parameterization of deformation zones and fracture networks, using single-hole test data from the site investigations undertaken at one of the sites in Sweden (Forsmark). The adopted modelling approach combines a deterministic representation of the major deformation zones with a stochastic representation of the less fractured bedrock outside these zones using the discrete fracture network (DFN) concept. An exponential model for the depth dependency of the in-plane deformation zone transmissivity was suggested based on the data. Lateral heterogeneity was simulated by adding a log-normal random deviate. A tectonic continuum is envisaged for the DFN concept where the number (intensity) of fractures of different sizes follows a power-law relationship. The methodology used to parameterise the discrete fracture networks starts with a connectivity-sensitivity analysis of different DFN models and ends with flow simulations using the most reliable DFN model deduced in the connectivity analysis. The flow simulations were carried out using three different kinds of correlations between fracture transmissivity and fracture size. For each correlation model, the model parameters were changed in a forward manner until a reasonable match against measured specific capacities (Q/?p) was achieved.

  12. Characterization of fracture permeability with high-resolution vertical flow measurements during borehole pumping.

    USGS Publications Warehouse

    Paillet, F.L.; Hess, A.E.; Cheng, C.H.; Hardin, E.

    1987-01-01

    The distribution of fracture permeability in granitic rocks was investigated by measuring the distribution of vertical flow in boreholes during periods of steady pumping. Pumping tests were conducted at two sites chosen to provide examples of moderately fractured rocks near Mirror Lake, New Hampshire and intensely fractured rocks near Oracle, Arizona. A sensitive heat-pulse flowmeter was used for accurate measurements of vertical flow as low as 0.2 liter per minute. Results indicate zones of fracture permeability in crystalline rocks are composed of irregular conduits that cannot be approximated by planar fractures of uniform aperture, and that the orientation of permeability zones may be unrelated to the orientation of individual fractures within those zones.-Authors

  13. Investigation of the effects of fractured porous media on hydraulic tests—an experimental study at laboratory scale using single well methods

    NASA Astrophysics Data System (ADS)

    Leven, C.; Sauter, M.; Teutsch, G.; Dietrich, P.

    2004-09-01

    In this paper, a study of detailed pneumatic tests at laboratory scale is presented. The study comprises two different test methods, which were conducted on an unsaturated fractured sandstone block of about 1 m 3 volume. First, a steady-state flow field with constant gas injection pressure and consequently constant gas flow rates was applied to the fractured sandstone block via a vertical borehole. The discharge of the injected gas was measured at the block surface. Second, a constant gas pressure was injected over the borehole and the transient pressure buildup was recorded at the block surface. It was the objective of the study to investigate the effects of the fractured porous system on pneumatic measurements and to provide an insight into processes occurring during flow and pressure buildup in fractured porous media. This is an essential prerequisite for a reliable validation of different modeling approaches, and it can further assist to improve techniques for the determination of the heterogeneity of hydraulic parameters in fractured porous media. The analysis of the distribution of the flow field and the temporal and spatial evolution of pressure buildup during the hydraulic tests shows that the direction and contribution of the flow field is highly depending on the spatial distribution and the characteristics of the fracture network as well as on the position of the observation points with respect to highly conductive structures. Finally, the introduced test methods are suitable tools for the characterization of the heterogeneous nature of fractured porous media and for the interpretation of the effects of the heterogeneous system on hydraulic tests.

  14. Evaluating the performance of hydraulically-fractured shale gas resources in the Appalachian Basin (Invited)

    NASA Astrophysics Data System (ADS)

    Huisman, J. A.; Mboh, C.; Rings, J.; Vrugt, J. A.; Vereecken, H.

    2011-12-01

    Evaluating the performance of engineered-natural systems, such as hydraulically-fractured shales associated with natural gas recovery, depends on an understanding of fracture growth within and outside of the target shale formation, as well as the potential for gas and fluids to migrate to other subsurface resources or underground sources of drinking water. The NETL-Regional University Alliance (NETL-RUA) has a broad research portfolio connected with development of hydraulically-fractured shale resources in the Appalachian Basin. Through a combined field, experimental, modeling, and existing data evaluation effort, the following questions are being addressed: 1) Which subsurface features control the extent to which fractures migrate out of the target fracture zone? 2) Can we improve methods for analyzing natural geochemical tracers? What combination of natural and synthetic tracers can best be used to evaluate subsurface fluid and gas migration? 3) How is wellbore integrity affected by existing shallow gas? Can we predict how shallow groundwater hydrology changes due to drilling? 4) Where are existing wellbores and natural fractures located? What field methods can be used to identify the location of existing wells? To date the NETL-RUA team has focused on four key areas: fracture growth, natural isotopic tracers, impacts of well drilling on shallow hydrology, and statistics on wellbores (locations and conditions). We have found that fracture growth is sensitive to overburden geomechanical features, and that the maximum fracture height outside of the Marcellus Shale aligns with prior assessments (e.g., Fisher et al., 2012). The team has also developed methodologies for the rapid preparation of produced-water samples by MC-ICP-MS and ICP-MS; we are using these methodologies to investigate the potential of key geochemical indicators and species of interest (Sr, Ra) as indicators of fluid and gas migration in the Appalachian Basin. Experimental work on subsurface geochemical reactions in the presence of hydraulic fracturing fluid is underway to evaluate potential impacts on produced water chemistry and fracture stability within the shale formation. Additional laboratory experiments, coupled with modeling efforts, are evaluating the effects of well drilling on shallow groundwater hydrology, and the potential for shallow gas to affect cement hydration. At the field scale, the density and distribution of existing wellbores are being assessed through detection with remote magnetometer surveys, and compilation and analysis of existing wellbore databases. Results from these varied research efforts will be used in future predictive assessments of the behavior of engineered shale gas systems.

  15. Evaluating the performance of hydraulically-fractured shale gas resources in the Appalachian Basin (Invited)

    NASA Astrophysics Data System (ADS)

    Hakala, A.; Wall, A. J.; Guthrie, G.

    2013-12-01

    Evaluating the performance of engineered-natural systems, such as hydraulically-fractured shales associated with natural gas recovery, depends on an understanding of fracture growth within and outside of the target shale formation, as well as the potential for gas and fluids to migrate to other subsurface resources or underground sources of drinking water. The NETL-Regional University Alliance (NETL-RUA) has a broad research portfolio connected with development of hydraulically-fractured shale resources in the Appalachian Basin. Through a combined field, experimental, modeling, and existing data evaluation effort, the following questions are being addressed: 1) Which subsurface features control the extent to which fractures migrate out of the target fracture zone? 2) Can we improve methods for analyzing natural geochemical tracers? What combination of natural and synthetic tracers can best be used to evaluate subsurface fluid and gas migration? 3) How is wellbore integrity affected by existing shallow gas? Can we predict how shallow groundwater hydrology changes due to drilling? 4) Where are existing wellbores and natural fractures located? What field methods can be used to identify the location of existing wells? To date the NETL-RUA team has focused on four key areas: fracture growth, natural isotopic tracers, impacts of well drilling on shallow hydrology, and statistics on wellbores (locations and conditions). We have found that fracture growth is sensitive to overburden geomechanical features, and that the maximum fracture height outside of the Marcellus Shale aligns with prior assessments (e.g., Fisher et al., 2012). The team has also developed methodologies for the rapid preparation of produced-water samples by MC-ICP-MS and ICP-MS; we are using these methodologies to investigate the potential of key geochemical indicators and species of interest (Sr, Ra) as indicators of fluid and gas migration in the Appalachian Basin. Experimental work on subsurface geochemical reactions in the presence of hydraulic fracturing fluid is underway to evaluate potential impacts on produced water chemistry and fracture stability within the shale formation. Additional laboratory experiments, coupled with modeling efforts, are evaluating the effects of well drilling on shallow groundwater hydrology, and the potential for shallow gas to affect cement hydration. At the field scale, the density and distribution of existing wellbores are being assessed through detection with remote magnetometer surveys, and compilation and analysis of existing wellbore databases. Results from these varied research efforts will be used in future predictive assessments of the behavior of engineered shale gas systems.

  16. Correlations to predict frictional pressure loss of hydraulic-fracturing slurry in coiled tubing

    SciTech Connect

    Shah, S.; Zhoi, Y.X.; Bailey, M.; Hernandez, J.

    2009-08-15

    Compared with conventional-tubing fracturing, coiled-tubing (CT) fracturing has several advantages. CT fracturing has become an effective stimulation technique for multizone oil and gas wells. It is also an attractive production-enhancement method for multiseam coalbed-methane wells, and wells with bypassed zones. The excessive frictional pressure loss through CT has been a concern in fracturing. The small diameter of the string limits the cross-sectional area open to flow. Furthermore, the tubing curvature causes secondary flow and results in extra flow resistance. This increased frictional pressure loss results in high surface pumping pressure. The maximum possible pump rate and sand concentration, therefore, have to be reduced. To design a CT fracturing job properly, it is essential to predict the frictional pressure loss through the tubing accurately. This paper presents correlations for the prediction of frictional pressure loss of fracturing slurries in straight tubing and CT. They are developed on the basis of full-scale slurry-flow tests with 11/2-in. CT and slurries prepared with 35 lbm/1,000 gal of guar gel. The extensive experiments were conducted at the full-scale CT-flow test facility. The proposed correlations have been verified with the experimental data and actual field CT-fracturing data. Case studies of wells recently fractured are provided to demonstrate the application of the correlations. The correlations will be useful to the CT engineers in their hydraulics design calculations.

  17. Hydraulic sealing due to pressure solution contact zone growth in siliciclastic rock fractures

    NASA Astrophysics Data System (ADS)

    Lang, P. S.; Paluszny, A.; Zimmerman, R. W.

    2015-06-01

    Thermo-hydro-mechanical-chemical simulations at the pore scale are conducted to study the hydraulic sealing of siliciclastic rock fractures as contact zones grow driven by pressure dissolution. The evolving fluid-saturated three-dimensional pore space of the fracture results from the elastic contact between self-affine, randomly rough surfaces in response to the effective confining pressure. A diffusion-reaction equation controls pressure solution over contact zones as a function of their emergent geometry and stress variations. Results show that three coupled processes govern the evolution of the fracture's hydraulic properties: (1) the dissolution-driven convergence of the opposing fracture walls acts to compact the pore space; (2) the growth of contact zones reduces the elastic compression of the pore space; and (3) the growth of contact zones leads to flow channeling and the presence of stagnant zones in the flow field. The dominant early time compaction mechanism is the elastic compression of the fracture void space, but this eventually becomes overshadowed by the irreversible process of pressure dissolution. Growing contact zones isolate void space and cause an increasing disproportion between average and hydraulic aperture. This results in the loss of hydraulic conductivity when the mean aperture is a third of its initial value and the contact ratio approaches the characteristic value of one half. Convergence rates depend on small-wavelength roughness initially and on long-wavelength roughness in the late time. The assumption of a characteristic roughness length scale, therefore, leads to a characteristic time scale with an underestimation of dissolution rates before and an overestimation thereafter.

  18. The use of slug tests to describe vertical variations in hydraulic conductivity

    USGS Publications Warehouse

    Butler, J.J., Jr.; Bohling, G.C.; Hyder, Z.; McElwee, C.D.

    1994-01-01

    Multilevel slug tests provide one means of obtaining estimates of hydraulic conductivity on a scale of relevance for contaminant transport investigations. A numerical model is employed here to assess the potential of multilevel slug tests to provide information about vertical variations in hydraulic conductivity under conditions commonly faced in field settings. The results of the numerical simulations raise several important issues concerning the effectiveness of this technique. If the length of the test interval is of the order of the average layer thickness, considerable error may be introduced into the conductivity estimates owing to the effects of adjoining layers. The influence of adjoining layers is dependent on the aspect ratio (length of test interval/well radius) of the tesy interval and the flow properties of the individual layers. If a low-permeability skin is present at the well, the measured vertical variations will be much less than the actual variations, owing to the influence of the skin conductivity on the parameter estimates. A high-permeability skin can also produce apparent vertical variations that are much less than the actual, owing to water flowing vertically along the conductive skin. In cases where the test interval spans a number of layers, a slug test will yield an approximate thickness-weighted average of the hydraulic conductivities of the intersected layers. In most cases, packer circumvention should not be a major concern when packers of 0.75 m or longer are employed. Results of this study are substantiated by recently reported field tests that demonstrate the importance of well emplacement and development activities for obtaining meaningful estimates from a program of multilevel slug tests. ?? 1994.

  19. Characterization of Hydraulic Active Fractures in a Dolostone Aquifer Using Heat and Contaminants As Tracers

    NASA Astrophysics Data System (ADS)

    Maldaner, C. H.; Coleman, T. I.; Parker, B. L.; Cherry, J. A.

    2014-12-01

    The number of hydraulically active fractures serving as advective contaminant migration pathways facilitating plume migration in fractured rock aquifers cannot be determined with confidence from indirect means such as visual inspection of core, borehole geophysics, and is only inferred from hydraulic tests. However, the position of depth-discrete hydraulic activity may be determined using contaminants or heat as tracers yet spatially detailed profile measurement techniques are required without imparting measurement bias of an open borehole. Contaminant concentration profiles from numerous samples along continuous core from a site contaminated since the early 1980's and heat injection in the sealed boreholes with high resolution profile monitoring are used to characterize the fracture network . Heat pulse tests using active distributed temperature sensing (DTS) were conducted in coreholes sealed with an impermeable flexible liner manufactured by FLUTe (Santa Fe, NM) to detect hydraulically active fracture zones. Using a Silixa ULTIMA-HSTM DTS, temperature data was acquired every 12.6 cm along an optic fiber cable with a spatial resolution of 29 cm. Temperature precision is on the order of 0.02°C for averaged measurements collected over 5 minute intervals. The test consisted of heating the measurement cable for 4 hours and monitoring the cooling process for over 8 hours. The resulting dataset consists of high-resolution temperature profiles at five-minute time steps during the test period. Dolostone rock composes most of the lithology units of the corehole, therefore it is unlikely that there are significant variations in rock thermal diffusivity. Multiple, successive temperature profiles were used to identify depth-discrete, hydraulically active flow zones with varying transmissivity based on different rates of heat dissipation. These variations were then compared with independent datasets including detected concentrations of contaminants in numerous rock core samples with depth, visual indication of staining on fracture surfaces in rock core logs, fracture size and intensity identified in the ATV log, and variability in borehole high hydraulic conductivity by continuous packer testing and T-profiling methods.

  20. Optimization of hydraulic fracture design - application to a gas storage reservoir

    SciTech Connect

    Balan, B.

    1996-12-31

    A two-step unconventional method that uses neural networks for accurately estimating post fracture deliverability, and genetic algorithms for optimizing the hydraulic fracture design is proposed in this study. The genetic algorithm, being a global search algorithm, was able to find the optimum combination of seventeen frac parameters that maximizes post-frac deliverability of a well. This method has been applied to a large natural gas storage field where accurate post fracture well performance estimates and optimized fractreatment design have become crucial to ensure continued deliverability gains. A database containing basic well information, past fracture designs, and performance history for that field has been developed, without additional cost. The hybrid model was implemented into a user-friendly, Windows95 based, computer program.

  1. Fracture tip and critical stress intensity factor of a hydraulically induced fracture

    SciTech Connect

    Tew, C.H.; Liu, G.F. )

    1993-08-01

    By modeling the rock as an elastoplastic solid obeying the Drucker-Prager failure criterion, the authors have demonstrated that, if the dilatation produced in the plastic zone in front of the fracture tip is inhibited by its surrounding elastic material, the critical stress intensity factor, K[sub Ic], of the material can be higher than those obtained from standard laboratory tests. Using Geertsma's fracture model and including the dry zone in analysis, they also have demonstrated that, unless the fracture is very large, the fracture opening width is affected by the K[sub Ic] of the material.

  2. Discrete element modeling of rock deformation, fracture network development and permeability evolution under hydraulic stimulation

    SciTech Connect

    Shouchun Deng; Robert Podgorney; Hai Huang

    2011-02-01

    Key challenges associated with the EGS reservoir development include the ability to reliably predict hydraulic fracturing and the deformation of natural fractures as well as estimating permeability evolution of the fracture network with time. We have developed a physics-based rock deformation and fracture propagation simulator by coupling a discrete element model (DEM) for fracturing with a network flow model. In DEM model, solid rock is represented by a network of discrete elements (often referred as particles) connected by various types of mechanical bonds such as springs, elastic beams or bonds that have more complex properties (such as stress-dependent elastic constants). Fracturing is represented explicitly as broken bonds (microcracks), which form and coalesce into macroscopic fractures when external and internal load is applied. The natural fractures are represented by a series of connected line segments. Mechanical bonds that intersect with such line segments are removed from the DEM model. A network flow model using conjugate lattice to the DEM network is developed and coupled with the DEM. The fluid pressure gradient exerts forces on individual elements of the DEM network, which therefore deforms the mechanical bonds and breaks them if the deformation reaches a prescribed threshold value. Such deformation/fracturing in turn changes the permeability of the flow network, which again changes the evolution of fluid pressure, intimately coupling the two processes. The intimate coupling between fracturing/deformation of fracture networks and fluid flow makes the meso-scale DEM- network flow simulations necessary in order to accurately evaluate the permeability evolution, as these methods have substantial advantages over conventional continuum mechanical models of elastic rock deformation. The challenges that must be overcome to simulate EGS reservoir stimulation, preliminary results, progress to date and near future research directions and opportunities will be discussed. Methodology for coupling the DEM model with continuum flow and heat transport models will also be discussed.

  3. Numerical assessment of potential impacts of hydraulically fractured Bowland Shale on overlying aquifers

    NASA Astrophysics Data System (ADS)

    Cai, Zuansi; Ofterdinger, Ulrich

    2014-05-01

    The success of unconventional gas extracted from shale formations (shale gas) over the last decade has changed the energy landscape in the United States. Shale gas rose from 2% of US gas production in 2000 to 30% in 2011, and is projected to rise to more than 50% by 2030. On the global scale, shale gas could increase total natural gas resources by approximately 32%, with an estimate of the total 7,299 trillion cubic feet (~200 trillion cubic meter) technically recoverable gas worldwide. In the UK, onshore shale gas reserve potential was first estimated to be 150 billion cubic meter by the British Geological Survey (BGS) in 2010. A recent study by BGS revised the previous estimates, with best estimate (50% probability) of total in-place gas resource of 37.6 trillion cubic meters in the Bowland Shale across central Britain. However, there are concerns of potential environmental impacts of hydraulic fracturing of the shale formations, particularly those related to water quality, such as gas migration, contaminant transport through induced and natural fractures. To evaluate the potential impact of hydraulically fractured shale on overlying aquifers, we conduct numerical modelling simulations to assess flow and solute transport from a synthetic Bowland Shale over a period of 1000 years. The synthetic fractured shale was represented by a three-dimensional discrete fracture model that was developed by using the data from a Bowland Shale gas exploration in Lancashire, UK. The assessment was carried out to investigate chloride mass fluxes from the fractured Bowland Shale for a range of upward fracture height growths from 200 to 1850 meters, with three sets of hydraulic conductivities over three orders of magnitude for a multi-layered geological system. Of eighteen scenario analyses, the maximum upward mass flux towards the overlying Sherwood Sandstone aquifer is < 0.02 ton Cl-/ yr when a constant chloride concentration of 100 g Cl-/L is applied for the brine in the fractured shale. With this mass flux rate into the fracture area of ~0.75 km2, it is unlikely to create average chloride concentration over the UK maximum concentration level of 188 mg Cl-/L in groundwater, although upward mass flux via fractures could create pollution 'hot spot' areas exceeding this concentration level. The model study also reveals that the upward mass flux is significantly intercepted by the horizontal mass flux within a high permeable layer between the Bowland Shale and its overlying aquifers, preventing further upward flux towards the overlying aquifers.

  4. Application of particle and lattice codes to simulation of hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Damjanac, Branko; Detournay, Christine; Cundall, Peter A.

    2016-04-01

    With the development of unconventional oil and gas reservoirs over the last 15 years, the understanding and capability to model the propagation of hydraulic fractures in inhomogeneous and naturally fractured reservoirs has become very important for the petroleum industry (but also for some other industries like mining and geothermal). Particle-based models provide advantages over other models and solutions for the simulation of fracturing of rock masses that cannot be assumed to be continuous and homogeneous. It has been demonstrated (Potyondy and Cundall Int J Rock Mech Min Sci Geomech Abstr 41:1329-1364, 2004) that particle models based on a simple force criterion for fracture propagation match theoretical solutions and scale effects derived using the principles of linear elastic fracture mechanics (LEFM). The challenge is how to apply these models effectively (i.e., with acceptable models sizes and computer run times) to the coupled hydro-mechanical problems of relevant time and length scales for practical field applications (i.e., reservoir scale and hours of injection time). A formulation of a fully coupled hydro-mechanical particle-based model and its application to the simulation of hydraulic treatment of unconventional reservoirs are presented. Model validation by comparing with available analytical asymptotic solutions (penny-shape crack) and some examples of field application (e.g., interaction with DFN) are also included.

  5. Application of particle and lattice codes to simulation of hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Damjanac, Branko; Detournay, Christine; Cundall, Peter A.

    2015-11-01

    With the development of unconventional oil and gas reservoirs over the last 15 years, the understanding and capability to model the propagation of hydraulic fractures in inhomogeneous and naturally fractured reservoirs has become very important for the petroleum industry (but also for some other industries like mining and geothermal). Particle-based models provide advantages over other models and solutions for the simulation of fracturing of rock masses that cannot be assumed to be continuous and homogeneous. It has been demonstrated (Potyondy and Cundall Int J Rock Mech Min Sci Geomech Abstr 41:1329-1364, 2004) that particle models based on a simple force criterion for fracture propagation match theoretical solutions and scale effects derived using the principles of linear elastic fracture mechanics (LEFM). The challenge is how to apply these models effectively (i.e., with acceptable models sizes and computer run times) to the coupled hydro-mechanical problems of relevant time and length scales for practical field applications (i.e., reservoir scale and hours of injection time). A formulation of a fully coupled hydro-mechanical particle-based model and its application to the simulation of hydraulic treatment of unconventional reservoirs are presented. Model validation by comparing with available analytical asymptotic solutions (penny-shape crack) and some examples of field application (e.g., interaction with DFN) are also included.

  6. Microbial Community Changes in Hydraulic Fracturing Fluids and Produced Water from Shale Gas Extraction

    SciTech Connect

    Mohan, Arvind Murali; Hartsock, Angela; Bibby, Kyle J.; Hammack, Richard W.; Vidic, Radisav D.; Gregory, Kelvin B.

    2013-11-19

    Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.

  7. Microbial community changes in hydraulic fracturing fluids and produced water from shale gas extraction.

    PubMed

    Murali Mohan, Arvind; Hartsock, Angela; Bibby, Kyle J; Hammack, Richard W; Vidic, Radisav D; Gregory, Kelvin B

    2013-11-19

    Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations. PMID:24088205

  8. Geo-mechanical modeling and selection of suitable layer for hydraulic fracturing operation in an oil reservoir (south west of Iran)

    NASA Astrophysics Data System (ADS)

    Darvish, Hoda; Nouri-Taleghani, Morteza; Shokrollahi, Amin; Tatar, Afshin

    2015-11-01

    According to the growth of demands to oil resources, increasing the rate of oil production seems necessary. However, oil production declines with time as a result of pressure drop in reservoir as well as sealing of microscopic cracks and pores in the reservoir rock. Hydraulic fracturing is one of the common methods with high performance, which is widely applied to oil and gas reservoirs. In this study, wells in three sections of east, center, and west sides of a field are compared regarding the suitable layer for hydraulic fracturing operation. Firstly, elastic modulus were obtained in both dynamic and static conditions, then uniaxial compressive strength (UCS), type of shear and tensile failures, the most accurate model of failure in wells, safe and stable mud window, the best zone and layers, and finally reference pressures are determined as nominates for hydraulic fracturing. Types of shear failure in minimum, and maximum range of model and in tensile model were determined to be "Shear failure wide breakout (SWBO)", "Shear narrow breakout (SNBO)", and "Tensile vertical failure (TVER)", respectively. The range of safe mud window (SMW) in the studied wells was almost in the same range as it was in every three spots of the field. This range was determined between 5200-8800psi and 5800-10100psi for Ilam and Sarvak zones, respectively. Initial fracture pressure ranges for selected layers were determined 11,759-14,722, 11,910-14,164, and 11,848-14,953psi for the eastern, central, and western wells. Thus, western wells have the best situation for Hydraulic fracturing operation. Finally, it was concluded that the operation is more economic in Sarvak zone and western wells.

  9. Hydraulic Fracture and Toughening of a Brittle Layer Bonded to a Hydrogel

    NASA Astrophysics Data System (ADS)

    Lucantonio, Alessandro; Noselli, Giovanni; Trepat, Xavier; DeSimone, Antonio; Arroyo, Marino

    2015-10-01

    Brittle materials propagate opening cracks under tension. When stress increases beyond a critical magnitude, then quasistatic crack propagation becomes unstable. In the presence of several precracks, a brittle material always propagates only the weakest crack, leading to catastrophic failure. Here, we show that all these features of brittle fracture are fundamentally modified when the material susceptible to cracking is bonded to a hydrogel, a common situation in biological tissues. In the presence of the hydrogel, the brittle material can fracture in compression and can hydraulically resist cracking in tension. Furthermore, the poroelastic coupling regularizes the crack dynamics and enhances material toughness by promoting multiple cracking.

  10. Enhanced detection of hydraulically active fractures by temperature profiling in lined heated bedrock boreholes

    NASA Astrophysics Data System (ADS)

    Pehme, P. E.; Parker, B. L.; Cherry, J. A.; Molson, J. W.; Greenhouse, J. P.

    2013-03-01

    SummaryThe effectiveness of borehole profiling using a temperature probe for identifying hydraulically active fractures in rock has improved due to the combination of two advances: improved temperature sensors, with resolution on the order of 0.001 °C, and temperature profiling within water inflated flexible impermeable liners used to temporarily seal boreholes from hydraulic cross-connection. The open-hole cross-connection effects dissipate after inflation, so that both the groundwater flow regime and the temperature distribution return to the ambient (background) condition. This paper introduces a third advancement: the use of an electrical heating cable that quickly increases the temperature of the entire static water column within the lined hole and thus places the entire borehole and its immediate vicinity into thermal disequilibrium with the broader rock mass. After heating for 4-6 h, profiling is conducted several times over a 24 h period as the temperature returns to background conditions. This procedure, referred to as the Active Line Source (ALS) method, offers two key improvements over prior methods. First, there is no depth limit for detection of fractures with flow. Second, both identification and qualitative comparison of evidence for ambient groundwater flow in fractures is improved throughout the entire test interval. The benefits of the ALS method are demonstrated by comparing results from two boreholes tested to depths of 90 and 120 m in a dolostone aquifer used for municipal water supply and in which most groundwater flow occurs in fractures. Temperature logging in the lined holes shows many fractures in the heterothermic zone both with and without heating, but only the ALS method shows many hydraulically active fractures in the deeper homothermic portion of the hole. The identification of discrete groundwater flow at many depths is supported by additional evidence concerning fracture occurrence, including continuous core visual inspection, acoustic televiewer logs, and tests for hydraulic conductivity using straddle packers as well as rock core VOC data, where available, that show deep penetration and many migration pathways. Confidence in the use of temperature profiles and the conceptual model is provided by numerical simulation and the demonstrated reproducibility of the evolution of the temperature signal measured in the lined holes with and without heating. This approach for using temperature profiling in lined holes with heating is a practical advance in fractured rock hydrogeology because the liners are readily available, the equipment needed for heating is low cost and rugged, and the time needed to obtain the profiles is not excessive for most projects.

  11. Analyzing pumped-well impeller logs to ascertain vertical hydraulic conductivity variations

    NASA Astrophysics Data System (ADS)

    Parker, A. H.; West, J.; Odling, N. E.; Bottrell, S. H.

    2007-12-01

    Horizontal variations in the hydraulic conductivity of aquifers are generally well characterized through simple pump test analyses. However, vertical variations are often poorly understood and misrepresented in the regional models used by regulatory bodies and water companies. Understanding these is key for predicting flow paths and hence the behavior of contaminants in the aquifer that might present a risk to public drinking water supplies. Traditionally, packer tests were used to characterize these variations, but they can be time consuming and costly to perform. However, other techniques have been developed which can quantify these variations, including impeller logging. This study aims to present new, more rigorous methods of analyzing impeller flow log data. Impeller logs were taken under pumped conditions in open wells in a chalk aquifer located in N. England. Theoretically, hydraulic conductivity can be obtained from the gradient in flow rate with depth. However, data are typically noisy due to turbulent flow and hole diameter variations with depth; so directly converting the flow rate gradient to hydraulic conductivity leads to rapid non-physical variation and negative hydraulic conductivity values. Correcting for hole diameter variations using caliper logs proved difficult due to phenomena such as jetting, whereby when the water enters a widening, it does not instantly slow down. In order to obtain more realistic hydraulic conductivity profiles, we firstly tried a data smoothing algorithm, but this approach distorted the data and still gave an unacceptable noise level. Instead, a layered modeling approach has been developed. A hydraulic conductivity profile consisting of a discrete number of uniform layers is constructed, and layer thicknesses and hydraulic conductivities are varied until a satisfactory fit to the observed flow log is achieved. Results from field sites on the confined Chalk aquifer of East Yorkshire in the United Kingdom showed good correlation to packer test analysis. The absence of significant ambient flows at this test site made the final analysis relatively simple. By testing boreholes across the aquifer a pattern of hydraulic conductivity variation with depth can be established, and compared to the proposed geological and climatic reasons for the variations' existence.

  12. Felt seismicity associated with shale gas hydraulic fracturing: The first documented example in Europe

    NASA Astrophysics Data System (ADS)

    Clarke, Huw; Eisner, Leo; Styles, Peter; Turner, Peter

    2014-12-01

    We describe the origin of felt seismicity during the hydraulic fracturing of the Carboniferous Bowland Shale at the Preese Hall 1 exploration well near Blackpool in the UK during 2011. The seismicity resulted from the interaction of hydraulic fracturing and a fault, the location of which was unknown at the time but has subsequently been located and does not intersect the well borehole. Waveform cross correlation is used to detect 50 events in the sequence. A representative hypocenter and strike-slip focal mechanism is calculated using the best recorded seismic event. The hypocenter is calculated to lie 300-400 m east, and 330-360 m below the injection point and shown to lie on a fault imaged using 3-D seismic at a depth of about 2930 m. The 3-D survey shows that not only the event hypocenter but also the focal mechanism correlates strongly with a subsequently identifiable transpressional fault formed during the Late Carboniferous (Variscan) basin inversion.

  13. Results of a 1995 hydraulic fracturing survey and a comparison of 1995 and 1990 industry practices

    SciTech Connect

    Carter, R.H.; Holditch, S.A.; Wolhart, S.L.

    1996-12-31

    This paper presents the results of a hydraulic fracturing survey conducted in 1995 on behalf of the Gas Research institute (GRI). The purpose of the survey was to determine the types of formations that are normally fracture treated; gather data on the fracture treatments that are normally pumped; determine the level of data collection being conducted in the field; determine the level of data analysis being conducted in the office and the field; solicit opinions on the level of technology required to obtain an accurate analysis for fracture treatments; solicit opinions of the limitations of current technology; determine what costs operators could justify to analyze fracture treatment data and obtain ideas on new areas of research. Data gathered in the survey included respondents company size (major, large/small independent, service company or consultant), geographical area of operation, well depths and permeabilities, fracture treatment size, proppant type and volume, level of detail in data gathering, fracture treatment design and real-time analysis. The 1995 data were compared to a similar survey conducted in 1990 by GRI to determine technology trends.

  14. Paving the road for hydraulic fracturing in Paleozoic tight gas reservoirs in Abu Dhabi

    NASA Astrophysics Data System (ADS)

    Alzarouni, Asim

    This study contributes to the ongoing efforts of Abu Dhabi National Oil Company (ADNOC) to improve gas production and supply in view of increasing demand and diminishing conventional gas reservoirs in the region. The conditions of most gas reservoirs with potentially economical volumes of gas in Abu Dhabi are tight abrasive deep sand reservoirs at high temperature and pressures. Thus it inevitably tests the limit of both conventional thinking and technology. Accurate prediction of well performance is a major challenge that arises during planning phase. The primary aim is to determine technical feasibility for the implementation of the hydraulic fracture technology in a new area. The ultimate goal is to make economical production curves possible and pave the road to tap new resource of clean hydrocarbon energy source. The formation targeted in this study is characterized by quartzitic sandstone layers and variably colored shale and siltstones with thin layers of anhydrites. It dates back from late Permian to Carboniferous age. It forms rocks at the lower reservoir permeability ranging from 0.2 to less than 1 millidarcy (mD). When fractured, the expected well flow in Abu Dhabi offshore deep gas wells will be close to similar tight gas reservoir in the region. In other words, gas production can be described as transient initially with high rates and rapidly declining towards a pseudo-steady sustainable flow. The study results estimated fracturing gradient range from 0.85 psi/ft to 0.91 psi/ft. In other words, the technology can be implemented successfully to the expected rating without highly weighted brine. Hence, it would be a remarkable step to conduct the first hydraulic fracturing successfully in Abu Dhabi which can pave the road to tapping on a clean energy resource. The models predicted a remarkable conductivity enhancement and an increase of production between 3 to 4 times after fracturing. Moreover, a sustainable rate above 25 MMSCFD between 6 to 10 years is predicted based on a single well model. The forecasts also show that most of the contribution will come from one zone and therefore optimized operational cost can be achieved in future. Once pressures during a diagnostic injection test are known prior to the main hydraulic fracturing treatment, precise calibration will enable accurate design of fracture geometry and containment for full field development. The feasibility of hydraulic fracture is based on available offset well data. The biggest two challenges in Abu-Dhabi at this stage are high depths and high temperatures as well as offshore conditions. For this reason, a higher well pressure envelop and fracturing string installation is envisaged as a necessity in a future well where unknown tectonic stress could result in higher fracturing load. Finally the study recommends drilling a candidate well designed for the implementation of hydraulic fracturing. This well should consider required pressure rating for the fracturing string. Thermal design considerations will also play a role during production due to high temperature. A dipole or multi pole sonic log from the same well is essential to confirm in situ stresses. The planned well will be in the crest at close proximity to studied offset wells to minimize uncertainty where tested wells produced dry gas and to avoid drilling to watered zones down the flank of the reservoir.

  15. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs

    SciTech Connect

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric; Moridis, George J.

    2013-07-01

    We have conducted numerical simulation studies to assess the potential for injection-induced fault reactivation and notable seismic events associated with shale-gas hydraulic fracturing operations. The modeling is generally tuned towards conditions usually encountered in the Marcellus shale play in the Northeastern US at an approximate depth of 1500 m (~;;4,500 feet). Our modeling simulations indicate that when faults are present, micro-seismic events are possible, the magnitude of which is somewhat larger than the one associated with micro-seismic events originating from regular hydraulic fracturing because of the larger surface area that is available for rupture. The results of our simulations indicated fault rupture lengths of about 10 to 20 m, which, in rare cases can extend to over 100 m, depending on the fault permeability, the in situ stress field, and the fault strength properties. In addition to a single event rupture length of 10 to 20 m, repeated events and aseismic slip amounted to a total rupture length of 50 m, along with a shear offset displacement of less than 0.01 m. This indicates that the possibility of hydraulically induced fractures at great depth (thousands of meters) causing activation of faults and creation of a new flow path that can reach shallow groundwater resources (or even the surface) is remote. The expected low permeability of faults in producible shale is clearly a limiting factor for the possible rupture length and seismic magnitude. In fact, for a fault that is initially nearly-impermeable, the only possibility of larger fault slip event would be opening by hydraulic fracturing; this would allow pressure to penetrate the matrix along the fault and to reduce the frictional strength over a sufficiently large fault surface patch. However, our simulation results show that if the fault is initially impermeable, hydraulic fracturing along the fault results in numerous small micro-seismic events along with the propagation, effectively preventing larger events from occurring. Nevertheless, care should be taken with continuous monitoring of induced seismicity during the entire injection process to detect any runaway fracturing along faults.

  16. Investigation of post hydraulic fracturing well cleanup physics in the Cana Woodford Shale

    NASA Astrophysics Data System (ADS)

    Lu, Rong

    Hydraulic fracturing was first carried out in the 1940s and has gained popularity in current development of unconventional resources. Flowing back the fracturing fluids is critical to a frac job, and determining well cleanup characteristics using the flowback data can help improve frac design. It has become increasingly important as a result of the unique flowback profiles observed in some shale gas plays due to the unconventional formation characteristics. Computer simulation is an efficient and effective way to tackle the problem. History matching can help reveal some mechanisms existent in the cleanup process. The Fracturing, Acidizing, Stimulation Technology (FAST) Consortium at Colorado School of Mines previously developed a numerical model for investigating the hydraulic fracturing process, cleanup, and relevant physics. It is a three-dimensional, gas-water, coupled fracture propagation-fluid flow simulator, which has the capability to handle commonly present damage mechanisms. The overall goal of this research effort is to validate the model on real data and to investigate the dominant physics in well cleanup for the Cana Field, which produces from the Woodford Shale in Oklahoma. To achieve this goal, first the early time delayed gas production was explained and modeled, and a simulation framework was established that included all three relevant damage mechanisms for a slickwater fractured well. Next, a series of sensitivity analysis of well cleanup to major reservoir, fracture, and operational variables was conducted; five of the Cana wells' initial flowback data were history matched, specifically the first thirty days' gas and water producing rates. Reservoir matrix permeability, net pressure, Young's modulus, and formation pressure gradient were found to have an impact on the gas producing curve's shape, in different ways. Some moderately good matches were achieved, with the outcome of some unknown reservoir information being proposed using the corresponding inputs from the history matching study. It was also concluded that extended shut-in durations after fracturing all the stages do not delay production in the overall situation. The success of history matching will further knowledge of well cleanup characteristics in the Cana Field, enable the future usage of this tool in other hydraulically fractured gas wells, and help operators optimize the flowback operations. Future improvements can be achieved by further developing the current simulator so that it has the capability of optimizing its grids setting every time the user changes the inputs, which will result in better stability when the relative permeability setting is modified.

  17. Coupled Finite Volume and Discrete-Finite element Methods for Modeling Hydraulic Fracturing in Geologic Formations

    NASA Astrophysics Data System (ADS)

    Johnson, S.; Morris, J.

    2008-12-01

    ABSTRACT: High demand for stimulation treatments of fluid-state hydrocarbon reservoirs is driving increased interest in improved understanding of the fundamentals of hydraulic fracturing of geologic formations. In addition, prediction of caprock integrity under the load of geologically sequestered, pressurized CO2 requires better understanding fluid-rock interactions. The approach described here addresses modeling of hydraulic fracturing at the meso-scale, using a discrete-finite element method code (LDEC) coupled to a modified finite volume method to capture compressible flow in a propagating fracture. Leak-off is also addressed through a model parameterized by flow rate and cumulative flow through the fracture face; this approach is used to better approximate the functional form of the dominant underlying chemo-physical phenomena which lead to permeability loss at the fracture face over typical models, which are often parameterized only by time and calibrated, through a set of parameters, to match experimental data. A simulation of a standard fracture injection test is used to compare the results of the proposed leak-off model with the popular Carter leak-off model and shows excellent agreement between the two models. Also, the finite volume approach is verified against analytical solutions for constant aperture parallel plate flow, and results of a validation study comparing simulation results with an experiment on the propagation of a fracture in a brittle, homogeneous polymer are discussed. ACKNOWLEDGEMENTS: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Near-tip-screenout hydraulic fracturing of oil wells in the Bach Ho field, offshore Vietnam

    SciTech Connect

    Hung, L.V.; San, N.T.; Shelomentsev, A.G.; Tronov, J.A.; Lam, D.D.; Thomas, R.L.; Fox, T.; Bisdikian, C.

    1995-10-01

    The first hydraulic fracturing of wells in Vietnam were successfully performed Offshore in the Bach Ho (White Tiger) Oil Field. Near-tip-screenouts rather than tip-screenout treatments were performed. The goal of the project was to improve production from existing wells rather than drill new wells and reduce the cost per barrel produced. This case study involves wells with multiple perforated zones completed in the Oligocene sandstone. Zones were selectively fractured in order to optimize production. A detailed description candidate selection, design, execution and evaluation processes are presented. The Bach Ho field has been producing for 8 years but not at its potential due to various reasons including drilling and completion fluid damage. Although acidizing was an option for damage removal, hydraulic fracturing was selected as a way to bypass near-wellbore damage and generate a negative skin. Production simulators were used to quantify post-frac production. Due to suspected high closure stress, high strength proppant was selected and ramped in a high temperature fracturing fluid. Calibration treatments were conducted on several wells to quantify fluid leak-off, fracture height and Young`s modulus. Based on the results of the calibration treatment, fracture designs were modified. As predicted by computer simulation, near-tip-screenouts occurred as planned. The treatments were performed using a work boat with skid pumping/blending equipment, a computer monitoring/operation center and a laboratory. Strict QC procedures were followed to ensure the quality of all products. Post-frac well tests results and production data are presented. Overall, the fracturing campaign was very successful with wells showing negative skins and up to a five fold increase of production in agreement with systems analysis predictions.

  19. High resolution monitoring of strain fields in concrete during hydraulic fracturing processes.

    PubMed

    Chen, Rongzhang; Zaghloul, Mohamed A S; Yan, Aidong; Li, Shuo; Lu, Guanyi; Ames, Brandon C; Zolfaghari, Navid; Bunger, Andrew P; Li, Ming-Jun; Chen, Kevin P

    2016-02-22

    We present a distributed fiber optic sensing scheme to image 3D strain fields inside concrete blocks during laboratory-scale hydraulic fracturing. Strain fields were measured by optical fibers embedded during casting of the concrete blocks. The axial strain profile along the optical fiber was interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry (OFDR). The 3D strain fields inside the cubes under various driving pressures and pumping schedules were measured and used to characterize the location, shape, and growth rate of the hydraulic fractures. The fiber optic sensor detection method presented in this paper provides scientists and engineers an unique laboratory tool to understand the hydraulic fracturing processes via internal, 3D strain measurements with the potential to ascertain mechanisms related to crack growth and its associated damage of the surrounding material as well as poromechanically-coupled mechanisms driven by fluid diffusion from the crack into the permeable matrix of concrete specimens. PMID:26907042

  20. A Reassessment of In-Situ Stress Determination by Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Lakirouhani, A.; Detournay, E.; Bunger, A. P.

    2016-04-01

    Estimating in situ stress based on hydraulic fracturing data typically depends on interpretation of the breakdown, secondary breakdown ("reopening") and shut-in pressure. While it has been recognized that the near wellbore stress field should be taken into account and that the compressibility of the injection system and the viscous flow of the fluid can diminish the accuracy of stress estimates, these issues have not been well-quantified. A coupled numerical model that includes the compressibility of the injection system and the flow of a viscous fluid in a plane-strain hydraulic fracture extending from a wellbore, in an impermeable rock, and in the presence of a non-isotropic in situ stress field provides a basic tool for estimating the order of the error associated with hydraulic fracturing stress measurements under non-ideal conditions. The main findings of this work are model-based guidelines on the values of relevant dimensionless parameter groups to ensure sufficient accuracy of stress estimates that use idealized models. When these guidelines cannot be met under field conditions, the model can be further applied to obtain first order corrections that account for compressibility, viscosity, and near-wellbore effects.

  1. 'Fracking' Controversy and Communication: Using National Survey Data to Understand Public Perceptions of Hydraulic Fracturing (Invited)

    NASA Astrophysics Data System (ADS)

    Boudet, H. S.

    2013-12-01

    The recent push to develop unconventional sources of oil and gas both in the U.S. and abroad via hydraulic fracturing ('fracking') has generated a great deal of controversy. Effectively engaging stakeholders and setting appropriate policies requires insights into current public perceptions of this issue. Using a nationally representative U.S. sample (N=1,061), we examine public perceptions of hydraulic fracturing including: 'top of mind' associations; familiarity with the issue; levels of support/opposition; and predictors of such judgments. Similar to findings on other emerging technologies, our results suggest limited familiarity with the process and its potential impacts and considerable uncertainty about whether to support it. Multiple regression analysis (r2 = 0.49) finds that women, those holding egalitarian worldviews, those who read newspapers more than once a week, those more familiar with hydraulic fracturing, and those who associate the process with environmental impacts are more likely to oppose fracking. In contrast, people more likely to support fracking tend to be older, hold a bachelor's degree or higher, politically conservative, watch TV news more than once a week, and associate the process with positive economic or energy supply outcomes. Based on these findings, we discuss recommendations for future research, risk communication, and energy policy.

  2. Biocides in hydraulic fracturing fluids: a critical review of their usage, mobility, degradation, and toxicity.

    PubMed

    Kahrilas, Genevieve A; Blotevogel, Jens; Stewart, Philip S; Borch, Thomas

    2015-01-01

    Biocides are critical components of hydraulic fracturing ("fracking") fluids used for unconventional shale gas development. Bacteria may cause bioclogging and inhibit gas extraction, produce toxic hydrogen sulfide, and induce corrosion leading to downhole equipment failure. The use of biocides such as glutaraldehyde and quaternary ammonium compounds has spurred a public concern and debate among regulators regarding the impact of inadvertent releases into the environment on ecosystem and human health. This work provides a critical review of the potential fate and toxicity of biocides used in hydraulic fracturing operations. We identified the following physicochemical and toxicological aspects as well as knowledge gaps that should be considered when selecting biocides: (1) uncharged species will dominate in the aqueous phase and be subject to degradation and transport whereas charged species will sorb to soils and be less bioavailable; (2) many biocides are short-lived or degradable through abiotic and biotic processes, but some may transform into more toxic or persistent compounds; (3) understanding of biocides' fate under downhole conditions (high pressure, temperature, and salt and organic matter concentrations) is limited; (4) several biocidal alternatives exist, but high cost, high energy demands, and/or formation of disinfection byproducts limits their use. This review may serve as a guide for environmental risk assessment and identification of microbial control strategies to help develop a sustainable path for managing hydraulic fracturing fluids. PMID:25427278

  3. Iodide, bromide, and ammonium in hydraulic fracturing and oil and gas wastewaters: environmental implications.

    PubMed

    Harkness, Jennifer S; Dwyer, Gary S; Warner, Nathaniel R; Parker, Kimberly M; Mitch, William A; Vengosh, Avner

    2015-02-01

    The expansion of unconventional shale gas and hydraulic fracturing has increased the volume of the oil and gas wastewater (OGW) generated in the U.S. Here we demonstrate that OGW from Marcellus and Fayetteville hydraulic fracturing flowback fluids and Appalachian conventional produced waters is characterized by high chloride, bromide, iodide (up to 56 mg/L), and ammonium (up to 420 mg/L). Br/Cl ratios were consistent for all Appalachian brines, which reflect an origin from a common parent brine, while the I/Cl and NH4/Cl ratios varied among brines from different geological formations, reflecting geogenic processes. There were no differences in halides and ammonium concentrations between OGW originating from hydraulic fracturing and conventional oil and gas operations. Analysis of discharged effluents from three brine treatment sites in Pennsylvania and a spill site in West Virginia show elevated levels of halides (iodide up to 28 mg/L) and ammonium (12 to 106 mg/L) that mimic the composition of OGW and mix conservatively in downstream surface waters. Bromide, iodide, and ammonium in surface waters can impact stream ecosystems and promote the formation of toxic brominated-, iodinated-, and nitrogen disinfection byproducts during chlorination at downstream drinking water treatment plants. Our findings indicate that discharge and accidental spills of OGW to waterways pose risks to both human health and the environment. PMID:25587644

  4. Passive seismic monitoring of hydraulic fracture experiments at the Multiwell Experiment site

    SciTech Connect

    Thorne, B.J.; Morris, H.E.

    1988-08-01

    Redesign of hardware, software, and data-reduction techniques associated with the Sandia National Laboratories' Borehole Seismic System (BSS) have made possible better estimates of hydraulic fracture geometry at the Multiwell Experiment (MWX) site. The redesigned system now incorporates four geophones per axis and provides up to 112 dB of downhole gain, for 100 times the sensitivity of the original system. Improved signal-to-noise ratios, extended frequency response and increased digitization rates have made possible the acquisition and processing of data which were previously inaccessible. A maximum likelihood event location scheme, which incorporates an algorithm based on the use of spherical statistics, is used to compute the location of microseismic events and error estimates for these locations. Accuracy estimates for the redesigned system, based on the ability to locate perforation shots, indicates a 25 ft (7.6 m) uncertainty in the location of individual microseismic events using data from two BSS receivers. This resulted in a high level of confidence in determination of the azimuth of the November 1, 1986, hydraulic fracture in the Fluvial B sandstone. A reasonable determination of the azimuth, propped wing length and height for the September 23, 1987, hydraulic fracture in the Fluvial E sandstone was possible using data from only one BSS receiver. 15 refs., 32 figs., 6 tabs.

  5. New tracers identify hydraulic fracturing fluids and accidental releases from oil and gas operations.

    PubMed

    Warner, N R; Darrah, T H; Jackson, R B; Millot, R; Kloppmann, W; Vengosh, A

    2014-11-01

    Identifying the geochemical fingerprints of fluids that return to the surface after high volume hydraulic fracturing of unconventional oil and gas reservoirs has important applications for assessing hydrocarbon resource recovery, environmental impacts, and wastewater treatment and disposal. Here, we report for the first time, novel diagnostic elemental and isotopic signatures (B/Cl, Li/Cl, δ11B, and δ7Li) useful for characterizing hydraulic fracturing flowback fluids (HFFF) and distinguishing sources of HFFF in the environment. Data from 39 HFFFs and produced water samples show that B/Cl (>0.001), Li/Cl (>0.002), δ11B (25-31‰) and δ7Li (6-10‰) compositions of HFFF from the Marcellus and Fayetteville black shale formations were distinct in most cases from produced waters sampled from conventional oil and gas wells. We posit that boron isotope geochemistry can be used to quantify small fractions (∼0.1%) of HFFF in contaminated fresh water and likely be applied universally to trace HFFF in other basins. The novel environmental application of this diagnostic isotopic tool is validated by examining the composition of effluent discharge from an oil and gas brine treatment facility in Pennsylvania and an accidental spill site in West Virginia. We hypothesize that the boron and lithium are mobilized from exchangeable sites on clay minerals in the shale formations during the hydraulic fracturing process, resulting in the relative enrichment of boron and lithium in HFFF. PMID:25327769

  6. Three-dimensional seismic characterization of a venting site reveals compelling indications of natural hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Zühlsdorff, L.; Spieß, V.

    2004-02-01

    Based on a three-dimensional high-resolution seismic survey off Vancouver Island, Canada, we show that natural hydraulic fracturing is an efficient process to create permeable pathways for focused fluid upflow at submarine venting sites. The pockmark structure examined in this study is located on top of an accreted ridge, where the low-permeability base of the gas hydrate stability field is also elevated, and fluid overpressure will be induced tectonically. Elongated hydraulic fractures reveal decreased reflection amplitudes and are oriented along the maximum principal stress direction, perpendicular to nearby fault planes. A surface expression is created by fluid and material expulsion, forming an irregular, noncircular rim along the axis of the upflow zone. Our findings confirm a relationship between lateral variations in seismic reflectivity and sediment distribution, regional tectonics, episodic fluid flow, and the formation and dissociation of gas hydrate. They explain the presence of gas hydrate at the top of the upflow zone, which requires transport of large volumes of gas through the gas hydrate stability field. Since hydraulic fracturing is not restricted to compressional regimes, it is a likely explanation for the nature, shape, and orientation of upflow zones as well as for seismic blanking widely observed at both active and passive continental margins.

  7. Analysis of hydraulic fracturing flowback and produced waters using accurate mass: identification of ethoxylated surfactants.

    PubMed

    Thurman, E Michael; Ferrer, Imma; Blotevogel, Jens; Borch, Thomas

    2014-10-01

    Two series of ethylene oxide (EO) surfactants, polyethylene glycols (PEGs from EO3 to EO33) and linear alkyl ethoxylates (LAEs C-9 to C-15 with EO3-EO28), were identified in hydraulic fracturing flowback and produced water using a new application of the Kendrick mass defect and liquid chromatography/quadrupole-time-of-flight mass spectrometry. The Kendrick mass defect differentiates the proton, ammonium, and sodium adducts in both singly and doubly charged forms. A structural model of adduct formation is presented, and binding constants are calculated, which is based on a spherical cagelike conformation, where the central cation (NH4(+) or Na(+)) is coordinated with ether oxygens. A major purpose of the study was the identification of the ethylene oxide (EO) surfactants and the construction of a database with accurate masses and retention times in order to unravel the mass spectral complexity of surfactant mixtures used in hydraulic fracturing fluids. For example, over 500 accurate mass assignments are made in a few seconds of computer time, which then is used as a fingerprint chromatogram of the water samples. This technique is applied to a series of flowback and produced water samples to illustrate the usefulness of ethoxylate "fingerprinting", in a first application to monitor water quality that results from fluids used in hydraulic fracturing. PMID:25164376

  8. Biocides in hydraulic fracturing fluids: a critical review of their usage, mobility, degradation, and toxicity.

    TOXLINE Toxicology Bibliographic Information

    Kahrilas GA; Blotevogel J; Stewart PS; Borch T

    2015-01-06

    Biocides are critical components of hydraulic fracturing ("fracking") fluids used for unconventional shale gas development. Bacteria may cause bioclogging and inhibit gas extraction, produce toxic hydrogen sulfide, and induce corrosion leading to downhole equipment failure. The use of biocides such as glutaraldehyde and quaternary ammonium compounds has spurred a public concern and debate among regulators regarding the impact of inadvertent releases into the environment on ecosystem and human health. This work provides a critical review of the potential fate and toxicity of biocides used in hydraulic fracturing operations. We identified the following physicochemical and toxicological aspects as well as knowledge gaps that should be considered when selecting biocides: (1) uncharged species will dominate in the aqueous phase and be subject to degradation and transport whereas charged species will sorb to soils and be less bioavailable; (2) many biocides are short-lived or degradable through abiotic and biotic processes, but some may transform into more toxic or persistent compounds; (3) understanding of biocides' fate under downhole conditions (high pressure, temperature, and salt and organic matter concentrations) is limited; (4) several biocidal alternatives exist, but high cost, high energy demands, and/or formation of disinfection byproducts limits their use. This review may serve as a guide for environmental risk assessment and identification of microbial control strategies to help develop a sustainable path for managing hydraulic fracturing fluids.

  9. Identification and characterization of hydrologic properties of fractured tuff using hydraulic and tracer tests, test well USW H-4, Yucca Mountain, Nye County, Nevada

    SciTech Connect

    Erickson, J.R.; Waddell, R.K.

    1985-12-31

    Test well USW H-4, located on the eastern edge of Yucca Mountain, Nye County, Nevada, penetrates volcanic tuffs through which water moves primarily along fractures. Data, collected from hydrologic and tracer tests and an acoustic-televiewer log, were used to quantify intrawell-bore flow directions and rates, permeability distribution, fracture porosity, and orientations of the hydraulic-conductivity ellipsoid for the test well. Borehole temperature data collected during a pumping test were used to identify 33 locations at which water was entering the hole. These results correlated well with results from radioactive-tracer surveys and packer tests of isolated intervals. Iodine-131 was used as a tracer under nonpumping conditions to study flow within the borehole, and to identify fractures that produced or accepted water. Water within the borehole was moving down from above and up from below toward the interval between 2500 and 3070 feet. Inflow and outflow were detected in the two most permeable zones in the borehole; however, the nondetection of it in the other test intervals may have resulted from monitoring periods that were too short. In the uppermost permeable zone, water moved down from above 2365 feet and exited the borehole between 2365 to 2375 feet; freshwater entered the borehole between 2380 and 2385 feet and moved downward. The probable shape and orientation of the hydraulic-conductivity ellipsoid were calculated from fracture frequency and orientation data. The plane containing the two larger principal axes of the ellipsoid strikes approximately north 23{sup 0} east and is nearly vertical. These two axes are approximately the same magnitude and are five to seven times larger than the smallest axis. Fracture porosity is about 10{sup -4} to 10{sup -3}, as estimated from the cubic law for hydraulic conductivity of fractures. 13 refs., 7 figs., 4 tabs.

  10. Initiation and propagation of a PKN hydraulic fracture in permeable rock: Toughness dominated regime

    NASA Astrophysics Data System (ADS)

    Sarvaramini, E.; Garagash, D.

    2011-12-01

    The present work investigates the injection of a low-viscosity fluid into a pre-existing fracture with constrained height (PKN), as in waterflooding or supercritical CO2 injection. Contrary to conventional hydraulic fracturing, where 'cake build up' limits diffusion to a small zone, the low viscosity fluid allows for diffusion over a wider range of scales. Over large injection times the pattern becomes 2 or 3-D, necessitating a full-space diffusion modeling. In addition, the dissipation of energy associated with fracturing of rock dominates the energy needed for the low-viscosity fluid flow into the propagating crack. As a result, the fracture toughness is important in evaluating both the initiation and the ensuing propagation of these fractures. Classical PKN hydraulic fracturing model, amended to account for full-space leak-off and the toughness [Garagash, unpublished 2009], is used to evaluate the pressure history and fluid leak-off volume during the injection of low viscosity fluid into a pre-existing and initially stationary. In order to find the pressure history, the stationary crack is first subject to a step pressure increase. The response of the porous medium to the step pressure increase in terms of fluid leak-off volume provides the fundamental solution, which then can be used to find the transient pressurization using Duhamel theorem [Detournay & Cheng, IJSS 1991]. For the step pressure increase an integral equation technique is used to find the leak-off rate history. For small time the solution must converge to short time asymptote, which corresponds to 1-D diffusion pattern. However, as the diffusion length in the zone around the fracture increases the assumption of a 1-D pattern is no longer valid and the diffusion follows a 2-D pattern. The solution to the corresponding integral equation gives the leak-off rate history, which is used to find the cumulative leak-off volume. The transient pressurization solution is obtained using global conservation of fluid injected into the fracture. With increasing pressure in the fracture due to the fluid injection, the energy release rate eventually becomes equal to the toughness and fracture propagates. The evolution of the fracture length is established using the method similar to the one employed for the stationary crack.

  11. Stimuli Responsive/Rheoreversible Hydraulic Fracturing Fluids for Enhanced Geothermal Energy Production (Part II)

    SciTech Connect

    Bonneville, Alain; Jung, Hun Bok; Shao, Hongbo; Kabilan, Senthil; Um, Wooyong; Carroll, Kenneth C.; Varga, Tamas; Suresh, Niraj; Stephens, Sean A.; Fernandez, Carlos A.

    2014-12-14

    We have used an environmentally friendly and recyclable hydraulic fracturing fluid - diluted aqueous solutions of polyallylamine or PAA – for reservoir stimulation in Enhanced Geothermal System (EGS). This fluid undergoes a controlled and large volume expansion with a simultaneous increase in viscosity triggered by CO2 at EGS temperatures. We are presenting here the results of laboratory-scale hydraulic fracturing experiment using the fluid on small cylindrical rock cores (1.59 cm in diameter and 5.08 cm in length) from the Coso geothermal field in California. Rock samples consisted of Mesozoic diorite metamorphosed to greenschist facies. The experiments were conducted on 5 samples for realistic ranges of pressures (up to 275 bar) and temperatures (up to 210 °C) for both the rock samples and the injected fluid. After fracturing, cores were subjected to a CO2 leakage test, injection of KI solution, and X-ray microtomography (XMT) scanning to examine the formation and distribution of fractures. The design and conduct of these experiments will be presented and discussed in details. Based on the obtained XMT images, Computational Fluid Dynamics (CFD) simulations were then performed to visualize hydraulic fractures and compute the bulk permeability. OpenFOAM (OpenCFD Ltd., Reading, UK), was used to solve the steady state simulation. The flow predictions, based upon the laminar, 3-D, incompressible Navier-Stokes equations for fluid mass and momentum, show the remarkable stimulation of the permeability in the core samples and demonstrate the efficiency of such a CO2 triggered fluid in EGS.

  12. Stimuli Responsive/Rheoreversible Hydraulic Fracturing Fluids for Enhanced Geothermal Energy Production(Part II)

    NASA Astrophysics Data System (ADS)

    Bonneville, A.; Jung, H. B.; Shao, H.; Kabilan, S.; Um, W.; Carroll, K. C.; Varga, T.; Suresh, N.; Stephens, S.; Fernandez, C. A.

    2014-12-01

    We have used an environmentally friendly and recyclable hydraulic fracturing fluid - diluted aqueous solutions of polyallylamine or PAA - for reservoir stimulation in Enhanced Geothermal System (EGS). This fluid undergoes a controlled and large volume expansion with a simultaneous increase in viscosity triggered by CO2 at EGS temperatures. We are presenting here the results of laboratory-scale hydraulic fracturing experiment using the fluid on small cylindrical rock cores (1.59 cm in diameter and 5.08 cm in length) from the Coso geothermal field in California. Rock samples consisted of Mesozoic diorite metamorphosed to greenschist facies. The experiments were conducted on 5 samples for realistic ranges of pressures (up to 275 bar) and temperatures (upt to 210 C) for both the rock samples and the injected fluid. After fracturation, cores were subjected to a CO2 leakage test, injection of KI solution, and X-ray microtomography (XMT) scanning to examine the formation and distribution of fractures. The design and conduct of these experiments will be presented and discussed in details. Based on the obtained XMT images, Computational Fluid Dynamics (CFD) simulations were then performed to visualize hydraulic fractures and compute the bulk permeability. OpenFOAM (OpenCFD Ltd., Reading, UK), was used to solve the steady state simulation. The flow predictions, based upon the laminar, 3-D, incompressible Navier-Stokes equations for fluid mass and momentum, show the remarkable stimulation of the permeability in the core samples and demonstrate the efficiency of such a CO2 triggered fluid in EGS.

  13. Environmentally Friendly, Rheoreversible, Hydraulic-fracturing Fluids for Enhanced Geothermal Systems

    SciTech Connect

    Shao, Hongbo; Kabilan, Senthil; Stephens, Sean A.; Suresh, Niraj; Beck, Anthon NR; Varga, Tamas; Martin, Paul F.; Kuprat, Andrew P.; Jung, Hun Bok; Um, Wooyong; Bonneville, Alain; Heldebrant, David J.; Carroll, KC; Moore, Joseph; Fernandez, Carlos A.

    2015-07-01

    Cost-effective creation of high-permeability reservoirs inside deep crystalline bedrock is the primary challenge for the feasibility of enhanced geothermal systems (EGS). Current reservoir stimulation entails adverse environmental impacts and substantial economic costs due to the utilization of large volumes of water “doped” with chemicals including rheology modifiers, scale and corrosion inhibitors, biocides, friction reducers among others where, typically, little or no information of composition and toxicity is disclosed. An environmentally benign, CO2-activated, rheoreversible fracturing fluid has recently been developed that significantly enhances rock permeability at effective stress significantly lower than current technology. We evaluate the potential of this novel fracturing fluid for application on geothermal sites under different chemical and geomechanical conditions, by performing laboratory-scale fracturing experiments with different rock sources under different confining pressures, temperatures, and pH environments. The results demonstrate that CO2-reactive aqueous solutions of environmentally amenable Polyallylamine (PAA) represent a highly versatile fracturing fluid technology. This fracturing fluid creates/propagates fracture networks through highly impermeable crystalline rock at significantly lower effective stress as compared to control experiments where no PAA was present, and permeability enhancement was significantly increased for PAA compared to conventional hydraulic fracturing controls. This was evident in all experiments, including variable rock source/type, operation pressure and temperature (over the entire range for EGS applications), as well as over a wide range of formation-water pH values. This versatile novel fracturing fluid technology represents a great alternative to industrially available fracturing fluids for cost-effective and competitive geothermal energy production.

  14. Laboratory data in support of hydraulically fracturing EGSP OH Well No. 3. Final report

    SciTech Connect

    Ahmed, U.; Swartz, G.C.; Scnatz, J.F.

    1980-12-01

    Geologic and geophysical interpretations of data from the EGSP OH Well No. 3 show that an organically lean shale has a gradual transition with depth to an organically rich shale and that two layers (bound each shale formation. The laboratory test program was designed to understand the containment and productivity of a hydraulic fracture induced in this well to enhance gas production from the shale. The porosity in the formations of interest, including the upper barrier, the lower barrier, and the organic shales, varied from 6 to 10 percent. The porosity of each formation averaged about 8%. Densities and ultrasonic velocities were used to evaluate dynamic moduli. Over the tested intervals moduli consistently increased with depth. This indicates the possibility of upward migration of an induced fracture. Perforations, therefore, should be limited to the lower portion of the pay sand and it is also advisable to use low injection rates. Of the four fracturing fluids tested, the two code-named Dow II and Hal I caused, respectively, the least amount of matrix permeability damage to the organically lean and organically rich shales. However, the damage caused by the other fracturing fluids were not severe enough to cause any significant permanent reduction in well productivity. The fracture conductivity tests under the influence of fracturing fluids indicated that Hal I and Dow I caused, respectively, the least amount of multilayered fracture conductivity damage to the organically lean and organically rich samples. For monolayer fracture conductivities Dow I caused least damage to the organically lean shale. With the exception of Dow III all other fluids showed good results in the monolayer tests for organically rich shales. In the situation where both the lean and the rich shales are to be fractured together, the use of either Hal I or Dow I is indicated.

  15. Hydraulic fracturing fluid migration in the subsurface: A review and expanded modeling results

    NASA Astrophysics Data System (ADS)

    Birdsell, Daniel T.; Rajaram, Harihar; Dempsey, David; Viswanathan, Hari S.

    2015-09-01

    Understanding the transport of hydraulic fracturing (HF) fluid that is injected into the deep subsurface for shale gas extraction is important to ensure that shallow drinking water aquifers are not contaminated. Topographically driven flow, overpressured shale reservoirs, permeable pathways such as faults or leaky wellbores, the increased formation pressure due to HF fluid injection, and the density contrast of the HF fluid to the surrounding brine can encourage upward HF fluid migration. In contrast, the very low shale permeability and capillary imbibition of water into partially saturated shale may sequester much of the HF fluid, and well production will remove HF fluid from the subsurface. We review the literature on important aspects of HF fluid migration. Single-phase flow and transport simulations are performed to quantify how much HF fluid is removed via the wellbore with flowback and produced water, how much reaches overlying aquifers, and how much is permanently sequestered by capillary imbibition, which is treated as a sink term based on a semianalytical, one-dimensional solution for two-phase flow. These simulations include all of the important aspects of HF fluid migration identified in the literature review and are performed in five stages to faithfully represent the typical operation of a hydraulically fractured well. No fracturing fluid reaches the aquifer without a permeable pathway. In the presence of a permeable pathway, 10 times more fracturing fluid reaches the aquifer if well production and capillary imbibition are not included in the model.

  16. Imaging of reservoirs and fracture systems using microearthquakes induced by hydraulic injections

    SciTech Connect

    Fehler, M.; House, L.; Phillips, W.S. ); Block, L.; Cheng, C.H. . Earth Resources Lab.)

    1991-01-01

    Predicting the future performance of a geothermal reservoir and planning a strategy for increasing productivity from the reservoir require an intimate knowledge of the fracture system through which geothermal fluids permeate. Microearthquakes often accompany hydraulic fracturing as well as normal production activities in geothermal fields. The waveforms from the se microearthquakes provide valuable information that can be used to infer the three-dimensional structure of the fracture system in the reservoir. The locations of the microearthquakes can be used to infer the presence of large fractures along which shear slip has occurred. Tomographic imaging using arrival times of the seismic waves, provides a three-dimensional image of the P and S wave velocity structure of the reservoir. These velocities yield information about the presence of microfractures in the rock. Waveform stacking methods can be used to both corroborate seismic velocities and image seismic scatters in the reservoir. The most prominent seismic scatters are likely to be fluid-filled fractures. Thus, seismic data provide information about a fractures over a large scale range which can be of use in reservoir engineering. 32 refs., 4 figs.

  17. INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS

    SciTech Connect

    David S. Schechter

    2004-10-10

    This report describes the work performed during the third year of the project, ''Investigating of Efficiency Improvements during CO{sub 2} Injection in Hydraulically and Naturally Fractured Reservoirs.'' The objective of this project is to perform unique laboratory experiments with artificial fractured cores (AFCs) and X-ray CT to examine the physical mechanisms of bypassing in HFR and NFR that eventually result in more efficient CO{sub 2} flooding in heterogeneous or fracture-dominated reservoirs. To achieve this objective, in this period we concentrated our effort on modeling fluid flow through rough fractures and investigating the grid orientation effect in rectangular grid blocks particularly at high mobility ratio as our precursor to use a compositional simulator. We are developing a robust simulator using Voronoi grids to accurately represent natural and induced fractures. We are also verifying the accuracy of the simulation using scaled laboratory experiments to provide a benchmark for our simulation technique. No such simulator currently exists so this capability will represent a major breakthrough in simulation of gas injection in fractured systems. The following sections outline the results that appear in this report.

  18. Using Changes in Fracture Aperture During the Interpretation of Hydraulic Well Tests

    NASA Astrophysics Data System (ADS)

    Murdoch, L.; Schweisinger, T.; Svenson, E.; Germanovich, L.

    2003-12-01

    Fractures either dilate or contract in response to head changes during hydraulic well tests. We are measuring those changes in aperture in an effort to increase the information obtained from well tests. The measurements are made with a borehole extensometer temporarily anchored to the walls of an open borehole at two locations. An LVDT measures axial displacement between the anchors and those measurements are recorded along with pressure and temperature during a well test. Current investigations have focused on isolated flat-lying fractures, so axial displacements are assumed to equal changes in aperture. The current design of the extensometer can resolve displacements on the order of several tenths of a micron. Limiting sensitivity of the device to changes in temperature has been an important aspect of ensuring accuracy. Field tests are conducted on fractures identified using caliper and camera logs, and intact borehole intervals are tested for control. Preliminary tests have made use of a borehole cutting flat-lying fractures in biotite gneiss, where the fracture spacing and degree of weathering decreases with depth. Results show that the characteristics of the fractures change with depth: average normal compliance decreases from 0.5 micron/kPa to less than 0.05 micron/kPa, and the effective transmissivity decreases as depth increases from 23 m to 29 m. Normal compliance can be used to determine specific storage, suggesting that the displacement measurements can be used to determine aquifer storativity using a test conducted at a single well. Moreover, fracture compliance of the observed magnitudes implies that the fracture aperture, and thus the transmissivity, may change markedly during well tests where changes in head are significant. More detailed interpretations of the results are being made using a model that considers fluid flow along a deformable fracture embedded in porous material. Inverting the model using transient displacement data provides an approach for deriving information about the in situ dimensions and deformation characteristics of fractures that go beyond what can be determined from hydraulic measurements alone.

  19. Hydraulic characterization and optimization of total nitrogen removal in an aerated vertical subsurface flow treatment wetland.

    PubMed