Science.gov

Sample records for vertically integrated liquid

  1. Vertical integration and market power

    SciTech Connect

    Maddigan, R.J.

    1980-01-01

    One of the continuing debates of industrial organization surrounds the importance of market structure in determining a firm's performance. This controversy develops naturally from the difficulties in measuring the relevant variables and the hazards of statistical analysis. The focus of this empirical study is the relationship between vertical integration, as an element of market structure, and market power, as a component of a firm's performance. The model presented in this paper differs from previous efforts because vertical integration is measured by the Vertical Industry Connections (VIC) index. VIC is defined as a function of the relative net interactions among the industries in which a firm operates, and is calculated by use of the national input-output tables. A linear regression model is estimated by means of a random sample of firms selected from the Standard and Poor's COMPUSTAT data base for 1963, 1967, and 1972. Combined cross-sectional, time-series methods are employed. The dependent variable is the price-cost margin; the independent variables include not only VIC, but also the concentration ratio, diversification index, value of assets, capital-output ratio, and sales growth. The results indicate that VIC is significant in increasing the price-cost margin, and thus support the hypothesis that vertical integration is a strategy to enhance market power. 1 figure, 3 tables.

  2. Vertically Integrated Circuits at Fermilab

    SciTech Connect

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2009-01-01

    The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.

  3. Vertical Integration and Technology: Theory and Evidence

    E-print Network

    Acemoglu, Daron

    We study the determinants of vertical integration. We first derive a number of predictions regarding the relationship between technology intensity and vertical integration from a simple incomplete contracts model. Then, ...

  4. NATURAL CONVECTION OF SUBCOOLED LIQUID NITROGEN IN A VERTICAL CAVITY

    E-print Network

    Chang, Ho-Myung

    NATURAL CONVECTION OF SUBCOOLED LIQUID NITROGEN IN A VERTICAL CAVITY Yeon SukChoi \\ Steven W. Van to measure the natural convection of subcooled liquid nitrogen between two vertical plates has been performed power transformer cooled by natural convection of subcooled liquid nitrogen. A liquid nitrogen bath

  5. CIRSS vertical data integration, San Bernardino study

    NASA Technical Reports Server (NTRS)

    Hodson, W.; Christenson, J.; Michel, R. (principal investigators)

    1982-01-01

    The creation and use of a vertically integrated data base, including LANDSAT data, for local planning purposes in a portion of San Bernardino County, California are described. The project illustrates that a vertically integrated approach can benefit local users, can be used to identify and rectify discrepancies in various data sources, and that the LANDSAT component can be effectively used to identify change, perform initial capability/suitability modeling, update existing data, and refine existing data in a geographic information system. Local analyses were developed which produced data of value to planners in the San Bernardino County Planning Department and the San Bernardino National Forest staff.

  6. Food Supply Chains with Vertical Integration

    E-print Network

    Nagurney, Anna

    Food Supply Chains with Vertical Integration SOM 822 Research Paper Diogo Souza-Monteiro Dep. of Resource Economics 05/10/2004 #12;Introduction Food Supply chains are becoming increasingly complex in different tiers of food chains. Barkena and Drabenstott (1995) claim that contracts are quickly taking

  7. Scalable approach for vertical device integration of epitaxial nanowires.

    PubMed

    Lugstein, A; Steinmair, M; Henkel, C; Bertagnolli, E

    2009-05-01

    In this letter, we demonstrate the simultaneous vertical integration of self-contacting and highly oriented nanowires (NWs) into airbridge structures, which have been developed into surround gated metal oxide semiconductor field effect transistors (MOSFETs). With the use of conventional photolithography, reactive ion etching (RIE), and low pressure chemical vapor deposition, a suspended vertical NW architecture is formed on a silicon on insulator (SOI) substrate where the nanodevice will later be fabricated on. The vapor-liquid-solid (VLS) grown Si-NWs are contacted to prepatterned airbridges by a self-aligned process, and there is no need for postgrowth NW assembly or alignment. Such vertical NW architecture can be easily integrated into existing ICs processes opening the path to a new generation of nonconventional nano devices. To demonstrate the potential of this method, surround gated vertical MOSFETs have been fabricated with a highly simplified integration scheme combining top-down and bottom-up approaches, but in the same way, one can think about the realization of integrated nano sensors on the industrial scale. PMID:19323479

  8. Vertically Integrated Multiple Nanowire Field Effect Transistor.

    PubMed

    Lee, Byung-Hyun; Kang, Min-Ho; Ahn, Dae-Chul; Park, Jun-Young; Bang, Tewook; Jeon, Seung-Bae; Hur, Jae; Lee, Dongil; Choi, Yang-Kyu

    2015-12-01

    A vertically integrated multiple channel-based field-effect transistor (FET) with the highest number of nanowires reported ever is demonstrated on a bulk silicon substrate without use of wet etching. The driving current is increased by 5-fold due to the inherent vertically stacked five-level nanowires, thus showing good feasibility of three-dimensional integration-based high performance transistor. The developed fabrication process, which is simple and reproducible, is used to create multiple stiction-free and uniformly sized nanowires with the aid of the one-route all-dry etching process (ORADEP). Furthermore, the proposed FET is revamped to create nonvolatile memory with the adoption of a charge trapping layer for enhanced practicality. Thus, this research suggests an ultimate design for the end-of-the-roadmap devices to overcome the limits of scaling. PMID:26544156

  9. Natural Convection of Liquid Metals in Vertical Cavities

    E-print Network

    Beckermann, Christoph

    Natural Convection of Liquid Metals in Vertical Cavities F. Wolff Research Assistant C. Beckermann- ties. Temperature measurements are employed to deduce the significance of natural convection- rameters, it is found that the natural convection patterns in liquid metals are considerably different from

  10. Integrated Vertical Bloch Line (VBL) memory

    NASA Technical Reports Server (NTRS)

    Katti, R. R.; Wu, J. C.; Stadler, H. L.

    1991-01-01

    Vertical Bloch Line (VBL) Memory is a recently conceived, integrated, solid state, block access, VLSI memory which offers the potential of 1 Gbit/sq cm areal storage density, data rates of hundreds of megabits/sec, and submillisecond average access time simultaneously at relatively low mass, volume, and power values when compared to alternative technologies. VBLs are micromagnetic structures within magnetic domain walls which can be manipulated using magnetic fields from integrated conductors. The presence or absence of BVL pairs are used to store binary information. At present, efforts are being directed at developing a single chip memory using 25 Mbit/sq cm technology in magnetic garnet material which integrates, at a single operating point, the writing, storage, reading, and amplification functions needed in a memory. The current design architecture, functional elements, and supercomputer simulation results are described which are used to assist the design process.

  11. Inclusion of Vertical Dynamics in Vertically-integrated Models for CO2 Storage

    NASA Astrophysics Data System (ADS)

    Guo, B.; Bandilla, K.; Celia, M. A.

    2012-12-01

    Mathematical models of different complexity are needed to answer a range of questions for geological sequestration of carbon dioxide (CO2). One category of simplified models is based on vertical integration, which reduces the three-dimensional problem to two dimensions. Usually, these models assume that brine and CO2 are in vertical equilibrium. This type of model is useful and accurate for simulation times that are large relative to the time for buoyant segregation. But, vertical-equilibrium models are inappropriate in some situations, for instance, in the early stage of injection, when brine and CO2 have not fully segregated. Therefore, for these situations, the vertical equilibrium assumption needs to be relaxed and vertical dynamics needs to be included in the governing equations. To avoid significant increases of computational effort due to the inclusion of vertical dynamics, a multi-scale algorithm can be constructed where the vertically integrated equations are still used to model the (dominant) horizontal flow processes with the vertical reconstruction included as a dynamic problem. Such an approach allows each vertical column of grid cells to be solved independently, as a one-dimensional problem, during the dynamic reconstruction step. Because the top and bottom boundaries usually correspond to impermeable caprock, the total flow for these one-dimensional problems is zero and counter-current flow driven only by buoyancy and capillarity is involved. Solutions for this kind of problem are relatively simple and require little computational effort. With careful coupling between the vertical calculations and the horizontally integrated equations, an efficient algorithm can be developed to simulate a fairly wide range of problems including those with significant vertical dynamics. When vertical dynamics become insignificant, then usual vertical equilibrium reconstruction is used in the vertically integrated models. This new algorithm provides an intermediate choice in model complexity between full three-dimensional models and vertical-equilibrium two-dimensional models.

  12. Vertically Integrated Rheology of Deforming Oceanic Lithosphere

    NASA Astrophysics Data System (ADS)

    Mishra, J. K.; Gordon, R. G.

    2011-12-01

    The tectonics of the oceans have traditionally been modeled in terms of rigid plates interacting at narrow boundaries. The now well-documented existence of diffuse oceanic plate boundaries, across which relative motion is distributed over hundreds to thousands of kilometers, demonstrates the need for a different approach to understanding the tectonics and geodynamics of a substantial fraction of oceanic lithosphere. A model that has usefully been applied to diffuse zones of continental deformation is that of a thin viscous sheet of fluid obeying a power-law rheology. The model has few adjustable parameters, typically a power-law exponent, n, and the Argand number [England & McKenzie, 1982], which is a measure of the size of buoyancy forces caused by the deformation, and which can be neglected for deformation of oceanic lithosphere. In prior investigations of a thin sheet of power-law fluid for continental regions, most studies have found that the most appropriate power-law exponent is ?3 [e.g., England & Molnar 1991, 1997], but a value as large as ?10 has been recently suggested by Dayem et al. [2009]. Because the rheology of oceanic lithosphere differs significantly from that of continental lithosphere, the most appropriate exponent may be larger than 3, and should in some sense be an appropriately weighted average between the properties of the upper lithosphere, which deforms brittlely and semi-brittlely, and for which the power-law exponent is n ? ?, and the lower lithosphere, which deforms by dislocation glide [Goetze 1978; Evans & Goetze 1979; Ratteron et al. 2003; Dayem et al. 2009; Mei et al. 2010], which obeys an exponential law, and by dislocation creep for which n?3 [Sonder & England, 1986]. To estimate the appropriate power-law exponent consistent with laboratory experiments we determine strain rate as a function of applied end load on the lithosphere for various ages of lithosphere. We find that a power-law fluid well approximates the vertically integrated rheology of oceanic lithosphere determined from laboratory experiments and that the best-fitting power-law exponent for the vertically integrated rheology is insensitive to strain rate. We also find that, except for very young lithosphere (< ?10 Ma old), the best-fitting power law exponent is insensitive to the age of the lithosphere, with the value of the exponent being between 14 and 16 when failing for thrust faulting for the flow laws of Kohlstedt et al [1995] and between 15 and 19 for more recently published flow laws. These results support the application of thin viscous sheet models to diffuse oceanic plate boundaries, such as the ones accommodating motion between the India, Capricorn, and Australia plates in the Indian Ocean.

  13. Integrated design of integral liquid fuel ramjet

    NASA Astrophysics Data System (ADS)

    Gu, Liangxian; Yang, Jianxin; Ma, Jia; Liu, Jingchun

    1993-04-01

    Integrated design of integral liquid fuel ramjet (ILFR) is regarded as a system of the combination of missile and ILFR, which aims at obtaining the optimum performance of the system and optimizing the parameters of both missile and ramjet. In this paper, supersonic cruise missile of medium range is taken as a calculation example. In accordance with the features of integrated ramjet, the integrated design of missile and integral ramjet are discussed here. Missile configuration and ramjet parameters are optimized and then the maximum range is obtained based on two typical cases in medium and low height cruising. Some problems related to choosing missile and ramjet parameters are also, discussed and analyzed for application in different cruise heights.

  14. Numerical Simulation of Liquid Nitrogen Chilldown of a Vertical Tube

    NASA Technical Reports Server (NTRS)

    Darr, Samuel; Hu, Hong; Schaeffer, Reid; Chung, Jacob; Hartwig, Jason; Majumdar, Alok

    2015-01-01

    This paper presents the results of a one-dimensional numerical simulation of the transient chilldown of a vertical stainless steel tube with liquid nitrogen. The direction of flow is downward (with gravity) through the tube. Heat transfer correlations for film, transition, and nucleate boiling, as well as critical heat flux, rewetting temperature, and the temperature at the onset of nucleate boiling were used to model the convection to the tube wall. Chilldown curves from the simulations were compared with data from 55 recent liquid nitrogen chilldown experiments. With these new correlations the simulation is able to predict the time to rewetting temperature and time to onset of nucleate boiling to within 25% for mass fluxes ranging from 61.2 to 1150 kg/(sq m s), inlet pressures from 175 to 817 kPa, and subcooled inlet temperatures from 0 to 14 K below the saturation temperature.

  15. Wicking and flooding of liquids on vertical porous sheets

    NASA Astrophysics Data System (ADS)

    Kim, Seong Jin; Choi, Jin Woo; Moon, Myoung-Woon; Lee, Kwang-Ryeol; Chang, Young Soo; Lee, Dae-Young; Kim, Ho-Young

    2015-03-01

    When one brings a wet paintbrush into contact with a vertical watercolor paper, the paint may wick into the porous sheet completely or run down to ruin the art. We study a simple model of this spreading dynamics of liquids on hydrophilic porous sheets under the effects of gravity, using a capillary as a liquid source and thin fabrics of non-woven polyethylene terephthalate. Upon finding the maximum flow rate, Qw, that can be absorbed into the fabric, we show that the model can be used to obtain an estimate of the in-plane permeability of fabrics in a simpler manner than the conventional schemes. The shape of a wetting area that grows when the flow rate exceeds Qw to lead to rivulet formation is also theoretically given. The nose shape of the wetting front is shown to be time-invariant, while its profile depends on the properties of the liquid and the fabric. This study can be applied to understand and improve the liquid absorption behavior of hygiene items, heating, ventilation, and air-conditioning equipments, and fuel cell membranes in addition to elucidating the mundane painting activity.

  16. Testing for subadditivity of vertically integrated electric utilities

    SciTech Connect

    Gilsdorf, K.

    1995-07-01

    The public policy debate over electric utility deregulation has a long history and generated a considerable amount of research. Much of this research focused on estimating the degree of scale economies in generation with little attention given to the effect vertical integration may have on cost structure. The vertical integration issue is important because most observers consider the transmission and distribution stages to be natural monopolies. According to Joskow and Schmalensee, economics of integration, if any, would link the production stages together, possibly extending natural monopoly conditions from transmission/distribution to generation even if the latter exhibited no economies of scale. 27 refs., 5 tabs.

  17. Vertical-cavity surface-emitting laser with a liquid crystal external cavity.

    PubMed

    Xie, Yi; Beeckman, Jeroen; Panajotov, Krassimir; Neyts, Kristiaan

    2014-11-15

    A tuneable external cavity consisting of a thin layer of nematic liquid crystal (LC) and a dielectric reflector is placed on the top of a vertical-cavity surface-emitting laser (VCSEL). By changing the voltage across the LC layer, the optical path length of the external cavity can be tuned. As a result, the emitting properties of the LC-VCSEL, including polarization state and emission wavelength, can be controlled by the voltage applied over the LC layer. Stable polarization switching with high contrast is obtained by voltage driving. This device can be integrated in applications which require electrically tuneable VCSEL emission. PMID:25490502

  18. INTEGRATED VERTICAL AND OVERHEAD DECONTAMINATION (IVOD) SYSTEM

    SciTech Connect

    M.A. Ebadian, Ph.D.

    2001-01-01

    The deactivation and decommissioning of 1200 buildings within the U.S. Department of Energy-Office of Environmental Management complex will require the disposition of a large quantity of contaminated concrete and metal surfaces. It has been estimated that 23 million cubic meters of concrete and over 600,000 tons of metal will need disposition. The disposition of such large quantities of material presents difficulties in the area of decontamination and characterization. The final disposition of this large amount of material will take time and money as well as risk to the D&D work force. A single automated system that would decontaminate and characterize surfaces in one step would not only reduce the schedule and decrease cost during D&D operations but would also protect the D&D workers from unnecessary exposures to contaminated surfaces. This report summarizes the activities performed during FY00 and describes the planned activities for FY01. Accomplishments for FY00 include the following: Development and field-testing of characterization system; Completion of Title III design of deployment platform and decontamination unit; In-house testing of deployment platform and decontamination unit; Completion of system integration design; Identification of deployment site; and Completion of test plan document for deployment of IVOD at Rancho Seco nuclear power facility.

  19. Natural Convection from Vertical Parallel Plates: An Integral Method Solution

    E-print Network

    Bahrami, Majid

    Natural Convection from Vertical Parallel Plates: An Integral Method Solution Mehran Ahmadi, Canada DOI: 10.2514/1.T4308 Steady-state external natural convection heat transfer from isothermal direction), m h = convection heat transfer coefficient, Wm2 K k = thermal conductivity, WmK L = base plate

  20. AFC-Enabled Vertical Tail System Integration Study

    NASA Technical Reports Server (NTRS)

    Mooney, Helen P.; Brandt, John B.; Lacy, Douglas S.; Whalen, Edward A.

    2014-01-01

    This document serves as the final report for the SMAAART AFC-Enabled Vertical Tail System Integration Study. Included are the ground rule assumptions which have gone into the study, layouts of the baseline and AFC-enabled configurations, critical sizing information, system requirements and architectures, and assumed system properties that result in an NPV assessment of the two candidate AFC technologies.

  1. Vertically Integrating Professional Skills throughout a Mathematics Major

    ERIC Educational Resources Information Center

    Dziak, Clarice; Leventhal, Brian; Luttman, Aaron; Skufca, Joseph

    2014-01-01

    In response to a university mandate to include "professional issues" as a component of every major, we have developed a vertically integrated approach to incorporating the study of professional skills and issues into the mathematics curriculum. Beginning in the first year of study, mathematics majors take an inquiry-based course in…

  2. STEADY-STATE DESIGN OF VERTICAL WELLS FOR LIQUIDS ADDITION AT BIOREACTOR LANDFILLS

    EPA Science Inventory

    This paper presents design charts that a landfill engineer can use for the design of a vertical well system for liquids addition at bioreactor landfills. The flow rate and lateral and vertical zones of impact of a vertical well were estimated as a function of input variables su...

  3. Vertically Integrated Seismological Analysis II : Inference

    NASA Astrophysics Data System (ADS)

    Arora, N. S.; Russell, S.; Sudderth, E.

    2009-12-01

    Methods for automatically associating detected waveform features with hypothesized seismic events, and localizing those events, are a critical component of efforts to verify the Comprehensive Test Ban Treaty (CTBT). As outlined in our companion abstract, we have developed a hierarchical model which views detection, association, and localization as an integrated probabilistic inference problem. In this abstract, we provide more details on the Markov chain Monte Carlo (MCMC) methods used to solve this inference task. MCMC generates samples from a posterior distribution ?(x) over possible worlds x by defining a Markov chain whose states are the worlds x, and whose stationary distribution is ?(x). In the Metropolis-Hastings (M-H) method, transitions in the Markov chain are constructed in two steps. First, given the current state x, a candidate next state x? is generated from a proposal distribution q(x? | x), which may be (more or less) arbitrary. Second, the transition to x? is not automatic, but occurs with an acceptance probability—?(x? | x) = min(1, ?(x?)q(x | x?)/?(x)q(x? | x)). The seismic event model outlined in our companion abstract is quite similar to those used in multitarget tracking, for which MCMC has proved very effective. In this model, each world x is defined by a collection of events, a list of properties characterizing those events (times, locations, magnitudes, and types), and the association of each event to a set of observed detections. The target distribution ?(x) = P(x | y), the posterior distribution over worlds x given the observed waveform data y at all stations. Proposal distributions then implement several types of moves between worlds. For example, birth moves create new events; death moves delete existing events; split moves partition the detections for an event into two new events; merge moves combine event pairs; swap moves modify the properties and assocations for pairs of events. Importantly, the rules for accepting such complex moves need not be hand-designed. Instead, they are automatically determined by the underlying probabilistic model, which is in turn calibrated via historical data and scientific knowledge. Consider a small seismic event which generates weak signals at several different stations, which might independently be mistaken for noise. A birth move may nevertheless hypothesize an event jointly explaining these detections. If the corresponding waveform data then aligns with the seismological knowledge encoded in the probabilistic model, the event may be detected even though no single station observes it unambiguously. Alternatively, if a large outlier reading is produced at a single station, moves which instantiate a corresponding (false) event would be rejected because of the absence of plausible detections at other sensors. More broadly, one of the main advantages of our MCMC approach is its consistent handling of the relative uncertainties in different information sources. By avoiding low-level thresholds, we expect to improve accuracy and robustness. At the conference, we will present results quantitatively validating our approach, using ground-truth associations and locations provided either by simulation or human analysts.

  4. Terminal velocity of a bubble in a vertically vibrated liquid

    NASA Astrophysics Data System (ADS)

    Romero, L. A.; Torczynski, J. R.; von Winckel, G.

    2014-05-01

    We rigorously derive a formula for the terminal velocity of a small bubble in a vertically vibrated viscous incompressible liquid starting from the full Navier-Stokes equations and the exact boundary conditions at the bubble surface. This formula is derived using a perturbation analysis in which the small parameter is the nondimensional amplitude of the pressure oscillation. The analysis does not assume that the bubble remains spherical but does assume that the bubble is axisymmetric. It is shown that the bubble terminal velocity can be computed to second order while computing the full solution only to first order by applying a compatibility condition on the first-order solution. To second order, the bubble terminal velocity is shown to be the net value from an upward steady term and a rectified term that can be downward or upward. The perturbation formula depends on the vibration frequency nondimensionalized by the bubble radius and the liquid kinematic viscosity. We show that our perturbation formula links two heuristically developed formulas for the rectified component, which we denote the velocity-averaged and force-averaged formulas. Our perturbation formula reproduces the velocity-averaged formula for low frequencies and the forced-averaged formula for high frequencies and varies monotonically between these limits for intermediate frequencies. We furthermore develop a high-resolution spectral code specifically to simulate this type of bubble motion. Results from this code verify that the perturbation formula is correct for infinitesimal oscillating pressure amplitudes and suggest that it provides an upper bound for finite amplitudes of the pressure oscillation.

  5. 47 CFR 76.504 - Limits on carriage of vertically integrated programming.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...on carriage of vertically integrated programming. 76.504 Section 76.504 Telecommunication...on carriage of vertically integrated programming. (a) Except as otherwise provided...channels to the carriage of national video programming services owned by the cable...

  6. Monolithically-integrated long vertical cavity surface emitting laser incorporating a concave micromirror on

    E-print Network

    Miller, David A. B.

    Monolithically-integrated long vertical cavity surface emitting laser incorporating a concave ­ We present a fully monolithically integrated vertical laser using an InGaAs/GaAs/AlGaAs gain medium monolithically integrated structure is advantageous to reduce cost and ease mass production. Vertical long cavity

  7. Sidewall containment of liquid metal with vertical alternating magnetic fields

    DOEpatents

    Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL); Battles, James E. (Oak Forest, IL); Hull, John R. (Hinsdale, IL); Rote, Donald M. (Lagrange, IL)

    1990-01-01

    An apparatus for containing molten metal using a magnet producing vertical alternating magnetic field positioned adjacent the area in which the molten metal is to be confined. This invention can be adapted particularly to the casting of metal between counter-rotating rollers with the vertical alternating magnetic field used to confine the molten metal at the edges of the rollers. Alternately, the vertical alternating magnetic field can be used as a flow regulator in casting molten metal from an opening in a channel.

  8. Sidewall containment of liquid metal with vertical alternating magnetic fields

    DOEpatents

    Lari, R.J.; Praeg, W.F.; Turner, L.R.; Battles, J.E.; Hull, J.R.; Rote, D.M.

    1990-12-04

    An apparatus is disclosed for containing molten metal using a magnet producing vertical alternating magnetic field positioned adjacent the area in which the molten metal is to be confined. This invention can be adapted particularly to the casting of metal between counter-rotating rollers with the vertical alternating magnetic field used to confine the molten metal at the edges of the rollers. Alternately, the vertical alternating magnetic field can be used as a flow regulator in casting molten metal from an opening in a channel. 9 figs.

  9. Sidewall containment of liquid metal with vertical alternating magnetic fields

    DOEpatents

    Lari, R.J.; Praeg, W.F.; Turner, L.R.; Battles, J.E.; Hull, J.R.; Rote, D.M.

    1988-06-17

    An apparatus for containing molten metal using a magnet producing vertical alternating magnetic field positioned adjacent to the area in which the molten metal is to be confined. This invention can be adapted particularly to the casting of metal between counter-rotating rollers with the vertical alternating magnetic field used to confine the molten metal at the edges of the rollers. Alternately, the vertical alternating magnetic field can be used as a flow regulator in casting molten metal from an opening in a channel. 8 figs.

  10. Vertically integrated pixel readout chip for high energy physics

    SciTech Connect

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Khalid, Farah; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2011-01-01

    We report on the development of the vertex detector pixel readout chips based on multi-tier vertically integrated electronics for the International Linear Collider. Some testing results of the VIP2a prototype are presented. The chip is the second iteration of the silicon implementation of the prototype, data-pushed concept of the readout developed at Fermilab. The device was fabricated in the 3D MIT-LL 0.15 {micro}m fully depleted SOI process. The prototype is a three-tier design, featuring 30 x 30 {micro}m{sup 2} pixels, laid out in an array of 48 x 48 pixels.

  11. Design and Fabrication of Vertically-Integrated CMOS Image Sensors

    PubMed Central

    Skorka, Orit; Joseph, Dileepan

    2011-01-01

    Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors. PMID:22163860

  12. Solution chemistry approach to fabricate vertically aligned carbon nanotubes on gold wires: towards vertically integrated electronics.

    PubMed

    Flavel, Benjamin S; Yu, Jingxian; Ellis, Amanda V; Quinton, Jamie S; Shapter, Joseph G

    2008-11-01

    A monolayer of hexadecyltrichlorosilane, 3-aminopropyltriethoxysilane or 3-mercaptopropyltrimethoxysilane was self-assembled onto a p-type silicon (100) substrate to provide a resist for electrochemical anodization with an atomic force microscope cantilever. Silane treatment of the oxide nanostructures created by anodization lithography allowed for the creation of a chemically heterogeneous surface, containing regions of -NH(2) or -SH surrounded by -CH(3) functionality. These patterned regions of -NH(2) or -SH provided the point of attachment for citrate-stabilized gold colloid nanoparticles, which act as 'seed' particles for the electro-less deposition of gold. This has allowed the creation of gold wires on a silicon surface. Carbon nanotubes, with high carboxylic acid functionality, were vertically immobilized on the patterned gold wires with the use of a cysteamine monolayer and a condensation reaction. Such a material may prove useful in the creation of future vertically integrated electronic devices where it is desirable for electron transport to be in three dimensions and this electron transport is demonstrated with cyclic voltammetry. PMID:21832724

  13. Integrated vertical parallel-plate capacitive humidity sensor

    NASA Astrophysics Data System (ADS)

    Lazarus, N.; Fedder, G. K.

    2011-06-01

    A high sensitivity capacitive chemical vapor sensing topology, a vertical parallel-plate sensor, was successfully integrated with CMOS testing electronics. The sensor was fabricated by etching a sacrificial aluminum layer in the CMOS stack and filling the resulting cavity with polyimide. The measured humidity response is a 0.31% change in capacitance per percent relative humidity. The temperature sensitivity of the sensor, an important specification for a sensor exposed to a variety of environmental conditions, is 0.19% °C-1. The rising and falling response time constants for a change in relative humidity are 70 and 85 s, respectively. The minimum detectable signal is 0.06 fF, corresponding to a limit of detection of 0.0023% relative humidity.

  14. Surface Instability of Liquid Propellant under Vertical Oscillatory Forcing

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; Peugeot, John

    2011-01-01

    Fluid motion in a fuel tank produced during thrust oscillations can circulate sub-cooled hydrogen near the liquid-vapor interface resulting in increased condensation and ullage pressure collapse. The first objective of this study is to validate the capabilities of a Computational Fluid Dynamics (CFD) tool, CFD-ACE+, in modeling the fundamental interface transition physics occurring at the propellant surface. The second objective is to use the tool to assess the effects of thrust oscillations on surface dynamics. Our technical approach is to first verify the CFD code against known theoretical solutions, and then validate against existing experiments for small scale tanks and a range of transition regimes. A 2D axisymmetric, multi-phase model of gases, liquids, and solids is used to verify that CFD-ACE+ is capable of modeling fluid-structure interaction and system resonance in a typical thrust oscillation environment. Then, the 3D mode is studied with an assumed oscillatory body force to simulate the thrust oscillating effect. The study showed that CFD modeling can capture all of the transition physics from solid body motion to standing surface wave and to droplet ejection from liquid-gas interface. Unlike the analytical solutions established during the 1960 s, CFD modeling is not limited to the small amplitude regime. It can extend solutions to the nonlinear regime to determine the amplitude of surface waves after the onset of instability. The present simulation also demonstrated consistent trends from numerical experiments through variation of physical properties from low viscous fluid to high viscous fluids, and through variation of geometry and input forcing functions. A comparison of surface wave patterns under various forcing frequencies and amplitudes showed good agreement with experimental observations. It is concluded that thrust oscillations can cause droplet formation at the interface, which results in increased surface area and enhanced heat transfer between the liquid and gas phases as the ejected droplets travel well into the warmer gas region.

  15. Liquid Metal Integrated Test System (LIMITS).

    SciTech Connect

    McDonald, James Maurice; Troncosa, Kenneth P.; Bauer, Frederick J.; Nygren, Richard Einar; Youchison, Dennis Lee; Lutz, Thomas Joseph; Ulrickson, Michael Andrew; Tanaka, Tina Joan

    2003-08-01

    This paper describes the liquid metal integrated test system (LIMITS) at Sandia National Laboratories. This system was designed to study the flow of molten metals and salts in a vacuum as a preliminary study for flowing liquid surfaces inside of magnetic fusion reactors. The system consists of a heated furnace with attached centrifugal pump, a vacuum chamber, and a transfer chamber for storage and addition of fresh material. Diagnostics include an electromagnetic flow meter, a high temperature pressure transducer, and an electronic level meter. Many ports in the vacuum chamber allow testing the thermal behavior of the flowing liquids heated with an electron beam or study of the effect of a magnetic field on motion of the liquid. Some preliminary tests have been performed to determine the effect of a static magnetic field on stream flow from a nozzle.

  16. Vertically integrated analysis of human DNA. Final technical report

    SciTech Connect

    Olson, M.

    1997-10-01

    This project has been oriented toward improving the vertical integration of the sequential steps associated with the large-scale analysis of human DNA. The central focus has been on an approach to the preparation of {open_quotes}sequence-ready{close_quotes} maps, which is referred to as multiple-complete-digest (MCD) mapping, primarily directed at cosmid clones. MCD mapping relies on simple experimental steps, supported by advanced image-analysis and map-assembly software, to produce extremely accurate restriction-site and clone-overlap maps. We believe that MCD mapping is one of the few high-resolution mapping systems that has the potential for high-level automation. Successful automation of this process would be a landmark event in genome analysis. Once other higher organisms, paving the way for cost-effective sequencing of these genomes. Critically, MCD mapping has the potential to provide built-in quality control for sequencing accuracy and to make possible a highly integrated end product even if there are large numbers of discontinuities in the actual sequence.

  17. Vertically integrated utilities: The regulators` poison`d chalice

    SciTech Connect

    Stelzer, I.M.

    1997-04-01

    There is no prospect of a truly competitive market for generation so long as monopoly owners of transmission and distribution wires are allowed to own generating plants. But it may be possible to do as some states have already done - pay the incumbent utility its stranded costs on condition that it divest its generation and clear the way for a truly competitive market structure. Would that it were possible to develop empirical studies to capture with precision the effect of electric utility industry restructuring on market power and on economic performance. After all, the structure of the industry is changing by the week, and there is now a widening variety of company formats available for study. There are fully integrated electric companies. There are companies that are spinning off some or all of their generation. There are non-integrated generators. There are utilities that are diversifying into businesses both related and unrelated to their principal utility businesses. It would be wonderful to compare the performance, prices and profitability of these variously structured entities. Alas, we cannot, for three reasons. First, not enough time has elapsed to give a data base that has any meaning. Second, it would be difficult to assess the relative performance of variously structured companies because all price and cost data reflect the prevalence of excess capacity, what Harvard professor William Hogan calls {open_quote}the hangover of old mistakes.{close_quote}. A third reason why an empirical analysis of the effects of vertical integration is not possible - and may never be - is that costs, prices and profits are determined by men and women - that is, by federal and state regulators, not markets.

  18. Vertically Aligned Ge Nanowires on Flexible Plastic Films Synthesized by (111)-Oriented Ge Seeded Vapor-Liquid-Solid Growth.

    PubMed

    Toko, Kaoru; Nakata, Mitsuki; Jevasuwan, Wipakorn; Fukata, Naoki; Suemasu, Takashi

    2015-08-19

    Transfer-free fabrication of vertical Ge nanowires (NWs) on a plastic substrate is demonstrated using a vapor-liquid-solid (VLS) method. The crystal quality of Ge seed layers (50 nm thickness) prepared on plastic substrates strongly influenced the VLS growth morphology, i.e., the density, uniformity, and crystal quality of Ge NWs. The metal-induced layer exchange yielded a (111)-oriented Ge seed layer at 325 °C, which allowed for the VLS growth of vertically aligned Ge NWs. The Ge NW array had almost the same quality as that formed on a bulk Ge(111) substrate. Transmission electron microscopy demonstrated that the Ge NWs were defect-free single crystals. The present investigation paves the way for advanced electronic optical devices integrated on a low-cost flexible substrate. PMID:26230716

  19. 45 (2008-5) Heat Transfer of liquid droplets impinging on vertically aligned SWNTs film

    E-print Network

    Maruyama, Shigeo

    45 (2008-5) Heat Transfer of liquid droplets impinging on vertically aligned SWNTs film bonded as a heat transfer surface, the phase change phenomena were investigated. The VA-SWNT film serves camera. By measuring the heat transfer characteristics, the surface of the VA-SWNT film was compared

  20. Reducing the color shift of a multidomain vertical alignment liquid crystal display using dual threshold voltages

    E-print Network

    Wu, Shin-Tson

    threshold voltage method for reducing color shift. In our design, each unit pixel is divided into a mainReducing the color shift of a multidomain vertical alignment liquid crystal display using dual with reduced color shift is proposed. Each pixel is divided into a main region and a subregion. A thin electric

  1. Gas-liquid two phase flow through a vertical 90 elbow bend

    SciTech Connect

    Spedding, P.L.; Benard, E.

    2007-07-15

    Pressure drop data are reported for two phase air-water flow through a vertical to horizontal 90 elbow bend set in 0.026 m i.d. pipe. The pressure drop in the vertical inlet tangent showed some significant differences to that found for straight vertical pipe. This was caused by the elbow bend partially choking the inflow resulting in a build-up of pressure and liquid in the vertical inlet riser and differences in the structure of the flow regimes when compared to the straight vertical pipe. The horizontal outlet tangent by contrast gave data in general agreement with literature even to exhibiting a drag reduction region at low liquid rates and gas velocities between 1 and 2 m s{sup -1}. The elbow bend pressure drop was best correlated in terms of l{sub e}/d determined using the actual pressure loss in the inlet vertical riser. The data showed a general increase with fluid rates that tapered off at high fluid rates and exhibited a negative pressure region at low rates. The latter was attributed to the flow being smoothly accommodated by the bend when it passed from slug flow in the riser to smooth stratified flow in the outlet tangent. A general correlation was presented for the elbow bend pressure drop in terms of total Reynolds numbers. A modified Lockhart-Martinelli model gave prediction of the data. (author)

  2. Low threshold vertical cavity surface emitting lasers integrated onto Si-CMOS ICs using novel hybrid assembly techniques

    E-print Network

    Perkins, James Michael, 1978-

    2007-01-01

    A new heterogeneous integration technique has been developed and demonstrated to integrate vertical cavity surface emitting lasers (VCSELs) on silicon CMOS integrated circuits for optical interconnect applications. Individual ...

  3. A New Concept of Vertically Integrated Pattern Recognition Associative Memory

    NASA Astrophysics Data System (ADS)

    Liu, Ted; Hoff, Jim; Deptuch, Grzegorz; Yarema, Ray

    Hardware-based pattern recognition for fast triggering on particle tracks has been successfully used in high-energy physics experiments for some time. The CDF Silicon Vertex Trigger (SVT) at the Fermilab Tevatron is an excellent example. The method used there, developed in the 1990's, is based on algorithms that use a massively parallel associative memory architecture to identify patterns efficiently at high speed. However, due to much higher occupancy and event rates at the LHC, and the fact that the LHC detectors have a much larger number of channels in their tracking detectors, there is an enormous challenge in implementing fast pattern recognition for a track trigger, requiring about three orders of magnitude more associative memory patterns than what was used in the original CDF SVT. Scaling of current technologies is unlikely to satisfy the scientific needs of the future, and investments in transformational new technologies need to be made. In this paper, we will discuss a new concept of using the emerging 3D vertical integration technology to significantly advance the state-of-the-art for fast pattern recognition within and outside HEP. A generic R&D proposal [1] based on this new concept, with a few institutions involved, has recently been submitted to DOE with the goal to design and perform the ASIC engineering necessary to realize a prototype device. The progress of this R&D project will be reported in the future. Here we will only focus on the concept of this new approach.

  4. A new concept of vertically integrated pattern recognition associative memory

    SciTech Connect

    Liu, Ted; Hoff, Jim; Deptuch, Grzegorz; Yarema, Ray; ,

    2011-11-01

    Hardware-based pattern recognition for fast triggering on particle tracks has been successfully used in high-energy physics experiments for some time. The CDF Silicon Vertex Trigger (SVT) at the Fermilab Tevatron is an excellent example. The method used there, developed in the 1990's, is based on algorithms that use a massively parallel associative memory architecture to identify patterns efficiently at high speed. However, due to much higher occupancy and event rates at the LHC, and the fact that the LHC detectors have a much larger number of channels in their tracking detectors, there is an enormous challenge in implementing fast pattern recognition for a track trigger, requiring about three orders of magnitude more associative memory patterns than what was used in the original CDF SVT. Scaling of current technologies is unlikely to satisfy the scientific needs of the future, and investments in transformational new technologies need to be made. In this paper, we will discuss a new concept of using the emerging 3D vertical integration technology to significantly advance the state-of-the-art for fast pattern recognition within and outside HEP. A generic R and D proposal based on this new concept, with a few institutions involved, has recently been submitted to DOE with the goal to design and perform the ASIC engineering necessary to realize a prototype device. The progress of this R and D project will be reported in the future. Here we will only focus on the concept of this new approach.

  5. Integration of photoactive and electroactive components with vertical cavity surface emitting lasers

    DOEpatents

    Bryan, R.P.; Esherick, P.; Jewell, J.L.; Lear, K.L.; Olbright, G.R.

    1997-04-29

    A monolithically integrated optoelectronic device is provided which integrates a vertical cavity surface emitting laser and either a photosensitive or an electrosensitive device either as input or output to the vertical cavity surface emitting laser either in parallel or series connection. Both vertical and side-by-side arrangements are disclosed, and optical and electronic feedback means are provided. Arrays of these devices can be configured to enable optical computing and neural network applications. 9 figs.

  6. Integration of photoactive and electroactive components with vertical cavity surface emitting lasers

    DOEpatents

    Bryan, Robert P. (12700 Indian School Rd. NE., Apt. 604, Albuquerque, NM 87112); Esherick, Peter (1105 Sagebrush Trail SE., Albuquerque, NM 87123); Jewell, Jack L. (12 Timberline Dr., Bridgewater, NJ 08807); Lear, Kevin L. (13713 Vic Rd. NE., Albuquerque, NM 87112); Olbright, Gregory R. (3875 Orange Ct., Boulder, CO 80304)

    1997-01-01

    A monolithically integrated optoelectronic device is provided which integrates a vertical cavity surface emitting laser and either a photosensitive or an electrosensitive device either as input or output to the vertical cavity surface emitting laser either in parallel or series connection. Both vertical and side-by-side arrangements are disclosed, and optical and electronic feedback means are provided. Arrays of these devices can be configured to enable optical computing and neural network applications.

  7. Monolithically-integrated long vertical cavity surface emitting laser incorporating a concave

    E-print Network

    Miller, David A. B.

    Monolithically-integrated long vertical cavity surface emitting laser incorporating a concave: We present a fully monolithically integrated long vertical cavity surface emitting laser using an In.A. Avrutin, J.H. Marsh and E.L. Portnoi, "Monolithic and multi-GigaHertz mode-locked semiconductor lasers

  8. Benefits of vertical and horizontal seismic isolation for LMR (liquid metal reactor) nuclear reactor units

    SciTech Connect

    Wu, Ting-shu; Chang, Y.W.; Seidensticker, R.W.

    1988-01-01

    Seismic isolation has been shown to be able to reduce transmitted seismic force and lower response accelerations of a structure. When applied to nuclear reactors, it will minimize seismic influence on the reactor design and provide a design which is less site dependent. In liquid metal reactors where components are virtually at atmospheric pressure but under severe thermal conditions, thin-walled structures are generally used for primary systems. Thin-walled structures, however, have little inherent seismic resistance. The concept of seismic isolation therefore offers a viable and effective approach that permits the reactor structures to better withstand thermal and seismic loadings simultaneously. The majority of published work on seismic isolation deals with use of horizontal isolation system only. In this investigation, however, local vertical isolation is also provided for the primary system. Such local vertical isolation is found to result in significant benefits for major massive components, such as the reactor cover, designed to withstand vertical motions and loadings. Preliminary estimations on commodity savings of the primary system show that, with additional local vertical isolation, the savings could be twice that estimated for horizontal isolation only. The degree of effectiveness of vertical isolation depends on the diameter of the reactor vessel. As the reactor vessel diameter increases, the vertical seismic effects become more pronounced and vertical isolation can make a significant contribution.

  9. Liquid Oxygen/Liquid Methane Integrated Propulsion System Test Bed

    NASA Technical Reports Server (NTRS)

    Flynn, Howard; Lusby, Brian; Villemarette, Mark

    2011-01-01

    In support of NASA?s Propulsion and Cryogenic Advanced Development (PCAD) project, a liquid oxygen (LO2)/liquid methane (LCH4) Integrated Propulsion System Test Bed (IPSTB) was designed and advanced to the Critical Design Review (CDR) stage at the Johnson Space Center. The IPSTB?s primary objectives are to study LO2/LCH4 propulsion system steady state and transient performance, operational characteristics and to validate fluid and thermal models of a LO2/LCH4 propulsion system for use in future flight design work. Two phase thermal and dynamic fluid flow models of the IPSTB were built to predict the system performance characteristics under a variety of operating modes and to aid in the overall system design work. While at ambient temperature and simulated altitude conditions at the White Sands Test Facility, the IPSTB and its approximately 600 channels of system instrumentation would be operated to perform a variety of integrated main engine and reaction control engine hot fire tests. The pressure, temperature, and flow rate data collected during this testing would then be used to validate the analytical models of the IPSTB?s thermal and dynamic fluid flow performance. An overview of the IPSTB design and analytical model development will be presented.

  10. Integrating radiology vertically into an undergraduate medical education curriculum: a triphasic integration approach

    PubMed Central

    Al Qahtani, Fahd; Abdelaziz, Adel

    2014-01-01

    Fulfilling the goal of integrating radiology into undergraduate medical curricula is a real challenge due to the enduring faith assuming that traditional medical disciplines are worthy of consuming the available study time. In this manner, radiology is addressed occasionally and with relevance to these traditional disciplines. In Al-Baha University Faculty of Medicine, Al-Baha, Saudi Arabia, efforts have been made to integrate radiology vertically and in a structured manner into the undergraduate curriculum from the first year to the sixth year. For achieving convenient integration of radiology, a triphasic approach to integration is adopted. This approach consists of the integration of radiology foundations into the basic sciences phase, development of a distinct 4-week module in year 4, and finally, integration of clinical applications of radiology in the clinical phase modules. Feedback of students and inferences obtained through assessment and program evaluation are in favor of this approach to integration. Minor reform and some improvement related to time allocated and content balancing are still indicated. PMID:24959094

  11. Surfactant-driven spreading of a liquid on a vertical surface

    SciTech Connect

    He, S.; Ketterson, J.B.

    1995-11-01

    The spreading behavior of a liquid on the surface of a solid substrate is greatly changed by the presence of a molecular layer of organic material (a surfactant) on the liquid surface. In this work, we studied the spreading of water covered by a monolayer of valinomycin on a vertical glass slide, using an apparatus for Langmuir--Blodgett film deposition. The rate of spreading strongly depends on the surfactant concentration, and the spreading front is highly unstable: it bifurcates while spreading, forming tree-like patterns. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  12. Flow patterns and their transitions of vertically downward two-phase flow with high viscosity liquid

    SciTech Connect

    Wang, S.Z.; Lin, Z.H.; Liang, Z.P.

    1996-12-31

    The flow patterns and their transitions of air-oil two-phase flows in a vertically downward pipe were investigated experimentally and theoretically. The pipe diameter was 39mm, and the oil and air superficial velocity were up to 4m/s and 20m/s respectively. The flow pattern identifications were carried out by means of the combination of visual observations and analysis for corresponding pressure drop pulsation signals. The investigations express that the flow patterns and their transitions of oil and gas two-phase flow somewhat differed from those of low viscous liquid and gas two-phase flows. On the basis of this study and other previous investigations, one available approach is presented to predict the flow patterns and their transitions in vertically downward two-phase flow with high-viscosity liquid.

  13. Integration of a waveguide self-electrooptic effect device and a vertically coupled interconnect waveguide

    DOEpatents

    Vawter, G. Allen (Corrales, NM)

    2008-02-26

    A self-electrooptic effect device ("SEED") is integrated with waveguide interconnects through the use of vertical directional couplers. Light initially propagating in the interconnect waveguide is vertically coupled to the active waveguide layer of the SEED and, if the SEED is in the transparent state, the light is coupled back to the interconnect waveguide.

  14. Development of Vertically Integrated Circuits for ILC Vertex Detectors

    E-print Network

    Ronald Lipton; for the Fermilab Pixel R&D Group

    2009-01-29

    We report on studies of vertically interconnected electronics (3D) performed by the Fermilab pixel group over the past two years. These studies include exploration of interconnect technology, backside thinning and laser annealing, the production of the first 3D chip for particle physics, the VIP, and plans for a commercial two-tier 3D fabrication run.

  15. Optimal GPS/accelerometer integration algorithm for monitoring the vertical structural dynamics

    NASA Astrophysics Data System (ADS)

    Meng, Xiaolin; Wang, Jian; Han, Houzeng

    2014-11-01

    The vertical structural dynamics is a crucial factor for structural health monitoring (SHM) of civil structures such as high-rise buildings, suspension bridges and towers. This paper presents an optimal GPS/accelerometer integration algorithm for an automated multi-sensor monitoring system. The closed loop feedback algorithm for integrating the vertical GPS and accelerometer measurements is proposed based on a 5 state extended KALMAN filter (EKF) and then the narrow moving window Fast Fourier Transform (FFT) analysis is applied to extract structural dynamics. A civil structural vibration is simulated and the analysed result shows the proposed algorithm can effectively integrate the online vertical measurements produced by GPS and accelerometer. Furthermore, the accelerometer bias and scale factor can also be estimated which is impossible with traditional integration algorithms. Further analysis shows the vibration frequencies detected in GPS or accelerometer are all included in the integrated vertical defection time series and the accelerometer can effectively compensate the short-term GPS outages with high quality. Finally, the data set collected with a time synchronised and integrated GPS/accelerometer monitoring system installed on the Nottingham Wilford Bridge when excited by 15 people jumping together at its mid-span are utilised to verify the effectiveness of this proposed algorithm. Its implementations are satisfactory and the detected vibration frequencies are 1.720 Hz, 1.870 Hz, 2.104 Hz, 2.905 Hz and also 10.050 Hz, which is not found in GPS or accelerometer only measurements.

  16. Liquid entrainment at an upward oriented vertical branch line from a horizontal pipe

    NASA Astrophysics Data System (ADS)

    Welter, Kent Byron

    Under simulated accident conditions, tees in the primary coolant loop of a Pressurized Water Reactor (PWR) can deviate from their original design purpose and become separators that effectively remove core heat sink capacity. This method of primary coolant removal is a phenomenological subset of phase separation known as liquid entrainment, whereby liquid is forced from its original path by the inertia of the gas. A comprehensive literature review revealed common deficiencies in previous studies. The Westinghouse AP600 advanced reactor design was chosen to assess the validity of entrainment models. Following a systematic scaling analysis of the prototypic design a model separate effects test was proposed and constructed at Oregon State University. Just under 100 tests were run to fill the deficiencies found in the literature review. New data from the Air-water Test Loop for Advanced Thermal-hydraulic Studies (ATLATS) could not be predicted by published correlations. A new theoretical model for predicting liquid entrainment onset and steady state entrainment was developed. Comparison with all available data shows a marked improvement for predicting the mass flow rate out the vertical branch.

  17. An experimental study of gas-liquid slug flow in vertical and inclined tubes using high speed motion analyzer

    SciTech Connect

    Xia, G.; Zhou, F.; Hu, M.

    1996-12-31

    Experimental investigation was carried out for gas-liquid slug flow in vertical and inclined tubes. The non-invasive measurements of the gas-liquid slug flow were taken by using the EKTAPRO 1000 High Speed Motion Analyzer. The present paper has obtained the information on the velocity of the Taylor bubble, the size distribution of the dispersed bubbles in the liquid slugs and some characteristics of the liquid film around the Taylor bubble. The experimental results are in good agreement with the available data.

  18. Vertical optical ring resonators fully integrated with nanophotonic waveguides on silicon-on-insulator substrates.

    PubMed

    Madani, Abbas; Kleinert, Moritz; Stolarek, David; Zimmermann, Lars; Ma, Libo; Schmidt, Oliver G

    2015-08-15

    We demonstrate full integration of vertical optical ring resonators with silicon nanophotonic waveguides on silicon-on-insulator substrates to accomplish a significant step toward 3D photonic integration. The on-chip integration is realized by rolling up 2D differentially strained TiO(2) nanomembranes into 3D microtube cavities on a nanophotonic microchip. The integration configuration allows for out-of-plane optical coupling between the in-plane nanowaveguides and the vertical microtube cavities as a compact and mechanically stable optical unit, which could enable refined vertical light transfer in 3D stacks of multiple photonic layers. In this vertical transmission scheme, resonant filtering of optical signals at telecommunication wavelengths is demonstrated based on subwavelength thick-walled microcavities. Moreover, an array of microtube cavities is prepared, and each microtube cavity is integrated with multiple waveguides, which opens up interesting perspectives toward parallel and multi-routing through a single-cavity device as well as high-throughput optofluidic sensing schemes. PMID:26274670

  19. Organic vertical field effect transistors: Achieving high on-off ratio and vertical integration with OLEDs (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Kwon, Hyukyun; Kim, Mincheol; Cho, Hyunsu; Yoo, Seunghyup

    2015-10-01

    Organic vertical field effect transistors (VFETs) have been explored to enhance the output current level and device operation speed due to the inherent low carrier mobility of organic semiconductors. However, most of VFETs reported to date involve a complex source electrode patterning process owing to their operation mechanism. Here, we investigate on VFETs based on C60 that do not require complex source electrode patterning process by insulting the top surface of a source electrode embedded in C60 layer [1]. In a VFET structure studied in this work, current flow is controlled by the electric field between a gate and a source electrode embedded within an active layer which is called bottom active layer. Based on its operation mechanism, several geometrical parameters such as (i) bottom active layer thickness; (ii) presence of a charge blocking layer and its thickness ensuring insulating properties; and (iii) the width of electrodes are identified as key factors influencing device performance. Through the device optimization with these parameters, the proposed organic VFETs exhibit a large on/off ratio of 6×10^5 and output current that is greater than that of a conventional C60 based OTFT with a similar device dimension. In order to show the benefit of VFETs, a single-pixel organic light-emitting diode (OLED) is integrated vertically with the VFETs under study.

  20. Three-Dimensional Simulation of Liquid Drop Dynamics Within Unsaturated Vertical Hele-Shaw Cells

    SciTech Connect

    Hai Huang; Paul Meakin

    2008-03-01

    A three-dimensional, multiphase fluid flow model with volume of fluid-interface tracking was developed and applied to study the multiphase dynamics of moving liquid drops of different sizes within vertical Hele-Shaw cells. The simulated moving velocities are significantly different from those obtained from a first-order analytical approximation, based on simple force-balance concepts. The simulation results also indicate that the moving drops can exhibit a variety of shapes and that the transition among these different shapes is largely determined by the moving velocities. More important, there is a transition from a linear moving regime at small capillary numbers, in which the capillary number scales linearly with the Bond number, to a nonlinear moving regime at large capillary numbers, in which the moving drop releases a train of droplets from its trailing edge. The train of droplets forms a variety of patterns at different moving velocities.

  1. Microstructural and microspectral characterization of a vertically aligned liquid crystal display panel.

    PubMed

    Tsai, Chien-Chung; Lin, Yen-Sheng; Pei, Shan-Chuang; Chang, Chia-Kai; Chen, Ting-Hao; Cheng, Nai-Chia; Tsai, Meng-Ko; Lai, Chien-Chih; Li, Wang-Yang; Wei, Chung-Kuang; Huang, Sheng-Lung

    2011-02-15

    The microstructural and microspectral characteristics of a vertically aligned liquid crystal display (VA-LCD) panel were obtained noninvasively for the first time. With 1??m axial and 2??m transversal resolutions, the cell gap profile beneath the patterned thin-film transistor of the VA-LCD panel can clearly be resolved. The thicknesses of the multiple thin-film layers and the embedded defects can also be unveiled. As far as spectral response is concerned, the light transmittance at the layer boundaries can be estimated from the measured reflectance, which is crucial information for the design of a highly transmissive panel. The color shift of the VA-LCD panel due to fabrication error was evaluated. PMID:21326458

  2. Vertical Integration of Geographic Information Sciences: A Recruitment Model for GIS Education

    ERIC Educational Resources Information Center

    Yu, Jaehyung; Huynh, Niem Tu; McGehee, Thomas Lee

    2011-01-01

    An innovative vertical integration model for recruiting to GIS education was introduced and tested following four driving forces: curriculum development, GIS presentations, institutional collaboration, and faculty training. Curriculum development was a useful approach to recruitment, student credit hour generation, and retention-rate improvement.…

  3. THE VIGRE PROGRAM Vertical integration of teaching and research has been a tradition

    E-print Network

    May, J. Peter

    THE VIGRE PROGRAM OVERVIEW Vertical integration of teaching and research has been a tradition between our traditional basic first year program and our advanced graduate courses have also been use to describe our programs since the early 1970's. It is departmental tradition that advanced

  4. NET-VISA: Network Processing Vertically Integrated Seismic Analysis by Nimar S. Arora, Stuart Russell,*

    E-print Network

    Russell, Stuart

    NET-VISA: Network Processing Vertically Integrated Seismic Analysis by Nimar S. Arora, Stuart and in real time, performing station processing (analysis and reduction of raw seismic sensor data to detect Russell,* and Erik Sudderth Abstract The automated processing of multiple seismic signals to detect

  5. VERTICAL INTEGRATION OF THREE-PHASE FLOW EQUATIONS FOR ANALYSIS OF LIGHT HYDROCARBON PLUME MOVEMENT

    EPA Science Inventory

    A mathematical model is derived for areal flow of water and light hydrocarbon in the presence of gas at atmospheric pressure. Closed-form expressions for the vertically integrated constitutive relations are derived based on a three-phase extension of the Brooks-Corey saturation-...

  6. Vertical and Horizontal Integration of Laboratory Curricula and Course Projects across the Electronic Engineering Technology Program

    ERIC Educational Resources Information Center

    Zhan, Wei; Goulart, Ana; Morgan, Joseph A.; Porter, Jay R.

    2011-01-01

    This paper discusses the details of the curricular development effort with a focus on the vertical and horizontal integration of laboratory curricula and course projects within the Electronic Engineering Technology (EET) program at Texas A&M University. Both software and hardware aspects are addressed. A common set of software tools are…

  7. 47 CFR 76.504 - Limits on carriage of vertically integrated programming.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... programming. 76.504 Section 76.504 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST... Limits on carriage of vertically integrated programming. (a) Except as otherwise provided in this section... national video programming services owned by the cable operator or in which the cable operator has...

  8. Toward a more comprehensive theory of zooplankton diel vertical migration: Integrating ultraviolet radiation and water transparency into the biotic paradigm

    E-print Network

    Williamson, Craig E.

    ultraviolet (UV) radiation and temperature are also important. Here we integrate current knowledge in our understand- ing of the role of ultraviolet radiation (UV). Many environmental factorsToward a more comprehensive theory of zooplankton diel vertical migration: Integrating ultraviolet

  9. Unilateral internuclear ophthalmoplegia with upbeat nystagmus from ischemic origin: evidence for the paramedian tract neurons as a vertical neural integrator?

    PubMed Central

    Zhao, Zhang-Ning; Li, Xiao-Lin; Ma, Gao-Ting; Zhu, Mei-Jia

    2015-01-01

    Only a few cases with unilateral internuclear ophthalmoplegia have been reported presenting vertical nystagmus, and few of them provides convincing evidence for the paramedian tract neuron to be a vertical neural integrator. We report a patient who suffered from confined dorsal mid-upper pontine infarction showing unilateral internuclear ophthalmoplegia with upbeat nystagmus in primary position. This case possibly provide evidence that paramedian tract neurons may act as a vertical neural integrator in human. PMID:26550407

  10. Advantages of a vertical integration process in the design of DNW MAPS

    NASA Astrophysics Data System (ADS)

    Ratti, L.; Gaioni, L.; Manazza, A.; Manghisoni, M.; Re, V.; Traversi, G.

    2015-06-01

    This work discusses the main features of a CMOS Deep N-well (DNW) monolithic active pixel sensor (MAPS) fabricated in a vertically integrated technology, where two 130 nm CMOS homogeneous tiers are processed to obtain a 3D integrated circuit (3D-IC). The 3D CMOS MAPS, which was designed in view of vertexing applications to experiments at high luminosity colliders, features a 20 ?m pitch for a point resolution of about 5 ?m and data sparsification capabilities for high data rate systems. Results from the characterization of different test structures, including single pixels, 3×3 and 8×8 matrices, are presented. In particular, measurements have been performed with an infrared laser source to evaluate the charge collection properties of the proposed vertically integrated sensors.

  11. Integration of diffractive lenses with addressable vertical-cavity laser arrays

    SciTech Connect

    Warren, M.E.; Du, T.C.; Wendt, J.R.; Vawter, G.A.; Carson, R.F.; Lear, K.L.; Kilcoyne, S.P.; Schneider, R.P.; Zolper, J.C.

    1995-04-01

    An optical interconnection system is being developed to provide vertical, digital data channels for stacked multichip modules. A key component of the system is an array of individually addressable vertical-cavity surface-emitting lasers with diffractive lenses integrated into the substrate to control beam divergence and direction. The lenses were fabricated by direct-write e-beam lithography and reactive ion beam etching into the GaAs substrate. Preliminary device performance data and the design and fabrication issues are discussed.

  12. P2A.4 On the vertical profile of stratus liquid water flux using a millimeter cloud radar Shelby Frisch

    E-print Network

    Zuidema, Paquita

    using cloud radars have been used to retrieve the effective radius from the reflectivity measurements water flux due to the cloud fall velocity can be evaluated using cloud radar reflectivity measurementsP2A.4 On the vertical profile of stratus liquid water flux using a millimeter cloud radar Shelby

  13. On the vertical profile of stratus liquid water flux using a millimeter cloud radar Shelby Frisch Paquita Zuidema Chris Fairall

    E-print Network

    Zuidema, Paquita

    -normally distributed stratus cloud droplets relate to the radar reflectivity Z through where re is the effective radiusOn the vertical profile of stratus liquid water flux using a millimeter cloud radar Shelby Frisch Technology Laboratory,Boulder,CO 1.Introduction Millimeter cloud radars are routinely applied towards

  14. Integrating carbon nanotubes into silicon by means of vertical carbon nanotube field-effect transistors.

    PubMed

    Li, Jingqi; Wang, Qingxiao; Yue, Weisheng; Guo, Zaibing; Li, Liang; Zhao, Chao; Wang, Xianbin; Abutaha, Anas I; Alshareef, H N; Zhang, Yafei; Zhang, X X

    2014-08-01

    Single-walled carbon nanotubes have been integrated into silicon for use in vertical carbon nanotube field-effect transistors (CNTFETs). A unique feature of these devices is that a silicon substrate and a metal contact are used as the source and drain for the vertical transistors, respectively. These CNTFETs show very different characteristics from those fabricated with two metal contacts. Surprisingly, the transfer characteristics of the vertical CNTFETs can be either ambipolar or unipolar (p-type or n-type) depending on the sign of the drain voltage. Furthermore, the p-type/n-type character of the devices is defined by the doping type of the silicon substrate used in the fabrication process. A semiclassical model is used to simulate the performance of these CNTFETs by taking the conductance change of the Si contact under the gate voltage into consideration. The calculation results are consistent with the experimental observations. PMID:24965261

  15. Planarization techniques for vertically integrated metallic MEMS on silicon foundry circuits

    NASA Astrophysics Data System (ADS)

    Lee, J.-B.; English, J.; Ahn, C.-H.; Allen, M. G.

    1997-06-01

    Various micromachining techniques exist to realize integrated microelectromechanical systems (MEMS), which include sensors, signal processing and/or driving circuits, and/or actuators in one small die. Post-processing techniques performed on foundry-fabricated circuits (e.g., MOSIS) are attractive since such an approach eliminates the need for an in-house integrated circuit fabrication line to produce integrated MEMS. A method based on the combination of metallic (e.g., electroplating) micromachining techniques with multichip module deposited (MCM-D) processes is a possible candidate to realize vertically-stacked integrated MEMS using the post-processing of integrated circuits (post-IC) approach. In order to realize such devices, planarization of the surface of foundry-fabricated circuit chips or wafers is often required. In such planarization layers, mechanical and chemical stability, as well as adhesion between the circuit-containing substrate and the micromachined devices, should be addressed. A PI/BCB/PI sandwich interlayer system, which utilizes both advantages of DuPont polyimide PI 2611 and Dow benzocyclobutene (BCB) Cyclotene 3022 series, was developed as a planarization interlayer for vertically integrated MEMS. The PI/BCB/PI interlayer system shows an over 95% degree of planarization (DOP) as well as passes the Method 107G Thermal Shock from the military standard MIL-STD-202F. A 0960-1317/7/2/002/img7 interlayer system was also developed as an alternative to the PI/BCB/PI system.

  16. A vertically integrated solar-powered electrochromic window for energy efficient buildings.

    PubMed

    Dyer, Aubrey L; Bulloch, Rayford H; Zhou, Yinhua; Kippelen, Bernard; Reynolds, John R; Zhang, Fengling

    2014-07-23

    A solution-processed self-powered polymer electrochromic/photovoltaic (EC/PV) device is realized by vertically integrating two transparent PV cells with an ECD. The EC/PV cell is a net energy positive dual functional device, which can be reversibly switched between transparent and colored states by PV cells for regulating incoming sunlight through windows. The two PV cells can individually, or in pairs, generate electricity. PMID:24863393

  17. Proposal for the development of 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    SciTech Connect

    Deptuch, Gregory; Hoff, Jim; Kwan, Simon; Lipton, Ron; Liu, Ted; Ramberg, Erik; Todri, Aida; Yarema, Ray; Demarteua, Marcel,; Drake, Gary; Weerts, Harry; /Argonne /Chicago U. /Padua U. /INFN, Padua

    2010-10-01

    Future particle physics experiments looking for rare processes will have no choice but to address the demanding challenges of fast pattern recognition in triggering as detector hit density becomes significantly higher due to the high luminosity required to produce the rare process. The authors propose to develop a 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) chip for HEP applications, to advance the state-of-the-art for pattern recognition and track reconstruction for fast triggering.

  18. Splay and bend disclinations in multidomain vertical-alignment liquid-crystal cells

    NASA Astrophysics Data System (ADS)

    Jung, Jin-Soo; Song, Jang-Kun

    2012-07-01

    We investigated the domain boundary formations in multidomain vertical-alignment nematic liquid-crystal (VA LC) cells. There are two types of domain boundaries in multidomain VA cells, splay and bend type domains, the boundaries of which are dominated by the splay and bend deformations, respectively. Each type could be achieved by either the single-4-domain pair or the 2-2-domain pair of two substrates and have four different domain arrangements. We demonstrated that the disclination width of the splay type domain is about 50% wider than that of the bend type domain even when the splay and bend elastic constants are the same. The difference is so large that it cannot be compensated for by adjusting the elastic constants of the LCs within realistic material parameter ranges. The mechanism of the phenomenon was investigated by disassembling the elastic deformation strains into each component and analyzing them individually. The large difference was revealed to arise from the different twist deformation strains near the surface, which is significantly larger in the bend type than in the splay type. We also suggest an asymmetric pretilt structure, which dramatically reduces the domain boundary width. However, simple adoption of a large pretilt angle is not effective for reducing the width. The experimental results obtained in real LC display panels qualitatively agree well with the simulation results.

  19. Synthesis and crystal growth of Mg2Si by the liquid encapsulated vertical gradient freezing method

    NASA Astrophysics Data System (ADS)

    Nakagawa, Reo; Katsumata, Hiroshi; Hashimoto, Satoshi; Sakuragi, Shiro

    2015-08-01

    The synthesis of Mg2Si bulk crystals was performed by the vertical gradient freezing method using a KCl-MgCl2 eutectic liquid encapsulant. Stoichiometric polycrystalline Mg2Si bulk crystals were successfully grown by changing the composition ratio of starting Mg and Si powders (Mg/Si) from 2.0 to 3.5. A chemical reaction between Mg2Si and the crucible materials was inhibited using encapsulant materials, and the contamination by K or Cl originating from the encapsulant materials was not detected in almost all the samples. However, Mg evaporation could not be prevented completely during the synthesis and crystal growth. The optical band-gap energy of Mg2Si bulk crystals became minimal (0.79 eV) at a Mg/Si ratio of 2.5, at which the maximum electron mobility of 202 cm2·V-1·s-1 was obtained. These results indicate that the composition ratio of Mg/Si = 2.5 for starting Mg and Si powders was optimal for synthesizing Mg2Si bulk crystals with high crystalline quality.

  20. Unpacking vertical and horizontal integration: childhood overweight/obesity programs and planning, a Canadian perspective

    PubMed Central

    2010-01-01

    Background Increasingly, multiple intervention programming is being understood and implemented as a key approach to developing public health initiatives and strategies. Using socio-ecological and population health perspectives, multiple intervention programming approaches are aimed at providing coordinated and strategic comprehensive programs operating over system levels and across sectors, allowing practitioners and decision makers to take advantage of synergistic effects. These approaches also require vertical and horizontal (v/h) integration of policy and practice in order to be maximally effective. Discussion This paper examines v/h integration of interventions for childhood overweight/obesity prevention and reduction from a Canadian perspective. It describes the implications of v/h integration for childhood overweight and obesity prevention, with examples of interventions where v/h integration has been implemented. An application of a conceptual framework for structuring v/h integration of an overweight/obesity prevention initiative is presented. The paper concludes with a discussion of the implications of vertical/horizontal integration for policy, research, and practice related to childhood overweight and obesity prevention multiple intervention programs. Summary Both v/h integration across sectors and over system levels are needed to fully support multiple intervention programs of the complexity and scope required by obesity issues. V/h integration requires attention to system structures and processes. A conceptual framework is needed to support policy alignment, multi-level evaluation, and ongoing coordination of people at the front lines of practice. Using such tools to achieve integration may enhance sustainability, increase effectiveness of prevention and reduction efforts, decrease stigmatization, and lead to new ways to relate the environment to people and people to the environment for better health for children. PMID:20478054

  1. Social stigma: a comparative qualitative study of integrated and vertical care approaches to leprosy.

    PubMed

    Arole, S; Premkumar, R; Arole, R; Maury, M; Saunderson, P

    2002-06-01

    Integration of leprosy into the general health system is very much emphasized by health care planners. One prime reason stated for this is to reduce stigma attached to this disease. This study was conducted in the state of Maharashtra, India, to compare the level of social stigma towards leprosy in communities with a vertical and an integrated programme. The data were collected in three areas of five villages each. The first two areas were in an integrated programme to test for internal consistency and the third in a vertical programme. All the leprosy patients with visible deformities in these villages were enrolled in the study, and an in-depth stigma measurement scale was administered. In addition, focus group discussions were conducted among the family members of leprosy patients and participative rural appraisal was done in the communities. The data were analysed using qualitative methods. A total of 24 leprosy patients with visible deformities participated in the in-depth stigma measurement exercise from 15 villages. Fifteen focus group discussions were conducted with families of leprosy patients and an equal number of participatory rural appraisals with communities were done. The results show that social stigma was virtually non-existent among the communities with the integrated approach and minimally experienced by leprosy patients in this model. However, a high level of self-stigmatization among leprosy patients was observed in the vertical approach and equally a high level of social stigma was found in their communities, which led to reduced interaction between the leprosy patients and their communities. The integrated approach to community-based primary health care is effective in reducing leprosy stigma in society. PMID:12192975

  2. Modeling multiphase flow for high viscosity liquids: a study of vertical/inclined zero net liquid flow 

    E-print Network

    Rodriguez, Jose Ramon

    2001-01-01

    This experimental study investigates the effects of inclination angle and fluid viscosity on zero net liquid flow (ZNLF). Predicting liquid holdup under ZNLF conditions is necessary in several types of petroleum industry ...

  3. Theoretical Analysis of Vapor Absorption on a Falling Liquid Film for the Comparison with Vertical In-Tube Absorption

    NASA Astrophysics Data System (ADS)

    Takamatsu, Hiroshi; Yamashiro, Hikaru; Ide, Satoru; Takata, Nobuo; Sasaki, Naoe

    The absorption of vapor by LiBr aqueous solution falling on a vertical wall was analyzed numerically with an assumption of a laminar liquid film with a smooth surface. Giving the wall temperature obtained by the experiment for in-tube absorption, the change in the absorption process along the wall was discussed with looking particularly at the effect of solution subcooling at the inlet. Then the experiment was compared with the theoretical analysis with respect to the wall heat flux, the absorption rate and the heat and mass transfer coefficients to elucidate the effect of wavy, non-uniform liquid film flow on the absorption process.

  4. Monolithic integration of III-V nanowire with photonic crystal microcavity for vertical light emission.

    PubMed

    Larrue, Alexandre; Wilhelm, Christophe; Vest, Gwenaelle; Combrié, Sylvain; de Rossi, Alfredo; Soci, Cesare

    2012-03-26

    A novel photonic structure formed by the monolithic integration of a vertical III-V nanowire on top of a L3 two-dimensional photonic crystal microcavity is proposed to enhance light emission from the nanowire. The impact on the nanowire spontaneous emission rate is evaluated by calculating the spontaneous emission factor ?, and the material gain at threshold is used as a figure of merit of this vertical emitting nanolaser. An optimal design is identified for a GaAs nanowire geometry with r = 155 nm and L~1.1 ?m, where minimum gain at threshold (gth~13×10³ cm?¹) and large spontaneous emission factor (?~0.3) are simultaneously achieved. Modification of the directivity of the L3 photonic crystal cavity via the band-folding principle is employed to further optimize the far-field radiation pattern and to increase the directivity of the device. These results lay the foundation for a new approach toward large-scale integration of vertical emitting nanolasers and may enable applications such as intra-chip optical interconnects. PMID:22453454

  5. A module concept for the upgrades of the ATLAS pixel system using the novel SLID-ICV vertical integration technology

    NASA Astrophysics Data System (ADS)

    Beimforde, M.; Andricek, L.; Macchiolo, A.; Moser, H.-G.; Nisius, R.; Richter, R. H.; Weigell, P.

    2010-12-01

    The presented R&D activity is focused on the development of a new pixel module concept for the foreseen upgrades of the ATLAS detector towards the Super LHC employing thin n-in-p silicon sensors together with a novel vertical integration technology. A first set of pixel sensors with active thicknesses of 75 ?m and 150 ?m has been produced using a thinning technique developed at the Max-Planck-Institut für Physik (MPP) and the MPI Semiconductor Laboratory (HLL). Charge Collection Efficiency (CCE) measurements of these sensors irradiated with 26 MeV protons up to a particle fluence of 1016neqcm-2 have been performed, yielding higher values than expected from the present radiation damage models. The novel integration technology, developed by the Fraunhofer Institut EMFT, consists of the Solid-Liquid InterDiffusion (SLID) interconnection, being an alternative to the standard solder bump-bonding, and Inter-Chip Vias (ICVs) for routing signals vertically through electronics. This allows for extracting the digitized signals from the back side of the readout chips, avoiding wire-bonding cantilevers at the edge of the devices and thus increases the active area fraction. First interconnections have been performed with wafers containing daisy chains to investigate the efficiency of SLID at wafer-to-wafer and chip-to-wafer level. In a second interconnection process the present ATLAS FE-I3 readout chips were connected to dummy sensor wafers at chip-to-wafer level. Preparations of ICV within the ATLAS readout chips for back side contacting and the future steps towards a full demonstrator module will be presented.

  6. Vertical transitions between transmission lines and waveguides in multilayer liquid crystal polymer (LCP) substrates

    NASA Astrophysics Data System (ADS)

    Zhang, Yifei; Shi, Shouyuan; Martin, Rick D.; Prather, Dennis W.

    2014-03-01

    In this paper we present two vertical transitions, in multilayer LCP substrates for millimeter wave (mmW) imaging application. The first transition is from conductor-backed co-planar waveguide (CBCPW) to strip line, and the second one connects CBCPW to substrate integrated waveguide (SIW). The multilayer structure consists of three LCP layers and four metal claddings. The CBCPW is designed on the top LCP layer, the strip line is sandwiched by the top and middle layers, and the SIW is built within the middle and bottom layers. Micro vias construct the side wall for the SIW, and electrically connect the transmission lines and waveguides. Both of the transitions perform low loss and low reflection at 77 GHz. They can efficiently connect the passive and active components in the front-end RF module of our mmW imager. Additionally, they may have promising application in high-performance systems, requiring high density, low size, weight, and power (SWaP).

  7. Integration of MATLAB Simulink(Registered Trademark) Models with the Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Lewis, Emily K.; Vuong, Nghia D.

    2012-01-01

    This paper describes the integration of MATLAB Simulink(Registered TradeMark) models into the Vertical Motion Simulator (VMS) at NASA Ames Research Center. The VMS is a high-fidelity, large motion flight simulator that is capable of simulating a variety of aerospace vehicles. Integrating MATLAB Simulink models into the VMS needed to retain the development flexibility of the MATLAB environment and allow rapid deployment of model changes. The process developed at the VMS was used successfully in a number of recent simulation experiments. This accomplishment demonstrated that the model integrity was preserved, while working within the hard real-time run environment of the VMS architecture, and maintaining the unique flexibility of the VMS to meet diverse research requirements.

  8. Post-acute care and vertical integration after the Patient Protection and Affordable Care Act.

    PubMed

    Shay, Patrick D; Mick, Stephen S

    2013-01-01

    The anticipated changes resulting from the passage of the Patient Protection and Affordable Care Act-including the proposed adoption of bundled payment systems and the promotion of accountable care organizations-have generated considerable controversy as U.S. healthcare industry observers debate whether such changes will motivate vertical integration activity. Using examples of accountable care organizations and bundled payment systems in the American post-acute healthcare sector, this article applies economic and sociological perspectives from organization theory to predict that as acute care organizations vary in the degree to which they experience environmental uncertainty, asset specificity, and network embeddedness, their motivation to integrate post-acute care services will also vary, resulting in a spectrum of integrative behavior. PMID:23424816

  9. Technological platform for vertical multi-wafer integration of miniature imaging instruments

    NASA Astrophysics Data System (ADS)

    Bargiel, S.; Baranski, M.; Passilly, N.; Gorecki, C.; Wiemer, M.; Frömel, J.; Wünsch, D.; Wang, W.-.

    2015-02-01

    We describe a technological platform developed for miniaturization of optical imaging instruments, such as laser scanning confocal microscopes or Optical Coherence Tomography devices. The platform employs multi-wafer vertical integration approach, combined with integrated glass-based micro-optics and heterogeneous bonding and interconnecting technologies. In this paper we focus on the unconventional fabrication methods of monolithic micro-optical structures and components in borosilicate glass (e.g. micro beamsplitters, refractive microlenses) for optical beam shaping and routing. In addition, we present hybrid laser-assisted integration of glass ball microlenses on the silicon MEMS actuators for transmissive beam scanning as well as methods of electrical signals distribution through thick glass substrates, based on HF etched via holes.

  10. Integrated photoelectrochemical cell and system having a liquid electrolyte

    DOEpatents

    Deng, Xunming (Sylvania, OH); Xu, Liwei (Sylvania, OH)

    2010-07-06

    An integrated photoelectrochemical (PEC) cell generates hydrogen and oxygen from water while being illuminated with radiation. The PEC cell employs a liquid electrolyte, a multi-junction photovoltaic electrode, and a thin ion-exchange membrane. A PEC system and a method of making such PEC cell and PEC system are also disclosed.

  11. The ATLAS Liquid Argon Calorimeter Construction, Integration, Commissioning

    E-print Network

    Aleksa, Martin

    2006-01-01

    The ATLAS liquid argon (LAr) calorimeter system consists of an electromagnetic barrel calorimeter and two end caps with electromagnetic, hadronic and forward calorimeters. The liquid argon sampling technique, with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the end cap (EMEC). The hadronic end cap calorimeter (HEC) uses a copper-liquid argon sampling technique with flat plate geometry and is subdivided in depth in two wheels per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules employing cylindrical electrodes with thin liquid argon gaps. The construction of the full calorimeter system is complete since mid-2004. Production modules constructed in the home institutes were integrated into wheels at CERN in 2003-2004, and inserted into the three cryostats. They passed their first complete cold test before the lowering into the ATLAS cavern. Results of quality checks (e.g. electrical, mechanical, ...) performed on all the 190304 read...

  12. Integrated Liquid Bismuth Propellant Feed System

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.; Stanojev, Boris J.

    2006-01-01

    A prototype bismuth propellant feed and control system was constructed and tested. An electromagnetic pump was used in this system to provide fine control of the hydrostatic pressure, and a new type of in-line flow sensor was developed to provide an accurate, real-time measurement of the mass flow rate. High-temperature material compatibility was a driving design requirement for the pump and flow sensor, leading to the selection of macor for the main body of both components. Post-test inspections of both components revealed no cracks or leaking in either. In separate proof-of-concept experiments, the pump produced a linear pressure rise as a function of current that compared favorably with theoretical pump pressure predictions, with a pressure of 10 kPa at 30 A. Flow sensing was successfully demonstrated in a bench-top test using gallium as a substitute liquid metal. A real-time controller was successfully used to control the entire system, simultaneously monitoring all power supplies and performing data acquisition duties.

  13. Integrated two-cylinder liquid piston Stirling engine

    NASA Astrophysics Data System (ADS)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd

    2014-10-01

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  14. Integrated two-cylinder liquid piston Stirling engine

    SciTech Connect

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd

    2014-10-06

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  15. Stability of a vertical liquid film with consideration of the marangoni effect and heat exchange with the environment

    NASA Astrophysics Data System (ADS)

    Burmistrova, O. A.

    2014-05-01

    The stability of a free vertical liquid film under the combined action of gravity and thermocapillary forces has been studied. An exact solution of the Navier-Stokes and thermal conductivity equations is obtained for the case of plane steady flow with constant film thickness. It is shown that if the free surfaces of the film are perfectly heat insulated, the liquid flow rate through the cross section of the layer is zero. It is found that to close the model with consideration of the heat exchange with the environment, it is necessary to specify the liquid flow rate and the derivative of the temperature with respect to the longitudinal coordinate or the flow rate and the film thickness. The stability of the solution with constant film thickness at small wave numbers is studied. A solution of the spectral problem for perturbations in the form of damped oscillations is obtained.

  16. Vertical integration of science, technology, and applications fiscal year 1989 annual report

    SciTech Connect

    Graham, M.J.

    1990-06-01

    The Vertical Integration of Science, Technology, and Applications (VISTA) is an initiative developed by the Pacific Northwest Laboratory (PNL) to employ modern information and communications technology for rapid and effective dissemination and use of research results, with emphasis on applying these results to environmental problems. VISTA is being supported at PNL by DOE. The goal of VISTA is to make research results (data, models, and advanced concepts) usable and available to users in the areas of hazardous waste management and global climate change to speed research and development applications and reduce the costs of solving the complex environmental problems facing DOE and the nation. 6 refs., 2 figs.

  17. The Kirkwood-Buff integrals for one-component liquids

    NASA Astrophysics Data System (ADS)

    Ben-Naim, Arieh

    2008-06-01

    The Kirkwood-Buff integrals (KBIs) for one-component systems are calculated from either the pair correlation functions or from experimental macroscopic quantities. As in the case of mixtures, the KBIs provide important information on the local densities around a molecule. In the low density limit (?-->0) one can extract from the KBI some information on the strength of the intermolecular forces. No such information may be extracted from the KBIs at higher densities. We used experimental data on densities and isothermal compressibilities to calculate the KBIs for various liquids ranging from inert molecules, to hydrocarbons, alcohols, and liquid water.

  18. Crystal-liquid interfacial free energy via thermodynamic integration

    SciTech Connect

    Benjamin, Ronald; Horbach, Jürgen

    2014-07-28

    A novel thermodynamic integration (TI) scheme is presented to compute the crystal-liquid interfacial free energy (?{sub cl}) from molecular dynamics simulation. The scheme is applied to a Lennard-Jones system. By using extremely short-ranged and impenetrable Gaussian flat walls to confine the liquid and crystal phases, we overcome hysteresis problems of previous TI schemes that stem from the translational movement of the crystal-liquid interface. Our technique is applied to compute ?{sub cl} for the (100), (110), and (111) orientation of the crystalline phase at three temperatures under coexistence conditions. For one case, namely, the (100) interface at the temperature T = 1.0 (in reduced units), we demonstrate that finite-size scaling in the framework of capillary wave theory can be used to estimate ?{sub cl} in the thermodynamic limit. Thereby, we show that our TI scheme is not associated with the suppression of capillary wave fluctuations.

  19. Use of Vertically Integrated Ice in WRF-Based Forecasts of Lightning Threat

    NASA Technical Reports Server (NTRS)

    McCaul, E. W., jr.; Goodman, S. J.

    2008-01-01

    Previously reported methods of forecasting lightning threat using fields of graupel flux from WRF simulations are extended to include the simulated field of vertically integrated ice within storms. Although the ice integral shows less temporal variability than graupel flux, it provides more areal coverage, and can thus be used to create a lightning forecast that better matches the areal coverage of the lightning threat found in observations of flash extent density. A blended lightning forecast threat can be constructed that retains much of the desirable temporal sensitivity of the graupel flux method, while also incorporating the coverage benefits of the ice integral method. The graupel flux and ice integral fields contributing to the blended forecast are calibrated against observed lightning flash origin density data, based on Lightning Mapping Array observations from a series of case studies chosen to cover a wide range of flash rate conditions. Linear curve fits that pass through the origin are found to be statistically robust for the calibration procedures.

  20. Simultaneous heat and mass transfer inside a vertical channel in evaporating a heated falling glycols liquid film

    NASA Astrophysics Data System (ADS)

    Nait Alla, Abderrahman; Feddaoui, M'barek; Meftah, Hicham

    2015-12-01

    The interactive effects of heat and mass transfer in the evaporation of ethylene and propylene glycol flowing as falling films on vertical channel was investigated. The liquid film falls along a left plate which is externally subjected to a uniform heat flux while the right plate is the dry wall and is kept thermally insulated. The model solves the coupled governing equations in both phases together with the boundary and interfacial conditions. The systems of equations obtained by using an implicit finite difference method are solved by Tridiagonal Matrix Algorithm. The influence of the inlet liquid flow, Reynolds number in the gas flow and the wall heat flux on the intensity of heat and mass transfers are examined. A comparison between the results obtained for studied glycols and water in the same conditions is made. The results indicate that water evaporates in more intense way in comparison to glycols and the increase of gas flow rate tends to improve slightly the evaporation.

  1. Absolute and convective instability of a viscous liquid jet surrounded by a viscous gas in a vertical pipe

    NASA Technical Reports Server (NTRS)

    Lin, S. P.; Lian, Z. W.

    1993-01-01

    The absolute and convective instability of a viscous liquid jet emanating into a viscous gas in a vertical pipe is analyzed in a parameter space spanned by the Reynolds number, the Froude number, the Weber number, the viscosity ratio, the density ratio, and the diameter ratio. The numerical results of the analysis are used to demonstrate that reduction in gravity tends to enhance the Rayleigh mode of convective instability which leads to the breakup of a liquid jet into drops of diameters comparable with the jet diameter. On the contrary, the Taylor mode of convective instability that leads to atomization is retarded at reduced gravity. The Rayleigh mode becomes absolutely unstable when the Reynolds number exceeds a critical value for a given set of the rest of the relevant parameters. The domain of absolute instability is significantly enlarged when the effect of gas viscosity is not neglected.

  2. Numerical investigation on boiling flow of liquid nitrogen in a vertical tube using bubble number density approach

    NASA Astrophysics Data System (ADS)

    Shao, Xuefeng; Li, Xiangdong; Wang, Rongshun

    2015-06-01

    An average bubble number density (ABND) model was formulated and numerically resolved for the subcooled flow boiling of liquid nitrogen. The effects of bubble coalescence and breakup were taken into account. Some new closure correlations describing bubble nucleation and departure on the heating surface were selected as well. For the purpose of comparison, flow boiling of liquid nitrogen was also numerically simulated using a modified two-fluid model. The results show that the simulations performed by using the ABND model achieve encouraging improvement in accuracy in predicting heat flux and wall temperature of a vertical tube. Moreover, the influence of the bubble coalescence and breakup is shown to be great on predicting overall pressure beyond the transition point.

  3. Influence of ballistic electrons on the device characteristics of vertically integrated resonant tunneling diodes

    NASA Astrophysics Data System (ADS)

    Rascol, J. J. L.; Martin, K. P.; Carnahan, R. E.; Higgins, R. J.; Cury, L. A.; Portal, J. C.; Park, B. G.; Wolak, E.; Lear, K. L.; Harris, J. S., Jr.

    1991-04-01

    We present a systematic study of the ballistic electron contribution to the current-voltage (I-V) characteristics of vertically integrated resonant tunneling diodes (RTDs) separated by doped spacer layers (Wsp). A magnetic field (B) transverse to the tunneling direction was used to tune the electron's longitudinal energy. The results confirm the isolated circuit element picture of the Wsp=1000 Å sample and the strongly coupled description of the 0 Å sample. This work shows that even for some nominally isolated RTDs (in this work for Wsp= 400 and 500 Å), the I-V characteristics can undergo striking B-induced changes. This effect is due to resonant charge buildup in the well of the collector RTD from the relatively weak ballistic component of the current traversing the doped spacer region. A simple model that includes a calculation of the conduction-band profile and quantum well energy levels under bias gives good agreement with the data.

  4. Vertical flow in the Thermoelectric Liquid Metal Plasma Facing Structures (TELS) facility at Illinois

    NASA Astrophysics Data System (ADS)

    Xu, W.; Fiflis, P.; Szott, M.; Kalathiparambil, K.; Jung, S.; Christenson, M.; Haehnlein, I.; Kapat, A.; Andruczyk, D.; Curreli, D.; Ruzic, D. N.

    2015-08-01

    Flowing liquid metal PFCs may offer a solution to the issues faced by solid divertor materials in tokamak plasmas. The Liquid-Metal Infused Trenches (LiMIT) concept of Illinois Ruzic et al. (2011) is a liquid metal plasma facing structure which employs thermoelectric magnetohydrodynamic (TEMHD) effects to self-propel lithium through a series of trenches. The combination of an incident heat flux and a magnetic field provide the driving mechanism. Tests have yielded experimental lithium velocities under different magnetic fields, which agree well with theoretical predictions Xu et al. (2013). The thermoelectric force is expected to overcome gravity and be able to drive lithium flow along an arbitrary direction and the strong surface tension of liquid lithium is believed to maintain the surface when Li flows in open trenches. This paper discusses the behavior of the LiMIT structure when inclined to an arbitrary angle with respect to the horizontal.

  5. The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning

    SciTech Connect

    Aleksa, Martin

    2006-10-27

    The ATLAS liquid argon (LAr) calorimeter system consists of an electromagnetic barrel calorimeter and two end caps with electromagnetic, hadronic and forward calorimeters. The liquid argon sampling technique, with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the end cap (EMEC). The hadronic end cap calorimeter (HEC) uses a copper-liquid argon sampling technique with flat plate geometry and is subdivided in depth in two wheels per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules employing cylindrical electrodes with thin liquid argon gaps.The construction of the full calorimeter system is complete since mid-2004. Production modules constructed in the home institutes were integrated into wheels at CERN in 2003-2004, and inserted into the three cryostats. They passed their first complete cold test before the lowering into the ATLAS cavern. Results of quality checks (e.g. electrical, mechanical, ...) performed on all the 190304 read-out channels after cool down will be reported. End 2004 the ATLAS barrel electromagnetic (EM) calorimeter was installed in the ATLAS cavern and since summer 2005 the front-end electronics are being connected and tested. Results of this first commissioning phase will be shown to demonstrate the high standards of quality control for our detectors.

  6. The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning

    NASA Astrophysics Data System (ADS)

    Aleksa, Martin

    2006-10-01

    The ATLAS liquid argon (LAr) calorimeter system consists of an electromagnetic barrel calorimeter and two end caps with electromagnetic, hadronic and forward calorimeters. The liquid argon sampling technique, with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the end cap (EMEC). The hadronic end cap calorimeter (HEC) uses a copper-liquid argon sampling technique with flat plate geometry and is subdivided in depth in two wheels per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules employing cylindrical electrodes with thin liquid argon gaps. The construction of the full calorimeter system is complete since mid-2004. Production modules constructed in the home institutes were integrated into wheels at CERN in 2003-2004, and inserted into the three cryostats. They passed their first complete cold test before the lowering into the ATLAS cavern. Results of quality checks (e.g. electrical, mechanical, …) performed on all the 190304 read-out channels after cool down will be reported. End 2004 the ATLAS barrel electromagnetic (EM) calorimeter was installed in the ATLAS cavern and since summer 2005 the front-end electronics are being connected and tested. Results of this first commissioning phase will be shown to demonstrate the high standards of quality control for our detectors.

  7. Integrated gasifier combined cycle polygeneration system to produce liquid hydrogen

    NASA Technical Reports Server (NTRS)

    Burns, R. K.; Staiger, P. J.; Donovan, R. M.

    1982-01-01

    An integrated gasifier combined cycle (IGCC) system which simultaneously produces electricity, process steam, and liquid hydrogen was evaluated and compared to IGCC systems which cogenerate electricity and process steam. A number of IGCC plants, all employing a 15 MWe has turbine and producing from 0 to 20 tons per day of liquid hydrogen and from 0 to 20 MWt of process steam were considered. The annual revenue required to own and operate such plants was estimated to be significantly lower than the potential market value of the products. The results indicate a significant potential economic benefit to configuring IGCC systems to produce a clean fuel in addition to electricity and process steam in relatively small industrial applications.

  8. The ATLAS Liquid Argon Calorimeter Construction, Integration, Commissioning and Performance from Selected Particle Beam Test Results

    E-print Network

    Krieger, Peter

    The ATLAS Liquid Argon Calorimeter Construction, Integration, Commissioning and Performance from Selected Particle Beam Test Results P.Krieger (on behalf of the ATLAS Liquid Argon Collaboration) Abstract­Construction of the ATLAS liquid argon calorimeter is now complete and integration with the ATLAS detector in the cavern

  9. Sensitivity of a mesoscale model to initial specification of relative humidity, liquid water and vertical motion

    NASA Technical Reports Server (NTRS)

    Kalb, M. W.; Perkey, D. J.

    1985-01-01

    The influence of synoptic scale initial conditions on the accuracy of mesoscale precipitation modeling is investigated. Attention is focused on the relative importance of the water vapor, cloud water, rain water, and vertical motion, with the analysis carried out using the Limited Area Mesoscale Prediction System (LAMPS). The fully moist primitive equation model has 15 levels and a terrain-following sigma coordinate system. A K-theory approach was implemented to model the planetary boundary layer. A total of 15 sensitivity simulations were run to investigate the effects of the synoptic initial conditions of the four atmospheric variables. The absence of synoptic cloud and rain water amounts in the initialization caused a 2 hr delay in the onset of precipitation. The delay was increased if synoptic-scale vertical motion was used instead of mesoscale values. Both the delays and a choice of a smoothed moisture field resulted in underestimations of the total rainfall.

  10. Vertically Integrated Models for CO2 Storage with Coupled Thermal Processes

    NASA Astrophysics Data System (ADS)

    Gasda, S. E.; Gray, W. G.; Dahle, H. K.

    2014-12-01

    CO2 storage involves coupled processes that affect the migration and ultimate fate of injected CO2 over multiple length and time scales. Coupled thermal and mechanical processes may have implications for storage security, including thermally induced fracturing and loss of caprock integrity near the wellbore. This may occur when CO2 is injected at a different temperature from reservoir conditions, e.g. Snøhvit injection, potentially leading to large temperature, density and volume changes over space and time. In addition, thermally induced density changes impact plume buoyancy that may affect large-scale migration patterns in gravity-driven systems, e.g. Sleipner injection. This interaction becomes particularly important near the critical point. Therefore, thermal processes should be considered in order to correctly capture plume migration within the reservoir. A practical modeling approach for CO2 storage at the field scale is the vertical-equilibrium (VE) model, which solves partially integrated conservation equations for flow in two lateral dimensions. This class of models is well suited for strongly segregated flows. We extend the classical VE model to nonisothermal systems by integrating the heat transport equations, focusing on thermal processes that most impact the CO2 plume. The model allows for heating/cooling of the CO2 plume through heat exchange with the surrounding environment. The upscaling procedure assumes vertically constant temperature across the plume thickness for relatively thin plumes. Conduction across the plume boundaries, into the caprock above and brine below, is modeled by an analytical heat transfer function. As a starting point, we investigate the validity of the simplifying assumptions and heat transfer boundary conditions for relatively simple systems. We find that the upscaled model compares well for systems where heat advection in the plume is the dominant heat transport mechanism. For high CO2 flux, improvements to the model can be made with more complex heat transfer functions. For lower CO2 flux, conduction within the surroundings becomes an important process that requires additional consideration. The results of this work demonstrate the potential for reduced models to advance our understanding of the impact of thermal processes in realistic storage systems.

  11. Liquid Rocket Booster Integration Study. Volume 2: Study synopsis

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is the study summary of the five volume series.

  12. Integrated vapor-liquid-solid silicon mass sensors (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Bryce, Brian A.; Gorman, Jason J.; Keylyuk, Sergiy; Davydov, Albert

    2015-08-01

    We present the results and progress of research to create a multiplex chemical sensor based on Au catalyzed vapor-liquid-solid (VLS) silicon nanowires deployed as resonant mass sensors. Each element of this sensor has a single VLS wire grown in close proximity to a Si photodiode. Together they create a Fabry-Pérot interferometer that allows for the sensitive detection of the beam's resonant motion. Small changes in mass on the cantilever that occur as a result of chemical absorption on the functionalized Au surface shift the resonant frequency. Our integrated approach will allow large reductions in system complexity for this sensor class.

  13. Liquid rocket booster integration study. Volume 5, part 1: Appendices

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is the appendices of the five volume series.

  14. Monitoring reactor vessel liquid level with a vertical string of self-powered neutron detectors

    SciTech Connect

    Adams, J.P.; Berta, V.T.

    1984-11-01

    Changes in in-core self-powered neutron detector signals, recorded during a nuclear loss of coolant accident (LOCA) simulation, have been correlated with liquid level changes that occurred during the core uncovery and recovery events. The correlations indicate that these detectors can be used to monitor reactor vessel liquid level during a LOCA. A display and alarm system using these detectors to provide reactor operators with an indication of a core uncovery and subsequent thermal excursion and with a means to measure the effectiveness of LOCA recovery procedures is described.

  15. Light efficient parallel interconnect using integrated planar free-space optics and vertical cavity surface emitting laser diodes

    E-print Network

    Jahns, Jürgen

    Light efficient parallel interconnect using integrated planar free-space optics and vertical cavity and for imaging. From a systems point of view, high light efficiency and large data throughput of the interconnect heat and a lower bandwidth. The issue of light efficiency is related to the realization of the optical

  16. Forced convection heat transfer from a wire inserted into a vertically-mounted pipe to liquid hydrogen flowing upward

    NASA Astrophysics Data System (ADS)

    Tatsumoto, H.; Shirai, Y.; Shiotsu, M.; Naruo, Y.; Kobayashi, H.; Inatani, Y.

    2014-12-01

    Forced convection heat transfer from a PtCo wire with a length of 120 mm and a diameter of 1.2 mm that was inserted into a vertically-mounted pipe with a diameter of 8.0 mm to liquid hydrogen flowing upward was measured with a quasi-steady increase of a heat generation rate for wide ranges of flow rate under saturated conditions. The pressures were varied from 0.4 MPa to 1.1 MPa. The non-boiling heat transfer characteristic agrees with that predicted by Dittus-Boelter correlation. The critical heat fluxes are higher for higher flow rates and lower pressures. Effect of Weber number on the CHF was clarified and a CHF correlation that can describe the experimental data is derived based on our correlation for a pipe.

  17. Transient Heat Transfer from a Wire Inserted into a Vertically Mounted Pipe to Forced Flow Liquid Hydrogen

    NASA Astrophysics Data System (ADS)

    Tatsumoto, Hideki; Shirai, Yasuyuki; Shiotsu, Masahiro; Naruo, Yoshihiro; Kobayashi, Hiroaki; Inatani, Yoshifumi

    The transient heat transfer from a Pt-Co wire heater inserted into a vertically mounted pipe, through which forced flow subcooled liquid hydrogen was passed, is measured by increasing the exponential heat input with various time periods at a pressure of 0.7 MPa and an inlet temperature of 21 K. The flow velocities range from 0.8 to 5.5 m/s. For shorter periods, the non-boiling heat transfer becomes higher than that given by the Dittus-Boelter equation due to the transient conductive heat transfer contribution. In addition, the transient critical heat flux (CHF) becomes higher than the steady-state CHF. The effect of the flow velocity and period on the transient CHF heat flux is also clarified.

  18. Towards a full integration of vertically aligned silicon nanowires in MEMS using silane as a precursor.

    PubMed

    Gadea, G; Morata, A; Santos, J D; Dávila, D; Calaza, C; Salleras, M; Fonseca, L; Tarancón, A

    2015-05-15

    Silicon nanowires present outstanding properties for electronics, energy, and environmental monitoring applications. However, their integration into microelectromechanical systems (MEMS) is a major issue so far due to low compatibility with mainstream technology, which complicates patterning and controlled morphology. This work addresses the growth of ?111? aligned silicon nanowire arrays fully integrated into standard MEMS processing by means of the chemical vapor deposition-vapor liquid solid method (CVD-VLS) using silane as a precursor. A reinterpretation of the galvanic displacement method is presented for selectively depositing gold nanoparticles of controlled size and shape. Moreover, a comprehensive analysis of the effects of synthesis temperature and pressure on the growth rate and alignment of nanowires is presented for the most common silicon precursor, i.e., silane. Compared with previously reported protocols, the redefined galvanic displacement together with a silane-based CVD-VLS growth methodology provides a more standard and low-temperature (<650 °C) synthesis scheme and a compatible route to reliably grow Si nanowires in MEMS for advanced applications. PMID:25902702

  19. Towards a full integration of vertically aligned silicon nanowires in MEMS using silane as a precursor

    NASA Astrophysics Data System (ADS)

    Gadea, G.; Morata, A.; Santos, J. D.; Dávila, D.; Calaza, C.; Salleras, M.; Fonseca, L.; Tarancón, A.

    2015-05-01

    Silicon nanowires present outstanding properties for electronics, energy, and environmental monitoring applications. However, their integration into microelectromechanical systems (MEMS) is a major issue so far due to low compatibility with mainstream technology, which complicates patterning and controlled morphology. This work addresses the growth of <111> aligned silicon nanowire arrays fully integrated into standard MEMS processing by means of the chemical vapor deposition-vapor liquid solid method (CVD-VLS) using silane as a precursor. A reinterpretation of the galvanic displacement method is presented for selectively depositing gold nanoparticles of controlled size and shape. Moreover, a comprehensive analysis of the effects of synthesis temperature and pressure on the growth rate and alignment of nanowires is presented for the most common silicon precursor, i.e., silane. Compared with previously reported protocols, the redefined galvanic displacement together with a silane-based CVD-VLS growth methodology provides a more standard and low-temperature (<650 °C) synthesis scheme and a compatible route to reliably grow Si nanowires in MEMS for advanced applications.

  20. Gas-liquid Two Phase Flow Modelling of Incompressible Fluid and Experimental Validation Studies in Vertical Centrifugal Casting

    NASA Astrophysics Data System (ADS)

    Zhou, J. X.; Shen, X.; Yin, Y. J.; Guo, Z.; Wang, H.

    2015-06-01

    In this paper, Gas-liquid two phase flow mathematic models of incompressible fluid were proposed to explore the feature of fluid under certain centrifugal force in vertical centrifugal casting (VCC). Modified projection-level-set method was introduced to solve the mathematic models. To validate the simulation results, two methods were used in this study. In the first method, the simulation result of basic VCC flow process was compared with its analytic solution. The relationship between the numerical solution and deterministic analytic solution was presented to verify the correctness of numerical algorithms. In the second method, systematic water simulation experiments were developed. In this initial experiment, special experimental vertical centrifugal device and casting shapes were designed to describe typical mold-filling processes in VCC. High speed camera system and data collection devices were used to capture flow shape during the mold-filling process. Moreover, fluid characteristic at different rotation speed (from 40rpm, 60rpmand 80rpm) was discussed to provide comparative resource for simulation results. As compared with the simulation results, the proposed mathematical models could be proven and the experimental design could help us advance the accuracy of simulation and further studies for VCC.

  1. Compact and Integrated Liquid Bismuth Propellant Feed System

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Stanojev, Boris; Korman, Valentin; Gross, Jeffrey T.

    2007-01-01

    Operation of Hall thrusters with bismuth propellant has been shown to be a promising path toward high-power, high-performance, long-lifetime electric propulsion for spaceflight missions [1]. There has been considerable effort in the past three years aimed at resuscitating this promising technology and validating earlier experimental results indicating the advantages of a bismuth-fed Hall thruster. A critical element of the present effort is the precise metering of propellant to the thruster, since performance cannot be accurately assessed without an accurate accounting of mass flow rate. Earlier work used a pre./post-test propellant weighing scheme that did not provide any real-time measurement of mass flow rate while the thruster was firing, and makes subsequent performance calculations difficult. The motivation of the present work is to develop a precision liquid bismuth Propellant Management System (PMS) that provides hot, molten bismuth to the thruster while simultaneously monitoring in real-time the propellant mass flow rate. The system is a derivative of our previous propellant feed system [2], but the present system represents a more compact design. In addition, all control electronics are integrated into a single unit and designed to reside on a thrust stand and operate in the relevant vacuum environment where the thruster is operating, significantly increasing the present technology readiness level of liquid metal propellant feed systems. The design of various critical components in a bismuth PMS are described. These include the bismuth reservoir and pressurization system, 'hotspot' flow sensor, power system and integrated control system. Particular emphasis is given to selection of the electronics employed in this system and the methods that were used to isolate the power and control systems from the high-temperature portions of the feed system and thruster. Open loop calibration test results from the 'hotspot' flow sensor are reported, and results of integrated thruster/PMS tests demonstrate operation of the feed system in the relevant environment.

  2. VISTA (Vertical Integration of Science, Technology, and Applications) user interface software study

    SciTech Connect

    Chin, G.

    1990-04-01

    The Vertical Integration of Science, Technology, and Applications (VISTA) project is an initiative to employ modern information and communications technology for rapid and effective application of basic research results by end users. Developed by the Pacific Northwest Laboratory, VISTA's purpose is to develop and deploy information systems (software or software/hardware products) to broad segments of various markets. Inherent in these products would be mechanisms for accessing PNL-resident information about the problem. A goal of VISTA is to incorporate existing, commercially available user interface technology into the VISTA UIMS. Commercial systems are generally more complete, reliable, and cost-effective than software developed in-house. The objective of this report is to examine the current state of commercial user interface software and discuss the implications of selections thereof. This report begins by describing the functionality of the user interface as it applies to users and application developers. Next, a reference model is presented defining the various operational software layers of a graphical user interface. The main body follows which examines current user interface technology by sampling a number of commercial systems. Both the window system and user interface toolkit markets are surveyed. A summary of the current technology concludes this report. 15 refs., 3 figs., 1 tab.

  3. Vertical integration of cosmid and YAC resources for interval mapping on the X-chromosome

    SciTech Connect

    Holland, J.; Coffey, A.J.; Giannelli, F.; Bentley, D.R. )

    1993-02-01

    The vertical integration of cosmid and yeast artificial chromosome (YAC) resources is of particular importance in the development of high-resolution maps of selected regions of the human genome. A resource of approximately 95,000 cosmids constructed using DNA from primary fibroblasts of karyotype 49,XXXXX was validated by detailed characterization of a 200-kb cosmid contig spanning exons 8-20 of the dystrophin gene. This resource was used to construct contigs in 0.65 Mb of Xq26 by hybridization of gel-purified YAC DNA to high-density gridded arrays of the cosmid library; positive cosmids were overlapped by fingerprinting. Contigs were oriented and ordered relative to existing YACs in the region using cross-hybridization. The overlaps between a representative set of cosmids define 54 intervals of 5-20 kb and were used to construct a high-resolution cosmid interval map of the region, locating markers, dinucleotide repeats, and candidate CpG islands. This approach can be applied rapidly to large regions of the genome and without recourse to subcloning of individual YACs. 49 refs., 5 figs.

  4. Integrated control of lateral and vertical vehicle dynamics based on multi-agent system

    NASA Astrophysics Data System (ADS)

    Huang, Chen; Chen, Long; Yun, Chaochun; Jiang, Haobin; Chen, Yuexia

    2014-03-01

    The existing research of the integrated chassis control mainly focuses on the different evaluation indexes and control strategy. Among the different evaluation indexes, the comprehensive properties are usually not considered based on the non-linear superposition principle. But, the control strategy has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, based on belief, desire and intention(BDI)-agent model framework, the TYRE agent, electric power steering(EPS) agent and active suspension system(ASS) agent are proposed. In the system(SYS) agent, the coordination mechanism is employed to manage interdependences and conflicts among other agents, so as to improve the flexibility, adaptability, and robustness of the global control system. Due to the existence of the simulation demand of dynamic performance, the vehicle multi-body dynamics model is established by SIMPACK. And then the co-simulation analysis is conducted to evaluate the proposed multi-agent system(MAS) controller. The simulation results demonstrate that the MAS has good effect on the performance of EPS and ASS. Meantime, the better road feeling for the driver is provided considering the multiple and complex driving traffic. Finally, the MAS rapid control prototyping is built to conduct the real vehicle test. The test results are consistent to the simulation results, which verifies the correctness of simulation. The proposed research ensures the driving safety, enhances the handling stability, and improves the ride comfort.

  5. Oscillations of vertically integrated relativistic tori -II. Axisymmetric modes in a Kerr spacetime

    E-print Network

    Pedro J. Montero; Luciano Rezzolla; Shin'ichirou Yoshida

    2004-07-30

    This is the second of a series of papers investigating the oscillation properties of relativistic, non-selfgravitating tori orbiting around black holes. Extending the work done in a Schwarzschild background, we here consider the axisymmetric oscillations of vertically integrated tori in a Kerr spacetime. The tori are modeled with a number of different non-Keplerian distributions of specific angular momentum and we discuss how the oscillation properties depend on these and on the rotation of the central black hole. We first consider a local analysis to highlight the relations between acoustic and epicyclic oscillations in a Kerr spacetime and subsequently perform a global eigenmode analysis to compute the axisymmetric p modes. In analogy with what found in a Schwarzschild background, these modes behave as sound waves that are modified by rotation and are globally trapped in the torus. For constant distributions of specific angular momentum, the eigenfrequencies appear in a sequence 2:3:4:... which is essentially independent of the size of the disc and of the black hole rotation. For non-constant distributions of angular momentum, on the other hand, the sequence depends on the properties of the disc and on the spin of the black hole, becoming harmonic for sufficiently large tori. We also comment on how p modes could explain the high frequency quasi-periodic oscillations observed in low-mass X-ray binaries with a black hole candidate and the properties of an equivalent model in Newtonian physics.

  6. InGaAs PIN photodetectors integrated and vertically coupled with silicon-on-insulator waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqi; Qiu, Chao; Sheng, Zhen; Wu, Aimin; Wang, Xi; Zou, Shichang; Gan, Fuwan

    2014-05-01

    Heterogeneous integration of III-V materials with silicon-on-insulator (SOI) waveguide circuitry by an adhesive die-to-wafer bonding process has been proposed as a solution to Si-based lasers and photodetectors. Here, we present the design and optimization of an InGaAs PIN photodetector vertically coupled with the underlying SOI waveguide, which could be readily fabricated using this bonding process. With the help of grating couplers, a thick bonding layer of 2.5 ?m is applied, which inherently avoids the risk of low-bonding yield suffering in the evanescent coupling counterpart. An anti-reflection layer is also introduced between the bonding layer and the III-V layer stack to relieve the accuracy requirement for the bonding layer thickness. Besides, by optimizing the structure parameters, a high-absorption efficiency of 82% and a wide optical 1dB-bandwidth of 220nm are obtained. The analysis shows that the detection bandwidth of the present surface-illuminated photodetector is generally limited by transit-time in the i-InGaAs layer. The relationship of the detection bandwidth and the absorption efficiency versus the i-InGaAs layer thickness is presented for the ease of choosing proper structure parameters for specific applications. With the results presented here, the device can be readily fabricated.

  7. Lateral integration of vertical-cavity surface-emitting laser and slow light Bragg reflector waveguide devices.

    PubMed

    Shimada, Toshikazu; Matsutani, Akihiro; Koyama, Fumio

    2014-03-20

    We present the modeling and the experiment on the lateral integration of a vertical-cavity surface-emitting laser (VCSEL) and slow light Bragg reflector waveguide devices. The modeling shows an efficient direct-lateral coupling from a VCSEL to an integrated slow light waveguide. The calculated result shows a possibility of 13 dB chip gain and an extinction ratio over 5 dB for a compact slow light semiconductor optical amplifier (SOA) and electroabsorption modulator integrated with a VCSEL, respectively. We demonstrate an SOA-integrated VCSEL, exhibiting the maximum output power over 6 mW. Also, we fabricate a sub-50-?m long electroabsorption modulator laterally integrated with a VCSEL. An extinction ratio of over 15 dB for a voltage swing of 2.0 V is obtained without noticeable change of threshold. In addition, we demonstrate an on-chip electrothermal beam deflector integrated with a VCSEL. PMID:24663452

  8. Remote measurements of ozone, water vapor and liquid water content, and vertical profiles of temperature in the lower troposphere

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Gary, B. L.; Shumate, M. S.

    1983-01-01

    Several advanced atmospheric remote sensing systems developed at the Jet Propulsion Laboratory were demonstrated under various field conditions to determine how useful they would be for general use by the California Air Resources Board and local air quality districts. One of the instruments reported on is the Laser Absorption Spectrometer (LAS). It has a pair of carbon dioxide lasers with a transmitter and receiver and can be flown in an aircraft to measure the column abundance of such gases as ozone. From an aircraft, it can be used to rapidly survey a large region. The LAS is usually operated from an aircraft, although it can also be used at a fixed location on the ground. Some tests were performed with the LAS to measure ozone over a 2-km horizontal path. Another system reported on is the Microwave Atmospheric Remote Sensing System (MARS). It is tuned to microwave emissions from water vapor, liquid water, and oxygen molecules (for atmospheric temperature). It can measure water vapor and liquid water in the line-of-sight, and can measure the vertical temperature profile.

  9. Towards monolithic integration of mode-locked vertical cavity surface emitting laser

    NASA Astrophysics Data System (ADS)

    Aldaz, Rafael I.

    2007-12-01

    The speed and performance of today's high end computing and communications systems have placed difficult but still feasible demands on off-chip electrical interconnects. However, future interconnect systems may need aggregate bandwidths well into the terahertz range thereby making electrical bandwidth, density, and power targets impossible to meet. Optical interconnects, and specifically compact semiconductor mode-locked lasers, could alleviate this problem by providing short pulses in time at 10s of GHz repetition rates for Optical Time Division Multiplexing (OTDM) and clock distribution applications. Furthermore, the characteristic spectral comb of frequencies of these lasers could also serve as a multi-wavelength source for Wavelength Division Multiplexing (WDM) applications. A fully integrated mode-locked Vertical Cavity Surface Emitting Laser (VCSEL) is proposed as a low-cost high-speed source for these applications. The fundamental laser platform for such a device has been developed and a continuous-wave version of these lasers has been fabricated and demonstrated excellent results. Output powers close to 60mW have been obtained with very high beam quality factor of M2 < 1.07. The mode-locked laser utilizes a passive mode-locking region provided by a semiconductor saturable absorber integrated together with the gain region. Such an aggressive integration forces the resonant beam in the cavity to have the same area on the gain and absorber sections, placing high demands on the saturation fluence and absorption coefficient for the saturable absorber. Quantum Wells (QWs), excitons in QWs and Quantum Dots (QDs) have been investigated as possible saturable absorbers for the proposed device. QDs have been found to have the lowest saturation fluence and total absorption, necessary to meet the mode-locking requirements for this configuration. The need to further understand QDs as saturable absorbers has led to the development of a theoretical model on the dynamics of this quantum system. The model agrees very well with the experimental data obtained and predicts the design of unassisted ultrafast QD saturable absorbers, without the need to incorporate high concentrations of non radiative recombination centers by either ion-implantation or low temperature growth.

  10. Integrated Design Methodology for Highly Reliable Liquid Rocket Engine

    NASA Astrophysics Data System (ADS)

    Kuratani, Naoshi; Aoki, Hiroshi; Yasui, Masaaki; Kure, Hirotaka; Masuya, Goro

    The Integrated Design Methodology is strongly required at the conceptual design phase to achieve the highly reliable space transportation systems, especially the propulsion systems, not only in Japan but also all over the world in these days. Because in the past some catastrophic failures caused some losses of mission and vehicle (LOM/LOV) at the operational phase, moreover did affect severely the schedule delays and cost overrun at the later development phase. Design methodology for highly reliable liquid rocket engine is being preliminarily established and investigated in this study. The sensitivity analysis is systematically performed to demonstrate the effectiveness of this methodology, and to clarify and especially to focus on the correlation between the combustion chamber, turbopump and main valve as main components. This study describes the essential issues to understand the stated correlations, the need to apply this methodology to the remaining critical failure modes in the whole engine system, and the perspective on the engine development in the future.

  11. Arrayed optical switches based on integrated liquid crystal microlens arrays

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Fan, Di; Zhang, Bo; Tong, Qing; Luo, Jun; Lei, Yu; Zhang, Xinyu; Xie, Changsheng

    2015-10-01

    Based on our previous work in liquid-crystal microlens arrays (LCMAs), a new kind of arrayed optical switches (AOSs) based on LCMAs with a key dual-mode function including beam convergence and divergence, is proposed and simulated in this paper. Different with our previous LCMAs, the developed LCMAs leading to AOSs have two layers of control electrodes deposited directly over the surface of the top glass substrate. One is the patterned electrode, which is designed into basic circular holes with suitable diameter, and the other is the planar electrode. Both layered electrodes are effectively separated by a thin SiO2 film with a typical thickness of about several micrometers, and then driven by electrical signals with different root mean square (rms) voltage amplitude. The experiment results show that the AOSs can work well through applying proper voltage signals over the device. Compared with other AOS structures, our AOSs have a greater integration level and lower cost.

  12. Physical characteristics of gas jets injected vertically upward into liquid metal

    NASA Astrophysics Data System (ADS)

    Castillejos, A. H.; Brimacombe, J. K.

    1989-10-01

    The time-averaged structure of plumes has been measured with a two-element electroresistivity probe during upward injection of nitrogen or helium into mercury in a ladle-shaped vessel. From these measurements and data obtained earlier for air jets in water, general correlations linking the spatial distribution of gas fraction with the Froude number and gas/liquid density ratio have been developed. Early evidence suggests that these correlations should be applicable to gas-stirred metallurgical baths. Measurements of the profiles of bubble velocity and bubble pierced length reveal that the kinetic energy of the gas is dissipated close to the nozzle, and buoyancy dominates flow over most of the plume.

  13. Transformation of the integral integral F(r, r ', vertical bar(r)over-right-arrow-(r)over-right-arrow vertical bar) d(r)over-right-arrow d(r)over-right-arrow ' using Hylleraas coordinates in N-dimensions

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Chatterjee, A.

    2006-09-01

    The integral integral F(r, r', vertical bar r - r'vertical bar) dr dr' where r and r' are N-dimensional position vectors can be transformed into a simple three-dimensional integral using Hylleraas coordinates. A simple derivation of this result is presented.

  14. Montana Integrated Carbon to Liquids (ICTL) Demonstration Program

    SciTech Connect

    Fiato, Rocco; Sharma, Ramesh; Allen, Mark; Peyton, Brent; Macur, Richard; Cameron, Jemima

    2013-09-30

    Integrated carbon?to?liquids technology (ICTL) incorporates three basic processes for the conversion of a wide range of feedstocks to distillate liquid fuels: (1) Direct Microcatalytic Coal Liquefaction (MCL) is coupled with biomass liquefaction via (2) Catalytic Hydrodeoxygenation and Isomerization (CHI) of fatty acid methyl esters (FAME) or trigylceride fatty acids (TGFA) to produce liquid fuels, with process derived (3) CO{sub 2} Capture and Utilization (CCU) via algae production and use in BioFertilizer for added terrestrial sequestration of CO{sub 2}, or as a feedstock for MCL and/or CHI. This novel approach enables synthetic fuels production while simultaneously meeting EISA 2007 Section 526 targets, minimizing land use and water consumption, and providing cost competitive fuels at current day petroleum prices. ICTL was demonstrated with Montana Crow sub?bituminous coal in MCL pilot scale operations at the Energy and Environmental Research Center at the University of North Dakota (EERC), with related pilot scale CHI studies conducted at the University of Pittsburgh Applied Research Center (PARC). Coal?Biomass to Liquid (CBTL) Fuel samples were evaluated at the US Air Force Research Labs (AFRL) in Dayton and greenhouse tests of algae based BioFertilizer conducted at Montana State University (MSU). Econometric modeling studies were also conducted on the use of algae based BioFertilizer in a wheat?camelina crop rotation cycle. We find that the combined operation is not only able to help boost crop yields, but also to provide added crop yields and associated profits from TGFA (from crop production) for use an ICTL plant feedstock. This program demonstrated the overall viability of ICTL in pilot scale operations. Related work on the Life Cycle Assessment (LCA) of a Montana project indicated that CCU could be employed very effectively to reduce the overall carbon footprint of the MCL/CHI process. Plans are currently being made to conduct larger?scale process demonstration studies of the CHI process in combination with CCU to generate synthetic jet and diesel fuels from algae and algae fertilized crops. Site assessment and project prefeasibility studies are planned with a major EPC firm to determine the overall viability of ICTL technology commercialization with Crow coal resources in south central Montana.

  15. HTGR-INTEGRATED COAL TO LIQUIDS PRODUCTION ANALYSIS

    SciTech Connect

    Anastasia M Gandrik; Rick A Wood

    2010-10-01

    As part of the DOE’s Idaho National Laboratory (INL) nuclear energy development mission, the INL is leading a program to develop and design a high temperature gas-cooled reactor (HTGR), which has been selected as the base design for the Next Generation Nuclear Plant. Because an HTGR operates at a higher temperature, it can provide higher temperature process heat, more closely matched to chemical process temperatures, than a conventional light water reactor. Integrating HTGRs into conventional industrial processes would increase U.S. energy security and potentially reduce greenhouse gas emissions (GHG), particularly CO2. This paper focuses on the integration of HTGRs into a coal to liquids (CTL) process, for the production of synthetic diesel fuel, naphtha, and liquefied petroleum gas (LPG). The plant models for the CTL processes were developed using Aspen Plus. The models were constructed with plant production capacity set at 50,000 barrels per day of liquid products. Analysis of the conventional CTL case indicated a potential need for hydrogen supplementation from high temperature steam electrolysis (HTSE), with heat and power supplied by the HTGR. By supplementing the process with an external hydrogen source, the need to “shift” the syngas using conventional water-gas shift reactors was eliminated. HTGR electrical power generation efficiency was set at 40%, a reactor size of 600 MWth was specified, and it was assumed that heat in the form of hot helium could be delivered at a maximum temperature of 700°C to the processes. Results from the Aspen Plus model were used to perform a preliminary economic analysis and a life cycle emissions assessment. The following conclusions were drawn when evaluating the nuclear assisted CTL process against the conventional process: • 11 HTGRs (600 MWth each) are required to support production of a 50,000 barrel per day CTL facility. When compared to conventional CTL production, nuclear integration decreases coal consumption by 66% using electrolysis and nuclear power as the hydrogen source. In addition, nuclear integration decreases CO2 emissions by 84% if sequestration is assumed and 96% without sequestration, when compared to conventional CTL. • The preliminary economic assessment indicates that the incorporation of 11 HTGRs and the associated HTSEs impacts the expected return on investment, when compared to conventional CTL with or without sequestration. However, in a carbon constrained scenario, where CO2 emissions are taxed and sequestration is not an option, a reasonable CO2 tax would equate the economics of the nuclear assisted CTL case with the conventional CTL case. The economic results are preliminary, as they do not include economies of scale for multiple HTGRs and are based on an uncertain reactor cost estimate. Refinement of the HTGR cost estimate is currently underway. • To reduce well to wheel (WTW) GHG emissions below baseline (U.S. crude mix) or imported crude derived diesel, integration of an HTGR is necessary. WTW GHG emissions decrease 8% below baseline crude with nuclear assisted CTL. Even with CO2 sequestration, conventional CTL WTW GHG emissions are 24% higher than baseline crude emissions. • Current efforts are underway to investigate the incorporation of nuclear integrated steam methane reforming for the production of hydrogen, in place of HTSE. This will likely reduce the number of HTGRs required for the process.

  16. Attitudes among students and teachers on vertical integration between clinical medicine and basic science within a problem-based undergraduate medical curriculum.

    PubMed

    Brynhildsen, J; Dahle, L O; Behrbohm Fallsberg, M; Rundquist, I; Hammar, M

    2002-05-01

    Important elements in the curriculum at the Faculty of Health Sciences in Linköping are vertical integration, i.e. integration between the clinical and basic science sections of the curriculum, and horizontal integration between different subject areas. Integration throughout the whole curriculum is time-consuming for both teachers and students and hard work is required for planning, organization and execution. The aim was to assess the importance of vertical and horizontal integration in an undergraduate medical curriculum, according to opinions among students and teachers. In a questionnaire 102 faculty teachers and 106 students were asked about the importance of 14 different components of the undergraduate medical curriculum including vertical and horizontal integration. They were asked to assign between one and six points to each component (6 points = extremely important for the quality of the curriculum; 1 point = unimportant). Students as well as teachers appreciated highly both forms of integration. Students scored horizontal integration slightly but significantly higher than the teachers (median 6 vs 5 points; p=0.009, Mann-Whitney U-test), whereas teachers scored vertical integration higher than students (6 vs 5; p=0.019, Mann-Whitney U-test). Both students and teachers considered horizontal and vertical integration to be highly important components of the undergraduate medical programme. We believe both kinds of integration support problem-based learning and stimulate deep and lifelong learning and suggest that integration should always be considered deeply when a new curriculum is planned for undergraduate medical education. PMID:12098415

  17. Modeling and Analysis of Hybrid Cellular/WLAN Systems with Integrated Service-Based Vertical Handoff Schemes

    NASA Astrophysics Data System (ADS)

    Xia, Weiwei; Shen, Lianfeng

    We propose two vertical handoff schemes for cellular network and wireless local area network (WLAN) integration: integrated service-based handoff (ISH) and integrated service-based handoff with queue capabilities (ISHQ). Compared with existing handoff schemes in integrated cellular/WLAN networks, the proposed schemes consider a more comprehensive set of system characteristics such as different features of voice and data services, dynamic information about the admitted calls, user mobility and vertical handoffs in two directions. The code division multiple access (CDMA) cellular network and IEEE 802.11e WLAN are taken into account in the proposed schemes. We model the integrated networks by using multi-dimensional Markov chains and the major performance measures are derived for voice and data services. The important system parameters such as thresholds to prioritize handoff voice calls and queue sizes are optimized. Numerical results demonstrate that the proposed ISHQ scheme can maximize the utilization of overall bandwidth resources with the best quality of service (QoS) provisioning for voice and data services.

  18. Vertically integrated shared learning models in general practice: a qualitative study

    PubMed Central

    2013-01-01

    Background The numbers of learners seeking placements in general practice is rapidly increasing as an ageing workforce impacts on General Practitioner availability. The traditional master apprentice model that involves one-to-one teaching is therefore leading to supervision capacity constraints. Vertically integrated (VI) models may provide a solution. Shared learning, in which multiple levels of learners are taught together in the same session, is one such model. This study explored stakeholders’ perceptions of shared learning in general practices in northern NSW, Australia. Methods A qualitative research method, involving individual semi-structured interviews with GP supervisors, GP registrars, Prevocational General Practice Placements Program trainees, medical students and practice managers situated in nine teaching practices, was used to investigate perceptions of shared learning practices. A thematic analysis was conducted on 33 transcripts by three researchers. Results Participants perceived many benefits to shared learning including improved collegiality, morale, financial rewards, and better sharing of resources, knowledge and experience. Additional benefits included reduced social and professional isolation, and workload. Perceived risks of shared learning included failure to meet the individual needs of all learners. Shared learning models were considered unsuitable when learners need to: receive remediation, address a specific deficit or immediate learning needs, learn communication or procedural skills, be given personalised feedback or be observed by their supervisor during consultations. Learners’ acceptance of shared learning appeared partially dependent on their supervisors’ small group teaching and facilitation skills. Conclusions Shared learning models may partly address supervision capacity constraints in general practice, and bring multiple benefits to the teaching environment that are lacking in the one-to-one model. However, the risks need to be managed appropriately, to ensure learning needs are met for all levels of learners. Supervisors also need to consider that one-to-one teaching may be more suitable in some instances. Policy makers, medical educators and GP training providers need to ensure that quality learning outcomes are achieved for all levels of learners. A mixture of one-to-one and shared learning would address the benefits and downsides of each model thereby maximising learners’ learning outcomes and experiences. PMID:24079420

  19. A Study of Three Dimensional Bubble Velocities at Co-current Gas-liquid Vertical Upward Bubbly Flows

    E-print Network

    Kuntoro, Hadiyan Yusuf; Deendarlianto,

    2015-01-01

    Recently, experimental series of co-current gas-liquid upward bubbly flows in a 6 m-height and 54.8 mm i.d. vertical titanium pipe had been conducted at the TOPFLOW thermal hydraulic test facility, Helmholtz-Zentrum Dresden-Rossendorf, Germany. The experiments were initially performed to develop a high quality database of two-phase flows as well as to validate new CFD models. An ultrafast dual-layer electron beam X-ray tomography, named ROFEX, was used as measurement system with high spatial and temporal resolutions. The gathered cross sectional grey value image results from the tomography scanning were reconstructed, segmented and evaluated to acquire gas bubble parameters for instance bubble position, size and holdup. To assign the correct paired bubbles from both measurement layers, a bubble pair algorithm was implemented on the basis of the highest probability values of bubbles in position, volume and velocity. Hereinafter, the individual characteristics of bubbles were calculated include instantaneous th...

  20. Dendronized Polyimides Bearing Long-Chain Alkyl Groups and Their Application for Vertically Aligned Nematic Liquid Crystal Displays

    PubMed Central

    Tsuda, Yusuke; OH, Jae Min; Kuwahara, Renpei

    2009-01-01

    Polyimides having dendritic side chains were investigated. The terphenylene diamine monomer having a first-generation monodendron, 3,4,5-tris(n-dodecyloxy)-benzoate and the monomer having a second-generation monodendron, 3,4,5-tris[-3’,4’,5’-tri(n-dodecyloxy)benzyloxy]benzoate were successfully synthesized and the corresponding soluble dendritic polyimides were obtained by polycondensation with conventional tetracarboxylic dianhydride monomers such as benzophenone tertracarboxylic dianhydride (BTDA). The two-step polymerizations in NMP that is a general method for the synthesis of soluble polyimides is difficult; however, the expected dendritic polyimides can be obtained in aromatic polar solvents such as m-cresol and pyridine. The solubility of these dendoronized polyimides is characteristic; soluble in common organic solvents such as dichloromethane, chloroform, toluene and THF. These dendronized polyimides exhibited high glass transition temperatures and good thermal stability in both air and under nitrogen. Their application as alignment layers for LCDs was investigated, and it was found that these polyimides having dendritic side chains were applicable for the vertically aligned nematic liquid crystal displays (VAN-LCDs). PMID:20087476

  1. Photoresponsive carbohydrate-based giant surfactants: automatic vertical alignment of nematic liquid crystal for the remote-controllable optical device.

    PubMed

    Kim, Dae-Yoon; Lee, Sang-A; Kang, Dong-Gue; Park, Minwook; Choi, Yu-Jin; Jeong, Kwang-Un

    2015-03-25

    Photoresponsive carbohydrate-based giant surfactants (abbreviated as CELAnD-OH) were specifically designed and synthesized for the automatic vertical alignment (VA) layer of nematic (N) liquid crystal (LC), which can be applied for the fabrication of remote-controllable optical devices. Without the conventional polymer-based LC alignment process, a perfect VA layer was automatically constructed by directly adding the 0.1 wt % CELA1D-OH in the N-LC media. The programmed CELA1D-OH giant surfactants in the N-LC media gradually diffused onto the substrates of LC cell and self-assembled to the expanded monolayer structure, which can provide enough empty spaces for N-LC molecules to crawl into the empty zones for the construction of VA layer. On the other hand, the CELA3D-OH giant surfactants forming the condensed monolayer structure on the substrates exhibited a planar alignment (PA) rather than a VA. Upon tuning the wavelength of light, the N-LC alignments were reversibly switched between VA and PA in the remote-controllable LC optical devices. Based on the experimental results, it was realized that understanding the interactions between N-LC molecules and amphiphilic giant surfactants is critical to design the suitable materials for the automatic LC alignment. PMID:25738306

  2. Data/model integration for vertical mixing in the stable Arctic boundary layer

    SciTech Connect

    Barr, S.; ReVelle, D.O.; Kao, C.Y.J.; Bigg, E.K.

    1998-12-31

    This is the final report of a short Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Data on atmospheric trace constituents and the vertical structure of stratus clouds from a 1996 expedition to the central Arctic reveal mechanisms of vertical mixing that have not been observed in mid-latitudes. Time series of the altitude and thickness of summer arctic stratus have been observed using an elastic backscatter lidar aboard an icebreaker. With the ship moored to the pack ice during 14 data collection stations and the lidar staring vertically, the time series represent advected cloud fields. The lidar data reveal a significant amount of vertical undulation in the clouds, strongly suggestive of traveling waves in the buoyantly damped atmosphere that predominates in the high Arctic. Concurrent observations of trace gases associated with the natural sulfur cycle (dimethyl sulfide, SO{sub 2}, NH{sub 3}, H{sub 2}O{sub 2}) and aerosols show evidence of vertical mixing events that coincide with a characteristic signature in the cloud field that may be called dropout or lift out. A segment of a cloud deck appears to be relocated from the otherwise quasicontinuous layer to another altitude a few hundred meters lower or higher. Atmospheric models have been applied to identify the mechanism that cause the dropout phenomenon and connect it dynamically to the surface layer mixing.

  3. Developement of 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    SciTech Connect

    Deputch, G.; Hoff, J.; Lipton, R.; Liu, T.; Olsen, J.; Ramberg, E.; Wu, Jin-Yuan; Yarema, R.; Shochet, M.; Tang, F.; Demarteau, M.; /Argonne /INFN, Padova

    2011-04-13

    Many next-generation physics experiments will be characterized by the collection of large quantities of data, taken in rapid succession, from which scientists will have to unravel the underlying physical processes. In most cases, large backgrounds will overwhelm the physics signal. Since the quantity of data that can be stored for later analysis is limited, real-time event selection is imperative to retain the interesting events while rejecting the background. Scaling of current technologies is unlikely to satisfy the scientific needs of future projects, so investments in transformational new technologies need to be made. For example, future particle physics experiments looking for rare processes will have to address the demanding challenges of fast pattern recognition in triggering as detector hit density becomes significantly higher due to the high luminosity required to produce the rare processes. In this proposal, we intend to develop hardware-based technology that significantly advances the state-of-the-art for fast pattern recognition within and outside HEP using the 3D vertical integration technology that has emerged recently in industry. The ultimate physics reach of the LHC experiments will crucially depend on the tracking trigger's ability to help discriminate between interesting rare events and the background. Hardware-based pattern recognition for fast triggering on particle tracks has been successfully used in high-energy physics experiments for some time. The CDF Silicon Vertex Trigger (SVT) at the Fermilab Tevatron is an excellent example. The method used there, developed in the 1990's, is based on algorithms that use a massively parallel associative memory architecture to identify patterns efficiently at high speed. However, due to much higher occupancy and event rates at the LHC, and the fact that the LHC detectors have a much larger number of channels in their tracking detectors, there is an enormous challenge in implementing pattern recognition for a track trigger, requiring about three orders of magnitude more associative memory patterns than what was used in the original CDF SVT. Significant improvement in the architecture of associative memory structures is needed to run fast pattern recognition algorithms of this scale. We are proposing the development of 3D integrated circuit technology as a way to implement new associative memory structures for fast pattern recognition applications. Adding a 'third' dimension to the signal processing chain, as compared to the two-dimensional nature of printed circuit boards, Field Programmable Gate Arrays (FPGAs), etc., opens up the possibility for new architectures that could dramatically enhance pattern recognition capability. We are currently performing preliminary design work to demonstrate the feasibility of this approach. In this proposal, we seek to develop the design and perform the ASIC engineering necessary to realize a prototype device. While our focus here is on the Energy Frontier (e.g. the LHC), the approach may have applications in experiments in the Intensity Frontier and the Cosmic Frontier as well as other scientific and medical projects. In fact, the technique that we are proposing is very generic and could have wide applications far beyond track trigger, both within and outside HEP.

  4. Direct integration of aspherical microlens on vertical-cavity surface emitting laser emitting surface for beam shaping

    NASA Astrophysics Data System (ADS)

    Li, Qi-Song; Wang, Li-Jie; Tian, Zhen-Nan; Lin, Xiao-Feng; Jiang, Tong; Zhang, Jun; Zhang, Xing; Zhao, Ji-Hong; Li, Ai-Wu; Qin, Li

    2013-07-01

    The aspherical microlens used for beam shaping of vertical-cavity surface emitting lasers (VCSELs) was designed and fabricated. The microlens designed as needed was directly fabricated and integrated in one step on the emitting surface of a VCSEL by femtosecond laser direct writing (FsLDW). By the microlens' shaping the beam quality of VCSELs can be remarkably improved, especially the reduction of the divergence angle. The experiment results agree with the numerical modeling results. After integrating aspherical microlenses the far-field divergence angle of the VCSEL was reduced from 18.16° to 0.83°. This novel technique has great potential in the field of miniature and low power integrated optical system.

  5. Biodiesel and Integrated STEM: Vertical Alignment of High School Biology/Biochemistry and Chemistry

    ERIC Educational Resources Information Center

    Burrows, Andrea C.; Breiner, Jonathan M.; Keiner, Jennifer; Behm, Chris

    2014-01-01

    This article explores the vertical alignment of two high school classes, biology and chemistry, around the core concept of biodiesel fuel production. High school teachers and university faculty members investigated biodiesel as it relates to societal impact through a National Science Foundation Research Experience for Teachers. Using an action…

  6. Liquid over-feeding refrigeration system and method with integrated accumulator-expander-heat exchanger

    DOEpatents

    Mei, V.C.; Chen, F.C.

    1997-04-22

    A refrigeration system is described having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle. 4 figs.

  7. Liquid over-feeding refrigeration system and method with integrated accumulator-expander-heat exchanger

    DOEpatents

    Mei, Viung C. (Oak Ridge, TN); Chen, Fang C. (Knoxville, TN)

    1997-01-01

    A refrigeration system having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle.

  8. Cloud vertical structure and the impact of MODIS liquid water path retrieval assumptions: Developing a theoretical framework and evaluating retrievals using large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Miller, D. J.; Zhang, Z.; Platnick, S. E.; Ackerman, A. S.

    2014-12-01

    The vertical structure of marine boundary layer (MBL) clouds plays an important role in satellite retrievals of cloud microphysical properties such as droplet size (re) , liquid water path (LWP), and droplet number concentration (CDNC). Passive optical retrievals of LWP such as those performed by MODIS rely on cloud vertical structure assumptions to relate cloud optical thickness (?) and re retrievals to a corresponding LWP. Typically these passive remote sensing techniques assume that clouds are vertically homogenous [Platnick et al., 2003]. However, it has been suggested that an adiabatic cloud model could potentially introduce more realistic assumptions for some MBL cloud regimes [Wood and Hartmann, 2005; Bennartz, 2007]. In reality, cloud vertical structure is often more complicated than either of these assumptions because structure can be altered by both precipitation and mixing processes. This work examines the impact of varied and realistic cloud vertical structures on retrievals requiring fixed homogeneous or adiabatic structure assumptions. To address this we use the DHARMA cloud large-eddy simulation (LES) model [Ackerman et al. 2004] and a MODIS-like satellite retrieval simulator [Zhang et al. 2012]. The LES and retrieval simulator allow for the direct comparison of retrievals to the in-situ microphysical structure of the LES cloud field. Physical properties from the LES cloud field such as the degree of adiabaticity and droplet growth lapse rate are examined and linked to the impact of retrieval biases. The retrieval comparison led to the development of a predictive theoretical framework for determining which of the LES pixels satisfied either homogeneous or adiabatic vertical structure assumptions. The theoretical model was also utilized to extend a single-layer adiabatic cloud model to an arbitrary two-layer model capable of characterizing the impact of entrainment features on cloud retrievals performed on the LES. Our results overwhelmingly demonstrate that the impact of realistic cloud vertical structure on retrievals is more complicated than either of the vertical structure assumptions currently being implemented by the remote sensing community.

  9. Vertical alignment of liquid crystal through ion beam exposure on oxygen-doped SiC films deposited at room temperature

    SciTech Connect

    Son, Phil Kook; Park, Jeung Hun; Kim, Jae Chang; Yoon, Tae-Hoon; Rho, Soon Joon; Jeon, Back Kyun; Shin, Sung Tae; Kim, Jang Sub; Lim, Soon Kwon

    2007-09-03

    The authors report the vertical alignment of liquid crystal (LC) through the ion beam exposure on amorphous oxygen-doped SiC (SiOC) film surfaces deposited at room temperature. The optical transmittance of these films was similar to that of polyimide layers, but much higher than that of SiO{sub x} films. The light leakage of a LC cell aligned vertically on SiOC films was much lower than those of a LC cell aligned on polyimide layers or other inorganic films. They found that LC molecules align vertically on ion beam treated SiOC film when the roughness of the electrostatic force microscopy (EFM) data is high on the SiOC film surface, while they align homogeneously when the roughness of the EFM data is low.

  10. Membrane-Based, Liquid–Liquid Separator with Integrated Pressure Control

    E-print Network

    Adamo, Andrea

    We describe the development and application of an improved, membrane-based, liquid–liquid separator. Membrane-based separation relies on the exploitation of surface forces and the use of a membrane wetted by one of the ...

  11. Vertical Bridgman growth of Cd(1-y)Zn(y)Te and characterization of substrates for use in Hg(1-x)Cd(x)Te liquid phase epitaxy

    NASA Astrophysics Data System (ADS)

    Bruder, M.; Schwarz, H.-J.; Schmitt, R.; Maier, H.; Moeller, M.-O.

    1990-04-01

    The reproducible growth of large Cd(1-z)Zn(z)Te crystals is demonstrated using vertical stoichiometric Bridgman method. The preparation of 111-line-oriented substrates from these crystals is reported. Characterization of substrates using dislocation density analysis, X-ray topography, and diffraction methods, and their use in Hg(1-x)Cd(x)Te liquid phase epitaxy all indicate the high quality of the material.

  12. Evolution of the liquid metal reactor; The integral fast reactor (IFR) concept

    SciTech Connect

    Till, C.E.; Chang, Y.I. )

    1989-01-01

    This paper reports on the integral fat reactor (IFR) concept. A key feature of the IFR concept is the metallic fuel, the original choice in liquid metal reactor development. An IFR development program is detailed by the authors.

  13. A high performance P(VDF-TrFE) nanogenerator with self-connected and vertically integrated fibers by patterned EHD pulling

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoliang; Tian, Hongmiao; Li, Xiangming; Shao, Jinyou; Ding, Yucheng; An, Ningli; Zhou, Yaopei

    2015-07-01

    Piezoelectricity based energy harvesting from mechanical vibrations has attracted extensive attention for its potential application in powering wireless mobile electronics recently. Here, a patterned electrohydrodynamic (EHD) pulling technology was proposed to fabricate a new self-connected, piezoelectric fiber array vertically integrated P(VDF-TrFE) nanogenerator, with a molecular poling orientation fully aligned to the principal excitation for maximized conversion and a well-bridged electrode pair for efficient charge collection. The nanogenerator is fabricated in a novel way by applying a voltage across an electrode pair sandwiching an air gap and an array of shallow micropillars, during which the EHD force tends to pull the micropillars upward, generating a microfiber array finally in robust contact with the upper electrode. Such a thermoplastic and EHD deformation of the microfibers, featured simultaneously by an electric field and by a microfiber elongation dominantly vertical to the electrode, leads to a poling orientation of P(VDF-TrFE) well coincident with the principal strain for the generator excited by a force normal to the electrodes. The as-prepared piezoelectric device exhibits an enhanced output voltage up to 4.0 V and a current of 2.6 ?A, therefore the piezoelectric voltage was enhanced to 5.4 times that from the bulk film. Under periodic mechanical impact, electric signals are repeatedly generated from the device and used to power a seven-segment indicator, RBGY colored light-emitting diodes, and a large-scale liquid crystal display screen. These results not only provide a tool for fabricating 3D piezoelectric polymers but offer a new type of self-connected nanogenerator for the next generation of self-powered electronics.Piezoelectricity based energy harvesting from mechanical vibrations has attracted extensive attention for its potential application in powering wireless mobile electronics recently. Here, a patterned electrohydrodynamic (EHD) pulling technology was proposed to fabricate a new self-connected, piezoelectric fiber array vertically integrated P(VDF-TrFE) nanogenerator, with a molecular poling orientation fully aligned to the principal excitation for maximized conversion and a well-bridged electrode pair for efficient charge collection. The nanogenerator is fabricated in a novel way by applying a voltage across an electrode pair sandwiching an air gap and an array of shallow micropillars, during which the EHD force tends to pull the micropillars upward, generating a microfiber array finally in robust contact with the upper electrode. Such a thermoplastic and EHD deformation of the microfibers, featured simultaneously by an electric field and by a microfiber elongation dominantly vertical to the electrode, leads to a poling orientation of P(VDF-TrFE) well coincident with the principal strain for the generator excited by a force normal to the electrodes. The as-prepared piezoelectric device exhibits an enhanced output voltage up to 4.0 V and a current of 2.6 ?A, therefore the piezoelectric voltage was enhanced to 5.4 times that from the bulk film. Under periodic mechanical impact, electric signals are repeatedly generated from the device and used to power a seven-segment indicator, RBGY colored light-emitting diodes, and a large-scale liquid crystal display screen. These results not only provide a tool for fabricating 3D piezoelectric polymers but offer a new type of self-connected nanogenerator for the next generation of self-powered electronics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01746g

  14. A high performance P(VDF-TrFE) nanogenerator with self-connected and vertically integrated fibers by patterned EHD pulling.

    PubMed

    Chen, Xiaoliang; Tian, Hongmiao; Li, Xiangming; Shao, Jinyou; Ding, Yucheng; An, Ningli; Zhou, Yaopei

    2015-07-21

    Piezoelectricity based energy harvesting from mechanical vibrations has attracted extensive attention for its potential application in powering wireless mobile electronics recently. Here, a patterned electrohydrodynamic (EHD) pulling technology was proposed to fabricate a new self-connected, piezoelectric fiber array vertically integrated P(VDF-TrFE) nanogenerator, with a molecular poling orientation fully aligned to the principal excitation for maximized conversion and a well-bridged electrode pair for efficient charge collection. The nanogenerator is fabricated in a novel way by applying a voltage across an electrode pair sandwiching an air gap and an array of shallow micropillars, during which the EHD force tends to pull the micropillars upward, generating a microfiber array finally in robust contact with the upper electrode. Such a thermoplastic and EHD deformation of the microfibers, featured simultaneously by an electric field and by a microfiber elongation dominantly vertical to the electrode, leads to a poling orientation of P(VDF-TrFE) well coincident with the principal strain for the generator excited by a force normal to the electrodes. The as-prepared piezoelectric device exhibits an enhanced output voltage up to 4.0 V and a current of 2.6 ?A, therefore the piezoelectric voltage was enhanced to 5.4 times that from the bulk film. Under periodic mechanical impact, electric signals are repeatedly generated from the device and used to power a seven-segment indicator, RBGY colored light-emitting diodes, and a large-scale liquid crystal display screen. These results not only provide a tool for fabricating 3D piezoelectric polymers but offer a new type of self-connected nanogenerator for the next generation of self-powered electronics. PMID:25981294

  15. Effects of total liquid encapsulation on the characteristics of GaAs single crystals grown by the vertical gradient freeze technique

    NASA Astrophysics Data System (ADS)

    Bourret, E. D.; Merk, E. C.

    1991-03-01

    Total liquid encapsulation with B 2O 3 has been used to grow 50 mm diameter GaAs single crystals in PBN crucibles in a vertical gradient freeze configuration. The B 2O 3 layer efficiently prevents direct contact between the crucible and the GaAs charge and reproducible growth of single crystals can be achieved. The effect of B 2O 3 water content on the structural and electrical characteristics of the crystals was investigated. Water vapor can be trapped betwen the crystal and the crucible affecting the surface morphology of the crystals. The water content of the B 2O 3 encapsulant was found to affect the electrical properties of the crystals in a manner similar to what is observed for growth of GaAs crystals by the liquid encapsulated czochralski technique. Crystals grown encapsulated with dry B 2O 3 have been ion-implanted with silicon. The implant activations are comparable to those obtained on LEC grown crystals. Total liquid encapsulation in vertical gradient freeze can be used to produce device quality substrates.

  16. 980nm-1550nm vertically integrated duplexer for hybrid erbium-doped waveguide amplifiers on glass

    NASA Astrophysics Data System (ADS)

    Onestas, Lydie; Nappez, Thomas; Ghibaudo, Elise; Vitrant, Guy; Broquin, Jean-Emmanuel

    2009-02-01

    Ion-exchanged devices on glass have been successfully used to realize passive and active integrated optic devices for sensor and telecom applications. Nowadays, research is focused on the reduction of the chip dimensions with an increase of the number of different function integrated. In this paper we present how the use of two stacked optical layers can allow realizing efficient and compact pump duplexer for ion-exchanged hybrid erbium doped waveguide amplifier. Indeed our complete theoretical study of the device shows that excess losses lower than - 0.1 dB and crosstalk lower than -20 dB can be achieved.

  17. 39.2 / B. L. Zhang 39.2: Optical Analysis of Vertical Aligned Mode on Color Filter

    E-print Network

    39.2 / B. L. Zhang 39.2: Optical Analysis of Vertical Aligned Mode on Color Filter Liquid on color filter liquid-crystal-on-silicon microdisplay. Three-dimensional optical analyses were performed filter liquid-crystal-on-silicon (CF- LCOS) microdisplay that integrated color filters on silicon. In our

  18. Implementing Vertical and Horizontal Engineering Students' Integration and Assessment of Consequence Academic Achievement

    ERIC Educational Resources Information Center

    Al-Zubaidy, Sarim; Abdulaziz, Nidhal; Dashtpour, Reza

    2012-01-01

    Recent scholarship references indicate that integration of the student body can result in an enhanced learning experience for students and also greater satisfaction. This paper reports the results of a case study whereby mechanical engineering students studying at a newly established branch campus in Dubai of a British university were exposed to…

  19. Realization of integral 3-dimensional image using fabricated tunable liquid lens array

    NASA Astrophysics Data System (ADS)

    Lee, Muyoung; Kim, Junoh; Kim, Cheol Joong; Lee, Jin Su; Won, Yong Hyub

    2015-03-01

    Electrowetting has been widely studied for various optical applications such as optical switch, sensor, prism, and display. In this study, vari-focal liquid lens array is developed using electrowetting principle to construct integral 3-dimensional imaging. The electrowetting principle that changes the surface tension by applying voltage has several advantages to realize active optical device such as fast response time, low electrical consumption, and no mechanical moving parts. Two immiscible liquids that are water and oil are used for forming lens. By applying a voltage to the water, the focal length of the lens could be tuned as changing contact angle of water. The fabricated electrowetting vari-focal liquid lens array has 1mm diameter spherical lens shape that has 1.6mm distance between each lens. The number of lenses on the panel is 23x23 and the focal length of the lens array is simultaneously tuned from -125 to 110 diopters depending on the applied voltage. The fabricated lens array is implemented to integral 3-dimensional imaging. A 3D object is reconstructed by fabricated liquid lens array with 23x23 elemental images that are generated by 3D max tools. When liquid lens array is tuned as convex state. From vari-focal liquid lens array implemented integral imaging system, we expect that depth enhanced integral imaging can be realized in the near future.

  20. Application of integral equation theory to polyolefin liquids and blends

    SciTech Connect

    Curro, J.G.; Weinhold, J.D.

    1997-11-01

    The ability to model the packing of polymers in melts and blends is important in many polymer applications. One significant application is the development of new polymer blends. It would be exceedingly helpful to the materials chemist if molecular modeling could be employed to predict the thermodynamics and phase behavior of hypothetical polymer alloys before embarking on a time consuming and expensive synthesis program. The well known Flory-Huggins theory has been remarkably successful in describing many aspects of polymer mixing from a qualitative point of view. This theory is known, however, to suffer from several deficiencies which can be traceable to the fact that: (1) it is a lattice model requiring both monomer components to have the same volume; and (2) a mean field or random mixing approximation is made which effectively ignores chain connectivity. Because of these limitations the Flory-Huggins theory does not include packing effects and cannot be used to make quantitative molecular engineering calculations. Recently Curro and Schweizer developed a new approach for treating polymer liquids and mixtures which the authors call PRISM theory. This is an extension to polymers of the Reference Interaction Site Model (RISM Theory) developed by Chandler and Andersen to describe the statistical mechanics of small molecule liquids. The PRISM theory is a continuous space description of a polymer liquid, which includes chain connectivity and nonrandom mixing effects in a computationally tractable manner. The primary output from PRISM calculations is the average structure or packing of the amorphous liquid given by the radial distribution function denoted as g(r). This radial distribution function is employed to deduce thermodynamic or structural properties of interest. Here, the authors describe the theoretical approach and demonstrate its application to polyethylene, isotactic polypropylene, syndiotactic polypropylene, and polyisobutylene liquids and blends.

  1. Integrated control and display research for transition and vertical flight on the NASA V/STOL Research Aircraft (VSRA)

    NASA Technical Reports Server (NTRS)

    Foster, John D.; Moralez, Ernesto, III; Franklin, James A.; Schroeder, Jeffery A.

    1987-01-01

    Results of a substantial body of ground-based simulation experiments indicate that a high degree of precision of operation for recovery aboard small ships in heavy seas and low visibility with acceptable levels of effort by the pilot can be achieved by integrating the aircraft flight and propulsion controls. The availability of digital fly-by-wire controls makes it feasible to implement an integrated control design to achieve and demonstrate in flight the operational benefits promised by the simulation experience. It remains to validate these systems concepts in flight to establish their value for advanced short takeoff vertical landing (STOVL) aircraft designs. This paper summarizes analytical studies and simulation experiments which provide a basis for the flight research program that will develop and validate critical technologies for advanced STOVL aircraft through the development and evaluation of advanced, integrated control and display concepts, and lays out the plan for the flight program that will be conducted on NASA's V/STOL Research Aircraft (VSRA).

  2. Integration of 1550 nm vertical-cavity surface-emitting laser with gratings on SOI

    NASA Astrophysics Data System (ADS)

    Li, Hongqiang; Cui, Beibei; Zhang, Meiling; Zhou, Wenqian; Chen, Hongda; Zhang, Cheng; Liu, Yu; Tang, Chunxiao; Li, Enbang

    2014-12-01

    We designed a 1550 nm vertical-cavity surface-emitting laser (VCSEL), which comprises a cladding, multiple quantum well (QW) active area, oxide restrict layer, substrate, and high reflectivity distributed Bragg reflectors (DBRs). The VCSEL cavity consists of the cladding, multiple QW active area, and limiting layer. AlGaAsSb/AlAsSb has been used for the DBR mirror system to achieve lattice matching. The QW/barrier comprises GaInAsN/AlGaInAs. By epitaxial growth, the DBR is banded with the active layer at the cavity antinode of the standing wave field, and the cavity length is set to 1.0?. A double-oxide layer, which is more beneficial than a single-oxide layer, has been adopted in the laser. Discrete Fourier transform is performed on the captured signal to extract the spectral content of the measured signal. By the FDTD method and the PML boundary condition, we achieve a 35% relative light intensity by introducing a TE mode from the cavity to the in-plane grating.

  3. Development of active edge pixel sensors and four-side buttable modules using vertical integration technologies

    NASA Astrophysics Data System (ADS)

    Macchiolo, A.; Andricek, L.; Moser, H.-G.; Nisius, R.; Richter, R. H.; Terzo, S.; Weigell, P.

    2014-11-01

    We present an R&D activity focused on the development of novel modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The modules consist of n-in-p pixel sensors, 100 or 200 ?m thick, produced at VTT (Finland) with an active edge technology, which considerably reduces the dead area at the periphery of the device. The sensors are interconnected with solder bump-bonding to the ATLAS FE-I3 and FE-I4 read-out chips, and characterised with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements will be discussed for devices before and after irradiation up to a fluence of 5 ×1015neq /cm2. We will also report on the R&D activity to obtain Inter Chip Vias (ICVs) on the ATLAS read-out chip in collaboration with the Fraunhofer Institute EMFT. This step is meant to prove the feasibility of the signal transport to the newly created readout pads on the backside of the chips allowing for four side buttable devices without the presently used cantilever for wire bonding. The read-out chips with ICVs will be interconnected to thin pixel sensors, 75 ?m and 150 ?m thick, with the Solid Liquid Interdiffusion (SLID) technology, which is an alternative to the standard solder bump-bonding.

  4. A vertically integrated pixel readout device for the Vertex Detector at the International Linear Collider

    SciTech Connect

    Deptuch, Grzegorz; Christian, David; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2008-12-01

    3D-Integrated Circuit technology enables higher densities of electronic circuitry per unit area without the use of nanoscale processes. It is advantageous for mixed mode design with precise analog circuitry because processes with conservative feature sizes typically present lower process dispersions and tolerate higher power supply voltages, resulting in larger separation of a signal from the noise floor. Heterogeneous wafers (different foundries or different process families) may be combined with some 3D integration methods, leading to the optimization of each tier in the 3D stack. Tracking and vertexing in future High-Energy Physics (HEP) experiments involves construction of detectors composed of up to a few billions of channels. Readout electronics must record the position and time of each measurement with the highest achievable precision. This paper reviews a prototype of the first 3D readout chip for HEP, designed for a vertex detector at the International Linear Collider. The prototype features 20 x 20 {micro}m{sup 2} pixels, laid out in an array of 64 x 64 elements and was fabricated in a 3-tier 0.18 {micro}m Fully Depleted SOI CMOS process at MIT-Lincoln Laboratory. The tests showed correct functional operation of the structure. The chip performs a zero-suppressed readout. Successive submissions are planned in a commercial 3D bulk 0.13 {micro}m CMOS process to overcome some of the disadvantages of an FDSOI process.

  5. Integrated Surface-enhanced Raman Spectroscopy chip based on liquid core waveguide

    E-print Network

    Lai, Chunhong; Chen, Li; Li, Junhui; Liu, Qinghao; Xu, Yi

    2015-01-01

    We propose an integrated surface enhanced Raman scattering (SERS) chip based on liquid-core waveguide with total reflection, through which the depression of leaky mode enable a long propagating distance. An Raman enhancement factor for rhodamine 6G of 2.5*105 is obtained, and a excellent repeatability is shown. The peaks in the SERS spectrum of DNA of silkworm clearly illustrate the information of the molecule structure. The integration of the SERS substrate, micro-fluid, and liquid-core waveguide make such a SERS chip attractive for biochemical detection with high performance.

  6. Micro-optical design of a three-dimensional microlens scanner for vertically integrated micro-opto-electro-mechanical systems.

    PubMed

    Baranski, Maciej; Bargiel, Sylwester; Passilly, Nicolas; Gorecki, Christophe; Jia, Chenping; Frömel, Jörg; Wiemer, Maik

    2015-08-01

    This paper presents the optical design of a miniature 3D scanning system, which is fully compatible with the vertical integration technology of micro-opto-electro-mechanical systems (MOEMS). The constraints related to this integration strategy are considered, resulting in a simple three-element micro-optical setup based on an afocal scanning microlens doublet and a focusing microlens, which is tolerant to axial position inaccuracy. The 3D scanning is achieved by axial and lateral displacement of microlenses of the scanning doublet, realized by micro-electro-mechanical systems microactuators (the transmission scanning approach). Optical scanning performance of the system is determined analytically by use of the extended ray transfer matrix method, leading to two different optical configurations, relying either on a ball lens or plano-convex microlenses. The presented system is aimed to be a core component of miniature MOEMS-based optical devices, which require a 3D optical scanning function, e.g., miniature imaging systems (confocal or optical coherence microscopes) or optical tweezers. PMID:26368111

  7. CIRSS vertical data integration, San Bernardino County study phases 1-A, 1-B

    NASA Technical Reports Server (NTRS)

    Christenson, J.; Michel, R. (principal investigators)

    1981-01-01

    User needs, data types, data automation, and preliminary applications are described for an effort to assemble a single data base for San Bernardino County from data bases which exist at several administrative levels. Each of the data bases used was registered and converted to a grid-based data file at a resolution of 4 acres and used to create a multivariable data base for the entire study area. To this data base were added classified LANDSAT data from 1976 and 1979. The resulting data base thus integrated in a uniform format all of the separately automated data within the study area. Several possible interactions between existing geocoded data bases and LANDSAT data were tested. The use of LANDSAT to update existing data base is to be tested.

  8. Wavelength-division multiplexed optical integrated circuit with vertical diffraction grating

    NASA Technical Reports Server (NTRS)

    Lang, Robert J. (inventor); Forouhar, Siamak (inventor)

    1994-01-01

    A semiconductor optical integrated circuit for wave division multiplexing has a semiconductor waveguide layer, a succession of diffraction grating points in the waveguide layer along a predetermined diffraction grating contour, a semiconductor diode array in the waveguide layer having plural optical ports facing the succession of diffraction grating points along a first direction, respective semiconductor diodes in the array corresponding to respective ones of a predetermined succession of wavelengths, an optical fiber having one end thereof terminated at the waveguide layer, the one end of the optical fiber facing the succession of diffraction grating points along a second direction, wherein the diffraction grating points are spatially distributed along the predetermined contour in such a manner that the succession of diffraction grating points diffracts light of respective ones of the succession of wavelengths between the one end of the optical fiber and corresponding ones of the optical ports.

  9. CMOS chip planarization by chemical mechanical polishing for a vertically stacked metal MEMS integration

    NASA Astrophysics Data System (ADS)

    Lee, Hocheol; Miller, Michele H.; Bifano, Thomas G.

    2004-01-01

    In this paper we present the planarization process of a CMOS chip for the integration of a microelectromechanical systems (MEMS) metal mirror array. The CMOS chip, which comes from a commercial foundry, has a bumpy passivation layer due to an underlying aluminum interconnect pattern (1.8 µm high), which is used for addressing individual micromirror array elements. To overcome the tendency for tilt error in the CMOS chip planarization, the approach is to sputter a thick layer of silicon nitride at low temperature and to surround the CMOS chip with dummy silicon pieces that define a polishing plane. The dummy pieces are first lapped down to the height of the CMOS chip, and then all pieces are polished. This process produced a chip surface with a root-mean-square flatness error of less than 100 nm, including tilt and curvature errors.

  10. Integrated model development for liquid fueled rocket propulsion systems

    NASA Technical Reports Server (NTRS)

    Santi, L. Michael

    1993-01-01

    As detailed in the original statement of work, the objective of phase two of this research effort was to develop a general framework for rocket engine performance prediction that integrates physical principles, a rigorous mathematical formalism, component level test data, system level test data, and theory-observation reconciliation. Specific phase two development tasks are defined.

  11. Fabrication techniques for multiscale 3D-MEMS with vertical metal micro- and nanowire integration

    NASA Astrophysics Data System (ADS)

    Greiner, F.; Quednau, S.; Dassinger, F.; Sarwar, R.; Schlaak, H. F.; Guttmann, M.; Meyer, P.

    2013-02-01

    This paper presents different low-temperature and high-throughput LIGA-like processes for the batch fabrication of metal micro systems that use long nano- or microwires perpendicularly rising from a substrate. First, circuit paths and seed layers are fabricated applying standard UV lithography and PVD. Second, three lithography techniques are used, namely ion track lithography, enhanced UV lithography and aligned x-ray lithography, to structure 20-400 µm thick polymer films. Ion track lithography is only used to fabricate extremely high aspect ratio cylindrical pores with 0.1-1 µm diameter and 20-100 µm length. The aligned UV and x-ray lithographies are employed to structure templates for various micro system components. Third, these polymer templates are filled using low-temperature electroplating processes transferring the polymer openings into metal structures. Finally, the polymer is dry etched to release all metal structures. These structures are applicable in future accelerometers and gas flow sensors. Using five configurations to define five different functional structures, we demonstrate fabrication processes applying the three different types of lithography. The main aspects concern the combination of both standard lithography techniques and especially developed lithography techniques. Furthermore, these aspects comprise the use of structures created by lithography for high aspect ratio polymer templates and multilayer electroplating with varying aspect ratios. The growth in place of nanowire arrays and micropillars along with surrounding structures is the key feature for low-temperature large-scale micro-nano integration technology without harmful transfer technologies.

  12. Vapor-liquid-solid epitaxial growth of Si1-xGex alloy nanowires: Composition dependence on precursor reactivity and morphology control for vertical forests

    NASA Astrophysics Data System (ADS)

    Choi, S. G.; Manandhar, P.; Picraux, S. T.

    2015-07-01

    Growth of high-density group IV alloy nanowire forests is critical for exploiting their unique functionalities in many applications. Here, the compositional dependence on precursor reactivity and optimized conditions for vertical growth are studied for Si1-xGex alloy nanowires grown by the vapor-liquid-solid method. The nanowire composition versus gas partial-pressure ratio for germane-silane and germane-disilane precursor combinations is obtained at 350 °C over a wide composition range (0.05 ? x ? 0.98) and a generalized model to predict composition for alloy nanowires is developed based on the relative precursor partial pressures and reactivity ratio. In combination with germane, silane provides more precise compositional control at high Ge concentrations (x > 0.7), whereas disilane greatly increases the Si concentration for a given gas ratio and enables more precise alloy compositional control at small Ge concentrations (x < 0.3). Vertically oriented, non-kinking nanowire forest growth on Si (111) substrates is then discussed for silane/germane over a wide range of compositions, with temperature and precursor partial pressure optimized by monitoring the nanowire growth front using in-situ optical reflectance. For high Ge compositions (x ? 0.9), a "two-step" growth approach with nucleation at higher temperatures results in nanowires with high-density and uniform vertical orientation. With increasing Si content (x ? 0.8), the optimal growth window is shifted to higher temperatures, which minimizes nanowire kinking morphologies. For Si-rich Si1-xGex alloys (x ? 0.25), vertical nanowire growth is enhanced by single-step, higher-temperature growth at reduced pressures.

  13. Comparison of the prevalence and genomic characteristics of Clostridium difficile isolated from various production groups in a vertically integrated swine operation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to compare the prevalence of Clostridium difficile among different age and production groups of swine in a vertically integrated swine operation in Texas in 2006. Isolation of C. difficile was performed utilizing an enrichment technique and restrictive media. Prelim...

  14. US/DOE Man-Machine Integration program for liquid metal reactors

    SciTech Connect

    D'Zmura, A.P.; Seeman, S.E.

    1985-03-01

    The United States Department of Energy (DOE) Man-Machine Integration program was started in 1980 as an addition to the existing Liquid Metal Fast Breeder Reactor safety base technology program. The overall goal of the DOE program is to enhance the operational safety of liquid metal reactors by optimum integration of humans and machines in the overall reactor plant system and by application of the principles of human-factors engineering to the design of equipment, subsystems, facilities, operational aids, procedures and environments. In the four years since its inception the program has concentrated on understanding the control process for Liquid Metal Reactors (LMRs) and on applying advanced computer concepts to this process. This paper describes the products that have been developed in this program, present computer-related programs, and plans for the future.

  15. Quantum-Classical Path Integral Simulation of Ferrocene-Ferrocenium Charge Transfer in Liquid Hexane.

    PubMed

    Walters, Peter L; Makri, Nancy

    2015-12-17

    We employ the quantum-classical path integral methodology to simulate the outer sphere charge-transfer process of the ferrocene-ferrocenium pair in liquid hexane with unprecedented accuracy. Comparison of the simulation results to those obtained by mapping the solvent on an effective harmonic bath demonstrates the accuracy of linear response theory in this system. PMID:26673195

  16. High resolution retrieval of liquid water vertical distributions using collocated Ka-band and W-band cloud radars

    E-print Network

    , 2005]. In the Rayleigh approximation radar reflectivity is proportional to the sixth moment of cloud, cloud liquid water content (LWC), from radar reflectivity, certain assumptions have to be made of large drizzle drops can dominate the radar reflectivity yet contribute little to cloud LWC and optical

  17. Vertically Integrated MEMS SOI Composite Porous Silicon-Crystalline Silicon Cantilever-Array Sensors: Concept for Continuous Sensing of Explosives and Warfare Agents

    NASA Astrophysics Data System (ADS)

    Stolyarova, Sara; Shemesh, Ariel; Aharon, Oren; Cohen, Omer; Gal, Lior; Eichen, Yoav; Nemirovsky, Yael

    This study focuses on arrays of cantilevers made of crystalline silicon (c-Si), using SOI wafers as the starting material and using bulk micromachining. The arrays are subsequently transformed into composite porous silicon-crystalline silicon cantilevers, using a unique vapor phase process tailored for providing a thin surface layer of porous silicon on one side only. This results in asymmetric cantilever arrays, with one side providing nano-structured porous large surface, which can be further coated with polymers, thus providing additional sensing capabilities and enhanced sensing. The c-Si cantilevers are vertically integrated with a bottom silicon die with electrodes allowing electrostatic actuation. Flip Chip bonding is used for the vertical integration. The readout is provided by a sensitive Capacitance to Digital Converter. The fabrication, processing and characterization results are reported. The reported study is aimed towards achieving miniature cantilever chips with integrated readout for sensing explosives and chemical warfare agents in the field.

  18. Application of the phase method in radioisotope measurements of the liquid - solid particles flow in the vertical pipeline

    NASA Astrophysics Data System (ADS)

    Hanus, Robert; Zych, Marcin; Petryka, Leszek; Mosorov, Volodymyr; Hanus, Pawe?

    2015-05-01

    The paper presents idea and an application of the gamma-absorption method to a two-phase flow investigation in a vertical pipeline, where the flow of solid particles transported by water was examined by a set of two 241Am radioactive sources and probes with NaI(Tl) scintillation crystals. In the described experiments as solid phase the ceramic models representing natural polymetallic ocean nodules were used. For advanced analysis of electrical signals obtained from detectors the phase of cross-spectral density function has been applied. Results of the average solid-phase velocity measurements were compared with one obtained by application of the classical cross-correlation. It was found that the combined uncertainties of the velocity of solid particles evaluation in the presented experiment did not exceed 0.6% in phase method and 3.2% in cross-correlation method.

  19. An eight-month sample of marine stratocumulus cloud fraction, albedo, and integrated liquid water

    NASA Technical Reports Server (NTRS)

    Fairall, C. W.; Hare, J. E.; Snider, J. B.

    1990-01-01

    Surface-meteorology and shortwave/longwave irradiance measurements taken on the northwest tip of San Nicolas Island off the coast of Southern California from March through October 1987 are analyzed. Experimental details are summarized, and shortwave cloud-radiation parameterization is outlined with emphasis on a shortwave algorithm. Frequency distributions indicate the stratocumulus clouds at the island have a cloud base on the order of 400 m, an integrated liquid water content of 75 g/sq m, and an albedo of 0.55 with substantial diurnal variations. The longwave parameterization for cloud fraction is also considered, and it is noted that using these models for downward longwave and shortwave irradiances, cloud fraction, integrated liquid water content, and albedo are deduced from the data.

  20. Experimental triplet and quadruplet fluctuation densities and spatial distribution function integrals for liquid mixtures

    SciTech Connect

    Ploetz, Elizabeth A.; Smith, Paul E.

    2015-03-07

    Kirkwood-Buff or Fluctuation Solution Theory can be used to provide experimental pair fluctuations, and/or integrals over the pair distribution functions, from experimental thermodynamic data on liquid mixtures. Here, this type of approach is used to provide triplet and quadruplet fluctuations, and the corresponding integrals over the triplet and quadruplet distribution functions, in a purely thermodynamic manner that avoids the use of structure factors. The approach is then applied to binary mixtures of water + methanol and benzene + methanol over the full composition range under ambient conditions. The observed correlations between the different species vary significantly with composition. The magnitude of the fluctuations and integrals appears to increase as the number of the most polar molecule involved in the fluctuation or integral also increases. A simple physical picture of the fluctuations is provided to help rationalize some of these variations.

  1. Reliability study of Au-in solid-liquid interdiffusion bonding for GaN-based vertical LED packaging

    NASA Astrophysics Data System (ADS)

    Sung, Ho-Kun; Wang, Cong; Kim, Nam-Young

    2015-12-01

    An In-rich Au-In bonding system has been developed to transfer vertical light-emitting diodes (VLEDs) from a sapphire to a graphite substrate and enable them to survive under n-ohmic contact treatment at 350 °C. The bonding temperature is 210 °C, and three intermetallic compounds are detected: AuIn, AuIn2, and ? phase. As a result, the remelting temperature increases beyond the theoretical value of 450 °C according to the Au-In binary phase diagram. In fact, reliability testing showed that joints obtained by rapid thermal annealing at 400 °C for 1?min survived whereas those obtained at 500 °C for 1?min failed. Finally, a GaN-based blue VLED was transferred to the graphite substrate by means of the proposed bonding method, and its average light output power was measured to be 386.6 mW (@350 mA) after n-ohmic contact treatment. This wafer-level bonding technique also shows excellent potential for high-temperature packing applications.

  2. Preliminary performance of a vertical-attitude takeoff and landing, supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Beissner, F. L., Jr.; Domack, C. S.; Swanson, E. E.

    1985-01-01

    A performance study was made of a vertical attitude takeoff and landing (VATOL), supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system. Those characteristics considered were aerodynamics, weight, balance, and performance. Preliminary results indicate that high levels of supersonic aerodynamic performance can be achieved. Further, with the assumption of an advanced (1985 technology readiness) low bypass ratio turbofan engine and advanced structures, excellent mission performance capability is indicated.

  3. An Integrated Study of Geoelectric Vertical Sounding and Hydrogeochemistry in the Riverside Alluvium around Buyeo Area, Korea

    NASA Astrophysics Data System (ADS)

    Doh, S.; Park, Y.; Yun, S.

    2005-12-01

    The water quality of alluvial aquifers in agricultural areas is sensitive to the behaviour of agricultural chemicals (e.g., fertilizers, pesticides, and lime) and, also, to the geologic conditions. It is important to know the characteristics of the aquifers (e.g., depth, spatial distribution, and soil types) and the relationship between subsurface geology and the groundwater contamination for its effective use and management in the future. In order to provide the subsurface information of the lithology and the groundwater zone for hydrogeologic interpretations, an integrated study using twenty vertical electric soundings (VES), direct observation of lithology from two boreholes and hydrochemical data from irrigation well has been conducted in the riverside alluvium near Buyeo area, Korea. Main results of this study are as follows. The depth of main groundwater table is getting slightly deeper toward the river. The boundary between surface sandy and silty soils extends to the subsurface at depth of groundwater table. The vestige of an ancient river channel, such as an oxbow lake, can be identified by a lateral continuation of perched aquifer parallel to the river on the resistivity profiles. This perched aquifer materials are composed of clay-rich silt soils, which prohibit the infiltration of oxygen and nitrate from the land surface. Therefore, the groundwater of the main aquifer below the oxbow lake shows the very low NO3 level and Eh values under the strong anoxic condition. Surface resistivity contour map indicates that the resistivity varies with a NW-SE trending zonal distribution and increases toward the river. This result shows an agreement with the spatial distribution of surface soils, implying that the variation of surface resistivity is mainly controlled by surface lithology or soil type. On the other hand, the distribution of water resistivities is correlated with that of total dissolved solids (TDS) concentration, while the earth resistivity of aquifer shows a different spatial distribution from those of water resistivity and TDS. It is interpreted that the earth resistivity of aquifer might represent the variations of soil type rather than water chemistry in the study area. The present study shows that the geoelectric sounding survey with the complement of borehole lithology and hydrochemical data can provide an inexpensive and useful method for delineating the subsurface hydrogeology in the riverside alluvial aquifer.

  4. Nuclear quantum effects in liquid water from path-integral simulations using an ab initio force matching approach

    E-print Network

    Thomas Spura; Christopher John; Scott Habershon; Thomas D. Kühne

    2014-02-12

    We have applied path integral simulations, in combination with new ab initio based water potentials, to investigate nuclear quantum effects in liquid water. Because direct ab initio path integral simulations are computationally expensive, a flexible water model is parameterized by force-matching to density functional theory-based molecular dynamics simulations. The resulting effective potentials provide an inexpensive replacement for direct ab inito molecular dynamics simulations and allow efficient simulation of nuclear quantum effects. Static and dynamic properties of liquid water at ambient conditions are presented and the role of nuclear quantum effects, exchange-correlation functionals and dispersion corrections are discussed in regards to reproducing the experimental properties of liquid water.

  5. Optical correlator using very-large-scale integrated circuit/ferroelectric-liquid-crystal electrically addressed spatial light modulators

    NASA Technical Reports Server (NTRS)

    Turner, Richard M.; Jared, David A.; Sharp, Gary D.; Johnson, Kristina M.

    1993-01-01

    The use of 2-kHz 64 x 64 very-large-scale integrated circuit/ferroelectric-liquid-crystal electrically addressed spatial light modulators as the input and filter planes of a VanderLugt-type optical correlator is discussed. Liquid-crystal layer thickness variations that are present in the devices are analyzed, and the effects on correlator performance are investigated through computer simulations. Experimental results from the very-large-scale-integrated / ferroelectric-liquid-crystal optical-correlator system are presented and are consistent with the level of performance predicted by the simulations.

  6. Hermetic integration of liquids using high-speed stud bump bonding for cavity sealing at the wafer level

    NASA Astrophysics Data System (ADS)

    Antelius, Mikael; Fischer, Andreas C.; Niklaus, Frank; Stemme, Göran; Roxhed, Niclas

    2012-04-01

    This paper reports a novel room-temperature hermetic liquid sealing process where the access ports of liquid-filled cavities are sealed with wire-bonded stud bumps. This process enables liquids to be integrated at the fabrication stage. Evaluation cavities were manufactured and used to investigate the mechanical and hermetic properties of the seals. Measurements on the successfully sealed structures show a helium leak rate of better than 10-10 mbarL s-1, in addition to a zero liquid loss over two months during storage near boiling temperature. The bond strength of the plugs was similar to standard wire bonds on flat surfaces.

  7. Thermal Integration of a Liquid Acquisition Device into a Cryogenic Feed System

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Bolshinskiy, L. G.; Schunk, R. G.; Martin, A. K.; Eskridge, R. H.; Frenkel, A.; Grayson, G.; Pendleton, M. L.

    2011-01-01

    Primary objectives of this effort were to define the following: (1) Approaches for quantification of the accumulation of thermal energy within a capillary screen liquid acquisition device (LAD) for a lunar lander upper stage during periods of up to 210 days on the lunar surface, (2) techniques for mitigating heat entrapment, and (3) perform initial testing, data evaluation. The technical effort was divided into the following categories: (1) Detailed thermal modeling of the LAD/feed system interactions using both COMSOL computational fluid device and standard codes, (2) FLOW-3D modeling of bulk liquid to provide interfacing conditions for the LAD thermal modeling, (3) condensation conditioning of capillary screens to stabilize surface tension retention capability, and (4) subscale testing of an integrated LAD/feed system. Substantial progress was achieved in the following technical areas: (1) Thermal modeling and experimental approaches for evaluating integrated cryogen LAD/feed systems, at both the system and component levels, (2) reduced gravity pressure control analyses, (3) analytical modeling and testing for capillary screen conditioning using condensation and wicking, and (4) development of rapid turnaround testing techniques for evaluating LAD/feed system thermal and fluid integration. A comprehensive effort, participants included a diverse cross section of representatives from academia, contractors, and multiple Marshall Space Flight Center organizations.

  8. Evolution of the liquid metal reactor: The Integral Fast Reactor (IFR) concept

    SciTech Connect

    Till, C.E.; Chang, Y.I.

    1989-01-01

    The Integral Fast Reactor (IFR) concept has been under development at Argonne National Laboratory since 1984. A key feature of the IFR concept is the metallic fuel. Metallic fuel was the original choice in early liquid metal reactor development. Solid technical accomplishments have been accumulating year after year in all aspects of the IFR development program. But as we make technical progress, the ultimate potential offered by the IFR concept as a next generation advanced reactor becomes clearer and clearer. The IFR concept can meet all three fundamental requirements needed in a next generation reactor. This document discusses these requirements: breeding, safety, and waste management. 5 refs., 4 figs.

  9. An integrated control panel utilizing a programmable varistor-multiplexed dichroic liquid crystal display

    NASA Technical Reports Server (NTRS)

    Whitton, I. J.

    1981-01-01

    Due to the conflicting demands of modern aircraft for increased systems/sensors and the decrease in cockpit panel size, weight, volume, and power, conventional discrete/dedicated methods of display and control are fast becoming obsolete. A means is sought to integrate the control and display into multifunctional programmable devices, thus giving the ability to increase system functions and yet conserve panel space. A potential solution to the control portion of the problem has come to be known as the Integrated Control Panel (ICP) approach. Flat panel display technology and controls using programmable flat panel displays with transparent capacitive touch control overlays offer the largest potential advantages. The flat panel display made of varistor-multiplexed dichroic liquid crystal (LCD) developed by GE in recent years appears to offer the ideal monochrome solution.

  10. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity.

    PubMed

    Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk

    2015-01-01

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies. PMID:26677949

  11. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity

    PubMed Central

    Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk

    2015-01-01

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies. PMID:26677949

  12. Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel.

    PubMed

    Jung, Taekeon; Yang, Sung

    2015-01-01

    Pressure measurement is considered one of the key parameters in microfluidic systems. It has been widely used in various fields, such as in biology and biomedical fields. The electrical measurement method is the most widely investigated; however, it is unsuitable for microfluidic systems because of a complicated fabrication process and difficult integration. Moreover, it is generally damaged by large deflection. This paper proposes a thin-film-based pressure sensor that is free from these limitations, using a liquid metal called galinstan. The proposed pressure sensor is easily integrated into a microfluidic system using soft lithography because galinstan exists in a liquid phase at room temperature. We investigated the characteristics of the proposed pressure sensor by calibrating for a pressure range from 0 to 230 kPa (R2 > 0.98) using deionized water. Furthermore, the viscosity of various fluid samples was measured for a shear-rate range of 30-1000 s(-1). The results of Newtonian and non-Newtonian fluids were evaluated using a commercial viscometer and normalized difference was found to be less than 5.1% and 7.0%, respectively. The galinstan-based pressure sensor can be used in various microfluidic systems for long-term monitoring with high linearity, repeatability, and long-term stability. PMID:26007732

  13. Highly Stable Liquid Metal-Based Pressure Sensor Integrated with a Microfluidic Channel

    PubMed Central

    Jung, Taekeon; Yang, Sung

    2015-01-01

    Pressure measurement is considered one of the key parameters in microfluidic systems. It has been widely used in various fields, such as in biology and biomedical fields. The electrical measurement method is the most widely investigated; however, it is unsuitable for microfluidic systems because of a complicated fabrication process and difficult integration. Moreover, it is generally damaged by large deflection. This paper proposes a thin-film-based pressure sensor that is free from these limitations, using a liquid metal called galinstan. The proposed pressure sensor is easily integrated into a microfluidic system using soft lithography because galinstan exists in a liquid phase at room temperature. We investigated the characteristics of the proposed pressure sensor by calibrating for a pressure range from 0 to 230 kPa (R2 > 0.98) using deionized water. Furthermore, the viscosity of various fluid samples was measured for a shear-rate range of 30–1000 s?1. The results of Newtonian and non-Newtonian fluids were evaluated using a commercial viscometer and normalized difference was found to be less than 5.1% and 7.0%, respectively. The galinstan-based pressure sensor can be used in various microfluidic systems for long-term monitoring with high linearity, repeatability, and long-term stability. PMID:26007732

  14. Vertical-cavity surface-emitting laser chip bonding by surface-tension-driven self-assembly for optoelectronic heterogeneous integration

    NASA Astrophysics Data System (ADS)

    Ito, Yuka; Fukushima, Takafumi; Kino, Hisashi; Lee, Kang-Wook; Choki, Koji; Tanaka, Tetsu; Koyanagi, Mitsumasa

    2015-03-01

    Twelve-channel vertical-cavity surface-emitting laser (12-ch VCSEL) chips are heterogeneously self-assembled on Si and glass wafers using water surface tension as a driving force. The VCSEL chips have a high length-to-width aspect ratio, that is, 3 mm long and 0.35 mm wide. The VCSEL chips are precisely self-assembled with alignment accuracies within 2 µm even when they are manually placed on liquid droplets provided on the host substrate. After the self-assembly of the VCSEL chips and the subsequent thermal compression, the chips successfully emit 850 nm light and exhibit no degradation of their current-voltage (I-V) characteristics.

  15. A set of vertically integrated inquiry-based practical curricula that develop scientific thinking skills for large cohorts of undergraduate students.

    PubMed

    Zimbardi, Kirsten; Bugarcic, Andrea; Colthorpe, Kay; Good, Jonathan P; Lluka, Lesley J

    2013-12-01

    Science graduates require critical thinking skills to deal with the complex problems they will face in their 21st century workplaces. Inquiry-based curricula can provide students with the opportunities to develop such critical thinking skills; however, evidence suggests that an inappropriate level of autonomy provided to underprepared students may not only be daunting to students but also detrimental to their learning. After a major review of the Bachelor of Science, we developed, implemented, and evaluated a series of three vertically integrated courses with inquiry-style laboratory practicals for early-stage undergraduate students in biomedical science. These practical curricula were designed so that students would work with increasing autonomy and ownership of their research projects to develop increasingly advanced scientific thinking and communication skills. Students undertaking the first iteration of these three vertically integrated courses reported learning gains in course content as well as skills in scientific writing, hypothesis construction, experimental design, data analysis, and interpreting results. Students also demonstrated increasing skills in both hypothesis formulation and communication of findings as a result of participating in the inquiry-based curricula and completing the associated practical assessment tasks. Here, we report the specific aspects of the curricula that students reported as having the greatest impact on their learning and the particular elements of hypothesis formulation and communication of findings that were more challenging for students to master. These findings provide important implications for science educators concerned with designing curricula to promote scientific thinking and communication skills alongside content acquisition. PMID:24292906

  16. Remote sensing of total integrated water vapor, wind speed, and cloud liquid water over the ocean using the Special Sensor Microwave/Imager (SSM/I) 

    E-print Network

    Manning, Norman Willis William

    1997-01-01

    A modified D-matrix retrieval method is the basis of the refined total integrated water vapor (TIWV), total integrated cloud liquid water (CLW), and surface wind speed (WS) retrieval methods that are developed. The 85 GHZ polarization difference...

  17. Integrated Mg/TiO{sub 2}-ionic liquid system for deep desulfurization

    SciTech Connect

    Yin, Yee Cia; Kait, Chong Fai E-mail: hayyiratulfatimah@yahoo.com Fatimah, Hayyiratul E-mail: hayyiratulfatimah@yahoo.com Wilfred, Cecilia E-mail: hayyiratulfatimah@yahoo.com

    2014-10-24

    A series of Mg/TiO{sub 2} photocatalysts were prepared using wet impregnation method followed by calcination at 300, 400 and 500°C for 1 h. The photocatalysts were characterized using Thermal Gravimetric Analysis, Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, and Field Emission Scanning Electron Microscopy. The performance for deep desulfurization was investigated using model oil with 100 ppm sulfur (in the form of dibenzothiophene). The integrated system involves photocatalytic oxidation followed by ionic liquid-extraction processes. The best performing photocatalyst was 0.25wt% Mg loaded on titania calcined at 400°C (0.25Mg400), giving 98.5% conversion of dibenzothiophene to dibenzothiophene sulfone. The highest extraction efficiency of 97.8% was displayed by 1,2-diethylimidazolium diethylphosphate. The overall total sulfur removal was 96.3%.

  18. Synthesis gas production by mixed conducting membranes with integrated conversion into liquid products

    DOEpatents

    Nataraj, Shankar (Allentown, PA); Russek, Steven Lee (Allentown, PA); Dyer, Paul Nigel (Allentown, PA)

    2000-01-01

    Natural gas or other methane-containing feed gas is converted to a C.sub.5 -C.sub.19 hydrocarbon liquid in an integrated system comprising an oxygenative synthesis gas generator, a non-oxygenative synthesis gas generator, and a hydrocarbon synthesis process such as the Fischer-Tropsch process. The oxygenative synthesis gas generator is a mixed conducting membrane reactor system and the non-oxygenative synthesis gas generator is preferably a heat exchange reformer wherein heat is provided by hot synthesis gas product from the mixed conducting membrane reactor system. Offgas and water from the Fischer-Tropsch process can be recycled to the synthesis gas generation system individually or in combination.

  19. Liquid crystal waveguide technologies for a new generation of low-power photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    d'Alessandro, Antonio; Martini, Luca; Civita, Luca; Beccherelli, Romeo; Asquini, Rita

    2015-03-01

    In this paper we show two approaches to fabricate photonic channels on different substrate technology platforms, in particular silicon and polydimethylsiloxane (PDMS), for flexible photonic integrated circuits. The electro-optic effect and nonlinear optical properties of liquid crystals (LC) allow the realization of low cost and low energy consumption optoelectronic devices operating at both visible and near-infrared wavelengths. High extinction ratio and large tuning range guided wave devices will be presented to be used for both optofluidic and datacom applications, in which both low realization costs and low power consumption are key features. In particular we will show our recent results on polarization independent light propagation in waveguides whose core consists of LC infiltrated in PDMS channels (LC:PDMS waveguides) fully compatible with optofluidic and lab-on-chip microsystems.

  20. Liquid rocket booster integration study. Volume 3, part 1: Study products

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is part one of the study products section of the five volume series.

  1. Liquid rocket booster integration study. Volume 3: Study products. Part 2: Sections 8-19

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is part two of the study products section of the five volume series.

  2. Study of Thermodynamic Vent and Screen Baffle Integration for Orbital Storage and Transfer of Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Cady, E. C.

    1973-01-01

    A comprehensive analytical and experimental program was performed to determine the feasibility of integrating an internal thermodynamic vent system and a full wall-screen liner for the orbital storage and transfer of liquid hydrogen (LH2). Ten screens were selected from a comprehensive screen survey. The experimental study determined the screen bubble point, flow-through pressure loss, and pressure loss along rectangular channels lined with screen on one side, for the 10 screens using LH2 saturated at 34.5 N/cm2 (50 psia). The correlated experimental data were used in an analysis to determine the optimum system characteristics in terms of minimum weight for 6 tanks ranging from 141.6 m3 (5,000 ft3) to 1.416 m3 (50 ft3) for orbital storage times of 30 and 300 days.

  3. Hybrid two-chain simulation and integral equation theory : application to polyethylene liquids.

    SciTech Connect

    Huimin Li, David T. Wu; Curro, John G.; McCoy, John Dwane

    2006-02-01

    We present results from a hybrid simulation and integral equation approach to the calculation of polymer melt properties. The simulation consists of explicit Monte Carlo (MC) sampling of two polymer molecules, where the effect of the surrounding chains is accounted for by an HNC solvation potential. The solvation potential is determined from the Polymer Reference Interaction Site Model (PRISM) as a functional of the pair correlation function from simulation. This hybrid two-chain MC-PRISM approach was carried out on liquids of polyethylene chains of 24 and 66 CH{sub 2} units. The results are compared with MD simulation and self-consistent PRISM-PY theory under the same conditions, revealing that the two-chain calculation is close to MD, and able to overcome the defects of the PRISM-PY closure and predict more accurate structures of the liquid at both short and long range. The direct correlation function, for instance, has a tail at longer range which is consistent with MD simulation and avoids the short-range assumptions in PRISM-PY theory. As a result, the self-consistent two-chain MC-PRISM calculation predicts an isothermal compressibility closer to the MD results.

  4. Tunable integrated optical filters based on sapphire microspheres and liquid crystals

    NASA Astrophysics Data System (ADS)

    Gilardi, Giovanni; Yilmaz, Hasan; Sharif Murib, Mohammed; Asquini, Rita; d'Alessandro, Antonio; Serpengüzel, Ali; Beccherelli, Romeo

    2010-05-01

    We present an integrated optical narrowband electrically tunable filter based on the whispering gallery modes of sapphire microspheres and double ion-exchanged channel BK7 glass waveguides. Tuning is provided by a liquid crystal infiltrated between the spheres and the glass substrate. By suitably choosing the radii of the spheres and of the circular apertures, upon which the spheres are positioned, arrays of different filters can be realized on the same substrate with a low cost industrial process. We evaluate the performance in terms of quality factor, mode spacing, and tuning range by comparing the numerical results obtained by the numerical finite element modeling approach and with the analytical approach of the Generalized Lorenz-Mie Theory for various design parameters. By reorienting the LC in an external electrical field, we demonstrate the tuning of the spectral response of the sapphire microsphere based filter. We find that the value of the mode spacing remains nearly unchanged for the different values of the applied electric field. An increase of the applied electric field strength, changes the refractive index of the liquid crystal, so that for a fixed geometry the mode spacing remains unchanged.

  5. A mathematical model of neonatal tidal liquid ventilation integrating airway mechanics and gas transfer phenomena.

    PubMed

    Corno, Chiara; Fiore, Gianfranco Beniamino; Costantino, Maria Laura

    2004-04-01

    Tidal liquid ventilation (TLV) was proposed as an alternative to conventional mechanical ventilation in the case of surfactant-deficiency diseases, particularly for very premature subjects. Although many experimental studies have been conducted up to now, the effects of variations in ventilatory settings, such as frequency and tidal volume, on blood arterialization and lung mechanics have not been studied quantitatively. We developed a mathematical model simulating the breathing processes occurring during neonatal TLV treatments. The model integrates the description of O2 and CO2 transport, from the trachea to pulmonary capillary blood and vice versa, with the description of fluid mechanics within the airways and the saccules (the alveoli precursors). Gas transfer is described with a mono-dimensional model, accounting for convective and diffusive transport through the airways, coupled with a 3-compartment model, simulating gas diffusion between saccules, plasma and red blood cells, and chemical reactions dependent on the concentrations of gases and related chemical species. Mechanic loads on airways are calculated by means of a lumped-parameters approach. The model calculates mechanical stress and gas exchange as a function of the ventilatory settings. The integration of these results sheds light on possible ventilation strategies to allow for optimal management of blood arterialization and lung mechanical load. PMID:15072214

  6. THE VERTICAL

    NASA Technical Reports Server (NTRS)

    Albert, Stephen L.; Spencer, Jeffrey B.

    1994-01-01

    'THE VERTICAL' computer keyboard is designed to address critical factors which contribute to Repetitive Motion Injuries (RMI) (including Carpal Tunnel Syndrome) in association with computer keyboard usage. This keyboard splits the standard QWERTY design into two halves and positions each half 90 degrees from the desk. In order to access a computer correctly. 'THE VERTICAL' requires users to position their bodies in optimal alignment with the keyboard. The orthopaedically neutral forearm position (with hands palms-in and thumbs-up) reduces nerve compression in the forearm. The vertically arranged keypad halves ameliorate onset occurrence of keyboard-associated RMI. By utilizing visually-reference mirrored mylar surfaces adjustable to the user's eye, the user is able to readily reference any key indicia (reversed) just as they would on a conventional keyboard. Transverse adjustability substantially reduces cumulative musculoskeletal discomfort in the shoulders. 'THE VERTICAL' eliminates the need for an exterior mouse by offering a convenient finger-accessible curser control while the hands remain in the vertically neutral position. The potential commercial application for 'THE VERTICAL' is enormous since the product can effect every person who uses a computer anywhere in the world. Employers and their insurance carriers are spending hundreds of millions of dollars per year as a result of RMI. This keyboard will reduce the risk.

  7. A new approach to untargeted integration of high resolution liquid chromatography-mass spectrometry data.

    PubMed

    van der Kloet, Frans M; Hendriks, Margriet; Hankemeier, Thomas; Reijmers, Theo

    2013-11-01

    Because of its high sensitivity and specificity, hyphenated mass spectrometry has become the predominant method to detect and quantify metabolites present in bio-samples relevant for all sorts of life science studies being executed. In contrast to targeted methods that are dedicated to specific features, global profiling acquisition methods allow new unspecific metabolites to be analyzed. The challenge with these so-called untargeted methods is the proper and automated extraction and integration of features that could be of relevance. We propose a new algorithm that enables untargeted integration of samples that are measured with high resolution liquid chromatography-mass spectrometry (LC-MS). In contrast to other approaches limited user interaction is needed allowing also less experienced users to integrate their data. The large amount of single features that are found within a sample is combined to a smaller list of, compound-related, grouped feature-sets representative for that sample. These feature-sets allow for easier interpretation and identification and as important, easier matching over samples. We show that the automatic obtained integration results for a set of known target metabolites match those generated with vendor software but that at least 10 times more feature-sets are extracted as well. We demonstrate our approach using high resolution LC-MS data acquired for 128 samples on a lipidomics platform. The data was also processed in a targeted manner (with a combination of automatic and manual integration) using vendor software for a set of 174 targets. As our untargeted extraction procedure is run per sample and per mass trace the implementation of it is scalable. Because of the generic approach, we envision that this data extraction lipids method will be used in a targeted as well as untargeted analysis of many different kinds of TOF-MS data, even CE- and GC-MS data or MRM. The Matlab package is available for download on request and efforts are directed toward a user-friendly Windows executable. PMID:24139572

  8. Integration and characterization of SiN nanopores for single-molecule detection in liquid-core ARROW waveguides

    NASA Astrophysics Data System (ADS)

    Rudenko, M. I.; Yin, D.; Holmes, M.; Hawkins, A. R.; Schmidt, H.

    2007-02-01

    We demonstrate a method for integrating silicon nitride nanopores in liquid core Anti Resonant Reflecting Optical Waveguides (ARROW) for single molecule electrical detection and control. We use a two-step integration process when a micropore is fabricated first, paving the way for subsequent nanopore integration in the first silicon nitride layer of the ARROW structure. Nanopores with dimensions as small as 11 nm were fabricated using a Focused Ion Beam shrinking process commensurate with single particle gating of viruses, proteins, ribosomes and other biomolecules.

  9. Biosensors and Biofuel Cells based on Vertically Aligned Carbon Nanotubes for Integrated Energy Sensing, Generation, and Storage (SGS) Systems

    NASA Astrophysics Data System (ADS)

    Pandey, Archana; Prasad, Abhishek; Khin Yap, Yoke

    2010-03-01

    Diabetes is a growing health issue in the nation. Thus in-situ glucose sensors that can monitor the glucose level in our body are in high demand. Furthermore, it will be exciting if the excessive blood sugar can be converted into usable energy, and be stored in miniature batteries for applications. This will be the basis for an integrated energy sensing, generation, and storage (SGS) system in the future. Here we report the use of functionalized carbon nanotubes arrays as the glucose sensors as well as fuel cells that can convert glucose into energy. In principle, these devices can be integrated to detect excessive blood glucose and then convert the glucose into energy. They are also inline with our efforts on miniature 3D microbatteries using CNTs [1]. All these devices will be the basis for future SGS systems. Details of these results will be discussed in the meeting. [1] Wang et al., in 206^th Meeting of the Electrochemical Society, October 3-8, Honolulu, Hawaii (2004), Symposium Q1, abstract 1492. Y. K. Yap acknowledges supports from DARPA (DAAD17-03-C-0115), USDA (2007-35603-17740), and the Multi-Scale Technologies Institute (MuSTI) at MTU.

  10. Simulation, integration, and economic analysis of gas-to-liquid processes 

    E-print Network

    Bao, Buping

    2009-05-15

    Gas-to-liquid (GTL) process involves the chemical conversion of natural gas (or other gas sources) into synthetic crude that can be upgraded and separated into different useful hydrocarbon fractions including liquid ...

  11. Stabilized liquid membrane device (SLMD) for the passive, integrative sampling of labile metals in water

    USGS Publications Warehouse

    Brumbaugh, W.G.; Petty, J.D.; Huckins, J.N.; Manahan, S.E.

    2002-01-01

    A stabilized liquid membrane device (SLMD) is described for potential use as an in situ, passive, integrative sampler for cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) in natural waters. The SLMD (patent pending) consists of a 2.5-cm-wide by 15-cm-long strip of low-density polyethylene (LDPE) layflat tubing containing 1 mL of an equal mixture (v/v) of oleic acid (cis-9-octadecenoic acid) and EMO-8Q (7-[4-ethyl-1-methyloctyl]-8-quinolinol). The reagent mixture continuously diffuses to the exterior surface of the LDPE membrane, and provides for sequestration of several divalent metals for up to several weeks. Depending on sampler configuration, concentration factors of several thousand can be realized for these metal ions after just a few days. In addition to in situ deployment, the SLMD may be useful for laboratory determination of labile metal species in grab samples. Methods for minimizing the effects of water flow on the sampling rate are currently under investigation.

  12. Fuel cell integral bundle assembly including ceramic open end seal and vertical and horizontal thermal expansion control

    DOEpatents

    Zafred, Paolo R. (Murrysville, PA); Gillett, James E. (Greensburg, PA)

    2012-04-24

    A plurality of integral bundle assemblies contain a top portion with an inlet fuel plenum and a bottom portion containing a base support, the base supports a dense, ceramic air exhaust manifold having four supporting legs, the manifold is below and connects to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the open end of the fuel cells rest upon and within a separate combination ceramic seal and bundle support contained in a ceramic support casting, where at least one flexible cushion ceramic band seal located between the recuperator and fuel cells protects and controls horizontal thermal expansion, and where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all of the weight of the generator.

  13. Helicopter Field Testing of NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) System fully Integrated with the Morpheus Vertical Test Bed Avionics

    NASA Technical Reports Server (NTRS)

    Epp, Chirold D.; Robertson, Edward A.; Ruthishauser, David K.

    2013-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project was chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with real-time terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. The ALHAT System must be capable of identifying and avoiding surface hazards to enable a safe and accurate landing to within tens of meters of designated and certified landing sites anywhere on a planetary surface under any lighting conditions. This is accomplished with the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN). The NASA plan for the ALHAT technology is to perform the TRL6 closed loop demonstration on the Morpheus Vertical Test Bed (VTB). The first Morpheus vehicle was lost in August of 2012 during free-flight testing at Kennedy Space Center (KSC), so the decision was made to perform a helicopter test of the integrated ALHAT System with the Morpheus avionics over the ALHAT planetary hazard field at KSC. The KSC helicopter tests included flight profiles approximating planetary approaches, with the entire ALHAT system interfaced with all appropriate Morpheus subsystems and operated in real-time. During these helicopter flights, the ALHAT system imaged the simulated lunar terrain constructed in FY2012 to support ALHAT/Morpheus testing at KSC. To the best of our knowledge, this represents the highest fidelity testing of a system of this kind to date. During this helicopter testing, two new Morpheus landers were under construction at the Johnson Space Center to support the objective of an integrated ALHAT/Morpheus free-flight demonstration. This paper provides an overview of this helicopter flight test activity, including results and lessons learned, and also provides an overview of recent integrated testing of ALHAT on the second Morpheus vehicle.

  14. Helicopter Field Testing of NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) System fully integrated with the Morpheus Vertical Test Bed Avionics

    NASA Technical Reports Server (NTRS)

    Rutishauser, David; Epp, Chirold; Robertson, Edward

    2013-01-01

    The Autonomous Landing Hazard Avoidance Technology (ALHAT) Project was chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with real-time terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. The ALHAT System must be capable of identifying and avoiding surface hazards to enable a safe and accurate landing to within tens of meters of designated and certified landing sites anywhere on a planetary surface under any lighting conditions. This is accomplished with the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN). The NASA plan for the ALHAT technology is to perform the TRL6 closed loop demonstration on the Morpheus Vertical Test Bed (VTB). The first Morpheus vehicle was lost in August of 2012 during free-flight testing at Kennedy Space Center (KSC), so the decision was made to perform a helicopter test of the integrated ALHAT System with the Morpheus avionics over the ALHAT planetary hazard field at KSC. The KSC helicopter tests included flight profiles approximating planetary approaches, with the entire ALHAT system interfaced with all appropriate Morpheus subsystems and operated in real-time. During these helicopter flights, the ALHAT system imaged the simulated lunar terrain constructed in FY2012 to support ALHAT/Morpheus testing at KSC. To the best of our knowledge, this represents the highest fidelity testing of a system of this kind to date. During this helicopter testing, two new Morpheus landers were under construction at the Johnson Space Center to support the objective of an integrated ALHAT/Morpheus free-flight demonstration. This paper provides an overview of this helicopter flight test activity, including results and lessons learned, and also provides an overview of recent integrated testing of ALHAT on the second Morpheus vehicle.

  15. Floating Loop System For Cooling Integrated Motors And Inverters Using Hot Liquid Refrigerant

    DOEpatents

    Hsu, John S [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN

    2006-02-07

    A floating loop vehicle component cooling and air-conditioning system having at least one compressor for compressing cool vapor refrigerant into hot vapor refrigerant; at least one condenser for condensing the hot vapor refrigerant into hot liquid refrigerant by exchanging heat with outdoor air; at least one floating loop component cooling device for evaporating the hot liquid refrigerant into hot vapor refrigerant; at least one expansion device for expanding the hot liquid refrigerant into cool liquid refrigerant; at least one air conditioning evaporator for evaporating the cool liquid refrigerant into cool vapor refrigerant by exchanging heat with indoor air; and piping for interconnecting components of the cooling and air conditioning system.

  16. Integral Circulation Experiment: Thermal-hydraulic simulator of a heavy liquid metal reactor

    NASA Astrophysics Data System (ADS)

    Tarantino, M.; Agostini, P.; Benamati, G.; Coccoluto, G.; Gaggini, P.; Labanti, V.; Venturi, G.; Class, A.; Liftin, K.; Forgione, N.; Moreau, V.

    2011-08-01

    In the frame of the IP-EUROTRANS (6th Framework Program EU), domain DEMETRA, ENEA was involved in the Work Package 4.5 " Large Scale Integral Test", devoted to characterize a relevant portion of a sub-critical ADS reactor block (core, internals, heat exchanger, cladding for fuel elements) in steady state, transient and accidental conditions. More in details ENEA assumed the commitment to perform an integral experiment aiming to reproduce the primary flow path of the " European Transmutation Demonstrator (ETD)" pool-type nuclear reactor, cooled by Lead Bismuth Eutectics (LBE). This experimental activity, called " Integral Circulation Experiment (ICE)", has been implemented merging the efforts of several research institutes, among which, besides ENEA, FZK, CRS4 and University of Pisa, allowing to design an appropriate test section to be installed in the CIRCE facility. The goal of the experiments is therefore to demonstrate the technological feasibility of a heavy liquid metal (HLM) nuclear system pool-type in a relevant scale (1 MW), investigating the related thermal-hydraulic behaviour (heat source and heat exchanger coupling, primary system and downcomer coupling, gas trapping into the main stream, thermal stratification in the pool, forced and mixed convection in rod bundle) under both steady state and transient conditions. Moreover the preliminary as well as the planned experiments aims to address performance and reliability tests of some prototypical components, such as heat source, heat exchanger, chemistry control system. The paper reports a detailed description of the experiment, the design performed for the test section and its main components as well as the preliminary experimental results carried out in the first experimental campaign run on the CIRCE pool, which consists of a full power steady state test. The preliminary experimental results carried out have demonstrate the proper design of the test section trough the experiment goals as well as the HLM primary system technological viability. Moreover the results depicted into the paper are the first experimental data made available, especially for what concern the HLM pool thermal-hydraulic in a large scale system.

  17. Wicking and flooding of liquids on vertical porous sheets Seong Jin Kim, Jin Woo Choi, Myoung-Woon Moon, Kwang-Ryeol Lee, Young Soo Chang, Dae-

    E-print Network

    Kim, Ho-Young

    a wet paintbrush into contact with a vertical watercolor paper, the paint may wick into the porous sheet painting activity. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4914384] I. INTRODUCTION including painting, printing, composite manufacturing,1 paper-based microfluidics,2 absorption in hygiene

  18. Investigation of the liquid/vapor composition of compressed liquid CO2 with N2 and O2 in integrated pollutant removal systems for coal combustion

    SciTech Connect

    Oryshchyn, Danylo B.; Ochs, Thomas L.; Summers, Cathy A.; Penner, Larry R.; Gerdemann, Stephen J.

    2005-01-01

    Accurate prediction of the processes in Integrated Pollutant Removal (IPR) using compression and condensation of coal combustion products requires an understanding of the liquid/vapor ternary CO2/O2/N2 system. At conditions close to the critical point of CO2 the existing equations of state deviate from the sparse measured results available in the literature. Building on existing data and procedures, the USDOE/Albany Research Center has designed an apparatus for examining compositions in this region. The design of the apparatus and planned initial experiments are presented.

  19. Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes

    SciTech Connect

    Brian Leen, J.; Berman, Elena S. F.; Gupta, Manish; Liebson, Lindsay

    2012-04-15

    Developments in cavity-enhanced absorption spectrometry have made it possible to measure water isotopes using faster, more cost-effective field-deployable instrumentation. Several groups have attempted to extend this technology to measure water extracted from plants and found that other extracted organics absorb light at frequencies similar to that absorbed by the water isotopomers, leading to {delta}{sup 2}H and {delta}{sup 18}O measurement errors ({Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O). In this note, the off-axis integrated cavity output spectroscopy (ICOS) spectra of stable isotopes in liquid water is analyzed to determine the presence of interfering absorbers that lead to erroneous isotope measurements. The baseline offset of the spectra is used to calculate a broadband spectral metric, m{sub BB}, and the mean subtracted fit residuals in two regions of interest are used to determine a narrowband metric, m{sub NB}. These metrics are used to correct for {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O. The method was tested on 14 instruments and {Delta}{delta}{sup 18}O was found to scale linearly with contaminant concentration for both narrowband (e.g., methanol) and broadband (e.g., ethanol) absorbers, while {Delta}{delta}{sup 2}H scaled linearly with narrowband and as a polynomial with broadband absorbers. Additionally, the isotope errors scaled logarithmically with m{sub NB}. Using the isotope error versus m{sub NB} and m{sub BB} curves, {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O resulting from methanol contamination were corrected to a maximum mean absolute error of 0.93 per mille and 0.25 per mille respectively, while {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O from ethanol contamination were corrected to a maximum mean absolute error of 1.22 per mille and 0.22 per mille . Large variation between instruments indicates that the sensitivities must be calibrated for each individual isotope analyzer. These results suggest that the properly calibrated interference metrics can be used to correct for polluted samples and extend off-axis ICOS measurements of liquid water to include plant waters, soil extracts, wastewater, and alcoholic beverages. The general technique may also be extended to other laser-based analyzers including methane and carbon dioxide isotope sensors.

  20. Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes

    NASA Astrophysics Data System (ADS)

    Brian Leen, J.; Berman, Elena S. F.; Liebson, Lindsay; Gupta, Manish

    2012-04-01

    Developments in cavity-enhanced absorption spectrometry have made it possible to measure water isotopes using faster, more cost-effective field-deployable instrumentation. Several groups have attempted to extend this technology to measure water extracted from plants and found that other extracted organics absorb light at frequencies similar to that absorbed by the water isotopomers, leading to ?2H and ?18O measurement errors (??2H and ??18O). In this note, the off-axis integrated cavity output spectroscopy (ICOS) spectra of stable isotopes in liquid water is analyzed to determine the presence of interfering absorbers that lead to erroneous isotope measurements. The baseline offset of the spectra is used to calculate a broadband spectral metric, mBB, and the mean subtracted fit residuals in two regions of interest are used to determine a narrowband metric, mNB. These metrics are used to correct for ??2H and ??18O. The method was tested on 14 instruments and ??18O was found to scale linearly with contaminant concentration for both narrowband (e.g., methanol) and broadband (e.g., ethanol) absorbers, while ??2H scaled linearly with narrowband and as a polynomial with broadband absorbers. Additionally, the isotope errors scaled logarithmically with mNB. Using the isotope error versus mNB and mBB curves, ??2H and ??18O resulting from methanol contamination were corrected to a maximum mean absolute error of 0.93 ‰ and 0.25 ‰ respectively, while ??2H and ??18O from ethanol contamination were corrected to a maximum mean absolute error of 1.22 ‰ and 0.22 ‰. Large variation between instruments indicates that the sensitivities must be calibrated for each individual isotope analyzer. These results suggest that the properly calibrated interference metrics can be used to correct for polluted samples and extend off-axis ICOS measurements of liquid water to include plant waters, soil extracts, wastewater, and alcoholic beverages. The general technique may also be extended to other laser-based analyzers including methane and carbon dioxide isotope sensors.

  1. Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes.

    PubMed

    Brian Leen, J; Berman, Elena S F; Liebson, Lindsay; Gupta, Manish

    2012-04-01

    Developments in cavity-enhanced absorption spectrometry have made it possible to measure water isotopes using faster, more cost-effective field-deployable instrumentation. Several groups have attempted to extend this technology to measure water extracted from plants and found that other extracted organics absorb light at frequencies similar to that absorbed by the water isotopomers, leading to ?(2)H and ?(18)O measurement errors (??(2)H and ??(18)O). In this note, the off-axis integrated cavity output spectroscopy (ICOS) spectra of stable isotopes in liquid water is analyzed to determine the presence of interfering absorbers that lead to erroneous isotope measurements. The baseline offset of the spectra is used to calculate a broadband spectral metric, m(BB), and the mean subtracted fit residuals in two regions of interest are used to determine a narrowband metric, m(NB). These metrics are used to correct for ??(2)H and ??(18)O. The method was tested on 14 instruments and ??(18)O was found to scale linearly with contaminant concentration for both narrowband (e.g., methanol) and broadband (e.g., ethanol) absorbers, while ??(2)H scaled linearly with narrowband and as a polynomial with broadband absorbers. Additionally, the isotope errors scaled logarithmically with m(NB). Using the isotope error versus m(NB) and m(BB) curves, ??(2)H and ??(18)O resulting from methanol contamination were corrected to a maximum mean absolute error of 0.93 [per thousand] and 0.25 [per thousand] respectively, while ??(2)H and ??(18)O from ethanol contamination were corrected to a maximum mean absolute error of 1.22 [per thousand] and 0.22 [per thousand]. Large variation between instruments indicates that the sensitivities must be calibrated for each individual isotope analyzer. These results suggest that the properly calibrated interference metrics can be used to correct for polluted samples and extend off-axis ICOS measurements of liquid water to include plant waters, soil extracts, wastewater, and alcoholic beverages. The general technique may also be extended to other laser-based analyzers including methane and carbon dioxide isotope sensors. PMID:22559556

  2. Continuous transfer of liquid metal droplets across a fluid-fluid interface within an integrated microfluidic chip.

    PubMed

    Gol, Berrak; Tovar-Lopez, Francisco J; Kurdzinski, Michael E; Tang, Shi-Yang; Petersen, Phred; Mitchell, Arnan; Khoshmanesh, Khashayar

    2015-06-01

    Micro scale liquid metal droplets have been hailed as the potential key building blocks of future micro-electro-mechanical systems (MEMS). However, most of the current liquid metal enabled systems involve millimeter scale droplets, which are manually injected onto the desired locations of the microchip. Despite its simplicity, this method is impractical for patterning large arrays or complex systems based on micro scale droplets. Here, we present a microfluidic chip, which integrates continuous generation of micro scale galinstan droplets in glycerol, and the hydrodynamic transfer of these droplets into sodium hydroxide (NaOH) solution. Observation via high-speed imaging along with computational fluid dynamics (CFD) analysis are utilised to comprehend the lateral migration of droplets from the glycerol to NaOH fluid. This platform is simple, can be readily integrated into other microfluidic systems, and creates flexibility by separating the continuous phase for droplet generation from the eventual target carrier fluid within a monolithic chip. PMID:25943915

  3. Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors

    SciTech Connect

    Mach, P.; Rodriguez, S. J.; Nortrup, R.; Wiltzius, P.; Rogers, J. A.

    2001-06-04

    This letter describes the monolithic integration of rubber-stamped thin-film organic transistors with polymer-dispersed liquid crystals (PDLCs) to create a multipixel, flexible display with plastic substrates. We report the electro-optic switching behavior of the PDLCs as driven by the organic transistors, and we show that our displays operate robustly under flexing and have a contrast comparable to that of newsprint. {copyright} 2001 American Institute of Physics.

  4. Floating loop method for cooling integrated motors and inverters using hot liquid refrigerant

    DOEpatents

    Hsu, John S.; Ayers, Curtis W.; Coomer, Chester; Marlino, Laura D.

    2007-03-20

    A method for cooling vehicle components using the vehicle air conditioning system comprising the steps of: tapping the hot liquid refrigerant of said air conditioning system, flooding a heat exchanger in the vehicle component with said hot liquid refrigerant, evaporating said hot liquid refrigerant into hot vapor refrigerant using the heat from said vehicle component, and returning said hot vapor refrigerant to the hot vapor refrigerant line in said vehicle air conditioning system.

  5. A phase separation method for analyses of fluoroquinones in meats based on ultrasound-assisted salt-induced liquid-liquid microextraction and a new integrated device.

    PubMed

    Wang, Huili; Gao, Ming; Xu, Youqu; Wang, Wenwei; Zheng, Lian; Dahlgren, Randy A; Wang, Xuedong

    2015-08-01

    Herein, we developed a novel integrated device to perform phase separation based on ultrasound-assisted, salt-induced, liquid-liquid microextraction for determination of five fluoroquinones in meats by HPLC analysis. The novel integrated device consisted of three simple HDPE (high density polyethylene) parts that were used to separate the solvent from the aqueous solution prior to retrieving the extractant. The extraction parameters were optimized using the response surface method based on central composite design: 589?L of acetone solvent, pH2.1, 4.1min extraction time and 3.5g of Na2SO4. The limits of detection were 0.056-0.64?gkg(-1) and recoveries were 87.2-110.6% for the five fluoroquinones in muscle tissue from fish, chicken, pork and beef. This method is easily constructed from inexpensive materials, extraction efficiency is high, and the approach is compatible with HPLC analysis. Thus, it has excellent prospects for sample pre-treatment and analysis of fluoroquinones in meat samples. PMID:25885797

  6. Compact electro-absorption modulator integrated with vertical-cavity surface-emitting laser for highly efficient millimeter-wave modulation

    SciTech Connect

    Dalir, Hamed; Ahmed, Moustafa; Bakry, Ahmed; Koyama, Fumio

    2014-08-25

    We demonstrate a compact electro-absorption slow-light modulator laterally-integrated with an 850?nm vertical-cavity surface-emitting laser (VCSEL), which enables highly efficient millimeter-wave modulation. We found a strong leaky travelling wave in the lateral direction between the two cavities via widening the waveguide width with a taper shape. The small signal response of the fabricated device shows a large enhancement of over 55?dB in the modulation amplitude at frequencies beyond 35 GHz; thanks to the photon-photon resonance. A large group index of over 150 in a Bragg reflector waveguide enables the resonance at millimeter wave frequencies for 25 ?m long compact modulator. Based on the modeling, we expect a resonant modulation at a higher frequency of 70 GHz. The resonant modulation in a compact slow-light modulator plays a significant key role for high efficient narrow-band modulation in the millimeter wave range far beyond the intrinsic modulation bandwidth of VCSELs.

  7. UAV-Based Photogrammetry and Integrated Technologies for Architectural Applications--Methodological Strategies for the After-Quake Survey of Vertical Structures in Mantua (Italy).

    PubMed

    Achille, Cristiana; Adami, Andrea; Chiarini, Silvia; Cremonesi, Stefano; Fassi, Francesco; Fregonese, Luigi; Taffurelli, Laura

    2015-01-01

    This paper examines the survey of tall buildings in an emergency context like in the case of post-seismic events. The after-earthquake survey has to guarantee time-savings, high precision and security during the operational stages. The main goal is to optimize the application of methodologies based on acquisition and automatic elaborations of photogrammetric data even with the use of Unmanned Aerial Vehicle (UAV) systems in order to provide fast and low cost operations. The suggested methods integrate new technologies with commonly used technologies like TLS and topographic acquisition. The value of the photogrammetric application is demonstrated by a test case, based on the comparison of acquisition, calibration and 3D modeling results in case of use of a laser scanner, metric camera and amateur reflex camera. The test would help us to demonstrate the efficiency of image based methods in the acquisition of complex architecture. The case study is Santa Barbara Bell tower in Mantua. The applied survey solution allows a complete 3D database of the complex architectural structure to be obtained for the extraction of all the information needed for significant intervention. This demonstrates the applicability of the photogrammetry using UAV for the survey of vertical structures, complex buildings and difficult accessible architectural parts, providing high precision results. PMID:26134108

  8. UAV-Based Photogrammetry and Integrated Technologies for Architectural Applications—Methodological Strategies for the After-Quake Survey of Vertical Structures in Mantua (Italy)

    PubMed Central

    Achille, Cristiana; Adami, Andrea; Chiarini, Silvia; Cremonesi, Stefano; Fassi, Francesco; Fregonese, Luigi; Taffurelli, Laura

    2015-01-01

    This paper examines the survey of tall buildings in an emergency context like in the case of post-seismic events. The after-earthquake survey has to guarantee time-savings, high precision and security during the operational stages. The main goal is to optimize the application of methodologies based on acquisition and automatic elaborations of photogrammetric data even with the use of Unmanned Aerial Vehicle (UAV) systems in order to provide fast and low cost operations. The suggested methods integrate new technologies with commonly used technologies like TLS and topographic acquisition. The value of the photogrammetric application is demonstrated by a test case, based on the comparison of acquisition, calibration and 3D modeling results in case of use of a laser scanner, metric camera and amateur reflex camera. The test would help us to demonstrate the efficiency of image based methods in the acquisition of complex architecture. The case study is Santa Barbara Bell tower in Mantua. The applied survey solution allows a complete 3D database of the complex architectural structure to be obtained for the extraction of all the information needed for significant intervention. This demonstrates the applicability of the photogrammetry using UAV for the survey of vertical structures, complex buildings and difficult accessible architectural parts, providing high precision results. PMID:26134108

  9. An eight-month climatology of marine stratocumulus cloud fraction, albedo, and integrated liquid water

    NASA Technical Reports Server (NTRS)

    Fairall, C. W.; Hare, J. E.; Snider, Jack B.

    1990-01-01

    As part of the FIRE/Extended Time Observations (ETO) program, extended time observations were made at San Nicolas Island (SNI) from March to October, 1987. Hourly averages of air temperature, relative humidity, wind speed and direction, solar irradiance, and downward longwave irradiance were recorded. The radiation sensors were standard Eppley pyranometers (shortwave) and pyrgeometers (longwave). The SNI data were processed in several ways to deduce properties of the stratocumulus covered marine boundary layer (MBL). For example, from the temperature and humidity the lifting condensation level, which is an estimate of the height of the cloud bottom, can be computed. A combination of longwave irradiance statistics can be used to estimate fractional cloud cover. An analysis technique used to estimate the integrated cloud liquid water content (W) and the cloud albedo from the measured solar irradiance is also described. In this approach, the cloud transmittance is computed by dividing the irradiance measured at some time by a clear sky value obtained at the same hour on a cloudless day. From the transmittance and the zenith angle, values of cloud albedo and W are computed using the radiative transfer parameterizations of Stephens (1978). These analysis algorithms were evaluated with 17 days of simultaneous and colocated mm-wave (20.6 and 31.65 GHz) radiometer measurements of W and lidar ceilometer measurements of cloud fraction and cloudbase height made during the FIRE IFO. The algorithms are then applied to the entire data set to produce a climatology of these cloud properties for the eight month period.

  10. VERTICAL GARDEN DIY CHECKLIST

    E-print Network

    Peters, Richard

    VERTICAL GARDEN DIY CHECKLIST Vertical greenery is not a new concept; it dates back thousands-growingvarietiesbecome established. Theneedforpermissionfromcouncil, strataetc. #12;VERTICAL GARDEN DIY CHECKLIST THE PLAN

  11. Synergistic benefits of ionic liquid and alkaline pretreatments of poplar wood. Part 1: effect of integrated pretreatment on enzymatic hydrolysis.

    PubMed

    Yuan, Tong-Qi; Wang, Wei; Xu, Feng; Sun, Run-Cang

    2013-09-01

    An environmentally friendly pretreatment process was developed to fractionate hemicelluloses and lignin from poplar wood by ionic liquid (IL) pretreatment coupled with mild alkaline extraction. Hemicellulosic and lignin fractions were obtained in high yields, amounting to 59.3% and 74.4%, respectively, which can served as raw materials for production of value-added products. The yield of glucose for the integrated pretreated poplar wood was 99.2%, while it was just 19.2% for the untreated material. The synergistic benefits of the removal of lignin and hemicelluloses, the increase of the cellulose surface area, and the conversion of cellulose fibers from the cellulose I to the cellulose II crystal phase resulted in the high glucose yield for the integrated pretreated substrate. Therefore, the IL based biorefining strategy proposed can integrate biofuels production into a biorefinery scheme in which the major components of poplar wood can be converted into value-added products. PMID:23287725

  12. Path Integral Molecular Dynamics within the Grand Canonical-like Adaptive Resolution Technique: Quantum-Classical Simulation of Liquid Water

    E-print Network

    Agarwal, Animesh

    2015-01-01

    Quantum effects due to the spatial delocalization of light atoms are treated in molecular simulation via the path integral technique. Among several methods, Path Integral (PI) Molecular Dynamics (MD) is nowadays a powerful tool to investigate properties induced by spatial delocalization of atoms; however computationally this technique is very demanding. The abovementioned limitation implies the restriction of PIMD applications to relatively small systems and short time scales. One possible solution to overcome size and time limitation is to introduce PIMD algorithms into the Adaptive Resolution Simulation Scheme (AdResS). AdResS requires a relatively small region treated at path integral level and embeds it into a large molecular reservoir consisting of generic spherical coarse grained molecules. It was previously shown that the realization of the idea above, at a simple level, produced reasonable results for toy systems or simple/test systems like liquid parahydrogen. Encouraged by previous results, in this ...

  13. A Microfabricated Planar Electrospray Array Ionic Liquid Ion Source With Integrated Extractor

    E-print Network

    Gassend, Blaise

    This paper reports the design, fabrication, and experimental characterization of a fully microfabricated planar array of externally fed electrospray emitters that produces heavy molecular ions from the ionic liquids ...

  14. Analysis of Hydrodynamics and Heat Transfer in a Thin Liquid Film Flowing over a Rotating Disk by Integral Method

    NASA Technical Reports Server (NTRS)

    Basu, S.; Cetegen, B. M.

    2005-01-01

    An integral analysis of hydrodynamics and heat transfer in a thin liquid film flowing over a rotating disk surface is presented for both constant temperature and constant heat flux boundary conditions. The model is found to capture the correct trends of the liquid film thickness variation over the disk surface and compare reasonably well with experimental results over the range of Reynolds and Rossby numbers covering both inertia and rotation dominated regimes. Nusselt number variation over the disk surface shows two types of behavior. At low rotation rates, the Nusselt number exhibits a radial decay with Nusselt number magnitudes increasing with higher inlet Reynolds number for both constant wall temperature and heat flux cases. At high rotation rates, the Nusselt number profiles exhibit a peak whose location advances radially outward with increasing film Reynolds number or inertia. The results also compare favorably with the full numerical simulation results from an earlier study as well as with the reported experimental results.

  15. A novel liquid plasma AOP device integrating microwaves and ultrasounds and its evaluation in defluorinating perfluorooctanoic acid in aqueous media.

    PubMed

    Horikoshi, Satoshi; Sato, Susumu; Abe, Masahiko; Serpone, Nick

    2011-09-01

    A simplified and energy-saving integrated device consisting of a microwave applicator and an ultrasonic homogenizer has been fabricated to generate liquid plasma in a medium possessing high dielectric factors, for example water. The microwave waveguide and the ultrasonic transducer were interconnected through a tungsten/titanium alloy stick acting both as the microwave antenna and as the horn of the ultrasonic homogenizer. Both microwaves and ultrasonic waves are simultaneously transmitted to the aqueous media through the tungsten tip of the antenna. The microwave discharge liquid plasma was easily generated in solution during ultrasonic cavitation. The simple device was evaluated by carrying out the degradation of the perfluorooctanoic acid (PFOA), a system highly recalcitrant to degradation by conventional advanced oxidation processes (AOPs). PFOA is 59% degraded in an aqueous medium after only 90 s of irradiation by the plasma. Intermediates were identified by electrospray mass spectral techniques in the negative ion mode. PMID:21317014

  16. Path integral molecular dynamics within the grand canonical-like adaptive resolution technique: Simulation of liquid water

    NASA Astrophysics Data System (ADS)

    Agarwal, Animesh; Delle Site, Luigi

    2015-09-01

    Quantum effects due to the spatial delocalization of light atoms are treated in molecular simulation via the path integral technique. Among several methods, Path Integral (PI) Molecular Dynamics (MD) is nowadays a powerful tool to investigate properties induced by spatial delocalization of atoms; however, computationally this technique is very demanding. The above mentioned limitation implies the restriction of PIMD applications to relatively small systems and short time scales. One of the possible solutions to overcome size and time limitation is to introduce PIMD algorithms into the Adaptive Resolution Simulation Scheme (AdResS). AdResS requires a relatively small region treated at path integral level and embeds it into a large molecular reservoir consisting of generic spherical coarse grained molecules. It was previously shown that the realization of the idea above, at a simple level, produced reasonable results for toy systems or simple/test systems like liquid parahydrogen. Encouraged by previous results, in this paper, we show the simulation of liquid water at room conditions where AdResS, in its latest and more accurate Grand-Canonical-like version (GC-AdResS), is merged with two of the most relevant PIMD techniques available in the literature. The comparison of our results with those reported in the literature and/or with those obtained from full PIMD simulations shows a highly satisfactory agreement.

  17. Viewing Vertical Objects with an Overhead Projector.

    ERIC Educational Resources Information Center

    Wild, R. L.

    1988-01-01

    Discusses the use of an overhead projector for the deflection of a vertical image to a screen. Describes three demonstrations: magnetizing of a steel ball bearing and paper clip; convection currents of a hot liquid within a cold liquid; and oscillation of concentrated salt solution into fresh water. (YP)

  18. Proposal for a simple integrated optical ion-exchange waveguide polarizer with a liquid crystal overlay

    NASA Astrophysics Data System (ADS)

    Wang, Pengfei; Semenova, Yuliya; Zheng, Jie; Wu, Qiang; Hatta, Agus Muhamad; Farrell, Gerald

    2011-02-01

    A simple, compact electro-optic polarizer based on an ion-exchanged glass channel waveguide covered with a nematic liquid crystal (LC) is proposed. A full-vectorial beam propagation method is employed to simulate this device for the first time. For the cases of zero and strong LC surface anchoring, the performance of the proposed polarizer under different applied voltages is analyzed numerically. Analysis indicates that surface anchoring of the liquid crystal is a key issue influencing the performance for the proposed optical polarizer device.

  19. In vivo silicon-based flexible radio frequency integrated circuits monolithically encapsulated with biocompatible liquid crystal polymers.

    PubMed

    Hwang, Geon-Tae; Im, Donggu; Lee, Sung Eun; Lee, Jooseok; Koo, Min; Park, So Young; Kim, Seungjun; Yang, Kyounghoon; Kim, Sung June; Lee, Kwyro; Lee, Keon Jae

    2013-05-28

    Biointegrated electronics have been investigated for various healthcare applications which can introduce biomedical systems into the human body. Silicon-based semiconductors perform significant roles of nerve stimulation, signal analysis, and wireless communication in implantable electronics. However, the current large-scale integration (LSI) chips have limitations in in vivo devices due to their rigid and bulky properties. This paper describes in vivo ultrathin silicon-based liquid crystal polymer (LCP) monolithically encapsulated flexible radio frequency integrated circuits (RFICs) for medical wireless communication. The mechanical stability of the LCP encapsulation is supported by finite element analysis simulation. In vivo electrical reliability and bioaffinity of the LCP monoencapsulated RFIC devices are confirmed in rats. In vitro accelerated soak tests are performed with Arrhenius method to estimate the lifetime of LCP monoencapsulated RFICs in a live body. The work could provide an approach to flexible LSI in biointegrated electronics such as an artificial retina and wireless body sensor networks. PMID:23617401

  20. Vertical axis hermetic helical screw rotary compressor with discharge gas oil mist eliminator and dual transfer tube manifold for supplying liquid refrigerant and refrigerant vapor to the compression area

    SciTech Connect

    Schaefer, D. D.

    1984-10-16

    A vertical axis hermetic compressor includes an inner cylindrical housing fixed internally of a sealed outer enclosure bearing paired helical screw rotors defining with the inner housing closed thread compressor compression chambers. An electrical drive motor overlies the rotors and is shaft connected to one of the rotors. Compressed refrigerant vapor, where refrigerant is the working fluid, discharges through the motor rotor. Centrifugal force functions as a primary oil separator for oil entrained within the working fluid. An inverted dish deflector underlies a gas discharge port axially within the top of the outer enclosure such that oil impacted by gas flow discharging axially from the motor adheres to the deflector to provide secondary oil separation while the gas passes about the periphery of the deflector to escape through the discharge opening of the outer enclosure. A non-woven plastic mesh pad fixed to the bottom of the deflector acts as a shock absorber for the entrained oil to prevent re-entraining oil in the gas stream in mist form to provide tertiary oil separation thereby reducing oil mist carried by the escaping gas to less than about 0.5 percent by weight. Oil dropping from the deflector into the bottom of the outer enclosure functioning as an oil sump impacts against a two passage parallel flow dual transfer tube including one passage supplying liquid refrigerant from the condenser to the compressor working space for cooling the same through a liquid injection port and within a second passage, intermediate pressure refrigerant vapor injected into the compression process through a vapor injection port. This prevents excessive heating of the working fluid pulsing in the tubes during compression with control valves in the passages leading to the liquid injection and vapor injection ports closed.

  1. Effective Cooling of Integrated Circuits Using Liquid Alloy Electrowetting Kamran Mohseni

    E-print Network

    Mohseni, Kamran

    of a cooling system can be enhanced significantly, (ii) Electrowetting is an efficient, low power consumption, and low voltage actuation technique for pumping liquids at micro-scales. These two ideas are employed and at low actuation voltage (2 V). The current technique can be used for active heat management of ICs

  2. Optimal Simultaneous Production of Hydrogen and Liquid Fuels from Glycerol: Integrating the

    E-print Network

    Grossmann, Ignacio E.

    . Keywords: Energy, Biofuels, Hydrogen, Alternative fuels, Diesel, Fisher ­ Tropsch 1 Corresponding author.-Introduccion The use of biomass to obtain liquid fuels has attracted interest due to their compatibility (Karuppiah et al., 2008), or the lignocellulosic based ethanol, in which case the hydrogen produced

  3. Development of Liquid Crystal Display Panel Integrated with Drivers Using Amorphous In-Ga-Zn-Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Osada, Takeshi; Akimoto, Kengo; Sato, Takehisa; Ikeda, Masataka; Tsubuku, Masashi; Sakata, Junichiro; Koyama, Jun; Serikawa, Tadashi; Yamazaki, Shunpei

    2010-03-01

    We designed, prototyped, and evaluated a liquid crystal panel integrated with a gate driver and a source driver using amorphous In-Ga-Zn-oxide thin film transistors (TFTs). Using bottom-gate bottom-contact (BGBC) thin film transistors, superior characteristics could be obtained. We obtained TFT characteristics with little variation even when the thickness of the gate insulator (GI) film was reduced owing to etching of source/drain (S/D) wiring, which is a typical process for the BGBC TFT. Moreover, a favorable ON-state current was obtained even when an In-Ga-Zn-oxide layer was formed over the S/D electrode. Since the upper portion of the In-Ga-Zn-oxide layer is not etched, the BGBC structure is predicted to be effective in thinning the In-Ga-Zn-oxide layer in the future. Upon evaluation, we found that the prototyped liquid crystal panel integrated with the gate and source drivers using the TFTs with improved characteristics had stable drive.

  4. CO2-binding Organic Liquids, an Integrated Acid Gas Capture System

    SciTech Connect

    Heldebrant, David J; Koech, Phillip K; Rainbolt, James E; Zheng, Feng

    2011-04-01

    Amine systems are effective for CO2 capture, but they are still inefficient because the solvent regeneration energy is largely defined by the amount of water in the process. Most amines form heat-stable salts with SO2 and COS resulting in parasitic solvent loss and degradation. Stripping the CO2-rich solvent is energy intensive it requires temperatures above 100 °C due to the high specific heat and heat of vaporization of water. CO2-capture processes could be much more energy efficient in a water free amine process. In addition, if the capture-material is chemically compatible with other acid gases, less solvent would be lost to heat-stable salts and the process economics would be further improved. One such system that can address these concerns is Binding Organic Liquids (BOLs), a class of switchable ionic liquids.

  5. Integration of vertical and in-seam horizontal well production analyses with stochastic geostatistical algorithms to estimate pre-mining methane drainage efficiency from coal seams: Blue Creek seam, Alabama

    PubMed Central

    Karacan, C. Özgen

    2015-01-01

    Coal seam degasification and its efficiency are directly related to the safety of coal mining. Degasification activities in the Black Warrior basin started in the early 1980s by using vertical boreholes. Although the Blue Creek seam, which is part of the Mary Lee coal group, has been the main seam of interest for coal mining, vertical wellbores have also been completed in the Pratt, Mary Lee, and Black Creek coal groups of the Upper Pottsville formation to degasify multiple seams. Currently, the Blue Creek seam is further degasified 2–3 years in advance of mining using in-seam horizontal boreholes to ensure safe mining. The studied location in this work is located between Tuscaloosa and Jefferson counties in Alabama and was degasified using 81 vertical boreholes, some of which are still active. When the current long mine expanded its operation into this area in 2009, horizontal boreholes were also drilled in advance of mining for further degasification of only the Blue Creek seam to ensure a safe and a productive operation. This paper presents an integrated study and a methodology to combine history matching results from vertical boreholes with production modeling of horizontal boreholes using geostatistical simulation to evaluate spatial effectiveness of in-seam boreholes in reducing gas-in-place (GIP). Results in this study showed that in-seam wells' boreholes had an estimated effective drainage area of 2050 acres with cumulative production of 604 MMscf methane during ~2 years of operation. With horizontal borehole production, GIP in the Blue Creek seam decreased from an average of 1.52 MMscf to 1.23 MMscf per acre. It was also shown that effective gas flow capacity, which was independently modeled using vertical borehole data, affected horizontal borehole production. GIP and effective gas flow capacity of coal seam gas were also used to predict remaining gas potential for the Blue Creek seam. PMID:26435557

  6. Preliminary evaluation of liquid integrity monitoring methods for gunite and associated tanks at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-02-01

    The Gunite and Associated Tanks (GAAT) are inactive, liquid low-level waste (LLLW) tanks located in and around the North and South Tank Farms (NTF and STF) at Oak Ridge National Laboratory (ORNL). These tanks, which contain a supernatant over a layer of radioactive sludge, are the subject of an ongoing treatability study that will determine the best way to remove the sludge and remediate the tanks. As part of this study, a preliminary assessment of liquid integrity (or ``tightness``) monitoring methods for the Gunite tanks has been conducted. Both an external and an internal liquid integrity monitoring method were evaluated, and a preliminary assessment of the liquid integrity of eight Gunite tanks was made with the internal method. The work presented in this report shows that six of the eight GAAT considered here are liquid tight and that, in the case of the other two, data quality was too poor to allow a conclusive decision. The analysis indicates that when the release detection approach described in this report is used during the upcoming treatability study, it will function as a sensitive and robust integrity monitoring system. Integrity assessments based on both the internal and external methods can be used as a means of documenting the integrity of the tanks before the initiation of in-tank operations. Assessments based on the external method can be used during these operations as a means of providing a nearly immediate indication of a release, should one occur. The external method of release detection measures the electrical conductivity of the water found in the dry wells associated with each of the tanks. This method is based on the fact that the conductivity of the liquid in the GAAT is very high, while the conductivity of the groundwater in the dry wells and the underdrain system for the GAAT is very low.

  7. The integration of liquid cryogen cooling and cryocoolers withsuperconducting electronic systems

    SciTech Connect

    Green, Michael A.

    2003-07-09

    The need for cryogenic cooling has been a critical issuethat has kept superconducting electronic devices from reaching the marketplace. Even though the performance of many of the superconductingcircuits is superior to silicon electronics, the requirement forcryogenic cooling has put the superconducting devices at a seriousdisadvantage. This report discusses the process of refrigeratingsuperconducting devices with cryogenic liquids and small cryocoolers.Three types of cryocoolers are compared for vibration, efficiency, andreliability. The connection of a cryocooler to the load is discussed. Acomparison of using flexible copper straps to carry the heat load andusing heat pipe is shown. The type of instrumentation needed formonitoring and controlling the cooling is discussed.

  8. Signal Threshold Adaptation for Vertical Handoff in Heterogeneous Wireless Networks

    E-print Network

    Liang, Ben

    Signal Threshold Adaptation for Vertical Handoff in Heterogeneous Wireless Networks Ahmed H. Zahran. Keywords: heterogeneous wireless networks, seamless integration, vertical handoff, application signal in heterogeneous wireless system Mobility management is a main challenge in the converged network. It ad- dresses

  9. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation.

    PubMed

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-12-28

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. PMID:26574523

  10. Nuclear Quantum Effects in Liquid Water: A Highly Accurate ab initio Path-Integral Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Distasio, Robert A., Jr.; Santra, Biswajit; Ko, Hsin-Yu; Car, Roberto

    2014-03-01

    In this work, we report highly accurate ab initio path-integral molecular dynamics (AI-PIMD) simulations on liquid water at ambient conditions utilizing the recently developed PBE0+vdW(SC) exchange-correlation functional, which accounts for exact exchange and a self-consistent pairwise treatment of van der Waals (vdW) or dispersion interactions, combined with nuclear quantum effects (via the colored-noise generalized Langevin equation). The importance of each of these effects in the theoretical prediction of the structure of liquid water will be demonstrated by a detailed comparative analysis of the predicted and experimental oxygen-oxygen (O-O), oxygen-hydrogen (O-H), and hydrogen-hydrogen (H-H) radial distribution functions as well as other structural properties. In addition, we will discuss the theoretically obtained proton momentum distribution, computed using the recently developed Feynman path formulation, in light of the experimental deep inelastic neutron scattering (DINS) measurements. DOE: DE-SC0008626, DOE: DE-SC0005180.

  11. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation

    PubMed Central

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-01-01

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. PMID:26574523

  12. Effect of magnetized extender on sperm membrane integrity and development of oocytes in vitro fertilized with liquid storage boar semen.

    PubMed

    Lee, Sang-Hee; Park, Choon-Keun

    2015-03-01

    The objective of this study was to evaluate the effect of a magnetized extender on sperm membrane damage and development of oocytes in vitro fertilized with liquid storage boar semen. Before semen dilution, extender was flowed through a neodymium magnet (0, 2000, 4000 and 6000G) for 5min and collected semen was preserved for 168h at 18°C. In results, plasma membrane integrity with live sperm was significantly higher in semen treated with extenders magnetized at 4000G than sperm treated with extenders magnetized at 0G during semen preservation for 120-168h (p<0.05). In addition, acrosomal membrane damage was significantly lower in semen treated with extenders magnetized at 4000 and 6000G compared to 0 and 2000G during semen preservation for 168h (p<0.05). And mitochondrial membrane damage with all sperm was significantly lower in semen treated with extenders magnetized at 2000G than other groups during semen preservation for 168h. The ability of semen to achieve successful in vitro fertilization was also not significantly different among the groups during preservation. However, when the semen was preserved for 168h, the blastocyst formation rates were significantly higher at 6000G compared to 0 and 2000G (p<0.05). In conclusion, these results suggest that highly magnetized semen extender could protect the sperm membrane from damage, and improve the ability of rates of in vitro blastocyst development and magnetized semen diluter is beneficial for long liquid preservation of boar semen. PMID:25592860

  13. INTEGRATION OF FILTRATION AND ADVANCED OXIDATION: DEVELOPMENT OF A MEMBRANE LIQUID-PHASE PLASMA REACTOR

    EPA Science Inventory

    A tiered approach will be undertaken to achieve the overall project goal of demonstrating the integrated membrane/plasma process as an innovative, affordable, sustainable and effective treatment technology for small treatment systems. The team will first use a regimented ap...

  14. Design and Fabrication of Integrated RF Modules in Liquid Crystalline Polymer (LCP) Substrates

    E-print Network

    Swaminathan, Madhavan

    , and low substrate isolation due to semi-conducting attributes. Alternatively, SOP uses the high based multi-band RF transceiver. Depending on the electrical performance requirements, the system higher levels of integration without compromising electrical performance at high noise isolation levels

  15. Comparison of path integral molecular dynamics methods for the infrared absorption spectrum of liquid water

    NASA Astrophysics Data System (ADS)

    Habershon, Scott; Fanourgakis, George S.; Manolopoulos, David E.

    2008-08-01

    The ring polymer molecular dynamics (RPMD) and partially adiabatic centroid molecular dynamics (PA-CMD) methods are compared and contrasted in an application to the infrared absorption spectrum of a recently parametrized flexible, polarizable, Thole-type potential energy model for liquid water. Both methods predict very similar spectra in the low-frequency librational and intramolecular bending region at wavenumbers below 2500 cm-1. However, the RPMD spectrum is contaminated in the high-frequency O-H stretching region by contributions from the internal vibrational modes of the ring polymer. This problem is avoided in the PA-CMD method, which adjusts the elements of the Parrinello-Rahman mass matrix so as to shift the frequencies of these vibrational modes beyond the spectral range of interest. PA-CMD does not require any more computational effort than RPMD and it is clearly the better of the two methods for simulating vibrational spectra.

  16. Integrated CFD and Controls Analysis Interface for High Accuracy Liquid Propellant Slosh Predictions

    NASA Technical Reports Server (NTRS)

    Marsell, Brandon; Griffin, David; Schallhorn, Paul; Roth, Jacob

    2012-01-01

    Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and the control system of a launch vehicle. Instead of relying on mechanical analogs which are n0t va lid during all stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid now equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.

  17. High Accuracy Liquid Propellant Slosh Predictions Using an Integrated CFD and Controls Analysis Interface

    NASA Technical Reports Server (NTRS)

    Marsell, Brandon; Griffin, David; Schallhorn, Dr. Paul; Roth, Jacob

    2012-01-01

    Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and th e control system of a launch vehicle. Instead of relying on mechanical analogs which are not valid during aU stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid flow equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.

  18. Integrating sphere-based photoacoustic setup for simultaneous absorption coefficient and Grüneisen parameter measurements of biomedical liquids

    NASA Astrophysics Data System (ADS)

    Villanueva, Yolanda; Hondebrink, Erwin; Petersen, Wilma; Steenbergen, Wiendelt

    2015-03-01

    A method for simultaneously measuring the absorption coefficient ?a and Grüneisen parameter ? of biological absorbers in photoacoustics is designed and implemented using a coupled-integrating sphere system. A soft transparent tube with inner diameter of 0.58mm is used to mount the liquid absorbing sample horizontally through the cavity of two similar and adjacent integrating spheres. One sphere is used for measuring the sample's ?a using a continuous halogen light source and a spectrometer fiber coupled to the input and output ports, respectively. The other sphere is used for simultaneous photoacoustic measurement of the sample's ? using an incident pulsed light with wavelength of 750nm and a flat transducer with central frequency of 5MHz. Absolute optical energy and pressure measurements are not necessary. However, the derived equations for determining the sample's ?a and ? require calibration of the setup using aqueous ink dilutions. Initial measurements are done with biological samples relevant to biomedical imaging such as human whole blood, joint and cyst fluids. Absorption of joint and cyst fluids is enhanced using a contrast agent like aqueous indocyanine green dye solution. For blood sample, measured values of ?a = 0.580 +/- 0.016 mm-1 and ? = 0.166 +/- 0.006 are within the range of values reported in literature. Measurements with the absorbing joint and cyst fluid samples give ? values close to 0.12, which is similar to that of water and plasma.

  19. Simulation of crystal and liquid potassium via restricted path-integral molecular dynamics Department of Physics, University of Arizona, Tucson, Arizona 85721

    E-print Network

    Deymier, Pierre

    Simulation of crystal and liquid potassium via restricted path-integral molecular dynamics Ki metal potassium model system. The simple metal undergoes a phase transformation upon heating. Calculated-dynamics PIMD method1,2 to the study of an alkali metal, namely, potassium K . The choice of this system

  20. POLAR ORGANIC CHEMICAL INTEGRATIVE SAMPLING AND LIQUID CHROMATOGRAPHY-ELECTROSPRAY/ION-TRAP MASS SPECTROMETRY FOR ASSESSING SELECTED PRESCRIPTION AND ILLICIT DRUGS IN TREATED SEWAGE EFFLUENTS

    EPA Science Inventory

    The purpose of the research presented in this paper is two-fold: (1) to demonstrate the 4 coupling of two state-of-the-art techniques: a time-weighted polar organic integrative sampler (POCIS) and micro-liquid chromatography-electrospray/ion trap mass spectrometry (u-LC-6 ES/ITMS...

  1. The vertical file enters the electronic age.

    PubMed

    Carleton, M O; Cheves, C G

    1989-01-01

    Vertical files are revered institutions in many libraries. The reference staff at the Spencer S. Eccles Health Sciences Library at the University of Utah automated their vertical file and made the information in it accessible via the Library's Integrated Library System. Medical Subject Headings (MeSH) were applied to vertical files and simple records leading to them were entered in the Library's online catalog. Electronic access to the vertical file increases the availability of concepts too new to be in medical books and permits the Library to meet the needs of lay patrons searching for basic information on popular health care topics. PMID:10296845

  2. Structural integrity assessments for the category C liquid low-level waste tank systems at the Oak Ridge National Laboratory

    SciTech Connect

    1995-09-01

    This document provides a report of the efforts made to satisfy the Federal Facility Agreement (FFA) for the structural integrity certification of 14 Category C Liquid Low Level Waste (LLLW) Tank Systems on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. Within this document, each tank system is described including the associated pipeline segments evaluated as a part of those tank systems. A separate structural integrity assessment was conducted for each of the LLLW Tank Systems, four of which are located in Melton Valley, and ten of which are located in Bethel Valley. The results of the structural integrity assessments are reported herein. The assessments are based on (1) a review of available tank design drawings, (2) a qualitative assessment of corrosion on the tank and pipelines, and primarily, and (3) leak testing program results. Design plans and specifications were reviewed for a general description of the tanks and associated pipelines. Information of primary significance included tank age, material of construction, tank design and construction specifications. Design plans were also reviewed for the layouts and materials of pipeline constructions, and ages of pipelines. Next, a generic corrosion assessment was conducted for each tank system. Information was gathered, when available, related to the historical use of the tank and the likely contents. The corrosion assessments included a qualitative evaluation of the walls of each tank and pipelines associated with each tank, as well as the welds and joints of the systems. A general discussion of the stainless steel types encountered is included in Section 4.0 of this report. The potential for soils to have caused corrosion is also evaluated within the sections on the individual tank systems.

  3. Toward comprehensive studies of liquids at high pressures and high temperatures: Integration of structure and property measurements in a Paris-Edinburgh cell (Invited)

    NASA Astrophysics Data System (ADS)

    Kono, Y.; Park, C.; Kenney-Benson, C.; Shen, G.; Wang, Y.

    2013-12-01

    Knowledge on the structure and physical properties of liquids at high pressures and high temperatures is important in understanding dynamics and evolution of the Earth and other planets. However, understanding the physics of liquid materials remains a challenge, especially under high pressure and high temperature conditions. We have recently developed an integrated setup for multi-angle energy dispersive x-ray diffraction, ultrasonic measurement, and falling sphere viscometer using a Paris-Edinburgh press at sector 16-BM-B, HPCAT, at the APS, for comprehensively studying structures and physical properties of liquids and amorphous materials at high pressures and high temperatures. The sector 16-BM-B is capable of amorphous and liquid structure measurements by using multi-angle energy dispersive x-ray diffraction technique at high pressure and high temperature conditions in a Paris-Edinburgh (PE) cell (e.g., Yamada et al., 2011). The PE cell is capable of compressing large volume samples (typically >1 mm3) up to 7 GPa at temperatures exceed 2000 °C. In addition to the liquid and amorphous structure measurement capability, we have developed ultrasonic elastic wave velocity and falling sphere viscosity techniques in the PE cell. The elastic wave velocity is measured by ultrasonic pulse echo overlap method in conjunction with white x-ray radiography measurement for determining the wave travel distance (Kono et al., 2012). The falling sphere viscosity measurements are made with high-speed white x-ray radiography (>1000 frame/second) (Kono et al., 2013). The integration of liquid structure measurement with elastic wave velocity measurement and viscosity measurement in the PE cell provides a unique opportunity to investigate in situ correlation between microscopic structure and macroscopic properties of liquids and amorphous solids. Knowledge of the correlation will provide valuable constraints for modeling liquid properties at high pressures and high temperatures, and thus improving our understanding the nature of magmas at depths and the dynamics of the Earth's interior.

  4. Comparisons Between Integral Equation Theory and Molecular Dynamics Simulations for Atomistic Models of Polyethylene Liquids

    SciTech Connect

    Curro, John G.; Webb III, Edmund B.; Grest, Gary S.; Weinhold, Jeffrey D.; Putz, Mathias; McCoy, John D.

    1999-07-21

    Molecular dynamics (MD) simulations were performed on dense liquids of polyethylene chains of 24 and 66 united atom CH{sub 2} units. A series of models was studied ranging in atomistic detail from coarse-grained, freely-jointed, tangent site chains to realistic, overlapping site models subjected to bond angle restrictions and torsional potentials. These same models were also treated with the self-consistent, polymer reference interaction site model (PRISM) theory. The intramolecular and total structure factors, as well as, the intermolecular radial distribution functions g(r) and direct correlation functions C(r) were obtained from theory and simulation. Angular correlation functions were also simulation obtained from the MD simulations. Comparisons between theory and reveal that PRISM theory works well for computing the intermolecular structure of coarse-grained chain models, but systematically underpredicts the extent of intermolecular packing as more atomistic details are introduced into the model. A consequence of g(r) having insufficient structure is that the theory yields an isothermal compressibility that progressively becomes larger, relative to the simulations, as overlapping the PRISM sites and angular restrictions are introduced into the model. We found that theory could be considerably improved by adding a tail function to C(r) beyond the effective hard core diameter. The range of this tail function was determined by requiring the theory to yield the correct compressibility.

  5. Liquid level detector

    DOEpatents

    Grasso, Albert P. (Vernon, CT)

    1986-01-01

    A liquid level detector for low pressure boilers. A boiler tank, from which apor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  6. Liquid level detector

    DOEpatents

    Grasso, A.P.

    1984-02-21

    A liquid level detector for low pressure boilers. A boiler tank, from which vapor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  7. Test results of the RS-44 integrated component evaluator liquid oxygen/hydrogen rocket engine

    NASA Astrophysics Data System (ADS)

    Sutton, R. F.; Lariviere, B. W.

    1993-10-01

    An advanced LOX/LH2 expander cycle rocket engine, producing 15,000 lbf thrust for Orbital Transfer Vehicle missions, was tested to determine ignition, transition, and main stage characteristics. Detail design and fabrication of the pump fed RS44 integrated component evaluator (ICE) was accomplished using company discretionary resources and was tested under this contracted effort. Successful demonstrations were completed to about the 50 percent fuel turbopump power level (87,000 RPM), but during this last test, a high pressure fuel turbopump (HPFTP) bearing failed curtailing the test program. No other hardware were affected by the HPFTP premature shutdown. The ICE operations matched well with the predicted start transient simulations. The tests demonstrated the feasibility of a high performance advanced expander cycle engine. All engine components operated nominally, except for the HPFTP, during the engine hot-fire tests. A failure investigation was completed using company discretionary resources.

  8. Test Results of the RS-44 Integrated Component Evaluator Liquid Oxygen/Hydrogen Rocket Engine

    NASA Technical Reports Server (NTRS)

    Sutton, R. F.; Lariviere, B. W.

    1993-01-01

    An advanced LOX/LH2 expander cycle rocket engine, producing 15,000 lbf thrust for Orbital Transfer Vehicle missions, was tested to determine ignition, transition, and main stage characteristics. Detail design and fabrication of the pump fed RS44 integrated component evaluator (ICE) was accomplished using company discretionary resources and was tested under this contracted effort. Successful demonstrations were completed to about the 50 percent fuel turbopump power level (87,000 RPM), but during this last test, a high pressure fuel turbopump (HPFTP) bearing failed curtailing the test program. No other hardware were affected by the HPFTP premature shutdown. The ICE operations matched well with the predicted start transient simulations. The tests demonstrated the feasibility of a high performance advanced expander cycle engine. All engine components operated nominally, except for the HPFTP, during the engine hot-fire tests. A failure investigation was completed using company discretionary resources.

  9. Analysis of vertical precipitation characteristics using by Vertical Pointing Radar and Optical Disdrometer in Korea

    NASA Astrophysics Data System (ADS)

    cha, J.; Chang, K.; Choi, Y.; Yum, S. S.

    2011-12-01

    The objective of this study is to understand the vertical precipitation structure by using the vertical pointing radar (MRR, Micro Rain Radar, OTT Inc.) and optical disdrometer (PARSIVEL, PARticle SIze and VELocity, METEK Inc.) set, established in the coastal and mountainous regions of South Korea. The observational factors measured by both instruments are precipitation drop size distribution (DSD), rain rate, and liquid water content. The MRR's DSD at its low level shows good agreement with that of PARSIVEL. We retrieve the vertical rain rate and liquid water content from MRR under melting layer, calculated by Cha et al's method, in Daegwallyeong (37°41' N,128°45' E, 843 m ASL, mountain area) and Haenam (34°33' N,126°34' E, 4.6 m ASL, coast area). The vertical variations of rain rate and liquid water content in Daegwallyeong are smaller than those in Haenam. We think that this different vertical rain rate characteristic for both sites is due to the vertical different cloud type (convective and stratiform cloud seem dominant at Haenam and Daegwallyeong, respectively). This suggests that the statistical precipitation DSD model, for the application of weather radar and numerical simulation of precipitation processes, be considered differently for the region. More detailed analysis of vertical DSD and microphysical structure of precipitation measured by MRR will be presented at the conference.

  10. Conformational Properties of a Polymer in an Ionic Liquid: Computer Simulations and Integral Equation Theory of a Coarse-Grained Model.

    PubMed

    Choi, Eunsong; Yethiraj, Arun

    2015-07-23

    We study the conformational properties of polymers in room temperature ionic liquids using theory and simulations of a coarse-grained model. Atomistic simulations have shown that single poly(ethylene oxide) (PEO) molecules in the ionic liquid 1-butyl 3-methyl imidazolium tetrafluoroborate ([BMIM][BF4]) are expanded at room temperature (i.e., the radius of gyration, Rg), scales with molecular weight, Mw, as Rg ? Mw(0.9), instead of the expected self-avoiding walk behavior. The simulations were restricted to fairly short chains, however, which might not be in the true scaling regime. In this work, we investigate a coarse-grained model for the behavior of PEO in [BMIM][BF4]. We use existing force fields for PEO and [BMIM][BF4] and Lorentz–Berthelot mixing rules for the cross interactions. The coarse-grained model predicts that PEO collapses in the ionic liquid. We also present an integral equation theory for the structure of the ionic liquid and the conformation properties of the polymer. The theory is in excellent agreement with the simulation results. We conclude that the properties of polymers in ionic liquids are unusually sensitive to the details of the intermolecular interactions. The integral equation theory is sufficiently accurate to be a useful guide to computational work. PMID:25310685

  11. Microfluidic White Organic Light-Emitting Diode Based on Integrated Patterns of Greenish-Blue and Yellow Solvent-Free Liquid Emitters.

    PubMed

    Kobayashi, Naofumi; Kasahara, Takashi; Edura, Tomohiko; Oshima, Juro; Ishimatsu, Ryoichi; Tsuwaki, Miho; Imato, Toshihiko; Shoji, Shuichi; Mizuno, Jun

    2015-01-01

    We demonstrated a novel microfluidic white organic light-emitting diode (microfluidic WOLED) based on integrated sub-100-?m-wide microchannels. Single-?m-thick SU-8-based microchannels, which were sandwiched between indium tin oxide (ITO) anode and cathode pairs, were fabricated by photolithography and heterogeneous bonding technologies. 1-Pyrenebutyric acid 2-ethylhexyl ester (PLQ) was used as a solvent-free greenish-blue liquid emitter, while 2,8-di-tert-butyl-5,11-bis(4-tert-butylphenyl)-6,12-diphenyltetracene (TBRb)-doped PLQ was applied as a yellow liquid emitter. In order to form the liquid white light-emitting layer, the greenish-blue and yellow liquid emitters were alternately injected into the integrated microchannels. The fabricated electro-microfluidic device successfully exhibited white electroluminescence (EL) emission via simultaneous greenish-blue and yellow emissions under an applied voltage of 100 V. A white emission with Commission Internationale de l'Declairage (CIE) color coordinates of (0.40, 0.42) was also obtained; the emission corresponds to warm-white light. The proposed device has potential applications in subpixels of liquid-based microdisplays and for lighting. PMID:26439164

  12. Microfluidic White Organic Light-Emitting Diode Based on Integrated Patterns of Greenish-Blue and Yellow Solvent-Free Liquid Emitters

    NASA Astrophysics Data System (ADS)

    Kobayashi, Naofumi; Kasahara, Takashi; Edura, Tomohiko; Oshima, Juro; Ishimatsu, Ryoichi; Tsuwaki, Miho; Imato, Toshihiko; Shoji, Shuichi; Mizuno, Jun

    2015-10-01

    We demonstrated a novel microfluidic white organic light-emitting diode (microfluidic WOLED) based on integrated sub-100-?m-wide microchannels. Single-?m-thick SU-8-based microchannels, which were sandwiched between indium tin oxide (ITO) anode and cathode pairs, were fabricated by photolithography and heterogeneous bonding technologies. 1-Pyrenebutyric acid 2-ethylhexyl ester (PLQ) was used as a solvent-free greenish-blue liquid emitter, while 2,8-di-tert-butyl-5,11-bis(4-tert-butylphenyl)-6,12-diphenyltetracene (TBRb)-doped PLQ was applied as a yellow liquid emitter. In order to form the liquid white light-emitting layer, the greenish-blue and yellow liquid emitters were alternately injected into the integrated microchannels. The fabricated electro-microfluidic device successfully exhibited white electroluminescence (EL) emission via simultaneous greenish-blue and yellow emissions under an applied voltage of 100 V. A white emission with Commission Internationale de l’Declairage (CIE) color coordinates of (0.40, 0.42) was also obtained; the emission corresponds to warm-white light. The proposed device has potential applications in subpixels of liquid-based microdisplays and for lighting.

  13. Microfluidic White Organic Light-Emitting Diode Based on Integrated Patterns of Greenish-Blue and Yellow Solvent-Free Liquid Emitters

    PubMed Central

    Kobayashi, Naofumi; Kasahara, Takashi; Edura, Tomohiko; Oshima, Juro; Ishimatsu, Ryoichi; Tsuwaki, Miho; Imato, Toshihiko; Shoji, Shuichi; Mizuno, Jun

    2015-01-01

    We demonstrated a novel microfluidic white organic light-emitting diode (microfluidic WOLED) based on integrated sub-100-?m-wide microchannels. Single-?m-thick SU-8-based microchannels, which were sandwiched between indium tin oxide (ITO) anode and cathode pairs, were fabricated by photolithography and heterogeneous bonding technologies. 1-Pyrenebutyric acid 2-ethylhexyl ester (PLQ) was used as a solvent-free greenish-blue liquid emitter, while 2,8-di-tert-butyl-5,11-bis(4-tert-butylphenyl)-6,12-diphenyltetracene (TBRb)-doped PLQ was applied as a yellow liquid emitter. In order to form the liquid white light-emitting layer, the greenish-blue and yellow liquid emitters were alternately injected into the integrated microchannels. The fabricated electro-microfluidic device successfully exhibited white electroluminescence (EL) emission via simultaneous greenish-blue and yellow emissions under an applied voltage of 100 V. A white emission with Commission Internationale de l’Declairage (CIE) color coordinates of (0.40, 0.42) was also obtained; the emission corresponds to warm-white light. The proposed device has potential applications in subpixels of liquid-based microdisplays and for lighting. PMID:26439164

  14. Supercooled liquid water Estimation Tool

    Energy Science and Technology Software Center (ESTSC)

    2012-05-04

    The Cloud Supercooled liquid water Estimation Tool (SEET) is a user driven Graphical User Interface (GUI) that estimates cloud supercooled liquid water (SLW) content in terms of vertical column and total mass from Moderate resolution Imaging Supercooled liquid water Estimation Tool Spectroradiometer (MODIS) spatially derived cloud products and realistic vertical cloud parameterizations that are user defined. It also contains functions for post-processing of the resulting data in tabular and graphical form.

  15. Integrated light-guide plates that can control the illumination angle for liquid crystal display backlight system

    NASA Astrophysics Data System (ADS)

    Feng, Di; Yang, Xingpeng; Jin, Guofan; Yan, Yingbai; Fan, Shoushan

    2006-01-01

    Liquid crystal displays (LCDs) with edge-lit backlight systems offer several advantages, such as low energy consuming, low weight, and high uniformity of intensity, over traditional cathode-ray tube displays, and make them ideal for many applications including monitors in notebook personal computers, screens for TV, and many portable information terminals, such as mobile phones, personal digital assistants, etc. To satisfy market requirements for mobile and personal display panels, it is more and more necessary to modify the backlight system and make it thinner, lighter, and brighter all at once. In this paper, we have proposed a new integrated LGP based on periodic and aperiodic microprism structures by using polymethyl methacrylate material, which can be designed to control the illumination angle, and to get high uniformity of intensity. So the backlight system will be simplified to use only light sources and one LGP without using other optical sheets, such as reflection sheet, diffusion sheet and prism sheets. By using optimizing program and ray tracing method, the designed LGPs can achieve a uniformity of intensity better than 86%, and get a peak illumination angle from +400 to -200, without requiring other optical sheets. We have designed a backlight system with only one LED light source and one LGP, and other LGP design examples with different sizes (1.8 inches and 14.1 inches) and different light source (LED or CCFL), are performed also.

  16. Solar control on the cloud liquid water content and integrated water vapor associated with monsoon rainfall over India

    NASA Astrophysics Data System (ADS)

    Maitra, Animesh; Saha, Upal; Adhikari, Arpita

    2014-12-01

    A long-term observation over three solar cycles indicates a perceptible influence of solar activity on rainfall and associated parameters in the Indian region. This paper attempts to reveal the solar control on the cloud liquid water content (LWC) and integrated water vapor (IWV) along with Indian Summer Monsoon (ISM) rainfall during the period of 1977-2012 over nine different Indian stations. Cloud LWC and IWV are positively correlated with each other. An anti-correlation is observed between the Sunspot Number (SSN) and ISM rainfall for a majority of the stations and a poor positive correlation obtained for other locations. Cloud LWC and IWV possess positive correlations with Galactic Cosmic Rays (GCR) and SSN respectively for most of the stations. The wavelet analyses of SSN, ISM rainfall, cloud LWC and IWV have been performed to investigate the periodic characteristics of climatic parameters and also to indicate the varying relationship of solar activity with ISM rainfall, cloud LWC and IWV. SSN, ISM rainfall and IWV are found to have a peak at around 10.3 years whereas a dip is observed at that particular period for cloud LWC.

  17. Fast and General Method To Predict the Physicochemical Properties of Druglike Molecules Using the Integral Equation Theory of Molecular Liquids.

    PubMed

    Palmer, David S; Mišin, Maksim; Fedorov, Maxim V; Llinas, Antonio

    2015-09-01

    We report a method to predict physicochemical properties of druglike molecules using a classical statistical mechanics based solvent model combined with machine learning. The RISM-MOL-INF method introduced here provides an accurate technique to characterize solvation and desolvation processes based on solute-solvent correlation functions computed by the 1D reference interaction site model of the integral equation theory of molecular liquids. These functions can be obtained in a matter of minutes for most small organic and druglike molecules using existing software (RISM-MOL) (Sergiievskyi, V. P.; Hackbusch, W.; Fedorov, M. V. J. Comput. Chem. 2011, 32, 1982-1992). Predictions of caco-2 cell permeability and hydration free energy obtained using the RISM-MOL-INF method are shown to be more accurate than the state-of-the-art tools for benchmark data sets. Due to the importance of solvation and desolvation effects in biological systems, it is anticipated that the RISM-MOL-INF approach will find many applications in biophysical and biomedical property prediction. PMID:26212723

  18. Experimental Study of Flooding in Vertical Narrow Rectangular channels

    NASA Astrophysics Data System (ADS)

    Li, X. C.; Sun, Z. N.

    2010-03-01

    In this paper, counter-current gas—liquid two-phase flow and onset of flooding in vertical narrow rectangular channels were studied. The onset of flooding in vertical narrow rectangular channels was investigated by the condition at which the liquid on the channel wall begins to move partially above the liquid injection section. In order to study the flow pattern, during counter-current flow and determine conditions associated with the onset of flooding, the flow pattern and pressure drop were investigated by visual experiments. In addition, the flooding phenomena in vertical narrow rectangular channels were compared with that in conventional channels. The results show that the flow characteristics and the tendency of pressure drop in vertical narrow rectangular channels were similarly with the conventional channels. However, the maximum of pressure drop appeared at the completed carrying up of flooding in vertical narrow rectangular channels, and it appeared at the onset of flooding in conventional channels.

  19. Vertical Map Storage.

    ERIC Educational Resources Information Center

    Perry, Joanne M.

    1982-01-01

    Discusses the superiority of vertical filing of maps in compressor-style vertical units over horizontal filing in drawers, emphasizing such factors as physical protection of the collection, ease of filing and retrieval, and efficient use of space. Disadvantages of vertical filing are also reviewed. (Author/JL)

  20. Integral and Separate Effects Tests for Thermal Hydraulics Code Validation for Liquid-Salt Cooled Nuclear Reactors

    SciTech Connect

    Peterson, Per

    2012-10-30

    The objective of the 3-year project was to collect integral effects test (IET) data to validate the RELAP5-3D code and other thermal hydraulics codes for use in predicting the transient thermal hydraulics response of liquid salt cooled reactor systems, including integral transient response for forced and natural circulation operation. The reference system for the project is a modular, 900-MWth Pebble Bed Advanced High Temperature Reactor (PB-AHTR), a specific type of Fluoride salt-cooled High temperature Reactor (FHR). Two experimental facilities were developed for thermal-hydraulic integral effects tests (IETs) and separate effects tests (SETs). The facilities use simulant fluids for the liquid fluoride salts, with very little distortion to the heat transfer and fluid dynamics behavior. The CIET Test Bay facility was designed, built, and operated. IET data for steady state and transient natural circulation was collected. SET data for convective heat transfer in pebble beds and straight channel geometries was collected. The facility continues to be operational and will be used for future experiments, and for component development. The CIET 2 facility is larger in scope, and its construction and operation has a longer timeline than the duration of this grant. The design for the CIET 2 facility has drawn heavily on the experience and data collected on the CIET Test Bay, and it was completed in parallel with operation of the CIET Test Bay. CIET 2 will demonstrate start-up and shut-down transients and control logic, in addition to LOFC and LOHS transients, and buoyant shut down rod operation during transients. Design of the CIET 2 Facility is complete, and engineering drawings have been submitted to an external vendor for outsourced quality controlled construction. CIET 2 construction and operation continue under another NEUP grant. IET data from both CIET facilities is to be used for validation of system codes used for FHR modeling, such as RELAP5-3D. A set of numerical models were developed in parallel to the experimental work. RELAP5-3D models were developed for the salt-cooled PB-AHTR, and for the simulat fluid CIET natural circulation experimental loop. These models are to be validated by the data collected from CIET. COMSOL finite element models were used to predict the temperature and fluid flow distribution in the annular pebble bed core; they were instrumental for design of SETs, and they can be used for code-to-code comparisons with RELAP5-3D. A number of other small SETs, and numerical models were constructed, as needed, in support of this work. The experiments were designed, constructed and performed to meet CAES quality assurance requirements for test planning, implementation, and documentation; equipment calibration and documentation, procurement document control; training and personnel qualification; analysis/modeling software verification and validation; data acquisition/collection and analysis; and peer review.

  1. Vertical bounce of two vertically aligned balls

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2007-11-01

    When a tennis ball rests on top of a basketball and both drop to the floor together, the tennis ball is projected vertically at high speed. A mass-spring model of the impact, as well as air track data, suggest that the tennis ball should be projected at relatively low speed. Measurements of the forces on each ball and the bounce of vertically aligned superballs are used to resolve the discrepancy.

  2. Vertical axis wind turbines

    DOEpatents

    Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  3. Relational contracting and the law and economics of vertical integration: a study of the economics of petroleum coking, processing, and consumption

    SciTech Connect

    Erickson, J.R.

    1981-01-01

    The basis for this study was an antitrust suit brought by the Federal Trade Commission against the Great Lakes Carbon Corp., a processor and reseller of green petroleum coke, and eight petroleum refiners. The respondents in this case were accused of using long-term contracts to foreclose the markets for both green and processed petroleum coke. Chapter 1 develops a theory of exchange and the contracts governing exchange. Chapter 2 describes the petroleum-coke industry and the nature of green coke exchange. It explains the reasons for the highly concentrated structure of the green-coke market in terms of the technology of petroleum-coke production and consumption and the physical and byproduct nature of petroleum coke. Chapter 3 takes a large number of green-coke contracts and breaks them down into their various relevant provisions. These provisions are then grouped according to their purpose and the characteristics of the firms employing them and shows that differences between the contracts can be explained by differences in the risks to firms of engaging in green coke exchange. Chapter 4 discusses the implications of vertical restrictions from the point of view of relational contracting using the data adduced in Chapter 3.

  4. Integrating qualitative and quantitative characterization of traditional Chinese medicine injection by high-performance liquid chromatography with diode array detection and tandem mass spectrometry.

    PubMed

    Xie, Yuan-yuan; Xiao, Xue; Luo, Juan-min; Fu, Chan; Wang, Qiao-wei; Wang, Yi-ming; Liang, Qiong-lin; Luo, Guo-an

    2014-06-01

    The present study aims to describe and exemplify an integrated strategy of the combination of qualitative and quantitative characterization of a multicomponent mixture for the quality control of traditional Chinese medicine injections with the example of Danhong injection (DHI). The standardized chemical profile of DHI has been established based on liquid chromatography with diode array detection. High-performance liquid chromatography coupled with time-of-flight mass spectrometry and high-performance liquid chromatography with electrospray multistage tandem ion-trap mass spectrometry have been developed to identify the major constituents in DHI. The structures of 26 compounds including nucleotides, phenolic acids, and flavonoid glycosides were identified or tentatively characterized. Meanwhile, the simultaneous determination of seven marker constituents, including uridine, adenosine, danshensu, protocatechuic aldehyde, p-coumaric acid, rosmarinic acid, and salvianolic acid B, in DHI was performed by multiwavelength detection based on high-performance liquid chromatography with diode array detection. The integrated qualitative and quantitative characterization strategy provided an effective and reliable pattern for the comprehensive and systematic characterization of the complex traditional Chinese medicine system. PMID:24723550

  5. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  6. Signatures of currency vertices

    E-print Network

    Holme, Petter

    2008-01-01

    Many real-world networks have broad degree distributions. For some systems, this means that the functional significance of the vertices is also broadly distributed, in other cases the vertices are equally significant, but in different ways. One example of the latter case is metabolic networks, where the high-degree vertices -- the currency metabolites -- supply the molecular groups to the low-degree metabolites, and the latter are responsible for the higher-order biological function, of vital importance to the organism. In this paper, we propose a generalization of currency metabolites to currency vertices. We investigate the network structural characteristics of such systems, both in model networks and in some empirical systems. In addition to metabolic networks, we find that a network of music collaborations and a network of e-mail exchange could be described by a division of the vertices into currency vertices and others.

  7. Vertical Axis Wind Turbine

    Energy Science and Technology Software Center (ESTSC)

    2002-04-01

    Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). VAWT-SAL Vertical Axis Wind Turbine- Stochastic Aerodynamic Loads Ver 3.2 numerically simulates the stochastic (random0 aerodynamic loads of the Vertical-Axis Wind Turbine (VAWT) created by the atomspheric turbulence. The program takes into account the rotor geometry, operating conditions, and assumed turbulence properties.

  8. Offset vertical radar profiling

    USGS Publications Warehouse

    Witten, A.; Lane, J.

    2003-01-01

    Diffraction tomography imaging was applied to VRP data acquired by vertically moving a receiving antenna in a number of wells. This procedure simulated a vertical downhole receiver array. Similarly, a transmitting antenna was sequentially moved along a series of radial lines extending outward from the receiver wells. This provided a sequence of multistatic data sets and, from each data set, a two-dimensional vertical cross-sectional image of spatial variations in wave speed was reconstructed.

  9. Thin n-in-p pixel sensors and the SLID-ICV vertical integration technology for the ATLAS upgrade at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Macchiolo, A.; Andricek, L.; Ellenburg, M.; Moser, H. G.; Nisius, R.; Richter, R. H.; Terzo, S.; Weigell, P.

    2013-12-01

    This R&D activity is focused on the development of new modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The performance after irradiation of n-in-p pixel sensors of different active thicknesses is studied, together with an investigation of a novel interconnection technique offered by the Fraunhofer Institute EMFT in Munich, the Solid-Liquid-InterDiffusion (SLID), which is an alternative to the standard solder bump-bonding. The pixel modules are based on thin n-in-p sensors, with an active thickness of 75 ?m or 150 ?m, produced at the MPI Semiconductor Laboratory (MPI HLL) and on 100 ?m thick sensors with active edges, fabricated at VTT, Finland. Hit efficiencies are derived from beam test data for thin devices irradiated up to a fluence of 4×1015 neq/cm2. For the active edge devices, the charge collection properties of the edge pixels before irradiation are discussed in detail, with respect to the inner ones, using measurements with radioactive sources. Beyond the active edge sensors, an additional ingredient needed to design four side buttable modules is the possibility of moving the wire bonding area from the chip surface facing the sensor to the backside, avoiding the implementation of the cantilever extruding beyond the sensor area. The feasibility of this process is under investigation with the FE-I3 SLID modules, where Inter Chip Vias are etched, employing an EMFT technology, with a cross section of 3 ?m×10 ?m, at the positions of the original wire bonding pads.

  10. 1997 structural integrity assessments for the Category C liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1997-09-01

    This report presents the results of a series of evaluations to determine if the individual Category C tank systems retain sufficient structural integrity to continue being used for liquid storage. The approach used to reach the final certification/conclusion consisted of three phases, including: (1) Review of the original engineering design drawings and construction materials to determine whether the tank and line systems were capable of containing liquids without leaking (and also to check that the construction materials were compatible with liquids that might have been placed in these systems). While drawings in this report may be of poor quality, they are copies of the best available originals. (2) A qualitative corrosion assessment conducted in 1995 that further evaluated both the potential internal corrosion effects of materials in the tank and in the potential external corrosion effects of the backfill and native soil at the Oak Ridge National Laboratory (ORNL). The ability to accurately measure or predict the amount of corrosion present on both the internal and external walls of the tanks and pipelines is extremely limited. However, when available, data were used to assess the historical tank contents and usage and the probable corrosive effects on the tank system materials of construction. (3) Performance of monthly leak tests were completed on the tanks and annual leak tests were completed on associated testable pipelines. This task was judged to be the most important criteria for determining structural integrity due to the proven performance of the technology and processes involved.

  11. Integration

    ERIC Educational Resources Information Center

    Kalyn, Brenda

    2006-01-01

    Integrated learning is an exciting adventure for both teachers and students. It is not uncommon to observe the integration of academic subjects such as math, science, and language arts. However, educators need to recognize that movement experiences in physical education also can be linked to academic curricula and, may even lead the…

  12. Vertical axis windmill

    SciTech Connect

    Campbell, J.S.

    1980-04-08

    A vertical axis windmill is described which involves a rotatable central vertical shaft having horizontal arms pivotally supporting three sails that are free to function in the wind like the main sail on a sail boat, and means for disabling the sails to allow the windmill to be stopped in a blowing wind.

  13. Determination of the solid-liquid interfacial free energy along a coexistence line by Gibbs–Cahn integration

    E-print Network

    Laird, Brian Bostian; Davidchack, Ruslan L.; Yang, Yang; Asta, Mark

    2009-09-18

    in physics, chemistry, and materials science, such as crystal nucleation and growth,2–4 dendritic solidification,5,6 liquid-metal embrittlement,7 and wetting.8 Despite its impor- tance, direct experimental measurements, which usually in- volve challenging...

  14. Observations and Modeling of the Near Surface Vertical Structure of the Atmosphere in the Southern Appalachians during the Integrated Precipitation and Hydrology Experiment (IPHEx) Extended Observing Period

    NASA Astrophysics Data System (ADS)

    Wilson, A. M.; Barros, A. P.

    2014-12-01

    Accurate, high resolution observations of precipitation accumulations and intensity in regions of complex terrain are largely unavailable, due to a lack of existing in situ observations and obstacles to remote sensing (radar and satellite observations) such as beam blockage and ground clutter. For the past six years, a high-elevation, high-density rain gauge network has been recording precipitation observations along ridgelines in the Pigeon River Basin in the Southern Appalachians. These longer term observations complement the 4-D database of observations, which are being collected in support of the Global Precipitation Mission (GPM) during the first field campaign after the launch of the GPM satellite, the Integrated Precipitation and Hydrology Experiment (IPHEx). The observations focused on here are those at the near surface, within 2 kilometers of the ground level. The IPHEx extended observation period lasts until the end of 2014. This presentation will focus on ground-based measurements made by MicroRain Radars, disdrometers, radiometers, rain gauges, fog collectors and aerosol spectrometers among others during the spring, summer and fall of 2014. These measurements will be analyzed to provide information on the diurnal cycle of microphysical and dynamical processes and properties in the region, with an emphasis on describing the characteristics of local cloud and fog. These observations will be discussed in the context of previous findings based on observations and model results (stochastic column model and the Advanced Research Weather and Forecasting Model (WRF)). Specifically, this presentation will address whether the IPHEx observations support the hypothesis, validated for specific case studies in previous work, that Bergeron processes govern the enhancement of light rainfall in the Southern Appalachians through increased coalescence efficiency in stratiform rainfall due to the interactions with low level clouds and topography modulated fog. WRF simulations for IPHEx cases will also be discussed.

  15. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect

    Bryant, J.W.; Nenni, J.A.; Yoder, T.S.

    2003-04-22

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, ''Radioactive Waste Management Manual.'' This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  16. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect

    Bryant, Jeffrey Whealdon; Nenni, Joseph A; Timothy S. Yoder

    2003-04-01

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, “Radioactive Waste Management Manual.” This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  17. Micromachined electrostatic vertical actuator

    DOEpatents

    Lee, Abraham P. (Walnut Creek, CA); Sommargren, Gary E. (Santa Cruz, CA); McConaghy, Charles F. (Livermore, CA); Krulevitch, Peter A. (Pleasanton, CA)

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  18. Vertical neck lifting.

    PubMed

    Jacono, Andrew A; Talei, Benjamin

    2014-05-01

    The authors' vertical neck lifting procedure is an extended deep plane facelift, which elevates the skin and SMAS-platysma complex as a composite unit. The goal is to redrape cervicomental laxity vertically onto the face rather than laterally and postauricularly. The authors consider this an extended technique because it lengthens the deep plane flap from the angle of the mandible into the neck to release the cervical retaining ligaments that limit platysmal redraping. This technique does not routinely use midline platysmal surgery because it counteracts the extent of vertical redraping. A majority of aging face patients are good candidates for this procedure in isolation, but indications for combining vertical neck lifting with submental surgery are elucidated. PMID:24745389

  19. Vertical sleeve gastrectomy

    MedlinePLUS

    ... smaller stomach is about the size of a banana. It limits the amount of food you can ... staples. This creates a long vertical tube or banana-shaped stomach. The surgery does not involve cutting ...

  20. The asymptotic motion of an accelerating, thick layer of inviscid liquid

    NASA Astrophysics Data System (ADS)

    Baker, Greg; Nie, Qing

    1998-01-01

    Most studies of a gravitationally unstable interface between a liquid and a gas by boundary integral techniques prescribe the motion of the liquid in the far field. The mean gas pressure at the interface is then irrelevant in its motion. On the other hand, when a pressure jump is applied to a liquid column in a vertical duct, its acceleration is determined by the pressure jump no matter how tall the column. Previous studies of accelerating liquid layers [G. R. Baker, R. L. McCrory, C. P. Verdon, and S. A. Orszag, "Rayleigh-Taylor instability of fluid layers," J. Fluid Mech. 178, 161 (1987)] show that the motion of the gravitationally unstable interface depends on the reciprocal of the mean layer thickness H. In this paper, we derive an asymptotic boundary integral method that captures the O(1/H) effects on the motion of the unstable interface with a correction that is exponentially small in H. The validity of the asymptotic approach is confirmed by comparison with numerical simulations of the liquid layer. The success of the approach relies on expansions of the kernels in the boundary integrals, indicating that the procedure for deriving the asymptotic equations is more general than just for vertical ducts or periodic geometry. In a subsequent paper, we use our approach to derive the equations for the formation of a bubble at a submerged orifice that is driven by an increase in gas pressure.

  1. Liquid level detector

    DOEpatents

    Tshishiku, Eugene M. (Augusta, GA)

    2011-08-09

    A liquid level detector for conductive liquids for vertical installation in a tank, the detector having a probe positioned within a sheath and insulated therefrom by a seal so that the tip of the probe extends proximate to but not below the lower end of the sheath, the lower end terminating in a rim that is provided with notches, said lower end being tapered, the taper and notches preventing debris collection and bubble formation, said lower end when contacting liquid as it rises will form an airtight cavity defined by the liquid, the interior sheath wall, and the seal, the compression of air in the cavity preventing liquid from further entry into the sheath and contact with the seal. As a result, the liquid cannot deposit a film to form an electrical bridge across the seal.

  2. INTEGRATED VERTICAL AND OVERHEAD DECONTAMINATION SYSTEM

    SciTech Connect

    M.A. Ebadian, Ph.D.

    1999-01-01

    This report summarizes the activities performed during FY98 and describes the planned activities for FY99. Accomplishments for FY98 include identifying and selecting decontamination, the screening of potential characterization technologies, development of minimum performance factors for the decontamination technology, and development and identification of Applicable, Relevant and Appropriate Regulations (ARARs).

  3. Interdisciplinary Vertical Integration: The Future of Biomechanics

    ERIC Educational Resources Information Center

    Gregor, Robert J.

    2008-01-01

    The field of biomechanics has grown rapidly in the past 30 years in both size and complexity. As a result, the term might mean different things to different people. This article addresses the issues facing the field in the form of challenges biomechanists face in the future. Because the field is so diverse, strength within the different areas of…

  4. Vertically Integrated Seismological Analysis I : Modeling

    NASA Astrophysics Data System (ADS)

    Russell, S.; Arora, N. S.; Jordan, M. I.; Sudderth, E.

    2009-12-01

    As part of its CTBT verification efforts, the International Data Centre (IDC) analyzes seismic and other signals collected from hundreds of stations around the world. Current processing at the IDC proceeds in a series of pipelined stages. From station processing to network processing, each decision is made on the basis of local information. This has the advantage of efficiency, and simplifies the structure of software implementations. However, this approach may reduce accuracy in the detection and phase classification of arrivals, association of detections to hypothesized events, and localization of small-magnitude events.In our work, we approach such detection and association problems as ones of probabilistic inference. In simple terms, let X be a random variable ranging over all possible collections of events, with each event defined by time, location, magnitude, and type (natural or man-made). Let Y range over all possible waveform signal recordings at all detection stations. Then P?(X) describes a parameterized generative prior over events, and P[|#30#|]?(Y | X) describes how the signal is propagated and measured (including travel time, selective absorption and scattering, noise, artifacts, sensor bias, sensor failures, etc.). Given observed recordings Y = y, we are interested in the posterior P(X | Y = y), and perhaps in the value of X that maximizes it—i.e., the most likely explanation for all the sensor readings. As detailed below, an additional focus of our work is to robustly learn appropriate model parameters ? and ? from historical data. The primary advantage we expect is that decisions about arrivals, phase classifications, and associations are made with the benefit of all available evidence, not just the local signal or predefined recipes. Important phenomena—such as the successful detection of sub-threshold signals, correction of phase classifications using arrival information at other stations, and removal of false events based on the absence of signals—should all fall out of our probabilistic framework without the need for special processing rules. In our baseline model, natural events occur according to a spatially inhomogeneous Poisson process. Complex events (swarms and aftershocks) may then be captured via temporally inhomogeneous extensions. Man-made events have a uniform probability of occurring anywhere on the earth, with a tendency to occur closer to the surface. Phases are modelled via their amplitude, frequency distribution, and origin. In the simplest case, transmission times are characterized via the one-dimensional IASPEI-91 model, accounting for model errors with Gaussian uncertainty. Such homogeneous, approximate physical models can be further refined via historical data and previously developed corrections. Signal measurements are captured by station-specific models, based on sensor types and geometries, local frequency absorption characteristics, and time-varying noise models. At the conference, we expect to be able to quantitatively demonstrate the advantages of our approach, at least for simulated data. When reporting their findings, such systems can easily flag low-confidence events, unexplained arrivals, and ambiguous classifications to focus the efforts of expert analysts.

  5. Aqua Reticulata: topology of liquid water networks

    E-print Network

    Hyde, Stephen

    at oxygen vertices (the net nodes), with four edges at each vertex. second, liquid water is a mixture of two145 VI Aqua Reticulata: topology of liquid water networks Stephen T. Hyde department of Applied explored the notion of structure at the atomic scale in liquid water.1 While not the earliest attempt

  6. A wafer-level liquid cavity integrated amperometric gas sensor with ppb-level nitric oxide gas sensitivity

    NASA Astrophysics Data System (ADS)

    Gatty, Hithesh K.; Stemme, Göran; Roxhed, Niclas

    2015-10-01

    A miniaturized amperometric nitric oxide (NO) gas sensor based on wafer-level fabrication of electrodes and a liquid electrolyte chamber is reported in this paper. The sensor is able to detect NO gas concentrations of the order of parts per billion (ppb) levels and has a measured sensitivity of 0.04 nA ppb-1 with a response time of approximately 12 s. A sufficiently high selectivity of the sensor to interfering gases such as carbon monoxide (CO) and to ammonia (NH3) makes it potentially relevant for monitoring of asthma. In addition, the sensor was characterized for electrolyte evaporation which indicated a sensor operation lifetime allowing approximately 200 measurements.

  7. Vertical shaft windmill

    NASA Technical Reports Server (NTRS)

    Grana, D. C.; Inge, S. V., Jr. (inventors)

    1983-01-01

    A vertical shaft has several equally spaced blades mounted. Each blade consists of an inboard section and an outboard section skew hinged to the inboard section. The inboard sections automatically adjust their positions with respect to the fixed inboard sections with changes in velocity of the wind. This windmill design automatically governs the maximum rotational speed of shaft.

  8. Aiding Vertical Guidance Understanding

    NASA Technical Reports Server (NTRS)

    Feary, Michael; McCrobie, Daniel; Alkin, Martin; Sherry, Lance; Polson, Peter; Palmer, Everett; McQuinn, Noreen

    1998-01-01

    A two-part study was conducted to evaluate modern flight deck automation and interfaces. In the first part, a survey was performed to validate the existence of automation surprises with current pilots. Results indicated that pilots were often surprised by the behavior of the automation. There were several surprises that were reported more frequently than others. An experimental study was then performed to evaluate (1) the reduction of automation surprises through training specifically for the vertical guidance logic, and (2) a new display that describes the flight guidance in terms of aircraft behaviors instead of control modes. The study was performed in a simulator that was used to run a complete flight with actual airline pilots. Three groups were used to evaluate the guidance display and training. In the training, condition, participants went through a training program for vertical guidance before flying the simulation. In the display condition, participants ran through the same training program and then flew the experimental scenario with the new Guidance-Flight Mode Annunciator (G-FMA). Results showed improved pilot performance when given training specifically for the vertical guidance logic and greater improvements when given the training and the new G-FMA. Using actual behavior of the avionics to design pilot training and FMA is feasible, and when the automated vertical guidance mode of the Flight Management System is engaged, the display of the guidance mode and targets yields improved pilot performance.

  9. Versatile Particle-Based Route to Engineer Vertically Aligned Silicon Nanowire Arrays and Nanoscale Pores.

    PubMed

    Elnathan, Roey; Isa, Lucio; Brodoceanu, Daniel; Nelson, Adrienne; Harding, Frances J; Delalat, Bahman; Kraus, Tobias; Voelcker, Nicolas H

    2015-10-28

    Control over particle self-assembly is a prerequisite for the colloidal templating of lithographical etching masks to define nanostructures. This work integrates and combines for the first time bottom-up and top-down approaches, namely, particle self-assembly at liquid-liquid interfaces and metal-assisted chemical etching, to generate vertically aligned silicon nanowire (VA-SiNW) arrays and, alternatively, arrays of nanoscale pores in a silicon wafer. Of particular importance, and in contrast to current techniques, including conventional colloidal lithography, this approach provides excellent control over the nanowire or pore etching site locations and decouples nanowire or pore diameter and spacing. The spacing between pores or nanowires is tuned by adjusting the specific area of the particles at the liquid-liquid interface before deposition. Hence, the process enables fast and low-cost fabrication of ordered nanostructures in silicon and can be easily scaled up. We demonstrate that the fabricated VA-SiNW arrays can be used as in vitro transfection platforms for transfecting human primary cells. PMID:26428032

  10. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect

    Bryant, Jeffrey W.

    2010-08-12

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, “Radioactive Waste Management Manual.” This equipment is known collectively as the Tank Farm Facility. This report is an update, and replaces the previous report by the same title issued April 2003. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  11. Integration of Satellite-Derived Cloud Phase, Cloud Top Height, and Liquid Water Path into an Operational Aircraft Icing Nowcasting System

    NASA Technical Reports Server (NTRS)

    Haggerty, Julie; McDonough, Frank; Black, Jennifer; Landott, Scott; Wolff, Cory; Mueller, Steven; Minnis, Patrick; Smith, William, Jr.

    2008-01-01

    Operational products used by the U.S. Federal Aviation Administration to alert pilots of hazardous icing provide nowcast and short-term forecast estimates of the potential for the presence of supercooled liquid water and supercooled large droplets. The Current Icing Product (CIP) system employs basic satellite-derived information, including a cloud mask and cloud top temperature estimates, together with multiple other data sources to produce a gridded, three-dimensional, hourly depiction of icing probability and severity. Advanced satellite-derived cloud products developed at the NASA Langley Research Center (LaRC) provide a more detailed description of cloud properties (primarily at cloud top) compared to the basic satellite-derived information used currently in CIP. Cloud hydrometeor phase, liquid water path, cloud effective temperature, and cloud top height as estimated by the LaRC algorithms are into the CIP fuzzy logic scheme and a confidence value is determined. Examples of CIP products before and after the integration of the LaRC satellite-derived products will be presented at the conference.

  12. Influence of Boar and Semen Parameters on Motility and Acrosome Integrity in Liquid Boar Semen Stored for Five Days

    PubMed Central

    2002-01-01

    Ninety ejaculates from a total of 76 AI boars were extended in Beltsville Thawing Solution (BTS). Boar identity, breed, weight of the ejaculate and sperm concentration were registered. Motility and acrosome integrity were assessed after storage at 16–18°C for 6, 30, 54, 78, and 102 h. Storage time had a significant influence on both motility (p < 0.01) and acrosome integrity (p < 0.001). The Least Square Means for percentage of motility showed a small decline from 79.8% after 6 h of storage to 78.4% at 102 h. Motility at 78 and 102 h was significantly different from motility at 6 h (p < 0.05). The percentage of sperm cells with normal acrosomes declined throughout the experiment. The Least Square Means for 6, 30, 54, 78, and 102 h of storage were 93.9%, 90.6%, 88.0%, 84.8%, and 78.2%, respectively. The decrease in acrosome integrity from one storage time to the next was highly significant throughout the trial (p < 0.001). There was a significant influence of boar (p < 0.001) and sperm concentration (p < 0.01) on motility, while acrosome integrity was affected only by boar (p < 0.001). Breed of the boars and weight of the ejaculate did not influence the dependent variables. PMID:12071116

  13. Verticality perception during and after galvanic vestibular stimulation.

    PubMed

    Volkening, Katharina; Bergmann, Jeannine; Keller, Ingo; Wuehr, Max; Müller, Friedemann; Jahn, Klaus

    2014-10-01

    The human brain constructs verticality perception by integrating vestibular, somatosensory, and visual information. Here we investigated whether galvanic vestibular stimulation (GVS) has an effect on verticality perception both during and after application, by assessing the subjective verticals (visual, haptic and postural) in healthy subjects at those times. During stimulation the subjective visual vertical and the subjective haptic vertical shifted towards the anode, whereas this shift was reversed towards the cathode in all modalities once stimulation was turned off. Overall, the effects were strongest for the haptic modality. Additional investigation of the time course of GVS-induced changes in the haptic vertical revealed that anodal shifts persisted for the entire 20-min stimulation interval in the majority of subjects. Aftereffects exhibited different types of decay, with a preponderance for an exponential decay. The existence of such reverse effects after stimulation could have implications for GVS-based therapy. PMID:25157799

  14. Vertical distribution of natural radionuclides in soils

    NASA Astrophysics Data System (ADS)

    Blanco Rodríguez, P.; Tomé, F. Vera; Lozano, J. C.

    2012-04-01

    Low-level alpha spectrometry techniques using semiconductor detectors (PIPS) and liquid scintillation counters (LKB Quantulus 1220™) were used in order to determine the activity concentration of 238U, 232Th, 234U, 230Th, 226Ra, and 210Pb in soil samples. The soils were collected from an old disused uranium mine located in southwest Spain. The soils were selected with different levels of influence from the installation, in such a way that they had different levels of radioactive contamination. The vertical profiles in the soils (down to 40 cm depth) were studied in order to evaluate the vertical distribution of the natural radionuclides. The possible contamination of subsurface waters depends strongly on vertical migration, and the transfer to plants (herbs, shrubs, and trees) also will depend on the distribution of the radionuclides in the root zone. The study of the activity ratios between radionuclides belonging to the same series allowed us to assess the differing behaviour of the radionuclides involved. The vertical profiles for these radionuclides were different at each sampling point, showing the local impact of the installation. However, the profiles per point were similar for the long-lived radionuclides of the 238TJ series (238U, 234U, 230Th, and 226Ra). Also, a major disequilibrium was observed between 210Pb and 226Ra in the surface layer, due to 222Rn emanation and subsequent surface deposition of 210Pb.

  15. The structure of poly(ethylene oxide) liquids : comparison of integral equation theory with molecular dynamics simulations and neutron scaling.

    SciTech Connect

    Curro, John G.; Frischknecht, Amalie Lucile

    2005-01-01

    Polymer reference interaction site model (PRISM) calculations and molecular dynamics (MD) simulations were carried out on poly(ethylene oxide) liquids using a force field of Smith, Jaffe, and Yoon. The intermolecular pair correlation functions and radius of gyration from theory were in very good agreement with MD simulations when the partial charges were turned off. When the charges were turned on, considerably more structure was seen in the intermolecular correlations obtained from MD simulation. Moreover, the radius of gyration increased by 38% due to electrostatic repulsions along the chain backbone. Because the partial charges greatly affect the structure, significant differences were seen between the PRISM calculations (without charges) and the wide angle neutron scattering measurements of Annis and coworkers for the total structure factor, and the hydrogen/hydrogen intermolecular correlation function. This is in contrast to previous PRISM calculations on poly (dimethyl siloxane).

  16. Vertical organic transistors

    NASA Astrophysics Data System (ADS)

    Lüssem, Björn; Günther, Alrun; Fischer, Axel; Kasemann, Daniel; Leo, Karl

    2015-11-01

    Organic switching devices such as field effect transistors (OFETs) are a key element of future flexible electronic devices. So far, however, a commercial breakthrough has not been achieved because these devices usually lack in switching speed (e.g. for logic applications) and current density (e.g. for display pixel driving). The limited performance is caused by a combination of comparatively low charge carrier mobilities and the large channel length caused by the need for low-cost structuring. Vertical Organic Transistors are a novel technology that has the potential to overcome these limitations of OFETs. Vertical Organic Transistors allow to scale the channel length of organic transistors into the 100?nm regime without cost intensive structuring techniques. Several different approaches have been proposed in literature, which show high output currents, low operation voltages, and comparatively high speed even without sub-?m structuring technologies. In this review, these different approaches are compared and recent progress is highlighted.

  17. Vertical organic transistors.

    PubMed

    Lüssem, Björn; Günther, Alrun; Fischer, Axel; Kasemann, Daniel; Leo, Karl

    2015-11-11

    Organic switching devices such as field effect transistors (OFETs) are a key element of future flexible electronic devices. So far, however, a commercial breakthrough has not been achieved because these devices usually lack in switching speed (e.g. for logic applications) and current density (e.g. for display pixel driving). The limited performance is caused by a combination of comparatively low charge carrier mobilities and the large channel length caused by the need for low-cost structuring. Vertical Organic Transistors are a novel technology that has the potential to overcome these limitations of OFETs. Vertical Organic Transistors allow to scale the channel length of organic transistors into the 100?nm regime without cost intensive structuring techniques. Several different approaches have been proposed in literature, which show high output currents, low operation voltages, and comparatively high speed even without sub-?m structuring technologies. In this review, these different approaches are compared and recent progress is highlighted. PMID:26466388

  18. 'Endurance' All Around Vertical)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 360-degree view of the terrain surrounding NASA's Mars Exploration Rover Opportunity was taken on the rover's 171st sol on Mars (July 17, 2004). It was assembled from images taken by the rover's navigation camera at a position referred to as 'site 33.' Opportunity had driven 11 meters (36 feet) into 'Endurance Crater.' The view is a vertical projection with geometrical seam correction.

  19. Detection of ketamine and its metabolites in human hair using an integrated nanoflow liquid chromatography column and electrospray emitter fritted with a single porous 10 ?m bead.

    PubMed

    Parkin, Mark C; Longmoore, Alana M; Turfus, Sophie C; Braithwaite, Robin A; Cowan, David A; Elliott, Simon; Kicman, Andrew T

    2013-02-15

    Targeting metabolites incorporated into hair following drug administration is useful for evidential purposes as this approach can aid in differentiating between administration and passive exposure. Greater analytical sensitivity is required than for targeting the parent drug alone. A 20 ?m i.d. fused silica capillary column with an integrated electrospray emitter fritted with a single porous 10 ?m polymeric bead has been successfully fabricated to facilitate this purpose. The sensitivity gains through the use of these integrated single fritted columns coupled to a nanoelectrospray source (nanoflow-LC nanoESI) over conventional liquid chromatography-tandem mass spectrometry (LC-MS/MS) columns was explored by their application to the detection of ketamine and its phase I metabolites in human hair. Hair was collected from 4 volunteers following the administration of a small oral dose of ketamine (50 mg) and subsequently analysed by the capillary-LC nanoESI approach. The drug and its metabolites were extracted from hair using solid phase extraction following a methanolic wash, pulverisation with a ball mill and acid digestion. From a 50 ?L extract, 1 ?L was injected and the method provided a limit of detection estimated to be 5 fg on column for ketamine and norketamine and 10 fg for dehydronorketamine. The single porous frit minimises extra column band broadening and offers an alternative fritting approach which reduces the blocking of the electrospray emitter, in comparison with other approaches such as sintering and polymerisation. PMID:23332304

  20. Integrated sensing platform and method for improved quantitative and selective monitoring of chemical analytes in both liquid and gas phase

    DOEpatents

    Blair, Dianna S. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM); Butler, Michael A. (Albuquerque, NM)

    2000-01-01

    By measuring two or more physical parameters of a thin sensing film which are altered when exposed to chemicals, more effective discrimination between chemicals can be achieved. In using more than one sensor, the sensors are preferably integrated on the same substrate so that they may measure the same thin film. Even more preferably, the sensors are provided orthogonal to one another so that they may measure the same portion of the thin film. These provisions reduce problems in discrimination arising from variations in thin films.

  1. Integrity of chromatin and replicating DNA in nuclei released from fission yeast by semi-automated grinding in liquid nitrogen

    PubMed Central

    2011-01-01

    Background Studies of nuclear function in many organisms, especially those with tough cell walls, are limited by lack of availability of simple, economical methods for large-scale preparation of clean, undamaged nuclei. Findings Here we present a useful method for nuclear isolation from the important model organism, the fission yeast, Schizosaccharomyces pombe. To preserve in vivo molecular configurations, we flash-froze the yeast cells in liquid nitrogen. Then we broke their tough cell walls, without damaging their nuclei, by grinding in a precision-controlled motorized mortar-and-pestle apparatus. The cryo-ground cells were resuspended and thawed in a buffer designed to preserve nuclear morphology, and the nuclei were enriched by differential centrifugation. The washed nuclei were free from contaminating nucleases and have proven well-suited as starting material for genome-wide chromatin analysis and for preparation of fragile DNA replication intermediates. Conclusions We have developed a simple, reproducible, economical procedure for large-scale preparation of endogenous-nuclease-free, morphologically intact nuclei from fission yeast. With appropriate modifications, this procedure may well prove useful for isolation of nuclei from other organisms with, or without, tough cell walls. PMID:22088094

  2. Augmentation of condensation heat transfer with electrohydrodynamics on vertical enhanced tubes 

    E-print Network

    Motte, Edouard

    1994-01-01

    from the surface can be realized. The liquid film thickness is reduced and as a result the condensation heat transfer coefficient is increased. A vertical single tube condenser (I m long) is used to investigate the electrohydrodynamically enhanced...

  3. Integrated modeling of CO2 storage and leakage scenarios including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO2

    SciTech Connect

    Pruess, K.

    2011-05-15

    Storage of CO{sub 2} in saline aquifers is intended to be at supercritical pressure and temperature conditions, but CO{sub 2} leaking from a geologic storage reservoir and migrating toward the land surface (through faults, fractures, or improperly abandoned wells) would reach subcritical conditions at depths shallower than 500-750 m. At these and shallower depths, subcritical CO{sub 2} can form two-phase mixtures of liquid and gaseous CO{sub 2}, with significant latent heat effects during boiling and condensation. Additional strongly non-isothermal effects can arise from decompression of gas-like subcritical CO{sub 2}, the so-called Joule-Thomson effect. Integrated modeling of CO{sub 2} storage and leakage requires the ability to model non-isothermal flows of brine and CO{sub 2} at conditions that range from supercritical to subcritical, including three-phase flow of aqueous phase, and both liquid and gaseous CO{sub 2}. In this paper, we describe and demonstrate comprehensive simulation capabilities that can cope with all possible phase conditions in brine-CO{sub 2} systems. Our model formulation includes: (1) an accurate description of thermophysical properties of aqueous and CO{sub 2}-rich phases as functions of temperature, pressure, salinity and CO{sub 2} content, including the mutual dissolution of CO{sub 2} and H{sub 2}O; (2) transitions between super- and subcritical conditions, including phase change between liquid and gaseous CO{sub 2}; (3) one-, two-, and three-phase flow of brine-CO{sub 2} mixtures, including heat flow; (4) non-isothermal effects associated with phase change, mutual dissolution of CO{sub 2} and water, and (de-) compression effects; and (5) the effects of dissolved NaCl, and the possibility of precipitating solid halite, with associated porosity and permeability change. Applications to specific leakage scenarios demonstrate that the peculiar thermophysical properties of CO{sub 2} provide a potential for positive as well as negative feedbacks on leakage rates, with a combination of self-enhancing and self-limiting effects. Lower viscosity and density of CO{sub 2} as compared to aqueous fluids provides a potential for self-enhancing effects during leakage, while strong cooling effects from liquid CO{sub 2} boiling into gas, and from expansion of gas rising towards the land surface, act to self-limit discharges. Strong interference between fluid phases under three-phase conditions (aqueous - liquid CO{sub 2} - gaseous CO{sub 2}) also tends to reduce CO{sub 2} fluxes. Feedback on different space and time scales can induce non-monotonic behavior of CO{sub 2} flow rates.

  4. 'Endurance' Untouched (vertical)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This navigation camera mosaic, created from images taken by NASA's Mars Exploration Rover Opportunity on sols 115 and 116 (May 21 and 22, 2004) provides a dramatic view of 'Endurance Crater.' The rover engineering team carefully plotted the safest path into the football field-sized crater, eventually easing the rover down the slopes around sol 130 (June 12, 2004). To the upper left of the crater sits the rover's protective heatshield, which sheltered Opportunity as it passed through the martian atmosphere. The 360-degree view is presented in a vertical projection, with geometric and radiometric seam correction.

  5. Liquid-Hydrogen Polygeneration System

    NASA Technical Reports Server (NTRS)

    Minderman, P.; Gutkowski, G.; Manfredi, L.; King, J.; Howard, F.

    1986-01-01

    Polygeneration system uses existing technology in integrated process to produce liquid hydrogen space-vehicle propellant and secondary products as gaseous nitrogen, electrical energy, and thermal energy. Makes commercial launch services economical. Lowers expected cost of liquid hydrogen by utilizing relatively cheap coal feedstocks and by reducing electrical costs associated with producing liquid hydrogen.

  6. Liquid Crystal Optofluidics

    SciTech Connect

    Vasdekis, Andreas E.; Cuennet, J. G.; Psaltis, D.

    2012-10-11

    By employing anisotropic fluids and namely liquid crystals, fluid flow becomes an additional degree of freedom in designing optofluidic devices. In this paper, we demonstrate optofluidic liquid crystal devices based on the direct flow of nematic liquid crystals in microfluidic channels. Contrary to previous reports, in the present embodiment we employ the effective phase delay acquired by light travelling through flowing liquid crystal, without analysing the polarisation state of the transmitted light. With this method, we demonstrate the variation in the diffraction pattern of an array of microfluidic channels acting as a grating. We also discuss our recent activities in integrating mechanical oscillators for on-chip peristaltic pumping.

  7. Vertical wind turbine

    SciTech Connect

    Danson, D.P.

    1988-08-16

    This patent describes a wind driven turbine of the vertical axis type comprising: (a) a support base; (b) a generally vertical column rotatably mounted to the support base; (c) upper and lower support means respectively mounted on the column for rotation therewith; wind driven blades connected between the upper and lower support means for rotation about the column and each blade being individually rotatable about a blade axis extending longitudinally through the blade to vary a blade angle of attach thereof relative to wind velocity during rotation about the column; and (e) control means for variably adjusting angles of attack of each blade to incident wind, the control means including a connecting rod means having drive means for rotating each blade about the associated blade axis in response to radial movement of the connecting rod means and control shaft pivotally mounted within the column and having a first shaft portion connected to the connecting rod means and a second shaft portion radially offset from the first shaft portion and pivotally connected to radially displace the first portion and thereby the connecting rod means to vary the blade angles of attack during rotation about the column.

  8. Electrostatic comb drive for vertical actuation

    SciTech Connect

    Lee, A. P., LLNL

    1997-07-10

    The electrostatic comb finger drive has become an integral design for microsensor and microactuator applications. This paper reports on utilizing the levitation effect of comb fingers to design vertical-to-the-substrate actuation for interferometric applications. For typical polysilicon comb drives with 2 {micro}m gaps between the stationary and moving fingers, as well as between the microstructures and the substrate, the equilibrium position is nominally 1-2 {micro}m above the stationary comb fingers. This distance is ideal for many phase shifting interferometric applications. Theoretical calculations of the vertical actuation characteristics are compared with the experimental results, and a general design guideline is derived from these results. The suspension flexure stiffnesses, gravity forces, squeeze film damping, and comb finger thicknesses are parameters investigated which affect the displacement curve of the vertical microactuator. By designing a parallel plate capacitor between the suspended mass and the substrate, in situ position sensing can be used to control the vertical movement, providing a total feedback-controlled system. Fundamentals of various capacitive position sensing techniques are discussed. Experimental verification is carried out by a Zygo distance measurement interferometer.

  9. Vertical root fractures and their management

    PubMed Central

    Khasnis, Sandhya Anand; Kidiyoor, Krishnamurthy Haridas; Patil, Anand Basavaraj; Kenganal, Smita Basavaraj

    2014-01-01

    Vertical root fractures associated with endodontically treated teeth and less commonly in vital teeth represent one of the most difficult clinical problems to diagnose and treat. In as much as there are no specific symptoms, diagnosis can be difficult. Clinical detection of this condition by endodontists is becoming more frequent, where as it is rather underestimated by the general practitioners. Since, vertical root fractures almost exclusively involve endodontically treated teeth; it often becomes difficult to differentiate a tooth with this condition from an endodontically failed one or one with concomitant periodontal involvement. Also, a tooth diagnosed for vertical root fracture is usually extracted, though attempts to reunite fractured root have been done in various studies with varying success rates. Early detection of a fractured root and extraction of the tooth maintain the integrity of alveolar bone for placement of an implant. Cone beam computed tomography has been shown to be very accurate in this regard. This article focuses on the diagnostic and treatment strategies, and discusses about predisposing factors which can be useful in the prevention of vertical root fractures. PMID:24778502

  10. Liquid hydrogen and liquid oxygen feedline passive recirculation analysis

    NASA Technical Reports Server (NTRS)

    Holt, Kimberly Ann; Cleary, Nicole L.; Nichols, Andrew J.; Perry, Gretchen L. E.

    1993-01-01

    The primary goal of the National Launch System (NLS) program was to design an operationally efficient, highly reliable vehicle with minimal recurring launch costs. To achieve this goal, trade studies of key main propulsion subsystems were performed to specify vehicle design requirements. These requirements include the use of passive recirculation to thermally condition the liquid hydrogen (LH2) and liquid oxygen (LO2) propellant feed systems and Space Transportation Main Engine (STME) fuel pumps. Rockwell International (RI) proposed a joint independent research and development (JIRAD) program with Marshall Space Flight Center (MSFC) to study the LH2 feed system passive recirculation concept. The testing was started in July 1992 and completed in November 1992. Vertical and sloped feedline designs were used. An engine simulator was attached at the bottom of the feedline. This simulator had strip heaters that were set to equal the corresponding heat input from different engines. A computer program is currently being used to analyze the passive recirculation concept in the LH2 vertical feedline tests. Four tests, where the heater setting is the independent variable, were chosen. While the JIRAD with RI was underway, General Dynamics Space Systems (GDSS) proposed a JIRAD with MSFC to explore passive recirculation in the LO2 feed system. Liquid nitrogen (LN2) is being used instead of LO2 for safety and economic concerns. To date, three sets of calibration tests have been completed on the sloped LN2 test article. The environmental heat was calculated from the calibration tests in which the strip heaters were turned off. During the LH2 testing, the environmental heat was assumed to be constant. Therefore, the total heat was equal to the environmental heat flux plus the heater input. However, the first two sets of LN2 calibration tests have shown that the environmental heat flux varies with heater input. A Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA/FLUINT) model is currently being built to determine if this variation in environmental heat is due to a change in the wall temperature. During the third set of calibration tests, a faulty reference junction was found. Based on this anomaly with the reference junction, the heat flux calculations from the first two calibration sets are now considered questionable.

  11. Infrared intensities of liquids XXI: integrated absorption intensities of CH 3OH, CH 3OD, CD 3OH and CD 3OD and dipole moment derivatives of methanol

    NASA Astrophysics Data System (ADS)

    Bertie, John E.; Zhang, Shuliang L.

    1997-09-01

    This paper presents the analysis of the complete set of vibrational intensities of four isotopomers of methanol. The absolute infrared absorption intensities of liquid methanol in four isotopic forms have been reported recently. In that work, spectral intensities were separated into the integrated intensities of different transitions by comparing the spectra of different isotopomers, and dipole moment derivatives with respect to valence displacements were calculated under the simplest approximations. For many bands it was not possible to determine the integrated intensity in this way because of overlap of several bands, and for others it was clear that the determination was too subjective. This paper first describes an attempt to improve this situation by using a more objective separation of the contributions to the intensity from different bands, by fitting the imaginary molar polarizability spectra with classical damped harmonic oscillator bands or Gaussian bands and calculating the entire area under each component band. The integrated intensities so obtained are compared with those reported previously, and a set of accepted integrated intensities for all vibrations is presented. These accepted intensities are then converted to transition moments and analyzed to obtain the dipole moment derivatives with respect to symmetry coordinates, {??}/{?S}. The analysis uses the eigenvectors from a normal coordinate calculation that fits the reliably known fundamental wavenumbers of CH 3OH, CH 3OD, CD 3OH and CD 3OD, corrected for anharmonicity where possible, to better than ± 1.5 cm -1 on average, and that also fits the experimental near-identity of the wavenumbers and intensities of the CO stretching bands of CH 3OH and CH 3OD. These calculations were guided by literature ab initio calculations on isolated CH 3OH, but an empirical normal coordinate calculation was preferred because the experimental data show clearly that some of the vibrations are not properties of isolated molecules. For lack of other evidence, the directions of the dipole moment derivatives of the A' modes were taken from Torii and Tasumi's recent ab initio calculation. Dipole moment derivatives with respect to internal coordinates, {??}/{?R}, were calculated from the {??}/{?S}. The resulting values for liquid methanol are compared with values for the isolated molecule calculated with an {MP2 }/{6-31 G} ext basis set by Torii and Tasumi. For the stronger fundamentals the agreement is good except for the OH and OD stretching vibrations. This suggests that the only hydrogen vibration whose intensity is strongly affected by the hydrogen bonding is the stretching vibration. This in turn implies that it is the charge flux, not the effective charge on the hydrogen atom, that is sensitive to hydrogen bonding. The results of this and other work from this laboratory suggest that most vibrational intensities may not be strongly dependent on phase.

  12. Activity Based Startup Plan for Prototype Vertical Denitration Calciner

    SciTech Connect

    SUTTER, C.S.

    1999-08-16

    Testing activities on the Prototype Vertical Denitration Calciner at Plutonium Finish Plant (PFP) were suspended in January 1997 due to the hold on fissile material handling in the facility. The restart of testing activities will require a review through an activity based startup process based upon Integrated Safety Management (ISM) principles to verify readiness. The Activity Based Startup Plan for the Prototype vertical Denitration Calciner has been developed for this process.

  13. Observation of picometer vertical emittance with a vertical undulator.

    PubMed

    Wootton, K P; Boland, M J; Dowd, R; Tan, Y-R E; Cowie, B C C; Papaphilippou, Y; Taylor, G N; Rassool, R P

    2012-11-01

    Using a vertical undulator, picometer vertical electron beam emittances have been observed at the Australian Synchrotron storage ring. An APPLE-II type undulator was phased to produce a horizontal magnetic field, which creates a synchrotron radiation field that is very sensitive to the vertical electron beam emittance. The measured ratios of undulator spectral peak heights are evaluated by fitting to simulations of the apparatus. With this apparatus immediately available at most existing electron and positron storage rings, we find this to be an appropriate and novel vertical emittance diagnostic. PMID:23215388

  14. Measurement of ultralow vertical emittance using a calibrated vertical undulator

    NASA Astrophysics Data System (ADS)

    Wootton, K. P.; Boland, M. J.; Rassool, R. P.

    2014-11-01

    Very few experimental techniques are useful for the direct observation of ultralow vertical emittance in electron storage rings. In this work, quantitative measurements of ultralow (pm rad) electron beam vertical emittance using a vertical undulator are presented. An undulator radiation model was developed using the measured magnetic field of the APPLE-II type undulator. Using calibrated experimental apparatus, a geometric vertical emittance of ?y=0.9 ±0.3 pm rad has been observed. These measurements could also inform modeling of the angular distribution of undulator radiation at high harmonics, for proposed diffraction-limited storage ring light sources.

  15. Multicolored Vertical Silicon Nanowires

    SciTech Connect

    Seo, Kwanyong; Wober, Munib; Steinvurzel, P.; Schonbrun, E.; Dan, Yaping; Ellenbogen, T.; Crozier, K. B.

    2011-04-13

    We demonstrate that vertical silicon nanowires take on a surprising variety of colors covering the entire visible spectrum, in marked contrast to the gray color of bulk silicon. This effect is readily observable by bright-field microscopy, or even to the naked eye. The reflection spectra of the nanowires each show a dip whose position depends on the nanowire radii. We compare the experimental data to the results of finite difference time domain simulations to elucidate the physical mechanisms behind the phenomena we observe. The nanowires are fabricated as arrays, but the vivid colors arise not from scattering or diffractive effects of the array, but from the guided mode properties of the individual nanowires. Each nanowire can thus define its own color, allowing for complex spatial patterning. We anticipate that the color filter effect we demonstrate could be employed in nanoscale image sensor devices.

  16. ON-LINE TOOLS FOR PROPER VERTICAL POSITIONING OF VERTICAL SAMPLING INTERVALS DURING SITE ASSESSMENT

    EPA Science Inventory

    This presentation presents on-line tools for proper vertical positioning of vertical sampling intervals during site assessment. Proper vertical sample interval selection is critical for generate data on the vertical distribution of contamination. Without vertical delineation, th...

  17. DISTANCES BETWEEN PAIRS OF VERTICES AND VERTICAL PROFILE IN CONDITIONED

    E-print Network

    Devroye, Luc

    DISTANCES BETWEEN PAIRS OF VERTICES AND VERTICAL PROFILE IN CONDITIONED GALTON­WATSON TREES LUC DEVROYE AND SVANTE JANSON Abstract. We consider a conditioned Galton­Watson tree and prove an estimate of a randomly labelled conditioned Galton­Watson tree converges in distribution, after suitable normalization

  18. DISTANCES BETWEEN PAIRS OF VERTICES AND VERTICAL PROFILE IN CONDITIONED

    E-print Network

    Janson, Svante

    DISTANCES BETWEEN PAIRS OF VERTICES AND VERTICAL PROFILE IN CONDITIONED GALTON--WATSON TREES LUC DEVROYE AND SVANTE JANSON Abstract. We consider a conditioned Galton--Watson tree and prove an estimate of a randomly labelled conditioned Galton--Watson tree converges in distribution, after suitable normalization

  19. 4. VIEW OF VERTICAL BORING MACHINE. (Bullard) Vertical turning lathe ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF VERTICAL BORING MACHINE. (Bullard) Vertical turning lathe (VTL). Machining the fixture for GE Turboshroud. G.S. O'Brien, operator. - Juniata Shops, Machine Shop No. 1, East of Fourth Avenue at Third Street, Altoona, Blair County, PA

  20. The effects of soil vertical discretization, soil thermal properties, and soil heat convection by liquid water transfer on the water and energy cycles in a coupled land-atmosphere model

    NASA Astrophysics Data System (ADS)

    Wang, Fuxing; Dufresne, Jean-Louis; Chéruy, Frédérique; Ducharne, Agnès

    2015-04-01

    The soil heat transfer is an important component in general circulation model (GCM), and accurate representation of subsurface thermodynamics is essential for earth system modeling. The accuracy of the soil thermodynamics simulation is affected by many factors: (1) the bottom boundary layer position used in numerical scheme; (2) the soil thermal property (heat capacity and thermal conductivity) parameterization; as well as (3) the physical processes considered in the model. However, the impact of their correct representation on the quality of the simulated climate is poorly documented, and the way state-of-the art land surface model (LSM) used for climate simulations account for them is highly variable. For instance bottom boundary layer position varies from 2 m to 10 m or even more (100 m), the parameterizations of the soil thermal properties not always account for the soil texture effects, and the soil heat convection process is neglected in most soil thermodynamics models. In this work, we revisited the soil thermodynamics model included in the ORCHIDEE LSM in order (1) to determine the soil bottom layer depth which allows for simulating the annual cycle of temperature; (2) to improve the parameterization of the soil thermal properties (thermal conductivity and heat capacity) by accounting for both soil moisture and soil texture effects on the soil thermal properties; (3) to take into account the heat generated by liquid water movement in soil thermodynamics. The developpement of the parameterizations has been done in a 1-D framework where the results of the Finite Difference Method have been compared to the analytical solution. Sensitivity experiments with the LMDZ-ORCHIDEE coupled model (atmosphere-land component of IPSL-CM model) have been then designed to evaluate the impact of the soil thermal properties and soil heat convection on the water and energy cycles of the land-atmosphere. Main results are: (1) the 8 meter soil depth is proposed as a minimum requirement for simulating the annual cycle of soil temperature; (2) the surface water and energy cycles are sensitive to the soil thermal property parameterization. A lower (higher) thermal inertia leads to smaller (larger) amplitude of surface soil heat flux. The soil temperature decreases (increases) with the decreasing (increasing) of soil heat diffusivity. The net radiation is also affected by soil thermal properties due to the variation of upward long-wave radiation (caused by surface temperature). The changing of net radiation is mainly compensated by the sensible heat flux. During the night, the air temperature is more affected by the soil thermal properties than that during the day. (3) The rain temperature is lower than the land surface temperature in most regions, which means that the rainfall cools the land surface. In daily or shorter (e.g., 3-Houly) time scales, the soil temperature (turbulent heat flux) varies about 0.05 K (+/- 6 W/m2) with the rainfall (its heat flux) equal 0-5mm/d (0-4 W/m2). The soil heat convection effects on surface turbulent heat fluxes are small (+/- 1 W/m2) on monthly scale.

  1. Buried injector logic, a vertical IIL using deep ion implantation

    NASA Astrophysics Data System (ADS)

    Mouthaan, A. J.

    1987-12-01

    A vertically integrated alternative for integrated injection logic has been realized, named buried injector logic (BIL). 1 MeV ion implantations are used to create buried layers. The vertical pnp and npn transistors have thin base regions and exhibit a limited charge accumulation if a gate is saturated. d.c. and dynamic analysis of BIL-gate behaviour are given. A minimum gate delay of well below 1 ns is projected if collector areas are smaller than 10 ?m 2 within an oxide isolated structure. A relation between maximum injector current density and device size is derived.

  2. Buckling of Liquid Columns

    NASA Astrophysics Data System (ADS)

    Habibi, M.; Rahmani, Y.; Bonn, Daniel; Ribe, N. M.

    2010-02-01

    Under appropriate conditions, a column of viscous liquid falling onto a rigid surface undergoes a buckling instability. Here we show experimentally and theoretically that liquid buckling exhibits a hitherto unsuspected complexity involving three different modes—viscous, gravitational, and inertial—depending on how the viscous forces that resist bending of the column are balanced. We also find that the nonlinear evolution of the buckling exhibits a surprising multistability with three distinct states: steady stagnation flow, “liquid rope coiling,” and a new state in which the column simultaneously folds periodically and rotates about a vertical axis. The transitions among these states are subcritical, leading to a complex phase diagram in which different combinations of states coexist in different regions of the parameter space.

  3. Propulsion systems for vertical flight aircraft

    SciTech Connect

    Brooks, A.

    1990-01-01

    The present evaluation of VTOL airframe/powerplant integration configurations combining high forward flight speed with safe and efficient vertical flight identifies six configurations that can be matched with one of three powerplant types: turboshafts, convertible-driveshaft lift fans, and gas-drive lift fans. The airframes configurations are (1) tilt-rotor, (2) folded tilt-rotor, (3) tilt-wing, (4) rotor wing/disk wing, (5) lift fan, and (6) variable-diameter rotor. Attention is given to the lift-fan VTOL configuration. The evaluation of these configurations has been conducted by both a joint NASA/DARPA program and the NASA High Speed Rotorcraft program. 7 refs.

  4. New vertical cryostat for the high field superconducting magnet test station at CERN

    SciTech Connect

    Vande Craen, A.; Atieh, S.; Bajko, M.; Benda, V.; Rijk, G. de; Favre, G.; Giloux, C.; Minginette, P.; Parma, V.; Perret, P.; Pirotte, O.; Ramos, D.; Viret, P.; Hanzelka, P.

    2014-01-29

    In the framework of the R and D program for new superconducting magnets for the Large Hadron Collider accelerator upgrades, CERN is building a new vertical test station to test high field superconducting magnets of unprecedented large size. This facility will allow testing of magnets by vertical insertion in a pressurized liquid helium bath, cooled to a controlled temperature between 4.2 K and 1.9 K. The dimensions of the cryostat will allow testing magnets of up to 2.5 m in length with a maximum diameter of 1.5 m and a mass of 15 tons. To allow for a faster insertion and removal of the magnets and reducing the risk of helium leaks, all cryogenics supply lines are foreseen to remain permanently connected to the cryostat. A specifically designed 100 W heat exchanger is integrated in the cryostat helium vessel for a controlled cooling of the magnet from 4.2 K down to 1.9 K in a 3 m{sup 3} helium bath. This paper describes the cryostat and its main functions, focusing on features specifically developed for this project. The status of the construction and the plans for assembly and installation at CERN are also presented.

  5. Liquid deformable mirror for high-order wavefront correction

    E-print Network

    Liquid deformable mirror for high-order wavefront correction E. M. Vuelban, N. Bhattacharya, and J 20, 2006 (Doc. ID 68126) We propose and demonstrate a novel liquid deformable mirror, based of vertically oriented microchan- nels filled with two immiscible liquids, an aqueous electrolyte, and a viscous

  6. Liquid metal enabled pump

    PubMed Central

    Tang, Shi-Yang; Khoshmanesh, Khashayar; Sivan, Vijay; Petersen, Phred; O’Mullane, Anthony P.; Abbott, Derek; Mitchell, Arnan; Kalantar-zadeh, Kourosh

    2014-01-01

    Small-scale pumps will be the heartbeat of many future micro/nanoscale platforms. However, the integration of small-scale pumps is presently hampered by limited flow rate with respect to the input power, and their rather complicated fabrication processes. These issues arise as many conventional pumping effects require intricate moving elements. Here, we demonstrate a system that we call the liquid metal enabled pump, for driving a range of liquids without mechanical moving parts, upon the application of modest electric field. This pump incorporates a droplet of liquid metal, which induces liquid flow at high flow rates, yet with exceptionally low power consumption by electrowetting/deelectrowetting at the metal surface. We present theory explaining this pumping mechanism and show that the operation is fundamentally different from other existing pumps. The presented liquid metal enabled pump is both efficient and simple, and thus has the potential to fundamentally advance the field of microfluidics. PMID:24550485

  7. Reusable EGaIn-Injected Substrate-Integrated-Waveguide Resonator for Wireless Sensor Applications.

    PubMed

    Memon, Muhammad Usman; Lim, Sungjoon

    2015-01-01

    The proposed structure in this research is constructed on substrate integrated waveguide (SIW) technology and has a mechanism that produces 16 different and distinct resonant frequencies between 2.45 and 3.05 GHz by perturbing a fundamental TE10 mode. It is a unique method for producing multiple resonances in a radio frequency planar structure without any extra circuitry or passive elements is developed. The proposed SIW structure has four vertical fluidic holes (channels); injecting eutectic gallium indium (EGaIn), also known commonly as liquid metal (LM), into these vertical channels produces different resonant frequencies. Either a channel is empty, or it is filled with LM. In total, the combination of different frequencies produced from four vertical channels is 16. PMID:26569257

  8. Vertical axis wind turbine airfoil

    DOEpatents

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  9. Visualize Vertical Connectedness (Middle Ground).

    ERIC Educational Resources Information Center

    van Allen, Lanny

    1996-01-01

    Discusses the possibility of vertical connectedness in K-12 education through references to journal articles and the author's own reflections. Suggests that middle school teachers may be leaders in a movement toward eliminating redundancy and gaps between grade levels. (TB)

  10. Vertically Aligned Nanocomposite Thin Films 

    E-print Network

    Bi, Zhenxing

    2012-07-16

    Vertically aligned nanocomposite (VAN) thin films have recently stimulated significant research interest to achieve better material functionality or multifunctionalities. In VAN thin films, both phases grow epitaxially in parallel on given...

  11. Place Value: A Vertical Perspective.

    ERIC Educational Resources Information Center

    Bove, Sandra P.

    1995-01-01

    Discusses children's place-value understanding, including initial learning interference, vertical number lines, and planned discourse. Describes a learning activity that can guide children from a concrete to a symbolic understanding of place value. (11 references) (MKR)

  12. Film boiling on the inside of vertical tubes with upward flow of the fluid at low qualities

    E-print Network

    Dougall, R. S.

    1963-01-01

    Flow regimes, local heat transfer coefficients, and temperature distributions along the wall have been studied for film boiling inside a vertical tube with upward flow of a saturated liquid. The area of interest has been ...

  13. Further Development of Galileo-GPS RAIM for Vertical Guidance

    E-print Network

    Stanford University

    Further Development of Galileo-GPS RAIM for Vertical Guidance Alexandru Ene, Stanford University of combined GPS/Galileo signals, positioning error threat space and integrity. He holds a Bachelors anticipated deployment of Galileo, a new partner will rise on the sky of Global Navigation Satellite Systems

  14. Activity Based Startup Plan for Prototype Vertical Denitration Calciner

    SciTech Connect

    SUTTER, C.S.

    1999-08-31

    Testing activities on the Prototype Vertical Denitration Calciner at PFP were suspended in January 1997 due to the hold on fissile material handling in the facility. The restart of testing activities will require a review through an activity based startup process based upon Integrated Safety Management (ISM) principles to verify readiness. The Activity Based Startup Plan has been developed for this process.

  15. Soft Anisotropic Conductors as Electric Vias for Ga-Based Liquid Metal Circuits.

    PubMed

    Lu, Tong; Wissman, James; Ruthika; Majidi, Carmel

    2015-12-01

    We introduce a method for sealing liquid metal (LM) circuits with soft anisotropic conductors that prevent leaking, while simultaneously allowing for electrical contact with skin and surface mounted electronics. These films are composed of polydimethylsiloxane (PDMS) embedded with vertically aligned columns of ferromagnetic Ag-Ni microparticles. The microparticles are magnetically aligned and support electrical conductivity only through the thickness (z-axis) of the elastomer film. Measurements on 10-40% (by wt) composites show moderate volumetric resistivity (as low as ? = 0.03 ?/m) through the thickness and no conductivity between adjacent traces. Functionality is demonstrated with several illustrative applications related to tactile sensing and electronics hardware integration. PMID:26569575

  16. Microgyroscope with integrated vibratory element

    NASA Technical Reports Server (NTRS)

    Tang, Tony K. (Inventor); Rodger, Damien C. (Inventor); Gutierrez, Roman C. (Inventor)

    2002-01-01

    A microgyroscope having a suspended vertical post uses the Coriolis force to detect the rotation rate. The microgyroscope consists of a single vertical post which is the rotation rate sensing element. The vertical post is formed from the same silicon wafers as the rest of the microgyroscope. A first portion of the vertical post and the clover-leaf structure are made from a first silicon wafer. A second portion of the vertical post and the baseplate are made from a second silicon wafer. The two portions are then bonded together to from the clover-leaf gyroscope with an integrated post structure.

  17. Small integral trees A. E. Brouwer

    E-print Network

    Brouwer, Andries E.

    Small integral trees A. E. Brouwer 2007-12-31 Abstract We give a table with all integral trees on at most 50 vertices, and characterize integral trees with a single eigenvalue 0. 1 Integral trees A finite graph is called integral if the spectrum of its adjacency matrix has only integral eigenvalues. A tree

  18. Engineering design of vertical test stand cryostat

    SciTech Connect

    Suhane, S.K.; Sharma, N.K.; Raghavendra, S.; Joshi, S.C.; Das, S.; Kush, P.K.; Sahni, V.C.; Gupta, P.D.; Sylvester, C.; Rabehl, R.; Ozelis, J.; /Fermilab

    2011-03-01

    Under Indian Institutions and Fermilab collaboration, Raja Ramanna Centre for Advanced Technology and Fermi National Accelerator Laboratory are jointly developing 2K Vertical Test Stand (VTS) cryostats for testing SCRF cavities at 2K. The VTS cryostat has been designed for a large testing aperture of 86.36 cm for testing of 325 MHz Spoke resonators, 650 MHz and 1.3 GHz multi-cell SCRF cavities for Fermilab's Project-X. Units will be installed at Fermilab and RRCAT and used to test cavities for Project-X. A VTS cryostat comprises of liquid helium (LHe) vessel with internal magnetic shield, top insert plate equipped with cavity support stand and radiation shield, liquid nitrogen (LN{sub 2}) shield and vacuum vessel with external magnetic shield. The engineering design and analysis of VTS cryostat has been carried out using ASME B&PV Code and Finite Element Analysis. Design of internal and external magnetic shields was performed to limit the magnetic field inside LHe vessel at the cavity surface <1 {micro}T. Thermal analysis for LN{sub 2} shield has been performed to check the effectiveness of LN{sub 2} cooling and for compliance with ASME piping code allowable stresses.

  19. Drop motion induced by vertical vibrations

    NASA Astrophysics Data System (ADS)

    Sartori, Paolo; Quagliati, Damiano; Varagnolo, Silvia; Pierno, Matteo; Mistura, Giampaolo; Magaletti, Francesco; Massimo Casciola, Carlo

    2015-11-01

    We have studied the motion of liquid drops on an inclined plate subject to vertical vibrations. The liquids comprised distilled water and different aqueous solutions of glycerol, ethanol and isopropanol spanning the range 1–39 mm2 s?1 in kinematic viscosities and 40–72 mN m?1 in surface tension. At sufficiently low oscillating amplitudes, the drops are always pinned to the surface. Vibrating the plate above a certain amplitude yields sliding of the drop. Further increasing the oscillating amplitude drives the drop upward against gravity. In the case of the most hydrophilic aqueous solutions, this motion is not observed and the drop only slides downward. Images taken with a fast camera show that the drop profile evolves in a different way during sliding and climbing. In particular, the climbing drop experiences a much bigger variation in its profile during an oscillating period. Complementary numerical simulations of 2D drops based on a diffuse interface approach confirm the experimental findings. The overall qualitative behavior is reproduced suggesting that the contact line pinning due to contact angle hysteresis is not necessary to explain the drop climbing.

  20. The response of a point source in a liquid layer overlying a liquid half space

    E-print Network

    Greenfield, Roy

    1962-01-01

    The response to a harmonic point source in a liquid layer overlying a liquid half space is computed as a function of frequency. Included are the contributions form all normal modes that occur, and the branch-line integral ...

  1. Liquid scanning transmission electron microscopy: Nanoscale imaging in micrometers-thick liquids

    NASA Astrophysics Data System (ADS)

    Schuh, Tobias; de Jonge, Niels

    2014-02-01

    Scanning transmission electron microscopy (STEM) of specimens in liquid is possible using a microfluidic chamber with thin silicon nitride windows. This paper includes an analytic equation of the resolution as a function of the sample thickness and the vertical position of an object in the liquid. The equipment for STEM of liquid specimen is briefly described. STEM provides nanometer resolution in micrometer-thick liquid layers with relevance for both biological research and materials science. Using this technique, we investigated tagged proteins in whole eukaryotic cells, and gold nanoparticles in liquid with time-lapse image series. Possibly future applications are discussed.

  2. On the identification of liquid surface properties using liquid bridges.

    PubMed

    Kostoglou, M; Karapantsios, T D

    2015-08-01

    The term liquid bridge refers to the specific silhouette of a liquid volume when it is placed between two solid surfaces. Liquid bridges have been studied extensively both theoretically and experimentally during the last century due to their significance in many technological applications. It is worth noticing that even today new technological applications based on liquid bridges continue to appear. A liquid bridge has a well-defined surface configuration dictated by a rigid theoretical foundation so the potential of its utilization as a tool to study surface properties of liquids is apparent. However, it is very scarce in literature that the use of liquid bridges is suggested as an alternative to the well-established drop techniques (pendant/sessile drop). The present work (i) presents the theoretical background for setting up a liquid-bridge based surface property estimation problem, (ii) describes the required experimental equipment and procedures and (iii) performs a thorough literature review on the subject. A case with particular interest is that of liquid bridges made of electrically conducting liquids forming between two conducting solids; such a liquid bridge presents an integral electrical conductance value which is sensitive to the specific silhouette of the bridge. This enables the use of this integral conductance as shape descriptor instead of the conventional image processing techniques. Several attempts in literature for the estimation of liquid surface tension, liquid-solid contact angle and surfactant induced surface elasticity for conducting or non/conducting liquids are presented and the prospects of the technique are discussed. PMID:24819725

  3. Classical Liquids in Fractal Dimension

    E-print Network

    Marco Heinen; Simon K. Schnyder; John F. Brady; Hartmut Löwen

    2015-08-28

    We introduce fractal liquids by generalizing classical liquids of integer dimensions $d = 1, 2, 3$ to a fractal dimension $d_f$. The particles composing the liquid are fractal objects and their configuration space is also fractal, with the same non-integer dimension. Realizations of our generic model system include microphase separated binary liquids in porous media, and highly branched liquid droplets confined to a fractal polymer backbone in a gel. Here we study the thermodynamics and pair correlations of fractal liquids by computer simulation and semi-analytical statistical mechanics. Our results are based on a model where fractal hard spheres move on a near-critical percolating lattice cluster. The predictions of the fractal Percus-Yevick liquid integral equation compare well with our simulation results.

  4. Liquid rocket valve assemblies

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design and operating characteristics of valve assemblies used in liquid propellant rocket engines are discussed. The subjects considered are as follows: (1) valve selection parameters, (2) major design aspects, (3) design integration of valve subassemblies, and (4) assembly of components and functional tests. Information is provided on engine, stage, and spacecraft checkout procedures.

  5. Low gravity liquid level sensor rake

    NASA Technical Reports Server (NTRS)

    Grayson, Gary D. (Inventor); Craddock, Jeffrey C. (Inventor)

    2003-01-01

    The low gravity liquid level sensor rake measures the liquid surface height of propellant in a propellant tank used in launch and spacecraft vehicles. The device reduces the tendency of the liquid propellant to adhere to the sensor elements after the bulk liquid level has dropped below a given sensor element thereby reducing the probability of a false liquid level measurement. The liquid level sensor rake has a mast attached internal to a propellant tank with an end attached adjacent the tank outlet. Multiple sensor elements that have an arm and a sensor attached at a free end thereof are attached to the mast at locations selected for sensing the presence or absence of the liquid. The sensor elements when attached to the mast have a generally horizontal arm and a generally vertical sensor.

  6. Characteristics of slug flow in narrow rectangular channels under vertical condition

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Yan, Chaoxing; Tian, Daogui

    2013-07-01

    Gas-liquid slug flow is widely encountered in many practical industrial applications. A detailed understanding of the hydrodynamics of gas slug has important significance for modeling of the slug flow. Non-intrusive flow visualization using a high speed video camera system is applied to study characteristics of slug flow in a vertical narrow rectangular channel (3.25×40 mm2). Ideal Taylor bubbles are hardly observed, and most of the gas slugs are deformed, much more seriously at high liquid superficial velocity. The liquid film thicknesses of left and right narrow sides surrounding gas slug are divergent and wavy, but it has weak effect on liquid film velocity. The gas and liquid velocity as well as the length of gas slug have significant effect on the separating liquid film thickness. The separating liquid film velocity is decreased with the increase of gas superficial velocity at low liquid velocity, and increased with the increase of liquid superficial velocity. The film stops descending and the gas superficial velocity has no significant effect on liquid film separating velocity at high liquid velocity (jL?1.204 m/s), and it is mainly determined by the liquid flow rate. The shape of slug nose has a significant effect on its velocity, while the effect of its length is very weak. The Ishii&Jones-Zuber drift flux correlation could predict slug velocity well, except at low liquid superficial velocity by reason of that the calculated drift velocity is less than experimental values.

  7. Vertical motion simulator familiarization guide

    NASA Technical Reports Server (NTRS)

    Danek, George L.

    1993-01-01

    The Vertical Motion Simulator Familiarization Guide provides a synoptic description of the Vertical Motion Simulator (VMS) and descriptions of the various simulation components and systems. The intended audience is the community of scientists and engineers who employ the VMS for research and development. The concept of a research simulator system is introduced and the building block nature of the VMS is emphasized. Individual sections describe all the hardware elements in terms of general properties and capabilities. Also included are an example of a typical VMS simulation which graphically illustrates the composition of the system and shows the signal flow among the elements and a glossary of specialized terms, abbreviations, and acronyms.

  8. Measurements of vertical bar Vcb vertical bar and vertical bar Vub vertical bar at BaBar

    SciTech Connect

    Rotondo, M.

    2005-10-12

    We report results from the BABAR Collaboration on the semileptonic B decays, highlighting the measurements of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix elements Vub and Vcb. We describe the techniques used to obtain the matrix element |Vcb| using the measurement of the inclusive B {yields} Xclv process and a large sample of exclusive B {yields} D*lv decays. The vertical bar Vub vertical bar matrix elements has been measured studying different kinematic variables of the B {yields} Xulv process, and also with the exclusive reconstruction of B {yields} {pi}({rho})lv decays.

  9. Vertical Profiling of Air Pollution at RAPCD

    NASA Technical Reports Server (NTRS)

    Newchurch, Michael J.; Fuller, Kirk A.; Bowdle, David A.; Johnson, Steven; Knupp, Kevin; Gillani, Noor; Biazar, Arastoo; Mcnider, Richard T.; Burris, John

    2004-01-01

    The interaction between local and regional pollution levels occurs at the interface of the Planetary Boundary Layer and the Free Troposphere. Measuring the vertical distribution of ozone, aerosols, and winds with high temporal and vertical resolution is essential to diagnose the nature of this interchange and ultimately for accurately forecasting ozone and aerosol pollution levels. The Regional Atmospheric Profiling Center for Discovery, RAPCD, was built and instrumented to address this critical issue. The ozone W DIAL lidar, Nd:YAG aerosol lidar, and 2.1 micron Doppler wind lidar, along with balloon- borne ECC ozonesondes form the core of the W C D instrumentation for addressing this problem. Instrumentation in the associated Mobile Integrated Profiling (MIPS) laboratory includes 91 5Mhz profiler, sodar, and ceilometer. The collocated Applied particle Optics and Radiometry (ApOR) laboratory hosts an FTIR along with MOUDI and optical particle counters. With MODELS-3 analysis by colleagues in the National Space Science and Technology Center on the UAH campus and the co- located National Weather Service Forecasting Office in Huntsville, AL we are developing a unique facility for advancing the state of the science of pollution forecasting.

  10. The SNS Liquids Reflectometer

    SciTech Connect

    Ankner, John Francis; Tao, Xiaodong; Halbert, Candice E; Browning, Jim; Kilbey, II, S Michael; Swader, Onome A; Dadmun, Mark D; Kharlampieva, Dr. Eugenia; Sukhishvili, Prof. Svetlana A.

    2008-01-01

    The SNS Liquids Reflectometer [1], installed as one of the first instruments at the Spallation Neutron Source, has now been functional for more than a year. This instrument is designed to view liquid and solid surfaces in specular, off specular, and near-surface small angle scattering geometries. The guide system supplies 2 {angstrom} < {angstrom} < 16.5 {angstrom} neutrons at vertical incident angles ranging from 0{sup o} < {alpha}{sub i} < 5.5{sup o} for free liquid surfaces and up to 45{sup o} for solid surfaces. Three bandwidth choppers, synchronized with the spallation source and operating at 15-60 Hz, provide neutrons in bandwidths ranging from 3.5-14 {angstrom} at a fixed incident angle onto a sample. The sample stage enables all of the motions necessary for positioning liquid and solid surfaces, while the detector arm directs a position-sensitive detector to view the sample at specular or off specular angles up to 90{sup o} and can scan out of the specular plane by up to 30{sup o}.

  11. Morpheus Vertical Test Bed Flight Testing

    NASA Technical Reports Server (NTRS)

    Hart, Jeremy; Devolites, Jennifer

    2014-01-01

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing, that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a LOX/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. Morpheus onboard software is autonomous from ignition all the way through landing, and is designed to be capable of executing a variety of flight trajectories, with onboard fault checks and automatic contingency responses. The Morpheus 1.5A vehicle performed 26 integrated vehicle test flights including hot-fire tests, tethered tests, and two attempted freeflights between April 2011 and August 2012. The final flight of Morpheus 1.5A resulted in a loss of the vehicle. In September 2012, development began on the Morpheus 1.5B vehicle, which subsequently followed a similar test campaign culminating in free-flights at a simulated planetary landscape built at Kennedy Space Center's Shuttle Landing Facility. This paper describes the integrated test campaign, including successes and setbacks, and how the system design for handling faults and failures evolved over the course of the project.

  12. Liquid-phase chromatography detector

    DOEpatents

    Voigtman, Edward G. (Gainesville, FL); Winefordner, James D. (Gainesville, FL); Jurgensen, Arthur R. (Gainesville, FL)

    1983-01-01

    A liquid-phase chromatography detector comprising a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focussing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof.

  13. Liquid-phase chromatography detector

    DOEpatents

    Voigtman, E.G.; Winefordner, J.D.; Jurgensen, A.R.

    1983-11-08

    A liquid-phase chromatography detector comprises a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focusing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof. 5 figs.

  14. Fabrication of a polymeric vertical microlens with the dip method

    NASA Astrophysics Data System (ADS)

    Yang, Chih-Chao; Huang, Yun-Hsun; Peng, Te-Chin; Wu, Meng-Chyi; Ho, Chong-Long; Hong, Chao-Chi; Liu, I.-Ming; Tsai, Yao-Tsong

    2006-11-01

    We have investigated a process based on the dip method to fabricate a polymeric vertical microlens (PVM). After the primary dip step, the PVM is formed by hanging the liquid SU-8 on a wall in virtue of the strong adhesive force and liquid cohesion. The microlens is then baked and exposed in ultraviolet light to further cross-link the negative photoresist SU-8 to enhance thermal stability and reliability. According to the experimental results, the radius of curvature of the fabricated vertical microlens varies from 120.8 to 34.2 ?m, which relates to the dip depth or the thickness of the dipped pool. To characterize the PVM, an edge-emitting laser diode (?=1.31 ?m) is then bonded onto the optical bench and a detector is utilized to observe the beam divergence with and without the lens insertion. Compared with an angle of 40.8° without the microlens, the beam passing through a suitable PVM shows a vertical far-field angle of 3.32°. Furthermore, the lens efficiency, approximately 83.4%, is also specified by the measurements.

  15. Vertical Sextants give Good Sights

    NASA Astrophysics Data System (ADS)

    Dixon, Mark

    Many texts stress the need for marine sextants to be held precisely vertical at the instant that the altitude of a heavenly body is measured. Several authors lay particular emphasis on the technique of the instrument in a small arc about the horizontal axis to obtain a good sight. Nobody, to the author's knowledge, however, has attempted to quantify the errors involved, so as to compare them with other errors inherent in determining celestial position lines. This paper sets out to address these issues and to pose the question: what level of accuracy of vertical alignment can reasonably be expected during marine sextant work at sea ?When a heavenly body is brought to tangency with the visible horizon it is particularly important to ensure that the sextant is held in a truly vertical position. To this end the instrument is rocked gently about the horizontal so that the image of the body describes a small arc in the observer's field of vision. As Bruce Bauer points out, tangency with the horizon must be achieved during the process of rocking and not a second or so after rocking has been discontinued. The altitude is recorded for the instant that the body kisses the visible horizon at the lowest point of the rocking arc, as in Fig. 2. The only other visual clue as to whether the sextant is vertical is provided by the right angle made by the vertical edge of the horizon glass mirror with the horizon. There may also be some input from the observer's sense of balance and his hand orientation.

  16. Cloud and rain liquid water statistics in the CHUVA campaign

    NASA Astrophysics Data System (ADS)

    Calheiros, Alan J. P.; Machado, Luiz A. T.

    2014-07-01

    The purpose of this study is to present statistics related to the integration of cloud and rain liquid water and the profiles for different cloud types and regimes. From 2010 to 2012, the CHUVA project collected information regarding cloud and rain characteristics in different precipitation regimes in Brazil. CHUVA had four field campaigns between 2010 and 2011, located in the North, Northeast and Southeast regions of Brazil, covering the semi-arid, Amazon, coastal and mountain regions. The synergy of several instruments allowed us to classify rain events and describe the cloud processes regionally. Microwave radiometers, LiDAR, radar, and disdrometers were employed in this study. The rain type classification was made using vertical profiles of reflectivity (VPR) and polarimetric variables from dual polarization radar (XPOL). The integrated liquid water (ILWC) for non-precipitating clouds was retrieved with a microwave ground-based radiometer using a neural network. For rainy conditions, the profiles from the rain liquid water content (LWCR) and their integrated (ILWR) properties were estimated by Micro Rain Radar (MRR) and XPOL VPRs. For non-precipitating clouds, the ILWC values were larger for the sites in tropical regions, in particular near the coast, than for Southeast Brazil. For rainy cases, distinct LWCR profiles were observed for different rain classifications and regions. The differences are small for low rain rates and a distinction between different rainfall regimes is more evident for high rain rates. Vale and Belém clouds present the deepest layers and largest convective rain rates. The clouds in the Southeast region of Brazil (Vale do Paraíba) and North region (Belém) showed the largest reflectivity in the mixed and glaciated layers, respectively. In contrast, the Northeast coastal site (e.g. Fortaleza) showed larger values in the warm part of the clouds. Several analyses are presented, describing the cloud processes and the differences among the cloud types, rain rates and regions.

  17. Multimodal and multispatial deficits of verticality perception in hemispatial neglect.

    PubMed

    Utz, K S; Keller, I; Artinger, F; Stumpf, O; Funk, J; Kerkhoff, G

    2011-08-11

    Recent evidence suggests that patients with left-sided visuospatial neglect often show deviations in their visual and haptic perception of verticality in the frontal and sagittal plane. However, little is known about the multimodality of these impairments and the relationship between deviations in the frontal and the sagittal plane. Moreover, no previous study has combined investigations of verticality judgments in both modalities and both spatial planes within the same sample of subjects using the same apparatus. Thus, the aim of the present study was to investigate both subjective visual vertical (SVV) and subjective haptic vertical (SHV) judgments in the frontal and the sagittal plane in right-brain-damaged patients with visuospatial neglect (n=16), right-brain-damaged patients without neglect (n=18) and age-matched healthy individuals (n=16) using the same testing device for all tasks. This allowed for direct comparisons of visual vs. haptic and frontal vs. sagittal verticality judgments. Neglect patients showed significant counterclockwise tilts in their SVV and SHV judgments in the frontal plane as well as marked backward (upper end of the rod towards the observer) tilts in the sagittal plane. In contrast, right-brain-damaged patients without neglect and healthy individuals showed no marked deviations in the frontal plane, but small forward (upper end of the rod away from the observer) tilts in the sagittal plane. Moreover, neglect patients showed significantly higher unsigned errors in all tasks. These results demonstrate multimodal and multispatial deficits in the judgment of verticality in patients with visuospatial neglect which are most likely due to an altered representation of verticality caused by lesions of brain areas related to multisensory integration and space representation in the right temporo-parietal cortex. PMID:21596103

  18. Liquid fuel developments

    SciTech Connect

    Wise, D.L.; Carreira, L.H.; Ljungdahl, L.G.

    1983-01-01

    This book concerns the biosynthesis of ethanol fuels from biomass. Topics considered include anaerobic thermophilic bacteria, screening for cellulolytic mutants, the enzymatic hydrolysis of cellulose to fermentable sugars, process biotechnology for the conversion of biomass into liquid fuels, a flow reactor for acid hydrolysis or pretreatment of cellulosic biomass, the production of ethanol and chemicals from wood by the Georgia Tech process, liquid fuels and chemicals from cellulosic residues by acid hydrolysis, alkane fuels production from biomass, and the integration of production of corn-derived fuels with animal feed production.

  19. Performance of tuned liquid column dampers considering maximum liquid motion in seismic vibration control of structures

    NASA Astrophysics Data System (ADS)

    Chakraborty, Subrata; Debbarma, Rama; Marano, Giuseppe Carlo

    2012-03-01

    The optimum design of tuned liquid column damper (TLCD) is usually performed by minimizing the maximum response of structure subjected to stochastic earthquake load without imposing any restrictions on the possible maximum oscillation of the liquid within the vertical column. However, during strong earthquake motion, the maximum oscillation of vertical column of liquid may be equal to or greater than that of the container pipe. Consequently the physical behavior of the hydraulic system may change largely reducing its efficiency. The present study deals with the optimization of TLCD parameters to minimize the vibration effect of structures addressing the limitation on such excessive liquid displacement. This refers to the design of optimum TLCD system which not only assure maximum possible performance in terms of vibration mitigation, but also simultaneously put due importance to the natural constrained criterion of excessive lowering of liquid in the vertical column of TLCD. The constraint is imposed by limiting the maximum displacement of the liquid to the vertical height of the container. Numerical study is performed to elucidate the effect of constraint condition on the optimum parameters and overall performance of TLCD system of protection.

  20. Numerical simulation of laminar film boiling heat transfer from vertically suspended smooth surfaces in cryogenic fluids subjected to constant wall heat flux

    SciTech Connect

    Akyuzlu, K.M.; Malipeddi, S.

    1996-12-31

    This study is aimed at solving the one-field conservation of mass, momentum, and energy equations for laminar film boiling from vertically suspended smooth surfaces in cryogenic fluids subjected to constant wall heat flux boundary condition. Solutions to the problem of laminar film boiling under constant wall temperature boundary condition have been obtained in the past using analytical and iterative techniques. Here, the governing equations are solved under constant heat flux boundary condition using an analytical method supplemented with curve fitting techniques. The procedure is iterative because it assumes the vapor film thickness to start the calculations and then uses the energy equation at the interface to check the accuracy of this assumption. A computer program was developed to integrate this iterative procedure with a scheme that repeats the calculations at different discrete locations along the heated surface to estimate the laminar film thickness and to generate the velocity and the temperature profiles within the film boundary. The numerical results are compared to the experimental results for a stainless steel plate vertically suspended in liquid nitrogen where the plate is heated by constant current. The numerical predictions are matched with the experimental results by using a calibration parameter that relates various properties of the liquid and the vapor.

  1. Flow regimes and heat transfer in vertical narrow annuli

    SciTech Connect

    Ulke, A.; Goldberg, I.

    1993-11-01

    In shell side boiling heat exchangers narrow crevices that are formed between the tubes and the tube support structure provide areas for local thermal-hydraulic conditions which differ significantly from bulk fluid conditions. Understanding of the processes of boiling and dryout in flow restricted crevices can help in designing of tube support geometries to minimize the likelihood of tube support plate and tube corrosion observed in commercial power plant steam generators. This paper describes a one dimensional thermal-hydraulic model of a vertical crevice between a tube and a support plate with cylindrical holes. The annulus formed by the support plate hole and an eccentrically located tube has been represented by vertical strips. The formation, growth and collapse of a steam bubble in each strip has been determined. Based on the bubble history, and flow regimes characterized by ``isolated`` bubbles, ``coalesced`` bubbles and liquid deficient regions have been defined.

  2. Surface Enhanced Raman Scattering from Vertical Arrays of Silver Nanowires

    NASA Astrophysics Data System (ADS)

    Chen, G.; Habib, J.; Russin, T.; Guitierrez, H. G.; Eklund, Peter

    2006-03-01

    We present results of optical studies of surface plasmons and surface enhanced Raman scattering (SERS) from vertical arrays of Ag nanowires. Arrays based on Ag wires with mean diameters d=100 nm have been studied. The wires were grown electrochemically in the pores of anodic aluminum oxide (AAO). To test the SERS activity of these vertical Ag nanowires arrays, we have carried out experiments to detect pyridine on the surface of the nanowires. The SERS enhancement factor is found to be in the order of 10^6 compared to the Raman signal from bulk liquid. We also studied the surface plasmons of these nanowire arrays in transmission with the incident photon wavevector approximately parallel to the wire axis. Calculations of the plasmon resonances have been made and are found in reasonable agreement with the data.

  3. Case study of landfill leachate recirculation using small-diameter vertical wells.

    PubMed

    Jain, Pradeep; Ko, Jae Hac; Kumar, Dinesh; Powell, Jon; Kim, Hwidong; Maldonado, Lizmarie; Townsend, Timothy; Reinhart, Debra R

    2014-11-01

    A case study of landfill liquids addition using small diameter (5 cm) vertical wells is reported. More than 25,000 m(3) of leachate was added via 134 vertical wells installed 3 m, 12 m, and 18 m deep over five years in a landfill in Florida, US. Liquids addition performance (flow rate per unit screen length per unit liquid head) ranged from 5.6×10(-8) to 3.6×10(-6) m(3) s(-1) per m screen length per m liquid head. The estimated radial hydraulic conductivity ranged from 3.5×10(-6) to 4.2×10(-4) m s(-1). The extent of lateral moisture movement ranged from 8 to 10 m based on the responses of moisture sensors installed around vertical well clusters, and surface seeps were found to limit the achievable liquids addition rates, despite the use of concrete collars under a pressurized liquids addition scenario. The average moisture content before (51 samples) and after (272 samples) the recirculation experiments were 23% (wet weight basis) and 45% (wet weight basis), respectively, and biochemical methane potential measurements of excavated waste indicated significant (p<0.025) decomposition. PMID:25164856

  4. PREFACE: Functionalized Liquid Liquid Interfaces

    NASA Astrophysics Data System (ADS)

    Girault, Hubert; Kornyshev, Alexei A.; Monroe, Charles W.; Urbakh, Michael

    2007-09-01

    Most natural processes take place at interfaces. For this reason, surface science has been a focal point of modern research. At solid-liquid interfaces one can induce various species to adsorb or react, and thus may study interactions between the substrate and adsorbates, kinetic processes, optical properties, etc. Liquid-liquid interfaces, formed by immiscible liquids such as water and oil, have a number of distinctive features. Both sides of the interface are amenable to detailed physical and chemical analysis. By chemical or electrochemical means, metal or semiconductor nanoparticles can be formed or localised at the interface. Surfactants can be used to tailor surface properties, and also to place organic molecular or supermolecular constructions at the boundary between the liquids. Electric fields can be used to drive ions from one fluid to another, or even change the shape of the interface itself. In many cases, both liquids are optically transparent, making functionalized liquid-liquid interfaces promising for various optical applications based on the transmission or reflection of light. An advantage common to most of these systems is self-assembly; because a liquid-liquid interface is not mechanically constrained like a solid-liquid interface, it can easily access its most stable state, even after it has been driven far from equilibrium. This special issue focuses on four modes of liquid-liquid interfacial functionalization: the controlled adsorption of molecules or nanoparticles, the formation of adlayers or films, electrowetting, and ion transfer or interface-localized reactions. Interfacial adsorption can be driven electrically, chemically, or mechanically. The liquid-liquid interface can be used to study how anisotropic particles orient at a surface under the influence of a field, how surfactants interact with other adsorbates, and how nanoparticles aggregate; the transparency of the interface also makes the chirality of organic adsorbates amenable to optical study. Film formation goes a step beyond adsorption; some surfactants form monolayers or multilayers at the interface. A polymer microfilm or a polymer-particle matrix can be synthesized at the liquid-liquid boundary. Such films exhibit unique adsorption and ion-intercalation properties of their own. Electrowetting refers broadly to the phenomenon in which an applied voltage modulates the shape of a liquid-liquid interface, essentially by altering the surface tension. Electric fields can be used to induce droplets on solid substrates to change shape, or to affect the structure of liquid-liquid emulsions. Various chemical reactions can be performed at the liquid-liquid boundary. Liquid-liquid microelectrodes allow detailed study of ion-transfer kinetics at the interface. Photochemical processes can also be used to control the conformations of molecules adsorbed at the interface. But how much precise control do we actually have on the state of the interfacial region? Several contributions to this issue address a system which has been studied for decades in electrochemistry, but remains essentially unfamilar to physicists. This is the interface between two immiscible electrolytic solutions (ITIES), a progressing interdisciplinary field in which condensed-matter physics and physical chemistry meet molecular electrochemistry. Why is it so exciting? The reason is simple. The ITIES is chargeable: when positioned between two electrodes it can be polarized, and back- to-back electrical double layers form on both sides of the liquid-liquid interface. Importantly, the term immiscible refers not only to oil and water but also to the electrolytes. Inorganic electrolytes, such as alkali halides, tend to stay in water, whereas organic electrolytes, such as tetrabutylammonium tetraphenylborate, stay in oil. This behaviour arises because energies of the order of 0.2-0.3 eV are needed to drive ions across the interface. As long as these free energies of transfer are not exceeded by the external potential bias, the ITIES works as an 'electrode'; there is no traffic of ions

  5. 77 FR 72435 - Pipeline Safety: Using Meaningful Metrics in Conducting Integrity Management Program Evaluations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    ...operators of gas transmission and hazardous liquid pipeline facilities of their responsibilities...integrity management rules. For hazardous liquid pipelines, Sec. Sec. 195.452(f...1160, Managing Integrity for Hazardous Liquid Pipelines also provides additional...

  6. Kinematic Fitting of Detached Vertices

    SciTech Connect

    Paul Mattione

    2007-05-01

    The eg3 experiment at the Jefferson Lab CLAS detector aims to determine the existence of the $\\Xi_{5}$ pentaquarks and investigate the excited $\\Xi$ states. Specifically, the exotic $\\Xi_{5}^{--}$ pentaquark will be sought by first reconstructing the $\\Xi^{-}$ particle through its weak decays, $\\Xi^{-}\\to\\pi^{-}\\Lambda$ and $\\Lambda\\to\\pi^{-}$. A kinematic fitting routine was developed to reconstruct the detached vertices of these decays, where confidence level cuts on the fits are used to remove background events. Prior to fitting these decays, the exclusive reaction $\\gamma D\\rightarrow pp\\pi^{-}$ was studied in order to correct the track measurements and covariance matrices of the charged particles. The $\\Lambda\\rightarrow p\\pi^{-}$ and $\\Xi^{-}\\to\\pi^{-}\\Lambda$ decays were then investigated to demonstrate that the kinematic fitting routine reconstructs the decaying particles and their detached vertices correctly.

  7. Liquid Metals

    NASA Astrophysics Data System (ADS)

    March, Norman Henry

    1990-10-01

    This comprehensive, research level introduction to the theory of liquid metals presents the concepts needed to understand the properties of these metals starting with a survey of the basic experimental facts. The quantitative theory of liquid pair correlation functions, effective ion-ion interactions, thermodynamic properties and electronic and atomic transport is then developed. The book also explores inelastic neutron scattering from bulk liquid metals, critical behavior, magnetism, the present understanding of the liquid metal surface, binary liquid metals, shock wave studies, liquid hydrogen plasmas and the constitution of red star giants. This is an informative text for advanced postgraduate students and researchers in condensed matter physics, theoretical physics, physical chemistry and theoretical chemistry.

  8. Towards a New Vertical Datum

    NASA Astrophysics Data System (ADS)

    Roman, D. R.; Li, X.; Holmes, S. A.; Childers, V. A.; Wang, Y.

    2012-12-01

    The National Geodetic Survey (NGS) is responsible for maintaining and improving the National Spatial Reference System. This paper particularly focuses on developments leading to a new vertical datum to replace the existing North American Vertical Datum of 1988 (NAVD 88). This new model will be developed from a combination of satellite, airborne, and terrestrial gravity data to define a gravimetric geoid height model. In particular, the aerogravity data collected as a part o the Gravity for the Redefinition of the American Vertical Datum (GRAV-D) Project are intended to help achieve the goal of a cm-level accurate geoid model to serve as the new vertical datum. The different data sources have been melded into a single gravity field model consistent across the entire spectrum to about 2 km resolution. A previous comparison developed a localized model over just the southern Texas region, where the Geoid Slope Validation Study for 2011 (GSVS 11) demonstrated that it was possible to achieve the desired accuracy. This new model was developed using methodology consistent at regional to national scales following techniques used to make USGG2009 and USGG2012, but now incorporating aerogravity. This new model proves out the basic concepts behind GRAV-D in that the aeorgravity bridge the spectral gap between satellite and terrestrial data and provide the requisite improvements to the derived gravimetric geoid height model - all without artificially targeting a solution to a specific test area. Additional comparisons were made to tidal bench mark data observed by GPS in combination with ocean topography models to validate the behavior of the model in the coastal regions.

  9. NASA-Ames vertical gun

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.

    1984-01-01

    A national facility, the NASA-Ames vertical gun range (AVGR) has an excellent reputation for revealing fundamental aspects of impact cratering that provide important constraints for planetary processes. The current logistics in accessing the AVGR, some of the past and ongoing experimental programs and their relevance, and the future role of this facility in planetary studies are reviewed. Publications resulting from experiments with the gun (1979 to 1984) are listed as well as the researchers and subjects studied.

  10. Vertically aligned carbon based varactors

    NASA Astrophysics Data System (ADS)

    Ghavanini, Farzan A.; Enoksson, Peter; Bengtsson, Stefan; Lundgren, Per

    2011-07-01

    This paper gives an assessment of vertically aligned carbon based varactors and validates their potential for future applications. The varactors discussed here are nanoelectromechanical devices which are based on either vertically aligned carbon nanofibers or vertically aligned carbon nanotube arrays. A generic analytical model for parallel plate nanoelectromechanical varactors based on previous works is developed and is used to formulate a universal expression for their voltage-capacitance relation. Specific expressions for the nanofiber based and the nanotube based varactors are then derived separately from the generic model. This paper also provides a detailed review on the fabrication of carbon based varactors and pays special attention to the challenges in realizing such devices. Finally, the performance of the carbon based varactor is assessed in accordance with four criteria: the static capacitance, the tuning ratio, the quality factor, and the operating voltage. Although the reported performance is still far inferior to other varactor technologies, our prognosis which stems from the analytical model shows a promise of a high quality factor as well as a potential for high power handling for carbon based varactors.

  11. Vertically aligned carbon nanotubes for microelectrode arrays applications.

    PubMed

    Castro Smirnov, J R; Jover, Eric; Amade, Roger; Gabriel, Gemma; Villa, Rosa; Bertran, Enric

    2012-09-01

    In this work a methodology to fabricate carbon nanotube based electrodes using plasma enhanced chemical vapour deposition has been explored and defined. The final integrated microelectrode based devices should present specific properties that make them suitable for microelectrode arrays applications. The methodology studied has been focused on the preparation of highly regular and dense vertically aligned carbon nanotube (VACNT) mat compatible with the standard lithography used for microelectrode arrays technology. PMID:23035418

  12. Vertical silicon nanowire arrays for gas sensing

    E-print Network

    Zhao, Hangbo

    2014-01-01

    The goal of this research was to fabricate and characterize vertically aligned silicon nanowire gas sensors. Silicon nanowires are very attractive for gas sensing applications and vertically aligned silicon nanowires are ...

  13. Macrobiotic Vertical Transport of Litter Derived Carbon

    E-print Network

    Post, Wilfred M.

    Macrobiotic Vertical Transport of Litter Derived Carbon (Earthworm Phase) Mac Callaham Corey Babb in each treatment Sampling #12;Macrobiotic Vertical Transport of Litter Derived Carbon (millipede phase) Plans for the Future: #12;

  14. Macrobiotic Vertical Transport of Litter Derived Carbon

    E-print Network

    Post, Wilfred M.

    Macrobiotic Vertical Transport of Litter Derived Carbon (UPDATE) Mac Callaham Corey Babb Paul vertical transport of litter derived carbon-millipede phase More germane to upland sites Sampled uplands for worms (and found one) Plans for the Future: #12;

  15. Alloying of liquid aluminum

    SciTech Connect

    Shafyei, A.; Guthrie, R.I.L.

    1996-10-01

    The addition of high melting point alloying elements is an integral component in the processing of molten aluminum alloys. In this research, the kinetics of dissolution of manganese and iron particles, freely dispersed in turbulently-stirred baths of liquid aluminum, has been investigated at a laboratory scale. First, the suspension behavior of alloying elements in liquid aluminum was studied via water modeling analogues, using dimensional analysis and similarity techniques. Second, mass transfer coefficients between particles of manganese or iron and stirred liquid aluminum were measured. These high temperature experiments showed that measured mass transfer coefficients of manganese and iron particles were strongly dependent on the intensity of the mixing, until the point at which particles became fully suspended. Further increases in the rate of mixing produced little further rises in mass transfer coefficients. From a practical point of view, therefore, these results suggested that very high rates of melt mixing are not recommended during an alloying process.

  16. Three-dimensional-two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel.

    PubMed

    Choi, Heejin; Kim, Joohwan; Cho, Seong-Woo; Kim, Yunhee; Park, Jae Byung; Lee, Byoungho

    2008-05-01

    A display system that simultaneously displays two-dimensional (2D) and three-dimensional (3D) images using a pinhole array on a liquid crystal (LC) panel is proposed. Using the transparent structure of the LC panel, the system can generate or eliminate pinholes electrically and can display a 3D image in a selectable specific area of the display panel, while 2D images are displayed on the rest of the screen. An analysis showing the advantages and limitations of the proposed system is provided. Finally, the proposed principle is proven by experimental results. PMID:18449284

  17. Three-dimensional-two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel

    NASA Astrophysics Data System (ADS)

    Choi, Heejin; Kim, Joohwan; Cho, Seong-Woo; Kim, Yunhee; Park, Jae Byung; Lee, Byoungho

    2008-05-01

    A display system that simultaneously displays two-dimensional (2D) and three-dimensional (3D) images using a pinhole array on a liquid crystal (LC) panel is proposed. Using the transparent structure of the LC panel, the system can generate or eliminate pinholes electrically and can display a 3D image in a selectable specific area of the display panel, while 2D images are displayed on the rest of the screen. An analysis showing the advantages and limitations of the proposed system is provided. Finally, the proposed principle is proven by experimental results.

  18. Vertical velocity spectra from a Doppler Sodar

    SciTech Connect

    Underwood, K.H.; Coulter, R.L.

    1983-01-01

    The capability of Acoustic Doppler Radars or sodars to describe local vertical velocity statistics was evaluated. Sodar was used to monitor the local vertical velocity field to altitudes of 1000 meters in an attempt to study the vertical velocity field associated with cloud formation, maintenance and decay. 5 reference, 6 figures. (ACR)

  19. 46 CFR 108.160 - Vertical ladders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Vertical ladders. 108.160 Section 108.160 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Means of Escape § 108.160 Vertical ladders. (a) Each vertical ladder must...

  20. 46 CFR 108.160 - Vertical ladders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Vertical ladders. 108.160 Section 108.160 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Means of Escape § 108.160 Vertical ladders. (a) Each vertical ladder must have rungs that are— (1) At least...

  1. Vertically aligned nanostructure scanning probe microscope tips

    DOEpatents

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  2. Liquid filtration simulation

    SciTech Connect

    Corey, I.; Bergman, W.

    1996-06-01

    We have a developed a computer code that simulates 3-D filtration of suspended particles in fluids in realistic filter structures. This code, being the most advanced filtration simulation package developed to date, provides LLNL and DOE with new capabilities to address problems in cleaning liquid wastes, medical fluid cleaning, and recycling liquids. The code is an integrated system of commercially available and LLNL-developed software; the most critical are the computational fluid dynamics (CFD) solver and the particle transport program. For the CFD solver, we used a commercial package based on Navier-Stokes equations and a LLNL-developed package based on Boltzman-lattice gas equations. For the particle transport program, we developed a cod based on the 3-D Langevin equation of motion and the DLVO theory of electrical interactions. A number of additional supporting packages were purchased or developed to integrate the simulation tasks and to provide visualization output.

  3. Coal liquefaction process streams characterization and evaluation: Application of liquid chromatographic separation methods to THF-soluble portions of integrated two-stage coal liquefaction resids

    SciTech Connect

    Green, J.B.; Pearson, C.D.; Young, L.L.; Green, J.A. )

    1992-05-01

    This study demonstrated the feasibility of using non-aqueous ion exchange liquid chromatography (NIELC) for the examination of the tetrahydrofuran (THF)-soluble distillation resids and THF-soluble whole oils derived from direct coal liquefaction. The technique can be used to separate the material into a number of acid, base, and neutral fractions. Each of the fractions obtained by NIELC was analyzed and then further fractionated by high-performance liquid chromatography (HPLC). The separation and analysis schemes are given in the accompanying report. With this approach, differences can be distinguished among samples obtained from different process streams in the liquefaction plant and among samples obtained at the same sampling location, but produced from different feed coals. HPLC was directly applied to one THF-soluble whole process oil without the NIELC preparation, with limited success. The direct HPLC technique used was directed toward the elution of the acid species into defined classes. The non-retained neutral and basic components of the oil were not analyzable by the direct HPLC method because of solubility limitations. Sample solubility is a major concern in the application of these techniques.

  4. Catalytic hydrogenation process and apparatus with improved vapor liquid separation

    DOEpatents

    Chervenak, Michael C. (Pennington, NJ); Comolli, Alfred G. (Trenton, NJ)

    1980-01-01

    A continuous hydrogenation process and apparatus wherein liquids are contacted with hydrogen in an ebullated catalyst reaction zone with the liquids and gas flowing vertically upwardly through that zone into a second zone substantially free of catalyst particles and wherein the liquid and gases are directed against an upwardly inclining surface through which vertical conduits are placed having inlet ends at different levels in the liquid and having outlet ends at different levels above the inclined surface, such that vapor-rich liquid is collected and discharged through conduits terminating at a higher level above the inclined surface than the vapor-poor liquid which is collected and discharged at a level lower than the inclined surface.

  5. Simulation of liquid helium

    SciTech Connect

    Ceperley, D.M.

    1985-07-01

    The author discusses simulation methods for quantum mechanical systems at finite temperatures. Recently it has been shown that static properties of some quantum systems can be obtained by simulation in a straightforward manner using path integrals, albeit with an order of magnitude more computing effort needed than for the corresponding classical systems. Some dynamical information can be gleaned from these simulations as will be discussed below. But this is very limited - there is no quantum version of the molecular dynamics method. The path integral method is illustrated by discussing the application to liquid helium. 12 refs., 8 figs.

  6. Vertical tail buffeting of fighter aircraft

    NASA Astrophysics Data System (ADS)

    Lee, B. H. K.

    2000-04-01

    Vertical tail buffeting at high angles of attack is a phenomenon associated with the impact of vortical flows generated by the aircraft on the fins. This poses a serious problem for both single- and twin-tail fighter aircraft from the point of view of combat maneuverability and structural integrity. The research activities to understand the flow physics with an aim to alleviate buffet loads were quite intense during the period from the late 1970s to the early 1990s. Most of the investigations were carried out on the F/A-18 mainly because of two international programs involving countries that operate the F/A-18 in their air force. This review begins with a description of the water tunnel experiments showing some flow visualization results of the leading-edge extension (LEX) burst vortical flows. Wind tunnel studies on a 1/9 scale F/A-18 model in Australia, a 1/6.65 scale model in the United Kingdom, a 6% scale model in Canada, 12%, 16% and full-scale models in the United States are summarized. Scale effects can be deduced from the various sub- and full-scale models tested. Flight test results conducted on the High Alpha Research Vehicle in the United States and on an instrumented CF-18 test aircraft in Canada are presented. The accuracy of analytical methods utilizing wind tunnel data to predict buffet loads at flight conditions is discussed. The use of CFD to compute vertical fin buffeting is challenging and requires a large amount of computing power. A brief exposure to the methodology is given and results from the only available computational case study carried out by NASA Ames are compared with wind tunnel and flight test data. A short introduction to statistical non-stationary effects is given. Hysteresis effect of the LEX vortex burst on the buffet loads is discussed, and a statistical non-stationary buffet prediction method is outlined. This review provides a useful reference to the results collected from the High Alpha Technology Program, The Technical Cooperation Program and the International Follow-On Structural Test Project which together form an extremely valuable data base for vertical tail buffeting studies.

  7. Liquid pearls

    E-print Network

    Bremond, Nicolas; Bibette, Jérôme

    2010-01-01

    This fluid dynamics video reports how to form liquid core capsules having a thin hydrogel elastic membrane named liquid pearls. These fish-egg like structures are initially made of a millimetric liquid drop, aqueous or not, coated with an aqueous liquid film containing sodium alginate that gels once the double drop enters a calcium chloride bath. The creation of such pearls with micrometer thick membrane requires to suppress mixing until gelling takes place. Here, we show that superimposing a two dimensional surfactant precipitation at the interface confers a transient rigidity that can damp the shear induced instability at impact. Based on this, pearls containing almost any type of liquids can be created. The video focuses on the dynamics of the entry of the compound drop into the gelling bath.

  8. Ab initio molecular-dynamics method based on the restricted path integral: Application to the electron plasma and liquid alkali metal

    E-print Network

    Deymier, Pierre

    Ab initio molecular-dynamics method based on the restricted path integral: Application, Arizona 85721 Received 29 April 1998 We introduce an ab initio molecular-dynamics method based descriptions to highly accurate and sophis- ticated representations based on first-principle calculations. Ab

  9. Faceted structures in liquid crystalline vesicles

    NASA Astrophysics Data System (ADS)

    Bowick, Mark

    2014-03-01

    The shape of liquid-crystalline vesicles, molecularly thin membrane sacs enclosing a finite volume, is determined by the competition between liquid-crystalline deformations on a surface to be determined and the bending energy of the surface in the ambient bulk. We discuss this problem in two limits: stiff (high bending rigidity compared to Frank modulus) and floppy (low bending energy compared to Frank modulus). The solution in the floppy limit is quite remarkable: it is the surface of a regular tetrahedron with topological defects at the vertices. Thus floppy liquid crystalline vesicles, which have no translational order, are sharp faceted structures more commonly found in hard crystalline materials.

  10. Modeling the operating voltage of liquid metal battery cells

    E-print Network

    Newhouse, Jocelyn Marie

    2014-01-01

    A one-dimensional, integrative model of the voltage during liquid metal battery operation has been developed to enhance the understanding of performance at the cell level. Two liquid metal batteries were studied: Mg-Sb for ...

  11. ?Vertical Sextants give Good Sights?

    NASA Astrophysics Data System (ADS)

    Richey, Michael

    Mark Dixon suggests (Forum, Vol. 50, 137) that nobody thus far has attempted to quantify the errors from tilt that arise while observing with the marine sextant. The issue in fact, with the related problem of what exactly is the axis about which the sextant is rotated whilst being (to define the vertical), was the subject of a lively controversy in the first two volumes of this Journal some fifty years ago. Since the consensus of opinion seems to have been that the maximum error does not necessarily occur at 45 degrees, whereas Dixon's table suggests that it does, some reiteration of the arguments may be in order.

  12. Granular segregation under vertical tapping

    E-print Network

    M. Pica Ciamarra; M. D. De Vizia; A. Fierro; M. Tarzia; A. Coniglio; M. Nicodemi

    2006-01-13

    We present extensive Molecular Dynamics simulations on species segregation in a granular mixture subject to vertical taps. We discuss how grain properties, e.g., size, density, friction, as well as, shaking properties, e.g., amplitude and frequency, affect such a phenomenon. Both Brazil Nut Effect (larger particles on the top, BN) and the Reverse Brazil Nut Effect (larger particles on the bottom, RBN) are found and we derive the system comprehensive ``segregation diagram'' and the BN to RBN crossover line. We also discuss the role of friction and show that particles which differ only for their frictional properties segregate in states depending on the tapping acceleration and frequency.

  13. Neighbourly polytopes with few vertices

    SciTech Connect

    Devyatov, Rostislav A

    2011-10-31

    A family of neighbourly polytopes in R{sup 2d} with N=2d+4 vertices is constructed. All polytopes in the family have a planar Gale diagram of a special type, namely, with exactly d+3 black points in convex position. These Gale diagrams are parametrized by 3-trees (trees with a certain additional structure). For all polytopes in the family, the number of faces of dimension m containing a given vertex A depends only on d and m. Bibliography: 7 titles.

  14. How do liquids confined at the nanoscale influence adhesion?

    E-print Network

    C. Yang; U. Tartaglino; B. N. J. Persson

    2006-12-06

    Liquids play an important role in adhesion and sliding friction. They behave as lubricants in human bodies especially in the joints. However, in many biological attachment systems they acts like adhesives, e.g. facilitating insects to move on ceilings or vertical walls. Here we use molecular dynamics to study how liquids confined at the nanoscale influence the adhesion between solid bodies with smooth and rough surfaces. We show that a monolayer of liquid may strongly affect the adhesion.

  15. Improving the lateral resolution of quartz tuning fork-based sensors in liquid by integrating commercial AFM tips into the fiber end.

    PubMed

    Gonzalez, Laura; Martínez-Martín, David; Otero, Jorge; de Pablo, Pedro José; Puig-Vidal, Manel; Gómez-Herrero, Julio

    2015-01-01

    The use of quartz tuning fork sensors as probes for scanning probe microscopy is growing in popularity. Working in shear mode, some methods achieve a lateral resolution comparable with that obtained with standard cantilevered probes, but only in experiments conducted in air or vacuum. Here, we report a method to produce and use commercial AFM tips in electrically driven quartz tuning fork sensors operating in shear mode in a liquid environment. The process is based on attaching a standard AFM tip to the end of a fiber probe which has previously been sharpened. Only the end of the probe is immersed in the buffer solution during imaging. The lateral resolution achieved is about 6 times higher than that of the etched microfiber on its own. PMID:25594596

  16. Improving the Lateral Resolution of Quartz Tuning Fork-Based Sensors in Liquid by Integrating Commercial AFM Tips into the Fiber End

    PubMed Central

    Gonzalez, Laura; Martínez-Martín, David; Otero, Jorge; de Pablo, Pedro José; Puig-Vidal, Manel; Gómez-Herrero, Julio

    2015-01-01

    The use of quartz tuning fork sensors as probes for scanning probe microscopy is growing in popularity. Working in shear mode, some methods achieve a lateral resolution comparable with that obtained with standard cantilevered probes, but only in experiments conducted in air or vacuum. Here, we report a method to produce and use commercial AFM tips in electrically driven quartz tuning fork sensors operating in shear mode in a liquid environment. The process is based on attaching a standard AFM tip to the end of a fiber probe which has previously been sharpened. Only the end of the probe is immersed in the buffer solution during imaging. The lateral resolution achieved is about 6 times higher than that of the etched microfiber on its own. PMID:25594596

  17. Dynamic Evolution of Topological Defects around Drops and Bubbles Rising in a Nematic Liquid Crystal

    E-print Network

    Feng, James J.

    Dynamic Evolution of Topological Defects around Drops and Bubbles Rising in a Nematic Liquid a vertically aligned nematic liquid crystal. We provide direct evidence for downstream convection of the Saturn confinement. DOI: 10.1103/PhysRevLett.99.237802 PACS numbers: 61.30.Jf, 47.55.Dÿ, 47.57.Lj Liquid crystal

  18. Infrared intensities of liquids. XVII. Infrared refractive indices from 8000 to 350 cm - 1, absolute integrated absorption intensities, transition moments, and dipole moment derivatives of methan-d3-ol and methanol-d4 at 25 °C

    NASA Astrophysics Data System (ADS)

    Bertie, John E.; Zhang, Shuliang L.

    1994-11-01

    This paper reports absolute infrared absorption intensities of liquids methan-d3-ol (CD3OH) and methanol-d4 (CD3OD) at 25 °C between 8000 and 350 cm-1. Measurements were made by multiple attenuated total reflection spectroscopy with the CIRCLE cell, and by transmission spectroscopy with transmission cells fitted with calcium fluoride windows. In both cases, the spectra were converted to infrared real and imaginary refractive index spectra. The refractive indices obtained by these two methods agreed excellently and were combined to yield an imaginary refractive index spectrum k(?˜) between 7244 and 350 cm-1 for CD3OH and between 5585 and 350 cm-1 for CD3OD. The imaginary refractive index spectrum was arbitrarily set to zero from 8000 to 7244 cm-1 (CD3OH) or 5585 cm-1 (CD3OD), where k is always less than 4×10-6, in order that the real refractive index can be calculated below 8000 cm-1 by Kramers-Krönig transformation. The results are reported as graphs and tables of the refractive indices between 8000 and 350 cm-1, from which all other infrared properties of the two liquids can be calculated. The estimated accuracy, not precision, of the imaginary refractive index is ±3%, except for ±10%, where k is less than 4×10-5. The estimated accuracy of the real refractive index is better than ±0.5%. In order to obtain molecular information from the measurements, the spectra of the imaginary polarizability multiplied by wave number ?˜?m` were calculated under the assumption of the Lorentz local field. The area under these ?˜?m` spectra was separated into the integrated intensities of different vibrations. The magnitudes of the transition moments were calculated from the integrated intensities, and the double harmonic approximation was used to calculate the magnitudes of the dipole moment derivatives of the liquid-state molecules with respect to the normal coordinates. Dipole moment derivatives with respect to internal coordinates were calculated under the simplest approximations, the validity of which is demonstrated by the experimental data in many cases. The consistency of the dipole moment derivatives with respect to internal coordinates obtained for different isotopomers is shown through their relative rotational corrections. Results are presented for the O-H, O-D, C-H, and C-D stretches; the C-O-H in-plane bending; and the D-C-O-H and D-C-O-D torsion vibrations.

  19. Cloud Vertical and Horizontal Structure from ICESat/GLAS and MODIS

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Chiu, Christine; Davis, Anthony; Wiscombe, Warren

    2007-01-01

    To accurately model radiative fluxes at the surface and within the atmosphere, we need to know both vertical and horizontal structures of cloudiness. While MODIS provides accurate information on cloud horizontal structure, it has limited ability to estimate cloud vertical structure. ICESat/GLAS on the other hand, provides the vertical distribution and internal structure of clouds as deep as the laser beam can penetrate and return a signal. Having different orbits, MODIS and GLAS provide few collocated measurements; hence a statistical approach is needed to learn about 3D cloud structures from the two instruments. In the presentation, we show the results of the statistical analysis of vertical and horizontal structure of cloudiness using GLAS and MODIS cloud top(s) data acquired in October-November 2003. We revisit the (H1, C1) plot, previously used for analyzing cloud liquid water data, and illustrate cloud structure for single and multiple-layer clouds.

  20. Laser tracking for vertical control

    NASA Technical Reports Server (NTRS)

    Dunn, Peter; Torrence, Mark; Pavlis, Erricos; Kolenkiewicz, Ron; Smith, David

    1993-01-01

    The Global Laser Tracking Network has provided LAGEOS ranging data of high accuracy since the first MERIT campaign in late 1983 and we can now resolve centimeter-level three dimensional positions of participating observatories at monthly intervals. In this analysis, the station height estimates have been considered separately from the horizontal components, and can be determined by the strongest stations with a formal standard error of 2 mm using eight years of continuous observations. The rate of change in the vertical can be resolved to a few mm/year, which is at the expected level of several geophysical effects. In comparing the behavior of the stations to that predicted by recent models of post-glacial rebound, we find no correlation in this very small effect. Particular attention must be applied to data and survey quality control when measuring the vertical component, and the survey observations are critical components of the geodynamic results. Seasonal patterns are observed in the heights of most stations, and the possibility of secular motion at the level of several millimeters per year cannot be excluded. Any such motion must be considered in the interpretation of horizontal inter-site measurements, and can help to identify mechanisms which can cause variations which occur linearly with time, seasonally, or abruptly.

  1. Further improvement in ganoderic acid production in static liquid culture of Ganoderma lucidum by integrating nitrogen limitation and calcium ion addition.

    PubMed

    Li, Huan-Jun; Zhang, De-Huai; Han, Li-Liang; Yu, Xuya; Zhao, Peng; Li, Tao; Zhong, Jian-Jiang; Xu, Jun-Wei

    2016-01-01

    To further improve the ganoderic acid (GA) production, a novel integrated strategy by combining nitrogen limitation and calcium ion addition was developed. The effects of the integrated combination on the content of GA-T (one powerful anticancer compound), their intermediates (squalene and lanosterol) and on the transcription levels of GA biosynthetic genes in G. lucidum fermentation were investigated. The maximum GA-T content with the integrated strategy were 1.87 mg/ 100 mg dry cell weight, which was 2.1-4.2 fold higher than that obtained with either calcium ion addition or nitrogen limitation alone, and it is also the highest record as ever reported in submerged fermentation of G. lucidum. The squalene content was increased by 3.9- and 2.2-fold in this case compared with either individual strategy alone. Moreover, the transcription levels of the GA biosynthetic genes encoding 3-hydroxy-3-methyglutaryl coenzyme A reductase and lanosterol synthase were also up-regulated by 3.3-7.5 and 1.3-2.3 fold, respectively. PMID:26508324

  2. Integration of magnetic solid phase fishing and off-line two-dimensional high-performance liquid chromatography-diode array detector-mass spectrometry for screening and identification of human serum albumin binders from Radix Astragali.

    PubMed

    Zhang, Yuping; Nie, Mingkun; Shi, Shuyun; You, Qingping; Guo, Junfang; Liu, Liangliang

    2014-03-01

    Radix Astragali is one of the most popular traditional medicinal herb and healthy dietary supplement. Isoflavonoids and astragalosides are the main bioactive ingredients. However, the systematic bioactive component analysis is inadequate so far. Then a facile method based on Fe3O4@SiO2-human serum albumin (Fe3O4@SiO2-HSA) magnetic solid phase fishing integrated with two-dimensional high-performance liquid chromatography-diode array detector-mass spectrometry (2D HPLC-DAD-MS(n)) was developed to fish out and identify HSA binders from Radix Astragali. The immobilized HSA displayed a high stability with 96.2% retained after ten consecutive cycles. 2D HPLC system (size exclusion chromatography×reversed phase chromatography, SEC×RP) were developed and optimised. Forty-seven bioactive compounds including thirty-four isoflavonoids and thirteen astragalosides were screened and identified or tentatively deduced based on their retention time, ultraviolet (UV), accurate molecular weight and diagnostic fragment ions. The results indicated that the integrated method could be widely applied for systematical fishing and identification of bioactive compounds, especially for low-abundance and overlapped compounds, from complex mixtures. PMID:24176313

  3. Sewage sludge dewatering using flowing liquid metals

    DOEpatents

    Carlson, Larry W. (Oswego, IL)

    1986-01-01

    A method and apparatus for reducing the moisture content of a moist sewage sludge having a moisture content of about 50% to 80% and formed of small cellular micro-organism bodies having internally confined water is provided. A hot liquid metal is circulated in a circulation loop and the moist sewage sludge is injected in the circulation loop under conditions of temperature and pressure such that the confined water vaporizes and ruptures the cellular bodies. The vapor produced, the dried sludge, and the liquid metal are then separated. Preferably, the moist sewage sludge is injected into the hot liquid metal adjacent the upstream side of a venturi which serves to thoroughly mix the hot liquid metal and the moist sewage sludge. The venturi and the drying zone after the venturi are preferably vertically oriented. The dried sewage sludge recovered is available as a fuel and is preferably used for heating the hot liquid metal.

  4. Vertical Integration: Corporate Strategy in the Information Industry.

    ERIC Educational Resources Information Center

    Davenport, Lizzie; Cronin, Blaise

    1986-01-01

    Profiles the corporate strategies of three sectors of the information industry and the trend toward consolidation in electronic publishing. Three companies' acquisitions are examined in detail using qualitative data from information industry columns and interpreting it on the basis of game theory. (EM)

  5. Vertical Integration: Results from a Cross-Course Student Collaboration

    ERIC Educational Resources Information Center

    Sloan, Thomas; Lewis, David

    2011-01-01

    The authors report the results of a cross-class project involving sophomore-level students in an Operations Analysis (OA) class with junior-level students in an Operations Management (OM) class. The students formed virtual teams and developed a simulation model of a call center. The OM students provided the management expertise, while the OA…

  6. Vertical Integration and Market Entry in the Generic Pharmaceutical Industry

    E-print Network

    Kubo, Kensuke

    2011-01-01

    industry. Generic pharmaceuticals are drug products thatExclusivity of New Drugs A pharmaceutical product market isPharmaceutical Industry . 2.2.1 Marketing Exclusivity of New Drugs . . . . . . . . . . . . . . . .

  7. Exploration into technical procedures for vertical integration. [information systems

    NASA Technical Reports Server (NTRS)

    Michel, R. J.; Maw, K. D.

    1979-01-01

    Issues in the design and use of a digital geographic information system incorporating landuse, zoning, hazard, LANDSAT, and other data are discussed. An eleven layer database was generated. Issues in spatial resolution, registration, grid versus polygonal structures, and comparison of photointerpreted landuse to LANDSAT land cover are examined.

  8. Fabrication of Annealed Proton-Exchanged Waveguides for Vertical Integration 

    E-print Network

    Webb, Jacob Douglas

    2011-08-08

    2.2 Sample Preparation/Mask Materials...........................................................................5 2.3 Modeling APE Waveguides Formed in Pure Benzoic Acid .......................................6 2.3.1 Initial Exchange Depth... Furnace Characterization and Calibration ......................................... 62 5.3 Characterization of Benzoic Acid Diffusivity for System ........................................ 62 5.4 Waveguide Mode Progile Measurement and Optimization...

  9. Vertical integration and strategic sourcing in the biopharmaceutical industry

    E-print Network

    Haupt, Lynne Felice

    2005-01-01

    Biopharmaceutical companies are focusing on operational efficiency more than ever before due to cost pressures, generic competition, complex pricing, regulations, and globalization. Due to the low probabilities of success ...

  10. Tracking Interfaces in Vertical Two-Phase Flows

    SciTech Connect

    Aktas, Birol

    2002-07-01

    The presence of stratified liquid-gas interfaces in vertical flows poses difficulties to most classes of solution methods for two-phase flows of practical interest in the field of reactor safety and thermal-hydraulics. These difficulties can plague the reactor simulations unless handled with proper care. To illustrate these difficulties, the US NRC Consolidated Thermal-hydraulics Code (TRAC-M) was exercised with selected numerical bench-mark problems. These numerical benchmarks demonstrate that the use of an average void fraction for computational volumes simulating vertical flows is inadequate when these volumes consist of stratified liquid-gas interfaces. In these computational volumes, there are really two regions separated by the liquid-gas interface and each region has a distinct flow topology. An accurate description of these divided computational volumes require that separate void fractions be assigned to each region. This strategy requires that the liquid-gas interfaces be tracked in order to determine their location, the volumes of regions separated by the interface, and the void fractions in these regions. The idea of tracking stratified liquid-gas interfaces is not new. There are examples of tracking methods that were developed for reactor safety codes and applied to reactor simulations in the past with some limited success. The users of these safety codes were warned against potential flow oscillations, conflicting water levels, and pressure disturbances which could be caused by the tracking methods themselves. An example of these methods is the level tracking method of TRAC-M. A review of this method is given here to explore the reasons behind its failures. The review shows that modifications to the field equations are mostly responsible for these failures. Following the review, a systematic approach to incorporate interface tracking methods is outlined. This approach is applicable to most classes of solution methods. For demonstration, the approach to incorporate the tracking method into the field equations of TRAC-M is described in steps. The success of this approach is demonstrated by exercising TRAC-M with the same benchmark problems that were previously used to illustrate the difficulties the code suffered from in the presence of interfaces. Besides improvements to the accuracy of the code predictions, one of the benchmark problems, which simulates a strong condensation at the liquid-gas interface, shows that the code's runtime is improved significantly where the alternative methods like water packing fails. (authors)

  11. Liquid Bridge

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Crystal Growth in magnetic fields, a float-zone sample, the surface tension of the melt keeps the sample suspended between the sample rods in the furnace forming an actual liquid bridge. Principal Investigator: Dr. Frank Szofran

  12. Experimental liquid line of descent and liquid immiscibility for basalt 70017. [lunar rocks

    NASA Technical Reports Server (NTRS)

    Rutherford, M. J.; Hess, P. C.; Daniel, G. H.

    1974-01-01

    The paper describes one possible liquid line of descent produced for a high-titanium mare basalt composition through an arbitrarily chosen series of partial equilibrium and fractional crystallization experiments on basalt 70017. The liquid line of descent leading to immiscibility at 994 C is characterized by enrichment of FeO, K2O, SiO2, and MnO and depletion of MgO and TiO2 in the residual liquids. The composition of the residual liquid at the onset of immiscibility is ferrobasaltic, and the initial appearance of immiscible liquids in the form of silica-rich spherules is in the vicinity of plagioclase-liquid contacts. The integrated bulk composition of the areas of finely exsolved liquids indicates that the trend of the liquid line of descent is at a small angle to the tie lines joining the two liquids.

  13. A Characterization of Vertical Ozonesonde Measurements at the Equatorial Locations of SHADOZ

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Thompson, A. M.; Kirchhoff, V. W. J. H.; Hoegger, B.; Oltmans, S.; Gerlach, John C. (Technical Monitor)

    2001-01-01

    Beginning in 1997 ozonesonde observations have been obtained from Equatorial locations participating in SHADOZ (Southern Hemisphere Additional Ozone) Project. Vertical ozone profiles are available from the western Pacific eastward to Kenya. Presently 10 stations provide vertical ECC ozonesonde measurements at least weekly. Statistical analysis shows the variation that occurs in the level of maximum ozone, the difference between integrated total ozone overburden from ECC and EP-TOMS observations, and with Dobson Spectrophotometers, when data are available.

  14. Screen channel liquid acquisition device outflow tests in liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Hartwig, J. W.; Chato, D. J.; McQuillen, J. B.; Vera, J.; Kudlac, M. T.; Quinn, F. D.

    2014-11-01

    This paper presents experimental design and test results of the recently concluded 1-g inverted vertical outflow testing of two 325 × 2300 full scale liquid acquisition device (LAD) channels in liquid hydrogen (LH2). One of the channels had a perforated plate and internal cooling from a thermodynamic vent system (TVS) to enhance performance. The LADs were mounted in a tank to simulate 1-g outflow over a wide range of LH2 temperatures (20.3-24.2 K), pressures (100-350 kPa), and flow rates (0.010-0.055 kg/s). Results indicate that the breakdown point is dominated by liquid temperature, with a second order dependence on mass flow rate through the LAD. The best performance is always achieved in the coldest liquid states for both channels, consistent with bubble point theory. Higher flow rates cause the standard channel to break down relatively earlier than the TVS cooled channel. Both the internal TVS heat exchanger and subcooling the liquid in the propellant tank are shown to significantly improve LAD performance.

  15. Screen Channel Liquid Acquisition Device Outflow Tests in Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.; Chato, David J.; McQuillen, J. B.; Vera, J.; Kudlac, M. T.; Quinn, F. D.

    2013-01-01

    This paper presents experimental design and test results of the recently concluded 1-g inverted vertical outflow testing of two 325x2300 full scale liquid acquisition device (LAD) channels in liquid hydrogen (LH2). One of the channels had a perforated plate and internal cooling from a thermodynamic vent system (TVS) to enhance performance. The LADs were mounted in a tank to simulate 1-g outflow over a wide range of LH2 temperatures (20.3 - 24.2 K), pressures (100 - 350 kPa), and flow rates (0.010 - 0.055 kg/s). Results indicate that the breakdown point is dominated by liquid temperature, with a second order dependence on mass flow rate through the LAD. The best performance is always achieved in the coldest liquid states for both channels, consistent with bubble point theory. Higher flow rates cause the standard channel to break down relatively earlier than the TVS cooled channel. Both the internal TVS heat exchanger and subcooling the liquid in the propellant tank are shown to significantly improve LAD performance.

  16. Preliminary design of a supersonic Short-Takeoff and Vertical-Landing (STOVL) fighter aircraft

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A preliminary study of a supersonic short takeoff and vertical landing (STOVL) fighter is presented. Three configurations (a lift plus lift/cruise concept, a hybrid fan vectored thrust concept, and a mixed flow vectored thrust concept) were initially investigated with one configuration selected for further design analysis. The selected configuration, the lift plus lift/cruise concept, was successfully integrated to accommodate the powered lift short takeoff and vertical landing requirements as well as the demanding supersonic cruise and point performance requirements. A supersonic fighter aircraft with a short takeoff and vertical landing capability using the lift plus lift/cruise engine concept seems a viable option for the next generation fighter.

  17. Plug cementing: Horizontal to vertical conditions

    SciTech Connect

    Calvert, D.G.; Heathman, J.F.; Griffith, J.E.

    1995-12-31

    This paper presents an in-depth study of cement plug placement that was conducted with large-scale models for the improvement of plug cementing practices and plug integrity. Common hole and workstring geometries were examined with various rheology and density ratios between the drilling fluid and cement. The critical conditions dictating the difference between success and failure for various wellbore angles and conditions were explored, and the mechanisms controlling slurry movement before and after placement are now better understood. An understanding of these mechanisms allows the engineer to better tailor a design to specific hole conditions. Controversial concepts regarding plug-setting practices have been examined and resolved. The cumulative effects of density, rheology, and hole angle are major factors affecting plug success. While the Boycott effect and an extrusion effect were observed to be predominant in inclined wellbores, a spiraling or {open_quotes}roping{close_quotes} effect controls slurry movement in vertical wellbores. Ultimate success of a cement plug can be obtained if allowances are made for these effects in the job design, provided all other previously published recommended placement practices are followed. Results of this work can be applied to many sidetracking and plug-to-abandon operations. Additionally, the understanding of the fluid movement (creep) mechanisms holds potential for use in primary and remedial cementing work, and in controlling the placement of noncementitious fluids in the wellbore.

  18. Functionalization of vertically aligned carbon nanotubes

    PubMed Central

    Snyders, Rony; Colomer, Jean-François

    2013-01-01

    Summary This review focuses and summarizes recent studies on the functionalization of carbon nanotubes oriented perpendicularly to their substrate, so-called vertically aligned carbon nanotubes (VA-CNTs). The intrinsic properties of individual nanotubes make the VA-CNTs ideal candidates for integration in a wide range of devices, and many potential applications have been envisaged. These applications can benefit from the unidirectional alignment of the nanotubes, the large surface area, the high carbon purity, the outstanding electrical conductivity, and the uniformly long length. However, practical uses of VA-CNTs are limited by their surface characteristics, which must be often modified in order to meet the specificity of each particular application. The proposed approaches are based on the chemical modifications of the surface by functionalization (grafting of functional chemical groups, decoration with metal particles or wrapping of polymers) to bring new properties or to improve the interactions between the VA-CNTs and their environment while maintaining the alignment of CNTs. PMID:23504581

  19. Plasma vertical stabilisation in ITER

    NASA Astrophysics Data System (ADS)

    Gribov, Y.; Kavin, A.; Lukash, V.; Khayrutdinov, R.; Huijsmans, G. T. A.; Loarte, A.; Snipes, J. A.; Zabeo, L.

    2015-07-01

    This paper describes the progress in analysis of the ITER plasma vertical stabilisation (VS) system since its design review in 2007-2008. Two indices characterising plasma VS were studied. These are (1) the maximum value of plasma vertical displacement due to free drift that can be stopped by the VS system and (2) the maximum root mean square value of low frequency noise in the dZ/dt measurement signal used in the VS feedback loop. The first VS index was calculated using the PET code for 15 MA plasmas with the nominal position and shape. The second VS index was studied with the DINA code in the most demanding simulations for plasma magnetic control of 15 MA scenarios with the fastest plasma current ramp-up and early X-point formation, the fastest plasma current ramp-down in a divertor configuration, and an H to L mode transition at the current flattop. The studies performed demonstrate that the VS in-vessel coils, adopted recently in the baseline design, significantly increase the range of plasma controllability in comparison with the stabilising systems VS1 and VS2, providing operating margins sufficient to achieve ITER's goals specified in the project requirements. Additionally two sets of the DINA code simulations were performed with the goal of assessment of the capability of the PF system with the VS in-vessel coils: (i) to control the position of runaway electrons generated during disruptions in 15 MA scenarios and (ii) to trigger ELMs in H-mode plasmas of 7.5 MA/2.65 T scenarios planned for the early phase of ITER operation. It was also shown that ferromagnetic structures of the vacuum vessel (ferromagnetic inserts) and test blanket modules insignificantly affect the plasma VS.

  20. The right temporoparietal junction plays a causal role in maintaining the internal representation of verticality.

    PubMed

    Fiori, Francesca; Candidi, Matteo; Acciarino, Adriano; David, Nicole; Aglioti, Salvatore Maria

    2015-11-01

    Perception of the visual vertical is strongly based on our ability to match visual inflow with vestibular, proprioceptive, tactile, and even visceral information that contributes to maintaining an internal representation of the vertical. An important cortical region implicated in multisensory integration is the right temporoparietal junction (rTPJ), which also is involved in higher order forms of body- and space-related cognition. To test whether this region integrates body-related multisensory information necessary for establishing the subjective visual vertical, we combined a psychophysical task (the rod-and-frame test) with transient inhibition of the rTPJ via continuous theta burst stimulation (cTBS). A Gabor patch visual detection task was used as a control visual task. cTBS of early visual cortex (V1-V3) was used to test whether early visual cortices played any role in verticality estimation. We show that inhibition of rTPJ activity selectively impairs the ability to evaluate the rod's verticality when no contextual visual information, such as a frame surrounding the rod, is provided. Conversely, transient inhibition of V1-V3 selectively disrupts the ability to visually detect Gabor patch orientation. This anatomofunctional dissociation supports the idea that the rTPJ plays a causal role in integrating egocentric sensory information encoded in different reference systems (i.e., vestibular and somatic) to maintain an internal representation of verticality. PMID:26400254

  1. Numerical analysis of a weighted-residual integral boundary-layer model for nonlinear

    E-print Network

    Rimon, Elon

    of a liquid film flow on a vertical or inclined plane, where the steady Nusselt flow is known to be unstable-dimensional liquid film flowing on a fixed inclined plane. The Benney equation in its dimensionless form can on a vertical plane is investigated nu- merically using the first-order time-dependent weighted

  2. Impact of vertical and horizontal advection on nutrient distribution in the South East Pacific

    NASA Astrophysics Data System (ADS)

    Barceló-Llull, B.; Mason, E.; Pascual, A.

    2015-09-01

    An innovative approach is used to analyse the impact of vertical velocities associated with quasi-geostrophic (QG) dynamics on the distribution of a passive nutrient tracer (nitrate) in the South East Pacific. Twelve years of vertical and horizontal currents are derived from an observation-based estimate of the ocean state. Horizontal velocities are obtained through application of thermal wind balance to weekly temperature and salinity fields. Vertical velocities are estimated by integration of the QG Omega equation. Seasonal variability of the synthetic vertical velocity and kinetic energy associated with the horizontal currents are coincident, with peaks in austral summer (November-December) in accord with published observations. Two ensembles of Lagrangian particle tracking experiments that differ according to vertical forcing (w = wQG vs. w = 0) enable a quantitative analysis of the impact of the vertical velocity. From identical initial distributions of nitrate-tagged particles, the Lagrangian results show that the impact of vertical advection on nutrient distribution is 30 % of the contribution of horizontal advection. Despite being weaker by a factor of up to 10-4 than the horizontal currents, vertical velocity is demonstrated to make an important contribution to nutrient distributions in the region of study.

  3. Expanding Curtain Observations of Cloud Vertical Structure and Layering to Model-Relevant Spatial Scales

    NASA Astrophysics Data System (ADS)

    Miller, S.; Bankert, R.; Forsythe, J.; Mitrescu, C.; Reinke, D.; Austin, R.

    2007-12-01

    Clouds, representing perhaps the most obvious physical manifestations of atmospheric dynamics at work, remain in many ways an enigmatic and unifying intellectual challenge to researchers of all disciplines within the atmospheric sciences. Given the universally acknowledged importance of cloud systems in determining the state of current and future climate through radiative, chemical, dynamic, and thermodynamic processes tied intimately to the hydrological cycle, it is no wonder that so much recent attention has been given to better understanding the non-linear feedbacks involving clouds and ways to improve their handling in numerical weather prediction (NWP) models. In terms of operational community interests, knowledge of cloud vertical structure, ceiling (cloud base) height, and phase is key to aviation safety assurance in the private, commercial, and defense-agency sectors alike. The launch of the NASA Earth System Science Pathfinder CloudSat (cloud radar; 3 mm wavelength) mission in 2006 changed forever the way we view cloud systems from the space platform--providing vertically-resolved 'cuts' through the cloudy troposphere. The Cloud Profiling Radar (CPR) system resolves nearly all radiatively significant cloud structures present in the column at vertical resolutions sufficient to afford scientists the opportunity to examine new hypotheses on cloud formation (leading potentially to new/improved cloud process parameterizations) and make observationally-based discoveries bordering on the frontiers of our current understanding. At the same time, the non-scanning nature of the CPR (providing so-called 'curtain' observations) represents in some respects a frustrating tease to the potential of a three-dimensional scanning system, relegating its utility to the realms of research as opposed to full spatial environmental characterization and data assimilation. This research examines ways to extend via statistical methods the curtain slices provided by CloudSat into the horizontal to construct pseudo three-dimensional information. These statistics are based on cloud-type classification, which are identifiable from cloud top observations by conventional 2-D observing systems. Preliminary cloud-type-dependent vertical structures, based on the CloudSat Level-2 Cloud Water Content (CWC) product, are presented for an assortment of cloud classifications. Such statistics can then be applied to the vertically-integrated liquid/ice water content as retrieved by 2-D sensors to distribute this water in the column according to type-dependency. In addition, the degree to which cloud layer base heights can be extended into the cross-track direction (e.g., given an observation of similar cloud-type from a conventional 2-D optical radiometer) can be assessed via correlation lengths computed along the CloudSat track. The effective result is a pseudo 3-D swath of cloud water content of potential use to operational support and numerical weather prediction analysis and/or validation. Preliminary results from the currently available compilation of CloudSat data are presented to illustrate conceptually the potential and limitations of such approaches.

  4. NASA A-Train Vertical Data (Curtains) in Google Earth

    NASA Astrophysics Data System (ADS)

    Chen, A.; Leptoukh, G.; di, L.; Lynnes, C.; Kempler, S.; Nadeau, D.

    2007-12-01

    Google Earth combines satellite imagery, aerial photography, map data, and human-social data to make a real 3D interactive template of the world. It is revolutionizing the way that general public recognize our planet and professional scientists discover, add, and share information about different geographic-related subjects in the world. NASA Goddard Earth Science (GES) Data and Information Service Center (DISC) has done innovative work integrating NASA imagery in Google Earth in order to facilitate scientific research and releasing of geospatial- related public information. The NASA imagery includes two dimensional (2D) flat data and three dimensional (3D) vertical data. Here, a new solution is introduced to integrate the vertical data from the A-Train constellation satellites CloudSat, CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation), and Aqua (mainly MODIS and AIRS products) into Google Earth to vividly expose cloud, aerosol, and H2O characteristics and atmospheric temperature profile in the form of curtain along the satellite orbit. All kinds of vertical data are first processed by GIOVANNI (GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure) A-Train system based on user-selected spatial/temporal range and physical parameters. The resultant image is processed into transparent small image slices with each image slice representing the fixed temporal internal orbit range. A generalized COLLADA (COLLAborative Design Activity) 3D model is designed to render the image slices in the form of 3D. Based on the designed COLLADA models and satellite orbit coordinates, an orbit model is designed and implemented in KML (Keyhole Markup Language) format. The resultant orbit curtain makes vertical data viewable, transparently or opaquely, in Google Earth. Thus, three- dimensional science research data can be made available to scientists and the general public in a popular venue. Also, simultaneous visualization and efficient exploration of the relationships among quantitative geospatial data (e.g. comparing the vertical data profiles with MODIS, AIRS data and TRMM precipitation data) becomes possible. This method allows combining vertical data together with other geospatial data for scientific research and allows better understanding of our planet. A key capability of the system is the ability to visualize and compare diverse, simultaneous data from different providers, revealing new information and knowledge that would otherwise be hidden.

  5. Liquid Crystals

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Thermochromic liquid crystals, or TLCs, are a type of liquid crystals that react to changes in temperature by changing color. The Hallcrest/NASA collaboration involved development of a new way to visualize boundary layer transition in flight and in wind tunnel testing of aircraft wing and body surfaces. TLCs offered a new and potentially better method of visualizing the boundary layer transition in flight. Hallcrest provided a liquid crystal formulation technique that afforded great control over the sensitivity of the liquid crystals to varying conditions. Method is of great use to industry, government and universities for aerodynamic and hydrodynamic testing. Company's principal line is temperature indicating devices for industrial use, such as non-destructive testing and flaw detection in electric/electronic systems, medical application, such as diagnostic systems, for retail sale, such as room, refrigerator, baby bath and aquarium thermometers, and for advertising and promotion specials. Additionally, Hallcrest manufactures TLC mixtures for cosmetic applications, and liquid crystal battery tester for Duracell batteries.

  6. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters

    PubMed Central

    Yu, Woo Jong; Li, Zheng; Zhou, Hailong; Chen, Yu; Wang, Yang; Huang, Yu; Duan, Xiangfeng

    2014-01-01

    The layered materials such as graphene have attracted considerable interest for future electronics. Here we report the vertical integration of multi-heterostructures of layered materials to enable high current density vertical field-effect transistors (VFETs). An n-channel VFET is created by sandwiching few-layer molybdenum disulfide (MoS2) as the semiconducting channel between a monolayer graphene and a metal thin film. The VFETs exhibit a room temperature on-off ratio >103, while at same time deliver a high current density up to 5,000 A/cm2, sufficient for high performance logic applications. This study offers a general strategy for the vertical integration of various layered materials to obtain both p- and n-channel transistors for complementary logic functions. A complementary inverter with larger than unit voltage gain is demonstrated by vertically stacking the layered materials of graphene, Bi2Sr2Co2O8 (p-channel), graphene, MoS2 (n-channel), and metal thin film in sequence. The ability to simultaneously achieve high on-off ratio, high current density, and logic integration in the vertically stacked multi-heterostructures can open up a new dimension for future electronics to enable three-dimensional integration. PMID:23241535

  7. Development of Vertical Cable Seismic System (3)

    NASA Astrophysics Data System (ADS)

    Asakawa, E.; Murakami, F.; Tsukahara, H.; Mizohata, S.; Ishikawa, K.

    2013-12-01

    The VCS (Vertical Cable Seismic) is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. We carried out several VCS surveys combining with surface towed source, deep towed source and ocean bottom source. The water depths of the survey are from 100m up to 2100m. The target of the survey includes not only hydrothermal deposit but oil and gas exploration. Through these experiments, our VCS data acquisition system has been completed. But the data processing techniques are still on the way. One of the most critical issues is the positioning in the water. The uncertainty in the positions of the source and of the hydrophones in water degraded the quality of subsurface image. GPS navigation system are available on sea surface, but in case of deep-towed source or ocean bottom source, the accuracy of shot position with SSBL/USBL is not sufficient for the very high-resolution imaging. We have developed another approach to determine the positions in water using the travel time data from the source to VCS hydrophones. In the data acquisition stage, we estimate the position of VCS location with slant ranging method from the sea surface. The deep-towed source or ocean bottom source is estimated by SSBL/USBL. The water velocity profile is measured by XCTD. After the data acquisition, we pick the first break times of the VCS recorded data. The estimated positions of shot points and receiver points in the field include the errors. We use these data as initial guesses, we invert iteratively shot and receiver positions to match the travel time data. After several iterations we could finally estimate the most probable positions. Integration of the constraint of VCS hydrophone positions, such as the spacing is 10m, can accelerate the convergence of the iterative inversion and improve results. The accuracy of the estimated positions from the travel time date is enough for the VCS data processing.

  8. Calcium-Antimony Alloys as Electrodes for Liquid Metal Batteries

    SciTech Connect

    Ouchi, T; Kim, H; Ning, XH; Sadoway, DR

    2014-08-08

    The performance of a calcium-antimony (Ca-Sb) alloy serving as the positive electrode in a Ca vertical bar vertical bar Sb liquid metal battery was investigated in an electrochemical cell, Ca(in Bi) vertical bar LiCl-NaCl-CaCl2 vertical bar Ca(in Sb). The equilibrium potential of the Ca-Sb electrode was found to lie on the interval, 1.2-0.95 V versus Ca, in good agreement with electromotive force (emf) measurements in the literature. During both alloying and dealloying of Ca at the Sb electrode, the charge transfer and mass transport at the interface are facile enough that the electrode potential varies linearly from 0.95 to 0.75 V vs Ca(s) as current density varies from 50 to 500 mA cm(-2). The discharge capacity of the Ca vertical bar vertical bar Sb cells increases as the operating temperature increases due to the higher solubility and diffusivity of Ca in Sb. The cell was successfully cycled with high coulombic efficiency (similar to 100%) and small fade rate (<0.01% cycle(-1)). These data combined with the favorable costs of these metals and salts make the Ca vertical bar vertical bar Sb liquid metal battery attractive for grid-scale energy storage. (C) The Author(s) 2014. Published by ECS. All rights reserved.

  9. Liquid Cooling Technology Increases Exercise Efficiency

    NASA Technical Reports Server (NTRS)

    2015-01-01

    To keep astronauts' airtight spacesuits from becoming hot and humid, Ames Research Center developed liquid cooling garments that were integrated into each suit's long underwear. Vasper Systems, in San Jose, California, is using the technology in its liquid-cooled compression cuffs, which help people exercise more efficiently by concentrating lactic acid in their muscles.

  10. Macromolecular liquids

    SciTech Connect

    Safinya, C.R.; Safran, S.A. ); Pincus, P.A. )

    1990-01-01

    Liquids include a broad range of material systems which are of high scientific and technological interest. Generally speaking, these are partially ordered or disordered phases where the individual molecular species have organized themselves on length scales which are larger than simple fluids, typically between 10 Angstroms and several microns. The specific systems reported on in this book include membranes, microemulsions, micelles, liquid crystals, colloidal suspensions, and polymers. They have a major impact on a broad spectrum of technological industries such as displays, plastics, soap and detergents, chemicals and petroleum, and pharmaceuticals.

  11. Integrated production/use of ultra low-ash coal, premium liquids and clean char. Technical report, March 1, 1992--May 31, 1992

    SciTech Connect

    Kruse, C.W.; Carlson, S.L.; Snoeyink, V.L.; Feizoulof, C.; Assanis, D.N.; Syrimis, M.; Fatemi, S.M.

    1992-10-01

    The first step in the envisioned integrated, multi-product approach for utilizing Illinois coal is the production of ultra low-ash coal. Subsequent steps would convert low-ash coal to high-value products through mild gasification, char activation, and oxidation reactions. Approximately eight pounds of low-ash coal has been obtained from the crude reactor slurry produced for us at the University of North Dakota Energy and Environmental Research Center (UNDEERC). After treatment to remove the remaining meta-cresol, this material will be subjected to mild gasification. Low-ash mild gasification char will be activated and a catalyst surface will be added by oxidation. A 20% coal: 80% diesel fuel slurry was tested in cylinder two of a two-cylinder, diesel engine after the necessary modifications in the engine`s fuel injection system were made. Four tests indicated that the coal successfully substitutes for diesel fuel in the slurry. The fuel burns in the cylinder, with slightly improved thermal and combustion efficiency. The tests were performed at 1800 rpm and 2200 rpm and 75% load. The change in the surface properties of Calgon F-400 commercial activated carbon caused by several treatments were examined by X-ray Photoelectron Spectroscopy (XPS).

  12. Polar organic chemical integrative sampling and liquid chromatography- electrospray/ion-trap mass spectrometry for assessing selected prescription and illicit drugs in treated sewage effluents

    USGS Publications Warehouse

    Jones-Lepp, T. L.; Alvarez, D.A.; Petty, J.D.; Huckins, J.N.

    2004-01-01

    The purpose of the research presented in this paper was twofold: (1) to demonstrate the coupling of two state-of-the-art techniques: a time-weighted polar organic chemical integrative sampler (POCIS) and microliquid chromatography-electrospray/ion-trap mass spectrometry and (2) to assess the ability of these methodologies to detect six drugs (azithromycin, fluoxetine, omeprazole, levothyroxine, methamphetamine, methylenedioxymethamphetamine [MDMA]) in a real-world environment, e.g., waste water effluent. In the effluent from three wastewater treatment plants (WWTPs), azithromycin was detected at concentrations ranging from 15 to 66 ng/L, which is equivalent to a total annual release of 1 to 4 kg into receiving waters. Detected and confirmed in the effluent from two WWTPs were two illicit drugs, methamphetamine and MDMA, at 2 and 0.5 ng/L, respectively. Although the ecotoxicologic significance of drugs in environmental matrices, particularly water, has not been closely examined, it can only be surmised that these substances have the potential to adversely affect biota that are continuously exposed to them even at very low levels. The potential for chronic effects on human health is also unknown but of increasing concern because of the multi-use character of water, particularly in densely populated, arid areas.

  13. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D. (Evergreen, CO)

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  14. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  15. Vertical combustor for particulate refuse

    NASA Astrophysics Data System (ADS)

    Chung, P. M.; Carlson, L.

    1981-03-01

    A one-dimensional model is constructed of a vertical combustor for refuse particle combustion in order to analyze it for waste energy recovery. The three components of the model, fuel particles, inert solid particles and the gaseous mixture are described by momentum, energy, and mass conservation equations, resulting in three different flow velocities and temperatures for the medium. The gaseous component is further divided into six chemical species that evolve in combustion at temperatures below about 1367 K. A detailed description is given of the fuel particle combustion through heating, devolatilization, and combustion of the volatile gas in the boundary layer, return of the flame sheet to the fuel surface, and char combustion. The solutions show the combustor to be viable for U.S. refuse which consists of combustibles that can be volatilized up to 85 to 95% below 1366 K. Char combustion, however, is found to be too slow to be attempted in the combustor, where the fuel residence time is of the order of 2 s.

  16. Wear reduction systems liquid piston ring

    SciTech Connect

    Raymond, R.J.; Chen, T.N.; DiNanno, L.

    1990-09-01

    The overall objective of the program was to demonstrate the technical feasibility of achieving an acceptable wear rate for the cylinder liner, piston, and piston rings in a coal/water-slurry-fueled engine that utilized the concept of a liquid piston ring above the conventional piston rings and to identify technical barriers and required research and development. The study included analytical modeling of the system, a bench study of the fluid motion in the liquid piston ring, and a single-cylinder test rig for wear comparison. A system analysis made on the different variations of the liquid supply system showed the desirability of the once-through version from the standpoint of system simplicity. The dynamics of the liquid ring were modeled to determine the important design parameters that influence the pressure fluctuation in the liquid ring during a complete engine cycle and the integrity of the liquid ring. This analysis indicated the importance of controlling heat transfer to the liquid ring through piston and liner to avoid boiling the liquid. A conceptual piston design for minimizing heat transfer is presented in this report. Results showed that the liquid piston ring effectively reduced the solid particles on the wall by scrubbing, especially in the case where a surfactant was added to the water. The wear rates were reduced by a factor of 2 with the liquid ring. However, leakage of the contaminated liquid ring material past the top ring limited the effectiveness of the liquid ring concept. 8 refs., 33 figs., 1 tab.

  17. INVESTIGATING THERMODYNAMICS OF VERTICAL ATMOSPHERIC ENERGY TRANSPORT

    E-print Network

    INVESTIGATING THERMODYNAMICS OF VERTICAL ATMOSPHERIC ENERGY TRANSPORT Wei Wu and Yangang Liu National Laboratory P.O. Box, Upton, NY www.bnl.gov ABSTRACT Thermodynamics of vertical atmospheric energy. Potential thermodynamic constraint(s) for the Earth's climate system are also explored from these simple

  18. Vertical constituent transport in the mesosphere

    NASA Technical Reports Server (NTRS)

    Strobel, Darrell F.; Summers, Michael E.; Bevilacqua, Richard M.; Deland, Matthew T.; Allen, Mark

    1987-01-01

    Ground-based microwave spectroscopy measurements of mesospheric CO and H2O vertical mixing ratio profiles are used to infer vertical mixing rates in the upper mesosphere. The CO and H2O data consistently imply vertical eddy diffusion coefficients in the 70- to 85-km region of 100,000-200,000 sq cm/s during spring through summer at midlatidues. Although chemical acceleration of vertical transport is substantial for O and O3, below the mesopause, the divergences of their associated fluxes are modest, with at most a factor of 2 effect on the concentrations of O and O3 for measured variability in gravity wave activity. Comparison of Solar Mesosphere Explorer (SME) O3 data with model results reinforces the conclusions of slow vertical mixing in the upper mesosphere as a consequence of the reduced HO(x) catalytic loss of odd oxygen. The changes in chemical rate constants recommended by Rusch and Eckman (1985), in conjunction with slow vertical mixing, yield good agreement with SME O3 data. The slow vertical mixing deduced in this study is consistent with upper limits obtained from studies of the mesospheric heat budget and could be construed as evidence for an advectively controlled mesosphere. A comparison of the vertical eddy diffusion coefficients for momentum stresses, constituent transport, and heat transport suggests that the eddy Prandtl number must be of order 10.

  19. A Vertically Resolved Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Helfand, H. M.

    1984-01-01

    Increase of the vertical resolution of the GLAS Fourth Order General Circulation Model (GCM) near the Earth's surface and installation of a new package of parameterization schemes for subgrid-scale physical processes were sought so that the GLAS Model GCM will predict the resolved vertical structure of the planetary boundary layer (PBL) for all grid points.

  20. Continuous liquid level measurements with time-domain reflectometry

    NASA Technical Reports Server (NTRS)

    Cruz, J. E.; Rogers, E. H.; Heister, A. E.

    1973-01-01

    Description of the basic principles of radar measurements of cryogenic liquid levels in storage vessels by time-domain reflectometry. The probe consists of a right circular coaxial transmission line positioned vertically in the storage vessel and having holes drilled in the outer conductor to permit penetration of the liquid into the annular gap. RF pulses transmitted through the probe are reflected at liquid/gas interface and returned for sampling at the input. The measured delay of the return pulse is displayed as the level of liquid in the vessel.

  1. Degassifying and mixing apparatus for liquids. [potable water for spacecraft

    NASA Technical Reports Server (NTRS)

    Yamauchi, S. T. (inventor)

    1983-01-01

    An apparatus for degassing a liquid comprises a containment vessel a liquid pump and a header assembly (12) within the containment vessel in a volume above the reservoir of the liquid. The pump draws from this reservoir and outputs to the header assembly, the latter being constructed to return the liquid to the reservoir in the form of a number of stacked, vertically spaced, concentric, conical cascades via orifices. A vacuum source provides a partial vacuum in the containment vessel to enhance the degassing process.

  2. Injector Cavities Fabrication, Vertical Test Performance and Primary Cryomodule Design

    SciTech Connect

    Wang, Haipeng; Cheng, Guangfeng; Clemens, William; Davis, G; Henry, James; Macha, Kurt; Overton, Roland

    2015-09-01

    After the electromagnetic design * and the mechanical design ** of a ?=0.6, 2-cell elliptical SRF cavity, the cavity has been fabricated. Then both 2-cell and 7-cell cavities have been bench tuned to the target values of frequency, coupling external Q and field flatness. After buffer chemistry polishing (BCP) and high pressure rinses (HPR), Vertical 2K cavity test results have been satisfied the specifications and ready for the string assembly. We will report the cavity performance including Lorenz Force Detuning (LFD) and Higher Order Modes (HOM) damping data. Its integration with cavity tuners to the cryomodule design will be reported.

  3. Superhydrophobicity and enhanced UV stability in vertically standing indium oxide nanorods

    NASA Astrophysics Data System (ADS)

    Yadav, Kavita; Mehta, B. R.; Singh, J. P.

    2015-08-01

    Here, we report the emergence of superhydrophobic wetting behavior and enhanced UV stability of indium oxide (IO) nanorods due to their vertical alignment. Both randomly distributed and vertically aligned IO nanorods were synthesized via chemical vapor deposition (CVD) method. Our results reveal that the static water contact angle (?) shows a significant dependence on the alignment of the nanorods. The randomly distributed IO nanorods shows ? value of 133.7° ± 6.8° whereas for vertically aligned IO nanorods ? was found to be 159.3° ± 4.8°. Interestingly, continuous UV light illumination for 30 min exhibited the change in contact angle (??) of about 41° for vertically aligned IO nanorods whereas randomly distributed IO nanorods become hydrophilic with a dramatic change in ? value of 108°. The superhydrophobicity of vertically aligned IO nanorods and their enhanced UV stability were discussed by comparing the effective solid fraction at solid-liquid interface and the reactivity of surface crystallographic planes. The superhydrophobic surface of aligned vertically standing IO nanorods along with its resistance against photoinduced wetting transition make them suitable for electronic devices with reduced surface discharge even at relatively high humidity level.

  4. Liquid ventilation.

    PubMed

    Sarkar, Suman; Paswan, Anil; Prakas, S

    2014-01-01

    Human have lungs to breathe air and they have no gills to breath liquids like fish. When the surface tension at the air-liquid interface of the lung increases as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV) is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen as the inert carrier of oxygen and carbon dioxide offers a number of advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. It is well-known that respiratory diseases are one of the most common causes of morbidity and mortality in intensive care unit. During the past few years several new modalities of treatment have been introduced. One of them and probably the most fascinating, is of LV. Partial LV, on which much of the existing research has concentrated, requires partial filling of lungs with perfluorocarbons (PFC's) and ventilation with gas tidal volumes using conventional mechanical ventilators. Various physico-chemical properties of PFC's make them the ideal media. It results in a dramatic improvement in lung compliance and oxygenation and decline in mean airway pressure and oxygen requirements. No long-term side-effect reported. PMID:25886321

  5. Three dimensional integration technology using copper wafer bonding

    E-print Network

    Fan, Andy, 1976-

    2006-01-01

    With 3-D integration, the added vertical component could theoretically increase the device density per footprint ratio of a given chip by n-fold, provide a means of heterogeneous integration of devices fabricated from ...

  6. A hybrid framework of first principles molecular orbital calculations and a three-dimensional integral equation theory for molecular liquids: Multi-center molecular Ornstein-Zernike self-consistent field approach

    NASA Astrophysics Data System (ADS)

    Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi

    2015-07-01

    In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein-Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple SN2 reaction (Cl- + CH3Cl ? ClCH3 + Cl-) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.

  7. Selective-Area Growth of InAs Nanowires on Ge and Vertical Transistor Application.

    PubMed

    Tomioka, Katsuhiro; Izhizaka, Fumiya; Fukui, Takashi

    2015-11-11

    III-V compound semiconductor and Ge are promising channel materials for future low-power and high-performance integrated circuits. A heterogeneous integration of these materials on the same platform, however, raises serious problem owing to a huge mismatch of carrier mobility. We proposed direct integration of perfectly vertically aligned InAs nanowires on Ge as a method for new alternative integrated circuits and demonstrated a high-performance InAs nanowire-vertical surrounding-gate transistor. Virtually 100% yield of vertically aligned InAs nanowires was achieved by controlling the initial surface of Ge and high-quality InAs nanowires were obtained regardless of lattice mismatch (6.7%). The transistor performance showed significantly higher conductivity with good gate control compared to Si-based conventional field-effect transistors: the drain current was 0.65 mA/?m, and the transconductance was 2.2 mS/?m at drain-source voltage of 0.50 V. These demonstrations are a first step for building alternative integrated circuits using vertical III-V/multigate planar Ge FETs. PMID:26468962

  8. Integrated system for temperature-controlled fast protein liquid chromatography comprising improved copolymer modified beaded agarose adsorbents and a travelling cooling zone reactor arrangement.

    PubMed

    Müller, Tobias K H; Cao, Ping; Ewert, Stephanie; Wohlgemuth, Jonas; Liu, Haiyang; Willett, Thomas C; Theodosiou, Eirini; Thomas, Owen R T; Franzreb, Matthias

    2013-04-12

    An integrated approach to temperature-controlled chromatography, involving copolymer modified agarose adsorbents and a novel travelling cooling zone reactor (TCZR) arrangement, is described. Sepharose CL6B was transformed into a thermoresponsive cation exchange adsorbent (thermoCEX) in four synthetic steps: (i) epichlorohydrin activation; (ii) amine capping; (iii) 4,4'-azobis(4-cyanovaleric acid) immobilization; and 'graft from' polymerization of poly(N-isopropylacrylamide-co-N-tert-butylacrylamide-co-acrylic acid-co-N,N'-methylenebisacrylamide). FT-IR, (1)H NMR, gravimetry and chemical assays allowed precise determination of the adsorbent's copolymer composition and loading, and identified the initial epoxy activation step as a critical determinant of 'on-support' copolymer loading, and in turn, protein binding performance. In batch binding studies with lactoferrin, thermoCEX's binding affinity and maximum adsorption capacity rose smoothly with temperature increase from 20 to 50 °C. In temperature shifting chromatography experiments employing thermoCEX in thermally jacketed columns, 44-51% of the lactoferrin adsorbed at 42 °C could be desorbed under binding conditions by cooling the column to 22 °C, but the elution peaks exhibited strong tailing. To more fully exploit the potential of thermoresponsive chromatography adsorbents, a new column arrangement, the TCZR, was developed. In TCZR chromatography, a narrow discrete cooling zone (special assembly of copper blocks and Peltier elements) is moved along a bespoke fixed-bed separation columnfilled with stationary phase. In tests with thermoCEX, it was possible to recover 65% of the lactoferrin bound at 35 °C using 8 successive movements of the cooling zone at a velocity of 0.1mm/s; over half of the recovered protein was eluted in the first peak in more concentrated form than in the feed. Intra-particle diffusion of desorbed protein out of the support pores, and the ratio between the velocities of the cooling zone and mobile phase were identified as the main parameters affecting TCZR performance. In contrast to conventional systems, which rely on cooling the whole column to effect elution and permit only batch-wise operation, TCZR chromatography generates sharp concentrated elution peaks without tailing effects and appears ideally suited for continuous operation. PMID:23481470

  9. Polymer Crystallization at Curved Liquid/Liquid Interface

    NASA Astrophysics Data System (ADS)

    Wang, Wenda

    Liquid/liquid interface, either flat or curved, is a unique template for studying self-assembly of a variety of nanomaterials such as nanoparticles and nanorods. The resultant monolayer films can be ordered or disordered depending on the regularity of the nanomaterials. Integration of nanoparticles into two-dimensional structure leads to intriguing collective properties of the nanoparticles. Crystallization can also be guided by liquid/liquid interface. Due to the particular shape of the interface, crystallization can happen in a different manner comparing to the normal solution crystallization. In this dissertation, liquid/liquid interface is employed to guide the crystallization of polymers, mainly focusing on using curved liquid/liquid interface. Due to the unique shape of the interface and feasibility to control the curvature, polymer crystallization can take place in different manner and lead to the formation of curved or vesicular crystals. Curved liquid/liquid interface is typically created through o/w emulsions. With the presence of surfactant, the emulsions are controlled to be stable at least for the polymer crystallization periods. The difference to normal solution crystallization is: the nuclei will diffuse to the curved interface due to the Pickering effect and guide the crystallization along the curved liquid/liquid interface. If the supercooling can be controlled to be very small, crystal growth in the bulk droplets can be avoided. The advantages of this strategy are: 1) the formation process of vesicular type crystals can be monitored by controlling the polymer supply; 2) curved crystals, bowl-like structures and enclosed capsules can be easily obtained comparing to the self-assembly method for vesicle formation; 3) the obtained vesicles will be made of polymer crystals, which will possess the extraordinary mechanical properties. Based on the nucleation type, this dissertation is divided into two parts. The first part is focused on the self-assembly behavior of single-walled carbon nanotubes (SWCNTs) at curved liquid/liquid interface and the crystallization behavior of polymers at curved liquid/liquid interface while SWCNTs in presence. A few crystalline polymers, such as polyethylene (PE), poly(l-lactic acid) (PLLA), and poly(3-hexylthiophene-2,5-diyl) (P3HT), and water/oil systems were used to study the behavior. The formation of nano speckle structure is a crystallization-driven process due to heterogeneous nucleation and crystal growth of polymers at curved liquid/liquid interface. The second part deals with the homogeneous nucleation and crystal growth at curved liquid/liquid interface. Both PE and PLLA were used to conduct the study. For PE, 1,2-dichlorobenzene (DCB), water, and sodium dodecylsulfate (SDS) were used for the emulsion system. The emulsification system for PLLA is p-xylene, water, and hexadecyltrimethylammonium bromide (CTAB). Surfactant concentration can be employed to control the droplet size, thus controlling the final crystal vesicle's size. By controlling the initial polymer concentration, crystal shells with different morphology, such as curved crystal, bowl-like crystals, and crystal vesicles (named lamellaesome) can be obtained. The formation of these unique structures was templated by the curved interface. The formation process and detailed crystal structure are analyzed based on electron diffraction data from different sized lamellaesomes. Mechanical properties of the crystal vesicles and their encapsulation abilities will be discussed. At the end of this dissertation, a summary of my work and future outlook will be given.

  10. Vertical air motion estimates from the disdrometer flux conservation model and related experimental observations

    NASA Astrophysics Data System (ADS)

    Ahammad, Parvez; Williams, Christopher R.; Kasparis, Takis; Lane, John; Merceret, Francis; Jones, Linwood

    2002-07-01

    The use of meteorological radar reflectivity Z to estimate rainfall rate R is approached using a different perspective from the classical Z-R relation. Simultaneous rain measurements from different sensors are combined to construct a model that estimates the vertical air velocity by minimizing the error in reflectivity between the different sensors. This model is based on the fact that rain rate and reflectivity are both dependent on the integrals of rain drop size distribution (DSD) but only R depends on vertical air velocity. This study attempts to validate the vertical air velocity estimates and quantify their affects on the rainfall rate estimation. Disdrometer Flux Conservation Model (DFC) uses measurements from disdrometers and other sensors such as vertically pointing radar profilers and scanning radars. Disdrometers measure a drop size flux (Phi) (D), defined as the number of drops passing a horizontal surface per unit time, per unit area, per drop size. The flux is equal to the product of the drop size distribution near the ground NG(D) and drop velocity near the ground vG(D). The drop velocity is the difference between the droplet terminal velocity and the vertical component of the wind velocity, which varies with altitude. The estimates derived from the DFC model using two pair wise selected sensors are used to study the change of reflectivity and vertical air velocity with altitude. Sensitivity tests for the DFC model are also discussed and these outcomes are validated by comparison with independent profiler vertical velocity observations.

  11. Atomic Force Microscopy in Liquids

    NASA Astrophysics Data System (ADS)

    Weisenhorn, Albrecht Ludwig

    The atomic force microscope (AFM) was invented by Binnig, Quate, and Gerber in 1986 as an offspring of the very successful scanning tunneling microscope (STM), which Binnig and Rohrer invented in 1982 and for which they shared the Nobel prize. While the STM can only image conducting surfaces, the AFM has overcome this limitation. An AFM creates a three-dimensional image of the sample surface by raster scanning this surface under a sharp tip that is attached to a cantilever. The tip moves the cantilever up and down while going over "hills" and through "valleys" of the surface. The vertical motion of the cantilever deflects a laser beam that is reflected off the back of the cantilever toward a two-segment photodiode. The difference of the intensity of the two segments is used as the deflection signal. A feedback loop is used to keep the deflection signal constant by moving the sample surface up and down accordingly. This vertical motion gives a direct measurement of the surface height. The forces involved in the imaging process have been studied in air and water. Due to adsorbed layers on tip and sample surface when scanning in air (capillary condensation) the imaging forces are >10 ^{-7} N. If the tip and sample surface are immersed in water the forces can be reduced to {~}10^{ -9} N. An AFM with a large scanner can image up to tens of micrometers like an optical microscope. Zooming in allows one to get resolution of a few nanometers, which makes the AFM a natural continuation of the optical microscope towards higher magnification. Integrated circuit chips, photographic film, bacteria, red and white blood cells, purple membrane, polymerized Langmuir-Blodgett (LB) films, and stoma have been imaged at low and high magnification. The AFM has shown its power by imaging "hard" and "soft" surfaces with atomic and (sub)molecular resolution respectively. The "hard" crystalline surfaces of mica, graphite, RuCl_3, Ge(111), Bi(111), and zeolites (clinoptilolite (010), scolecite (001), stilbite (010), faujasite (111)) have been resolved atomically or molecularly. Soft surfaces such as polyalanine, DNA, LB films, Fab fragments, and the proteins fibrinogen and actin have been imaged with sub-molecular resolution. The DNA, Fab fragments and proteins were either adsorbed to a mica surface or a LB film or they were covalently linked to a LB film. This achievement in resolution points toward the possibility of sequencing DNA with an AFM. Furthermore, since the AFM can image under liquids, real-time processes and lithography can be studied readily. Fibrinogen and actin polymerization, antibody-antigen reaction removal of Al-oxide in a GaAs/AlGaAs superlattice, and clustering as well as ordered arrangement of organic molecules on a zeolite surface have been observed. Lithography on an adsorbed organic layer has also been performed.

  12. Absorption of Water Vapor by LiBr Aqueous Solution in a Vertical Smooth Tube

    NASA Astrophysics Data System (ADS)

    Takamatsu, Hiroshi; Yamashiro, Hikaru; Takata, Nobuo; Nakayama, Takeru; Honda, Hiroshi

    Heat and mass transfer in a vertical in-tube absorber is studied experimentally using LiBr aqueous solution. The water vapor is absorbed by the liquid falling inside a smooth copper tube (16.05 mm I.D.,400 mm long) that is cooled on its outside with water flowing counter-currently. The presented results include the effect of solution flow rate, solution subcooling and cooling water temperature on the heat transfer rate, absorption rate and pressure drop in the absorber. Discussion is also presented on the heat and mass transfer coefficients that are defined by estimated temperature and concentration at the vapor-liquid interface.

  13. Photonic integrated circuits for optical logic applications

    E-print Network

    Williams, Ryan Daniel

    2007-01-01

    The optical logic unit cell is the photonic analog to transistor-transistor logic in electronic devices. Active devices such as InP-based semiconductor optical amplifiers (SOA) emitting at 1550 nm are vertically integrated ...

  14. Sonic Anemometer Vertical Wind Speed Measurement Errors

    NASA Astrophysics Data System (ADS)

    Kochendorfer, J.; Horst, T. W.; Frank, J. M.; Massman, W. J.; Meyers, T. P.

    2014-12-01

    In eddy covariance studies, errors in the measured vertical wind speed cause errors of a similar magnitude in the vertical fluxes of energy and mass. Several recent studies on the accuracy of sonic anemometer measurements indicate that non-orthogonal sonic anemometers used in eddy covariance studies underestimate the vertical wind speed. It has been suggested that this underestimation is caused by flow distortion from the interference of the structure of the anemometer itself on the flow. When oriented ideally with respect to the horizontal wind direction, orthogonal sonic anemometers that measure the vertical wind speed with a single vertically-oriented acoustic path may measure the vertical wind speed more accurately in typical surface-layer conditions. For non-orthogonal sonic anemometers, Horst et al. (2014) proposed that transducer shadowing may be a dominant factor in sonic flow distortion. As the ratio of sonic transducer diameter to path length and the zenith angle of the three transducer paths decrease, the effects of transducer shadowing on measurements of vertical velocity will decrease. An overview of this research and some of the methods available to correct historical data will be presented.

  15. Curved motions in horizontal and vertical orientations.

    PubMed

    Phillips, J G; Ogeil, R P

    2010-10-01

    A consideration of handwriting demonstrates that motions can be remarkably constant, even when performed with different effectors. Nevertheless, the transposition of writing from horizontal to vertical orientations, as occurs when writing on blackboards, poses additional problems for the constraint of movement. Motions in horizontal and vertical planes potentially challenge the mechanisms responsible for motor constancy. Gravitational fields impose different accelerative forces on vertical (up/down) compared with horizontal (left/right) motions. A 1/3 power law linking tangential velocity and radius of curvature is sometimes invoked to explain how equivalent motions can be performed by different effectors. To evaluate the operation of the power law when movements are performed in different orientations, 12 participants drew ellipses in horizontal and vertical planes at about 1 or 2 Hz. Mean tangential velocity, radius of curvature and the strength of the 1/3 power law were analyzed. The power law was strongest for curved motions at faster speeds. The power law was weakest at slower speeds in the vertical orientation. As participants controlled their movement periodicity, this placed tighter constraints upon curvature in the vertical orientations than the horizontal orientations. Speed of motion had a greater effect upon curvatures in the horizontal than the vertical orientation. The data offer insights into variations in the strength of the power law under different orientations, and indicate a limited role for the 1/3 power law in motor constancy. PMID:20800304

  16. Hydrodynamic effects in tanks containing layered liquids

    SciTech Connect

    Veletsos, A.; Shivakumar, P.; Bandyopadhyay, K.

    1994-03-01

    As a supplement to a recently reported study, the hydrodynamic wall pressures and the associated tank forces induced by horizontal ground shaking in a rigid, vertical, circular cylindrical tank containing liquid layers of different thickness and mass densities are examined, and comprehensive numerical solutions are presented for two-layered and some three-layered systems which elucidate the underlying response mechanisms and the effects of the various parameters involved. Both the impulsive and convective actions are studied. Additionally, solutions are presented for multi-layered systems approximating liquid wit an exponential, continuous variation in density, and the interrelationship of the solutions for the continuous system and its discretized, layered approximation is discussed.

  17. The hydrodynamics of off-vertical flow for corrosion modeling

    SciTech Connect

    Zhang, X.; Rajagopalan, S.; Wagner, J.; Tree, D.A.; High, M.S.

    1998-12-31

    A study has been conducted on pressure drop modeling in horizontal two-phase flow in order to extend the corrosion prediction software package, DREAM, into off-vertical wells and collection lines. Thermodynamic pressure has a significant influence on the amount of liquid present in gas wells which, in turn, influences the flow regime and mass transfer. Thus an accurate pressure drop model is essential to the prediction of corrosion rate. Four pressure drop models were evaluated for stratified flow, and three pressure drop models were evaluated for annular flow. The results from the pressure drop models were compared with experimental data. Based on the comparison with the experimental data, the best available pressure drop models are the model of Spedding and Hand for stratified flow and the Olujic model for annular flow.

  18. Patterns, Instabilities, Colors, and Flows in Vertical Foam Films

    NASA Astrophysics Data System (ADS)

    Yilixiati, Subinuer; Wojcik, Ewelina; Zhang, Yiran; Pearsall, Collin; Sharma, Vivek

    2015-03-01

    Foams find use in many applications in daily life, industry and biology. Examples include beverages, firefighting foam, cosmetics, foams for oil recovery and foams formed by pollutants. Foams are collection of bubbles separated by thin liquid films that are stabilized against drainage by the presence of surfactant molecules. Drainage kinetics and stability of the foam are strongly influenced by surfactant type, addition of particles, proteins and polymers. In this study, we utilize the thin film interference colors as markers for identifying patterns, instabilities and flows within vertical foam films. We experimentally study the emergence of thickness fluctuations near the borders and within thinning films, and study how buoyancy, capillarity and gravity driven instabilities and flows, are affected by variation in bulk and interfacial physicochemical properties dependent on the choice of constituents.

  19. Fusion Ignition Research Experiment System Integration

    SciTech Connect

    T. Brown

    2000-10-17

    This paper describes the current status of the FIRE configuration and the integration of the major subsystem components. FIRE has a major radius of 2 m, a field on axis of 10T, a plasma current of 6.4 MA. It is capable of 18 second pulses when operated with DT and 26 s when operated with DD. The general arrangement consists of sixteen wedged TF coils that surround a free standing central solenoid, a double wall vacuum vessel and internal plasma facing components that are segmented for maintenance through horizontal ports. Large rings located outside the TF coils are used to obtain a load balance between wedging of the intercoil case structure and wedging at the upper/lower inboard corners of the TF coil winding. The magnets are liquid nitrogen cooled and the entire device is surrounded by a thermal enclosure. The double wall vacuum vessel integrates cooling and shielding in a shape that maximizes shielding of ex-vessel components. Within the vacuum vessel, plasma-facing components frame the plasma. First wall tiles are attached directly to inboard and outboard vacuum vessel walls. The divertor is designed for a high triangularity, double-null plasma with a short inner null point-to-wall distance and near vertical outer divertor flux line. The FIRE configuration has been developed to meet the physics objectives and subsystem requirements in an arrangement that allows remote maintenance of in-vessel components and hands-on maintenance of components outside the TF boundary.

  20. Electroviscoelasticity of liquid/liquid interfaces: fractional-order model.

    PubMed

    Spasic, Aleksandar M; Lazarevic, Mihailo P

    2005-02-01

    A number of theories that describe the behavior of liquid-liquid interfaces have been developed and applied to various dispersed systems, e.g., Stokes, Reiner-Rivelin, Ericksen, Einstein, Smoluchowski, and Kinch. A new theory of electroviscoelasticity describes the behavior of electrified liquid-liquid interfaces in fine dispersed systems and is based on a new constitutive model of liquids. According to this model liquid-liquid droplet or droplet-film structure (collective of particles) is considered as a macroscopic system with internal structure determined by the way the molecules (ions) are tuned (structured) into the primary components of a cluster configuration. How the tuning/structuring occurs depends on the physical fields involved, both potential (elastic forces) and nonpotential (resistance forces). All these microelements of the primary structure can be considered as electromechanical oscillators assembled into groups, so that excitation by an external physical field may cause oscillations at the resonant/characteristic frequency of the system itself (coupling at the characteristic frequency). Up to now, three possible mathematical formalisms have been discussed related to the theory of electroviscoelasticity. The first is the tension tensor model, where the normal and tangential forces are considered, only in mathematical formalism, regardless of their origin (mechanical and/or electrical). The second is the Van der Pol derivative model, presented by linear and nonlinear differential equations. Finally, the third model presents an effort to generalize the previous Van der Pol equation: the ordinary time derivative and integral are now replaced with the corresponding fractional-order time derivative and integral of order p<1. PMID:15576102

  1. Effects of vertical rotation on Arabidopsis development

    NASA Technical Reports Server (NTRS)

    Brown, A. H.; Chapman, D. K.; Dahl, A. O.

    1975-01-01

    Various gross morphological end points of Arabidopsis development are examined in an attempt to separate the effects of growth on the horizontal clinostat into a component caused by rotation alone and another component caused by the altered position with respect to the direction of the g-vector. In a series of tests which involved comparisons between vertical stationary plants, vertical rotated plants, and plants rotated on clinostats, certain characters were consistently influenced by vertical rotation alone. The characters for which this effect was statistically significant were petiole length and leaf blade width.

  2. Liquid electrode

    DOEpatents

    Ekechukwu, Amy A. (Augusta, GA)

    1994-01-01

    A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

  3. Vertices from replica in a random matrix theory

    E-print Network

    E. Brezin; S. Hikami

    2007-04-16

    Kontsevitch's work on Airy matrix integrals has led to explicit results for the intersection numbers of the moduli space of curves. In a subsequent work Okounkov rederived these results from the edge behavior of a Gaussian matrix integral. In our work we consider the correlation functions of vertices in a Gaussian random matrix theory, with an external matrix source, in a scaling limit in which the powers of the matrices and their sizes go to infinity simultaneously in a specified scale. We show that the replica method applied to characteristic polynomials of the random matrices, together with a duality exchanging N and the number of points, allows one to recover Kontsevich's results on the intersection numbers, through a simple saddle-point analysis.

  4. Time-dependent liquid metal flows with free convection and free surfaces

    NASA Astrophysics Data System (ADS)

    McClelland, Matthew A.

    1990-11-01

    A finite element analysis is given for time-dependent liquid metal flows with free convection and free surfaces. Consideration is given to a two-dimensional shallow trough with vertical walls maintained at different temperatures. The spatial formulation incorporates mixed Lagrangian approximations to the velocity, pressure, temperature, and interface position. The time integration method is performed using the Trapezoid Rule with step-size control. The Galerkin method is employed to reduce the problem to a set of nonlinear algebraic equations which are solved with the Newton-Raphson method. Calculations are performed for conditions relevant to the electron beam vaporization of refractory metals. The Prandtl number is 0.015, and Grashof numbers are in the transition region between laminar and turbulent flow. The results reveal the effects of flow intensity, surface-tension gradients, and mesh and time-step refinement.

  5. Mixed convection in parallel channels with application to the liquid-metal reactor concept

    SciTech Connect

    Iannello, V. ); Todreas, N.E. . Dept. of Nuclear Engineering)

    1989-04-01

    In this paper mixed convection flow for parallel vertical channels connected at upper and lower plenums is studied. The one-dimensional conservation equations are formulated in dimensionless form using channel integral parameters. Based on this formulation, expressions are derived for stable flow and reversal of channel flow. The equations are then used to calculate the flow redistribution within a liquid-metal reactor core during natural circulation primary loop flow. A channel/plenum interaction phenomenon, which limits the applicability of using one-dimensional formulations, is modeled, and a correlation is formulated utilizing measured results to predict the onset of this behavior. Finally, the reversal of a heated channel from upflow to downflow, which cannot be predicted with a one-dimensional analysis, is described, and the channel/plenum interaction previously modeled is proposed as the mechanism that initiates this flow reversal.

  6. Electromagnetic confinement for vertical casting or containing molten metal

    DOEpatents

    Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

    1991-01-01

    An apparatus and method adapted to confine a molten metal to a region by means of an alternating electromagnetic field. As adapted for use in the present invention, the alternating electromagnetic field given by B.sub.y =(2.mu..sub.o .rho.gy).sup.1/2 (where B.sub.y is the vertical component of the magnetic field generated by the magnet at the boundary of the region; y is the distance measured downward form the top of the region, .rho. is the metal density, g is the acceleration of gravity and .mu..sub.o is the permeability of free space) induces eddy currents in the molten metal which interact with the magnetic field to retain the molten metal with a vertical boudnary. As applied to an apparatus for the continuous casting of metal sheets or rods, metal in liquid form can be continuously introduced into the region defined by the magnetic field, solidified and conveyed away from the magnetic field in solid form in a continuous process.

  7. Dynamic response of rigid tanks with inhomogeneous liquids

    SciTech Connect

    Shivakumar, P.; Veletsos, A.; Bandyopadhyay, K.

    1994-04-01

    A study of the free vibrational characteristics and of the response to horizontal ground shaking of a rigid cylindrical tank containing an inviscid liquid with a continuous vertical variation in density is presented. The response quantities examined include the vertical sloshing motions of the liquid at its free-surface, and the impulsive and convective components of the hydrodynamic wall pressures and associated tank forces. The equations of motion for the system are formulated for an arbitrary variation in liquid density but the solutions presented are for a density that increases exponentially from top to bottom. Comprehensive numerical data are included which elucidate the underlying response mechanisms and the effects and relative importance of the various parameters involved. The solution for the continuous density variation considered herein is also compared with a previously reported solution in which the liquid was modeled as a multi-layered, discrete system.

  8. Nonlinear Saturation of Vertically Propagating Rossby Waves

    E-print Network

    Giannitsis, Constantine

    The interaction between vertical Rossby wave propagation and wave breaking is studied in the idealized context of a beta-plane channel model. Considering the problem of propagation through a uniform zonal flow in an ...

  9. Vertical Glider Robots for Subsea Equipment Delivery

    E-print Network

    Reed, Brooks L.

    2011-01-01

    We have developed an underwater vehicle that offers significant performance improvements over existing sub sea elevators. Our Vertical Glider Robot falls under its own weight to a precise location on the seafloor, employing ...

  10. Subsurface imaging with reverse vertical seismic profiles

    E-print Network

    Krasovec, Mary L. (Mary Lee), 1972-

    2001-01-01

    This thesis presents imaging results from a 3D reverse vertical seismic profile (RVSP) dataset measured at a hydrocarbon bearing pinnacle reef in northern Michigan. The study presented many challenges in seismic data ...

  11. 30. BEARING SHOE / VERTICAL / DIAGONAL / UPPER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. BEARING SHOE / VERTICAL / DIAGONAL / UPPER AND LOWER CHORD DETAIL OF DECK TRUSS. VIEW TO NORTHEAST. - Abraham Lincoln Memorial Bridge, Spanning Missouri River on Highway 30 between Nebraska & Iowa, Blair, Washington County, NE

  12. 23. INCLINED END POST / VERTICAL / DIAGONAL / PORTAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. INCLINED END POST / VERTICAL / DIAGONAL / PORTAL BRACING DETAIL. VIEW TO SOUTHEAST. - Abraham Lincoln Memorial Bridge, Spanning Missouri River on Highway 30 between Nebraska & Iowa, Blair, Washington County, NE

  13. Vertical Axis Wind Turbine Foundation parameter study

    SciTech Connect

    Lodde, P.F.

    1980-07-01

    The dynamic failure criterion governing the dimensions of prototype Vertical Axis Wind Turbine Foundations is treated as a variable parameter. The resulting change in foundation dimensions and costs is examined.

  14. Vertical-axis wind-turbine program

    SciTech Connect

    Braasch, R.H.

    1981-01-01

    During the interval since the Fourth Biennial Wind Energy Conference, the vertical axis wind turbine program has experienced significant progress. The purpose of this paper is to review that progress in aerodynamics research, structural dynamics research, and machine development.

  15. Vertically Aligned Nanocomposites in Magnetic Thin Films 

    E-print Network

    Abdel-Raziq, Haron

    2013-02-11

    With the advent of ferromagnetic materials for magnetic memory among other applications, increased attention has been given to understanding the properties of these ferromagnets. Here, a vertically aligned nanocomposite (VAN) system is examined...

  16. Falling Liquid Films in Absorption Machines

    NASA Astrophysics Data System (ADS)

    Fujita, Toshihiko

    The absorption machines of the lithium bromide-water type have recently been established as heat source equipments for residential and industrial use, which include refrigerating machines, heat pumps, and heat transformers. Several advanced cycle machines have also been proposed and tested. All of the absorption machines consist fundamentally of four kinds of heat exchangers, i.e. evaporator, absorber, generator, and condenser. The horizontal or vertical falling film system is usually applied to these heat exchangers, since the pressure drop which causes an undesirable change in the fluid temperature is relatively small in either system. The horizontal system is popular for the present, while the vertical system is going to be developed promisingly. This may save an installation space and also fit a plan for the Lorentz cycle. The purpose of this paper is to survey the available information for increasing heat and mass transfer rates in the heat exchangers of absorption machines. Emphasis is placed on the hydrodynamic characteristics of falling liquid films in absorbers and generators. The following topics are covered in this paper: 1. Characteristics of thin liquid films over horizontal tubes 2. Characteristics of wavy thin liquid films flowing down the vertical or inclined wall surface 3. Effect of the artificial surface roughness on the heat and mass transfer rates 4. Enhancement in the heat and mass transfer rates by the Marangoni convection 5. Conditions of film breakdown and the minimum wetting rates.

  17. Vertical Motions of Oceanic Volcanoes

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Moore, J. G.

    2006-12-01

    Oceanic volcanoes offer abundant evidence of changes in their elevations through time. Their large-scale motions begin with a period of rapid subsidence lasting hundreds of thousands of years caused by isostatic compensation of the added mass of the volcano on the ocean lithosphere. The response is within thousands of years and lasts as long as the active volcano keeps adding mass on the ocean floor. Downward flexure caused by volcanic loading creates troughs around the growing volcanoes that eventually fill with sediment. Seismic surveys show that the overall depression of the old ocean floor beneath Hawaiian volcanoes such as Mauna Loa is about 10 km. This gross subsidence means that the drowned shorelines only record a small part of the total subsidence the islands experienced. In Hawaii, this history is recorded by long-term tide-gauge data, the depth in drill holes of subaerial lava flows and soil horizons, former shorelines presently located below sea level. Offshore Hawaii, a series of at least 7 drowned reefs and terraces record subsidence of about 1325 m during the last half million years. Older sequences of drowned reefs and terraces define the early rapid phase of subsidence of Maui, Molokai, Lanai, Oahu, Kauai, and Niihau. Volcanic islands, such as Maui, tip down toward the next younger volcano as it begins rapid growth and subsidence. Such tipping results in drowned reefs on Haleakala as deep as 2400 m where they are tipped towards Hawaii. Flat-topped volcanoes on submarine rift zones also record this tipping towards the next younger volcano. This early rapid subsidence phase is followed by a period of slow subsidence lasting for millions of years caused by thermal contraction of the aging ocean lithosphere beneath the volcano. The well-known evolution along the Hawaiian chain from high to low volcanic island, to coral island, and to guyot is due to this process. This history of rapid and then slow subsidence is interrupted by a period of minor uplift lasting a few hundred thousand years as the island migrates over a broad flexural arch related to isostatic compensation of a nearby active volcano. The arch is located about 190±30 km away from the center of volcanic activity and is also related to the rejuvenated volcanic stage on the islands. Reefs on Oahu that are uplifted several tens of m above sea level are the primary evidence for uplift as the islands over-ride the flexural arch. At the other end of the movement spectrum, both in terms of magnitude and length of response, are the rapid uplift and subsidence that occurs as magma is accumulated within or erupted from active submarine volcanoes. These changes are measured in days to years and are of cm to m variation; they are measured using leveling surveys, tiltmeters, EDM and GPS above sea level and pressure gauges and tiltmeters below sea level. Other acoustic techniques to measure such vertical movement are under development. Elsewhere, evidence for subsidence of volcanoes is also widespread, ranging from shallow water carbonates on drowned Cretaceous guyots, to mapped shoreline features, to the presence of subaerially-erupted (degassed) lavas on now submerged volcanoes. Evidence for uplift is more limited, but includes makatea islands with uplifted coral reefs surrounding low volcanic islands. These are formed due to flexural uplift associated with isostatic loading of nearby islands or seamounts. In sum, oceanic volcanoes display a long history of subsidence, rapid at first and then slow, sometimes punctuated by brief periods of uplift due to lithospheric loading by subsequently formed nearby volcanoes.

  18. 47 CFR 73.160 - Vertical plane radiation characteristics, f(?).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 false Vertical plane radiation characteristics, f(θ). 73.160...Stations § 73.160 Vertical plane radiation characteristics, f(?). (a) The vertical plane radiation characteristics show the...

  19. 47 CFR 73.160 - Vertical plane radiation characteristics, f(?).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 false Vertical plane radiation characteristics, f(θ). 73.160...Stations § 73.160 Vertical plane radiation characteristics, f(?). (a) The vertical plane radiation characteristics show the...

  20. 47 CFR 73.160 - Vertical plane radiation characteristics, f(?).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 false Vertical plane radiation characteristics, f(θ). 73.160...Stations § 73.160 Vertical plane radiation characteristics, f(?). (a) The vertical plane radiation characteristics show the...