Science.gov

Sample records for vestibular stochastic resonance

  1. Exhibition of Stochastic Resonance in Vestibular Perception

    NASA Technical Reports Server (NTRS)

    Galvan-Garza, R. C.; Clark, T. K.; Merfeld, D. M.; Bloomberg, J. J.; Oman, C. M.; Mulavara, A. P.

    2016-01-01

    Astronauts experience sensorimotor changes during spaceflight, particularly during G-transitions. Post flight sensorimotor changes include spatial disorientation, along with postural and gait instability that may degrade operational capabilities of the astronauts and endanger the crew. A sensorimotor countermeasure that mitigates these effects would improve crewmember safety and decrease risk. The goal of this research is to investigate the potential use of stochastic vestibular stimulation (SVS) as a technology to improve sensorimotor function. We hypothesize that low levels of SVS will improve sensorimotor perception through the phenomenon of stochastic resonance (SR), when the response of a nonlinear system to a weak input signal is enhanced by the application of a particular nonzero level of noise. This study aims to advance the development of SVS as a potential countermeasure by 1) demonstrating the exhibition of stochastic resonance in vestibular perception, a vital component of sensorimotor function, 2) investigating the repeatability of SR exhibition, and 3) determining the relative contribution of the semicircular canals (SCC) and otolith (OTO) organs to vestibular perceptual SR. A constant current stimulator was used to deliver bilateral bipolar SVS via electrodes placed on each of the mastoid processes, as previously done. Vestibular perceptual motion recognition thresholds were measured using a 6-degree of freedom MOOG platform and a 150 trial 3-down/1-up staircase procedure. In the first test session, we measured vestibular perceptual thresholds in upright roll-tilt at 0.2 Hz (SCC+OTO) with SVS ranging from 0-700 µA. In a second test session a week later, we re-measured roll-tilt thresholds with 0, optimal (from test session 1), and 1500 µA SVS levels. A subset of these subjects, plus naive subjects, participated in two additional test sessions in which we measured thresholds in supine roll-rotation at 0.2 Hz (SCC) and upright y-translation at 1 Hz (OTO) with SVS up to 700 µA. A sinusoidal galvanic vestibular stimulation (GVS) perceptual threshold was also measured on each test day and used to normalize the SVS levels across subjects. In roll-tilt thresholds with SVS, the characteristic SR curve was qualitatively exhibited in 10 of 12 subjects, and the improvement in motion threshold was significant in 6 subjects, indicating that optimal SVS improved passive body motion perception in a way that is consistent with classical SR theory. A probabilistic comparison to numeric simulations further validated these experimental results. On the second test session, 4 out of the 10 SR exhibitors showed repeated improvement with SVS compared to the no SVS condition. Data collection is ongoing for the last two test sessions in which SCC and OTO only perceptual motion recognition thresholds are being measured with SVS. The final results of these test sessions will give insight into whether vestibular perceptual SR can occur when only one type of vestibular sensor is sensing motion or if it is more evident when sensory integration between the SCC and OTO is occurring during the motion. The overall purpose of this research is to further quantify the effects of SVS on various sensorimotor tasks and to gain a more fundamental understanding of how SVS causes SR in the vestibular system. In the context of human space flight, results from this research will help in understanding how SVS may be practically implemented in the future as a component of a comprehensive countermeasure plan for G-transition adaptation.

  2. Stimulus Characteristics for Vestibular Stochastic Resonance to Improve Balance Function

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar; Fiedler, Matthew; Kofman, Igor; Peters, Brian; Wood, Scott; Serrado, Jorge; Cohen, Helen; Reschke, Millard; Bloomberg, Jacob

    2010-01-01

    Stochastic resonance (SR) is a mechanism by which noise can enhance the response of neural systems to relevant sensory signals. Studies have shown that imperceptible stochastic vestibular electrical stimulation, when applied to normal young and elderly subjects, significantly improved their ocular stabilization reflexes in response to whole-body tilt as well as balance performance during postural disturbances. The goal of this study was to optimize the amplitude characteristics of the stochastic vestibular signals for balance performance during standing on an unstable surface. Subjects performed a standard balance task of standing on a block of foam with their eyes closed. Bipolar stochastic electrical stimulation was applied to the vestibular system using constant current stimulation through electrodes placed over the mastoid process behind the ears. Amplitude of the signals varied in the range of 0-700 microamperes. Balance performance was measured using a force plate under the foam block, and inertial motion sensors were placed on the torso and head. Balance performance with stimulation was significantly greater (10%-25%) than with no stimulation. The signal amplitude at which performance was maximized was in the range of 100-300 microamperes. Optimization of the amplitude of the stochastic signals for maximizing balance performance will have a significant impact on development of vestibular SR as a unique system to aid recovery of function in astronauts after long-duration space flight or in patients with balance disorders.

  3. Enhancement of Otolith Specific Ocular Responses Using Vestibular Stochastic Resonance

    NASA Technical Reports Server (NTRS)

    Fiedler, Matthew; De Dios, Yiri E.; Esteves, Julie; Galvan, Raquel; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar

    2011-01-01

    Introduction: Astronauts experience disturbances in sensorimotor function after spaceflight during the initial introduction to a gravitational environment, especially after long-duration missions. Our goal is to develop a countermeasure based on vestibular stochastic resonance (SR) that could improve central interpretation of vestibular input and mitigate these risks. SR is a mechanism by which noise can assist and enhance the response of neural systems to relevant, imperceptible sensory signals. We have previously shown that imperceptible electrical stimulation of the vestibular system enhances balance performance while standing on an unstable surface. Methods: Eye movement data were collected from 10 subjects during variable radius centrifugation (VRC). Subjects performed 11 trials of VRC that provided equivalent tilt stimuli from otolith and other graviceptor input without the normal concordant canal cues. Bipolar stochastic electrical stimulation, in the range of 0-1500 microamperes, was applied to the vestibular system using a constant current stimulator through electrodes placed over the mastoid process behind the ears. In the VRC paradigm, subjects were accelerated to 216 deg./s. After the subjects no longer sensed rotation, the chair oscillated along a track at 0.1 Hz to provide tilt stimuli of 10 deg. Eye movements were recorded for 6 cycles while subjects fixated on a target in darkness. Ocular counter roll (OCR) movement was calculated from the eye movement data during periods of chair oscillations. Results: Preliminary analysis of the data revealed that 9 of 10 subjects showed an average increase of 28% in the magnitude of OCR responses to the equivalent tilt stimuli while experiencing vestibular SR. The signal amplitude at which performance was maximized was in the range of 100-900 microamperes. Discussion: These results indicate that stochastic electrical stimulation of the vestibular system can improve otolith specific responses. This will have a significant impact on development of vestibular SR delivery systems to aid recovery of function in astronauts after long-duration spaceflight or in people with balance disorders.

  4. Development of Vestibular Stochastic Resonance as a Sensorimotor Countermeasure: Improving Otolith Ocular and Motor Task Responses

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar; Fiedler, Matthew; DeDios,Yiri E.; Galvan, Raquel; Bloomberg, Jacob; Wood, Scott

    2011-01-01

    Astronauts experience disturbances in sensorimotor function after spaceflight during the initial introduction to a gravitational environment, especially after long-duration missions. Stochastic resonance (SR) is a mechanism by which noise can assist and enhance the response of neural systems to relevant, imperceptible sensory signals. We have previously shown that imperceptible electrical stimulation of the vestibular system enhances balance performance while standing on an unstable surface. The goal of our present study is to develop a countermeasure based on vestibular SR that could improve central interpretation of vestibular input and improve motor task responses to mitigate associated risks.

  5. Optimization of Stimulus Characteristics for Vestibular Stochastic Resonance to Improve Balance Function

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar; Fiedler, Matthew; Kofman, Igor; Acock, Keena; DeDios, Yiri E.; Heap, Erin; Peters, Brian; Wood, Scott; Serrador, Jorge; Cohen, Helen; Reschke, Millard; Bloomberg, Jacob

    2010-01-01

    Stochastic resonance (SR) is a mechanism by which noise can assist and enhance the response of neural systems to relevant sensory signals. Recent studies have shown that applying imperceptible stochastic noise electrical stimulation to the vestibular system significantly improved balance and ocular motor responses. The goal of this study was to optimize the amplitude of the stochastic vestibular signals for balance performance during standing on an unstable surface. Subjects performed a standardized balance task of standing on a block of 10-cm-thick medium-density foam with their eyes closed. Balance performance was measured using a force plate under the foam block and using inertial motion sensors placed on the torso and head segments. Stochastic electrical stimulation was applied to the vestibular system through electrodes placed over the mastoid process. Subjects were tested at seven amplitudes in the 0.01-30Hz frequency range. The root mean square of the signal increased by 30 microamperes for each +/-100 microampere increment in the current range of 0 - +/-700 microampere. Six balance parameters were calculated to characterize the performance of subjects during the baseline and the stimulus periods for all seven amplitudes. Optimal stimulus amplitude was determined as the one at which the ratio of parameters from the stimulus period to the baseline period for any amplitude range was less than that for the no stimulus condition on a minimum of four of six parameters. Results from this study showed that balance performance at the optimal stimulus amplitude showed significant improvement with the application of the vestibular SR stimulation. The amplitude of optimal stimulus for improving balance performance in normal subjects was in the range of +/-100 - +/-300 microamps.

  6. Vestibular Stochastic Resonance as a Method to Improve Balance Function: Optimization of Stimulus Characteristics

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar; Fiedler, Matthew; Kofman, Igor; Peters, Brian; Wood, Scott; Serrador, Jorge; Cohen, Helen; Reschke, Millard; Bloomberg, Jacob

    2010-01-01

    Stochastic resonance (SR) is a mechanism by which noise can assist and enhance the response of neural systems to relevant sensory signals. Application of imperceptible SR noise coupled with sensory input through the proprioceptive, visual, or vestibular sensory systems has been shown to improve motor function. Specifically, studies have shown that that vestibular electrical stimulation by imperceptible stochastic noise, when applied to normal young and elderly subjects, significantly improved their ocular stabilization reflexes in response to whole-body tilt as well as balance performance during postural disturbances. The goal of this study was to optimize the characteristics of the stochastic vestibular signals for balance performance during standing on an unstable surface. Subjects performed a standardized balance task of standing on a block of 10 cm thick medium density foam with their eyes closed for a total of 40 seconds. Stochastic electrical stimulation was applied to the vestibular system through electrodes placed over the mastoid process behind the ears during the last 20 seconds of the test period. A custom built constant current stimulator with subject isolation delivered the stimulus. Stimulation signals were generated with frequencies in the bandwidth of 1-2 Hz and 0.01-30 Hz. Amplitude of the signals were varied in the range of 0- +/-700 micro amperes with the RMS of the signal increased by 30 micro amperes for each 100 micro amperes increase in the current range. Balance performance was measured using a force plate under the foam block and inertial motion sensors placed on the torso and head segments. Preliminary results indicate that balance performance is improved in the range of 10-25% compared to no stimulation conditions. Subjects improved their performance consistently across the blocks of stimulation. Further the signal amplitude at which the performance was maximized was different in the two frequency ranges. Optimization of the frequency and amplitude of the signal characteristics of the stochastic noise signals on maximizing balance performance will have a significant impact in its development as a unique system to aid recovery of function in astronauts after long duration space flight or for people with balance disorders.

  7. Functional stochastic resonance in human baroreflex induced by 1/f-type noisy galvanic vestibular stimulation

    NASA Astrophysics Data System (ADS)

    Soma, Rika; Kwak, Shin; Yamamoto, Yoshiharu

    2003-05-01

    We hypothesized that 1/f noise is more beneficial than the conventional white noise in optimizing the brain's response to a weak input signal, and showed that externally added 1/f noise outperforms white noise in sensitizing human baroreflex centers in the brain. We examined the compensatory heart rate response to weak periodic signal introduced at the venous blood pressure receptor, while adding either 1/f or white noise with the same variance to the brain stem by electrically stimulating the bilateral vestibular afferents cutaneously. This stochastic galvanic vestibular stimulation, activating the vestibulo-sympathetic pathway in the brain stem, optimized covariance between weak input signals and the heart rate responses both with 1/f and white noise. Further, the optimal noise level with 1/f noise was significantly lower than that with white noise, suggesting the functional benefit of 1/f noise for the neuronal information transfer in the brain.

  8. Estimation of an Optimal Stimulus Amplitude for Using Vestibular Stochastic Stimulation to Improve Balance Function

    NASA Technical Reports Server (NTRS)

    Goel, R.; Kofman, I.; DeDios, Y. E.; Jeevarajan, J.; Stepanyan, V.; Nair, M.; Congdon, S.; Fregia, M.; Peters, B.; Cohen, H.; Wood, S.; Bloomberg, J. J.; Mulavara, A. P.

    2015-01-01

    Sensorimotor changes such as postural and gait instabilities can affect the functional performance of astronauts when they transition across different gravity environments. We are developing a method, based on stochastic resonance (SR), to enhance information transfer by applying non-zero levels of external noise on the vestibular system (vestibular stochastic resonance, VSR). The goal of this project was to determine optimal levels of stimulation for SR applications by using a defined vestibular threshold of motion detection.

  9. Efficacy of Stochastic Vestibular Stimulation to Improve Locomotor Performance in a Discordant Sensory Environment

    NASA Technical Reports Server (NTRS)

    Temple, D. R.; De Dios, Y. E.; Layne, C. S.; Bloomberg, J. J.; Mulavara, A. P.

    2016-01-01

    Astronauts exposed to microgravity face sensorimotor challenges incurred when readapting to a gravitational environment. Sensorimotor Adaptability (SA) training has been proposed as a countermeasure to improve locomotor performance during re-adaptation, and it is suggested that the benefits of SA training may be further enhanced by improving detection of weak sensory signals via mechanisms such as stochastic resonance when a non-zero level of stochastic white noise based electrical stimulation is applied to the vestibular system (stochastic vestibular stimulation, SVS). The purpose of this study was to test the efficacy of using SVS to improve short-term adaptation in a sensory discordant environment during performance of a locomotor task.

  10. Improving Sensorimotor Function and Adaptation using Stochastic Vestibular Stimulation

    NASA Technical Reports Server (NTRS)

    Galvan, R. C.; Bloomberg, J. J.; Mulavara, A. P.; Clark, T. K.; Merfeld, D. M.; Oman, C. M.

    2014-01-01

    Astronauts experience sensorimotor changes during adaption to G-transitions that occur when entering and exiting microgravity. Post space flight, these sensorimotor disturbances can include postural and gait instability, visual performance changes, manual control disruptions, spatial disorientation, and motion sickness, all of which can hinder the operational capabilities of the astronauts. Crewmember safety would be significantly increased if sensorimotor changes brought on by gravitational changes could be mitigated and adaptation could be facilitated. The goal of this research is to investigate and develop the use of electrical stochastic vestibular stimulation (SVS) as a countermeasure to augment sensorimotor function and facilitate adaptation. For this project, SVS will be applied via electrodes on the mastoid processes at imperceptible amplitude levels. We hypothesize that SVS will improve sensorimotor performance through the phenomena of stochastic resonance, which occurs when the response of a nonlinear system to a weak input signal is optimized by the application of a particular nonzero level of noise. In line with the theory of stochastic resonance, a specific optimal level of SVS will be found and tested for each subject [1]. Three experiments are planned to investigate the use of SVS in sensory-dependent tasks and performance. The first experiment will aim to demonstrate stochastic resonance in the vestibular system through perception based motion recognition thresholds obtained using a 6-degree of freedom Stewart platform in the Jenks Vestibular Laboratory at Massachusetts Eye and Ear Infirmary. A range of SVS amplitudes will be applied to each subject and the subjectspecific optimal SVS level will be identified as that which results in the lowest motion recognition threshold, through previously established, well developed methods [2,3,4]. The second experiment will investigate the use of optimal SVS in facilitating sensorimotor adaptation to system disturbances. Subjects will adapt to wearing minifying glasses, resulting in decreased vestibular ocular reflex (VOR) gain. The VOR gain will then be intermittently measured while the subject readapts to normal vision, with and without optimal SVS. We expect that optimal SVS will cause a steepening of the adaptation curve. The third experiment will test the use of optimal SVS in an operationally relevant aerospace task, using the tilt translation sled at NASA Johnson Space Center, a test platform capable of recreating the tilt-gain and tilt-translation illusions associated with landing of a spacecraft post-space flight. In this experiment, a perception based manual control measure will be used to compare performance with and without optimal SVS. We expect performance to improve in this task when optimal SVS is applied. The ultimate goal of this work is to systematically investigate and further understand the potential benefits of stochastic vestibular stimulation in the context of human space flight so that it may be used in the future as a component of a comprehensive countermeasure plan for adaptation to G-transitions.

  11. Using low levels of stochastic vestibular stimulation to improve locomotor stability

    E-print Network

    Mulavara, Ajitkumar P.

    Low levels of bipolar binaural white noise based imperceptible stochastic electrical stimulation to the vestibular system (stochastic vestibular stimulation, SVS) have been shown to improve stability during balance tasks ...

  12. Determine Optimal Stimulus Amplitude for Using Vestibular Stochastic Stimulation to Improve Balance Function

    NASA Technical Reports Server (NTRS)

    Goel, R.; Kofman, I.; DeDios, Y. E.; Jeevarajan, J.; Stepanyan, V.; Nair, M.; Congdon, S.; Fregia, M.; Cohen, H.; Bloomberg, J.J.; Mulavara, A.P.

    2015-01-01

    Sensorimotor changes such as postural and gait instabilities can affect the functional performance of astronauts when they transition across different gravity environments. We are developing a method, based on stochastic resonance (SR), to enhance information transfer by applying non-zero levels of external noise on the vestibular system (vestibular stochastic resonance, VSR). Our previous work has shown the advantageous effects of VSR in a balance task of standing on an unstable surface [1]. This technique to improve detection of vestibular signals uses a stimulus delivery system that provides imperceptibly low levels of white noise-based binaural bipolar electrical stimulation of the vestibular system. The goal of this project is to determine optimal levels of stimulation for SR applications by using a defined vestibular threshold of motion detection. A series of experiments were carried out to determine a robust paradigm to identify a vestibular threshold that can then be used to recommend optimal stimulation levels for sensorimotor adaptability (SA) training applications customized to each crewmember. The amplitude of stimulation to be used in the VSR application has varied across studies in the literature such as 60% of nociceptive stimulus thresholds [2]. We compared subjects' perceptual threshold with that obtained from two measures of body sway. Each test session was 463s long and consisted of several 15s long sinusoidal stimuli, at different current amplitudes (0-2 mA), interspersed with 20-20.5s periods of no stimulation. Subjects sat on a chair with their eyes closed and had to report their perception of motion through a joystick. A force plate underneath the chair recorded medio-lateral shear forces and roll moments. Comparison of threshold of motion detection obtained from joystick data versus body sway suggests that perceptual thresholds were significantly lower. In the balance task, subjects stood on an unstable surface and had to maintain balance, and the stimulation was administered from 20-400% of subjects' vestibular threshold. Optimal stimulation amplitude was determined at which the balance performance was best compared to control (no stimulation). Preliminary results show that, in general, using stimulation amplitudes at 40-60% of perceptual motion threshold significantly improved the balance performance. We hypothesize that VSR stimulation will act synergistically with SA training to improve adaptability by increasing utilization of vestibular information and therefore will help us to optimize and personalize a SA countermeasure prescription. This combination may help to significantly reduce the number of days required to recover functional performance to preflight levels after long-duration spaceflight.

  13. Optimal Stimulus Amplitude for Vestibular Stochastic Stimulation to Improve Sensorimotor Function

    NASA Technical Reports Server (NTRS)

    Goel, R.; Kofman, I.; DeDios, Y. E.; Jeevarajan, J.; Stepanyan, V.; Nair, M.; Congdon, S.; Fregia, M.; Cohen, H.; Bloomberg, J. J.; Mulavara, A. P.

    2014-01-01

    Sensorimotor changes such as postural and gait instabilities can affect the functional performance of astronauts when they transition across different gravity environments. We are developing a method, based on stochastic resonance (SR), to enhance information transfer by applying non-zero levels of external noise on the vestibular system (vestibular stochastic resonance, VSR). Our previous work has shown the advantageous effects of VSR in a balance task of standing on an unstable surface. This technique to improve detection of vestibular signals uses a stimulus delivery system that is wearable or portable and provides imperceptibly low levels of white noise-based binaural bipolar electrical stimulation of the vestibular system. The goal of this project is to determine optimal levels of stimulation for SR applications by using a defined vestibular threshold of motion detection. A series of experiments were carried out to determine a robust paradigm to identify a vestibular threshold that can then be used to recommend optimal stimulation levels for SR training applications customized to each crewmember. Customizing stimulus intensity can maximize treatment effects. The amplitude of stimulation to be used in the VSR application has varied across studies in the literature such as 60% of nociceptive stimulus thresholds. We compared subjects' perceptual threshold with that obtained from two measures of body sway. Each test session was 463s long and consisted of several 15s sinusoidal stimuli, at different current amplitudes (0-2 mA), interspersed with 20-20.5s periods of no stimulation. Subjects sat on a chair with their eyes closed and had to report their perception of motion through a joystick. A force plate underneath the chair recorded medio-lateral shear forces and roll moments. First we determined the percent time during stimulation periods for which perception of motion (activity above a pre-defined threshold) was reported using the joystick, and body sway (two standard deviation of the noise level in the baseline measurement) was detected by the sensors. The percentage time at each stimulation level for motion detection was normalized with respect to the largest value and a logistic regression curve fit was applied to these data. The threshold was defined at the 50% probability of motion detection. Comparison of threshold of motion detection obtained from joystick data versus body sway suggests that perceptual thresholds were significantly lower, and were not impacted by system noise. Further, in order to determine optimal stimulation amplitude to improve balance, two sets of experiments were carried out. In the first set of experiments, all subjects received the same level of stimuli and the intensity of optimal performance was projected back on subjects' vestibular threshold curve. In the second set of experiments, on different subjects, stimulation was administered from 20-400% of subjects' vestibular threshold obtained from joystick data. Preliminary results of our study show that, in general, using stimulation amplitudes at 40-60% of perceptual motion threshold improved balance performance significantly compared to control (no stimulation). The amplitude of vestibular stimulation that improved balance function was predominantly in the range of +/- 100 to +/- 400 micro A. We hypothesize that VSR stimulation will act synergistically with sensorimotor adaptability (SA) training to improve adaptability by increasing utilization of vestibular information and therefore will help us to optimize and personalize a SA countermeasure prescription. This combination will help to significantly reduce the number of days required to recover functional performance to preflight levels after long-duration spaceflight.

  14. Using low levels of stochastic vestibular stimulation to improve locomotor stability

    PubMed Central

    Mulavara, Ajitkumar P.; Kofman, Igor S.; De Dios, Yiri E.; Miller, Chris; Peters, Brian T.; Goel, Rahul; Galvan-Garza, Raquel; Bloomberg, Jacob J.

    2015-01-01

    Low levels of bipolar binaural white noise based imperceptible stochastic electrical stimulation to the vestibular system (stochastic vestibular stimulation, SVS) have been shown to improve stability during balance tasks in normal, healthy subjects by facilitating enhanced information transfer using stochastic resonance (SR) principles. We hypothesize that detection of time-critical sub-threshold sensory signals using low levels of bipolar binaural SVS based on SR principles will help improve stability of walking during support surface perturbations. In the current study 13 healthy subjects were exposed to short continuous support surface perturbations for 60 s while walking on a treadmill and simultaneously viewing perceptually matched linear optic flow. Low levels of bipolar binaural white noise based SVS were applied to the vestibular organs. Multiple trials of the treadmill locomotion test were performed with stimulation current levels varying in the range of 0–1500 ?A, randomized across trials. The results show that subjects significantly improved their walking stability during support surface perturbations at stimulation levels with peak amplitude predominantly in the range of 100–500 ?A consistent with the SR phenomenon. Additionally, objective perceptual motion thresholds were measured separately as estimates of internal noise while subjects sat on a chair with their eyes closed and received 1 Hz bipolar binaural sinusoidal electrical stimuli. The optimal improvement in walking stability was achieved on average with peak stimulation amplitudes of approximately 35% of perceptual motion threshold. This study shows the effectiveness of using low imperceptible levels of SVS to improve dynamic stability during walking on a laterally oscillating treadmill via the SR phenomenon. PMID:26347619

  15. Using low levels of stochastic vestibular stimulation to improve locomotor stability.

    PubMed

    Mulavara, Ajitkumar P; Kofman, Igor S; De Dios, Yiri E; Miller, Chris; Peters, Brian T; Goel, Rahul; Galvan-Garza, Raquel; Bloomberg, Jacob J

    2015-01-01

    Low levels of bipolar binaural white noise based imperceptible stochastic electrical stimulation to the vestibular system (stochastic vestibular stimulation, SVS) have been shown to improve stability during balance tasks in normal, healthy subjects by facilitating enhanced information transfer using stochastic resonance (SR) principles. We hypothesize that detection of time-critical sub-threshold sensory signals using low levels of bipolar binaural SVS based on SR principles will help improve stability of walking during support surface perturbations. In the current study 13 healthy subjects were exposed to short continuous support surface perturbations for 60 s while walking on a treadmill and simultaneously viewing perceptually matched linear optic flow. Low levels of bipolar binaural white noise based SVS were applied to the vestibular organs. Multiple trials of the treadmill locomotion test were performed with stimulation current levels varying in the range of 0-1500 ?A, randomized across trials. The results show that subjects significantly improved their walking stability during support surface perturbations at stimulation levels with peak amplitude predominantly in the range of 100-500 ?A consistent with the SR phenomenon. Additionally, objective perceptual motion thresholds were measured separately as estimates of internal noise while subjects sat on a chair with their eyes closed and received 1 Hz bipolar binaural sinusoidal electrical stimuli. The optimal improvement in walking stability was achieved on average with peak stimulation amplitudes of approximately 35% of perceptual motion threshold. This study shows the effectiveness of using low imperceptible levels of SVS to improve dynamic stability during walking on a laterally oscillating treadmill via the SR phenomenon. PMID:26347619

  16. Stochastic Resonance: from climate to biology

    E-print Network

    Roberto Benzi

    2007-02-05

    In this paper I will review some basic aspects of the mechanism of stochastic resonance. Stochastic resonance was first introduced as a possible mechanism to explain long term climatic variation. Since then, there have been many applications of stochastic resonance in physical and biological systems. I will show that in complex system, stochastic resonance can substantially change as a function of the ``system complexity''. Also, I will briefly mention how to apply stochastic resonance for the case of Brownian motors.

  17. Using Low Levels of Stochastic Vestibular Stimulation to Improve Balance Function

    PubMed Central

    Goel, Rahul; Kofman, Igor; Jeevarajan, Jerome; De Dios, Yiri; Cohen, Helen S.; Bloomberg, Jacob J.; Mulavara, Ajitkumar P.

    2015-01-01

    Low-level stochastic vestibular stimulation (SVS) has been associated with improved postural responses in the medio-lateral (ML) direction, but its effect in improving balance function in both the ML and anterior-posterior (AP) directions has not been studied. In this series of studies, the efficacy of applying low amplitude SVS in 0–30 Hz range between the mastoids in the ML direction on improving cross-planar balance function was investigated. Forty-five (45) subjects stood on a compliant surface with their eyes closed and were instructed to maintain a stable upright stance. Measures of stability of the head, trunk, and whole body were quantified in ML, AP and combined APML directions. Results show that binaural bipolar SVS given in the ML direction significantly improved balance performance with the peak of optimal stimulus amplitude predominantly in the range of 100–500 ?A for all the three directions, exhibiting stochastic resonance (SR) phenomenon. Objective perceptual and body motion thresholds as estimates of internal noise while subjects sat on a chair with their eyes closed and were given 1 Hz bipolar binaural sinusoidal electrical stimuli were also measured. In general, there was no significant difference between estimates of perceptual and body motion thresholds. The average optimal SVS amplitude that improved balance performance (peak SVS amplitude normalized to perceptual threshold) was estimated to be 46% in ML, 53% in AP, and 50% in APML directions. A miniature patch-type SVS device may be useful to improve balance function in people with disabilities due to aging, Parkinson’s disease or in astronauts returning from long-duration space flight. PMID:26295807

  18. Stochastic Resonance and Information Processing

    NASA Astrophysics Data System (ADS)

    Nicolis, C.

    2014-12-01

    A dynamical system giving rise to multiple steady states and subjected to noise and a periodic forcing is analyzed from the standpoint of information theory. It is shown that stochastic resonance has a clearcut signature on information entropy, information transfer and other related quantities characterizing information transduction within the system.

  19. STOCHASTIC RESONANCE IN THALAMIC NEURONS AND RESONANT NEURON MODELS

    E-print Network

    Fournier, John J.F.

    subsystem. We develop a simple linear integrate-and-fire model with subthreshold resonance, which retains demonstrate that preferred stochastic firing in the single neuron model translates into syn- chronizedSTOCHASTIC RESONANCE IN THALAMIC NEURONS AND RESONANT NEURON MODELS by STEFAN REINKER Diplom

  20. Stochastic resonance in attention control

    NASA Astrophysics Data System (ADS)

    Kitajo, K.; Yamanaka, K.; Ward, L. M.; Yamamoto, Y.

    2006-12-01

    We investigated the beneficial role of noise in a human higher brain function, namely visual attention control. We asked subjects to detect a weak gray-level target inside a marker box either in the left or the right visual field. Signal detection performance was optimized by presenting a low level of randomly flickering gray-level noise between and outside the two possible target locations. Further, we found that an increase in eye movement (saccade) rate helped to compensate for the usual deterioration in detection performance at higher noise levels. To our knowledge, this is the first experimental evidence that noise can optimize a higher brain function which involves distinct brain regions above the level of primary sensory systems -- switching behavior between multi-stable attention states -- via the mechanism of stochastic resonance.

  1. Stochastic stability of Pollicott-Ruelle resonances

    NASA Astrophysics Data System (ADS)

    Dyatlov, Semyon; Zworski, Maciej

    2015-10-01

    Pollicott-Ruelle resonances for chaotic flows are the characteristic frequencies of correlations. They are typically defined as eigenvalues of the generator of the flow acting on specially designed functional spaces. We show that these resonances can be computed as viscosity limits of eigenvalues of second order elliptic operators. These eigenvalues are the characteristic frequencies of correlations for a stochastically perturbed flow.

  2. Unidentified Bright Objects on Brain Magnetic Resonance Imaging Affect Vestibular Neuritis

    PubMed Central

    Kim, Ji Chan; Chang, Dong Sik; Cho, Chin Saeng

    2015-01-01

    Objectives The aim of this study was to investigate the differences in clinical manifestations of in two groups of vestibular neuritis (VN) patients with or without unidentified bright objects (UBOs). Methods A prospective, observational study with 46 patients diagnosed with VN between May 2013 and November 2013 was executed. A caloric test, a cervical vestibular-evoked myogenic potentials (cVEMPs) test, brain magnetic resonance imaging (MRI), spontaneous nystagmus test, head impulse test, and head-shaking nystagmus test were performed. Results Of the patients, 56.5% (n=26) were classified as UBO-positive by MRI. These showed lower caloric weakness and more prominent cVEMP asymmetry compared with the UBO-negative group (P<0.05). Total VN (TVN) was the most common in the UBO-positive group (45.0%), followed by superior VN (SVN, 30.0%), and inferior VN (IVN, 25.0%). However, in the UBO-negative group, SVN (75.0%) was the most common, followed by TVN and IVN (P<0.05). The recovery rate was not influenced by UBOs (P>0.05). Conclusion UBOs on T2-weighted or fluid attenuated inversion recovery MRI may affect the patterns of the vestibular nerve in patients with VN. PMID:26622955

  3. Stochastic resonance in an intracellular genetic perceptron

    NASA Astrophysics Data System (ADS)

    Bates, Russell; Blyuss, Oleg; Zaikin, Alexey

    2014-03-01

    Intracellular genetic networks are more intelligent than was first assumed due to their ability to learn. One of the manifestations of this intelligence is the ability to learn associations of two stimuli within gene-regulating circuitry: Hebbian-type learning within the cellular life. However, gene expression is an intrinsically noisy process; hence, we investigate the effect of intrinsic and extrinsic noise on this kind of intracellular intelligence. We report a stochastic resonance in an intracellular associative genetic perceptron, a noise-induced phenomenon, which manifests itself in noise-induced increase of response in efficiency after the learning event under the conditions of optimal stochasticity.

  4. Decoding suprathreshold stochastic resonance with optimal weights

    NASA Astrophysics Data System (ADS)

    Xu, Liyan; Vladusich, Tony; Duan, Fabing; Gunn, Lachlan J.; Abbott, Derek; McDonnell, Mark D.

    2015-10-01

    We investigate an array of stochastic quantizers for converting an analog input signal into a discrete output in the context of suprathreshold stochastic resonance. A new optimal weighted decoding is considered for different threshold level distributions. We show that for particular noise levels and choices of the threshold levels optimally weighting the quantizer responses provides a reduced mean square error in comparison with the original unweighted array. However, there are also many parameter regions where the original array provides near optimal performance, and when this occurs, it offers a much simpler approach than optimally weighting each quantizer's response.

  5. Stochastic resonance at nonequilibrium phase transitions

    NASA Astrophysics Data System (ADS)

    Skokov, V. N.; Koverda, V. P.; Vinogradov, A. V.; Reshetnikov, A. V.

    2015-07-01

    Thermal pulsations in a transition from a nucleate to a film regime of water boiling on a wire heater with a periodic Joule heat release have been studied experimentally. At frequencies of the periodic action smaller than 0.1 Hz the intermittency of the nucleate and film boiling regimes was observed. In this case the amplitude of thermal pulsations increased. The experiments with an additional noise source were carried out. With an increase in the intensity of the noise the power of the output periodic mode increased and reaching the maximum began to decrease. The results are interpreted as stochastic resonance when the periodic component of pulsations increases in the presence of noise. The results show that in a complex system with nonequilibrium phase transitions there can occur both the extreme fluctuations with 1 / f power spectrum and stochastic resonance under external periodic action.

  6. Stochastic Resonance and Nonlinear Response by NMR Spectroscopy

    E-print Network

    L. Viola; E. M. Fortunato; S. Lloyd; C. -H. Tseng; D. G. Cory

    2000-01-26

    We revisit the phenomenon of quantum stochastic resonance in the regime of validity of the Bloch equations. We find that a stochastic resonance behavior in the steady-state response of the system is present whenever the noise-induced relaxation dynamics can be characterized via a single relaxation time scale. The picture is validated by a simple nuclear magnetic resonance experiment in water.

  7. Crossing resonance of stochastically interacting wave fields

    SciTech Connect

    Ignatchenko, V. A. Polukhin, D. S.

    2013-02-15

    The dynamic susceptibilities (Green's functions) of the system of two interacting wave fields of different physical natures with a stochastically inhomogeneous coupling parameter between them with zero mean value have been examined. The well-known self-consistent approximation taking into account all diagrams with noncrossing correlation/interaction lines has been generalized to the case of stochastically interacting wave fields. The analysis has been performed for spin and elastic waves. The results obtained taking into account the processes of multiple scattering of waves from inhomogeneities are significantly different from those obtained for this situation earlier in the Bourret approximation [R.C. Bourret, Nuovo Cimento 26, 1 (1962)]. Instead of frequencies degeneracy removal in the wave spectrum and the splitting of resonance peaks of dynamic susceptibilities, a wide single-mode resonance peak should be observed at the crossing point of the unperturbed dispersion curves. The fine structure appears at vertices of these wide peaks in the form of a narrow resonance on the Green's-function curve of one field and a narrow antiresonance on the vertex of the Green's-function curve of the other field.

  8. Stochastic resonance and 1/f noise at coupled phase transitions

    NASA Astrophysics Data System (ADS)

    Koverda, V. P.; Skokov, V. N.

    2014-01-01

    The system of two nonlinear stochastic equations simulating 1/f fluctuations during the interaction of nonequilibrium phase transitions in the presence of an external periodic action has been studied by numerical methods. It is shown that in the system there appears stochastic resonance, which leads to an amplification of the output periodic signal under the action of noise. To a random process with a 1/f power spectrum corresponds the maximum Gibbs-Shannon informational entropy. At stochastic resonance the informational entropy is minimum. A new behavior of a two-dimensional system at stochastic resonance has been revealed: at low frequencies of a periodic action with an increased white noise intensity the system trajectories are limited by two mutually perpendicular directions-anisotropic stochastic resonance. With a further increase in the white noise intensity in the system one can observe “ordinary” stochastic resonance, when the increasing intensity of fluctuations in the vicinity of the driving frequency is smeared in the directions.

  9. Stochastic resonance in mammalian neuronal networks

    SciTech Connect

    Gluckman, B.J.; So, P.; Netoff, T.I.; Spano, M.L.; Schiff, S.J.

    1998-09-01

    We present stochastic resonance observed in the dynamics of neuronal networks from mammalian brain. Both sinusoidal signals and random noise were superimposed into an applied electric field. As the amplitude of the noise component was increased, an optimization (increase then decrease) in the signal-to-noise ratio of the network response to the sinusoidal signal was observed. The relationship between the measures used to characterize the dynamics is discussed. Finally, a computational model of these neuronal networks that includes the neuronal interactions with the electric field is presented to illustrate the physics behind the essential features of the experiment. {copyright} {ital 1998 American Institute of Physics.}

  10. Stochastic Resonance Crossovers in Complex Networks

    PubMed Central

    Pinamonti, Giovanni; Marro, J.; Torres, Joaquín J.

    2012-01-01

    Here we numerically study the emergence of stochastic resonance as a mild phenomenon and how this transforms into an amazing enhancement of the signal-to-noise ratio at several levels of a disturbing ambient noise. The setting is a cooperative, interacting complex system modelled as an Ising-Hopfield network in which the intensity of mutual interactions or “synapses” varies with time in such a way that it accounts for, e.g., a kind of fatigue reported to occur in the cortex. This induces nonequilibrium phase transitions whose rising comes associated to various mechanisms producing two types of resonance. The model thus clarifies the details of the signal transmission and the causes of correlation among noise and signal. We also describe short-time persistent memory states, and conclude on the limited relevance of the network wiring topology. Our results, in qualitative agreement with the observation of excellent transmission of weak signals in the brain when competing with both intrinsic and external noise, are expected to be of wide validity and may have technological application. We also present here a first contact between the model behavior and psychotechnical data. PMID:23272090

  11. City traffic jam relief by stochastic resonance

    NASA Astrophysics Data System (ADS)

    Castillo, F.; Toledo, B. A.; Muñoz, V.; Rogan, J.; Zarama, R.; Kiwi, M.; Valdivia, J. A.

    2014-06-01

    We simulate traffic in a city by means of the evolution of a row of interacting cars, using a cellular automaton model, in a sequence of traffic lights synchronized by a "green wave". When our initial condition is a small density jammed state, its evolution shows the expected scaling laws close to the synchronization resonance, with a uniform car density along the street. However, for an initial large density jammed state, we observe density variations along the streets, which results in the breakdown of the scaling laws. This spatial disorder corresponds to a different attractor of the system. As we include velocity perturbations in the dynamics of the cars, all these attractors converge to a statistically equivalent system for all initial jammed densities. However, this emergent state shows a stochastic resonance-like behavior in which the average traffic velocity increases with respect to that of the system without noise, for several initial jammed densities. This result may help in the understanding of dynamics of traffic jams in cities.

  12. Stochastic resonance in human vision and audition

    NASA Astrophysics Data System (ADS)

    Ward, Lawrence M.; Desai, Simren; Rootman, Daniel; Tata, Matthew; Moss, Frank

    2001-03-01

    Stochastic resonance (SR) has been demonstrated in numerous dynamical systems, both model and real, including peripheral sensory neurons and whole animal behavior. We present the first direct evidence that SR is demonstrable also, at a level relevant to behavior in the natural environment, in human visual and auditory signal detection. Human subjects detected either square or sine wave gratings presented mixed with different amounts of pixel noise in the dark on a high-resolution computer monitor, or 3 Hz beats in a 70-Hz base tone, again mixed with different amounts of auditory noise and presented in a sound attenuation chamber while wearing industrial-quality sound-attenuating headphones. In both cases an unbiased index of performance was maximal for intermediate amounts of added noise, indicating that SR enhanced detection of subthreshold signals in both modalities. We present simple and approximate theories of performance in these experiments based on a nondynamical, or threshold, version of SR. We also discuss the possibility that SR is a general property of biological information processing that has been utilized by evolutionary processes.

  13. Endogenous neural noise and stochastic resonance

    NASA Astrophysics Data System (ADS)

    Emberson, Lauren; Kitajo, Keiichi; Ward, Lawrence M.

    2007-06-01

    We discuss the relationship of endogenous neural noise (ENN) to performance of behavioral tasks and to information processing in the brain. Spontaneous neural activity is closely linked to development and perception, and is correlated with behavior. Some of this activity is probably related to internal processing of task- and goal-relevant information, but some is simply noise. Two previous studies have reported correlations between performance on behavioral tasks and measures of neural noise and have characterized these relationships as intrinsic stochastic resonance (SR). We argue that neither of these studies demonstrated intrinsic SR, and discuss several alternative ways of measuring ENN in humans from EEG or MEG records. Using one of these, random-phase power in the 30-50 Hz range 1 sec before the onset of the signal, we demonstrate a kind of intrinsic SR that optimizes detection of weak visual signals. Minimum response time was obtained when this EEG measure of ENN was in a middle decile. No other measure of ENN was related either to response time or to an unbiased measure of detection accuracy (e.g., d'). A discussion of the implications of these findings for the study of intrinsic SR concludes the paper.

  14. 2003 Special issue Stochastic resonance in noisy threshold neurons

    E-print Network

    Kosko, Bart

    2003 Special issue Stochastic resonance in noisy threshold neurons Bart Koskoa,*, Sanya Mitaimb-resonance theorems for threshold neurons that process noisy Bernoulli input sequences. The performance measure increase the mutual information of threshold neurons if the neurons detect subthreshold signals. The first

  15. Constructive role of Brownian motion: Brownian motors and Stochastic Resonance

    NASA Astrophysics Data System (ADS)

    Hänggi, Peter

    2005-03-01

    Noise is usually thought of as the enemy of order rather as a constructive influence. For the phenomena of Stochastic Resonance [1] and Brownian motors [2], however, stochastic noise can play a beneficial role in enhancing detection and/or facilitating directed transmission of information in absence of biasing forces. Brownian motion assisted Stochastic Resonance finds useful applications in physical, technological, biological and biomedical contexts [1,3]. The basic principles that underpin Stochastic Resonance are elucidated and novel applications for nonlinear classical and quantum systems will be addressed. The presence of non-equilibrium disturbances enables to rectify Brownian motion so that quantum and classical objects can be directed around on a priori designed routes in biological and physical systems (Brownian motors). In doing so, the energy from the haphazard motion of (quantum) Brownian particles is extracted to perform useful work against an external load. This very concept together with first experimental realizations are discussed [2,4,5]. [1] L. Gammaitoni, P. Hä'nggi, P. Jung and F. Marchesoni, Stochastic Resonance, Rev. Mod. Phys. 70, 223 (1998).[2] R. D. Astumian and P. Hä'nggi, Brownian motors, Physics Today 55 (11), 33 (2002).[3] P. Hä'nggi, Stochastic Resonace in Physics and Biology, ChemPhysChem 3, 285 (2002).[4] H. Linke, editor, Special Issue on Brownian Motors, Applied Physics A 75, No. 2 (2002).[5] P. Hä'nggi, F. Marchesoni, F. Nori, Brownian motors, Ann. Physik (Leipzig) 14, xxx (2004); cond-mat/0410033.

  16. Vestibular recruitment

    NASA Technical Reports Server (NTRS)

    Tsemakhov, S. G.

    1980-01-01

    Vestibular recruitment is defined through the analysis of several references. It is concluded that vestibular recruitment is an objective phenomenon which manifests itself during the affection of the vestibular receptor and thus serves as a diagnostic tool during affection of the vestibular system.

  17. Tracking stochastic resonance curves using an assisted reference model

    SciTech Connect

    Calderón Ramírez, Mario; Rico Martínez, Ramiro; Parmananda, P.

    2015-06-15

    The optimal noise amplitude for Stochastic Resonance (SR) is located employing an Artificial Neural Network (ANN) reference model with a nonlinear predictive capability. A modified Kalman Filter (KF) was coupled to this reference model in order to compensate for semi-quantitative forecast errors. Three manifestations of stochastic resonance, namely, Periodic Stochastic Resonance (PSR), Aperiodic Stochastic Resonance (ASR), and finally Coherence Resonance (CR) were considered. Using noise amplitude as the control parameter, for the case of PSR and ASR, the cross-correlation curve between the sub-threshold input signal and the system response is tracked. However, using the same parameter the Normalized Variance curve is tracked for the case of CR. The goal of the present work is to track these curves and converge to their respective extremal points. The ANN reference model strategy captures and subsequently predicts the nonlinear features of the model system while the KF compensates for the perturbations inherent to the superimposed noise. This technique, implemented in the FitzHugh-Nagumo model, enabled us to track the resonance curves and eventually locate their optimal (extremal) values. This would yield the optimal value of noise for the three manifestations of the SR phenomena.

  18. Stochastic resonance as an emergent property of neural networks

    NASA Astrophysics Data System (ADS)

    Lopes, M. A.; Goltsev, A. V.; Lee, K.-E.; Mendes, J. F. F.

    2013-01-01

    In biological sensory systems, a presence of noise can actually enhance detection of weak signals. This phenomenon is called stochastic resonance (SR). We show that SR can emerge as a collective phenomenon in neural networks. We consider a cortical circuit model composed by stochastic excitatory and inhibitory neurons that form a sparsely connected network. We find that SR appears due to nonlinear dynamics in a region near the critical point of a dynamical phase transition to network oscillations. The critical point is actually an emergent threshold in the collective dynamics. Using the cortical model, we mimic experiments of Gluckman et al. [B. J. Gluckman et al., PRL 77, 4098 (1996)] that observed stochastic resonance in a response of CA1 networks from mammalian brain on periodic electric stimuli. Results of our numerical calculations are in agreement both qualitatively and quantitatively with these experiments.

  19. Vestibular migraine.

    PubMed

    Furman, Joseph M; Balaban, Carey D

    2015-04-01

    Vestibular migraine is now considered a distinct diagnostic entity by both the Barany Society and the International Headache Society. The recognition of vestibular migraine as a diagnostic entity required decades and was presaged by several reports indicating that a large proportion of patients with migraine headaches have vestibular symptoms and that a large proportion of patients with undiagnosed episodic vestibular symptoms have migraine headache. Despite the availability of diagnostic criteria for vestibular migraine, challenges to diagnosis include variability in terms of the character of dizziness, the presence or absence of clearly defined attacks, the duration of attacks, and the temporal association between headache or other migrainous features and vestibular symptoms. Also, symptoms of vestibular migraine often overlap with symptoms of other causes of dizziness, especially Ménière's disease and benign paroxysmal positional vertigo (BPPV). This article will discuss the demographics, epidemiology, clinical manifestations, physical examination findings, laboratory testing, comorbidities, treatment options, and pathophysiology of vestibular migraine. Future research in the field of vestibular migraine should include both clinical and basic science efforts to better understand the pathophysiology of this condition. Controlled treatment trials for vestibular migraine are desperately needed. PMID:25728541

  20. Reconstruction of pulse noisy images via stochastic resonance

    PubMed Central

    Han, Jing; Liu, Hongjun; Sun, Qibing; Huang, Nan

    2015-01-01

    We investigate a practical technology for reconstructing nanosecond pulse noisy images via stochastic resonance, which is based on the modulation instability. A theoretical model of this method for optical pulse signal is built to effectively recover the pulse image. The nanosecond noise-hidden images grow at the expense of noise during the stochastic resonance process in a photorefractive medium. The properties of output images are mainly determined by the input signal-to-noise intensity ratio, the applied voltage across the medium, and the correlation length of noise background. A high cross-correlation gain is obtained by optimizing these parameters. This provides a potential method for detecting low-level or hidden pulse images in various imaging applications. PMID:26067911

  1. Stochastic resonance in hybrid scale-free neuronal networks

    NASA Astrophysics Data System (ADS)

    Yilmaz, Ergin; Uzuntarla, Muhammet; Ozer, Mahmut; Perc, Matjaž

    2013-11-01

    We study the phenomenon of stochastic resonance in a system of coupled neurons that are globally excited by a weak periodic input signal. We make the realistic assumption that the chemical and electrical synapses interact in the same neuronal network, hence constituting a hybrid network. By considering a hybrid coupling scheme embedded in the scale-free topology, we show that the electrical synapses are more efficient than chemical synapses in promoting the best correlation between the weak input signal and the response of the system. We also demonstrate that the average degree of neurons within the hybrid scale-free network significantly influences the optimal amount of noise for the occurrence of stochastic resonance, indicating that there also exists an optimal topology for the amplification of the response to the weak input signal. Lastly, we verify that the presented results are robust to variations of the system size.

  2. Enhancing array stochastic resonance in ensembles of excitable systems

    NASA Astrophysics Data System (ADS)

    Duan, Fabing; Chapeau-Blondeau, François; Abbott, Derek

    2009-08-01

    A summing network of FitzHugh-Nagumo model neurons, immersed in the background of both external noise and internal noise, is studied in the context of array stochastic resonance. An aperiodic Gaussian stimulus, assisted by collective internal array noise, stimulates the summing network for a more efficient response. This form of array stochastic resonance can be characterized by a correlation coefficient for an aperiodic input signal. Moreover, the correlation gain of the ensembles of neuronal models is investigated for finite and infinite array sizes. The nonmonotonic behavior of the correlation gain and the regions of the correlation gain beyond unity, i.e. the two main features of array SR, are demonstrated numerically and theoretically. These results suggest that certain levels of both external noise and internal noise contribute in a beneficial way to the neuronal coding strategy.

  3. Escape process and stochastic resonance under noise intensity fluctuation

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yoshihiko; Arita, Masanori

    2011-09-01

    We study the effects of noise intensity fluctuations on the stationary and dynamical properties of an overdamped Langevin model with a bistable potential and external periodical driving force. We calculated the stationary distributions, mean-first passage time (MFPT) and the spectral amplification factor using a complete set expansion (CSE) technique. We found resonant activation (RA) and stochastic resonance (SR) phenomena in the system under investigation. Moreover, the strength of RA and SR phenomena exhibit non-monotonic behavior and their trade-off relation as a function of the squared variation coefficient of the noise intensity process. The reliability of CSE is verified with Monte Carlo simulations.

  4. Stochastic resonance in feedforward acupuncture networks

    NASA Astrophysics Data System (ADS)

    Qin, Ying-Mei; Wang, Jiang; Men, Cong; Deng, Bin; Wei, Xi-Le; Yu, Hai-Tao; Chan, Wai-Lok

    2014-10-01

    Effects of noises and some other network properties on the weak signal propagation are studied systematically in feedforward acupuncture networks (FFN) based on FitzHugh-Nagumo neuron model. It is found that noises with medium intensity can enhance signal propagation and this effect can be further increased by the feedforward network structure. Resonant properties in the noisy network can also be altered by several network parameters, such as heterogeneity, synapse features, and feedback connections. These results may also provide a novel potential explanation for the propagation of acupuncture signal.

  5. Stochastic resonance in a suspension of magnetic dipoles under shear flow

    E-print Network

    T. Alarcon; A. Perez-Madrid

    2000-12-11

    We show that a magnetic dipole in a shear flow under the action of an oscillating magnetic field displays stochastic resonance in the linear response regime. To this end, we compute the classical quantifiers of stochastic resonance, i.e. the signal to noise ratio, the escape time distribution, and the mean first passage time. We also discuss limitations and role of the linear response theory in its applications to the theory of stochastic resonance.

  6. Stochastic resonance in a generalized Von Foerster population growth model

    SciTech Connect

    Lumi, N.; Mankin, R.

    2014-11-12

    The stochastic dynamics of a population growth model, similar to the Von Foerster model for human population, is studied. The influence of fluctuating environment on the carrying capacity is modeled as a multiplicative dichotomous noise. It is established that an interplay between nonlinearity and environmental fluctuations can cause single unidirectional discontinuous transitions of the mean population size versus the noise amplitude, i.e., an increase of noise amplitude can induce a jump from a state with a moderate number of individuals to that with a very large number, while by decreasing the noise amplitude an opposite transition cannot be effected. An analytical expression of the mean escape time for such transitions is found. Particularly, it is shown that the mean transition time exhibits a strong minimum at intermediate values of noise correlation time, i.e., the phenomenon of stochastic resonance occurs. Applications of the results in ecology are also discussed.

  7. Stochastic resonance and the trade arrival rate of stocks

    E-print Network

    Silva, A Christian

    2008-01-01

    We studied non-dynamical stochastic resonance for the number of trades in the stock market. The trade arrival rate presents a deterministic pattern that can be modeled by a cosine function perturbed by noise. Due to the nonlinear relationship between the rate and the observed number of trades, the noise can either enhance or suppress the detection of the deterministic pattern. By finding the parameters of our model with intra-day data, we describe the trading environment and illustrate the presence of SR in the trade arrival rate of stocks in the U.S. market.

  8. Phase-shifts in stochastic resonance in a Chua circuit

    E-print Network

    Wojciech Korneta; Iacyel Gomes; Claudio R. Mirasso; Raul Toral

    2007-10-29

    We present an experimental study of stochastic resonance in an electronic Chua circuit operating in the chaotic regime. We study in detail the switch-phase distribution and the phase-shift between sinusoidal forcing for two responses of the circuit: one depending on both inter-well and intra-well dynamics and the other depending only on inter-well dynamics. We describe the two relevant de-synchronizatrion mechanisms for high and low frequencies of the forcing and present a method to detect the optimal noise intensity from switch phases which coincides with the one derived from the observation of the signal-to-noise ratio or residence times.

  9. Dynamical structure underlying inverse stochastic resonance and its implications

    NASA Astrophysics Data System (ADS)

    Uzuntarla, Muhammet; Cressman, John R.; Ozer, Mahmut; Barreto, Ernest

    2013-10-01

    We investigate inverse stochastic resonance (ISR), a recently reported phenomenon in which the spiking activity of a Hodgkin-Huxley model neuron subject to external noise exhibits a pronounced minimum as the noise intensity increases. We clarify the mechanism that underlies ISR and show that its most surprising features are a consequence of the dynamical structure of the model. Furthermore, we show that the ISR effect depends strongly on the procedures used to measure it. Our results are important for the experimentalist who seeks to observe the ISR phenomenon.

  10. Stochastic dipolar recoupling in nuclear magnetic resonance of solids

    PubMed Central

    Tycko, Robert

    2008-01-01

    I describe a nuclear magnetic resonance (NMR) technique, called stochastic dipolar recoupling (SDR), that permits continuous experimental control of the character of spin dynamics between coherent and incoherent limits in a system of magnetic dipole-coupled nuclei. In the fully incoherent limit of SDR, spin polarization transfers occur at distance-dependent rates without the quantum mechanical interferences among pairwise dipole-dipole couplings that often limit the feasibility or precision of structural studies of solids by NMR. In addition to facilitating structural studies, SDR represents a possible route to experimental studies of effects of decoherence on the dynamics of quantum many-body systems. PMID:17995438

  11. Predator-Prey Cycles from Resonant Amplification of Demographic Stochasticity A. J. McKane1

    E-print Network

    McKane, Alan

    Predator-Prey Cycles from Resonant Amplification of Demographic Stochasticity A. J. McKane1 and T. This difference in behavior can be traced to a resonant amplification of demographic fluctuations which disappears

  12. Planetary gearbox fault diagnosis using an adaptive stochastic resonance method

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Han, Dong; Lin, Jing; He, Zhengjia

    2013-07-01

    Planetary gearboxes are widely used in aerospace, automotive and heavy industry applications due to their large transmission ratio, strong load-bearing capacity and high transmission efficiency. The tough operation conditions of heavy duty and intensive impact load may cause gear tooth damage such as fatigue crack and teeth missed etc. The challenging issues in fault diagnosis of planetary gearboxes include selection of sensitive measurement locations, investigation of vibration transmission paths and weak feature extraction. One of them is how to effectively discover the weak characteristics from noisy signals of faulty components in planetary gearboxes. To address the issue in fault diagnosis of planetary gearboxes, an adaptive stochastic resonance (ASR) method is proposed in this paper. The ASR method utilizes the optimization ability of ant colony algorithms and adaptively realizes the optimal stochastic resonance system matching input signals. Using the ASR method, the noise may be weakened and weak characteristics highlighted, and therefore the faults can be diagnosed accurately. A planetary gearbox test rig is established and experiments with sun gear faults including a chipped tooth and a missing tooth are conducted. And the vibration signals are collected under the loaded condition and various motor speeds. The proposed method is used to process the collected signals and the results of feature extraction and fault diagnosis demonstrate its effectiveness.

  13. Suprathreshold stochastic resonance in neural processing tuned by correlation

    NASA Astrophysics Data System (ADS)

    Durrant, Simon; Kang, Yanmei; Stocks, Nigel; Feng, Jianfeng

    2011-07-01

    Suprathreshold stochastic resonance (SSR) is examined in the context of integrate-and-fire neurons, with an emphasis on the role of correlation in the neuronal firing. We employed a model based on a network of spiking neurons which received synaptic inputs modeled by Poisson processes stimulated by a stepped input signal. The smoothed ensemble firing rate provided an output signal, and the mutual information between this signal and the input was calculated for networks with different noise levels and different numbers of neurons. It was found that an SSR effect was present in this context. We then examined a more biophysically plausible scenario where the noise was not controlled directly, but instead was tuned by the correlation between the inputs. The SSR effect remained present in this scenario with nonzero noise providing improved information transmission, and it was found that negative correlation between the inputs was optimal. Finally, an examination of SSR in the context of this model revealed its connection with more traditional stochastic resonance and showed a trade-off between supratheshold and subthreshold components. We discuss these results in the context of existing empirical evidence concerning correlations in neuronal firing.

  14. Can Centre Surround Model Explain the Enhancement of Visual Perception through Stochastic Resonance?

    E-print Network

    Kundu, Ajanta

    2010-01-01

    We demonstrate the ability of centre surround model for simulating the enhancement of contrast sensitivity through stochastic resonance observed in psychophysical experiments. We also show that this model could be used to simulate the contrast sensitivity function through stochastic resonance. The quality of the fit of measured contrast sensitivity function to the simulated data is very good.

  15. PULSAR STATE SWITCHING FROM MARKOV TRANSITIONS AND STOCHASTIC RESONANCE

    SciTech Connect

    Cordes, J. M.

    2013-09-20

    Markov processes are shown to be consistent with metastable states seen in pulsar phenomena, including intensity nulling, pulse-shape mode changes, subpulse drift rates, spin-down rates, and X-ray emission, based on the typically broad and monotonic distributions of state lifetimes. Markovianity implies a nonlinear magnetospheric system in which state changes occur stochastically, corresponding to transitions between local minima in an effective potential. State durations (though not transition times) are thus largely decoupled from the characteristic timescales of various magnetospheric processes. Dyadic states are common but some objects show at least four states with some transitions forbidden. Another case is the long-term intermittent pulsar B1931+24 that has binary radio-emission and torque states with wide, but non-monotonic duration distributions. It also shows a quasi-period of 38 ± 5 days in a 13 yr time sequence, suggesting stochastic resonance in a Markov system with a forcing function that could be strictly periodic or quasi-periodic. Nonlinear phenomena are associated with time-dependent activity in the acceleration region near each magnetic polar cap. The polar-cap diode is altered by feedback from the outer magnetosphere and by return currents from the equatorial region outside the light cylinder that may also cause the neutron star to episodically charge and discharge. Orbital perturbations of a disk or current sheet provide a natural periodicity for the forcing function in the stochastic-resonance interpretation of B1931+24. Disk dynamics may introduce additional timescales in observed phenomena. Future work can test the Markov interpretation, identify which pulsar types have a propensity for state changes, and clarify the role of selection effects.

  16. Stochastic resonance in a nonlinear system with a 1/ f spectrum

    NASA Astrophysics Data System (ADS)

    Skokov, V. N.; Koverda, V. P.

    2014-05-01

    The system of two nonlinear stochastic equations simulating 1/ f fluctuations during the interaction of nonequilibrium phase transitions in the presence of an external harmonic force is analyzed using numerical methods. It is shown that the stochastic resonance occurring in the system enhances the output periodic signal under the action of noise. A random process with a 1/ f power spectrum corresponds to the Gibbs-Shannon information entropy peak. In stochastic resonance, the information entropy is minimal.

  17. Vestibular Hyperacusis

    MedlinePLUS

    ... Canal Dehiscence (SCD) Tinnitus Vestibular Hyperacusis Vision & Hearing Psychology Diet Other Topics Military Resources Infographics & Presentations Paid ... In addition, many subjects with hyperacusis feel distinct cognitive changes during these exposures and will describe themselves ...

  18. Vestibular Neuronitis

    MedlinePLUS

    ... Neuronitis Purulent Labyrinthitis Ear Disorders Caused by Drugs Acoustic Neuroma Vestibular neuronitis is a disorder characterized by ... Neuronitis Purulent Labyrinthitis Ear Disorders Caused by Drugs Acoustic Neuroma NOTE: This is the Consumer Version. CONSUMERS: ...

  19. A neuron model of stochastic resonance using rectangular pulse trains.

    PubMed

    Danziger, Zachary; Grill, Warren M

    2015-02-01

    Stochastic resonance (SR) is the enhanced representation of a weak input signal by the addition of an optimal level of broadband noise to a nonlinear (threshold) system. Since its discovery in the 1980s the domain of input signals shown to be applicable to SR has greatly expanded, from strictly periodic inputs to now nearly any aperiodic forcing function. The perturbations (noise) used to generate SR have also expanded, from white noise to now colored noise or vibrational forcing. This study demonstrates that a new class of perturbations can achieve SR, namely, series of stochastically generated biphasic pulse trains. Using these pulse trains as 'noise' we show that a Hodgkin Huxley model neuron exhibits SR behavior when detecting weak input signals. This result is of particular interest to neuroscience because nearly all artificial neural stimulation is implemented with square current or voltage pulses rather than broadband noise, and this new method may facilitate the translation of the performance gains achievable through SR to neural prosthetics. PMID:25186655

  20. Effect of the Potential Shape on the Stochastic Resonance Processes

    NASA Astrophysics Data System (ADS)

    Kenmoé, G. Djuidjé; Ngouongo, Y. J. Wadop; Kofané, T. C.

    2015-10-01

    The stochastic resonance (SR) induced by periodic signal and white noises in a periodic nonsinusoidal potential is investigated. This phenomenon is studied as a function of the friction coefficient as well as the shape of the potential. It is done through an investigation of the hysteresis loop area which is equivalent to the input energy lost by the system to the environment per period of the external force. SR is evident in some range of the shape parameter of the potential, but cannot be observed in the other range. Specially, variation of the shape potential affects significantly and not trivially the heigh of the potential barrier in the Kramers rate as well as the occurrence of SR. The finding results show crucial dependence of the temperature of occurrence of SR on the shape of the potential. It is noted that the maximum of the input energy generally decreases when the friction coefficient is increased.

  1. Effect of Positive Feedback with Threshold Control on Stochastic Resonance of Bi-Stable Systems

    NASA Astrophysics Data System (ADS)

    Yang, Renhuan; Song, Aiguo

    It is important to magnify natural stochastic resonance of nonlinear systems. In this paper, positive feedback is proposed to enhance stochastic resonance of those nonlinear systems whose internal parameters are difficult or impossible to be adjusted. The method can be used to improve the response of these nonlinear systems to external stimulus or strengthen the effect of target manipulation. At first, theoretical analysis based on adiabatic approximation method is presented, and then numerical simulations for both hard potential system and soft potential system are conducted to demonstrate the proposed method. Both theoretical analysis and numerical simulation indicate that stochastic resonance of these systems can be magnified by positive feedback.

  2. Local-feature-based similarity measure for stochastic resonance in visual perception of spatially structured images.

    PubMed

    Delahaies, Agnès; Rousseau, David; Fasquel, Jean-Baptiste; Chapeau-Blondeau, François

    2012-07-01

    For images, stochastic resonance or useful-noise effects have previously been assessed with low-level pixel-based information measures. Such measures are not sensitive to coherent spatial structures usually existing in images. As a result, we show that such measures are not sufficient to properly account for stochastic resonance occurring in visual perception. We introduce higher-level similarity measures, inspired from visual perception, and based on local feature descriptors of scale invariant feature transform (SIFT) type. We demonstrate that such SIFT-based measures allow for an assessment of stochastic resonance that matches the visual perception of images with spatial structures. Constructive action of noise is registered in this way with both additive noise and multiplicative speckle noise. Speckle noise, with its grainy appearance, is particularly prone to introducing spurious spatial structures in images, and the stochastic resonance visually perceived and quantitatively assessed with SIFT-based measures is specially examined in this context. PMID:22751385

  3. Aperiodic signals processing via parameter-tuning stochastic resonance in a photorefractive ring cavity

    SciTech Connect

    Li, Xuefeng; Cao, Guangzhan; Liu, Hongjun

    2014-04-15

    Based on solving numerically the generalized nonlinear Langevin equation describing the nonlinear dynamics of stochastic resonance by Fourth-order Runge-Kutta method, an aperiodic stochastic resonance based on an optical bistable system is numerically investigated. The numerical results show that a parameter-tuning stochastic resonance system can be realized by choosing the appropriate optical bistable parameters, which performs well in reconstructing aperiodic signals from a very high level of noise background. The influences of optical bistable parameters on the stochastic resonance effect are numerically analyzed via cross-correlation, and a maximum cross-correlation gain of 8 is obtained by optimizing optical bistable parameters. This provides a prospective method for reconstructing noise-hidden weak signals in all-optical signal processing systems.

  4. Balance (or Vestibular) Rehabilitation

    MedlinePLUS

    ... the Public / Hearing and Balance Balance (or Vestibular) Rehabilitation Audiologic (hearing), balance, and medical diagnostic tests help ... whether you are a candidate for vestibular (balance) rehabilitation. Vestibular rehabilitation is an individualized balance retraining exercise ...

  5. COMMUNICATION: Stochastic resonance and the evolution of Daphnia foraging strategy

    NASA Astrophysics Data System (ADS)

    Dees, Nathan D.; Bahar, Sonya; Moss, Frank

    2008-12-01

    Search strategies are currently of great interest, with reports on foraging ranging from albatrosses and spider monkeys to microzooplankton. Here, we investigate the role of noise in optimizing search strategies. We focus on the zooplankton Daphnia, which move in successive sequences consisting of a hop, a pause and a turn through an angle. Recent experiments have shown that their turning angle distributions (TADs) and underlying noise intensities are similar across species and age groups, suggesting an evolutionary origin of this internal noise. We explore this hypothesis further with a digital simulation (EVO) based solely on the three central Darwinian themes: inheritability, variability and survivability. Separate simulations utilizing stochastic resonance (SR) indicate that foraging success, and hence fitness, is maximized at an optimum TAD noise intensity, which is represented by the distribution's characteristic width, ?. In both the EVO and SR simulations, foraging success is the criterion, and the results are the predicted characteristic widths of the TADs that maximize success. Our results are twofold: (1) the evolving characteristic widths achieve stasis after many generations; (2) as a hop length parameter is changed, variations in the evolved widths generated by EVO parallel those predicted by SR. These findings provide support for the hypotheses that (1) ? is an evolved quantity and that (2) SR plays a role in evolution.

  6. Entropic stochastic resonance without external force in oscillatory confined space

    SciTech Connect

    Ding, Huai; Jiang, Huijun; Hou, Zhonghuai

    2015-05-21

    We have studied the dynamics of Brownian particles in a confined geometry of dumbbell-shape with periodically oscillating walls. Entropic stochastic resonance (ESR) behavior, characterizing by a maximum value of the coherent factor Q at some optimal level of noise, is observed even without external periodic force in the horizontal direction, which is necessary for conventional ESR where the wall is static and the particle is subjected to the force. Interestingly, the ESR can be remarkably enhanced by the particle gravity G, in contrast to the conventional case. In addition, Q decreases (increases) with G in the small (large) noise limit, respectively, while it non-monotonically changes with G for moderate noise levels. We have applied an effective 1D coarsening description to illustrate such a nontrivial dependence on G, by investigating the property of the 1D effective potential of entropic nature and paying special attention to the excess part resulting from the boundary oscillation. Dependences of the ESR strength with other related parameters are also discussed.

  7. Stochastic Resonance in Time-to-Contact Judgments

    NASA Astrophysics Data System (ADS)

    Ranjit, Manish; Gazula, Harshvardhan; Hsiang, Simon M.; Delucia, Patricia R.

    2015-04-01

    Stochastic resonance (SR) is a counterintuitive phenomenon in which additive noise enhances performance of a nonlinear system. Previous studies demonstrated SR effect on human tactile sensitivity by adding noise of same modality and cross modality. Similarly, enhancement of human hearing through additive noise has been studied. In this study, we investigate the effect of noise in visual perception, specifically time-to-contact (TTC) judgments. This study explores four research questions: (1) Does noise help in TTC judgments? (2) How does noise affect speed and accuracy of TTC judgments? (3) Does cross modal noise help in TTC judgments? (4) How does cross modal noise affect speed and accuracy of TTC judgments? Through simulation, we show that noise in optical cue can enhance weak signals. We also demonstrate that noise can improve speed of TTC judgments at the expense of accuracy. Similarly, we demonstrate SR by adding noise of cross modality. These findings provide plausible hypotheses regarding how much noise should be added to enhance TTC judgments.

  8. Stochastic Resonance in Ion Channels Characterized by Information Theory

    E-print Network

    Igor Goychuk; Peter Hanggi

    2000-01-19

    We identify a unifying measure for stochastic resonance (SR) in voltage dependent ion channels which comprises periodic (conventional), aperiodic and nonstationary SR. Within a simplest setting, the gating dynamics is governed by two-state conductance fluctuations, which switch at random time points between two values. The corresponding continuous time point process is analyzed by virtue of information theory. In pursuing this goal we evaluate for our dynamics the tau-information, the mutual information and the rate of information gain. As a main result we find an analytical formula for the rate of information gain that solely involves the probability of the two channel states and their noise averaged rates. For small voltage signals it simplifies to a handy expression. Our findings are applied to study SR in a potassium channel. We find that SR occurs only when the closed state is predominantly dwelled. Upon increasing the probability for the open channel state the application of an extra dose of noise monotonically deteriorates the rate of information gain, i.e., no SR behavior occurs.

  9. Application of stochastic resonance in gravitational-wave interferometer

    E-print Network

    G. G. Karapetyan

    2006-01-30

    We investigate novel approach, which improves the sensitivity of gravitational wave (GW) interferometer due to stochastic resonance (SR) phenomenon, performing in additional nonlinear cavity (NC). The NC is installed in the output of interferometer before photodetector, so that optical signal emerging interferometer incidents on the NC and passes through it. Under appropriate circumstances a specific transformation of noisy signal inside the NC takes place, which results in the increase of output signal-to-noise ratio (SNR). As a result optical noisy signal of interferometer becomes less noisy after passing through the NC. The improvement of SNR is especially effective in bistable NC for wideband (several hundreds Hz) detection, when chirp GW signal is detected. Then SNR gain reaches amount ~ 10. When detection bandwidth is narrowed, the influence of SR mechanism gradually disappears, and SNR gain tends to 1. SNR gain also tends to 1 when the NC is gradually transformed to linear cavity. Proposed enhancement of SNR due to the SR is not dependent of noise type, which is prevalent in interferometer. Particularly proposed approach is capable to increase signal-to-displacement noise ratio.

  10. The Ghost of Stochastic Resonance: An Introductory Review

    E-print Network

    Pablo Balenzuela; Holger Braun; Dante R. Chialvo

    2011-10-01

    Nonlinear systems driven by noise and periodic forces with more than one frequency exhibit the phenomenon of Ghost Stochastic Resonance (GSR) found in a wide and disparate variety of fields ranging from biology to geophysics. The common novel feature is the emergence of a "ghost" frequency in the system's output which it is absent in the input. As reviewed here, the uncovering of this phenomenon helped to understand a range of problems, from the perception of pitch in complex sounds or visual stimuli, to the explanation of climate cycles. Recent theoretical efforts show that a simple mechanism with two ingredients are at work in all these observations. The first one is the linear interference between the periodic inputs and the second a nonlinear detection of the largest constructive interferences, involving a noisy threshold. These notes are dedicated to review the main aspects of this phenomenon, as well as its different manifestations described on a bewildering variety of systems ranging from neurons, semiconductor lasers, electronic circuits to models of glacial climate cycles.

  11. Local-feature-based similarity measure for stochastic resonance in visual perception

    E-print Network

    Chapeau-Blondeau, François

    Local-feature-based similarity measure for stochastic resonance in visual perception of spatially resonance that matches the visual perception of images with spatial structures. Constructive action of noise-level pixel-based information measures. Such measures are not sensitive to coherent spatial structures usually

  12. Vestibular disease: diseases causing vestibular signs.

    PubMed

    Lowrie, Mark

    2012-07-01

    Having determined whether a patient has central or peripheral vestibular disease, clinicians must then determine what diseases are likely to result in such a presentation. This article describes the more common diseases causing vestibular disease in dogs and cats. Having formulated a list of potential causes of vestibular disease, clinicians should proceed through a systematic investigation to diagnose the underlying condition. A companion article describes the anatomy, physiology, and clinical signs associated with vestibular disease. PMID:22847321

  13. Feasibility of energy harvesting from a rotating tire based on the theory of stochastic resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Zheng, R.; Nakano, K.

    2014-11-01

    Recently the use of nonlinear bi-stable micro-electro mechanical systems (MEMS) to achieve automobile tire vibration power generation has made some progress. However, the theory of stochastic resonance has not been successfully applied to automobile tires, which can produce a larger vibrational response than for a typical resonance while inputting a weak periodic force and noise excitation into a nonlinear bi-stable system. Hence, in this paper, in view of the principle of stochastic resonance, a new model is derived by positioning a magnetic end mass attached to a cantilever beam and another permanent magnet with the same polarity on the frame. Due to the road noise excitation along with the periodic force inputted to the mechanism, whether the phenomenon of stochastic resonance can happen will be discussed. Meanwhile, on the basis of Kramers rate and duffing equations the preliminary experimental device is also designed.

  14. The vestibular system

    NASA Technical Reports Server (NTRS)

    Graybiel, A.

    1973-01-01

    The end organs, central nervous system connections, and static and dynamic characteristics of the vestibular system are presented. Vestibular servation in man and vestibular side effect prevention from space missions involving artificial gravity generation are also considered. Vestibular models and design criteria for rotating space vehicles are appended.

  15. Vestibular stimulation by magnetic fields.

    PubMed

    Ward, Bryan K; Roberts, Dale C; Della Santina, Charles C; Carey, John P; Zee, David S

    2015-04-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging studies, these reports have become more common. It was recently learned that humans, mice, and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  16. Improving Sensorimotor Adaptation Following Long Duration Space Flight by Enhancing Vestibular Information Transfer

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Kofman, I. S.; De Dios, Y. E; Galvan, R.; Goel, R.; Miller, C.; Peters, B.; Cohen, H. S.; Jeevarajan, J.; Reschke, M.; Wood, S.; Bergquist, F.; Seidler, R. D.; Bloomberg, J. J.

    2014-01-01

    Crewmember adapted to the microgravity state may need to egress the vehicle within a few minutes for safety and operational reasons after gravitational transitions. The transition from one sensorimotor state to another consists of two main mechanisms: strategic and plastic-adaptive and have been demonstrated in astronauts returning after long duration space flight. Strategic modifications represent "early adaptation" - immediate and transitory changes in control that are employed to deal with short-term changes in the environment. If these modifications are prolonged then plastic-adaptive changes are evoked that modify central nervous system function, automating new behavioral responses. More importantly, this longer term adaptive recovery mechanism was significantly associated with their strategic ability to recover on the first day after return to Earth G. We are developing a method based on stochastic resonance to enhance information transfer by improving the brain's ability to detect vestibular signals (Vestibular Stochastic Resonance, VSR) especially when combined with balance training exercises such as sensorimotor adaptability (SA) training for rapid improvement in functional skill, for standing and mobility. This countermeasure to improve detection of vestibular signals is a stimulus delivery system that is wearable/portable providing low imperceptible levels of white noise based binaural bipolar electrical stimulation of the vestibular system (stochastic vestibular stimulation). To determine efficacy of vestibular stimulation on physiological and perceptual responses during otolith-canal conflicts and dynamic perturbations we have conducted a series of studies: We have shown that imperceptible binaural bipolar electrical stimulation of the vestibular system across the mastoids enhances balance performance in the mediolateral (ML) plane while standing on an unstable surface. We have followed up on the previous study showing VSR stimulation improved balance performance in both ML and anteroposterior planes while stimulating in the ML axis only. We have shown the efficacy of VSR stimulations on enhancing physiological and perceptual responses of whole-body orientation during low frequency perturbations (0.1 Hz) on the ocular motor system using a variable radius centrifuge on both physiological (using eye movements) and perceptual responses (using a joystick) to track imposed oscillations. The variable radius centrifuge provides a selective tilting sensation that is detectable only by the otolith organs providing conflicting information from the canal organs of the vestibular system (intra-vestibular conflict). These results indicate that VSR can improve performance in sensory conflict scenarios like that experienced during space flight. We have showed the efficacy of VSR stimulation to improve balance and locomotor control on subjects exposed to continuous, sinusoidal lateral motion of the support surface while walking on a treadmill while viewing perceptually matched linear optic flow. We have shown the safety of short term continuous use of up to 4 hours of VSR stimulation and its efficacy in improving balance and locomotor function in Parkinson's Disease patients. This technique for improving vestibular signal detection may thus provide additional information to improve strategic abilities. We hypothesize that VSR stimulation will act synergistically with SA training to improve adaptability by increased utilization of vestibular information and therefore serve to optimize and personalize the SA countermeasure prescription. This forms the basis of its usefulness both as a training modality and further help in significantly reducing the number of days required to recover functional performance to preflight levels after long duration space flight.

  17. Coherence resonance and stochastic synchronization in a nonlinear circuit near a subcritical Hopf bifurcation

    NASA Astrophysics Data System (ADS)

    Zakharova, Anna; Feoktistov, Alexey; Vadivasova, Tatyana; Schöll, Eckehard

    2013-10-01

    We analyze noise-induced phenomena in nonlinear dynamical systems near a subcritical Hopf bifurcation. We investigate qualitative changes of probability distributions (stochastic bifurcations), coherence resonance, and stochastic synchronization. These effects are studied in dynamical systems for which a subcritical Hopf bifurcation occurs. We perform analytical calculations, numerical simulations and experiments on an electronic circuit. For the generalized Van der Pol model we uncover the similarities between the behavior of a self-sustained oscillator characterized by a subcritical Hopf bifurcation and an excitable system. The analogy is manifested through coherence resonance and stochastic synchronization. In particular, we show both experimentally and numerically that stochastic oscillations that appear due to noise in a system with hard excitation, can be partially synchronized even outside the oscillatory regime of the deterministic system.

  18. Stochastic resonance at a subharmonic of a periodic modulation signal in solid-state lasers

    SciTech Connect

    Kravtsov, N V; Lariontsev, E G; Chekina, S N

    2013-10-31

    The stochastic excitation of a subharmonic of a periodic modulation signal in the intensity spectrum of a solid-state laser is experimentally studied upon modulation of the pump rate by the noise and periodic signal. The stochastic resonance (SR) is observed in the presence of bistability in the laser. The conditions for SR at a subharmonic of the periodic modulation signal are determined. (control of laser radiation parameters)

  19. Stochastic charging of dust grains in planetary rings: Diffusion rates and their effects on Lorentz resonances

    NASA Technical Reports Server (NTRS)

    Schaffer, L.; Burns, J. A.

    1995-01-01

    Dust grains in planetary rings acquire stochastically fluctuating electric charges as they orbit through any corotating magnetospheric plasma. Here we investigate the nature of this stochastic charging and calculate its effect on the Lorentz resonance (LR). First we model grain charging as a Markov process, where the transition probabilities are identified as the ensemble-averaged charging fluxes due to plasma pickup and photoemission. We determine the distribution function P(t;N), giving the probability that a grain has N excess charges at time t. The autocorrelation function tau(sub q) for the strochastic charge process can be approximated by a Fokker-Planck treatment of the evolution equations for P(t; N). We calculate the mean square response to the stochastic fluctuations in the Lorentz force. We find that transport in phase space is very small compared to the resonant increase in amplitudes due to the mean charge, over the timescale that the oscillator is resonantly pumped up. Therefore the stochastic charge variations cannot break the resonant interaction; locally, the Lorentz resonance is a robust mechanism for the shaping of etheral dust ring systems. Slightly stronger bounds on plasma parameters are required when we consider the longer transit times between Lorentz resonances.

  20. Acute effects of stochastic resonance whole body vibration

    PubMed Central

    Elfering, Achim; Zahno, Jasmine; Taeymans, Jan; Blasimann, Angela; Radlinger, Lorenz

    2013-01-01

    AIM: To investigate the acute effects of stochastic resonance whole body vibration (SR-WBV) training to identify possible explanations for preventive effects against musculoskeletal disorders. METHODS: Twenty-three healthy, female students participated in this quasi-experimental pilot study. Acute physiological and psychological effects of SR-WBV training were examined using electromyography of descending trapezius (TD) muscle, heart rate variability (HRV), different skin parameters (temperature, redness and blood flow) and self-report questionnaires. All subjects conducted a sham SR-WBV training at a low intensity (2 Hz with noise level 0) and a verum SR-WBV training at a higher intensity (6 Hz with noise level 4). They were tested before, during and after the training. Conclusions were drawn on the basis of analysis of variance. RESULTS: Twenty-three healthy, female students participated in this study (age = 22.4 ± 2.1 years; body mass index = 21.6 ± 2.2 kg/m2). Muscular activity of the TD and energy expenditure rose during verum SR-WBV compared to baseline and sham SR-WBV (all P < 0.05). Muscular relaxation after verum SR-WBV was higher than at baseline and after sham SR-WBV (all P < 0.05). During verum SR-WBV the levels of HRV were similar to those observed during sham SR-WBV. The same applies for most of the skin characteristics, while microcirculation of the skin of the middle back was higher during verum compared to sham SR-WBV (P < 0.001). Skin redness showed significant changes over the three measurement points only in the middle back area (P = 0.022). There was a significant rise from baseline to verum SR-WBV (0.86 ± 0.25 perfusion units; P = 0.008). The self-reported chronic pain grade indicators of pain, stiffness, well-being, and muscle relaxation showed a mixed pattern across conditions. Muscle and joint stiffness (P = 0.018) and muscular relaxation did significantly change from baseline to different conditions of SR-WBV (P < 0.001). Moreover, muscle relaxation after verum SR-WBV was higher than after sham SR-WBV (P < 0.05). CONCLUSION: Verum SR-WBV stimulated musculoskeletal activity in young healthy individuals while cardiovascular activation was low. Training of musculoskeletal capacity and immediate increase in musculoskeletal relaxation are potential mediators of pain reduction in preventive trials. PMID:24147265

  1. Effect of mechanical tactile noise on amplitude of visual evoked potentials: multisensory stochastic resonance.

    PubMed

    Méndez-Balbuena, Ignacio; Huidobro, Nayeli; Silva, Mayte; Flores, Amira; Trenado, Carlos; Quintanar, Luis; Arias-Carrión, Oscar; Kristeva, Rumyana; Manjarrez, Elias

    2015-10-01

    The present investigation documents the electrophysiological occurrence of multisensory stochastic resonance in the human visual pathway elicited by tactile noise. We define multisensory stochastic resonance of brain evoked potentials as the phenomenon in which an intermediate level of input noise of one sensory modality enhances the brain evoked response of another sensory modality. Here we examined this phenomenon in visual evoked potentials (VEPs) modulated by the addition of tactile noise. Specifically, we examined whether a particular level of mechanical Gaussian noise applied to the index finger can improve the amplitude of the VEP. We compared the amplitude of the positive P100 VEP component between zero noise (ZN), optimal noise (ON), and high mechanical noise (HN). The data disclosed an inverted U-like graph for all the subjects, thus demonstrating the occurrence of a multisensory stochastic resonance in the P100 VEP. PMID:26156387

  2. Investigations of stochastic resonance in two-terminal device with vanadium dioxide film

    SciTech Connect

    Aliev, V. Sh. Bortnikov, S. G.; Badmaeva, I. A.

    2014-05-28

    The results of stochastic resonance investigation in a nonlinear system, consisting of a microstructure with a polycrystalline vanadium dioxide (VO{sub 2}) film grown on sapphire and resistor in series are reported. Nonlinearity of the system was provided due to insulator-metal phase transition in VO{sub 2}. In the stochastic resonance regime at 100?Hz signal frequency, the transition coefficient of signal-to-noise ratio reached 87 in contrast to 250 for microstructures with VO{sub 2} films grown on silica in our previous investigations. The measured characteristics of microstructures with VO{sub 2} films grown on silica and sapphire substrates were found to be qualitatively similar. For both substrates, a stochastic resonance was observed at threshold switching voltage from insulating to metallic state of VO{sub 2}. For sapphire substrate the output signal-to-noise ratio rose at higher signal frequencies. The stochastic resonance phenomenon in VO{sub 2} films is explained in terms of the monostable damped oscillator model.

  3. Stochastic resonance in a statistical model of a time-integrating detector Ursula U. Muller*

    E-print Network

    Mueller, Uschi

    -most-simple model neuron, the integrate-and-fire neuron e.g., 2 . This model integrates its inputs over a movingStochastic resonance in a statistical model of a time-integrating detector Ursula U. Mu¨ller* FB 3 approach, the time-integrating activity of the neuron is modeled by kernel regression. Several aspects

  4. The effects of nonlinear series resonance on Ohmic and stochastic heating in capacitive discharges

    SciTech Connect

    Lieberman, M. A.; Lichtenberg, A. J.; Kawamura, E.; Mussenbrock, Thomas; Brinkmann, Ralf Peter

    2008-06-15

    The flow of electron and ion conduction currents across a nonlinear capacitive sheath to the electrode surface self-consistently sets the dc bias voltage across the sheath. We incorporate these currents into a model of a homogeneous capacitive sheath in order to determine the enhancement of the Ohmic and stochastic heating due to self-excitation of the nonlinear series resonance in an asymmetric capacitive discharge. At lower pressures, the series resonance can enhance both the Ohmic and stochastic heating by factors of 2-4, with the Ohmic heating tending to zero as the pressure decreases. The model was checked, for a particular set of parameters, by a particle-in-cell (PIC) simulation using the homogeneous sheath approximation, giving good agreement. With a self-consistent Child-law sheath, the PIC simulation showed increased heating, as expected, whether the series resonance is important or not.

  5. Coherent and stochastic contributions of compound resonances in atomic processes: Electron recombination, photoionization and scattering

    E-print Network

    V. V. Flambaum; M. G. Kozlov; G. F. Gribakin

    2015-05-13

    In open-shell atoms and ions, processes such as photoionization, combination (Raman) scattering, electron scattering and recombination, are often mediated by many-electron compound resonances. We show that their interference (neglected in the independent-resonance approximation) leads to a coherent contribution, which determines the energy-averaged total cross sections of electron- and photon-induced reactions obtained using the optical theorem. In contrast, the partial cross sections (e.g., electron recombination, or photon Raman scattering) are dominated by the stochastic contributions. Thus, the optical theorem provides a link between the stochastic and coherent contributions of the compound resonances. Similar conclusions are valid for reactions via compound states in molecules and nuclei.

  6. A digital accelerometer array utilizing suprathreshold stochastic resonance for detection of sub-Brownian noise floor accelerations.

    SciTech Connect

    Carr, Dustin Wade; Olsson, Roy H.

    2004-12-01

    The goal of this LDRD project was to evaluate the possibilities of utilizing Stochastic resonance in micromechanical sensor systems as a means for increasing signal to noise for physical sensors. A careful study of this field reveals that in the case of a single sensing element, stochastic resonance offers no real advantage. We have, however, identified a system that can utilize very similar concepts to stochastic resonance in order to achieve an arrayed sensor system that could be superior to existing technologies in the field of inertial sensors, and could offer a very low power technique for achieving navigation grade inertial measurement units.

  7. Stochastic resonant damping in a noisy monostable system: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Volpe, Giovanni; Perrone, Sandro; Rubi, J. Miguel; Petrov, Dmitri

    2008-05-01

    Usually in the presence of a background noise an increased effort put in controlling a system stabilizes its behavior. Rarely it is thought that an increased control of the system can lead to a looser response and, therefore, to a poorer performance. Strikingly there are many systems that show this weird behavior; examples can be drawn form physical, biological, and social systems. Until now no simple and general mechanism underlying such behaviors has been identified. Here we show that such a mechanism, named stochastic resonant damping, can be provided by the interplay between the background noise and the control exerted on the system. We experimentally verify our prediction on a physical model system based on a colloidal particle held in an oscillating optical potential. Our result adds a tool for the study of intrinsically noisy phenomena, joining the many constructive facets of noise identified in the past decades—for example, stochastic resonance, noise-induced activation, and Brownian ratchets.

  8. Stochastic resonant damping in a noisy monostable system: theory and experiment.

    PubMed

    Volpe, Giovanni; Perrone, Sandro; Rubi, J Miguel; Petrov, Dmitri

    2008-05-01

    Usually in the presence of a background noise an increased effort put in controlling a system stabilizes its behavior. Rarely it is thought that an increased control of the system can lead to a looser response and, therefore, to a poorer performance. Strikingly there are many systems that show this weird behavior; examples can be drawn form physical, biological, and social systems. Until now no simple and general mechanism underlying such behaviors has been identified. Here we show that such a mechanism, named stochastic resonant damping, can be provided by the interplay between the background noise and the control exerted on the system. We experimentally verify our prediction on a physical model system based on a colloidal particle held in an oscillating optical potential. Our result adds a tool for the study of intrinsically noisy phenomena, joining the many constructive facets of noise identified in the past decades-for example, stochastic resonance, noise-induced activation, and Brownian ratchets. PMID:18643026

  9. Broadband vibration energy harvesting by application of stochastic resonance from rotational environments

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Zheng, R.; Kaizuka, T.; Su, D.; Nakano, K.; Cartmell, M. P.

    2015-11-01

    A model for energy harvesting from a rotating automotive tyre is suggested in which the principle of stochastic resonance is advantageously exploited. A bistable response characteristic is obtained by recourse a small harvester comprising a magnetically repellant configuration in which an instrumented cantilever beam can flip between two physical response states when suitably excited by the rotation of a car wheel into which it is fitted. The rotation of the wheel creates a periodic modulation which enables stochastic resonance to take place and as a consequence of this for energy to be harvested from road noise transmitted through the tyre. An optimised mathematical model of the system is presented based on a series of experimental tests and it is shown that a ten-fold increase in harvested energy over a comparable monostable case is feasible. The suggested application for this harvester is to provide electrical power for a tyre pressure monitoring system.

  10. Parameter-induced stochastic resonance based on spectral entropy and its application to weak signal detection

    SciTech Connect

    Zhang, Jinjing; Zhang, Tao

    2015-02-15

    The parameter-induced stochastic resonance based on spectral entropy (PSRSE) method is introduced for the detection of a very weak signal in the presence of strong noise. The effect of stochastic resonance on the detection is optimized using parameters obtained in spectral entropy analysis. Upon processing employing the PSRSE method, the amplitude of the weak signal is enhanced and the noise power is reduced, so that the frequency of the signal can be estimated with greater precision through spectral analysis. While the improvement in the signal-to-noise ratio is similar to that obtained using the Duffing oscillator algorithm, the computational cost reduces from O(N{sup 2}) to O(N). The PSRSE approach is applied to the frequency measurement of a weak signal made by a vortex flow meter. The results are compared with those obtained applying the Duffing oscillator algorithm.

  11. A Modified Adaptive Stochastic Resonance for Detecting Faint Signal in Sensors

    PubMed Central

    Huang, Qi; Liu, Jun; Li, Hengwei

    2007-01-01

    In this paper, an approach is presented to detect faint signals with strong noises in sensors by stochastic resonance (SR). We adopt the power spectrum as the evaluation tool of SR, which can be obtained by the fast Fourier transform (FFT). Furthermore, we introduce the adaptive filtering scheme to realize signal processing automatically. The key of the scheme is how to adjust the barrier height to satisfy the optimal condition of SR in the presence of any input. For the given input signal, we present an operable procedure to execute the adjustment scheme. An example utilizing one audio sensor to detect the fault information from the power supply is given. Simulation results show that the modified stochastic resonance scheme can effectively detect fault signal with strong noise.

  12. Optimizing the Adaptive Stochastic Resonance and Its Application in Fault Diagnosis

    NASA Astrophysics Data System (ADS)

    Liu, Xiaole; Yang, Jianhua; Liu, Houguang; Cheng, Gang; Chen, Xihui; Xu, Dan

    2015-10-01

    This paper presents an adaptive stochastic resonance method based on the improved artificial fish swarm algorithm. By this method, we can enhance the weak characteristic signal which is submerged in a heavy noise. We can also adaptively lead the stochastic resonance to be optimized to the greatest extent. The effectiveness of the proposed method is verified by both numerical simulation and lab experimental vibration signals including normal, a chipped tooth and a missing tooth of planetary gearboxes under the loaded condition. Both theoretical and experimental results show that this method can effectively extract weak characteristics in a heavy noise. In the experiment, each weak fault feature is extracted successfully from the fault planetary gear. When compared with the ensemble empirical mode decomposition (EEMD) method, the method proposed in this paper has been found to give remarkable performance.

  13. Review of book vestibular crises

    NASA Technical Reports Server (NTRS)

    Blagoveshchenskaya, N. S.

    1980-01-01

    The etiology, pathogenesis, clinical practice, treatment and rehabilitation of patients with vestibular crises is discussed. Classifications for vestibular disorders are given. Information on the frequency of vestibular crises is given.

  14. [Vestibular compensation studies]. [Vestibular Compensation and Morphological Studies

    NASA Technical Reports Server (NTRS)

    Perachio, Adrian A. (Principal Investigator)

    1996-01-01

    The following topics are reported: neurophysiological studies on MVN neurons during vestibular compensation; effects of spinal cord lesions on VNC neurons during compensation; a closed-loop vestibular compensation model for horizontally canal-related MVN neurons; spatiotemporal convergence in VNC neurons; contributions of irregularly firing vestibular afferents to linear and angular VOR's; application to flight studies; metabolic measures in vestibular neurons; immediate early gene expression following vestibular stimulation; morphological studies on primary afferents, central vestibular pathways, vestibular efferent projection to the vestibular end organs, and three-dimensional morphometry and imaging.

  15. Noise-induced entrainment and stochastic resonance in human brain waves.

    PubMed

    Mori, Toshio; Kai, Shoichi

    2002-05-27

    We present the first observation of stochastic resonance (SR) in the human brain's visual processing area. The novel experimental protocol is to stimulate the right eye with a subthreshold periodic optical signal and the left eye with a noisy one. The stimuli bypass sensory organs and are mixed in the visual cortex. With many noise sources present in the brain, higher brain functions, e.g., perception and cognition, may exploit SR. PMID:12059504

  16. Vibrational and stochastic resonances in two coupled overdamped anharmonic oscillators driven by an amplitude modulated force

    NASA Astrophysics Data System (ADS)

    Gandhimathi, V. M.; Rajasekar, S.

    2007-12-01

    Vibrational and stochastic resonances (VR and SR) in two coupled overdamped anharmonic oscillators subjected to an amplitude modulated force (f + 2 g \\cos \\Omega t) \\sin \\omega t, \\Omega \\gg \\omega are numerically studied. When both low- and high-frequency components are included the system show hysteresis and VR behaviour in the absence of a noise term. The resonance dynamics is characterized using response amplitude, phase portrait and mean residence time. We show the occurrence of SR by varying the noise intensity D in the presence of an amplitude modulated signal. High-frequency periodic force induced VR and noise-induced SR show certain similarities and differences.

  17. Far from Equilibrium Percolation, Stochastic and Shape Resonances in the Physics of Life

    PubMed Central

    Poccia, Nicola; Ansuini, Alessio; Bianconi, Antonio

    2011-01-01

    Key physical concepts, relevant for the cross-fertilization between condensed matter physics and the physics of life seen as a collective phenomenon in a system out-of-equilibrium, are discussed. The onset of life can be driven by: (a) the critical fluctuations at the protonic percolation threshold in membrane transport; (b) the stochastic resonance in biological systems, a mechanism that can exploit external and self-generated noise in order to gain efficiency in signal processing; and (c) the shape resonance (or Fano resonance or Feshbach resonance) in the association and dissociation processes of bio-molecules (a quantum mechanism that could play a key role to establish a macroscopic quantum coherence in the cell). PMID:22072921

  18. Vestibular humanoid postural control.

    PubMed

    Mergner, Thomas; Schweigart, Georg; Fennell, Luminous

    2009-01-01

    Many of our motor activities require stabilization against external disturbances. This especially applies to biped stance since it is inherently unstable. Disturbance compensation is mainly reactive, depending on sensory inputs and real-time sensor fusion. In humans, the vestibular system plays a major role. When there is no visual space reference, vestibular-loss clearly impairs stance stability. Most humanoid robots do not use a vestibular system, but stabilize upright body posture by means of center of pressure (COP) control. We here suggest using in addition a vestibular sensor and present a biologically inspired vestibular sensor along with a human-inspired stance control mechanism. We proceed in two steps. First, in an introductory review part, we report on relevant human sensors and their role in stance control, focusing on own models of transmitter fusion in the vestibular sensor and sensor fusion in stance control. In a second, experimental part, the models are used to construct an artificial vestibular system and to embed it into the stance control of a humanoid. The robot's performance is investigated using tilts of the support surface. The results are compared to those of humans. Functional significance of the vestibular sensor is highlighted by comparing vestibular-able with vestibular-loss states in robot and humans. We show that a kinematic body-space sensory feedback (vestibular) is advantageous over a kinetic one (force cues) for dynamic body-space balancing. Our embodiment of human sensorimotor control principles into a robot is more than just bionics. It inspired our biological work (neurorobotics: 'learning by building', proof of principle, and more). We envisage a future clinical use in the form of hardware-in-the-loop simulations of neurological symptoms for improving diagnosis and therapy and designing medical assistive devices. PMID:19665555

  19. Friction-induced Resonance of a Stochastic Oscillator

    SciTech Connect

    Laas, K.; Mankin, R.

    2009-10-29

    The influence of the friction coefficient on the long-time behavior of the output signal of a harmonic oscillator with fluctuating frequency subjected to an external periodic force and an additive thermal noise is considered. The colored fluctuations of the oscillator frequency are modeled as a three-level Markovian telegraph noise. The main purpose of this work is to demonstrate, based on exact expressions, that the resonance is manifested in the dependence of the response function and the complex susceptibility of the oscillator upon the friction coefficient. The advantage of the latter effect is that the control parameter is the damping coefficient, which can easily be varied in possible experiments as well as potential technological applications.

  20. Ghost-Stochastic Resonance in a Unidirectionally Coupled and Small-World Networks

    E-print Network

    S. Rajamani; S. Rajasekar

    2015-10-27

    Ghost-stochastic resonance is a noise-induced resonance at a missing fundamental frequency in the input signal. In this paper we investigate the features of ghost-stochastic resonance in a unidirectionally coupled network and small-world network with each unit being bistable Bellows map. In the one-way coupled network we apply a multi-frequency signal $(1/n_{\\mathrm{f}}) \\sum_{j=1}^{n_{\\mathrm{f}}} \\cos (\\omega_{j}n)$, $n=0,1,2,\\cdots$, $\\omega_{j}=(k+j-1)\\omega_{0}$, with $k$ being an integer $\\ge2$ (without the fundamental frequency $\\omega_{0}$) and noise to first unit only. We show the occurrence of resonance and undamped signal propagation for coupling strength above a certain critical value. The response amplitude shows sigmoidal function type variation with unit number. We report the effect of coupling strength $\\delta$, $k$ and $n_{\\mathrm{f}}$ on the response amplitude. In the small-world network randomness in the connectivity topology is described by the probability $p$ of rewiring of units in a ring type regular network where all the units are subjected to noise and multi-frequency signal. We present the influence of $p$ and the coupling strength on the probability distribution of response amplitude $Q$ of various units, $\\langle Q \\rangle$ and the maximum value of $Q$.

  1. 1526 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 6, NOVEMBER 2004 Adaptive Stochastic Resonance in Noisy Neurons

    E-print Network

    Kosko, Bart

    Resonance in Noisy Neurons Based on Mutual Information Sanya Mitaim and Bart Kosko Abstract--Noise can improve how memoryless neurons process signals and maximize their throughput information. Such favor- able use of noise is the so-called "stochastic resonance" or SR ef- fect at the level of threshold neurons

  2. Effects of spike-time-dependent plasticity on the stochastic resonance of small-world neuronal networks

    SciTech Connect

    Yu, Haitao; Guo, Xinmeng; Wang, Jiang Deng, Bin; Wei, Xile

    2014-09-01

    The phenomenon of stochastic resonance in Newman-Watts small-world neuronal networks is investigated when the strength of synaptic connections between neurons is adaptively adjusted by spike-time-dependent plasticity (STDP). It is shown that irrespective of the synaptic connectivity is fixed or adaptive, the phenomenon of stochastic resonance occurs. The efficiency of network stochastic resonance can be largely enhanced by STDP in the coupling process. Particularly, the resonance for adaptive coupling can reach a much larger value than that for fixed one when the noise intensity is small or intermediate. STDP with dominant depression and small temporal window ratio is more efficient for the transmission of weak external signal in small-world neuronal networks. In addition, we demonstrate that the effect of stochastic resonance can be further improved via fine-tuning of the average coupling strength of the adaptive network. Furthermore, the small-world topology can significantly affect stochastic resonance of excitable neuronal networks. It is found that there exists an optimal probability of adding links by which the noise-induced transmission of weak periodic signal peaks.

  3. Three dimensional nuclear magnetic resonance spectroscopic imaging of sodium ions using stochastic excitation and oscillating gradients

    SciTech Connect

    Frederick, B.deB. |

    1994-12-01

    Nuclear magnetic resonance (NMR) spectroscopic imaging of {sup 23}Na holds promise as a non-invasive method of mapping Na{sup +} distributions, and for differentiating pools of Na{sup +} ions in biological tissues. However, due to NMR relaxation properties of {sup 23}Na in vivo, a large fraction of Na{sup +} is not visible with conventional NMR imaging methods. An alternate imaging method, based on stochastic excitation and oscillating gradients, has been developed which is well adapted to measuring nuclei with short T{sub 2}. Contemporary NMR imaging techniques have dead times of up to several hundred microseconds between excitation and sampling, comparable to the shortest in vivo {sup 23}Na T{sub 2} values, causing significant signal loss. An imaging strategy based on stochastic excitation has been developed which greatly reduces experiment dead time by reducing peak radiofrequency (RF) excitation power and using a novel RF circuit to speed probe recovery. Continuously oscillating gradients are used to eliminate transient eddy currents. Stochastic {sup 1}H and {sup 23}Na spectroscopic imaging experiments have been performed on a small animal system with dead times as low as 25{mu}s, permitting spectroscopic imaging with 100% visibility in vivo. As an additional benefit, the encoding time for a 32x32x32 spectroscopic image is under 30 seconds. The development and analysis of stochastic NMR imaging has been hampered by limitations of the existing phase demodulation reconstruction technique. Three dimensional imaging was impractical due to reconstruction time, and design and analysis of proposed experiments was limited by the mathematical intractability of the reconstruction method. A new reconstruction method for stochastic NMR based on Fourier interpolation has been formulated combining the advantage of a several hundredfold reduction in reconstruction time with a straightforward mathematical form.

  4. Non-linear resonant coupling of tsunami edge waves using stochastic earthquake source models

    USGS Publications Warehouse

    Geist, Eric L.

    2015-01-01

    Non-linear resonant coupling of edge waves can occur with tsunamis generated by large-magnitude subduction zone earthquakes. Earthquake rupture zones that straddle beneath the coastline of continental margins are particularly efficient at generating tsunami edge waves. Using a stochastic model for earthquake slip, it is shown that a wide range of edge-wave modes and wavenumbers can be excited, depending on the variability of slip. If two modes are present that satisfy resonance conditions, then a third mode can gradually increase in amplitude over time, even if the earthquake did not originally excite that edge-wave mode. These three edge waves form a resonant triad that can cause unexpected variations in tsunami amplitude long after the first arrival. An M ? 9, 1100 km-long continental subduction zone earthquake is considered as a test case. For the least-variable slip examined involving a Gaussian random variable, the dominant resonant triad includes a high-amplitude fundamental mode wave with wavenumber associated with the along-strike dimension of rupture. The two other waves that make up this triad include subharmonic waves, one of fundamental mode and the other of mode 2 or 3. For the most variable slip examined involving a Cauchy-distributed random variable, the dominant triads involve higher wavenumbers and modes because subevents, rather than the overall rupture dimension, control the excitation of edge waves. Calculation of the resonant period for energy transfer determines which cases resonant coupling may be instrumentally observed. For low-mode triads, the maximum transfer of energy occurs approximately 20–30 wave periods after the first arrival and thus may be observed prior to the tsunami coda being completely attenuated. Therefore, under certain circumstances the necessary ingredients for resonant coupling of tsunami edge waves exist, indicating that resonant triads may be observable and implicated in late, large-amplitude tsunami arrivals.

  5. Nonlinear restoration of pulse and high noisy images via stochastic resonance

    NASA Astrophysics Data System (ADS)

    Sun, Qibing; Liu, Hongjun; Huang, Nan; Wang, Zhaolu; Han, Jing; Li, Shaopeng

    2015-11-01

    We propose a novel scheme for restoring pulse and high noisy images using stochastic resonance, which is based on the modulation instability and provides a cross-correlation gain higher than 8. As opposed to previously reported designs, this unique approach employs a continuous noise and pulse signal for the generation of modulation instability. The visibility and quality of output images can be improved by appropriately adjusting the system parameters. This provides a simple and feasible method for detecting low-level or hidden pulse images in various imaging applications.

  6. Novel Class of Neural Stochastic Resonance and Error-Free Information Transfer

    NASA Astrophysics Data System (ADS)

    Yasuda, Hideaki; Miyaoka, Tsuyoshi; Horiguchi, Jun; Yasuda, Akira; Hänggi, Peter; Yamamoto, Yoshiharu

    2008-03-01

    We investigate a novel class of neural stochastic resonance (SR) exhibiting error-free information transfer. Unlike conventional neural SR, where the decrease of a system’s response with too much noise is associated with an increase in the baseline firing rate, here the bell-shaped SR behavior of the input-output cross correlation emerges versus increasing input noise in spite of no significant increase of the baseline firing rate. The neuron thus acts as an error-free detector for weak signals. An integrate-and-fire model with short-term synaptic depression convincingly validates our experimental findings for SR in the human tactile blink reflex.

  7. Conductance with stochastic resonance in Mn{sub 12} redox network without tuning

    SciTech Connect

    Hirano, Yoshiaki; Segawa, Yuji; Kawai, Tomoji; Kuroda-Sowa, Takayoshi; Matsumoto, Takuya

    2014-06-09

    Artificial neuron-based information processing is one of the attractive approaches of molecular-scale electronics, which can exploit the ability of molecular system for self-assembling or self-organization. The self-organized Mn{sub 12}/DNA redox network shows nonlinear current-voltage characteristics that can be described by the Coulomb blockade network model. As a demonstration of the nonlinear network system, we have observed stochastic resonance without tuning for weak periodic input signals and thermal noise, which suggests a route to neural network composed of molecular materials.

  8. Central cross-modal stochastic resonance in human tactile blink reflex

    NASA Astrophysics Data System (ADS)

    Yasuda, Hideaki; Miyaoka, Tsuyoshi; Horiguchi, Jun; Yamamoto, Yoshiharu

    2007-07-01

    We study cross-modal stochastic resonance in the human brain. The neural circuit in the brainstem for integration of both the auditory afferent pathway used to apply background noise and the tactile sensory pathway used to apply a signal is well known, so we expect a direct integration of signal and noise in this distinct circuit of the brain. Our results indeed confirm an optimization of response probabilities of tactile blink reflex by auditory noise, suggesting the direct involvement of background noise in the cross-modal sensory integration.

  9. Nonlinear restoration of pulse and high noisy images via stochastic resonance.

    PubMed

    Sun, Qibing; Liu, Hongjun; Huang, Nan; Wang, Zhaolu; Han, Jing; Li, Shaopeng

    2015-01-01

    We propose a novel scheme for restoring pulse and high noisy images using stochastic resonance, which is based on the modulation instability and provides a cross-correlation gain higher than 8. As opposed to previously reported designs, this unique approach employs a continuous noise and pulse signal for the generation of modulation instability. The visibility and quality of output images can be improved by appropriately adjusting the system parameters. This provides a simple and feasible method for detecting low-level or hidden pulse images in various imaging applications. PMID:26530885

  10. Stochastic Resonance in a Spatially Symmetric and Flashing Periodic Potential Subjected to Correlated Noises

    NASA Astrophysics Data System (ADS)

    Nie, Lin-Ru; Gong, Yu-Lan; Mei, Dong-Cheng

    2009-10-01

    A Brownian particle in a spatially symmetric and Bashing periodic potential subjected to correlated noises is investigated. The exact expression of its current is analytically derived. The numerical results indicate that its current as a function of noise intensity exhibits two peaks in the case of positive correlations, and two vales in the case of negative correlations, i.e., a novel stochastic resonance (SR) phenomenon. The SR is attributed to the harmonic cooperation between the noises and the Bashing periodic potential. The conditions under which the SR occurs are also presented.

  11. Nonlinear restoration of pulse and high noisy images via stochastic resonance

    PubMed Central

    Sun, Qibing; Liu, Hongjun; Huang, Nan; Wang, Zhaolu; Han, Jing; Li, Shaopeng

    2015-01-01

    We propose a novel scheme for restoring pulse and high noisy images using stochastic resonance, which is based on the modulation instability and provides a cross-correlation gain higher than 8. As opposed to previously reported designs, this unique approach employs a continuous noise and pulse signal for the generation of modulation instability. The visibility and quality of output images can be improved by appropriately adjusting the system parameters. This provides a simple and feasible method for detecting low-level or hidden pulse images in various imaging applications. PMID:26530885

  12. Nuclear quadrupole resonance lineshape analysis for different motional models: Stochastic Liouville approach

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Earle, K. A.; Mielczarek, A.; Kubica, A.; Milewska, A.; Moscicki, J.

    2011-12-01

    A general theory of lineshapes in nuclear quadrupole resonance (NQR), based on the stochastic Liouville equation, is presented. The description is valid for arbitrary motional conditions (particularly beyond the valid range of perturbation approaches) and interaction strengths. It can be applied to the computation of NQR spectra for any spin quantum number and for any applied magnetic field. The treatment presented here is an adaptation of the "Swedish slow motion theory," [T. Nilsson and J. Kowalewski, J. Magn. Reson. 146, 345 (2000), 10.1006/jmre.2000.2125] originally formulated for paramagnetic systems, to NQR spectral analysis. The description is formulated for simple (Brownian) diffusion, free diffusion, and jump diffusion models. The two latter models account for molecular cooperativity effects in dense systems (such as liquids of high viscosity or molecular glasses). The sensitivity of NQR slow motion spectra to the mechanism of the motional processes modulating the nuclear quadrupole interaction is discussed.

  13. Equilibrium and stochastic resonance in finite chains of noisy bistable elements

    NASA Astrophysics Data System (ADS)

    Morillo, Manuel; Gómez-Ordóñez, José; Casado, José Manuel

    2010-10-01

    Using numerical simulations, we analyze equilibrium properties of finite chains of coupled noisy bistable units and their response to weak time periodic forces. Finite chains with global as well as local (nearest neighbors) coupling are considered. We focus on the study of a collective variable defined as the arithmetic mean of the variables characterizing each element of the chain. By contrast with the case of infinite size chains, where the coexistence of several equilibrium distributions for the same values of parameters is possible, for finite chains just a single equilibrium distribution exists for given values of the parameters. We demonstrate that, regardless of the chain connectivity, there exist transition lines separating regions in parameter space where the equilibrium distribution function is either monomodal or multimodal. The location of the transition line depends on the chain connectivity and the size of the system. For driven chains, the response of the system shows stochastic resonant effects. For the two types of chains considered, both the power spectral amplification and the signal-to-noise ratio of the collective variable are analyzed as the noise strength, the coupling parameter and the number of bistable units in the system are varied. Compared with the effects observed in single unit systems, the collective variable shows a strong enhancement of the stochastic resonance effects.

  14. The stochastic dynamics of a nanobeam near an optomechanical resonator in a viscous fluid

    NASA Astrophysics Data System (ADS)

    Epstein, S.; Paul, M. R.

    2013-10-01

    We quantify the Brownian driven, stochastic dynamics of an elastic nanobeam immersed in a viscous fluid that is partially wrapped around a microdisk optical resonator. This configuration has been proposed as an optomechanical and nanoscale analog of the atomic force microscope [Srinivasan et al., Nano Lett. 11, 791 (2011)]. A small gap between the nanobeam and microdisk is necessary for the optomechanical transduction of the mechanical motion of the nanobeam. We compute the stochastic dynamics of the nanobeam in fluid for the precise conditions of the laboratory using deterministic finite element simulations and the fluctuation dissipation theorem. We investigate the dynamics of a nanobeam in water and in air and quantify the significance of the fluid-solid interaction between the nanobeam and the optical resonator. Our results in air show that, despite the complex geometry of the nanobeam, it can still be represented approximately as a damped simple harmonic oscillator. On the other hand, when the nanobeam is immersed in water there are significant deviations from the dynamics of a simple harmonic oscillator. The small gap between the nanobeam and the microdisk is found to be a significant source of additional dissipation. In air, the quality factor of the mechanical oscillation of the nanobeam is reduced by an order of magnitude due to the presence of the microdisk, however, the dynamics remain underdamped even in the presence of the microdisk. On the other hand, when placed in water, the dynamics without the microdisk is underdamped and with the microdisk the dynamics become strongly over damped.

  15. Resonant behavior of stochastic oscillations of general relativistic disks driven by a memory-damped friction

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Yun; Chen, Pei-Jie; Zhang, Liang-Ying

    2015-05-01

    By using a generalized Langevin equation to describe the vertical oscillations of a general relativistic disk subjected to a memory-damped friction and a stochastic force, we derive the power spectrum density (PSD) of accretion disk oscillating luminosity by the method of Laplace transform, and discuss the influence of the system parameters on the resonant behavior in PSD curves. The results show that as the damping strength ? and memory time ? of the friction increase, the variation of PSD with spectrum frequency f from monotonous decreasing to occurring maximums, and the phenomenon of a general stochastic resonance (SR) with a single peak and multi-peaks can be found in PSD curves. The radial distance parameter n, the mass M, and spin parameter a* of the black hole determine the inherent frequency of vertical oscillations in the disk, and they have significant influences on the SR phenomena in a system of black hole binaries. Project supported by the National Natural Science Foundation of China (Grant No. 11045004) and the Key Program of the Scientific Research Foundation of the Education Bureau of Hubei Province, China (Grant No. D20132603).

  16. Litchi freshness rapid non-destructive evaluating method using electronic nose and non-linear dynamics stochastic resonance model.

    PubMed

    Ying, Xiaoguo; Liu, Wei; Hui, Guohua

    2015-01-01

    In this paper, litchi freshness rapid non-destructive evaluating method using electronic nose (e-nose) and non-linear stochastic resonance (SR) was proposed. EN responses to litchi samples were continuously detected for 6 d Principal component analysis (PCA) and non-linear stochastic resonance (SR) methods were utilized to analyze EN detection data. PCA method could not totally discriminate litchi samples, while SR signal-to-noise ratio (SNR) eigen spectrum successfully discriminated all litchi samples. Litchi freshness predictive model developed using SNR eigen values shows high predictive accuracy with regression coefficients R(2) = 0 .99396. PMID:25920547

  17. Types of Vestibular Disorders

    MedlinePLUS

    ... and/or auditory signs and symptoms. Read more... Tinnitus Tinnitus is a symptom that can be experienced with ... disorders and is not vestibular disorder by itself. Tinnitus is abnormal noise perceived in one or both ...

  18. Labyrinthitis and Vestibular Neuritis

    MedlinePLUS

    ... Secondary Endolymphatic Hydrops (SEH) Superior Canal Dehiscence (SCD) Tinnitus Vestibular Hyperacusis Vision & Hearing Psychology Diet Other Topics ... labyrinthitis may produce the same symptoms, along with tinnitus (ringing or noises in the ear) and/or ...

  19. Vestibular Disorders Association

    MedlinePLUS

    ... brain. Read more Survey Results: Damage Caused By Gentamicin Nov. 17, 2015 | 9:04am Dr. Ann Kerlin ... suffer from vestibular dysfunction as a result of gentamicin poisoning. In this article she summarizes her findings. ...

  20. Pediatric Vestibular Disorders

    MedlinePLUS

    ... style. 3 Nystagmus (involuntary, alternating, rapid, and slow eye movements) 3,4 Difficulty navigating in the dark Hearing ... may lead to diagnostic tests that measure hearing, eye movement, and peripheral vestibular function (performed by an audiologist) ...

  1. Resonant excitation of the magnetosphere by stochastic and unsteady hydromagnetic waves

    SciTech Connect

    Mazur, V. A.

    2011-05-15

    The effect of the magnetospheric MHD cavity on the excitation of the magnetosphere by stochastic and unsteady hydromagnetic waves incident from the solar wind is investigated theoretically by using a one-dimensional nonuniform model of the medium. It is shown that most of the energy of stochastic waves is reflected from the magnetopause and that the only waves that penetrate into the magnetosphere are those with frequencies in narrow spectral ranges near the eigenfrequencies of the cavity. These waves lead to steadystate excitation of the eigenmodes of the cavity, the energy of which is determined by the spectral density of the energy flux of the incident waves at the corresponding eigenfrequencies. The energy of the eigenmodes penetrates through the opacity barrier in the vicinity of the Alfven resonance points (each corresponding to a particular mode), where the perturbation amplitude is sharply amplified, so the total energy localized close to the Alfven resonance point is much higher than the total energy of the corresponding eigenmode. In the vicinities, the perturbation energy is dissipated by the finite conductivity of the ionosphere, the dissipation power being equal to the energy flux of the incident waves that penetrates into the magnetosphere. The case of unsteady waves is analyzed by considering a wave pulse as an example. It is shown that most of the energy of the wave pulse is reflected from the magnetopause. The portion of the incident perturbation that penetrates into the magnetosphere leads to unsteady excitation of the eigenmodes of the magnetospheric cavity, which are then slowly damped because part of the energy of the cavity is emitted through the magnetopause back to the solar wind while the other part penetrates into the vicinities of the Alfven resonance points. In the vicinities, the perturbation is an Alfven wave standing between magnetically conjugate ionospheres and its energy is dissipated by the finite conductivity of the ionosphere at a rate slower than the damping rate of the eigenmodes of the cavity.

  2. Compton harmonic resonances, stochastic instabilities, quasilinear diffusion, and collisionless damping with ultra-high intensity laser waves

    SciTech Connect

    Rax, J.M.

    1992-04-01

    The dynamics of electrons in two-dimensional, linearly or circularly polarized, ultra-high intensity (above 10{sup 18}W/cm{sup 2}) laser waves, is investigated. The Compton harmonic resonances are identified as the source of various stochastic instabilities. Both Arnold diffusion and resonance overlap are considered. The quasilinear kinetic equation, describing the evolution of the electron distribution function, is derived, and the associated collisionless damping coefficient is calculated. The implications of these new processes are considered and discussed.

  3. Enlarged Vestibular Aqueduct Syndrome (EVAS)

    MedlinePLUS

    ... children with a large vestibular aqueduct. Arch Otolaryngol Head Neck Surg. 2004;130:1169–1174. Miyamoto RT, Bichey ... Children with a Large Vestibular Aqueduct. Arch Otolaryngol Head Neck Surg. 130(10):1169-1174. Berrettini, S, Forli, F, ...

  4. Rejection Properties of Stochastic-Resonance-Based Detectors of Weak Harmonic Signals

    E-print Network

    R. P. Croce; Th. Demma; V. Galdi; V. Pierro; I. M. Pinto; F. Postiglione

    2004-06-16

    In (V. Galdi et al., Phys. Rev. E57, 6470, 1998) a thorough characterization in terms of receiver operating characteristics (ROCs) of stochastic-resonance (SR) detectors of weak harmonic signals of known frequency in additive gaussian noise was given. It was shown that strobed sign-counting based strategies can be used to achieve a nice trade-off between performance and cost, by comparison with non-coherent correlators. Here we discuss the more realistic case where besides the sought signal (whose frequency is assumed known) further unwanted spectrally nearby signals with comparable amplitude are present. Rejection properties are discussed in terms of suitably defined false-alarm and false-dismissal probabilities for various values of interfering signal(s) strength and spectral separation.

  5. The Recovery of Weak Impulsive Signals Based on Stochastic Resonance and Moving Least Squares Fitting

    PubMed Central

    Jiang, Kuosheng.; Xu, Guanghua.; Liang, Lin.; Tao, Tangfei.; Gu, Fengshou.

    2014-01-01

    In this paper a stochastic resonance (SR)-based method for recovering weak impulsive signals is developed for quantitative diagnosis of faults in rotating machinery. It was shown in theory that weak impulsive signals follow the mechanism of SR, but the SR produces a nonlinear distortion of the shape of the impulsive signal. To eliminate the distortion a moving least squares fitting method is introduced to reconstruct the signal from the output of the SR process. This proposed method is verified by comparing its detection results with that of a morphological filter based on both simulated and experimental signals. The experimental results show that the background noise is suppressed effectively and the key features of impulsive signals are reconstructed with a good degree of accuracy, which leads to an accurate diagnosis of faults in roller bearings in a run-to failure test. PMID:25076220

  6. Generalized stochastic resonance in a linear fractional system with a random delay

    NASA Astrophysics Data System (ADS)

    Gao, Shi-Long

    2012-12-01

    The generalized stochastic resonance (GSR) phenomena in a linear fractional random-delayed system driven by a weak periodic signal and an additive noise are considered in this paper. A random delay is considered for a linear fractional Langevin equation to describe the intercellular signal transmission and material exchange processes in ion channels. By virtue of the small delay approximation and Laplace transformation, the analytical expression for the amplitude of the first-order steady state moment is obtained. The simulation results show that the amplitude curves as functions of different system parameters behave non-monotonically and exhibit typical characteristics of GSR phenomena. Furthermore, a physical explanation for all the GSR phenomena is given and the cooperative effects of random delay and the fractional memory are also discussed.

  7. Encoding efficiency of suprathreshold stochastic resonance on stimulus-specific information

    NASA Astrophysics Data System (ADS)

    Duan, Fabing; Chapeau-Blondeau, François; Abbott, Derek

    2016-01-01

    In this paper, we evaluate the encoding efficiency of suprathreshold stochastic resonance (SSR) based on a local information-theoretic measure of stimulus-specific information (SSI), which is the average specific information of responses associated with a particular stimulus. The theoretical and numerical analyses of SSIs reveal that noise can improve neuronal coding efficiency for a large population of neurons, which leads to produce increased information-rich responses. The SSI measure, in contrast to the global measure of average mutual information, can characterize the noise benefits in finer detail for describing the enhancement of neuronal encoding efficiency of a particular stimulus, which may be of general utility in the design and implementation of a SSR coding scheme.

  8. Extracting nanosecond pulse signals via stochastic resonance generated by surface plasmon bistability.

    PubMed

    Han, Jing; Liu, Hongjun; Sun, Qibing; Huang, Nan; Wang, Zhaolu; Li, Shaopeng

    2015-11-15

    A technology is investigated to extract nanosecond pulse noise hidden signals via stochastic resonance, which is based on surface plasmon bistability. A theoretical model for recovering nanosecond pulse signals is derived to describe the nonlinear process. It is found that the incident angle, polarization state, medium properties, and input noise intensity all determine the efficiency and fidelity of the output signal. The bistable behavior of the output intensity can be accurately controlled to obtain a cross-correlation gain larger than 6 in a wide range of input signal-to-noise ratio from 1?5 to 1?30. Meanwhile, the distortion in the time domain induced by phase shift can be reduced to a negligible level. This work provides a potential method for detecting low-level or hidden pulse signals in various communication fields. PMID:26565876

  9. Signal transduction in a coupled hormone system: selective explicit internal signal stochastic resonance and its control.

    PubMed

    Li, Qianshu; He, Hongyan

    2005-12-01

    Cooperative interactions of signal transduction and environmental noise are investigated with a coupled hormone system, in which selective explicit internal signal stochastic resonance (EISSR) is observed. More specifically, the large peak of a period-2 oscillation (i.e., a strong signal) is greatly amplified by the environmental noise while the small peak (i.e., a weak signal) does not exhibit cooperative interactions with noise. The EISSR phenomenon could be controlled by adjusting the frequency or amplitude of an external signal and a critical amplitude for external signal is found. Significantly, the maximal signal-to-noise ratio increases almost linearly with the increment of control parameter, despite that the magnitude of the large peak is decreased. In addition, the noise does not alter the fundamental frequencies of the strong signal and the weak signal, which implicates that the system can keep its intrinsic oscillatory state and resist the effect of environmental fluctuations. PMID:16356068

  10. Model for biological communication in a nanofabricated cell-mimic driven by stochastic resonance

    SciTech Connect

    Karig, David K; Siuti, Piro; Dar, Roy D.; Retterer, Scott T; Doktycz, Mitchel John; Simpson, Michael L

    2011-01-01

    Cells offer natural examples of highly efficient networks of nanomachines. Accordingly, both intracellular and intercellular communication mechanisms in nature are looked to as a source of inspiration and instruction for engineered nanocommunication. Harnessing biological functionality in this manner requires an interdisciplinary approach that integrates systems biology, synthetic biology, and nanofabrication. Recent years have seen the amassing of a tremendous wealth of data from the sequencing of new organisms and from high throughput expression experiments. At the same time, a deeper fundamental understanding of individual cell function has been developed, as exemplified by the growth of fields such as noise biology, which seeks to characterize the role of noise in gene expression. The availability of well characterized biological components coupled with a deeper understanding of cell function has led to efforts to engineer both living cells and to create bio-like functionality in non-living substrates in the field of synthetic biology. Here, we present a model system that exemplifies the synergism between these realms of research. We propose a synthetic gene network for operation in a nanofabricated cell mimic array that propagates a biomolecular signal over long distances using the phenomenon of stochastic resonance. Our system consists of a bacterial quorum sensing signal molecule, a bistable genetic switch triggered by this signal, and an array of nanofabricated cell mimic wells that contain the genetic system. An optimal level of noise in the system helps to propagate a time-varying AHL signal over long distances through the array of mimics. This noise level is determined both by the system volume and by the parameters of the genetic network. Our proposed genetically driven stochastic resonance system serves as a testbed for exploring the potential harnessing of gene expression noise to aid in the transmission of a time-varying molecular signal.

  11. On the generation of ion beamlets in the magnetotail: Resonant acceleration versus stochastic acceleration

    NASA Astrophysics Data System (ADS)

    Dolgonosov, M. S.; Zimbardo, G.; Perri, S.; Greco, A.

    2013-09-01

    In the Earth plasma sheet boundary layer, two types of ion beams (so-called beamlets of type I and of type II) were investigated for more then two decades. Type I beamlets have energies <20 keV and small velocity dispersion, while type II beamlets have energies up to 100 keV and large velocity dispersion. It is believed that beamlets of type I result from nonadiabatic and resonant acceleration by the cross-tail electric field Ey at the fulfillment of the resonant condition in the current sheet, while beamlets type II could be generated by sufficiently large level of electromagnetic fluctuations in the magnetotail. The resonant condition is very sensitive to the presence of the perturbation and eventually should be destroyed by growing "noise." We performed test particle simulation taking into account two possible acceleration mechanisms, cross-tail electric field Ey and stochastic acceleration due to electromagnetic perturbations. Electromagnetic perturbation were generated by a set of oscillating clouds in the plasma sheet. We obtained that type I beamlets could be observed even in the presence of moderate levels of perturbation ?B˜Bz(z=0), where Bz is a magnetic field component perpendicular to the current sheet plane. Increasing the perturbation level, beamlets of higher energy are obtained. The interplay of ion resonant acceleration and magnetic perturbation in the magnetotail leads to a continuous transition from beamlets of type I to beamlets of type II. A comparison of the numerical results with the observation of ion populations in magnetotail is also discussed.

  12. On the generation of ion beamlets in the magnetotail: resonant acceleration versus stochastic acceleration

    NASA Astrophysics Data System (ADS)

    Zimbardo, Gaetano; Dolgonosov, Maxim; Perri, Silvia; Greco, Antonella

    2013-04-01

    In the Earth magnetotail two types of ion beams (so-called beamlets of type I and of type II) are observed in the plasma sheet boundary layer. Type I beamlets have energies < 20 keV and small velocity dispersion, while type II beamlets have energies up to 100 keV and large velocity dispersion. It is believed that beamlets of type I result from non-adiabatic, resonant acceleration by the cross-tail electric field Ey at the fulfillment of the resonant condition in the current sheet, while beamlets type II could be generated by sufficiently large level of electromagnetic fluctuations in the magnetotail. The resonant condition is very sensitive to the presence of the perturbation and eventually should be destroyed by growing "noise". We performed test particle simulation taking into account two possible acceleration mechanisms, cross-tail electric field Ey and stochastic acceleration due to electromagnetic perturbations. Electromagnetic perturbation were generated by a set of oscillating clouds in the plasma sheet. We obtained that type I beamlets could be observed even in the presence of moderate levels of perturbation ?B ~ Bz(z = 0), where Bz is a magnetic field component perpendicular to the current sheet plane. Increasing the perturbation level, beamlets of higher energy are obtained but energies are no more discrete, as is typical of type I beamlets. The interplay of ion resonant acceleration and magnetic perturbation in the magnetotail leads to a continuous transition from beamlets of type I to beamlets of type II. A comparison of the numerical results with the observations of ion populations in magnetotail is also discussed. This research was supported by the Geoplasmas project, PIRSES 269198 of the European Union FP7.

  13. Preservation of auditory and vestibular function after surgical removal of bilateral vestibular schwannomas in a patient with neurofibromatosis type 2

    NASA Technical Reports Server (NTRS)

    Black, F. O.; Brackmann, D. E.; Hitselberger, W. E.; Purdy, J.

    1995-01-01

    The outcome of acoustic neuroma (vestibular schwannoma) surgery continues to improve rapidly. Advances can be attributed to several fields, but the most important contributions have arisen from the identification of the genes responsible for the dominant inheritance of neurofibromatosis types 1 (NF1) and 2 (NF2) and the development of magnetic resonance imaging with gadolinium enhancement for the early anatomic confirmation of the pathognomonic, bilateral vestibular schwannomas in NF2. These advances enable early diagnosis and treatment when the tumors are small in virtually all subjects at risk for NF2. The authors suggest that advising young NF2 patients to wait until complications develop, especially hearing loss, before diagnosing and operating for bilateral eighth nerve schwannomas may not always be in the best interest of the patient. To the authors' knowledge, this is the first reported case of preservation of both auditory and vestibular function in a patient after bilateral vestibular schwannoma excision.

  14. Recovery from vestibular ototoxicity

    NASA Technical Reports Server (NTRS)

    Black, F. O.; Gianna-Poulin, C.; Pesznecker, S. C.

    2001-01-01

    OBJECTIVE: Determine whether subjects with documented vestibular ototoxicity recover vestibular function and, if so, investigate the recovery dynamics. STUDY DESIGN: Prospective and retrospective reviews and repeated measures. SETTING: Clinical research and technology center. SUBJECTS: Twenty-eight subjects who received vestibulotoxic medications were followed for at least 12 months after initial treatment. CONTROLS: Our subject sample was compared with a published database of normal individuals. INTERVENTIONS: All 28 subjects received systemically administered medications known to be ototoxic. The subjects' treating physicians controlled medication, dosage, and administration schedules. MAIN OUTCOME MEASURES: Tests of horizontal canal vestibulo-ocular function were performed. Subjects' auditory and vestibular symptoms were recorded. RESULTS: Eleven subjects (39%) showed changes in horizontal canal vestibulo-ocular gain constant (GC) and/or time constant (TC) consistent with vestibular ototoxicity. When tested 1 year after ototoxic drug administration, eight of the nine subjects who experienced ototoxic decrease in GC showed a recovery of GC to normal limits. Only one of the eight subjects who experienced ototoxic decrease in TC showed recovery of TC to within normal limits. Ototoxicity onset and recovery were independent of baseline vestibular function, and ototoxicity onset did not correlate with cumulative dose of ototoxic medication. There was no relationship between subjective symptoms and ototoxicity onset. CONCLUSIONS: Recovery of GC after vestibular ototoxicity is more commonly observed than recovery of TC. Because ototoxic changes developed and continued in an unpredictable time and manner in relation to ototoxic drug administration, we propose that once ototoxic changes in vestibulo-ocular reflex are detected, ototoxic medications should be discontinued as soon as possible.

  15. Modern vestibular function testing.

    PubMed Central

    Baloh, R W; Furman, J M

    1989-01-01

    Current tests of vestibular function concentrate on the horizontal semicircular canal-ocular reflex because it is the easiest reflex to stimulate (calorically and rotationally) and record (using electro-oculography). Tests of the other vestibulo-ocular reflexes (vertical semicircular canal and otolith) and of the vestibulospinal reflexes have yet to be shown useful in the clinical setting. Digital video recording of eye movements and vestibular-evoked responses are promising new technologies that may affect clinical testing in the near future. PMID:2660408

  16. Ghost stochastic resonance with distributed inputs in pulse-coupled electronic neurons

    NASA Astrophysics Data System (ADS)

    Lopera, Abel; Buldú, Javier M.; Torrent, M. C.; Chialvo, Dante R.; García-Ojalvo, Jordi

    2006-02-01

    We study experimentally the phenomenon of ghost stochastic resonance in pulse-coupled excitable systems, for input signals distributed among different elements. Specifically, two excitable electronic circuits are driven by different sinusoidal signals that produce periodic spikes at distinct frequencies. Their outputs are sent to a third circuit that processes these spiking signals and is additionally perturbed by noise. When the input signals are harmonics of a certain fundamental (that is not present in the inputs) the processing circuit exhibits, for an optimal amount of noise, a resonant response at the frequency of the missing fundamental (ghost frequency). In contrast with the standard case in which the signals being directly integrated are sinusoidal, this behavior relies here on a coincidence-detection mechanism. When the input signals are homogeneously shifted in frequency, the processing circuit responds with pulse packages composed of spikes at a frequency that depends linearly on the frequency shift. Expressions for the dependence of the package period and duration on the frequency shift and spike width, respectively, are obtained. These results provide an experimental verification of a recently proposed mechanism of binaural pitch perception.

  17. Is Vestibular Neuritis an Immune Related Vestibular Neuropathy Inducing Vertigo?

    PubMed Central

    Greco, A.; Macri, G. F.; Gallo, A.; Fusconi, M.; De Virgilio, A.; Pagliuca, G.; Marinelli, C.; de Vincentiis, M.

    2014-01-01

    Objectives. To review the current knowledge of the aetiology of vestibular neuritis including viral infections, vascular occlusion, and immunomediated mechanisms and to discuss the pathogenesis with relevance to pharmacotherapy. Systematic Review Methodology. Relevant publications on the aetiology and treatment of vestibular neuritis from 1909 to 2013 were analysed. Results and Conclusions. Vestibular neuritis is the second most common cause of peripheral vestibular vertigo and is due to a sudden unilateral loss of vestibular function. Vestibular neuronitis is a disorder thought to represent the vestibular-nerve equivalent of sudden sensorineural hearing loss. Histopathological studies of patients who died from unrelated clinical problems have demonstrated degeneration of the superior vestibular nerve. The characteristic signs and symptoms include sudden and prolonged vertigo, the absence of auditory symptoms, and the absence of other neurological symptoms. The aetiology and pathogenesis of the condition remain unknown. Proposed theories of causation include viral infections, vascular occlusion, and immunomediated mechanisms. The management of vestibular neuritis involves symptomatic treatment with antivertiginous drugs, causal treatment with corticosteroids, and physical therapy. Antiviral agents did not improve the outcomes. PMID:24741601

  18. Sucrose quantitative and qualitative analysis from tastant mixtures based on Cu foam electrode and stochastic resonance.

    PubMed

    Hui, Guohua; Zhang, Jianfeng; Li, Jian; Zheng, Le

    2016-04-15

    Quantitative and qualitative determination of sucrose from complex tastant mixtures using Cu foam electrode was investigated in this study. Cu foam was prepared and its three-dimensional (3-D) mesh structure was characterized by scanning electron microscopy (SEM). Cu foam was utilized as working electrode in three-electrode electrochemical system. Cyclic voltammetry (CV) scanning results exhibited the oxidation procedure of sucrose on Cu foam electrode. Amperometric i-t scanning results indicated that Cu foam electrode selectively responded to sucrose from four tastant mixtures with low limit of detection (LOD) of 35.34?M, 49.85?M, 45.89?M, and 26.81?M, respectively. The existence of quinine, NaCl, citric acid (CA) and their mixtures had no effect on sucrose detection. Furthermore, mixtures containing different tastants could be discriminated by non-linear double-layered cascaded series stochastic resonance (DCSSR) output signal-to-noise ratio (SNR) eigen peak parameters of CV measurement data. The proposed method provides a promising way for sweetener analysis of commercial food. PMID:26675854

  19. Achieving high bit rate logical stochastic resonance in a bistable system by adjusting parameters

    NASA Astrophysics Data System (ADS)

    Yang, Ding-Xin; Gu, Feng-Shou; Feng, Guo-Jin; Yang, Yong-Min; Ball, Andrew

    2015-11-01

    The phenomenon of logical stochastic resonance (LSR) in a nonlinear bistable system is demonstrated by numerical simulations and experiments. However, the bit rates of the logical signals are relatively low and not suitable for practical applications. First, we examine the responses of the bistable system with fixed parameters to different bit rate logic input signals, showing that an arbitrary high bit rate LSR in a bistable system cannot be achieved. Then, a normalized transform of the LSR bistable system is introduced through a kind of variable substitution. Based on the transform, it is found that LSR for arbitrary high bit rate logic signals in a bistable system can be achieved by adjusting the parameters of the system, setting bias value and amplifying the amplitudes of logic input signals and noise properly. Finally, the desired OR and AND logic outputs to high bit rate logic inputs in a bistable system are obtained by numerical simulations. The study might provide higher feasibility of LSR in practical engineering applications. Project supported by the National Natural Science Foundation of China (Grant No. 51379526).

  20. Stochastic resonance of ensemble neurons for transient spike trains: Wavelet analysis

    NASA Astrophysics Data System (ADS)

    Hasegawa, Hideo

    2002-08-01

    By using the wavelet transformation (WT), I have analyzed the response of an ensemble of N (=1, 10, 100, and 500) Hodgkin-Huxley neurons to transient M-pulse spike trains (M=1 to 3) with independent Gaussian noises. The cross correlation between the input and output signals is expressed in terms of the WT expansion coefficients. The signal-to-noise ratio (SNR) is evaluated by using the denoising method within the WT, by which the noise contribution is extracted from the output signals. Although the response of a single (N=1) neuron to subthreshold transient signals with noises is quite unreliable, the transmission fidelity assessed by the cross correlation and SNR is shown to be much improved by increasing the value of N: a population of neurons plays an indispensable role in the stochastic resonance (SR) for transient spike inputs. It is also shown that in a large-scale ensemble, the transmission fidelity for suprathreshold transient spikes is not significantly degraded by a weak noise which is responsible to SR for subthreshold inputs.

  1. New measures of multimodality for the detection of a ghost stochastic resonance

    NASA Astrophysics Data System (ADS)

    Braun, H.; Ditlevsen, P.; Kurths, J.

    2009-12-01

    Large-amplitude (10-15 K) millennial-duration warming events, the Dansgaard-Oeschger (DO) events, repeatedly occurred in the North Atlantic region during ice ages. So far, the trigger of these events is not known. To explain their recurrence pattern, a ghost stochastic resonance (GSR) scenario has been suggested, i.e., a dynamical scenario in which the events represent the subharmonic response to centennial-scale solar forcing plus noise. According to this hypothesis a multimodal phase distribution of the events is expected, which should be tested on the basis of climate records by means of time series analysis. A major obstacle in these tests, however, is the need of a statistical measure of regularity that can distinguish between a random occurrence of DO events and a GSR scenario. Here we construct and compare three new measures of phase multimodality. In a Monte Carlo simulation with a simple conceptual model of DO events we simulate probability distributions of the measures under both scenarios for realizations of only 11 DO events. Based on these distributions we find that our measures are able to distinguish between a random occurrence and a GSR scenario. We further apply our measures to analyze the recurrence pattern of the last 11 DO events in the North Greenland Ice Core Project deep ice core from Greenland.

  2. Stochastic Resonance in an Underdamped System with Pinning Potential for Weak Signal Detection

    PubMed Central

    Zhang, Haibin; He, Qingbo; Kong, Fanrang

    2015-01-01

    Stochastic resonance (SR) has been proved to be an effective approach for weak sensor signal detection. This study presents a new weak signal detection method based on a SR in an underdamped system, which consists of a pinning potential model. The model was firstly discovered from magnetic domain wall (DW) in ferromagnetic strips. We analyze the principle of the proposed underdamped pinning SR (UPSR) system, the detailed numerical simulation and system performance. We also propose the strategy of selecting the proper damping factor and other system parameters to match a weak signal, input noise and to generate the highest output signal-to-noise ratio (SNR). Finally, we have verified its effectiveness with both simulated and experimental input signals. Results indicate that the UPSR performs better in weak signal detection than the conventional SR (CSR) with merits of higher output SNR, better anti-noise and frequency response capability. Besides, the system can be designed accurately and efficiently owing to the sensibility of parameters and potential diversity. The features also weaken the limitation of small parameters on SR system. PMID:26343662

  3. Theory of Stochastic Dipolar Recoupling in Solid State Nuclear Magnetic Resonance

    PubMed Central

    Tycko, Robert

    2008-01-01

    Dipolar recoupling techniques in solid state nuclear magnetic resonance (NMR) consist of radio-frequency (rf) pulse sequences applied in synchrony with magic-angle spinning (MAS) that create non-zero average magnetic dipole-dipole couplings under MAS. Stochastic dipolar recoupling (SDR) is a variant in which randomly chosen rf carrier frequency offsets are introduced to cause random phase modulations of individual pairwise couplings in the dipolar spin Hamiltonian. Several aspects of SDR are investigated through analytical theory and numerical simulations: (1) An analytical expression for the evolution of nuclear spin polarization under SDR in a two-spin system is derived and verified through simulations, which show a continuous evolution from coherent, oscillatory polarization exchange to incoherent, exponential approach to equilibrium as the range of random carrier offsets (controlled by a parameter fmax) increases; (2) In a many-spin system, polarization transfers under SDR are shown to be described accurately by a rate matrix in the limit of large fmax, with pairwise transfer rates that are proportional to the inverse sixth power of pairwise internuclear distances; (3) Quantum mechanical interferences among non-commuting pairwise dipole-dipole couplings, which are a complicating factor in solid state NMR studies of molecular structures by traditional dipolar recoupling methods, are shown to be absent from SDR data in the limit of large fmax, provided that coupled nuclei have distinct NMR chemical shifts. PMID:18085769

  4. Characterization of stochastic resonance in a bistable system with Poisson white noise using statistical complexity measures

    NASA Astrophysics Data System (ADS)

    He, Meijuan; Xu, Wei; Sun, Zhongkui; Du, Lin

    2015-11-01

    This paper mainly investigates the phenomenon of stochastic resonance (SR) in a bistable system subjected to Poisson white noise. Statistical complexity measures, as new tools, are first employed to quantify SR phenomenon of given system with Poisson white noise. To begin with, the effect of Poisson white noise on SR phenomenon is studied. The results demonstrate that the curves of statistical complexity measures as a function of Poisson white noise intensity exhibit non-monotonous structure, revealing the existence of SR phenomenon. Besides, it should be noted that small mean arrival rate of Poisson white noise can promote the occurrence of SR. In order to verify the effectiveness of statistical complexity measures, signal-to-noise ratio (SNR) is also calculated. A good agreement among these results obtained by statistical complexity measures and SNR is achieved, which reveals that statistical complexity measures are suitable tools for characterizing SR phenomenon in the presence of Poisson white noise. Then, the effects of amplitude and frequency of different periodic signals, including cosine, rectangular and triangular signal, on SR behavior are investigated, respectively. One can observe that, in the case of same amplitude or frequency of signal, the influence of rectangular signal on SR phenomenon is the most significant among these three signals.

  5. Stochastic Resonance in an Underdamped System with Pinning Potential for Weak Signal Detection.

    PubMed

    Zhang, Haibin; He, Qingbo; Kong, Fanrang

    2015-01-01

    Stochastic resonance (SR) has been proved to be an effective approach for weak sensor signal detection. This study presents a new weak signal detection method based on a SR in an underdamped system, which consists of a pinning potential model. The model was firstly discovered from magnetic domain wall (DW) in ferromagnetic strips. We analyze the principle of the proposed underdamped pinning SR (UPSR) system, the detailed numerical simulation and system performance. We also propose the strategy of selecting the proper damping factor and other system parameters to match a weak signal, input noise and to generate the highest output signal-to-noise ratio (SNR). Finally, we have verified its effectiveness with both simulated and experimental input signals. Results indicate that the UPSR performs better in weak signal detection than the conventional SR (CSR) with merits of higher output SNR, better anti-noise and frequency response capability. Besides, the system can be designed accurately and efficiently owing to the sensibility of parameters and potential diversity. The features also weaken the limitation of small parameters on SR system. PMID:26343662

  6. Improving Early Adaptation Following Long Duration Spaceflight by Enhancing Vestibular Information

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar; Kofman, Igor; DeDios, Yiri E.; Galvan, Raquel; Miller, Chris; Peters, Brian; Cohen, Helen; Jeevarajan, Jerome; Reschke, Millard; Wood, Scott; Bloomberg, Jacob

    2014-01-01

    Crewmember adapted to the microgravity state may need to egress the vehicle within a few minutes for safety and operational reasons after g-transitions. The transition from one sensorimotor state to another consists of two main mechanisms: strategic and plastic-adaptive and have been demonstrated in astronauts returning after long duration space flight. Strategic modifications represent "early adaptation" -immediate and transitory changes in control that are employed to deal with short-term changes in the environment. If these modifications are prolonged then plastic-adaptive changes are evoked that modify central nervous system function, automating new behavioral responses. More importantly, this longer term adaptive recovery mechanism was significantly associated with their strategic ability to recover on the first day after return to Earth G. We are developing a method based on stochastic resonance (SR) to enhance information transfer by improving the brain's ability to detect vestibular signals especially when combined with balance training exercises for rapid improvement in functional skill, for standing and mobility. The countermeasure to improve post-flight balance and locomotor disturbances is a stimulus delivery system that is wearable/portable providing low imperceptible levels of white noise based binaural bipolar electrical stimulation of the vestibular system (stochastic vestibular stimulation, SVS). The techniques for improving signal detection using SVS may thus provide additional information to improve such strategic abilities and thus help in significantly reducing the number of days required to recover functional performance to preflight levels after long duration space flight. We have conducted a series of studies to document the efficacy of SVS stimulation on balance/locomotion tasks on unstable surfaces and motion tracking tasks during intra-vestibular system conflicts. In an initial study, we showed that SVS improved overall balance performance while standing on an unstable surface indicating that SVS may be sufficient to provide a comprehensive countermeasure approach for improving postural stability. In a second study, we showed that SVS improved locomotor performance on a treadmill mounted on an oscillating platform indicating that SVS may also be used to maximize locomotor performance during walking in unstable environments. In a third study, SVS was evaluated during an otolith-canal conflict scenario in a variable radius centrifuge at low frequency of oscillation (0.1 Hz) on both eye movements and perceptual responses (using a joystick) to track imposed oscillations. The variable radius centrifuge provides a selective tilting sensation that is detectable only by the otolith organs providing conflicting information from the canal organs of the vestibular system (intra-vestibular conflict). Results show that SVS significantly reduced the timing difference between both the eye movement responses as well as the perceptual tracking responses with respect to the imposed tilt sensations. These results indicate that SVS can improve performance in sensory conflict scenarios like that experienced during space flight. Such a SR countermeasure will act synergistically along with the pre-and in-flight adaptability training protocols providing an integrated, multi-disciplinary countermeasure capable of fulfilling multiple requirements making it a comprehensive and cost effective countermeasure approach to enhance sensorimotor capabilities following long-duration space flight.

  7. Childhood Vestibular Disorders: A Tutorial

    ERIC Educational Resources Information Center

    Mehta, Zarin; Stakiw, Daria B.

    2004-01-01

    There is a growing body of evidence that childhood disorders affecting the vestibular system, although rare, do exist. Describing symptoms associated with the vestibular mechanism for children may be difficult, resulting in misdiagnosing or under-diagnosing these conditions. The pathophysiology, symptoms, and management options of the more common…

  8. Vestibular pathways involved in cognition

    PubMed Central

    Hitier, Martin; Besnard, Stephane; Smith, Paul F.

    2014-01-01

    Recent discoveries have emphasized the role of the vestibular system in cognitive processes such as memory, spatial navigation and bodily self-consciousness. A precise understanding of the vestibular pathways involved is essential to understand the consequences of vestibular diseases for cognition, as well as develop therapeutic strategies to facilitate recovery. The knowledge of the “vestibular cortical projection areas”, defined as the cortical areas activated by vestibular stimulation, has dramatically increased over the last several years from both anatomical and functional points of view. Four major pathways have been hypothesized to transmit vestibular information to the vestibular cortex: (1) the vestibulo-thalamo-cortical pathway, which probably transmits spatial information about the environment via the parietal, entorhinal and perirhinal cortices to the hippocampus and is associated with spatial representation and self-versus object motion distinctions; (2) the pathway from the dorsal tegmental nucleus via the lateral mammillary nucleus, the anterodorsal nucleus of the thalamus to the entorhinal cortex, which transmits information for estimations of head direction; (3) the pathway via the nucleus reticularis pontis oralis, the supramammillary nucleus and the medial septum to the hippocampus, which transmits information supporting hippocampal theta rhythm and memory; and (4) a possible pathway via the cerebellum, and the ventral lateral nucleus of the thalamus (perhaps to the parietal cortex), which transmits information for spatial learning. Finally a new pathway is hypothesized via the basal ganglia, potentially involved in spatial learning and spatial memory. From these pathways, progressively emerges the anatomical network of vestibular cognition. PMID:25100954

  9. Zero-quantum stochastic dipolar recoupling in solid state nuclear magnetic resonance

    PubMed Central

    Qiang, Wei; Tycko, Robert

    2012-01-01

    We present the theoretical description and experimental demonstration of a zero-quantum stochastic dipolar recoupling (ZQ-SDR) technique for solid state nuclear magnetic resonance (NMR) studies of 13C-labeled molecules, including proteins, under magic-angle spinning (MAS). The ZQ-SDR technique combines zero-quantum recoupling pulse sequence blocks with randomly varying chemical shift precession periods to create randomly amplitude- and phase-modulated effective homonuclear magnetic dipole-dipole couplings. To a good approximation, couplings between different 13C spin pairs become uncorrelated under ZQ-SDR, leading to spin dynamics (averaged over many repetitions of the ZQ-SDR sequence) that are fully described by an orientation-dependent N × N polarization transfer rate matrix for an N-spin system, with rates that are inversely proportional to the sixth power of internuclear distances. Suppression of polarization transfers due to non-commutivity of pairwise couplings (i.e., dipolar truncation) does not occur under ZQ-SDR, as we show both analytically and numerically. Experimental demonstrations are reported for uniformly 13C-labeled L-valine powder (at 14.1 T and 28.00 kHz MAS), uniformly 13C-labeled protein GB1 in microcrystalline form (at 17.6 T and 40.00 kHz MAS), and partially labeled 13C-labeled protein GB1 (at 14.1 T and 40.00 kHz MAS). The experimental results verify that spin dynamics under ZQ-SDR are described accurately by rate matrices and suggest the utility of ZQ-SDR in structural studies of 13C-labeled solids. PMID:22979851

  10. Remote vibrotactile noise improves light touch sensation in stroke survivors’ fingertips via stochastic resonance

    PubMed Central

    2013-01-01

    Background and purpose Stroke rehabilitation does not often integrate both sensory and motor recovery. While subthreshold noise was shown to enhance sensory signal detection at the site of noise application, having a noise-generating device at the fingertip to enhance fingertip sensation and potentially enhance dexterity for stroke survivors is impractical, since the device would interfere with object manipulation. This study determined if remote application of subthreshold vibrotactile noise (away from the fingertips) improves fingertip tactile sensation with potential to enhance dexterity for stroke survivors. Methods Index finger and thumb pad sensation was measured for ten stroke survivors with fingertip sensory deficit using the Semmes-Weinstein Monofilament and Two-Point Discrimination Tests. Sensation scores were measured with noise applied at one of three intensities (40%, 60%, 80% of the sensory threshold) to one of four locations of the paretic upper extremity (dorsal hand proximal to the index finger knuckle, dorsal hand proximal to the thumb knuckle, dorsal wrist, volar wrist) in a random order, as well as without noise at beginning (Pre) and end (Post) of the testing session. Results Vibrotactile noise of all intensities and locations instantaneously and significantly improved Monofilament scores of the index fingertip and thumb tip (p?stochastic resonance and interneuronal connections. While long-term benefits of noise in stroke patients warrants further investigation, this result demonstrates potential that a wearable device applying vibrotactile noise at the wrist could enhance sensation and grip ability without interfering with object manipulation in everyday tasks. PMID:24112371

  11. Enhanced coding in a cochlear-implant model using additive noise: Aperiodic stochastic resonance with tuning

    NASA Astrophysics Data System (ADS)

    Morse, Robert P.; Roper, Peter

    2000-05-01

    Analog electrical stimulation of the cochlear nerve (the nerve of hearing) by a cochlear implant is an effective method of providing functional hearing to profoundly deaf people. Recent physiological and computational experiments have shown that analog cochlear implants are unlikely to convey certain speech cues by the temporal pattern of evoked nerve discharges. However, these experiments have also shown that the optimal addition of noise to cochlear implant signals can enhance the temporal representation of speech cues [R. P. Morse and E. F. Evans, Nature Medicine 2, 928 (1996)]. We present a simple model to explain this enhancement of temporal representation. Our model derives from a rate equation for the mean threshold-crossing rate of an infinite set of parallel discriminators (level-crossing detectors); a system that well describes the time coding of information by a set of nerve fibers. Our results show that the optimal transfer of information occurs when the threshold level of each discriminator is equal to the root-mean-square noise level. The optimal transfer of information by a cochlear implant is therefore expected to occur when the internal root-mean-square noise level of each stimulated fiber is approximately equal to the nerve threshold. When interpreted within the framework of aperiodic stochastic resonance, our results indicate therefore that for an infinite array of discriminators, a tuning of the noise is still necessary for optimal performance. This is in contrast to previous results [Collins, Chow, and Imhoff, Nature 376, 236 (1995); Chialvo, Longtin, and Müller-Gerking, Phys. Rev. E 55, 1798 (1997)] on arrays of FitzHugh-Nagumo neurons.

  12. Vestibular blueprint in early vertebrates

    PubMed Central

    Straka, Hans; Baker, Robert

    2013-01-01

    Central vestibular neurons form identifiable subgroups within the boundaries of classically outlined octavolateral nuclei in primitive vertebrates that are distinct from those processing lateral line, electrosensory, and auditory signals. Each vestibular subgroup exhibits a particular morpho-physiological property that receives origin-specific sensory inputs from semicircular canal and otolith organs. Behaviorally characterized phenotypes send discrete axonal projections to extraocular, spinal, and cerebellar targets including other ipsi- and contralateral vestibular nuclei. The anatomical locations of vestibuloocular and vestibulospinal neurons correlate with genetically defined hindbrain compartments that are well conserved throughout vertebrate evolution though some variability exists in fossil and extant vertebrate species. The different vestibular subgroups exhibit a robust sensorimotor signal processing complemented with a high degree of vestibular and visual adaptive plasticity. PMID:24312016

  13. Role of the Insula and Vestibular System in Patients with Chronic Subjective Dizziness: An fMRI Study Using Sound-Evoked Vestibular Stimulation

    PubMed Central

    Indovina, Iole; Riccelli, Roberta; Chiarella, Giuseppe; Petrolo, Claudio; Augimeri, Antonio; Giofrè, Laura; Lacquaniti, Francesco; Staab, Jeffrey P.; Passamonti, Luca

    2015-01-01

    Chronic subjective dizziness (CSD) is a common vestibular disorder characterized by persistent non-vertiginous dizziness, unsteadiness, and heightened sensitivity to motion stimuli that may last for months to years after events that cause acute vestibular symptoms or disrupt balance. CSD is not associated with abnormalities of basic vestibular or oculomotor reflexes. Rather, it is thought to arise from persistent use of high-threat postural control strategies and greater reliance on visual cues for spatial orientation (i.e., visual dependence), long after triggering events resolve. Anxiety-related personality traits confer vulnerability to CSD. Anomalous interactions between the central vestibular system and neural structures related to anxiety may sustain it. Vestibular- and anxiety-related processes overlap in the brain, particularly in the insula and hippocampus. Alterations in activity and connectivity in these brain regions in response to vestibular stimuli may be the neural basis of CSD. We examined this hypothesis by comparing brain activity from 18 patients with CSD and 18 healthy controls measured by functional magnetic resonance imaging during loud short tone bursts, which are auditory stimuli that evoke robust vestibular responses. Relative to controls, patients with CSD showed reduced activations to sound-evoked vestibular stimulation in the parieto-insular vestibular cortex (PIVC) including the posterior insula, and in the anterior insula, inferior frontal gyrus, hippocampus, and anterior cingulate cortex. Patients with CSD also showed altered connectivity between the anterior insula and PIVC, anterior insula and middle occipital cortex, hippocampus and PIVC, and anterior cingulate cortex and PIVC. We conclude that reduced activation in PIVC, hippocampus, anterior insula, inferior frontal gyrus, and anterior cingulate cortex, as well as connectivity changes among these regions, may be linked to long-term vestibular symptoms in patients with CSD. Furthermore, altered connectivity between the anterior insula and middle occipital cortex may underlie the greater reliance on visual cues for spatial orientation in CSD patients relative to controls. PMID:26696853

  14. Modulation of human vestibular reflexes with increased postural threat

    PubMed Central

    Horslen, Brian C; Dakin, Christopher J; Inglis, J Timothy; Blouin, Jean-Sébastien; Carpenter, Mark G

    2014-01-01

    Anxiety and arousal have been shown to facilitate human vestibulo-ocular reflexes, presumably through direct neural connections between the vestibular nuclei and emotional processing areas of the brain. However, the effects of anxiety, fear and arousal on balance-relevant vestibular reflexes are currently unknown. The purpose of this study was to manipulate standing height to determine whether anxiety and fear can modulate the direct relationship between vestibular signals and balance reflexes during stance. Stochastic vestibular stimulation (SVS; 2–25 Hz) was used to evoke ground reaction forces (GRF) while subjects stood in both LOW and HIGH surface height conditions. Two separate experiments were conducted to investigate the SVS–GRF relationship, in terms of coupling (coherence and cumulant density) and gain, in the medio-lateral (ML) and antero-posterior (AP) directions. The short- and medium-latency cumulant density peaks were both significantly increased in the ML and AP directions when standing in HIGH, compared to LOW, conditions. Likewise, coherence was statistically greater between 4.3 Hz and 6.7 Hz in the ML, and between 5.5 and 17.7 Hz in the AP direction. When standing in the HIGH condition, the gain of the SVS–GRF relationship was increased 81% in the ML direction, and 231% in the AP direction. The significant increases in coupling and gain observed in both experiments demonstrate that vestibular-evoked balance responses are augmented in states of height-induced postural threat. These data support the possibility that fear or anxiety-mediated changes to balance control are affected by altered central processing of vestibular information. PMID:24973412

  15. How a single stretched polymer responds coherently to a minute oscillation in fluctuating environments: an entropic stochastic resonance.

    PubMed

    Kim, Won Kyu; Sung, Wokyung

    2012-08-21

    Within the cell, biopolymers are often situated in constrained, fluid environments, e.g., cytoskeletal networks, stretched DNAs in chromatin. It is of paramount importance to understand quantitatively how they, utilizing their flexibility, optimally respond to a minute signal, which is, in general, temporally fluctuating far away from equilibrium. To this end, we analytically study viscoelastic response and associated stochastic resonance in a stretched single semi-flexible chain to an oscillatory force or electric field. Including hydrodynamic interactions between chain segments, we evaluate dynamics of the polymer extension in coherent response to the force or field. We find power amplification factor of the response at a noise-strength (temperature) can attain the maximum that grows as the chain length increases, indicative of an entropic stochastic resonance (ESR). In particular for a charged chain under an electric field, we find that the maximum also occurs at an optimal chain length, a new feature of ESR. The hydrodynamic interaction is found to enhance the power amplification, representing unique polymer cooperativity which the fluid background imparts despite its overdamping nature. For the slow oscillatory force, the resonance behavior is explained by the chain undulation of the longest wavelength. This novel ESR phenomenon suggests how a biopolymer self-organizes in an overdamping environment, utilizing its flexibility and thermal fluctuations. PMID:22920141

  16. Visuo-Vestibular Interactions

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session TA3 includes short reports covering: (1) Vestibulo-Oculomotor Interaction in Long-Term Microgravity; (2) Effects of Weightlessness on the Spatial Orientation of Visually Induced Eye Movements; (3) Adaptive Modification of the Three-Dimensional Vestibulo-Ocular Reflex during Prolonged Microgravity; (4) The Dynamic Change of Brain Potential Related to Selective Attention to Visual Signals from Left and Right Visual Fields; (5) Locomotor Errors Caused by Vestibular Suppression; and (6) A Novel, Image-Based Technique for Three-Dimensional Eye Measurement.

  17. Disrupted functional connectivity of the default mode network due to acute vestibular deficit

    PubMed Central

    Klingner, Carsten M.; Volk, Gerd F.; Brodoehl, Stefan; Witte, Otto W.; Guntinas-Lichius, Orlando

    2014-01-01

    Vestibular neuritis is defined as a sudden unilateral partial failure of the vestibular nerve that impairs the forwarding of vestibular information from the labyrinth. The patient suffers from vertigo, horizontal nystagmus and postural instability with a tendency toward ipsilesional falls. Although vestibular neuritis is a common disease, the central mechanisms to compensate for the loss of precise vestibular information remain poorly understood. It was hypothesized that symptoms following acute vestibular neuritis originate from difficulties in the processing of diverging sensory information between the responsible brain networks. Accordingly an altered resting activity was shown in multiple brain areas of the task-positive network. Because of the known balance between the task-positive and task-negative networks (default mode network; DMN) we hypothesize that also the DMN is involved. Here, we employ functional magnetic resonance imaging (fMRI) in the resting state to investigate changes in the functional connectivity between the DMN and task-positive networks, in a longitudinal design combined with measurements of caloric function. We demonstrate an initially disturbed connectedness of the DMN after vestibular neuritis. We hypothesize that the disturbed connectivity between the default mode network and particular parts of the task-positive network might be related to a sustained utilization of processing capacity by diverging sensory information. The current results provide some insights into mechanisms of central compensation following an acute vestibular deficit and the importance of the DMN in this disease. PMID:25379422

  18. Penaeus orientolis prawn freshness rapid determination method based on electronic nose and non-linear stochastic resonance technique.

    PubMed

    Wei, Liu; Yuanyuan, Han; Yanping, Cai; Jiaojiao, Jin; Guohua, Hui

    2015-01-01

    In this paper, Penaeus orientolis prawn freshness rapid determination method using electronic nose (e-nose) and non-linear data processing technique is studied. E-nose responses to prawns stored at 4 °C are measured. Meanwhile, physical/chemical indexes (firmness, pH, total volatile basic nitrogen (TVB-N), total viable count (TVC), and human sensory evaluation) are examined to provide freshness references for e-nose analysis. E-nose measurement data is analyzed by principal component analysis (PCA), stochastic resonance (SR), and double-layered cascaded serial stochastic resonance (DCSSR). PCA partially discriminates prawns under different storage time. SR and DCSSR signal-to-noise ratio (SNR) spectrum eigen values discriminate prawns successfully. Multi-variables regressions (MVR) are conducted between physical/chemical indexes and SR/DCSSR output SNR minimal (SNR-Min) values. Results indicate that SNR-Min values present more significant linearity relation with physical/chemical indexes. Prawn freshness forecasting model is developed via Harris fitting regression on DCSSR SNR-Min values. Validating experiments demonstrate that forecasting accuracy of this model is 94.29%. PMID:25551520

  19. Spike-interval triggered averaging reveals a quasi-periodic spiking alternative for stochastic resonance in catfish electroreceptors.

    PubMed

    Lankheet, Martin J M; Klink, P Christiaan; Borghuis, Bart G; Noest, André J

    2012-01-01

    Catfish detect and identify invisible prey by sensing their ultra-weak electric fields with electroreceptors. Any neuron that deals with small-amplitude input has to overcome sensitivity limitations arising from inherent threshold non-linearities in spike-generation mechanisms. Many sensory cells solve this issue with stochastic resonance, in which a moderate amount of intrinsic noise causes irregular spontaneous spiking activity with a probability that is modulated by the input signal. Here we show that catfish electroreceptors have adopted a fundamentally different strategy. Using a reverse correlation technique in which we take spike interval durations into account, we show that the electroreceptors generate a supra-threshold bias current that results in quasi-periodically produced spikes. In this regime stimuli modulate the interval between successive spikes rather than the instantaneous probability for a spike. This alternative for stochastic resonance combines threshold-free sensitivity for weak stimuli with similar sensitivity for excitations and inhibitions based on single interspike intervals. PMID:22403709

  20. Vestibular reflexes of otolith origin

    NASA Technical Reports Server (NTRS)

    Wilson, Victor J.

    1988-01-01

    The vestibular system and its role in the maintenance of posture and in motion sickness is investigated using cats as experimental subjects. The assumption is that better understanding of the physiology of vestibular pathways is not only of intrinsic value, but will help to explain and eventually alleviate the disturbances caused by vestibular malfunction, or by exposure to an unusual environment such as space. The first project deals with the influence on the spinal cord of stimulation of the vestibular labyrinth, particularly the otoliths. A second was concerned with the properties and neural basis of the tonic neck reflex. These two projects are related, because vestibulospinal and tonic neck reflexes interact in the maintenance of normal posture. The third project began with an interest in mechanisms of motion sickness, and eventually shifted to a study of central control of respiratory muscles involved in vomiting.

  1. Morphological studies of the vestibular nerve

    NASA Technical Reports Server (NTRS)

    Bergstroem, B.

    1973-01-01

    The anatomy of the intratemporal part of the vestibular nerve in man, and the possible age related degenerative changes in the nerve were studied. The form and structure of the vestibular ganglion was studied with the light microscope. A numerical analysis of the vestibular nerve, and caliber spectra of the myelinated fibers in the vestibular nerve branches were studied in individuals of varying ages. It was found that the peripheral endings of the vestibular nerve form a complicated pattern inside the vestibular sensory epithelia. A detailed description of the sensory cells and their surface organelles is included.

  2. Vestibular Interactions in the Thalamus

    PubMed Central

    Wijesinghe, Rajiv; Protti, Dario A.; Camp, Aaron J.

    2015-01-01

    It has long been known that the vast majority of all information en route to the cerebral cortex must first pass through the thalamus. The long held view that the thalamus serves as a simple hi fidelity relay station for sensory information to the cortex, however, has over recent years been dispelled. Indeed, multiple projections from the vestibular nuclei to thalamic nuclei (including the ventrobasal nuclei, and the geniculate bodies)- regions typically associated with other modalities- have been described. Further, some thalamic neurons have been shown to respond to stimuli presented from across sensory modalities. For example, neurons in the rat anterodorsal and laterodorsal nuclei of the thalamus respond to visual, vestibular, proprioceptive and somatosensory stimuli and integrate this information to compute heading within the environment. Together, these findings imply that the thalamus serves crucial integrative functions, at least in regard to vestibular processing, beyond that imparted by a “simple” relay. In this mini review we outline the vestibular inputs to the thalamus and provide some clinical context for vestibular interactions in the thalamus. We then focus on how vestibular inputs interact with other sensory systems and discuss the multisensory integration properties of the thalamus. PMID:26696836

  3. Vertical torque responses to vestibular stimulation in standing humans

    PubMed Central

    Reynolds, Raymond F

    2011-01-01

    Abstract The effects of electrical vestibular stimulation upon movement and perception suggest two evoked sensations: head roll and inter-aural linear acceleration. The head roll vector causes walking subjects to turn in a direction dependent on head pitch, requiring generation of torque around a vertical axis. Here the effect of vestibular stimulation upon vertical torque (Tz) was investigated during quiet stance. With the head tilted forward, square-wave stimuli applied to the mastoid processes evoked a polarity-specific Tz response accompanied by trunk yaw. Stochastic vestibular stimulation (SVS) was used to investigate the effect of head pitch with greater precision; the SVS–Tz cross-correlation displayed a modulation pattern consistent with the head roll vector and this was also reflected by changes in coherence at 2–3 Hz. However, a separate response at 7–8 Hz was unaffected by head pitch. Head translation (rather than rotation) had no effect upon this high frequency response either, suggesting it is not caused by a sense of body rotation induced by an inter-aural acceleration vector offset from the body. Instead, high coherence between medio-lateral shear force and Tz at the same frequency range suggests it is caused by mechanical coupling to evoked medio-lateral sway. Consistent with this explanation, the 7–8 Hz response was attenuated by 90 deg head roll or yaw, both of which uncouple the inter-aural axis from the medio-lateral sway axis. These results demonstrate two vertical torque responses to electrical vestibular stimulation in standing subjects. The high frequency response can be attributed to mechanical coupling to evoked medio-lateral sway. The low frequency response is consistent with a reaction to a sensation of head roll, and provides a novel method for investigating proprioceptive-vestibular interactions during stance. PMID:21690188

  4. Visuo-vestibular biofeedback in patients with peripheral vestibular disorders.

    PubMed

    Hahn, A; Sejna, I; Stolbova, K; Cocek, A

    2001-01-01

    It is well known that diseases of the vestibular system can be compensated by increased spontaneous activity of other systems engaged in maintaining equilibrium, i.e. proprioceptive and visual systems. A complex approach using multisensory stimulation is the optimal way to achieve vestibular compensation. The aim of our study was to determine the effect of vestibular rehabilitation therapy as measured by posturography in a group of 72 patients suffering from vestibular disorders: Ménière's disease (n = 31), neuritis vestibularis (n = 21) and vertebrobasilar insufficiency (n = 20). Patients underwent the following examinations: electronystagmography; caloric, rotatory and optokinetic tests; computed posturography; craniocorpography; pure-tone audiometry; speech audiometry; and tinnitometry (tinnitus loudness, pitch). The instability in patients with Ménière's disease decreased 3 weeks after starting the therapy; nevertheless, the decrease in area (the surface formed by the movement of the patient's equilibrium point during a defined time) was transitory because of the increase in area values obtained between the 3rd and 6th weeks when measured with closed eyes. In the vestibular neuronitis patients, the measured values of area and the velocity of the patient's movement decreased continuously. The values measured in the patients suffering from vertebrobasilar insufficiency decreased continuously, the absolute values remaining pathological. PMID:11677751

  5. Eye movement studies with a vestibular prosthesis/

    E-print Network

    Saginaw, Michael A. (Michael Adlai)

    2010-01-01

    Vestibular loss, which can manifest as dizziness, imbalance, or spatial disorientation, is widespread and often caused by inner ear hair cell malfunction. To address these problems, we are developing a vestibular implant ...

  6. A trail of artificial vestibular stimulation: electricity, heat, and magnet.

    PubMed

    Shaikh, Aasef G

    2012-07-01

    The interaction between the magnetic field of a magnetic resonance imaging (MRI) machine and ion currents within the inner-ear endolymph results in a Lorentz force. This force produces a pressure that pushes on the cupula within the semicircular canals causing nystagmus and vertigo. Here I discuss several implications of this unique and noninvasive way to stimulate the vestibular system in experimental neurophysiology and clinical neurology. PMID:22457451

  7. Compensation following bilateral vestibular damage.

    PubMed

    McCall, Andrew A; Yates, Bill J

    2011-01-01

    Bilateral loss of vestibular inputs affects far fewer patients than unilateral inner ear damage, and thus has been understudied. In both animal subjects and human patients, bilateral vestibular hypofunction (BVH) produces a variety of clinical problems, including impaired balance control, inability to maintain stable blood pressure during postural changes, difficulty in visual targeting of images, and disturbances in spatial memory and navigational performance. Experiments in animals have shown that non-labyrinthine inputs to the vestibular nuclei are rapidly amplified following the onset of BVH, which may explain the recovery of postural stability and orthostatic tolerance that occurs within 10?days. However, the loss of the vestibulo-ocular reflex and degraded spatial cognition appear to be permanent in animals with BVH. Current concepts of the compensatory mechanisms in humans with BVH are largely inferential, as there is a lack of data from patients early in the disease process. Translation of animal studies of compensation for BVH into therapeutic strategies and subsequent application in the clinic is the most likely route to improve treatment. In addition to physical therapy, two types of prosthetic devices have been proposed to treat individuals with bilateral loss of vestibular inputs: those that provide tactile stimulation to indicate body position in space, and those that deliver electrical stimuli to branches of the vestibular nerve in accordance with head movements. The relative efficacy of these two treatment paradigms, and whether they can be combined to facilitate recovery, is yet to be ascertained. PMID:22207864

  8. Generalized Parameter-Adjusted Stochastic Resonance of Duffing Oscillator and Its Application to Weak-Signal Detection

    PubMed Central

    Lai, Zhi-Hui; Leng, Yong-Gang

    2015-01-01

    A two-dimensional Duffing oscillator which can produce stochastic resonance (SR) is studied in this paper. We introduce its SR mechanism and present a generalized parameter-adjusted SR (GPASR) model of this oscillator for the necessity of parameter adjustments. The Kramers rate is chosen as the theoretical basis to establish a judgmental function for judging the occurrence of SR in this model; and to analyze and summarize the parameter-adjusted rules under unmatched signal amplitude, frequency, and/or noise-intensity. Furthermore, we propose the weak-signal detection approach based on this GPASR model. Finally, we employ two practical examples to demonstrate the feasibility of the proposed approach in practical engineering application. PMID:26343671

  9. Detection of small single-cycle signals by stochastic resonance using a bistable superconducting quantum interference device

    NASA Astrophysics Data System (ADS)

    Sun, Guozhu; Zhai, Jiquan; Wen, Xueda; Yu, Yang; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng; Han, Siyuan

    2015-04-01

    We propose and experimentally demonstrate detecting small single-cycle and few-cycle signals by using the symmetric double-well potential of a radio frequency superconducting quantum interference device (rf-SQUID). We show that the response of this bistable system to single- and few-cycle signals has a non-monotonic dependence on the noise strength. The response, measured by the probability of transition from initial potential well to the opposite one, becomes maximum when the noise-induced transition rate between the two stable states of the rf-SQUID is comparable to the signal frequency. Comparison to numerical simulations shows that the phenomenon is a manifestation of stochastic resonance.

  10. Minimalistic behavioral rule derived from bacterial chemotaxis in a stochastic resonance setup.

    PubMed

    Ikemoto, Shuhei; DallaLibera, Fabio; Hosoda, Koh; Ishiguro, Hiroshi

    2012-02-01

    Animals are able to cope with the noise, uncertainties, and complexity of the real world. Often even elementary living beings, equipped with very limited sensory organs, are able to reach regions favorable to their existence, using simple stochastic policies. In this paper we discuss a minimalistic stochastic behavioral rule, inspired from bacteria chemotaxis, which is able to increase the value of a specified evaluation function in a similar manner. In particular, we prove that, under opportune assumptions, the direction that is taken with maximum probability by an agent that follows this rule corresponds to the optimal direction. The rule does not require a specific agent dynamics, needs no memory for storing observed states, and works in generic n-dimensional spaces. It thus reveals itself interesting for the control of simple sensing robots as well. PMID:22463242

  11. Procedures for restoring vestibular disorders

    PubMed Central

    Walther, Leif Erik

    2005-01-01

    This paper will discuss therapeutic possibilities for disorders of the vestibular organs and the neurons involved, which confront ENT clinicians in everyday practice. Treatment of such disorders can be tackled either symptomatically or causally. The possible strategies for restoring the body's vestibular sense, visual function and co-ordination include medication, as well as physical and surgical procedures. Prophylactic or preventive measures are possible in some disorders which involve vertigo (bilateral vestibulopathy, kinetosis, height vertigo, vestibular disorders when diving (Tables 1 (Tab. 1) and 2 (Tab. 2)). Glucocorticoid and training therapy encourage the compensation of unilateral vestibular loss. In the case of a bilateral vestibular loss, it is important to treat the underlying disease (e.g. Cogan's disease). Although balance training does improve the patient's sense of balance, it will not restore it completely. In the case of Meniere's disease, there are a number of medications available to either treat bouts or to act as a prophylactic (e.g. dimenhydrinate or betahistine). In addition, there are non-ablative (sacculotomy) as well as ablative surgical procedures (e.g. labyrinthectomy, neurectomy of the vestibular nerve). In everyday practice, it has become common to proceed with low risk therapies initially. The physical treatment of mild postural vertigo can be carried out quickly and easily in outpatients (repositioning or liberatory maneuvers). In very rare cases it may be necessary to carry out a semicircular canal occlusion. Isolated disturbances of the otolith function or an involvement of the otolith can be found in roughly 50% of labyrinth disturbances. A specific surgical procedure to selectively block the otolith organs is currently being studied. When an external perilymph fistula involving loss of perilymph is suspected, an exploratory tympanotomy involving also the round and oval window niches must be carried out. A traumatic rupture of the round window membrane can, for example, also be caused by an implosive inner ear barotrauma during the decompression phase of diving. Dehiscence of the anterior semicircular canal, a relatively rare disorder, can be treated conservatively (avoiding stimuli which cause dizziness), by non-ablative „resurfacing" or by „plugging" the semicircular canal. A perilymph fistula can cause a Tullio-phenomenon resulting from a traumatic dislocation or hypermobility of the stapes, which can be surgically corrected. Vestibular disorders can also result from otosurgical therapy. When balance disorders persist following stapedectomy it is necessary to carry out a revision operation in order to either exclude a perilymph fistula or shorten the piston. Surgically reducing the size of open mastoid cavities (using for example porous hydroxylapatite or cartilage) can result in a reduction of vertiginous symptoms while nursing or during exposure to ambient air. Vestibular disturbances can occur both before and after vestibular nerve surgery (acoustic neuroma). Initially, good vestibular compensation can be expected after surgically removing the acoustic neuroma. An aberrant regeneration of nerve fibers of the vestibulocochlear nerve has been suggested as a cause for secondary worsening. Episodes of vertigo can be caused by an irritation of the vestibular nerve (vascular loop). Neurovascular decompression is generally regarded as the best surgical therapy. In the elderly, vestibular disturbances can severely limit quality of life and are often aggravated by multiple comorbidities. Antivertiginous drugs (e.g. dimenhydrinate) in combination with movement training can significantly reduce symptoms. Administering antivertiginous drugs over varying periods of time (e.g. transdermal scopolamine application via patches) as well as kinetosis training can be used as both prophylactically and as a therapy for kinetosis. Exposure training should be used as a prophylactic for height vertigo. PMID:22073053

  12. Vestibular disease: anatomy, physiology, and clinical signs.

    PubMed

    Lowrie, Mark

    2012-07-01

    The vestibular system is responsible for keeping an animal oriented with respect to gravity. It is a sensory system that maintains the position of the eyes, body, and limbs in reference to the position of the head. Proper interpretation of neurologic deficits and precise neuroanatomic localization are essential to diagnose and prognosticate the underlying disorder. Neurologic examination can confirm whether the vestibular dysfunction is of peripheral or central nervous system origin. Idiopathic vestibular syndrome is the most common cause of peripheral vestibular disease in dogs and, despite its dramatic clinical presentation, can improve without intervention. Central vestibular diseases generally have a poorer prognosis. PMID:22847320

  13. Negative emotional stimuli enhance vestibular processing.

    PubMed

    Preuss, Nora; Ellis, Andrew W; Mast, Fred W

    2015-08-01

    Recent studies have shown that vestibular stimulation can influence affective processes. In the present study, we examined whether emotional information can also modulate vestibular perception. Participants performed a vestibular discrimination task on a motion platform while viewing emotional pictures. Six different picture categories were taken from the International Affective Picture System: mutilation, threat, snakes, neutral objects, sports, and erotic pictures. Using a Bayesian hierarchical approach, we were able to show that vestibular discrimination improved when participants viewed emotionally negative pictures (mutilation, threat, snake) when compared to neutral/positive objects. We conclude that some of the mechanisms involved in the processing of vestibular information are also sensitive to emotional content. Emotional information signals importance and mobilizes the body for action. In case of danger, a successful motor response requires precise vestibular processing. Therefore, negative emotional information improves processing of vestibular information. PMID:26098730

  14. Towards a neuromorphic vestibular system.

    PubMed

    Corradi, Federico; Zambrano, Davide; Raglianti, Marco; Passetti, Giovanni; Laschi, Cecilia; Indiveri, Giacomo

    2014-10-01

    The vestibular system plays a crucial role in the sense of balance and spatial orientation in mammals. It is a sensory system that detects both rotational and translational motion of the head, via its semicircular canals and otoliths respectively. In this work, we propose a real-time hardware model of an artificial vestibular system, implemented using a custom neuromorphic Very Large Scale Integration (VLSI) multi-neuron chip interfaced to a commercial Inertial Measurement Unit (IMU). The artificial vestibular system is realized with spiking neurons that reproduce the responses of biological hair cells present in the real semicircular canals and otholitic organs. We demonstrate the real-time performance of the hybrid analog-digital system and characterize its response properties, presenting measurements of a successful encoding of angular velocities as well as linear accelerations. As an application, we realized a novel implementation of a recurrent integrator network capable of keeping track of the current angular position. The experimental results provided validate the hardware implementation via comparisons with a detailed computational neuroscience model. In addition to being an ideal tool for developing bio-inspired robotic technologies, this work provides a basis for developing a complete low-power neuromorphic vestibular system which integrates the hardware model of the neural signal processing pathway described with custom bio-mimetic gyroscopic sensors, exploiting neuromorphic principles in both mechanical and electronic aspects. PMID:25314706

  15. Vestibular Findings in Military Band Musicians

    PubMed Central

    Zeigelboim, Bianca Simone; Gueber, Crislaine; Silva, Thanara Pruner da; Liberalesso, Paulo Breno Noronha; Gonçalves, Claudia Giglio de Oliveira; Faryniuk, João Henrique; Marques, Jair Mendes; Jurkiewicz, Ari Leon

    2014-01-01

    Introduction?Exposure to music is the subject of many studies because it is related to an individual's professional and social activities. Objectives?Evaluate the vestibular behavior in military band musicians. Methods?A retrospective cross-sectional study was performed. Nineteen musicians with ages ranging from 21 to 46 years were evaluated (average?=?33.7 years and standard deviation?=?7.2 years). They underwent anamnesis and vestibular and otolaryngologic evaluation through vectoelectronystagmography. Results?The most evident otoneurologic symptoms in the anamnesis were tinnitus (84.2%), hearing difficulties (47.3%), dizziness (36.8%), headache (26.3%), intolerance to intense sounds (21.0%), and earache (15.7%). Seven musicians (37.0%) showed vestibular abnormality, which occurred in the caloric test. The abnormality was more prevalent in the peripheral vestibular system, and there was a predominance of irritative peripheral vestibular disorders. Conclusion?The alteration in vestibular exam occurred in the caloric test (37.0%). There were changes in the prevalence of peripheral vestibular system with a predominance of irritative vestibular dysfunction. Dizziness was the most significant symptom for the vestibular test in correlation with neurotologic symptoms. The present study made it possible to verify the importance of the labyrinthine test, which demonstrates that this population should be better studied because the systematic exposure to high sound pressure levels may cause major vestibular alterations. PMID:25992076

  16. System identification of the vestibular ocular reflex via visual and vestibular co-stimulation

    E-print Network

    Tangorra, James Louis, 1967-

    2003-01-01

    The study of eye motions involved in the vestibular ocular reflex (VOR) is a key tool for understanding the performance of the vestibular system and for the diagnosis of dysfunction. Limitations in experimental equipment ...

  17. [Clinical studies of vestibular myogenic potentials].

    PubMed

    Likhachev, S A; Tarasevich, N M; Chernukha, T N; Rushkevich, Iu N

    2011-01-01

    This paper is focused on the patterns of evoked vestibular myogenic potentials associated with the involvement of different segments of the the sacculo-neck reflex arc. Specifically, lesions of the vestibular analyzer at the receptor level, changes in the transmission system and at the muscular level are considered. Various patterns of evoked vestibular myogenic potentials characteristic of the disturbance of a given segments of the sacculo-neck reflex arc are described. PMID:21720289

  18. A vestibular phenotype for Waardenburg syndrome?

    NASA Technical Reports Server (NTRS)

    Black, F. O.; Pesznecker, S. C.; Allen, K.; Gianna, C.

    2001-01-01

    OBJECTIVE: To investigate vestibular abnormalities in subjects with Waardenburg syndrome. STUDY DESIGN: Retrospective record review. SETTING: Tertiary referral neurotology clinic. SUBJECTS: Twenty-two adult white subjects with clinical diagnosis of Waardenburg syndrome (10 type I and 12 type II). INTERVENTIONS: Evaluation for Waardenburg phenotype, history of vestibular and auditory symptoms, tests of vestibular and auditory function. MAIN OUTCOME MEASURES: Results of phenotyping, results of vestibular and auditory symptom review (history), results of vestibular and auditory function testing. RESULTS: Seventeen subjects were women, and 5 were men. Their ages ranged from 21 to 58 years (mean, 38 years). Sixteen of the 22 subjects sought treatment for vertigo, dizziness, or imbalance. For subjects with vestibular symptoms, the results of vestibuloocular tests (calorics, vestibular autorotation, and/or pseudorandom rotation) were abnormal in 77%, and the results of vestibulospinal function tests (computerized dynamic posturography, EquiTest) were abnormal in 57%, but there were no specific patterns of abnormality. Six had objective sensorineural hearing loss. Thirteen had an elevated summating/action potential (>0.40) on electrocochleography. All subjects except those with severe hearing loss (n = 3) had normal auditory brainstem response results. CONCLUSION: Patients with Waardenburg syndrome may experience primarily vestibular symptoms without hearing loss. Electrocochleography and vestibular function tests appear to be the most sensitive measures of otologic abnormalities in such patients.

  19. Vestibular loss disrupts daily rhythm in rats.

    PubMed

    Martin, T; Mauvieux, B; Bulla, J; Quarck, G; Davenne, D; Denise, P; Philoxène, B; Besnard, S

    2015-02-01

    Hypergravity disrupts the circadian regulation of temperature (Temp) and locomotor activity (Act) mediated through the vestibular otolithic system in mice. In contrast, we do not know whether the anatomical structures associated with vestibular input are crucial for circadian rhythm regulation at 1 G on Earth. In the present study we observed the effects of bilateral vestibular loss (BVL) on the daily rhythms of Temp and Act in semipigmented rats. Our model of vestibular lesion allowed for selective peripheral hair cell degeneration without any other damage. Rats with BVL exhibited a disruption in their daily rhythms (Temp and Act), which were replaced by a main ultradian period (? <20 h) for 115.8 ± 68.6 h after vestibular lesion compared with rats in the control group. Daily rhythms of Temp and Act in rats with BVL recovered within 1 wk, probably counterbalanced by photic and other nonphotic time cues. No correlation was found between Temp and Act daily rhythms after vestibular lesion in rats with BVL, suggesting a direct influence of vestibular input on the suprachiasmatic nucleus. Our findings support the hypothesis that the vestibular system has an influence on daily rhythm homeostasis in semipigmented rats on Earth, and raise the question of whether daily rhythms might be altered due to vestibular pathology in humans. PMID:25505031

  20. Movement Symmetries and the Mammalian Vestibular System

    NASA Astrophysics Data System (ADS)

    McCollum, Gin; Boyle, Richard

    2000-03-01

    Unity of movement requires vertebrates to have an ability to symmetrize along the midline. For example, human erect stance involves symmetry with respect to gravity. The mammalian vestibular system provides a mechanism for maintaining symmetries, which is also open to influence and adaptation by the rest of the organism. The vestibular system includes the inner ear endorgans and central nuclei, along with projections to oculomotor, cerebellar, thalamic, and spinal motor centers. The vestibular endorgans - the semicircular canals and the otoliths - use sensory hairs to register inertia. The vestibular endorgans are right-left symmetric and the semicircular canals form an approximately orthogonal coordinate system for angular motion. Primary afferent axons project from the endorgans to the vestibular nuclei (and a few other places). The vestibular nuclei integrate vestibular, visual, and somatosensory signals, along with a proposed copy of the voluntary motor command and signals from other central structures. The relationship between the canals and the otoliths gives rise to symmetries among neurons, in the organization among the several vestibular nuclei, and in the projections from the vestibular nuclei. These symmetries organize the space of body movements so that functional relationships are maintained in spite of the many free variables of body movement. They also provide a foundation for adaptive reinterpretation of the relationship between canal and otolith signals, for example in freefall.

  1. Personality changes in patients with vestibular dysfunction

    PubMed Central

    Smith, Paul F.; Darlington, Cynthia L.

    2013-01-01

    The vestibular system is a sensory system that has evolved to detect linear and angular acceleration of the head in all planes so that the brain is not predominantly reliant on visual information to determine self-motion. Since the vestibular system first evolved in invertebrate species in order to detect gravitational vertical, it is likely that the central nervous system has developed a special dependence upon vestibular input. In addition to the deficits in eye movement and postural reflexes that occur following vestibular dysfunction, there is convincing evidence that vestibular loss also causes cognitive and emotional disorders, some of which may be due to the reflexive deficits and some of which are related to the role that ascending vestibular pathways to the limbic system and neocortex play in the sense of spatial orientation. Beyond this, however, patients with vestibular disorders have been reported to experience other personality changes that suggest that vestibular sensation is implicated in the sense of self. These are depersonalization and derealization symptoms such as feeling “spaced out”, “body feeling strange” and “not feeling in control of self”. We propose in this review that these symptoms suggest that the vestibular system may make a unique contribution to the concept of self through information regarding self-motion and self-location that it transmits, albeit indirectly, to areas of the brain such as the temporo-parietal junction (TPJ). PMID:24194706

  2. Vestibular Function Research aboard Spacelab

    NASA Technical Reports Server (NTRS)

    Mah, R. W.; Daunton, N. G.

    1978-01-01

    NASA is planning to perform a series of Vestibular Function Research (VFR) investigations on the early STS missions to investigate those neurosensory and related physiological processes believed to be associated with the space flight nausea syndrome. The first flight is scheduled for the 1981 Spacelab III Mission in which four frog specimens, mounted on a frog tilting/centrifuge device, will be subjected to periodic acceleration stimuli and periods of artificial gravity. The vestibular nerve firing responses of each frog specimen will be monitored through implanted neutral bouyancy microelectrodes and transmitted to the ground for quick analysis during the flight. The experimentation will be directed at investigating: (1) adaptation to weightlessness; (2) response to acceleration stimuli; (3) response to artificial gravity (in a weightlessness environment) and (4) readaptation to earth's gravity upon return.

  3. Occupational noise induced vestibular malfunction?

    PubMed Central

    Hinchcliffe, R; Coles, R R; King, P F

    1992-01-01

    This paper comprises a review of the evidence for the possibility that exposure to noise may damage the vestibular receptors in the internal ear as well as those in the cochlea. The review covers lay and medical publications, observations on patients, experimental studies, and compensation claims. It concludes that the verdict must be "not proven"--that is, although such damage is possible, the evidence is not strong enough to regard it as probable. PMID:1733458

  4. Changing perspective: The role of vestibular signals.

    PubMed

    Deroualle, Diane; Borel, Liliane; Devèze, Arnaud; Lopez, Christophe

    2015-12-01

    Social interactions depend on mechanisms such as the ability to take another person's viewpoint, i.e. visuo-spatial perspective taking. However, little is known about the sensorimotor mechanisms underpinning perspective taking. Because vestibular signals play roles in mental rotation and spatial cognition tasks and because damage to the vestibular cortex can disturb egocentric perspective, vestibular signals stand as important candidates for the sensorimotor foundations of perspective taking. Yet, no study merged natural full-body vestibular stimulations and explicit visuo-spatial perspective taking tasks in virtual environments. In Experiment 1, we combined natural vestibular stimulation on a rotatory chair with virtual reality to test how vestibular signals are processed to simulate the viewpoint of a distant avatar. While they were rotated, participants tossed a ball to a virtual character from the viewpoint of a distant avatar. Our results showed that vestibular signals influence perspective taking in a direction-specific way: participants were faster when their physical body rotated in the same direction as the mental rotation needed to take the avatar's viewpoint. In Experiment 2, participants realized 3D object mental rotations, which did not involve perspective taking, during the same whole-body vestibular stimulation. Our results demonstrated that vestibular stimulation did not affect 3D object mental rotations. Altogether, these data indicate that vestibular signals have a direction-specific influence on visuo-spatial perspective taking (self-centered mental imagery), but not a general effect on mental imagery. Findings from this study suggest that vestibular signals contribute to one of the most crucial mechanisms of social cognition: understanding others' actions. PMID:26311354

  5. Vestibular-visual interactions in flight simulators

    NASA Technical Reports Server (NTRS)

    Clark, B.

    1977-01-01

    The following research work is reported: (1) vestibular-visual interactions; (2) flight management and crew system interactions; (3) peripheral cue utilization in simulation technology; (4) control of signs and symptoms of motion sickness; (5) auditory cue utilization in flight simulators, and (6) vestibular function: Animal experiments.

  6. Landscape, Flux, Correlation, Resonance, Coherence, Stability, and Key Network Wirings of Stochastic Circadian Oscillation

    PubMed Central

    Li, Chunhe; Wang, Erkang; Wang, Jin

    2011-01-01

    Circadian rhythms with a period of ?24 h, are natural timing machines. They are broadly distributed in living organisms, such as Neurospora, Drosophila, and mammals. The underlying natures of the rhythmic behavior have been explored by experimental and theoretical approaches. However, the global and physical natures of the oscillation under fluctuations are still not very clear. We developed a landscape and flux framework to explore the global stability and robustness of a circadian oscillation system. The potential landscape of the network is uncovered and has a global Mexican-hat shape. The height of the Mexican-hat provides a quantitative measure to evaluate the robustness and coherence of the oscillation. We found that in nonequilibrium dynamic systems, not only the potential landscape but also the probability flux are important to the dynamics of the system under intrinsic noise. Landscape attracts the systems down to the oscillation ring while flux drives the coherent oscillation on the ring. We also investigated the phase coherence and the entropy production rate of the system at different fluctuations and found that dissipations are less and the coherence is higher for larger number of molecules. We also found that the power spectrum of autocorrelation functions show resonance peak at the frequency of coherent oscillations. The peak is less prominent for smaller number of molecules and less barrier height and therefore can be used as another measure of stability of oscillations. As a consequence of nonzero probability flux, we show that the three-point correlations from the time traces show irreversibility, providing a possible way to explore the flux from the observations. Furthermore, we explored the escape time from the oscillation ring to outside at different molecular number. We found that when barrier height is higher, escape time is longer and phase coherence of oscillation is higher. Finally, we performed the global sensitivity analysis of the underlying parameters to find the key network wirings responsible for the stability of the oscillation system. PMID:21943414

  7. Incomplete segregation of endorgan-specific vestibular ganglion cells in mice and rats

    NASA Technical Reports Server (NTRS)

    Maklad, A.; Fritzsch, B.

    1999-01-01

    The endorgan-specific distribution of vestibular ganglion cells was studied in neonatal and postnatal rats and mice using indocarbocyanine dye (DiI) and dextran amines for retrograde and anterograde labeling. Retrograde DiI tracing from the anterior vertical canal labeled neurons scattered throughout the whole superior vestibular ganglion, with denser labeling at the dorsal and central regions. Horizontal canal neurons were scattered along the dorsoventral axis with more clustering toward the dorsal and ventral poles of this axis. Utricular ganglion cells occupied predominantly the central region of the superior vestibular ganglion. This utricular population overlapped with both the anterior vertical and horizontal canals' ganglion cells. Posterior vertical canal neurons were clustered in the posterior part of the inferior vestibular ganglion. The saccular neurons were distributed in the two parts of the vestibular ganglion, the superior and inferior ganglia. Within the inferior ganglion, the saccular neurons were clustered in the anterior part. In the superior ganglion, the saccular neurons were widely scattered throughout the whole ganglion with more numerous neurons at the posterior half. Small and large neurons were labeled from all endorgans. Examination of the fiber trajectory within the superior division of the vestibular nerve showed no clear lamination of the fibers innervating the different endorgans. These results demonstrate an overlapping pattern between the different populations within the superior ganglion, while in the inferior ganglion, the posterior canal and saccular neurons show tighter clustering but incomplete segregation. This distribution implies that the ganglion cells are assigned for their target during development in a stochastic rather than topographical fashion.

  8. Prevalence of vestibular dysfunction in patients with vestibular schwannoma using video head-impulses and vestibular-evoked potentials.

    PubMed

    Taylor, Rachael L; Kong, Jonathan; Flanagan, Sean; Pogson, Jacob; Croxson, Glen; Pohl, David; Welgampola, Miriam S

    2015-05-01

    We sought to investigate the utility of new non-invasive tests of semicircular-canal and otolith function that are usable in the neuro-otology office practice in patients with vestibular schwannoma. Fifty patients with vestibular schwannoma were assessed using a 5-item battery consisting of air-conducted cervical- and bone conducted ocular-vestibular-evoked myogenic potentials (AC cVEMPs and BC oVEMPs) and video head impulse testing (vHIT) in all three canal planes. VEMP asymmetry ratios, latencies, and vHIT gains were used to determine the test sensitivity, relationship with tumour size and the pattern of vestibular nerve involvement. The percentage of abnormalities for each of the five tests for the entire sample ranged between 36.2-61.7%. In 58.3 % of patients, test abnormalities were referable to both superior and inferior vestibular nerve divisions. Selective inferior nerve dysfunction was identified in 10.4% and superior nerve dysfunction in 12.5%. The remaining 18.8% of patients demonstrated a normal test profile. The sensitivity of the 5-item battery increased with tumour size and all patients with medium to large (>14 mm) schwannoma had at least two abnormal vestibular test result. Our results indicate that dysfunction of the superior and inferior vestibular nerve evolves in parallel for most patients with schwannoma. Unexplained vHIT and VEMP asymmetry should alert otologists and neurologists to undertake imaging in patients presenting with non-specific disequilibrium or vertigo. PMID:25794859

  9. Vestibular findings in professional divers.

    PubMed

    Sharoni, Z; Shupak, A; Spitzer, O; Nachum, Z; Gadoth, N

    2001-02-01

    The purpose of the present study was to investigate possible inner ear changes related to professional diving, by the documentation of auditory and vestibular function in 13 asymptomatic professional divers and 12 nondiver controls. A higher average pure tone hearing threshold, although of no clinical significance, was found in the study group (8.53 +/- 4.85 versus 6.67 +/- 3.54 dB hearing level, p = .04). In the vestibular evaluation, the smooth harmonic acceleration test phase leads for 0.01, 0.02, and 0.04 Hz were significantly lower in the divers (0.01 Hz, 38.46 degrees +/- 7.15 degrees versus 45.83 degrees +/- 9.02 degrees, p = .02; 0.02 Hz, 21.08 degrees +/- 5.19 +/- versus 25.17 degrees +/- 5.78 degrees, p = .05: 0.04 Hz, 12.38 degrees +/- 3.69 degrees versus 14.25 degrees +/- 3.14 degrees, p = .05). We suggest that the lower smooth harmonic acceleration phase values found in the professional divers, reflecting longer vestibulo-ocular reflex primary time constants and enhancement of the velocity storage mechanism, are the result of a habituation process that augments the low-frequency response of the canal-ocular system. PMID:11219519

  10. Progress Toward Development of a Multichannel Vestibular Prosthesis for Treatment of Bilateral Vestibular Deficiency

    PubMed Central

    FRIDMAN, GENE Y.; DELLA SANTINA, CHARLES C.

    2014-01-01

    This article reviews vestibular pathology and the requirements and progress made in the design and construction of a vestibular prosthesis. Bilateral loss of vestibular sensation is disabling. When vestibular hair cells are injured by ototoxic medications or other insults to the labyrinth, the resulting loss of sensory input disrupts vestibulo-ocular reflexes (VORs) and vestibulo-spinal reflexes that normally stabilize the eyes and body. Affected individuals suffer poor vision during head movement, postural instability, chronic disequilibrium, and cognitive distraction. Although most individuals with residual sensation compensate for their loss over time, others fail to do so and have no adequate treatment options. A vestibular prosthesis analogous to cochlear implants but designed to modulate vestibular nerve activity during head movement should improve quality of life for these chronically dizzy individuals. We describe the impact of bilateral loss of vestibular sensation, animal studies supporting feasibility of prosthetic vestibular stimulation, the current status of multichannel vestibular sensory replacement prosthesis development, and challenges to successfully realizing this approach in clinical practice. In bilaterally vestibular-deficient rodents and rhesus monkeys, the Johns Hopkins multichannel vestibular prosthesis (MVP) partially restores the three-dimensional (3D) VOR for head rotations about any axis. Attempts at prosthetic vestibular stimulation of humans have not yet included the 3D eye movement assays necessary to accurately evaluate VOR alignment, but these initial forays have revealed responses that are otherwise comparable to observations in animals. Current efforts now focus on refining electrode design and surgical technique to enhance stimulus selectivity and preserve cochlear function, optimizing stimulus protocols to improve dynamic range and reduce excitation–inhibition asymmetry, and adapting laboratory MVP prototypes into devices appropriate for use in clinical trials. PMID:23044664

  11. Normal and abnormal human vestibular ocular function

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Black, F. O.

    1986-01-01

    The major motivation of this research is to understand the role the vestibular system plays in sensorimotor interactions which result in spatial disorientation and motion sickness. A second goal was to explore the range of abnormality as it is reflected in quantitative measures of vestibular reflex responses. The results of a study of vestibular reflex measurements in normal subjects and preliminary results in abnormal subjects are presented in this report. Statistical methods were used to define the range of normal responses, and determine age related changes in function.

  12. The Anatomical and Physiological Framework for Vestibular Prostheses

    PubMed Central

    Highstein, Stephen M.; Holstein, Gay R.

    2014-01-01

    This article reviews the structure function of the vestibular system and its pathology with respect to requirements for the design and construction of a functional vestibular prosthesis. The ultimate goal of a vestibular prosthesis is to restore balance and equilibrium through direct activation of vestibular nerve fibers. An overview of the peripheral and central vestibular systems that highlights their most important functional aspects re: the design of a prosthesis is provided. Namely, the peripheral labyrinth faithfully transduces head motion and gravity in both the time and frequency domains. These signals are described in hopes that they may be prosthetically replicated. The peripheral and central connections of the vestibular nerve are also discussed in detail, as are the vestibular nuclei in the brainstem that receive VIIIth nerve innervation. Lastly, the functional effector pathways of the vestibular system, including the vestibulo-ocular, vestibulo-spinal, vestibulo-colic, vestibulo-autonomic, and vestibular efferent innervation of the labyrinth are reviewed. PMID:23044714

  13. Vestibular-visual interactions in flight simulators

    NASA Technical Reports Server (NTRS)

    Clark, B.

    1977-01-01

    All 139 research papers published under this ten-year program are listed. Experimental work was carried out at the Ames Research Center involving man's sensitivity to rotational acceleration, and psychophysical functioning of the semicircular canals; vestibular-visual interactions and effects of other sensory systems were studied in flight simulator environments. Experiments also dealt with the neurophysiological vestibular functions of animals, and flight management investigations of man-vehicle interactions.

  14. Outcome analysis of individualized vestibular rehabilitation protocols

    NASA Technical Reports Server (NTRS)

    Black, F. O.; Angel, C. R.; Pesznecker, S. C.; Gianna, C.

    2000-01-01

    OBJECTIVE: To determine the outcome of vestibular rehabilitation protocols in subjects with peripheral vestibular disorders compared with normal and abnormal control subjects. STUDY DESIGN: Prospective study using repeated measure, matched control design. Subjects were solicited consecutively according to these criteria: vestibular disorder subjects who had abnormal results of computerized dynamic posturography (CDP) sensory organization tests (SOTs) 5 and 6 and underwent rehabilitation; vestibular disorder subjects who had abnormal results of SOTs 5 and 6 and did not undergo rehabilitation; and normal subjects (normal SOTs). SETTING: Tertiary neurotology clinic. SUBJECTS: Men and women over age 18 with chronic vestibular disorders and chief complaints of unsteadiness, imbalance, and/or motion intolerance, and normal subjects. INTERVENTIONS: Pre- and post-rehabilitation assessment included CDP, vestibular disability, and activities of daily living questionnaires. Individualized rehabilitation plans were designed and implemented to address the subject's specific complaints and functional deficits. Supervised sessions were held at weekly intervals, and self-administered programs were devised for daily home use. MAIN OUTCOME MEASURES: CDP composite and SOT scores, number of falls on CDP, and self-assessment questionnaire results. RESULTS: Subjects who underwent rehabilitation (Group A) showed statistically significant improvements in SOTs, overall composite score, and reduction in falls compared with abnormal (Group B) control groups. Group A's performances after rehabilitation were not significantly different from those of normal subjects (Group C) in SOTs 3 through 6, and close to normal on SOTs 1 and 2. Subjects in Group A also reported statistically significant symptomatic improvement. CONCLUSIONS: Outcome measures of vestibular protocol physical therapy confirmed objective and subjective improvement in subjects with chronic peripheral vestibular disorders. These findings support results reported by other investigators.

  15. Vestibular development in marsupials and monotremes.

    PubMed

    Ashwell, Ken W S; Shulruf, Boaz

    2014-04-01

    The young of marsupials and monotremes are all born in an immature state, followed by prolonged nurturing by maternal lactation in either a pouch or nest. Nevertheless, the level of locomotor ability required for newborn marsupials and monotremes to reach the safety of the pouch or nest varies considerably: some are transferred to the pouch or nest in an egg (monotremes); others are transferred passively by gravity (e.g. dasyurid marsupials); some have only a horizontal wriggle to make (e.g. peramelid and didelphid marsupials); and others must climb vertically for a long distance to reach the maternal pouch (e.g. diprotodontid marsupials). In the present study, archived sections of the inner ear and hindbrain held in the Bolk, Hill and Hubrecht collections at the Museum für Naturkunde, Berlin, were used to test the relationship between structural maturity of the vestibular apparatus and the locomotor challenges that face the young of these different mammalian groups. A system for staging different levels of structural maturity of the vestibular apparatus was applied to the embryos, pouch young and hatchlings, and correlated with somatic size as indicated by greatest body length. Dasyurids are born at the most immature state, with the vestibular apparatus at little more than the otocyst stage. Peramelids are born with the vestibular apparatus at a more mature state (fully developed semicircular ducts and a ductus reuniens forming between the cochlear duct and saccule, but no semicircular canals). Diprotodontids and monotremes are born with the vestibular apparatus at the most mature state for the non-eutherians (semicircular canals formed, maculae present, but vestibular nuclei in the brainstem not yet differentiated). Monotremes and marsupials reach the later stages of vestibular apparatus development at mean body lengths that lie within the range of those found for laboratory rodents (mouse and rat) reaching the same vestibular stage. PMID:24298911

  16. Vestibular ontogeny: Measuring the influence of the dynamic environment

    NASA Technical Reports Server (NTRS)

    Jones, Timothy A.; Devries, Sherri M.; Dubois, Linda M.; Nelson, Rick C.

    1993-01-01

    In comparison to other special senses, we are only meagerly informed about the development of vestibular function and the mechanisms that may operate to control or influence the course of vestibular ontogeny. Perhaps one contributing factor to this disparity is the difficulty of evaluating vestibular sense organs directly and noninvasively. The present report describes a recently developed direct noninvasive vestibular function test that can be used to address many basic questions about the developing vestibular system. More particularly, the test can be used to examine the effects of the dynamic environment (e.g. gravitational field and vibration) on vestibular ontogeny.

  17. [Vestibular neuronitis: pathophysiology, diagnosis and treatment].

    PubMed

    Zaper, Dinka; Adamec, Ivan; Gabeli?, Tereza; Krbot, Magdalena; Isgum, Velimir; Hajnsek, Sanja; Habek, Mario

    2012-01-01

    Vestibular neuritis (VN) is one of the most common causes of peripheral vertigo. Caloric testing has been the traditional gold standard for detecting a peripheral vestibular deficit, but some recently developed bedside tests (head thrust, head heave, head shake and vibration test) were evaluated as a good alternative with similar sensitivity and specificity. These tests have shown both diagnostic value in the short term and prognostic value in the long term, and have availability and ease of use as an advantage. As an addition to clinical examination, vestibular evoked myogenic potentials can differentiate between involvement of superior and inferior branch of the vestibular nerve, but also between peripheral and central lesions. Although glucocorticoids are currently widely used in the treatment of VN, there is a lack of evidence for the validity of their administration. There are a number of high quality clinical trials that suggest vestibular rehabilitation exercises, which are based on the mechanisms of vestibular compensation, in the managment of VN. This review will focus on the latest developments in the pathophysiology, diagnosis and treatment of patients with VN. PMID:23401980

  18. Vestibular function assessment using the NIH Toolbox

    PubMed Central

    Schubert, Michael C.; Whitney, Susan L.; Roberts, Dale; Redfern, Mark S.; Musolino, Mark C.; Roche, Jennica L.; Steed, Daniel P.; Corbin, Bree; Lin, Chia-Cheng; Marchetti, Greg F.; Beaumont, Jennifer; Carey, John P.; Shepard, Neil P.; Jacobson, Gary P.; Wrisley, Diane M.; Hoffman, Howard J.; Furman, Gabriel; Slotkin, Jerry

    2013-01-01

    Objective: Development of an easy to administer, low-cost test of vestibular function. Methods: Members of the NIH Toolbox Sensory Domain Vestibular, Vision, and Motor subdomain teams collaborated to identify 2 tests: 1) Dynamic Visual Acuity (DVA), and 2) the Balance Accelerometry Measure (BAM). Extensive work was completed to identify and develop appropriate software and hardware. More than 300 subjects between the ages of 3 and 85 years, with and without vestibular dysfunction, were recruited and tested. Currently accepted gold standard measures of static visual acuity, vestibular function, dynamic visual acuity, and balance were performed to determine validity. Repeat testing was performed to examine reliability. Results: The DVA and BAM tests are affordable and appropriate for use for individuals 3 through 85 years of age. The DVA had fair to good reliability (0.41–0.94) and sensitivity and specificity (50%–73%), depending on age and optotype chosen. The BAM test was moderately correlated with center of pressure (r = 0.42–0.48) and dynamic posturography (r = ?0.48), depending on age and test condition. Both tests differentiated those with and without vestibular impairment and the young from the old. Each test was reliable. Conclusion: The newly created DVA test provides a valid measure of visual acuity with the head still and moving quickly. The novel BAM is a valid measure of balance. Both tests are sensitive to age-related changes and are able to screen for impairment of the vestibular system. PMID:23479540

  19. Vestibular Facilitation of Optic Flow Parsing

    PubMed Central

    MacNeilage, Paul R.; Zhang, Zhou; DeAngelis, Gregory C.; Angelaki, Dora E.

    2012-01-01

    Simultaneous object motion and self-motion give rise to complex patterns of retinal image motion. In order to estimate object motion accurately, the brain must parse this complex retinal motion into self-motion and object motion components. Although this computational problem can be solved, in principle, through purely visual mechanisms, extra-retinal information that arises from the vestibular system during self-motion may also play an important role. Here we investigate whether combining vestibular and visual self-motion information improves the precision of object motion estimates. Subjects were asked to discriminate the direction of object motion in the presence of simultaneous self-motion, depicted either by visual cues alone (i.e. optic flow) or by combined visual/vestibular stimuli. We report a small but significant improvement in object motion discrimination thresholds with the addition of vestibular cues. This improvement was greatest for eccentric heading directions and negligible for forward movement, a finding that could reflect increased relative reliability of vestibular versus visual cues for eccentric heading directions. Overall, these results are consistent with the hypothesis that vestibular inputs can help parse retinal image motion into self-motion and object motion components. PMID:22768345

  20. Neurotology symptoms at referral to vestibular evaluation

    PubMed Central

    2013-01-01

    Background Dizziness-vertigo is common in adults, but clinical providers may rarely diagnose vestibular impairment and referral could be delayed. To assess neurotology symptoms (including triggers) reported by patients with peripheral vestibular disease, during the year just before their referral to vestibular evaluation. Methods 282 patients with peripheral vestibular disease and 282 control subjects accepted to participate. They had no middle ear, retinal, neurological, psychiatric, autoimmune or autonomic disorders. They reported their symptoms by a standardized questionnaire along with their anxiety/depression symptoms. Results Patients were referred after months or years from the onset of their symptoms, 24% of them reported frequent falls with a long clinical evolution; 10% of them reported no vertigo but instability related to specific triggers; 86% patients and 12% control subjects reported instability when moving the head rapidly and 79% patients and 6% control subjects reported instability when changing posture. Seven out of the 9 symptoms explored by the questionnaire allowed the correct classification of circa 95% of the participants (Discriminant function analysis, p?vestibular evaluation may underlie a history of frequent falls; some patients may not report vertigo, but instability related to specific triggers, which could be useful to prompt vestibular evaluation. High blood pressure, dyslipidemia and anxiety/depression symptoms may have a mild influence on the report of symptoms of vestibular disease in both, patients and control subjects. PMID:24279682

  1. Large Vestibular Schwannomas Presenting during Pregnancy: Management Strategies

    PubMed Central

    Shah, Kushal J.; Chamoun, Roukoz B.

    2014-01-01

    Objective?Large vestibular schwannomas rarely present in pregnant women. Diagnosis and management of these tumors during pregnancy present a therapeutic challenge. Methods?A 20-year-old primigravida woman at 26 weeks' gestation was transferred to our facility with gait imbalance, left facial weakness, left ear hearing loss, and recent nausea and vomiting. Magnetic resonance imaging revealed a large left cerebellopontine angle mass with extension into the left internal auditory canal and compression of the fourth ventricle resulting in mild hydrocephalus. The patient was admitted with a plan for early delivery at 32 weeks followed by tumor resection. One week later, the patient's headache and neurologic symptoms worsened due to increased hydrocephalus; a ventriculoperitoneal shunt was placed. The next day, an emergent cesarean delivery was performed due to worsening respiratory status. Four days later, a tracheostomy and percutaneous endoscopic gastrostomy tube were placed due to dysphagia. Eight days after the delivery, the mass was resected with a left retrosigmoid approach without complications. Immunohistochemistry confirmed vestibular cellular schwannoma on cranial nerve VIII showing unusually high mitotic activity. Results?The patient was discharged to inpatient rehabilitation on postoperative day 12 without new neurologic deficit. At 1?month, the patient was swallowing without aspiration. Her facial sensation had returned, her facial weakness remained stable, and her gait was significantly improved. Conclusion?If the patient is neurologically stable, the best option is to delay resection until after delivery. If resection is necessary during pregnancy, the optimal time is during the second trimester. PMID:25072015

  2. Computational Approaches to Vestibular Research

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    The Biocomputation Center at NASA Ames Research Center is dedicated to a union between computational, experimental and theoretical approaches to the study of neuroscience and of life sciences in general. The current emphasis is on computer reconstruction and visualization of vestibular macular architecture in three-dimensions (3-D), and on mathematical modeling and computer simulation of neural activity in the functioning system. Our methods are being used to interpret the influence of spaceflight on mammalian vestibular maculas in a model system, that of the adult Sprague-Dawley rat. More than twenty 3-D reconstructions of type I and type II hair cells and their afferents have been completed by digitization of contours traced from serial sections photographed in a transmission electron microscope. This labor-intensive method has now been replace d by a semiautomated method developed in the Biocomputation Center in which conventional photography is eliminated. All viewing, storage and manipulation of original data is done using Silicon Graphics workstations. Recent improvements to the software include a new mesh generation method for connecting contours. This method will permit the investigator to describe any surface, regardless of complexity, including highly branched structures such as are routinely found in neurons. This same mesh can be used for 3-D, finite volume simulation of synapse activation and voltage spread on neuronal surfaces visualized via the reconstruction process. These simulations help the investigator interpret the relationship between neuroarchitecture and physiology, and are of assistance in determining which experiments will best test theoretical interpretations. Data are also used to develop abstract, 3-D models that dynamically display neuronal activity ongoing in the system. Finally, the same data can be used to visualize the neural tissue in a virtual environment. Our exhibit will depict capabilities of our computational approaches and some of our findings from their application. For example, our research has demonstrated that maculas of adult mammals retain the property of synaptic plasticity. Ribbon synapses increase numerically and undergo changes in type and distribution (p<0.0001) in type II hair cells after exposure to microgravity for as few as nine days. The finding of macular synaptic plasticity is pertinent to the clinic, and may help explain some. balance disorders in humans. The software used in our investigations will be demonstrated for those interested in applying it in their own research.

  3. An Electronic Prosthesis Mimicking the Dynamic Vestibular Andrei M. Shkela

    E-print Network

    Chen, Zhongping

    could provide head orientation information to the nervous system for patients suffering from peripheral vestibular disorders. The vestibular organ of the inner ear is the major anatomical system to sense motion information to the nervous system directly by electrically stimulating the vestibular neural pathways related

  4. Longitudinal performance of an implantable vestibular prosthesis.

    PubMed

    Phillips, Christopher; Ling, Leo; Oxford, Trey; Nowack, Amy; Nie, Kaibao; Rubinstein, Jay T; Phillips, James O

    2015-04-01

    Loss of vestibular function may be treatable with an implantable vestibular prosthesis that stimulates semicircular canal afferents with biphasic pulse trains. Several studies have demonstrated short-term activation of the vestibulo-ocular reflex (VOR) with electrical stimulation. Fewer long-term studies have been restricted to small numbers of animals and stimulation designed to produce adaptive changes in the electrically elicited response. This study is the first large consecutive series of implanted rhesus macaque to be studied longitudinally using brief stimuli designed to limit adaptive changes in response, so that the efficacy of electrical activation can be studied over time, across surgeries, canals and animals. The implantation of a vestibular prosthesis in animals with intact vestibular end organs produces variable responses to electrical stimulation across canals and animals, which change in threshold for electrical activation of eye movements and in elicited slow phase velocities over time. These thresholds are consistently lower, and the slow phase velocities higher, than those obtained in human subjects. The changes do not appear to be correlated with changes in electrode impedance. The variability in response suggests that empirically derived transfer functions may be required to optimize the response of individual canals to a vestibular prosthesis, and that this function may need to be remapped over time. This article is part of a Special Issue entitled . PMID:25245586

  5. Caloric vestibular stimulation modulates nociceptive evoked potentials.

    PubMed

    Ferrè, Elisa Raffaella; Haggard, Patrick; Bottini, Gabriella; Iannetti, Gian Domenico

    2015-12-01

    Vestibular stimulation has been reported to alleviate central pain. Clinical and physiological studies confirm pervasive interactions between vestibular signals and somatosensory circuits, including nociception. However, the neural mechanisms underlying vestibular-induced analgesia remain unclear, and previous clinical studies cannot rule out explanations based on alternative, non-specific effects such as distraction or placebo. To investigate how vestibular inputs influence nociception, we combined caloric vestibular stimulation (CVS) with psychophysical and electrocortical responses elicited by nociceptive-specific laser stimulation in humans (laser-evoked potentials, LEPs). Cold water CVS applied to the left ear resulted in significantly lower subjective pain intensity for experimental laser pain to the left hand immediately after CVS, relative both to before CVS and to 1 h after CVS. This transient reduction in pain perception was associated with reduced amplitude of all LEP components, including the early N1 wave reflecting the first arrival of nociceptive input to primary somatosensory cortex. We conclude that cold left ear CVS elicits a modulation of both nociceptive processing and pain perception. The analgesic effect induced by CVS could be mediated either by subcortical gating of the ascending nociceptive input, or by direct modulation of the primary somatosensory cortex. PMID:26282602

  6. Sensorial countermeasures for vestibular spatial disorientation.

    PubMed

    Paillard, Aurore C; Quarck, Gaëlle; Denise, Pierre

    2014-05-01

    Spatial disorientation is defined as an erroneous body orientation perceived by pilots during flights. Limits of the vestibular system provoke frequent spatial disorientation mishaps. Although vestibular spatial disorientation is experienced frequently in aviation, there is no intuitive countermeasure against spatial disorientation mishaps to date. The aim of this review is to describe the current sensorial countermeasures and to examine future leads in sensorial ergonomics for vestibular spatial disorientation. This work reviews: 1) the visual ergonomics, 2) the vestibular countermeasures, 3) the auditory displays, 4) the somatosensory countermeasures, and, finally, 5) the multisensory displays. This review emphasizes the positive aspects of auditory and somatosensory countermeasures as well as multisensory devices. Even if some aspects such as sensory conflict and motion sickness need to be assessed, these countermeasures should be taken into consideration for ergonomics work in the future. However, a recent development in aviation might offer new and better perspectives: unmanned aerial vehicles. Unmanned aerial vehicles aim to go beyond the physiological boundaries of human sensorial systems and would allow for coping with spatial disorientation and motion sickness. Even if research is necessary to improve the interaction between machines and humans, this recent development might be incredibly useful for decreasing or even stopping vestibular spatial disorientation. PMID:24834571

  7. Complications of Microsurgery of Vestibular Schwannoma

    PubMed Central

    Zv??ina, Eduard; Balogová, Zuzana; Sk?ivan, Ji?í; Kraus, Josef; Syka, Josef; Chovanec, Martin

    2014-01-01

    Background. The aim of this study was to analyze complications of vestibular schwannoma (VS) microsurgery. Material and Methods. A retrospective study was performed in 333 patients with unilateral vestibular schwannoma indicated for surgical treatment between January 1997 and December 2012. Postoperative complications were assessed immediately after VS surgery as well as during outpatient followup. Results. In all 333 patients microsurgical vestibular schwannoma (Koos grade 1: 12, grade 2: 34, grade 3: 62, and grade 4: 225) removal was performed. The main neurological complication was facial nerve dysfunction. The intermediate and poor function (HB III–VI) was observed in 124 cases (45%) immediately after surgery and in 104 cases (33%) on the last followup. We encountered disordered vestibular compensation in 13%, permanent trigeminal nerve dysfunction in 1%, and transient lower cranial nerves (IX–XI) deficit in 6%. Nonneurological complications included CSF leakage in 63% (lateral/medial variant: 99/1%), headache in 9%, and intracerebral hemorrhage in 5%. We did not encounter any case of meningitis. Conclusions. Our study demonstrates that despite the benefits of advanced high-tech equipment, refined microsurgical instruments, and highly developed neuroimaging technologies, there are still various and significant complications associated with vestibular schwannomas microsurgery. PMID:24987677

  8. Visual Dependency and Dizziness after Vestibular Neuritis

    PubMed Central

    Cousins, Sian; Cutfield, Nicholas J.; Kaski, Diego; Palla, Antonella; Seemungal, Barry M.; Golding, John F.; Staab, Jeffrey P.; Bronstein, Adolfo M.

    2014-01-01

    Symptomatic recovery after acute vestibular neuritis (VN) is variable, with around 50% of patients reporting long term vestibular symptoms; hence, it is essential to identify factors related to poor clinical outcome. Here we investigated whether excessive reliance on visual input for spatial orientation (visual dependence) was associated with long term vestibular symptoms following acute VN. Twenty-eight patients with VN and 25 normal control subjects were included. Patients were enrolled at least 6 months after acute illness. Recovery status was not a criterion for study entry, allowing recruitment of patients with a full range of persistent symptoms. We measured visual dependence with a laptop-based Rod-and-Disk Test and severity of symptoms with the Dizziness Handicap Inventory (DHI). The third of patients showing the worst clinical outcomes (mean DHI score 36–80) had significantly greater visual dependence than normal subjects (6.35° error vs. 3.39° respectively, p?=?0.03). Asymptomatic patients and those with minor residual symptoms did not differ from controls. Visual dependence was associated with high levels of persistent vestibular symptoms after acute VN. Over-reliance on visual information for spatial orientation is one characteristic of poorly recovered vestibular neuritis patients. The finding may be clinically useful given that visual dependence may be modified through rehabilitation desensitization techniques. PMID:25233234

  9. Optical nerve stimulation for a vestibular prosthesis

    NASA Astrophysics Data System (ADS)

    Harris, David M.; Bierer, Steven M.; Wells, Jonathon D.; Phillips, James O.

    2009-02-01

    Infrared Nerve Stimulation (INS) offers several advantages over electrical stimulation, including more precise spatial selectivity and improved surgical access. In this study, INS and electrical stimulation were compared in their ability to activate the vestibular branch of the VIIIth nerve, as a potential way to treat balance disorders. The superior and lateral canals of the vestibular system of Guinea pigs were identified and approached with the aid of precise 3-D reconstructions. A monopolar platinum stimulating electrode was positioned near the ampullae of the canals, and biphasic current pulses were used to stimulate vestibular evoked potentials and eye movements. Thresholds and input/output functions were measured for various stimulus conditions. A short pulsed diode laser (Capella, Lockheed Martin-Aculight, Inc., Bothell WA) was placed in the same anatomical position and various stimulus conditions were evaluated in their ability to evoke similar potentials and eye movements.

  10. Eye Movements as Indicators of Vestibular Dysfunction.

    PubMed

    Menshikova, Galina Ya; Kovalev, Artem I; Klimova, Oxana A; Chernorizov, Alexander M

    2015-08-01

    Virtual reality technologies are in wide use in sport psychology. An advantage of this kind of technology is the possibility to assess sportspeople's readiness to perform complex movements. This study is aimed at developing a method for the evaluation of vestibular function disturbances in young skaters. Such disturbances may occur while skaters are performing rotation movements. To achieve this goal, we induced a vection illusion, accompanied by virtual environment rotation in a CAVE virtual reality system. Vestibular disturbances were tested for two groups-professional skaters and people who had very little or no skating experience. The quantitative evaluation of vestibular dysfunction was based on eye movement characteristics, which were recorded in subjects experiencing a vection illusion. PMID:26562924

  11. A systems concept of the vestibular organs

    NASA Technical Reports Server (NTRS)

    Mayne, R.

    1974-01-01

    A comprehensive model of vestibular organ function is presented. The model is based on an analogy with the inertial guidance systems used in navigation. Three distinct operations are investigated: angular motion sensing, linear motion sensing, and computation. These operations correspond to the semicircular canals, the otoliths, and central processing respectively. It is especially important for both an inertial guidance system and the vestibular organs to distinguish between attitude with respect to the vertical on the one hand, and linear velocity and displacement on the other. The model is applied to various experimental situations and found to be corroborated by them.

  12. Non-linear Galilean vestibular receptive fields.

    PubMed

    Bennequin, D; Berthoz, A

    2011-01-01

    We present a set of formulas for the receptive fields of the vestibular neurons that are motivated by Galilean invariance. We show that these formulas explain non-trivial data in neurophysiology, and suggest new hypothesis to be tested in dynamical 3D conditions. Moreover our model offers a way for neuronal computing with 3D displacements, which is reputed to be hard, underlying the vestibular reflexes. This computation is presented in a Bayesian framework. The basis of the model is the necessity of living bodies to work invariantly in space-time, allied to the necessary discreteness of neuronal transmission. PMID:22254794

  13. Physiological principles of vestibular function on earth and in space

    NASA Technical Reports Server (NTRS)

    Minor, L. B.

    1998-01-01

    Physiological mechanisms underlying vestibular function have important implications for our ability to understand, predict, and modify balance processes during and after spaceflight. The microgravity environment of space provides many unique opportunities for studying the effects of changes in gravitoinertial force on structure and function of the vestibular system. Investigations of basic vestibular physiology and of changes in reflexes occurring as a consequence of exposure to microgravity have important implications for diagnosis and treatment of vestibular disorders in human beings. This report reviews physiological principles underlying control of vestibular processes on earth and in space. Information is presented from a functional perspective with emphasis on signals arising from labyrinthine receptors. Changes induced by microgravity in linear acceleration detected by the vestibulo-ocular reflexes. Alterations of the functional requirements for postural control in space are described. Areas of direct correlation between studies of vestibular reflexes in microgravity and vestibular disorders in human beings are discussed.

  14. From ear to uncertainty: vestibular contributions to cognitive function

    PubMed Central

    Smith, Paul F.; Zheng, Yiwen

    2013-01-01

    In addition to the deficits in the vestibulo-ocular and vestibulo-spinal reflexes that occur following vestibular dysfunction, there is substantial evidence that vestibular loss also causes cognitive disorders, some of which may be due to the reflexive deficits and some of which are related to the role that ascending vestibular pathways to the limbic system and neocortex play in spatial orientation. In this review we summarize the evidence that vestibular loss causes cognitive disorders, especially spatial memory deficits, in animals and humans and critically evaluate the evidence that these deficits are not due to hearing loss, problems with motor control, oscillopsia or anxiety and depression. We review the evidence that vestibular lesions affect head direction and place cells as well as the emerging evidence that artificial activation of the vestibular system, using galvanic vestibular stimulation (GVS), can modulate cognitive function. PMID:24324413

  15. Vestibular convergence patterns in vestibular nuclei neurons of alert primates

    NASA Technical Reports Server (NTRS)

    Dickman, J. David; Angelaki, Dora E.

    2002-01-01

    Sensory signal convergence is a fundamental and important aspect of brain function. Such convergence may often involve complex multidimensional interactions as those proposed for the processing of otolith and semicircular canal (SCC) information for the detection of translational head movements and the effective discrimination from physically congruent gravity signals. In the present study, we have examined the responses of primate rostral vestibular nuclei (VN) neurons that do not exhibit any eye movement-related activity using 0.5-Hz translational and three-dimensional (3D) rotational motion. Three distinct neural populations were identified. Approximately one-fourth of the cells exclusively encoded rotational movements (canal-only neurons) and were unresponsive to translation. The canal-only central neurons encoded head rotation in SCC coordinates, exhibited little orthogonal canal convergence, and were characterized with significantly higher sensitivities to rotation as compared to primary SCC afferents. Another fourth of the neurons modulated their firing rates during translation (otolith-only cells). During rotations, these neurons only responded when the axis of rotation was earth-horizontal and the head was changing orientation relative to gravity. The remaining one-half of VN neurons were sensitive to both rotations and translations (otolith + canal neurons). Unlike primary otolith afferents, however, central neurons often exhibited significant spatiotemporal (noncosine) tuning properties and a wide variety of response dynamics to translation. To characterize the pattern of SCC inputs to otolith + canal neurons, their rotational maximum sensitivity vectors were computed using exclusively responses during earth-vertical axis rotations (EVA). Maximum sensitivity vectors were distributed throughout the 3D space, suggesting strong convergence from multiple SCCs. These neurons were also tested with earth-horizontal axis rotations (EHA), which would activate both vertical canals and otolith organs. However, the recorded responses could not be predicted from a linear combination of EVA rotational and translational responses. In contrast, one-third of the neurons responded similarly during EVA and EHA rotations, although a significant response modulation was present during translation. Thus this subpopulation of otolith + canal cells, which included neurons with either high- or low-pass dynamics to translation, appear to selectively ignore the component of otolith-selective activation that is due to changes in the orientation of the head relative to gravity. Thus contrary to primary otolith afferents and otolith-only central neurons that respond equivalently to tilts relative to gravity and translational movements, approximately one-third of the otolith + canal cells seem to encode a true estimate of the translational component of the imposed passive head and body movement.

  16. Interaction between Vestibular Compensation Mechanisms and Vestibular Rehabilitation Therapy: 10 Recommendations for Optimal Functional Recovery

    PubMed Central

    Lacour, Michel; Bernard-Demanze, Laurence

    2015-01-01

    This review questions the relationships between the plastic events responsible for the recovery of vestibular function after a unilateral vestibular loss (vestibular compensation), which has been well described in animal models in the last decades, and the vestibular rehabilitation (VR) therapy elaborated on a more empirical basis for vestibular loss patients. The main objective is not to propose a catalog of results but to provide clinicians with an understandable view on when and how to perform VR therapy, and why VR may benefit from basic knowledge and may influence the recovery process. With this perspective, 10 major recommendations are proposed as ways to identify an optimal functional recovery. Among them are the crucial role of active and early VR therapy, coincidental with a post-lesion sensitive period for neuronal network remodeling, the instructive role that VR therapy may play in this functional reorganization, the need for progression in the VR therapy protocol, which is based mainly on adaptation processes, the necessity to take into account the sensorimotor, cognitive, and emotional profile of the patient to propose individual or “à la carte” VR therapies, and the importance of motivational and ecologic contexts. More than 10 general principles are very likely, but these principles seem crucial for the fast recovery of vestibular loss patients to ensure good quality of life. PMID:25610424

  17. Widespread Vestibular Activation of the Rodent Cortex

    PubMed Central

    Moya, Javier; Drawitsch, Florian; Brichta, Alan M.

    2015-01-01

    Much of our understanding of the neuronal mechanisms of spatial navigation is derived from chronic recordings in rodents in which head-direction, place, and grid cells have all been described. However, despite the proposed importance of self-reference information to these internal representations of space, their congruence with vestibular signaling remains unclear. Here we have undertaken brain-wide functional mapping using both fMRI and electrophysiological methods to directly determine the spatial extent, strength, and time course of vestibular signaling across the rat forebrain. We find distributed activity throughout thalamic, limbic, and particularly primary sensory cortical areas in addition to known head-direction pathways. We also observe activation of frontal regions, including infralimbic and cingulate cortices, indicating integration of vestibular information throughout functionally diverse cortical regions. These whole-brain activity maps therefore suggest a widespread contribution of vestibular signaling to a self-centered framework for multimodal sensorimotor integration in support of movement planning, execution, spatial navigation, and autonomic responses to gravito-inertial changes. PMID:25878265

  18. Immunological Influences on the Vestibular System

    NASA Technical Reports Server (NTRS)

    Warchol, Mark E.

    2003-01-01

    The goals of this project were to examine the influence of immune signaling molecules on the survival and replacement of sensory hair cells in the vestibular organs. We have made considerable progress toward that goal, particularly in the characterization of mechanisms that underlie hair cell death.

  19. Vesibulotoxicity and Management of Vestibular Disorders

    ERIC Educational Resources Information Center

    Carey, John P.

    2005-01-01

    The toxicity of certain aminoglycoside antibiotics for vestibular hair cells has been used to special advantage in the treatment of Meniere's disease. Intratympanic (middle ear) injections of these drugs are being increasingly used to control vertigo in this disorder when it has not responded to medical therapy. The mechanisms by which these drugs…

  20. Vestibular stimulation leads to distinct hemodynamic patterning

    NASA Technical Reports Server (NTRS)

    Kerman, I. A.; Emanuel, B. A.; Yates, B. J.

    2000-01-01

    Previous studies demonstrated that responses of a particular sympathetic nerve to vestibular stimulation depend on the type of tissue the nerve innervates as well as its anatomic location. In the present study, we sought to determine whether such precise patterning of vestibulosympathetic reflexes could lead to specific hemodynamic alterations in response to vestibular afferent activation. We simultaneously measured changes in systemic blood pressure and blood flow (with the use of Doppler flowmetry) to the hindlimb (femoral artery), forelimb (brachial artery), and kidney (renal artery) in chloralose-urethane-anesthetized, baroreceptor-denervated cats. Electrical vestibular stimulation led to depressor responses, 8 +/- 2 mmHg (mean +/- SE) in magnitude, that were accompanied by decreases in femoral vasoconstriction (23 +/- 4% decrease in vascular resistance or 36 +/- 7% increase in vascular conductance) and increases in brachial vascular tone (resistance increase of 10 +/- 6% and conductance decrease of 11 +/- 4%). Relatively small changes (<5%) in renal vascular tone were observed. In contrast, electrical stimulation of muscle and cutaneous afferents produced pressor responses (20 +/- 6 mmHg) that were accompanied by vasoconstriction in all three beds. These data suggest that vestibular inputs lead to a complex pattern of cardiovascular changes that is distinct from that which occurs in response to activation of other types of somatic afferents.

  1. New Insights into Pathophysiology of Vestibular Migraine

    PubMed Central

    Espinosa-Sanchez, Juan M.; Lopez-Escamez, Jose A.

    2015-01-01

    Vestibular migraine (VM) is a common disorder in which genetic, epigenetic, and environmental factors probably contribute to its development. The pathophysiology of VM is unknown; nevertheless in the last few years, several studies are contributing to understand the neurophysiological pathways involved in VM. The current hypotheses are mostly based on the knowledge of migraine itself. The evidence of trigeminal innervation of the labyrinth vessels and the localization of vasoactive neuropeptides in the perivascular afferent terminals of these trigeminal fibers support the involvement of the trigemino-vascular system. The neurogenic inflammation triggered by activation of the trigeminal-vestibulocochlear reflex, with the subsequent inner ear plasma protein extravasation and the release of inflammatory mediators, can contribute to a sustained activation and sensitization of the trigeminal primary afferent neurons explaining VM symptoms. The reciprocal connections between brainstem vestibular nuclei and the structures that modulate trigeminal nociceptive inputs (rostral ventromedial medulla, ventrolateral periaqueductal gray, locus coeruleus, and nucleus raphe magnus) are critical to understand the pathophysiology of VM. Although cortical spreading depression can affect cortical areas involved in processing vestibular information, functional neuroimaging techniques suggest a dysmodulation in the multimodal sensory integration and processing of vestibular and nociceptive information, resulting from a vestibulo-thalamo-cortical dysfunction, as the pathogenic mechanism underlying VM. The elevated prevalence of VM suggests that multiple functional variants may confer a genetic susceptibility leading to a dysregulation of excitatory–inhibitory balance in brain structures involved in the processing of sensory information, vestibular inputs, and pain. The interactions among several functional and structural neural networks could explain the pathogenic mechanisms of VM. PMID:25705201

  2. Presynaptic GABAB Receptors Decrease Neurotransmitter Release in Vestibular Nuclei Neurons During Vestibular Compensation

    PubMed Central

    Shao, Mei; Reddaway, Rebecca; Hirsch, June C.; Peusner, Kenna D.

    2013-01-01

    Unilateral damage to the peripheral vestibular receptors precipitates a debilitating syndrome of oculomotor and balance deficits at rest, which extensively normalize during the first week after the lesion due to vestibular compensation. In vivo studies suggest that GABAB receptor activation facilitates recovery. However, the presynaptic or postsynaptic sites of action of GABAB receptors in vestibular nuclei neurons after lesions have not been determined. Accordingly, here presynaptic and postsynaptic GABAB receptor activity in principal cells of the tangential nucleus, a major avian vestibular nucleus, was investigated using patch-clamp recordings correlated with immunolabeling and confocal imaging of the GABAB receptor subunit-2 (GABABR2) in controls and operated chickens shortly after unilateral vestibular ganglionectomy (UVG). Baclofen, a GABAB agonist, generated no postsynaptic currents in principal cells in controls, which correlated with weak GABABR2 immunolabeling on principal cell surfaces. However, baclofen decreased miniature excitatory (mEPSC) and GABAergic inhibitory (mIPSC) events in principal cells in controls, compensating and uncompensated chickens three days after UVG, indicating the presence of functional GABAB receptors on presynaptic terminals. Baclofen decreased GABAergic mIPSC frequency to the greatest extent in principal cells on the intact side of compensating chickens, with concurrent increases in GABABR2 pixel brightness and percentage overlap in synaptotagmin2 (Syt2)-labeled terminals. In uncompensated chickens, baclofen decreased mEPSC frequency to the greatest extent in principal cells on the intact side, with concurrent increases in GABABR2 pixel brightness and percentage overlap in Syt1-labeled terminals. Altogether, these results revealed changes in presynaptic GABAB receptor function and expression which differed in compensating and uncompensated chickens shortly after UVG. This work supports an important role for GABAB autoreceptor-mediated inhibition in vestibular nuclei neurons on the intact side during early stages of vestibular compensation, and a role for GABAB heteroreceptor-mediated inhibition of glutamatergic terminals on the intact side in the failure to recover function. PMID:22871524

  3. Recovery of vestibular function following hair cell destruction by streptomycin

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Nelson, R. C.

    1992-01-01

    Can the vestibular periphery of warm-blooded vertebrates recover functionally from severe sensory hair cell loss? Recent findings in birds suggest a mechanism for recovery but in fact no direct functional evidence has been reported. We produced vestibular hair cell lesions using the ototoxic agent streptomycin sulfate (600 mg/kg/day, 8 days, chicks, Gallus domesticus). Compound action potentials of the vestibular nerve were used as a direct measure of peripheral vestibular function. Vestibular thresholds, neural activation latencies and amplitudes were documented. Eight days of drug treatment elevated thresholds significantly (P < 0.001) and eliminated all but remnants of vestibular activity. Virtually complete physiological recovery occurred in all animals studied over a period of 70 days following treatment. Thresholds recovered within two weeks of drug treatment whereas the return of response morphologies including activation latencies and amplitudes required an additional 6-8 weeks.

  4. Frequency-independent synaptic transmission supports a linear vestibular behavior

    PubMed Central

    Bagnall, Martha W.; McElvain, Lauren E.; Faulstich, Michael; du Lac, Sascha

    2008-01-01

    Summary The vestibular system is responsible for transforming head motion into precise eye, head, and body movements that rapidly stabilize gaze and posture. How do central excitatory synapses mediate behavioral outputs accurately matched to sensory inputs over a wide dynamic range? Here we demonstrate that vestibular afferent synapses in vitro express frequency-independent transmission that spans their in vivo dynamic range (5 – 150 spikes/s). As a result, the synaptic charge transfer per unit time is linearly related to vestibular afferent activity in both projection and intrinsic neurons of the vestibular nuclei. Neither postsynaptic glutamate receptor desensitization nor saturation affect the relative amplitude or frequency-independence of steady-state transmission. Finally, we show that vestibular nucleus neurons can transduce synaptic inputs into linear changes in firing rate output, without relying on one-to-one calyceal transmission. These data provide a physiological basis for the remarkable linearity of vestibular reflexes. PMID:18957225

  5. Anxiety Changes Depersonalization and Derealization Symptoms in Vestibular Patients

    PubMed Central

    Kolev, Ognyan I.; Georgieva-Zhostova, Spaska O.; Berthoz, Alain

    2014-01-01

    Background. Depersonalization and derealization are common symptoms reported in the general population. Objective. The aim of the present study was to establish the relationship between anxiety and depersonalization and derealization symptoms in patients with peripheral vestibular disorders. Methods. Twenty-four vestibular patients with anxiety and 18 vestibular patients without anxiety were examined for depersonalization and derealization symptoms. They were also compared to healthy controls. Results. The results revealed that anxiety consistently changes depersonalization and derealization symptoms in vestibular patients. They are more frequent, more severe, and qualitatively different in vestibular patients with anxiety than in those without anxiety. Conclusion. Anxiety has an effect on depersonalization and derealization symptoms in vestibular patients. The various hypotheses about the underlying mechanism of this effect were discussed. PMID:24803735

  6. The vestibular contribution to the head direction signal and navigation

    PubMed Central

    Yoder, Ryan M.; Taube, Jeffrey S.

    2014-01-01

    Spatial learning and navigation depend on neural representations of location and direction within the environment. These representations, encoded by place cells and head direction (HD) cells, respectively, are dominantly controlled by visual cues, but require input from the vestibular system. Vestibular signals play an important role in forming spatial representations in both visual and non-visual environments, but the details of this vestibular contribution are not fully understood. Here, we review the role of the vestibular system in generating various spatial signals in rodents, focusing primarily on HD cells. We also examine the vestibular system’s role in navigation and the possible pathways by which vestibular information is conveyed to higher navigation centers. PMID:24795578

  7. A novel v- silicone vestibular stent: preventing vestibular stenosis and preserving nasal valves.

    PubMed

    Bassam, Wameedh Al; Bhargava, Deepa; Al-Abri, Rashid

    2012-01-01

    This report presents a novel style of placing nasal stents. Patients undergoing surgical procedures in the region of nasal vestibule and nasal valves are at risk of developing vestibular stenosis and lifelong problems with the external and internal nasal valves; sequels of the repair. The objective of the report is to demonstrate a simple and successful method of an inverted V- Stent placement to prevent potential complication of vestibular stenosis and nasal valve compromise later in life. Following a fall on a sharp edge of a metallic bed, a sixteen month old child with a deep lacerated nasal wound extending from the collumellar base toward the tip of the nose underwent surgical exploration and repair of the nasal vestibule and nasal cavity. A soft silicone stent fashioned as inverted V was placed bilaterally. The child made a remarkable recovery with no evidence of vestibular stenosis or nasal valve abnormalities. In patients with nasal trauma involving the nasal vestibule and internal and external nasal valves stent placement avoids sequels, adhesions, contractures, synechia vestibular stenosis and fibrosis involving these anatomical structures. The advantages of the described V- stents over the traditional readymade ridged nasal stents, tubing's and composite aural grafts are: a) technical simplicity of use, b) safety, c) less morbidity, d) more comfortable, and e) economical. To our knowledge, this is the first report of such a stent for prevention of vestibular stenosis and preserving nasal valves. PMID:22359729

  8. Ernst Mach on the vestibular organ 100 years ago

    NASA Technical Reports Server (NTRS)

    Henn, V.; Young, L. R.

    1975-01-01

    The paper reviews the contributions of Ernst Mach to vestibular research. His experiments, mainly psychophysical in nature, included measurements of threshold and investigation of the vestibular-visual interaction. Among his conclusions are that the adequate stimulus for the semicircular canals must be pressure, and that the sustained endolymph flow theory of Breuer (1874) and Crum Brown (1874) is erroneous. Excerpts are given of Mach's publications on vestibular functions.-

  9. Direction Specific Biases in Human Visual and Vestibular Heading Perception

    PubMed Central

    Crane, Benjamin T.

    2012-01-01

    Heading direction is determined from visual and vestibular cues. Both sensory modalities have been shown to have better direction discrimination for headings near straight ahead. Previous studies of visual heading estimation have not used the full range of stimuli, and vestibular heading estimation has not previously been reported. The current experiments measure human heading estimation in the horizontal plane to vestibular, visual, and spoken stimuli. The vestibular and visual tasks involved 16 cm of platform or visual motion. The spoken stimulus was a voice command speaking a heading angle. All conditions demonstrated direction dependent biases in perceived headings such that biases increased with headings further from the fore-aft axis. The bias was larger with the visual stimulus when compared with the vestibular stimulus in all 10 subjects. For the visual and vestibular tasks precision was best for headings near fore-aft. The spoken headings had the least bias, and the variation in precision was less dependent on direction. In a separate experiment when headings were limited to ±45°, the biases were much less, demonstrating the range of headings influences perception. There was a strong and highly significant correlation between the bias curves for visual and spoken stimuli in every subject. The correlation between visual-vestibular and vestibular-spoken biases were weaker but remained significant. The observed biases in both visual and vestibular heading perception qualitatively resembled predictions of a recent population vector decoder model (Gu et al., 2010) based on the known distribution of neuronal sensitivities. PMID:23236490

  10. Task, muscle and frequency dependent vestibular control of posture

    PubMed Central

    Forbes, Patrick A.; Siegmund, Gunter P.; Schouten, Alfred C.; Blouin, Jean-Sébastien

    2015-01-01

    The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular information is relevant to postural control, while in neck muscles they are maintained regardless of the requirement to maintain head on trunk balance. Recent investigations have also shown that the bandwidth of vestibular input on neck muscles is much broader than appendicular muscles (up to a factor of 3). This result challenges the notion that vestibular reflexes only contribute to postural control across the behavioral and physiological frequency range of the vestibular organ (i.e., 0–20 Hz). In this review, we explore and integrate these task-, muscle- and frequency-related differences in the vestibular system’s contribution to posture, and propose that the human nervous system has adapted vestibular signals to match the mechanical properties of the system that each group of muscles controls. PMID:25620919

  11. Experiment M131. Human vestibular function

    NASA Technical Reports Server (NTRS)

    Graybiel, A.; Miller, E. F., II; Homick, J. L.

    1977-01-01

    The lower susceptibility to vestibular stimulation aloft, compared with that on ground under experimental conditions, is attributed to a precondition, namely, either there is no need to adapt, or, as exemplified by the Skylab 3 pilot, adaptation to weightlessness is achieved. Findings in some of the astronauts emphasize the distinction between two categories of vestibular side effects: immediate reflex phenomena (illusions, sensations of turning, etc.), and delayed epiphenomena that include the constellation of symptoms and syndromes comprising motion sickness. The drug combinations 1-scopolamine and d-amphetamine and promethazine hydrochloride and ephedrine sulfate are effective in prevention and treatment of motion sickness. It is concluded that prevention of motion sickness in any stressful motion environment involves selection, adaptation, and the use of drugs.

  12. Status of vestibular function after prolonged bedrest

    NASA Astrophysics Data System (ADS)

    Burgeat, M.; Toupet, M.; Loth, D.; Ingster, I.; Guell, A.; Coll, J.

    6 young, healthy, male volunteers were submitted to one week of head down (-4°) bedrest. This position simulates the cerebral hemodynamic conditions in weightlessness. Measurements of vestibular equilibrium and of oculomotor system function were made before and after the prolonged bedrest. Analysis of the results indicates that vestibular responses, as measured by the maximal speed of the slow phase of the provoked nystagmus (caloric and sinusoidal rotatory stimulations), are decreased after prolonged bedrest. This statistically significant diminution requires confirmation with a greater number of cases. The reflex conflicting or interacting with the cervico-ocular and optokinetic reflexes on the one hand and the foveal vision on the other, is one of several possible explanations for the observed changes.

  13. Vestibular-ocular accommodation reflex in man

    NASA Technical Reports Server (NTRS)

    Clark, B.; Randle, R. J.; Stewart, J. D.

    1975-01-01

    Stimulation of the vestibular system by angular acceleration produces widespread sensory and motor effects. The present paper studies a motor effect which has not been reported in the literature, i.e., the influence of rotary acceleration of the body on ocular accommodation. The accommodation of 10 young men was recorded before and after a high-level deceleration to zero velocity following 30 sec of rotating. Accommodation was recorded continuously on an infrared optometer for 110 sec under two conditions: while the subjects observed a target set at the far point, and while they viewed the same target through a 0.3-mm pinhole. Stimulation by high-level rotary deceleration produced positive accommodation or a pseudomyopia under both conditions, but the positive accommodation was substantially greater and lasted much longer during fixation through the pinhole. It is hypothesized that this increase in accommodation is a result of a vestibular-ocular accommodation reflex.

  14. The vestibular system of the owl

    NASA Technical Reports Server (NTRS)

    Money, K. E.; Correia, M. J.

    1973-01-01

    Five owls were given vestibular examinations, and two of them were sacrificed to provide serial histological sections of the temporal bones. The owls exhibited a curious variability in the postrotatory head nystagmus following abrupt deceleration; sometimes a brisk nystagnus with direction opposite to that appropriate to the stimulus would occur promptly after deceleration. It was found also that owls can exhibit a remarkable head stability during angular movement of the body about any axis passing through the skull. The vestibular apparatus in the owl is larger than in man, and a prominent crista neglecta is present. The tectorial membrane, the cupula, and the otolithic membranes of the utricle, saccule, and lagena are all attached to surfaces in addition to the surfaces hearing hair cells. These attachments are very substantial in the utricular otolithic membrane and in the cupula.

  15. Vestibular efferent neurons project to the flocculus

    NASA Technical Reports Server (NTRS)

    Shinder, M. E.; Purcell, I. M.; Kaufman, G. D.; Perachio, A. A.

    2001-01-01

    A bilateral projection from the vestibular efferent neurons, located dorsal to the genu of the facial nerve, to the cerebellar flocculus and ventral paraflocculus was demonstrated. Efferent neurons were double-labeled by the unilateral injections of separate retrograde tracers into the labyrinth and into the floccular and ventral parafloccular lobules. Efferent neurons were found with double retrograde tracer labeling both ipsilateral and contralateral to the sites of injection. No double labeling was found when using a fluorescent tracer with non-fluorescent tracers such as horseradish peroxidase (HRP) or biotinylated dextran amine (BDA), but large percentages of efferent neurons were found to be double labeled when using two fluorescent substances including: fluorogold, microruby dextran amine, or rhodamine labeled latex beads. These data suggest a potential role for vestibular efferent neurons in modulating the dynamics of the vestibulo-ocular reflex (VOR) during normal and adaptive conditions.

  16. Vestibular Schwannoma Atypically Invading Temporal Bone

    PubMed Central

    Park, Soo Jeong; Yang, Na-Rae

    2015-01-01

    Vestibular schwannoma (VS) usually present the widening of internal auditory canal (IAC), and these bony changes are typically limited to IAC, not extend to temporal bone. Temporal bone invasion by VS is extremely rare. We report 51-year-old man who revealed temporal bone destruction beyond IAC by unilateral VS. The bony destruction extended anteriorly to the carotid canal and inferiorly to the jugular foramen. On histopathologic examination, the tumor showed typical benign schwannoma and did not show any unusual vascularity or malignant feature. Facial nerve was severely compressed and distorted by tumor, which unevenly eroded temporal bone in surgical field. Vestibular schwannoma with atypical invasion of temporal bone can be successfully treated with combined translabyrinthine and lateral suboccipiral approach without facial nerve dysfunction. Early detection and careful dissection of facial nerve with intraoperative monitoring should be considered during operation due to severe adhesion and distortion of facial nerve by tumor and eroded temporal bone. PMID:25932298

  17. Vestibular activation of sympathetic nerve activity

    NASA Technical Reports Server (NTRS)

    Ray, C. A.; Carter, J. R.

    2003-01-01

    AIM: The vestibulosympathetic reflex refers to sympathetic nerve activation by the vestibular system. Animal studies indicate that the vestibular system assists in blood pressure regulation during orthostasis. Although human studies clearly demonstrate activation of muscle sympathetic nerve activity (MSNA) during engagement of the otolith organs, the role of the vestibulosympathetic reflex in maintaining blood pressure during orthostasis is not well-established. Examination of the vestibulosympathetic reflex with other cardiovascular reflexes indicates that it is a powerful and independent reflex. Ageing, which is associated with an increased risk for orthostatic hypotension, attenuates the vestibulosympathetic reflex. The attenuated reflex is associated with a reduction in arterial pressure. CONCLUSION: These findings suggest that the vestibulosympathetic reflex assists in blood pressure regulation in humans, but future studies examining this reflex in other orthostatically intolerant populations are necessary to address this hypothesis.

  18. Galvanic vestibular stimulation: a novel modulatory countermeasure for vestibular-associated movement disorders.

    PubMed

    Rizzo-Sierra, Carlos V; Gonzalez-Castaño, Alexander; Leon-Sarmiento, Fidias E

    2014-01-01

    Motion sickness or kinetosis is the result of the abnormal neural output originated by visual, proprioceptive and vestibular mismatch, which reverses once the dysfunctional sensory information becomes coherent. The space adaptation syndrome or space sickness relates to motion sickness; it is considered to be due to yaw, pith, and roll coordinates mismatch. Several behavioural and pharmacological measures have been proposed to control these vestibular-associated movement disorders with no success. Galvanic vestibular stimulation has the potential of up-regulating disturbed sensory-motor mismatch originated by kinetosis and space sickness by modulating the GABA-related ion channels neural transmission in the inner ear. It improves the signal-to-noise ratio of the afferent proprioceptive volleys, which would ultimately modulate the motor output restoring the disordered gait, balance and human locomotion due to kinetosis, as well as the spatial disorientation generated by gravity transition. PMID:24637984

  19. Radiotherapy for Vestibular Schwannomas: A Critical Review

    SciTech Connect

    Murphy, Erin S.; Suh, John H.

    2011-03-15

    Vestibular schwannomas are slow-growing tumors of the myelin-forming cells that cover cranial nerve VIII. The treatment options for patients with vestibular schwannoma include active observation, surgical management, and radiotherapy. However, the optimal treatment choice remains controversial. We have reviewed the available data and summarized the radiotherapeutic options, including single-session stereotactic radiosurgery, fractionated conventional radiotherapy, fractionated stereotactic radiotherapy, and proton beam therapy. The comparisons of the various radiotherapy modalities have been based on single-institution experiences, which have shown excellent tumor control rates of 91-100%. Both stereotactic radiosurgery and fractionated stereotactic radiotherapy have successfully improved cranial nerve V and VII preservation to >95%. The mixed data regarding the ideal hearing preservation therapy, inherent biases in patient selection, and differences in outcome analysis have made the comparison across radiotherapeutic modalities difficult. Early experience using proton therapy for vestibular schwannoma treatment demonstrated local control rates of 84-100% but disappointing hearing preservation rates of 33-42%. Efforts to improve radiotherapy delivery will focus on refined dosimetry with the goal of reducing the dose to the critical structures. As future randomized trials are unlikely, we suggest regimented pre- and post-treatment assessments, including validated evaluations of cranial nerves V, VII, and VIII, and quality of life assessments with long-term prospective follow-up. The results from such trials will enhance the understanding of therapy outcomes and improve our ability to inform patients.

  20. Vestibular compensation and orientation during locomotion

    NASA Technical Reports Server (NTRS)

    Raphan, T.; Imai, T.; Moore, S. T.; Cohen, B.

    2001-01-01

    Body, head, and eye movements were studied in three dimensions while walking and turning to determine the role of the vestibular system in directing gaze and maintaining spatial orientation. The body, head, and eyes were represented as three-dimensional coordinate frames, and the movement of these frames was related to a trajectory frame that described the motion of the body on a terrestrial plane. The axis-angle of the body, head, and eye rotation were then compared to the axis-angle of the rotation of the gravitoinertial acceleration (GIA). We inferred the role of the vestibular system during locomotion and the contributions of the VCR and VOR by examining the interrelationship between these coordinate frames. Straight walking induced head and eye rotations in a compensatory manner to the linear accelerations, maintaining head pointing and gaze along the direction of forward motion. Turning generated a combination of compensation and orientation responses. The head leads and steers the turn while the eyes compensate to maintain stable horizontal gaze in space. Saccades shift horizontal gaze as the turn is executed. The head pitches, as during straight walking. It also rolls so that the head tends to align with the orientation of the GIA. Head orientation changes anticipate orientation changes of the GIA. Eye orientation follows the changes in GIA orientation so that the net orientation gaze is closer to the orientation of the GIA. The study indicates that the vestibular system utilizes compensatory and orienting mechanisms to stabilize spatial orientation and gaze during walking and turning.

  1. Rats avoid high magnetic fields: dependence on an intact vestibular system

    PubMed Central

    Houpt, Thomas A.; Cassell, Jennifer A.; Riccardi, Christina; DenBleyker, Megan D.; Hood, Alison; Smith, James C.

    2009-01-01

    Summary HOUPT, T.A., J.A. CASSELL, C. RICCARDI, M.D. DENBLEYKER, A. HOOD, AND J.C. SMITH. Rats avoid high magnetic fields: dependence on an intact vestibular system. PHYSIOL BEHAV 00(0)000-000, 2006. High strength static magnetic fields are thought to be benign and largely undetectable by mammals. As magnetic resonance imaging (MRI) machines increase in strength, however, potential aversive effects may become clinically relevant. Here we report that rats find entry into a 14.1 T magnet aversive, and that they can detect and avoid entry into the magnet at a point where the magnetic field is 2 T or lower. Rats were trained to climb a ladder through the bore of a 14.1 T superconducting magnet. After their first climb into 14.1 T, most rats refused to re-enter the magnet or climb past the 2 T field line. This result was confirmed in a resistive magnet in which the magnetic field was varied from 1 to 14 T. Detection and avoidance required the vestibular apparatus of the inner ear, because labyrinthectomized rats readily traversed the magnet. The inner ear is a novel site for magnetic field transduction in mammals, but perturbation of the vestibular apparatus would be consistent with human reports of vertigo and nausea around high strength MRI machines. PMID:17585969

  2. Integration of vestibular and head movement signals in the vestibular nuclei during whole-body rotation

    NASA Technical Reports Server (NTRS)

    Gdowski, G. T.; McCrea, R. A.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    Single-unit recordings were obtained from 107 horizontal semicircular canal-related central vestibular neurons in three alert squirrel monkeys during passive sinusoidal whole-body rotation (WBR) while the head was free to move in the yaw plane (2.3 Hz, 20 degrees /s). Most of the units were identified as secondary vestibular neurons by electrical stimulation of the ipsilateral vestibular nerve (61/80 tested). Both non-eye-movement (n = 52) and eye-movement-related (n = 55) units were studied. Unit responses recorded when the head was free to move were compared with responses recorded when the head was restrained from moving. WBR in the absence of a visual target evoked a compensatory vestibulocollic reflex (VCR) that effectively reduced the head velocity in space by an average of 33 +/- 14%. In 73 units, the compensatory head movements were sufficiently large to permit the effect of the VCR on vestibular signal processing to be assessed quantitatively. The VCR affected the rotational responses of different vestibular neurons in different ways. Approximately one-half of the units (34/73, 47%) had responses that decreased as head velocity decreased. However, the responses of many other units (24/73) showed little change. These cells had signals that were better correlated with trunk velocity than with head velocity. The remaining units had responses that were significantly larger (15/73, 21%) when the VCR produced a decrease in head velocity. Eye-movement-related units tended to have rotational responses that were correlated with head velocity. On the other hand, non-eye-movement units tended to have rotational responses that were better correlated with trunk velocity. We conclude that sensory vestibular signals are transformed from head-in-space coordinates to trunk-in-space coordinates on many secondary vestibular neurons in the vestibular nuclei by the addition of inputs related to head rotation on the trunk. This coordinate transformation is presumably important for controlling postural reflexes and constructing a central percept of body orientation and movement in space.

  3. Differential central projections of vestibular afferents in pigeons

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Fang, Q.

    1996-01-01

    The question of whether a differential distribution of vestibular afferent information to central nuclear neurons is present in pigeons was studied using neural tracer compounds. Discrete tracing of afferent fibers innervating the individual semicircular canal and otolith organs was produced by sectioning individual branches of the vestibular nerve that innervate the different receptor organs and applying crystals of horseradish peroxidase, or a horseradish peroxidase/cholera toxin mixture, or a biocytin compound for neuronal uptake and transport. Afferent fibers and their terminal distributions within the brainstem and cerebellum were visualized subsequently. Discrete areas in the pigeon central nervous system that receive primary vestibular input include the superior, dorsal lateral, ventral lateral, medial, descending, and tangential vestibular nuclei; the A and B groups; the intermediate, medial, and lateral cerebellar nuclei; and the nodulus, the uvula, and the paraflocculus. Generally, the vertical canal afferents projected heavily to medial regions in the superior and descending vestibular nuclei as well as the A group. Vertical canal projections to the medial and lateral vestibular nuclei were observed but were less prominent. Horizontal canal projections to the superior and descending vestibular nuclei were much more centrally located than those of the vertical canals. A more substantial projection to the medial and lateral vestibular nuclei was seen with horizontal canal afferents compared to vertical canal fibers. Afferents innervating the utricle and saccule terminated generally in the lateral regions of all vestibular nuclei in areas that were separate from the projections of the semicircular canals. In addition, utricular fibers projected to regions in the vestibular nuclei that overlapped with the horizontal semicircular canal terminal fields, whereas saccular afferents projected to regions that received vertical canal fiber terminations. Lagenar afferents projected throughout the cochlear nuclei, to the dorsolateral regions of the cerebellar nuclei, and to lateral regions of the superior, lateral, medial, and descending vestibular nuclei.

  4. Otolith-Canal Convergence in Vestibular Nuclei Neurons

    NASA Technical Reports Server (NTRS)

    Dickman, J. David

    1996-01-01

    During manned spaceflight, acute vestibular disturbances often occur, leading to physical duress and a loss of performance. Vestibular adaptation to the weightless environment follows within two to three days yet the mechanisms responsible for the disturbance and subsequent adaptation are still unknown In order to understand vestibular system function in space and normal earth conditions the basic physiological mechanisms of vestibular information co coding must be determined. Information processing regarding head movement and head position with respect to gravity takes place in the vestibular nuclei neurons that receive signals From the semicircular canals and otolith organs in the vestibular labyrinth. These neurons must synthesize the information into a coded output signal that provides for the head and eye movement reflexes as well as the conscious perception of the body in three-dimensional space The current investigation will for the first time. determine how the vestibular nuclei neurons quantitatively synthesize afferent information from the different linear and angular acceleration receptors in the vestibular labyrinths into an integrated output signal. During the second year of funding, progress on the current project has been focused on the anatomical orientation of semicircular canals and the spatial orientation of the innervating afferent responses. This information is necessary in order to understand how vestibular nuclei neurons process the incoming afferent spatial signals particularly with the convergent otolith afferent signals that are also spatially distributed Since information from the vestibular nuclei is presented to different brain regions associated with differing reflexive and sensory functions it is important to understand the computational mechanisms used by vestibular neurons to produce the appropriate output signal.

  5. A study of whirlin isoforms in the mouse vestibular system suggests potential vestibular dysfunction in DFNB31-deficient patients.

    PubMed

    Mathur, Pranav Dinesh; Vijayakumar, Sarath; Vashist, Deepti; Jones, Sherri M; Jones, Timothy A; Yang, Jun

    2015-12-15

    The DFNB31 gene plays an indispensable role in the cochlea and retina. Mutations in this gene disrupt its various isoforms and lead to non-syndromic deafness, blindness and deaf-blindness. However, the known expression of Dfnb31, the mouse ortholog of DFNB31, in vestibular organs and the potential vestibular-deficient phenotype observed in one Dfnb31 mutant mouse (Dfnb31(wi/wi)) suggest that DFNB31 may also be important for vestibular function. In this study, we find that full-length (FL-) and C-terminal (C-) whirlin isoforms are expressed in the vestibular organs, where their stereociliary localizations are similar to those of developing cochlear inner hair cells. No whirlin is detected in Dfnb31(wi/wi) vestibular organs, while only C-whirlin is expressed in Dfnb31(neo/neo) vestibular organs. Both FL- and C-whirlin isoforms are required for normal vestibular stereociliary growth, although they may play slightly different roles in the central and peripheral zones of the crista ampullaris. Vestibular sensory-evoked potentials demonstrate severe to profound vestibular deficits in Dfnb31(neo/neo) and Dfnb31(wi/wi) mice. Swimming and rotarod tests demonstrate that the two Dfnb31 mutants have balance problems, with Dfnb31(wi/wi) mice being more affected than Dfnb31(neo/neo) mice. Because Dfnb31(wi/wi) and Dfnb31(neo/neo) mice faithfully recapitulate hearing and vision symptoms in patients, our findings of vestibular dysfunction in these Dfnb31 mutants raise the question of whether DFNB31-deficient patients may acquire vestibular as well as hearing and vision loss. PMID:26420843

  6. Sensory processing in the vestibular nuclei during active head movements

    NASA Technical Reports Server (NTRS)

    Gdowski, G. T.; Boyle, R.; McCrea, R. A.; Peterson, B. W. (Principal Investigator)

    2000-01-01

    Many secondary vestibular neurons are sensitive to head on trunk rotation during reflex-induced and voluntary head movements. During passive whole body rotation the interaction of head on trunk signals related to the vestibulo-collic reflex with vestibular signals increases the rotational gain of many secondary vestibular neurons, including many that project to the spinal cord. In some units, the sensitivity to head on trunk and vestibular input is matched and the resulting interaction produces an output that is related to the trunk velocity in space. In other units the head on trunk inputs are stronger and the resulting interaction produces an output that is larger during the reflex. During voluntary head movements, inputs related to head on trunk movement combine destructively with vestibular signals, and often cancel the sensory reafferent consequences of self-generated movements. Cancellation of sensory vestibular signals was observed in all of the antidromically identified secondary vestibulospinal units, even though many of these units were not significantly affected by reflexive head on trunk movements. The results imply that the inputs to vestibular neurons related to head on trunk rotation during reflexive and voluntary movements arise from different sources. We suggest that the relative strength of reflexive head on trunk input to different vestibular neurons might reflect the different functional roles they have in controlling the posture of the neck and body.

  7. Vestibular influences on autonomic cardiovascular control in humans

    NASA Technical Reports Server (NTRS)

    Biaggioni, I.; Costa, F.; Kaufmann, H.; Robertson, D. (Principal Investigator)

    1998-01-01

    There is substantial evidence that anatomical connections exist between vestibular and autonomic nuclei. Animal studies have shown functional interactions between the vestibular and autonomic systems. The nature of these interactions, however, is complex and has not been fully defined. Vestibular stimulation has been consistently found to reduce blood pressure in animals. Given the potential interaction between vestibular and autonomic pathways this finding could be explained by a reduction in sympathetic activity. However, rather than sympathetic inhibition, vestibular stimulation has consistently been shown to increase sympathetic outflow in cardiac and splanchnic vascular beds in most experimental models. Several clinical observations suggest that a link between vestibular and autonomic systems may also exist in humans. However, direct evidence for vestibular/autonomic interactions in humans is sparse. Motion sickness has been found to induce forearm vasodilation and reduce baroreflex gain, and head down neck flexion induces transient forearm and calf vasoconstriction. On the other hand, studies using optokinetic stimulation have found either very small, variable, or inconsistent changes in heart rate and blood pressure, despite substantial symptoms of motion sickness. Furthermore, caloric stimulation severe enough to produce nystagmus, dizziness, and nausea had no effect on sympathetic nerve activity measured directly with microneurography. No effect was observed on heart rate, blood pressure, or plasma norepinephrine. Several factors may explain the apparent discordance of these results, but more research is needed before we can define the potential importance of vestibular input to cardiovascular regulation and orthostatic tolerance in humans.

  8. The Vestibular System irplanes and submarines navigate in three

    E-print Network

    Harris, Laurence R.

    the Vestibular System with the Oculomotor System Two Visual Pathways Drive the Optokinetic Reflexes The Cerebral Complex Patterns of Vestibular Stimulation Vestibulo-Ocular Reflexes Stabilize the Eyes and Body When the Head Moves The Rotational Vestibulo-Ocular Reflex Compensates for Head Rotation The Otolithic Reflexes

  9. Hyperventilation-induced nystagmus in patients with vestibular schwannoma

    E-print Network

    Haslwanter, Thomas

    and to use this information to predict the effects of hyperventilation on individual ampullary nerves-phase components corresponding to excitation of the affected vestibular nerve. Projection of the eye velocity termed "acoustic," these schwannomas actually arise from the vestibular por- tion of the eighth cranial

  10. An Electronic Prosthesis Mimicking the Dynamic Vestibular Function

    E-print Network

    Chen, Zhongping

    An Electronic Prosthesis Mimicking the Dynamic Vestibular Function Jiayin Liu Mechanical of a novel MEMS-based electrostimulatory prosthesis cur- rently investigated by this research group [1 a prosthesis that matches the signal recorded from the vestibular nerve in squirrel monkey experiments reported

  11. Acute Unilateral Vestibular Failure Does Not Cause Spatial Hemineglect

    PubMed Central

    Conrad, Julian; Habs, Maximilian; Brandt, Thomas; Dieterich, Marianne

    2015-01-01

    Objectives Visuo-spatial neglect and vestibular disorders have common clinical findings and involve the same cortical areas. We questioned (1) whether visuo-spatial hemineglect is not only a disorder of spatial attention but may also reflect a disorder of higher cortical vestibular function and (2) whether a vestibular tone imbalance due to an acute peripheral dysfunction can also cause symptoms of neglect or extinction. Therefore, patients with an acute unilateral peripheral vestibular failure (VF) were tested for symptoms of hemineglect. Methods Twenty-eight patients with acute VF were assessed for signs of vestibular deficits and spatial neglect using clinical measures and various common standardized paper-pencil tests. Neglect severity was evaluated further with the Center of Cancellation method. Pathological neglect test scores were correlated with the degree of vestibular dysfunction determined by the subjective visual vertical and caloric testing. Results Three patients showed isolated pathological scores in one or the other neglect test, either ipsilesionally or contralesionally to the VF. None of the patients fulfilled the diagnostic criteria of spatial hemineglect or extinction. Conclusions A vestibular tone imbalance due to unilateral failure of the vestibular endorgan does not cause spatial hemineglect, but evidence indicates it causes mild attentional deficits in both visual hemifields. PMID:26247469

  12. Effect of meprobamate on the vestibulosensory and vestibular somatic reaction

    NASA Technical Reports Server (NTRS)

    Khinchikashvili, N. V.

    1980-01-01

    The influence of meprobamate on the vestibular illusion of counter-rotation, movement coordination and vertical writing was investigated by a double blind trial method and placebo. The results confirm the possibility of the meprobamate application for prophylaxis and correction of vestibular disturbances.

  13. Vestibular receptors contribute to cortical auditory evoked potentials?

    PubMed Central

    Todd, Neil P.M.; Paillard, Aurore C.; Kluk, Karolina; Whittle, Elizabeth; Colebatch, James G.

    2014-01-01

    Acoustic sensitivity of the vestibular apparatus is well-established, but the contribution of vestibular receptors to the late auditory evoked potentials of cortical origin is unknown. Evoked potentials from 500 Hz tone pips were recorded using 70 channel EEG at several intensities below and above the vestibular acoustic threshold, as determined by vestibular evoked myogenic potentials (VEMPs). In healthy subjects both auditory mid- and long-latency auditory evoked potentials (AEPs), consisting of Na, Pa, N1 and P2 waves, were observed in the sub-threshold conditions. However, in passing through the vestibular threshold, systematic changes were observed in the morphology of the potentials and in the intensity dependence of their amplitude and latency. These changes were absent in a patient without functioning vestibular receptors. In particular, for the healthy subjects there was a fronto-central negativity, which appeared at about 42 ms, referred to as an N42, prior to the AEP N1. Source analysis of both the N42 and N1 indicated involvement of cingulate cortex, as well as bilateral superior temporal cortex. Our findings are best explained by vestibular receptors contributing to what were hitherto considered as purely auditory evoked potentials and in addition tentatively identify a new component that appears to be primarily of vestibular origin. PMID:24321822

  14. Clinical Manifestation and Prognosis of Vestibular Migraine According to the Vestibular Function Test Results

    PubMed Central

    Lee, Jae-Wook; Jung, Jae Yun; Chung, You Sun

    2013-01-01

    Background and Objectives According to previous reports, patients with vestibular migraine (VM) display variable results from vestibular function tests (VFT): central, peripheral, or normal. The aim of this study was to classify the VM patients into the three groups according to interictal VFT findings (central, peripheral or normal) and to clarify the relationship between VFT results and the clinical manifestations and prognosis in each group. Subjects and Methods We reviewed the medical records of 81 patients diagnosed as VM using the criteria of Neuhauser, et al. between December 2004 and June 2009. Patients were divided into three groups according to the results of VFT. We compared the clinical manifestations and prognosis between groups. Characteristics including dizziness, the nature of headache, associated otologic symptoms, hearing threshold, duration of illness, and recovery time were analyzed. Results The number of patients with central, peripheral vestibular dysfunction and normal finding in VFT were 15, 28, and 38 respectively. There were no significant differences in the nature of headache, associated otologic symptoms, hearing threshold, duration of illness, and recovery time. A small difference was observed in the mean age and characteristics of dizziness, but these were not significant. Conclusions In patients with VM, classification according to the type of vestibular dysfunction was not helpful in the prediction of prognosis and clinical manifestations. PMID:24653898

  15. An electronic prosthesis mimicking the dynamic vestibular function.

    PubMed

    Shkel, Andrei M; Zeng, Fan-Gang

    2006-01-01

    This paper presents a functional architecture, system level design, and electronic evaluation of a unilateral vestibular prosthesis. The sensing unit of the prosthesis is a custom-designed one-axis micro-electromechanical system (MEMS) gyroscope. Similar to the natural semicircular canal, the MEMS gyroscope senses angular motion of the head and generates voltages proportional to the corresponding angular acceleration. The voltage is then converted into electric current pulses according to the physiological data relating angular acceleration to the spike count in the vestibular nerve. The current pulses can be delivered to stimulate the corresponding vestibular nerve branch. Electronic properties of the vestibular prosthesis prototype have been systematically evaluated and found to meet the design specifications. A unique feature of the present vestibular implant prototype is the scalability: the sensing unit, pulse generator, and the current source can be potentially implemented on a single chip using integrated MEMS technology. PMID:16439834

  16. Dysconnectivity Within the Default Mode in First-Episode Schizophrenia: A Stochastic Dynamic Causal Modeling Study With Functional Magnetic Resonance Imaging

    PubMed Central

    Bastos-Leite, António J.; Ridgway, Gerard R.; Silveira, Celeste; Norton, Andreia; Reis, Salomé; Friston, Karl J.

    2015-01-01

    We report the first stochastic dynamic causal modeling (sDCM) study of effective connectivity within the default mode network (DMN) in schizophrenia. Thirty-three patients (9 women, mean age = 25.0 years, SD = 5) with a first episode of psychosis and diagnosis of schizophrenia—according to the Diagnostic and Statistic Manual of Mental Disorders, 4th edition, revised criteria—were studied. Fifteen healthy control subjects (4 women, mean age = 24.6 years, SD = 4) were included for comparison. All subjects underwent resting state functional magnetic resonance imaging (fMRI) interspersed with 2 periods of continuous picture viewing. The anterior frontal (AF), posterior cingulate (PC), and the left and right parietal nodes of the DMN were localized in an unbiased fashion using data from 16 independent healthy volunteers (using an identical fMRI protocol). We used sDCM to estimate directed connections between and within nodes of the DMN, which were subsequently compared with t tests at the between subject level. The excitatory effect of the PC node on the AF node and the inhibitory self-connection of the AF node were significantly weaker in patients (mean values = 0.013 and ?0.048 Hz, SD = 0.09 and 0.05, respectively) relative to healthy subjects (mean values = 0.084 and ?0.088 Hz, SD = 0.15 and 0.77, respectively; P < .05). In summary, sDCM revealed reduced effective connectivity to the AF node of the DMN—reflecting a reduced postsynaptic efficacy of prefrontal afferents—in patients with first-episode schizophrenia. PMID:24939881

  17. The role of the vestibular system in manual target localization

    NASA Technical Reports Server (NTRS)

    Barry, Susan R.; Mueller, S. Alyssa

    1995-01-01

    Astronauts experience perceptual and sensory-motor disturbances during spaceflight and immediately after return to the 1-g environment of Earth. During spaceflight, sensory information from the eyes, limbs and vestibular organs is reinterpreted by the central nervous system so that astronauts can produce appropriate body movements in microgravity. Alterations in sensory-motor function may affect eye-head-hand coordination and, thus, the crewmember's ability to manually locate objects in extrapersonal space. Previous reports have demonstrated that crewmembers have difficulty in estimating joint and limb position and in pointing to memorized target positions on orbit and immediately postflight. One set of internal cues that may assist in the manual localization of objects is information from the vestibular system. This system contributes to our sense of the body's position in space by providing information on head position and movement and the orientation of the body with respect to gravity. Research on the vestibular system has concentrated on its role in oculo-motor control. Little is known about the role that vestibular information plays in manual motor control, such as reaching and pointing movements. Since central interpretation of vestibular information is altered in microgravity, it is important to determine its role in this process. This summer, we determined the importance of vestibular information in a subject's ability to point accurately toward a target in extrapersonal space. Subjects were passively rotated across the earth-vertical axis and then asked to point back to a previously-seen target. In the first paradigm, the subjects used both visual and vestibular cues for the pointing response, while, in the second paradigm, subjects used only vestibular information. Subjects were able to point with 85 percent accuracy to a target using vestibular information alone. We infer from this result that vestibular input plays a role in the spatial programming of manual responses.

  18. Experiment M-131 - Human vestibular function.

    NASA Technical Reports Server (NTRS)

    Miller, E. F., II; Graybiel, A.

    1973-01-01

    The purpose of the M-131 experiment is to measure responses in astronauts throughout orbital flight that reflect vestibular function and compare them with measurements made before and after flight. Three subtasks require measurement of (1) susceptibility to motion sickness, (2) thresholds of response to stimulation of the semicircular canals, and (3) space perception, viz, visual and nonvisual localization, using external spacecraft and internal morphological frames of reference. Four astronauts will be available for all measurements in Skylab 2 and 3 and two additional astronauts for only the 'static' measurements during the flights.

  19. Human Vestibular Function - Skylab Experiment M131

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This set of photographs details Skylab's Human Vestibular Function experiment (M131). This experiment was a set of medical studies designed to determine the effect of long-duration space missions on astronauts' coordination abilities. This experiment tested the astronauts susceptibility to motion sickness in the Skylab environment, acquired data fundamental to an understanding of the functions of human gravity reception under prolonged absence of gravity, and tested for changes in the sensitivity of the semicircular canals. Data from this experiment was collected before, during, and after flight. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  20. Current and Future Management of Bilateral Loss of Vestibular Sensation – An update on the Johns Hopkins Multichannel Vestibular Prosthesis Project

    PubMed Central

    Della Santina, Charles C.; Migliaccio, Americo A.; Hayden, Russell; Melvin, Thuy-Anh; Fridman, Gene Y.; Chiang, Bryce; Davidovics, Natan S.; Dai, Chenkai; Carey, John P.; Minor, Lloyd B.; Anderson, Iee-Ching; Park, HongJu; Lyford-Pike, Sofia; Tang, Shan

    2012-01-01

    Bilateral loss of vestibular sensation can disable individuals whose vestibular hair cells are injured by ototoxic medications, infection, Ménière’s disease or other insults to the labyrinth including surgical trauma during cochlear implantation. Without input to vestibulo-ocular and vestibulo-spinal reflexes that normally stabilize the eyes and body, affected patients suffer blurred vision during head movement, postural instability, and chronic disequilibrium. While individuals with some residual sensation often compensate for their loss through rehabilitation exercises, those who fail to do so are left with no adequate treatment options. An implantable neuroelectronic vestibular prosthesis that emulates the normal labyrinth by sensing head movement and modulating activity on appropriate branches of the vestibular nerve could significantly improve quality of life for these otherwise chronically dizzy patients. This brief review describes the impact and current management of bilateral loss of vestibular sensation, animal studies supporting the feasibility of prosthetic vestibular stimulation, and a vestibular prosthesis designed to restore sensation of head rotation in all directions. Similar to a cochlear implant in concept and size, the Johns Hopkins Multichannel Vestibular Prosthesis (MVP) includes miniature gyroscopes to sense head rotation, a microcontroller to process inputs and control stimulus timing, and current sources switched between pairs of electrodes implanted within the vestibular labyrinth. In rodents and rhesus monkeys rendered bilaterally vestibular-deficient via treatment with gentamicin and/or plugging of semicircular canals, the MVP partially restores the vestibulo-ocular reflex for head rotations about any axis of rotation in 3-dimensional space. Our efforts now focus on addressing issues prerequisite to human implantation, including refinement of electrode designs and surgical technique to enhance stimulus selectivity and preserve cochlear function, optimization of stimulus protocols, and reduction of device size and power consumption. PMID:21756683

  1. Altered vestibular function in fetal and newborn rats gestated in space

    NASA Technical Reports Server (NTRS)

    Ronca, A. E.; Alberts, J. R.

    1997-01-01

    Researchers evaluated vestibular development and function in rat pups flown during gestation on the NASA-NIH R1 and R2 missions. Fetal and postnatal vestibular function were examined. Altered vestibular-mediated responses in the experimental fetal pups are attributed to either direct effect of gravity on the vestibular system or indirect effects of microgravity transduced through the mother. The postnatal tests confirmed the hypothesis that the vestibular system continually adapts and responds to tonic stimulation.

  2. Extracranial non-vestibular head and neck schwannomas

    PubMed Central

    Wang, Baoxin; Yuan, Junjie; Chen, Xinwei; Xu, Hongming; Zhou, Yuan; Dong, Pin

    2015-01-01

    Objectives: To retrospectively describe our 10-year experience with extracranial non-vestibular head and neck schwannomas by presenting their clinical features, diagnostic methods, surgical decisions, and treatment outcomes. Methods: This is a retrospective study conducted at the Department of Otolaryngology, Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Shanghai First People’s Hospital, Shanghai, China. The medical records of 46 patients diagnosed with schwannoma in the extracranial head and neck region as confirmed on paraffin-embedded sections from January 2003 to December 2012 were reviewed. Results: All tumors were benign, and 52% presented as asymptomatic palpable solitary masses. Compressive symptoms, which can represent meaningful indicators of the nerve of origin were commonly noted. The most common nerve of origin was the brachial plexus (n=13, 28.3%). Conclusion: While postoperative histopathologic examination is still the gold standard, fine needle aspiration cytology, CT scan, and magnetic resonance imaging may be useful in the diagnosis of schwannomas. As schwannomas are radioresistant, and as, despite their benign nature, can cause severe secondary symptoms, the best treatment of choice is complete excision with preservation of functions. PMID:26593174

  3. In the presence of others: Self-location, balance control and vestibular processing.

    PubMed

    Lopez, C; Falconer, C J; Deroualle, D; Mast, F W

    2015-11-01

    The degree to which others in our environment influence sensorimotor processing has been a particular focus of cognitive neuroscience for the past two decades. This process of self-other resonance, or shared body representation, has only recently been extended to more global bodily processes such as self-location, self-motion perception, balance and perspective taking. In this review, we outline these previously overlooked areas of research to bridge the distinct field of social neuroscience with global self-perception, vestibular processing and postural control. Firstly, we outline research showing that the presence and movement of others can modulate two fundamental experiences of the self: self-location (the experience of where the self is located in space) and self-motion perception (the experience that oneself has moved or has been moved in space). Secondly, we outline recent research that has shown perturbations in balance control as a result of instability in others in our environment. Conversely to this, we also highlight studies in virtual reality demonstrating the potential benefits of the presence of others in our environment for those undergoing vestibular rehabilitation. Thirdly, we outline studies of first- and third-person perspective taking, which is the ability to have or take a visuo-spatial perspective within and out-with the confines of our own body. These studies demonstrate a contamination of perspective taking processes (i.e. automatic, implicit, third-person perspective taking) in the presence of others. This collection of research highlights the importance of social cues in the more global processing of the self and its accompanying sensory inputs, particularly vestibular signals. Future research will need to better determine the mechanisms of self-other resonance within these processes, including the role of individual differences in the susceptibility to the influence of another. PMID:26602955

  4. Biomimetic smart sensors for autonomous robotic behavior II: vestibular processing

    NASA Astrophysics Data System (ADS)

    Xue, Shuwan; Deligeorges, Socrates; Soloway, Aaron; Lichtenstein, Lee; Gore, Tyler; Hubbard, Allyn

    2009-05-01

    Limited autonomous behaviors are fast becoming a critical capability in the field of robotics as robotic applications are used in more complicated and interactive environments. As additional sensory capabilities are added to robotic platforms, sensor fusion to enhance and facilitate autonomous behavior becomes increasingly important. Using biology as a model, the equivalent of a vestibular system needs to be created in order to orient the system within its environment and allow multi-modal sensor fusion. In mammals, the vestibular system plays a central role in physiological homeostasis and sensory information integration (Fuller et al, Neuroscience 129 (2004) 461-471). At the level of the Superior Colliculus in the brain, there is multimodal sensory integration across visual, auditory, somatosensory, and vestibular inputs (Wallace et al, J Neurophysiol 80 (1998) 1006-1010), with the vestibular component contributing a strong reference frame gating input. Using a simple model for the deep layers of the Superior Colliculus, an off-the-shelf 3-axis solid state gyroscope and accelerometer was used as the equivalent representation of the vestibular system. The acceleration and rotational measurements are used to determine the relationship between a local reference frame of a robotic platform (an iRobot Packbot®) and the inertial reference frame (the outside world), with the simulated vestibular input tightly coupled with the acoustic and optical inputs. Field testing of the robotic platform using acoustics to cue optical sensors coupled through a biomimetic vestibular model for "slew to cue" gunfire detection have shown great promise.

  5. Vestibular Rehabilitation Therapy: Review of Indications, Mechanisms, and Key Exercises

    PubMed Central

    Song, Hyun Seok; Kim, Ji Soo

    2011-01-01

    Vestibular rehabilitation therapy (VRT) is an exercise-based treatment program designed to promote vestibular adaptation and substitution. The goals of VRT are 1) to enhance gaze stability, 2) to enhance postural stability, 3) to improve vertigo, and 4) to improve activities of daily living. VRT facilitates vestibular recovery mechanisms: vestibular adaptation, substitution by the other eye-movement systems, substitution by vision, somatosensory cues, other postural strategies, and habituation. The key exercises for VRT are head-eye movements with various body postures and activities, and maintaining balance with a reduced support base with various orientations of the head and trunk, while performing various upper-extremity tasks, repeating the movements provoking vertigo, and exposing patients gradually to various sensory and motor environments. VRT is indicated for any stable but poorly compensated vestibular lesion, regardless of the patient's age, the cause, and symptom duration and intensity. Vestibular suppressants, visual and somatosensory deprivation, immobilization, old age, concurrent central lesions, and long recovery from symptoms, but there is no difference in the final outcome. As long as exercises are performed several times every day, even brief periods of exercise are sufficient to facilitate vestibular recovery. Here the authors review the mechanisms and the key exercises for each of the VRT goals. PMID:22259614

  6. Adaptive plasticity in vestibular influences on cardiovascular control

    NASA Technical Reports Server (NTRS)

    Yates, B. J.; Holmes, M. J.; Jian, B. J.

    2000-01-01

    Data collected in both human subjects and animal models indicate that the vestibular system influences the control of blood pressure. In animals, peripheral vestibular lesions diminish the capacity to rapidly and accurately make cardiovascular adjustments to changes in posture. Thus, one role of vestibulo-cardiovascular influences is to elicit changes in blood distribution in the body so that stable blood pressure is maintained during movement. However, deficits in correcting blood pressure following vestibular lesions diminish over time, and are less severe when non-labyrinthine sensory cues regarding body position in space are provided. These observations show that pathways that mediate vestibulo-sympathetic reflexes can be subject to plastic changes. This review considers the adaptive plasticity in cardiovascular responses elicited by the central vestibular system. Recent data indicate that the posterior cerebellar vermis may play an important role in adaptation of these responses, such that ablation of the posterior vermis impairs recovery of orthostatic tolerance following subsequent vestibular lesions. Furthermore, recent experiments suggest that non-labyrinthine inputs to the central vestibular system may be important in controlling blood pressure during movement, particularly following vestibular dysfunction. A number of sensory inputs appear to be integrated to produce cardiovascular adjustments during changes in posture. Although loss of any one of these inputs does not induce lability in blood pressure, it is likely that maximal blood pressure stability is achieved by the integration of a variety of sensory cues signaling body position in space.

  7. Galvanic vestibular stimulation speeds visual memory recall.

    PubMed

    Wilkinson, David; Nicholls, Sophie; Pattenden, Charlotte; Kilduff, Patrick; Milberg, William

    2008-08-01

    The experiments of Alessandro Volta were amongst the first to indicate that visuo-spatial function can be altered by stimulating the vestibular nerves with galvanic current. Until recently, the beneficial effects of the procedure were masked by the high levels of electrical current applied, which induced nystagmus-related gaze deviation and spatial disorientation. However, several neuropsychological studies have shown that much weaker, imperceptible currents that do not elicit unpleasant side-effects can help overcome visual loss after stroke. Here, we show that visual processing in neurologically healthy individuals can also benefit from galvanic vestibular stimulation. Participants first learnt the names of eight unfamiliar faces and then after a short delay, answered questions from memory about how pairs of these faces differed. Mean correct reaction times were significantly shorter when sub-sensory, noise-enhanced anodal stimulation was administered to the left mastoid, compared to when no stimulation was administered at all. This advantage occurred with no loss in response accuracy, and raises the possibility that the procedure may constitute a more general form of cognitive enhancement. PMID:18584162

  8. Progressive vestibular mutation leads to elevated anxiety.

    PubMed

    Shefer, Shahar; Gordon, Carlos R; Avraham, Karen B; Mintz, Matti

    2010-03-01

    Anxiety disorders are among the most common mental disorders, and are comorbid with balance disorders in a significant proportion of these individuals. Presently, it is unclear whether anxiety and balance disorders are causally related, and what direction this causality may take. We argue that balance disorders may predispose an individual to anxiety and that demonstration of such causality may be informative to the development of preferred treatment for such individuals. To demonstrate that balance disorders may predispose to anxiety, we studied headbanger (Hdb) mutant mice in which the balance disorder is due to progressive vestibular impairment and wildtype (Wt) mice. Balance was assessed by swim and tail-hang tests that demonstrated clear behavioral balance deficits in the Hdb mice. Anxiety was assessed by open-field and elevated plus-maze tests, which confirmed elevated anxiety in the Hdb mice. These findings demonstrate that congenital vestibular genotype predisposes the animal to elevated levels of anxiety in space-related tests. Similar causality in clinics may redirect treatment strategies in afflicted patients. PMID:20043895

  9. The Development of the Vestibular Apparatus Under Conditions of Weightlessness

    NASA Technical Reports Server (NTRS)

    Vinnikov, Y. A.; Gazenko, O. G.; Lychakov, D. V.; Palmbakh, L. R.

    1984-01-01

    A series of experiments has been carried out on the effect of space flight conditions on morphogenesis and the structure of the vestibular apparatus in amphibian and fish larvae. Larval development proceeded in weightlessness without serious morphological defects. The vestibular apparatus developed; its organization in the experimental animals did not differ qualitatively from that in the controls. The specific external stimulus (gravitation) appears not to be a necessary condition for the development of a gravitation receptor in ontogenesis although the appearance of the vestibular apparatus in phylogenesis was apparently related to this stimulus.

  10. Balancing awareness: Vestibular signals modulate visual consciousness in the absence of awareness.

    PubMed

    Salomon, Roy; Kaliuzhna, Mariia; Herbelin, Bruno; Blanke, Olaf

    2015-11-01

    The processing of visual and vestibular information is crucial for perceiving self-motion. Visual cues, such as optic flow, have been shown to induce and alter vestibular percepts, yet the role of vestibular information in shaping visual awareness remains unclear. Here we investigated if vestibular signals influence the access to awareness of invisible visual signals. Using natural vestibular stimulation (passive yaw rotations) on a vestibular self-motion platform, and optic flow masked through continuous flash suppression (CFS) we tested if congruent visual-vestibular information would break interocular suppression more rapidly than incongruent information. We found that when the unseen optic flow was congruent with the vestibular signals perceptual suppression as quantified with the CFS paradigm was broken more rapidly than when it was incongruent. We argue that vestibular signals impact the formation of visual awareness through enhanced access to awareness for congruent multisensory stimulation. PMID:26204565

  11. INTRODUCTION Vestibular neurophysiology: a collection of papers in honor

    E-print Network

    ear are detected and reflected in the firing of eighth cranial nerve afferents; how the signals) The vestibular nerve of the chinchilla. II. Relation between afferent response properties and peripheral

  12. A vestibular prosthesis with highly-isolated parallel multichannel stimulation.

    PubMed

    Jiang, Dai; Cirmirakis, Dominik; Demosthenous, Andreas

    2015-02-01

    This paper presents an implantable vestibular stimulation system capable of providing high flexibility independent parallel stimulation to the semicircular canals in the inner ear for restoring three-dimensional sensation of head movements. To minimize channel interaction during parallel stimulation, the system is implemented with a power isolation method for crosstalk reduction. Experimental results demonstrate that, with this method, electrodes for different stimulation channels located in close proximity ( mm) can deliver current pulses simultaneously with minimum inter-channel crosstalk. The design features a memory-based scheme that manages stimulation to the three canals in parallel. A vestibular evoked potential (VEP) recording unit is included for closed-loop adaptive stimulation control. The main components of the prototype vestibular prosthesis are three ASICs, all implemented in a 0.6- ?m high-voltage CMOS technology. The measured performance was verified using vestibular electrodes in vitro. PMID:25073175

  13. Surgical access to separate branches of the cat vestibular nerve

    NASA Technical Reports Server (NTRS)

    Radkevich, L. A.; Ayzikov, G. S.

    1981-01-01

    A posteroventral approach for access to separate branches of the cat vestibular nerve is presented which permits simultaneous surgical access to the ampullary and otolithic nerves. Surgical procedures are discussed.

  14. Certain aspects of the vestibular problem in space medicine

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Vestibulovegetative disorders on manned space flights are discussed. A study relating to the vestibular stimuli in respiration, diaphoresis cardiac rhythm and a broad complex of hemodynamic indices was conducted. Certain tests for astronaut candidates are discussed.

  15. Modeling the electrical stimulation of peripheral vestibular nerves

    E-print Network

    Parikh, Ketul M

    2006-01-01

    The research conducted for this thesis investigated the theoretical placement of electrodes for a proposed implantable vestibular prosthesis to aid patients suffering from balance related disorders. The most likely sites ...

  16. Timing of neuron development in the rodent vestibular system

    NASA Technical Reports Server (NTRS)

    Keefe, J. R.

    1982-01-01

    The timing of cell generation (onset and duration) in the developing rat vestibular and proprioceptive systems is investigated. The results clearly indicate a defined time-span for generation of all neurons in the central nervous system nuclei studied. This cytogenetic period in both vestibular and proprioceptive sensory nuclei is determined to occur during and immediately after placentation, a potentially critical period for spaceflight exposure due to alterations in maternal physiology.

  17. Vestibular ataxia and its measurement in man

    NASA Technical Reports Server (NTRS)

    Fregly, A. R.

    1974-01-01

    Methods involved in and results obtained with a new comprehensive ataxia test battery are described, and definitions of spontaneous and induced vestibular ataxia in man are given in terms of these findings. In addition, the topic of alcohol-induced ataxia in relation to labyrinth function is investigated. Items in the test battery comprise a sharpened Romberg test, in which the subject stands on the floor with eyes closed and arms folded against his chest, feet heel-to-toe, for 60 seconds; an eyes-open walking test; an eyes-open standing test; an eyes-closed standing test; an eyes-closed on-leg standing test; an eyes-closed walk a line test; an eyes-closed heel-to-toe walking test; and supplementary ataxia tests such as the classical Romberg test.

  18. Effect of gravity on vestibular neural development

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Tomko, D. L.

    1998-01-01

    The timing, molecular basis, and morphophysiological and behavioral consequences of the interaction between external environment and the internal genetic pool that shapes the nervous system over a lifetime remain important questions in basic neuroscientific research. Space station offers the opportunity to study this interaction over several life cycles in a variety of organisms. This short review considers past work in altered gravity, particularly on the vestibular system, as the basis for proposing future research on space station, and discusses the equipment necessary to achieve goals. It is stressed that, in keeping with the international investment being made in this research endeavor, both the questions asked and the technologies to be developed should be bold. Advantage must be taken of this unique research environment to expand the frontiers of neuroscience. Copyright 1998 Published by Elsevier Science B.V.

  19. The European vestibular experiments in spacelab-1

    NASA Astrophysics Data System (ADS)

    Kass, J.; von Baumgarten, R.; Vogel, H.; Wetzig, J.; Benson, A.; Berthoz, A.; Vieville, Th.; Brandt, Th.; Probst, Th.; Brand, U.; Bruzek, W.; Dichgans, J.; Scherer, H.

    A series of experiments /1/ were performed in the Spacelab-1 mission on November/December, 1983, pre-, in-, and postflight. These experiments covered various aspects of the functions of the vestibular system, the inflight tests comprising threshold measurements for linear movements in three orthogonal axes, optokinetic stimulation, vestibulo-ocular reflexes under linear and angular accelerations, caloric stimulation with and without linear accelerations; pre- and postflight tests repeated the inflight protocol with the addition of subjective vertical and eye counter-rotation measurements using a tilt table. One of the most surprising and significant results was the caloric test: strong caloric nystagmus on the two subjects tested was recorded inflight; this was contrary to what was expected from Barany's convection hypothesis for caloric nystagmus.

  20. Caloric vestibular stimulation in aphasic syndrome

    PubMed Central

    Wilkinson, David; Morris, Rachael; Milberg, William; Sakel, Mohamed

    2013-01-01

    Caloric vestibular stimulation (CVS) is commonly used to diagnose brainstem disorder but its therapeutic application is much less established. Based on the finding that CVS increases blood flow to brain structures associated with language and communication, we assessed whether the procedure has potential to relieve symptoms of post-stroke aphasia. Three participants, each presenting with chronic, unilateral lesions to the left hemisphere, were administered daily CVS for four consecutive weeks. Relative to their pre-treatment baseline scores, two of the three participants showed significant improvement on both picture and responsive naming at immediate and 1-week follow-up. One of these participants also showed improved sentence repetition, and another showed improved auditory word discrimination. No adverse reactions were reported. These data provide the first, albeit tentative, evidence that CVS may relieve expressive and receptive symptoms of aphasia. A larger, sham-controlled study is now needed to further assess efficacy. PMID:24391559

  1. Neuroimaging to detect cortical projection of vestibular response to caloric stimulation in young and older adults using functional near-infrared spectroscopy (fNIRS).

    PubMed

    Karim, H T; Fuhrman, S I; Furman, J M; Huppert, T J

    2013-08-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive and portable neuroimaging technique. The method uses non-ionizing laser light in the range of red to near-infrared to detect changes in cerebral blood oxygenation. In this study, we used fNIRS to investigate cortical hemodynamic changes in the temporo-parietal and frontal regions during caloric vestibular stimulation. Caloric stimulation has previously been investigated using functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), which serves as a validation of the fNIRS imaging modality toward the measurement of vestibular related brain regions. To date, only a single study has used fNIRS during caloric irrigations, which observed blood volume changes in the temporal-parietal area in healthy younger subjects. In this current study, fNIRS was used to measure cortical vestibular activation in 10 right-handed younger subjects (5 male and 5 female, age 25+/-6 years) and 10 right-handed older subjects (6 male and 4 female, age 74+/-5 years). We investigated both warm (44 °C) and cool (30 °C) unilateral caloric vestibular stimulation. Consistent with previous reports, we found that warm (44 °C) caloric irrigation caused a bilateral activation. In addition, we found that cool (30 °C) caloric irrigation caused contralateral activation of the temporo-parietal area. This study is the first to investigate age effects of the caloric stimulation on brain activity. We found that the older subjects had stronger bilateral effects than the younger subjects. Our results confirm previous fMRI and PET studies that showed cortical activation during caloric vestibular irrigation is dependent on side of irrigation, and temperature of irrigation. Furthermore, our results demonstrate that fNIRS is a viable technique in measuring cortical effects during vestibular tasks. PMID:23523804

  2. Vestibular adaptation to space in monkeys

    NASA Technical Reports Server (NTRS)

    Dai, M.; Raphan, T.; Kozlovskaya, I.; Cohen, B.

    1998-01-01

    Otolith-induced eye movements of rhesus monkeys were studied before and after the 1989 COSMOS 2044 and the 1992 to 1993 COSMOS 2229 flights. Two animals flew in each mission for approximately 2 weeks. After flight, spatial orientation of the angular vestibulo-ocular reflex was altered. In one animal the time constant of postrotatory nystagmus, which had been shortened by head tilts with regard to gravity before flight, was unaffected by the same head tilts after flight. In another animal, eye velocity, which tended to align with a gravitational axis before flight, moved toward a body axis after flight. This shift of orientation disappeared by 7 days after landing. After flight, the magnitude of compensatory ocular counter-rolling was reduced by about 70% in both dynamic and static tilts. Modulation in vergence in response to naso-occipital linear acceleration during off-vertical axis rotation was reduced by more than 50%. These changes persisted for 11 days after recovery. An up and down asymmetry of vertical nystagmus was diminished for 7 days. Gains of the semicircular canal-induced horizontal and vertical angular vestibulo-ocular reflexes were unaffected in both flights, but the gain of the roll angular vestibulo-ocular reflex was decreased. These data indicate that there are short- and long-term changes in otolith-induced eye movements after adaptation to microgravity. These experiments also demonstrate the unique value of the monkey as a model for studying effects of vestibular adaptation in space. Eye movements can be measured in three dimensions in response to controlled vestibular and visual stimulation, and the results are directly applicable to human beings. Studies in monkeys to determine how otolith afferent input and central processing is altered by adaptation to microgravity should be an essential component of future space-related research.

  3. Patterning of sympathetic nerve activity in response to vestibular stimulation

    NASA Technical Reports Server (NTRS)

    Kerman, I. A.; McAllen, R. M.; Yates, B. J.

    2000-01-01

    Growing evidence suggests a role for the vestibular system in regulation of autonomic outflow during postural adjustments. In the present paper we review evidence for the patterning of sympathetic nerve activity elicited by vestibular stimulation. In response to electrical activation of vestibular afferents, firing of sympathetic nerves located throughout the body is altered. However, activity of the renal nerve is most sensitive to vestibular inputs. In contrast, high-intensity simultaneous activation of cutaneous and muscle inputs elicits equivalent changes in firing of the renal, superior mesenteric and lumbar colonic nerves. Responses of muscle vasoconstrictor (MVC) efferents to vestibular stimulation are either inhibitory (Type I) or are comprised of a combination of excitation and inhibition (Type II). Interestingly, single MVC units located in the hindlimb exhibited predominantly Type I responses while those located in the forelimb and face exhibited Type II responses. Furthermore, brachial and femoral arterial blood flows were dissociated in response to vestibular stimulation, such that brachial vascular resistance increased while femoral resistance decreased. These studies demonstrate that vestibulosympathetic reflexes are patterned according to both the anatomical location and innervation target of a particular sympathetic nerve, and can lead to distinct changes in local blood flow.

  4. Immunohistochemical profile of cytokines and growth factors expressed in vestibular schwannoma and in normal vestibular nerve tissue.

    PubMed

    Taurone, Samanta; Bianchi, Enrica; Attanasio, Giuseppe; Di Gioia, Cira; Ierinó, Rocco; Carubbi, Cecilia; Galli, Daniela; Pastore, Francesco Saverio; Giangaspero, Felice; Filipo, Roberto; Zanza, Christian; Artico, Marco

    2015-07-01

    Vestibular schwannomas, also known as acoustic neuromas, are benign tumors, which originate from myelin-forming Schwann cells. They develop in the vestibular branch of the eighth cranial nerve in the internal auditory canal or cerebellopontine angle. The clinical progression of the condition involves slow and progressive growth, eventually resulting in brainstem compression. The objective of the present study was to investigate the expression level and the localization of the pro-inflammatory cytokines, transforming growth factor-?1 (TGF-?1) interleukin (IL)-1?, IL-6 and tumor necrosis factor-? (TNF-?), as well as the adhesion molecules, intracellular adhesion molecule-1 and vascular endothelial growth factor (VEGF), in order to determine whether these factors are involved in the transformation and development of human vestibular schwannoma. The present study investigated whether changes in inflammation are involved in tumor growth and if so, the mechanisms underlying this process. The results of the current study demonstrated that pro-inflammatory cytokines, including TGF-?1, IL-1? and IL-6 exhibited increased expression in human vestibular schwannoma tissue compared with normal vestibular nerve samples. TNF-? was weakly expressed in Schwann cells, confirming that a lower level of this cytokine is involved in the proliferation of Schwann cells. Neoplastic Schwann cells produce pro-inflammatory cytokines that may act in an autocrine manner, stimulating cellular proliferation. In addition, the increased expression of VEGF in vestibular schwannoma compared with that in normal vestibular nerve tissue, suggests that this factor may induce neoplastic growth via the promotion of angiogenesis. The present findings suggest that inflammation may promote angiogenesis and consequently contribute to tumor progression. In conclusion, the results of the present study indicated that VEGF and pro-inflammatory cytokines may be potential therapeutic targets in vestibular schwannoma. Further studies are necessary to confirm the involvement of these factors in the growth of neoplasms and to develop inhibitors of pro-inflammatory cytokines as a potential treatment option in the future. PMID:25738867

  5. Exact solutions to chaotic and stochastic systems

    E-print Network

    J. A. Gonzalez; L. I. Reyes; L. E. Guerrero

    2001-02-12

    We investigate functions that are exact solutions to chaotic dynamical systems. A generalization of these functions can produce truly random numbers. For the first time, we present solutions to random maps. This allows us to check, analytically, some recent results about the complexity of random dynamical systems. We confirm the result that a negative Lyapunov exponent does not imply predictability in random systems. We test the effectiveness of forecasting methods in distinguishing between chaotic and random time-series. Using the explicit random functions, we can give explicit analytical formulas for the output signal in some systems with stochastic resonance. We study the influence of chaos on the stochastic resonance. We show, theoretically, the existence of a new type of solitonic stochastic resonance, where the shape of the kink is crucial. Using our models we can predict specific patterns in the output signal of stochastic resonance systems.

  6. Pretreatment Growth Rate Predicts Radiation Response in Vestibular Schwannomas

    SciTech Connect

    Niu, Nina N.; Niemierko, Andrzej; Larvie, Mykol; Curtin, Hugh; Loeffler, Jay S.; McKenna, Michael J.; Shih, Helen A.

    2014-05-01

    Purpose: Vestibular schwannomas (VS) are often followed without initial therapeutic intervention because many tumors do not grow and radiation therapy is associated with potential adverse effects. In an effort to determine whether maximizing initial surveillance predicts for later treatment response, the predictive value of preirradiation growth rate of VS on response to radiation therapy was assessed. Methods and Materials: Sixty-four patients with 65 VS were treated with single-fraction stereotactic radiation surgery or fractionated stereotactic radiation therapy. Pre- and postirradiation linear expansion rates were estimated using volumetric measurements on sequential magnetic resonance images (MRIs). In addition, postirradiation tumor volume change was classified as demonstrating shrinkage (ratio of volume on last follow-up MRI to MRI immediately preceding irradiation <80%), stability (ratio 80%-120%), or expansion (ratio >120%). The median pre- and postirradiation follow-up was 20.0 and 27.5 months, respectively. Seven tumors from neurofibromatosis type 2 (NF2) patients were excluded from statistical analyses. Results: In the 58 non-NF2 patients, there was a trend of correlation between pre- and postirradiation volume change rates (slope on linear regression, 0.29; P=.06). Tumors demonstrating postirradiation expansion had a median preirradiation growth rate of 89%/year, and those without postirradiation expansion had a median preirradiation growth rate of 41%/year (P=.02). As the preirradiation growth rate increased, the probability of postirradiation expansion also increased. Overall, 24.1% of tumors were stable, 53.4% experienced shrinkage, and 22.5% experienced expansion. Predictors of no postirradiation tumor expansion included no prior surgery (P=.01) and slower tumor growth rate (P=.02). The control of tumors in NF2 patients was only 43%. Conclusions: Radiation therapy is an effective treatment for VS, but tumors that grow quickly preirradiation may be more likely to increase in size. Clinicians should take into account tumor growth rate when counseling patients about treatment options.

  7. Stochastic games.

    PubMed

    Solan, Eilon; Vieille, Nicolas

    2015-11-10

    In 1953, Lloyd Shapley contributed his paper "Stochastic games" to PNAS. In this paper, he defined the model of stochastic games, which were the first general dynamic model of a game to be defined, and proved that it admits a stationary equilibrium. In this Perspective, we summarize the historical context and the impact of Shapley's contribution. PMID:26556883

  8. From bench to bedside : elucidating vestibular schwannoma pathobiology to devise effective pharmacotherapies

    E-print Network

    Dilwali, Sonam

    2014-01-01

    Vestibular schwannomas (VSs), the most common tumors of the cerebellopontine angle, arise from Schwann cells of the vestibular nerve. VSs can lead to sensorineural hearing loss (SNHL), disequilibrium, facial nerve paralysis, ...

  9. Central projections from singular parts of the vestibular labyrinth in the guinea pig.

    PubMed

    Gstoettner, W; Burian, M; Cartellieri, M

    1992-01-01

    Primary afferent projections from singular parts of the vestibular labyrinth were studied in the guinea pig. The posterior ampullary nerve, the common trunk of the anterior and lateral ampullary nerves, as well as fibers innervating the macula sacculi or the macula utriculi were traced with crystals of horseradish peroxidase (HRP) lyophilisate. Posterior, as well as anterior and lateral ampullary fibers were found to project extensively to the superior vestibular nucleus, but also reached the other main vestibular nuclei. Saccular fibers projected mainly to the lateral parts of the lateral vestibular nucleus and to the adjoining descending and superior vestibular nuclei as well as to group y. Modest projections could be followed to the medial vestibular nucleus. Furthermore, a distinct saccular projection to the cochlear nuclei was evident. Utricular projections reached the four main vestibular nuclei with a denser accumulation of fibers within ventral parts of the lateral, descending and superior vestibular nuclei. PMID:1441990

  10. Fifth Symposium on the Role of the Vestibular Organs in Space Exploration

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Vestibular problems of manned space flight are investigated for weightlessness and reduced gravity conditions with emphasis on space station development. Intensive morphological studies on the vestibular system and its central nervous system connections are included.

  11. Prevalence of Vestibular Disorder in Older People Who Experience Dizziness

    PubMed Central

    Chau, Allan T.; Menant, Jasmine C.; Hübner, Patrick P.; Lord, Stephen R.; Migliaccio, Americo A.

    2015-01-01

    Dizziness and imbalance are clinically poorly defined terms, which affect ~30% of people over 65?years of age. In these people, it is often difficult to define the primary cause of dizziness, as it can stem from cardiovascular, vestibular, psychological, and neuromuscular causes. However, identification of the primary cause is vital in determining the most effective treatment strategy for a patient. Our aim is to accurately identify the prevalence of benign paroxysmal positional vertigo (BPPV), peripheral, and central vestibular hypofunction in people aged over 50?years who had experienced dizziness within the past year. Seventy-six participants aged 51–92 (mean?±?SD?=?69?±?9.5?years) were tested using the head thrust dynamic visual acuity (htDVA) test, dizziness handicap inventory (DHI), as well as sinusoidal and unidirectional rotational chair testing, in order to obtain data for htDVA score, DHI score, sinusoidal (whole-body, 0.1–2?Hz with peak velocity at 30°/s) vestibulo-ocular reflex (VOR) gain and phase, transient (whole-body, acceleration at 150°/s2 to a constant velocity rotation of 50°/s) VOR gain and time constant (TC), optokinetic nystagmus (OKN) gain, and TC (whole-body, constant velocity rotation at 50°/s). We found that BPPV, peripheral and central vestibular hypofunction were present in 38 and 1% of participants, respectively, suggesting a likely vestibular cause of dizziness in these people. Of those with a likely vestibular cause, 63% had BPPV; a figure higher than previously reported in dizziness clinics of ~25%. Our results indicate that htDVA, sinusoidal (particularly 0.5–1?Hz), and transient VOR testing were the most effective at detecting people with BPPV or vestibular hypofunction, whereas DHI and OKN were effective at only detecting non-BPPV vestibular hypofunction.

  12. Vestibular rehabilitation ameliorates chronic dizziness through the SIRT1 axis

    PubMed Central

    Kao, Chung-Lan; Tsai, Kun-Ling; Cheng, Yuan-Yang; Kuo, Chia-Hua; Lee, Shin-Da; Chan, Rai-Chi

    2014-01-01

    Dizziness is a common clinical symptom frequently referred to general neurologists and practitioners. Exercise intervention, in the form of vestibular rehabilitation, is known as an effective clinical management for dizziness. This intervention is reported to have a functional role in correcting dizziness, improving gaze stability, retraining balance and gait, and enhancing physical fitness. Dizziness is known to be highly related to inflammation and oxidative stress. SIRT1 is a major molecule for the regulation of inflammation and mitigation of oxidative stress in chronic diseases such as atherosclerosis and chronic obstructive pulmonary disease. However, the bio-molecular roles of SIRT1 involved in the pathogenesis of dizziness are still largely unclear. In this study, a total of 30 subjects were recruited (15 patients with chronic dizziness, and 15 age/gender matched non-dizzy control subjects). The dizzy subjects group received 18 sessions of 30-min vestibular training. We found that the mRNA and protein expression levels of SIRT1 in the blood samples of chronic dizzy patients were repressed compared with those of healthy controls. After vestibular training, the dizzy patients had significant symptomatic improvements. The SIRT1 expression and its downstream genes (PPAR-? and PGC-1?) were upregulated after vestibular exercises in dizzy subjects. Notably, the catalytic activity of SIRT1, NADPH and antioxidant enzyme activities were also activated in dizzy patients after vestibular training. Furthermore, vestibular exercise training reduced oxidative events and p53 expression in patients with dizziness. This study demonstrated that vestibular exercise training improved dizziness symptoms, and mechanisms for alleviation of chronic dizziness may partly involve the activation of the SIRT1 axis and the repression of redox status. PMID:24624081

  13. Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation.

    PubMed

    Cardin, Velia; Smith, Andrew T

    2010-08-01

    The analysis and representation of visual cues to self-motion (egomotion) is primarily associated with cortical areas MST, VIP, and (recently) cingulate sulcus visual area (CSv). Various other areas, including visual areas V6 and V6A, and vestibular areas parietoinsular vestibular cortex (PIVC), putative area 2v (p2v), and 3aNv, are also potentially suited to processing egomotion (in some cases based on multisensory cues), but it is not known whether they are in fact involved in this process. In a functional magnetic resonance imaging (fMRI) experiment, we presented human participants with 2 types of random dot kinematograms. Both contained coherent motion but one simulated egomotion while the other did not. An area in the parieto-occipital sulcus that may correspond to V6, PIVC, and p2v were all differentially responsive to egomotion-compatible visual stimuli, suggesting that they may be involved in encoding egomotion. More generally, we show that the use of such stimuli provides a simple and reliable fMRI localizer for human PIVC and p2v, which hitherto required galvanic or caloric stimulation to be identified. PMID:20034998

  14. Head Movements Evoked in Alert Rhesus Monkey by Vestibular Prosthesis Stimulation: Implications for

    E-print Network

    Head Movements Evoked in Alert Rhesus Monkey by Vestibular Prosthesis Stimulation: Implications-neck pathways in alert primates remains a matter of debate. Here we used a vestibular prosthesis to 1) quantify Movements Evoked in Alert Rhesus Monkey by Vestibular Prosthesis Stimulation: Implications for Postural

  15. Evaluation of the chemical model of vestibular lesions induced by arsanilate in rats

    SciTech Connect

    Vignaux, G.; Univ Caen, Caen, F-14000 ; Chabbert, C.; Gaboyard-Niay, S.; Travo, C.; Machado, M.L.; Univ Caen, Caen, F-14000 ; Denise, P.; Univ Caen, Caen, F-14000; CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 ; Comoz, F.; Hitier, M.; Landemore, G.; Philoxène, B.; Univ Caen, Caen, F-14000; CHRU Caen, Explorations Fonctionnelles, Caen, F-14000 ; Besnard, S.

    2012-01-01

    Several animal models of vestibular deficits that mimic the human pathology phenotype have previously been developed to correlate the degree of vestibular injury to cognate vestibular deficits in a time-dependent manner. Sodium arsanilate is one of the most commonly used substances for chemical vestibular lesioning, but it is not well described in the literature. In the present study, we used histological and functional approaches to conduct a detailed exploration of the model of vestibular lesions induced by transtympanic injection of sodium arsanilate in rats. The arsanilate-induced damage was restricted to the vestibular sensory organs without affecting the external ear, the oropharynx, or Scarpa's ganglion. This finding strongly supports the absence of diffusion of arsanilate into the external ear or Eustachian tubes, or through the eighth cranial nerve sheath leading to the brainstem. One of the striking observations of the present study is the complete restructuring of the sensory epithelia into a non sensory epithelial monolayer observed at 3 months after arsanilate application. This atrophy resembles the monolayer epithelia observed postmortem in the vestibular epithelia of patients with a history of lesioned vestibular deficits such as labyrinthectomy, antibiotic treatment, vestibular neuritis, or Ménière's disease. In cases of Ménière's disease, aminoglycosides, and platinum-based chemotherapy, vestibular hair cells are destroyed, regardless of the physiopathological process, as reproduced with the arsanilate model of vestibular lesion. These observations, together with those presented in this study of arsanilate vestibular toxicity, suggest that this atrophy process relies on a common mechanism of degeneration of the sensory epithelia.

  16. Abstract. With galvanic vestibular stimulation (GVS), electrical current is delivered transcutaneously to the

    E-print Network

    Collins, James J.

    Abstract. With galvanic vestibular stimulation (GVS), electrical current is delivered, including the vestibular system. With galvanic vestibular stimulation (GVS), electrical current is delivered in dierent directions depending on the polarity of the current. Our objective in this study was to test

  17. [Pharmacotherapy of Vestibular Disorders, Nystagmus and Cerebellar Disorders].

    PubMed

    Feil, K; Böttcher, N; Kremmyda, O; Muth, C; Teufel, J; Zwergal, A; Brandt, T; Strupp, M

    2015-09-01

    There are currently different groups of drugs for the pharmacotherapy of vertigo, nystagmus and cerebellar disorders: antiemetics; anti-inflammatories, antimenieres, and antimigraineous medications and antidepressants, anticonvulsants, aminopyridines as well as acetyl-DL-leucine. In acute unilateral vestibulopathy, corticosteroids improve the recovery of peripheral vestibular function, but currently there is not sufficient evidence for a general recommendation. There is insufficient evidence to support the view that 16 mg t. i. d. or 48 mg t. i. d. betahistine has an effect in Menière's disease. Therefore, higher dosages are recommended. In animal studies, it was shown that betahistine increases cochlear blood flow. In vestibular paroxysmia, oxcarbazepine was effective (one randomized controlled trial (RCT)). Aminopyridines are recommended for the treatment of downbeat nystagmus (two RCTs) and episodic ataxia type 2 (EA2, one RCT). There has been no RCT on the efficacy of beta-blockers or topiramate but one RCT on flunarizine in vestibular migraine. Based on clinical experience, a treatment analogous to that for migraine without aura can be recommended. Acetyl-DL-leucine improved cerebellar ataxia (two observational studies); it also accelerated central compensation in an animal model of acute unilateral lesion, but RCTs were negative. There are ongoing RCTs on treatment of vestibular paroxysmia with carbamazepine (VESPA), acute unilateral vestibulopathy with betahistine (BETAVEST), vestibular migraine with metoprolol (PROVEMIG), benign paroxysmal positional vertigo with vitamin D (VitD@BPPV), EA2 with 4-aminopyridine versus acetazolamide (EAT-2-TREAT), and cerebellar ataxias with acetyl-DL-leucine (ALCAT). PMID:26421856

  18. Otolith-Canal Convergence In Vestibular Nuclei Neurons

    NASA Technical Reports Server (NTRS)

    Dickman, J. David; Si, Xiao-Hong

    2002-01-01

    The current final report covers the period from June 1, 1999 to May 31, 2002. The primary objective of the investigation was to determine how information regarding head movements and head position relative to gravity is received and processed by central vestibular nuclei neurons in the brainstem. Specialized receptors in the vestibular labyrinths of the inner ear function to detect angular and linear accelerations of the head, with receptors located in the semicircular canals transducing rotational head movements and receptors located in the otolith organs transducing changes in head position relative to gravity or linear accelerations of the head. The information from these different receptors is then transmitted to central vestibular nuclei neurons which process the input signals, then project the appropriate output information to the eye, head, and body musculature motor neurons to control compensatory reflexes. Although a number of studies have reported on the responsiveness of vestibular nuclei neurons, it has not yet been possible to determine precisely how these cells combine the information from the different angular and linear acceleration receptors into a correct neural output signal. In the present project, rotational and linear motion stimuli were separately delivered while recording responses from vestibular nuclei neurons that were characterized according to direct input from the labyrinth and eye movement sensitivity. Responses from neurons receiving convergent input from the semicircular canals and otolith organs were quantified and compared to non-convergent neurons.

  19. Microgravity vestibular investigations (10-IML-1)

    NASA Technical Reports Server (NTRS)

    Reschke, Millard F.

    1992-01-01

    Our perception of how we are oriented in space is dependent on the interaction of virtually every sensory system. For example, to move about in our environment we integrate inputs in our brain from visual, haptic (kinesthetic, proprioceptive, and cutaneous), auditory systems, and labyrinths. In addition to this multimodal system for orientation, our expectations about the direction and speed of our chosen movement are also important. Changes in our environment and the way we interact with the new stimuli will result in a different interpretation by the nervous system of the incoming sensory information. We will adapt to the change in appropriate ways. Because our orientation system is adaptable and complex, it is often difficult to trace a response or change in behavior to any one source of information in this synergistic orientation system. However, with a carefully designed investigation, it is possible to measure signals at the appropriate level of response (both electrophysiological and perceptual) and determine the effect that stimulus rearrangement has on our sense of orientation. The environment of orbital flight represents the stimulus arrangement that is our immediate concern. The Microgravity Vestibular Investigations (MVI) represent a group of experiments designed to investigate the effects of orbital flight and a return to Earth on our orientation system.

  20. Vestibular afferent responses to microrotational stimuli

    NASA Technical Reports Server (NTRS)

    Myers, Steven F.; Lewis, Edwin R.

    1991-01-01

    Intracellular microelectrode recording/labeling techniques were used to investigate vestibular afferent responses in the bullfrog, to very small amplitude (less than 5 deg p-p) sinusoidal rotations in the vertical plane over the frequency range of 0.063-4 Hz. Robust responses to peak accelerations as low as 0.031 deg/sec per sec were obtained from units subsequently traced to either the central portion of the anterior canal crista or the striolar region of the utricle. All of these microrotationally sensitive afferent neurons had irregular resting discharge rates, and the majority had transfer ratios (relative to rotational velocity) of 1-40 spikes/sec per deg/sec. Individual utricular afferent velocity transfer ratios were nearly constant over the frequency range of 0.125-4 Hz. Canal units displayed decreasing response transfer ratios as stimulus frequencies increased. These findings indicate that, although utricular striolar and central crista afferent velocity transfer ratios to microrotations were very similar, utricular striolar afferent neurons were more faithful sensors of very small amplitude rotational velocity in the vertical plane.

  1. Nasal vestibular huge keratoacanthoma: an unusual site.

    PubMed

    Yazdani, N; Khorsandi-Ashtiani, M; Rabbani-Anari, M; Bassam, A; Kouhi, A

    2009-10-15

    Keratoacanthoma (KA) is a rapidly growing, low-grade neoplasm of pilo-sebaceous and hair follicle units which most often appears on the sun-exposed skin of the middle aged and older persons with multiple or localized occurrence. This tumor is dome-shaped nodule with a central keratinous plug. The etiology of this tumor is not obvious. Exposure to excessive sunlight is the most frequently noted responsible factor in the etiology of KA. About 80% of the tumors occur on the face. The histological features of the KA are often very similar to those of a cutaneous squamous cell carcinoma; however, the tumor structure usually provides a basis for their difference. There are many unusual cases of keratoacanthoma reported regarding site, size or other specifications. In this study, we excised a mass of nasal vestibule, a site far away sun-exposure. To our knowledge, this is the first case of nasal vestibular keratoacanthoma. For a clinician and a pathologist it is important to consider a benign lesion like Keratoacanthoma (KA) in the differential diagnosis of ulcerated nasal lesions and pay attention to differ it from Squamous Cell Carcinoma (SCC) which has a different and aggressive management. PMID:20128508

  2. Extraterrestrial vestibular research, a new partial field of medical research into the human vestibular apparatus.

    PubMed

    Pichler, H J

    1967-01-01

    The first otologic professorial chair in the world was established by Politzer in Vienna as long ago as 1861. In 1914 an assistant of the 1st Vienna Ear Clinic with Politzer as its head, Barany, was awarded the Nobel Prize for Medicine for his fundamental investigations into the organ of equilibration and for his discovery of the caloric sensitivity of the semicircular canals. Since that time Barany is regarded as the founder of the physiology of the vestibular apparatus. During the period 1959 to 1963 a new conception of fundamental research into the vestibule was demanded and elaborated in Vienna with the postulate that, in all theoretical deliberations and practical experience, one should take into consideration that our experiments into the vestibule do not take place on a static platform but rather on a diversely moving one, namely the surface of the earth. This led to new findings in the field of research into the otolith apparatus. In 1962 it was discovered that the gravitation of the sun at the distance of earth-sun represents a supraliminal stimulus, namely both in the aphelion as well as in the perihelion position of the earth. In 1965 it was suggested in Vienna that a new branch of research into the vestibule should be established on an international level, the so-called extraterrestrial vestibular research. The importance of this new branch of research is discussed for all problems of orientation of human beings in space. PMID:12199253

  3. The Effects of Aging on Clinical Vestibular Evaluations

    PubMed Central

    Maheu, Maxime; Houde, Marie-Soleil; Landry, Simon P.; Champoux, François

    2015-01-01

    Balance disorders are common issues for aging populations due to the effects of normal aging on peripheral vestibular structures. These changes affect the results of vestibular function evaluations and make the interpretation of these results more difficult. The objective of this article is to review the current state of knowledge of clinically relevant vestibular measures. We will first focus on otolith function assessment methods cervical-VEMP (cVEMP) and ocular-VEMP (oVEMP), then the caloric and video-head impulse test (vHIT) methods for semicircular canals assessment. cVEMP and oVEMP are useful methods, though research on the effects of age for some parameters are still inconclusive. vHIT results are largely independent of age as compared to caloric stimulation and should therefore be preferred for the evaluation of the semicircular canals function. PMID:26441824

  4. Visuo-vestibular eye movements: infantile strabismus in 3 dimensions.

    PubMed

    Brodsky, Michael C

    2005-06-01

    Infantile strabismus is accompanied by latent nystagmus, primary inferior oblique muscle overaction, and dissociated vertical divergence. If we examine the evolutionary underpinnings of these ocular rotations, we can construct a unifying mechanism for the sensorimotor abnormalities that arise in humans with infantile strabismus. Latent nystagmus, primary inferior oblique muscle overaction, and dissociated vertical divergence correspond to visual balancing reflexes that are operative in lateral-eyed animals in yaw, pitch, and roll, respectively. In humans with infantile strabismus, these subcortical visual reflexes are reactivated by a physiologic imbalance in binocular visual input, which resets central vestibular tone in 3-dimensional space. These visual reflexes reveal the evolutionary role of the eyes as sensory balance organs that can directly modulate central vestibular tone. Latent nystagmus, primary oblique muscle overaction, and dissociated vertical divergence should be reclassified as visuo-vestibular eye movements. PMID:15955986

  5. Bilateral vestibular loss, oscillopsia, and the cervico-ocular reflex.

    PubMed

    Chambers, B R; Mai, M; Barber, H O

    1985-06-01

    Oscillopsia during head movement occurs in patients with bilateral vestibular loss and may be transient or persistent. To investigate mechanisms underlying recovery we tested the vestibulo-ocular reflex (VOR), visual-vestibular interaction, and the cervico-ocular reflex (COR); we used a pseudorandom oscillatory stimulus with a frequency band width of 0 to 5 Hz in six patients with bilaterally absent caloric responses and in 10 normal controls. Seven control subjects had low-gain COR responses, but these were anticompensatory with respect to the VOR. Three asymptomatic patients with an absent or grossly deficient VOR had increased oculomotor responses at all frequencies when oscillated in light. Compensatory COR responses were detected in these patients but not in patients with persisting oscillopsia. In some patients with bilateral vestibular loss, augmented cervico-ocular and visual reflexes may compensate, at least partially, for an absent VOR. PMID:3927239

  6. Double localization of a unilateral sporadic vestibular schwannoma

    PubMed Central

    Barbara, M; Ronchetti, F; Manni, V; Monini, S

    2008-01-01

    Summary Vestibular schwannoma may present as a sporadic or genetically-based multi-localized benign neoplasm of the internal auditory canal and/or cerebello-pontine angle region. Multiple localization is generally regarded as genetic in origin and often affects the stato-acoustic bundle on both sides. A case of double vestibular schwannoma localized on the same stato-acoustic bundle is presented. After removal, slight histological differences were found between the two separate masses. From these findings, the possibility of a unilateral multiple localization of a vestibular schwannoma is considered plausible within the range of clinical presentation, with negative genetic features. Whether these individual masses might have an autonomous origin or a different growth pattern remains to be fully elucidated. PMID:18533554

  7. Visual gravitational motion and the vestibular system in humans

    PubMed Central

    Lacquaniti, Francesco; Bosco, Gianfranco; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Moscatelli, Alessandro; Zago, Myrka

    2013-01-01

    The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity. PMID:24421761

  8. Rapid adaptation of multisensory integration in vestibular pathways

    PubMed Central

    Carriot, Jerome; Jamali, Mohsen; Cullen, Kathleen E.

    2015-01-01

    Sensing gravity is vital for our perception of spatial orientation, the control of upright posture, and generation of our everyday activities. When an astronaut transitions to microgravity or returns to earth, the vestibular input arising from self-motion will not match the brain's expectation. Our recent neurophysiological studies have provided insight into how the nervous system rapidly reorganizes when vestibular input becomes unreliable by both (1) updating its internal model of the sensory consequences of motion and (2) up-weighting more reliable extra-vestibular information. These neural strategies, in turn, are linked to improvements in sensorimotor performance (e.g., gaze and postural stability, locomotion, orienting) and perception characterized by similar time courses. We suggest that furthering our understanding of the neural mechanisms that underlie sensorimotor adaptation will have important implications for optimizing training programs for astronauts before and after space exploration missions and for the design of goal-oriented rehabilitation for patients. PMID:25932009

  9. Prevalence of vestibular dysfunction and associated factors in South Korea

    PubMed Central

    Koo, Ja-Won; Chang, Mun Young; Woo, Sook-young; Kim, Seonwoo; Cho, Yang-Sun

    2015-01-01

    Objective To report the nationwide prevalence of dizziness and vestibular dysfunction in the Korean population and determine the associated factors. Design Cross-sectional analysis of a nationwide health survey. Methods We obtained data from the 2009 to 2010 Korea National Health and Nutrition Examination Surveys, which were cross-sectional surveys of the South Korean civilian, non-institutionalised population aged 40?years and older (N=3267). A field survey team performed interviews and physical examinations. Structured questionnaires were handed out and balance function tests using the modified Romberg test of standing balance on firm and compliant support surfaces were performed on participants. Failure on the modified Romberg test was regarded to indicate vestibular dysfunction. Results The prevalence of dizziness during the past year was 16.70% (95% CI 14.65% to 18.76%). The presence of vestibular dysfunction was noted in 1.84% (95% CI 1.18% to 2.51%). In addition, the prevalence of experiencing falls and positional dizziness were 1.46% (95% CI 0.87% to 2.06%) and 1.73% (95% CI 1.17% to 2.29%), respectively. Multivariable analysis revealed that dizziness was associated with increased age, female gender, hearing loss and stress. Vestibular dysfunction was associated with increased age, history of dizziness and hearing loss. Conclusions Vertigo and dizziness are the greatest contributors to the burden of disability in the aged population. Screening for dizziness and vestibular dysfunction, and management of associated factors might be important for improving compromised quality of life due to postural imbalance caused by vestibular problems. PMID:26503384

  10. The Vestibular Effects of Repeated Low-Level Blasts.

    PubMed

    Littlefield, Philip D; Pinto, Robin L; Burrows, Holly L; Brungart, Douglas S

    2016-01-01

    The objective of this study was to use a prospective cohort of United States Marine Corps (USMC) instructors to identify any acute or long-term vestibular dysfunction following repeated blast exposures during explosive breaching training. They were assessed in clinic and on location during training at the USMC Methods of Entry School, Quantico, VA. Subjects received comprehensive baseline vestibular assessments and these were repeated in order to identify longitudinal changes. They also received shorter assessments immediately following blast exposure in order to identify acute findings. The main outcome measures were the Neurobehavioral Symptom Inventory, vestibular Visual Analog Scale (VAS) of subjective vestibular function, videonystagmography (VNG), vestibular evoked myogenic potentials (VEMP), rotary chair (including the unilateral centrifugation test), computerized dynamic posturography, and computerized dynamic visual acuity. A total of 11 breachers and 4 engineers were followed for up to 17 months. No acute effects or longitudinal deteriorations were identified, but there were some interesting baseline group differences. Upbeat positional nystagmus was common, and correlated (p<0.005) with a history of mild traumatic brain injury (mTBI). Several instructors had abnormally short low-frequency phase leads on rotary chair testing. This study evaluated breaching instructors over a longer test period than any other study, and the results suggest that this population appears to be safe from a vestibular standpoint at the current exposure levels. Upbeat positional nystagmus correlated with a history of mTBI in this population, and this has not been described elsewhere. The data trends also suggest that this nystagmus could be an acute blast effect. However, the reasons for the abnormally short phase leads seen in rotary chair testing are unclear at this time. Further investigation seems warranted. PMID:25790248

  11. Sensory substitution in bilateral vestibular a-reflexic patients

    PubMed Central

    Alberts, Bart B G T; Selen, Luc P J; Verhagen, Wim I M; Medendorp, W Pieter

    2015-01-01

    Patients with bilateral vestibular loss have balance problems in darkness, but maintain spatial orientation rather effectively in the light. It has been suggested that these patients compensate for vestibular cues by relying on extravestibular signals, including visual and somatosensory cues, and integrating them with internal beliefs. How this integration comes about is unknown, but recent literature suggests the healthy brain remaps the various signals into a task-dependent reference frame, thereby weighting them according to their reliability. In this paper, we examined this account in six patients with bilateral vestibular a-reflexia, and compared them to six age-matched healthy controls. Subjects had to report the orientation of their body relative to a reference orientation or the orientation of a flashed luminous line relative to the gravitational vertical, by means of a two-alternative-forced-choice response. We tested both groups psychometrically in upright position (0°) and 90° sideways roll tilt. Perception of body tilt was unbiased in both patients and controls. Response variability, which was larger for 90° tilt, did not differ between groups, indicating that body somatosensory cues have tilt-dependent uncertainty. Perception of the visual vertical was unbiased when upright, but showed systematic undercompensation at 90° tilt. Variability, which was larger for 90° tilt than upright, did not differ between patients and controls. Our results suggest that extravestibular signals substitute for vestibular input in patients’ perception of spatial orientation. This is in line with the current status of rehabilitation programs in acute vestibular patients, targeting at recognizing body somatosensory signals as a reliable replacement for vestibular loss. PMID:25975644

  12. Kv1 channels and neural processing in vestibular calyx afferents

    PubMed Central

    Meredith, Frances L.; Kirk, Matthew E.; Rennie, Katherine J.

    2015-01-01

    Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to ?-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K+ channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K+ channels could help alleviate vestibular dysfunction on earth and in space. PMID:26082693

  13. Short latency vestibular evoked potentials in the chicken embryo

    NASA Technical Reports Server (NTRS)

    Jones, S. M.; Jones, T. A.

    1996-01-01

    Electrophysiological responses to pulsed linear acceleration stimuli were recorded in chicken embryos incubated for 19 or 20 days (E19/E20). Responses occurred within the first 16 ms following the stimulus onset. The evoked potentials disappeared following bilateral labyrinthectomy, but persisted following cochlear destruction alone, thus demonstrating that the responses were vestibular. Approximately 8 to 10 response peaks could be identified. The first 4 positive and corresponding negative components (early peaks with latencies < 6.0 ms) were scored and latencies and amplitudes quantified. Vestibular response latencies were significantly longer (P < 0.01) and amplitudes significantly smaller (P < 0.001) than those observed in 2-week-old birds. Mean response threshold for anesthetized embryos was -15.9dBre 1.0 g/ms, which was significantly higher (P < 0.03) than those observed in 2-week-old birds (-23.0dBre 1.0 g/ms). Latency/intensity functions (that is, slopes) were not significantly different between embryos and 2-week-old animals, but amplitude/intensity functions for embryos were significantly shallower than those for 2-week-old birds (P < 0.001). We presume that these differences reflect the refinement of sensory function that occurs following 19 to 20 days of incubation. The recording of vestibular evoked potentials provides an objective, direct and noninvasive measure of peripheral vestibular function in the embryo and, as such, the method shows promise as an investigative tool. The results of the present study form the definitive basis for using vestibular evoked potentials in the detailed study of avian vestibular ontogeny and factors that may influence it.

  14. Neurohumoral reactions to long-term vestibular stimulation in man.

    PubMed

    Nichiporuk, I A; Rapotkov, A N; Orlov, O I; Grigoriev, A I

    1993-02-01

    The main purposes of present work were: 1) to examine neurohumoral reactions to long-term vestibular stimulation provocative for MS symptoms in man; 2) to compare the peculiarities of neuroendocrine reactions to short-term and to long-term vestibular stimulation; 3) to analyze the received results from the position of neuroendocrine adaptive reactions biological conformity to natural laws, and its physiological importance for human organisms; 4) to make some prognostic points of neurohumoral reaction changes on health and capacity for work in subjects influenced by professional conditions, provocative for MS manifestation development. PMID:11538529

  15. Ernst Mach on the vestibular organ 100 years ago.

    PubMed

    Henn, V; Young, L R

    1975-01-01

    Ernst Mach (1838-1916) performed pioneering research on vestibular function 100 years ago. His experiments were mainly psychophysical and included measurements of threshold and study of the vestibular-visual interaction. Contrary to general belief, he concluded that the adequate stimulus for the semicircular canals must be pressure. He presented evidence specifically against the sustained endolymph flow theory of Breuer (1874) and Crum Brown (1874), with which he is frequently associated. Excerpts from his publications are given and their relevance to current research is discussed. PMID:1093083

  16. Interrelated striated elements in vestibular hair cells of the rat

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Bourne, C.

    1983-01-01

    A series of interrelated striated organelles in types I and II vestibular hair cells of the rat which appear to be less developed in cochlear hair cells have been revealed by unusual fixation procedures, suggesting that contractile elements may play a role in sensory transduction in the inner ear, especially in the vestibular system. Included in the series of interrelated striated elements are the cuticular plate and its basal attachments to the hair cell margins, the connections of the strut array of the kinociliary basal body to the cuticular plate, and striated organelles associated with the plasma membrane and extending below the apical junctional complexes.

  17. Polyamines in the lateral vestibular nuclei of the squirrel monkey and their potential role in vestibular compensation

    NASA Technical Reports Server (NTRS)

    Henley, C.; Igarashi, M.

    1993-01-01

    Polyamine synthesis increases in response to injurious stimuli including axotomy and denervation. Reduced eye nystagmus and head-deviation have been observed in unilateral labyrinthectomized (UL) guinea pigs treated with an inhibitor of polyamine synthesis, alpha-difluoromethylornithine (DFMO). We quantified polyamines in the lateral vestibular nuclei (LVN) of control and UL squirrel monkeys during the phase of vestibular compensation (VC) and performed an experiment to determine if DFMO reduces nystagmus previously observed in the guinea pig. Polyamines were detected in the LVN of control and UL squirrel monkeys. Putrescine and spermidine increased in the ipsilateral LVN 3 days after UL with no change in the contralateral LVN. No left-right differences were noted in the 5-day post-UL monkey. DFMO reduced nystagmus in a UL squirrel monkey. These findings suggest that polyamines are important in vestibular function and may contribute to nystagmus observed in VC.

  18. Distinct vestibular effects on early and late somatosensory cortical processing in humans.

    PubMed

    Pfeiffer, Christian; van Elk, Michiel; Bernasconi, Fosco; Blanke, Olaf

    2016-01-15

    In non-human primates several brain areas contain neurons that respond to both vestibular and somatosensory stimulation. In humans, vestibular stimulation activates several somatosensory brain regions and improves tactile perception. However, less is known about the spatio-temporal dynamics of such vestibular-somatosensory interactions in the human brain. To address this issue, we recorded high-density electroencephalography during left median nerve electrical stimulation to obtain Somatosensory Evoked Potentials (SEPs). We analyzed SEPs during vestibular activation following sudden decelerations from constant-velocity (90°/s and 60°/s) earth-vertical axis yaw rotations and SEPs during a non-vestibular control period. SEP analysis revealed two distinct temporal effects of vestibular activation: An early effect (28-32ms post-stimulus) characterized by vestibular suppression of SEP response strength that depended on rotation velocity and a later effect (97-112ms post-stimulus) characterized by vestibular modulation of SEP topographical pattern that was rotation velocity-independent. Source estimation localized these vestibular effects, during both time periods, to activation differences in a distributed cortical network including the right postcentral gyrus, right insula, left precuneus, and bilateral secondary somatosensory cortex. These results suggest that vestibular-somatosensory interactions in humans depend on processing in specific time periods in somatosensory and vestibular cortical regions. PMID:26466979

  19. Connections between the cerebellar nucleus interpositus and the vestibular nuclei: an anatomical study in the rat.

    PubMed

    Compoint, C; Buisseret-Delmas, C; Diagne, M; Buissseret, P; Angaut, P

    1997-12-01

    Interposito-vestibular connections were analysed, using the anterograde and retrograde tracer biotinylated dextran amine. The interposito-vestibular projections mainly arise from medial portions of the cerebellar nuclei interpositi anterior (NIA) and posterior (NIP), and reach each of the main vestibular nuclei, ipsilaterally. The highest density of projections is found throughout nucleus vestibularis lateralis. Fibres also reach the peripheral part of nucleus superior, the caudal part of nucleus inferior, and the lateral part of nucleus medialis. Some fibres also reach groups I, x and f. Contralaterally, few fibres reach zones of the vestibular nuclei symmetric to the ipsilateral projection. A small, reciprocal, vestibulo-interposed projection is sent from the vestibular nuclei onto NIA-NIP. Possible influences of the interposito-vestibular projections upon the major targets of the vestibular nuclei, spinal motoneurones and oculomotor neurones, are discussed. PMID:9464627

  20. Repeat Gamma Knife surgery for vestibular schwannomas

    PubMed Central

    Lonneville, Sarah; Delbrouck, Carine; Renier, Cécile; Devriendt, Daniel; Massager, Nicolas

    2015-01-01

    Background: Gamma Knife (GK) surgery is a recognized treatment option for the management of small to medium-sized vestibular schwannoma (VS) associated with high-tumor control and low morbidity. When a radiosurgical treatment fails to stop tumor growth, repeat GK surgery can be proposed in selected cases. Methods: A series of 27 GK retreatments was performed in 25 patients with VS; 2 patients underwent three procedures. The median time interval between GK treatments was 45 months. The median margin dose used for the first, second, and third GK treatments was 12 Gy, 12 Gy, and 14 Gy, respectively. Six patients (4 patients for the second irradiation and 2 patients for the third irradiation) with partial tumor regrowth were treated only on the growing part of the tumor using a median margin dose of 13 Gy. The median tumor volume was 0.9, 2.3, and 0.7 cc for the first, second, and third treatments, respectively. Stereotactic positron emission tomography (PET) guidance was used for dose planning in 6 cases. Results: Mean follow-up duration was 46 months (range 24–110). At the last follow-up, 85% of schwannomas were controlled. The tumor volume decreased, remained unchanged, or increased after retreatment in 15, 8, and 4 cases, respectively. Four patients had PET during follow-up, and all showed a significant metabolic decrease of the tumor. Hearing was not preserved after retreatment in any patients. New facial or trigeminal palsy did not occur after retreatment. Conclusions: Our results support the long-term efficacy and low morbidity of repeat GK treatment for selected patients with tumor growth after initial treatment. PMID:26500799

  1. Organization of projections from the raphe nuclei to the vestibular nuclei in rats

    NASA Technical Reports Server (NTRS)

    Halberstadt, A. L.; Balaban, C. D.

    2003-01-01

    Previous anatomic and electrophysiological evidence suggests that serotonin modulates processing in the vestibular nuclei. This study examined the organization of projections from serotonergic raphe nuclei to the vestibular nuclei in rats. The distribution of serotonergic axons in the vestibular nuclei was visualized immunohistochemically in rat brain slices using antisera directed against the serotonin transporter. The density of serotonin transporter-immunopositive fibers is greatest in the superior vestibular nucleus and the medial vestibular nucleus, especially along the border of the fourth ventricle; it declines in more lateral and caudal regions of the vestibular nuclear complex. After unilateral iontophoretic injections of Fluoro-Gold into the vestibular nuclei, retrogradely labeled neurons were found in the dorsal raphe nucleus (including the dorsomedial, ventromedial and lateral subdivisions) and nucleus raphe obscurus, and to a minor extent in nucleus raphe pallidus and nucleus raphe magnus. The combination of retrograde tracing with serotonin immunohistofluorescence in additional experiments revealed that the vestibular nuclei receive both serotonergic and non-serotonergic projections from raphe nuclei. Tracer injections in densely innervated regions (especially the medial and superior vestibular nuclei) were associated with the largest numbers of Fluoro-Gold-labeled cells. Differences were observed in the termination patterns of projections from the individual raphe nuclei. Thus, the dorsal raphe nucleus sends projections that terminate predominantly in the rostral and medial aspects of the vestibular nuclear complex, while nucleus raphe obscurus projects relatively uniformly throughout the vestibular nuclei. Based on the topographical organization of raphe input to the vestibular nuclei, it appears that dense projections from raphe nuclei are colocalized with terminal fields of flocculo-nodular lobe and uvula Purkinje cells. It is hypothesized that raphe-vestibular connections are organized to selectively modulate processing in regions of the vestibular nuclear complex that receive input from specific cerebellar zones. This represents a potential mechanism whereby motor activity and behavioral arousal could influence the activity of cerebellovestibular circuits.

  2. Can Vestibular-Evoked Myogenic Potentials Help Differentiate Ménière Disease from Vestibular Migraine?

    PubMed Central

    Zuniga, M. Geraldine; Janky, Kristen L.; Schubert, Michael C.; Carey, John P.

    2013-01-01

    Objectives To characterize both cervical and ocular vestibular-evoked myogenic potential (cVEMP, oVEMP) responses to air-conducted sound (ACS) and midline taps in Ménière disease (MD), vestibular migraine (VM), and controls, as well as to determine if cVEMP or oVEMP responses can differentiate MD from VM. Study Design Prospective cohort study. Setting Tertiary referral center. Subjects and Methods Unilateral definite MD patients (n = 20), VM patients (n = 21) by modified Neuhauser criteria, and age-matched controls (n = 28). cVEMP testing used ACS (clicks), and oVEMP testing used ACS (clicks and 500-Hz tone bursts) and midline tap stimuli (reflex hammer and Mini-Shaker). Outcome parameters were cVEMP peak-to-peak amplitudes and oVEMP n10 amplitudes. Results Relative to controls, MD and VM groups both showed reduced click-evoked cVEMP (P < .001) and oVEMP (P < .001) amplitudes. Only the MD group showed reduction in tone-evoked amplitudes for oVEMP. Tone-evoked oVEMPs differentiated MD from controls (P = .001) and from VM (P = .007). The oVEMPs in response to the reflex hammer and Mini-Shaker midline taps showed no differences between groups (P > .210). Conclusions Using these techniques, VM and MD behaved similarly on most of the VEMP test battery. A link in their pathophysiology may be responsible for these responses. The data suggest a difference in 500-Hz tone burst–evoked oVEMP responses between MD and MV as a group. However, no VEMP test that was investigated segregated individuals with MD from those with VM. PMID:22267492

  3. QB1 - Stochastic Gene Regulation

    SciTech Connect

    Munsky, Brian

    2012-07-23

    Summaries of this presentation are: (1) Stochastic fluctuations or 'noise' is present in the cell - Random motion and competition between reactants, Low copy, quantization of reactants, Upstream processes; (2) Fluctuations may be very important - Cell-to-cell variability, Cell fate decisions (switches), Signal amplification or damping, stochastic resonances; and (3) Some tools are available to mode these - Kinetic Monte Carlo simulations (SSA and variants), Moment approximation methods, Finite State Projection. We will see how modeling these reactions can tell us more about the underlying processes of gene regulation.

  4. Medial vestibular connections with the hypocretin (orexin) system

    NASA Technical Reports Server (NTRS)

    Horowitz, Seth S.; Blanchard, Jane; Morin, Lawrence P.

    2005-01-01

    The mammalian medial vestibular nucleus (MVe) receives input from all vestibular endorgans and provides extensive projections to the central nervous system. Recent studies have demonstrated projections from the MVe to the circadian rhythm system. In addition, there are known projections from the MVe to regions considered to be involved in sleep and arousal. In this study, afferent and efferent subcortical connectivity of the medial vestibular nucleus of the golden hamster (Mesocricetus auratus) was evaluated using cholera toxin subunit-B (retrograde), Phaseolus vulgaris leucoagglutinin (anterograde), and pseudorabies virus (transneuronal retrograde) tract-tracing techniques. The results demonstrate MVe connections with regions mediating visuomotor and postural control, as previously observed in other mammals. The data also identify extensive projections from the MVe to regions mediating arousal and sleep-related functions, most of which receive immunohistochemically identified projections from the lateral hypothalamic hypocretin (orexin) neurons. These include the locus coeruleus, dorsal and pedunculopontine tegmental nuclei, dorsal raphe, and lateral preoptic area. The MVe itself receives a projection from hypocretin cells. CTB tracing demonstrated reciprocal connections between the MVe and most brain areas receiving MVe efferents. Virus tracing confirmed and extended the MVe afferent connections identified with CTB and additionally demonstrated transneuronal connectivity with the suprachiasmatic nucleus and the medial habenular nucleus. These anatomical data indicate that the vestibular system has access to a broad array of neural functions not typically associated with visuomotor, balance, or equilibrium, and that the MVe is likely to receive information from many of the same regions to which it projects.

  5. Astronauts Conrad and Kerwin practice Human Vestibular Function experiment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Charles Conrad Jr., commander of the first manned Skylab mission, checks out the Human Vestibular Function, Experiment M131, during Skylab training at JSC. Scientist-Astronaut Joseph P. Kerwin, science pilot of the mission, goes over a checklist. The two men are in the work and experiments compartment of the crew quarters of the Skylab Orbital Workshop (OWS) trainer at JSC.

  6. Vestibular System: The Many Facets of a Multimodal Sense

    E-print Network

    Vestibular System: The Many Facets of a Multimodal Sense Dora E. Angelaki1 and Kathleen E. Cullen2 system becomes immediately multisensory and multimodal. There is no overt, readily recognizable conscious to these diverse, multimodal functions are multiple computationally intrigu- ing levels of processing. For example

  7. Visual-Vestibular Sensor Integration Follows a Max-Rule

    E-print Network

    a vestibularly defined path twice, subjects (six in each group) were asked to reproduce it from memory. Fig. 3). Snapshots of the visual scenes VR setup in the Motion-Lab We used a VR system including a motion simulator-localization. Yet in most Virtual Reality (VR) applications turns are misperceived which leads to disorientation

  8. Vestibular Stimulation and Development of the Small Premature Infant.

    ERIC Educational Resources Information Center

    Neal, Mary V.

    This study was designed to explore the effects of vestibular stimulation on the developmental behavior, respiratory functioning, weight and length gains, and morbidity and mortality rates of premature infants. A total of 20 infants participated in this study in 4 groups of 5 infants each. Group A infants were placed in a motorized hammock within…

  9. Vestibular evoked myogenic potentials in patients with rheumatoid arthritis

    PubMed Central

    Heydari, Nahid; Hajiabolhassani, Fahimeh; Fatahi, Jamileh; Movaseghi, Shafieh; Jalaie, Shohreh

    2015-01-01

    Background: Rheumatoid arthritis (RA) is an autoimmune systemic disease. Most common autoimmune diseases are multisystem disorders that may also present with otological manifestations, and autoimmune inner ear disease accompanied by vestibular dysfunction. This study aimed to compare the vestibular function between RA patients and normal subjects using cervical vestibular evoked myogenic potentials (cVEMPs). Methods: In this cross- sectional study, 25patients with RA (19 female and 6 male: mean (±SD) age, 40.00 (±7.92) years) and 20 healthy subjects (15 female and 5 male: mean (±SD) age, 35.35 (±10.48) years) underwent cVEMPs, using 500 Hz-tone bursts at 95 dB nHL intensity level. Data were analyzed using independent sample t-test through SPSS software v. 16. Results: The mean peak latency of p13 was significantly higher in RA patients (p<0.001). The mean peak latency of n23 was significantly higher in patients in the left ear (p=0.03). Vestibular evoked myogenic potential (VEMP) responses were present in all (100%) of the participants. There were no significant differences in mean peak to peak amplitude and amplitude ratio between the two groups. Conclusion: According to the prolonged latency of VEMP responses in RA patients, lesions in the retrolabyrinthine, especially in the vestibulospinal tract are suspected. PMID:26478874

  10. The Development of Vestibular Connections in Rat Embryos in Microgravity

    NASA Technical Reports Server (NTRS)

    Bruce, Laura L.; Fritzsch, Bernd

    1997-01-01

    Existing experimental embryological data suggests that the vestibular system initially develops in a very rigid and genetically controlled manner. Nevertheless, gravity appears to be a critical factor in the normal development of the vestibular system that monitors position with respect to gravity (saccule and utricle). In fact several studies have shown that prenatal exposure to microgravity causes temporary deficits in gravity-dependent righting behaviors, and prolonged exposure to hypergravity from conception to weaning causes permanent deficits in gravity-dependent righting behaviors. Data on hypergravity and microgravity exposure suggest some changes in the otolith formation during development, in particular the size although these changes may actually vary with the species involved. In adults exposed to microgravity there is a change in the synaptic density in the otic sensory epithelia suggesting that some adaptation may occur there. However, effects have also been reported in the brainstem. Several studies have shown synaptic changes in the lateral vestibular nucleus and in the nodulus of the cerebellum after neonatal exposure to hypergravity. We report here that synaptogenesis in the medial vestibular nucleus is retarded in developing rat embryos that were exposed to microgravity from gestation days 9 to 19.

  11. Mechanisms for vestibular disorders in space flight. Facts and hypotheses

    NASA Technical Reports Server (NTRS)

    Matsnev, E. I.

    1980-01-01

    This article discusses the vestibular disorders associated with space flight. It is found there is still no complete understanding of the changes occurring in the sensory systems of the body during weightlessness. Results of studies are presented, including results of a ground model.

  12. From genes to behavior in the vestibular system.

    PubMed

    Baker, R

    1998-09-01

    The central nervous system of all vertebrate embryos is derived from a series of conspicuous segments, called neuromeres, that are particularly visible in the midbrain and hindbrain areas, giving rise to the brain stem sensory and motor nuclei. This article focuses on a series of eight embryonic rhombomeric segments whose progeny can be identified in adults by the locations of iteratively homologous reticulospinal neurons and cranial motor nuclei IV through XII. Evidence shows that these rhombomeric units represent domains of gene expression, lineage restriction, and accordingly, individual vestibular neuronal phenotypes with unique oculomotor and spinal projections. Preliminary electrophysiologic and behavioral correlates of a few vestibulo-oculomotor subgroups are used as examples to illustrate the hypothesis that homologous vestibular phenotypes likely exist in all taxa because the genetic prepattern is already well established in primitive vertebrates. Finally, the segmented hindbrain arrangement responsible for the longitudinally arranged column of vestibular subnuclei is placed in perspective with genetic and molecular approaches that will eventually permit a causal reconstruction of the signaling mechanisms responsible for the development of unique vestibular subgroups. PMID:9743082

  13. A Vestibular Sensation: Probabilistic Approaches to Spatial Perception

    E-print Network

    Snyder, Larry

    system is also critical for a number of autonomic and limbic system functions (Balaban, 1999; Yates.neuron.2009.11.010 The vestibular system helps maintain equilibrium and clear vision through reflexes sensations and perceptions. There is also a stealth sixth sensory system that often flies below our conscious

  14. Vestibular factors influencing the biomedical support of humans in space

    NASA Technical Reports Server (NTRS)

    Lichtenberg, B. K.

    1988-01-01

    This paper will describe the biomedical support aspects of humans in space with respect to the vestibular system. The vestibular system is thought to be the primary sensory system involved in the short-term effects of space motion sickness although there is increasing evidence that many factors play a role in this complex set of symptoms. There is the possibility that an individual's inner sense of orientation may be strongly coupled with the susceptibility to space motion sickness. A variety of suggested countermeasures for space motion sickness will be described. Although there are no known ground-based tests that can predict space motion sickness, the search should go on. The long term effects of the vestibular system in weightlessness are still relatively unknown. Some preliminary data has shown that the otoconia are irregular in size and distribution following extended periods of weightlessness. The ramifications of this data are not yet known and because the data was obtained on lower order animals, definitive studies and results must wait until the space station era when higher primates can be studied for long durations. This leads us to artificial gravity, the last topic of this paper. The vestibular system is intimately tied to this question since it has been shown on Earth that exposure to a slow rotating room causes motion sickness for some period of time before adaptation occurs. If the artificial gravity is intermittent, will this mean that people will get sick every time they experience it? The data from many astronauts returning to Earth indicates that a variety of sensory illusions are present, especially immediately upon return to a 1-g environment. Oscillopsia or apparent motion of the visual surround upon head motion along with inappropriate eye motions for a given head motion, all indicate that there is much to be studied yet about the vestibular and CNS systems reaction to a sudden application of a steady state acceleration field like 1-g. From the above information it is obvious that the vestibular system does have unique requirements when it comes to the biomedical support of space flight. This is not to say that other areas such as cardiovascular, musculo-skeletal, immunological and hematological systems do not have their own unique requirements but that possible solutions to one system can provide continuing problems to another system. For example, artificial gravity might be helpful for long term stabilization of bone demineralization or cardiovascular deconditioning but might introduce a new set of problems in orientation, vestibular conflict and just plain body motion in a rotating space vehicle.

  15. Spatial orientation of the vestibular system

    NASA Technical Reports Server (NTRS)

    Raphan, T.; Dai, M.; Cohen, B.

    1992-01-01

    1. A simplified three-dimensional state space model of visual vestibular interaction was formulated. Matrix and dynamical system operators representing coupling from the semicircular canals and the visual system to the velocity storage integrator were incorporated into the model. 2. It was postulated that the system matrix for a tilted position was a composition of two linear transformations of the system matrix for the upright position. One transformation modifies the eigenvalues of the system matrix while another rotates the pitch and roll eigenvectors with the head, while maintaining the yaw axis eigenvector approximately spatially invariant. Using this representation, the response characteristics of the pitch, roll, and yaw eye velocity were obtained in terms of the eigenvalues and associated eigenvectors. 3. Using OKAN data obtained from monkeys and comparing to the model predictions, the eigenvalues and eigenvectors of the system matrix were identified as a function of tilt to the side or of tilt to the prone positions, using a modification of the Marquardt algorithm. The yaw eigenvector for right-side-down tilt and for downward pitch cross-coupling was approximately 30 degrees from the spatial vertical. For the prone position, the eigenvector was computed to be approximately 20 degrees relative to the spatial vertical. For both side-down and prone positions, oblique OKN induced along eigenvector directions generated OKAN which decayed to zero along a straight line with approximately a single time constant. This was verified by a spectral analysis of the residual sequence about the straight line fit to the decaying data. The residual sequence was associated with a narrow autocorrelation function and a wide power spectrum. 4. Parameters found using the Marquardt algorithm were incorporated into the model. Diagonal matrices in a head coordinate frame were introduced to represent the direct pathway and the coupling of the visual system to the integrator. Model simulations predicted the behavior of yaw and pitch OKN and OKAN when the animal was upright, as well as the cross-coupling in the tilted position. The trajectories in velocity space were also accurately simulated. 5. There were similarities between the monkey eigenvectors and human perception of the spatial vertical. For side-down tilts and downward eye velocity cross-coupling, there was only an Aubert (A) effect. For upward eye velocity cross-coupling there were both Muller (E) and Aubert (A) effects. The mean of the eigenvectors for upward and downward eye velocities overlay human 1 x g perceptual data.(ABSTRACT TRUNCATED AT 400 WORDS).

  16. Incidence of vestibular schwannomas in the United States.

    PubMed

    Kshettry, Varun R; Hsieh, Jason K; Ostrom, Quinn T; Kruchko, Carol; Barnholtz-Sloan, Jill S

    2015-09-01

    There is a paucity of population-based data evaluating the incidence of vestibular schwannomas according to age, gender, race, and ethnicity. Such data are necessary to assess the burden of vestibular schwannomas on varying populations and to inform future research and healthcare planning. The Central Brain Tumor Registry of the United States, which contains the largest aggregation of population-based data on the incidence of primary central nervous system tumors in the US, was used. Age-adjusted incidence rates and incidence rate ratios (IRR) of vestibular schwannomas from 2004 to 2010 were calculated by age at diagnosis, gender, race, and ethnicity. Annual percent change (APC) was calculated using Joinpoint to characterize temporal trends. From 2004 to 2010, there were 23,729 newly diagnosed vestibular schwannomas in the US; overall incidence was 1.09 per 100,000 population. Incidence was stable over time (APC -0.41 %, 95 % confidence interval -3.4, 2.7). Incidence increased with age to a peak of 2.93 per 100,000 in the 65-74 year old age group. Overall, there was no difference in incidence by gender. Compared to Whites, incidence was highest in Asian Pacific Islanders (IRR 1.37, p < 0.001) and lowest in African Americans (IRR 0.36, p < 0.001). Incidence was lower in Hispanics than non-Hispanics (IRR 0.69, p < 0.001). Over 3300 vestibular schwannomas are diagnosed per year in the US and incidence is 1.09 per 100,000 population. Incidence increases with age up to the 65-74 year old age group. Incidence is higher in Asian Pacific Islanders and lower in African Americans and Hispanics. PMID:26024654

  17. Stochastic thermodynamics

    NASA Astrophysics Data System (ADS)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response theory for small deviations from equilibrium, in which a general framework is constructed from the analysis of non-equilibrium states close to equilibrium. In a next step, Prigogine and others developed linear irreversible thermodynamics, which establishes relations between transport coefficients and entropy production on a phenomenological level in terms of thermodynamic forces and fluxes. However, beyond the realm of linear response no general theoretical results were available for quite a long time. This situation has changed drastically over the last 20 years with the development of stochastic thermodynamics, revealing that the range of validity of thermodynamic statements can indeed be extended deep into the non-equilibrium regime. Early developments in that direction trace back to the observations of symmetry relations between the probabilities for entropy production and entropy annihilation in non-equilibrium steady states [5-8] (nowadays categorized in the class of so-called detailed fluctuation theorems), and the derivations of the Bochkov-Kuzovlev [9, 10] and Jarzynski relations [11] (which are now classified as so-called integral fluctuation theorems). Apart from its fundamental theoretical interest, the developments in stochastic thermodynamics have experienced an additional boost from the recent experimental progress in fabricating, manipulating, controlling and observing systems on the micro- and nano-scale. These advances are not only of formidable use for probing and monitoring biological processes on the cellular, sub-cellular and molecular level, but even include the realization of a microscopic thermodynamic heat engine [12] or the experimental verification of Landauer's principle in a colloidal system [13]. The scientific program Stochastic Thermodynamics held between 4 and 15 March 2013, and hosted by The Nordic Institute for Theoretical Physics (Nordita), was attended by more than 50 scientists from the Nordic countries and elsewhere, amongst them many leading experts in the field. During the program, the most recent developments, open quest

  18. Slip Interface Imaging Predicts Tumor-Brain Adhesion in Vestibular Schwannomas.

    PubMed

    Yin, Ziying; Glaser, Kevin J; Manduca, Armando; Van Gompel, Jamie J; Link, Michael J; Hughes, Joshua D; Romano, Anthony; Ehman, Richard L; Huston, John

    2015-11-01

    Purpose To test the clinical feasibility and usefulness of slip interface imaging (SII) to identify and quantify the degree of tumor-brain adhesion in patients with vestibular schwannomas. Materials and Methods With institutional review board approval and after obtaining written informed consent, SII examinations were performed in nine patients with vestibular schwannomas. During the SII acquisition, a low-amplitude mechanical vibration is applied to the head with a pillow-like device placed in the head coil and the resulting shear waves are imaged by using a phase-contrast pulse sequence with motion-encoding gradients synchronized with the applied vibration. Imaging was performed with a 3-T magnetic resonance (MR) system in less than 7 minutes. The acquired shear motion data were processed with two different algorithms (shear line analysis and calculation of octahedral shear strain [OSS]) to identify the degree of tumor-brain adhesion. Blinded to the SII results, neurosurgeons qualitatively assessed tumor adhesion at the time of tumor resection. Standard T2-weighted, fast imaging employing steady-state acquisition (FIESTA), and T2-weighted fluid-attenuated inversion recovery (FLAIR) imaging were reviewed to identify the presence of cerebral spinal fluid (CSF) clefts around the tumors. The performance of the use of the CSF cleft and SII to predict the degree of tumor adhesion was evaluated by using the ? coefficient and McNemar test. Results Among the nine patients, SII agreed with the intraoperative assessment of the degree of tumor adhesion in eight patients (88.9%; 95% confidence interval [CI]: 57%, 98%), with four of four, three of three, and one of two cases correctly predicted as no adhesion, partial adhesion, and complete adhesion, respectively. However, the T2-weighted, FIESTA, and T2-weighted FLAIR images that used the CSF cleft sign to predict adhesion agreed with surgical findings in only four cases (44.4% [four of nine]; 95% CI: 19%, 73%). The ? coefficients indicate good agreement (0.82 [95% CI: 0.5, 1]) for the SII prediction versus surgical findings, but only fair agreement (0.21 [95% CI: -0.21, 0.63]) between the CSF cleft prediction and surgical findings. However, the difference between the SII prediction and the CSF cleft prediction was not significant (P = .103; McNemar test), likely because of the small sample size in this study. Conclusion SII can be used to predict the degree of tumor-brain adhesion of vestibular schwannomas and may provide a method to improve preoperative planning and determination of surgical risk in these patients. (©) RSNA, 2015. PMID:26247776

  19. Slip Interface Imaging Predicts Tumor-Brain Adhesion in Vestibular Schwannomas

    PubMed Central

    Yin, Ziying; Glaser, Kevin J.; Manduca, Armando; Van Gompel, Jamie J.; Link, Michael J.; Hughes, Joshua D.; Romano, Anthony; Ehman, Richard L.; Huston, John

    2015-01-01

    Purpose To test the clinical feasibility and usefulness of slip interface imaging (SII), a novel magnetic resonance elastography (MRE)-based method to identify and quantify the degree of tumor brain adhesion in patients with vestibular schwannomas. Materials and Methods With Institutional Review Board approval and after obtaining written informed consent, SII examinations were performed on nine patients with vestibular schwannomas. During the SII acquisition, a low-amplitude mechanical vibration is applied to the head with a pillow-like device placed in the head coil and the resulting shear waves are imaged by using a phase-contrast pulse sequence with motion-encoding gradients synchronized with the applied vibration. Imaging was performed on a 3-T MR system in less than 7 minutes. The acquired shear motion data were processed with two different algorithms (shear line analysis and calculation of octahedral shear strain [OSS]) to identify the degree of tumor-brain adhesion. Blinded to the SII results, neurosurgeons qualitatively assessed tumor adhesion at the time of tumor resection. Standard T2-weighted (T2W), FIESTA, and T2-FLAIR imaging were reviewed to identify the presence of cerebral spinal fluid (CSF) clefts around the tumors. The performance of the use of the CSF cleft and SII for predicting the degree of tumor adhesion was evaluated by using the kappa coefficient and McNemar's test. Results Of the nine patients, SII agreed with the intraoperative assessment of the degree of tumor adhesion in 8 cases (88.9%, [eight of nine], 95% confidence interval [CI]: 57%-98%), with 4/4, 3/3, and 1/2 cases correctly predicted as no adhesion, partial adhesion, and complete adhesion, respectively. However, the T2W, FIESTA, and T2-FLAIR images that used the CSF cleft sign to predict adhesion agreed with surgical findings in only 4 cases (44.4%, [four of nine], 95% CI: 19%-73%). The kappa coefficients indicate good agreement (0.82, 95% CI: 0.5-1) for the SII prediction versus surgical findings, but only fair agreement (0.21, 95% CI: ?0.21-0.63) between the CSF cleft prediction and surgical findings. However, the difference between the SII prediction and the CSF cleft prediction was not significant (p=0.103, McNemar), likely because of the small sample size in this study. Conclusion SII can be used to predict the degree of tumor-brain adhesion of vestibular schwannomas and may provide a method to improve preoperative planning and determination of surgical risk in these patients. PMID:26247776

  20. A neuroscientific account of how vestibular disorders impair bodily self-consciousness

    PubMed Central

    Lopez, Christophe

    2013-01-01

    The consequences of vestibular disorders on balance, oculomotor control, and self-motion perception have been extensively described in humans and animals. More recently, vestibular disorders have been related to cognitive deficits in spatial navigation and memory tasks. Less frequently, abnormal bodily perceptions have been described in patients with vestibular disorders. Altered forms of bodily self-consciousness include distorted body image and body schema, disembodied self-location (out-of-body experience), altered sense of agency, as well as more complex experiences of dissociation and detachment from the self (depersonalization). In this article, I suggest that vestibular disorders create sensory conflict or mismatch in multisensory brain regions, producing perceptual incoherence and abnormal body and self perceptions. This hypothesis is based on recent functional mapping of the human vestibular cortex, showing vestibular projections to the primary and secondary somatosensory cortex and in several multisensory areas found to be crucial for bodily self-consciousness. PMID:24367303

  1. To develop behavioral tests of vestibular functioning in the Wistar rat

    NASA Technical Reports Server (NTRS)

    Nielson, H. C.

    1980-01-01

    Two tests of vestibular functioning in the rat were developed. The first test was the water maze. In the water maze the rat does not have the normal proprioceptive feedback from its limbs to help it maintain its orientation, and must rely primarily on the sensory input from its visual and vestibular systems. By altering lighting conditions and visual cues the vestibular functioning without visual cues was assessed. Whether there was visual compensation for some vestibular dysfunction was determined. The second test measured vestibular functioning of the rat's behavior on a parallel swing. In this test the rat's postural adjustments while swinging on the swing with the otoliths being stimulated were assessed. Less success was achieved in developing the parallel swing as a test of vestibular functioning than with the water maze. The major problem was incorrect initial assumptions of what the rat's probable behavior on the parallel swing would be.

  2. The Vestibular-Evoked Postural Response of Adolescents with Idiopathic Scoliosis Is Altered

    PubMed Central

    Pialasse, Jean-Philippe; Descarreaux, Martin; Mercier, Pierre; Blouin, Jean; Simoneau, Martin

    2015-01-01

    Adolescent idiopathic scoliosis is a multifactorial disorder including neurological factors. A dysfunction of the sensorimotor networks processing vestibular information could be related to spine deformation. This study investigates whether feed-forward vestibulomotor control or sensory reweighting mechanisms are impaired in adolescent scoliosis patients. Vestibular evoked postural responses were obtained using galvanic vestibular stimulation while participants stood with their eyes closed and head facing forward. Lateral forces under each foot and lateral displacement of the upper body of adolescents with mild (n = 20) or severe (n = 16) spine deformation were compared to those of healthy control adolescents (n = 16). Adolescent idiopathic scoliosis patients demonstrated greater lateral displacement and net lateral forces than controls both during and immediately after vestibular stimulation. Altered sensory reweighting of vestibular and proprioceptive information changed balance control of AIS patients during and after vestibular stimulation. Therefore, scoliosis onset could be related to abnormal sensory reweighting, leading to altered sensorimotor processes. PMID:26580068

  3. Visual-vestibular integration motion perception reporting

    NASA Technical Reports Server (NTRS)

    Harm, Deborah L.; Reschke, Millard R.; Parker, Donald E.

    1999-01-01

    Self-orientation and self/surround-motion perception derive from a multimodal sensory process that integrates information from the eyes, vestibular apparatus, proprioceptive and somatosensory receptors. Results from short and long duration spaceflight investigations indicate that: (1) perceptual and sensorimotor function was disrupted during the initial exposure to microgravity and gradually improved over hours to days (individuals adapt), (2) the presence and/or absence of information from different sensory modalities differentially affected the perception of orientation, self-motion and surround-motion, (3) perceptual and sensorimotor function was initially disrupted upon return to Earth-normal gravity and gradually recovered to preflight levels (individuals readapt), and (4) the longer the exposure to microgravity, the more complete the adaptation, the more profound the postflight disturbances, and the longer the recovery period to preflight levels. While much has been learned about perceptual and sensorimotor reactions and adaptation to microgravity, there is much remaining to be learned about the mechanisms underlying the adaptive changes, and about how intersensory interactions affect perceptual and sensorimotor function during voluntary movements. During space flight, SMS and perceptual disturbances have led to reductions in performance efficiency and sense of well-being. During entry and immediately after landing, such disturbances could have a serious impact on the ability of the commander to land the Orbiter and on the ability of all crew members to egress from the Orbiter, particularly in a non-nominal condition or following extended stays in microgravity. An understanding of spatial orientation and motion perception is essential for developing countermeasures for Space Motion Sickness (SMS) and perceptual disturbances during spaceflight and upon return to Earth. Countermeasures for optimal performance in flight and a successful return to Earth require the development of preflight and in-flight training to help astronauts acquire and maintain a dual adaptive state. Despite the considerable experience with, and use of, an extensive set of countermeasures in the Russian space program, SMS and perceptual disturbances remain an unresolved problem on long-term flights. Reliable, valid perceptual reports are required to develop and refine stimulus rearrangements presented in the PAT devices currently being developed as countermeasures for the prevention of motion sickness and perceptual disturbances during spaceflight, and to ensure a less hazardous return to Earth. Prior to STS-8, crew member descriptions of their perceptual experiences were, at best, anecdotal. Crew members were not schooled in the physiology or psychology of sensory perception, nor were they exposed to the appropriate professional vocabulary. However, beginning with the STS-8 Shuttle flight, a serious effort was initiated to teach astronauts a systematic method to classify and quantify their perceptual responses in space, during entry, and after flight. Understanding, categorizing, and characterizing perceptual responses to spaceflight has been greatly enhanced by implementation of that training system.

  4. EDITORIAL: Stochasticity in fusion plasmas Stochasticity in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Unterberg, Bernhard

    2010-03-01

    Structure formation and transport in stochastic plasmas is a topic of growing importance in many fields of plasma physics from astrophysics to fusion research. In particular, the possibility to control transport in the boundary of confined fusion plasmas by resonant magnetic perturbations has been investigated extensively during recent years. A major research achievement was finding that the intense transient particle and heat fluxes associated with edge localized modes (here type-I ELMs) in magnetically confined fusion plasmas can be mitigated or even suppressed by resonant magnetic perturbation fields. This observation opened up a possible scheme to avoid too large erosion and material damage by such transients in future fusion devices such as ITER. However, it is widely recognized that a more basic understanding is needed to extrapolate the results obtained in present experiments to future fusion devices. The 4th workshop on Stochasticity in Fusion Plasmas was held in Jülich, Germany, from 2 to 4 March 2009. This series of workshops aims at gathering fusion experts from various plasma configurations such as tokamaks, stellarators and reversed field pinches to exchange knowledge on structure formation and transport in stochastic fusion plasmas. The workshops have attracted colleagues from both experiment and theory and stimulated fruitful discussions about the basics of stochastic fusion plasmas. Important papers from the first three workshops in 2003, 2005 and 2007 have been published in previous special issues of Nuclear Fusion (stacks.iop.org/NF/44/i=6, stacks.iop.org/NF/46/i=4 and stacks.iop.org/NF/48/i=2). This special issue comprises contributions presented at the 4th SFP workshop, dealing with the main subjects such as formation of stochastic magnetic layers, energy and particle transport in stochastic magnetic fields, plasma response to external, non-axis-symmetric perturbations and last but not least application of resonant magnetic perturbations for ELM control and implications for ITER. The next workshop is planned for February/March 2011 in Jülich. For details see http://www.fz-juelich.de/sfp/. We hope that this special issue of Nuclear Fusion will further stimulate interest in the fascinating and important subject of stochasticity in fusion plasmas.

  5. Convergence of limb, visceral, and vertical semicircular canal or otolith inputs onto vestibular nucleus neurons

    NASA Technical Reports Server (NTRS)

    Jian, B. J.; Shintani, T.; Emanuel, B. A.; Yates, B. J.

    2002-01-01

    The major goal of this study was to determine the patterns of convergence of non-labyrinthine inputs from the limbs and viscera onto vestibular nucleus neurons receiving signals from vertical semicircular canals or otolith organs. A secondary aim was to ascertain whether the effects of non-labyrinthine inputs on the activity of vestibular nucleus neurons is affected by bilateral peripheral vestibular lesions. The majority (72%) of vestibular nucleus neurons in labyrinth-intact animals whose firing was modulated by vertical rotations responded to electrical stimulation of limb and/or visceral nerves. The activity of even more vestibular nucleus neurons (93%) was affected by limb or visceral nerve stimulation in chronically labyrinthectomized preparations. Some neurons received non-labyrinthine inputs from a variety of peripheral sources, including antagonist muscles acting at the same joint, whereas others received inputs from more limited sources. There was no apparent relationship between the spatial and dynamic properties of a neuron's responses to tilts in vertical planes and the non-labyrinthine inputs that it received. These data suggest that non-labyrinthine inputs elicited during movement will modulate the processing of information by the central vestibular system, and may contribute to the recovery of spontaneous activity of vestibular nucleus neurons following peripheral vestibular lesions. Furthermore, some vestibular nucleus neurons with non-labyrinthine inputs may be activated only during particular behaviors that elicit a specific combination of limb and visceral inputs.

  6. The vestibular system: a spatial reference for bodily self-consciousness

    PubMed Central

    Pfeiffer, Christian; Serino, Andrea; Blanke, Olaf

    2014-01-01

    Self-consciousness is the remarkable human experience of being a subject: the “I”. Self-consciousness is typically bound to a body, and particularly to the spatial dimensions of the body, as well as to its location and displacement in the gravitational field. Because the vestibular system encodes head position and movement in three-dimensional space, vestibular cortical processing likely contributes to spatial aspects of bodily self-consciousness. We review here recent data showing vestibular effects on first-person perspective (the feeling from where “I” experience the world) and self-location (the feeling where “I” am located in space). We compare these findings to data showing vestibular effects on mental spatial transformation, self-motion perception, and body representation showing vestibular contributions to various spatial representations of the body with respect to the external world. Finally, we discuss the role for four posterior brain regions that process vestibular and other multisensory signals to encode spatial aspects of bodily self-consciousness: temporoparietal junction, parietoinsular vestibular cortex, ventral intraparietal region, and medial superior temporal region. We propose that vestibular processing in these cortical regions is critical in linking multisensory signals from the body (personal and peripersonal space) with external (extrapersonal) space. Therefore, the vestibular system plays a critical role for neural representations of spatial aspects of bodily self-consciousness. PMID:24860446

  7. Experimental and clinical study of EHF treatment of vascular-vestibular dysfunction

    SciTech Connect

    Mal`tsev, A.E.; Abakarov, A.T.; Istomin, V.S.

    1994-07-01

    The authors present the results of a study of the effectiveness of EHF radiation on the cerebral hemodynamics, bioelectrical activity of the cerebral cortex, and functional state of the vestibular analyzer in chronic studies of cats using a model of vascular-vestibular dysfunction. The clinical part of the work reflects the results of studies of the functional state of cerebral blood circulation and the vestibular analyzer during the EHF treatment of angiovertebrogenic vestibular dysfunction in a background of initial manifestations of cerebral blood supply deficiency (angiodistonic variant).

  8. Reduction of visuo-spatial neglect with vestibular galvanic stimulation.

    PubMed

    Rorsman, I; Magnusson, M; Johansson, B B

    1999-06-01

    The purpose of the present investigation was to determine the effect of galvanic vestibular stimulation on visuo-spatial neglect without inducing nystagmus and associated discomfort. Fourteen patients with right-hemisphere stroke with neglect were assessed with two visuo-motor tasks ("Line crossing" and "Star cancellation") on three occasions. Seven of the subjects received galvanic vestibular stimulation during the second condition (Experiment 1), whereas the other seven received stimulation during the third assessment (Experiment 2). Between-group comparisons of stimulation effects were performed by analyzing change on visuo-spatial neglect from the first to the second condition in the two experimental groups. A significantly larger effect was demonstrated on the "Line crossing" task in Experiment 1. This finding suggests a stimulation effect beyond practice/spontaneous recovery, and may provide new possibilities in rehabilitation research because the stimulation can be given without discomfort. PMID:10380728

  9. Input/output properties of the lateral vestibular nucleus

    NASA Technical Reports Server (NTRS)

    Boyle, R.; Bush, G.; Ehsanian, R.

    2004-01-01

    This article is a review of work in three species, squirrel monkey, cat, and rat studying the inputs and outputs from the lateral vestibular nucleus (LVN). Different electrophysiological shock paradigms were used to determine the synaptic inputs derived from thick to thin diameter vestibular nerve afferents. Angular and linear mechanical stimulations were used to activate and study the combined and individual contribution of inner ear organs and neck afferents. The spatio-temporal properties of LVN neurons in the decerebrated rat were studied in response to dynamic acceleration inputs using sinusoidal linear translation in the horizontal head plane. Outputs were evaluated using antidromic identification techniques and identified LVN neurons were intracellularly injected with biocytin and their morphology studied.

  10. [Stabilization of the gaze in chameleons: visual and vestibular reflexes].

    PubMed

    Bennis, M; Sansonetti, A; Gioanni, H

    1990-01-01

    Some visual, vestibular and proprioceptive reflexes which contribute to gaze (head + eye) stabilization were quantified in the chameleon. All the reflexes were analysed in the horizontal plane, and the visual reflexes were also studied in the vertical plane. In restrained-head animals, both the optokinetic nystagmus (OKN) and the vestibulo-ocular reflex (VOR) had low gains. In free-head animals, the head (opto-collic or vestibulo-collic reflex) and eye (OKN or VOR) responses added their effects, thus improving gaze stabilization, especially during vestibular stimulation. Cervical stimulation provoked both a cervico-ocular reflex (COR) in the compensatory direction and a large number of saccades. The saccadic response was especially marked in the presence of patterned visual surroundings. PMID:2125847

  11. Space motion sickness and vestibular adaptation to weightlessness

    NASA Technical Reports Server (NTRS)

    Young, L. R.

    1983-01-01

    Theories of space motion sickness are discussed together with near future vestibular experiments for three Spacelab missions. The sensory conflict theory is covered, as well as theories involving unequal otolith masses, semicircular canals, cardiovascular adaptation and fluid shift toward the head, and extra-labyrinthine effects. Experiments will test the hypothesis that the sensitivity of the otolith organ response is shifted during weightlessness and that this shift carries over to the post-flight experience. Visual-vestibular-tactile interaction, vestibulo-ocular reflexes, ocular counterrolling, awareness of body position, otolith-spinal reflexes, and motion sickness susceptibility are among the parameters to be studied. Preflight and postflight tests will emphasize evaluation of any residual effects of the seven day weightless exposure on vestibulo-spinal and vestibulo-ocular pathways.

  12. Inertial vestibular coding of motion: concepts and evidence

    NASA Technical Reports Server (NTRS)

    Hess, B. J.; Angelaki, D. E.

    1997-01-01

    Central processing of inertial sensory information about head attitude and motion in space is crucial for motor control. Vestibular signals are coded relative to a non-inertial system, the head, that is virtually continuously in motion. Evidence for transformation of vestibular signals from head-fixed sensory coordinates to gravity-centered coordinates have been provided by studies of the vestibulo-ocular reflex. The underlying central processing depends on otolith afferent information that needs to be resolved in terms of head translation related inertial forces and head attitude dependent pull of gravity. Theoretical solutions have been suggested, but experimental evidence is still scarce. It appears, along these lines, that gaze control systems are intimately linked to motor control of head attitude and posture.

  13. A model describing vestibular detection of body sway motion.

    NASA Technical Reports Server (NTRS)

    Nashner, L. M.

    1971-01-01

    An experimental technique was developed which facilitated the formulation of a quantitative model describing vestibular detection of body sway motion in a postural response mode. All cues, except vestibular ones, which gave a subject an indication that he was beginning to sway, were eliminated using a specially designed two-degree-of-freedom platform; body sway was then induced and resulting compensatory responses at the ankle joints measured. Hybrid simulation compared the experimental results with models of the semicircular canals and utricular otolith receptors. Dynamic characteristics of the resulting canal model compared closely with characteristics of models which describe eye movement and subjective responses to body rotational motions. The average threshold level, in the postural response mode, however, was considerably lower. Analysis indicated that the otoliths probably play no role in the initial detection of body sway motion.

  14. Comparative Transduction Mechanisms of Vestibular Otolith Hair Cells

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.

    1994-01-01

    Hair cells in the bullfrog vestibular otolith organs regenerate following aminoglycoside ototoxicity. Hair cells in these organs are differentially sensitive to gentamicin, with saccular hair cells and hair cells in the utricular striola being damaged at lower gentamicin concentrations than hair cells in the utricular extrastriola. Regenerating hair cells in these organs have short hair bundles and can be classified into a number of phenotypes using the same morphological criteria used to identify their mature counterparts. Our studies suggest that some supporting cells can convert, or transdifferentiate,into hair cells without an intervening cell division. By stimulating these processes in humans, clinicians may be able to alleviate human deafness and peripheral vestibular disorders by regenerating and replacing lost hair cells. In vivo and in vitro studies were done on cell proliferation and hair cell regeneration.

  15. Verticality perception during and after galvanic vestibular stimulation.

    PubMed

    Volkening, Katharina; Bergmann, Jeannine; Keller, Ingo; Wuehr, Max; Müller, Friedemann; Jahn, Klaus

    2014-10-01

    The human brain constructs verticality perception by integrating vestibular, somatosensory, and visual information. Here we investigated whether galvanic vestibular stimulation (GVS) has an effect on verticality perception both during and after application, by assessing the subjective verticals (visual, haptic and postural) in healthy subjects at those times. During stimulation the subjective visual vertical and the subjective haptic vertical shifted towards the anode, whereas this shift was reversed towards the cathode in all modalities once stimulation was turned off. Overall, the effects were strongest for the haptic modality. Additional investigation of the time course of GVS-induced changes in the haptic vertical revealed that anodal shifts persisted for the entire 20-min stimulation interval in the majority of subjects. Aftereffects exhibited different types of decay, with a preponderance for an exponential decay. The existence of such reverse effects after stimulation could have implications for GVS-based therapy. PMID:25157799

  16. Marine Corps Breacher Training Study: auditory and vestibular findings.

    PubMed

    St Onge, Paul; McIlwain, David S; Hill, Melinda E; Walilko, Timothy J; Bardolf, Lynette B

    2011-01-01

    This article presents an overview of a contemporary research protocol conducted at the Marine Corps Weapons Training Battalion, Quantico, VA. The study was a comprehensive collaborative research initiative that evaluated a variety of environmental, auditory, and vestibular factors among Marines enrolled in the Breacher Training Course. The length of each course is 2 weeks and involves multiple exposures to blast overpressure and physical shock from ingress strategies used during the training. Observational data were collected pretraining, during training, and posttraining between September and June 2007. There was no change in the way the Marines conducted their training, and all data were collected based on the actual training scenario. The primary objective of this research protocol was to determine if Marines in the Breacher Training Course were at risk of injury during standard training practices. The principal conclusions were that hearing loss was statistically and clinically significant whereas the vestibular findings were overall unremarkable. PMID:21805461

  17. Effects of Weightlessness on Vestibular Development of Quail

    NASA Technical Reports Server (NTRS)

    Fritzsch, Bernd; Bruce, Laura L.

    1997-01-01

    The lack of gravity is known to alter vestibular responses in developing and adult vertebrates. One cause of these altered responses may be changes in the connections between the vestibular receptor and the brain. Therefore we propose to investigate the effects of gravity on the formations of connections between the gravity receptors of the ear and the brain in developing quail incubated in space beginning at an age before these connections are established (incubation day three) until near the time of hatching, when they are to some extent functional. This investigation will make use of a novel technique, the diffusion of a lipophilic dye, DiI, in fixed tissue. This technique can thus be used to analyze the connections in specimens fixed in orbit, thus eliminating changes due to the earth's gravity. The evaluation of the data will enable us to detect gross deviations from normal patterns as well as detailed quantitative deviations.

  18. Research on biophysical evaluation of the human vestibular system

    NASA Technical Reports Server (NTRS)

    Young, L. R.

    1974-01-01

    The human vestibular function was studied by the combined approach of advanced measurement and mathematical modelling. Fundamental measurements of some physical properties of endolymph and perilymph, combined with nystagmus measurements and fluid mechanical analysis of semicircular canal function furthered the theory of canal mechanical response to angular acceleration, caloric stimulation and relating linear acceleration. The effects of adaptation seen at low frequency angular stimulation were studied and modelled to remove some shortcomings of the torsion pendulum models. Otolith function was also studied experimentally and analytically, leading to a new set of models for subjective orientation. Applications to special problems of space, including the case of rotating spacecraft were investigated and the interaction of visual and vestibular cues and their relation to proprioceptive information was explored relative to postural control.

  19. Transient vestibular balance dysfunction after primary blast injury.

    PubMed

    Sylvia, F R; Drake, A I; Wester, D C

    2001-10-01

    Explosive munitions are used routinely in support of military operations. Moreover, service personnel are increasingly being deployed to regions where active conflict, terrorism, and land mines pose significant threats. Despite aggressive protective measures and safety practices, blast injury is an inherent risk. In contrast to secondary and tertiary blast injuries, primary blast injuries are generally limited to the air-filled organs of the respiratory, gastrointestinal, and auditory systems. We report the case of a Marine who entered the back-blast arc of a shoulder-launched multipurpose assault weapon at close range. Despite the magnitude of the blast, he sustained none of the classic findings suggestive of severe primary blast injury. However, he manifested unique vestibular balance abnormalities that precluded his return to full duty for several months. This suggests that personnel who sustain even a mild traumatic brain injury with vestibular manifestations may need prolonged observation and modified duty in certain military occupational specialties. PMID:11603248

  20. Noise-Compensated, Bias-Corrected Diffusion Weighted Endorectal Magnetic Resonance Imaging via a Stochastically Fully-Connected Joint Conditional Random Field Model

    E-print Network

    Boroomand, Ameneh; Khalvati, Farzad; Haider, Masoom A; Wong, Alexander

    2015-01-01

    Diffusion weighted magnetic resonance imaging (DW-MRI) is a powerful tool in imaging-based prostate cancer (PCa) screening and detection. Endorectal coils are commonly used in DW-MRI to improve the signal-to-noise ratio (SNR) of the acquisition, at the expense of significant intensity inhomogeneities (bias field) that worsens as we move away from the endorectal coil. The presence of bias field can have a significant negative impact on the accuracy of different image analysis tasks, as well as the accuracy of PCa tumor localization, thus leading to increased inter- and intra-observer variability. The previously proposed bias field correction methods often suffer from undesired noise amplification that can reduce the image quality of the resulting bias-corrected DW-MRI data. Here, we propose a unified data reconstruction approach that enables joint compensation of bias field as well as data noise in diffusion weighted endorectal magnetic resonance (DW-EMR) imaging. The proposed noise-compensated, bias-corrected...

  1. Clinical diagnosis of bilateral vestibular loss: three simple bedside tests

    PubMed Central

    Petersen, Jens A.; Straumann, Dominik

    2013-01-01

    Bilateral vestibular loss (BVL) may present with or without vertigo and hearing loss. Amongst the causes of BVL are vestibulotoxic antibiotics, autoimmune ear diseases, Menière’s disease and meningitis. Clinical diagnosis of BVL is based on the result of three simple bedside tests: a positive head impulse test, reduced dynamic visual acuity and a positive Romberg test on foam rubber. With these signs, diagnosis of severe BVL is usually straightforward to establish. PMID:23277792

  2. Comparative anatomy of the vestibular nuclear complex in submammalian vertebrates.

    NASA Technical Reports Server (NTRS)

    Mehler, W. R.

    1972-01-01

    A synopsis of the literature on the natural history of the vestibular nuclear complex (VNC) in lower vertebrates is presented in an attempt to assess the knowledge available. The review discloses that there is considerable descriptive information that is widely dispersed in the literature. However, information about the topology, number, and cellular composition of the cell groups that compose the VNC is sketchy. Major cytological and hodological information is still needed to establish which parts of the VNC actually are homologous.

  3. Bilateral vestibular deficiency: quality of life and economic implications

    PubMed Central

    Sun, Daniel Q.; Ward, Bryan K.; Semenov, Yevgeniy R.; Carey, John P.; Della Santina, Charles C.

    2014-01-01

    Importance Bilateral vestibular deficiency (BVD) causes chronic imbalance, unsteady vision, and greatly increases the risk of falls; however, its effects on quality of life (QOL) and economic impact are not well defined. Objective Quantify disease-specific and health-related quality of life, health care utilization and economic impact suffered by individuals with BVD in comparison to those with unilateral vestibular deficiency (UVD) Design Cross-sectional survey study of BVD, UVD, and healthy individuals Setting Academic medical center Participants Fifteen BVD, 22 UVD and 23 healthy individuals. Vestibular dysfunction was diagnosed by caloric nystagmography Intervention Survey questionnaire Main Outcomes and Measures Health status was measured using the Dizziness Handicap Index (DHI) and Health Utility Index Mark 3 (HUI3). Economic burden was estimated using participant responses to questions on disease-specific health care utilization and lost productivity. Results In comparison to UVD and normal controls, BVD patients had significantly worse DHI and HUI3 scores. Multivariate regression analysis showed UVD, BVD, increasing number of dizziness-related emergency department (ED) visits, and increasing dizziness-related work-place absenteeism were associated with worse HUI3 scores. BVD and UVD patients incurred annual economic burdens of $13,019 and $3,531 per patient, respectively. Conclusions and Relevance BVD significantly decreases quality of life and imposes substantial economic burdens on individuals and society. These results underscore the limits of adaptation and compensation in BVD. Furthermore, they quantify the potential benefits of prosthetic restoration of vestibular function both to these individuals and to society. PMID:24763518

  4. Student learns about the vestibular system in a microgravity demonstration

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Gary Coulter, a special assistant to NASA's life sciences researchers, explains the workings of the irner ear to a Virginia student. The chair rotates to disorient the vestibular system in a simulation of research on how astronauts adapt to space and readapt to Earth. The activity was part of the Space Research and You education event held by NASA's Office of Biological and Physical Research on June 25, 2002, in Arlington, VA, to highlight the research that will be conducted on STS-107.

  5. The sensitivity of an immature vestibular system to altered gravity.

    PubMed

    Gabriel, Martin; Frippiat, Jean-Pol; Frey, Herbert; Horn, Eberhard R

    2012-07-01

    Stimulus deprivation or stimulus augmentation can induce long-lasting modifications to sensory and motor systems. If deprivation is effective only during a limited period of life this phase is called "critical period." A critical period was described for the development of the roll-induced vestibuloocular reflex (rVOR) of Xenopus laevis using spaceflights. Spaceflight durations and basic conditions of Xenopus' development did not make it possible to answer the question whether exposure of the immature vestibular organ to weightlessness affects rVOR development. The embryonic development of Pleurodeles waltl is slow enough to solve this problem because the rVOR cannot be induced before 15 dpf. Stage 20-21 embryos (4 dpf) were exposed to microgravity during a 10-day spaceflight, or to 3g hypergravity following the same time schedule. After termination of altered gravity, the rVOR was recorded twice in most animals. The main observations were as follows: (1) after the first rVOR appearance at stage 37 (16 dpf), both rVOR gain and amplitude increased steadily up to saturation levels of 0.22 and 20°, respectively. (2) Three days after termination of microgravity, flight and ground larvae showed no rVOR; 1 day later, the rVOR could be induced only in ground larvae. Differences disappeared after 3 weeks. (3) For 10 days after 3g exposure, rVOR development was similar to that of 1g-controls but 3 weeks later, 3g-larvae showed a larger rVOR than 1g-controls. These observations indicate that the immature vestibular system is transiently sensitive to microgravity exposure and that exposure of the immature vestibular system to hypergravity leads to a slowly growing vestibular sensitization. PMID:22570271

  6. Investigation of otolith responses using ground based vestibular research facility

    NASA Technical Reports Server (NTRS)

    Correia, Manning J.; TABARACCI

    1989-01-01

    The general goal was to examine tilt sensitivity of horizontal semicircular canal afferents. Computer programs were tested which controlled the short axis centrifuge at the Vestibular Research Facility, acquired action potentials and produced data reduction analyses including histograms and gain and phase calculations. A pre-amplifier was also developed for the acquisition of action potentials. The data were gathered that can be used to contribute toward the understanding of the tilt sensitivity of semicircular canal afferents in the unanesthetized gerbil preparation.

  7. Regional differences in lectin binding patterns of vestibular hair cells

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.; Schuff, N. R.; Bancroft, J.

    1994-01-01

    Surface glycoconjugates of hair cells and supporting cells in the vestibular endorgans of the bullfrog were identified using biotinylated lectins with different carbohydrate specificities. Lectin binding in hair cells was consistent with the presence of glucose and mannose (CON A), galactose (RCA-I), N-acetylgalactosamine (VVA), but not fucose (UEA-I) residues. Hair cells in the bullfrog sacculus, unlike those in the utriculus and semicircular canals, did not stain for N-acetylglucosamine (WGA) or N-acetylgalactosamine (VVA). By contrast, WGA and, to a lesser extent, VVA, differentially stained utricular and semicircular canal hair cells, labeling hair cells located in peripheral, but not central, regions. In mammals, WGA uniformly labeled Type 1 hair cells while labeling, as in the bullfrog, Type 2 hair cells only in peripheral regions. These regional variations were retained after enzymatic digestion. We conclude that vestibular hair cells differ in their surface glycoconjugates and that differences in lectin binding patterns can be used to identify hair cell types and to infer the epithelial origin of isolated vestibular hair cells.

  8. Regional differences in lectin binding patterns of vestibular hair cells

    NASA Technical Reports Server (NTRS)

    Baird, R. A.; Schuff, N. R.; Bancroft, J.

    1993-01-01

    Surface glycoconjugates of hair cells and supporting cells in the vestibular endorgans of the bullfrog were identified using biotinylated lectins with different carbohydrate specificities. Lectin binding in hair cells was consistent with the presence of glucose and mannose (CON A), galactose (RCA-I), N-acetylglucosamine (WGA), N-acetylgalactosamine (VVA), but not fucose (UEA-I) residues. Hair cells in the bullfrog sacculus, unlike those in the utriculus and semicircular canals, did not strain for N-acetylglucosamine (WGA) or N-acetylgalactosamine (VVA). By contrast, WGA and, to a lesser extent, VVA, differentially stained utricular and semicircular canal hair cells, labeling hair cells located in peripheral, but not central, regions. In mammals, WGA uniformly labeled Type I hair cells while labeling, as in the bullfrog, Type II hair cells only in peripheral regions. These regional variations were retained after enzymatic digestion. We conclude that vestibular hair cells differ in their surface glycoconjugates and that differences in lectin binding patterns can be used to identify hair cell types and to infer the epithelial origin of isolated vestibular hair cells.

  9. Sleep and vestibular adaptation: implications for function in microgravity

    NASA Technical Reports Server (NTRS)

    Hobson, J. A.; Stickgold, R.; Pace-Schott, E. F.; Leslie, K. R.

    1998-01-01

    Optimal human performance depends upon integrated sensorimotor and cognitive functions, both of which are known to be exquisitely sensitive to loss of sleep. Under the microgravity conditions of space flight, adaptation of both sensorimotor (especially vestibular) and cognitive functions (especially orientation) must occur quickly--and be maintained--despite any concurrent disruptions of sleep that may be caused by microgravity itself, or by the uncomfortable sleeping conditions of the spacecraft. It is the three-way interaction between sleep quality, general work efficiency, and sensorimotor integration that is the subject of this paper and the focus of new work in our laboratory. To record sleep under field conditions including microgravity, we utilize a novel system called the Nightcap that we have developed and extensively tested on normal and sleep-disordered subjects. To perturb the vestibular system in ground-based studies, we utilize a variety of experimental conditions including optokinetic stimulation and both minifying and reversing goggle paradigms that have been extensively studied in relation to plasticity of the vestibulo-ocular reflex. Using these techniques we will test the hypothesis that vestibular adaptation both provokes and is enhanced by REM sleep under both ground-based and space conditions. In this paper we describe preliminary results of some of our studies.

  10. Vestibular information is necessary for maintaining metric properties of representational space: evidence from mental imagery.

    PubMed

    Péruch, Patrick; Lopez, Christophe; Redon-Zouiteni, Christine; Escoffier, Guy; Zeitoun, Alain; Sanjuan, Mélanie; Devèze, Arnaud; Magnan, Jacques; Borel, Liliane

    2011-09-01

    The vestibular system contributes to a wide range of functions, from postural and oculomotor reflexes to spatial representation and cognition. Vestibular signals are important to maintain an internal, updated representation of the body position and movement in space. However, it is not clear to what extent they are also necessary to mentally simulate movement in situations that do not involve displacements of the body, as in mental imagery. The present study assessed how vestibular loss can affect object-based mental transformations (OMTs), i.e., imagined rotations or translations of objects relative to the environment. Participants performed one task of mental rotation of 3D-objects and two mental scanning tasks dealing with the ability to build and manipulate mental images that have metric properties. Menière's disease patients were tested before unilateral vestibular neurotomy and during the recovery period (1 week and 1 month). They were compared to healthy participants tested at similar time intervals and to bilateral vestibular-defective patients tested after the recovery period. Vestibular loss impaired all mental imagery tasks. Performance varied according to the extent of vestibular loss (bilateral patients were frequently the most impaired) and according to the time elapsed after unilateral vestibular neurotomy (deficits were stronger at the early stage after neurotomy and then gradually compensated). These findings indicate that vestibular signals are necessary to perform OMTs and provide the first demonstration of the critical role of vestibular signals in processing metric properties of mental representations. They suggest that vestibular loss disorganizes brain structures commonly involved in mental imagery, and more generally in mental representation. PMID:21820000

  11. Pre-adaptation to noisy Galvanic vestibular stimulation is associated with enhanced sensorimotor performance in novel vestibular environments

    PubMed Central

    Moore, Steven T.; Dilda, Valentina; Morris, Tiffany R.; Yungher, Don A.; MacDougall, Hamish G.

    2015-01-01

    Performance on a visuomotor task in the presence of novel vestibular stimulation was assessed in nine healthy subjects. Four subjects had previously been adapted to 120 min exposure to noisy Galvanic vestibular stimulation (GVS) over 12 weekly sessions of 10 min; the remaining five subjects had never experienced GVS. Subjects were seated in a flight simulator and asked to null the roll motion of a visual bar presented on a screen using a joystick. Both the visual bar and the simulator cabin were moving in roll with a pseudorandom (sum of sines) waveform that were uncorrelated. The cross correlation coefficient, which ranges from 1 (identical waveforms) to 0 (unrelated waveforms), was calculated for the ideal (perfect nulling of bar motion) and actual joystick input waveform for each subject. The cross correlation coefficient for the GVS-adapted group (0.90 [SD 0.04]) was significantly higher (t[8] = 3.162; p = 0.013) than the control group (0.82 [SD 0.04]), suggesting that prior adaptation to GVS was associated with an enhanced ability to perform the visuomotor task in the presence of novel vestibular noise. PMID:26106308

  12. Multisensory Origin of the Subjective First-Person Perspective: Visual, Tactile, and Vestibular Mechanisms

    PubMed Central

    Pfeiffer, Christian; Lopez, Christophe; Schmutz, Valentin; Duenas, Julio Angel; Martuzzi, Roberto; Blanke, Olaf

    2013-01-01

    In three experiments we investigated the effects of visuo-tactile and visuo-vestibular conflict about the direction of gravity on three aspects of bodily self-consciousness: self-identification, self-location, and the experienced direction of the first-person perspective. Robotic visuo-tactile stimulation was administered to 78 participants in three experiments. Additionally, we presented participants with a virtual body as seen from an elevated and downward-directed perspective while they were lying supine and were therefore receiving vestibular and postural cues about an upward-directed perspective. Under these conditions, we studied the effects of different degrees of visuo-vestibular conflict, repeated measurements during illusion induction, and the relationship to a classical measure of visuo-vestibular integration. Extending earlier findings on experimentally induced changes in bodily self-consciousness, we show that self-identification does not depend on the experienced direction of the first-person perspective, whereas self-location does. Changes in bodily self-consciousness depend on visual gravitational signals. Individual differences in the experienced direction of first-person perspective correlated with individual differences in visuo-vestibular integration. Our data reveal important contributions of visuo-vestibular gravitational cues to bodily self-consciousness. In particular we show that the experienced direction of the first-person perspective depends on the integration of visual, vestibular, and tactile signals, as well as on individual differences in idiosyncratic visuo-vestibular strategies. PMID:23630611

  13. The Effect of Galvanic Vestibular Stimulation on Postural Response of Down Syndrome Individuals on the Seesaw

    ERIC Educational Resources Information Center

    Carvalho, R. L.; Almeida, G. L.

    2011-01-01

    In order to better understand the role of the vestibular system in postural adjustments on unstable surfaces, we analyzed the effects of galvanic vestibular stimulation (GVS) on the pattern of muscle activity and joint displacements (ankle knee and hip) of eight intellectually normal participants (control group--CG) and eight control group…

  14. Landmark Constrained Registration of High-Genus Surfaces Applied to Vestibular System Morphometry

    E-print Network

    Ferguson, Thomas S.

    Landmark Constrained Registration of High-Genus Surfaces Applied to Vestibular System Morphometry registration, landmark, high-genus surface, vestibular system, universal covering space, Beltrami coefficients system (VS) is an important research topic in medical image analysis. VS is a sensory structure

  15. Vestibular disturbance after myelography. Contrast media in the internal auditory canal.

    PubMed

    Mizuno, M; Yamasoba, T; Nomura, Y

    1992-01-01

    Two cases of vestibular disturbance caused by residual oily contrast medium in the internal auditory canals after myelography are reported. Nystagmus towards the affected side and normal caloric responses were observed; therefore, contrast media are considered to act as irritants to the vestibular nerve. PMID:1614685

  16. Abstract Surprisingly little is known of the perceptual consequences of visual or vestibular stimulation in up-

    E-print Network

    Harris, Laurence R.

    motion · Linear vection · Vestibular · Otoliths · Optic flow · Cross-modal perception · Perceptual. Another important cue to linear movement is provided by the otoliths of the vestibular system, probably supple- mented by somatic graviceptors (Mittelstaedt 1997). The otolith system transduces only linear

  17. Vestibular autonomic regulation (including motion sickness and the mechanism of vomiting)

    NASA Technical Reports Server (NTRS)

    Balaban, C. D.

    1999-01-01

    Autonomic manifestations of vestibular dysfunction and motion sickness are well established in the clinical literature. Recent studies of 'vestibular autonomic regulation' have focused predominantly on autonomic responses to stimulation of the vestibular sense organs in the inner ear. These studies have shown that autonomic responses to vestibular stimulation are regionally selective and have defined a 'vestibulosympathetic reflex' in animal experiments. Outside the realm of experimental preparations, however, the importance of vestibular inputs in autonomic regulation is unclear because controls for secondary factors, such as affective/emotional responses and cardiovascular responses elicited by muscle contraction and regional blood pooling, have been inadequate. Anatomic and physiologic evidence of an extensive convergence of vestibular and autonomic information in the brainstem suggests though that there may be an integrated representation of gravitoinertial acceleration from vestibular, somatic, and visceral receptors for somatic and visceral motor control. In the case of vestibular dysfunction or motion sickness, the unpleasant visceral manifestations (e.g. epigastric discomfort, nausea or vomiting) may contribute to conditioned situational avoidance and the development of agoraphobia.

  18. Sympathetic Arousal to a Vestibular Stressor in High and Low Hostile Men

    ERIC Educational Resources Information Center

    Carmona, Joseph E.; Holland, Alissa K.; Stratton, Harrison J.; Harrison, David W.

    2008-01-01

    The aim of the present experiment was to extend the literature on hostility and a cerebral systems based model of sympathetic arousal to a vestibular-based stress. Several authors have concluded that autonomic stress reactivity in high hostile individuals must be interpersonally based, whereas healthy vestibular system functioning does not depend…

  19. Effects of weightlessness on the development of the vestibular apparatus and ocular nystagmus in the rat

    NASA Technical Reports Server (NTRS)

    Clark, D. L.

    1972-01-01

    The chronic 2g centrifuge was constructed for testing weightlessness effects on development of vestibular apparatus and ocular nystagmus in the rat. Both the stationary and rotating rail tests were performed. A physiological review is presented on vestibular apparatus, along with a system analysis. Time constants and input threshold level of the system are also considered.

  20. Role of somatosensory and vestibular cues in attenuating visually induced human postural sway

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.; Benolken, Martha S.

    1993-01-01

    The purpose was to determine the contribution of visual, vestibular, and somatosensory cues to the maintenance of stance in humans. Postural sway was induced by full field, sinusoidal visual surround rotations about an axis at the level of the ankle joints. The influences of vestibular and somatosensory cues were characterized by comparing postural sway in normal and bilateral vestibular absent subjects in conditions that provided either accurate or inaccurate somatosensory orientation information. In normal subjects, the amplitude of visually induced sway reached a saturation level as stimulus amplitude increased. The saturation amplitude decreased with increasing stimulus frequency. No saturation phenomena was observed in subjects with vestibular loss, implying that vestibular cues were responsible for the saturation phenomenon. For visually induced sways below the saturation level, the stimulus-response curves for both normal and vestibular loss subjects were nearly identical implying that (1) normal subjects were not using vestibular information to attenuate their visually induced sway, possibly because sway was below a vestibular-related threshold level, and (2) vestibular loss subjects did not utilize visual cues to a greater extent than normal subjects; that is, a fundamental change in visual system 'gain' was not used to compensate for a vestibular deficit. An unexpected finding was that the amplitude of body sway induced by visual surround motion could be almost three times greater than the amplitude of the visual stimulus in normals and vestibular loss subjects. This occurred in conditions where somatosensory cues were inaccurate and at low stimulus amplitudes. A control system model of visually induced postural sway was developed to explain this finding. For both subject groups, the amplitude of visually induced sway was smaller by a factor of about four in tests where somatosensory cues provided accurate versus inaccurate orientation information. This implied that (1) the vestibular loss subjects did not utilize somatosensory cues to a greater extent than normal subjects; that is, changes in somatosensory system 'gain' were not used to compensate for a vestibular deficit, and (2) the threshold for the use of vestibular cues in normals was apparently lower in test conditions where somatosensory cues were providing accurate orientation information.

  1. Advances in the Diagnosis and Treatment of Vestibular Disorders: Psychophysics and Prosthetics

    PubMed Central

    2015-01-01

    Although vestibular disorders are common and often disabling, they remain difficult to diagnose and treat. For these reasons, considerable interest has been focused on developing new ways to identify peripheral and central vestibular abnormalities and on new therapeutic options that could benefit the numerous patients who remain symptomatic despite optimal therapy. In this review, I focus on the potential utility of psychophysical vestibular testing and vestibular prosthetics. The former offers a new diagnostic approach that may prove to be superior to the current tests in some circumstances; the latter may be a way to provide the brain with information about head motion that restores some elements of the information normally provided by the vestibular labyrinth. PMID:25834036

  2. Vestibular-Somatosensory Interactions: Effects of Passive Whole-Body Rotation on Somatosensory Detection

    PubMed Central

    Ferrè, Elisa Raffaella; Kaliuzhna, Mariia; Herbelin, Bruno; Haggard, Patrick; Blanke, Olaf

    2014-01-01

    Vestibular signals are strongly integrated with information from several other sensory modalities. For example, vestibular stimulation was reported to improve tactile detection. However, this improvement could reflect either a multimodal interaction or an indirect interaction driven by vestibular effects on spatial attention and orienting. Here we investigate whether natural vestibular activation induced by passive whole-body rotation influences tactile detection. In particular, we assessed the ability to detect faint tactile stimuli to the fingertips of the left and right hand during spatially congruent or incongruent rotations. We found that passive whole-body rotations significantly enhanced sensitivity to faint shocks, without affecting response bias. Critically, this enhancement of somatosensory sensitivity did not depend on the spatial congruency between the direction of rotation and the hand stimulated. Thus, our results support a multimodal interaction, likely in brain areas receiving both vestibular and somatosensory signals. PMID:24466064

  3. Naturally-occurring canine herpesvirus-1 infection of the vestibular labyrinth and ganglion of dogs.

    PubMed

    Parzefall, Birgit; Fischer, Andrea; Blutke, Andreas; Schmahl, Wolfgang; Matiasek, Kaspar

    2011-07-01

    Although the involvement of herpesviruses in vestibular disease of humans has been recognised for many years, knowledge of such a link in companion animal species is restricted to cats. This study was conducted to assess the prevalence of canine herpesvirus-1 (CaHV-1) infection of the vestibular labyrinth (VL) and vestibular ganglion (VG) of dogs by PCR. 'Field' herpesvirus was detected in the VL of 17% and in the VG of 19% of 52 dogs, respectively. None of the 11 dogs with infected VG and/or VL exhibited signs of vestibular disease, whereas clinical signs in the remaining three animals were attributable to intra-cranial neoplasia. As reported for other species, the putative role of herpesvirus infection in canine vestibular disease requires further elucidation. PMID:20696601

  4. Effects of vestibular loss on head stabilization in response to head and body perturbations

    NASA Technical Reports Server (NTRS)

    Shupert, C. L.; Horak, F. B.; Peterson, B. W. (Principal Investigator)

    1996-01-01

    Control of head position during postural responses is important to facilitate both the interpretation of vestibular signals and the stabilization of gaze. In these experiments, we compared head stabilization for two different postural tasks: 1) in response to perturbations at the head, and 2) in response to perturbations induced at the support surface, which perturb both body and head position. To determine whether normal vestibular function is necessary for head stabilization in these two tasks, responses to forward and backward mechanical perturbations of the head and body were compared for 13 normal subjects and 4 patients with profound bilateral vestibular loss (two with vestibular loss in adulthood and two in infancy). Normal subjects showed little neck muscle activity for body perturbations, but large, early activations in both neck extensors and flexors for head perturbations. In contrast, vestibular patients showed excessive neck muscle activation for body perturbations and reduced or absent neck muscle activity for head perturbations. Patients with vestibular loss in adulthood also showed increased head acceleration in response to both head and body perturbations, but patients with vestibular loss in infancy showed more normal head accelerations. For body perturbations, the differences in head acceleration between patients and normals were greater for later head acceleration peaks, indicating poor head control during the execution of the postural response. Trunk angle changes were also higher in the patients for forward body perturbations, indicating that poorer control of trunk position could have contributed to their poorer head stabilization. These results indicate that the vestibular system plays an important role in head and trunk stabilization for both head and body perturbations. However, the more normal head accelerations of the patients with infant vestibular loss also indicate that other mechanisms, possibly involving neck reflexes, can at least partially substitute for the vestibular system to provide head and trunk stabilization.

  5. Central and peripheral components of short latency vestibular responses in the chicken

    NASA Technical Reports Server (NTRS)

    Nazareth, A. M.; Jones, T. A.

    1998-01-01

    Far-field recordings of short latency vestibular responses to pulsed cranial translation are composed of a series of positive and negative peaks occurring within 10 ms following stimulus onset. In the bird, these vestibular evoked potentials (VsEPs) can be recorded noninvasively and have been shown in the chicken and quail to depend strictly upon the activation of the vestibular component of the eighth nerve. The utility of the VsEP in the study of vestibular systems is dependent upon a clear understanding of the neural sources of response components. The primary aim of the current research in the chicken was to critically test the hypotheses that 1) responses are generated by both peripheral and central neurons and 2) peaks P1 and N1 originate from first order vestibular neurons, whereas later waves primarily depend on activity in higher order neurons. The principal strategy used here was to surgically isolate the eighth nerve as it enters the brainstem. Interruption of primary afferents of the eighth nerve in the brainstem substantially reduced or eliminated peaks beyond P2, whereas P1 and N1 were generally spared. Surgical sections that spared vestibular pathways had little effect on responses. The degree of change in response components beyond N1 was correlated with the extent of damage to central vestibular relays. These findings support the conclusion that responses are produced by both peripheral and central elements of the vestibular system. Further, response peaks later than N1 appear to be dependent upon central relays, whereas P1 and N1 reflect activity of the peripheral nerve. These findings clarify the roles of peripheral and central neurons in the generation of vestibular evoked potentials and provide the basis for a more useful and detailed interpretation of data from vestibular response testing.

  6. Dizziness and Imbalance in the Elderly: Age-related Decline in the Vestibular System.

    PubMed

    Iwasaki, Shinichi; Yamasoba, Tatsuya

    2015-02-01

    Dizziness and imbalance are amongst the most common complaints in older people, and are a growing public health concern since they put older people at a significantly higher risk of falling. Although the causes of dizziness in older people are multifactorial, peripheral vestibular dysfunction is one of the most frequent causes. Benign paroxysmal positional vertigo is the most frequent form of vestibular dysfunction in the elderly, followed by Meniere's disease. Every factor associated with the maintenance of postural stability deteriorates during aging. Age-related deterioration of peripheral vestibular function has been demonstrated through quantitative measurements of the vestibulo-ocular reflex with rotational testing and of the vestibulo-collic reflex with testing of vestibular evoked myogenic potentials. Age-related decline of vestibular function has been shown to correlate with the age-related decrease in the number of vestibular hair cells and neurons. The mechanism of age-related cellular loss in the vestibular endorgan is unclear, but it is thought that genetic predisposition and cumulative effect of oxidative stress may both play an important role. Since the causes of dizziness in older people are multi-factorial, management of this disease should be customized according to the etiologies of each individual. Vestibular rehabilitation is found to be effective in treating both unilateral and bilateral vestibular dysfunction. Various prosthetic devices have also been developed to improve postural balance in older people. Although there have been no medical treatments improving age-related vestibular dysfunction, new medical treatments such as mitochondrial antioxidants or caloric restriction, which have been effective in preventing age-related hearing loss, should be ienvestigated in the future. PMID:25657851

  7. Development and Function of the Mouse Vestibular System in the Absence of Gravity Perception

    NASA Technical Reports Server (NTRS)

    Wolgemuth, Debra J.

    2005-01-01

    The hypothesis that was tested in this research was that the absence of gravity perception, such as would occur in space, would affect the development and function of the vestibular and central nervous systems. Further, we postulated that these effects would be more significant at specific stages of post-natal development of the animal. We also proposed the use of molecular genetic approaches that would provide important information as to the hierarchy of gene function during the development and subsequent function of the vestibular system. The tilted (tlt) mutant mouse has been characterized as lacking the ability to provide sensory input to the gravity receptors. The tlt/tlt mutant mice were a particularly attractive model for the study of vestibular function since the primary defect was limited to the receptor part of the vestibular system, and there were no detectable abnormal phenotypes in other organ systems. The goal of the proposed studies was to assess immediate and delayed effects of the lack of gravity perception on the vestibular system. Particular attention was paid to characterizing primarily affected periods of vestibular morphogenesis, and to identifying downstream genetic pathways that are altered in the CNS of the tlt/tlt mutant mouse. The specific aims were: (1) to characterize the postnatal morphogenesis of the CNS in the tlt mutant mouse, using detailed morphometric analysis of isolated vestibular ganglia and brain tissue at different stages of postnatal development and assessment of apoptotic cell death; (2) to examine the expression of selected genes implicated by mutational analysis to be important in vestibular development or function by in situ hybridization or immunohistochemistry in the mutant mice; and (3) to identify other genes involved in vestibular development and function, using differential cloning strategies to isolate genes whose expression is changed in the mutant versus normal vestibular system.

  8. Dizziness and Imbalance in the Elderly: Age-related Decline in the Vestibular System

    PubMed Central

    Iwasaki, Shinichi; Yamasoba, Tatsuya

    2015-01-01

    Dizziness and imbalance are amongst the most common complaints in older people, and are a growing public health concern since they put older people at a significantly higher risk of falling. Although the causes of dizziness in older people are multifactorial, peripheral vestibular dysfunction is one of the most frequent causes. Benign paroxysmal positional vertigo is the most frequent form of vestibular dysfunction in the elderly, followed by Meniere’s disease. Every factor associated with the maintenance of postural stability deteriorates during aging. Age-related deterioration of peripheral vestibular function has been demonstrated through quantitative measurements of the vestibulo-ocular reflex with rotational testing and of the vestibulo-collic reflex with testing of vestibular evoked myogenic potentials. Age-related decline of vestibular function has been shown to correlate with the age-related decrease in the number of vestibular hair cells and neurons. The mechanism of age-related cellular loss in the vestibular endorgan is unclear, but it is thought that genetic predisposition and cumulative effect of oxidative stress may both play an important role. Since the causes of dizziness in older people are multi-factorial, management of this disease should be customized according to the etiologies of each individual. Vestibular rehabilitation is found to be effective in treating both unilateral and bilateral vestibular dysfunction. Various prosthetic devices have also been developed to improve postural balance in older people. Although there have been no medical treatments improving age-related vestibular dysfunction, new medical treatments such as mitochondrial antioxidants or caloric restriction, which have been effective in preventing age-related hearing loss, should be ienvestigated in the future. PMID:25657851

  9. Quantum Stochastic Heating of a Trapped Ion

    E-print Network

    L. Horvath; R. Fisher; M. J. Collett; H. J. Carmichael

    2007-11-09

    The resonant heating of a harmonically trapped ion by a standing-wave light field is described as a quantum stochastic process combining a coherent Schroedinger evolution with Bohr-Einstein quantum jumps. Quantum and semi-quantum treatments are compared.

  10. Stochastic Cooling

    SciTech Connect

    Blaskiewicz, M.

    2011-01-01

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  11. Stochastic desertification

    NASA Astrophysics Data System (ADS)

    Weissmann, Haim; Shnerb, Nadav M.

    2014-04-01

    The process of desertification is usually modeled as a first-order transition, where a change of an external parameter (e.g., precipitation) leads to a catastrophic bifurcation followed by an ecological regime shift. However, vegetation elements like shrubs and trees undergo a stochastic birth-death process with an absorbing state; such a process supports a second-order continuous transition with no hysteresis. Here we study a minimal model of a first-order transition with an absorbing state. When the external parameter varies adiabatically the transition is indeed continuous, and we present some empirical evidence that supports this scenario. The front velocity renormalizes to zero at the extinction transition, leaving a finite “quantum” region where domain walls are stable and the desertification takes place via accumulation of local extinctions. A catastrophic regime shift may occur as a dynamical hysteresis, if the pace of environmental variations is too fast.

  12. Vestibular and Visual Contribution to Fish Behavior Under Microgravity

    NASA Astrophysics Data System (ADS)

    Ijiri, K.

    Vestibular and visual information are two major factors fish use for controlling their posture under 1 G conditions. Parabolic flight experiments were carried out to observe the fish behavior under microgravity for several different strains of Medaka fish (Oryzias latipes). There existed a clear strain-difference in the behavioral response of the fish under microgravity: Some strains looped, while other strains did not loop at all. However, even the latter strains looped under microgravity conditions when kept in complete darkness, suggesting the contribution of visual information to the posture control under microgravity. In the laboratory, eyesight (visual acuity) was checked for each strain, using a rotating striped-drum apparatus. The results also showed a strain-difference, which gave a clue to the different degree of adaptability to microgravity among different strains. Beside loopings, some fish exhibited rolling movement around their body axis. Tracing each fish during and between parabolas, it was shown that to which side each fish rolls was determined specifically to each individual fish, and not to each strain. Thus, rolling direction is not genetically determined. This may support the otolith asymmetry hypothesis. Fish of a mutant strain (ha strain, having homozygous recessive of one gene ha) have some malfunction in otolith-vestibular system, and their behavior showed they are not dependent on gravity. Morphological abnormalities of their ear vesicles during the embryonic and baby stages were noted. Their eyesight and dorsal light responses were also studied. Progress in the project of establishing a new strain which has good eyesight and, at the same time, being deficient in otolith-vestibular system was reported. Crosses between the strain of good eyesight and ha strain were made, and to some extent, F2 fish have already shown such characteristics suited for living under microgravity conditions

  13. Maturation of firing pattern in chick vestibular nucleus neurons.

    PubMed

    Shao, M; Hirsch, J C; Peusner, K D

    2006-08-25

    The principal cells of the chick tangential nucleus are vestibular nucleus neurons participating in the vestibuloocular and vestibulocollic reflexes. In birds and mammals, spontaneous and stimulus-evoked firing of action potentials is essential for vestibular nucleus neurons to generate mature vestibular reflex activity. The emergence of spike-firing pattern and the underlying ion channels were studied in morphologically-identified principal cells using whole-cell patch-clamp recordings from brain slices of late-term embryos (embryonic day 16) and hatchling chickens (hatching day 1 and hatching day 5). Spontaneous spike activity emerged around the perinatal period, since at embryonic day 16 none of the principal cells generated spontaneous action potentials. However, at hatching day 1, 50% of the cells fired spontaneously (range, 3 to 32 spikes/s), which depended on synaptic transmission in most cells. By hatching day 5, 80% of the principal cells could fire action potentials spontaneously (range, 5 to 80 spikes/s), and this activity was independent of synaptic transmission and showed faster kinetics than at hatching day 1. Repetitive firing in response to depolarizing pulses appeared in the principal cells starting around embryonic day 16, when <20% of the neurons fired repetitively. However, almost 90% of the principal cells exhibited repetitive firing on depolarization at hatching day 1, and 100% by hatching day 5. From embryonic day 16 to hatching day 5, the gain for evoked spike firing increased almost 10-fold. At hatching day 5, a persistent sodium channel was essential for the generation of spontaneous spike activity, while a small conductance, calcium-dependent potassium current modulated both the spontaneous and evoked spike firing activity. Altogether, these in vitro studies showed that during the perinatal period, the principal cells switched from displaying no spontaneous spike activity at resting membrane potential and generating one spike on depolarization to the tonic firing of spontaneous and evoked action potentials. PMID:16690214

  14. Yaw and pitch visual-vestibular interaction in weightlessness

    NASA Technical Reports Server (NTRS)

    Clement, G.; Wood, S. J.; Reschke, M. F.; Berthoz, A.; Igarashi, M.

    1999-01-01

    Both yaw and pitch visual-vestibular interactions at two separate frequencies of chair rotation (0.2 and 0.8 Hz) in combination with a single velocity of optokinetic stimulus (36 degrees/s) were used to investigate the effects of sustained weightlessness on neural strategies adopted by astronaut subjects to cope with the stimulus rearrangement of spaceflight. Pitch and yaw oscillation in darkness at 0.2 and 0.8 Hz without optokinetic stimulation, and constant velocity linear optokinetic stimulation at 18, 36, and 54 degrees/s presented relative to the head with the subject stationary, were used as controls for the visual-vestibular interactions. The results following 8 days of space flight showed no significant changes in: (1) either the horizontal and vertical vestibulo-ocular reflex (VOR) gain, phase, or bias; (2) the yaw visual-vestibular response (VVR); or (3) the horizontal or vertical optokinetic (OKN) slow phase velocity (SPV). However, significant changes were observed: (1) when during pitch VVR at 0.2 Hz late inflight, the contribution of the optokinetic input to the combined oculomotor response was smaller than during the stationary OKN SPV measurements, followed by an increased contribution during the immediate postflight testing; and (2) when during pitch VVR at 0.8 Hz, the component of the combined oculomotor response due to the underlying vertical VOR was more efficiently suppressed early inflight and less suppressed immediately postflight compared with preflight observations. The larger OKN response during pitch VVR at 0.2 Hz and the better suppression of VOR during pitch VVR at 0.8 Hz postflight are presumably due to the increased role of vision early inflight and immediately after spaceflight, as previously observed in various studies. These results suggest that the subjects adopted a neural strategy to structure their spatial orientation in weightlessness by reweighting visual, otolith, and perhaps tactile/somatic signals.

  15. Vestibular evoked myogenic potential responses in obstructive sleep apnea syndrome.

    PubMed

    Mutlu, Murad; Bay?r, Ömer; Yüceege, Melike B; Karagöz, Tu?ba; F?rat, Hikmet; Özdek, Ali; Ak?n, ?stemihan; Korkmaz, Hakan

    2015-11-01

    Obstructive sleep apnea syndrome (OSAS) provokes oxidative stress and ischemia, which affects the central nervous system. The degeneration of neurons in the brainstem due to periodic hypoxia can be evaluated by vestibular and audiologic tests. The objective of this study is to determine brainstem damage in severe OSAS patients with the help of vestibular evoked myogenic potential (VEMP) responses. Prospective, randomize, double-blind. Research-training hospital. We compared cervical vestibular evoked myogenic potential (cVEMP) responses between severe OSAS patients and a control group. 54 patients were included and divided into the OSAS group, with severe OSAS (apnea-hypopnea index, AHI >70), and a control group with snoring without OSAS (AHI <5). Both groups underwent cVEMP. Bilateral recordings with simultaneous binaural logon stimulations were used during VEMP recordings. The existing p1n1 and n2p2 responses, p1, n1, n2, and p2 latencies and amplitudes, and p1n1 and n2p2 intervals were measured. Statistically significant differences were revealed between patients and controls for the response rate of the p1n1, n2p2 and p1n1, n2p2 amplitudes. There were no significant differences between the two groups with respect to the latencies of p1, n1, n2 and p2, or the p1n1 and n2p2 intervals. The VEMP response rate was lower in severe OSAS patients, and all amplitudes were shorter than in healthy subjects. VEMP recordings in severe OSAS subjects demonstrates abnormalities in brainstem pathways. It appears that brainstem damage in severe OSAS can be detected by cVEMP recordings. PMID:25288372

  16. Cold shivering activity after unilateral destruction of the vestibular apparatus

    NASA Technical Reports Server (NTRS)

    Kuzmina, G. I.

    1980-01-01

    The bioelectric activity of muscles (flexors and extensors of the forelimbs and hindlimbs) during cold shivering after unilateral destruction of the vestibular apparatus. It was found, that unilateral delabyrinthing produces bilateral facilitation of cold shivering in the flexor extremities more pronounced on the ipsilateral side. In the extensor muscles there was an absence of bioelectric activity both before and after delabyrinthing. Enhancement of cold shivering in the flexor extremities following intervention was evidently conditioned by removal of the inhibiting effect of the vestibulary apparatus on the function of special centers.

  17. Astronaut Charles Conrad checks out Human Vestibular Function experiment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Charles Conrad Jr., commander of the first manned Skylab mission, checks out the Human Vestibular Function, Experiment M131, during Skylab training at JSC. Conrad is in the work and experiments compartment of the crew quarters of the Skylab Orbital Workshop (OWS) trainer at JSC. The reference sphere with a magnetic rod is used by the astronaut to indicate body orientation non-visually. The litter chair in which he is seated can be rotated by a motor at its base or, when not being rotated, can tilt forward, backward or to either side.

  18. Vestibular-related neuroscience and manned space flight

    NASA Technical Reports Server (NTRS)

    Igarashi, Makoto

    1988-01-01

    The effects of weightlessness on the human vestibular system are examined, reviewing the results of recent investigations. The functional, neurophysiological, and neurochemical changes which occur during adaptation to weightlessness are discussed; theoretical models proposed to explain the underlying mechanism are outlined; and particular attention is given to the author's experiments on squirrel monkeys. There, good correlations were found between (1) the recovery of locomotor balance function in the acute compensation phase after unilateral labyrinthectomy and (2) the bilateral imbalance in the optical density of GABA-like immunoreactivity.

  19. A critical period for functional vestibular development in zebrafish

    NASA Technical Reports Server (NTRS)

    Moorman, Stephen J.; Cordova, Rodolfo; Davies, Sarah A.

    2002-01-01

    We have determined a critical period for vestibular development in zebrafish by using a bioreactor designed by NASA to simulate microgravity for cells in culture. A critical period is defined as the briefest period of time during development when stimulus deprivation results in long lasting or permanent sensory deficits. Zebrafish eggs were collected within 3 hours of being laid and fertilized. In experiment 1, eggs were placed in the bioreactor at 3, 24, 30, 36, 48, or 72 hours postfertilization (hPF) and maintained in the bioreactor until 96 hPF. In experiment 2, eggs were placed in the bioreactor immediately after they were collected and maintained in the bioreactor until 24, 36, 48, 60, 66, 72, or 96 hPF. Beginning at 96 hPF, all larvae had their vestibulo-ocular reflexes (VOR) evaluated once each day for 5 days. Only larvae that hatched from eggs that were placed in the bioreactor before 30 hPF in experiment 1 or removed from the bioreactor later than 66 hPF in experiment 2 had VOR deficits that persisted for at least 5 days. These data suggest a critical period for vestibular development in the zebrafish that begins before 30 hPF and ends after 66 hPF. To confirm this, zebrafish eggs were placed in the bioreactor at 24 hPF and removed at 72 hPF. VORs were evaluated in these larvae once each day for 5 days beginning at 96 hPF. These larvae had VOR deficits that persisted for at least 5 days. In addition, larvae that had been maintained in the bioreactor from 24 to 66 hPF or from 30 to 72 hPF, had only temporary VOR deficits. In a final experiment, zebrafish eggs were placed in the bioreactor at 3 hPF and removed at 96 hPF but the bioreactor was turned off from 24 hPF to 72 hPF. These larvae had normal VORs when they were removed from the bioreactor at 96 hPF. Taken as a whole, these data support the idea that there is a critical period for functional maturation of the zebrafish vestibular system. The developmental period identified includes the timeframe during which the vestibular primary afferent neurons are born, innervate their central and peripheral targets, and remodel their central projections. Copyright 2002 Wiley-Liss, Inc.

  20. Vestibular nerve section in a child with intractable Menière's disease.

    PubMed

    See, Goh Bee; Mahmud, Mohd Ridzo Bin; Zurin, A A R; Putra, S H A Primuharsa; Saim, Lokman Bin

    2002-05-31

    Clinical presentation of Menière's disease in children is not as typical as in adults. The triad of vertigo, tinnitus and deafness are not usually elicited, diagnosis often being made after years of follow up and batteries of investigation. A case of Menière's disease in a 3-year-old boy is presented. The diagnosis was only obvious at the age of 8 when the triad of vertigo, deafness and tinnitus were present. His disease progressed despite a trial of intratympanic gentamicin injections and endolymphatic sac decompression. Vestibular nerve section was subsequently performed for his intractable disease. Following the procedure he was asymptomatic and able to attend school. PMID:12020915

  1. Central vestibular disease in a blue and gold macaw (Ara ararauna) with cerebral infarction and hemorrhage.

    PubMed

    Grosset, Claire; Guzman, David Sanchez-Migallon; Keating, M Kelly; Gaffney, Patricia M; Lowenstine, Linda; Zwingenberger, Allison; Young, Alex C; Vernau, Karen M; Sokoloff, Amberly M; Hawkins, Michelle G

    2014-06-01

    A 24-year-old female blue and gold macaw (Ara ararauna) was presented for an acute onset of left head tilt. On examination, the macaw was dehydrated and had a 120-degree left head tilt, decreased proprioception of the left pelvic limb, and intermittent vertical nystagmus. Results of hematologic testing and biochemical analysis revealed severe leukocytosis with lymphopenia and heterophilia and a high uric acid concentration. Radiographs showed bilateral intertarsal joint osteoarthritis and a healed ulnar fracture. Magnetic resonance imaging of the brain revealed focal T2 and fluid-attenuated inversion recovery hyperintense lesions in the right cerebral hemisphere and in the midbrain. The midbrain lesion showed susceptibility artifact on the T2* sequence, suggesting hemorrhage. In the T2* sequence, iron accumulation (as seen with hemorrhage) distorts the magnetic signal, resulting in the production of a susceptibility artifact, which can then be visualized as a region of hypointensity. The bird was hospitalized but died despite intensive care. Necropsy revealed multiple cerebral vascular lesions including an acute cerebral infarct, a ruptured midbrain aneurysm, and multifocal systemic atherosclerosis. To our knowledge, this is the first report of a cerebral aneurysm in a bird. This report correlates the clinical presentation, imaging, and histopathologic findings in a macaw with central vestibular disease and demonstrates how advanced imaging techniques can identify hemorrhagic lesions through the T2* sequence. PMID:25115042

  2. Partial Hearing Preservation after Translabyrinthine Vestibular Schwannoma Resection: Case Report and Review of the Literature

    PubMed Central

    Ahsan, Syed F.; Bojrab, Dennis; Standring, Robert

    2015-01-01

    Objectives?To describe a unique case report of a patient who had partial hearing preservation after translabyrinthine (TL) removal of a vestibular schwannoma (VS). Study Design?Case report. Methods?The patient's chart was reviewed for hearing levels before and after surgery. Preoperative magnetic resonance imaging (MRI) was compared with postoperative MRI for determination of completeness of tumor removal. The literature on hearing preservation after TL resection is reviewed. Results?A 42-year-old woman underwent a TL removal of a VS. The patient's preoperative pure tone average (PTA) was 70?dB and word recognition score (WRS) was 40%. Postoperatively, the patient was able to hear ambient noise in the surgical ear. Her bone conduction PTA was 70?dB, but the WRS score dropped to 2%. One year later, she continues to hear ambient noise and sound in the operative ear. Discussion?This is the fifth reported case of partial hearing preservation after TL VS resection. It suggests that by preserving the vestibule and the fluids within the vestibule when possible, there maybe enough residual auditory neural structures for a traditional cochlear implant to benefit such a patient. In addition, preserving the incus when possible may help maintain air conduction to help patients with sound localization. PMID:26623229

  3. Spatial cognition, body representation and affective processes: the role of vestibular information beyond ocular reflexes and control of posture

    PubMed Central

    Mast, Fred W.; Preuss, Nora; Hartmann, Matthias; Grabherr, Luzia

    2014-01-01

    A growing number of studies in humans demonstrate the involvement of vestibular information in tasks that are seemingly remote from well-known functions such as space constancy or postural control. In this review article we point out three emerging streams of research highlighting the importance of vestibular input: (1) Spatial Cognition: Modulation of vestibular signals can induce specific changes in spatial cognitive tasks like mental imagery and the processing of numbers. This has been shown in studies manipulating body orientation (changing the input from the otoliths), body rotation (changing the input from the semicircular canals), in clinical findings with vestibular patients, and in studies carried out in microgravity. There is also an effect in the reverse direction; top-down processes can affect perception of vestibular stimuli. (2) Body Representation: Numerous studies demonstrate that vestibular stimulation changes the representation of body parts, and sensitivity to tactile input or pain. Thus, the vestibular system plays an integral role in multisensory coordination of body representation. (3) Affective Processes and Disorders: Studies in psychiatric patients and patients with a vestibular disorder report a high comorbidity of vestibular dysfunctions and psychiatric symptoms. Recent studies investigated the beneficial effect of vestibular stimulation on psychiatric disorders, and how vestibular input can change mood and affect. These three emerging streams of research in vestibular science are—at least in part—associated with different neuronal core mechanisms. Spatial transformations draw on parietal areas, body representation is associated with somatosensory areas, and affective processes involve insular and cingulate cortices, all of which receive vestibular input. Even though a wide range of different vestibular cortical projection areas has been ascertained, their functionality still is scarcely understood. PMID:24904327

  4. Multifaceted effects of noisy galvanic vestibular stimulation on manual tracking behavior in Parkinson’s disease

    PubMed Central

    Lee, Soojin; Kim, Diana J.; Svenkeson, Daniel; Parras, Gabriel; Oishi, Meeko Mitsuko K.; McKeown, Martin J.

    2015-01-01

    Parkinson’s disease (PD) is a neurodegenerative movement disorder that is characterized clinically by slowness of movement, rigidity, tremor, postural instability, and often cognitive impairments. Recent studies have demonstrated altered cortico-basal ganglia rhythms in PD, which raises the possibility of a role for non-invasive stimulation therapies such as noisy galvanic vestibular stimulation (GVS). We applied noisy GVS to 12 mild-moderately affected PD subjects (Hoehn and Yahr 1.5–2.5) off medication while they performed a sinusoidal visuomotor joystick tracking task, which alternated between 2 task conditions depending on whether the displayed cursor position underestimated the actual error by 30% (‘Better’) or overestimated by 200% (‘Worse’). Either sham or subthreshold, noisy GVS (0.1–10 Hz, 1/f-type power spectrum) was applied in pseudorandom order. We used exploratory (linear discriminant analysis with bootstrapping) and confirmatory (robust multivariate linear regression) methods to determine if the presence of GVS significantly affected our ability to predict cursor position based on target variables. Variables related to displayed error were robustly seen to discriminate GVS in all subjects particularly in the Worse condition. If we considered higher frequency components of the cursor trajectory as “noise,” the signal-to-noise ratio of cursor trajectory was significantly increased during the GVS stimulation. The results suggest that noisy GVS influenced motor performance of the PD subjects, and we speculate that they were elicited through a combination of mechanisms: enhanced cingulate activity resulting in modulation of frontal midline theta rhythms, improved signal processing in neuromotor system via stochastic facilitation and/or enhanced “vigor” known to be deficient in PD subjects. Further work is required to determine if GVS has a selective effect on corrective submovements that could not be detected by the current analyses. PMID:25698944

  5. Vestibular implantation and longitudinal electrical stimulation of the semicircular canal afferents in human subjects.

    PubMed

    Phillips, James O; Ling, Leo; Nie, Kaibao; Jameyson, Elyse; Phillips, Christopher M; Nowack, Amy L; Golub, Justin S; Rubinstein, Jay T

    2015-06-01

    Animal experiments and limited data in humans suggest that electrical stimulation of the vestibular end organs could be used to treat loss of vestibular function. In this paper we demonstrate that canal-specific two-dimensionally (2D) measured eye velocities are elicited from intermittent brief 2 s biphasic pulse electrical stimulation in four human subjects implanted with a vestibular prosthesis. The 2D measured direction of the slow phase eye movements changed with the canal stimulated. Increasing pulse current over a 0-400 ?A range typically produced a monotonic increase in slow phase eye velocity. The responses decremented or in some cases fluctuated over time in most implanted canals but could be partially restored by changing the return path of the stimulation current. Implantation of the device in Meniere's patients produced hearing and vestibular loss in the implanted ear. Electrical stimulation was well tolerated, producing no sensation of pain, nausea, or auditory percept with stimulation that elicited robust eye movements. There were changes in slow phase eye velocity with current and over time, and changes in electrically evoked compound action potentials produced by stimulation and recorded with the implanted device. Perceived rotation in subjects was consistent with the slow phase eye movements in direction and scaled with stimulation current in magnitude. These results suggest that electrical stimulation of the vestibular end organ in human subjects provided controlled vestibular inputs over time, but in Meniere's patients this apparently came at the cost of hearing and vestibular function in the implanted ear. PMID:25652917

  6. Subjective Visual Vertical in Various Vestibular Disorders by Using a Simple Bucket Test.

    PubMed

    Chetana, Naik; Jayesh, Rane

    2015-06-01

    Subjective Visual Vertical (S.V.V.) assesses the ability to perceive verticality which depends on visual, vestibular and somatosensory inputs. The judgment of verticality is altered when there is otolith dysfunction. Objective of our study was to present a simple method to assess S.V.V. and to analyze S.V.V. changes in various vestibular disorders. 100 subjects presenting with vestibular disorders in period of 1 year 2 months were subjected to Neurotological history and examination. Patients with non-vestibular causes were excluded. S.V.V was tested with a simple innovative device-a specially designed bucket. The angle of deviation from vertical was noted in degrees. Normal deviation is 0 ± 2°. Out of 23 patients with vestibular neuritis 83 % showed abnormal S.V.V. Amongst 11 patients of Meniere's disease, 55 % and 42 patients of BPPV, 71 % had abnormal S.V.V. Amongst 24 patients with other causes 15 % showed abnormal S.V.V. S.V.V is a reliable screening tool in assessment of vestibular dysfunction along with other clinical tests. It has a prognostic value during recovery following vestibular damage. The modified 'Bucket' is a simple, easy to use and cost-effective device to do the S.V.V. in daily practice. PMID:26075175

  7. Large basolateral processes on type II hair cells are novel processing units in mammalian vestibular organs.

    PubMed

    Pujol, Rémy; Pickett, Sarah B; Nguyen, Tot Bui; Stone, Jennifer S

    2014-10-01

    Sensory receptors in the vestibular system (hair cells) encode head movements and drive central motor reflexes that control gaze, body movements, and body orientation. In mammals, type I and II vestibular hair cells are defined by their shape, contacts with vestibular afferent nerves, and membrane conductance. Here we describe unique morphological features of type II vestibular hair cells in mature rodents (mice and gerbils) and bats. These features are cytoplasmic processes that extend laterally from the hair cell base and project under type I hair cells. Closer analysis of adult mouse utricles demonstrated that the basolateral processes of type II hair cells vary in shape, size, and branching, with the longest processes extending three to four hair cell widths. The hair cell basolateral processes synapse upon vestibular afferent nerves and receive inputs from vestibular efferent nerves. Furthermore, some basolateral processes make physical contacts with the processes of other type II hair cells, forming some sort of network among type II hair cells. Basolateral processes are rare in perinatal mice and do not attain their mature form until 3-6 weeks of age. These observations demonstrate that basolateral processes are significant signaling regions of type II vestibular hair cells and suggest that type II hair cells may directly communicate with each other, which has not been described in vertebrates. PMID:24825750

  8. Molecular composition of extracellular matrix in the vestibular nuclei of the rat.

    PubMed

    Rácz, Eva; Gaál, Botond; Kecskes, Szilvia; Matesz, Clara

    2014-07-01

    Previous studies have demonstrated that the molecular and structural composition of the extracellular matrix (ECM) shows regional differences in the central nervous system. By using histochemical and immunohistochemical methods, we provide here a detailed map of the distribution of ECM molecules in the vestibular nuclear complex (VNC) of the rat. We have observed common characteristics of the ECM staining pattern in the VNC and a number of differences among the individual vestibular nuclei and their subdivisions. The perineuronal net (PNN), which is the pericellular condensation of ECM, showed the most intense staining for hyaluronan, aggrecan, brevican and tenascin-R in the superior, lateral and medial vestibular nuclei, whereas the HAPLN1 link protein and the neurocan exhibited moderate staining intensity. The rostral part of the descending vestibular nucleus (DVN) presented a similar staining pattern in the PNN, with the exception of brevican, which was negative. The caudal part of the DVN had the weakest staining for all ECM molecules in the PNN. Throughout the VNC, versican staining in the PNN, when present, was distinctive due to its punctuate appearance. The neuropil also exhibited heterogeneity among the individual vestibular nuclei in ECM staining pattern and intensity. We find that the heterogeneous distribution of ECM molecules is associated in many cases with the variable cytoarchitecture and hodological organization of the vestibular nuclei, and propose that differences in the ECM composition may be related to specific neuronal functions associated with gaze and posture control and vestibular compensation. PMID:23681169

  9. Vestibular nuclei characterized by calcium-binding protein immunoreactivity and tract tracing in Gekko gecko.

    PubMed

    Song, Jing; Wang, Wenbo; Carr, Catherine E; Dai, Zhendong; Tang, Yezhong

    2013-02-01

    Immunohistochemical techniques were used to describe the distribution of the calcium binding proteins calretinin, calbindin and parvalbumin as well as synaptic vesicle protein 2 in the vestibular nuclei of the Tokay gecko (Gekko gecko). In addition, tract tracing was used to investigate connections between the vestibular nerves and brainstem nuclei. Seven vestibular nuclei were recognized: the nuclei cerebellaris lateralis (Cerl), vestibularis dorsolateralis (Vedl), ventrolateralis (Vevl), ventromedialis (Vevm), tangentialis (Vetg), ovalis (VeO) and descendens (Veds). Vestibular fibers entered the brainstem with the ascending branch projecting to Vedl and Cerl, the lateral descending branch to Veds, and the medial descending branch to ipsilateral Vevl. Cerl lay most rostral, in the cerebellar peduncle. Vedl, located rostrally, was ventral to the cerebellar peduncle, and consisted of loosely arranged multipolar and monopolar cells. Vevl was found at the level of the vestibular nerve root and contained conspicuously large cells and medium-sized cells. Veds is a large nucleus, the most rostral portion of which is situated lateral and ventral to Vevl, and occupies much of the dorsal brainstem extending caudally through the medulla. VeO is a spherically shaped cell group lateral to the auditory nucleus magnocellularis and dorsal to the caudal part of Vevl. Vevm and Vetg were small in the present study. Except for VeO, all other vestibular nuclei appear directly comparable to counterparts in other reptiles and birds based on their location, cytoarchitecture, and connections, indicating these are conserved features of the vestibular system. PMID:23201031

  10. Vestibular nuclei characterized by calcium-binding protein immunoreactivity and tract tracing in Gekko gecko

    PubMed Central

    Song, Jing; Wang, Wenbo; Carr, Catherine E.; Dai, Zhendong; Tang, Yezhong

    2014-01-01

    Immunohistochemical techniques were used to describe the distribution of the calcium binding proteins calretinin, calbindin and parvalbumin as well as synaptic vesicle protein 2 in the vestibular nuclei of the Tokay gecko (Gekko gecko). In addition, tract tracing was used to investigate connections between the vestibular nerves and brainstem nuclei. Seven vestibular nuclei were recognized: the nuclei cerebellaris lateralis (Cerl), vestibularis dorsolateralis (Vedl), ventrolateralis (Vevl), ventromedialis (Vevm), tangentialis (Vetg), ovalis (VeO) and descendens (Veds). Vestibular fibers entered the brainstem with the ascending branch projecting to Vedl and Cerl, the lateral descending branch to Veds, and the medial descending branch to ipsilateral Vevl. Cerl lay most rostral, in the cerebellar peduncle. Vedl, located rostrally, was ventral to the cerebellar peduncle, and consisted of loosely arranged multipolar and monopolar cells. Vevl was found at the level of the vestibular nerve root and contained conspicuously large cells and medium-sized cells. Veds is a large nucleus, the most rostral portion of which is situated lateral and ventral to Vevl, and occupies much of the dorsal brainstem extending caudally through the medulla. VeO is a spherically shaped cell group lateral to the auditory nucleus magnocellularis and dorsal to the caudal part of Vevl. Vevm and Vetg were small in the present study. Except for VeO, all other vestibular nuclei appear directly comparable to counterparts in other reptiles and birds based on their location, cytoarchitecture, and connections, indicating these are conserved features of the vestibular system. PMID:23201031

  11. Pathogenesis of vestibular schwannoma in ring chromosome 22

    PubMed Central

    Denayer, Ellen; Brems, Hilde; de Cock, Paul; Evans, Gareth D; Van Calenbergh, Frank; Bowers, Naomi; Sciot, Raf; Debiec-Rychter, Maria; Vermeesch, Joris V; Fryns, Jean-Pierre; Legius, Eric

    2009-01-01

    Background Ring chromosome 22 is a rare human constitutional cytogenetic abnormality. Clinical features of neurofibromatosis type 1 and 2 as well as different tumour types have been reported in patients with ring chromosome 22. The pathogenesis of these tumours is not always clear yet. Methods We report on a female patient with a ring chromosome 22 presenting with severe mental retardation, autistic behaviour, café-au-lait macules and facial dysmorphism. Peripheral blood lymphocytes were karyotyped and array CGH was performed on extracted DNA. At the age of 20 years she was diagnosed with a unilateral vestibular schwannoma. Tumour cells were analyzed by karyotyping, array CGH and NF2 mutation analysis. Results Karyotype on peripheral blood lymphocytes revealed a ring chromosome 22 in all analyzed cells. A 1 Mb array CGH experiment on peripheral blood DNA showed a deletion of 5 terminal clones on the long arm of chromosome 22. Genetic analysis of vestibular schwannoma tissue revealed loss of the ring chromosome 22 and a somatic second hit in the NF2 gene on the remaining chromosome 22. Conclusion We conclude that tumours can arise by the combination of loss of the ring chromosome and a pathogenic NF2 mutation on the remaining chromosome 22 in patients with ring chromosome 22. Our findings indicate that patients with a ring 22 should be monitored for NF2-related tumours starting in adolescence. PMID:19772601

  12. Immersive virtual environment for visuo-vestibular therapy: preliminary results.

    PubMed

    Gascuel, J D; Payno, H; Schmerber, S; Martin, O

    2012-01-01

    The sense of equilibrium aggregates several interacting cues. On vestibular areflexic patients, vision plays a major role. We developed an immersive therapeutic platform, based on 3D opto-kinetic stimulation that enables to tune the difficulty of the balance task by managing the type of optic flow and its speed. The balance adjustments are recorded by a force plate, quantified by the length of the center of pressure trajectory and detection of disequilibrium corrections (leans, compensation step). Preliminary analysis shows that (i) patients report a strong immersion feeling in the motion flow, triggering intense motor response to "fight against fall"; (ii) the ANOVA factorial design shows a significant effect of flow speed, session number and gaze anchor impact. In conclusion, this study shows that 3D immersive stimulation removes essential limits of traditional opto-kinetic stimulators (limited 2D motions and remaining fixed background cues). Moreover, the immersive optic flow stimulation is an efficient tool to induce balance adaptive reactions in vestibular patients. Hence, such a platform appears to be a powerful therapeutic tool for training and relearning of balance control processes. PMID:22954853

  13. Vestibular system and neural correlates of motion sickness

    NASA Technical Reports Server (NTRS)

    Miller, Alan D.

    1986-01-01

    Initial studies re-examine the role of certain central nervous system structures in the production of vestibular-induced vomiting and vomiting in general. All experiments were conducted using cats. Since these studies demonstrated that the essential role of various central structures in vestibular-induced vomiting is only poorly understood, efforts were re-directed to study the control of the effector muscles (diaphragm and abdominal muscles) that produce the pressure changes responsible for vomiting, with the goal of determining how this control mechanism is engaged during motion sickness. Experiments were conducted to localize the motoneurons that innervate the individual abdominal muscles and the portion of the diaphragm that surrounds the esophagus. A central question regarding respiratory muscle control during vomiting is whether these muscles are activated via the same brain stem pre-motor neurons that provide descending respiratory drive and/or by other descending input(s). In other experiments, the use of a combination of pitch and roll motions to produce motion sickness in unrestrained cats was evaluated. This stimulus combination can produce vomiting in only the most susceptible cats and is thus not as provacative a stimulus for cats as vertical linear acceleration.

  14. [Pigment and ion transport in the vestibular organ].

    PubMed

    Meyer zum Gottesberge-Orsulakova, A

    1985-07-01

    Pigments are found in various parts of the inner ear, especially in the neighbourhood of epithelia, which are supposed to be involved in the secretion and/or absorbtion of the endolymphatic fluid. Microprobe analysis (laser absorption mass micro analyzer "LAMMA" and X-ray) combined with morphological observations were performed in shock frozen, freeze-dried and plastic embedded inner ear tissue from the vestibular organ of pigmented guinea pig. Disturbance of the endolymphatic ionic composition (increased Na+) due to treatment with metabolic inhibitors (ethacrynic acid, ouabain) stimulated the migration of pigment granules and displacement of the dentritic processes of the melanocytes in a close vicinity to the presumably transporting vestibular epithelia (the dark and light cells and capillaries). The melanosomes obtained full range of metal ions that changed characteristically after treatment with metabolic inhibitors. It could be supposed that melanin presents some kind of reservoir for essential trace elements or compounds and may regulate numerous enzymatic and membrane functions by binding and releasing the metal ions. PMID:3875777

  15. Histological preparation of developing vestibular otoconia for scanning electron microscopy

    NASA Technical Reports Server (NTRS)

    Huss, D.; Dickman, J. D.

    2003-01-01

    The unique nature of vestibular otoconia as calcium carbonate biominerals makes them particularly susceptible to chemical deformation during histological processing. We fixed and stored otoconia from all three otolith endorgans of embryonic, hatchling and adult Japanese quail in glutaraldehyde containing either phosphate or non-phosphate buffers for varying lengths of time and processed them for scanning electron microscopy. Otoconia from all age groups and otolith endorgans processed in 0.1 M phosphate buffer (pH 7.4) showed abnormal surface morphology when compared to acetone fixed controls. Otoconia processed in 0.1 M sodium cacodylate or HEPES buffered artificial endolymph (pH 7.4) showed normal morphology that was similar to controls. The degree of otoconial deformation was directly related to the time exposed to phosphate buffer. Short duration exposure produced particulate deformations while longer exposures resulted in fused otoconia that formed solid sheets. Otoconial surface deformation and fusing was independent of the glutaraldehyde component of the histological processing. These findings should help vestibular researchers to develop appropriate histological processing protocols in future studies of otoconia.

  16. Mechanotransduction and hyperpolarization-activated currents contribute to spontaneous activity in mouse vestibular ganglion neurons.

    PubMed

    Horwitz, Geoffrey C; Risner-Janiczek, Jessica R; Holt, Jeffrey R

    2014-04-01

    The hyperpolarization-activated, cyclic nucleotide-sensitive current, Ih, is present in vestibular hair cells and vestibular ganglion neurons, and is required for normal balance function. We sought to identify the molecular correlates and functional relevance of Ih in vestibular ganglion neurons. Ih is carried by channels consisting of homo- or heteromeric assemblies of four protein subunits from the Hcn gene family. The relative expression of Hcn1-4 mRNA was examined using a quantitative reverse transcription PCR (RT-PCR) screen. Hcn2 was the most highly expressed subunit in vestibular neuron cell bodies. Immunolocalization of HCN2 revealed robust expression in cell bodies of all vestibular ganglion neurons. To characterize Ih in vestibular neuron cell bodies and at hair cell-afferent synapses, we developed an intact, ex vivo preparation. We found robust physiological expression of Ih in 89% of cell bodies and 100% of calyx terminals. Ih was significantly larger in calyx terminals than in cell bodies; however, other biophysical characteristics were similar. Ih was absent in calyces lacking Hcn1 and Hcn2, but small Ih was still present in cell bodies, which suggests expression of an additional subunit, perhaps Hcn4. To determine the contributions of hair cell mechanotransduction and Ih to the firing patterns of calyx terminals, we recorded action potentials in current-clamp mode. Mechanotransduction currents were modulated by hair bundle defection and application of calcium chelators to disrupt tip links. Ih activity was modulated using ZD7288 and cAMP. We found that both hair cell transduction and Ih contribute to the rate and regularity of spontaneous action potentials in the vestibular afferent neurons. We propose that modulation of Ih in vestibular ganglion neurons may provide a mechanism for modulation of spontaneous activity in the vestibular periphery. PMID:24638995

  17. Mechanotransduction and hyperpolarization-activated currents contribute to spontaneous activity in mouse vestibular ganglion neurons

    PubMed Central

    Horwitz, Geoffrey C.; Risner-Janiczek, Jessica R.

    2014-01-01

    The hyperpolarization-activated, cyclic nucleotide–sensitive current, Ih, is present in vestibular hair cells and vestibular ganglion neurons, and is required for normal balance function. We sought to identify the molecular correlates and functional relevance of Ih in vestibular ganglion neurons. Ih is carried by channels consisting of homo- or heteromeric assemblies of four protein subunits from the Hcn gene family. The relative expression of Hcn1–4 mRNA was examined using a quantitative reverse transcription PCR (RT-PCR) screen. Hcn2 was the most highly expressed subunit in vestibular neuron cell bodies. Immunolocalization of HCN2 revealed robust expression in cell bodies of all vestibular ganglion neurons. To characterize Ih in vestibular neuron cell bodies and at hair cell–afferent synapses, we developed an intact, ex vivo preparation. We found robust physiological expression of Ih in 89% of cell bodies and 100% of calyx terminals. Ih was significantly larger in calyx terminals than in cell bodies; however, other biophysical characteristics were similar. Ih was absent in calyces lacking Hcn1 and Hcn2, but small Ih was still present in cell bodies, which suggests expression of an additional subunit, perhaps Hcn4. To determine the contributions of hair cell mechanotransduction and Ih to the firing patterns of calyx terminals, we recorded action potentials in current-clamp mode. Mechanotransduction currents were modulated by hair bundle defection and application of calcium chelators to disrupt tip links. Ih activity was modulated using ZD7288 and cAMP. We found that both hair cell transduction and Ih contribute to the rate and regularity of spontaneous action potentials in the vestibular afferent neurons. We propose that modulation of Ih in vestibular ganglion neurons may provide a mechanism for modulation of spontaneous activity in the vestibular periphery. PMID:24638995

  18. How does high-frequency sound or vibration activate vestibular receptors?

    PubMed

    Curthoys, I S; Grant, J W

    2015-03-01

    The mechanism by which vestibular neural phase locking occurs and how it relates to classical otolith mechanics is unclear. Here, we put forward the hypothesis that sound and vibration both cause fluid pressure waves in the inner ear and that it is these pressure waves which displace the hair bundles on vestibular receptor hair cells and result in activation of type I receptor hair cells and phase locking of the action potentials in the irregular vestibular afferents, which synapse on type I receptors. This idea has been suggested since the early neural recordings and recent results give it greater credibility. PMID:25567092

  19. Early Diagnosis and Management of Acute Vertigo from Vestibular Migraine and Ménière's Disease.

    PubMed

    Seemungal, Barry; Kaski, Diego; Lopez-Escamez, Jose Antonio

    2015-08-01

    Vestibular migraine is the most common cause of acute episodic vestibular symptoms after benign paroxysmal positional vertigo. In contrast, Ménière's disease is an uncommon disorder. For both conditions, early and accurate diagnosis (or its exclusion) enables the correct management of patients with acute episodic vestibular symptoms. Long-term management of migraine requires changes in lifestyle to avoid triggers of migraine and/or prophylactic drugs if attacks become too frequent. The long-term management of Ménière's disease also involves lifestyle changes (low salt diet), medications (betahistine, steroids), and ablative therapy applied to the diseased ear (eg, intratympanic gentamicin). PMID:26231275

  20. Volume Changes After Stereotactic LINAC Radiotherapy in Vestibular Schwannoma: Control Rate and Growth Patterns

    SciTech Connect

    Langenberg, Rick van de; Dohmen, Amy J.C.; Bondt, Bert J. de; Nelemans, Patty J.; Baumert, Brigitta G.; Stokroos, Robert J.

    2012-10-01

    Purpose: The purpose of this study was to evaluate the control rate of vestibular schwannomas (VS) after treatment with linear accelerator (LINAC)-based stereotactic radiosurgery (SRS) or radiotherapy (SRT) by using a validated volumetric measuring tool. Volume-based studies on prognosis after LINAC-based SRS or SRT for VS are reported scarcely. In addition, growth patterns and risk factors predicting treatment failure were analyzed. Materials and Methods: Retrospectively, 37 VS patients treated with LINAC based SRS or SRT were analyzed. Baseline and follow-up magnetic resonance imaging scans were analyzed with volume measurements on contrast enhanced T1-weighted magnetic resonance imaging. Absence of intervention after radiotherapy was defined as 'no additional intervention group, ' absence of radiological growth was defined as 'radiological control group. ' Significant growth was defined as a volume change of 19.7% or more, as calculated in a previous study. Results: The cumulative 4-year probability of no additional intervention was 96.4% {+-} 0.03; the 4-year radiological control probability was 85.4% {+-} 0.1). The median follow-up was 40 months. Overall, shrinkage was seen in 65%, stable VS in 22%, and growth in 13%. In 54% of all patients, transient swelling was observed. No prognostic factors were found regarding VS growth. Previous treatment and SRS were associated with transient swelling significantly. Conclusions: Good control rates are reported for LINAC based SRS or SRT in VS, in which the lower rate of radiological growth control is attributed to the use of the more sensitive volume measurements. Transient swelling after radiosurgery is a common phenomenon and should not be mistaken for treatment failure. Previous treatment and SRS were significantly associated with transient swelling.

  1. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    NASA Technical Reports Server (NTRS)

    Noohi, F.; Kinnaird, C.; Wood, S.; Bloomberg, J.; Mulavara, A.; Seidler, R.

    2016-01-01

    The current study characterizes brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either the vestibulo-spinal reflex (saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)), or the ocular muscle response (utricle-mediated ocular VEMP (oVEMP)). Some researchers have reported that air-conducted skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for the subjects. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying otolith-specific deficits, including gait and balance problems that astronauts experience upon returning to earth. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that skull taps elicit similar patterns of cortical activity as the auditory tone bursts, and previous vestibular imaging studies. Subjects wore bilateral MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in the supine position, with eyes closed. Subjects received both forms of the stimulation in a counterbalanced fashion. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular system, resulting in the vestibular cortical response. Auditory tone bursts were also delivered for comparison. To validate our stimulation method, we measured the ocular VEMP outside of the scanner. This measurement showed that both skull tap and auditory tone burst elicited vestibular evoked myogenic potentials, indicated by eye muscle responses. We further assessed subjects' postural control and its correlation with vestibular cortical activity. Our results provide the first evidence of using skull taps to elicit vestibular activity inside the MRI scanner. By conducting conjunction analyses we showed that skull taps elicit the same activation pattern as auditory tone bursts (superior temporal gyrus), and both modes of stimulation activate previously identified vestibular cortical regions. Additionally, we found that skull taps elicit more robust vestibular activity compared to auditory tone bursts, with less reported aversive effects. This further supports that the skull tap could replace auditory tone burst stimulation in clinical interventions and basic science research. Moreover, we observed that greater vestibular activation is associated with better balance control. We showed that not only the quality of balance (indicated by the amount of body sway) but also the ability to maintain balance for a longer time (indicated by the balance time) was associated with individuals' vestibular cortical excitability. Our findings support an association between vestibular cortical activity and individual differences in balance. In sum, we found that the skull tap stimulation results in activation of canonical vestibular cortex, suggesting an equally valid, but more tolerable stimulation method compared to auditory tone bursts. This is of high importance in longitudinal vestibular assessments, in which minimizing aversive effects may contribute to higher protocol adherence.

  2. The delayed rectifier, IKI, is the major conductance in type I vestibular hair cells across vestibular end organs

    NASA Technical Reports Server (NTRS)

    Ricci, A. J.; Rennie, K. J.; Correia, M. J.

    1996-01-01

    Hair cells were dissociated from the semicircular canal, utricle, lagena and saccule of white king pigeons. Type I hair cells were identified morphologically based on the ratios of neck width to cuticular plate width (NPR < 0.72) as well as neck width to cell body width (NBR < 0.64). The perforated patch variant of the whole-cell recording technique was used to measure electrical properties from type I hair cells. In voltage-clamp, the membrane properties of all identified type I cells were dominated by a predominantly outward potassium current, previously characterized in semicircular canal as IKI. Zero-current potential, activation, deactivation, slope conductance, pharmacologic and steady-state properties of the complex currents were not statistically different between type I hair cells of different vestibular end organs. The voltage dependence causes a significant proportion of this conductance to be active about the cell's zero-current potential. The first report of the whole-cell activation kinetics of the conductance is presented, showing a voltage dependence that could be best fit by an equation for a single exponential. Results presented here are the first data from pigeon dissociated type I hair cells from utricle, saccule and lagena suggesting that the basolateral conductances of a morphologically identified population of type I hair cells are conserved between functionally different vestibular end organs; the major conductance being a delayed rectifier characterized previously in semicircular canal hair cells as IKI.

  3. Audio-vestibular evaluation in patients with Behçet's syndrome.

    PubMed

    Evereklioglu, C; Cokkeser, Y; Doganay, S; Er, H; Kizilay, A

    2001-09-01

    A prospective controlled clinical study was carried out at the Department of Ophthalmology and ENT, Inönü University Medical Faculty, Turgut Ozal Medical Center, Research Hospital, to evaluate the audio-vestibular involvement in patients with Behçet's syndrome compared with controls. Twenty-five consecutive patients with Behçet's syndrome (mean age +/- SD, 34.96 +/- 8.50) and 20 age- and sex-matched healthy volunteers (hospital staff) as control subjects (mean age +/- SD, 34.45 +/- 9.16) were included in this study. Behçet's patients were divided into two groups according to the number of criteria, complete (all four major criteria) and incomplete (three major criteria without ocular involvement). The groups were compared with each other or controls regarding inner ear involvement. Audiometric pure-tone thresholds at 125 to 8000 Hz were obtained in all subjects in both groups, and pure tone average (PTA) hearing thresholds were calculated for the middle, high and low frequencies. In addition, short increment sensitivity index (SISI), tone decay and BERA examinations were performed in all Behçet's patients. Sensorineural hearing loss (SNHL) was present in six of 25 patients with Behçet's syndrome. Two Behçet's patients had unilateral total SNHL, two had bilateral moderate level SNHL, one had bilateral low-frequency SNHL and one bilateral high frequency SNHL. In two, BERA, and in five SISI, examination disclosed inner ear involvement. In control subjects, the past medical history was normal and there was no consistent audio-vestibular complaint. Their PTA thresholds were all in the normal range. Otoscopic examination findings were normal, with intact, mobile tympanic membranes in both groups. The present study showed that audio-vestibular involvement is not infrequent in Behçet's syndrome compared with age- and sex-matched healthy controls, and it is under-estimated. All Behçet's patients should regularly be followed by an otolaryngologists and be given information about the possibility of inner ear involvement. According to our results, hearing loss occurs more often in older patients and also in the complete form of Behçet's syndrome. PMID:11564295

  4. Stochastic cooling in RHIC

    SciTech Connect

    Brennan,J.M.; Blaskiewicz, M. M.; Severino, F.

    2009-05-04

    After the success of longitudinal stochastic cooling of bunched heavy ion beam in RHIC, transverse stochastic cooling in the vertical plane of Yellow ring was installed and is being commissioned with proton beam. This report presents the status of the effort and gives an estimate, based on simulation, of the RHIC luminosity with stochastic cooling in all planes.

  5. Clinical utility of ocular vestibular-evoked myogenic potentials (oVEMPs).

    PubMed

    Weber, Konrad P; Rosengren, Sally M

    2015-05-01

    Over the last years, vestibular-evoked myogenic potentials (VEMPs) have been established as clinical tests of otolith function. Complementary to the cervical VEMPs, which assess mainly saccular function, ocular VEMPs (oVEMPs) test predominantly utricular otolith function. oVEMPs are elicited either with air-conducted (AC) sound or bone-conducted (BC) skull vibration and are recorded from beneath the eyes during up-gaze. They assess the vestibulo-ocular reflex and are a crossed excitatory response originating from the inferior oblique eye muscle. Enlarged oVEMPs have proven to be sensitive for screening of superior canal dehiscence, while absent oVEMPs indicate a loss of superior vestibular nerve otolith function, often seen in vestibular neuritis (VN) or vestibular Schwannoma. PMID:25773001

  6. Brainstem processing of vestibular sensory exafference: implications for motion sickness etiology

    E-print Network

    Oman, Charles

    2014-04-20

    The origin of the internal “sensory conflict” stimulus causing motion sickness has been debated for more than four decades. Recent studies show a subclass of neurons in the vestibular nuclei and deep cerebellar nuclei ...

  7. Problems of space biology. Volume 50: Nystagmometry for evaulation of the status of the vestibular function

    NASA Technical Reports Server (NTRS)

    Levashov, M. M.; Kislyakov, V. A. (editor)

    1985-01-01

    Various aspects of nystagmometry are studied, primarily those in which the study of hystagmus serves as a means to learn about the vestibular apparatus. Along with exhaustive published material, the monograph presents data from many years of research on the physioloigical mechanisms of nystagmus, the features of nystagmus when vestibular stimulation is combined with optokinetic, the pole of vertibular afferentation asymmetry in the asymmetry of reactions to optokinetic stimulus, a nystagmometric approach to studying the hydrodynamic interaction among semicircular canals, as well as several other questions. A great deal of attention is given to methods of recording nystagmus, calibrating nystagmograms, quantitative evaluation of nystagmographic material, new nystagmometric characteristics and diagnostic techniques. A diagnostic model is proposed which makes it possible to obtain important information on the condition of the vestibular system from results of vestibular testing.

  8. Lack of effects of astemizole on vestibular ocular reflex, motion sickness, and cognitive performance in man

    NASA Technical Reports Server (NTRS)

    Kohl, Randall L.; Homick, Jerry L.; Cintron, Nitza; Calkins, Dick S.

    1987-01-01

    Astemizole was orally administered to 20 subjects in a randomized, double-blind design to assess the efficacy of this peripherally active antihistamine as an antimotion sickness drug possessing no central side-effects. Measures of vestibular ocular reflex (VOR) were made to evaluate the agent as a selective vestibular depressant. Following one week of orally administered astemizole (30 mg daily), a Staircase Profile Test, a VOR test, and a variety of tests of cognitive performance were administered. These tests revealed no statistically significant effects of astemizole. This leads to the conclusion that, although the drug probably reaches the peripheral vestibular apparatus in man by crossing the blood-vestibular barrier, a selective peripheral antihistamine (H1) action is inadequate to control motion sickness induced through cross-coupled accelerative semicircular canal stimulation in a rotating chair.

  9. Influence of combined visual and vestibular cues on human perception and control of horizontal rotation

    NASA Technical Reports Server (NTRS)

    Zacharias, G. L.; Young, L. R.

    1981-01-01

    Measurements are made of manual control performance in the closed-loop task of nulling perceived self-rotation velocity about an earth-vertical axis. Self-velocity estimation is modeled as a function of the simultaneous presentation of vestibular and peripheral visual field motion cues. Based on measured low-frequency operator behavior in three visual field environments, a parallel channel linear model is proposed which has separate visual and vestibular pathways summing in a complementary manner. A dual-input describing function analysis supports the complementary model; vestibular cues dominate sensation at higher frequencies. The describing function model is extended by the proposal of a nonlinear cue conflict model, in which cue weighting depends on the level of agreement between visual and vestibular cues.

  10. Maternal susceptibility to nausea and vomiting of pregnancy: is the vestibular system involved?

    NASA Technical Reports Server (NTRS)

    Black, F. Owen

    2002-01-01

    Nausea and vomiting of pregnancy shares many characteristics with motion sickness, a vestibular dependent phenomenon. A number of physiologic changes that occur in normal pregnancy are also known to accompany nausea and vomiting in patients with motion sickness and certain vestibular disorders. This chapter summarizes some shared features of both phenomena. The unmasking of subclinical vestibular disorders may account for some cases of hyperemesis gravidarum. Hormonal effects on neurotransmitter function may also play a role in nausea and vomiting of pregnancy and in some vestibular disorders; however, the specific neural mechanisms of nausea and vomiting have not been identified. Until the neurochemical processes underlying these phenomena are understood, prevention and management will remain in the domain of astute, but so far limited, clinical observation.

  11. New measures and effects of stochastic resonance 

    E-print Network

    Sethuraman, Swaminathan

    2005-11-01

    of linear transfer and sinusoidal signals, the method gives the same results as the classical method and in the case of aperiodic signals it gives a sensible measure. In this paper we refine the theory and present detailed simulations which validate...

  12. A New Quantity to Characterize Stochastic Resonance

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Xin; Zhai, Ji-Quan; Xu, Wei-Wei; Sun, Guo-Zhu; Wu, Pei-Heng

    2015-09-01

    Not Available Supported by the National Basic Research Program of China under Grant Nos 2011CB922104 and 2011CBA00202, the National Natural Science Foundation of China under Grant No 11474154, the Natural Science Foundation of Jiangsu Province under Grant No BK2012013, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No 20120091110030, the Dengfeng Project B of Nanjing University and Jiangsu Key Laboratory of Advanced Manipulating Techniques of Electromagnetic Waves, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

  13. Correlation of Fos expression and circling asymmetry during gerbil vestibular compensation

    NASA Technical Reports Server (NTRS)

    Kaufman, G. D.; Shinder, M. E.; Perachio, A. A.

    1999-01-01

    Vestibular compensation is a central nervous system process resulting in recovery of functional movement and control following a unilateral vestibular lesion. Small pressure injections of phosphorothioate 20mer oligonucleotides were used to probe the role of the Fos transcription protein during vestibular compensation in the gerbil brainstem. During isoflurane gas anesthesia, antisense probes against the c-fos mRNA sequence were injected into the medial vestibular and prepositus nuclei unilaterally prior to a unilateral surgical labyrinthectomy. Anionic dyes, which did not interact with the oligonucleotides, were used to mark the injection site and help determine the extent of diffusion. The antiFos oligonucleotide injections reduced Fos expression at the injection site in neurons which normally express Fos after the lesion, and also affected circling behavior induced by hemilabyrinthectomy. With both ipsilateral and contralateral medial vestibular and prepositus nuclei injections, less ipsilateral and more contralateral circling was noted in animals injected with antiFos injections as compared to non-injected controls. The degree of change in these behaviors was dependent upon the side of the injection. Histologically, antiFos injections reduced the number of Fos immunolabeled neurons around the injection site, and increased Fos expression contralaterally. The correlation of the number of neurons with Fos expression to turning behavior was stronger for contralateral versus ipsilateral turns, and for neurons in the caudal and ipsilateral sub-regions of the medial vestibular and prepositus nuclei. The results are discussed in terms of neuronal firing activity versus translational activity based on the asymmetrical expression of the Fos inducible transcription factor in the medial vestibular and prepositus nuclei. Although ubiquitous in the brain, transcription factors like Fos can serve localized and specific roles in sensory-specific adaptive stimuli. Antisense injections can be an effective procedure for localized intervention into complex physiological functions, e.g. vestibular compensation. Copyright 1999 Elsevier Science B.V.

  14. Muscarinic Acetylcholine Receptor Subtype Expression in Avian Vestibular Hair Cells, Nerve Terminals and Ganglion Cells

    PubMed Central

    Li, Gang Q.; Kevetter, Golda A.; Leonard, Robert B.; Prusak, Deborah J; Wood, Thomas G.; Correia, Manning J.

    2007-01-01

    Muscarinic acetylcholine receptors (mAChRs) are widely expressed in the central and peripheral nervous systems and play an important role in modulating the cell activity and function. We have shown that the cholinergic agonist carbachol reduces the pKir2.1 ionic currents in native vestibular hair cells. We have cloned and sequenced pigeon mAChR subtypes M2–M5 and we have studied the expression of all five mAChR subtypes (M1–M5) in the pigeon vestibular end organs (semicircular canal ampullary cristae and utricular maculae), vestibular nerve fibers and the vestibular (Scarpa’s) ganglion using tissue immunohistochemistry (IH), dissociated single cell immunocytochemistry (IC) and Western blotting (WB). We found that vestibular hair cells, nerve fibers, and ganglion cells each expressed all five (M1–M5) mAChR subtypes. Two of the three odd-numbered mAChRs (M1, M5) were present on the hair cell cilia, supporting cells and nerve terminals. And all three odd numbered mAChRs (M1, M3 and M5) were expressed on cuticular plates, myelin sheaths, and Schwann cells. Even-numbered mAChRs were seen on the nerve terminals. M2 was also shown on the cuticular plates and supporting cells. Vestibular efferent fibers and terminals were not identified in our studies. Results from WB of the dissociated vestibular epithelia, nerve fibers and vestibular ganglia were consistent with the results from IH and IC. Our findings suggest that there is considerable co-expression of the subtypes on the neural elements of the labyrinth. Further electrophysiological and pharmacological studies should delineate the mechanisms of action of muscarinic acetylcholine receptors on structures in the labyrinth. PMID:17391855

  15. Vestibular inputs elicit patterned changes in limb blood flow in conscious cats.

    PubMed

    Wilson, T D; Cotter, L A; Draper, J A; Misra, S P; Rice, C D; Cass, S P; Yates, B J

    2006-09-01

    Previous experiments have demonstrated that the vestibular system contributes to regulating sympathetic nervous system activity, particularly the discharges of vasoconstrictor fibres. In the present study, we examined the physiological significance of vestibulosympathetic responses by comparing blood flow and vascular resistance in the forelimb and hindlimb during head-up tilt from the prone position before and after the removal of vestibular inputs through a bilateral vestibular neurectomy. Experiments were performed on conscious cats that were trained to remain sedentary on a tilt table during rotations up to 60 deg in amplitude. Blood flow through the femoral and brachial arteries was recorded during whole-body tilt using perivascular probes; blood pressure was recorded using a telemetry system and vascular resistance was calculated from blood pressure and blood flow measurements. In vestibular-intact animals, 60 deg head-up tilt produced approximately 20% decrease in femoral blood flow and approximately 37% increase in femoral vascular resistance relative to baseline levels before tilt; similar effects were also observed for the brachial artery ( approximately 25% decrease in blood flow and approximately 38% increase in resistance). Following the removal of vestibular inputs, brachial blood flow and vascular resistance during head-up tilt were almost unchanged. In contrast, femoral vascular resistance increased only approximately 6% from baseline during 60 deg head-up rotation delivered in the first week after elimination of vestibular signals and approximately 16% in the subsequent 3-week period (as opposed to the approximately 37% increase in resistance that occurred before lesion). These data demonstrate that vestibular inputs associated with postural alterations elicit regionally specific increases in vascular resistance that direct blood flow away from the region of the body where blood pooling may occur. Thus, the data support the hypothesis that vestibular influences on the cardiovascular system serve to protect against the occurrence of orthostatic hypotension. PMID:16809368

  16. Connections between the facial, vestibular and cochlear nerve bundles within the internal auditory canal

    PubMed Central

    Özdo?mu?, Ömer; Sezen, Ozan; Kubilay, Utku; Saka, Erdinç; Duman, U?ur; ?an, Tangül; Çavdar, Safiye

    2004-01-01

    The vestibular, cochlear and facial nerves have a common course in the internal auditory canal (IAC). In this study we investigated the average number of nerve fibres, the average cross-sectional areas of the nerves and nerve fibres, and the apparent connections between the facial, cochlear and vestibular nerve bundles within the IAC, using light and scanning electron microscopy. The anatomical localization of the nerves within the IAC was not straightforward. The general course showed that the nerves rotated anticlockwise in the right ear from the inner ear end towards the brainstem end and vice versa for the left ear. The average number of fibres forming vestibular, cochlear, and facial nerves was not constant during their courses within the IAC. The superior and the inferior vestibular nerves showed an increase in the number of nerve fibres from the inner ear end towards the brainstem end of the IAC, whereas the facial and the cochlear nerves showed a reduction in the number of fibres. This suggests that some of the superior and inferior vestibular nerve bundles may receive fibres from the facial and/or cochlear nerves. Scanning electron microscopic evaluations showed superior vestibular–facial and inferior vestibular–cochlear connections within the IAC, but no facial–cochlear connections were observed. Connections between the nerves of the IAC can explain the unexpected vestibular disturbances in facial paralysis or persistence of tinnitus after cochlear neurectomy in intractable tinnitus cases. The present study offers morphometric and scanning electron microscopic data on the fibre connections of the nerves of the IAC. PMID:15255963

  17. Vestibular dysfunction, altered macular structure and trait localization in A/J inbred mice.

    PubMed

    Vijayakumar, Sarath; Lever, Teresa E; Pierce, Jessica; Zhao, Xing; Bergstrom, David; Lundberg, Yunxia Wang; Jones, Timothy A; Jones, Sherri M

    2015-04-01

    A/J mice develop progressive hearing loss that begins before 1 month of age and is attributed to cochlear hair cell degeneration. Screening tests indicated that this strain also develops early onset vestibular dysfunction and has otoconial deficits. The purpose of this study was to characterize the vestibular dysfunction and macular structural pathology over the lifespan of A/J mice. Vestibular function was measured using linear vestibular evoked potentials (VsEPs). Macular structural pathology was evaluated using light microscopy, scanning electron microscopy, transmission electron microscopy, confocal microscopy and Western blotting. Individually, vestibular functional deficits in mice ranged from mild to profound. On average, A/J mice had significantly reduced vestibular sensitivity (elevated VsEP response thresholds and smaller amplitudes), whereas VsEP onset latency was prolonged compared to age-matched controls (C57BL/6). A limited age-related vestibular functional loss was also present. Structural analysis identified marked age-independent otoconial abnormalities in concert with some stereociliary bundle defects. Macular epithelia were incompletely covered by otoconial membranes with significantly reduced opacity and often contained abnormally large or giant otoconia as well as normal-appearing otoconia. Elevated expression of key otoconins (i.e., otoconin 90, otolin and keratin sulfate proteoglycan) ruled out the possibility of reduced levels contributing to otoconial dysgenesis. The phenotype of A/J was partially replicated in a consomic mouse strain (C57BL/6J-Chr 17(A/J)/NaJ), thus indicating that Chr 17(A/J) contained a trait locus for a new gene variant responsible to some extent for the A/J vestibular phenotype. Quantitative trait locus analysis identified additional epistatic influences associated with chromosomes 1, 4, 9 and X. Results indicate that the A/J phenotype represents a complex trait, and the A/J mouse strain presents a new model for the study of mechanisms underlying otoconial formation and maintenance. PMID:25645995

  18. Adaptations of the vestibular system to short and long-term exposures to altered gravity

    NASA Astrophysics Data System (ADS)

    Bruce, L. L.

    2003-10-01

    Long-term space flight creates unique environmental conditions to which the vestibular system must adapt for optimal survival of a given organism. The development and maintenance of vestibular connections are controlled by environmental gravitational stimulation as well as genetically controlled molecular interactions. This paper describes the effects of hypergravity on axonal growth and dendritic morphology, respectively. Two aspects of this vestibular adaptation are examined: (1) How does long-term exposure to hypergravity affect the development of vestibular axons? (2) How does short-term exposure to extremely rapid changes in gravity, such as those that occur during shuttle launch and landing, affect dendrites of the vestibulocerebellar system? To study the effects of longterm exposures to altered gravity, embryonic rats that developed in hypergravity were compared to microgravity-exposed and control rats. Examination of the vestibular projections from epithelia devoted to linear and angular acceleration revealed that the terminal fields segregate differently in rat embryos that gestated in each of the gravitational environments.To study the effects of short-term exposures to altered gravity, mice were exposed briefly to strong vestibular stimuli and the vestibulocerebellum was examined for any resulting morphological changes. My data show that these stimuli cause intense vestibular excitation of cerebellar Purkinje cells, which induce up-regulation of clathrin-mediated endocytosis and other morphological changes that are comparable to those seen in long-term depression. This system provides a basis for studying how the vestibular environment can modify cerebellar function, allowing animals to adapt to new environments.

  19. Neuronal detection thresholds during vestibular compensation: contributions of response variability and sensory substitution.

    PubMed

    Jamali, Mohsen; Mitchell, Diana E; Dale, Alexis; Carriot, Jerome; Sadeghi, Soroush G; Cullen, Kathleen E

    2014-04-01

    The vestibular system is responsible for processing self-motion, allowing normal subjects to discriminate the direction of rotational movements as slow as 1-2 deg s(-1). After unilateral vestibular injury patients' direction-discrimination thresholds worsen to ?20 deg s(-1), and despite some improvement thresholds remain substantially elevated following compensation. To date, however, the underlying neural mechanisms of this recovery have not been addressed. Here, we recorded from first-order central neurons in the macaque monkey that provide vestibular information to higher brain areas for self-motion perception. Immediately following unilateral labyrinthectomy, neuronal detection thresholds increased by more than two-fold (from 14 to 30 deg s(-1)). While thresholds showed slight improvement by week 3 (25 deg s(-1)), they never recovered to control values - a trend mirroring the time course of perceptual thresholds in patients. We further discovered that changes in neuronal response variability paralleled changes in sensitivity for vestibular stimulation during compensation, thereby causing detection thresholds to remain elevated over time. However, we found that in a subset of neurons, the emergence of neck proprioceptive responses combined with residual vestibular modulation during head-on-body motion led to better neuronal detection thresholds. Taken together, our results emphasize that increases in response variability to vestibular inputs ultimately constrain neural thresholds and provide evidence that sensory substitution with extravestibular (i.e. proprioceptive) inputs at the first central stage of vestibular processing is a neural substrate for improvements in self-motion perception following vestibular loss. Thus, our results provide a neural correlate for the patient benefits provided by rehabilitative strategies that take advantage of the convergence of these multisensory cues. PMID:24366259

  20. Effects of Vestibular Prosthesis Electrode Implantation and Stimulation on Hearing in Rhesus Monkeys

    PubMed Central

    Dai, Chenkai; Fridman, Gene Y.; Della Santina, Charles C.

    2011-01-01

    To investigate the effects of vestibular prosthesis electrode implantation and activation on hearing in rhesus monkeys, we measured auditory brainstem responses (ABR) and distortion product otoacoustic emissions (DPOAE) in four rhesus monkeys before and after unilateral implantation of vestibular prosthesis electrodes in each of 3 left semicircular canals (SCC). Each of the 3 left SCCs were implanted with electrodes via a transmastoid approach. Right ears, which served as controls, were not surgically manipulated. Hearing tests were conducted before implantation (BI) and then 4 weeks post implantation both without electrical stimulation (NS) and with electrical stimulation (S). During the latter condition, prosthetic electrical stimuli encoding 3 dimensions of head angular velocity were delivered to the 3 ampullary branches of the left vestibular nerve via each of 3 electrode pairs of a multichannel vestibular prosthesis. Electrical stimuli comprised charge-balanced biphasic pulses at a baseline rate of 94 pulses/sec, with pulse frequency modulated from 48–222 pulses/s by head angular velocity. ABR hearing thresholds to clicks and tone pips at 1, 2, and 4 kHz increased by 5–10 dB from BI to NS and increased another ~5 dB from NS to S in implanted ears. No significant change was seen in right ears. DPOAE amplitudes decreased by 2–14 dB from BI to NS in implanted ears. There was a slight but insignificant decrease of DPOAE amplitude and a corresponding increase of DPOAE/Noise floor ratio between NS and S in implanted ears. Vestibular prosthesis electrode implantation and activation have small but measurable effects on hearing in rhesus monkeys. Coupled with the clinical observation that patients with cochlear implants only rarely exhibit signs of vestibular injury or spurious vestibular nerve stimulation, these results suggest that although implantation and activation of multichannel vestibular prosthesis electrodes in human will carry a risk of hearing loss, that loss is not likely to be severe. PMID:21195755

  1. Manual therapy with and without vestibular rehabilitation for cervicogenic dizziness: a systematic review

    PubMed Central

    2011-01-01

    Background Manual therapy is an intervention commonly advocated in the management of dizziness of a suspected cervical origin. Vestibular rehabilitation exercises have been shown to be effective in the treatment of unilateral peripheral vestibular disorders, and have also been suggested in the literature as an adjunct in the treatment of cervicogenic dizziness. The purpose of this systematic review is to evaluate the evidence for manual therapy, in conjunction with or without vestibular rehabilitation, in the management of cervicogenic dizziness. Methods A comprehensive search was conducted in the databases Scopus, Mantis, CINHAL and the Cochrane Library for terms related to manual therapy, vestibular rehabilitation and cervicogenic dizziness. Included studies were assessed using the Maastricht-Amsterdam criteria. Results A total of fifteen articles reporting findings from thirteen unique investigations, including five randomised controlled trials and eight prospective, non-controlled cohort studies were included in this review. The methodological quality of the included studies was generally poor to moderate. All but one study reported improvement in dizziness following either unimodal or multimodal manual therapy interventions. Some studies reported improvements in postural stability, joint positioning, range of motion, muscle tenderness, neck pain and vertebrobasilar artery blood flow velocity. Discussion Although it has been argued that manual therapy combined with vestibular rehabilitation may be superior in the treatment of cervicogenic dizziness, there are currently no observational and experimental studies demonstrating such effects. A rationale for combining manual therapy and vestibular rehabilitation in the management of cervicogenic dizziness is presented. Conclusion There is moderate evidence to support the use of manual therapy, in particular spinal mobilisation and manipulation, for cervicogenic dizziness. The evidence for combining manual therapy and vestibular rehabilitation in the management of cervicogenic dizziness is lacking. Further research to elucidate potential synergistic effects of manual therapy and vestibular rehabilitation is strongly recommended. PMID:21923933

  2. The incidence of fibrosis in the vestibular ganglia in Menière's disease.

    PubMed

    Quijano, M L; Schuknecht, H F; Bradley, D H

    1988-01-01

    The vestibular ganglia in 11 temporal bones from subjects with known premortem unilateral Meniere's disease were studied for evidence of increased fibrosis. Tissue sections were treated with Gomori's trichrome stain and were examined independently by each of seven persons experienced in histological study. The averaged ratings for the amount of fibrous tissue in the vestibular ganglia showed no significant differences for ears with Meniere's disease, the opposite uninvolved ears, and the controls. PMID:3178559

  3. Vestibular models for design and evaluation of flight simulator motion

    NASA Technical Reports Server (NTRS)

    Bussolari, S. R.; Sullivan, R. B.; Young, L. R.

    1986-01-01

    The use of spatial orientation models in the design and evaluation of control systems for motion-base flight simulators is investigated experimentally. The development of a high-fidelity motion drive controller using an optimal control approach based on human vestibular models is described. The formulation and implementation of the optimal washout system are discussed. The effectiveness of the motion washout system was evaluated by studying the response of six motion washout systems to the NASA/AMES Vertical Motion Simulator for a single dash-quick-stop maneuver. The effects of the motion washout system on pilot performance and simulator acceptability are examined. The data reveal that human spatial orientation models are useful for the design and evaluation of flight simulator motion fidelity.

  4. Human Vestibular Function, Rotating Litter Chair - Skylab Experiment M131

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This 1970 photograph shows the Rotating Litter Chair, a major component of Skylab's Human Vestibular Function experiment (M131). The experiment was a set of medical studies designed to determine the effect of long-duration space missions on astronauts' coordination abilities. The M131 experiment tested the astronauts susceptibility to motion sickness in the Skylab environment, acquired data fundamental to an understanding of the functions of human gravity reception under prolonged absence of gravity, and tested for changes in the sensitivity of the semicircular canals. Data from this experiment was collected before, during, and after flight. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  5. The proteome of mouse vestibular hair bundles over development

    PubMed Central

    Krey, Jocelyn F.; Sherman, Nicholas E.; Jeffery, Erin D; Choi, Dongseok; Barr-Gillespie, Peter G.

    2015-01-01

    Development of the vertebrate hair bundle is a precisely orchestrated event that culminates in production of a tightly ordered arrangement of actin-rich stereocilia and a single axonemal kinocilium. To understand how the protein composition of the bundle changes during development, we isolated bundles from young (postnatal days P4-P6) and mature (P21-P25) mouse utricles using the twist-off method, then characterized their constituent proteins using liquid-chromatography tandem mass spectrometry with data-dependent acquisition. Using MaxQuant and label-free quantitation, we measured relative abundances of proteins in both bundles and in the whole utricle; comparison of protein abundance between the two fractions allows calculation of enrichment in bundles. These data, which are available via ProteomeXchange with identifier PXD002167, will be useful for examining the proteins present in mammalian vestibular bundles and how their concentrations change over development. PMID:26401315

  6. [The ENT in operations... The study of the vestibular function].

    PubMed

    Ballester, M

    2009-01-01

    The study of the vestibular function in helicopter pilots shows excellent optokinetic gains, predominant visual entrances, but alterations of otolithic evoked potentials which are sensitive to flight aeronautical constraints such as noise and vibrations. These results would deserve to be compared with those obtained in the youngest having flown less than 150 hours because the compensations are made around 100 to 150 hours of flight. Aboard the nuclear submarines, the ENT remains one of the main suppliers of pathologies. Consultations concern the most common pathology: Nose bleeding, infections of nasopharynx, otitis. The conditions of temperature and hygrometry, crowding and closed environment are indeed ideal for the development of infectious pathologies. They represent about 30 to 40 consultations by patrol of 70 days, and arise mostly at the beginning of mission, because of the importance of the viral constituent. Groups of particularly exposed staffs were not observed. PMID:20345081

  7. Visual postural performance after loss of somatosensory and vestibular function.

    PubMed Central

    Paulus, W; Straube, A; Brandt, T H

    1987-01-01

    Visual stabilisation of body sway in a patient with severe deficits of the vestibular system (due to gentamicin treatment) and the somatosensory system (due to polyneuropathy) was studied. With eyes open the patient was able to stand and walk slowly. With eyes closed he lost balance within one second. In order to optimise visual stabilisation he intuitively searched for nearby visual targets. His postural sway was recorded using posturography. His balance performance deteriorated significantly beyond a distance of 1 m between the eyes and the surrounding objects and with visual acuity below 0.3 (experimentally achieved with semitransparent plastic foils). With flicker illumination of decreasing frequencies of the visual surround he needed at least a visual input rate of 17 Hz in order to maintain an upright body position. The data provide clinical evidence for rapid visuo-spinal control of posture. PMID:3501001

  8. Vestibular Function Research (VFR) experiment. Phase B: Design definition study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Vestibular Functions Research (VFR) Experiment was established to investigate the neurosensory and related physiological processes believed to be associated with the space flight nausea syndrome and to develop logical means for its prediction, prevention and treatment. The VFR Project consists of ground and spaceflight experimentation using frogs as specimens. The phase B Preliminary Design Study provided for the preliminary design of the experiment hardware, preparation of performance and hardware specification and a Phase C/D development plan, establishment of STS (Space Transportation System) interfaces and mission operations, and the study of a variety of hardware, experiment and mission options. The study consist of three major tasks: (1) mission mode trade-off; (2) conceptual design; and (3) preliminary design.

  9. Proposed treatment for geriatric vestibular disease in dogs.

    PubMed

    Kraeling, Margaret

    2014-03-01

    Sudden-onset vestibular dysfunction in the canine is a commonly seen condition in veterinary practice, with some veterinarians reporting several cases each month. However, traditional veterinary medicine has little to offer these patients other than symptomatic relief for the severe nausea that accompanies the vertigo and supportive advice for the owners. Owners of affected dogs are informed that these symptoms usually resolve within a few days. As physical therapists, we often see cases of benign paroxysmal positional vertigo in our human practice clinics, and effective protocols for diagnosis and treatment of the condition have been developed for this condition. A modified testing and repositioning postural maneuver used successfully on 12 canine patients in our canine rehabilitation clinic (The Canine Fitness Centre, Calgary, Alberta, Canada) is hereby described. PMID:25103883

  10. Osteoma of the internal auditory canal mimicking vestibular schwannoma: case report and review of 17 recent cases.

    PubMed

    Suzuki, Jun; Takata, Yusuke; Miyazaki, Hiromitsu; Yahata, Izumi; Tachibana, Yasuhiko; Kobayashi, Toshimitsu; Kawase, Tetsuaki; Katori, Yukio

    2014-01-01

    Osteoma of the internal auditory canal (IAC) is an uncommon benign bone tumor. Its imaging features may be similar to other IAC lesions, such as vestibular schwannomas that are benign and usually slow-growing but sometimes life-threatening tumors. Thus, detecting IAC lesions and differentiating osteoma from other IAC lesions are both important clinically. We report a case of misdiagnosis of an IAC osteoma as an IAC schwannoma based on magnetic resonance (MR) imaging using the three-dimensional constructive interference in steady state (CISS) sequence instead of T1-weighted MR imaging with gadolinium. We also review 17 cases of IAC osteomas reported in the past 22 years. A 61-year-old female was admitted to our department with IAC lesion incidentally discovered by the CISS sequence. The lesion was diagnosed as an IAC schwannoma, and was followed up annually under "wait and scan" management. Follow-up T1-weighted MR imaging with gadolinium showed no enhancement of the tumor, and additional computed tomography (CT) of the temporal bone showed a solitary pedunculated bony lesion, resulting in the diagnosis of IAC osteoma. The CISS sequence is useful for detecting small IAC lesions, such as vestibular schwannomas. However, the CISS sequence has limitations for qualitative diagnosis and can misdiagnose osteomas as schwannomas. Use of the CISS sequence without T1-weighted MR imaging with gadolinium for the screening of a lesion of the IAC and cerebellopontine angle should consider the possibility of IAC osteomas, and temporal bone CT or T1-weighted MR imaging with gadolinium should be performed when an IAC lesion is detected. PMID:24492629

  11. Influence of vestibular activation on respiration in humans

    NASA Technical Reports Server (NTRS)

    Monahan, Kevin D.; Sharpe, Melissa K.; Drury, Daniel; Ertl, Andrew C.; Ray, Chester A.

    2002-01-01

    The purpose of this study was to determine the effects of the semicircular canals and otolith organs on respiration in humans. On the basis of animal studies, we hypothesized that vestibular activation would elicit a vestibulorespiratory reflex. To test this hypothesis, respiratory measures, arterial blood pressure, and heart rate were measured during engagement of semicircular canals and/or otolith organs. Dynamic upright pitch and roll (15 cycles/min), which activate the otolith organs and semicircular canals, increased respiratory rate (Delta2 +/- 1 and Delta3 +/- 1 breaths/min, respectively; P < 0.05). Dynamic yaw and lateral pitch (15 cycles/min), which activate the semicircular canals, increased respiration similarly (Delta3 +/- 1 and Delta2 +/- 1, respectively; P < 0.05). Dynamic chair rotation (15 cycles/min), which mimics dynamic yaw but eliminates neck muscle afferent, increased respiration (Delta3 +/- 1; P < 0.05) comparable to dynamic yaw (15 cycles/min). Increases in respiratory rate were graded as greater responses occurred during upright (Delta5 +/- 2 breaths/min) and lateral pitch (Delta4 +/- 1) and roll (Delta5 +/- 1) performed at 30 cycles/min. Increases in breathing frequency resulted in increases in minute ventilation during most interventions. Static head-down rotation, which activates otolith organs, did not alter respiratory rate (Delta1 +/- 1 breaths/min). Collectively, these data indicate that semicircular canals, but not otolith organs or neck muscle afferents, mediate increased ventilation in humans and support the concept that vestibular activation alters respiration in humans.

  12. Directional abnormalities of vestibular and optokinetic responses in cerebellar disease

    NASA Technical Reports Server (NTRS)

    Walker, M. F.; Zee, D. S.; Shelhamer, M. J. (Principal Investigator)

    1999-01-01

    Directional abnormalities of vestibular and optokinetic responses in patients with cerebellar degeneration are reported. Three-axis magnetic search-coil recordings of the eye and head were performed in eight cerebellar patients. Among these patients, examples of directional cross-coupling were found during (1) high-frequency, high-acceleration head thrusts; (2) constant-velocity chair rotations with the head fixed; (3) constant-velocity optokinetic stimulation; and (4) following repetitive head shaking. Cross-coupling during horizontal head thrusts consisted of an inappropriate upward eye-velocity component. In some patients, sustained constant-velocity yaw-axis chair rotations produced a mixed horizontal-torsional nystagmus and/or an increase in the baseline vertical slow-phase velocity. Following horizontal head shaking, some patients showed an increase in the slow-phase velocity of their downbeat nystagmus. These various forms of cross-coupling did not necessarily occur to the same degree in a given patient; this suggests that different mechanisms may be responsible. It is suggested that cross-coupling during head thrusts may reflect a loss of calibration of brainstem connections involved in the direct vestibular pathways, perhaps due to dysfunction of the flocculus. Cross-coupling during constant-velocity rotations and following head shaking may result from a misorientation of the angular eye-velocity vector in the velocity-storage system. Finally, responses to horizontal optokinetic stimulation included an inappropriate torsional component in some patients. This suggests that the underlying organization of horizontal optokinetic tracking is in labyrinthine coordinates. The findings are also consistent with prior animal-lesion studies that have shown a role for the vestibulocerebellum in the control of the direction of the VOR.

  13. Horizontal VOR function shows frequency dynamics in vestibular schwannoma.

    PubMed

    Blödow, Alexander; Blödow, Julia; Bloching, Marc Boris; Helbig, Ralf; Walther, Leif Erik

    2015-09-01

    The objective of this retrospective study was to investigate the horizontal vestibulo-ocular reflex (hVOR) pathway with caloric test (low-frequency hVOR) and video head impulse test (vHIT) (high-frequency hVOR) in patients with sporadic vestibular schwannoma (69 patients, 27-86 years, mean age 58.1 years) and to compare both test methods in terms of their sensitivity and specificity to detect a retrocochlear lesion. Test results with a unilateral weakness (UWCaloric) >25 % (caloric test) or a Mean-GainvHIT <0.79/asymmetry ratio of Gain (AR-GainvHIT) >8.5 % and accompanied refixation saccades (vHIT) were considered abnormal. The overall sensitivity of the caloric test was 72 %. The evaluation of AR-GainvHIT detected more abnormal cases than did Mean-GainvHIT (44 vs. 36 %). In up to 4 %, a normal caloric test result was related to an abnormal vHIT. There was only a moderate correlation of UWCaloric and AR-GainvHIT (r = 0.54, p < 0.05) with a linear regression line intercept/slope of 32.2/0.9 (p < 0.05). Receiver operating characteristics curve analysis exhibited at a UWCaloric of 50 % a vHIT sensitivity/specificity/positive predictive value/negative predictive value of 0.45/0.9/0.94/0.42. Vestibular testing at varying frequencies provides deeper insights into hVOR function and is helpful in detecting a cerebello-pontine lesion. Whereas caloric test yields a high sensitivity for nerve dysfunction, vHIT test reveals a remaining function of hVOR in the high-frequency range. PMID:24789061

  14. Fractionated Stereotactic Radiotherapy of Vestibular Schwannomas Accelerates Hearing Loss

    SciTech Connect

    Rasmussen, Rune; Claesson, Magnus; Stangerup, Sven-Eric; Roed, Henrik; Christensen, Ib Jarle; Caye-Thomasen, Per; Juhler, Marianne

    2012-08-01

    Objective: To evaluate long-term tumor control and hearing preservation rates in patients with vestibular schwannoma treated with fractionated stereotactic radiotherapy (FSRT), comparing hearing preservation rates to an untreated control group. The relationship between radiation dose to the cochlea and hearing preservation was also investigated. Methods and Materials: Forty-two patients receiving FSRT between 1997 and 2008 with a minimum follow-up of 2 years were included. All patients received 54 Gy in 27-30 fractions during 5.5-6.0 weeks. Clinical and audiometry data were collected prospectively. From a 'wait-and-scan' group, 409 patients were selected as control subjects, matched by initial audiometric parameters. Radiation dose to the cochlea was measured using the original treatment plan and then related to changes in acoustic parameters. Results: Actuarial 2-, 4-, and 10-year tumor control rates were 100%, 91.5%, and 85.0%, respectively. Twenty-one patients had serviceable hearing before FSRT, 8 of whom (38%) retained serviceable hearing at 2 years after FSRT. No patients retained serviceable hearing after 10 years. At 2 years, hearing preservation rates in the control group were 1.8 times higher compared with the group receiving FSRT (P=.007). Radiation dose to the cochlea was significantly correlated to deterioration of the speech reception threshold (P=.03) but not to discrimination loss. Conclusion: FSRT accelerates the naturally occurring hearing loss in patients with vestibular schwannoma. Our findings, using fractionation of radiotherapy, parallel results using single-dose radiation. The radiation dose to the cochlea is correlated to hearing loss measured as the speech reception threshold.

  15. Gamma Knife radiosurgery for vestibular schwannoma: case report and review of the literature

    PubMed Central

    2009-01-01

    Vestibular schwannomas, also called acoustic neuromas, are benign tumors of the vestibulocochlear nerve. Patients with these tumours almost always present with signs of hearing loss, and many also experience tinnitus, vertigo, and equilibrium problems. Following diagnosis with contrast enhanced MRI, patients may choose to observe the tumour with subsequent scans or seek active treatment in the form of microsurgery, radiosurgery, or radiotherapy. Unfortunately, definitive guidelines for treating vestibular schwannomas are lacking, because of insufficient evidence comparing the outcomes of therapeutic modalities. We present a contemporary case report, describing the finding of a vestibular schwannoma in a patient who presented with dizziness and a "clicking" sensation in the ear, but no hearing deficit. Audible clicking is a symptom that, to our knowledge, has not been associated with vestibular schwannoma in the literature. We discuss the diagnosis and patient's decision-making process, which led to treatment with Gamma Knife radiosurgery. Treatment resulted in an excellent radiographic response and complete hearing preservation. This case highlights an atypical presentation of vestibular schwannoma, associated with audible "clicks" and normal hearing. We also provide a concise review of the available literature on modern vestibular schwannoma treatment, which may be useful in guiding treatment decisions. PMID:20021676

  16. Monoclonal L-citrulline immunostaining reveals nitric oxide-producing vestibular neurons

    NASA Technical Reports Server (NTRS)

    Holstein, G. R.; Friedrich, V. L. Jr; Martinelli, G. P.

    2001-01-01

    Nitric oxide is an unstable free radical that serves as a novel messenger molecule in the central nervous system (CNS). In order to understand the interplay between classic and novel chemical communication systems in vestibular pathways, the staining obtained using a monoclonal antibody directed against L-citrulline was compared with the labeling observed using more traditional markers for the presence of nitric oxide. Brainstem tissue from adult rats was processed for immunocytochemistry employing a monoclonal antibody directed against L-citrulline, a polyclonal antiserum against neuronal nitric oxide synthase, and/or NADPH-diaphorase histochemistry. Our findings demonstrate that L-citrulline can be fixed in situ by vascular perfusion, and can be visualized in fixed CNS tissue sections by immunocytochemistry. Further, the same vestibular regions and cell types are labeled by NADPH-diaphorase histochemistry, by the neuronal nitric oxide synthase antiserum, and by our anti-L-citrulline antibody. Clusters of L-citrulline-immunoreactive neurons are present in subregions of the vestibular nuclei, including the caudal portion of the inferior vestibular nucleus, the magnocellular portion of the medial vestibular nucleus, and the large cells in the ventral tier of the lateral vestibular nucleus. NADPH-diaphorase histochemical staining of these neurons clearly demonstrated their multipolar, fusiform and globular somata and long varicose dendritic processes. These results provide support for the suggestion that nitric oxide serves key roles in both vestibulo-autonomic and vestibulo-spinal pathways.

  17. Response Linearity of Alert Monkey Non-Eye Movement Vestibular Nucleus Neurons During Sinusoidal Yaw Rotation

    PubMed Central

    Newlands, Shawn D.; Lin, Nan; Wei, Min

    2009-01-01

    Vestibular afferents display linear responses over a range of amplitudes and frequencies, but comparable data for central vestibular neurons are lacking. To examine the effect of stimulus frequency and magnitude on the response sensitivity and linearity of non-eye movement central vestibular neurons, we recorded from the vestibular nuclei in awake rhesus macaques during sinusoidal yaw rotation at frequencies between 0.1 and 2 Hz and between 7.5 and 210°/s peak velocity. The dynamics of the neurons' responses across frequencies, while holding peak velocity constant, was consistent with previous studies. However, as the peak velocity was varied, while holding the frequency constant, neurons demonstrated lower sensitivities with increasing peak velocity, even at the lowest peak velocities tested. With increasing peak velocity, the proportion of neurons that silenced during a portion of the response increased. However, the decrease in sensitivity of these neurons with higher peak velocities of rotation was not due to increased silencing during the inhibitory portion of the cycle. Rather the neurons displayed peak firing rates that did not increase in proportion to head velocity as the peak velocity of rotation increased. These data suggest that, unlike vestibular afferents, the central vestibular neurons without eye movement sensitivity examined in this study do not follow linear systems principles even at low velocities. PMID:19553479

  18. [Vestibular disorders in the minimal cerebral dysfun?tion in adults].

    PubMed

    Likhachev, S A; Mar'enko, I P

    2013-01-01

    Vestibular dysfunction is the most frequent symptom of minimal cerebral dysfunction in adults. Objective of the research was to study the etiopathogenesis of minimal cerebral dysfunction based on the analysis of the latency of different types of induced nystagmus. Threshold stimulation by physiological stimuli was used to study vestibular function (functional load tests) for the evaluation of neurodynamical plasticity of all parts of vestibular analyzer. Sixty males with manifestations of posterior cervical sympathetic syndrome, consequences of traumatic brain injury and neuroinfection, history of syncopes were examined. Spontaneous and different types of induced nystagmus were chosen as markers of vestibular dysfunction. Results of the study demonstrated that induced nystagmus had multineuronal arc, the latency of induced nystagmus was higher than that of spontaneous nystagmus and depended on the nature of stimulus applied to the vestibular system. In 3 patients, induced nystagmus was revealed in all tests with significant latency shortening compared to induced nystagmus in other patients. Functional load tests allowed to find a significant role of autonomic dysfunction, changes in the venous outflow and CSF flow in the cranial cavity and cervical proprioception in the etiopathogenesis of latent vestibular dysfunction in patients with minimal cerebral dysfunction. PMID:24429941

  19. Acid-sensing ionic-channel functional expression in the vestibular endorgans.

    PubMed

    Vega, Rosario; Rodríguez, Uxmal; Soto, Enrique

    2009-10-01

    In the vestibular system, the electrical discharge of the afferent neurons has been found to be highly sensitive to external pH changes, and acid-sensing ionic-channels (ASIC) have been found to be functionally expressed in afferent neurons. No previous attempt to assay the ASIC function in vestibular afferent neurons has been done. In our work we studied the electrical discharge of the afferent neuron of the isolated inner ear of the axolotl (Ambystoma tigrinum) to determine the participation of proton-gated currents in the postransductional information processing in the vestibular system. Microperfusion of FMRF-amide significantly increased the resting activity of the afferent neurons of the semicircular canal indicating that ASIC currents are tonically active in the resting condition. The use of ASIC antagonists, amiloride and acetylsalicylic acid (ASA), significantly reduced the vestibular-nerve discharge, corroborating the idea that the afferent neurons of the vestibular system express ASICs that are sensitive to amiloride, ASA, and to FMRF-amide. The sensitivity of the vestibular afferent-resting discharge to the microperfusion of ASIC acting agents indicates the participation of these currents in the establishment of the afferent-resting discharge. PMID:19660522

  20. FMRFamide-related peptide expression in the vestibular-afferent neurons.

    PubMed

    Mercado, Francisco; López, Iván; Ortega, Aida; Almanza, Angélica; Soto, Enrique; Vega, Rosario

    2012-03-28

    Vestibular-afferent neurons innervate hair cells from the sensory epithelia of vestibular end-organs and their action-potential discharge dynamics are driven by linear and angular accelerations of the head. The electrical activity of the vestibular-afferent neurons depends on their intrinsic properties and on the synaptic input from hair cells and from the terminals of the efferent system. Here we report that vestibular-afferent neurons of the rat are immunoreactive to RFamide-related peptides, and that the stronger signal comes from calyx-shaped neuron dendrites, with no signal detected in hair cells or supporting cells. The whole-cell voltage clamp recording of isolated afferent neurons showed that they express robust acid-sensing ionic currents (ASICs). Extracellular multiunit recordings of the vestibular nerve in a preparation in vitro of the rat inner ear showed that the perfusion of FMRFamide (a snail ortholog of this family of neuropeptides) exerts an excitatory effect on the afferent-neurons spike-discharge rate. Because the FMRFamide cannot activate the ASIC but reduces its desensitization generating a more robust current, its effect indicates that the ASIC are tonically active in the vestibular-afferent neurons and modulated by RFamide-like peptides. PMID:22342307

  1. [Postoperative facial and vestibular nerve palsy: experimental study of its pathophysiological mechanisms].

    PubMed

    Sekiya, T; Okabe, S; Hatayama, T; Iwabuchi, T; Takiguchi, M

    1990-02-01

    The 7th and 8th cranial nerves were shifted in the cerebellopontine (CP) angle of dogs by cerebellar retractions that were similar to those performed in humans with monitoring of auditory evoked brainstem responses (ABR). Postoperatively, the vestibular, facial nerves, and brainstem were histologically examined. Caudal-to-rostral shifts of the nerves could induce vestibular and/or facial nerve damages. The most vulnerable portion of the vestibular nerve was located between the vestibular ganglions and the area vestibularis-the most lateral end of the internal auditory canal. This indicated that due to traction force derived from surgical interventions, the nerves and vessels were avulsed at the fundus of the internal auditory canal. The vestibular nerve may be potentially injured more easily and frequently than the cochlear and facial nerves in retromastoid craniectomies with lateral decubitus position in humans. Direct injuries of the facial nerves in the CP angles were not observed in this study. It was elucidated that the facial nerve was usually injured in the facial canal proximal to the geniculate ganglion due to traction force derived from manipulations in the CP angle. It is likely that as facial nerve edema progresses postoperatively, the facial nerve is gradually compressed within the narrow labyrinthine portion of the facial canal. This may be the cause of delayed postoperative facial nerve palsy. The importance to recognize how not only cochlear but also vestibular and facial nerve are injured by the usual manipulations in the CP angle is stressed. PMID:2357413

  2. Optimal visual-vestibular integration under conditions of conflicting intersensory motion profiles.

    PubMed

    Butler, John S; Campos, Jennifer L; Bülthoff, Heinrich H

    2015-02-01

    Passive movement through an environment is typically perceived by integrating information from different sensory signals, including visual and vestibular information. A wealth of previous research in the field of multisensory integration has shown that if different sensory signals are spatially or temporally discrepant, they may not combine in a statistically optimal fashion; however, this has not been well explored for visual-vestibular integration. Self-motion perception involves the integration of various movement parameters including displacement, velocity, acceleration and higher derivatives such as jerk. It is often assumed that the vestibular system is optimized for the processing of acceleration and higher derivatives, while the visual system is specialized to process position and velocity. In order to determine the interactions between different spatiotemporal properties for self-motion perception, in Experiment 1, we first asked whether the velocity profile of a visual trajectory affects discrimination performance in a heading task. Participants performed a two-interval forced choice heading task while stationary. They were asked to make heading discriminations while the visual stimulus moved at a constant velocity (C-Vis) or with a raised cosine velocity (R-Vis) motion profile. Experiment 2 was designed to assess how the visual and vestibular velocity profiles combined during the same heading task. In this case, participants were seated on a Stewart motion platform and motion information was presented via visual information alone, vestibular information alone or both cues combined. The combined condition consisted of congruent blocks (R-Vis/R-Vest) in which both visual and vestibular cues consisted of a raised cosine velocity profile and incongruent blocks (C-Vis/R-Vest) in which the visual motion profile consisted of a constant velocity motion, while the vestibular motion consisted of a raised cosine velocity profile. Results from both Experiments 1 and 2 demonstrated that visual heading estimates are indeed affected by the velocity profile of the movement trajectory, with lower thresholds observed for the R-Vis compared to the C-Vis. In Exp. 2 when visual-vestibular inputs were both present, they were combined in a statistically optimal fashion irrespective of the type of visual velocity profile, thus demonstrating robust integration of visual and vestibular cues. The study suggests that while the time course of the velocity did affect visual heading judgments, a moderate conflict between visual and vestibular motion profiles does not cause a breakdown in optimal integration for heading. PMID:25361642

  3. TOWARD A STOCHASTIC CALCULUS, II*

    PubMed Central

    McShane, E. J.

    1969-01-01

    In a preceding note (these Proceedings, 63, 275 (1969)) singly and doubly stochastic integrals were defined. Here correspondingly generalized stochastic differential equations are studied. For constructing stochastic models of physical processes with random noises, by proper selection of the doubly stochastic terms, we remove the apparent discordances between classical and stochastic models. PMID:16578704

  4. Cortical representation of saccular vestibular stimulation: VEMPs in fMRI.

    PubMed

    Schlindwein, P; Mueller, M; Bauermann, T; Brandt, T; Stoeter, P; Dieterich, M

    2008-01-01

    Short tone bursts trigger a vestibular evoked myogenic potential (VEMP), an inhibitory potential which reflects a component of the vestibulocollic reflex (VCR). These potentials arise as a result of activation of the sacculus and are expressed through the vestibulo-collic reflex (VCR). Up to now, the ascending projections of the sacculus are unknown in humans, only the representation of the semicircular canals or the entire vestibular nerve has been demonstrated. The aim of this study was to determine whether a sacculus stimulus that evoked VEMPs could activate vestibular cortical areas in fMRI. To determine this, we studied the differential effects of unilateral VEMP stimulation in 21 healthy right-handers in a clinical 1.5 T scanner while wearing piezo electric headphones. A unilateral VEMP stimulus and two auditory control stimuli were given in randomized order over the stimulated ear. A random effects statistical analysis was done with SPM2 (p<0.05, corrected). After exclusion of the auditory effects, the major findings were as follows: (i) significant activations were located in the multisensory cortical vestibular network within both hemispheres, including the posterior insular cortex, the middle and superior temporal gyri, and the inferior parietal cortex. (ii) The activation pattern was elicited bilaterally with a predominance of the right hemisphere in right-handers. (iii) Saccular vestibular projection was predominantly ipsilateral, whereas (iv) pure acoustic stimuli were processed with a predominance of the respective contralateral and mainly in the left hemisphere. This is the first demonstration by means of fMRI of the cortical representation of the saccular input at cortical level. The activation pattern is similar to that known from the stimulation of the entire vestibular nerve or the horizontal semicircular canal. Our data give evidence of a task-dependent separation of the processing within the vestibular otolith and the auditory systems in the two hemispheres. PMID:17919936

  5. Ocular Vestibular Evoked Myogenic Potentials Using Head Striker Stimulation

    NASA Technical Reports Server (NTRS)

    De Dios, Y. E.; Gadd, N. E.; Kofman, I. S.; Peters, B. T.; Reschke, M.; Bloomberg, J. J.; Wood, S. J.; Noohibezanjani, F.; Kinnaird, C.; Seidler, R. D.; Mulavara, A. P.

    2016-01-01

    Introduction: Over the last two decades, several studies have been published on the impact of long-duration (i.e., 22 days or longer) spaceflight on the central nervous system (CNS). In consideration of the health and performance of crewmembers in flight and post-flight, we are conducting a controlled prospective longitudinal study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor, cognitive, and neural changes. Multiple studies have demonstrated the effects of spaceflight on the vestibular system. One of the supporting tests conducted in this protocol is the Vestibular Evoked Myogenic Potential (VEMP) test that provides a unilateral measure of otolith (saccule and utricle) function. A different approach was taken for ocular VEMP (oVEMP) testing using a head striker system (Wackym et al. 2012). The oVEMP is generally considered to be a measure of utricle function. The the otolithic input to the inferior oblique muscle is predominately from the utricular macula. Thus, quantitatively, oVEMP tests utricular function. Another practical extension of these relationships is that the oVEMP reflects the superior vestibular nerve function. Methods: Ground testing was administered on 16 control subjects and for 8 subjects over four repeated sessions spanning 70 days. The oVEMP was elicitied via a hand held striker by a vibrotactile pulse presented at the rate of 1 Hz for 24 seconds on the side of the head as subjects lay supine on a gurney. Subjects were directed to gaze approximately 25 degrees above straight ahead in semi-darkness. For the oVEMP electromyograms will be recorded with active bipolar electrodes (Delsys Inc., Boston, MA) on the infra-orbital ridge 1 cm below the eyelid with a reference electrode on the below the knee cap. The EMG potentials were amplified; band-pass filtered using a BagnoliTM Desktop EMG System (Delsys Inc., Boston, MA, USA). This EMG signal is sampled at 10 kHz and the data stimulus onset to 100 MS was averaged over 24 trial repetitions for the vibrotactile VEMP. The typical oVEMP EMG response is an excitatory potential with first peak occurring at 11-12 ms and second peak at 18 ms. This requires a total recording time of approximately 29 seconds per trial which includes 5 seconds of no vibrotactile stimulation at the beginning of the protocol. The primary dependent measures consist of the latency and peak-to-peak amplitude from the EMG signals, which will be normalized to EMG levels at the beginning of the protocol. Data were collected for 3 repeated trials with striker stimulation on both the left and right side of the head Results: The oVEMP p1 range was observed at 3-14 ms and n1 at 7-19 ms. The striker system provided a consistent and rapid method for oVEMP testing. Discussion: Crew testing is in progress to determine changes in results between pre and post flight.

  6. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    NASA Technical Reports Server (NTRS)

    Noohi, Fatemeh; Kinnaird, Catherine; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2014-01-01

    The aim of the current study was to characterize the brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit saccular Vestibular Evoked Myogenic Potentials (VEMP) (Colebatch & Halmagyi 1992; Colebatch et al. 1994). Some researchers have reported that airconducted skull tap elicits both saccular and utricle VEMPs, while being faster and less irritating for the subjects (Curthoys et al. 2009, Wackym et al., 2012). However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying the vestibular disorders related to otolith deficits. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, pre and post central gyri, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation (Bottini et al., 1994; Dieterich et al., 2003; Emri et al., 2003; Schlindwein et al., 2008; Janzen et al., 2008). Here we hypothesized that the skull tap elicits the similar pattern of cortical activity as the auditory tone burst. Subjects put on a set of MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in supine position, with eyes closed. All subjects received both forms of the stimulation, however, the order of stimulation with auditory tone burst and air-conducted skull tap was counterbalanced across subjects. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular cortex, resulting in vestibular response (Halmagyi et al., 1995). Auditory tone bursts were also delivered for comparison. To validate our stimulation method, we measured the ocular VEMP outside of the scanner. This measurement showed that both skull tap and auditory tone burst elicited vestibular evoked activation, indicated by eye muscle response. Our preliminary analyses showed that the skull tap elicited activation in medial frontal gyrus, superior temporal gyrus, postcentral gyrus, transverse temporal gyrus, anterior cingulate, and putamen. The auditory tone bursts elicited activation in medial frontal gyrus, superior temporal gyrus, superior frontal gyrus, precentral gyrus, inferior and superior parietal lobules. In line with our hypothesis, skull taps elicited a pattern of cortical activity closely similar to one elicited by auditory tone bursts. Further analysis will determine the extent to which the skull taps can replace the auditory tone stimulation in clinical and basic science vestibular assessments.

  7. Influences of Vestibular System on Sympathetic Nervous System. Implications for countermeasures.

    NASA Astrophysics Data System (ADS)

    Denise, Pr Pierre

    As gravity is a direct and permanent stress on body fluids, muscles and bones, it is not surpris-ing that weightlessness has important effects on cardiovascular and musculo-skeletal systems. However, these harmful effects do not totally result from the removal of the direct stress of gravity on these organs, but are also partially and indirectly mediated by the vestibular sys-tem. Besides its well known crucial role in spatial orientation and postural equilibrium, it is now clear that the vestibular system is also involved in the regulation of other important physi-ological systems: respiratory and cardiovascular systems, circadian regulation, food intake and even bone mineralization. The neuroanatomical substrate for these vestibular-mediated reg-ulations is still poorly defined, but there is much evidence that vestibular system has strong impacts not only on brainstem autonomic centers but on many hypothalamic nuclei as well. As autonomic nervous system controls almost all body organs, bringing into play the vestibular system by hypergravity or microgravity could virtually affects all major physiological func-tions. There is experimental evidence that weightlessness as well as vestibular lesion induce sympathetic activation thus participating in space related physiological alterations. The fact that some effects of weightlessness on biological systems are mediated by the vestibular system has an important implication for using artificial gravity as a countermeasure: artificial gravity should load not only bones and the cardiovascular system but the vestibular system as well. In short-arm centrifuges, the g load at the head level is low because the head is near the axis of rotation. If the vestibular system is involved in cardiovascular deconditioning and bone loss during weightlessness, it would be more effective to significantly stimulate it and thus it would be necessary to place the head off-axis. Moreover, as the otolithic organs are non longer stimu-lated in term of gravity during space flight, and because of the plasticity of the brain, it might be possible that their inputs be progressively interpreted as resulting from translational move-ment with no gravity related activation. Therefore, on return to Earth the effect of the otoliths on cardiovascular regulation might be temporarily lost leading to orthostatic intolerance.

  8. Vestibular and Non-vestibular Contributions to Eye Movements that Compensate for Head Rotations during Viewing of Near Targets

    NASA Technical Reports Server (NTRS)

    Han, Yanning H.; Kumar, Arun N.; Reschke, Millard F.; Somers, Jeffrey T.; Dell'Osso, Louis F.; Leigh, R. John

    2004-01-01

    We studied horizontal eye movements induced by en-bloc yaw rotation, over a frequency range 0.2 - 2.8 Hz, in 10 normal human subjects as th ey monocularly viewed a target located at their near point of focus. We measured gain and phase relationships between eye-in-head velocity and head velocity when the near target was either earth-fixed or head-fixed. During viewing of the earth-fixed near target,median gain was 1.49 (range 1.24 - 1.87) at 0.2 Hz for the group of subjects, but decl ined at higher frequencies, so that at 2.8 Hz median gain was 1.08 (r ange 0.68 - 1.67). During viewing of the head-fixed near target, median gain was 0.03 (range 0.01 - 0.10) at 0.2 Hz for the group of subjec ts, but increased at higher frequencies, so that at 2.8 Hz median gai n was 0.71 (range 0.28 - 0.94). We estimated the vestibular contribution to these responses (vestibulo-ocular reflex gain, Gvor) by applyin g transient head perturbations (peak acceleration> 1,000 deg's(exp 2) ) during sinusoidal rotation under the two viewing conditions. Median Gvor, estimated < 70m after the onset of head perturbation, was 0.98 (range 0.39 - 1.42) while viewing the earth-fixed near target, and 0. 97 (range 0.37 - 1.33) while viewing the head-fixed near target. For the group of subjects, 9 out of 10 subjects showed no sigificant diff erence of Gvor between the two viewing conditions ( p > 0.053 ) at all test frequencies. Since Gvor accounted for only approximately 73% of the overall response gain during viewing of the earth-fixed target, we investigated the relative contributions of non-vestibular factors. When subjects viewed the earth-fixed target under strobe illumination , to eliminate retinal image slip information, the gain of compensato ry eye movements declined compared with viewing in ambient room light . During sum-of-sine head rotations, while viewing the earth-fixed target, to minimize contributions from predictive mechanisms, gain also declined Nonetheless, simple superposition of smooth-pursuit tracking of sinusoidal target motion could not fully account for the overall r esponse at higher frequencies, suggesting other non-vestibular contributions. During binocular viewing conditions when vergence angle was s ignificantly greater than monocular viewing (p < 0.001), this gain of compensatory eye movements did not show proportional change; indeed, gain could not be correlated with vergence angle during monocular or binocular viewing. We conclude that several separate factors contribute to generate eye rotations during sinusoidal yaw head rotations whi le viewing a near target; these include the VOR, visual-tracking eye movements that utilize retinal image motion, predictive eye movements and, possibly, other unidentified nonvestibular factors. For these experiments, vergence was not an important determinant of response gain .

  9. Vestibular and Non-vestibular Contributions to Eye Movements that Compensate for Head Rotations during Viewing of Near Targets

    NASA Technical Reports Server (NTRS)

    Han, Yanning H.

    2006-01-01

    We studied horizontal eye movements induced by en-bloc yaw rotation, over a frequency range 0.2 - 2.8 Hz, in 10 normal human subjects as they monocularly viewed a target located at their near point of focus. We measured gain and phase relationships between eye-in-head velocity and head velocity when the near target was either earth-fixed or head-fixed. During viewing of the earth-fixed near target, median gain was 1.49 (range 1.24 - 1.87) at 0.2 Hz for the group of subjects, but declined at higher frequencies, so that at 2.8 Hz median gain was 1.08 (range 0.68 - 1.67). During viewing of the head-fixed near target , median gain was 0.03 (range 0.01 - 0.10) at 0.2 Hz for the group of subjects, but increased at higher frequencies, so that at 2.8 Hz median gain was 0.71 (range 0.28 - 0.94). We estimated the vestibular contribution to these responses vestibulo-ocular reflex gain (Gvor) by applying transient head perturbations (peak acceleration> 1,000 deg/s(exp 2)) during sinusoidal rotation under the two viewing conditions. Median Gvor, estimated < 70ms after the onset of head perturbation, was 0.98 (range 0.39 - 1.42) while viewing the earth-fixed near target, and 0.97 (range 0.37 - 1.33) while viewing the head-fixed near target. For the group of subjects, 9 out of 10 subjects showed no significant difference of Gvor between the two viewing conditions ( p > 0.053 ) at all test frequencies. Since Gvor accounted for only -73% of the overall response gain during viewing of the earth-fixed target, we investigated the relative contributions of non-vestibular factors. When subjects viewed the earth-fixed target under strobe illumination, to eliminate retinal image slip information, the gain of compensatory eye movements declined compared with viewing in ambient room light. During sum-of-sine head rotations, while viewing the earth-fixed target, to Han et al./VOR during near-viewing minimize contributions from predictive mechanisms, gain also declined Nonetheless, simple superposition of smooth-pursuit tracking of sinusoidal target motion could not fully account for the overall response at higher frequencies, suggesting other nonvestibular contributions. During binocular viewing conditions when vergence angle was significantly greater than monocular viewing (p < 0.00l), the gain of compensatory eye movements did not show proportional change; indeed, gain could not be correlated with vergence angle during monocular or binocular viewing. We conclude that several separate factors contribute to generate eye rotations during sinusoidal yaw head rotations while viewing a near target; these include the VOR, visual-tracking eye movements that utilize retinal image motion, predictive eye movements and, possibly, other unidentified non-vestibular factors. For these experiments, vergence was not an important determinant of response gam.

  10. Evidence for vestibular regulation of autonomic functions in a mouse genetic model

    NASA Technical Reports Server (NTRS)

    Murakami, Dean M.; Erkman, Linda; Hermanson, Ola; Rosenfeld, Michael G.; Fuller, Charles A.

    2002-01-01

    Physiological responses to changes in the gravitational field and body position, as well as symptoms of patients with anxiety-related disorders, have indicated an interrelationship between vestibular function and stress responses. However, the relative significance of cochlear and vestibular information in autonomic regulation remains unresolved because of the difficulties in distinguishing the relative contributions of other proprioceptive and interoceptive inputs, including vagal and somatic information. To investigate the role of cochlear and vestibular function in central and physiological responses, we have examined the effects of increased gravity in wild-type mice and mice lacking the POU homeodomain transcription factor Brn-3.1 (Brn-3bPou4f3). The only known phenotype of the Brn-3.1(-/-) mouse is related to hearing and balance functions, owing to the failure of cochlear and vestibular hair cells to differentiate properly. Here, we show that normal physiological responses to increased gravity (2G exposure), such as a dramatic drop in body temperature and concomitant circadian adjustment, were completely absent in Brn-3.1(-/-) mice. In line with the lack of autonomic responses, the massive increase in neuronal activity after 2G exposure normally detected in wild-type mice was virtually abolished in Brn-3.1(-/-) mice. Our results suggest that cochlear and vestibular hair cells are the primary regulators of autonomic responses to altered gravity and provide genetic evidence that these cells are sufficient to alter neural activity in regions involved in autonomic and neuroendocrine control.

  11. Virtual head rotation reveals a process of route reconstruction from human vestibular signals

    PubMed Central

    Day, Brian L; Fitzpatrick, Richard C

    2005-01-01

    The vestibular organs can feed perceptual processes that build a picture of our route as we move about in the world. However, raw vestibular signals do not define the path taken because, during travel, the head can undergo accelerations unrelated to the route and also be orientated in any direction to vary the signal. This study investigated the computational process by which the brain transforms raw vestibular signals for the purpose of route reconstruction. We electrically stimulated the vestibular nerves of human subjects to evoke a virtual head rotation fixed in skull co-ordinates and measure its perceptual effect. The virtual head rotation caused subjects to perceive an illusory whole-body rotation that was a cyclic function of head-pitch angle. They perceived whole-body yaw rotation in one direction with the head pitched forwards, the opposite direction with the head pitched backwards, and no rotation with the head in an intermediate position. A model based on vector operations and the anatomy and firing properties of semicircular canals precisely predicted these perceptions. In effect, a neural process computes the vector dot product between the craniocentric vestibular vector of head rotation and the gravitational unit vector. This computation yields the signal of body rotation in the horizontal plane that feeds our perception of the route travelled. PMID:16002439

  12. Visual Vestibular Interaction in the Dynamic Visual Acuity Test during Voluntary Head Rotation

    NASA Technical Reports Server (NTRS)

    Lee, Moo Hoon; Durnford, Simon; Crowley, John; Rupert, Angus

    1996-01-01

    Although intact vestibular function is essential in maintaining spatial orientation, no good screening tests of vestibular function are available to the aviation community. High frequency voluntary head rotation was selected as a vestibular stimulus to isolate the vestibulo-ocular reflex (VOR) from visual influence. A dynamic visual acuity test that incorporates voluntary head rotation was evaluated as a potential vestibular function screening tool. Twenty-seven normal subjects performed voluntary sinusoidal head rotation at frequencies from 0.7-4.0 Hz under three different visual conditions: visually-enhanced VOR, normal VOR, and visually suppressed VOR. Standardized Baily-Lovie chart letters were presented on a computer monitor in front of the subject, who then was asked to read the letters while rotating his head horizontally. The electro-oculogram and dynamic visual acuity score were recorded and analyzed. There were no significant differences in gain or phase shift among three visual conditions in the frequency range of 2.8 to 4.0 Hz. The dynamic visual acuity score shifted less than 0.3 logMAR at frequencies under 2.0 Hz. The dynamic visual acuity test at frequencies a round 2.0 Hz can be recommended for evaluating vestibular function.

  13. The Vestibular-Auditory Interaction for Auditory Brainstem Response to Low Frequencies

    PubMed Central

    Gohari, Nasrin

    2014-01-01

    Since saccular projection is sound sensitive, the objective is to investigate the possibility that the saccular projections may contribute to auditory brainstem response to 500?HZ tone burst (ABR500?HZ). During the case-control research, twenty healthy controls compared to forty selected case groups as having chronic and resistant BPPV were evaluated in the audiology department of Hamadan University of Medical Sciences (Hamadan, Iran). Assessment is comprised of audiologic examinations, cervical vestibular evoked myogenic potentials (cVEMPs), and ABR500?HZ. We found that forty affected ears of BPPV patients with decreased vestibular excitability as detected by abnormal cVEMPs had abnormal results in ABR500?HZ, whereas unaffected ears presented normal findings. Multiple comparisons of mean p13, n23 latencies, and peak-to-peak amplitudes between three groups (affected, unaffected, and healthy ears) were significant. In conclusion, the saccular nerves can be projective to auditory bundles and interact with auditory brainstem response to low frequencies. Combine the cVEMPs and ABR500?HZ in battery approach tests of vestibular assessment and produce valuable data for judgment on the site of lesion. Regarding vestibular cooperation for making of wave V, it is reasonable that the term of ABR500?HZ is not adequate and the new term or vestibular-auditory brainstem response to 500?HZ tone burst is more suitable. PMID:25006510

  14. Pharmacotherapy of vestibular and cerebellar disorders and downbeat nystagmus: translational and back-translational research.

    PubMed

    Strupp, Michael; Zwergal, Andreas; Feil, Katharina; Bremova, Tatiana; Brandt, Thomas

    2015-04-01

    There are currently eight groups of drugs for the pharmacotherapy of vertigo, nystagmus, and cerebellar disorders: antiemetics; anti-inflammatories, antimenieres, and antimigraineous medications; antidepressants, anticonvulsants, aminopyridines, and acetyl-DL-leucine ("the eight A's"). In acute unilateral vestibulopathy, corticosteroids improve the recovery of peripheral vestibular function, but there is not sufficient current evidence for a general recommendation. There is also insufficient evidence that 48 or 144 mg/day betahistine has an effect in Ménière's disease. Therefore, higher dosages are currently recommended; in animal studies, it was shown that betahistine increases cochlear blood flow. In vestibular paroxysmia, oxcarbazepine was effective (one yet not randomized controlled trial (RCT)). Aminopyridines are recommended for the treatment of downbeat nystagmus (two RCTs) and episodic ataxia type 2 (EA2, one RCT). There are so far no RCTs on vestibular migraine, so currently no treatment can be recommended. Acetyl-dl-leucine improves cerebellar ataxia (three observational studies); it also accelerates central compensation in an animal model of acute unilateral lesion, but RCTs were negative. There are ongoing RCTs on vestibular paroxysmia with carbamazepine (VESPA), acute unilateral vestibulopathy with betahistine (BETAVEST), vestibular migraine with metoprolol (PROVEMIG), benign paroxysmal positional vertigo with vitamin D (VitD@BPPV), EA2 with 4-aminopyridine versus acetazolamide (EAT-2-TREAT), and cerebellar ataxias with acetyl-DL-leucine (ALCAT). PMID:25903394

  15. Does the vestibular system contribute to head direction cell activity in the rat?

    NASA Technical Reports Server (NTRS)

    Brown, J. E.; Yates, B. J.; Taube, J. S.; Oman, C. M. (Principal Investigator)

    2002-01-01

    Head direction cells (HDC) located in several regions of the brain, including the anterior dorsal nucleus of the thalamus (ADN), postsubiculum (PoS), and lateral mammillary nuclei (LMN), provide the neural substrate for the determination of head direction. Although activity of HDC is influenced by various sensory signals and internally generated cues, lesion studies and some anatomical and physiological evidence suggest that vestibular inputs are critical for the maintenance of directional sensitivity of these cells. However, vestibular inputs must be transformed considerably in order to signal head direction, and the neuronal circuitry that accomplishes this signal processing has not been fully established. Furthermore, it is unclear why the removal of vestibular inputs abolishes the directional sensitivity of HDC, as visual and other sensory inputs and motor feedback signals strongly affect the firing of these neurons and would be expected to maintain their directional-related activity. Further physiological studies will be required to establish the role of vestibular system in producing HDC responses, and anatomical studies are needed to determine the neural circuitry that mediates vestibular influences on determination of head direction.

  16. Central Adaptation to Repeated Galvanic Vestibular Stimulation: Implications for Pre-Flight Astronaut Training

    PubMed Central

    Dilda, Valentina; Morris, Tiffany R.; Yungher, Don A.; MacDougall, Hamish G.; Moore, Steven T.

    2014-01-01

    Healthy subjects (N?=?10) were exposed to 10-min cumulative pseudorandom bilateral bipolar Galvanic vestibular stimulation (GVS) on a weekly basis for 12 weeks (120 min total exposure). During each trial subjects performed computerized dynamic posturography and eye movements were measured using digital video-oculography. Follow up tests were conducted 6 weeks and 6 months after the 12-week adaptation period. Postural performance was significantly impaired during GVS at first exposure, but recovered to baseline over a period of 7–8 weeks (70–80 min GVS exposure). This postural recovery was maintained 6 months after adaptation. In contrast, the roll vestibulo-ocular reflex response to GVS was not attenuated by repeated exposure. This suggests that GVS adaptation did not occur at the vestibular end-organs or involve changes in low-level (brainstem-mediated) vestibulo-ocular or vestibulo-spinal reflexes. Faced with unreliable vestibular input, the cerebellum reweighted sensory input to emphasize veridical extra-vestibular information, such as somatosensation, vision and visceral stretch receptors, to regain postural function. After a period of recovery subjects exhibited dual adaption and the ability to rapidly switch between the perturbed (GVS) and natural vestibular state for up to 6 months. PMID:25409443

  17. Reliability-Based Weighting of Visual and Vestibular Cues in Displacement Estimation.

    PubMed

    Ter Horst, Arjan C; Koppen, Mathieu; Selen, Luc P J; Medendorp, W Pieter

    2015-01-01

    When navigating through the environment, our brain needs to infer how far we move and in which direction we are heading. In this estimation process, the brain may rely on multiple sensory modalities, including the visual and vestibular systems. Previous research has mainly focused on heading estimation, showing that sensory cues are combined by weighting them in proportion to their reliability, consistent with statistically optimal integration. But while heading estimation could improve with the ongoing motion, due to the constant flow of information, the estimate of how far we move requires the integration of sensory information across the whole displacement. In this study, we investigate whether the brain optimally combines visual and vestibular information during a displacement estimation task, even if their reliability varies from trial to trial. Participants were seated on a linear sled, immersed in a stereoscopic virtual reality environment. They were subjected to a passive linear motion involving visual and vestibular cues with different levels of visual coherence to change relative cue reliability and with cue discrepancies to test relative cue weighting. Participants performed a two-interval two-alternative forced-choice task, indicating which of two sequentially perceived displacements was larger. Our results show that humans adapt their weighting of visual and vestibular information from trial to trial in proportion to their reliability. These results provide evidence that humans optimally integrate visual and vestibular information in order to estimate their body displacement. PMID:26658990

  18. Reliability-Based Weighting of Visual and Vestibular Cues in Displacement Estimation

    PubMed Central

    ter Horst, Arjan C.; Koppen, Mathieu; Selen, Luc P. J.; Medendorp, W. Pieter

    2015-01-01

    When navigating through the environment, our brain needs to infer how far we move and in which direction we are heading. In this estimation process, the brain may rely on multiple sensory modalities, including the visual and vestibular systems. Previous research has mainly focused on heading estimation, showing that sensory cues are combined by weighting them in proportion to their reliability, consistent with statistically optimal integration. But while heading estimation could improve with the ongoing motion, due to the constant flow of information, the estimate of how far we move requires the integration of sensory information across the whole displacement. In this study, we investigate whether the brain optimally combines visual and vestibular information during a displacement estimation task, even if their reliability varies from trial to trial. Participants were seated on a linear sled, immersed in a stereoscopic virtual reality environment. They were subjected to a passive linear motion involving visual and vestibular cues with different levels of visual coherence to change relative cue reliability and with cue discrepancies to test relative cue weighting. Participants performed a two-interval two-alternative forced-choice task, indicating which of two sequentially perceived displacements was larger. Our results show that humans adapt their weighting of visual and vestibular information from trial to trial in proportion to their reliability. These results provide evidence that humans optimally integrate visual and vestibular information in order to estimate their body displacement. PMID:26658990

  19. Effect of low level laser (LLL) on cochlear and vestibular inner ear including tinnitus

    NASA Astrophysics Data System (ADS)

    Rhee, Chung-Ku; Lim, Eun-Seok; Kim, Young-Saeng; Chung, Yong-Won; Jung, Jae-Yun; Chung, Phil-Sang

    2006-02-01

    Objectives: 1. To investigate preventive effect of LLL on gentamicin-induced vestibular ototoxicity. 2. To evaluate the effectiveness of lower level laser (LLL) in the treatment of tinnitus. Methods: 1. Twenty guinea pigs were divided into control and laser groups. Vestibular ototoxicity was induced by intratympanic injection of gentamicin into left ear. LLL was irradiated into left ear canal of animals in laser group. Vestibular function of the animals was evaluated with vertical and off-vertical axis rotation testing. 2. Forty patients with tinnitus were treated with ginkgo biloba orally and randomly divided into control and laser groups. The 20 patients of laser group received 80.4 J/cm2 of 830 nm laser, 3 times per week for 4 weeks, via transmeatal irradiation. Tinnitus was evaluated by visual analogue scale (VAS) and tinnitus handicap inventory (THI). Results: 1. Preventive effect of LLL to gentamicin induced vestibular ototoxicity was demonstrated by preventing reduction of gain in slow harmonic acceleration test and modulation in the off-vertical axis rotation test. 2. Eleven of 20 laser group patients have shown significant improvement in VAS and THI compared to those of the control group. Conclusions: 1. LLL therapy may have preventive effect to vestibular ototoxicity. 2. LLL therapy in combination with ginkgo biloba seems to be worth trying on patients with tinnitus.

  20. Effects of Weightlessness on Vestibular Development: Summary of Research on NIH.R1

    NASA Technical Reports Server (NTRS)

    Fritzsch, Bernd; Bruce, L. L.

    1998-01-01

    In our original application we proposed to investigate the effects of gravity on the formation of connections between the gravity receptors of the ear and the brain in rat pups raised in space beginning at an age before these connections are made until near the time of birth, when they are to some extent functional. We used the neuronal tracer, Dil, which could be applied to tissue obtained immediately after landing of the space shuttle, thus minimizing changes due to the earth's gravity. We hoped to determine whether the vestibular system develops in two phases, as do other sensory systems (such as the visual system). In these other systems the first phase of development is controlled genetically and the second phase is controlled by environmental stimulation. Our data collected strongly supports the idea that the vestibular system has these same two phases of development. The tissue obtained from the NIH.R1 experiment was of exceptionally high quality for our analysis. Therefore, we expanded our investigation into the ultrastructural effects of microgravity on vestibular development. For the sake of clarity we will subdivide our summary into two categories: (1) analysis of the branching pattern of axons between the vestibular nerve and the gravistatic receptors of the ear in flight and control animals, and (2) analysis of the branching pattern of axons between the vestibular nerve and the brain in flight and control animals.

  1. Investigations of the Effects of Altered Vestibular System Function on Hindlimb Anti-Gravity Muscles

    NASA Technical Reports Server (NTRS)

    Lowery, Mary Sue

    1998-01-01

    Exposure to different gravitational environments, both the microgravity of spaceflight and the hypergravity of centrifugation, result in altered vestibulo-spinal function which can be reversed by reacclimation to earth gravity (2). Control of orientation, posture, and locomotion are functions of the vestibular system which are altered by changes in gravitational environment. Not only is the vestibular system involved with coordination and proprioception, but the gravity sensing portion of the vestibular system also plays a major role in maintaining muscle tone through projections to spinal cord motoneurons that control anti-gravity muscles. I have been involved with investigations of several aspects of the link between vestibular inputs and muscle morphology and function during my work with Dr. Nancy Daunton this summer and the previous summer. We have prepared a manuscript for submission (4) to Aviation, Space, and Environmental Medicine based on work that I performed last summer in Dr. Daunton's lab. Techniques developed for that project will be utilized in subsequent experiments begun in the summer of 1998. I have been involved with the development of a pilot project to test the effects of vestibular galvanic stimulation (VGS) on anti-gravity muscles and in another project testing the effects of the ototoxic drug streptomycin on the otolith-spinal reflex and anti-gravity muscle morphology.

  2. Extending the Functional Cerebral Systems Theory of Emotion to the Vestibular Modality: A Systematic and Integrative Approach

    ERIC Educational Resources Information Center

    Carmona, Joseph E.; Holland, Alissa K.; Harrison, David W.

    2009-01-01

    Throughout history, vestibular and emotional dysregulation have often manifested together in clinical settings, with little consideration that they may have a common basis. Regarding vestibular mechanisms, the role of brainstem and cerebellar structures has been emphasized in the neurological literature, whereas emotion processing in the cerebral…

  3. [These vestibular problems in the absence of gravity...].

    PubMed

    Timsit, C

    1986-01-01

    For a few years, more and more astronauts complain to endure space motion sickness during the two or three first days of their mission. This is due to the repetition of shifting and sudden head movements, which becomes possible by the increasing of volume of the new space stations. To avoid that payload specialists onboard be obliged to renounce to conduct planned experiments, it has been necessary to find effective solutions to detect by ground based tests the candidates sensitive to space motion sickness and perfect therapeutic means able to avoid unexpected arrival of these symptoms, and even to treat them. The best results are undeniably obtained by the "Biofeedback" and the "tolerance" training, but we base wide hopes on ginger roots and on tolerance with sensorial deprivation lockers. However, we must not disregard the trigger action of emotional factors and anxiety in space motion sickness. The European mission SPACELAB-1 has been marked by the display of a caloric nystagmus during the vestibular experiments in weightlessness. If no explanation is given to this phenomenon, it will be necessary to call in question the role of the thermal convection described by Barany in the appearance of the caloric nystagmus. PMID:3490819

  4. Secreted Factors from Human Vestibular Schwannomas Can Cause Cochlear Damage.

    PubMed

    Dilwali, Sonam; Landegger, Lukas D; Soares, Vitor Y R; Deschler, Daniel G; Stankovic, Konstantina M

    2015-01-01

    Vestibular schwannomas (VSs) are the most common tumours of the cerebellopontine angle. Ninety-five percent of people with VS present with sensorineural hearing loss (SNHL); the mechanism of this SNHL is currently unknown. To establish the first model to study the role of VS-secreted factors in causing SNHL, murine cochlear explant cultures were treated with human tumour secretions from thirteen different unilateral, sporadic VSs of subjects demonstrating varied degrees of ipsilateral SNHL. The extent of cochlear explant damage due to secretion application roughly correlated with the subjects' degree of SNHL. Secretions from tumours associated with most substantial SNHL resulted in most significant hair cell loss and neuronal fibre disorganization. Secretions from VSs associated with good hearing or from healthy human nerves led to either no effect or solely fibre disorganization. Our results are the first to demonstrate that secreted factors from VSs can lead to cochlear damage. Further, we identified tumour necrosis factor alpha (TNF?) as an ototoxic molecule and fibroblast growth factor 2 (FGF2) as an otoprotective molecule in VS secretions. Antibody-mediated TNF? neutralization in VS secretions partially prevented hair cell loss due to the secretions. Taken together, we have identified a new mechanism responsible for SNHL due to VSs. PMID:26690506

  5. Spacelab-1 Mission Onboard Photograph-Vestibular Experiment in Space

    NASA Technical Reports Server (NTRS)

    1983-01-01

    In this Spacelab-1 mission onboard photograph, astronaut Byron Lichtenberg performs a drop experiment, one of the Vestibular Experiments in Space investigations. The experiment examined spinal reflexes to determine whether they changed in microgravity. In Earth's environment, the otoliths signal the muscles to prepare for jolts associated with falling. During the flight, the normal reflex between the otoliths and the muscles was partially inhibited early in flight, declined further as the flight progressed, and returned to normal immediately after landing, suggesting that the brain ignored or reinterpreted otolith signals during space flight. Crewmembers reported a lack of awareness of position and location of feet, difficulty in maintaining balance, and a perception that falls were more sudden, faster, and harder than similar drops experienced in preflight. Crewmembers experienced illusions as they performed prescribed movement tests. When crew members viewed various targets and then pointed at them while blindfolded, their perception of target location and position of their own limbs was inaccurate in flight compared with similar tests on the ground. The Spacelab-1 was a multidisciplinary mission; that is, investigations were performed in several different fields of scientific research. The overall goal of the mission was to verify Spacelab performance through a variety of scientific experiments. The Spacelab-1 was launched aboard the Space Shuttle Orbiter Columbia for the STS-9 mission on November 28, 1983. The Marshall Space Flight Center had management responsibilities for the mission.

  6. Vestibular schwannoma: 825 cases from a 25-year experience

    PubMed Central

    Pinna, Mariana Hausen; Bento, Ricardo Ferreira; Neto, Rubens Vuono de Brito

    2012-01-01

    Summary Introduction:?Acoustic nerve tumors have been recognized as a clinico-pathologic entity for at least 200 years, and they represent 90% of cerebellopontine angle diseases. Histologically, the tumors are derived from Schwann cells of the myelin sheath, with smaller tumors consisting of elongated palisade cells, while in large tumors, cystic degeneration can be found in the central areas, possibly due to deficient vascularization. We retrospectively reviewed 825 cases of vestibular schwannomas, reported between January 1984 and August 2006, in which the patients underwent surgery to remove the tumor. Objective:?To evaluate signs, symptoms, aspects of clinical diagnosis, including the results of audiological and imaging studies, and surgical techniques and complications. Methods:?A retrospective chart review. The medical records of all patients undergoing surgical treatment for schwannoma during the period indicated were reviewed. Results and Conclusion:?Hearing loss was the first symptom reported in almost all cases, and tumor size was not proportional to the impairment of the auditory threshold. The surgical techniques allowed safe preservation of facial function. In particular, the retrolabyrinthine route proved useful in small tumors, with 50% preservation of hearing. PMID:25991975

  7. Secreted Factors from Human Vestibular Schwannomas Can Cause Cochlear Damage

    PubMed Central

    Dilwali, Sonam; Landegger, Lukas D.; Soares, Vitor Y. R.; Deschler, Daniel G.; Stankovic, Konstantina M.

    2015-01-01

    Vestibular schwannomas (VSs) are the most common tumours of the cerebellopontine angle. Ninety-five percent of people with VS present with sensorineural hearing loss (SNHL); the mechanism of this SNHL is currently unknown. To establish the first model to study the role of VS-secreted factors in causing SNHL, murine cochlear explant cultures were treated with human tumour secretions from thirteen different unilateral, sporadic VSs of subjects demonstrating varied degrees of ipsilateral SNHL. The extent of cochlear explant damage due to secretion application roughly correlated with the subjects’ degree of SNHL. Secretions from tumours associated with most substantial SNHL resulted in most significant hair cell loss and neuronal fibre disorganization. Secretions from VSs associated with good hearing or from healthy human nerves led to either no effect or solely fibre disorganization. Our results are the first to demonstrate that secreted factors from VSs can lead to cochlear damage. Further, we identified tumour necrosis factor alpha (TNF?) as an ototoxic molecule and fibroblast growth factor 2 (FGF2) as an otoprotective molecule in VS secretions. Antibody-mediated TNF? neutralization in VS secretions partially prevented hair cell loss due to the secretions. Taken together, we have identified a new mechanism responsible for SNHL due to VSs. PMID:26690506

  8. Morphology of the Vestibular Utricule in Toadfish, Opsanus Tau

    NASA Technical Reports Server (NTRS)

    Bass, L.; Smith, J.; Twombly, A.; Boyle, Richard; Varelas, Ehsanian J.; Johanson, C.

    2003-01-01

    The uticle is an otolith organ in the vertebrate inner ear that provides gravitoinertial acceleration information into the vestibular reflex pathways. The aim of the present study was to provide an anatomical description of this structure in the adult oyster toadfish, and establish a morphological basis for interpretation of subsequent functional studies. Light, scanning electron and transmission electron microscopy were applied to visualize the sensory epithelium and its neural innervation. Electrophysiological techniques were used to identify utricular afferents by their response to translation stimuli. Similar to nerve afferents supplying the semicircular canals and lagena, utricular afferents commonly exhibit a short-latency increase of firing rate in response to electrical activation of the central efferent pathway. Afferents were labeled with biocytin either intraaxonally or with extracellular bulk deposits. Light microscope images of serial thick sections were used to make three-dimensional reconstructions of individual labeled afferents to identify the dendritic morphology with respect to epithelial location. Scanning electron microscopy was used to visualize the surface of the otolith mass facing the otolith membrane, and the hair cell polarization patterns of strioler and extrastriolar regions. Transmission electron micrographs of serial thin sections were compiled to create a three-dimensional reconstruction of the labeled afferent over a segment of its dendritic field and to examine the hair cell-afferent synaptic contacts.

  9. Stochastic chaplygin systems

    NASA Astrophysics Data System (ADS)

    Hochgerner, Simon

    2010-12-01

    We mimic the stochastic Hamiltonian reduction of Lazaro-Cami and Ortega [18, 19] for the case of certain nonholonomic systems with symmetries. Using the nonholonomic connection it is shown that the drift of the stochastically perturbed n-dimensional Chaplygin ball is a certain gradient of the density of the preserved measure of the deterministic system.

  10. Succession Model Landscape Stochasticity

    E-print Network

    100 1000 10000 patch sizes birth rate both Disturbance Model Landscape Stochasticity Low Control High" accomplished by incrementing the patch birth rate (Control: s = a = 10) A simple model of species viabilitySuccession Model Landscape Stochasticity Low Control High Very High ThresholdMultiplier 0.1 1 10

  11. Stochastic Convection Parameterizations

    NASA Technical Reports Server (NTRS)

    Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios

    2012-01-01

    computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts

  12. A Stochastic Employment Problem

    ERIC Educational Resources Information Center

    Wu, Teng

    2013-01-01

    The Stochastic Employment Problem(SEP) is a variation of the Stochastic Assignment Problem which analyzes the scenario that one assigns balls into boxes. Balls arrive sequentially with each one having a binary vector X = (X[subscript 1], X[subscript 2],...,X[subscript n]) attached, with the interpretation being that if X[subscript i] = 1 the ball…

  13. Amplification by stochastic interference

    E-print Network

    K. Svozil; D. Felix; K. Ehrenberger

    2002-11-19

    A new method is introduced to obtain a strong signal by the interference of weak signals in noisy channels. The method is based on the interference of 1/f noise from parallel channels. One realization of stochastic interference is the auditory nervous system. Stochastic interference may have broad potential applications in the information transmission by parallel noisy channels.

  14. Modern Tests of Vestibular Function, with Special Reference to their Value in Clinical Practice

    PubMed Central

    Dix, M. R.

    1969-01-01

    The many vestibular tests now available provide the means of accurate localization of lesions at all levels of the vestibular pathways. The value of the test procedures described has been well established in the examination of very many patients over the past twenty years, and though other forms of tests are available only those have been included which have proved to give consistently useful information. Most of these tests can be undertaken by the clinician without the use of any costly equipment, and together with a careful history and examination the diagnosis can in most cases be arrived at. Recognition of the highly important role of optic fixation and ocular deviations on vestibular nystagmus, together with recent facilities to demonstrate this electronystagmographically, may provide additional valuable and more precise information. ImagesFig. 3Fig. 8Fig. 9Fig. 14 PMID:5800340

  15. Technique of electrical stimulation of the vestibular analyzer under clinical conditions

    NASA Technical Reports Server (NTRS)

    Khechinashvili, S. N.; Zargaryan, B. M.; Karakozov, K. G.

    1980-01-01

    Vestibular reactions appear under the action of direct current (dc) on the labyrinth of man and animals. A decrease of the stimulation effect of dc on the extralabyrinthine nervous formations in the suggested method is achieved by the use of electric pulses with steep front and back parts, as well as by previous anesthetization of the skin in the electrode application area by means of novocain solution electrophoresis. For this purpose a pulse producer giving trapezoid pulses with smoothly changing fronts and duration was constructed. With the help of an interrupter it is possible to stop the current increase instantly, and stimulation is performed at the level of the pulse 'plateau'. To induce vestibular reactions under monopolar stimulation, it is necessary to apply the current twice as high as that with bipolar electrode position. The use of short pulses with steep front and back parts for electrode stimulation of the vestibular analyzer is considered to be inexpedient.

  16. Application of multivariate statistics to vestibular testing: discriminating between Meniere's disease and migraine associated dizziness

    NASA Technical Reports Server (NTRS)

    Dimitri, P. S.; Wall, C. 3rd; Oas, J. G.; Rauch, S. D.

    2001-01-01

    Meniere's disease (MD) and migraine associated dizziness (MAD) are two disorders that can have similar symptomatologies, but differ vastly in treatment. Vestibular testing is sometimes used to help differentiate between these disorders, but the inefficiency of a human interpreter analyzing a multitude of variables independently decreases its utility. Our hypothesis was that we could objectively discriminate between patients with MD and those with MAD using select variables from the vestibular test battery. Sinusoidal harmonic acceleration test variables were reduced to three vestibulo-ocular reflex physiologic parameters: gain, time constant, and asymmetry. A combination of these parameters plus a measurement of reduced vestibular response from caloric testing allowed us to achieve a joint classification rate of 91%, independent quadratic classification algorithm. Data from posturography were not useful for this type of differentiation. Overall, our classification function can be used as an unbiased assistant to discriminate between MD and MAD and gave us insight into the pathophysiologic differences between the two disorders.

  17. Astronaut Owen Garriott as test subject for Human Vestibular Function exp.

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Scientist-Astronaut Owen K. Garriott, Skylab 3 science pilot, serves as test subject for the Skylab Human Vestibular Function M131 Experiment, as seen in this photographic reproduction taken from a television transmission made by a color TV camera aboard the Skylab space station in Earth orbit. Dr. Garriott is seated in the experiment's litter chair which can rotate the test subject at predetermined rotational velocity or programmed ecceleration/decelerational profile. The objectives of the M131 experiment are to obtain data pertinent to establishing the validity of measurements of specific behavioral/physiological responses influenced by vestibular activity under one-G and zero-G conditions; to determine man's adaptability to unusual vestibular conditions and predict habitability of future spacecraft conditions involving reduced gravity and Coriollis forces; and to measure the accuracy and variability in man's judgement of spatial coordinates based on atypical gravity receptor cues an

  18. Astronaut Owen Garriott as test subject for Human Vestibular Function exp.

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Scientist-Astronaut Owen K. Garriott, Skylab 3 science pilot, serves as test subject for the Skylab Human Vestibular Function M131 Experiment, as seen in this photographic reproduction taken from a television transmission made by a color TV camera aboard the Skylab space station in Earth orbit. The objectives of the M131 experiment are to obtain data pertinent to establishing the validity of measurements of specific behavioral/physiological responses influenced by vestibular activity under one-G and zero-G conditions; to determine man's adaptability to unusual vestibular conditions and predict habitability of future spacecraft conditions involving reduced gravity and Coriollis forces; and to measure the accuracy and variability in man's judgement of spatial coordinates based on atypical gravity receptor cues and inadequate visual cues.

  19. Melanocortinergic circuits from medial vestibular nuclei to the kidney defined by transneuronal transport of pseudorabies virus.

    PubMed

    Shang, Dan; Xiong, Jun; Xiang, Hong-Bing; Hao, Yan; Liu, Jiu-Hong

    2015-01-01

    This study was designed to assess whether MC4R signaling existed in vestibular nuclei modulated the activity of kidney by a virally mediated transsynaptic tracing study. Pseudorabies virus (PRV)-614 was injected into the kidney in adult male MC4R-green fluorescent protein (GFP) transgenic mice (n = 5). After a survival time of 5 days, the mice were assigned to humanely sacrifice, and the brainstem were removed and sectioned, and processed for PRV-614 visualization. The neurochemical phenotype of MC4R-GFP-positive neurons was identified using fluorescence immunocytochemical labeling. PRV-614/MC4R-GFP dual labeled neurons were detected in medial vestibular nuclei. Our findings support the hypothesis that there exist melanocortinergic circuits from medial vestibular nuclei to the kidney. PMID:25973095

  20. Effects of Vestibular Loss on Orthostatic Responses to Tilts in the Pitch Plane

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Serrador, Jorge M.; Black, F. Owen; Rupert,Angus H.; Schlegel, Todd T.

    2004-01-01

    The purpose of this study was to determine the extent to which vestibular loss might impair orthostatic responses to passive tilts in the pitch plane in human subjects. Data were obtained from six subjects having chronic bilateral vestibular loss and six healthy individuals matched for age, gender, and body mass index. Vestibular loss was assessed with a comprehensive battery including dynamic posturography, vestibulo-ocular and optokinetic reflexes, vestibular evoked myogenic potentials, and ocular counterrolling. Head up tilt tests were conducted using a motorized two-axis table that allowed subjects to be tilted in the pitch plane from either a supine or prone body orientation at a slow rate (8 deg/s). The sessions consisted of three tilts, each consisting of20 min rest in a horizontal position, tilt to 80 deg upright for 10 min, and then return to the horizontal position for 5 min. The tilts were performed in darkness (supine and prone) or in light (supine only). Background music was used to mask auditory orientation cues. Autonomic measurements included beat-to-beat recordings of blood pressure (Finapres), heart rate (ECG), cerebral blood flow velocity in the middle cerebral artery (transcranial Doppler), end tidal CO2, respiratory rate and volume (Respritrace), and stroke volume (impedance cardiography). For both patients and control subjects, cerebral blood flow appeared to exhibit the most rapid adjustment following transient changes in posture. Outside of a greater cerebral hypoperfusion in patients during the later stages of tilt, responses did not differ dramatically between the vestibular loss and control subjects, or between tilts performed in light and dark room conditions. Thus, with the 'exception of cerebrovascular regulation, we conclude that orthostatic responses during slow postural tilts are not substantially impaired in humans following chronic loss of vestibular function, a result that might reflect compensation by nonvisual graviceptor inputs (e.g., somatosensory) or other circulatory reflex mechanisms.