Sample records for viable microorganisms bacteria

  1. Grazing of particle-associated bacteria-an elimination of the non-viable fraction.

    PubMed

    Gonsalves, Maria-Judith; Fernandes, Sheryl Oliveira; Priya, Madasamy Lakshmi; LokaBharathi, Ponnapakkam Adikesavan

    Quantification of bacteria being grazed by microzooplankton is gaining importance since they serve as energy subsidies for higher trophic levels which consequently influence fish production. Hence, grazing pressure on viable and non-viable fraction of free and particle-associated bacteria in a tropical estuary controlled mainly by protist grazers was estimated using the seawater dilution technique. In vitro incubations over a period of 42h showed that at the end of 24h, growth coefficient (k) of particle-associated bacteria was 9 times higher at 0.546 than that of free forms. Further, 'k' value of viable cells on particles was double that of free forms at 0.016 and 0.007, respectively. While bacteria associated with particles were grazed (coefficient of removal (g)=0.564), the free forms were relatively less grazed indicating that particle-associated bacteria were exposed to grazers in these waters. Among the viable and non-viable forms, 'g' of non-viable fraction (particle-associated bacteria=0.615, Free=0.0086) was much greater than the viable fraction (particle-associated bacteria=0.056, Free=0.068). Thus, grazing on viable cells was relatively low in both the free and attached states. These observations suggest that non-viable forms of particle-associated bacteria were more prone to grazing and were weeded out leaving the viable cells to replenish the bacterial standing stock. Particle colonization could thus be a temporary refuge for the "persistent variants" where the viable fraction multiply and release their progeny. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  2. Rapid enumeration of viable bacteria by image analysis

    NASA Technical Reports Server (NTRS)

    Singh, A.; Pyle, B. H.; McFeters, G. A.

    1989-01-01

    A direct viable counting method for enumerating viable bacteria was modified and made compatible with image analysis. A comparison was made between viable cell counts determined by the spread plate method and direct viable counts obtained using epifluorescence microscopy either manually or by automatic image analysis. Cultures of Escherichia coli, Salmonella typhimurium, Vibrio cholerae, Yersinia enterocolitica and Pseudomonas aeruginosa were incubated at 35 degrees C in a dilute nutrient medium containing nalidixic acid. Filtered samples were stained for epifluorescence microscopy and analysed manually as well as by image analysis. Cells enlarged after incubation were considered viable. The viable cell counts determined using image analysis were higher than those obtained by either the direct manual count of viable cells or spread plate methods. The volume of sample filtered or the number of cells in the original sample did not influence the efficiency of the method. However, the optimal concentration of nalidixic acid (2.5-20 micrograms ml-1) and length of incubation (4-8 h) varied with the culture tested. The results of this study showed that under optimal conditions, the modification of the direct viable count method in combination with image analysis microscopy provided an efficient and quantitative technique for counting viable bacteria in a short time.

  3. Concentrations of viable oil-degrading microorganisms are increased in feces from Calanus finmarchicus feeding in petroleum oil dispersions.

    PubMed

    Størdal, Ingvild Fladvad; Olsen, Anders Johny; Jenssen, Bjørn Munro; Netzer, Roman; Hansen, Bjørn Henrik; Altin, Dag; Brakstad, Odd Gunnar

    2015-09-15

    Zooplankton are suggested to be biotic contributors to the transport and weathering of oil in marine environments due to their ingestion of oil. In the present experiment, feeding activity and microbial communities in feces from Calanus finmarchicus feeding in oil dispersions were characterized. Feeding activity was significantly reduced in oil dispersions. The microbial communities in clean and oil-containing copepod feces were dominated by Rhodobacteraceae family bacteria (Lesingera, Phaeobacter, Rugeria, and Sulfitobacter), which were suggested to be indigenous to copepod feces. The results also indicated that these bacteria were metabolizing oil compounds, as a significant increase in the concentrations of viable oil degrading microorganisms was observed in oil-containing feces. This study shows that bacteria in feces from copepods feeding in dilute oil dispersions have capacity for degradation of oil. Zooplankton may therefore contribute to weathering of oil by excreting feces with microbial communities already adapted to degradation of oil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. 9 CFR 113.26 - Detection of viable bacteria and fungi except in live vaccine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Detection of viable bacteria and fungi... VECTORS STANDARD REQUIREMENTS Standard Procedures § 113.26 Detection of viable bacteria and fungi except... required to be free of viable bacteria and fungi, they shall also be tested as prescribed in this section...

  5. 9 CFR 113.26 - Detection of viable bacteria and fungi except in live vaccine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Detection of viable bacteria and fungi... VECTORS STANDARD REQUIREMENTS Standard Procedures § 113.26 Detection of viable bacteria and fungi except... required to be free of viable bacteria and fungi, they shall also be tested as prescribed in this section...

  6. Trace detection of specific viable bacteria using tetracysteine-tagged bacteriophages.

    PubMed

    Wu, Lina; Luan, Tian; Yang, Xiaoting; Wang, Shuo; Zheng, Yan; Huang, Tianxun; Zhu, Shaobin; Yan, Xiaomei

    2014-01-07

    Advanced methods are urgently needed to determine the identity and viability of trace amounts of pathogenic bacteria in a short time. Existing approaches either fall short in the accurate assessment of microbial viability or lack specificity in bacterial identification. Bacteriophages (or phages for short) are viruses that exclusively infect bacterial host cells with high specificity. As phages infect and replicate only in living bacterial hosts, here we exploit the strategy of using tetracysteine (TC)-tagged phage in combination with biarsenical dye to the discriminative detection of viable target bacteria from dead target cells and other viable but nontarget bacterial cells. Using recombinant M13KE-TC phage and Escherichia coli ER2738 as a model system, distinct differentiation between individual viable target cells from dead target cells was demonstrated by flow cytometry and fluorescence microscopy. As few as 1% viable E. coli ER2738 can be accurately quantified in a mix with dead E. coli ER2738 by flow cytometry. With fluorescence microscopic measurement, specific detection of as rare as 1 cfu/mL original viable target bacteria was achieved in the presence of a large excess of dead target cells and other viable but nontarget bacterial cells in 40 mL artificially contaminated drinking water sample in less than 3 h. This TC-phage-FlAsH approach is sensitive, specific, rapid, and simple, and thus shows great potential in water safety monitoring, health surveillance, and clinical diagnosis of which trace detection and identification of viable bacterial pathogens is highly demanded.

  7. Investigation of Removal Capacities of Biofilters for Airborne Viable Micro-Organisms

    PubMed Central

    Soret, Rémi; Fanlo, Jean-Louis; Malhautier, Luc; Geiger, Philippe; Bayle, Sandrine

    2018-01-01

    New emerging issues appears regarding the possible aerosolization of micro-organisms from biofilters to the ambient air. Traditional bioaerosol sampling and cultural methods used in literature offer relative efficiencies. In this study, a new method revolving around a particle counter capable of detecting total and viable particles in real time was used. This counter (BioTrak 9510-BD) uses laser-induced fluorescence (LIF) technology to determine the biological nature of the particle. The concentration of viable particles was measured on two semi-industrial pilot scale biofilters in order to estimate the Removal Efficiency in viable particles (REvp) in stable conditions and to examine the influence of pollutant feeding and relative humidification of the gaseous effluent on the REvp. The REvp of biofilters reached near 80% and highlighted both the stability of that removal and the statistical equivalence between two identical biofilters. Pollutant deprivation periods of 12 h, 48 h and 30 days were shown to have no influence on the biofilters’ removal capacity, demonstrating the robustness and adaptation capacities of the flora. In contrast, a 90-day famine period turned the biofilters into emitters of viable particles. Finally, the humidification of the effluent was shown to negatively influence the removal capacity for viable particles, as drying off the air was shown to increase the REvp from 60 to 85%. PMID:29562709

  8. Exploring the potential environmental functions of viable but non-culturable bacteria.

    PubMed

    Su, Xiaomei; Chen, Xi; Hu, Jinxing; Shen, Chaofeng; Ding, Linxian

    2013-12-01

    A conventional plate count is the most commonly employed method to estimate the number of living bacteria in environmental samples. In fact, judging the level of viable culture by plate count is limited, because it is often several orders of magnitude less than the number of living bacteria actually present. Most of the bacteria are in "viable but non-culturable" (VBNC) state, whose cells are intact and alive and can resuscitate when surrounding conditions are more favorable. The most exciting recent development in resuscitating VBNC bacteria is a bacterial cytokine, namely, the resuscitation-promoting factor (Rpf), secreted by Micrococcus luteus, which promotes the resuscitation and growth of high G+C Gram-positive organisms, including some species of the genus Mycobacterium. However, most of studies deal with VBNC bacteria only from the point of view of medicine and epidemiology. It is therefore of great significance to research whether these VBNC state bacteria also possess some useful environmental capabilities, such as degradation, flocculation, etc. Further studies are needed to elucidate the possible environmental role of the VBNC bacteria, rather than only considering their role as potential pathogens from the point view of epidemiology and public health. We have studied the resuscitation of these VBNC bacteria in polluted environments by adding culture supernatant containing Rpf from M. luteus, and it was found that, as a huge microbial resource, VBNC bacteria could provide important answers to dealing with existing problems of environmental pollution. This mini-review will provide new insight for considering the potentially environmental functions of VBNC bacteria.

  9. 40 CFR 180.1011 - Viable spores of the microorganism Bacillus thuringiensis Berliner; exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1011 Viable spores of the... characteristics of the parent strain or contamination by other microorganisms. (3) Each lot of spore preparation... production is a Bacillus thuringiensis strain which does not produce β-exotoxin under standard manufacturing...

  10. A METHOD TO DETECT VIABLE HELICOBACTER PYLORI BACTERIA IN GROUNDWATER

    EPA Science Inventory

    The inability to detect the presence of viable Helicobacter pylori bacteria in environmental waters has hindered the public health community in assessing the role water may playin the transmission of this pathogen. This work describes a cultural enrichment method coupled with an...

  11. 9 CFR 113.27 - Detection of extraneous viable bacteria and fungi in live vaccines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... bacteria and fungi in live vaccines. 113.27 Section 113.27 Animals and Animal Products ANIMAL AND PLANT... bacteria and fungi in live vaccines. Unless otherwise specified by the Administrator or elsewhere exempted... Seed Bacteria shall be tested for extraneous viable bacteria and fungi as prescribed in this section. A...

  12. 9 CFR 113.27 - Detection of extraneous viable bacteria and fungi in live vaccines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... bacteria and fungi in live vaccines. 113.27 Section 113.27 Animals and Animal Products ANIMAL AND PLANT... bacteria and fungi in live vaccines. Unless otherwise specified by the Administrator or elsewhere exempted... Seed Bacteria shall be tested for extraneous viable bacteria and fungi as prescribed in this section. A...

  13. The role of viable airborne microorganisms deposition in the southeastern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Rahav, E.; Paytan, A.; Herut, B.

    2016-02-01

    Rahav Eyal1*, Paytan Adina2, Herut Barak1[1] Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel [2] Institute of Marine Science, University of California, Santa Cruz, CA, USA 95064. * Presenting author A high diversity of bacteria, fungi and virus are carried by atmospheric dust and deposit into the ocean. The oligotrophic southeastern Mediterranean Sea (SEMS) is known to receive relatively high amounts of atmospheric dust, thereby potentially be impacted by transport of air-borne microorganisms of diverse biogeographic origin. In this study, we characterized the genetic fingerprinting of microorganisms attached to dust in representative samples collected between 2006-2012 during storm events in the SEMS. Statistical analysis showed that dust of common origin was clustered together based on its genetic signature. Thus, microorganisms picked up in diverse geographical areas can interact differently with ambient populations. Further, microcosm dust addition experiments with surface SEMS filtered (0.2 µm) and killed (autoclaved) seawater showed that airborne microorganisms originated in dust collected in the SEMS significantly enhanced system's bacterial productivity, introduced new species and altered the abundance and activity of ambient surface microbial populations. Our results demonstrate that dust-borne microorganisms may play a significant role in the SEMS ecology.

  14. Smartphone-based rapid quantification of viable bacteria by single-cell microdroplet turbidity imaging.

    PubMed

    Cui, Xiaonan; Ren, Lihui; Shan, Yufei; Wang, Xixian; Yang, Zhenlong; Li, Chunyu; Xu, Jian; Ma, Bo

    2018-05-18

    Standard plate count (SPC) has been recognized as the golden standard for the quantification of viable bacteria. However, SPC usually takes one to several days to grow individual cells into a visible colony, which greatly hampers its application in rapid bacteria enumeration. Here we present a microdroplet turbidity imaging based digital standard plate count (dSPC) method to overcome this hurdle. Instead of cultivating on agar plates, bacteria are encapsulated in monodisperse microdroplets for single-cell cultivation. Proliferation of the encapsulated bacterial cell produced a detectable change in microdroplet turbidity, which allowed, after just a few bacterial doubling cycles (i.e., a few hours), enumeration of viable bacteria by visible-light imaging. Furthermore, a dSPC platform integrating a power-free droplet generator with smartphone-based turbidity imaging was established. As proof-of-concept demonstrations, a series of Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Bacillus subtilis) samples were quantified via the smartphone dSPC accurately within 6 hours, representing a detection sensitivity of 100 CFU ml-1 and at least 3 times faster. In addition, Enterobacter sakazakii (E. sakazakii) in infant milk powder as a real sample was enumerated within 6 hours, in contrast to the 24 hours needed in traditional SPC. Results with high accuracy and reproducibility were achieved, with no difference in counts found between dSPC and SPC. By enabling label-free, rapid, portable and low-cost enumeration and cultivation of viable bacteria onsite, smartphone dSPC forms the basis for a temporally and geographically trackable network for surveying live microbes globally where every citizen with a cellphone can contribute anytime and anywhere.

  15. Air sampling to assess potential generation of aerosolized viable bacteria during flow cytometric analysis of unfixed bacterial suspensions

    PubMed Central

    Carson, Christine F; Inglis, Timothy JJ

    2018-01-01

    This study investigated aerosolized viable bacteria in a university research laboratory during operation of an acoustic-assisted flow cytometer for antimicrobial susceptibility testing by sampling room air before, during and after flow cytometer use. The aim was to assess the risk associated with use of an acoustic-assisted flow cytometer analyzing unfixed bacterial suspensions. Air sampling in a nearby clinical laboratory was conducted during the same period to provide context for the existing background of microorganisms that would be detected in the air. The three species of bacteria undergoing analysis by flow cytometer in the research laboratory were Klebsiella pneumoniae, Burkholderia thailandensis and Streptococcus pneumoniae. None of these was detected from multiple 1000 L air samples acquired in the research laboratory environment. The main cultured bacteria in both locations were skin commensal and environmental bacteria, presumed to have been disturbed or dispersed in laboratory air by personnel movements during routine laboratory activities. The concentrations of bacteria detected in research laboratory air samples were reduced after interventional cleaning measures were introduced and were lower than those in the diagnostic clinical microbiology laboratory. We conclude that our flow cytometric analyses of unfixed suspensions of K. pneumoniae, B. thailandensis and S. pneumoniae do not pose a risk to cytometer operators or other personnel in the laboratory but caution against extrapolation of our results to other bacteria and/or different flow cytometric experimental procedures. PMID:29608197

  16. Optimization of PMA-qPCR for Staphylococcus aureus and determination of viable bacteria in indoor air.

    PubMed

    Chang, C-W; Lin, M-H

    2018-01-01

    Staphylococcus aureus may cause infections in humans from mild skin disorders to lethal pneumonia. Rapid and accurate monitoring of viable S. aureus is essential to characterize human exposure. This study evaluated quantitative PCR (qPCR) with propidium monoazide (PMA) to quantify S. aureus. The results showed comparable S. aureus counts between exclusively live cells and mixtures of live/dead cells by qPCR with 1.5 or 2.3 μg/mL PMA (P>.05), illustrating the ability of PMA-qPCR to detect DNA exclusively from viable cells. Moreover, qPCR with 1.5 or 2.3 μg/mL PMA performed optimally with linearity over 10 3 -10 8  CFU/mL (R 2 ≥0.9), whereas qPCR with 10, 23 or 46 μg/mL PMA significantly underestimated viable counts. Staphylococcus aureus and total viable bacteria were further determined with PMA-qPCR (1.5 μg/mL) from 48 samples from a public library and two university dormitories and four from outside. Viable bacteria averaged 1.9×10 4 cells/m 3 , and S. aureus were detected in 22 (42%) samples with a mean of 4.4×10 3 cells/m 3 . The number of S. aureus and viable bacteria were positively correlated (r=.61, P<.005), and percentages of S. aureus relative to viable bacteria averaged 12-44%. The results of field samples suggest that PMA-qPCR can be used to quantify viable S. aureus cells. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. [Microorganisms surviving in drinking water systems and related problems].

    PubMed

    Aulicino, F A; Pastoni, F

    2004-01-01

    Drinking water in distribution systems may show abnormal values of some parameters, such as turbidity, and may support particular phenomena, such as bacterial regrowth or presence of Viable Not Culturable (VNC) bacteria. Turbidity can provide shelter for opportunistic microorganisms and pathogens. The Milwaukee outbreak (400,000 people) is one example of waterborne disease caused by the presence of pathogens (Cryptosporidium) in drinking water characterized by high and intermittent levels of turbidity. Bacterial regrowth in drinking water distribution systems may cause high increments of microorganisms such as heterotrophic bacteria, coliforms and pathogens. Microorganisms isolated from biofilm including Pseudomonas, Aeromonas, Legionella may have a significant health hazard especially in hospital areas. The presence of VNC bacteria in drinking water may represent a problem for their discussed role in infectious diseases, but also for the possibility of a considerable underestimation of true microbial concentrations in drinking waters. To study this kind of problems is necessary to apply suitable methods for drinking water analyses.

  18. Airborne microorganisms associated with grain handling.

    PubMed

    Swan, J R; Crook, B

    1998-01-01

    There is substantial evidence that workers handling grain develop allergic respiratory symptoms. Microbiological contaminants are likely to be a significant contributing factor. Worker's exposure to microorganisms contaminating grain dust in the UK was therefore examined. Aerobiological studies were made when grain was being handled on farms and also during bulk handling of grain in dockside terminals. A quantitative and qualitative microbiological examination of the airborne grain dust was carried out. Samples of airborne grain dust were collected and viable bacteria, fungi and actinomycetes were grown, isolated and identified. It was found that workers handling grain or working close to grain at farms and docks were frequently exposed to more than 1 million bacteria and fungi per m3 air, and that airborne bacteria and fungi exceeded 10(4) per m3 air in all areas sampled. The qualitative examination of the samples showed that the predominant microorganisms present differed between freshly harvested grain and stored grain, but not between different types of grain.

  19. Viable cold-tolerant iron-reducing microorganisms in geographically diverse subglacial environments

    NASA Astrophysics Data System (ADS)

    Nixon, Sophie L.; Telling, Jon P.; Wadham, Jemma L.; Cockell, Charles S.

    2017-03-01

    Subglacial environments are known to harbour metabolically diverse microbial communities. These microbial communities drive chemical weathering of underlying bedrock and influence the geochemistry of glacial meltwater. Despite its importance in weathering reactions, the microbial cycling of iron in subglacial environments, in particular the role of microbial iron reduction, is poorly understood. In this study we address the prevalence of viable iron-reducing microorganisms in subglacial sediments from five geographically isolated glaciers. Iron-reducing enrichment cultures were established with sediment from beneath Engabreen (Norway), Finsterwalderbreen (Svalbard), Leverett and Russell glaciers (Greenland), and Lower Wright Glacier (Antarctica). Rates of iron reduction were higher at 4 °C compared with 15 °C in all but one duplicated second-generation enrichment culture, indicative of cold-tolerant and perhaps cold-adapted iron reducers. Analysis of bacterial 16S rRNA genes indicates Desulfosporosinus were the dominant iron-reducing microorganisms in low-temperature Engabreen, Finsterwalderbreen and Lower Wright Glacier enrichments, and Geobacter dominated in Russell and Leverett enrichments. Results from this study suggest microbial iron reduction is widespread in subglacial environments and may have important implications for global biogeochemical iron cycling and export to marine ecosystems.

  20. Rapid and automated enumeration of viable bacteria in compost using a micro-colony auto counting system.

    PubMed

    Wang, Xiaodan; Yamaguchi, Nobuyasu; Someya, Takashi; Nasu, Masao

    2007-10-01

    The micro-colony method was used to enumerate viable bacteria in composts. Cells were vacuum-filtered onto polycarbonate filters and incubated for 18 h on LB medium at 37 degrees C. Bacteria on the filters were stained with SYBR Green II, and enumerated using a newly developed micro-colony auto counting system which can automatically count micro-colonies on half the area of the filter within 90 s. A large number of bacteria in samples retained physiological activity and formed micro-colonies within 18 h, whereas most could not form large colonies on conventional media within 1 week. The results showed that this convenient technique can enumerate viable bacteria in compost rapidly for its efficient quality control.

  1. EVALUATION OF THE USE OF DIFFERENT ANTIBIOTICS IN THE DIRECT VIABLE COUNT METHOD TO DETECT FECAL ENTEROCOCCI

    EPA Science Inventory

    The detection of fecal pollution is performed via culturing methods in spite of the fact that culturable counts can severely underestimate the densities of fecal microorganisms. One approach that has been used to enumerate bacteria is the direct viable count method (DVC). The ob...

  2. Enrichment of viable bacteria in a micro-volume by free-flow electrophoresis.

    PubMed

    Podszun, Susann; Vulto, Paul; Heinz, Helene; Hakenberg, Sydney; Hermann, Carsten; Hankemeier, Thomas; Urban, Gerald A

    2012-02-07

    Macro- to micro-volume concentration of viable bacteria is performed in a microfluidic chip. The enrichment principle is based on free flow electrophoresis and is demonstrated for Gram positive bacteria. Bacteria from a suspension flow are trapped on a gel interface that separates the trapping location from integrated actuation electrodes in order to enable non-destructive trapping. The microfluidic chip contains integrated electrolytic gas expulsion structures and phaseguides for gel and liquid handling. Trapping efficiency is systematically optimized to reach 25 times the initial concentration from a theoretical maximum of 30. Finally, enrichment from analytically relevant concentrations down to 3 × 10(2) colony forming units per millilitre is demonstrated with a trapping efficiency of 80% which represents the most important parameter in enrichment.

  3. Viable bacteria associated with red blood cells and plasma in freshly drawn blood donations.

    PubMed

    Damgaard, Christian; Magnussen, Karin; Enevold, Christian; Nilsson, Martin; Tolker-Nielsen, Tim; Holmstrup, Palle; Nielsen, Claus Henrik

    2015-01-01

    Infection remains a leading cause of post-transfusion mortality and morbidity. Bacterial contamination is, however, detected in less than 0.1% of blood units tested. The aim of the study was to identify viable bacteria in standard blood-pack units, with particular focus on bacteria from the oral cavity, and to determine the distribution of bacteria revealed in plasma and in the red blood cell (RBC)-fraction. Cross-sectional study. Blood were separated into plasma and RBC-suspensions, which were incubated anaerobically or aerobically for 7 days on trypticase soy blood agar (TSA) or blue lactose plates. For identification colony PCR was performed using primers targeting 16S rDNA. Blood donors attending Capital Region Blood Bank, Copenhagen University Hospital, Rigshospitalet, Hvidovre, Denmark, October 29th to December 10th 2013. 60 donors (≥50 years old), self-reported medically healthy. Bacterial growth was observed on plates inoculated with plasma or RBCs from 62% of the blood donations. Growth was evident in 21 (35%) of 60 RBC-fractions and in 32 (53%) of 60 plasma-fractions versus 8 of 60 negative controls (p = 0.005 and p = 2.6x10-6, respectively). Propionibacterium acnes was found in 23% of the donations, and Staphylococcus epidermidis in 38%. The majority of bacteria identified in the present study were either facultative anaerobic (59.5%) or anaerobic (27.8%) species, which are not likely to be detected during current routine screening. Viable bacteria are present in blood from donors self-reported as medically healthy, indicating that conventional test systems employed by blood banks insufficiently detect bacteria in plasma. Further investigation is needed to determine whether routine testing for anaerobic bacteria and testing of RBC-fractions for adherent bacteria should be recommended.

  4. A direct viable count method for the enumeration of attached bacteria and assessment of biofilm disinfection

    NASA Technical Reports Server (NTRS)

    Yu, F. P.; Pyle, B. H.; McFeters, G. A.

    1993-01-01

    This report describes the adaptation of an in situ direct viable count (in situ DVC) method in biofilm disinfection studies. The results obtained with this technique were compared to two other enumeration methods, the plate count (PC) and conventional direct viable count (c-DVC). An environmental isolate (Klebsiella pneumoniae Kp1) was used to form biofilms on stainless steel coupons in a stirred batch reactor. The in situ DVC method was applied to directly assess the viability of bacteria in biofilms without disturbing the integrity of the interfacial community. As additional advantages, the results were observed after 4 h instead of the 24 h incubation time required for colony formation and total cell numbers that remained on the substratum were enumerated. Chlorine and monochloramine were used to determine the susceptibilities of attached and planktonic bacteria to disinfection treatment using this novel analytical approach. The planktonic cells in the reactor showed no significant change in susceptibility to disinfectants during the period of biofilm formation. In addition, the attached cells did not reveal any more resistance to disinfection than planktonic cells. The disinfection studies of young biofilms indicated that 0.25 mg/l free chlorine (at pH 7.2) and 1 mg/l monochloramine (at pH 9.0) have comparable disinfection efficiencies at 25 degrees C. Although being a weaker disinfectant, monochloramine was more effective in removing attached bacteria from the substratum than free chlorine. The in situ DVC method always showed at least one log higher viable cell densities than the PC method, suggesting that the in situ DVC method is more efficient in the enumeration of biofilm bacteria. The results also indicated that the in situ DVC method can provide more accurate information regarding the cell numbers and viability of bacteria within biofilms following disinfection.

  5. 9 CFR 113.26 - Detection of viable bacteria and fungi except in live vaccine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Detection of viable bacteria and fungi except in live vaccine. 113.26 Section 113.26 Animals and Animal Products ANIMAL AND PLANT HEALTH... in live vaccine. Each serial and subserial of biological product except live vaccines shall be tested...

  6. 9 CFR 113.26 - Detection of viable bacteria and fungi except in live vaccine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Detection of viable bacteria and fungi except in live vaccine. 113.26 Section 113.26 Animals and Animal Products ANIMAL AND PLANT HEALTH... in live vaccine. Each serial and subserial of biological product except live vaccines shall be tested...

  7. 9 CFR 113.26 - Detection of viable bacteria and fungi except in live vaccine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Detection of viable bacteria and fungi except in live vaccine. 113.26 Section 113.26 Animals and Animal Products ANIMAL AND PLANT HEALTH... in live vaccine. Each serial and subserial of biological product except live vaccines shall be tested...

  8. Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing

    NASA Technical Reports Server (NTRS)

    Shi, T.; Reeves, R. H.; Gilichinsky, D. A.; Friedmann, E. I.

    1997-01-01

    Viable bacteria were found in permafrost core samples from the Kolyma-Indigirka lowland of northeast Siberia. The samples were obtained at different depths; the deepest was about 3 million years old. The average temperature of the permafrost is -10 degrees C. Twenty-nine bacterial isolates were characterized by 16S rDNA sequencing and phylogenetic analysis, cell morphology, Gram staining, endospore formation, and growth at 30 degrees C. The majority of the bacterial isolates were rod shaped and grew well at 30 degrees C; but two of them did not grow at or above 28 degrees C, and had optimum growth temperatures around 20 degrees C. Thirty percent of the isolates could form endospores. Phylogenetic analysis revealed that the isolates fell into four categories: high-GC Gram-positive bacteria, beta-proteobacteria, gamma-proteobacteria, and low-GC Gram-positive bacteria. Most high-GC Gram-positive bacteria and beta-proteobacteria, and all gamma-proteobacteria, came from samples with an estimated age of 1.8-3.0 million years (Olyor suite). Most low-GC Gram-positive bacteria came from samples with an estimated age of 5,000-8,000 years (Alas suite).

  9. Fungi and bacteria inventory on soybean (Glycine max (L.) merill) planting media applied by local microorganisms

    NASA Astrophysics Data System (ADS)

    Akhsan, Ni'matuljannah; Vionita

    2017-02-01

    An experiment aimed to determine the effect of application of several types of local microorganisms (MOL) and the number of doses to the development of fungi and bacteria on soybean planting media, have been conducted in Samarinda for 3 (three) months. Factorial experiment arranged in a completely randomized design and repeated three times, was used in this experiment. The first factor was the type of MOL consisted of cow dung (m1), snails (m2), banana peel (m3) and bamboo roots (m4), and the second factor was the dose MOL zero mL (d0), 100 mL (d1), 200 mL (d2), 300 mL (d3), 400 mL (d4) analyzed with Anova and Least Significance Difference (LSD) at 5%. Fungi and bacteria contained in the local microorganisms (cow dung, snails, banana peel and bamboo root) are: fungus Aspergillus sp, Penicillium sp., Trichoderma sp., cellulotic and lignolitic bacteria. An increase in the type and amount of fungus is happened for some genus. The dominant bacteria in the planting medium is a gram-negative bacteria. Cow dung seemed the best source at the dosages level of 400 ml.

  10. A new analytical platform based on field-flow fractionation and olfactory sensor to improve the detection of viable and non-viable bacteria in food.

    PubMed

    Roda, Barbara; Mirasoli, Mara; Zattoni, Andrea; Casale, Monica; Oliveri, Paolo; Bigi, Alessandro; Reschiglian, Pierluigi; Simoni, Patrizia; Roda, Aldo

    2016-10-01

    An integrated sensing system is presented for the first time, where a metal oxide semiconductor sensor-based electronic olfactory system (MOS array), employed for pathogen bacteria identification based on their volatile organic compound (VOC) characterisation, is assisted by a preliminary separative technique based on gravitational field-flow fractionation (GrFFF). In the integrated system, a preliminary step using GrFFF fractionation of a complex sample provided bacteria-enriched fractions readily available for subsequent MOS array analysis. The MOS array signals were then analysed employing a chemometric approach using principal components analysis (PCA) for a first-data exploration, followed by linear discriminant analysis (LDA) as a classification tool, using the PCA scores as input variables. The ability of the GrFFF-MOS system to distinguish between viable and non-viable cells of the same strain was demonstrated for the first time, yielding 100 % ability of correct prediction. The integrated system was also applied as a proof of concept for multianalyte purposes, for the detection of two bacterial strains (Escherichia coli O157:H7 and Yersinia enterocolitica) simultaneously present in artificially contaminated milk samples, obtaining a 100 % ability of correct prediction. Acquired results show that GrFFF band slicing before MOS array analysis can significantly increase reliability and reproducibility of pathogen bacteria identification based on their VOC production, simplifying the analytical procedure and largely eliminating sample matrix effects. The developed GrFFF-MOS integrated system can be considered a simple straightforward approach for pathogen bacteria identification directly from their food matrix. Graphical abstract An integrated sensing system is presented for pathogen bacteria identification in food, in which field-flow fractionation is exploited to prepare enriched cell fractions prior to their analysis by electronic olfactory system

  11. Behavior of pollutant-degrading microorganisms in aquifers: Predictions for genetically engineered organisms

    USGS Publications Warehouse

    Krumme, M.L.; Smith, R.L.; Egestorff, J.; Thiem, S.M.; Tiedje, J.M.; Timmis, K.N.; Dwyer, D.F.

    1994-01-01

    Bioremediation via environmental introductions of degradative microorganisms requires that the microbes survive in substantial numbers and effect an increase in the rate and extent of pollutant removal. Combined field and microcosm studies were used to assess these abilities for laboratory-grown bacteria. Following introduction into a contaminated aquifer, viable cells of Pseudomonas sp. B13 were present in the contaminant plume for 447 days; die-off was rapid in pristine areas. In aquifer microcosms, survival of B13 and FR120, a genetically engineered derivative of B13 having enhanced catabolic capabilities for substituted aromatics, was comparable to B13 field results; both bacteria degraded target pollutants in microcosms made with aquifer samples from the aerobic zone of the pollutant plume. Results suggest that field studies with nonrecombinant microorganisms may be coupled to laboratory studies with derivative strains to estimate their bioremediative efficacy. Furthermore, laboratory strains of bacteria can survive for extended periods of time in nature and thus may have important bioremediative applications. ?? 1994 American Chemical Society.

  12. Free tropospheric transport of microorganisms from Asia to North America.

    PubMed

    Smith, David J; Jaffe, Daniel A; Birmele, Michele N; Griffin, Dale W; Schuerger, Andrew C; Hee, Jonathan; Roberts, Michael S

    2012-11-01

    Microorganisms are abundant in the troposphere and can be transported vast distances on prevailing winds. This study measures the abundance and diversity of airborne bacteria and fungi sampled at the Mt. Bachelor Observatory (located 2.7 km above sea level in North America) where incoming free tropospheric air routinely arrives from distant sources across the Pacific Ocean, including Asia. Overall deoxyribonucleic acid (DNA) concentrations for microorganisms in the free troposphere, derived from quantitative polymerase chain reaction assays, averaged 4.94 × 10(-5) ng DNA m(-3) for bacteria and 4.77 × 10(-3) ng DNA m(-3) for fungi. Aerosols occasionally corresponded with microbial abundance, most often in the springtime. Viable cells were recovered from 27.4 % of bacterial and 47.6 % of fungal samples (N = 124), with 49 different species identified by ribosomal DNA gene sequencing. The number of microbial isolates rose significantly above baseline values on 22-23 April 2011 and 13-15 May 2011. Both events were analyzed in detail, revealing distinct free tropospheric chemistries (e.g., low water vapor, high aerosols, carbon monoxide, and ozone) useful for ruling out boundary layer contamination. Kinematic back trajectory modeling suggested air from these events probably originated near China or Japan. Even after traveling for 10 days across the Pacific Ocean in the free troposphere, diverse and viable microbial populations, including presumptive plant pathogens Alternaria infectoria and Chaetomium globosum, were detected in Asian air samples. Establishing a connection between the intercontinental transport of microorganisms and specific diseases in North America will require follow-up investigations on both sides of the Pacific Ocean.

  13. Free tropospheric transport of microorganisms from Asia to North America

    USGS Publications Warehouse

    D. Smith,; Dan Jaffe,; Michele Birmele,; Griffin, Dale W.; Andrew Schuerger,; Hee, J.; Michael Roberts,

    2012-01-01

    Microorganisms are abundant in the troposphere and can be transported vast distances on prevailing winds. This study measures the abundance and diversity of airborne bacteria and fungi sampled at the Mt. Bachelor Observatory (located 2.7 km above sea level in North America) where incoming free tropospheric air routinely arrives from distant sources across the Pacific Ocean, including Asia. Overall deoxyribonucleic acid (DNA) concentrations for microorganisms in the free troposphere, derived from quantitative polymerase chain reaction assays, averaged 4.94 × 10(-5) ng DNA m(-3) for bacteria and 4.77 × 10(-3) ng DNA m(-3) for fungi. Aerosols occasionally corresponded with microbial abundance, most often in the springtime. Viable cells were recovered from 27.4 % of bacterial and 47.6 % of fungal samples (N = 124), with 49 different species identified by ribosomal DNA gene sequencing. The number of microbial isolates rose significantly above baseline values on 22-23 April 2011 and 13-15 May 2011. Both events were analyzed in detail, revealing distinct free tropospheric chemistries (e.g., low water vapor, high aerosols, carbon monoxide, and ozone) useful for ruling out boundary layer contamination. Kinematic back trajectory modeling suggested air from these events probably originated near China or Japan. Even after traveling for 10 days across the Pacific Ocean in the free troposphere, diverse and viable microbial populations, including presumptive plant pathogens Alternaria infectoria and Chaetomium globosum, were detected in Asian air samples. Establishing a connection between the intercontinental transport of microorganisms and specific diseases in North America will require follow-up investigations on both sides of the Pacific Ocean.

  14. [Analysis of Pathogenic Bacteria in Reclaimed Water and Impact of UV Disinfection on the Removal of Pathogenic Bacteria].

    PubMed

    Jing, Ming; Wang, Lei

    2016-02-15

    In the study, 454-pyrosequencing technology was employed to investigate the species of pathogenic bacteria and the proportion of each pathogen in secondary effluent. Culture-based, qPCR and Q-RT-PCR methods were employed to analyze the removal of indicator (E. coli) and pathogen (Salmonella and Mycobacterium) by ultraviolet (UV) disinfection at a dose of 60 mJ x Cm(-2). The results showed that 11 kinds of pathogenic bacteria were found and the most abundant potentially pathogenic bacteria in the secondary effluent were affiliated with the genera of Clostridium (2.96%), Arcobacter (0.82%) and Mycobacterium (0.36%). 99.9% of culturable E. coli and Salmonella were removed by UV disinfection (60 mJ x cm(-2), however, less than 90% of culturable Mycobacterium were removed. The removal efficiencies of viable E. coli, Salmonella and Mycobacterium were low. Q-RT-PCR seemed to be a promising method for evaluating viable microorganisms in samples. Besides, pathogenic bacteria entered into VBNC state at a UV dose of 60 mJ x cm(-2). Other advanced treatment processes were needed to ensure safe utilization of reclaimed water.

  15. Epizootiological characteristics of viable bacteria and fungi in indoor air from porcine, chicken, or bovine husbandry confinement buildings

    PubMed Central

    Roque, Katharine; Lim, Gyeong-Dong; Jo, Ji-Hoon; Shin, Kyung-Min; Song, Eun-Seob; Gautam, Ravi; Kim, Chang-Yul; Lee, Kyungsuk; Shin, Seungwon; Yoo, Han-Sang; Heo, Yong

    2016-01-01

    Microorganisms found in bioaerosols from animal confinement buildings not only foster the risk of spreading diseases among livestock buildings, but also pose health hazards to farm workers and nearby residents. This study identified the various microorganisms present in the air of swine, chicken, and cattle farms with different kinds of ventilation conditions in Korea. Microbial air samples were collected onto Petri dishes with bacterial or fungal growth media using a cascade impactor. Endotoxin levels in total dust were determined by the limulus amebocyte lysate kinetic QCL method. Prevalent Gram-positive bacteria were Staphylococcus (S.) lentus, S. chromogenes, Bacillus (B.) cereus, B. licheniformis, and Enterococcus faecalis, while the dominant fungi and Gram-negative bacteria were Candida albicans and Sphingomonas paucimobilis, respectively. Considering no significant relationship between the indoor dust endotoxin levels and the isolation of Gram-negative bacteria from the indoor air, monitoring the indoor airborne endotoxin level was found to be also critical for risk assessment on health for animals or workers. The present study confirms the importance of microbiological monitoring and control on animal husbandry indoor air to ensure animal and worker welfare. PMID:27456779

  16. Heterotrophic bacteria in soils of Larsemann Oasis of East Antarctica

    NASA Astrophysics Data System (ADS)

    Churilin, Nikita; Soina, Vera

    2015-04-01

    The study of diversity and functional state of microorganisms in subsurface rocks layers, their participation in the biochemical weathering and formation of organic horizons of soils is important for understanding ecology and microorganisms in Antarctic soils. The study of cultured forms of microorganisms and their potential viability is still relevant to characterize the physiological state, biological activity and resilience of microorganisms involved in the initial soil formation. Improvement of isolation techniques of viable bacteria from the extreme habitats has a particular importance for rising the efficiency of environmental monitoring. The aim of the study was to investigate the viable heterotrophic bacteria involved in the formation of soils from wet valleys Larsemann Oasis, which is one of the warmest ice-free space of East Antarctica. Soil samples were taken from the intermountain humid valleys, where silt-gravelly substrates formed moss, algae, lichen cover. We used nutrient solutions (trypticase soy, R2A and glucose-peptone) to isolate cultured bacteria and study their morphological types in the light microscope. The total number of microorganisms was determined by fluorescent microscopy with acridine orange. SEM was used for morphological studies of bacterial communities in situ. To activate the growth processes we added into nutrient solutions various regulatory metabolites that have dose-dependence and operate at the community level. Physiological and functional conditions were determined by the duration of the lag phase and specific growth rate of bacterial communities in nutrient solutions containing various organic substrates. Soils form under protection of «stone pavement» and organisms leave the surface, so the forming organo-mineral horizon occurs inside of rock, thus the microprofile can form on both sides of the organic horizons. UV radiation, lack of moisture and strong wind are main limiting factors for microorganisms' growth in

  17. Terrestrial microorganisms at an altitude of 20,000 m in Earth's atmosphere

    USGS Publications Warehouse

    Griffin, Dale W.

    2004-01-01

    A joint effort between the U.S. Geological Survey's (USGS) Global Desert Dust and NASA's Stratospheric and Cosmic Dust Programs identified culturable microbes from an air sample collected at an altitude of 20,000 m. A total of 4 fungal (Penicillium sp.) and 71 bacteria colonyforming units (70 colonies of Bacillus luciferensis believed to have originated from a single cell collected at altitude and one colony of Bacillus sphaericus) were enumerated, isolated and identified using a morphological key and 16S rDNA sequencing respectively. All of the isolates identified were sporeforming pigmented fungi or bacteria of terrestrial origin and demonstrate that the presence of viable microorganisms in Earth's upper atmosphere may not be uncommon.

  18. Survival or Revival: Long-Term Preservation Induces a Reversible Viable but Non-Culturable State in Methane-Oxidizing Bacteria

    PubMed Central

    Hoefman, Sven; Van Hoorde, Koenraad; Boon, Nico; Vandamme, Peter; De Vos, Paul; Heylen, Kim

    2012-01-01

    Knowledge on long-term preservation of micro-organisms is limited and research in the field is scarce despite its importance for microbial biodiversity and biotechnological innovation. Preservation of fastidious organisms such as methane-oxidizing bacteria (MOB) has proven difficult. Most MOB do not survive lyophilization and only some can be cryopreserved successfully for short periods. A large-scale study was designed for a diverse set of MOB applying fifteen cryopreservation or lyophilization conditions. After three, six and twelve months of preservation, the viability (via live-dead flow cytometry) and culturability (via most-probable number analysis and plating) of the cells were assessed. All strains could be cryopreserved without a significant loss in culturability using 1% trehalose in 10-fold diluted TSB (TT) as preservation medium and 5% DMSO as cryoprotectant. Several other cryopreservation and lyophilization conditions, all of which involved the use of TT medium, also allowed successful preservation but showed a considerable loss in culturability. We demonstrate here that most of these non-culturables survived preservation according to viability assessment indicating that preservation induces a viable but non-culturable (VBNC) state in a significant fraction of cells. Since this state is reversible, these findings have major implications shifting the emphasis from survival to revival of cells in a preservation protocol. We showed that MOB cells could be significantly resuscitated from the VBNC state using the TT preservation medium. PMID:22539945

  19. Dormant state in bacteria: Conceptions and implications for terrestrial biogeoscience and astrobiology

    NASA Astrophysics Data System (ADS)

    Mulyukin, A.

    2003-04-01

    Gaining insight into strategies and mechanisms that ensure long term-preservation of microorganisms in various environments, including cold habitats, is a very important issue for terrestrial biogeoscience and astrobiology. This communication has a focus on the analysis of the published and our experimental data regarding the dormant state of different microorganisms, with an emphasis on non-spore-forming bacteria, which are widely spread in numerous ecological niches (e.g. permafrost sediments). Albeit it is recognized that one of the strategies to endure environmental stresses is entering of non-spore-forming bacteria into the viable-but-non-culturable state, a question of whether these microorganisms have the resting stage remains unclear. However, our previous studies showed that non-spore-forming bacteria and yeast could form cyst-like cells that possess many attributes of constitutively resting cells. As applied to the survival strategy of non-spore-forming bacteria in permafrost sediments, recognizing a very important role of the viable-but-nonculturable state in asporogenous bacteria, we however believe that their long-term maintenance in such habitats is due to the formation of cyst-like cells. Interestingly, bacterial isolates from permafrost sediments showed a greater productivity of autoregulatory factors, favoring the transition of cells into the resting state, and a more elevated resistance to some stresses than closely related collection strains. This suggests a greater potentiality of the permafrost isolates to enter the resting stage and thereby to survive for millennia years in natural habitats. However, it is known that only a little part of microorganisms that are present in environmental samples can be enumerated by standard plating on agar media, and a discrepancy between the total number of cells and those capable of forming colonies is a rather common case. Such a discrepancy can be due to either the actual non-culturability of microbial

  20. High-resolution microcontact printing and transfer of massive arrays of microorganisms on planar and compartmentalized nanoporous aluminium oxide.

    PubMed

    Ingham, Colin; Bomer, Johan; Sprenkels, Ad; van den Berg, Albert; de Vos, Willem; van Hylckama Vlieg, Johan

    2010-06-07

    Handling microorganisms in high throughput and their deployment into miniaturized platforms presents significant challenges. Contact printing can be used to create dense arrays of viable microorganisms. Such "living arrays", potentially with multiple identical replicates, are useful in the selection of improved industrial microorganisms, screening antimicrobials, clinical diagnostics, strain storage, and for research into microbial genetics. A high throughput method to print microorganisms at high density was devised, employing a microscope and a stamp with a massive array of PDMS pins. Viable bacteria (Lactobacillus plantarum, Esherichia coli), yeast (Candida albicans) and fungal spores (Aspergillus fumigatus) were deposited onto porous aluminium oxide (PAO) using arrays of pins with areas from 5 x 5 to 20 x 20 microm. Printing onto PAO with up to 8100 pins of 20 x 20 microm area with 3 replicates was achieved. Printing with up to 200 pins onto PAO culture chips (divided into 40 x 40 microm culture areas) allowed inoculation followed by effective segregation of microcolonies during outgrowth. Additionally, it was possible to print mixtures of C. albicans and spores of A. fumigatus with a degree of selectivity by capture onto a chemically modified PAO surface. High resolution printing of microorganisms within segregated compartments and on functionalized PAO surfaces has significant advantages over what is possible on semi-solid surfaces such as agar.

  1. A combination of direct viable count and fluorescence in situ hybridization for specific enumeration of viable Lactobacillus delbrueckii subsp.bulgaricus and Streptococcus thermophilus.

    PubMed

    García-Hernández, J; Moreno, Y; Amorocho, C M; Hernández, M

    2012-03-01

    We have developed a direct viable count (DVC)-FISH procedure for quickly and easily discriminating between viable and nonviable cells of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains, the traditional yogurt bacteria. direct viable count method has been modified and adapted for Lact. delbrueckii subsp. bulgaricus and Strep. thermophilus analysis by testing different times of incubation and concentrations of DNA-gyrase inhibitors. DVC procedure has been combined with fluorescent in situ hybridization (FISH) for the specific detection of viable cells of both bacteria with specific rRNA oligonucleotide probes (DVC-FISH). Of the four antibiotics tested (novobiocin, nalidixic acid, pipemidic acid and ciprofloxacin), novobiocin was the most effective for DVC method and the optimum incubation time was 7 h for both bacteria. The number of viable cells was obtained by the enumeration of specific hybridized cells that were elongated at least twice their original length for Lactobacillus and twice their original size for Streptococcus. This technique was successfully applied to detect viable cells in inoculated faeces. Results showed that this DVC-FISH procedure is a quick and culture-independent useful method to specifically detect viable Lact. delbrueckii subsp. bulgaricus and Strep. thermophilus in different samples, being applied for the first time to lactic acid bacteria. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  2. Antifungal and antibacterial activity of marine microorganisms.

    PubMed

    El Amraoui, B; El Amraoui, M; Cohen, N; Fassouane, A

    2014-03-01

    In order to explore marine microorganisms with pharmaceutical potential, marine bacteria, collected from different coastal areas of the Moroccan Atlantic Ocean, were previously isolated from seawater, sediment, marine invertebrates and seaweeds. The antimicrobial activities of these microorganisms were investigated against the pathogens involved in human pathologies. Whole cultures of 34 marine microorganisms were screened for antimicrobial activities using the method of agar diffusion against three Gram-positive bacteria, two Gram-negative bacteria, and against yeast. The results showed that among the 34 isolates studied, 28 (82%) strains have antimicrobial activity against at least one pathogen studied, 11 (32%) strains have antifungal activity and 24 (76%) strains are active against Gram-positive bacteria, while 21 (62%) strains are active against Gram-negative bacteria. Among isolates having antimicrobial activity, 14 were identified and were assigned to the genera Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Enterococcus, Pantoea and Pseudomonas. Due to a competitive role for space and nutrient, the marine microorganisms can produce antibiotic substance; therefore, these marine microorganisms were expected to be potential resources of natural antibiotic products. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. Kinetics of killing Listeria monocytogenes by macrophages: correlation of /sup 3/H-DNA release from labeled bacteria and changes in numbers of viable organisms by mathematical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, W.A.

    1982-12-01

    Conventional methods of assessing antibacterial activities of macrophages by viable counting are limited by the precision of the statistics and are difficult to interpret quantitatively because of unrestrained extracellular growth of bacteria. An alternative technique based on the release of radioactive DNA from labeled bacteria has been offered as overcoming these drawbacks. To assess it for use with macrophages I have made a correlation with the conventional viable counting method using a mathematical model. Opsonized Listeria monocytogenes labeled with /sup 3/H-thymidine were exposed to rat macrophages for periods up to 4 hr. Numbers of viable bacteria determined after sonication increasedmore » exponentially in the absence of live cells and this growth rate was progressively inhibited by increasing numbers of macrophages. After a lag period of 30-60 min soluble /sup 3/H appeared in the supernatant, the amount increasing with time and numbers of macrophages. To correlate these data I developed a mathematical model that considered that changes in numbers of viable organisms were due to the difference between rates of 1) growth of extracellular bacteria and 2) killing within the macrophage. On the basis of this model curves of best fit to the viable counts data were used to predict the release of radioactivity, assuming that death of a bacterium led to the total release of its label. These predictions and the experimental data agreed well, the lag period of 30-60 min between death of the bacterium and release of radioactivity being consistent with intracellular digestion. Release of soluble radioactivity appears to be an accurate reflection of the number of bacteria killed within the macrophage.« less

  4. Disinfection of bacteria attached to granular activated carbon.

    PubMed Central

    LeChevallier, M W; Hassenauer, T S; Camper, A K; McFeters, G A

    1984-01-01

    Heterotrophic plate count bacteria, coliform organisms, and pathogenic microorganisms attached to granular activated carbon particles were examined for their susceptibility to chlorine disinfection. When these bacteria were grown on carbon particles and then disinfected with 2.0 mg of chlorine per liter (1.4 to 1.6 mg of free chlorine residual per liter after 1 h) for 1 h, no significant decrease in viable counts was observed. Washed cells attached to the surface of granular activated carbon particles showed similar resistance to chlorine, but a progressive increase in sublethal injury was found. Observations made by scanning electron microscope indicated that granular activated carbon was colonized by bacteria which grow in cracks and crevices and are coated by an extracellular slime layer. These data suggest a possible mechanism by which treatment and disinfection barriers can be penetrated and pathogenic bacteria may enter drinking water supplies. Images PMID:6508306

  5. Analysis of Membrane Lipids of Airborne Micro-Organisms

    NASA Technical Reports Server (NTRS)

    MacNaughton, Sarah

    2006-01-01

    A method of characterization of airborne micro-organisms in a given location involves (1) large-volume filtration of air onto glass-fiber filters; (2) accelerated extraction of membrane lipids of the collected micro-organisms by use of pressurized hot liquid; and (3) identification and quantitation of the lipids by use of gas chromatography and mass spectrometry. This method is suitable for use in both outdoor and indoor environments; for example, it can be used to measure airborne microbial contamination in buildings ("sick-building syndrome"). The classical approach to analysis of airborne micro-organisms is based on the growth of cultureable micro-organisms and does not provide an account of viable but noncultureable micro-organisms, which typically amount to more than 90 percent of the micro-organisms present. In contrast, the present method provides an account of all micro-organisms, including cultureable, noncultureable, aerobic, and anaerobic ones. The analysis of lipids according to this method makes it possible to estimate the number of viable airborne micro-organisms present in the sampled air and to obtain a quantitative profile of the general types of micro-organisms present along with some information about their physiological statuses.

  6. Number of viable bacteria and presumptive antibiotic residues in milk fed to calves on commercial dairies.

    PubMed

    Selim, S A; Cullor, J S

    1997-10-15

    To assess the number of bacteria and presumptive antibiotic residues in milk fed to calves and to identify those bacteria and the antibiotic susceptibility of selected bacterial strains. Cross-sectional prospective study. 189 samples obtained from 12 local dairies. Samples of waste milk and milk-based fluids (eg, milk replacer, colostrum, bulk-tank milk) were obtained. Cumulative number of viable bacteria was determined. Bacteria were cultured aerobically, and antibiotic susceptibility testing of selected strains was performed. Presumptive antibiotic residues were detected by use of test kits. Geometric mean of the cumulative number of bacteria for waste milk samples was significantly higher than for other types of milk or milk-based products. Streptococcus sp (84/165 samples) and Enterobacteriaceae (83/165 samples) were the predominant bacteria identified, followed by Staphylococcus sp (68/165 samples). Escherichia coli was the gram-negative species most commonly isolated (52/165 samples; 32%); however, none were strain O157. Salmonella sp or Mycoplasma sp were not isolated. Of 189 samples, 119 (63%) were positive when tested for beta-lactams or tetracycline by use of 2 commercially available assays. In vitro, some bacteria were resistant to commonly used antibiotics. Waste milk that has not been effectively treated (eg, pasteurization) to reduce microbial load prior to use as calf feed should be used with caution, because it may contain a high number of bacteria that may be pathogenic to cattle and human beings. Antibiotic residues that would constitute violative amounts and existence of multiple antibiotic resistant bacterial strains are concerns in calf health management and dairy food safety.

  7. Aptamer-based viability impedimetric sensor for bacteria.

    PubMed

    Labib, Mahmoud; Zamay, Anna S; Kolovskaya, Olga S; Reshetneva, Irina T; Zamay, Galina S; Kibbee, Richard J; Sattar, Syed A; Zamay, Tatiana N; Berezovski, Maxim V

    2012-11-06

    The development of an aptamer-based viability impedimetric sensor for bacteria (AptaVISens-B) is presented. Highly specific DNA aptamers to live Salmonella typhimurium were selected via the cell-systematic evolution of ligands by exponential enrichment (SELEX) technique. Twelve rounds of selection were performed; each comprises a positive selection step against viable S. typhimurium and a negative selection step against heat killed S. typhimurium and a mixture of related pathogens, including Salmonella enteritidis, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Citrobacter freundii to ensure the species specificity of the selected aptamers. The DNA sequence showing the highest binding affinity to the bacteria was further integrated into an impedimetric sensor via self-assembly onto a gold nanoparticle-modified screen-printed carbon electrode (GNP-SPCE). Remarkably, this aptasensor is highly selective and can successfully detect S. typhimurium down to 600 CFU mL(-1) (equivalent to 18 live cells in 30 μL of assay volume) and distinguish it from other Salmonella species, including S. enteritidis and S. choleraesuis. This report is envisaged to open a new venue for the aptamer-based viability sensing of a variety of microorganisms, particularly viable but nonculturable (VBNC) bacteria, using a rapid, economic, and label-free electrochemical platform.

  8. Beneficial microorganisms [Chapter 14

    Treesearch

    Kim M. Wilkinson

    2009-01-01

    The web of life depends on microorganisms, a vast network of small and unseen allies that permeate the soil, water, and air of our planet. For people who work with plants, the greatest interest in microorganisms is in the complex communities that are part of the soil. Beneficial microorganisms are naturally occurring bacteria, fungi, and other microbes that play a...

  9. Plants as sources of airborne bacteria, including ice nucleation-active bacteria.

    PubMed

    Lindemann, J; Constantinidou, H A; Barchet, W R; Upper, C D

    1982-11-01

    Vertical wind shear and concentration gradients of viable, airborne bacteria were used to calculate the upward flux of viable cells above bare soil and canopies of several crops. Concentrations at soil or canopy height varied from 46 colony-forming units per m over young corn and wet soil to 663 colony-forming units per m over dry soil and 6,500 colony-forming units per m over a closed wheat canopy. In simultaneous samples, concentrations of viable bacteria in the air 10 m inside an alfalfa field were fourfold higher than those over a field with dry, bare soil immediately upwind. The upward flux of viable bacteria over alfalfa was three- to fourfold greater than over dry soil. Concentrations of ice nucleation-active bacteria were higher over plants than over soil. Thus, plant canopies may constitute a major source of bacteria, including ice nucleation-active bacteria, in the air.

  10. Probiotic fermented sausage: viability of probiotic microorganisms and sensory characteristics.

    PubMed

    Rouhi, M; Sohrabvandi, S; Mortazavian, A M

    2013-01-01

    Probiotics are from functional foods that bring health benefits for humans. Nowadays, a major development in functional foods is related to food containing probiotic cultures, mainly lactic acid bacteria or bifidobacteria. Probiotics must be alive and ingested in sufficient amounts to exert the positive effects on the health and the well-being of the host. Therefore, viability of probiotic products (the minimum viable probiotic cells in each gram or milliliter of product till the time of consumption) is their most important characteristic. However, these organisms often show poor viability in fermented products due to their detrimental conditions. Today, the variety of fermented meat products available around the world is nearly equal to that of cheese. With meat products, raw fermented sausages could constitute an appropriate vehicle for such microorganisms into the human gastrointestinal tract. In present article, the viability of probiotic microorganisms in fermented sausage, the main factors affect their viability, and the sensorial characteristics of final product are discussed.

  11. Antibacterial Effect of Copper on Microorganisms Isolated from Bovine Mastitis

    PubMed Central

    Reyes-Jara, Angelica; Cordero, Ninoska; Aguirre, Juan; Troncoso, Miriam; Figueroa, Guillermo

    2016-01-01

    The antimicrobial properties of copper have been recognized for several years; applying these properties to the prevention of diseases such as bovine mastitis is a new area of research. The aim of the present study was to evaluate in vitro the antimicrobial activity of copper on bacteria isolated from subclinical and clinical mastitis milk samples from two regions in Chile. A total of 327 microorganisms were recovered between March and September 2013, with different prevalence by sample origin (25 and 75% from the central and southern regions of Chile, respectively). In the central region, Escherichia coli and coagulase negative Staphylococci (CNS) were the most frequently detected in clinical mastitis cases (33%), while in the southern region S. uberis, S. aureus, and CNS were detected with frequencies of 22, 21, and 18%, respectively. Antibiotic susceptibility studies revealed that 34% of isolates were resistant to one or more antibiotics and the resistance profile was different between bacterial species and origins of isolation of the bacteria. The minimum inhibitory concentration of copper (MIC-Cu) was evaluated in all the isolates; results revealed that a concentration as low as 250 ppm copper was able to inhibit the great majority of microorganisms analyzed (65% of isolates). The remaining isolates showed a MIC-Cu between 375 and 700 ppm copper, and no growth was observed at 1000 ppm. A linear relationship was found between the logarithm of viable bacteria number and time of contact with copper. With the application of the same concentration of copper (250 ppm), CNS showed the highest tolerance to copper, followed by S. uberis and S. aureus; the least resistant was E. coli. Based on these in vitro results, copper preparations could represent a good alternative to dipping solutions, aimed at preventing the presence and multiplication of potentially pathogenic microorganisms involved in bovine mastitis disease. PMID:27199953

  12. Isolation of Viable but Non-culturable Bacteria from Printing and Dyeing Wastewater Bioreactor Based on Resuscitation Promoting Factor.

    PubMed

    Jin, Yi; Gan, Guojuan; Yu, Xiaoyun; Wu, Dongdong; Zhang, Li; Yang, Na; Hu, Jiadan; Liu, Zhiheng; Zhang, Lixin; Hong, Huachang; Yan, Xiaoqing; Liang, Yan; Ding, Linxian; Pan, Yonglong

    2017-07-01

    Printing and dyeing wastewater with high content of organic matters, high colority, and poor biochemical performance is hard to be degraded. In this study, we isolated viable but non-culturable (VBNC) bacteria from printing and dyeing wastewater with the culture media contained resuscitation promoting factor (Rpf) protein secreted by Micrococcus luteus, counted the culturable cells number with the most probable number, sequenced 16S rRNA genes, and performed polymerase chain reaction-denaturing gradient gel electrophoresis. It is obviously that the addition of Rpf in the enrichment culture could promote growth and resuscitation of bacteria in VBNC state to obtain more fastidious bacteria significantly. The identified bacteria were assigned to nine genera in the treatment group, while the two strains of Ochrobactrum anthropi and Microbacterium sp. could not be isolated from the control group. The function of isolated strains was explored and these strains could degrade the dye of Congo red. This study provides a new sight into the further study including the present state, composition, formation mechanism, and recovery mechanism about VBNC bacteria in printing and dyeing wastewater, which would promote to understand bacterial community in printing and dyeing wastewater, and to obtain VBNC bacteria from ecological environment.

  13. Survival of cheese-ripening microorganisms in a dynamic simulator of the gastrointestinal tract.

    PubMed

    Adouard, Nadège; Magne, Laurent; Cattenoz, Thomas; Guillemin, Hervé; Foligné, Benoît; Picque, Daniel; Bonnarme, Pascal

    2016-02-01

    A mixture of nine microorganisms (six bacteria and three yeasts) from the microflora of surface-ripened cheeses were subjected to in vitro digestive stress in a three-compartment "dynamic gastrointestinal digester" (DIDGI). We studied the microorganisms (i) grown separately in culture medium only (ii) grown separately in culture medium and then mixed, (iii) grown separately in culture medium and then included in a rennet gel and (iv) grown together in smear-ripened cheese. The yeasts Geotrichum candidum, Kluyveromyces lactis and Debaryomyces hansenii, were strongly resistant to the whole DIDGI process (with a drop in viable cell counts of less than <1 log CFU mL(-1)) and there were no significant differences between lab cultures and cheese-grown cultures. Ripening bacteria such as Hafnia alvei survived gastric stress less well when grown in cheese (with no viable cells after 90 min of exposure of the cheese matrix, compared with 6 CFU mL(-1) in lab cultures). The ability of Corynebacterium casei and Staphylococcus equorum to withstand digestive stress was similar for cheese and pure culture conditions. When grow in a cheese matrix, Brevibacterium aurantiacum and Arthrobacter arilaitensis were clearly more sensitive to the overall digestive process than when grown in pure cultures. Lactococcus lactis displayed poorer survival in gastric and duodenal compartments when it had been grown in cheese. In vivo experiments in BALB/c mice agreed with the DIDGI experiments and confirmed the latter's reliability. Copyright © 2015. Published by Elsevier Ltd.

  14. PMA-LAMP for rapid detection of Escherichia coli and shiga toxins from viable but non-culturable state.

    PubMed

    Yan, Muxia; Xu, Ling; Jiang, Hua; Zhou, Zhenwen; Zhou, Shishui; Zhang, Li

    2017-04-01

    In exposure to outer pressure, microorganisms are capable of entry into the Viable But Non-Culturable (VBNC) state, and thus survive under various elimination processing. The survival microorganisms may yield negative results on culturing, and cause false negative for this golden standard methodology. In this study, a novel PMA-LAMP assay on the detection of Enterohemorrhage E. coli and shiga toxins has been developed and evaluated, with further application on a number of food borne E. coli strains. LAMP primers were designed on the target of rfbe for Enterohemorrhage E. coli and stx1with stx2 for shiga toxins. Via specific penetration through the damaged cell membrane of dead cells and intercalating into DNA, PMA could prevent DNA amplification of dead bacteria from LAMP, which enabled the differentiation of bacteria between VBNC state and dead state. The established PMA-LAMP showed significant advantage in rapidity, sensitivity and specificity, compared with regular PCR assay. The applicability had also been verified, demonstrating the PMA-LAMP was capable of detection on Enterohemorrhage E. coli and shiga toxins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Microorganisms in bioaerosol emissions from wastewater treatment plants during summer at a Mediterranean site.

    PubMed

    Karra, Styliani; Katsivela, Eleftheria

    2007-03-01

    Measurements were conducted at a Mediterranean site (latitude 35 degrees 31' north and longitude 24 degrees 03' east) during summer, to study the concentration of microorganisms emitted from a wastewater treatment plant under intensive solar radiation (520-840 W/m2) and at elevated air temperatures (25-31 degrees C). Air samples were taken with the Air Sampler MAS 100 (Merck) at each stage of an activated-sludge wastewater treatment (pretreatment, primary settling tanks, aeration tanks, secondary settling tanks, chlorination, and sludge processors). Cultivation methods based on the viable counts of mesophilic heterotrophic bacteria, as well as of indicator microorganisms of faecal contamination (total and faecal coliforms and enterococci), and fungi were performed. During air sampling, temperature, solar radiation, relative humidity and wind speed were measured. The highest concentrations of airborne microorganisms were observed at the aerated grit removal of wastewater at the pretreatment stage. A gradual decrease of bioaerosol emissions was observed during the advanced wastewater treatment from the pretreatment to the primary, secondary and tertiary treatment (97.4% decrease of mesophilic heterotrophic bacteria, and 100% decrease of total coliforms, faecal coliforms and enterococci), 95.8% decrease of fungi. The concentration of the airborne microorganisms at the secondary and tertiary treatment of the wastewater was lower than in the outdoor control. At the same time, the reduction of the microbial load at the waste sludge processors was 19.7% for the mesophilic heterotrophic bacteria, 99.4% for the total coliforms, and 100% for the faecal coliforms and the enterococci, 84.2% for the fungi. The current study concludes that the intensive solar radiation, together with high ambient temperatures, as well as optimal wastewater treatment are the most important factors for low numbers of microbes in the air.

  16. Lipid biomarker analysis for the quantitative analysis of airborne microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macnaughton, S.J.; Jenkins, T.L.; Cormier, M.R.

    1997-08-01

    There is an ever increasing concern regarding the presence of airborne microbial contaminants within indoor air environments. Exposure to such biocontaminants can give rise to large numbers of different health effects including infectious diseases, allergenic responses and respiratory problems, Biocontaminants typically round in indoor air environments include bacteria, fungi, algae, protozoa and dust mites. Mycotoxins, endotoxins, pollens and residues of organisms are also known to cause adverse health effects. A quantitative detection/identification technique independent of culturability that assays both culturable and non culturable biomass including endotoxin is critical in defining risks from indoor air biocontamination. Traditionally, methods employed for themore » monitoring of microorganism numbers in indoor air environments involve classical culture based techniques and/or direct microscopic counting. It has been repeatedly documented that viable microorganism counts only account for between 0.1-10% of the total community detectable by direct counting. The classic viable microbiologic approach doe`s not provide accurate estimates of microbial fragments or other indoor air components that can act as antigens and induce or potentiate allergic responses. Although bioaerosol samplers are designed to damage the microbes as little as possible, microbial stress has been shown to result from air sampling, aerosolization and microbial collection. Higher collection efficiency results in greater cell damage while less cell damage often results in lower collection efficiency. Filtration can collect particulates at almost 100% efficiency, but captured microorganisms may become dehydrated and damaged resulting in non-culturability, however, the lipid biomarker assays described herein do not rely on cell culture. Lipids are components that are universally distributed throughout cells providing a means to assess independent of culturability.« less

  17. Ethanol Production by Selected Intestinal Microorganisms and Lactic Acid Bacteria Growing under Different Nutritional Conditions.

    PubMed

    Elshaghabee, Fouad M F; Bockelmann, Wilhelm; Meske, Diana; de Vrese, Michael; Walte, Hans-Georg; Schrezenmeir, Juergen; Heller, Knut J

    2016-01-01

    To gain some specific insight into the roles microorganisms might play in non-alcoholic fatty liver disease (NAFLD), some intestinal and lactic acid bacteria and one yeast (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) were characterized by high performance liquid chromatography for production of ethanol when grown on different carbohydrates: hexoses (glucose and fructose), pentoses (arabinose and ribose), disaccharides (lactose and lactulose), and inulin. Highest amounts of ethanol were produced by S. cerevisiae, L. fermentum, and W. confusa on glucose and by S. cerevisiae and W. confusa on fructose. Due to mannitol-dehydrogenase expressed in L. fermentum, ethanol production on fructose was significantly (P < 0.05) reduced. Pyruvate and citrate, two potential electron acceptors for regeneration of NAD(+)/NADP(+), drastically reduced ethanol production with acetate produced instead in L. fermentum grown on glucose and W. confusa grown on glucose and fructose, respectively. In fecal slurries prepared from feces of four overweight volunteers, ethanol was found to be produced upon addition of fructose. Addition of A. caccae, L. acidophilus, L. fermentum, as well as citrate and pyruvate, respectively, abolished ethanol production. However, addition of W. confusa resulted in significantly (P < 0.05) increased production of ethanol. These results indicate that microorganisms like W. confusa, a hetero-fermentative, mannitol-dehydrogenase negative lactic acid bacterium, may promote NAFLD through ethanol produced from sugar fermentation, while other intestinal bacteria and homo- and hetero-fermentative but mannitol-dehydrogenase positive lactic acid bacteria may not promote NAFLD. Also, our studies indicate that dietary factors interfering with gastrointestinal microbiota and microbial

  18. ATP as a biomarker of viable microorganisms in clean-room facilities

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri; Hattori, Noriaki; La Duc, Myron T.; Kern, Roger

    2003-01-01

    A new firefly luciferase bioluminescence assay method that differentiates free extracellular ATP (dead cells, etc.) from intracellular ATP (viable microbes) was used to determine the viable microbial cleanliness of various clean-room facilities. For comparison, samples were taken from both clean-rooms, where the air was filtered to remove particles >0.5 microm, and ordinary rooms with unfiltered air. The intracellular ATP was determined after enzymatically degrading the sample's free ATP. Also for comparison, cultivable microbial populations were counted on nutrient-rich trypticase soy agar (TSA) plates. Both the cultivable and ATP-based determinations indicate that the microbial burden was lower in clean-room facilities than in ordinary rooms. However, there was no direct correlation between the two sets of measurements because the two assays measured very different populations. A large fraction of the samples yielded no colony formers on TSA, but were positive for intracellular ATP. Subsequently, genomic DNA was isolated directly from selected samples and 16S rDNA fragments were cloned and sequenced, identifying nearest neighbors, many of which are known to be noncultivable in the media employed. It was concluded that viable microbial contamination can be reliably monitored by measurement of intracellular ATP, and that this method may be considered superior to cultivable colony counts due to its speed and its ability to report the presence of viable but noncultivable organisms. When the detection of nonviable microbes is of interest, the ATP assay can be supplemented with DNA analysis.

  19. ATP as a biomarker of viable microorganisms in clean-room facilities.

    PubMed

    Venkateswaran, Kasthuri; Hattori, Noriaki; La Duc, Myron T; Kern, Roger

    2003-03-01

    A new firefly luciferase bioluminescence assay method that differentiates free extracellular ATP (dead cells, etc.) from intracellular ATP (viable microbes) was used to determine the viable microbial cleanliness of various clean-room facilities. For comparison, samples were taken from both clean-rooms, where the air was filtered to remove particles >0.5 microm, and ordinary rooms with unfiltered air. The intracellular ATP was determined after enzymatically degrading the sample's free ATP. Also for comparison, cultivable microbial populations were counted on nutrient-rich trypticase soy agar (TSA) plates. Both the cultivable and ATP-based determinations indicate that the microbial burden was lower in clean-room facilities than in ordinary rooms. However, there was no direct correlation between the two sets of measurements because the two assays measured very different populations. A large fraction of the samples yielded no colony formers on TSA, but were positive for intracellular ATP. Subsequently, genomic DNA was isolated directly from selected samples and 16S rDNA fragments were cloned and sequenced, identifying nearest neighbors, many of which are known to be noncultivable in the media employed. It was concluded that viable microbial contamination can be reliably monitored by measurement of intracellular ATP, and that this method may be considered superior to cultivable colony counts due to its speed and its ability to report the presence of viable but noncultivable organisms. When the detection of nonviable microbes is of interest, the ATP assay can be supplemented with DNA analysis.

  20. Antimicrobial activity of polyphenol-rich fractions from Sida alba L. (Malvaceae) against co-trimoxazol-resistant bacteria strains.

    PubMed

    Konaté, Kiessoun; Hilou, Adama; Mavoungou, Jacques François; Lepengué, Alexis Nicaise; Souza, Alain; Barro, Nicolas; Datté, Jacques Y; M'batchi, Bertrand; Nacoulma, Odile Germaine

    2012-02-24

    The increased resistance of microorganisms to the currently used antimicrobials has lead to the evaluation of other agents that might have antimicrobial activity. Medicinal plants are sources of phytochemicals which are able to initiate different biological activities including antimicrobials In vitro antibacterial (MIC, MBC and time-kill studies) of polyphenol-rich fractions from Sida alba L. (Malvaceae) was assessed using ten bacteria strains (Gram-negative and Gram-positive). All test bacteria were susceptible to the polyphenol-rich fractions. Time-kill results showed that after 5 h exposition there was no viable microorganism in the initial inoculum and the effect of polyphenol-rich fractions was faster on Enterococcus faecalis (Gram-positive bacterium) comparatively to the other bacteria strains. The data analysis indicates that the tested of polyphenol-rich fractions has significant effects when compared with the standard antibiotic. These results therefore justify the traditional use of sida alba L., alone or in combination with other herbs to treat bacterial infections.

  1. Antimicrobial activity of polyphenol-rich fractions from Sida alba L. (Malvaceae) against co-trimoxazol-resistant bacteria strains

    PubMed Central

    2012-01-01

    Background The increased resistance of microorganisms to the currently used antimicrobials has lead to the evaluation of other agents that might have antimicrobial activity. Medicinal plants are sources of phytochemicals which are able to initiate different biological activities including antimicrobials Materials and methods In vitro antibacterial (MIC, MBC and time-kill studies) of polyphenol-rich fractions from Sida alba L. (Malvaceae) was assessed using ten bacteria strains (Gram-negative and Gram-positive). Results All test bacteria were susceptible to the polyphenol-rich fractions. Time-kill results showed that after 5 h exposition there was no viable microorganism in the initial inoculum and the effect of polyphenol-rich fractions was faster on Enterococcus faecalis (Gram-positive bacterium) comparatively to the other bacteria strains. Conclusion The data analysis indicates that the tested of polyphenol-rich fractions has significant effects when compared with the standard antibiotic. These results therefore justify the traditional use of sida alba L., alone or in combination with other herbs to treat bacterial infections. PMID:22364123

  2. In vitro study of bactericidal effect of low-level laser therapy in the presence of photosensitizer on cariogenic bacteria

    NASA Astrophysics Data System (ADS)

    Zanin, Iriana C. J.; Brugnera, Aldo, Jr.; Goncalves, Reginaldo B.

    2002-06-01

    The aim of this in vitro study was to determine whether low-level laser light in the presence of a photosensitizer could kill Streptococcus mutans and Streptococcus sobrinus. Suspensions of these microorganisms were exposed to a gallium-aluminium-arsenide laser light (660 nm) in the presence of photosensitizer toluidine blue O. Viable microorganisms were counted on brain heart agar plates after incubation at 37 degree(s)C in partial atmosphere of 10% CO2 for 48 hours. Their exposure to the laser light in the absence of the dye or the dye in the absence of the laser light presented no significant effect on the viability of the microorganisms. However, a decrease in the number of viable microorganisms was only verified when they were exposed to both the laser light and the dye at the same time. Their total growth inhibition was achieved with a dye concentration of 100 mg/mL and a light energy density of 28.8 J/cm2, after being exposed to laser light for 900 seconds. In conclusion, these results imply that these bacteria can be killed by low-power laser light in the presence of the photosensitizer.

  3. Revealing potential functions of VBNC bacteria in polycyclic aromatic hydrocarbons biodegradation.

    PubMed

    Su, X M; Bamba, A M; Zhang, S; Zhang, Y G; Hashmi, M Z; Lin, H J; Ding, L X

    2018-04-01

    The bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated sites is not running smoothly, because of the lower activity of PAH-degrading bacteria in actual bioremediation applications. The phenomenon of "viable but nonculturable" (VBNC) state may be a main limiting factor for their poor biodegradation capabilities of PAHs. Due to their abilities of entering into the VBNC state, most of bacterial populations with PAH-degradation potential remain unculturable. Resuscitation of VBNC bacteria will enhance the degradation capability of indigenous bacteria which will eventually obtain their better capabilities in environmental bioremediation. Although evidences have been presented indicating that resuscitation of VBNC bacteria in polychlorinated biphenyl (PCB)-contaminated environments not only significantly enhanced PCB degradation, but also obtained novel highly efficient PCB-degrading bacteria, scanty information is available on the VBNC bacteria in PAH-contaminated sites. VBNC bacteria, as a vast majority of potential microbial resource could be the repository of novel highly efficient PAH-biodegraders. Therefore, studies need to be done on resuscitation of VBNC bacteria to overcome key bottlenecks in bioremediation of PAH-contaminated sites. This mini-review provides a new insight into the potential functions of VBNC bacteria in PAHs biodegradation. As the vast majority microbial resource, viable but nonculturable (VBNC) bacteria, which showed their potential functions in polycyclic aromatic hydrocarbons (PAHs) biodegradation, can be of great significance in environmental bioremediation. It is therefore important to resuscitate VBNC bacteria for their better capabilities. Meanwhile, preventing the indigenous functional community from entering into the VBNC state will also maintain the high activity of PAH-degrading bacteria in actual bioremediation applications. Undoubtedly, much more work needs to be done to reveal indigenous micro-organisms in the

  4. An evaluation of microorganisms for unconventional food regeneration schemes in CELSS - Research recommendations

    NASA Technical Reports Server (NTRS)

    Stokes, B. O.; Petersen, G. R.

    1982-01-01

    The benefits and deficiencies of various candidates for a controlled ecological life support system (CELSS) for manned spacecraft missions of at least 3-14 yr are discussed. Conventional plants are considered unacceptable due to their inefficient production of foodstuffs and overproduction of stems and leafy matter. The alternate concepts are algae and/or bacteria or chemical synthesis of food. Microorganisms are considered the most promising because of their direct use of CO2 and possible utilization of waste streams. Yeasts are cited as the most viable candidates, since a large data base and experience already exists in the commercial food industry. The addition of hydrogen bactria and solar-grown algae is recommended, together with genetic manipulation experiments to tailor the microorganisms to production of foodstuffs closer to the 70 percent carbohydrate, 20 percent protein, and 10 percent lipid optimal food currently accepted. The yeast strain, Hansenula polymorpha, has been successfully grown in methanol and encouraged to produce a 55 percent carbohydrate content.

  5. Modern Approach to Medical Diagnostics - the Use of Separation Techniques in Microorganisms Detection.

    PubMed

    Chylewska, Agnieszka; Ogryzek, M; Makowski, Mariusz

    2017-10-23

    New analytical and molecular methods for microorganisms are being developed on various features of identification i.e. selectivity, specificity, sensitivity, rapidity and discrimination of the viable cell. The presented review was established following the current trends in improved pathogens separation and detection methods and their subsequent use in medical diagnosis. This contribution also focuses on the development of analytical and biological methods in the analysis of microorganisms, with special attention paid to bio-samples containing microbes (blood, urine, lymph, wastewater). First, the paper discusses microbes characterization, their structure, surface, properties, size and then it describes pivotal points in the bacteria, viruses and fungi separation procedure obtained by researchers in the last 30 years. According to the above, detection techniques can be classified into three categories, which were, in our opinion, examined and modified most intensively during this period: electrophoretic, nucleic-acid-based, and immunological methods. The review covers also the progress, limitations and challenges of these approaches and emphasizes the advantages of new separative techniques in selective fractionating of microorganisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Effects of phosphate-solubilizing bacteria, native microorganisms, and rock dust on Jatropha curcas L. growth.

    PubMed

    Santana, E B; Marques, E L S; Dias, J C T

    2016-10-05

    Microorganisms with the ability to release nutrients to the soil from insoluble sources may be useful for plant cultivation. We evaluated the growth-promoting effect on Jatropha curcas L. of phosphate-solubilizing bacteria (PSB) and the native microbiota in soil with or without rock dust. J. curcas L. is important for biodiesel production. The experiments were performed in a greenhouse under a random-statistical design with 14 replicates. The soil received increasing dosages of rock dust. The presence of resident microorganisms and PSB inoculum was correlated with plant height, biomass production, and phosphorus content in plants for 120 days. Native soil microorganisms were detected and identified using denaturing gradient gel electrophoresis and DNA sequence analysis. Several bacterial populations belonged to the genus Bacillus. Populations associated with the phyla Chytridiomycota and Ascomycota were detected among the fungi. The best results for the variable plant height were correlated with the presence of resident microbiota and rock dust until the end of the experiment. The largest biomass production and the highest content of phosphorus occurred in the presence of soil-resident microbiota only up to 120 days. No significant effects were observed for biomass production with the use of PSB combined with rock dust. J. curcas L. under the influence of only resident microbiota showed the best plant growth results. Future research will focus on the specificity of resident microbiota activity in plant growth promotion and the isolation of these microorganisms to produce a new inoculum to be tested in various plants.

  7. Thermophilic microorganisms in biomining.

    PubMed

    Donati, Edgardo Rubén; Castro, Camila; Urbieta, María Sofía

    2016-11-01

    Biomining is an applied biotechnology for mineral processing and metal extraction from ores and concentrates. This alternative technology for recovering metals involves the hydrometallurgical processes known as bioleaching and biooxidation where the metal is directly solubilized or released from the matrix for further solubilization, respectively. Several commercial applications of biomining can be found around the world to recover mainly copper and gold but also other metals; most of them are operating at temperatures below 40-50 °C using mesophilic and moderate thermophilic microorganisms. Although biomining offers an economically viable and cleaner option, its share of the world´s production of metals has not grown as much as it was expected, mainly considering that due to environmental restrictions in many countries smelting and roasting technologies are being eliminated. The slow rate of biomining processes is for sure the main reason of their poor implementation. In this scenario the use of thermophiles could be advantageous because higher operational temperature would increase the rate of the process and in addition it would eliminate the energy input for cooling the system (bioleaching reactions are exothermic causing a serious temperature increase in bioreactors and inside heaps that adversely affects most of the mesophilic microorganisms) and it would decrease the passivation of mineral surfaces. In the last few years many thermophilic bacteria and archaea have been isolated, characterized, and even used for extracting metals. This paper reviews the current status of biomining using thermophiles, describes the main characteristics of thermophilic biominers and discusses the future for this biotechnology.

  8. Rapid, highly sensitive detection of Gram-negative bacteria with lipopolysaccharide based disposable aptasensor.

    PubMed

    Zhang, Jian; Oueslati, Rania; Cheng, Cheng; Zhao, Ling; Chen, Jiangang; Almeida, Raul; Wu, Jayne

    2018-07-30

    Gram-negative bacteria are one of the most common microorganisms in the environment. Their differential detection and recognition from Gram-positive bacteria has been attracting much attention over the years. Using Escherichia coli (E. coli) as a model, we demonstrated on-site detection of Gram-negative bacteria by an AC electrokinetics-based capacitive sensing method using commercial microelectrodes functionalized with an aptamer specific to lipopolysaccharides. Dielectrophoresis effect was utilized to enrich viable bacteria to the microelectrodes rapidly, achieving a detection limit of 10 2 cells/mL within a 30 s' response time. The sensor showed a negligible response to Staphylococcus aureus (S. aureus), a Gram-positive species. The developed sensor showed significant advantages in sensitivity, selectivity, cost, operation simplicity, and response time. Therefore, this sensing method has shown great application potential for environmental monitoring, food safety, and real-time diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Bacteria of Porcine Skin, Xenografts, and Treatment with Neomycin Sulfate

    PubMed Central

    Smith, Rodney F.; Evans, Barbara L.

    1972-01-01

    Homogenized 4-mm punch biopsies were taken from pigs and bacteriologically evaluated to determine the efficacy of surgical scrub procedures and the subsequent treatment of tissue with 0.5% neomycin sulfate-sodium bisulfite (neomycin-bisulfite) as a decontaminating agent. The majority of the lots of porcine skin taken directly from animals for xenografts in the treatment of burns contained viable bacteria at the time of grafting although scrubbing procedures substantially reduced the skin bacteria. The porcine bacteria consisted primarily of coagulase-negative staphylococci with most strains exhibiting caseinolytic and elastase activity. Staphylococci were the only abundant bacteria found in postscrub biopsies and in saline solutions used to wash the dermatome during its use. After an overnight exposure of grafting tissue soaked in neomycin-bisulfite, the spent neomycin-bisulfite solutions were tested for bacteriostatic and bactericidal activity by comparison to unused neomycin. All solutions tested were equal in bacteriostatic strength, but the bactericidal action of some spent solutions was decreased. Neomycin alone exerted a more lethal effect on sensitive bacteria than the neomycin-bisulfite solution. The desirability of having viable porcine skin for a xenograft necessitated using or discarding the tissue after storage in neomycin-bisulfite at 4 C for a maximum of 72 hr. Certain contaminating microorganisms were unaffected by antibiotic treatment, and the prolonged use of neomycin without bisulfite would have primarily eradicated only the porcine coagulase-negative staphylococci. Neither the presence of this group in grafting tissue nor their proteolytic activity had any observed adverse effect on xenografting success. Images PMID:4552886

  10. Beverages obtained from soda fountain machines in the U.S. contain microorganisms, including coliform bacteria.

    PubMed

    White, Amy S; Godard, Renee D; Belling, Carolyn; Kasza, Victoria; Beach, Rebecca L

    2010-01-31

    Ninety beverages of three types (sugar sodas, diet sodas and water) were obtained from 20 self-service and 10 personnel-dispensed soda fountains, analyzed for microbial contamination, and evaluated with respect to U.S. drinking water regulations. A follow-up study compared the concentration and composition of microbial populations in 27 beverages collected from 9 soda fountain machines in the morning as well as in the afternoon. Ice dispensed from these machines was also examined for microbial contamination. While none of the ice samples exceeded U.S. drinking water standards, coliform bacteria was detected in 48% of the beverages and 20% had a heterotrophic plate count greater than 500cfu/ml. Statistical analyses revealed no difference in levels of microbial contamination between beverage types or between those dispensed from self-service and personnel-dispensed soda fountains. More than 11% of the beverages analyzed contained Escherichia coli and over 17% contained Chryseobacterium meningosepticum. Other opportunistic pathogenic microorganisms isolated from the beverages included species of Klebsiella, Staphylococcus, Stenotrophomonas, Candida, and Serratia. Most of the identified bacteria showed resistance to one or more of the 11 antibiotics tested. These findings suggest that soda fountain machines may harbor persistent communities of potentially pathogenic microorganisms which may contribute to episodic gastric distress in the general population and could pose a more significant health risk to immunocompromised individuals. These findings have important public health implications and signal the need for regulations enforcing hygienic practices associated with these beverage dispensers. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Presence and Persistence of Viable, Clinically Relevant Legionella pneumophila Bacteria in Garden Soil in the Netherlands

    PubMed Central

    van Heijnsbergen, E.; van Deursen, A.; Bouwknegt, M.; Bruin, J. P.; Schalk, J. A. C.

    2016-01-01

    ABSTRACT Garden soils were investigated as reservoirs and potential sources of pathogenic Legionella bacteria. Legionella bacteria were detected in 22 of 177 garden soil samples (12%) by amoebal coculture. Of these 22 Legionella-positive soil samples, seven contained Legionella pneumophila. Several other species were found, including the pathogenic Legionella longbeachae (4 gardens) and Legionella sainthelensi (9 gardens). The L. pneumophila isolates comprised 15 different sequence types (STs), and eight of these STs were previously isolated from patients according to the European Working Group for Legionella Infections (EWGLI) database. Six gardens that were found to be positive for L. pneumophila were resampled after several months, and in three gardens, L. pneumophila was again isolated. One of these gardens was resampled four times throughout the year and was found to be positive for L. pneumophila on all occasions. IMPORTANCE Tracking the source of infection for sporadic cases of Legionnaires' disease (LD) has proven to be hard. L. pneumophila ST47, the sequence type that is most frequently isolated from LD patients in the Netherlands, is rarely found in potential environmental sources. As L. pneumophila ST47 was previously isolated from a garden soil sample during an outbreak investigation, garden soils were investigated as reservoirs and potential sources of pathogenic Legionella bacteria. The detection of viable, clinically relevant Legionella strains indicates that garden soil is a potential source of Legionella bacteria, and future research should assess the public health implication of the presence of L. pneumophila in garden soil. PMID:27316958

  12. Presence and Persistence of Viable, Clinically Relevant Legionella pneumophila Bacteria in Garden Soil in the Netherlands.

    PubMed

    van Heijnsbergen, E; van Deursen, A; Bouwknegt, M; Bruin, J P; de Roda Husman, A M; Schalk, J A C

    2016-09-01

    Garden soils were investigated as reservoirs and potential sources of pathogenic Legionella bacteria. Legionella bacteria were detected in 22 of 177 garden soil samples (12%) by amoebal coculture. Of these 22 Legionella-positive soil samples, seven contained Legionella pneumophila Several other species were found, including the pathogenic Legionella longbeachae (4 gardens) and Legionella sainthelensi (9 gardens). The L. pneumophila isolates comprised 15 different sequence types (STs), and eight of these STs were previously isolated from patients according to the European Working Group for Legionella Infections (EWGLI) database. Six gardens that were found to be positive for L. pneumophila were resampled after several months, and in three gardens, L. pneumophila was again isolated. One of these gardens was resampled four times throughout the year and was found to be positive for L. pneumophila on all occasions. Tracking the source of infection for sporadic cases of Legionnaires' disease (LD) has proven to be hard. L. pneumophila ST47, the sequence type that is most frequently isolated from LD patients in the Netherlands, is rarely found in potential environmental sources. As L. pneumophila ST47 was previously isolated from a garden soil sample during an outbreak investigation, garden soils were investigated as reservoirs and potential sources of pathogenic Legionella bacteria. The detection of viable, clinically relevant Legionella strains indicates that garden soil is a potential source of Legionella bacteria, and future research should assess the public health implication of the presence of L. pneumophila in garden soil. Copyright © 2016 van Heijnsbergen et al.

  13. Comparative analyses of viable bacterial counts in foods and seawater under microplate based liquid- and conventional agar plate cultivation: increased culturability of marine bacteria under liquid cultivation.

    PubMed

    Shigematsu, Toru; Ueno, Shigeaki; Tsuchida, Yasuharu; Hayashi, Mayumi; Okonogi, Hiroko; Masaki, Haruhiko; Fujii, Tomoyuki

    2007-12-01

    Bacterial counts under liquid cultivation using 96-well microplates were performed. The counts under liquid and under solid cultivation were equivalent in foods, although the counts under liquid cultivation exceeded those under solid cultivation in seawater, suggesting that some bacteria in seawater were viable but did not form detectable colonies. Phylogenetic analysis of bacteria obtained under liquid cultivation was also performed.

  14. Microorganisms detected by enzyme-catalyzed reaction

    NASA Technical Reports Server (NTRS)

    Vango, S. P.; Weetall, H. H.; Weliky, N.

    1966-01-01

    Enzymes detect the presence of microorganisms in soils. The enzyme lysozymi is used to release the enzyme catalase from the microorganisms in a soil sample. The catalase catalyzes the decomposition of added hydrogen peroxide to produce oxygen which is detected manometrically. The partial pressure of the oxygen serves as an index of the samples bacteria content.

  15. Identification and quantification of ice nucleation active microorganisms by digital droplet PCR (ddPCR)

    NASA Astrophysics Data System (ADS)

    Linden, Martin; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2015-04-01

    Several bioaerosol types, including bacteria, fungi, pollen and lichen, have been identified as sources of biological ice nucleators (IN) which induce ice formation already at temperatures as high as -10 °C or above. Accordingly, they potentially contribute widely to environmental ice nucleation in the atmosphere and are of great interest in the study of natural heterogenous ice nucleation processes. Ice nucleation active microorganisms have been found and studied among bacteria (Proteobacteria) and fungi (phyla Basidiomycota and Ascomycota). The mechanisms enabling the microorganisms to ice nucleation are subject to ongoing research. While it has been demonstrated that whole cells can act as ice nucleators in the case of bacteria due to the presence of specific membrane proteins, cell-free ice nucleation active particles seem to be responsible for this phenomenon in fungi and lichen. The identification and quantification of these ice nucleation active microorganisms and their IN in atmospheric samples is crucial to understand their contribution to the pool of atmospheric IN. This is not a trivial task since the respective microorganisms are often prevalent in lowest concentrations and a variety of states, be it viable cells, spores or cell debris from dead cells. Molecular biology provides tools to identify and quantify ice nucleation active microorganisms independent of their state by detecting genetic markers specific for the organism of interest. Those methods are not without their drawbacks in terms of sample material concentration required or reliable standardization. Digital Droplet Polymerase Chain Reaction (ddPCR) was chosen for our demands as a more elegant, quick and specific method in the investigation of ice nucleation active microorganisms in atmospheric samples. The advantages of ddPCR lie in the simultaneous detection and quantification of genetic markers and their original copy numbers in a sample. This is facilitated by the fractionation of the

  16. Plant development in the absence of epiphytic microorganisms

    NASA Astrophysics Data System (ADS)

    Kutschera, U.; Koopmann, V.; Grotha, R.

    2002-05-01

    Microorganisms (bacteria, fungi) are common residents of the roots, stems and leaves of higher plants. In order to explore the dependency of plant development on the presence of epiphytic microorganisms, the achenes (seeds) of sunflower (Helianthus annuus L.) were sterilized and germinated under aseptic conditions. The sterility of the seedlings was determined with the agar impression method. In seedlings from non-sterile seeds (control) that were likewise raised in a germ-free environment, all plant organs investigated (stem, cotyledons and primary leaves) were contaminated with bacteria. Hypocotyl elongation was not affected by epiphytic microorganisms. However, the growth rates of the cotyledons and primary leaves were higher in sterile seedlings compared with the control. The implications of this differential inhibition of organ development by epiphytic bacteria that are transmitted via the outer surface of the seed coat are discussed. We conclude that epiphytes in the above-ground phytosphere are not necessary for the development of the sunflower seedling.

  17. Climate change effects on beneficial plant-microorganism interactions.

    PubMed

    Compant, Stéphane; van der Heijden, Marcel G A; Sessitsch, Angela

    2010-08-01

    It is well known that beneficial plant-associated microorganisms may stimulate plant growth and enhance resistance to disease and abiotic stresses. The effects of climate change factors such as elevated CO(2), drought and warming on beneficial plant-microorganism interactions are increasingly being explored. This now makes it possible to test whether some general patterns occur and whether different groups of plant-associated microorganisms respond differently or in the same way to climate change. Here, we review the results of 135 studies investigating the effects of climate change factors on beneficial microorganisms and their interaction with host plants. The majority of studies showed that elevated CO(2) had a positive influence on the abundance of arbuscular and ectomycorrhizal fungi, whereas the effects on plant growth-promoting bacteria and endophytic fungi were more variable. In most cases, plant-associated microorganisms had a beneficial effect on plants under elevated CO(2). The effects of increased temperature on beneficial plant-associated microorganisms were more variable, positive and neutral, and negative effects were equally common and varied considerably with the study system and the temperature range investigated. Moreover, numerous studies indicated that plant growth-promoting microorganisms (both bacteria and fungi) positively affected plants subjected to drought stress. Overall, this review shows that plant-associated microorganisms are an important factor influencing the response of plants to climate change.

  18. Evaluation of sessile microorganisms in pipelines and cooling towers of some Iranian industries

    NASA Astrophysics Data System (ADS)

    Setareh, M.; Javaherdashti, R.

    2006-02-01

    Microbiologically influenced corrosion (MIC) is a kind of electrochemical corrosion that is enhanced by the effect of certain microorganisms including sessile bacteria. In this investigation, more than 200 samples collected from different systems of Iranian refineries have been examined (by culturing methods and observations) for corrosion-enhancing, biofilm-producing microorganisms such as sulfate-reducing bacteria (SRB), iron-oxidizing bacteria (IOB), heterotrophic biofilm-forming bacteria (HBB), and some eukaryotes such as fungi. This study showed the presence of microorganisms, such as SRB, HBB, thermophillic HBB, and yeasts, except for IOB. It was also revealed that biocides are used to reduce the number of planktonic (floating) bacteria, instead of the number of sessile bacteria, that form biofilms. Using surfactants, or washing with chemicals like chlorine or organic acids in overhauls, may destroy the biofilm and free the residential bacteria into the bulk solution, thus exposing them to the biocide. For thick biofilms, a chlorine or acid wash may also yield the same results.

  19. [The effect of dexamethoxin on the integrity of cytoplasmic membrane in gram-positive and gram-negative microorganisms].

    PubMed

    Shchetina, V N; Belanov, E F; Starobinets, Z G; Volianskiĭ, Iu L

    1990-01-01

    Decamethoxin is shown to be able to increase membrane permeability of Pseudomonas aeruginosa, Escherichia coli and Micrococcus lysodeikticus, that is confirmed by a loss of compounds with the absorption maximum at 260 nm by cells. Parallel with this the number of viable individuals has fallen and activity of dehydrogenases has been inhibited. The aspartate and alanine aminotransferase activity was not inhibited by decamethoxin and even increased. Decamethoxin lysed the protoplasts of the tested microorganisms. At high decamethoxin concentrations (over 500 micrograms/ml for P. aeruginosa and over 200 mu/ml--for E. coli) the outflow of components from the cells of gram-negative bacteria ceased, that may be associated with the coagulation changes in the cytoplasm. A loss of the low-molecular components by M. lysodeikticus cells and lysis of protoplasts proceeded less intensely than the same processes in the gram-negative microorganisms, that is explained by a less resistance of M. lysodeikticus to decamethoxin and earlier coagulation of the cytoplasm preventing lysis.

  20. A Comprehensive Characterization of Microorganisms and Allergens in Spacecraft Environment

    NASA Technical Reports Server (NTRS)

    Castro, V.A.; Ott, C.M.; Garcia, V.M.; John, J.; Buttner, M.P.; Cruz, P.; Pierson, D.L.

    2009-01-01

    identification and bacterial fingerprinting have improved NASA s capability to better understand spacecraft environments and determine the source of contamination events. Preflight sampling has been completed for air, surface, and water samples. In-flight sample collection has been completed for a total of 8 air and surface sample collection sessions. In-flight hardware has performed well and the surface sampling device received positive feedback from the crew for its ease of use. While processing and analysis continue for these samples, early results have begun to provide information on the spacecraft environment. Using a method called Denaturing Gradient Gel Electrophoresis (DGGE), several air and samples were evaluated to determine the types of organisms that were present. Using only molecular techniques, DGGE does not depend on any microbial growth on culture media, allowing a more comprehensive assessment of the spacecraft interior. Preliminary results have identified several microorganisms that would not have been isolated using current technology, though none of these organisms would be considered medically significant. Interestingly, the isolation of Gram negative organisms is greater using DGGE than conventional media based isolation. The cause of this finding is unclear, though it may be the result of the technique s ability to isolate both viable and non-viable bacteria. The next phase of the SWAB sample analysis is the use of quantitative polymerase chain reaction (QPCR) to look for specific medically significant organisms. While not as broad as DGGE, QPCR is much more sensitive and may reveal findings that were not seen during the initial evaluation. Together, this information will lead toward an accurate microbial risk assessment to help set flight requirements to protect the safety, health, and performance of the crew.

  1. Exposure to airborne microorganisms, dust and endotoxin during processing of valerian roots on farms.

    PubMed

    Skórska, Czesława; Sitkowska, Jolanta; Krysińska-Traczyk, Ewa; Cholewa, Grazyna; Dutkiewicz, Jacek

    2005-01-01

    The aim of this study was to determine the levels of microorganisms, dust and endotoxin in the air during various stages of valerian (Valeriana officinalis) roots processing by herb farmers and to examine the species composition of airborne microflora. Air samples were collected on glass fibre filters by use of personal samplers on 15 farms owned by valerian cultivating farmers, located in Lublin province (eastern Poland). The concentrations of total viable microorganisms (bacteria + fungi) in the air showed a marked variability and were within a range of 0.95-7,966.6 x 10(3) cfu/m (3). Though median was relatively low (10.75 x 10(3) cfu/m (3)), on 4 farms the concentrations exceeded the level of 10(5) cfu/m (3) and on 1 farm the level of 10(6) cfu/m (3). During the processing of valerian roots, distinct changes could be observed in the composition of airborne microflora. In the first stages of processing, the freshly dug and washed roots until shaking in the drying room, the most numerous were Gram-negative bacteria of the family Pseudomonadaceae (mostly Stenotrophomonas maltophilia, Pseudomonas chlororaphis and Pseudomonas fluorescens). After drying, the dominant organisms were thermo-resistant endospore-forming bacilli (Bacillus spp.) and fungi, among which prevailed Aspergillus fumigatus. Altogether, 29 species or genera of bacteria and 19 species or genera of fungi were identified in the farm air during valerian processing, of these, 10 and 12 species or genera respectively were reported as having allergenic and/or immunotoxic properties. The concentrations of airborne dust and endotoxin on the examined farms were very large and ranged from 10.0-776.7 mg/m (3), and from 0.15-24,448.2 microg/m (3), respectively (medians 198.3 mg/m (3) and 40.48 microg/m (3)). In conclusion, farmers cultivating valerian could be exposed during processing of valerian roots to large concentrations of airborne microorganisms, dust and endotoxin posing a risk of work

  2. Mini-review: Inhibition of biofouling by marine microorganisms.

    PubMed

    Dobretsov, Sergey; Abed, Raeid M M; Teplitski, Max

    2013-01-01

    Any natural or artificial substratum exposed to seawater is quickly fouled by marine microorganisms and later by macrofouling species. Microfouling organisms on the surface of a substratum form heterogenic biofilms, which are composed of multiple species of heterotrophic bacteria, cyanobacteria, diatoms, protozoa and fungi. Biofilms on artificial structures create serious problems for industries worldwide, with effects including an increase in drag force and metal corrosion as well as a reduction in heat transfer efficiency. Additionally, microorganisms produce chemical compounds that may induce or inhibit settlement and growth of other fouling organisms. Since the last review by the first author on inhibition of biofouling by marine microbes in 2006, significant progress has been made in the field. Several antimicrobial, antialgal and antilarval compounds have been isolated from heterotrophic marine bacteria, cyanobacteria and fungi. Some of these compounds have multiple bioactivities. Microorganisms are able to disrupt biofilms by inhibition of bacterial signalling and production of enzymes that degrade bacterial signals and polymers. Epibiotic microorganisms associated with marine algae and invertebrates have a high antifouling (AF) potential, which can be used to solve biofouling problems in industry. However, more information about the production of AF compounds by marine microorganisms in situ and their mechanisms of action needs to be obtained. This review focuses on the AF activity of marine heterotrophic bacteria, cyanobacteria and fungi and covers publications from 2006 up to the end of 2012.

  3. Polyesters from microorganisms.

    PubMed

    Kim, Y B; Lenz, R W

    2001-01-01

    Bacterial polyesters have been found to have useful properties for applications as thermoplastics, elastomers, and adhesives and are biodegradable and biocompatible. Poly(3-hydroxyalkanoates) (PHAs) and poly(beta-malate) are the most representative polyesters synthesized by microorganisms. PHAs containing a wide variety of repeating units can be produced by bacteria, including those containing many types of pendant functional groups which can be synthesized by microorganisms that are grown on unnatural organic substrates. Poly(beta-malate) is of interest primarily for medical applications, especially for drug delivery systems. In this chapter, the bacterial production and properties of poly(3-hydroxyalkanoates) and poly(beta-malate) are described with emphasis on the former.

  4. Contribution of midgut bacteria to blood digestion and egg production in aedes aegypti (diptera: culicidae) (L.)

    PubMed Central

    2011-01-01

    Background The insect gut harbors a variety of microorganisms that probably exceed the number of cells in insects themselves. These microorganisms can live and multiply in the insect, contributing to digestion, nutrition, and development of their host. Recent studies have shown that midgut bacteria appear to strengthen the mosquito's immune system and indirectly enhance protection from invading pathogens. Nevertheless, the physiological significance of these bacteria for mosquitoes has not been established to date. In this study, oral administration of antibiotics was employed in order to examine the contribution of gut bacteria to blood digestion and fecundity in Aedes aegypti. Results The antibiotics carbenicillin, tetracycline, spectinomycin, gentamycin and kanamycin, were individually offered to female mosquitoes. Treatment of female mosquitoes with antibiotics affected the lysis of red blood cells (RBCs), retarded the digestion of blood proteins and reduced egg production. In addition, antibiotics did not affect the survival of mosquitoes. Mosquito fertility was restored in the second gonotrophic cycle after suspension of the antibiotic treatment, showing that the negative effects of antibiotics in blood digestion and egg production in the first gonotrophic cycle were reversible. Conclusions The reduction of bacteria affected RBC lysis, subsequently retarded protein digestion, deprived mosquito from essential nutrients and, finally, oocyte maturation was affected, resulting in the production of fewer viable eggs. These results indicate that Ae. aegypti and its midgut bacteria work in synergism to digest a blood meal. Our findings open new possibilities to investigate Ae. aegypti-associated bacteria as targets for mosquito control strategies. PMID:21672186

  5. Virulence of thermolable haemolysi tlh, gastroenteritis related pathogenicity tdh and trh of the pathogens Vibrio Parahemolyticus in Viable but Non-Culturable (VBNC) state.

    PubMed

    Zhong, Huamin; Zhong, Yukui; Deng, Qiulian; Zhou, Zhenwen; Guan, Xiaoshan; Yan, Muxia; Hu, Tingting; Luo, Mingyong

    2017-10-01

    In the Viable but Non-Culturable (VBNC) state, microorganisms may survive under severe external environment. In this study, the specificity and sensitivity of PMA-LAMP assay on the detection of Vibrio Parahemolyticus (V. parahemolyticus) has been developed and evaluated, with further application on a number of food-borne V. parahemolyticus strains. Six primers were designed for recognizing 8 distinct targeting on tlh, tdh and trh gene. Through specific penetration through the damaged cell membrane of dead cells and intercalating into DNA, PMA could prevent DNA amplification of dead bacteria from LAMP, which enabled the differentiation of bacteria between VBNC state and dead state. The established PMA-LAMP showed significant advantage in rapidity, sensitivity and specificity, compared with regular PCR assay. The applicability had also been verified, demonstrating the PMA-LAMP was capable of detection on V. parahaemolyticus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Antimicrobial activity of isothiocyanates (ITCs) extracted from horseradish (Armoracia rusticana) root against oral microorganisms.

    PubMed

    Park, Ho-Won; Choi, Kyu-Duck; Shin, Il-Shik

    2013-01-01

    The antimicrobial activity of isothiocyanates (ITCs) extracted from horseradish root was investigated against oral microorganisms: 6 strains of facultative anaerobic bacteria, Streptococcus mutans, Streptococcus sobrinus, Lactobacillus casei, Staphylococcus aureus, Enterococcus faecalis and Aggregatibacter actinomycetemcomitans; one strain of yeast, Candida albicans, and 3 strains of anaerobic bacteria, Fusobacterium nucleatum, Prevotella nigrescens, and Clostridium perfringens. The ITCs extracted from horseradish root showed antimicrobial activity against all oral microorganisms by the paper disk method. The minimum bactericidal concentration (MBC) of the ITCs extracted from horseradish root ranged from 1.25 to 5.00 mg/ml against 6 strains of facultative anaerobic bacteria and one strain of yeast, and 4.17 to 16.67 mg/ml against 3 strains of anaerobic bacteria. The ITCs extracted from horseradish root showed the strongest antimicrobial activity, with a MBC of 1.25 mg/ml, against C. albicans among facultative microorganisms, and 4.17 mg/ml against F. nucleatum among anaerobic bacteria. These results suggest that the ITCs extracted from horseradish root may be a candidate for use as an antimicrobial agent against oral microorganisms.

  7. Biology Students’ Initial Mental Model about Microorganism

    NASA Astrophysics Data System (ADS)

    Hamdiyati, Y.; Sudargo, F.; Redjeki, S.; Fitriani, A.

    2017-02-01

    The purpose of this study was to identify biology students’ initial mental model about microorganism. This research used descriptive method with 32 sixth semester biology students at Biology Education Departement-Universitas Pendidikan Indonesia as its respondents. Data was taken at the beginning of the 6th semester before respondents endure microbiology course. Instrument used to assess mental model was drawing-writing test in which it contains concepts such as structure of bacteria, archaea, virus, and fungi. Students were asked to describe their imagination about the structure of microorganisms and subsequently asked to explain the structure of microorganisms in writing through open-ended questions. Students’ response was then compared to scientists or experts’ mental models as the targeted mental model. Student mental models were categorized into five levels (levels 1-5), namely “there is no drawing/writing,” “wrong or irrelevant drawing/writing of question,” “partially correct drawing/writing,” “the drawing/writing that has some deficiencies,” and “completely correct and complete drawing/writing.” Results showed that the level of mental models through drawing or writing about the four concepts were varied. The highest level of mental models through drawing (D5) was found in the concept of bacteria, while the highest level of mental models through writing (W3) was found in the concept of bacteria, virus, and fungi. Mental model levels most commonly found in each concept through drawing-writing tests (D/W) were bacteria (D2/W2), Archaea (D1/W1 and D2/W2), virus (D3/W3), and fungi (D2/W1). From these results it is advisable to improve lectures and assessment strategy to enhance or complement students’ mental models about microorganisms.

  8. PATHOGENICITY OF BIOFILM BACTERIA

    EPA Science Inventory

    There is a paucity of information concerning any link between the microorganisms commonly found in biofilms of drinking water systems and their impacts on human health. For bacteria, culture-based techniques detect only a limited number of the total microorganisms associated wit...

  9. Indigenous microorganisms production and the effect on composting process

    NASA Astrophysics Data System (ADS)

    Abu-Bakar, Nurul-Ain; Ibrahim, Nazlina

    2013-11-01

    In this study, production of indigenous microorganisms (IMO) and effect on addition of IMO in composting process were done. Production of IMO was done in a series of steps to allow propagation of beneficial microorganisms. Effect of IMO addition in composting process was investigated by having 4 treatments; 1) rice straw without IMO nor manure and rice bran, 2) rice straw with IMO only, 3) rice straw with manure and rice bran, 4) rice straw with IMO, manure and rice bran. Production of IMO using cooked rice yields white molds. Addition of IMO during composting did not affect temperature increment. However, there were differences in numbers of microorganisms found during each stages of composting. Initial composting stage was dominated by mesophilic bacteria and actinomycetes, followed by thermophilic bacteria and later by actinomycetes upon composting completion. In conclusion, this study showed that IMO addition in composting increased microorganisms which are responsible in organic decomposition.

  10. The Effect of Pistacia atlantica Var. mutica Mouthwash on Dental Plaque Bacteria and Subgingival Microorganisms: a Randomized and Controlled Triple-blind Study.

    PubMed

    Arami, S; Mojaddadi, M A; Pourabbas, R; Chitsaz, M T; Delazar, A; Mobayen, H

    2015-09-01

    Dental plaque is a well-documented etiologic factor for periodontal diseases. While chlorhexidine (CHX) is the gold-standard agent for treating dental plaques, undesirable side effects are often found after continuous use of the mouthwash. Therefore, this single-center, randomized, triple-blinded and clinical trial was undertaken to evaluate the efficacy of Pistacia atlantica Var. mutica extract mouthwash on de novo dental plaque bacteria and subgingival microorganisms compared to CHX on a total of 28 patients. The mean aerobic plaque bacterial count of patients at baseline was 2.17 × 10(6). After 4 days of treatment, there were statistically significant decreases in the mean aerobic bacteria in the patients who received P. atlantica and/or CHX (7.25 × 10(4), p = 0.006) and (9.91 × 10(3), p = 0.002), respectively, compared to the patients who received the placebo (6.26 × 10(5)). This study showed that P. atlantica mouthwash is effective against gingival microorganisms. Because of its reduced side effects, P. atlantica mouthwash may be a good alternative choice for patients. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Native and heterologous production of bacteriocins from gram-positive microorganisms.

    PubMed

    Muñoz, Mabel; Jaramillo, Diana; Melendez, Adelina Del Pilar; J Alméciga-Diaz, Carlos; Sánchez, Oscar F

    2011-12-01

    In nature, microorganisms can present several mechanisms for setting intercommunication and defense. One of these mechanisms is related to the production of bacteriocins, which are peptides with antimicrobial activity. Bacteriocins can be found in Gram-positive and Gram-negative bacteria. Nevertheless, bacteriocins produced by Gram-positive bacteria are of particular interest due to the industrial use of several strains that belong to this group, especially lactic acid bacteria (LAB), which have the status of generally recognized as safe (GRAS) microorganisms. In this work, we will review recent tendencies in the field of invention and state of art related to bacteriocin production by Gram-positive microorganism. Hundred-eight patents related to Gram-positive bacteriocin producers have been disclosed since 1965, from which 57% are related bacteriocins derived from Lactococcus, Lactobacillus, Streptococcus, and Pediococcus strains. Surprisingly, patents regarding heterologous bacteriocins production were mainly presented just in the last decade. Although the major application of bacteriocins is concerned to food industry to control spoilage and foodborne bacteria, during the last years bacteriocin applications have been displacing to the diagnosis and treatment of cancer, and plant disease resistance and growth promotion.

  12. Dynamics of communities of bacteria and ammonia-oxidizing microorganisms in response to simazine attenuation in agricultural soil.

    PubMed

    Wan, Rui; Wang, Zhao; Xie, Shuguang

    2014-02-15

    Autochthonous microbiota plays a crucial role in natural attenuation of s-triazine herbicides in agricultural soil. Soil microcosm study was carried out to investigate the shift in the structures of soil autochthonous microbial communities and the potential degraders associated with natural simazine attenuation. The relative abundance of soil autochthonous degraders and the structures of microbial communities were assessed using quantitative PCR (q-PCR) and terminal restriction fragment length polymorphism (TRFLP), respectively. Phylogenetic composition of bacterial community was also characterized using clone library analysis. Soil autochthonous microbiota could almost completely clean up simazine (100 mg kg(-1)) in 10 days after herbicide application, indicating a strong self-remediation potential of agricultural soil. A significant increase in the proportion of s-triazine-degrading atzC gene was found in 6 days after simazine amendment. Simazine application could alter the community structures of total bacteria and ammonia-oxidizing archaea (AOA) and bacteria (AOB). AOA were more responsive to simazine application compared to AOB and bacteria. Actinobacteria, Alphaproteobacteria and Gammaproteobacteria were the dominant bacterial groups either at the initial stage after simazine amendment or at the end stage of herbicide biodegradation, but Actinobacteria predominated at the middle stage of biodegradation. Microorganisms from several bacterial genera might be involved in simazine biodegradation. This work could add some new insights on the bioremediation of herbicides contaminated agricultural soils. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Simultaneous enrichment of denitrifying anaerobic methane-oxidizing microorganisms and anammox bacteria in a hollow-fiber membrane biofilm reactor.

    PubMed

    Ding, Zhao-Wei; Lu, Yong-Ze; Fu, Liang; Ding, Jing; Zeng, Raymond J

    2017-01-01

    In this study, the coculture system of denitrifying anaerobic methane oxidation (DAMO) microbes and anaerobic ammonium oxidation (anammox) bacteria was successfully enriched in a hollow-fiber membrane biofilm reactor (HfMBR) using freshwater sediment as the inoculum. The maximal removal rates of nitrate and ammonium were 78 mg N/L/day (131 mg N/m 2 /day) and 26 mg N/L/day (43 mg N/m 2 /day), respectively. Due to the high rate of methane mass transfer in HfMBR, the activity of DAMO archaea continued to increase during the enrichment period, indicating that HfMBR could be a powerful tool to enrich DAMO microorganisms. Effects of partial methane pressure, temperature, and pH on the cocultures were obvious. However, the microbial activity in HfMBR could be recovered quickly after the shock change of environmental factors. Furthermore, the result also found that DAMO bacteria likely had a stronger competitive advantage than anammox bacteria under the operating conditions in this study. High-throughput sequencing 16S rRNA genes illustrated that the dominant microbes were NC10, Euryarchaeota, Proteobacteria, Planctomycetes, and Chlorobi with relative abundance of 38.8, 26.2, 13.78, 6.2, and 3.6 %, respectively.

  14. Soybean oil and linseed oil supplementation affect profiles of ruminal microorganisms in dairy cows.

    PubMed

    Yang, S L; Bu, D P; Wang, J Q; Hu, Z Y; Li, D; Wei, H Y; Zhou, L Y; Loor, J J

    2009-11-01

    The objective of this study was to evaluate changes in ruminal microorganisms and fermentation parameters due to dietary supplementation of soybean and linseed oil alone or in combination. Four dietary treatments were tested in a Latin square designed experiment using four primiparous rumen-cannulated dairy cows. Treatments were control (C, 60 : 40 forage to concentrate) or C with 4% soybean oil (S), 4% linseed oil (L) or 2% soybean oil plus 2% linseed oil (SL) in a 4 × 4 Latin square with four periods of 21 days. Forage and concentrate mixtures were fed at 0800 and 2000 h daily. Ruminal fluid was collected every 2 h over a 12-h period on day 19 of each experimental period and pH was measured immediately. Samples were prepared for analyses of concentrations of volatile fatty acids (VFA) by GLC and ammonia. Counts of total and individual bacterial groups (cellulolytic, proteolytic, amylolytic bacteria and total viable bacteria) were performed using the roll-tube technique, and protozoa counts were measured via microscopy in ruminal fluid collected at 0, 4 and 8 h after the morning feeding. Content of ruminal digesta was obtained via the rumen cannula before the morning feeding and used immediately for DNA extraction and quantity of specific bacterial species was obtained using real- time PCR. Ruminal pH did not differ but total VFA (110 v. 105 mmol/l) were lower (P < 0.05) with oil supplementation compared with C. Concentration of ruminal NH3-N (4.4 v. 5.6 mmol/l) was greater (P < 0.05) due to oil compared with C. Compared with C, oil supplementation resulted in lower (P < 0.05) cellulolytic bacteria (3.25 × 108 v. 4.66 × 108 colony-forming units (CFU)/ml) and protozoa (9.04 × 104 v. 12.92 × 104 cell/ml) colony counts. Proteolytic bacteria (7.01 × 108 v. 6.08 × 108 CFU/ml) counts, however, were greater in response to oil compared with C (P < 0.05). Among oil treatments, the amount of Butyrivibrio fibrisolvens, Fibrobacter succinogenes and Ruminococcus

  15. Assessment of cellulolytic microorganisms in soils of Nevados Park, Colombia

    PubMed Central

    Avellaneda-Torres, Lizeth Manuela; Pulido, Claudia Patricia Guevara; Rojas, Esperanza Torres

    2014-01-01

    A systematized survey was conducted to find soil-borne microbes that degrade cellulose in soils from unique ecosystems, such as the Superpáramo, Páramo, and the High Andean Forest in the Nevados National Natural Park (NNNP), Colombia. These high mountain ecosystems represent extreme environments, such as high levels of solar radiation, low atmospheric pressure, and extreme daily changes in temperature. Cellulolytic activity of the microorganisms was evaluated using qualitative tests, such as growth in selective media followed by staining with congo red and iodine, and quantitative tests to determine the activity of endoglucanase, β-glucosidase, exoglucanase, and total cellulase. Microorganisms were identified using molecular markers, such as the 16S rRNA gene for bacteria and the internal transcribed spacer region (ITS) of ribosomal DNA for fungi. Multivariate statistical analysis (MVA) was used to select microorganisms with high cellulolytic capacity. A total of 108 microorganisms were isolated from the soils and, in general, the enzymatic activities of fungi were higher than those of bacteria. Our results also found that none of the organisms studied were able to degrade all the components of the cellulose and it is therefore suggested that a combination of bacteria and/or fungi with various enzymatic activities be used to obtain high total cellulolytic activity. This study gives an overview of the potential microorganism that could be used for cellulose degradation in various biotechnological applications and for sustainable agricultural waste treatment. PMID:25763024

  16. Assessment of cellulolytic microorganisms in soils of Nevados Park, Colombia.

    PubMed

    Avellaneda-Torres, Lizeth Manuela; Pulido, Claudia Patricia Guevara; Rojas, Esperanza Torres

    2014-01-01

    A systematized survey was conducted to find soil-borne microbes that degrade cellulose in soils from unique ecosystems, such as the Superpáramo, Páramo, and the High Andean Forest in the Nevados National Natural Park (NNNP), Colombia. These high mountain ecosystems represent extreme environments, such as high levels of solar radiation, low atmospheric pressure, and extreme daily changes in temperature. Cellulolytic activity of the microorganisms was evaluated using qualitative tests, such as growth in selective media followed by staining with congo red and iodine, and quantitative tests to determine the activity of endoglucanase, β-glucosidase, exoglucanase, and total cellulase. Microorganisms were identified using molecular markers, such as the 16S rRNA gene for bacteria and the internal transcribed spacer region (ITS) of ribosomal DNA for fungi. Multivariate statistical analysis (MVA) was used to select microorganisms with high cellulolytic capacity. A total of 108 microorganisms were isolated from the soils and, in general, the enzymatic activities of fungi were higher than those of bacteria. Our results also found that none of the organisms studied were able to degrade all the components of the cellulose and it is therefore suggested that a combination of bacteria and/or fungi with various enzymatic activities be used to obtain high total cellulolytic activity. This study gives an overview of the potential microorganism that could be used for cellulose degradation in various biotechnological applications and for sustainable agricultural waste treatment.

  17. Arylamine n-acetyltransferases in eukaryotic microorganisms

    USDA-ARS?s Scientific Manuscript database

    Microorganisms can survive highly toxic environments through numerous xenobiotic metabolizing enzymes, including arylamine N-acetyltransferases (NATs). NAT genes are present in bacteria, archaea, protists and fungi. In lower taxa of fungi, NAT genes are found in chytridiomycetes. In Dikarya, NAT gen...

  18. Investigation of biosurfactant-producing indigenous microorganisms that enhance residue oil recovery in an oil reservoir after polymer flooding.

    PubMed

    She, Yue-Hui; Zhang, Fan; Xia, Jing-Jing; Kong, Shu-Qiong; Wang, Zheng-Liang; Shu, Fu-Chang; Hu, Ji-Ming

    2011-01-01

    Three biosurfactant-producing indigenous microorganisms (XDS1, XDS2, XDS3) were isolated from a petroleum reservoir in the Daqing Oilfield (China) after polymer flooding. Their metabolic, biochemical, and oil-degradation characteristics, as well as their oil displacement in the core were studied. These indigenous microorganisms were identified as short rod bacillus bacteria with white color, round shape, a protruding structure, and a rough surface. Strains have peritrichous flagella, are able to produce endospores, are sporangia, and are clearly swollen and terminal. Bacterial cultures show that the oil-spreading values of the fermentation fluid containing all three strains are more than 4.5 cm (diameter) with an approximate 25 mN/m surface tension. The hydrocarbon degradation rates of each of the three strains exceeded 50%, with the highest achieving 84%. Several oil recovery agents were produced following degradation. At the same time, the heavy components of crude oil were degraded into light components, and their flow characteristics were also improved. The surface tension and viscosity of the crude oil decreased after being treated by the three strains of microorganisms. The core-flooding tests showed that the incremental oil recoveries were 4.89-6.96%. Thus, XDS123 treatment may represent a viable method for microbial-enhanced oil recovery.

  19. Isolation, identification and sensitivity pattern of microorganisms isolated from the urine of pregnant women.

    PubMed

    Karim, S; Khan, K I

    1994-01-01

    The present studies were conducted to detect and identify the microorganism from the urine of pregnant women having urinary tract infection. The antibiotic susceptibility of these isolated microorganisms was also determined. The microorganisms found responsible for the infection were bacteria, fungi, yeast and protozoa. Among the bacteria two were identified as Gram-positive cocci i.e. Staphylococcus aureus and S. epidermidis, the remaining two were Gram-negative bacilli which were Escherichia coil and Pseudomonas aeruginosa. The fungus was identified as AspelEillus niger and the yeast like fungus Candida albican. The only protozoan found in some of the urine samples was Trichomonas vaginalis. These isolated and identified microorganisms were more susceptible to Norfloxacin, Velosef, Minocin, Nitrofurantoin, Malidixic acid and Metronidazole whereas antibiotics Penbritin and Cefaloridine were least effective against these microorganisms.

  20. Impedance microflow cytometry for viability studies of microorganisms

    NASA Astrophysics Data System (ADS)

    Di Berardino, Marco; Hebeisen, Monika; Hessler, Thomas; Ziswiler, Adrian; Largiadèr, Stephanie; Schade, Grit

    2011-02-01

    Impedance-based Coulter counters and its derivatives are widely used cell analysis tools in many laboratories and use normally DC or low frequency AC to perform these electrical analyses. The emergence of micro-fabrication technologies in the last decade, however, provides a new means of measuring electrical properties of cells. Microfluidic approaches combined with impedance spectroscopy measurements in the radio frequency (RF) range increase sensitivity and information content and thus push single cell analyses beyond simple cell counting and sizing applications towards multiparametric cell characterization. Promising results have been shown already in the fields of cell differentiation and blood analysis. Here we emphasize the potential of this technology by presenting new data obtained from viability studies on microorganisms. Impedance measurements of several yeast and bacteria strains performed at frequencies around 10 MHz enable an easy discrimination between dead and viable cells. Moreover, cytotoxic effects of antibiotics and other reagents, as well as cell starvation can also be monitored easily. Control analyses performed with conventional flow cytometers using various fluorescent dyes (propidium iodide, oxonol) indicate a good correlation and further highlight the capability of this device. The label-free approach makes on the one hand the use of usually expensive fluorochromes obsolete, on the other hand practically eliminates laborious sample preparation procedures. Until now, online cell monitoring was limited to the determination of viable biomass, which provides rather poor information of a cell culture. Impedance microflow cytometry, besides other aspects, proposes a simple solution to these limitations and might become an important tool for bioprocess monitoring applications in the biotech industry.

  1. Microbiome of Total Versus Live Bacteria in the Gut of Rex Rabbits

    PubMed Central

    Fu, Xiangchao; Zeng, Bo; Wang, Ping; Wang, Lihuan; Wen, Bin; Li, Ying; Liu, Hanzhong; Bai, Shiqie; Jia, Gang

    2018-01-01

    Gastrointestinal bacteria are essential for host health, and only viable microorganisms contribute to gastrointestinal functions. When evaluating the gut microbiota by next generation sequencing method, dead bacteria, which compose a proportion of gut bacteria, may distort analysis of the live gut microbiota. We collected stomach, jejunum, ileum, cecum, and colon contents from Rex rabbits. A modified propidium monoazide (PMA) treatment protocol was used to exclude DNA from dead bacteria. Analysis of untreated samples yielded total bacteria, and analysis of PMA-treated samples yielded live bacteria. Quantitative polymerase chain reaction and 16S rRNA gene sequencing were performed to evaluate the live-to-total bacteria ratio and compare the difference between live and total microbiota in the entire digestive tract. A low proportion of live bacteria in the foregut (stomach 1.12%, jejunum 1.2%, ileum 2.84%) and a high proportion of live bacteria in the hindgut (cecum 24.66%, colon 19.08%) were observed. A significant difference existed between total and live microbiota. Clostridiales, Ruminococcaceae, and S24-7 dominated the hindgut of both groups, while Acinetobacter and Cupriavidus dominated only in live foregut microbiota. Clostridiales and Ruminococcaceae abundance decreased, while S24-7 increased in live hindgut microbiota. The alpha- and beta-diversities differed significantly between groups. Analysis of networks showed the mutual relationship between live bacteria differed vastly when compared with total bacteria. Our study revealed a large number of dead bacteria existed in the digestive tract of Rex rabbits and distorted the community profile of the live microbiota. Total bacteria is an improper representation of the live gut microbiota, particularly in the foregut. PMID:29692775

  2. Interactions of phytoplankton, zooplankton and microorganisms

    NASA Astrophysics Data System (ADS)

    Pomeroy, L. R.; Paffenhöfer, G.-A.; Yoder, J. A.

    We present evidence that there are significant interactions between heterotrophic microorganisms, doliolids and Fritillaria within intrusions of nutrient-rich Gulf Stream water stranding on the continental shelf. During the summer of 1981 cold, nutrient-rich water from below the surface of the Gulf Stream was repeatedly intruded and stranded on the continental shelf off northeastern Florida. On August 6 old, stranded Gulf Stream water depleted of nitrate occupied the lower layer on the outer shelf. The upper water was continental shelf water, older but of undefined age. On August 6 free-living bacteria were >10 6ml -1 everywhere at all depths, an order of magnitude greater than normal bacterial numbers on the northeastern Florida continental shelf. Over 10 days the numbers of free bacteria doubled while bacteria attached to particles increased by a factor of four. The adenylate/chlorophyll ratio showed that phytoplankton dominated the lower layers of intruded water, while the surface water became increasingly dominated by heterotrophic microorganisms (bacteria and protozoa) over 10 days. There were significant, negative correlations between bacteria and doliolids and between bacteria and Fritillaria. Regions of maximum bacterial numbers did not coincide with locations of salp swarms. The increased numbers of bacteria at all depths in a highly stratified system in which most phytoplankton are in the lower layer suggests a diverse source of bacterial growth substrates, some of which involve zooplankton as intermediaries. Production of autotrophs is more than twice that of microheterotrophs on average, but because of their differential distribution, microheterotrophs are the dominant biomass in much of the surface water and may be significant in energy flux to metazoan consumers as well as competitors for mutually useable sources of nutrition.

  3. Microorganism Utilization for Synthetic Milk Production

    NASA Technical Reports Server (NTRS)

    Birmele, Michele; Morford, Megan; Khodadad, Christina; Spencer, Lashelle; Richards, Jeffrey; Strayer, Richard; Caro, Janicce; Hummerick, Mary; Wheeler, Ray

    2014-01-01

    A desired architecture for long duration spaceflight, such as aboard the International Space Station (ISS) or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of this project was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel- through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms.

  4. Effects of Hangeshashinto on Growth of Oral Microorganisms

    PubMed Central

    Fukamachi, Haruka; Matsumoto, Chinami; Omiya, Yuji; Arimoto, Takafumi; Kataoka, Hideo; Kadena, Miki; Funatsu, Takahiro; Fukutake, Masato; Kase, Yoshio; Kuwata, Hirotaka

    2015-01-01

    Oral mucositis (OM) in cancer patients induced by chemotherapy or radiotherapy has a significant impact on quality of life, and causes considerable morbidity. Oral microorganisms are likely to intensify the inflammatory process and aggravate the formation of ulcers. Hangeshashinto (HST), a Japanese kampo medicine, has been reported to be effective when used as a gargle for the treatment of OM. To clarify the effects of HST on oral microorganisms, we assessed its antimicrobial activity against 27 microbial species, including 19 oral bacteria and one fungus. HST extract inhibited the growth of Gram-negative bacteria, including Fusobacterium nucleatum, Porphyromonas gingivalis, Porphyromonas endodontalis, Prevotella intermedia, Prevotella melaninogenica, Tannerella forsythia, Treponema denticola, and Porphyromonas asaccharolytica, though inhibitory effects were less pronounced for Gram-positive bacteria and the fungal strain. We then investigated the effects of antibacterial activities on 15 purified ingredients of HST and determined that baicalein, berberine, coptisine, [6]-shogaol, and homogentisic acid actively inhibited the growth of these bacteria. These findings showed that HST inhibits the growth of specific Gram-negative periodontopathogenic bacteria, which are significant pathogens in OM, without disturbing the normal oral flora. Our data suggest that HST may be a useful treatment for OM in patients undergoing anticancer treatment. PMID:26170876

  5. The ecology of micro-organisms in a closed environment

    NASA Technical Reports Server (NTRS)

    Fox, L.

    1971-01-01

    Microorganisms under closed environmental ecological conditions with reference to astronauts infectious diseases, discussing bacteria growth in Biosatellite 2 and earth based closed chamber experiments

  6. Identification of crude-oil components and microorganisms that cause souring under anaerobic conditions.

    PubMed

    Hasegawa, R; Toyama, K; Miyanaga, K; Tanji, Y

    2014-02-01

    Oil souring has important implications with respect to energy resources. Understanding the physiology of the microorganisms that play a role and the biological mechanisms are both important for the maintenance of infrastructure and mitigation of corrosion processes. The objective of this study was to identify crude-oil components and microorganisms in oil-field water that contribute to crude-oil souring. To identify the crude-oil components and microorganisms that are responsible for anaerobic souring in oil reservoirs, biological conversion of crude-oil components under anaerobic conditions was investigated. Microorganisms in oil field water in Akita, Japan degraded alkanes and aromatics to volatile fatty acids (VFAs) under anaerobic conditions, and fermenting bacteria such as Fusibacter sp. were involved in VFA production. Aromatics such as toluene and ethylbenzene were degraded by sulfate-reducing bacteria (Desulfotignum sp.) via the fumarate-addition pathway and not only degradation of VFA but also degradation of aromatics by sulfate-reducing bacteria was the cause of souring. Naphthenic acid and 2,4-xylenol were not converted.

  7. Environmental factors influencing landfill gas biofiltration: Lab scale study on methanotrophic bacteria growth.

    PubMed

    Amodeo, Corrado; Sofo, Adriano; Tito, Maria Teresa; Scopa, Antonio; Masi, Salvatore; Pascale, Raffaella; Mancini, Ignazio M; Caniani, Donatella

    2018-03-29

    The post-management of landfills represents an important challenge for landfill gas treatment. Traditional systems (energy recovery, flares, etc.) present technical problems in treating flow with low methane (CH 4 ) concentrations. The objective of this study was to isolate methanotrophic bacteria from a field-scale biofilter in order to study the bacteria in laboratories and evaluate the environmental factors that mostly influence Microbial Aerobic Methane Oxidation (MAMO). The soil considered was sampled from the biofilter located in the landfill of Venosa (Basilicata Region, Italy) and it was mainly composed of wood chips and compost. The results showed that methanotrophic microorganisms are mainly characterized by a slow growth and a significant sensitivity to CH 4 levels. Temperature and nitrogen (N) also have a very important role on their development. On the basis of the results, biofilters for biological CH 4 oxidation can be considered a viable alternative to mitigate CH 4 emissions from landfills.

  8. Advantageous Direct Quantification of Viable Closely Related Probiotics in Petit-Suisse Cheeses under In Vitro Gastrointestinal Conditions by Propidium Monoazide - qPCR

    PubMed Central

    Villarreal, Martha Lissete Morales; Padilha, Marina; Vieira, Antonio Diogo Silva; Franco, Bernadette Dora Gombossy de Melo; Martinez, Rafael Chacon Ruiz; Saad, Susana Marta Isay

    2013-01-01

    Species-specific Quantitative Real Time PCR (qPCR) alone and combined with the use of propidium monoazide (PMA) were used along with the plate count method to evaluate the survival of the probiotic strains Lactobacillus acidophilus La-5 and Bifidobacterium animalis subsp. lactis Bb-12, and the bacteriocinogenic and potentially probiotic strain Lactobacillus sakei subsp. sakei 2a in synbiotic (F1) and probiotic (F2) petit-suisse cheeses exposed throughout shelf-life to in vitro simulated gastrointestinal tract conditions. The three strains studied showed a reduction in their viability after the 6 h assay. Bb-12 displayed the highest survival capacity, above 72.6 and 74.6% of the initial populations, respectively, by plate count and PMA-qPCR, maintaining population levels in the range or above 6 log CFU/g. The prebiotic mix of inulin and FOS did not offer any additional protection for the strains against the simulated gastrointestinal environment. The microorganisms' populations were comparable among the three methods at the initial time of the assay, confirming the presence of mainly viable and culturable cells. However, with the intensification of the stress induced throughout the various stages of the in vitro test, the differences among the methods increased. The qPCR was not a reliable enumeration method for the quantification of intact bacterial populations, mixed with large numbers of injured and dead bacteria, as confirmed by the scanning electron microscopy results. Furthermore, bacteria plate counts were much lower (P<0.05) than with the PMA-qPCR method, suggesting the accumulation of stressed or dead microorganisms unable to form colonies. The use of PMA overcame the qPCR inability to differentiate between dead and alive cells. The combination of PMA and species-specific qPCR in this study allowed a quick and unequivocal way of enumeration of viable closely related species incorporated into probiotic and synbiotic petit-suisse cheeses and under stress

  9. Reducing time to identification of aerobic bacteria and fastidious micro-organisms in positive blood cultures.

    PubMed

    Intra, J; Sala, M R; Falbo, R; Cappellini, F; Brambilla, P

    2016-12-01

    Rapid and early identification of micro-organisms in blood has a key role in the diagnosis of a febrile patient, in particular, in guiding the clinician to define the correct antibiotic therapy. This study presents a simple and very fast method with high performances for identifying bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) after only 4 h of incubation. We used early bacterial growth on PolyViteX chocolate agar plates inoculated with five drops of blood-broth medium deposited in the same point and spread with a sterile loop, followed by a direct transfer procedure on MALDI-TOF MS target slides without additional modification. Ninety-nine percentage of aerobic bacteria were correctly identified from 600 monomicrobial-positive blood cultures. This procedure allowed obtaining the correct identification of fastidious pathogens, such as Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae that need complex nutritional and environmental requirements in order to grow. Compared to the traditional pathogen identification from blood cultures that takes over 24 h, the reliability of results, rapid performance and suitability of this protocol allowed a more rapid administration of optimal antimicrobial treatment in the patients. Bloodstream infections are serious conditions with a high mortality and morbidity rate. Rapid identification of pathogens and appropriate antimicrobial therapy have a key role for successful patient outcome. In this work, we developed a rapid, simplified, accurate, and efficient method, reaching 99 % identification of aerobic bacteria from monomicrobial-positive blood cultures by using early growth on enriched medium, direct transfer to target plate without additional procedures, matrix-assisted laser desorption ionization-time of flight mass spectrometry and SARAMIS database. The application of this protocol allows to anticipate appropriate antibiotic therapy.

  10. UV inactivation of pathogenic and indicator microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, J.C.; Ossoff, S.F.; Lobe, D.C.

    1985-06-01

    Survival was measured as a function of the dose of germicidal UV light for the bacteria Escherichia coli, Salmonella typhi, Shigella sonnei, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis spores, the enteric viruses poliovirus type 1 and simian rotavirus SA11, the cysts of the protozoan Acanthamoeba castellanii, as well as for total coliforms and standard plate count microorganisms from secondary effluent. The doses of UV light necessary for a 99.9% inactivation of the cultured vegetative bacteria, total coliforms, and standard plate count microorganisms were comparable. However, the viruses, the bacterial spores, and the amoebic cysts required about 3 to 4more » times, 9 times, and 15 times, respectively, the dose required for E. coli. These ratios covered a narrower relative dose range than that previously reported for chlorine disinfection of E. coli, viruses, spores, and cysts.« less

  11. Attraction of swimming microorganisms by solid surfaces

    NASA Astrophysics Data System (ADS)

    Lauga, Eric; Berke, Allison; Turner, Linda; Berg, Howard

    2007-11-01

    Swimming microorganisms such as spermatozoa or bacteria are usually observed to accumulate near surfaces. Here, we report on an experiment aiming at measuring the distribution of smooth-swimming E. coli when moving in a density-matched fluid and between two glass plates. The distribution for the bacteria concentration is found to peak near the glass plates, in agreement with a simple physical model based on the far-field hydrodynamics of swimming cells.

  12. Application of flow cytometry to wine microorganisms.

    PubMed

    Longin, Cédric; Petitgonnet, Clément; Guilloux-Benatier, Michèle; Rousseaux, Sandrine; Alexandre, Hervé

    2017-04-01

    Flow cytometry (FCM) is a powerful technique allowing detection and enumeration of microbial populations in food and during food process. Thanks to the fluorescent dyes used and specific probes, FCM provides information about cell physiological state and allows enumeration of a microorganism in a mixed culture. Thus, this technique is increasingly used to quantify pathogen, spoilage microorganisms and microorganisms of interest. Since one decade, FCM applications to the wine field increase greatly to determine population and physiological state of microorganisms performing alcoholic and malolactic fermentations. Wine spoilage microorganisms were also studied. In this review we briefly describe FCM principles. Next, a deep revision concerning enumeration of wine microorganisms by FCM is presented including the fluorescent dyes used and techniques allowing a yeast and bacteria species specific enumeration. Then, the last chapter is dedicated to fluorescent dyes which are used to date in fluorescent microscopy but applicable in FCM. This chapter also describes other interesting "future" techniques which could be applied to study the wine microorganisms. Thus, this review seeks to highlight the main advantages of the flow cytometry applied to wine microbiology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Textiles for protection against microorganism

    NASA Astrophysics Data System (ADS)

    Sauperl, O.

    2016-04-01

    Concerning micro-organisms such as bacteria, viruses and fungi, there is a huge progress in the development of textile materials and procedures which should effectively protect against these various pathogens. In this sense there is especially problematic hospital environment, where it is necessary to take into account properly designed textile material which, when good selected and composed, act as a good barrier against transfer of micro-organisms through material mainly in its wet state. Respect to this it is necessary to be familiar with the rules regarding selection of the input material, the choice of proper yarn construction, the choice of the proper weaving mode, the rules regarding selection of antimicrobial-active compound suitable for (eco-friendly) treatment, and the choice of the most appropriate test method by which it is possible objectively to conclude on the reduction of selected microorganism. As is well known, fabrics are three-dimensional structures with void and non-void areas. Therefore, the physical-chemical properties of the textile material/fabric, the surface characteristics together with the shape of microorganism, and the carriers' characteristics contribute to control the transfer of microorganism through textile material. Therefore, careful planning of textile materials and treatment procedure with the compound which is able to reduce micro-organism satisfactory is particularly important, especially due to the fact that in hospital environment population with impaired immune system is mainly presented.

  14. Anaerobic Ammonium-Oxidizing Bacteria: Unique Microorganisms with Exceptional Properties

    PubMed Central

    Jetten, Mike S. M.

    2012-01-01

    Summary: Anaerobic ammonium-oxidizing (anammox) bacteria defy many microbiological concepts and share numerous properties with both eukaryotes and archaea. Among their most intriguing characteristics are their compartmentalized cell plan and archaeon-like cell wall. Here we review our current knowledge about anammox cell biology. The anammox cell is divided into three separate compartments by bilayer membranes. The anammox cell consists of (from outside to inside) the cell wall, paryphoplasm, riboplasm, and anammoxosome. Not much is known about the composition or function of both the anammox cell wall and the paryphoplasm compartment. The cell wall is proposed to be proteinaceous and to lack both peptidoglycan and an outer membrane typical of Gram-negative bacteria. The function of the paryphoplasm is unknown, but it contains the cell division ring. The riboplasm resembles the standard cytoplasmic compartment of other bacteria; it contains ribosomes and the nucleoid. The anammoxosome occupies most of the cell volume and is a so-called “prokaryotic organelle” analogous to the eukaryotic mitochondrion. This is the site where the anammox reaction takes place, coupled over the curved anammoxosome membrane, possibly giving rise to a proton motive force and subsequent ATP synthesis. With these unique properties, anammox bacteria are food for thought concerning the early evolution of the domains Bacteria, Archaea, and Eukarya. PMID:22933561

  15. Predominance of Viable Spore-Forming Piezophilic Bacteria in High-Pressure Enrichment Cultures from ~1.5 to 2.4 km-Deep Coal-Bearing Sediments below the Ocean Floor

    PubMed Central

    Fang, Jiasong; Kato, Chiaki; Runko, Gabriella M.; Nogi, Yuichi; Hori, Tomoyuki; Li, Jiangtao; Morono, Yuki; Inagaki, Fumio

    2017-01-01

    Phylogenetically diverse microorganisms have been observed in marine subsurface sediments down to ~2.5 km below the seafloor (kmbsf). However, very little is known about the pressure-adapted and/or pressure-loving microorganisms, the so called piezophiles, in the deep subseafloor biosphere, despite that pressure directly affects microbial physiology, metabolism, and biogeochemical processes of carbon and other elements in situ. In this study, we studied taxonomic compositions of microbial communities in high-pressure incubated sediment, obtained during the Integrated Ocean Drilling Program (IODP) Expedition 337 off the Shimokita Peninsula, Japan. Analysis of 16S rRNA gene-tagged sequences showed that members of spore-forming bacteria within Firmicutes and Actinobacteria were predominantly detected in all enrichment cultures from ~1.5 to 2.4 km-deep sediment samples, followed by members of Proteobacteria, Acidobacteria, and Bacteroidetes according to the sequence frequency. To further study the physiology of the deep subseafloor sedimentary piezophilic bacteria, we isolated and characterized two bacterial strains, 19R1-5 and 29R7-12, from 1.9 and 2.4 km-deep sediment samples, respectively. The isolates were both low G+C content, gram-positive, endospore-forming and facultative anaerobic piezophilic bacteria, closely related to Virgibacillus pantothenticus and Bacillus subtilis within the phylum Firmicutes, respectively. The optimal pressure and temperature conditions for growth were 20 MPa and 42°C for strain 19R1-5, and 10 MPa and 43°C for strain 29R7-12. Bacterial (endo)spores were observed in both the enrichment and pure cultures examined, suggesting that these piezophilic members were derived from microbial communities buried in the ~20 million-year-old coal-bearing sediments after the long-term survival as spores and that the deep biosphere may host more abundant gram-positive spore-forming bacteria and their spores than hitherto recognized. PMID:28220112

  16. Predominance of Viable Spore-Forming Piezophilic Bacteria in High-Pressure Enrichment Cultures from ~1.5 to 2.4 km-Deep Coal-Bearing Sediments below the Ocean Floor.

    PubMed

    Fang, Jiasong; Kato, Chiaki; Runko, Gabriella M; Nogi, Yuichi; Hori, Tomoyuki; Li, Jiangtao; Morono, Yuki; Inagaki, Fumio

    2017-01-01

    Phylogenetically diverse microorganisms have been observed in marine subsurface sediments down to ~2.5 km below the seafloor (kmbsf). However, very little is known about the pressure-adapted and/or pressure-loving microorganisms, the so called piezophiles, in the deep subseafloor biosphere, despite that pressure directly affects microbial physiology, metabolism, and biogeochemical processes of carbon and other elements in situ . In this study, we studied taxonomic compositions of microbial communities in high-pressure incubated sediment, obtained during the Integrated Ocean Drilling Program (IODP) Expedition 337 off the Shimokita Peninsula, Japan. Analysis of 16S rRNA gene-tagged sequences showed that members of spore-forming bacteria within Firmicutes and Actinobacteria were predominantly detected in all enrichment cultures from ~1.5 to 2.4 km-deep sediment samples, followed by members of Proteobacteria, Acidobacteria, and Bacteroidetes according to the sequence frequency. To further study the physiology of the deep subseafloor sedimentary piezophilic bacteria, we isolated and characterized two bacterial strains, 19R1-5 and 29R7-12, from 1.9 and 2.4 km-deep sediment samples, respectively. The isolates were both low G+C content, gram-positive, endospore-forming and facultative anaerobic piezophilic bacteria, closely related to Virgibacillus pantothenticus and Bacillus subtilis within the phylum Firmicutes, respectively. The optimal pressure and temperature conditions for growth were 20 MPa and 42°C for strain 19R1-5, and 10 MPa and 43°C for strain 29R7-12. Bacterial (endo)spores were observed in both the enrichment and pure cultures examined, suggesting that these piezophilic members were derived from microbial communities buried in the ~20 million-year-old coal-bearing sediments after the long-term survival as spores and that the deep biosphere may host more abundant gram-positive spore-forming bacteria and their spores than hitherto recognized.

  17. Changes in the relative population size of selected ruminal bacteria following an induced episode of acidosis in beef heifers receiving viable and non-viable active dried yeast.

    PubMed

    Mohammed, R; Vyas, D; Yang, W Z; Beauchemin, K A

    2017-06-01

    To characterize the changes in the relative population size (RPS) of select ruminal bacteria and rumen fermentation variables in beef heifers supplemented with a strain of Saccharomyces cerevisiae as viable active dried (ADY) or killed dried (KDY) yeast following an induced episode of ruminal acidosis. Six ruminally cannulated beef heifers fed a diet consisting of 50% forage and 50% grain (dry matter basis) were used in a replicated 3 × 3 Latin square design with three 28-day periods. Treatments were: (i) control (CTRL; no yeast); (ii) ADY (4 g day -1 providing 10 10  CFU per g; AB Vista, UK); and (iii) KDY (4 g day -1 autoclaved ADY). The acidosis challenge was induced on day 22 and rumen samples were collected on day 15 (baseline; BASE), day 22 (challenge day; CHAL), and on day 29 (168th hour post acid challenge or recovery, REC) of each period. Over the study, duration of pH <5·8 (indicative of subacute ruminal acidosis) was less for ADY and KDY than CTRL, with ADY less than KDY. No treatment effects were observed on relative abundance of ruminal bacteria, but the day effect was significant. The RPS of lactate producers and utilizers was greater while RPS of fibrolytic bacteria was lower during CHAL than BASE and REC. Yeast supplementation, irrespective of its viability, showed beneficial effects on ruminal pH variables in animals more susceptible to acidosis. Rumen microbial population was altered with the induction of severe acidosis. Most of the changes reverted back to baseline values during the recovery phase. Yeast supplementation reduced subacute rumen acidosis in the most susceptible cattle, but failed to attenuate severe acidosis induced by a grain challenge. The study provided valuable insight into the mechanism by which acidosis affects cattle performance. Individual animal variation in ruminal fermentation partly explained the variability in response to yeast supplementation in the study. © 2017 Her Majesty the Queen in Right of Canada

  18. The effectiveness of a preprocedural mouthrinse containing cetylpyridinium chloride in reducing bacteria in the dental office.

    PubMed

    Feres, Magda; Figueiredo, Luciene Cristina; Faveri, Marcelo; Stewart, Bernal; de Vizio, William

    2010-04-01

    During oral procedures, microorganisms from the oral cavity may contaminate nearby surfaces. The authors evaluated the efficacy of a commercial preprocedural mouthrinse containing 0.05 percent cetylpyridinium chloride (CPC) in reducing the levels and composition of viable bacteria in oral spatter. The authors randomly assigned 60 participants receiving oral prophylaxis with an ultrasonic scaler to one of four groups: a preprocedural rinse solution containing 0.05 percent CPC, 0.12 percent chlorhexidine (CHX) or water, or no rinsing. Airborne microorganisms were collected on blood agar plates. The composition of the spatter was analyzed for 39 oral bacterial species by means of checkerboard DNA-DNA hybridization. CPC and CHX were equally effective in lowering the levels of spatter bacteria and performed better than water and no rinsing (P < .05, Kruskal-Wallis test). The composition of the spatter from the control groups showed higher proportions (P < .05, Kruskal-Wallis test) of Fusobacterium species and lower proportions of Capnocytophaga species when compared with the spatter from the CPC and CHX groups. A commercial mouthrinse containing 0.05 percent CPC when used as a preprocedural mouthrinse was equally effective as CHX in reducing the levels of spatter bacteria generated during ultrasonic scaling. Owing to its strong antibacterial effect and the fact that it has fewer side effects than CHX, a solution containing 0.05 percent CPC may be a good alternative to that containing 0.12 CHX as a preprocedural mouthrinse used to help decrease the level of contamination in spatter.

  19. Horizontal gene transfer between bacteria.

    PubMed

    Heuer, Holger; Smalla, Kornelia

    2007-01-01

    Horizontal gene transfer (HGT) refers to the acquisition of foreign genes by organisms. The occurrence of HGT among bacteria in the environment is assumed to have implications in the risk assessment of genetically modified bacteria which are released into the environment. First, introduced genetic sequences from a genetically modified bacterium could be transferred to indigenous micro-organisms and alter their genome and subsequently their ecological niche. Second, the genetically modified bacterium released into the environment might capture mobile genetic elements (MGE) from indigenous micro-organisms which could extend its ecological potential. Thus, for a risk assessment it is important to understand the extent of HGT and genome plasticity of bacteria in the environment. This review summarizes the present state of knowledge on HGT between bacteria as a crucial mechanism contributing to bacterial adaptability and diversity. In view of the use of GM crops and microbes in agricultural settings, in this mini-review we focus particularly on the presence and role of MGE in soil and plant-associated bacteria and the factors affecting gene transfer.

  20. Influence of an experimental herbicide on soil nitrogen-fixing bacteria and other microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, L.M. Jr.; Hedrick, H.G.

    Influence of an experimental herbicide on two isolates of soil nitrogen-fixing bacteria Rhizobium japonicum 3I1b110 and Azotobacter vinelandii ATCC 12837, was determined using a bioresponse assay, thin-layer chromatographic analysis, and changes in viable cells on the herbicide as the sole source of organic carbon. Seven bacterial and nine fungus isolates were also found by a soil enrichment technique to show utilization of the herbicide. A. vinelandii showed stimulation of growth in the first 4 days of exposure on the herbicide at 1,000 ppM. The herbicide then became toxic or was metabolized into toxic by-products. R. japonicum showed utilization of themore » herbicide by changes in growth rate as influenced by the inoculum concentration, the thoroughness of inoculum washing, and the concentration of herbicide. Using TLC assay techniques, the herbicide was found to be depleted in laboratory experiments by R. japonicum following 10 days of growth, without detectable nonmetabolic by-products. These findings suggested that the addition of the experimental herbicide to soils planted with bean crops could possibly influence the metabolic activity of R. japonicum as a symbiotic nitrogen-fixing bacterium. 5 figures, 1 table.« less

  1. Resistance of soil microorganisms to starvation.

    NASA Technical Reports Server (NTRS)

    Chen, M.; Alexander, M.

    1972-01-01

    Most groups of soil microorganisms died when exposed to prolonged starvation in a carbon-free solution, but the relative abundance of Bacillus and actinomycetes increased with time. Certain nonspore-forming bacteria also persisted. The ability of individual soil isolates to endure starvation in solution was not correlated with their glycogen content or rate of endogenous respiration. However, cells of the resistant populations were rich in poly-beta-hydroxybutyrate, whereas the starvation-susceptible bacteria generally contained little of this substance. Poly-beta-hydroxybutyrate was used rapidly in cells deprived of exogenous sources of carbon.

  2. Medical Significance of Microorganisms in Spacecraft Environment

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Ott, C. Mark

    2007-01-01

    Microorganisms can spoil food supplies, contaminate drinking water, release noxious volatile compounds, initiate allergic responses, contaminate the environment, and cause infectious diseases. International acceptability limits have been established for bacterial and fungal contaminants in air and on surfaces, and environmental monitoring is conducted to ensure compliance. Allowable levels of microorganism in water and food have also been established. Environmental monitoring of the space shuttle, the Mir, and the ISS have allowed for some general conclusions. Generally, the bacteria found in air and on interior surfaces are largely of human origin such as Staphylococcus spp., Micrococcus spp. Common environmental genera such as Bacillus spp. are the most commonly isolated bacteria from all spacecraft. Yeast species associated with humans such as Candida spp. are commonly found. Aspergillus spp., Penicillium spp., and Cladosporium spp. are the most commonly isolated filamentous fungi. Microbial levels in the environment differ significantly depending upon humidity levels, condensate accumulation, and availability of carbon sources. However, human "normal flora" of bacteria and fungi can result in serious, life-threatening diseases if human immunity is compromised. Disease incidence is expected to increase as mission duration increases.

  3. Flow cytometry and conventional enumeration of microorganisms in ships' ballast water and marine samples.

    PubMed

    Joachimsthal, Eva L; Ivanov, Volodymyr; Tay, Joo-Hwa; Tay, Stephen T-L

    2003-03-01

    Conventional methods for bacteriological testing of water quality take long periods of time to complete. This makes them inappropriate for a shipping industry that is attempting to comply with the International Maritime Organization's anticipated regulations for ballast water discharge. Flow cytometry for the analysis of marine and ship's ballast water is a comparatively fast and accurate method. Compared to a 5% standard error for flow cytometry analysis the standard methods of culturing and epifluorescence analysis have errors of 2-58% and 10-30%, respectively. Also, unlike culturing methods, flow cytometry is capable of detecting both non-viable and viable but non-culturable microorganisms which can still pose health risks. The great variability in both cell concentrations and microbial content for the samples tested is an indication of the difficulties facing microbial monitoring programmes. The concentration of microorganisms in the ballast tank was generally lower than in local seawater. The proportion of aerobic, microaerophilic, and facultative anaerobic microorganisms present appeared to be influenced by conditions in the ballast tank. The gradual creation of anaerobic conditions in a ballast tank could lead to the accumulation of facultative anaerobic microorganisms, which might represent a potential source of pathogenic species.

  4. Airborne microorganisms from waste containers.

    PubMed

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste.

  5. Genomics of Probiotic Bacteria

    NASA Astrophysics Data System (ADS)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  6. Effect of gamma-irradiation on the occurrence of pathogenic microorganisms and nutritive value of four principal cereal grains.

    PubMed

    Aziz, N H; Souzan, R M; Shahin Azza, A

    2006-12-01

    The effects of (60)Co gamma-photon-irradiation on the natural occurrence of pathogenic microorganisms in four principal cereal grains and on amino acids and vitamins in these cereals were investigated. The total numbers of aerobic bacteria were reduced by three logarithmic decades when grains were given a dose of 10kGy. Coliforms and "coagulase- positive" staphylococci were inhibited by a dose of 1kGy, whereas fungi were inhibited by a dose of 5kGy. The 15kGy dose eliminated viable microorganisms in cereal grains, and about 10-30 colony-forming units of Clostridium sp. per gram of grain survived after this dose. The dose of 10kGy did not cause any measurable destruction of total amino acids. Thiamin was reduced by 22-33% and riboflavin by 10-16% after a dose of 10kGy. Irradiation did not increase the acid values significantly, but did increase the peroxide values, which was not accompanied by the off-odors of cereals. We conclude that the overall dose of 10kGy is very effective for microbial decontamination of cereal grains, and does not adversely affect the nutritional quality of cereal grains.

  7. Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging

    PubMed Central

    Woehl, Taylor J.; Kashyap, Sanjay; Firlar, Emre; Perez-Gonzalez, Teresa; Faivre, Damien; Trubitsyn, Denis; Bazylinski, Dennis A.; Prozorov, Tanya

    2014-01-01

    Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip window surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. We investigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to ~30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria. PMID:25358460

  8. Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging

    DOE PAGES

    Woehl, Taylor J.; Kashyap, Sanjay; Firlar, Emre; ...

    2014-10-31

    Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip windowmore » surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. We investigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to ~30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria.« less

  9. Optimization, validation, and application of a real-time PCR protocol for quantification of viable bacterial cells in municipal sewage sludge and biosolids using reporter genes and Escherichia coli.

    PubMed

    van Frankenhuyzen, Jessica K; Trevors, Jack T; Flemming, Cecily A; Lee, Hung; Habash, Marc B

    2013-11-01

    Biosolids result from treatment of sewage sludge to meet jurisdictional standards, including pathogen reduction. Once government regulations are met, materials can be applied to agricultural lands. Culture-based methods are used to enumerate pathogen indicator microorganisms but may underestimate cell densities, which is partly due to bacteria existing in a viable but non-culturable physiological state. Viable indicators can also be quantified by realtime polymerase chain reaction (qPCR) used with propidium monoazide (PMA), a dye that inhibits amplification of DNA found extracellularly or in dead cells. The objectives of this study were to test an optimized PMA-qPCR method for viable pathogen detection in wastewater solids and to validate it by comparing results to data obtained by conventional plating. Reporter genes from genetically marked Pseudomonas sp. UG14Lr and Agrobacterium tumefaciens 542 cells were spiked into samples of primary sludge, and anaerobically digested and Lystek-treated biosolids as cell-free DNA, dead cells, viable cells, and mixtures of live and dead cells, followed by DNA extraction with and without PMA, and qPCR. The protocol was then used for Escherichia coli quantification in the three matrices, and results compared to plate counts. PMA-qPCR selectively detected viable cells, while inhibiting signals from cell-free DNA and DNA found in membrane-compromised cells. PMA-qPCR detected 0.5-1 log unit more viable E. coli cells in both primary solids and dewatered biosolids than plate counts. No viable E. coli was found in Lystek-treated biosolids. These data suggest PMA-qPCR may more accurately estimate pathogen cell numbers than traditional culture methods.

  10. Retooling microorganisms for the fermentative production of alcohols.

    PubMed

    Toogood, Helen S; Scrutton, Nigel S

    2018-04-01

    Bioengineering and synthetic biology approaches have revolutionised the field of biotechnology, enabling the introduction of non-native and de novo pathways for biofuels production. This 'retooling' of microorganisms is also applied to the utilisation of mixed carbon components derived from lignocellulosic biomass, a major technical barrier for the development of economically viable fermentations. This review will discuss recent advances in microorganism engineering for efficient production of alcohols from waste biomass. These advances span the introduction of new pathways to alcohols, host modifications for more cost-effective utilisation of lignocellulosic waste and modifications of existing pathways for generating new fuel additives. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Preliminary stochastic model for managing Vibrio parahaemolyticus and total viable bacterial counts in a Pacific oyster (Crassostrea gigas) supply chain.

    PubMed

    Fernandez-Piquer, Judith; Bowman, John P; Ross, Tom; Estrada-Flores, Silvia; Tamplin, Mark L

    2013-07-01

    Vibrio parahaemolyticus can accumulate and grow in oysters stored without refrigeration, representing a potential food safety risk. High temperatures during oyster storage can lead to an increase in total viable bacteria counts, decreasing product shelf life. Therefore, a predictive tool that allows the estimation of both V. parahaemolyticus populations and total viable bacteria counts in parallel is needed. A stochastic model was developed to quantitatively assess the populations of V. parahaemolyticus and total viable bacteria in Pacific oysters for six different supply chain scenarios. The stochastic model encompassed operations from oyster farms through consumers and was built using risk analysis software. Probabilistic distributions and predictions for the percentage of Pacific oysters containing V. parahaemolyticus and high levels of viable bacteria at the point of consumption were generated for each simulated scenario. This tool can provide valuable information about V. parahaemolyticus exposure and potential control measures and can help oyster companies and regulatory agencies evaluate the impact of product quality and safety during cold chain management. If coupled with suitable monitoring systems, such models could enable preemptive action to be taken to counteract unfavorable supply chain conditions.

  12. Ecology of Nitrogen Fixing, Nitrifying, and Denitrifying Microorganisms in Tropical Forest Soils

    PubMed Central

    Pajares, Silvia; Bohannan, Brendan J. M.

    2016-01-01

    Soil microorganisms play important roles in nitrogen cycling within forest ecosystems. Current research has revealed that a wider variety of microorganisms, with unexpected diversity in their functions and phylogenies, are involved in the nitrogen cycle than previously thought, including nitrogen-fixing bacteria, ammonia-oxidizing bacteria and archaea, heterotrophic nitrifying microorganisms, and anammox bacteria, as well as denitrifying bacteria, archaea, and fungi. However, the vast majority of this research has been focused in temperate regions, and relatively little is known regarding the ecology of nitrogen-cycling microorganisms within tropical and subtropical ecosystems. Tropical forests are characterized by relatively high precipitation, low annual temperature fluctuation, high heterogeneity in plant diversity, large amounts of plant litter, and unique soil chemistry. For these reasons, regulation of the nitrogen cycle in tropical forests may be very different from that of temperate ecosystems. This is of great importance because of growing concerns regarding the effect of land use change and chronic-elevated nitrogen deposition on nitrogen-cycling processes in tropical forests. In the context of global change, it is crucial to understand how environmental factors and land use changes in tropical ecosystems influence the composition, abundance and activity of key players in the nitrogen cycle. In this review, we synthesize the limited currently available information regarding the microbial communities involved in nitrogen fixation, nitrification and denitrification, to provide deeper insight into the mechanisms regulating nitrogen cycling in tropical forest ecosystems. We also highlight the large gaps in our understanding of microbially mediated nitrogen processes in tropical forest soils and identify important areas for future research. PMID:27468277

  13. A Ratio of Spore to Viable Organisms: A Case Study of the JPL-SAF Cleanroom

    NASA Technical Reports Server (NTRS)

    Hendrickson, Ryan; Urbaniak, Camilla; Malli Mohan, Ganesh Babu; Aronson, Heidi; Venkateswaran, Kasthuri

    2017-01-01

    Spacecraft surfaces that are destined to land on potential life-harboring celestial bodies are required to be rigorously cleaned and continuously monitored for spore bioburden as a proxy for spacecraft cleanliness. The NASA standard assay (NSA), used for spacecraft bioburden estimates, specifically measures spores that are cultivable, aerobic, resistant to heat shock, and grow at 30 C in a nutrient-rich medium. Since the vast majority of microorganisms cannot be cultivated using the NSA, it is necessary to utilize state-of-the art molecular techniques to better understand the presence of all viable microorganisms, not just those measured with the NSA. In this study, the nutrient-deprived low biomass cleanrooms, where spacecraft are assembled, were used as a surrogate for spacecraft surfaces to measure the ratio of NSA spores in relation to the total viable microorganism population in order to make comparisons with the 2006 Space Studies Board (SSB) estimate of 1 spore per approximately 50,000 viable organisms. Ninety-eight surface wipe samples were collected from the Spacecraft Assembly Facility (SAF) cleanroom at the Jet Propulsion Laboratory (JPL) over a 6-month period. The samples were processed and analyzed using classical microbiology along with molecular methodology. Traditional microbiology plating methods were used to determine the cultivable bacterial, fungal, and spore populations. Molecular assays were used to determine the total organisms (TO, dead and live) and the viable organisms (VO, live). The TO was measured using adenosine triphosphate (ATP) and quantitative polymerase chain reaction (qPCR) assays. The VO was measured using internal ATP, propidium monoazide (PMA)-qPCR, and flow cytometry (after staining for viable microorganisms) assays. Based on the results, it was possible to establish a ratio between spore counts and VO for each viability assay. The ATP-based spore to VO ratio ranged from 149-746, and the bacterial PMA-qPCR assay-based ratio

  14. Interenvironmental Transfer of Microorganisms on the Exterior Surfaces of Jet Aircraft

    PubMed Central

    Pfaender, Frederic K.; Swatek, Frank E.

    1970-01-01

    The likelihood of microorganisms being transferred to new environments by jet aircraft was investigated. Initial random sampling of the aircraft surface revealed the presence of microorganisms in varying numbers on different aerodynamic surfaces. Bacteria of the genus Bacillus were the most common isolates, comprising approximately one-third of the total organisms found. The most frequently isolated fungi were Cladosporium, Alternaria, Penicillium, and several yeasts. Sampling of surfaces before and immediately after a flight demonstrated that microorganisms were collected during flight in areas protected from the airstream and lost in those areas directly exposed to it. These experiments also showed that the majority of the organisms contaminating the aircraft were acquired from the air at ground level. The placement of microorganisms on the aircraft surface before a flight and determination of their survival after flight indicated that the test organisms were most likely to be transported in the areas protected from the airstream. The organisms showing the best chance of being transferred seem to be the sporeforming bacteria, arthrospore-forming fungi, and some yeasts. All phases of this work showed that microorganisms could be carried by jet aircraft to environments they could not reach by natural means of dispersal. PMID:5480099

  15. Concerning the role of cell lysis-cryptic growth in anaerobic side-stream reactors: the single-cell analysis of viable, dead and lysed bacteria.

    PubMed

    Foladori, P; Velho, V F; Costa, R H R; Bruni, L; Quaranta, A; Andreottola, G

    2015-05-01

    In the Anaerobic Side-Stream Reactor (ASSR), part of the return sludge undergoes alternating aerobic and anaerobic conditions with the aim of reducing sludge production. In this paper, viability, enzymatic activity, death and lysis of bacterial cells exposed to aerobic and anaerobic conditions for 16 d were investigated at single-cell level by flow cytometry, with the objective of contributing to the understanding of the mechanisms of sludge reduction in the ASSR systems. Results indicated that total and viable bacteria did not decrease during the anaerobic phase, indicating that anaerobiosis at ambient temperature does not produce a significant cell lysis. Bacteria decay and lysis occurred principally under aerobic conditions. The aerobic decay rate of total bacteria (bTB) was considered as the rate of generation of lysed bacteria. Values of bTB of 0.07-0.11 d(-1) were measured in anaerobic + aerobic sequence. The enzymatic activity was not particularly affected by the transition from anaerobiosis to aerobiosis. Large solubilisation of COD and NH4(+) was observed only under anaerobic conditions, as a consequence of hydrolysis of organic matter, but not due to cell lysis. The observations supported the proposal of two independent mechanisms contributing equally to sludge reduction: (1) under anaerobic conditions: sludge hydrolysis of non-bacterial material, (2) under aerobic conditions: bacterial cell lysis and oxidation of released biodegradable compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Proteolytic and ACE-inhibitory activities of probiotic yogurt containing non-viable bacteria as affected by different levels of fat, inulin and starter culture.

    PubMed

    Shakerian, Mansour; Razavi, Seyed Hadi; Ziai, Seyed Ali; Khodaiyan, Faramarz; Yarmand, Mohammad Saeid; Moayedi, Ali

    2015-04-01

    In this study, the effects of fat (0.5 %, 3.2 % and 5.0 %), inulin (0.0 and 1.0 %) and starter culture (0.0 %, 0.5 %, 1.0 % and 1.5 %) on the angiotensin converting enzyme (ACE)-inhibitory activity of probiotic yogurt containing non-viable bacteria were assessed. Proteolytic activities of bacteria were also investigated. Yogurts were prepared either using a sole yogurt commercial culture including Streptococcus thermophilus and Lactobacillus delbrueckii subs. bulgaricus or bifidobacterium animalis BB-12 and Lactobacillus acidophilus La5 in addition to yogurt culture. Relative degrees of proteolysis were found to be considerably higher in yogurt samples than UHT milk as the control. Both regular and probiotic yogurts showed considerable ACE-inhibitory activities. Results showed that degree of proteolysis was not influenced by different fat contents, while was increased by high concentration of starter culture (1.5 % w/w) and reduced by inulin (1 % w/w). ACE-inhibitory activities of yogurt were also negatively affected by the presence of inulin and high levels of fat (5 % w/w). Moreover, yogurt containing probiotic bacteria showed higher inhibitory against ACE in comparison to the yogurt prepared with non-probiotic strains.

  17. The fecal bacteria

    USGS Publications Warehouse

    Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    The Fecal Bacteria offers a balanced, integrated discussion of fecal bacteria and their presence and ecology in the intestinal tract of mammals, in the environment, and in the food supply. This volume covers their use in examining and assessing water quality in order to offer protection from illnesses related to swimming in or ingesting contaminated water, in addition to discussing their use in engineering considerations of water quality, modeling, monitoring, and regulations. Fecal bacteria are additionally used as indicators of contamination of ready-to-eat foods and fresh produce. The intestinal environment, the microbial community structure of the gut microbiota, and the physiology and genomics of this broad group of microorganisms are explored in the book. With contributions from an internationally recognized group of experts, the book integrates medicine, public health, environmental, and microbiological topics in order to provide a unique, holistic understanding of fecal bacteria. Moreover, it shows how the latest basic science and applied research findings are helping to solve problems and develop effective management strategies. For example, readers will discover how the latest tools and molecular approaches have led to our current understanding of fecal bacteria and enabled us to improve human health and water quality. The Fecal Bacteria is recommended for microbiologists, clinicians, animal scientists, engineers, environmental scientists, food safety experts, water quality managers, and students. It will help them better understand fecal bacteria and use their knowledge to protect human and environmental health. They can also apply many of the techniques and molecular tools discussed in this book to the study of a broad range of microorganisms in a variety of habitats.

  18. Biodiesel production by various oleaginous microorganisms from organic wastes.

    PubMed

    Cho, Hyun Uk; Park, Jong Moon

    2018-05-01

    Biodiesel is a biodegradable and renewable fuel. A large amount of research has considered microbial oil production using oleaginous microorganisms, but the commercialization of microbial lipids produced in this way remains uncertain due to the high cost of feedstock or low lipid yield. Microbial lipids can be typically produced by microalgae, yeasts, and bacteria; the lipid yields of these microorganisms can be improved by using sufficient concentrations of organic carbon sources. Therefore, combining low-cost organic compounds contained in organic wastes with cultivation of oleaginous microorganisms can be a promising approach to obtain commercial viability. However, to achieve effective bioconversion of low-cost substrates to microbial lipids, the characteristics of each microorganism and each substrate should be considered simultaneously. This article discusses recent approaches to developing cost-effective microbial lipid production processes that use various oleaginous microorganisms and organic wastes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. [Phylogenetic diversity of microorganisms associated with the deep-water sponge Baikalospongia intermedia].

    PubMed

    Kalyzhnaya, O V; Itskovich, V B

    2014-07-01

    The diversity of bacteria associated with deep-water sponge Baikalospongia intermedia was evaluated by sequence analysis of 16S rRNA genes from two sponge samples collected in Lake Baikal from depths of 550 and 1204 m. A total of 64 operational taxonomic units, belonging to nine bacterial phyla, Proteobacteria (classes Alphaproteobacteria,. Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria), Actinobacteria, Planctomycetes, Cloroflexi, Verrucomicrobia, Acidobacteria, Chlorobi, and Nitrospirae, including candidate phylum WS5, were identified. Phylogenetic analysis showed that the examined communities contained phylotypes exhibiting homology to uncultured bacteria from different lake ecosystems, freshwater sediments, soil and geological formations. Moreover, a number of phylotypes were relative to psychrophilic, methane-oxidizing, sulfate-reducing bacteria, and to microorganisms resistant to the influence of heavy metals. It seems likely that the unusual habitation conditions of deep-water sponges contribute to the taxonomic diversity of associated bacteria and have an influence on the presence of functionally important microorganisms in bacterial communities.

  20. Nonenzymatic microorganism identification based on ribosomal RNA

    NASA Astrophysics Data System (ADS)

    Ives, Jeffrey T.; Pierini, Alicia M.; Stokes, Jeffrey A.; Wahlund, Thomas M.; Read, Betsy; Bechtel, James H.; Bronk, Burt V.

    1999-11-01

    Effective defense against biological warfare (BW) agents requires rapid, fieldable and accurate systems. For micro- organisms like bacteria and viruses, ribosomal RNA (rRNA) provides a valuable target with multiple advantages of species specificity and intrinsic target amplification. Vegetative and spore forms of bacteria contain approximately 104 copies of rRNA. Direct detection of rRNA copies can eliminate some of the interference and preparation difficulties involved in enzymatic amplification methods. In order to apply the advantages of rRNA to BW defense, we are developing a fieldable system based on 16S rRNA, physical disruption of the micro-organism, solid phase hybridization, and fluorescence detection. Our goals include species-specific identification, complete operation from raw sample to identification in 15 minutes or less, and compact, fieldable instrumentation. Initial work on this project has investigated the lysis and hybridization steps, the species-specificity of oligonucleotides probes, and the development of a novel electromagnetic method to physically disrupt the micro- organisms. Target bacteria have been Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis). Continuing work includes further development of methods to rapidly disrupt the micro-organisms and release the rRNA, improved integration and processing, and extension to bacterial and mammalian viruses like MS2 and vesicular stomatitis virus.

  1. Strategies for improving production performance of probiotic Pediococcus acidilactici viable cell by overcoming lactic acid inhibition.

    PubMed

    Othman, Majdiah; Ariff, Arbakariya B; Wasoh, Helmi; Kapri, Mohd Rizal; Halim, Murni

    2017-11-27

    Lactic acid bacteria are industrially important microorganisms recognized for fermentative ability mostly in their probiotic benefits as well as lactic acid production for various applications. Fermentation conditions such as concentration of initial glucose in the culture, concentration of lactic acid accumulated in the culture, types of pH control strategy, types of aeration mode and different agitation speed had influenced the cultivation performance of batch fermentation of Pediococcus acidilactici. The maximum viable cell concentration obtained in constant fed-batch fermentation at a feeding rate of 0.015 L/h was 6.1 times higher with 1.6 times reduction in lactic acid accumulation compared to batch fermentation. Anion exchange resin, IRA 67 was found to have the highest selectivity towards lactic acid compared to other components studied. Fed-batch fermentation of P. acidilactici coupled with lactic acid removal system using IRA 67 resin showed 55.5 and 9.1 times of improvement in maximum viable cell concentration compared to fermentation without resin for batch and fed-batch mode respectively. The improvement of the P. acidilactici growth in the constant fed-batch fermentation indicated the use of minimal and simple process control equipment is an effective approach for reducing by-product inhibition. Further improvement in the cultivation performance of P. acidilactici in fed-bath fermentation with in situ addition of anion-exchange resin significantly helped to enhance the growth of P. acidilactici by reducing the inhibitory effect of lactic acid and thus increasing probiotic production.

  2. Microorganisms in stormwater; a summary of recent investigations

    USGS Publications Warehouse

    Mallard, Gail E.

    1980-01-01

    All storm runoff contains a variety of bacteria, including total coliform, fecal coliform, and fecal streptococci, which are derived from the land over which the water flows. Most total coliform are native soil organisms, whereas the fecal coliform and fecal streptococci originate from the feces of wild and domestic animals. Urban runoff has been reported to contain pathogenic organisms, but this probably presents little direct threat to human health because the runoff is not ingested. Runoff water can, however, have other negative effects such as contamination of surface water, which may result in beach closures, or contamination of shellfish. This type of contamination is generally of short duration because indicator bacteria and pathogens die out rapidly in the aquatic environment. Similarly, bacteria and viruses deposited on soil by stormwater are inactivated by drying, competition from soil microflora, and a variety of other processes. Every storm producing runoff is unique in the number and type of microorganisms because these vary from site to site, from storm to storm, and during the course of the storm. Stormwater to be examined for microorganisms must be collected in sterile containers and processed immediately. (USGS)

  3. Bioprospecting of lipolytic microorganisms obtained from industrial effluents.

    PubMed

    Peil, Greice H S; Kuss, Anelise V; Rave, Andrés F G; Villarreal, José P V; Hernandes, Yohana M L; Nascente, Patrícia S

    2016-01-01

    The lipases have ability to catalyze diverse reactions and are important in different biotechnological applications. The aim of this work was to isolate and characterize microorganisms that produce lipases, from different food industry effluents localized in Pelotas, RS/Brazil. Bacteria were identified using Gram stain and biochemical tests (Vitek 2(r)). Fungi were identified according to macro and micromorphology characteristics. The extracellular lipase production was evaluated using the Rhodamine B test and the enzymatic activity by titration. Twenty-one bacteria were isolated and identified as Klebsiella pneumoniae ssp. pneumoniae, Serratia marcescens, Enterobacter aerogenes, Raoultella ornithinolytica and Raoultella planticola. Were characterized isolated filamentous fungi by the following genera: Alternaria sp., Fusarium sp., Geotrichum sp., Gliocladium sp., Mucor sp., Paecilomyces sp. and Trichoderma sp. Extracellular lipase production was observed in 71.43% of the bacteria and 57.14% of the fungi. The bacterium that presented better promising enzymatic activity was E. aerogenes (1.54 U/ml) however between fungi there was not significant difference between the four isolates. This study indicated that microorganisms lipase producers are present in the industrial effluents, as well as these enzymes have potential of biodegradation of lipid compounds.

  4. Isolation, characterization, and metabolism of microorganisms indigenous to subterranean oil-bearing formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azadpour, A.

    This research develops information on the microflora indigenous to subterranean oil reservoirs, with special emphasis on its potential role in microbial enhanced oil recovery (MEOR). The following studies were performed: (a) to quantify and characterize the microbial species indigenous to several different oil-bearing formations, (b) to determine the ability of microbial isolates to utilize various carbons and nitrogen sources and identify by-products that may be useful in MEOR processes, (c) to determine whether sulfate-reducing bacteria are indigenous to petroleum reservoirs, (d) to determine whether ultramicrobacteria are indigenous to petroleum reservoirs, and (e) to determine the ability of indigenous microorganisms inmore » intact cores to grow with the addition of supplemental nutrients. Reservoir depth from which the 7 sample cores were obtained ranged from 805 ft to 14,596 ft., all seven cores containing viable microorganisms with ultramicrobacteria in two of the seven cores. No sulfate-reducing isolates were obtained. Results showed that the indigenous microflora of the oil reservoirs either as a pure or as a mixed microbial cultures can and will grow under anaerobic conditions and will produce substances useful in recovering oil. The cultures also colonized stratal materials to produce by-products of importance in MEOR. The addition of supplemental nitrate ions and orthophosphate ions to the injection water resulted in an increase in microbial numbers, the production of gases, and the production of acids in the effluent from the cores. These events were synchronized with release of the fine particles and the release of oil from the core. The results support the concept that microorganisms indigenous to oil-bearing formations valuable in enhancing oil recovery if properly supplied with supplemental nutrients. No adverse environmental effects will results from either using the supplemental nutrients or producing the microbial by-products.« less

  5. Effects of Gelling Agent and Extracellular Signaling Molecules on the Culturability of Marine Bacteria

    PubMed Central

    Rygaard, Anita Mac; Thøgersen, Mariane Schmidt; Nielsen, Kristian Fog; Gram, Lone

    2017-01-01

    ABSTRACT Only 1% of marine bacteria are currently culturable using standard laboratory procedures, and this is a major obstacle for our understanding of the biology of marine microorganisms and for the discovery of novel microbial natural products. Therefore, the purpose of this study was to investigate if improved cultivation conditions, including the use of an alternative gelling agent and supplementation with signaling molecules, improve the culturability of bacteria from seawater. Replacing agar with gellan gum improved viable counts 3- to 40-fold, depending on medium composition and incubation conditions, with a maximum of 6.6% culturability relative to direct cell counts. Through V4 amplicon sequencing we found that culturable diversity was also affected by a change in gelling agent, facilitating the growth of orders not culturable on agar-based substrates. Community analyses showed that communities grown on gellan gum substrates were significantly different from communities grown on agar and that they covered a larger fraction of the seawater community. Other factors, such as incubation temperature and time, had less obvious effects on viable counts and culturable diversity. Supplementation with acylated homoserine lactones (AHLs) did not have a positive effect on total viable counts or a strong effect on culturable diversity. However, low concentrations of AHLs increased the relative abundance of sphingobacteria. Hence, with alternative growth substrates, it is possible to significantly increase the number and diversity of cultured marine bacteria. IMPORTANCE Serious challenges to human health, such as the occurrence and spread of antibiotic resistance and an aging human population in need of bioactive pharmaceuticals, have revitalized the search for natural microbial products. The marine environment, representing the largest ecosystem in the biosphere, harbors an immense and virtually untapped microbial diversity producing unique bioactive compounds

  6. Smaller Fleas: Viruses of Microorganisms

    PubMed Central

    Hyman, Paul; Abedon, Stephen T.

    2012-01-01

    Life forms can be roughly differentiated into those that are microscopic versus those that are not as well as those that are multicellular and those that, instead, are unicellular. Cellular organisms seem generally able to host viruses, and this propensity carries over to those that are both microscopic and less than truly multicellular. These viruses of microorganisms, or VoMs, in fact exist as the world's most abundant somewhat autonomous genetic entities and include the viruses of domain Bacteria (bacteriophages), the viruses of domain Archaea (archaeal viruses), the viruses of protists, the viruses of microscopic fungi such as yeasts (mycoviruses), and even the viruses of other viruses (satellite viruses). In this paper we provide an introduction to the concept of viruses of microorganisms, a.k.a., viruses of microbes. We provide broad discussion particularly of VoM diversity. VoM diversity currently spans, in total, at least three-dozen virus families. This is roughly ten families per category—bacterial, archaeal, fungal, and protist—with some virus families infecting more than one of these microorganism major taxa. Such estimations, however, will vary with further discovery and taxon assignment and also are dependent upon what forms of life one includes among microorganisms. PMID:24278736

  7. Antibiosis of vineyard ecosystem fungi against food-borne microorganisms.

    PubMed

    Cueva, Carolina; Moreno-Arribas, M Victoria; Bartolomé, Begoña; Salazar, Óscar; Vicente, M Francisca; Bills, Gerald F

    2011-12-01

    Fermentation extracts from fungi isolated from vineyard ecosystems were tested for antimicrobial activities against a set of test microorganisms, including five food-borne pathogens (Staphylococcus aureus EP167, Acinetobacter baumannii (clinically isolated), Pseudomonas aeruginosa PAO1, Escherichia coli O157:H7 (CECT 5947) and Candida albicans MY1055) and two probiotic bacteria (Lactobacillus plantarum LCH17 and Lactobacillus brevis LCH23). A total of 182 fungi was grown in eight different media, and the fermentation extracts were screened for antimicrobial activity. A total of 71 fungi produced extracts active against at least one pathogenic microorganism, but not against any probiotic bacteria. The Gram-positive bacterium S. aureus EP167 was more susceptible to antimicrobial fungi broth extracts than Gram-negative bacteria and pathogenic fungi. Identification of active fungi based on internal transcribed spacer rRNA sequence analysis revealed that species in the orders Pleosporales, Hypocreales and Xylariales dominated. Differences in antimicrobial selectivity were observed among isolates from the same species. Some compounds present in the active extracts were tentatively identified by liquid chromatography-mass spectrometry. Antimicrobial metabolites produced by vineyard ecosystem fungi may potentially limit colonization and spoilage of food products by food-borne pathogens, with minimal effect on probiotic bacteria. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. Secondary metabolites from marine microorganisms.

    PubMed

    Kelecom, Alphonse

    2002-03-01

    After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  9. [Survival of probiotic microorganisms in the conditions in vitro imitating the process of human digestion].

    PubMed

    Darmov, I V; Chicherin, I Iu; Pogorel'skiĭ, I P; Lundovskikh, I A

    2011-01-01

    Assessment of survival bifidobacteria and lactobacteria under the conditions in vitro, simulating digestion in human stomach and intestine, and study of survival probiotic and indigenous microorganisms in co-cultivation on solid nutrient medium. Probiotic microorganisms from commercial preparations Bifidobacterin and Lactobacterin, clinical isolates lactobacillus (Lactobacillus acidophilus No 1, L. brevis No 2) were used in experiments. Survival study of probiotic microorganisms was performed on a model in vitro, simulating the process of digestion in the human body. Assessment of the relationship of probiotic microorganisms and indigenous microorganisms was carried out in co-cultivation in vitro on solid nutrient medium. A significant reduction in the number of viable probiotic microorganisms during their incubation in model media was set as well as suppression of probiotic microorganisms growth by cultures of a clinical strains of lactobacillus, corresponding to biocompatibility by type "host against probiotic". While choosing probiotics in the treatment of dysbacterioses the character of relationship between probiotic microorganisms and indigenous microorganisms of a patient is recommended to be preliminarily tested. Also microorganisms of own microflora should be stimulated using modern prebiotics.

  10. Identification of active fluorescence stained bacteria by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Krause, Mario; Beyer, Beatrice; Pietsch, Christian; Radt, Benno; Harz, Michaela; Rösch, Petra; Popp, Jürgen

    2008-04-01

    Microorganisms can be found everywhere e.g. in food both as useful ingredients or harmful contaminations causing food spoilage. Therefore, a fast and easy to handle analysis method is needed to detect bacteria in different kinds of samples like meat, juice or air to decide if the sample is contaminated by harmful microorganisms. Conventional identification methods in microbiology require always cultivation and therefore are time consuming. In this contribution we present an analysis approach to identify fluorescence stained bacteria on strain level by means of Raman spectroscopy. The stained bacteria are highlighted and can be localized easier against a complex sample environment e.g. in food. The use of Raman spectroscopy in combination with chemometrical methods allows the identification of single bacteria within minutes.

  11. Microorganisms in inorganic chemical analysis.

    PubMed

    Godlewska-Zyłkiewicz, Beata

    2006-01-01

    There are innumerable strains of microbes (bacteria, yeast and fungi) that degrade or transform chemicals and compounds into simpler, safer or less toxic substances. These bioprocesses have been used for centuries in the treatment of municipal wastes, in wine, cheese and bread making, and in bioleaching and metal recovery processes. Recent literature shows that microorganisms can be also used as effective sorbents for solid phase extraction procedures. This review reveals that fundamental nonanalytical studies on the parameters and conditions of biosorption processes and on metal-biomass interactions often result in efficient analytical procedures and biotechnological applications. Some selected examples illustrate the latest developments in the biosorption of metals by microbial biomass, which have opened the door to the application of microorganisms to analyte preconcentration, matrix separation and speciation analysis.

  12. [An efficacy and safety study of bifidobacterium tetragenous viable bacteria tablets in the treatment of constipation in patients with type 2 diabetes mellitus].

    PubMed

    Yuan, T; Zhao, W G; Cao, Y; Li, Q; Yao, M X; Hao, X X; Yu, H; Jiang, C E; Wang, H F; Wang, S P; Wei, X B; Qiu, W

    2018-04-01

    Objective: The incidence of gastrointestinal symptoms in diabetes is higher than that of non-diabetes. Thus, the aim of the present study was to observe the efficacy and safety of bifidobacterium tetragenous viable bacteria tablets in the treatment of constipation in patients with type 2 diabetes mellitus. Methods: This is a multicenter, randomized, double-blind, placebo-controlled, parallel group-comparison clinical research. The subjects were randomly divided into study group and control group according to 1∶1 ratio by computer generated random number method. The subjects were either treated with bifidobacterium tetragenous viable bacteria tablets (study group) or placebo (control group) for eight weeks, and they were followed up for four weeks without changing foundation therapy for diabetes. The primary outcome was the change of complete spontaneous bowel movements (CSBMs). Results: A total of 234 subjects (the study group:116 cases; the control group: 118 cases) from 7 centers were included in the present study. The baseline characteristics were comparable between the two groups. In the study group, the CSBMs at 0, 2, 4, 8 and 12 weeks were 0.0 (0.0, 1.0) , 1.0 (0.5, 2.0) , 2.0 (1.0, 3.0) , 3.0 (2.0, 3.5) , 2.0 (1.0, 3.0) times per week, respectively, while the CSBMs of the control group at each corresponding weeks were 0.0 (0.0, 1.0) , 1.0 (0.0, 1.5) , 1.0 (0.0, 1.5) , 1.0 (0.0, 2.0) , 1.0 (0.0, 1.5) times per week, respectively. There is significant difference in CSBMs between the two groups ( P< 0.05). Moreover, after 12 weeks treatment, the CSBMs over spontaneous bowel movements (SBMs) ratio in the study group was higher than that in the control group [0.53 (0.40, 0.67) vs 0.33 (0.00,0.50), P= 0.048], indicating a more complete evacuation sensation in the study group. More subjects in the study group (66.38%) reached Bristol stool classification of normal criteria than those in the control group (48.31%, P= 0.005). There were significantly improvement of

  13. Cellular and soluble components decrease the viable pathogen counts in milk from dairy cows with subclinical mastitis.

    PubMed

    Koshiishi, Tomoko; Watanabe, Masako; Miyake, Hajime; Hisaeda, Keiichi; Isobe, Naoki

    2017-08-10

    The present study was undertaken to clarify the factors that reduce the viable pathogen count in milk collected from the udders of subclinical mastitic cows during preservation. Milk was centrifuged to divide somatic cells (cellular components, precipitates) and antimicrobial peptides (soluble components, supernatants without fat layer); each fraction was cultured with bacteria, and the number of viable bacteria was assessed prior to and after culture. In 28.8% of milk samples, we noted no viable bacteria immediately after collection; this value increased significantly after a 5-hr incubation of milk with cellular components but not with soluble components (48.1 and 28.8%, respectively). After culture with cellular components, the numbers of bacteria (excluding Staphylococcus aureus and Streptococcus uberis) and yeast decreased dramatically, although the differences were not statistically significant. After cultivation with soluble components, only yeasts showed a tendency toward decreased mean viability, whereas the mean bacterial counts of S. uberis and T. pyogenes tended to increase after 5-hr preservation with soluble components. These results suggest that most pathogens in high somatic cell count (SCC) milk decreased during preservation at 15 to 25°C, due to both the cellular components and antimicrobial components in the milk. Particularly, the cellular components more potently reduced bacterial counts during preservation.

  14. [Multi-resistant microorganisms: Acinetobacter. Nursing care].

    PubMed

    Milà Enrique, A; Barbeito Zaldúa, N; Paunellas Albert, J; Castillejo Badia, N

    1997-09-01

    There has recently been an increase in the incidence of bacteria that are resistant to a variety of medications. Acinetobactor, a gram-negative bacillus, is one that appears most often. This microbe, which has two subspecies, can be carried in the blood of one fourth of the healthy population. It manifests itself pathologically in hospital situations in which the patient becomes gravely ill. The principle infections it can provoke are: meningitis, endocarditis, pneumonia, urinary tract infections, bacteriemia, etc. Treatment is dependent upon antibacterial sensibility tests. As in the case of all microorganisms, prevention of infection is absolutely imperative to stop the spread of this very dangerous bacteria.

  15. Microfluidic-Based Bacteria Isolation from Whole Blood for Diagnostics of Blood Stream Infection.

    PubMed

    Zelenin, Sergey; Ramachandraiah, Harisha; Faridi, Asim; Russom, Aman

    2017-01-01

    Bacterial blood stream infection (BSI) potentially leads to life-threatening clinical conditions and medical emergencies such as severe sepsis, septic shock, and multi organ failure syndrome. Blood culturing is currently the gold standard for the identification of microorganisms and, although it has been automated over the decade, the process still requires 24-72 h to complete. This long turnaround time, especially for the identification of antimicrobial resistance, is driving the development of rapid molecular diagnostic methods. Rapid detection of microbial pathogens in blood related to bloodstream infections will allow the clinician to decide on or adjust the antimicrobial therapy potentially reducing the morbidity, mortality, and economic burden associated with BSI. For molecular-based methods, there is a lot to gain from an improved and straightforward method for isolation of bacteria from whole blood for downstream processing.We describe a microfluidic-based sample-preparation approach that rapidly and selectively lyses all blood cells while it extracts intact bacteria for downstream analysis. Whole blood is exposed to a mild detergent, which lyses most blood cells, and then to osmotic shock using deionized water, which eliminates the remaining white blood cells. The recovered bacteria are 100 % viable, which opens up possibilities for performing drug susceptibility tests and for nucleic-acid-based molecular identification.

  16. Differentiation and detection of microorganisms using Fourier transform infrared photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Irudayaraj, Joseph; Yang, Hong; Sakhamuri, Sivakesava

    2002-03-01

    Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) was used to differentiate and identify microorganisms on a food (apple) surface. Microorganisms considered include bacteria (Lactobacillus casei, Bacillus cereus, and Escherichia coli), yeast (Saccharomyces cerevisiae), and fungi (Aspergillus niger and Fusarium verticilliodes). Discriminant analysis was used to differentiate apples contaminated with the different microorganisms from uncontaminated apple. Mahalanobis distances were calculated to quantify the differences. The higher the value of the Mahalanobis distance metric between different microorganisms, the greater is their difference. Additionally, pathogenic (O157:H7) E. coli was successfully differentiated from non-pathogenic strains. Results demonstrate that FTIR-PAS spectroscopy has the potential to become a non-destructive analysis tool in food safety related research.

  17. Importance of lactic acid bacteria in Asian fermented foods

    PubMed Central

    2011-01-01

    Lactic acid bacteria play important roles in various fermented foods in Asia. Besides being the main component in kimchi and other fermented foods, they are used to preserve edible food materials through fermentation of other raw-materials such as rice wine/beer, rice cakes, and fish by producing organic acids to control putrefactive microorganisms and pathogens. These bacteria also provide a selective environment favoring fermentative microorganisms and produce desirable flavors in various fermented foods. This paper discusses the role of lactic acid bacteria in various non-dairy fermented food products in Asia and their nutritional and physiological functions in the Asian diet. PMID:21995342

  18. Association of viable Mycobacterium leprae with Type 1 reaction in leprosy.

    PubMed

    Save, Mrudula Prakash; Dighe, Anju Rajaram; Natrajan, Mohan; Shetty, Vanaja Prabhakaran

    2016-03-01

    The working hypothesis is that, viable Mycobacterium leprae (M. leprae) play a crucial role in the precipitation of Type 1 reaction (T1R) in leprosy. A total of 165 new multibacillary patients were studied. To demonstrate presence of viable M. leprae in reactional lesion (T1R+), three tests were used concurrently viz. growth in the mouse foot pad (MFP), immunohistochemical detection of M. leprae secretory protein Ag85, and 16s rRNA--using in situ RT-PCR. Mirror biopsies and non reactional lesions served as controls (T1R-). A significantly higher proportion of lesion biopsy homogenates obtained at onset, from T1R(+) cases have shown unequivocal growth in MFP, proving the presence of viable bacteria, as compared to T1R(-) (P < 0.005). In contrast, few Mirror biopsies were positive in both T1R(+) and T1R(-). With respect to Ag85, while the overall positivity was higher in T1R(+) (74%), however the intensity of staining (Grade 2+) was disproportionately higher in T1R(+) BT-BB lesions 11/20 (55%). In the rebiopsies obtained during a repeat episode of T1R, Ag 85 as well as 16s rRNA, positivity (62% & 100%) was higher in T1R(+). It is inferred therefore 'viable' bacteria are an essential component in T1R and difference in the quality of bacilli, not the quantity or the ratio of dead to viable play a role in the precipitation of T1R. In conclusion, the findings show that 'metabolically active' M. leprae is a component/prerequisite and the secretory protein Ag 85, might be the trigger for precipitation of T1R.

  19. The cellular slime mold: eukaryotic model microorganism.

    PubMed

    Urushihara, Hideko

    2009-04-01

    Cellular slime molds are eukaryotic microorganisms in the soil. They feed on bacteria as solitary amoebae but conditionally construct multicellular forms in which cell differentiation takes place. Therefore, they are attractive for the study of fundamental biological phenomena such as phagocytosis, cell division, chemotactic movements, intercellular communication, cell differentiation, and morphogenesis. The most widely used species, Dictyostelium discoideum, is highly amenable to experimental manipulation and can be used with most recent molecular biological techniques. Its genome and cDNA analyses have been completed and well-annotated data are publicly available. A larger number of orthologues of human disease-related genes were found in D. discoideum than in yeast. Moreover, some pathogenic bacteria infect Dictyostelium amoebae. Thus, this microorganism can also offer a good experimental system for biomedical research. The resources of cellular slime molds, standard strains, mutants, and genes are maintained and distributed upon request by the core center of the National BioResource Project (NBRP-nenkin) to support Dictyostelium community users as well as new users interested in new platforms for research and/or phylogenic consideration.

  20. Technologies for Beneficial Microorganisms Inocula Used as Biofertilizers

    PubMed Central

    Malusá, E.; Sas-Paszt, L.; Ciesielska, J.

    2012-01-01

    The increasing need for environmentaly friendly agricultural practices is driving the use of fertilizers based on beneficial microorganisms. The latter belong to a wide array of genera, classes, and phyla, ranging from bacteria to yeasts and fungi, which can support plant nutrition with different mechanisms. Moreover, studies on the interactions between plant, soil, and the different microorganisms are shedding light on their interrelationships thus providing new possible ways to exploit them for agricultural purposes. However, even though the inoculation of plants with these microorganisms is a well-known practice, the formulation of inocula with a reliable and consistent effect under field conditions is still a bottleneck for their wider use. The choice of the technology for inocula production and of the carrier for the formulation is key to their successful application. This paper focuses on how inoculation issues can be approached to improve the performance of beneficial microorganisms used as a tool for enhancing plant growth and yield. PMID:22547984

  1. Production of volatile metabolites by grape-associated microorganisms.

    PubMed

    Verginer, Markus; Leitner, Erich; Berg, Gabriele

    2010-07-28

    Plant-associated microorganisms fulfill important functions for their hosts. Whereas promotion of plant growth and health is well-studied, little is known about the impact of microorganisms on plant or fruit flavor. To analyze the production of volatiles of grape-associated microorganisms, samples of grapes of the red cultivar 'Blaufraenkisch' were taken during harvest time from four different vineyards in Burgenland (Austria). The production of volatiles was analyzed for the total culturable microbial communities (bacteria, yeasts, fungi) found on and in the grapes as well as for single isolates. The microbial communities produced clearly distinct aroma profiles for each vineyard and phylogenetic group. Furthermore, half of the grape-associated microorganisms produced a broad spectrum of volatile organic compounds. Exemplary, the spectrum was analyzed more in detail for three single isolates of Paenibacillus sp., Sporobolomyces roseus , and Aureobasidium pullulans . Well-known and typical flavor components of red wine were detected as being produced by microbes, for example, 2-methylbutanoic acid, 3-methyl-1-butanol, and ethyl octanoate.

  2. Exposure to airborne microorganisms, dust and endotoxin during processing of peppermint and chamomile herbs on farms.

    PubMed

    Skórska, Czesława; Sitkowska, Jolanta; Krysińska-Traczyk, Ewa; Cholewa, Grazyna; Dutkiewicz, Jacek

    2005-01-01

    The aim of this study was to determine the levels of microorganisms, dust and endotoxin in the air during processing of peppermint (Mentha piperita) and chamomile (Matricaria recutita) by herb farmers, and to examine the species composition of airborne microflora. Air samples were collected on glass fibre filters by use of personal samplers on 13 farms owned by herb cultivating farmers, located in Lublin province (eastern Poland). The concentrations of total viable microorganisms (bacteria + fungi) in the farm air during processing of peppermint herb were large, within a range from 895.1-6,015.8 x 10(3) cfu/m(3) (median 1,055.3 x 10(3) cfu/m(3)). During processing of chamomile herb they were much lower and varied within a range from 0.88-295.6 x 10(3) cfu/m(3) (median 27.3 x 10(3) cfu/m(3)). Gram-negative bacteria distinctly prevailed during processing of peppermint leaves, forming 46.4-88.5 % of the total airborne microflora. During processing of chamomile herb, Gram-negative bacteria were dominant at 3 out of 6 sampling sites forming 54.7-75.3 % of total microflora, whereas at the remaining 3 sites the most common were fungi forming 46.2-99.9 % of the total count. The species Pantoea agglomerans (synonyms: Erwinia herbicola, Enterobacter agglomerans ), having strong allergenic and endotoxic properties, distinctly prevailed among Gram-negative isolates. Among fungi, the most common species was Alternaria alternata. The concentrations of airborne dust and endotoxin determined on the examined herb farms were large. The concentrations of airborne dust during peppermint and chamomile processing ranged from 86.7-958.9 mg/m(3), and from 1.1-499.2 mg/m(3), respectively (medians 552.3 mg/m(3) and 12.3 mg/m(3)). The concentrations of airborne endotoxin determined during peppermint and chamomile processing were within a wide range 1.53-208.33 microg/m(3) and 0.005-2604.19 microg/m(3) respectively (medians 57.3 microg/m(3) and 0.96 microg/m(3)). In conclusion, farmers

  3. Screening of Microorganisms Producing Cold-Active Oxidoreductases to Be Applied in Enantioselective Alcohol Oxidation. An Antarctic Survey

    PubMed Central

    Araújo, Lidiane S.; Kagohara, Edna; Garcia, Thaís P.; Pellizari, Vivian H.; Andrade, Leandro H.

    2011-01-01

    Several microorganisms were isolated from soil/sediment samples of Antarctic Peninsula. The enrichment technique using (RS)-1-(phenyl)ethanol as a carbon source allowed us to isolate 232 psychrophile/psychrotroph microorganisms. We also evaluated the enzyme activity (oxidoreductases) for enantioselective oxidation reactions, by using derivatives of (RS)-1-(phenyl)ethanol as substrates. Among the studied microorganisms, 15 psychrophile/psychrotroph strains contain oxidoreductases that catalyze the (S)-enantiomer oxidation from racemic alcohols to their corresponding ketones. Among the identified microorganisms, Flavobacterium sp. and Arthrobacter sp. showed excellent enzymatic activity. These new bacteria strains were selected for optimization study, in which the (RS)-1-(4-methyl-phenyl)ethanol oxidation was evaluated in several reaction conditions. From these studies, it was observed that Flavobacterium sp. has an excellent enzymatic activity at 10 °C and Arthrobacter sp. at 15 and 25 °C. We have also determined the growth curves of these bacteria, and both strains showed optimum growth at 25 °C, indicating that these bacteria are psychrotroph. PMID:21673897

  4. Using natural biomass microorganisms for drinking water denitrification.

    PubMed

    Costa, Darleila Damasceno; Gomes, Anderson Albino; Fernandes, Mylena; Lopes da Costa Bortoluzzi, Roseli; Magalhães, Maria de Lourdes Borba; Skoronski, Everton

    2018-07-01

    Among the methods that are studied to eliminate nitrate from drinking water, biological denitrification is an attractive strategy. Although several studies report the use of denitrifying bacteria for nitrate removal, they usually involve the use of sewage sludge as biomass to obtain the microbiota. In the present study, denitrifying bacteria was isolated from bamboo, and variable parameters were controlled focusing on optimal bacterial performance followed by physicochemical analysis of water adequacy. In this way, bamboo was used as a source of denitrifying microorganisms, using either Immobilized Microorganisms (IM) or Suspended Microorganisms (SM) for nitrate removal. Denitrification parameters optimization was carried out by analysis of denitrification at different pH values, temperature, nitrate concentrations, carbon sources as well as different C/N ratios. In addition, operational stability and denitrification kinetics were evaluated. Microorganisms present in the biomass responsible for denitrification were identified as Proteus mirabilis. The denitrified water was submitted to physicochemical treatment such as coagulation and flocculation to adjust to the parameters of color and turbidity to drinking water standards. Denitrification using IM occurred with 73% efficiency in the absence of an external carbon source. The use of SM provided superior denitrification efficiency using ethanol (96.46%), glucose (98.58%) or glycerol (98.5%) as carbon source. The evaluation of the operational stability allowed 12 cycles of biomass reuse using the IM and 9 cycles using the SM. After physical-chemical treatment, only SM denitrified water remained within drinking water standards parameters of color and turbidity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Production of γ-aminobutyric acid by microorganisms from different food sources.

    PubMed

    Hudec, Jozef; Kobida, Ľubomír; Čanigová, Margita; Lacko-Bartošová, Magdaléna; Ložek, Otto; Chlebo, Peter; Mrázová, Jana; Ducsay, Ladislav; Bystrická, Judita

    2015-04-01

    γ-Aminobutyric acid (GABA) is a potentially bioactive component of foods and pharmaceuticals. The aim of this study was screen lactic acid bacteria belonging to the Czech Collection of Microorganisms, and microorganisms (yeast and bacteria) from 10 different food sources for GABA production by fermentation in broth or plant and animal products. Under an aerobic atmosphere, very low selectivity of GABA production (from 0.8% to 1.3%) was obtained using yeast and filamentous fungi, while higher selectivity (from 6.5% to 21.0%) was obtained with bacteria. The use of anaerobic conditions, combined with the addition of coenzyme (pyridoxal-5-phosphate) and salts (CaCl2 , NaCl), led to the detection of a low concentration of GABA precursor. Simultaneously, using an optimal temperature of 33 °C, a pH of 6.5 and bacteria from banana (Pseudomonadaceae and Enterobacteriaceae families), surprisingly, a high selectivity of GABA was obtained. A positive impact of fenugreek sprouts on the proteolytic process and GABA production from plant material as a source of GABA precursor was identified. Lactic acid bacteria for the production of new plant and animal GABA-rich products from different natural sources containing GABA precursor can be used. © 2014 Society of Chemical Industry.

  6. Classification of select category A and B bacteria by Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Samuels, Alan C.; Snyder, A. Peter; St. Amant, Diane; Emge, Darren K.; Minter, Jennifer; Campbell, Mark; Tripathi, Ashish

    2008-04-01

    Relatively few reports have investigated the determination and classification of pathogens such as the National Institute of Allergy and Infectious Diseases (NIAID) Category A Bacillus anthracis spores and cells (BA), Yersinia species, Francisella tularensis (FT), and Category B Brucella species from FTIR spectra. We investigated the classification ability of the Fourier transform infrared (FTIR) spectra of viable pathogenic and non-pathogenic NIAID Category A and B bacteria. The impact of different growth media, growth time and temperature, rolling circle filter of the data, and wavelength range were investigated for their microorganism differentiation. Various 2-D PC plots provided differential degrees of separation with respect to the four viable, bacterial genera including the BA sub-categories of pathogenic spores, vegetative cells, and nonpathogenic vegetative cells. FT spectra were separated from that of the three other genera. The BA pathogenic spore strains 1029, LA1, and Ames were clearly differentiated from the rest of the dataset. Yersinia species were distinctly separated from the remaining dataset and could also be classified by growth media. This work provided evidence that FTIR spectroscopy can separate the four major pathogenic bacterial genera of NIAID Category A and B biological threat agents.

  7. Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems--a review.

    PubMed

    Hung, Chun-Hsiung; Chang, Yi-Tang; Chang, Yu-Jie

    2011-09-01

    Anaerobic fermentative biohydrogen production, the conversion of organic substances especially from organic wastes to hydrogen gas, has become a viable and promising means of producing sustainable energy. Successful biological hydrogen production depends on the overall performance (results of interactions) of bacterial communities, i.e., mixed cultures in reactors. Mixed cultures might provide useful combinations of metabolic pathways for the processing of complex waste material ingredients, thereby supporting the more efficient decomposition and hydrogenation of biomass than pure bacteria species would. Therefore, understanding the relationships between variations in microbial composition and hydrogen production efficiency is the first step in constructing more efficient hydrogen-producing consortia, especially when complex and non-sterilized organic wastes are used as feeding substrates. In this review, we describe recent discoveries on bacterial community composition obtained from dark fermentation biohydrogen production systems, with emphasis on the possible roles of microorganisms that co-exist with common hydrogen producers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Mass Spectrometer for Airborne Micro-Organisms

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Friedlander, S. K.

    1986-01-01

    Bacteria and other micro-organisms identified continously with aid of new technique for producing samples for mass spectrometer. Technique generates aerosol of organisms and feeds to spectrometer. Given species of organism produces characteristic set of peaks in mass spectrum and thereby identified. Technique useful for monitoring bacterial makeup in environmental studies and in places where cleanliness is essential, such as hospital operating rooms, breweries, and pharmaceutical plants.

  9. Characteristics of airborne micro-organisms in a neurological intensive care unit: Results from China.

    PubMed

    Yu, Yao; Yin, Sufeng; Kuan, Yi; Xu, Yingjun; Gao, Xuguang

    2015-06-01

    To describe the characteristics of airborne micro-organisms in the environment in a Chinese neurological intensive care unit (NICU). This prospective study monitored the air environment in two wards (large and small) of an NICU in a tertiary hospital in China for 12 months, using an LWC-1 centrifugal air sampler. Airborne micro-organisms were identified using standard microbiology techniques. The mean ± SD number of airborne bacteria was significantly higher in the large ward than in the small ward (200 ± 51 colony-forming units [CFU]/m(3) versus 110 ± 40 CFU/m(3), respectively). In the large ward only, the mean number of airborne bacteria in the autumn was significantly higher than in any of the other three seasons. A total of 279 airborne micro-organisms were identified (large ward: 195; small ward: 84). There was no significant difference in the type and distribution of airborne micro-organisms between the large and small wards. The majority of airborne micro-organisms were Gram-positive cocci in both wards. These findings suggest that the number of airborne micro-organisms was related to the number of patients on the NICU ward. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  10. On-chip PMA labeling of foodborne pathogenic bacteria for viable qPCR and qLAMP detection

    USDA-ARS?s Scientific Manuscript database

    Propidium monoazide (PMA) is a membrane impermeable molecule that covalently bonds to double stranded DNA when exposed to light and inhibits the polymerase activity, thus enabling DNA amplification detection protocols that discriminate between viable and non-viable entities. Here, we present a micro...

  11. Point of care nucleic acid detection of viable pathogenic bacteria with isothermal RNA amplification based paper biosensor

    NASA Astrophysics Data System (ADS)

    Liu, Hongxing; Xing, Da; Zhou, Xiaoming

    2014-09-01

    Food-borne pathogens such as Listeria monocytogenes have been recognized as a major cause of human infections worldwide, leading to substantial health problems. Food-borne pathogen identification needs to be simpler, cheaper and more reliable than the current traditional methods. Here, we have constructed a low-cost paper biosensor for the detection of viable pathogenic bacteria with the naked eye. In this study, an effective isothermal amplification method was used to amplify the hlyA mRNA gene, a specific RNA marker in Listeria monocytogenes. The amplification products were applied to the paper biosensor to perform a visual test, in which endpoint detection was performed using sandwich hybridization assays. When the RNA products migrated along the paper biosensor by capillary action, the gold nanoparticles accumulated at the designated Test line and Control line. Under optimized experimental conditions, as little as 0.5 pg/μL genomic RNA from Listeria monocytogenes could be detected. The whole assay process, including RNA extraction, amplification, and visualization, can be completed within several hours. The developed method is suitable for point-of-care applications to detect food-borne pathogens, as it can effectively overcome the false-positive results caused by amplifying nonviable Listeria monocytogenes.

  12. On the Isolation of Halophilic Microorganisms from Salt Deposits of Great Geological Age

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Denner, Ewald; Orans, Robin (Editor)

    1993-01-01

    From salt sediments of Triassic or Permian ace from various locations in the world halophilic microorganisms were isolated. Molecular characteristics of several of the isolates suggested they belong to the archaebacteriae. One group appears to represent novel strains; several properties or one such isolate, strain BIp, are described here. The existence of viable microorganisms in ancient sediments would have great implications with respect to our notions on evolution, the search for life in extraterrestrial environments and the long- term survival of functional biological structures. Of crucial importance is thus the question if these microorganisms existed in the salt since the time of deposition or invaded at some later date. Some suggestions to address these issues experimentally are discussed.

  13. On the isolation of halophilic microorganisms from salt deposits of great geological age

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Denner, Ewald

    1993-01-01

    From salt sediments of Triassic or Permian age from various locations in the world halophilic microorganisms were isolated. Molecular characteristics of several of the isolates suggested they belong to the archaebacteria. One group appears to represent novel strains; several properties of one such isolate, strain BIp, are described here. The existence of viable microorganisms in ancient sediment would have great implications with respect to our notions on evolution, the research for life in extraterrestrial environments, and the longterm survival of functional biological structures. Of crucial importance is thus the question if these microorganisms existed in the salt since the time of deposition or invaded at some later date. Some suggestions to address these issues experimentally are discussed.

  14. Distinguishing Indigenous from Contaminating Microorganisms in Rock Samples from a Deep Au Mine in South Africa

    NASA Technical Reports Server (NTRS)

    Onstott, T. C.; Moser, D. P.; Fredrickson, J. K.; Pfiffner, S. M.; Phelps, T. J.; White, D. C.; Peacock, A.; Balkwill, D.; Hoover, R. B.; Krumholz, L.; hide

    2002-01-01

    The concentration and distribution of microbial biomass within deep subsurface rock strata is not well known To date, most analyses are from water samples and a few cores. Hand samples, block samples and cores from an actively mined Carbon Leader ore zone at 3.2 kilometers depth were collected for microbial analyses. The Carbon Leader was comprised of quartz, S-bearing aromatic hydrocarbons, Fe(III) oxyhydroxides, sulfides, uraninite, Au and minor amounts of sulfate. The porosity of the ore was 1% and the maximum pore throat diameter was less than 0.1 microns; whereas, the porosity of the adjacent quartzite was .02 to .9% with a maximum pore throat diameter of 0.9 microns. Rhodamine dye, fluorescent microspheres, microbial enrichments, autoradiography, phospholipid fatty acid (PLEA) and 16S rDNA analyses were performed on these rock samples and the mining water. The date indicate that the levels of solute contamination less than 0.01% for pared rock samples. Despite this low level of contamination, PLEA, microbial enrichment, DNA and tracer analyses and calculations indicate that most of the viable microorganisms in the Carbon Leader represent gram negative aerobic heterotrophs and ammonia oxidizers that are phylogenetically identical or closely related to service water microorganisms. These microbial contaminants probably infiltrated the low permeability rock through mining-induced microfractures. Geochemical data also detected drilling water in a fault zone approx. 1 meter behind the rock face encountered during coring. The mining induced macrofractures that are common at these great depths act as pathways for the drilling water borne microorganisms into the lower temperature zone that extends several meters into rock strata from the rock face. Combined PLEA and T- RFLP analyses of the service water and Carbon Leader samples indicate that the concentration of indigenous microorganisms was less than 10(exp 2) cells/gram. Such a low concentrations result from the

  15. Influence of adhesion to activated carbon particles on the viability of waterborne pathogenic bacteria under flow.

    PubMed

    van der Mei, Henny C; Atema-Smit, Jelly; Jager, Debbie; Langworthy, Don E; Collias, Dimitris I; Mitchell, Michael D; Busscher, Henk J

    2008-07-01

    In rural areas around the world, people often rely on water filtration plants using activated carbon particles for safe water supply. Depending on the carbon surface, adhering microorganisms die or grow to form a biofilm. Assays to assess the efficacy of activated carbons in bacterial removal do not allow direct observation of bacterial adhesion and the determination of viability. Here we propose to use a parallel plate flow chamber with carbon particles attached to the bottom plate to study bacterial adhesion to individual carbon particles and determine the viability of adhering bacteria. Observation and enumeration is done after live/dead staining in a confocal laser scanning microscope. Escherichiae coli adhered in higher numbers than Raoultella terrigena, except to a coconut-based carbon, which showed low bacterial adhesion compared to other wood-based carbon types. After adhesion, 83-96% of the bacteria adhering to an acidic carbon were dead, while on a basic carbon 54-56% were dead. A positively charged, basic carbon yielded 76-78% bacteria dead, while on a negatively charged coconut-based carbon only 32-37% were killed upon adhesion. The possibility to determine both adhesion as well as the viability of adhering bacteria upon adhesion to carbon particles is most relevant, because if bacteria adhere but remain viable, this still puts the water treatment system at risk, as live bacteria can grow and form a biofilm that can then be shedded to cause contamination. (c) 2008 Wiley Periodicals, Inc.

  16. Co-Cultivation—A Powerful Emerging Tool for Enhancing the Chemical Diversity of Microorganisms

    PubMed Central

    Marmann, Andreas; Aly, Amal H.; Lin, Wenhan; Wang, Bingui; Proksch, Peter

    2014-01-01

    Marine-derived bacteria and fungi are promising sources of novel bioactive compounds that are important for drug discovery programs. However, as encountered in terrestrial microorganisms there is a high rate of redundancy that results in the frequent re-discovery of known compounds. Apparently only a part of the biosynthetic genes that are harbored by fungi and bacteria are transcribed under routine laboratory conditions which involve cultivation of axenic microbial strains. Many biosynthetic genes remain silent and are not expressed in vitro thereby seriously limiting the chemical diversity of microbial compounds that can be obtained through fermentation. In contrast to this, co-cultivation (also called mixed fermentation) of two or more different microorganisms tries to mimic the ecological situation where microorganisms always co-exist within complex microbial communities. The competition or antagonism experienced during co-cultivation is shown to lead to a significantly enhanced production of constitutively present compounds and/or to an accumulation of cryptic compounds that are not detected in axenic cultures of the producing strain. This review highlights the power of co-cultivation for increasing the chemical diversity of bacteria and fungi drawing on published studies from the marine and from the terrestrial habitat alike. PMID:24549204

  17. Electrokinetic transport of aerobic microorganisms under low-strength electric fields.

    PubMed

    Maillacheruvu, Krishnanand Y; Chinchoud, Preethi R

    2011-01-01

    To investigate the feasibility of utilizing low strength electric fields to transport commonly available mixed cultures such as those from an activated sludge process, bench scale batch reactor studies were conducted in sand and sandy loam soils. A readily biodegradable substrate, dextrose, was used to test the activity of the transported microorganisms. Electric field strengths of 7V, 10.5V, and 14V were used. Results from this investigation showed that an electric field strength of 0.46 Volts per cm was sufficient to transport activated sludge microorganisms across a sandy loam soil across a distance of about 8 cm in 72 h. More importantly, the electrokinetically transported microbial culture remained active and viable after the transport process and was biodegrade 44% of the dextrose in the soil medium. Electrokinetic treatment without microorganisms resulted in removal of 37% and the absence of any treatment yielded a removal of about 15%.

  18. Role of various microorganisms on Tc behavior in sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pignolet, L.; Auvray, F.; Fonsny, K.

    1989-11-01

    Marine bacteria (Moraxella sp., Planococcus sp. and a mixed population of anaerobes) from a coastal sediment were found to concentrate Tc. Maximum concentration of this element occurred during the stationary phase of growth of the bacteria, at low redox potential. A metabolic process seems responsible for Tc concentration by bacteria, in which it binds to high molecular weight cellular constituents. Polysaccharidic polymers, which were visualized around the bacterial cells with the scanning electron microscope, might bind Tc, but direct experimental evidence in favor of this hypothesis was not yet obtained. The role of sedimentary bacteria in the behavior of Tcmore » in the marine environment is briefly discussed. The action of sulfate-reducing microorganisms is considered.« less

  19. Lateral gene exchanges shape the genomes of amoeba-resisting microorganisms.

    PubMed

    Bertelli, Claire; Greub, Gilbert

    2012-01-01

    Based on Darwin's concept of the tree of life, vertical inheritance was thought to be dominant, and mutations, deletions, and duplication were streaming the genomes of living organisms. In the current genomic era, increasing data indicated that both vertical and lateral gene inheritance interact in space and time to trigger genome evolution, particularly among microorganisms sharing a given ecological niche. As a paradigm to their diversity and their survival in a variety of cell types, intracellular microorganisms, and notably intracellular bacteria, were considered as less prone to lateral genetic exchanges. Such specialized microorganisms generally have a smaller gene repertoire because they do rely on their host's factors for some basic regulatory and metabolic functions. Here we review events of lateral gene transfer (LGT) that illustrate the genetic exchanges among intra-amoebal microorganisms or between the microorganism and its amoebal host. We tentatively investigate the functions of laterally transferred genes in the light of the interaction with their host as they should confer a selective advantage and success to the amoeba-resisting microorganisms (ARMs).

  20. Lateral gene exchanges shape the genomes of amoeba-resisting microorganisms

    PubMed Central

    Bertelli, Claire; Greub, Gilbert

    2012-01-01

    Based on Darwin's concept of the tree of life, vertical inheritance was thought to be dominant, and mutations, deletions, and duplication were streaming the genomes of living organisms. In the current genomic era, increasing data indicated that both vertical and lateral gene inheritance interact in space and time to trigger genome evolution, particularly among microorganisms sharing a given ecological niche. As a paradigm to their diversity and their survival in a variety of cell types, intracellular microorganisms, and notably intracellular bacteria, were considered as less prone to lateral genetic exchanges. Such specialized microorganisms generally have a smaller gene repertoire because they do rely on their host's factors for some basic regulatory and metabolic functions. Here we review events of lateral gene transfer (LGT) that illustrate the genetic exchanges among intra-amoebal microorganisms or between the microorganism and its amoebal host. We tentatively investigate the functions of laterally transferred genes in the light of the interaction with their host as they should confer a selective advantage and success to the amoeba-resisting microorganisms (ARMs). PMID:22919697

  1. Periodontopathic microorganisms in peripheric blood after scaling and root planing.

    PubMed

    Lafaurie, Gloria Inés; Mayorga-Fayad, Isabel; Torres, María Fernanda; Castillo, Diana Marcela; Aya, Maria Rosario; Barón, Alexandra; Hurtado, Paola Andrea

    2007-10-01

    The objective of this study was to evaluate the frequency of periodontopathic and other subgingival anaerobic and facultative bacteria in the bloodstream following scaling and root planing (SRP). Forty-two patients with severe generalized chronic periodontitis (GChP) and generalized aggressive periodontitis (GAgP) were included in the study. Four samples of peripheric blood were drawn from the cubital vein at different times: Pre-treatment: immediately before the SRP procedure (T1), immediately after treatment (T2), 15 min. post-treatment (T3) and 30 min. post-treatment (T4). In order to identify the presence of microorganisms in blood, subcultures were conducted under anaerobic conditions. 80.9% of the patients presented positive cultures after SRP and it occurred more frequently immediately after treatment; however, 19% of the patients still had microorganisms in the bloodstream 30 min. after the procedure. The periodontopathic microorganisms more frequently identified were Porphyromonas gingivalis and Micromonas micros. Campylobacter spp., Eikenella corrodens, Tannerella forsythensis, Fusobacterium spp. and Prevotella intermedia were isolated less often. Actinomyces spp. were also found frequently during bacteraemia after SRP. SRP induced bacteraemia associated with anaerobic bacteria, especially in patients with periodontal disease.

  2. [DIFFERENTIAL SENSITIVITY OF MICROORGANISMS TO POLYHEXAMETHYLENEGUANIDINE].

    PubMed

    Lysytsya, A V; Mandygra, Y M; Bojko, O P; Romanishyna, O O; Mandygra, M S

    2015-01-01

    Factors identified that affect the sensitivity of microorganisms to polyhexamethyleneguanidine (PHMG). Salts of PHMG chloride, valerate, maleate, succinate was to use. Test strains of Esherichia coli, Staphylococcus aureus, Bacillus cereus, Leptospira interrogans, Paenibacillus larvae, Mycobacterium bovis, M. avium, M. fortuitum, Aspergillus niger and some strains of viruses are taken as objects of research. We have determined that the cytoplasm membrane phospholipids is main "target" for the polycation molecules of PHMG. A differential sensitivity of the microorganisms to this drug is primarily determined by relative amount of lipids in membrane and their accessibility. Such trends exist: increase the relative contents of anionic lipids and more negative surface electric potential of membrane, and reduction of the sizes fat acid remainder of lipids bring to increase of microorganism sensitivity. Types of anion salt PHMG just have a certain value. Biocide activity of PHMG chloride is more, than its salts with organic acid. Feasibility of combining PHMG with other biocides in the multicomponent disinfectants studied and analyzed. This combination does not lead to a significant increase in the sensitivity of microorganisms tested in most cases. Most species of pathogenic bacteria can be quickly neutralized by aqueous solutions of PHMG in less than 1% concentrations.

  3. Bacteria and genetically modified bacteria as cancer therapeutics: Current advances and challenges.

    PubMed

    Nallar, Shreeram C; Xu, De-Qi; Kalvakolanu, Dhan V

    2017-01-01

    Bacteria act as pro- or anti- tumorigenic agents. Whole bacteria or cytotoxic or immunogenic peptides carried by them exert potent anti-tumor effects in the experimental models of cancer. The use of attenuated microorganism(s) e.g., BCG to treat human urinary bladder cancer was found to be superior compared to standard chemotherapy. Although the phase-I clinical trials with Salmonella enterica serovar Typhimurium, has shown limited benefits in human subjects, a recent pre-clinical trial in pet dogs with tumors reported some subjects benefited from this treatment strain. In addition to the attenuated host strains derived by conventional mutagenesis, recombinant DNA technology has been applied to a few microorganisms that have been evaluated in the context of tumor colonization and eradication using mouse models. There is an enormous surge in publications describing bacterial anti-cancer therapies in the past 15years. Vectors for delivering shRNAs that target oncogenic products, express tumor suppressor genes and immunogenic proteins have been developed. These approaches have showed promising anti-tumor activity in mouse models against various tumors. These can be potential therapeutics for humans in the future. In this review, some conceptual and practical issues on how to improve these agents for human applications are discussed. Copyright © 2016. Published by Elsevier Ltd.

  4. The plastic-associated microorganisms of the North Pacific Gyre.

    PubMed

    Carson, Henry S; Nerheim, Magnus S; Carroll, Katherine A; Eriksen, Marcus

    2013-10-15

    Microorganisms likely mediate processes affecting the fate and impacts of marine plastic pollution, including degradation, chemical adsorption, and colonization or ingestion by macroorganisms. We investigated the relationship between plastic-associated microorganism communities and factors such as location, temperature, salinity, plankton abundance, plastic concentration, item size, surface roughness, and polymer type. Small plastic items from the surface of the North Pacific Gyre in 2011 were examined using scanning electron microscopy. Bacillus bacteria (mean 1664 ± 247 individuals mm(-2)) and pennate diatoms (1097 ± 154 mm(-2)) were most abundant, with coccoid bacteria, centric diatoms, dinoflagellates, coccolithophores, and radiolarians present. Bacterial abundance was patchy, but increased on foamed polystyrene. Diatom abundance increased on items with rough surfaces and at sites with high plastic concentrations. Morphotype richness increased slightly on larger fragments, and a biogeographic transition occurred between pennate diatom groups. Better characterizing this community will aid in understanding how it interacts with plastic pollution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. CRISPR-Cas Technologies and Applications in Food Bacteria.

    PubMed

    Stout, Emily; Klaenhammer, Todd; Barrangou, Rodolphe

    2017-02-28

    Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins form adaptive immune systems that occur in many bacteria and most archaea. In addition to protecting bacteria from phages and other invasive mobile genetic elements, CRISPR-Cas molecular machines can be repurposed as tool kits for applications relevant to the food industry. A primary concern of the food industry has long been the proper management of food-related bacteria, with a focus on both enhancing the outcomes of beneficial microorganisms such as starter cultures and probiotics and limiting the presence of detrimental organisms such as pathogens and spoilage microorganisms. This review introduces CRISPR-Cas as a novel set of technologies to manage food bacteria and offers insights into CRISPR-Cas biology. It primarily focuses on the applications of CRISPR-Cas systems and tools in starter cultures and probiotics, encompassing strain-typing, phage resistance, plasmid vaccination, genome editing, and antimicrobial activity.

  6. Rapid assessment of viable but non-culturable Bacillus coagulans MTCC 5856 in commercial formulations using Flow cytometry.

    PubMed

    Majeed, Muhammed; Majeed, Shaheen; Nagabhushanam, Kalyanam; Punnapuzha, Ardra; Philip, Sheena; Mundkur, Lakshmi

    2018-01-01

    Accurate enumeration of bacterial count in probiotic formulation is imperative to ensure that the product adheres to regulatory standards and citation in consumer product label. Standard methods like plate count, can enumerate only replicating bacterial population under selected culture conditions. Viable but non culturable bacteria (VBNC) retain characteristics of living cells and can regain cultivability by a process known as resuscitation. This is a protective mechanism adapted by bacteria to evade stressful environmental conditions. B. coagulans MTCC 5856(LactoSpore®) is a probiotic endospore which can survive for decades in hostile environments without dividing. In the present study, we explored the use of flow cytometry to enumerate the viable count of B. coagulans MTCC 5856 under acidic and alkaline conditions, high temperature and in commercial formulations like compressed tablets and capsules. Flow cytometry (FCM) was comparable to plate count method when the spores were counted at physiological conditions. We show that VBNC state is induced in B. coagulans MTCC 5856by high temperature and acidic pH. The cells get resuscitated under physiological conditions and FCM was sensitive to detect the VBNC spores. Flow cytometry showed excellent ability to assess the viable spore count in commercial probiotic formulations of B. coagulans MTCC 5856. The results establish Flow cytometry as a reliable method to count viable bacteria in commercial probiotic preparations. Sporulation as well as existence as VBNC could contribute to the extreme stability of B. coagulans MTCC 5856.

  7. Rapid assessment of viable but non-culturable Bacillus coagulans MTCC 5856 in commercial formulations using Flow cytometry

    PubMed Central

    Majeed, Muhammed; Majeed, Shaheen; Nagabhushanam, Kalyanam; Punnapuzha, Ardra; Philip, Sheena

    2018-01-01

    Accurate enumeration of bacterial count in probiotic formulation is imperative to ensure that the product adheres to regulatory standards and citation in consumer product label. Standard methods like plate count, can enumerate only replicating bacterial population under selected culture conditions. Viable but non culturable bacteria (VBNC) retain characteristics of living cells and can regain cultivability by a process known as resuscitation. This is a protective mechanism adapted by bacteria to evade stressful environmental conditions. B. coagulans MTCC 5856(LactoSpore®) is a probiotic endospore which can survive for decades in hostile environments without dividing. In the present study, we explored the use of flow cytometry to enumerate the viable count of B. coagulans MTCC 5856 under acidic and alkaline conditions, high temperature and in commercial formulations like compressed tablets and capsules. Flow cytometry (FCM) was comparable to plate count method when the spores were counted at physiological conditions. We show that VBNC state is induced in B. coagulans MTCC 5856by high temperature and acidic pH. The cells get resuscitated under physiological conditions and FCM was sensitive to detect the VBNC spores. Flow cytometry showed excellent ability to assess the viable spore count in commercial probiotic formulations of B. coagulans MTCC 5856. The results establish Flow cytometry as a reliable method to count viable bacteria in commercial probiotic preparations. Sporulation as well as existence as VBNC could contribute to the extreme stability of B. coagulans MTCC 5856. PMID:29474436

  8. Potential applications of nonthermal plasmas against biofilm-associated micro-organisms in vitro.

    PubMed

    Puligundla, P; Mok, C

    2017-05-01

    Biofilms as complex microbial communities attached to surfaces pose several challenges in different sectors, ranging from food and healthcare to desalination and power generation. The biofilm mode of growth allows microorganisms to survive in hostile environments and biofilm cells exhibit distinct physiology and behaviour in comparison with their planktonic counterparts. They are ubiquitous, resilient and difficult to eradicate due to their resistant phenotype. Several chemical-based cleaning and disinfection regimens are conventionally used against biofilm-dwelling micro-organisms in vitro. Although such approaches are generally considered to be effective, they may contribute to the dissemination of antimicrobial resistance and environmental pollution. Consequently, advanced green technologies for biofilm control are constantly emerging. Disinfection using nonthermal plasmas (NTPs) is one of the novel strategies having a great potential for control of biofilms of a broad spectrum of micro-organisms. This review discusses several aspects related to the inactivation of biofilm-associated bacteria and fungi by different types of NTPs under in vitro conditions. A brief introduction summarizes prevailing methods in biofilm inactivation, followed by introduction to gas discharge plasmas, active plasma species and their inactivating mechanism. Subsequently, significance and aspects of NTP inactivation of biofilm-associated bacteria, especially those of medical importance, including opportunistic pathogens, oral pathogenic bacteria, foodborne pathogens and implant bacteria, are discussed. The remainder of the review discusses majorly about the synergistic effect of NTPs and their activity against biofilm-associated fungi, especially Candida species. © 2017 The Society for Applied Microbiology.

  9. Functional protein-based nanomaterial produced in microorganisms recognized as safe: A new platform for biotechnology.

    PubMed

    Cano-Garrido, Olivia; Sánchez-Chardi, Alejandro; Parés, Sílvia; Giró, Irene; Tatkiewicz, Witold I; Ferrer-Miralles, Neus; Ratera, Imma; Natalello, Antonino; Cubarsi, Rafael; Veciana, Jaume; Bach, Àlex; Villaverde, Antonio; Arís, Anna; Garcia-Fruitós, Elena

    2016-10-01

    Inclusion bodies (IBs) are protein-based nanoparticles formed in Escherichia coli through stereospecific aggregation processes during the overexpression of recombinant proteins. In the last years, it has been shown that IBs can be used as nanostructured biomaterials to stimulate mammalian cell attachment, proliferation, and differentiation. In addition, these nanoparticles have also been explored as natural delivery systems for protein replacement therapies. Although the production of these protein-based nanomaterials in E. coli is economically viable, important safety concerns related to the presence of endotoxins in the products derived from this microorganism need to be addressed. Lactic acid bacteria (LAB) are a group of food-grade microorganisms that have been classified as safe by biologically regulatory agencies. In this context, we have demonstrated herein, for the first time, the production of fully functional, IB-like protein nanoparticles in LAB. These nanoparticles have been fully characterized using a wide range of techniques, including field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectroscopy, zymography, cytometry, confocal microscopy, and wettability and cell coverage measurements. Our results allow us to conclude that these materials share the main physico-chemical characteristics with IBs from E. coli and moreover are devoid of any harmful endotoxin contaminant. These findings reveal a new platform for the production of protein-based safe products with high pharmaceutical interest. The development of both natural and synthetic biomaterials for biomedical applications is a field in constant development. In this context, E. coli is a bacteria that has been widely studied for its ability to naturally produce functional biomaterials with broad biomedical uses. Despite being effective, products derived from this species contain membrane

  10. Immunological relatedness of ribosomes from mycobacteria, nocardiae and corynebacteria, and microorganisms in leprosy lesions.

    PubMed Central

    Laub, R; Delville, J; Cocito, C

    1978-01-01

    Serological relatedness of ribosomes from microorganisms of the Mycobacterium, Nocardia, and Corynebacterium genera has been analyzed by the microplate immunodiffusion technique. Mycobacterium and Nocardia proved homogeneous and closely related taxa, whereas Corynebacterium was found to be a heterogeneous phylum connected by remote links to the others. The taxonomic position of "diphtheroid microorganisms" (non-acid-fast, gram-positive bacteria morphologically similar to corynebactria), which were found together with Mycobacterium leprae in human leprosy lesions, was also investigated. Ribosomes of diphtheroid bacteria strongly cross-reacted with antisera against several mycobacteria and nocardiae but not against corynebacteria. Moreover, ribosomes from independently isolated diphtheroid strains proved serologically related and yielded strong cross-reactions with antisera against M. leprae as well as with sera from leprosy patients. Hence, diphtheroid microorganisms represent a homogeneous group immunologically related to mycobacteria in general and more specifically to M. leprae. Images PMID:730371

  11. Detection of pathogenic gram negative bacteria using infrared thermography

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Divya, M. P.; Bagavathiappan, S.; Thomas, Sabu; Philip, John

    2012-11-01

    Detection of viable bacteria is of prime importance in all fields of microbiology and biotechnology. Conventional methods of enumerating bacteria are often time consuming and labor-intensive. All living organisms generate heat due to metabolic activities and hence, measurement of heat energy is a viable tool for detection and quantification of bacteria. In this article, we employ a non-contact and real time method - infrared thermography (IRT) for measurement of temperature variations in four clinically significant gram negative pathogenic bacteria, viz. Vibrio cholerae, Vibrio mimicus, Proteus mirabilis and Pseudomonas aeruginosa. We observe that, the energy content, defined as the ratio of heat generated by bacterial metabolic activities to the heat lost from the liquid medium to the surrounding, vary linearly with the bacterial concentration in all the four pathogenic bacteria. The amount of energy content observed in different species is attributed to their metabolisms and morphologies that affect the convection velocity and hence heat transport in the medium.

  12. Airborne Bacteria in an Urban Environment

    PubMed Central

    Mancinelli, Rocco L.; Shulls, Wells A.

    1978-01-01

    Samples were taken at random intervals over a 2-year period from urban air and tested for viable bacteria. The number of bacteria in each sample was determined, and each organism isolated was identified by its morphological and biochemical characteristics. The number of bacteria found ranged from 0.013 to 1.88 organisms per liter of air sampled. Representatives of 19 different genera were found in 21 samples. The most frequently isolated organisms and their percent of occurence were Micrococcus (41%), Staphylococcus (11%), and Aerococcus (8%). The bacteria isolated were correlated with various weather and air pollution parameters using the Pearson product-moment correlation coefficient method. Statistically significant correlations were found between the number of viable bacteria isolated and the concentrations of nitric oxide (−0.45), nitrogen dioxide (+0.43), and suspended particulate pollutants (+0.56). Calculated individually, the total number of Micrococcus, Aerococcus, and Staphylococcus, number of rods, and number of cocci isolated showed negative correlations with nitric oxide and positive correlations with nitrogen dioxide and particulates. Statistically significant positive correlations were found between the total number of rods isolated and the concentration of nitrogen dioxide (+0.54) and the percent relative humidity (+0.43). The other parameters tested, sulfur dioxide, hydrocarbons, and temperature, showed no significant correlations. Images PMID:677875

  13. Detection and cultivation of indigenous microorganisms in Mesozoic claystone core samples from the Opalinus Clay Formation (Mont Terri Rock Laboratory)

    NASA Astrophysics Data System (ADS)

    Mauclaire, L.; McKenzie, J. A.; Schwyn, B.; Bossart, P.

    Although microorganisms have been isolated from various deep-subsurface environments, the persistence of microbial activity in claystones buried to great depths and on geological time scales has been poorly studied. The presence of in-situ microbial life in the Opalinus Clay Formation (Mesozoic claystone, 170 million years old) at the Mont Terri Rock Laboratory, Canton Jura, Switzerland was investigated. Opalinus Clay is a host rock candidate for a radioactive waste repository. Particle tracer tests demonstrated the uncontaminated nature of the cored samples, showing their suitability for microbiological investigations. To determine whether microorganisms are a consistent and characteristic component of the Opalinus Clay Formation, two approaches were used: (i) the cultivation of indigenous micoorganisms focusing mainly on the cultivation of sulfate-reducing bacteria, and (ii) the direct detection of molecular biomarkers of bacteria. The goal of the first set of experiments was to assess the presence of cultivable microorganisms within the Opalinus Clay Formation. After few months of incubation, the number of cell ranged from 0.1 to 2 × 10 3 cells ml -1 media. The microorganisms were actively growing as confirmed by the observation of dividing cells, and detection of traces of sulfide. To avoid cultivation bias, quantification of molecular biomarkers (phospholipid fatty acids) was used to assess the presence of autochthonous microorganisms. These molecules are good indicators of the presence of living cells. The Opalinus Clay contained on average 64 ng of PLFA g -1 dry claystone. The detected microbial community comprises mainly Gram-negative anaerobic bacteria as indicated by the ratio of iso/anteiso phospholipids (about 2) and the detection of large amount of β-hydroxy substituted fatty acids. The PLFA composition reveals the presence of specific functional groups of microorganisms in particular sulfate-reducing bacteria ( Desulfovibrio, Desulfobulbus, and

  14. Alkalizing Reactions Streamline Cellular Metabolism in Acidogenic Microorganisms

    PubMed Central

    Arioli, Stefania; Ragg, Enzio; Scaglioni, Leonardo; Fessas, Dimitrios; Signorelli, Marco; Karp, Matti; Daffonchio, Daniele; De Noni, Ivano; Mulas, Laura; Oggioni, Marco; Guglielmetti, Simone; Mora, Diego

    2010-01-01

    An understanding of the integrated relationships among the principal cellular functions that govern the bioenergetic reactions of an organism is necessary to determine how cells remain viable and optimise their fitness in the environment. Urease is a complex enzyme that catalyzes the hydrolysis of urea to ammonia and carbonic acid. While the induction of urease activity by several microorganisms has been predominantly considered a stress-response that is initiated to generate a nitrogen source in response to a low environmental pH, here we demonstrate a new role of urease in the optimisation of cellular bioenergetics. We show that urea hydrolysis increases the catabolic efficiency of Streptococcus thermophilus, a lactic acid bacterium that is widely used in the industrial manufacture of dairy products. By modulating the intracellular pH and thereby increasing the activity of β-galactosidase, glycolytic enzymes and lactate dehydrogenase, urease increases the overall change in enthalpy generated by the bioenergetic reactions. A cooperative altruistic behaviour of urease-positive microorganisms on the urease-negative microorganisms within the same environment was also observed. The physiological role of a single enzymatic activity demonstrates a novel and unexpected view of the non-transcriptional regulatory mechanisms that govern the bioenergetics of a bacterial cell, highlighting a new role for cytosol-alkalizing biochemical pathways in acidogenic microorganisms. PMID:21152088

  15. Airborne bacteria and fungi associated with waste-handling work.

    PubMed

    Park, Donguk; Ryu, Seunghun; Kim, Shinbum; Byun, Hyaejeong; Yoon, Chungsik; Lee, Kyeongmin

    2013-01-01

    Municipal workers handling household waste are potentially exposed to a variety of toxic and pathogenic substances, in particular airborne bacteria, gram-negative bacteria (GNB), and fungi. However, relatively little is known about the conditions under which exposure is facilitated. This study assessed levels of airborne bacteria, GNB, and fungi, and examined these in relation to the type of waste-handling activity (collection, transfer, transport, and sorting at the waste preprocessing plant), as well as a variety of other environmental and occupational factors. Airborne microorganisms were sampled using an Andersen single-stage sampler equipped with agar plates containing the appropriate nutritional medium and then cultured to determine airborne levels. Samples were taken during collection, transfer, transport, and sorting of household waste. Multiple regression analysis was used to identify environmental and occupational factors that significantly affect airborne microorganism levels during waste-handling activities. The "type of waste-handling activity" was the only factor that significantly affected airborne levels of bacteria and GNB, accounting for 38% (P = 0.029) and 50% (P = 0.0002) of the variation observed in bacteria and GNB levels, respectively. In terms of fungi, the type of waste-handling activity (R2 = 0.76) and whether collection had also occurred on the day prior to sampling (P < 0.0001, R2 = 0.78) explained most of the observed variation. Given that the type of waste-handling activity was significantly correlated with levels of bacteria, GNB, and fungi, we suggest that various engineering, administrative, and regulatory measures should be considered to reduce the occupational exposure to airborne microorganisms in the waste-handling industry.

  16. Bacteria and fungi inactivation by photocatalysis under UVA irradiation: liquid and gas phase.

    PubMed

    Rodrigues-Silva, Caio; Miranda, Sandra M; Lopes, Filipe V S; Silva, Mário; Dezotti, Márcia; Silva, Adrián M T; Faria, Joaquim L; Boaventura, Rui A R; Vilar, Vítor J P; Pinto, Eugénia

    2017-03-01

    In the last decade, environmental risks associated with wastewater treatment plants (WWTPs) have become a concern in the scientific community due to the absence of specific legislation governing the occupational exposure limits (OEL) for microorganisms present in indoor air. Thus, it is necessary to develop techniques to effectively inactivate microorganisms present in the air of WWTPs facilities. In the present work, ultraviolet light A radiation was used as inactivation tool. The microbial population was not visibly reduced in the bioaerosol by ultraviolet light A (UVA) photolysis. The UVA photocatalytic process for the inactivation of microorganisms (bacteria and fungi, ATCC strains and isolates from indoor air samples of a WWTP) using titanium dioxide (TiO 2 P25) and zinc oxide (ZnO) was tested in both liquid-phase and airborne conditions. In the slurry conditions at liquid phase, P25 showed a better performance in inactivation. For this reason, gas-phase assays were performed in a tubular photoreactor packed with cellulose acetate monolithic structures coated with P25. The survival rate of microorganisms under study decreased with the catalyst load and the UVA exposure time. Inactivation of fungi was slower than resistant bacteria, followed by Gram-positive bacteria and Gram-negative bacteria. Graphical abstract Inactivation of fungi and bacteria in gas phase by photocatalitic process performed in a tubular photoreactor packed with cellulose acetate monolith structures coated with TiO 2 .

  17. Bacteria in deep coastal plain sediments of Maryland: A possible source of CO2 to groundwater

    NASA Astrophysics Data System (ADS)

    Chapelle, Francis H.; Zelibor, Joseph L., Jr.; Grimes, D. Jay; Knobel, Leroy L.

    1987-08-01

    Nineteen cores of unconsolidated Coastal Plain sediments obtained from depths of 14 to 182 m below land surface near Waldorf, Maryland, were collected and examined for metabolically active bacteria. The age of the sediments cored range from Miocene to Early Cretaceous. Acridine orange direct counts of total (viable and nonviable) bacteria in core subsamples ranged from 108 to 104 bacteria/g of dry sediment. Direct counts of viable bacteria ranged from 106 to 103 bacteria/g of dry sediment. Three cores contained viable methanogenic bacteria, and seven cores contained viable sulfate-reducing bacteria. The observed presence of bacteria in these sediments suggest that heterotrophic bacterial metabolism, with lignitic organic material as the primary substrate, is a plausible source of CO2 to groundwater. However, the possibility that abiotic processes also produce CO2 cannot be ruled out. Estimated rates of CO2 production in the noncalcareous Magothy/Upper Patapsco and Lower Patapsco aquifers based on mass balance of dissolved inorganic carbon, groundwater flow rates, and flow path segment lengths are in the range 10-3 to 10-5 mmol L-1 yr-1. Isotope balance calculations suggest that aquifer-generated CO2 is much heavier isotopically (˜—10 to + 5 per mil) than lignite (˜-24 per mil) present in these sediments. This may reflect isotopic fractionation during methanogenesis and possibly other bacterially mediated processes.

  18. Presence of aerobic micro-organisms and their influence on basic semen parameters in infertile men.

    PubMed

    Filipiak, E; Marchlewska, K; Oszukowska, E; Walczak-Jedrzejowska, R; Swierczynska-Cieplucha, A; Kula, K; Slowikowska-Hilczer, J

    2015-09-01

    Urogenital tract infections in males are one of the significant etiological factors in infertility. In this prospective study, 72 patients with abnormal semen parameters or any other symptoms of urogenital tract infection were examined. Semen analysis according to the WHO 2010 manual was performed together with microbial assessment: aerobic bacteria culture, Chlamydia antigen test, Candida culture, Ureaplasma and Mycoplasma-specific culture. In total, 69.4% of semen samples were positive for at least one micro-organism. Ureaplasma sp. was the most common micro-organism found in 33% of semen samples of infertile patients with suspected male genital tract infection. The 2nd most common micro-organisms were Enterococcus faecalis (12.5%) and Escherichia coli (12.5%), followed by Staphylococcus aureus (7%), Chlamydia trachomatis (7%) and Candida sp. (5.6%). Generally, bacteria were sensitive to at least one of the antibiotics tested. No statistically significant relationship was observed between the presence of aerobic micro-organisms in semen and basic semen parameters: volume, pH, concentration, total count, motility, vitality and morphology. © 2014 Blackwell Verlag GmbH.

  19. Identification of selected microorganisms from activated sludge capable of benzothiazole and benzotriazole transformation.

    PubMed

    Kowalska, Katarzyna; Felis, Ewa

    2015-01-01

    Benzothiazole (BT) and benzotriazole (BTA) are present in the environment - especially in urban and industrial areas, usually as anthropogenic micropollutants. BT and BTA have been found in the municipal and industrial wastewater, rivers, soil, groundwater, sediments and sludge. The origins of those substances' presence in the environment are various industry branches (food, chemical, metallurgical, electrical), households and surface runoff from industrial areas. Increasingly strict regulations on water quality and the fact that the discussed compounds are poorly biodegradable, make them a serious problem in the environment. Considering this, it is important to look for environmentally friendly and socially acceptable ways to remove BT and BTA. The aim of this study was to identify microorganisms capable of BT and BTA transformation or/and degradation in aquatic environment. Selected microorganisms were isolated from activated sludge. The identification of microorganisms capable of BT and BTA removal was possible using molecular biology techniques (PCR, DNA sequencing). Among isolated microorganisms of activated sludge are bacteria potentially capable of BT and BTA biotransformation and/or removal. The most common bacteria capable of BT and BTA transformation were Rhodococcus sp., Enterobacter sp., Arthrobacter sp. They can grow in a medium with BT and BTA as the only carbon source. Microorganisms previously adapted to the presence of the studied substances at a concentration of 10 mg/l, showed a greater rate of growth of colonies on media than microorganisms unconditioned to the presence of such compounds. Results of the biodegradation test suggest that BT was degraded to a greater extent than BTA, 98-100% and 11-19%, respectively.

  20. Interactions between yeasts and bacteria in the smear surface-ripened cheeses.

    PubMed

    Corsetti, A; Rossi, J; Gobbetti, M

    2001-09-19

    In the initial phase of ripening, the microflora of bacterial smear surface-ripened cheeses such as Limburger, Taleggio, Brick, Münster and Saint-Paulin and that of surface mould-ripened cheeses such as Camembert and Brie may be similar, but at the end of the ripening, bacteria such as Brevibacterium spp., Arthrobacter spp., Micrococcus spp., Corynebacterium spp. and moulds such as Penicillium camemberti are, respectively, the dominant microorganisms. Yeasts such as Candida spp., Cryptococcus spp., Debaryomyces spp., Geotrichum candidum, Pichia spp., Rhodotorula spp., Saccharomyces spp. and Yarrowia lipolytica are often and variably isolated from the smear surface-ripened cheeses. Although not dominant within the microorganisms of the smear surface-ripened cheeses, yeasts establish significant interactions with moulds and especially bacteria, including surface bacteria and lactic acid bacteria. Some aspects of the interactions between yeasts and bacteria in such type of cheeses are considered in this paper.

  1. [Interaction of clay minerals with microorganisms: a review of experimental data].

    PubMed

    Naĭmark, E B; Eroshchev-Shak, V A; Chizhikova, N P; Kompantseva, E I

    2009-01-01

    A review of publications containing results of experiments on the interaction of microorganisms with clay minerals is presented. Bacteria are shown to be involved in all processes related to the transformation of clay minerals: formation of clays from metamorphic and sedimentary rocks, formation of clays from solutions, reversible transitions of different types of clay minerals, and consolidation of clay minerals into sedimentary rocks. Integration of these results allows to conclude that bacteria reproduced all possible abiotic reactions associated with the clay minerals, these reactions proceed much faster with the bacteria being involved. Thus, bacteria act as a living catalyst in the geochemical cycle of clay minerals. The ecological role of bacteria can be considered as a repetition of a chemical process of the abiotic world, but with the use of organic catalytic innovation.

  2. Process to Selectively Distinguish Viable from Non-Viable Bacterial Cells

    NASA Technical Reports Server (NTRS)

    LaDuc, Myron T.; Bernardini, Jame N.; Stam, Christina N.

    2010-01-01

    The combination of ethidium monoazide (EMA) and post-fragmentation, randomly primed DNA amplification technologies will enhance the analytical capability to discern viable from non-viable bacterial cells in spacecraft-related samples. Intercalating agents have been widely used since the inception of molecular biology to stain and visualize nucleic acids. Only recently, intercalating agents such as EMA have been exploited to selectively distinguish viable from dead bacterial cells. Intercalating dyes can only penetrate the membranes of dead cells. Once through the membrane and actually inside the cell, they intercalate DNA and, upon photolysis with visible light, produce stable DNA monoadducts. Once the DNA is crosslinked, it becomes insoluble and unable to be fragmented for post-fragmentation, randomly primed DNA library formation. Viable organisms DNA remains unaffected by the intercalating agents, allowing for amplification via post-fragmentation, randomly primed technologies. This results in the ability to carry out downstream nucleic acid-based analyses on viable microbes to the exclusion of all non-viable cells.

  3. Zn(II)-cyclam based chromogenic sensors for recognition of ATP in aqueous solution under physiological conditions and their application as viable staining agents for microorganism.

    PubMed

    Mahato, Prasenjit; Ghosh, Amrita; Mishra, Sanjiv K; Shrivastav, Anupama; Mishra, Sandhya; Das, Amitava

    2011-05-02

    Two chromogenic complexes, L.Zn (where L is (E)-4-((4-(1,4,8,11-tetraazacyclotetradecan-1-ylsulfonyl)phenyl)diazenyl)-N,N-dimethylaniline) and its [2]pseudorotaxane form (α-CD.L.Zn), were found to bind preferentially to adenosine triphosphate (ATP), among all other common anions and biologically important phosphate (AMP, ADP, pyrophosphate, and phosphate) ions in aqueous HEPES buffer medium of pH 7.2. Studies with live cell cultures of prokaryotic microbes revealed that binding of these two reagents to intercellular ATP, produced in situ, could be used in delineating the gram-positive and the gram-negative bacteria. More importantly, these dyes were found to be nontoxic to living microbes (eukaryotes and prokaryotes) and could be used for studying the cell growth dynamics. Binding to these two viable staining agents to intercellular ATP was also confirmed by spectroscopic studies on cell growth in the presence of different respiratory inhibitors that influence the intercellular ATP generation. © 2011 American Chemical Society

  4. Biodegradation of commercial gasoline (24% ethanol added) in liquid medium by microorganisms isolated from a landfarming site.

    PubMed

    Oliveira, Núbia M; Bento, Fátima M; Camargo, Flávio A O; Knorst, Aline Jéssica; Dos Santos, Anai Loreiro; Pizzolato, Tania M; Peralba, Maria do Carmo R

    2011-01-01

    Isolation of soil microorganisms from a landfarming site with a 19-year history of petrochemical residues disposal was carried out. After isolation, the bacteria behavior in mineral medium with 1% commercial gasoline (24% ethanol) was evaluated. Parameters employed for microorganism evaluation and selection of those with the greatest degradation potential were: microbial growth; biosurfactant generation and compound reduction in commercial gasoline. Starting from bacteria that presented the best degradation results, consortiums formed by 4 distinct microorganisms were formed. A microbial growth in the presence of commercial gasoline was observed and, for most of the bacteria, degradations of compounds such as benzene, toluene and xylenes (BTX) as well as biosurfactant production was observed. Ethanol was partially degraded by the bacterial isolates although the data does not allow affirming that it was degraded preferentially to the aromatic hydrocarbons investigated. The analyzed consortiums present an efficiency of 95% to 98% for most of the commercial gasoline compounds and a preferential attack to ethanol under the essay condition was not observed within 72 h.

  5. A multicenter study of viable PCR using propidium monoazide to detect Legionella in water samples.

    PubMed

    Scaturro, Maria; Fontana, Stefano; Dell'eva, Italo; Helfer, Fabrizia; Marchio, Michele; Stefanetti, Maria Vittoria; Cavallaro, Mario; Miglietta, Marilena; Montagna, Maria Teresa; De Giglio, Osvalda; Cuna, Teresa; Chetti, Leonarda; Sabattini, Maria Antonietta Bucci; Carlotti, Michela; Viggiani, Mariagabriella; Stenico, Alberta; Romanin, Elisa; Bonanni, Emma; Ottaviano, Claudio; Franzin, Laura; Avanzini, Claudio; Demarie, Valerio; Corbella, Marta; Cambieri, Patrizia; Marone, Piero; Rota, Maria Cristina; Bella, Antonino; Ricci, Maria Luisa

    2016-07-01

    Legionella quantification in environmental samples is overestimated by qPCR. Combination with a viable dye, such as Propidium monoazide (PMA), could make qPCR (named then vPCR) very reliable. In this multicentre study 717 artificial water samples, spiked with fixed concentrations of Legionella and interfering bacterial flora, were analysed by qPCR, vPCR and culture and data were compared by statistical analysis. A heat-treatment at 55 °C for 10 minutes was also performed to obtain viable and not-viable bacteria. When data of vPCR were compared with those of culture and qPCR, statistical analysis showed significant differences (P < 0.001). However, although the heat-treatment caused an abatement of CFU/mL ≤1 to 1 log10 unit, the comparison between untreated and heat-treated samples analysed by vPCR highlighted non-significant differences (P > 0.05). Overall this study provided a good experimental reproducibility of vPCR but also highlighted limits of PMA in the discriminating capability of dead and live bacteria, making vPCR not completely reliable. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. [Domestication study about desulfuration microorganism from oxidation ditch by low concentration SO2].

    PubMed

    Huang, Bing; Shi, Zhe; Wang, Yan-Yan; Zhang, Shi-Ling

    2010-06-01

    An excellent desulfuration microorganism with a quick growth and propagation, high activation, high efficiency of removing SO2 is obtained from oxidation ditch of a city sewage treatment plant by inductive acclimatization over 6 d with low concentration SO2 gas (100-2 000 mg/m3). The desulfurition microorganism get their energy sources for growth from transforming SO2 (SO3(2-)) to SO4(2-). The predominant bacterium of the desulfuration microorganism has the same characteristic with Thiobacillus ferrooxidans (T. ferrooxidans), which showed that it was Gram negative, short rod bacteria with a single polar flagellum under a microscopic examination, and obtained its nourishment through the oxidation of inorganic compounds. The technology process condition of domestication and desulfuration of microorganism are particular studied, and the results showed that aerating time, SO2 flux and time to provide nutriment contained N, P, K to microorganism were very important. They have an ability with degradation rate of 160g/ (m3 x h) and degradation efficiency over 50% to transform sulfite to sulfate in liquid phase. The bacteria have a 98% of removing efficiency and over 80% of biodegradation efficiency for the 5 500 mg/m3 SO2 gas and the outlet concentration of SO2 is lower than 100 mg/m3, and also have a 95% of removing efficiency for 15 000 mg/m3 SO2 gas in the packed tower reactor with Raschig ring at 3s contact time.

  7. Early Discrimination Of Microorganisms Involved In Ventilator Associated Pneumonia Using Qualitative Volatile Fingerprints

    NASA Astrophysics Data System (ADS)

    Planas, Neus; Kendall, Catherine; Barr, Hugh; Magan, Naresh

    2009-05-01

    This study has examined the use of an electronic nose for the detection of volatile organic compounds produced by different microorganisms responsible for ventilator-associated pneumonia (VAP), an important disease among patients who require mechanical ventilation. Based on the analysis of the volatile organic compounds, electronic nose technology is being evaluated for the early detection and identification of many diseases. It has been shown that effective discrimination of two bacteria (Enterobacter cloacae and Klebsiella pneumoniae) and yeast (Candida albicans), could be obtained after 24 h and filamentous fungus (Aspergillus fumigatus) after 72 h. Discrimination between blank samples and those with as initial concentration of 102 CFU ml-1 was shown with 24 h incubation for bacteria and 48 h for fungi. Effective discrimination between all the species was achieved 72 h after incubation. Initial studies with mixtures of microorganisms involved in VAP suggest that complex interactions between species occur which influences the ability to differentiate dominant species using volatile production patterns. A nutrient agar base medium was found to be optimum for early discrimination between two microorganisms (Klebsiella pneumoniae and Candida albicans).

  8. Detection and discrimination of microorganisms on various substrates with quantum cascade laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Padilla-Jiménez, Amira C.; Ortiz-Rivera, William; Rios-Velazquez, Carlos; Vazquez-Ayala, Iris; Hernández-Rivera, Samuel P.

    2014-06-01

    Investigations focusing on devising rapid and accurate methods for developing signatures for microorganisms that could be used as biological warfare agents' detection, identification, and discrimination have recently increased significantly. Quantum cascade laser (QCL)-based spectroscopic systems have revolutionized many areas of defense and security including this area of research. In this contribution, infrared spectroscopy detection based on QCL was used to obtain the mid-infrared (MIR) spectral signatures of Bacillus thuringiensis, Escherichia coli, and Staphylococcus epidermidis. These bacteria were used as microorganisms that simulate biothreats (biosimulants) very truthfully. The experiments were conducted in reflection mode with biosimulants deposited on various substrates including cardboard, glass, travel bags, wood, and stainless steel. Chemometrics multivariate statistical routines, such as principal component analysis regression and partial least squares coupled to discriminant analysis, were used to analyze the MIR spectra. Overall, the investigated infrared vibrational techniques were useful for detecting target microorganisms on the studied substrates, and the multivariate data analysis techniques proved to be very efficient for classifying the bacteria and discriminating them in the presence of highly IR-interfering media.

  9. Diversity, Roles, and Biotechnological Applications of Symbiotic Microorganisms in the Gut of Termite.

    PubMed

    Zhou, Jing; Duan, Jiwei; Gao, Mingkun; Wang, Ying; Wang, Xiaohua; Zhao, Kai

    2018-05-12

    Termites are global pests and can cause serious damage to buildings, crops, and plantation forests. The symbiotic intestinal flora plays an important role in the digestion of cellulose and nitrogen in the life of termites. Termites and their symbiotic microbes in the gut form a synergistic system. These organism work together to digest lignocellulose to make the termites grow on nitrogen deficient food. In this paper, the diversity of symbiotic microorganisms in the gut of termites, including protozoan, spirochetes, actinomycetes, fungus and bacteria, and their role in the digestion of lignocellulose and also the biotechnological applications of these symbiotic microorganisms are discussed. The high efficiency lignocellulose degradation systems of symbiotic microbes in termite gut not only provided a new way of biological energy development, but also has immense prospect in the application of cellulase enzymes. In addition, the study on the symbiotic microorganisms in the gut of termites will also provide a new method for the biological control of termites by the endophytic bacteria in the gut of termites.

  10. Microorganisms as tracers in groundwater injection and recovery experiments: A review

    USGS Publications Warehouse

    Harvey, R.W.

    1997-01-01

    Modern day injection and recovery techniques designed to examine the transport behavior of microorganisms in groundwater have evolved from experiments conducted in the late 1800s, in which bacteria that form red or yellow pigments were used to trace flow paths through karst and fractured- rock aquifers. A number of subsequent groundwater hydrology studies employed bacteriophage that can be injected into aquifers at very high concentrations (e g., 1013 phage ml-1) and monitored through many log units of dilution to follow groundwater flow paths for great distances, particularly in karst terrain. Starting in the 1930s, microbial indicators of fecal contamination (particularly coliform bacteria and their coliphages) were employed as tracers to determine potential migration of pathogens in groundwater. Several injection and recovery experiments performed in the 1990s employed indigenous groundwater microorganisms (both cultured and uncultured) that are better able to survive under in situ conditions. Better methods for labeling native bacteria (e.g by stable isotope labeling or inserting genetic markers; such as the ability to cause ice nucleation) are being developed that will not compromise the organisms' viability during the experimental time course.

  11. Visualization of interaction between inorganic nanoparticles and bacteria or fungi.

    PubMed

    Chwalibog, André; Sawosz, Ewa; Hotowy, Anna; Szeliga, Jacek; Mitura, Stanislaw; Mitura, Katarzyna; Grodzik, Marta; Orlowski, Piotr; Sokolowska, Aleksandra

    2010-12-06

    The objective of the present investigation was to evaluate the morphologic characteristics of self-assemblies of diamond (nano-D), silver (nano-Ag), gold (nano-Au), and platinum (nano-Pt) nanoparticles with Staphylococcus aureus (bacteria) and Candida albicans (fungi), to determine the possibility of constructing microorganism-nanoparticle vehicles. Hydrocolloids of individual nanoparticles were added to suspensions of S. aureus and C. albicans. Immediately after mixing, the samples were inspected by transmission electron microscopy. Visualization of the morphologic interaction between the nanoparticles and microorganisms showed that nano-D, which are dielectrics and exhibit a positive zeta potential, were very different from the membrane potentials of microorganisms, and uniformly surrounded the microorganisms, without causing visible damage and destruction of cells. All metal nanoparticles with negative zeta potential had cell damaging properties. Nano-Ag showed the properties of self-organization with the cells, disintegrating the cell walls and cytoplasmic membranes, and releasing a substance (probably cytoplasm) outside the cell. Arrangement of nano-Au with microorganisms did not create a system of self-organization, but instead a "noncontact" interaction between the nanoparticles and microorganisms was observed to cause damage to fungal cells. Nano-Pt caused both microorganisms to release a substance outside the cell and disintegrated the cytoplasmic membrane and cell wall. Nano-Ag, nano-Au, and nano-Pt (all metal nanoparticles) are harmful to bacteria and fungi. In contrast, nano-D bind closely to the surface of microorganisms without causing visible damage to cells, and demonstrating good self-assembling ability. The results indicate that both microorganisms could be used as potential carriers for nano-D.

  12. The predominant bacteria isolated from radicular cysts

    PubMed Central

    2013-01-01

    Purpose To detect predominant bacteria associated with radicular cysts and discuss in light of the literature. Material and methods Clinical materials were obtained from 35 radicular cysts by aspiration. Cultures were made from clinical materials by modern laboratory techniques, they underwent microbiologic analysis. Results The following are microorganisms isolated from cultures: Streptococcus milleri Group (SMG) (23.8%) [Streptococcus constellatus (19.1%) and Streptococcus anginosus (4.7%)], Streptococcus sanguis (14.3%), Streptococcus mitis (4.7%), Streptococcus cremoris (4.7%), Peptostreptococcus pevotii (4.7%), Prevotella buccae (4.7%), Prevotella intermedia (4.7%), Actinomyces meyeri (4.7%), Actinomyces viscosus (4.7%), Propionibacterium propionicum (4.7%), Bacteroides capillosus (4.7%), Staphylococcus hominis (4.7%), Rothia denticariosa (4.7%), Gemella haemolysans (4.7%), and Fusobacterium nucleatum (4.7%). Conclusions Results of this study demonstrated that radicular cysts show a great variety of anaerobic and facultative anaerobic bacterial flora. It was observed that all isolated microorganisms were the types commonly found in oral flora. Although no specific microorganism was found, Streptococcus spp. bacteria (47.5%) – especially SMG (23.8%) – were predominantly found in the microorganisms isolated. Furthermore, radicular cysts might be polymicrobial originated. Although radicular cyst is an inflammatory cyst, some radicular cyst fluids might be sterile. PMID:24011184

  13. Mechanism of lethal action of 2,450-MHz radiation on microorganisms.

    PubMed Central

    Vela, G R; Wu, J F

    1979-01-01

    Various bacteria, actinomycetes, fungi, and bacteriophages were exposed to microwaves of 2,450 +/- 20 MHz in the presence and in the absence of water. It was found that microorganisms were inactivated only when in the presence of water and that dry or lyophilized organisms were not affected even by extended exposures. The data presented here prove that microorganisms are killed by "thermal effect" only and that, most likely, there is no "nonthermal effect"; cell constituents other than water do not absorb sufficient energy to kill microbial cells. PMID:453828

  14. Sorption and precipitation of Mn2+ by viable and autoclaved Shewanella putrefaciens: Effect of contact time

    NASA Astrophysics Data System (ADS)

    Chubar, Natalia; Visser, Tom; Avramut, Cristina; de Waard, Helen

    2013-01-01

    The sorption of Mn(II) by viable and inactivated cells of Shewanella putrefaciens, a non-pathogenic, facultative anaerobic, gram-negative bacterium characterised as a Mn(IV) and Fe(III) reducer, was studied under aerobic conditions, as a function of pH, bacterial density and metal loading. During a short contact time (3-24 h), the adsorptive behaviour of live and dead bacteria toward Mn(II) was sufficiently similar, an observation that was reflected in the studies on adsorption kinetics at various metal loadings, effects of pH, bacteria density, isotherms and drifting of pH during adsorption. Continuing the experiment for an additional 2-30 days demonstrated that the Mn(II) sorption by suspensions of viable and autoclaved cells differed significantly from one another. The sorption to dead cells was characterised by a rapid equilibration and was described by an isotherm. In contrast, the sorption (uptake) to live bacteria exhibited a complex time-dependent uptake. This uptake began as adsorption and ion exchange processes followed by bioprecipitation, and it was accompanied by the formation of polymeric sugars (EPS) and the release of dissolved organic substances. FTIR, EXAFS/XANES and XPS demonstrated that manganese(II) phosphate was the main precipitate formed in 125 ml batches, which is the first evidence of the ability of microbes to synthesise manganese phosphates. XPS and XANES spectra did not detect Mn(II) oxidation. Although the release of protein-like compounds by the viable bacteria increased in the presence of Mn2+ (and, by contrast, the release of carbohydrates did not change), electrochemical analyses did not indicate any aqueous complexation of Mn(II) by the organic ligands.

  15. Effects of temperature on biological activity of permafrost microorganisms.

    PubMed

    Kalyonova, L F; Novikova, M A; Subbotin, A M; Bazhin, A S

    2015-04-01

    The number and viability of microorganism specimens Bacillus spp. isolated from permafrost soil remained unchanged after incubation at temperatures of -16-37°C. Experiments on F1 CBA/Black-6 mice showed that incubation of bacteria at -5°C for 72 h promotes a decrease in their toxicity and an increase in their immunostimulating effect.

  16. The use of flow cytometry to accurately ascertain total and viable counts of Lactobacillus rhamnosus in chocolate.

    PubMed

    Raymond, Yves; Champagne, Claude P

    2015-04-01

    The goals of this study were to evaluate the precision and accuracy of flow cytometry (FC) methodologies in the evaluation of populations of probiotic bacteria (Lactobacillus rhamnosus R0011) in two commercial dried forms, and ascertain the challenges in enumerating them in a chocolate matrix. FC analyses of total (FC(T)) and viable (FC(V)) counts in liquid or dried cultures were almost two times more precise (reproducible) than traditional direct microscopic counts (DCM) or colony forming units (CFU). With FC, it was possible to ascertain low levels of dead cells (FC(D)) in fresh cultures, which is not possible with traditional CFU and DMC methodologies. There was no interference of chocolate solids on FC counts of probiotics when inoculation was above 10(7) bacteria per g. Addition of probiotics in chocolate at 40 °C resulted in a 37% loss in viable cells. Blending of the probiotic powder into chocolate was not uniform which raised a concern that the precision of viable counts could suffer. FCT data can serve to identify the correct inoculation level of a sample, and viable counts (FCV or CFU) can subsequently be better interpreted. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  17. Living bacteria in silica gels

    NASA Astrophysics Data System (ADS)

    Nassif, Nadine; Bouvet, Odile; Noelle Rager, Marie; Roux, Cécile; Coradin, Thibaud; Livage, Jacques

    2002-09-01

    The encapsulation of enzymes within silica gels has been extensively studied during the past decade for the design of biosensors and bioreactors. Yeast spores and bacteria have also been recently immobilized within silica gels where they retain their enzymatic activity, but the problem of the long-term viability of whole cells in an inorganic matrix has never been fully addressed. It is a real challenge for the development of sol-gel processes. Generic tests have been performed to check the viability of Escherichia coli bacteria in silica gels. Surprisingly, more bacteria remain culturable in the gel than in an aqueous suspension. The metabolic activity of the bacteria towards glycolysis decreases slowly, but half of the bacteria are still viable after one month. When confined within a mineral environment, bacteria do not form colonies. The exchange of chemical signals between isolated bacteria rather than aggregates can then be studied, a point that could be very important for 'quorum sensing'.

  18. Ecological aspects of microorganisms inhabiting uranium mill tailings

    USGS Publications Warehouse

    Miller, C.L.; Landa, E.R.; Updegraff, D.M.

    1987-01-01

    Numbers and types of microorganisms in uranium mill tailings were determined using culturing techniques. Arthrobacter were found to be the predominant microorganism inhabiting the sandy tailings, whereas Bacillus and fungi predominated in the slime tailings. Sulfate-reducing bacteria, capable of leaching radium, were isolated in low numbers from tailings samples but were isolated in significantly high numbers from topsoil in contact with the tailings. The results are placed in the context of the magnitude of uranium mill tailings in the United States, the hazards posed by the tailings, and how such hazards could be enhanced or diminished by microbial activities. Patterns in the composition of the microbial population are evaluated with respect to the ecological variables that influence microbial growth. ?? 1987 Springer-Verlag New York Inc.

  19. Money and transmission of bacteria

    PubMed Central

    2013-01-01

    Money is one of the most frequently passed items in the world. The aim of this study was to ascertain the survival status of bacteria including Staphylococcus aureus, Escherichia coli, and Vancomycin- Resistant Enterococci (VRE) on banknotes from different countries and the transmission of bacteria to people who come in contact with the banknotes. The survival rate was highest for the Romanian Leu yielding all three microorganisms used after both three and six hours of drying. Furthermore, the Leu was the only banknote to yield VRE after one day of drying. Other currencies either enabled the survival of Extended-Spectrum Beta-Lactamases (ESBL) and VRE (e.g. Euro), but not of MRSA, or the other way round (e.g. US Dollar). While a variety of factors such as community hygiene levels, people’s behaviour, and antimicrobial resistance rates at community level obviously have influence on the transmission of resistant microorganisms, the type of banknote-paper may be an additional variable to consider. PMID:23985137

  20. Microorganisms associated with feathers of barn swallows in radioactively contaminated areas around chernobyl.

    PubMed

    Czirják, Gábor Arpád; Møller, Anders Pape; Mousseau, Timothy A; Heeb, Philipp

    2010-08-01

    The Chernobyl catastrophe provides a rare opportunity to study the ecological and evolutionary consequences of low-level, environmental radiation on living organisms. Despite some recent studies about negative effects of environmental radiation on macroorganisms, there is little knowledge about the effect of radioactive contamination on diversity and abundance of microorganisms. We examined abundance patterns of total cultivable bacteria and fungi and the abundance of feather-degrading bacterial subset present on feathers of barn swallows (Hirundo rustica), a colonial migratory passerine, around Chernobyl in relation to levels of ground level environmental radiation. After controlling for confounding variables, total cultivable bacterial loads were negatively correlated with environmental radioactivity, whereas abundance of fungi and feather-degrading bacteria was not significantly related to contamination levels. Abundance of both total and feather-degrading bacteria increased with barn swallow colony size, showing a potential cost of sociality. Males had lower abundance of feather-degrading bacteria than females. Our results show the detrimental effects of low-level environmental radiation on total cultivable bacterial assemblage on feathers, while the abundance of other microorganism groups living on barn swallow feathers, such as feather-degrading bacteria, are shaped by other factors like host sociality or host sex. These data lead us to conclude that the ecological effects of Chernobyl may be more general than previously assumed and may have long-term implications for host-microbe interactions and overall ecosystem functioning.

  1. 9 CFR 113.27 - Detection of extraneous viable bacteria and fungi in live vaccines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... bacteria and fungi in live vaccines. 113.27 Section 113.27 Animals and Animal Products ANIMAL AND PLANT... bacteria and fungi in live vaccines. Unless otherwise specified by the Administrator or elsewhere exempted in this part, each serial and subserial of live vaccine and each lot of Master Seed Virus and Master...

  2. 9 CFR 113.27 - Detection of extraneous viable bacteria and fungi in live vaccines.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... bacteria and fungi in live vaccines. 113.27 Section 113.27 Animals and Animal Products ANIMAL AND PLANT... bacteria and fungi in live vaccines. Unless otherwise specified by the Administrator or elsewhere exempted in this part, each serial and subserial of live vaccine and each lot of Master Seed Virus and Master...

  3. 9 CFR 113.27 - Detection of extraneous viable bacteria and fungi in live vaccines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... bacteria and fungi in live vaccines. 113.27 Section 113.27 Animals and Animal Products ANIMAL AND PLANT... bacteria and fungi in live vaccines. Unless otherwise specified by the Administrator or elsewhere exempted in this part, each serial and subserial of live vaccine and each lot of Master Seed Virus and Master...

  4. Toxicity of fluoride to microorganisms in biological wastewater treatment systems.

    PubMed

    Ochoa-Herrera, Valeria; Banihani, Qais; León, Glendy; Khatri, Chandra; Field, James A; Sierra-Alvarez, Reyes

    2009-07-01

    Fluoride is a common contaminant in a variety of industrial wastewaters. Available information on the potential toxicity of fluoride to microorganisms implicated in biological wastewater treatment is very limited. The objective of this study was to evaluate the inhibitory effect of fluoride towards the main microbial populations responsible for the removal of organic constituents and nutrients in wastewater treatment processes. The results of short-term batch bioassays indicated that the toxicity of sodium fluoride varied widely depending on the microbial population. Anaerobic microorganisms involved in various metabolic steps of anaerobic digestion processes were found to be very sensitive to the presence of fluoride. The concentrations of fluoride causing 50% metabolic inhibition (IC(50)) of propionate- and butyrate-degrading microorganisms as well as mesophilic and thermophilic acetate-utilizing methanogens ranged from 18 to 43 mg/L. Fluoride was also inhibitory to nitrification, albeit at relatively high levels (IC(50)=149 mg/L). Nitrifying bacteria appeared to adapt rapidly to fluoride, and a near complete recovery of their metabolic activity was observed after only 4d of exposure to high fluoride levels (up to 500 mg/L). All other microbial populations evaluated in this study, i.e., glucose fermenters, aerobic glucose-degrading heterotrophs, denitrifying bacteria, and H(2)-utilizing methanogens, tolerated fluoride at very high concentrations (>500 mg/L).

  5. Cell Viability and Functionality of Probiotic Bacteria in Dairy Products

    PubMed Central

    Vinderola, Gabriel; Binetti, Ana; Burns, Patricia; Reinheimer, Jorge

    2011-01-01

    Probiotic bacteria, according to the definition adopted by the World Health Organization in 2002, are live microorganisms, which when administered in adequate amounts confer a health benefit to the host. Recent studies show that the same probiotic strain produced and/or preserved under different storage conditions, may present different responses regarding their susceptibility to the adverse conditions of the gastrointestinal tract, its capacity to adhere to the intestinal epithelium, or its immunomodulating capacity, the functionality being affected without changes in cell viability. This could imply that the control of cell viability is not always enough to guarantee the functionality (probiotic capacity) of a strain. Therefore, a new challenge arises for food technologists and microbiologists when it comes to designing and monitoring probiotic food: to be able to monitor the functionality of a probiotic microorganism throughout all the stages the strain goes through from the moment it is produced and included in the food vehicle, until the moment of consumption. Conventional methodological tools or others still to be developed must be used. The application of cell membrane functionality markers, the use of tests of resistance to intestinal barriers, the study of surface properties and the application of in vivo models come together as complementary tools to assess the actual capacity of a probiotic organism in a specific food, to exert functional effects regardless of the number of viable cells present at the moment of consumption. PMID:21833320

  6. A comparison of legionella and other bacteria concentrations in cooling tower water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappabianca, R.M.; Jurinski, N.B.; Jurinski, J.B.

    1994-05-01

    A field study was conducted in which water samples collected from air conditioning cooling water reservoirs of high-rise buildings throughout an urban area were assayed for Legionella and for total bacteria. Buildings included within the study had ongoing biocidal treatment programs for the cooling towers. Separate sample analyses were performed to measure the viable colony concentrations of total bacteria and of Legionella in the process waters. The occurrence and viable counts of Legionella in 304 environmental water samples were determined by inoculating them onto plates of buffered charcoal yeast extract (BCYE) agar medium (a presumptive screening method). The samples weremore » collected during summer months between July and September. BCYE plate cultures of 50 (16.4%) of the samples yielded Legionella with viable counts ranging from 2 to 608 colony forming units per milliliter. In the water samples, 281 (92.4%) yielded viable counts of bacteria that ranged from 9 to 1.2 x 10{sup 6} per milliliter. This study demonstrates that Legionella are commonly present in the water of air conditioning cooling towers and that there is no significant correlation between concurrently sampled culture plate counts of Legionella and total bacteria plate counts. Correspondingly, there is no demonstrated validity for use of total bacterial counts as an inferential surrogate for the concentration of Legionella in the water. 19 refs., 3 figs., 1 tab.« less

  7. Microorganisms from Permafrost Viable and Detectable by 16SRNA Analysis: A Model for Mars

    NASA Technical Reports Server (NTRS)

    Tsapin, A. I.; McDonald, G. D.; Andrews, M.; Bhartia, R.; Douglas, S.; Gilichinsky, D.

    1999-01-01

    Preliminary studies of Arctic and Antarctic permafrost have shown that this environment harbors microorganisms which can be isolated in pure culture, and that these organisms can survive for a long period of time (up to 20 Ma) in permafrost. It is believed that the permanent subzero temperatures in permafrost and ice environments are the main parameters ensuring the longevity of microbes. In this project we studied permafrost cores from different areas of the Siberian Arctic and Antarctic, with ages from several thousand years up to several millions years (Ma). In general, Antarctic permafrost has a higher sand content, while Siberian permafrost has a texture more characteristic of clay or normal soil. Additional information is contained in the original extended abstract.

  8. Toxicological impacts of antibiotics on aquatic micro-organisms: A mini-review.

    PubMed

    Välitalo, Pia; Kruglova, Antonina; Mikola, Anna; Vahala, Riku

    2017-05-01

    Antibiotics are found globally in the environment at trace levels due to their extensive consumption, which raises concerns about the effects they can have on non-target organisms, especially environmental micro-organisms. So far the majority of studies have focused on different aspects of antibiotic resistance or on analyzing the occurrence, fate, and removal of antibiotics from hospital and municipal wastewaters. Little attention has been paid to ecotoxicological effects of antibiotics on aquatic micro-organisms although they play a critical role in most ecosystems and they are potentially sensitive to these substances. Here we review the current state of research on the toxicological impacts of antibiotics to aquatic micro-organisms, including proteobacteria, cyanobacteria, algae and bacteria commonly present in biological wastewater treatment processes. We focus on antibiotics that are poorly removed during wastewater treatment and thus end up in surface waters. We critically discuss and compare the available analytical methods and test organisms based on effect concentrations and identify the knowledge gaps and future challenges. We conclude that, in general, cyanobacteria and ammonium oxidizing bacteria are the most sensitive micro-organisms to antibiotics. It is important to include chronic tests in ecotoxicological assessment, because acute tests are not always appropriate in case of low sensitivity (for example for proteobacteria). However, the issue of rapid development of antibiotic resistance should be regarded in chronic testing. Furthermore, the application of other species of bacteria and endpoints should be considered in the future, not forgetting the mixture effect and bacterial community studies. Due to differences in the sensitivity of different test organisms to individual antibiotic substances, the application of several bioassays with varying test organisms would provide more comprehensive data for the risk assessment of antibiotics

  9. Identification of yeast and bacteria involved in the mezcal fermentation of Agave salmiana.

    PubMed

    Escalante-Minakata, P; Blaschek, H P; Barba de la Rosa, A P; Santos, L; De León-Rodríguez, A

    2008-06-01

    To identify the yeast and bacteria present in the mezcal fermentation from Agave salmiana. The restriction and sequence analysis of the amplified region, between 18S and 28S rDNA and 16S rDNA genes, were used for the identification of yeast and bacteria, respectively. Eleven different micro-organisms were identified in the mezcal fermentation. Three of them were the following yeast: Clavispora lusitaniae, Pichia fermentans and Kluyveromyces marxianus. The bacteria found were Zymomonas mobilis subsp. mobilis and Zymomonas mobilis subsp. pomaceae, Weissella cibaria, Weissella paramesenteroides, Lactobacillus pontis, Lactobacillus kefiri, Lactobacillus plantarum and Lactobacillus farraginis. The phylogenetic analysis of 16S rDNA and ITS sequences showed that microbial diversity present in mezcal is dominated by bacteria, mainly lactic acid bacteria species and Zymomonas mobilis. Pichia fermentans and K. marxianus could be micro-organisms with high potential for the production of some volatile compounds in mezcal. We identified the community of bacteria and yeast present in mezcal fermentation from Agave salmiana.

  10. In vitro testing of commercial and potential probiotic lactic acid bacteria.

    PubMed

    Jensen, Hanne; Grimmer, Stine; Naterstad, Kristine; Axelsson, Lars

    2012-02-01

    Probiotics are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host. The objective of this study was to investigate the diversity of selected commercial and potential probiotic lactic acid bacteria using common in vitro screening assays such as transit tolerance in the upper human gastrointestinal tract, adhesion capacity to human intestinal cell lines and effect on epithelial barrier function. The selected bacteria include strains of Lactobacillus plantarum, Lactobacillus pentosus, Lactobacillus farciminis, Lactobacillus sakei, Lactobacillus gasseri, Lactobacillus rhamnosus, Lactobacillus reuteri and Pediococcus pentosaceus. Viable counts after simulated gastric transit tolerance showed that L. reuteri strains and P. pentosaceus tolerate gastric juice well, with no reduction of viability, whereas L. pentosus, L. farciminis and L. sakei strains lost viability over 180min. All strains tested tolerate the simulated small intestinal juice well. The bacterial adhesion capacity to human intestinal cells revealed major species and strain differences. Overall, L. plantarum MF1298 and three L. reuteri strains had a significant higher adhesion capacity compared to the other strains tested. All strains, both living and UV-inactivated, had little effect on the epithelial barrier function. However, living L. reuteri strains revealed a tendency to increase the transepithelial electrical resistance (TER) from 6 to 24h. This work demonstrates the diversity of 18 potential probiotic bacteria, with major species and strain specific effects in the in vitro screening assays applied. Overall, L. reuteri strains reveal some interesting characteristics compared to the other strains investigated. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. FAST TRACK COMMUNICATION: Selective inactivation of micro-organisms with near-infrared femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Tsen, K. T.; Tsen, Shaw-Wei D.; Sankey, Otto F.; Kiang, Juliann G.

    2007-11-01

    We demonstrate an unconventional and revolutionary method for selective inactivation of micro-organisms by using near-infrared femtosecond laser pulses. We show that if the wavelength and pulse width of the excitation femtosecond laser are appropriately selected, there exists a window in power density that enables us to achieve selective inactivation of target viruses and bacteria without causing cytotoxicity in mammalian cells. This strategy targets the mechanical (vibrational) properties of micro-organisms, and thus its antimicrobial efficacy is likely unaffected by genetic mutation in the micro-organisms. Such a method may be effective against a wide variety of drug resistant micro-organisms and has broad implications in disinfection as well as in the development of novel treatments for viral and bacterial pathogens.

  12. Direct Determination of Activities for Microorganisms of Chesapeake Bay Populations

    PubMed Central

    Tabor, Paul S.; Neihof, Rex A.

    1984-01-01

    We used three methods in determination of the metabolically active individual microorganisms for Chesapeake Bay surface and near-bottom populations over a period of a year. Synthetically active bacteria were recognized as enlarged cells in samples amended with nalidixic acid and yeast extract and incubated for 6 h. Microorganisms with active electron transport systems were identified by the reduction of a tetrazolium salt electron acceptor. Microorganisms active in uptake of amino acids, thymidine, and acetate were determined by microautoradiography. In conjunction with enumeration of active organisms, a total direct count was made for each sample preparation by epifluorescence microscopy. For the majority of samples, numbers of amino acid uptake-active organisms were greater than numbers of organisms determined to be active by other direct measurements. Within a sample, the numbers of uptake-active organisms (amino acids or thymidine) and electron transport system-active organisms were significantly different for 68% of the samples. Numbers of synthetically active bacteria were generally less than numbers determined by the other direct activity measurements. The distribution of total counts in the 11 samplings showed a seasonal pattern, with significant dependence on in situ water temperature, increasing from March to September and then decreasing through February. Synthetically active bacteria and amino acid uptake-active organisms showed a significant dependence on in situ temperature, independent of the function of temperature on total counts. Numbers of active organisms determined by at least one of the methods used exceeded 25% of the total population of all samplings, and from June through September, >85% of the total population was found to be active by at least one direct activity measurement. Thus, active rather than dormant organisms compose a major portion of the microbial population in this region of Chesapeake Bay. PMID:16346659

  13. Direct determination of activities for microorganisms of chesapeake bay populations.

    PubMed

    Tabor, P S; Neihof, R A

    1984-11-01

    We used three methods in determination of the metabolically active individual microorganisms for Chesapeake Bay surface and near-bottom populations over a period of a year. Synthetically active bacteria were recognized as enlarged cells in samples amended with nalidixic acid and yeast extract and incubated for 6 h. Microorganisms with active electron transport systems were identified by the reduction of a tetrazolium salt electron acceptor. Microorganisms active in uptake of amino acids, thymidine, and acetate were determined by microautoradiography. In conjunction with enumeration of active organisms, a total direct count was made for each sample preparation by epifluorescence microscopy. For the majority of samples, numbers of amino acid uptake-active organisms were greater than numbers of organisms determined to be active by other direct measurements. Within a sample, the numbers of uptake-active organisms (amino acids or thymidine) and electron transport system-active organisms were significantly different for 68% of the samples. Numbers of synthetically active bacteria were generally less than numbers determined by the other direct activity measurements. The distribution of total counts in the 11 samplings showed a seasonal pattern, with significant dependence on in situ water temperature, increasing from March to September and then decreasing through February. Synthetically active bacteria and amino acid uptake-active organisms showed a significant dependence on in situ temperature, independent of the function of temperature on total counts. Numbers of active organisms determined by at least one of the methods used exceeded 25% of the total population of all samplings, and from June through September, >85% of the total population was found to be active by at least one direct activity measurement. Thus, active rather than dormant organisms compose a major portion of the microbial population in this region of Chesapeake Bay.

  14. Brief ultrasonication improves detection of biofilm-formative bacteria around a metal implant.

    PubMed

    Kobayashi, Naomi; Bauer, Thomas W; Tuohy, Marion J; Fujishiro, Takaaki; Procop, Gary W

    2007-04-01

    Biofilms are complex microenvironments produced by microorganisms on surfaces. Ultrasonication disrupts biofilms and may make the microorganism or its DNA available for detection. We determined whether ultrasonication could affect our ability to detect bacteria adherent to a metal substrate. A biofilm-formative Staphylococcus aureus strain was used for an in vitro implant infection model (biofilm-formative condition). We used quantitative culture and real time-polymerase chain reaction to determine the influence of different durations of ultrasound on bacterial adherence and viability. Sonication for 1 minute increased the yield of bacteria. Sonication longer than 5 minutes led to fewer bacterial colonies by conventional culture but not by polymerase chain reaction. This suggests short periods of sonication help release bacteria from the metal substrate by disrupting the biofilm, but longer periods of sonication lyse bacteria prohibiting their detection in microbiologic cultures. A relatively short duration of sonication may be desirable for maximizing detection of biofilm-formative bacteria around implants by culture or polymerase chain reaction.

  15. Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds

    PubMed Central

    Links, Matthew G; Demeke, Tigst; Gräfenhan, Tom; Hill, Janet E; Hemmingsen, Sean M; Dumonceaux, Tim J

    2014-01-01

    In order to address the hypothesis that seeds from ecologically and geographically diverse plants harbor characteristic epiphytic microbiota, we characterized the bacterial and fungal microbiota associated with Triticum and Brassica seed surfaces. The total microbial complement was determined by amplification and sequencing of a fragment of chaperonin 60 (cpn60). Specific microorganisms were quantified by qPCR. Bacteria and fungi corresponding to operational taxonomic units (OTU) that were identified in the sequencing study were isolated and their interactions examined. A total of 5477 OTU were observed from seed washes. Neither total epiphytic bacterial load nor community richness/evenness was significantly different between the seed types; 578 OTU were shared among all samples at a variety of abundances. Hierarchical clustering revealed that 203 were significantly different in abundance on Triticum seeds compared with Brassica. Microorganisms isolated from seeds showed 99–100% identity between the cpn60 sequences of the isolates and the OTU sequences from this shared microbiome. Bacterial strains identified as Pantoea agglomerans had antagonistic properties toward one of the fungal isolates (Alternaria sp.), providing a possible explanation for their reciprocal abundances on both Triticum and Brassica seeds. cpn60 enabled the simultaneous profiling of bacterial and fungal microbiota and revealed a core seed-associated microbiota shared between diverse plant genera. PMID:24444052

  16. An Attempt to Sample Upper Atmospheric Bacteria.

    NASA Astrophysics Data System (ADS)

    Canales, D. R. J.; Edgar, B.; Lefer, B. L.; Dunbar, B.; Gamblin, R.; Ehteshami, A.; Nowling, M.; Ahmad, H.; Bias, C.; Pena, M.

    2015-12-01

    Attempts have been made over the last decade to find the density and diversity of living microorganisms in the stratosphere using both air planes and zero pressure balloons. Most of the published attempts to survey stratospheric microorganisms by the scientific community have involved heavy devices that could not be used on ultralight weight balloons, making this research expensive and thereby reducing the opportunities for sampling. In this project, we attempted to find how high a light weight balloon could collect microorganisms, and to bridge scientific study with hobbyist feasibility at lower cost. Our approach was to use hobbyist level items that lower the weight so that lighter weather balloons could be used. This approach will allow more sampling possibilities while also lowering cost of study. We have conducted two successful test flights. While there were no successful samples from the upper atmosphere, the fact that the system can capture surface organisms with the fact that sensors had viable data shows that anyone with interest can help find and study atmospheric microorganisms.

  17. Oil Production by a Consortium of Oleaginous Microorganisms grown on primary effluent wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Jacqueline; Hetrick, Mary; French, Todd

    Municipal wastewater could be a potential growth medium that has not been considered for cultivating oleaginous microorganisms. This study is designed to determine if a consortium of oleaginous microorganism can successfully compete for carbon and other nutrients with the indigenous microorganisms contained in primary effluent wastewater. RESULTS: The oleaginous consortium inoculated with indigenous microorganisms reached stationary phase within 24 h, reaching a maximum cell concentration of 0.58 g L -1. Water quality post-oleaginous consortium growth reached a maximum chemical oxygen demand (COD) reduction of approximately 81%, supporting the consumption of the glucose within 8 h. The oleaginous consortium increased themore » amount of oil produced per gram by 13% compared with indigenous microorganisms in raw wastewater. Quantitative polymerase chain reaction (qPCR) results show a substantial population increase in bacteria within the first 24 h when the consortium is inoculated into raw wastewater. This result, along with the fatty acid methyl esters (FAMEs) results, suggests that conditions tested were not sufficient for the oleaginous consortium to compete with the indigenous microorganisms.« less

  18. Viable adhered Staphylococcus aureus highly reduced on novel antimicrobial sutures using chlorhexidine and octenidine to avoid surgical site infection (SSI).

    PubMed

    Obermeier, Andreas; Schneider, Jochen; Harrasser, Norbert; Tübel, Jutta; Mühlhofer, Heinrich; Pförringer, Dominik; Deimling, Constantin von; Foehr, Peter; Kiefel, Barbara; Krämer, Christina; Stemberger, Axel; Schieker, Matthias; Burgkart, Rainer; von Eisenhart-Rothe, Rüdiger

    2018-01-01

    Surgical sutures can promote migration of bacteria and thus start infections. Antiseptic coating of sutures may inhibit proliferation of adhered bacteria and avoid such complications. This study investigated the inhibition of viable adhering bacteria on novel antimicrobially coated surgical sutures using chlorhexidine or octenidine, a critical factor for proliferation at the onset of local infections. The medical need, a rapid eradication of bacteria in wounds, can be fulfilled by a high antimicrobial efficacy during the first days after wound closure. As a pretesting on antibacterial efficacy against relevant bacterial pathogens a zone of inhibition assay was conducted with middle ranged concentrated suture coatings (22 μg/cm). For further investigation of adhering bacteria in detail the most clinically relevant Staphylococcus aureus (ATCC®49230™) was used. Absorbable braided sutures were coated with chlorhexidine-laurate, chlorhexidine-palmitate, octenidine-laurate, and octenidine-palmitate. Each coating type resulted in 11, 22, or 33 μg/cm drug content on sutures. Scanning electron microscopy (SEM) was performed once to inspect the coating quality and twice to investigate if bacteria have colonized on sutures. Adhesion experiments were assessed by exposing coated sutures to S. aureus suspensions for 3 h at 37°C. Subsequently, sutures were sonicated and the number of viable bacteria released from the suture surface was determined. Furthermore, the number of viable planktonic bacteria was measured in suspensions containing antimicrobial sutures. Commercially available sutures without drugs (Vicryl®, PGA Resorba®, and Gunze PGA), as well as triclosan-containing Vicryl® Plus were used as control groups. Zone of inhibition assay documented a multispecies efficacy of novel coated sutures against tested bacterial strains, comparable to most relevant S. aureus over 48 hours. SEM pictures demonstrated uniform layers on coated sutures with higher roughness for

  19. [Microorganism test systems and antibiograms useful for the proper use of antibacterial agents].

    PubMed

    Takahashi, Shunji

    2010-07-01

    Antimicrobial agents are used for the accurate diagnosis of infectious diseases and effective implementation of antibacterial chemotherapy. The role of microbiological technologists is to provide data from microorganism tests useful for rapid infection treatment. Gram strain can be used to observe microorganisms and neutrophils from specimens of a patient. It is also possible to estimate the kinds of microorganism. If bacterial infectious disease is negative, there is no need for antibacterial chemotherapy. The applied dose of antibacterial agents is different in every hospital. Also, there is a difference in the percentage antibacterial agent susceptibility of isolates. Antibiograms must be created to investigate local factors. For empiric therapy, antibiograms are useful when choosing antibacterial agents showing marked efficacy against the clinical isolate. Microorganism test systems which are useful for the proper use of antibacterial agents are necessary to facilitate safe antibacterial chemotherapy and prevent the development of resistant bacteria. We report a microorganism test system employed at the Sapporo City General Hospital.

  20. Survival of epiphytic bacteria from seed stored on the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Schuerger, Andrew C.; Norman, Bret L.; Angelo, Joseph A., Jr.

    1992-01-01

    Microbial contamination in American spacecraft has previously been documented, however, potential risks to plants and humans in future space based controlled ecological life support systems (CELSS) have yet to be addressed directly. The current study was designed to determine the survival of microorganisms exposed to the relatively harsh conditions found in low Earth orbit (LEO). Total mean dosage for flight and ground control seeds were 210.2 and 0.9 rads, respectively. Bacteria were isolated by plating samples of seedwashings onto dilute tryptic soy agar. Pure isolates of morphologically distinct bacteria were obtained by standard microbiological procedures. Bacteria were grouped according to colony type and preliminary identification was completed using a fatty acid analysis system. Bacillus spp. were the primary microorganisms that survived on seed during the experiment. Results support the hypothesis that terrestrial microorganisms can survive long periods of time in relatively harsh LEO environments.

  1. Comparison of viable plate count, turbidity measurement and real-time PCR for quantification of Porphyromonas gingivalis.

    PubMed

    Clais, S; Boulet, G; Van Kerckhoven, M; Lanckacker, E; Delputte, P; Maes, L; Cos, P

    2015-01-01

    The viable plate count (VPC) is considered as the reference method for bacterial enumeration in periodontal microbiology but shows some important limitations for anaerobic bacteria. As anaerobes such as Porphyromonas gingivalis are difficult to culture, VPC becomes time-consuming and less sensitive. Hence, efficient normalization of experimental data to bacterial cell count requires alternative rapid and reliable quantification methods. This study compared the performance of VPC with that of turbidity measurement and real-time PCR (qPCR) in an experimental context using highly concentrated bacterial suspensions. Our TaqMan-based qPCR assay for P. gingivalis 16S rRNA proved to be sensitive and specific. Turbidity measurements offer a fast method to assess P. gingivalis growth, but suffer from high variability and a limited dynamic range. VPC was very time-consuming and less repeatable than qPCR. Our study concludes that qPCR provides the most rapid and precise approach for P. gingivalis quantification. Although our data were gathered in a specific research context, we believe that our conclusions on the inferior performance of VPC and turbidity measurements in comparison to qPCR can be extended to other research and clinical settings and even to other difficult-to-culture micro-organisms. Various clinical and research settings require fast and reliable quantification of bacterial suspensions. The viable plate count method (VPC) is generally seen as 'the gold standard' for bacterial enumeration. However, VPC-based quantification of anaerobes such as Porphyromonas gingivalis is time-consuming due to their stringent growth requirements and shows poor repeatability. Comparison of VPC, turbidity measurement and TaqMan-based qPCR demonstrated that qPCR possesses important advantages regarding speed, accuracy and repeatability. © 2014 The Society for Applied Microbiology.

  2. BTEX biodegradation by bacteria from effluents of petroleum refinery.

    PubMed

    Mazzeo, Dânia Elisa Christofoletti; Levy, Carlos Emílio; de Angelis, Dejanira de Franceschi; Marin-Morales, Maria Aparecida

    2010-09-15

    Groundwater contamination with benzene, toluene, ethylbenzene and xylene (BTEX) has been increasing, thus requiring an urgent development of methodologies that are able to remove or minimize the damages these compounds can cause to the environment. The biodegradation process using microorganisms has been regarded as an efficient technology to treat places contaminated with hydrocarbons, since they are able to biotransform and/or biodegrade target pollutants. To prove the efficiency of this process, besides chemical analysis, the use of biological assessments has been indicated. This work identified and selected BTEX-biodegrading microorganisms present in effluents from petroleum refinery, and evaluated the efficiency of microorganism biodegradation process for reducing genotoxic and mutagenic BTEX damage through two test-systems: Allium cepa and hepatoma tissue culture (HTC) cells. Five different non-biodegraded BTEX concentrations were evaluated in relation to biodegraded concentrations. The biodegradation process was performed in a BOD Trak Apparatus (HACH) for 20 days, using microorganisms pre-selected through enrichment. Although the biodegradation usually occurs by a consortium of different microorganisms, the consortium in this study was composed exclusively of five bacteria species and the bacteria Pseudomonas putida was held responsible for the BTEX biodegradation. The chemical analyses showed that BTEX was reduced in the biodegraded concentrations. The results obtained with genotoxicity assays, carried out with both A. cepa and HTC cells, showed that the biodegradation process was able to decrease the genotoxic damages of BTEX. By mutagenic tests, we observed a decrease in damage only to the A. cepa organism. Although no decrease in mutagenicity was observed for HTC cells, no increase of this effect after the biodegradation process was observed either. The application of pre-selected bacteria in biodegradation processes can represent a reliable and

  3. Microorganism Utilization for Synthetic Milk Production

    NASA Technical Reports Server (NTRS)

    Morford, Megan A.; Khodadad, Christina Louise; Spencer, LaShelle E.; Richards, Jeffrey T.; Strayer, Richard F.; Caro, Janicce; Hummerick, Mary; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    A desired architecture for long duration spaceflight, such as aboard the International Space Station (ISS) or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of this project was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel- through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms were optimized in the laboratory and the desired end-products, sugars and lipids, were analyzed. Trichoderma reesei, a known cellulolytic fungus, was utilized to drive the production of glucose, with the intent that the produced glucose would serve as the carbon source for milk fat production and be a substitute for the milk sugar lactose. Lipid production would be carried out by Rhodosporidium toruloides, yeast known to accumulate those lipids that are typically found in milk fat. Results showed that glucose and total lipid content were below what was expected during this phase of experimentation. In addition, individual analysis of six fatty acids revealed that the percentage of each fatty acid was lower than naturally produced bovine milk. Overall, this research indicates that microorganisms could be utilized to breakdown inedible solid waste to produce useable products.

  4. Survival of soil bacteria during prolonged desiccation.

    NASA Technical Reports Server (NTRS)

    Chen, M.; Alexander, M.

    1973-01-01

    A determination was made of the kinds and numbers of bacteria surviving when two soils were maintained in the laboratory under dry conditions for more than half a year. Certain non-spore-forming bacteria were found to survive in the dry condition for long periods. A higher percentage of drought-tolerant than drought-sensitive bacteria was able to grow at low water activities. When they were grown in media with high salt concentrations, bacteria generally became more tolerant of prolonged drought and they persisted longer. The percent of cells in a bacterial population that remained viable when exposed to drought stress varied with the stage of growth.

  5. H 2-saturation of high affinity H 2-oxidizing bacteria alters the ecological niche of soil microorganisms unevenly among taxonomic groups

    DOE PAGES

    Piché-Choquette, Sarah; Tremblay, Julien; Tringe, Susannah G.; ...

    2016-03-10

    Soil microbial communities are continuously exposed to H 2 diffusing into the soil from the atmosphere. N 2-fixing nodules represent a peculiar microniche in soil where H 2 can reach concentrations up to 20,000 fold higher than in the global atmosphere (0.530 ppmv). In this study, we investigated the impact of H 2 exposure on soil bacterial community structure using dynamic microcosm chambers simulating soil H 2 exposure from the atmosphere and N 2-fixing nodules. Biphasic kinetic parameters governing H 2 oxidation activity in soil changed drastically upon elevated H 2 exposure, corresponding to a slight but significant decay ofmore » high affinity H 2-oxidizing bacteria population, accompanied by an enrichment or activation of microorganisms displaying low-affinity for H 2. In contrast to previous studies that unveiled limited response by a few species, the relative abundance of 958 bacterial ribotypes distributed among various taxonomic groups, rather than a few distinct taxa, was influenced by H 2 exposure. Furthermore, correlation networks showed important alterations of ribotype covariation in response to H 2 exposure, suggesting that H 2 affects microbe-microbe interactions in soil. Taken together, our results demonstrate that H 2-rich environments exert a direct influence on soil H 2-oxidizing bacteria in addition to indirect effects on other members of the bacterial communities.« less

  6. H2-saturation of high affinity H2-oxidizing bacteria alters the ecological niche of soil microorganisms unevenly among taxonomic groups

    PubMed Central

    Piché-Choquette, Sarah; Tremblay, Julien; Tringe, Susannah G.

    2016-01-01

    Soil microbial communities are continuously exposed to H2 diffusing into the soil from the atmosphere. N2-fixing nodules represent a peculiar microniche in soil where H2 can reach concentrations up to 20,000 fold higher than in the global atmosphere (0.530 ppmv). In this study, we investigated the impact of H2 exposure on soil bacterial community structure using dynamic microcosm chambers simulating soil H2 exposure from the atmosphere and N2-fixing nodules. Biphasic kinetic parameters governing H2 oxidation activity in soil changed drastically upon elevated H2 exposure, corresponding to a slight but significant decay of high affinity H2-oxidizing bacteria population, accompanied by an enrichment or activation of microorganisms displaying low-affinity for H2. In contrast to previous studies that unveiled limited response by a few species, the relative abundance of 958 bacterial ribotypes distributed among various taxonomic groups, rather than a few distinct taxa, was influenced by H2 exposure. Furthermore, correlation networks showed important alterations of ribotype covariation in response to H2 exposure, suggesting that H2 affects microbe-microbe interactions in soil. Taken together, our results demonstrate that H2-rich environments exert a direct influence on soil H2-oxidizing bacteria in addition to indirect effects on other members of the bacterial communities. PMID:26989620

  7. Antibacterial activity of silver-killed bacteria: the "zombies" effect

    NASA Astrophysics Data System (ADS)

    Wakshlak, Racheli Ben-Knaz; Pedahzur, Rami; Avnir, David

    2015-04-01

    We report a previously unrecognized mechanism for the prolonged action of biocidal agents, which we denote as the zombies effect: biocidally-killed bacteria are capable of killing living bacteria. The concept is demonstrated by first killing Pseudomonas aeruginosa PAO1 with silver nitrate and then challenging, with the dead bacteria, a viable culture of the same bacterium: Efficient antibacterial activity of the killed bacteria is observed. A mechanism is suggested in terms of the action of the dead bacteria as a reservoir of silver, which, due to Le-Chatelier's principle, is re-targeted to the living bacteria. Langmuirian behavior, as well as deviations from it, support the proposed mechanism.

  8. The injection of microorganisms into an atmospheric pressure rf-driven microplasma

    NASA Astrophysics Data System (ADS)

    Maguire, P. D.; Mahony, C. M. O.; Diver, D.; Mariotti, D.; Bennet, E.; Potts, H.; McDowell, D. A.

    2013-09-01

    The introduction of living organisms, such as bacteria, into atmospheric pressure microplasmas offers a unique means to study certain physical mechanisms in individual microorganisms and also help understand the impact of macroscopic entities and liquid droplets on plasma characteristics. We present the characterization of an RF-APD operating at 13.56 MHz and containing microorganisms in liquid droplets emitted from a nebulizer, with the spray entrained in a gas flow by a gas shroud and passed into the plasma source. We report successful microorganism injection and transmission through the plasma with stable plasma operation of at least one hour. Diagnostics include RF electrical characterization, optical emission spectrometry and electrostatic deflection to investigate microorganism charging. A close-coupled Impedans Octiv VI probe indicates source efficiencies of 10 to 15%. The introduction of the droplets/microorganisms results in increased plasma conductivity and reduced capacitance, due to their impact on electron density and temperature. An electrical model will be presented based on diagnostic data and deflection studies with input from simulations of charged aerosol diffusion and evaporation. Engineering and Physical Sciences Research Council EP/K006088, EP/K006142.

  9. Visualization of interaction between inorganic nanoparticles and bacteria or fungi

    PubMed Central

    Chwalibog, André; Sawosz, Ewa; Hotowy, Anna; Szeliga, Jacek; Mitura, Stanislaw; Mitura, Katarzyna; Grodzik, Marta; Orlowski, Piotr; Sokolowska, Aleksandra

    2010-01-01

    Purpose The objective of the present investigation was to evaluate the morphologic characteristics of self-assemblies of diamond (nano-D), silver (nano-Ag), gold (nano-Au), and platinum (nano-Pt) nanoparticles with Staphylococcus aureus (bacteria) and Candida albicans (fungi), to determine the possibility of constructing microorganism–nanoparticle vehicles. Methods Hydrocolloids of individual nanoparticles were added to suspensions of S. aureus and C. albicans. Immediately after mixing, the samples were inspected by transmission electron microscopy. Results Visualization of the morphologic interaction between the nanoparticles and microorganisms showed that nano-D, which are dielectrics and exhibit a positive zeta potential, were very different from the membrane potentials of microorganisms, and uniformly surrounded the microorganisms, without causing visible damage and destruction of cells. All metal nanoparticles with negative zeta potential had cell damaging properties. Nano-Ag showed the properties of self-organization with the cells, disintegrating the cell walls and cytoplasmic membranes, and releasing a substance (probably cytoplasm) outside the cell. Arrangement of nano-Au with microorganisms did not create a system of self-organization, but instead a “noncontact” interaction between the nanoparticles and microorganisms was observed to cause damage to fungal cells. Nano-Pt caused both microorganisms to release a substance outside the cell and disintegrated the cytoplasmic membrane and cell wall. Conclusion Nano-Ag, nano-Au, and nano-Pt (all metal nanoparticles) are harmful to bacteria and fungi. In contrast, nano-D bind closely to the surface of microorganisms without causing visible damage to cells, and demonstrating good self-assembling ability. The results indicate that both microorganisms could be used as potential carriers for nano-D. PMID:21270959

  10. Cultivation of Anaerobic and Facultatively Anaerobic Bacteria from Spacecraft-Associated Clean Rooms▿

    PubMed Central

    Stieglmeier, Michaela; Wirth, Reinhard; Kminek, Gerhard; Moissl-Eichinger, Christine

    2009-01-01

    In the course of this biodiversity study, the cultivable microbial community of European spacecraft-associated clean rooms and the Herschel Space Observatory located therein were analyzed during routine assembly operations. Here, we focused on microorganisms capable of growing without oxygen. Anaerobes play a significant role in planetary protection considerations since extraterrestrial environments like Mars probably do not provide enough oxygen for fully aerobic microbial growth. A broad assortment of anaerobic media was used in our cultivation strategies, which focused on microorganisms with special metabolic skills. The majority of the isolated strains grew on anaerobic, complex, nutrient-rich media. Autotrophic microorganisms or microbes capable of fixing nitrogen were also cultivated. A broad range of facultatively anaerobic bacteria was detected during this study and also, for the first time, some strictly anaerobic bacteria (Clostridium and Propionibacterium) were isolated from spacecraft-associated clean rooms. The multiassay cultivation approach was the basis for the detection of several bacteria that had not been cultivated from these special environments before and also led to the discovery of two novel microbial species of Pseudomonas and Paenibacillus. PMID:19363082

  11. Cultivation of anaerobic and facultatively anaerobic bacteria from spacecraft-associated clean rooms.

    PubMed

    Stieglmeier, Michaela; Wirth, Reinhard; Kminek, Gerhard; Moissl-Eichinger, Christine

    2009-06-01

    In the course of this biodiversity study, the cultivable microbial community of European spacecraft-associated clean rooms and the Herschel Space Observatory located therein were analyzed during routine assembly operations. Here, we focused on microorganisms capable of growing without oxygen. Anaerobes play a significant role in planetary protection considerations since extraterrestrial environments like Mars probably do not provide enough oxygen for fully aerobic microbial growth. A broad assortment of anaerobic media was used in our cultivation strategies, which focused on microorganisms with special metabolic skills. The majority of the isolated strains grew on anaerobic, complex, nutrient-rich media. Autotrophic microorganisms or microbes capable of fixing nitrogen were also cultivated. A broad range of facultatively anaerobic bacteria was detected during this study and also, for the first time, some strictly anaerobic bacteria (Clostridium and Propionibacterium) were isolated from spacecraft-associated clean rooms. The multiassay cultivation approach was the basis for the detection of several bacteria that had not been cultivated from these special environments before and also led to the discovery of two novel microbial species of Pseudomonas and Paenibacillus.

  12. Microorganisms isolated from root canals presenting necrotic pulp and their drug susceptibility in vitro.

    PubMed

    Lana, M A; Ribeiro-Sobrinho, A P; Stehling, R; Garcia, G D; Silva, B K; Hamdan, J S; Nicoli, J R; Carvalho, M A; Farias, L de M

    2001-04-01

    The knowledge about causative agents involved in endodontic infections is increasing, especially due to the improvement of culture techniques for anaerobic bacteria, showing that these microorganisms are predominant in this pathology. In this study, 31 canals with pulp necrosis were microbiologically analyzed before and after manipulation. Obligate and facultative anaerobes, microaerophilic bacteria and yeasts were recovered from 24, 14, 5 and 2 clinical specimens, respectively. The most frequent genera were Prevotella, Fusobacterium, Lactobacillus, Streptococcus, Clostridium and Peptostreptococcus for bacteria and Candida and Saccharomyces for yeasts. Strong positive associations, using an odds ratio system, were found between Clostridium and Prevotella and between Peptostreptococcus and Fusobacterium. Even after the instrumentation and the use of Ca(OH)2, facultative anaerobes were detected in two root canals and yeasts in three. Microorganisms were isolated from seven canals at the end of the endodontic treatment: facultative anaerobes from five and yeasts from one. The microbiological evaluation of root canals with pulp necrosis suggests the presence of polymicrobial infections, mainly involving obligate anaerobes, and shows that the infection may persist after treatment.

  13. Identification of Microorganisms by Modern Analytical Techniques.

    PubMed

    Buszewski, Bogusław; Rogowska, Agnieszka; Pomastowski, Paweł; Złoch, Michał; Railean-Plugaru, Viorica

    2017-11-01

    Rapid detection and identification of microorganisms is a challenging and important aspect in a wide range of fields, from medical to industrial, affecting human lives. Unfortunately, classical methods of microorganism identification are based on time-consuming and labor-intensive approaches. Screening techniques require the rapid and cheap grouping of bacterial isolates; however, modern bioanalytics demand comprehensive bacterial studies at a molecular level. Modern approaches for the rapid identification of bacteria use molecular techniques, such as 16S ribosomal RNA gene sequencing based on polymerase chain reaction or electromigration, especially capillary zone electrophoresis and capillary isoelectric focusing. However, there are still several challenges with the analysis of microbial complexes using electromigration technology, such as uncontrolled aggregation and/or adhesion to the capillary surface. Thus, an approach using capillary electrophoresis of microbial aggregates with UV and matrix-assisted laser desorption ionization time-of-flight MS detection is presented.

  14. Purification Techniques of Bacteriocins from Lactic Acid Bacteria and Other Gram-Positive Bacteria

    NASA Astrophysics Data System (ADS)

    Saavedra, Lucila; Sesma, Fernando

    The search for new antimicrobial peptides produced by lactic acid ­bacteria and other Gram-positive microorganisms has become an interesting field of research in the past decades. The fact that bacteriocins are active against numerous foodborne and human pathogens, are produced by generally regarded as safe (GRAS) microorganisms, and are readily degraded by proteolytic host systems makes them attractive candidates for biotechnological applications. However, before suggesting or choosing a new bacteriocin for future technology developments, it is necessary to elucidate its biochemical structure and its mode of action, which may be carried out once the bacteriocin is purified to homogeneity. This chapter focuses on describing the main strategies used for the purification of numerous bacteriocins.

  15. The Interaction between Plants and Bacteria in the Remediation of Petroleum Hydrocarbons: An Environmental Perspective

    PubMed Central

    Gkorezis, Panagiotis; Daghio, Matteo; Franzetti, Andrea; Van Hamme, Jonathan D.; Sillen, Wouter; Vangronsveld, Jaco

    2016-01-01

    Widespread pollution of terrestrial ecosystems with petroleum hydrocarbons (PHCs) has generated a need for remediation and, given that many PHCs are biodegradable, bio- and phyto-remediation are often viable approaches for active and passive remediation. This review focuses on phytoremediation with particular interest on the interactions between and use of plant-associated bacteria to restore PHC polluted sites. Plant-associated bacteria include endophytic, phyllospheric, and rhizospheric bacteria, and cooperation between these bacteria and their host plants allows for greater plant survivability and treatment outcomes in contaminated sites. Bacterially driven PHC bioremediation is attributed to the presence of diverse suites of metabolic genes for aliphatic and aromatic hydrocarbons, along with a broader suite of physiological properties including biosurfactant production, biofilm formation, chemotaxis to hydrocarbons, and flexibility in cell-surface hydrophobicity. In soils impacted by PHC contamination, microbial bioremediation generally relies on the addition of high-energy electron acceptors (e.g., oxygen) and fertilization to supply limiting nutrients (e.g., nitrogen, phosphorous, potassium) in the face of excess PHC carbon. As an alternative, the addition of plants can greatly improve bioremediation rates and outcomes as plants provide microbial habitats, improve soil porosity (thereby increasing mass transfer of substrates and electron acceptors), and exchange limiting nutrients with their microbial counterparts. In return, plant-associated microorganisms improve plant growth by reducing soil toxicity through contaminant removal, producing plant growth promoting metabolites, liberating sequestered plant nutrients from soil, fixing nitrogen, and more generally establishing the foundations of soil nutrient cycling. In a practical and applied sense, the collective action of plants and their associated microorganisms is advantageous for remediation of PHC

  16. The Interaction between Plants and Bacteria in the Remediation of Petroleum Hydrocarbons: An Environmental Perspective.

    PubMed

    Gkorezis, Panagiotis; Daghio, Matteo; Franzetti, Andrea; Van Hamme, Jonathan D; Sillen, Wouter; Vangronsveld, Jaco

    2016-01-01

    Widespread pollution of terrestrial ecosystems with petroleum hydrocarbons (PHCs) has generated a need for remediation and, given that many PHCs are biodegradable, bio- and phyto-remediation are often viable approaches for active and passive remediation. This review focuses on phytoremediation with particular interest on the interactions between and use of plant-associated bacteria to restore PHC polluted sites. Plant-associated bacteria include endophytic, phyllospheric, and rhizospheric bacteria, and cooperation between these bacteria and their host plants allows for greater plant survivability and treatment outcomes in contaminated sites. Bacterially driven PHC bioremediation is attributed to the presence of diverse suites of metabolic genes for aliphatic and aromatic hydrocarbons, along with a broader suite of physiological properties including biosurfactant production, biofilm formation, chemotaxis to hydrocarbons, and flexibility in cell-surface hydrophobicity. In soils impacted by PHC contamination, microbial bioremediation generally relies on the addition of high-energy electron acceptors (e.g., oxygen) and fertilization to supply limiting nutrients (e.g., nitrogen, phosphorous, potassium) in the face of excess PHC carbon. As an alternative, the addition of plants can greatly improve bioremediation rates and outcomes as plants provide microbial habitats, improve soil porosity (thereby increasing mass transfer of substrates and electron acceptors), and exchange limiting nutrients with their microbial counterparts. In return, plant-associated microorganisms improve plant growth by reducing soil toxicity through contaminant removal, producing plant growth promoting metabolites, liberating sequestered plant nutrients from soil, fixing nitrogen, and more generally establishing the foundations of soil nutrient cycling. In a practical and applied sense, the collective action of plants and their associated microorganisms is advantageous for remediation of PHC

  17. Study of capability of microorganisms to develop on construction materials used in space objects

    NASA Astrophysics Data System (ADS)

    Rakova, N.; Svistunova, Y.; Novikova, N.

    One of the most topical issues nowadays in the whole set of space research is the study of microbiological risks (medical, technical, technological). Experiments held onboard MIR station and International Space Station (ISS) clearly demonstrated capacity of microorganisms to contaminate the environment, equipment and belonging of habitual compartments of space objects. In this connection microorganisms-biodestructors play an important role. In their vital functioning they are capable of causing biological damage of different polymers, biocorrosion of metals which can lead to serious difficulties in performing long-term flights, namely the planned mission to Mars. Our purpose was to study capability of growth and reproduction of microorganisms on construction materials of various chemical composition as the first stage of biodestruction process. In our research we used "flight" strains of bacteria (Bacillus subtilus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Pseudomonas pumilus etc.) recovered from the ISS environment in several missions. For control we used "earth" bacteria species with typical properties. To model the environment of the ISS we took construction materials which are widely used in the interior and equipment of the ISS. The results we've obtained show that some microorganisms are capable of living and reproducing themselves on construction materials and their capability is more pronounced than that of the "earth" species. The best capability for growth and reproduction was characteristic of Bacillus subtilus.

  18. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants - a review.

    PubMed

    Suriyamongkol, Pornpa; Weselake, Randall; Narine, Suresh; Moloney, Maurice; Shah, Saleh

    2007-01-01

    The increasing effect of non-degradable plastic wastes is a growing concern. Polyhydroxyalkanoates (PHAs), macromolecule-polyesters naturally produced by many species of microorganisms, are being considered as a replacement for conventional plastics. Unlike petroleum-derived plastics that take several decades to degrade, PHAs can be completely bio-degraded within a year by a variety of microorganisms. This biodegradation results in carbon dioxide and water, which return to the environment. Attempts based on various methods have been undertaken for mass production of PHAs. Promising strategies involve genetic engineering of microorganisms and plants to introduce production pathways. This challenge requires the expression of several genes along with optimization of PHA synthesis in the host. Although excellent progress has been made in recombinant hosts, the barriers to obtaining high quantities of PHA at low cost still remain to be solved. The commercially viable production of PHA in crops, however, appears to be a realistic goal for the future.

  19. Potential sources of bacteria that are isolated from contact lenses during wear.

    PubMed

    Willcox, M D; Power, K N; Stapleton, F; Leitch, C; Harmis, N; Sweeney, D F

    1997-12-01

    The aim of this paper was to determine the possible contamination sources of contact lenses during wear. Potential sources of the microbiota that colonized hydrogel contact lenses during wear were examined. The microorganisms that colonize contact lenses were grown, identified, and compared to those microorganisms that colonized the lower lid margins, upper bulbar conjunctiva, hands, and contact lens cases of contact lens wearers. In addition, the incidence of contamination of the domestic water supply in the Sydney area was obtained, and this was compared to the incidence of colonization of contact lenses by microorganisms in general and gram-negative bacteria in particular. There was a wide diversity of bacteria that were isolated from each site sampled. Coagulase-negative staphylococci and Propionibacterium spp. were the most common isolates from all ocular sites examined, and constituted the normal ocular microbiota. Other bacteria, including members of the families Enterobacteriaceae and Pseudomonadaceae, were isolated infrequently from all sites, but most frequently from contact lens cases. Statistical analysis revealed that there was a correlation between the isolation of bacteria from the contact lens and the lower lid margin (p < 0.001). Analysis of this correlation revealed that this was true for the normal microbiota. A correlation was also noted between the colonization of contact lenses by gram-negative bacteria and contamination of the domestic water supply. This study has demonstrated that the likely route for the normal ocular microbiota colonizing contact lenses is via the lid margins, whereas colonization by gram-negative bacteria, including potential agents of microbial keratitis, is likely to be from the domestic water supply.

  20. Characterization of radiation-resistant vegetative bacteria in beef.

    PubMed

    Welch, A B; Maxcy, R B

    1975-08-01

    Ground beef contains numerous microorganisms of various types. The commonly recognized bacteria are associated with current problems of spoilage. Irradiation, however, contributes a new factor through selective destruction of the microflora. The residual microorganisms surviving a nonsterilizing dose are predominantly gram-negative coccobacilli. Various classifications have been given, e.g., Moraxella, Acinetobacter, Achromobacter, etc. For a more detailed study of these radiation-resistant bacteria occurring in ground beef, an enrichment procedure was used for isolation. By means of morphological and biochemical tests, most of the isolates were found to be Moraxella, based on current classifications. The range of growth temperatures was from 2 to 50 C. These bacteria were relatively heat sensitive, e.g., D10 of 5.4 min at 70 C or less. The radiation resistance ranged from D10 values of 273 to 2,039 krad. Thus, some were more resistant than any presently recognized spores. A reference culture of Moraxella osloensis was irradiated under conditions comparable to the enrichment procedure used with the ground beef. The only apparent changes were in morphology and penicillin sensitivity. However, after a few subcultures these bacteria reverted to the characteristics of the parent strain. Thus, it is apparent that these isolates are a part of the normal flora of ground beef and not aberrant forms arising from the irradiation procedure. The significance, if any, of these bacteria is not presently recognized.

  1. Synthesis of High-Molecular-Weight Polyhydroxyalkanoates by Marine Photosynthetic Purple Bacteria

    PubMed Central

    Higuchi-Takeuchi, Mieko; Morisaki, Kumiko; Toyooka, Kiminori; Numata, Keiji

    2016-01-01

    Polyhydroxyalkanoate (PHA) is a biopolyester/bioplastic that is produced by a variety of microorganisms to store carbon and increase reducing redox potential. Photosynthetic bacteria convert carbon dioxide into organic compounds using light energy and are known to accumulate PHA. We analyzed PHAs synthesized by 3 purple sulfur bacteria and 9 purple non-sulfur bacteria strains. These 12 purple bacteria were cultured in nitrogen-limited medium containing acetate and/or sodium bicarbonate as carbon sources. PHA production in the purple sulfur bacteria was induced by nitrogen-limited conditions. Purple non-sulfur bacteria accumulated PHA even under normal growth conditions, and PHA production in 3 strains was enhanced by nitrogen-limited conditions. Gel permeation chromatography analysis revealed that 5 photosynthetic purple bacteria synthesized high-molecular-weight PHAs, which are useful for industrial applications. Quantitative reverse transcription polymerase chain reaction analysis revealed that mRNA levels of phaC and PhaZ genes were low under nitrogen-limited conditions, resulting in production of high-molecular-weight PHAs. We conclude that all 12 tested strains are able to synthesize PHA to some degree, and we identify 5 photosynthetic purple bacteria that accumulate high-molecular-weight PHA molecules. Furthermore, the photosynthetic purple bacteria synthesized PHA when they were cultured in seawater supplemented with acetate. The photosynthetic purple bacteria strains characterized in this study should be useful as host microorganisms for large-scale PHA production utilizing abundant marine resources and carbon dioxide. PMID:27513570

  2. Transfer of microorganisms, including Listeria monocytogenes, from various materials to beef.

    PubMed

    Midelet, Graziella; Carpentier, Brigitte

    2002-08-01

    The quantity of microorganisms that may be transferred to a food that comes into contact with a contaminated surface depends on the density of microorganisms on the surface and on the attachment strengths of the microorganisms on the materials. We made repeated contacts between pieces of meat and various surfaces (stainless steel and conveyor belt materials [polyvinyl chloride and polyurethane]), which were conditioned with meat exudate and then were contaminated with Listeria monocytogenes, Staphylococcus sciuri, Pseudomonas putida, or Comamonas sp. Attachment strengths were assessed by the slopes of the two-phase curves obtained by plotting the logarithm of the number of microorganisms transferred against the order number of the contact. These curves were also used to estimate the microbial population on the surface by using the equation of A. Veulemans, E. Jacqmain, and D. Jacqmain (Rev. Ferment. Ind. Aliment. 25:58-65, 1970). The biofilms were characterized according to their physicochemical surface properties and structures. Their exopolysaccharide-producing capacities were assessed from biofilms grown on polystyrene. The L. monocytogenes biofilms attached more strongly to polymers than did the other strains, and attachment strength proved to be weaker on stainless steel than on the two polymers. However, in most cases, it was the population of the biofilms that had the strongest influence on the total number of CFU detached. Although attachment strengths were weaker on stainless steel, this material, carrying a smaller population of bacteria, had a weaker contaminating capacity. In most cases the equation of Veulemans et al. revealed more bacteria than did swabbing the biofilms, and it provided a better assessment of the contaminating potential of the polymeric materials studied here.

  3. Corrosion of low carbon steel by microorganisms from the 'pigging' operation debris in water injection pipelines.

    PubMed

    Cote, Claudia; Rosas, Omar; Sztyler, Magdalena; Doma, Jemimah; Beech, Iwona; Basseguy, Régine

    2014-06-01

    Present in all environments, microorganisms develop biofilms adjacent to the metallic structures creating corrosion conditions which may cause production failures that are of great economic impact to the industry. The most common practice in the oil and gas industry to annihilate these biofilms is the mechanical cleaning known as "pigging". In the present work, microorganisms from the "pigging" operation debris are tested biologically and electrochemically to analyse their effect on the corrosion of carbon steel. Results in the presence of bacteria display the formation of black corrosion products allegedly FeS and a sudden increase (more than 400mV) of the corrosion potential of electrode immersed in artificial seawater or in field water (produced water mixed with aquifer seawater). Impedance tests provided information about the mechanisms of the interface carbon steel/bacteria depending on the medium used: mass transfer limitation in artificial seawater was observed whereas that in field water was only charge transfer phenomenon. Denaturing Gradient Gel Electrophoresis (DGGE) results proved that bacterial diversity decreased when cultivating the debris in the media used and suggested that the bacteria involved in the whole set of results are mainly sulphate reducing bacteria (SRB) and some other bacteria that make part of the taxonomic order Clostridiales. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Impact of Sodium Tungstate and Tungsten Alloys on the Growth of Selected Microorganisms with Environmental Significance

    DTIC Science & Technology

    2010-07-30

    TUNGSTEN ALLOYS ON THE GROWTH OF SELECTED MICROORGANISMS WITH ENVIROMENTAL SIGNIFICANCE 5a. Contract Number: 5b. Grant Number: 5c. Program Element...lower tolerances. Interestingly, bacteria cultivated from the environment displayed only minor delays and reduction in growth relative to pure...settings where nutrients may be limited. 15. SUBJECT TERMS Tungsten, sodium tungstate, microbial growth , environmental microbiology, bacteria , Shewanella

  5. In vitro characterization of aggregation and adhesion properties of viable and heat-killed forms of two probiotic Lactobacillus strains and interaction with foodborne zoonotic bacteria, especially Campylobacter jejuni.

    PubMed

    Tareb, Raouf; Bernardeau, Marion; Gueguen, Marielle; Vernoux, Jean-Paul

    2013-04-01

    Bacterial aggregation and/or adhesion are key factors for colonization of the digestive ecosystem and the ability of probiotic strains to exclude pathogens. In the present study, two probiotic strains, Lactobacillus rhamnosus CNCM-I-3698 and Lactobacillus farciminis CNCM-I-3699, were evaluated as viable or heat-killed forms and compared with probiotic reference Lactobacillus strains (Lb. rhamnosus GG and Lb. farciminis CIP 103136). The autoaggregation potential of both forms was higher than that of reference strains and twice that of pathogenic strains. The coaggregation potential of these two beneficial micro-organisms was evaluated against several pathogenic agents that threaten the global safety of the feed/food chain: Escherichia coli, Salmonella spp., Campylobacter spp. and Listeria monocytogenes. The strongest coaggregative interactions were demonstrated with Campylobacter spp. by a coaggregation test, confirmed by electron microscopic examination for the two forms. Viable forms were investigated for the nature of the bacterial cell-surface molecules involved, by sugar reversal tests and chemical and enzymic pretreatments. The results suggest that the coaggregation between both probiotic strains and C. jejuni CIP 70.2(T) is mediated by a carbohydrate-lectin interaction. The autoaggregation potential of the two probiotics decreased upon exposure to proteinase, SDS or LiCl, showing that proteinaceous components on the surface of the two lactobacilli play an important role in this interaction. Adhesion abilities of both Lactobacillus strains were also demonstrated at significant levels on Caco-2 cells, mucin and extracellular matrix material. Both viable and heat-killed forms of the two probiotic lactobacilli inhibited the attachment of C. jejuni CIP 70.2(T) to mucin. In conclusion, in vitro assays showed that Lb. rhamnosus CNCM-I-3698 and Lb. farciminis CNCM-I-3699, as viable or heat-killed forms, are adherent to different intestinal matrix models and are

  6. Potentially pathogenic amoeba-associated microorganisms in cooling towers and their control.

    PubMed

    Pagnier, Isabelle; Merchat, Michèle; La Scola, Bernard

    2009-06-01

    Cooling towers provide a favorable environment for the proliferation of microorganisms. Cooling towers generate a biofilm and often aerosolize contaminated water, thereby increasing the risk of microorganism dissemination by human inhalation. This pathogen dissemination was first revealed by the epidemics of Legionnaires' disease that were directly related to the presence of cooling towers, and since then, the ecology of Legionella pneumophila has been well studied. Each country has specific standards regarding the acceptable amount of microorganisms in cooling tower systems. However, those standards typically only concern L. pneumophila, even though many other microorganisms can also be isolated from cooling towers, including protozoa, bacteria and viruses. Microbiological control of the cooling tower system can be principally achieved by chemical treatments and also by improving the system's construction. Several new treatments are being studied to improve the efficiency of disinfection. However, as most of these treatments continue to focus solely on L. pneumophila, reports of other types of pathogens continue to increase. Therefore, how their dissemination affects the human populous health should be addressed now.

  7. Resin straw as an alternative system to securely store frozen microorganisms.

    PubMed

    Thammavongs, Bouachanh; Poncet, Jean-Marc; Desmasures, Nathalie; Guéguen, Micheline; Panoff, Jean-Michel

    2004-05-01

    Freezing of prokaryotic and eukaryotic microorganisms is the main interest in the study of cold stress responses of living organisms. In parallel, applications which arise from this approach are of two types: (i) optimization of the frozen starters used in food processing; and (ii) improvement of the ex situ preservation of microorganisms in collections. Currently, cryopreservation of microorganisms in collections is carried out in cryotubes, and bibliographical references related to freezing microorganisms packaged in straws are scarce. In this context, a preliminary study was completed to evaluate the technological potential of ionomeric resin straws compared to polycarbonate cryo-tubes. Survival under freezing stress was tested on three microorganisms selected for their biotechnological interest: two lactic acid bacteria, Lactococcus lactis subsp. cremoris and Lactobacillus delbrueckii subsp. bulgaricus and a deuteromycete fungus, Geotrichum candidum. The stress was carried out by repeated freezing-thawing cycles to artificially accelerate the lethal effect of freezing on the microorganisms. Two main results were obtained: (i) the survival rate values (per freezing-thawing cycle) seems to depend on the thermal type of the studied microorganism, and (ii) there was no, under our experimental conditions, significant difference between straws and tubes. However, conservation in the resin straws lead to a slight increase in the survival of L. cremoris and G. candidum compared to microtubes. In those conditions, straws seems an alternative system to securely store frozen microorganisms with three main characteristics: (i) a high resistance to thermal stress, (ii) a safe closing by hermetic weld, and (iii) a system for inviolable identification.

  8. Viable adhered Staphylococcus aureus highly reduced on novel antimicrobial sutures using chlorhexidine and octenidine to avoid surgical site infection (SSI)

    PubMed Central

    Schneider, Jochen; Harrasser, Norbert; Tübel, Jutta; Mühlhofer, Heinrich; Pförringer, Dominik; von Deimling, Constantin; Foehr, Peter; Kiefel, Barbara; Krämer, Christina; Stemberger, Axel; Schieker, Matthias

    2018-01-01

    Background Surgical sutures can promote migration of bacteria and thus start infections. Antiseptic coating of sutures may inhibit proliferation of adhered bacteria and avoid such complications. Objectives This study investigated the inhibition of viable adhering bacteria on novel antimicrobially coated surgical sutures using chlorhexidine or octenidine, a critical factor for proliferation at the onset of local infections. The medical need, a rapid eradication of bacteria in wounds, can be fulfilled by a high antimicrobial efficacy during the first days after wound closure. Methods As a pretesting on antibacterial efficacy against relevant bacterial pathogens a zone of inhibition assay was conducted with middle ranged concentrated suture coatings (22 μg/cm). For further investigation of adhering bacteria in detail the most clinically relevant Staphylococcus aureus (ATCC®49230™) was used. Absorbable braided sutures were coated with chlorhexidine-laurate, chlorhexidine-palmitate, octenidine-laurate, and octenidine-palmitate. Each coating type resulted in 11, 22, or 33 μg/cm drug content on sutures. Scanning electron microscopy (SEM) was performed once to inspect the coating quality and twice to investigate if bacteria have colonized on sutures. Adhesion experiments were assessed by exposing coated sutures to S. aureus suspensions for 3 h at 37°C. Subsequently, sutures were sonicated and the number of viable bacteria released from the suture surface was determined. Furthermore, the number of viable planktonic bacteria was measured in suspensions containing antimicrobial sutures. Commercially available sutures without drugs (Vicryl®, PGA Resorba®, and Gunze PGA), as well as triclosan-containing Vicryl® Plus were used as control groups. Results Zone of inhibition assay documented a multispecies efficacy of novel coated sutures against tested bacterial strains, comparable to most relevant S. aureus over 48 hours. SEM pictures demonstrated uniform layers on

  9. Bacteria of living and dead larvae of Porthetria dispar (L.)

    Treesearch

    John D. Podgwaite; Benjamin J. Cosenza

    1966-01-01

    A preliminary study of the bacteria associated with living and dead larvae of the gypsy moth (Porthetria dispar (L.)) was undertaken to determine what types of micro-organisms may be associated with disease in this insect. Specific objectives of this study were to enumerate the types of aerobic bacteria, and if possible to further elucidate the role...

  10. Bacterial Swarms Recruit Cargo Bacteria To Pave the Way in Toxic Environments

    PubMed Central

    Finkelshtein, Alin; Roth, Dalit

    2015-01-01

    ABSTRACT Swarming bacteria are challenged by the need to invade hostile environments. Swarms of the flagellated bacterium Paenibacillus vortex can collectively transport other microorganisms. Here we show that P. vortex can invade toxic environments by carrying antibiotic-degrading bacteria; this transport is mediated by a specialized, phenotypic subpopulation utilizing a process not dependent on cargo motility. Swarms of beta-lactam antibiotic (BLA)-sensitive P. vortex used beta-lactamase-producing, resistant, cargo bacteria to detoxify BLAs in their path. In the presence of BLAs, both transporter and cargo bacteria gained from this temporary cooperation; there was a positive correlation between BLA resistance and dispersal. P. vortex transported only the most beneficial antibiotic-resistant cargo (including environmental and clinical isolates) in a sustained way. P. vortex displayed a bet-hedging strategy that promoted the colonization of nontoxic niches by P. vortex alone; when detoxifying cargo bacteria were not needed, they were lost. This work has relevance for the dispersal of antibiotic-resistant microorganisms and for strategies for asymmetric cooperation with agricultural and medical implications. PMID:25968641

  11. The metabolism and biotechnological application of betaine in microorganism.

    PubMed

    Zou, Huibin; Chen, Ningning; Shi, Mengxun; Xian, Mo; Song, Yimin; Liu, Junhong

    2016-05-01

    Glycine betaine (betaine) is widely distributed in nature and can be found in many microorganisms, including bacteria, archaea, and fungi. Due to its particular functions, many microorganisms utilize betaine as a functional chemical and have evolved different metabolic pathways for the biosynthesis and catabolism of betaine. As in animals and plants, the principle role of betaine is to protect microbial cells against drought, osmotic stress, and temperature stress. In addition, the role of betaine in methyl group metabolism has been observed in a variety of microorganisms. Recent studies have shown that betaine supplementation can improve the performance of microbial strains used for the fermentation of lactate, ethanol, lysine, pyruvate, and vitamin B12, during which betaine can act as stress protectant or methyl donor for the biosynthesis of structurally complex compounds. In this review, we summarize the transport, synthesis, catabolism, and functions of betaine in microorganisms and discuss potential engineering strategies that employ betaine as a methyl donor for the biosynthesis of complex secondary metabolites such as a variety of vitamins, coenzymes, and antibiotics. In conclusion, the biocompatibility, C/N ratio, abundance, and comprehensive metabolic information of betaine collectively indicate that this molecule has great potential for broad applications in microbial biotechnology.

  12. Microorganism immobilization

    DOEpatents

    Compere, Alicia L.; Griffith, William L.

    1981-01-01

    Live metabolically active microorganisms are immobilized on a solid support by contacting particles of aggregate material with a water dispersible polyelectrolyte such as gelatin, crosslinking the polyelectrolyte by reacting it with a crosslinking agent such as glutaraldehyde to provide a crosslinked coating on the particles of aggregate material, contacting the coated particles with live microorganisms and incubating the microorganisms in contact with the crosslinked coating to provide a coating of metabolically active microorganisms. The immobilized microorganisms have continued growth and reproduction functions.

  13. Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds.

    PubMed

    Links, Matthew G; Demeke, Tigst; Gräfenhan, Tom; Hill, Janet E; Hemmingsen, Sean M; Dumonceaux, Tim J

    2014-04-01

    In order to address the hypothesis that seeds from ecologically and geographically diverse plants harbor characteristic epiphytic microbiota, we characterized the bacterial and fungal microbiota associated with Triticum and Brassica seed surfaces. The total microbial complement was determined by amplification and sequencing of a fragment of chaperonin 60 (cpn60). Specific microorganisms were quantified by qPCR. Bacteria and fungi corresponding to operational taxonomic units (OTU) that were identified in the sequencing study were isolated and their interactions examined. A total of 5477 OTU were observed from seed washes. Neither total epiphytic bacterial load nor community richness/evenness was significantly different between the seed types; 578 OTU were shared among all samples at a variety of abundances. Hierarchical clustering revealed that 203 were significantly different in abundance on Triticum seeds compared with Brassica. Microorganisms isolated from seeds showed 99-100% identity between the cpn60 sequences of the isolates and the OTU sequences from this shared microbiome. Bacterial strains identified as Pantoea agglomerans had antagonistic properties toward one of the fungal isolates (Alternaria sp.), providing a possible explanation for their reciprocal abundances on both Triticum and Brassica seeds. cpn60 enabled the simultaneous profiling of bacterial and fungal microbiota and revealed a core seed-associated microbiota shared between diverse plant genera. © 2014 AAFC. New Phytologist © 2014 New Phytologist Trust.

  14. Biodegradation of international jet A-1 aviation fuel by microorganisms isolated from aircraft tank and joint hydrant storage systems.

    PubMed

    Itah, A Y; Brooks, A A; Ogar, B O; Okure, A B

    2009-09-01

    Microorganisms contaminating international Jet A-1 aircraft fuel and fuel preserved in Joint Hydrant Storage Tank (JHST) were isolated, characterized and identified. The isolates were Bacillus subtillis, Bacillus megaterium, Flavobacterium oderatum, Sarcina flava, Micrococcus varians, Pseudomonas aeruginosa, Bacillus licheniformis, Bacillus cereus and Bacillus brevis. Others included Candida tropicalis, Candida albicans, Saccharomyces estuari, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus flavus, Aspergillus niger, Aspergillus fumigatus, Cladosporium resinae, Penicillium citrinum and Penicillium frequentans. The viable plate count of microorganisms in the Aircraft Tank ranged from 1.3 (+/-0.01) x 104 cfu/mL to 2.2 (+/-1.6) x 104 cfu/mL for bacteria and 102 cfu/mL to 1.68 (+/-0.32) x 103 cfu/mL for fungi. Total bacterial counts of 1.79 (+/-0.2) x 104 cfu/mL to 2.58 (+/-0.04) x 104 cfu/mL and total fungal count of 2.1 (+/-0.1) x 103 cfu/mL to 2.28 (+/-0.5) x 103 cfu/mL were obtained for JHST. Selected isolates were re-inoculated into filter sterilized aircraft fuels and biodegradation studies carried out. After 14 days incubation, Cladosporium resinae exhibited the highest degradation rate with a percentage weight loss of 66 followed by Candida albicans (60.6) while Penicillium citrinum was the least degrader with a weight loss of 41.6%. The ability of the isolates to utilize the fuel as their sole source of carbon and energy was examined and found to vary in growth profile between the isolates. The results imply that aviation fuel could be biodegraded by hydrocarbonoclastic microorganisms. To avert a possible deterioration of fuel quality during storage, fuel pipe clogging and failure, engine component damage, wing tank corrosion and aircraft disaster, efficient routine monitoring of aircraft fuel systems is advocated.

  15. Unravelling the contribution of lactic acid bacteria and acetic acid bacteria to cocoa fermentation using inoculated organisms.

    PubMed

    Ho, Van Thi Thuy; Fleet, Graham H; Zhao, Jian

    2018-08-20

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of the bean pulp by microorganisms is essential for developing the precursors of chocolate flavour. Currently, the cocoa fermentation is still conducted by an uncontrolled traditional process via a consortium of indigenous species of yeasts, lactic acid bacteria and acetic acid bacteria. Although the essential contribution of yeasts to the production of good quality beans and, typical chocolate character is generally agreed, the roles of lactic acid bacteria and acetic acid bacteria are less certain. The objective of this study was to investigate the contribution of LAB and AAB in cocoa bean fermentation by conducting small scale laboratory fermentations under aseptic conditions, inoculated with different groups of microorganisms previously isolated from spontaneous cocoa fermentations. The inoculation protocols were: (1) four yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae; (2) four yeasts plus the lactic acid bacteria Lactobacillus plantarum and Lactobacillus fermentum; (3) four yeasts plus the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateuri and (4) four yeasts plus two lactic acid bacteria and two acetic acid bacteria. Only the inoculated species were detected in the microbiota of their respective fermentations. Beans from the inoculated fermentations showed no significant differences in colour, shell weights and concentrations of residual sugars, alcohols and esters (p>0.05), but they were slightly different in contents of lactic acid and acetic acid (p<0.05). All beans were fully brown and free of mould. Residual sugar levels were less than 2.6 mg/g while the shell contents and ethanol were in the range of 11-13.4% and 4.8-7 mg/g, respectively. Beans fermented in the presence of LAB contained higher levels of lactic acid (0.6-1.2 mg/g) whereas higher concentrations of acetic acid

  16. DENTINE CARIES: ACID-TOLERANT MICROORGANISMS AND ASPECTS ON COLLAGEN DEGRADATION.

    PubMed

    Lager, Anders Hedenbjörk

    2014-01-01

    Dental caries is a common disease all over the world, despite the fact that it can be both effectively prevented and treated. It is driven by acids produced by oral microorganisms as a consequence of their metabolism of dietary carbohydrates. Given enough acid challenge, eventually the tooth enamel barrier will be broken down, and the carious lesion will extend into underlying hard tissue, forming a macroscopic cavity in the dentine. In comparison to biofilm on enamel, a dentine carious lesion provides a vastly different environment for the residing microorganisms. The environment influences the types and numbers of microorganisms that can colonize the dentine caries lesion. The overall aims for this thesis are to enumerate and further study microorganisms found in established dentine caries lesions and also to illuminate how host-derived proteolytic enzymes might contribute to this degradation, not only to better understand the caries process in dentine but also to find incitements for new methods to influence the natural progression of caries lesions. In Paper I, the numbers of remaining viable microorganisms after completed excavation using two excavation methods were investigated. Samples of carious dentine tissue were collected before and after excavation and cultivated on different agar media in different atmospheres. Analysis was performed by counting the number of colony-forming units (CFUs). Key findings: The number of remaining microorganisms after excavation was low for both methods, but some microorganisms always remained in the cavity floors even when the cavities were judged as caries free using normal clinical criteria. In Paper II, the acid tolerant microbiota in established dentine caries lesions was investigated. Samples were taken as in Paper I, but on three levels (superficial, center of lesion, floor of lesion after completed excavation). The samples were cultivated in anaerobic conditions on solid pH-selective agar media of different acidity

  17. Raft-Like Membrane Domains in Pathogenic Microorganisms

    PubMed Central

    Farnoud, Amir M.; Toledo, Alvaro M.; Konopka, James B.; Del Poeta, Maurizio; London, Erwin

    2016-01-01

    The lipid bilayer of the plasma membrane is thought to be compartmentalized by the presence of lipid-protein microdomains. In eukaryotic cells, microdomains composed of sterols and sphingolipids packed in a liquid-ordered state, commonly known as lipid rafts, are believed to exist. While less studied in bacterial cells, reports on the presence of sterol or protein-mediated microdomains in bacterial cell membranes are also appearing with increasing frequency. Recent efforts have been focused on addressing the biophysical and biochemical properties of lipid rafts. However, most studies have been focused on synthetic membranes, mammalian cells, and/or model, non-pathogenic microorganisms. Much less is known about microdomains in the plasma membrane of pathogenic microorganisms. This review attempts to provide an overview of the current state of knowledge of lipid rafts in pathogenic fungi and the developing field of microdomains in pathogenic bacteria. The current literature on the structure and function and of microdomains is reviewed and the potential role of microdomains in growth, pathogenesis, and drug resistance of pathogens are discussed. Better insight into the structure and function of membrane microdomains in pathogenic microorganisms might lead to a better understanding of the process of pathogenesis and development of raft-mediated approaches for new methods of therapy. PMID:26015285

  18. Genomics, metagenomics and proteomics in biomining microorganisms.

    PubMed

    Valenzuela, Lissette; Chi, An; Beard, Simon; Orell, Alvaro; Guiliani, Nicolas; Shabanowitz, Jeff; Hunt, Donald F; Jerez, Carlos A

    2006-01-01

    The use of acidophilic, chemolithotrophic microorganisms capable of oxidizing iron and sulfur in industrial processes to recover metals from minerals containing copper, gold and uranium is a well established biotechnology with distinctive advantages over traditional mining. A consortium of different microorganisms participates in the oxidative reactions resulting in the extraction of dissolved metal values from ores. Considerable effort has been spent in the last years to understand the biochemistry of iron and sulfur compounds oxidation, bacteria-mineral interactions (chemotaxis, quorum sensing, adhesion, biofilm formation) and several adaptive responses allowing the microorganisms to survive in a bioleaching environment. All of these are considered key phenomena for understanding the process of biomining. The use of genomics, metagenomics and high throughput proteomics to study the global regulatory responses that the biomining community uses to adapt to their changing environment is just beginning to emerge in the last years. These powerful approaches are reviewed here since they offer the possibility of exciting new findings that will allow analyzing the community as a microbial system, determining the extent to which each of the individual participants contributes to the process, how they evolve in time to keep the conglomerate healthy and therefore efficient during the entire process of bioleaching.

  19. EFFECT OF AEROSOLIZATION ON CULTURABILITY AND VIABILITY OF GRAM-NEGATIVE BACTERIA

    EPA Science Inventory

    Estimations of the bacterial content of air can be more easily made now than a decade ago, with colony formation the method of choice for enumeration of airborne bacteria.However, plate counts are subject to error because bacteria exposed to the air may remain viable yet lose the...

  20. Immobilization of microorganisms for detection by solid-phase immunoassays.

    PubMed Central

    Ibrahim, G F; Lyons, M J; Walker, R A; Fleet, G H

    1985-01-01

    Several cultures of gram-negative and gram-positive bacteria were successfully immobilized with titanous hydroxide. The immobilization efficiency for the microorganisms investigated in saline and broth media ranged from 80.2 to 99.9%. The immobilization of salmonellae was effective over a wide pH range. The presence of buffers, particularly phosphate buffer, drastically reduced the immobilization rate. However, buffers may be added to immunoassay systems after immobilization of microorganisms. The immobilization process involved only one step, i.e., shaking 100 microliter of culture with 50 microliter of titanous hydroxide suspension in polystyrene tubes for only 10 min. The immobilized cells were so tenaciously bound that vigorous agitation for 24 h did not result in cell dissociation. The nonspecific binding of 125I-labeled antibody from rabbits and 125I-labeled protein A by titanous hydroxide was inhibited in the presence of 2% gelatin and amounted to only 5.6 and 3.9%, respectively. We conclude that this immobilization procedure is a potentially powerful tool which could be utilized in solid-phase immunoassays concerned with the diagnosis of microorganisms. PMID:3900128

  1. Raft-like membrane domains in pathogenic microorganisms.

    PubMed

    Farnoud, Amir M; Toledo, Alvaro M; Konopka, James B; Del Poeta, Maurizio; London, Erwin

    2015-01-01

    The lipid bilayer of the plasma membrane is thought to be compartmentalized by the presence of lipid-protein microdomains. In eukaryotic cells, microdomains composed of sterols and sphingolipids, commonly known as lipid rafts, are believed to exist, and reports on the presence of sterol- or protein-mediated microdomains in bacterial cell membranes are also appearing. Despite increasing attention, little is known about microdomains in the plasma membrane of pathogenic microorganisms. This review attempts to provide an overview of the current state of knowledge of lipid rafts in pathogenic fungi and bacteria. The current literature on characterization of microdomains in pathogens is reviewed, and their potential role in growth, pathogenesis, and drug resistance is discussed. Better insight into the structure and function of membrane microdomains in pathogenic microorganisms might lead to a better understanding of their pathogenesis and development of raft-mediated approaches for therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Occurrence of tributyltin-tolerant bacteria in tributyltin- or cadmium-containing seawater.

    PubMed Central

    Suzuki, S; Fukagawa, T; Takama, K

    1992-01-01

    Tributyltin chloride (TBTCl)-tolerant bacteria accounted for 90% of the flora in natural seawater to which TBTCl was added. These tolerant bacteria were insensitive to 250 nmol of TBTCl per disc, and all were Vibrio species. Total counts of viable bacteria did not decrease upon storage of the TBTCl-treated seawater, indicating that enrichment of tolerant strains took place. Addition of CdSO4 to seawater resulted in the occurrence of TBTCl-tolerant bacteria as well as Cd-tolerant bacteria, suggesting some correlation of Cd tolerance and TBTCl tolerance. PMID:1444375

  3. Removal of airborne microorganisms emitted from a wastewater treatment oxidation ditch by adsorption on activated carbon.

    PubMed

    Li, Lin; Gao, Min; Liu, Junxin; Guo, Xuesong

    2011-01-01

    Bioaerosol emissions from wastewater and wastewater treatment processes are a significant subgroup of atmospheric aerosols. Most previous work has focused on the evaluation of their biological risks. In this study, however, the adsorption method was applied to reduce airborne microorganisms generated from a pilot scale wastewater treatment facility with oxidation ditch. Results showed adsorption on granule activated carbon (GAC) was an efficient method for the purification of airborne microorganisms. The GAC itself had a maximum adsorption capacity of 2217 CFU/g for airborne bacteria and 225 CFU/g for fungi with a flow rate of 1.50 m3/hr. Over 85% of airborne bacteria and fungi emitted from the oxidation ditch were adsorbed within 80 hr of continuous operation mode. Most of them had a particle size of 0.65-4.7 microm. Those airborne microorganisms with small particle size were apt to be adsorbed. The SEM/EDAX, BET and Boehm's titration methods were applied to analyse the physicochemical characteristics of the GAC. Relationships between GAC surface characteristics and its adsorption performance demonstrated that porous structure, large surface area, and hydrophobicity rendered GAC an effective absorber of airborne microorganisms. Two regenerate methods, ultraviolet irradiation and high pressure vapor, were compared for the regeneration of used activated carbon. High pressure vapor was an effective technique as it totally destroyed the microorganisms adhered to the activated carbon. Microscopic observation was also carried out to investigate original and used adsorbents.

  4. Effects of Fungicides on Aquatic Fungi and Bacteria

    NASA Astrophysics Data System (ADS)

    Conners, D. E.; Rosemond, A. D.; Black, M. C.

    2005-05-01

    Aquatic microorganisms play an important role in conditioning leaf litter that enters streams and serves as an important base of production for consumers. Contamination of streams by fungicides may adversely affect microorganisms and alter leaf litter processing rates. Unfortunately, microorganisms are rarely used in acute toxicity tests for fungicide evaluation and registration. We adapted the resazurin reduction assay, which is used in medical microbiology, to assess the acute toxicity of four fungicides (azoxystrobin, trifloxystrobin, kresoxim-methyl and chlorothalonil) to aquatic fungi (Articulospora tetracladia) and bacteria (Cytophaga spp.), and investigated the ability of the toxicants to inhibit leaf breakdown in microcosms. Fungi were more sensitive to fungicides than many standard test organisms (cladocerans, green algae, trout), while bacteria were often the least sensitive. All of the fungicides except kresoxim-methyl, when added to microcosms at concentrations that inhibited the fungi by 90 percent in acute tests, reduced leaf breakdown rates by an average of 14.7 percent. Thus, aquatic fungi and their associated functions in streams may be relatively sensitive to fungicides applied terrestrially that enter streams through non-point sources. These data highlight the importance of including aquatic fungi in safety assessments of pesticides for protection of microbial function.

  5. Microorganisms in human milk: lights and shadows.

    PubMed

    Civardi, Elisa; Garofoli, Francesca; Tzialla, Chryssoula; Paolillo, Piermichele; Bollani, Lina; Stronati, Mauro

    2013-10-01

    Human milk has been traditionally considered germ free, however, recent studies have shown that it represents a continuous supply of commensal and potentially probiotic bacteria to the infant gut. Mammary microbioma may exercise anti-infective, anti-inflammatory, immunomodulatory and metabolic properties. Moreover human milk may be a source of pathogenic microorganism during maternal infection, if contaminated during expression or in case of vaccination of the mother. The non-sterility of breast milk can, thus, be seen as a protective factor, or rarely, as a risk factor for the newborn.

  6. Dynamics of microorganism populations in recirculating nutrient solutions

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.

    1994-01-01

    This overview covers the basic microbial ecology of recirculating hydroponic solutions. Examples from NASA and Soviet CELSS tests and the commercial hydroponic industry will be used. The sources of microorganisms in nutrient solutions include air, water, seeds, plant containers and plumbing, biological vectors, and personnel. Microbial fates include growth, death, and emigration. Important microbial habitats within nutrient delivery systems are root surfaces, hardware surfaces (biofilms), and solution suspension. Numbers of bacteria on root surfaces usually exceed those from the other habitats by several orders of magnitude. Gram negative bacteria dominate the microflora with fungal counts usually much lower. Trends typically show a decrease in counts with increasing time unless stressed plants increase root exudates. Important microbial activities include carbon mineralization and nitrogen transformations. Important detrimental interactions include competition with plants, and human and plant pathogenesis.

  7. Marine sponge-associated bacteria as a potential source for polyhydroxyalkanoates.

    PubMed

    Sathiyanarayanan, Ganesan; Saibaba, Ganesan; Kiran, George Seghal; Yang, Yung-Hun; Selvin, Joseph

    2017-05-01

    Marine sponges are filter feeding porous animals and usually harbor a remarkable array of microorganisms in their mesohyl tissues as transient and resident endosymbionts. The marine sponge-microbial interactions are highly complex and, in some cases, the relationships are thought to be truly symbiotic or mutualistic rather than temporary associations resulting from sponge filter-feeding activity. The marine sponge-associated bacteria are fascinating source for various biomolecules that are of potential interest to several biotechnological industries. In recent times, a particular attention has been devoted to bacterial biopolymer (polyesters) such as intracellular polyhydroxyalkanoates (PHAs) produced by sponge-associated bacteria. Bacterial PHAs act as an internal reserve for carbon and energy and also are a tremendous alternative for fossil fuel-based polymers mainly due to their eco-friendliness. In addition, PHAs are produced when the microorganisms are under stressful conditions and this biopolymer synthesis might be exhibited as one of the survival mechanisms of sponge-associated or endosymbiotic bacteria which exist in a highly competitive and stressful sponge-mesohyl microenvironment. In this review, we have emphasized the industrial prospects of marine bacteria for the commercial production of PHAs and special importance has been given to marine sponge-associated bacteria as a potential resource for PHAs.

  8. Effect of gamma irradiation on hyperthermal composting microorganisms for feasible application in space

    NASA Astrophysics Data System (ADS)

    Yoon, Minchul; Choi, Jong-il; Yamashita, Masamichi

    2013-05-01

    The composting system is the most efficient method for processing organic waste in space; however, the composting activity of microorganisms can be altered by cosmic rays. In this study, the effect of ionizing irradiation on composting bacteria was investigated. Sequence analyses of amplified 16S rRNA, 18S rRNA, and amoA genes were used to identify hyperthermal composting microorganisms. The viability of microorganisms in compost soil after gamma irradiation was directly determined using LIVE/DEAD BacLight viability kit. The dominant bacterial genera were Weissella cibaria and Leuconostoc sp., and the fungal genera were Metschnikowia bicuspidata and Pichia guilliermondii. Gamma irradiation up to a dose of 10 kGy did not significantly alter the microbial population. Furthermore, amylase and cellulase activities were maintained after high-dose gamma irradiation. Our results show that hyperthermal microorganisms can be used to recycle agricultural and fermented material in space stations and other human-inhabiting facilities on the Moon, Mars, and other planets.

  9. Antimicrobial Effects of Garcinia Mangostana on Cariogenic Microorganisms.

    PubMed

    Janardhanan, Sunitha; Mahendra, Jaideep; Girija, A S Smiline; Mahendra, Little; Priyadharsini, Vijayashree

    2017-01-01

    Garcinia mangostana commonly called as Mangosteen fruit has been used as an antibacterial agent since age old times. The mangosteen pericarp has proven to have antibacterial effect, but the effect of the same on cariogenic organisms has not been explored. The present study was an attempt to gain a better understanding of the antibacterial effect of mangosteen pericarp on the cariogenic bacteria, to unravel the therapeutic potential for the same. The aim of the study was to assess the antibacterial efficacy of the crude chloroform extract of mangosteen pericarp against cariogenic bacteria. The study was done under laboratory settings using an in vitro design. The microorganisms namely Streptococcus mutans, Streptococcus sanguis, Streptococcus salivarius, Streptococcus oralis and Lactobacillus acidophilus were procured from American Type Cell Culture (ATCC) and Microbial Type Culture Collection (MTCC) were revived and lawn cultured. The antibacterial effect of mangosteen pericarp was tested using agar well diffusion method on Trypticase Soy Agar-Blood Agar (TSA-BA) and de Man, Rogosa and Sharpe (MRS) agar media. The standard antiplaque agent chlorhexidine was used as the positive control. This cross-sectional, experimental study was done in Central Research laboratory, Meenakshi Ammal Dental College for period of eight weeks. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values were determined by microbroth dilution method. Statistical analysis was done by calculating the mean of the zones of inhibition on tested microorganisms. Mann-Whitney test was done to compare the zones of inhibition of mangosteen and chlorhexidine. The antibacterial bioassay showed the highest activity for Lactobacillus acidophilus (13.6 mm) and Streptococcus sanguis (13.6 mm), whereas, it showed a medium and low activity for Streptococcus oralis (11.3 mm), Streptococcus mutans (10.6 mm) and Streptococcus salivarius (3 mm) respectively. The MBC and MIC

  10. Ultrasensitive multiplex optical quantification of bacteria in large samples of biofluids

    PubMed Central

    Pazos-Perez, Nicolas; Pazos, Elena; Catala, Carme; Mir-Simon, Bernat; Gómez-de Pedro, Sara; Sagales, Juan; Villanueva, Carlos; Vila, Jordi; Soriano, Alex; García de Abajo, F. Javier; Alvarez-Puebla, Ramon A.

    2016-01-01

    Efficient treatments in bacterial infections require the fast and accurate recognition of pathogens, with concentrations as low as one per milliliter in the case of septicemia. Detecting and quantifying bacteria in such low concentrations is challenging and typically demands cultures of large samples of blood (~1 milliliter) extending over 24–72 hours. This delay seriously compromises the health of patients. Here we demonstrate a fast microorganism optical detection system for the exhaustive identification and quantification of pathogens in volumes of biofluids with clinical relevance (~1 milliliter) in minutes. We drive each type of bacteria to accumulate antibody functionalized SERS-labelled silver nanoparticles. Particle aggregation on the bacteria membranes renders dense arrays of inter-particle gaps in which the Raman signal is exponentially amplified by several orders of magnitude relative to the dispersed particles. This enables a multiplex identification of the microorganisms through the molecule-specific spectral fingerprints. PMID:27364357

  11. Bactericidal effects of bioactive glasses on clinically important aerobic bacteria.

    PubMed

    Munukka, Eveliina; Leppäranta, Outi; Korkeamäki, Mika; Vaahtio, Minna; Peltola, Timo; Zhang, Di; Hupa, Leena; Ylänen, Heimo; Salonen, Jukka I; Viljanen, Matti K; Eerola, Erkki

    2008-01-01

    Bioactive glasses (BAGs) have been studied for decades for clinical use, and they have found many dental and orthopedic applications. BAGs have also been shown to have an antibacterial effect e.g., on some oral microorganisms. In this extensive work we show that six powdered BAGs and two sol-gel derived materials have a clear antibacterial effect on 29 clinically important bacterial species. We also incorporated a rapid and accurate flow cytometric (FCM) method to calculate and standardize the numbers of viable bacteria inoculated in the suspensions used in the tests for antibacterial activity. In all materials tested growth inhibition could be demonstrated, although the concentration and time needed for the effect varied depending on the BAG. The most effective glass was S53P4, which had a clear growth-inhibitory effect on all pathogens tested. The sol-gel derived materials CaPSiO and CaPSiO II also showed a strong antibacterial effect. In summary, BAGs were found to clearly inhibit the growth of a wide selection of bacterial species causing e.g., infections on the surfaces of prostheses in the body after implantation.

  12. Characterization of radiation-resistant vegetative bacteria in beef

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, A.B.; Maxcy, R.B.

    1975-08-01

    Ground beef contains numerous microorganisms of various types. The commonly recognized bacteria are associated with current problems of spoilage. Irradiation, however, contributes a new factor through selective destruction of the microflora. The residual microorganisms surviving a nonsterilizing dose are predominantly gram-negative coccobacilli. Various classifications have been given, e.g., Moraxella, Acinetobacter, Achromobacter, etc. For a more detailed study of these radiation-resistant bacteria occurring in ground beef, an enrichment procedure was used for isolation. By means of morphological and biochemical tests, most of the isolates were found to be Moraxella, based on current classifications. The range of growth temperatures was from 2more » to 50 C. These bacteria were relatively heat sensitive, e.g., D$sub 10$ of 5.4 min at 70$sup 0$C or less. The radiation resistance ranged from D$sub 10$ values of 273 to 2,039 krad. Thus, some were more resistant than any presently recognized spores. A reference culture of Moraxella osloensis was irradiated under conditions comparable to the enrichment procedure used with the ground beef. The only apparent changes were in morphology and penicillin sensitivity. However, after a few subcultures these bacteria reverted to the characteristics of the parent strain. Thus, it is apparent that these isolates are a part of the normal flora of ground beef and not aberrant forms arising from the irradiation procedure. The significance, if any, of these bacteria is not presently recognized. (auth)« less

  13. Anaerobic bacteria commonly colonize the lower airways of intubated ICU patients.

    PubMed

    Agvald-Ohman, C; Wernerman, J; Nord, C E; Edlund, C

    2003-05-01

    To investigate respiratory tract colonization by aerobic and anaerobic bacteria in mechanically ventilated patients. Bacterial colonization of the stomach and the respiratory tract was qualitatively and quantitatively analyzed over time in 41 consecutive mechanically ventilated patients in a Swedish intensive care unit (ICU), with special emphasis on elucidation of the role of anaerobic bacteria in the lower respiratory tract. Samples were taken from the oropharynx, gastric juice, subglottic space and trachea within 24 h (median 14 h) of intubation, and then every third day until day 18 and every fifth day until day 33. The patients were often heavily colonized with microorganisms not considered to belong to a healthy normal oropharyngeal and gastric flora on admission to the ICU. A majority harbored enterococci, coagulase-negative staphylococci and Candida spp. in at least one site on day 1. Anaerobic bacteria, mainly peptostreptococci and Prevotella spp., were isolated from subglottic and/or tracheal secretions in 59% of the patients. Different routes of tracheal colonization for different groups of microorganisms were found. Primary or concomitant colonization of the oropharynx with staphylococci, enterococci, enterobacteria and Candida was often seen, while Pseudomonas spp., other non-fermenting Gram-negative rods and several anaerobic species often primarily colonized the trachea, indicating exogenous or direct gastrointestinal routes of colonization. Mechanically ventilated patients were heavily colonized in their lower airways by potential pathogenic microorganisms, including a high load of anaerobic bacteria. Different routes of colonization were shown for different species.

  14. COMPARISON OF METHODS FOR DETECTION AND ENUMERATION OF AIRBORNE MICROORGANISMS COLLECTED BY LIQUID IMPINGEMENT

    EPA Science Inventory

    Bacterial agents and cell components can be spread as bioaerosols, producing infections and asthmatic problems. This study compares four methods for the detection and enumeration of aerosolized bacteria collected in an AGI-30 impinger. Changes in the total and viable concentratio...

  15. Application of molecular techniques for the assessment of microorganism diversity on cultural heritage objects.

    PubMed

    Otlewska, Anna; Adamiak, Justyna; Gutarowska, Beata

    2014-01-01

    As a result of their unpredictable ability to adapt to varying environmental conditions, microorganisms inhabit different types of biological niches on Earth. Owing to the key role of microorganisms in many biogeochemical processes, trends in modern microbiology emphasize the need to know and understand the structure and function of complex microbial communities. This is particularly important if the strategy relates to microbial communities that cause biodeterioration of materials that constitute our cultural heritage. Until recently, the detection and identification of microorganisms inhabiting objects of cultural value was based only on cultivation-dependent methods. In spite of many advantages, these methods provide limited information because they identify only viable organisms capable of growth under standard laboratory conditions. However, in order to carry out proper conservation and renovation, it is necessary to know the complete composition of microbial communities and their activity. This paper presents and characterizes modern techniques such as genetic fingerprinting and clone library construction for the assessment of microbial diversity based on molecular biology. Molecular methods represent a favourable alternative to culture-dependent methods and make it possible to assess the biodiversity of microorganisms inhabiting technical materials and cultural heritage objects.

  16. Recovery of resistant bacteria from mattresses of patients under contact precautions.

    PubMed

    Viana, Roberta El Hariri; dos Santos, Simone G; Oliveira, Adriana C

    2016-04-01

    Microorganisms may contaminate hospital mattresses even after terminal cleaning. We investigated the recovery of resistant bacteria from the mattresses of patients under contact precautions at a university hospital. We conducted a cross-sectional study. Samples were obtained from the surface of mattresses, spread on replicate organism detection and counting plates, and cultivated at 37°C for 48 hours. After collecting samples, we identified microorganisms and tested for antimicrobial susceptibility using the Vitek 2 (bioMérieux SA, Marcy-l'Etoile, France) automation system. We evaluated 51 mattresses. A total of 26 had resistant bacteria on the surface; the predominant species were Acinetobacter baumannii (69.2%), Klebsiella pneumoniae (11.5%), and Pseudomonas aeruginosa (11.5%). The median length of hospital stay was 41 days; the bed occupancy for patients under contact precautions and the time at which the patient was diagnosed as a carrier of resistant bacteria was 18 days. The phenotypic similarity of A baumannii in inpatient units (mattresses) suggests circulation of the same strain. These results highlight the importance of controlling the potential spread of microorganisms through hospital mattresses. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  17. [Effect of the interaction of microorganisms and iron oxides on arsenic releasing into groundwater in Chinese Loess].

    PubMed

    Xie, Yun-Yun; Chen, Tian-Hu; Zhou, Yue-Fei; Xie, Qiao-Qin

    2013-10-01

    A large part of groundwater in the Chinese Loess Plateau area is characterized by high arsenic concentration. Anaerobic bacteria have been considered to play key roles in promoting arsenic releasing from loess to groundwater. However, this hypothesis remains unconfirmed. Based on modeling experiments, this study investigated the speciation of arsenic in loess, and then determined the release rates and quantities of arsenic with the mediation of anaerobic bacteria. The results showed that arsenic contents in loess were between 23 mg.kg-1 and 30 mg.kg-1. No obvious arsenic content difference among loess samples was observed. The ratios for specific adsorbed, iron oxides co-precipitated and silicate co-precipitated arsenic were 37.76% , 36. 15% and 25. 69% , respectively. Indigenous microorganisms, dissimilatory iron reducing bacteria (DIRB) and sulfate reducing bacteria (SRB) could all promote the release of arsenic from loess. Organic matters highly affected the release rates. More than 100 mg.L-1 sodium lactate was required for all bacterial experiments to facilitate obvious arsenic release. Considering the redox condition in loess, the contribution of SRB to arsenic release in loess area was less feasible than that of DIRB and indigenous microorganisms.

  18. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria.

    PubMed

    Lu, Zhong; Rong, Kaifeng; Li, Ju; Yang, Hao; Chen, Rong

    2013-06-01

    Dental caries and periodontal disease are widespread diseases for which microorganism infections have been identified as the main etiology. Silver nanoparticles (Ag Nps) were considered as potential control oral bacteria infection agent due to its excellent antimicrobial activity and non acute toxic effects on human cells. In this work, stable Ag Nps with different sizes (~5, 15 and 55 nm mean values) were synthesized by using a simple reduction method or hydrothermal method. The Nps were characterized by powder X-ray diffraction, transmission electron microscopy and UV-vis absorption spectroscopy. The antibacterial activities were evaluated by colony counting assay and growth inhibition curve method, and corresponding minimum inhibitory concentration (MIC) against five anaerobic oral pathogenic bacteria and aerobic bacteria E. coli were determined. The results showed that Ag Nps had apparent antibacterial effects against the anaerobic oral pathogenic bacteria and aerobic bacteria. The MIC values of 5-nm Ag against anaerobic oral pathogenic bacteria A. actinomycetemcomitans, F. nuceatum, S. mitis, S. mutans and S. sanguis were 25, 25, 25, 50 and 50 μg/mL, respectively. The aerobic bacteria were more susceptible to Ag NPs than the anaerobic oral pathogenic bacteria. In the mean time, Ag NPs displayed an obvious size-dependent antibacterial activity against the anaerobic bacteria. The 5-nm Ag presents the highest antibacterial activity. The results of this work indicated a potential application of Ag Nps in the inhibition of oral microorganism infections.

  19. TEMPERATURE-GRADIENT PLATES FOR GROWTH OF MICROORGANISMS

    PubMed Central

    Landman, Otto E.; Bausum, Howard T.; Matney, Thomas S.

    1962-01-01

    Landman, Otto E. (Fort Detrick, Frederick, Md.), Howard T. Bausum, and Thomas S. Matney. Temperature-gradient plates for growth of microorganisms. J. Bacteriol. 83:463–469. 1962.—Different temperature-gradient plates have been devised for the study of microbial growth on solid media through continuous temperature ranges or in liquid media at finely graded temperatures. All plates are made of heavy-gauge aluminum; heat supplied at one end is dissipated along the length of the metal so that a gradient is produced. The shape and range of the gradient depends on the amount of heat supplied, the insulation, the ambient temperature, and other factors. Differences of 0.2 C in temperature sensitivity between bacterial strains can be detected. The plates are simple to construct and operate. The dimensions of the aluminum, the mode of temperature measurement, and the method of heating may all be modified without diminishing the basic utility of the device. A sharp growth front develops at the maximal temperature of growth of bacteria. In most strains, all bacteria below the front form colonies and all bacteria above the front are killed, except for a few temperature-resistant mutants. Images PMID:14461975

  20. Growth study and hydrocarbonoclastic potential of microorganisms isolated from aviation fuel spill site in Ibeno, Nigeria.

    PubMed

    Etuk, C U; John, R C; Ekong, U E; Akpan, M M

    2012-10-01

    The growth study and hydrocarbonoclastic potential of microorganisms isolated from aviation fuel spill sites at Inua-eyet Ikot in Ibeno, Nigeria were examined using standard microbiological methods. The results of the analysis revealed that the viable plate count of microorganisms in the polluted soil ranged from 2.2 ± 0.04 × 10(3) to 3.4 ± 0.14 × 10(6) cfu/g for bacteria and 1.4 ± 0.5 × 10(2) to 2.3 ± 0.4 × 10(4) cfu/g for fungi while count of biodegraders ranged from 1.2 ± 0.4 × 10(3) to 2.1 ± 0.8 × 10(5) cfu/g. A total of 11 microbial isolates comprising of Micrococcus, Klebsiella, Flavobacterium, Bacillus, Pseudomonas, Candida, Aspergillus, Cladosporium, Penicillium, Saccharomyces and Fusarium were characterized. The ability of the selected isolates to utilize the pollutant (aviation fuel) as their sole source of carbon and energy was examined and noticed to vary in growth profiles between the isolates. The results of their degradability after 28 days of incubation shows that species of Cladosporium, Pseudomonas, Candida, Bacillus, Micrococcus and Penicillium were the most efficient Aviation fuel degraders with percentage weight loss of 86.2, 78.4, 78, 56, 53 and 50.6 respectively. Flavobacterium, Saccharomyces and Aspergillus exhibited moderate growth with percentage weight loss of 48, 45.8 and 43.4 respectively while Klebsiella and Fusarium species showed minimal growth with percentage weight loss of 20 and 18.5 respectively. The results imply that the most efficient biodegraders like Cladosporium, Pseudomonas, Candida, Bacillus and Microoccus could tolerate and remove aviation fuel from the environment.

  1. Arctic gypsum endoliths: a biogeochemical characterization of a viable and active microbial community

    NASA Astrophysics Data System (ADS)

    Ziolkowski, L. A.; Mykytczuk, N. C. S.; Omelon, C. R.; Johnson, H.; Whyte, L. G.; Slater, G. F.

    2013-11-01

    Extreme environmental conditions such as those found in the polar regions on Earth are thought to test the limits of life. Microorganisms living in these environments often seek protection from environmental stresses such as high UV exposure, desiccation and rapid temperature fluctuations, with one protective habitat found within rocks. Such endolithic microbial communities, which often consist of bacteria, fungi, algae and lichens, are small-scale ecosystems comprised of both producers and consumers. However, the harsh environmental conditions experienced by polar endolithic communities are thought to limit microbial diversity and therefore the rate at which they cycle carbon. In this study, we characterized the microbial community diversity, turnover rate and microbe-mineral interactions of a gypsum-based endolithic community in the polar desert of the Canadian high Arctic. 16S/18S/23S rRNA pyrotag sequencing demonstrated the presence of a diverse community of phototrophic and heterotrophic bacteria, archaea, algae and fungi. Stable carbon isotope analysis of the viable microbial membranes, as phospholipid fatty acids and glycolipid fatty acids, confirmed the diversity observed by molecular techniques and indicated that present-day atmospheric carbon is assimilated into the microbial community biomass. Uptake of radiocarbon from atmospheric nuclear weapons testing during the 1960s into microbial lipids was used as a pulse label to determine that the microbial community turns over carbon on the order of 10 yr, equivalent to 4.4 g C m-2 yr-1 gross primary productivity. Scanning electron microscopy (SEM) micrographs indicated that mechanical weathering of gypsum by freeze-thaw cycles leads to increased porosity, which ultimately increases the habitability of the rock. In addition, while bacteria were adhered to these mineral surfaces, chemical analysis by micro-X-ray fluorescence (μ-XRF) spectroscopy suggests little evidence for microbial alteration of minerals

  2. Usability application of multiplex polymerase chain reaction in the diagnosis of microorganisms isolated from urine of patients treated in cancer hospital

    PubMed Central

    Cybulski, Zefiryn; Schmidt, Katarzyna; Grabiec, Alicja; Talaga, Zofia; Bociąg, Piotr; Wojciechowicz, Jacek; Roszak, Andrzej; Kycler, Witold

    2013-01-01

    Background The objective of this study was: i) to compare the results of urine culture with polymerase chain reaction (PCR) -based detection of microorganisms using two commercially available kits, ii) to assess antimicrobial susceptibility of urine isolates from cancer patients to chosen antimicrobial drugs and, if necessary, to update the recommendation of empirical therapy. Materials and methods. A one-year hospital-based prospective study has been conducted in Greater Poland Cancer Centre and Genetic Medicine Laboratory CBDNA Research Centre in 2011. Urine cultures and urine PCR assay from 72 patients were examined Results Urine cultures and urine PCR assay from 72 patients were examined. Urine samples were positive for 128 strains from which 95 (74%) were identical in both tests. The most frequently isolated bacteria in both culture and PCR assay were coliform organisms and Enterococcus spp. The Gram negative bacilli were most resistant to cotrimoxazol. 77.2% of these bacilli and 100% of E. faecalis and S. agalactiae were sensitive to amoxicillin-clavulanic acid. 4.7% of Gram positive cocci were resistant to nitrofurantoin. Conclusions The PCR method quickly finds the causative agent of urinary tract infection (UTI) and, therefore, it can help with making the choice of the proper antimicrobial therapy at an early stage. It appears to be a viable alternative to the recommendations made in general treatment guidelines, in cases where diversified sensitivity patterns of microorganisms have been found. PMID:24133395

  3. Microorganism Utilization for Synthetic Milk

    NASA Technical Reports Server (NTRS)

    Morford, Megan A.; Khodadad, Christina L.; Caro, Janicce I.; Spencer, LaShelle E.; Richards, Jeffery T.; Strayer, Richard F.; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    A desired architecture for long duration spaceflight, like aboard the International Space Station or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of the Synthetic Biology project, Cow in a Column, was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel-through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) in order to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms were optimized in the laboratory and the desired end-products, sugars and lipids, were analyzed. Trichoderma reesei, a known cellulolytic fungus, was utilized to drive the production of glucose, with the intent that the produced glucose would serve as the carbon source for milk fat production and be a substitute for the milk sugar lactose. Lipid production would be carried out by Rhodosporidium toruloides, yeast known to accumulate those lipids that are typically found in milk fat. Results showed that glucose and total lipid content were below what was expected during this phase of experimentation. In addition, individual analysis of six fatty acids revealed that the percentage of each fatty acid was lower than naturally produced bovine milk. Overall, this research indicates that microorganisms could be utilized to breakdown inedible solid waste to produce useable products. For future work, the production of the casein protein for milk would require the development of a genetically modified organism, which was beyond the scope of the original project. Additional trials would be needed to further refine the required

  4. Production of gaba (γ - Aminobutyric acid) by microorganisms: a review.

    PubMed

    Dhakal, Radhika; Bajpai, Vivek K; Baek, Kwang-Hyun

    2012-10-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods.

  5. Biosorption of aluminum through the use of non-viable biomass of Pseudomonas putida.

    PubMed

    Boeris, Paola Sabrina; Agustín, María Del Rosario; Acevedo, Diego Fernando; Lucchesi, Gloria Inés

    2016-10-20

    Living and non-living biomass of Pseudomonas putida A (ATCC 12633) was used as biosorbent for the removing of Al(3+) from aqueous solutions. The process was stable with time, efficient at pH 4.3 and between 15°C and 42°C. Two isotherms models were applied to describe the interaction between the biosorbent and Al(3+). Non-living biomass of P. putida A (ATCC 12633) was found to be the most efficient at adsorbing Al(3+) with a maximum sorption capacity of 0.55mg Al(3+)/gr adsorbent and with 36×10(5) binding sites of Al(3+)/microorganisms. Infrared spectroscopy analysis shows that the biosorbent present some vibrational band of functional groups that change in presence of Al(3+): hydroxyl, carboxyl and phosphate. Considering that Al(3+) binds to the phosphate group of phosphatidylcholine, non-viable biomass of P. putida PB01 (mutant lacking phosphatidylcholine) was used. Aluminum adsorption of the parental strain was 30 times higher than values registered in P. putida PB01 (36×10(5) sites/microorganism vs 1.2×10(5) sites/microorganism, respectively). This result evidenced that the absence of phosphatidylcholine significantly affected the availability of the binding sites and consequently the efficiency of the biomass to adsorb Al(3+). Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Dynamics of microorganism populations in recirculating nutrient solutions

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.

    1994-01-01

    This overview covers the basic microbial ecology of recirculating hydroponic solutions. Examples from NASA and Soviet Controlled Ecological Life Support Systems (CELSS) tests and the commercial hydroponic industry will be used. The sources of microorganisms in nutrient solutions include air, water, seeds, plant containers and plumbing, biological vectors, and personnel. Microbial fates include growth, death, and emigration. Important microbial habitats within nutrient delivery systems are root surfaces, hardware surfaces (biofilms), and solution suspension. Numbers of bacteria on root surfaces usually exceed those from the other habitats by several orders of magnitude. Gram negative bacteria dominate the microflora with fungal counts usually much lower. Trends typically show a decrease in counts with increasing time unless stressed plants increase root exudates. Important microbial activities include carbon mineralization and nitrogen transformations. Important detrimental interactions include competition with plants, and human and plant pathogenesis.

  7. Isolation and Identification of Microorganisms in JSC Mars-1 Simulant Soil

    NASA Technical Reports Server (NTRS)

    Mendez, Claudia; Garza, Elizabeth; Gulati, Poonam; Morris, Penny A.; Allen, Carlton C.

    2005-01-01

    Microorganisms were isolated and identified in samples of JSC Mars-1, a Mars simulant soil. JSC Mars-1 is an altered volcanic ash from a cinder cone south of Mauna Kea, Hawaii. This material was chosen because of its similarity to the Martian soil in physical and chemical composition. The soil was obtained by excavating 40 cm deep in a vegetated area to prevent contamination. In previous studies, bacteria from this soil has been isolated by culturing on different types of media, including minimal media, and using biochemical techniques for identification. Isolation by culturing is successful only for a small percentage of the population. As a result, molecular techniques are being employed to identify microorganisms directly from the soil without culturing. In this study, bacteria were identified by purifying and sequencing the DNA encoding the 16s ribosomal RNA (16s rDNA). This gene is well conserved in species and demonstrates species specificity. In addition, biofilm formation, an indicator of microbial life, was studied with this soil. Biofilms are microbial communities consisting of microbes and exopolysaccharides secreted by them. This is a protective way of life for the microbes as they are more resistant to environmental pressures.

  8. Prokaryotic silicon utilizing microorganisms in the biosphere

    NASA Astrophysics Data System (ADS)

    Gupta, D.; Das, S.

    2012-12-01

    Although a little study has been done to determine the silicon utilizing prokaryotes, our previous experiments indicated that almost all Gram-positive bacteria are silicon utilizing; one of them, Streptococci survived exposure on the lunar surface for a long period in experiment done by others. Our initial experiments with these Gram positive microorganisms showed that there were limited growths of these microorganisms on carbon free silicate medium probably with the help of some carry over carbon and nitrogen during cultivation procedures. However, increase in growth rate after repeated subcultures could not be explained at present. The main groups of prokaryotes which were found silicon utilizing microorganisms were Mycobacterium, Bacillus, Nocardia, Streptomyces, Staphylococcus, Streptococcus, Lactobacillus, and Clostridium. In a another previous study by us when silicon level was studied in such grown up cells on carbon "free" silicate medium by electron prove microanalyser, it was found that silicon in cells grown on carbon "free" silicate medium was much higher (24.9%) than those grown on conventional carbon based medium (0.84%). However, these initial findings are encouraging for our future application of this group of organisms on extraterrestrial surfaces for artificial micro-ecosystem formation. It was found that when electropositive elements are less in extraterrestrial situation, then polymerization of silicon-oxygen profusion may occur easily, particularly in carbon and nitrogen paucity in the rocky worlds of the Universe.

  9. Phthalocyanine-assisted photodynamic inactivation of pathogenic microorganisms

    NASA Astrophysics Data System (ADS)

    Mantareva, Vanya; Angelov, Ivan; Borissova, Ekaterina; Avramov, Latchezar; Kussovski, Vesselin

    2007-03-01

    The phthalocyanine zinc(II) and aluminum (III) complexes were studied to photoinactivate the bacterial strains, Staphylococcus aureus, methacillin-sensitive and methacillin-resistant, Pseudomonas aeruginosa and one yeast Candida albicans. The binding of phthalocyanines to bacteria and fungi cells was evaluated by the means of laserinduced fluorescence technique. The fluorescent spectra of dyes (650 - 800 nm) after direct excitation (635 nm) were measured as follows: 1. for the aqua supernatants obtained after 10 min cell incubation with the respected phthalocyanines (1.6 μmol.l -1), 2. for the washed from the unbound dye cells, and 3. for the organic extracts from the three times washed cells. Fluorescent intensities at the emission maximum (~690 nm) were compared to the spectra of the phthalocyanines in organic solutions. The phthalocyanines uptake data for bacteria and fungi were determined at different cell densities. Nevertheless the better fluorescence properties of AlPc (fluorescent quantum yield of 0.4 towards 0.3 for ZnPcs) the lower drug accumulation in microorganisms was obtained. PDI results indicated an intensive lowering of the bacterial survival of both strains of S. aureus treated with cationic ZnPcMe followed by the anionic ZnPcS, at irradiance of 100 mW cm -2 and fluence rate of 60 J cm -2. More resistant to phototreatment P. aeruginosa and morphologically complicated yeast C. albicans were successfully inactivated only with cationic ZnPcMe. These data indicate the promising future application of cationic phthalocyanine in photodynamic inactivation of pathogenic microorganisms.

  10. An optimized staining technique for the detection of Gram positive and Gram negative bacteria within tissue.

    PubMed

    Becerra, Sandra C; Roy, Daniel C; Sanchez, Carlos J; Christy, Robert J; Burmeister, David M

    2016-04-12

    Bacterial infections are a common clinical problem in both acute and chronic wounds. With growing concerns over antibiotic resistance, treatment of bacterial infections should only occur after positive diagnosis. Currently, diagnosis is delayed due to lengthy culturing methods which may also fail to identify the presence of bacteria. While newer costly bacterial identification methods are being explored, a simple and inexpensive diagnostic tool would aid in immediate and accurate treatments for bacterial infections. Histologically, hematoxylin and eosin (H&E) and Gram stains have been employed, but are far from optimal when analyzing tissue samples due to non-specific staining. The goal of the current study was to develop a modification of the Gram stain that enhances the contrast between bacteria and host tissue. A modified Gram stain was developed and tested as an alternative to Gram stain that improves the contrast between Gram positive bacteria, Gram negative bacteria and host tissue. Initially, clinically relevant strains of Pseudomonas aeruginosa and Staphylococcus aureus were visualized in vitro and in biopsies of infected, porcine burns using routine Gram stain, and immunohistochemistry techniques involving bacterial strain-specific fluorescent antibodies as validation tools. H&E and Gram stain of serial biopsy sections were then compared to a modification of the Gram stain incorporating a counterstain that highlights collagen found in tissue. The modified Gram stain clearly identified both Gram positive and Gram negative bacteria, and when compared to H&E or Gram stain alone provided excellent contrast between bacteria and non-viable burn eschar. Moreover, when applied to surgical biopsies from patients that underwent burn debridement this technique was able to clearly detect bacterial morphology within host tissue. We describe a modification of the Gram stain that provides improved contrast of Gram positive and Gram negative microorganisms within host

  11. [Correlation analysis of nutrients and microorganisms in soils with polyphenols and total flavonoids of Houttuynia cordata].

    PubMed

    Wu, Dan; Luo, Shi-qiong; Yang, Zhan-nan; Ma, Jing; Hong, Liang

    2015-04-01

    The relationship of nutrients and microorganisms in soils with polyphenols and total flavonoids of Houttuynia cordata were investigated by measuring nutrients, enzyme activity, pH, concentrations of microbe phospholipid fatty acids (PLFAs) in soils, and determining concentrations of polyphenols and total flavonoids of H. cordata. The research is aimed to understand characteristics of the planting soils and improve the quality of cultivated H. cordata. The soils at different sample sites varied greatly in nutrients, enzyme activity, pH, microbic PLFAs and polyphenols and all flavonoids. The content of total PLFAs in sample sites was following: bacteria > fungi > actinomyces > nematode. The content of bacteria PLFAs was 37.5%-65.0% at different sample sites. Activities of polyphenol oxidease, concentrations of available P and content of PLFAs of bacteria, actinomyces and total microorganisms in soils were significantly and positively related to the concentrations of polyphenols and total flavonoids of H. cordata, respectively (P < 0.05) . The Content of fungi PLFAs in soils was significantly and negatively related to concentrations of polyphenols and total flavonoids of H. cordata, respectively (P < 0.05). This study provides evidence that effectiveness of the soil nutrient, which may be improved due to transformation of soil microorganisms and enzymes to N and P in the soils, was beneficial to adaptation of H. cordata adapted to different soil conditions, and significantly affects metabolic accumulation of polyphenols and flavonoids of H. cordata.

  12. Nickel titanium alloy: Cytotoxicity evaluation on microorganism culture

    NASA Astrophysics Data System (ADS)

    Dinca, V. C.; Soare, S.; Barbalat, A.; Dinu, C. Z.; Moldovan, A.; Stoica, I.; Vassu, T.; Purice, A.; Scarisoareanu, N.; Birjega, R.; Craciun, V.; DeStefano, V. Ferrari; Dinescu, M.

    2006-04-01

    High purity nickel (Ni) and titanium (Ti) targets have been used to form well-defined thin films of nitinol on Ti substrate by pulsed laser deposition (PLD) technique. Their chemical composition, crystalline structure and surface properties have been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). We have shown that by varying the deposition parameters such as laser fluence and number of laser pulses, we are able to control the film thickness as well as film's uniformity and roughness. Cytocompatibility tests have been performed through in vitro assays using microorganisms culture cells such as yeasts ( Saccharomyces cerevisiae) and bacteria ( Escherichia coli), in order to determine the thin film's toxic potential at the in vitro cellular level. Microorganism's adhesion on the nitinol surface was observed and the biofilm formation has been analyzed and quantified. Our results have shown no reactivity detected in cell culture exposed to NiTi films in comparison with the negative controls and a low adherence of the microorganisms on the nitinol surface that is an important factor for biofilm prevention. We can, therefore, conclude that NiTi is a good candidate material to be used for implants and medical devices.

  13. Effect of bacteria proportion on the fermentation of goat yoghurt with probiotic culture.

    PubMed

    Shu, Guowei; Wang, Shuai; Chen, Zikun; Chen, He; Wang, Changfeng; Ma, Yaning

    2015-01-01

    Goat milk production in Shaanxi province is dominant in China, but the product is mainly infant formula and adult milk powder; product homogeneity is serious and has no goat yoghurt with probiotic culture. The effect of bacteria proportion (1:3:1, 1:2:1, 1:1:1, 2:1:1, 3:1:1) on pH, acidity, and viable counts and sensory evaluation of goat milk fermented by probiotics including L. acidophilus, B. bifidum  or L. casei besides, S. thermophilus and L. bulgaricus for developing AB-goat yoghurt and BC-goat yoghurt was investigated. The optimum bacteria proportion of L. acidophilus : B. bifidum : S. thermophilus and L. bulgaricus for AB-goat yoghurt and B. bifidum : L. casei : S. thermophilus and L. bulgaricus for BC-goat yoghurt were both 2:1:1. The pH, acidity, the viable counts of L. acidophilus and B. bifidum, the total viable counts were respectively 4.60, 7.73 (g/L), 3.50×107 cfu/mL, 3.40×107 cfu/mL and 2.30×109 cfu/mL in AB-goat yoghurt. The pH, acidity, the viable counts of B. bifidum and L. casei, the total viable counts were respectively  4.61, 8.16 (g/L), 7.60×107 cfu/mL, 5.60×107 cfu/mL and 2.04×109 cfu/mL in BC-goat yoghurt. The bacteria proportion had a significant effect on fermentation of AB- and BC-goat yoghurt, the results are beneficial for developing AB-goat yoghurt and BC-goat yoghurt.

  14. Microbial population Diversity of indigenous acidophilic bacteria for recovering the valuable resources

    NASA Astrophysics Data System (ADS)

    Kim, B.; Cho, K.; Lee, D.; Choi, N.; Park, C.

    2011-12-01

    A taxon- or group-specific PCR primer serves as a valuable tool for studying the bioleaching mechanisms of a particular group of microorganisms. Especially for an uncultured (or very difficult to isolate from their environments) group of microorganisms, the group-specific PCR primer is essential for the investigation of distribution patterns and the estimation of genetic diversity of the target microorganisms. This study investigated the Biodiversity through molecular biology method using the three different indigenous acidophilic bacteria collected from acid mine drainage in Go-seong and Yeon-hwa, Korea and acidic hot spring in Hatchnobaru, Japan. We performed the optical analysis (phase-contrast microscope and SEM), base sequencing. In the phase-contrast microscope(X 4,000) and SEM analysis, the rod-shaped bacteria with 1μm in length were observed. The results of base sequencing using EzTaxon server data revealed Acidithiobacillus ferrooxidans (Go-seong - 97.79%, Yeon-hwa - 97.90% and Hatchnobaru - 97.97%)

  15. The Interaction between Heterotrophic Bacteria and Coliform, Fecal Coliform, Fecal Streptococci Bacteria in the Water Supply Networks.

    PubMed

    Amanidaz, Nazak; Zafarzadeh, Ali; Mahvi, Amir Hossein

    2015-12-01

    This study investigated the interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in water supply networks. This study was conducted during 2013 on water supply distribution network in Aq Qala City, Golestan Province, Northern Iran and standard methods were applied for microbiological analysis. The surface method was applied to test the heterotrophic bacteria and MPN method was used for coliform, fecal coliform and fecal streptococci bacteria measurements. In 114 samples, heterotrophic bacteria count were over 500 CFU/ml, which the amount of fecal coliform, coliform, and fecal streptococci were 8, 32, and 20 CFU/100 ml, respectively. However, in the other 242 samples, with heterotrophic bacteria count being less than 500 CFU/ml, the amount of fecal coliform, coliform, and fecal streptococci was 7, 23, and 11 CFU/100ml, respectively. The relationship between heterotrophic bacteria, coliforms and fecal streptococci was highly significant (P<0.05). We observed the concentration of coliforms, fecal streptococci bacteria being high, whenever the concentration of heterotrophic bacteria in the water network systems was high. Interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in the Aq Qala City water supply networks was not notable. It can be due to high concentrations of organic carbon, bio-films and nutrients, which are necessary for growth, and survival of all microorganisms.

  16. The Interaction between Heterotrophic Bacteria and Coliform, Fecal Coliform, Fecal Streptococci Bacteria in the Water Supply Networks

    PubMed Central

    AMANIDAZ, Nazak; ZAFARZADEH, Ali; MAHVI, Amir Hossein

    2015-01-01

    Background: This study investigated the interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in water supply networks. Methods: This study was conducted during 2013 on water supply distribution network in Aq Qala City, Golestan Province, Northern Iran and standard methods were applied for microbiological analysis. The surface method was applied to test the heterotrophic bacteria and MPN method was used for coliform, fecal coliform and fecal streptococci bacteria measurements. Results: In 114 samples, heterotrophic bacteria count were over 500 CFU/ml, which the amount of fecal coliform, coliform, and fecal streptococci were 8, 32, and 20 CFU/100 ml, respectively. However, in the other 242 samples, with heterotrophic bacteria count being less than 500 CFU/ml, the amount of fecal coliform, coliform, and fecal streptococci was 7, 23, and 11 CFU/100ml, respectively. The relationship between heterotrophic bacteria, coliforms and fecal streptococci was highly significant (P<0.05). We observed the concentration of coliforms, fecal streptococci bacteria being high, whenever the concentration of heterotrophic bacteria in the water network systems was high. Conclusion: Interaction between heterotrophic bacteria and coliform, fecal coliforms, fecal streptococci bacteria in the Aq Qala City water supply networks was not notable. It can be due to high concentrations of organic carbon, bio-films and nutrients, which are necessary for growth, and survival of all microorganisms. PMID:26811820

  17. Induction of viable but nonculturable Escherichia coli O157:H7 by high pressure CO2 and its characteristics.

    PubMed

    Zhao, Feng; Bi, Xiufang; Hao, Yanling; Liao, Xiaojun

    2013-01-01

    The viable but nonculturable (VBNC) state is a survival strategy adopted by many pathogens when exposed to harsh environmental stresses. In this study, we investigated for the first time that whether high pressure CO2 (HPCD), one of the nonthermal pasteurization techniques, can induce Escherichia coli O157:H7 into the VBNC state. By measuring plate counts, viable cell counts and total cell counts, E. coli O157:H7 in 0.85% NaCl solution (pH 7.0) was able to enter the VBNC state by HPCD treatment at 5 MPa and four temperatures (25°C, 31°C, 34°C and 37°C). Meanwhile, with the improvement of treatment temperature, the time required for E. coli O157:H7 to enter VBNC state would shorten. Enzymatic activities in these VBNC cells were lower than those in the exponential-phase cells by using API ZYM kit, which were also reduced with increasing the treatment temperature, but the mechanical resistance of the VBNC cells to sonication was enhanced. These results further confirmed VBNC state was a self-protection mechanism for some bacteria, which minimized cellular energetic requirements and increased the cell resistance. When incubated in tryptic soy broth at 37°C, the VBNC cells induced by HPCD treatment at 25°C, 31°C and 34°C achieved resuscitation, but their resuscitation capabilities decreased with increasing the treatment temperature. Furthermore, electron microscopy revealed changes in the morphology and interior structure of the VBNC cells and the resuscitated cells. These results demonstrated that HPCD could induce E. coli O157:H7 into the VBNC state. Therefore, it is necessary to detect if there exist VBNC microorganisms in HPCD-treated products by molecular-based methods for food safety.

  18. Observation of Microorganisms in Milk after the Expiration Date Using Dry Rehydratable Film

    ERIC Educational Resources Information Center

    Kim, Youngshin; Lim, Soo-Min; Lee, Il-Sun

    2013-01-01

    Cultivation of microorganisms such as fungi and bacteria is often not included in scientific inquiries conducted in school because of the difficulty of manufacturing a suitable medium. A method using dry rehydratable film to reduce the need to manufacture a suitable medium and shorten incubation time was developed as an efficient microbial testing…

  19. Model Communities Hint at Promiscuous Metabolic Linkages between Ubiquitous Free-Living Freshwater Bacteria

    PubMed Central

    Buck, Moritz; Hamilton, Joshua J.; Wurzbacher, Christian; Grossart, Hans-Peter; Eiler, Alexander

    2018-01-01

    ABSTRACT Genome streamlining is frequently observed in free-living aquatic microorganisms and results in physiological dependencies between microorganisms. However, we know little about the specificity of these microbial associations. In order to examine the specificity and extent of these associations, we established mixed cultures from three different freshwater environments and analyzed the cooccurrence of organisms using a metagenomic time series. Free-living microorganisms with streamlined genomes lacking multiple biosynthetic pathways showed no clear recurring pattern in their interaction partners. Free-living freshwater bacteria form promiscuous cooperative associations. This notion contrasts with the well-documented high specificities of interaction partners in host-associated bacteria. Considering all data together, we suggest that highly abundant free-living bacterial lineages are functionally versatile in their interactions despite their distinct streamlining tendencies at the single-cell level. This metabolic versatility facilitates interactions with a variable set of community members. PMID:29848762

  20. The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission

    PubMed Central

    Bonnet, Sarah I.; Binetruy, Florian; Hernández-Jarguín, Angelica M.; Duron, Olivier

    2017-01-01

    Ticks are among the most important vectors of pathogens affecting humans and other animals worldwide. They do not only carry pathogens however, as a diverse group of commensal and symbiotic microorganisms are also present in ticks. Unlike pathogens, their biology and their effect on ticks remain largely unexplored, and are in fact often neglected. Nonetheless, they can confer multiple detrimental, neutral, or beneficial effects to their tick hosts, and can play various roles in fitness, nutritional adaptation, development, reproduction, defense against environmental stress, and immunity. Non-pathogenic microorganisms may also play a role in driving transmission of tick-borne pathogens (TBP), with many potential implications for both human and animal health. In addition, the genetic proximity of some pathogens to mutualistic symbionts hosted by ticks is evident when studying phylogenies of several bacterial genera. The best examples are found within members of the Rickettsia, Francisella, and Coxiella genera: while in medical and veterinary research these bacteria are traditionally recognized as highly virulent vertebrate pathogens, it is now clear to evolutionary ecologists that many (if not most) Coxiella, Francisella, and Rickettsia bacteria are actually non-pathogenic microorganisms exhibiting alternative lifestyles as mutualistic ticks symbionts. Consequently, ticks represent a compelling yet challenging system in which to study microbiomes and microbial interactions, and to investigate the composition, functional, and ecological implications of bacterial communities. Ultimately, deciphering the relationships between tick microorganisms as well as tick symbiont interactions will garner invaluable information, which may aid in the future development of arthropod pest and vector-borne pathogen transmission control strategies. PMID:28642842

  1. The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission.

    PubMed

    Bonnet, Sarah I; Binetruy, Florian; Hernández-Jarguín, Angelica M; Duron, Olivier

    2017-01-01

    Ticks are among the most important vectors of pathogens affecting humans and other animals worldwide. They do not only carry pathogens however, as a diverse group of commensal and symbiotic microorganisms are also present in ticks. Unlike pathogens, their biology and their effect on ticks remain largely unexplored, and are in fact often neglected. Nonetheless, they can confer multiple detrimental, neutral, or beneficial effects to their tick hosts, and can play various roles in fitness, nutritional adaptation, development, reproduction, defense against environmental stress, and immunity. Non-pathogenic microorganisms may also play a role in driving transmission of tick-borne pathogens (TBP), with many potential implications for both human and animal health. In addition, the genetic proximity of some pathogens to mutualistic symbionts hosted by ticks is evident when studying phylogenies of several bacterial genera. The best examples are found within members of the Rickettsia, Francisella , and Coxiella genera: while in medical and veterinary research these bacteria are traditionally recognized as highly virulent vertebrate pathogens, it is now clear to evolutionary ecologists that many (if not most) Coxiella, Francisella , and Rickettsia bacteria are actually non-pathogenic microorganisms exhibiting alternative lifestyles as mutualistic ticks symbionts. Consequently, ticks represent a compelling yet challenging system in which to study microbiomes and microbial interactions, and to investigate the composition, functional, and ecological implications of bacterial communities. Ultimately, deciphering the relationships between tick microorganisms as well as tick symbiont interactions will garner invaluable information, which may aid in the future development of arthropod pest and vector-borne pathogen transmission control strategies.

  2. Inactivation of biofilm bacteria.

    PubMed Central

    LeChevallier, M W; Cawthon, C D; Lee, R G

    1988-01-01

    The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria. Images PMID:2849380

  3. Bacteria on catheters in patients undergoing peritoneal dialysis.

    PubMed

    Pihl, Maria; Davies, Julia R; Johansson, Ann-Cathrine; Svensäter, Gunnel

    2013-01-01

    Peritonitis is the leading cause of morbidity for peritoneal dialysis (PD) patients, and microbial biofilms have previously been identified on catheters from infected patients. However, few studies of catheters from patients without clinical signs of infection have been undertaken. The aim of the present study was to investigate the extent to which bacteria are present on catheters from PD patients with no symptoms of infection. Microbiologic culturing under aerobic and anaerobic conditions and confocal laser scanning microscopy were used to determine the distribution of bacteria on PD catheters from 15 patients without clinical signs of infection and on catheters from 2 infected patients. The 16S rRNA gene sequencing technique was used to identify cultured bacteria. Bacteria were detected on 12 of the 15 catheters from patients without signs of infection and on the 2 catheters from infected patients. Single-species and mixed-microbial communities containing up to 5 species were present on both the inside and the outside along the whole length of the colonized catheters. The bacterial species most commonly found were the skin commensals Staphylococcus epidermidis and Propionibacterium acnes, followed by S. warneri and S. lugdunensis. The strains of these micro-organisms, particularly those of S. epidermidis, varied in phenotype with respect to their tolerance of the major classes of antibiotics. Bacteria were common on catheters from patients without symptoms of infection. Up to 4 different bacterial species were found in close association and may represent a risk factor for the future development of peritonitis in patients hosting such micro-organisms.

  4. Chemotaxis by natural populations of coral reef bacteria.

    PubMed

    Tout, Jessica; Jeffries, Thomas C; Petrou, Katherina; Tyson, Gene W; Webster, Nicole S; Garren, Melissa; Stocker, Roman; Ralph, Peter J; Seymour, Justin R

    2015-08-01

    Corals experience intimate associations with distinct populations of marine microorganisms, but the microbial behaviours underpinning these relationships are poorly understood. There is evidence that chemotaxis is pivotal to the infection process of corals by pathogenic bacteria, but this evidence is limited to experiments using cultured isolates under laboratory conditions. We measured the chemotactic capabilities of natural populations of coral-associated bacteria towards chemicals released by corals and their symbionts, including amino acids, carbohydrates, ammonium and dimethylsulfoniopropionate (DMSP). Laboratory experiments, using a modified capillary assay, and in situ measurements, using a novel microfabricated in situ chemotaxis assay, were employed to quantify the chemotactic responses of natural microbial assemblages on the Great Barrier Reef. Both approaches showed that bacteria associated with the surface of the coral species Pocillopora damicornis and Acropora aspera exhibited significant levels of chemotaxis, particularly towards DMSP and amino acids, and that these levels of chemotaxis were significantly higher than that of bacteria inhabiting nearby, non-coral-associated waters. This pattern was supported by a significantly higher abundance of chemotaxis and motility genes in metagenomes within coral-associated water types. The phylogenetic composition of the coral-associated chemotactic microorganisms, determined using 16S rRNA amplicon pyrosequencing, differed from the community in the seawater surrounding the coral and comprised known coral associates, including potentially pathogenic Vibrio species. These findings indicate that motility and chemotaxis are prevalent phenotypes among coral-associated bacteria, and we propose that chemotaxis has an important role in the establishment and maintenance of specific coral-microbe associations, which may ultimately influence the health and stability of the coral holobiont.

  5. Free-Living Amoebae as Hosts for and Vectors of Intracellular Microorganisms with Public Health Significance.

    PubMed

    Balczun, Carsten; Scheid, Patrick L

    2017-04-01

    Free-living amoebae (FLA) are parasites within both humans and animals causing a wide range of symptoms and act as hosts of, and vehicles for phylogenetically diverse microorganisms, called endocytobionts. The interaction of the FLA with sympatric microorganisms leads to an exceptional diversity within FLA. Some of these bacteria, viruses, and even eukaryotes, can live and replicate intracellularly within the FLA. This relationship provides protection to the microorganisms from external interventions and a dispersal mechanism across various habitats. Among those intracellularly-replicating or -residing organisms there are obligate and facultative pathogenic microorganisms affecting the health of humans or animals and are therefore of interest to Public Health Authorities. Mimiviruses, Pandoraviruses, and Pithoviruses are examples for interesting viral endocytobionts within FLA. Future research is expected to reveal further endocytobionts within free-living amoebae and other protozoa through co-cultivation studies, genomic, transcriptomic, and proteomic analyses.

  6. Free-Living Amoebae as Hosts for and Vectors of Intracellular Microorganisms with Public Health Significance

    PubMed Central

    Balczun, Carsten; Scheid, Patrick L.

    2017-01-01

    Free-living amoebae (FLA) are parasites within both humans and animals causing a wide range of symptoms and act as hosts of, and vehicles for phylogenetically diverse microorganisms, called endocytobionts. The interaction of the FLA with sympatric microorganisms leads to an exceptional diversity within FLA. Some of these bacteria, viruses, and even eukaryotes, can live and replicate intracellularly within the FLA. This relationship provides protection to the microorganisms from external interventions and a dispersal mechanism across various habitats. Among those intracellularly-replicating or -residing organisms there are obligate and facultative pathogenic microorganisms affecting the health of humans or animals and are therefore of interest to Public Health Authorities. Mimiviruses, Pandoraviruses, and Pithoviruses are examples for interesting viral endocytobionts within FLA. Future research is expected to reveal further endocytobionts within free-living amoebae and other protozoa through co-cultivation studies, genomic, transcriptomic, and proteomic analyses. PMID:28368313

  7. METHOD DETECTION LIMITS AND NON-DETECTS IN THE WORLD OF MICROBIOLOGY

    EPA Science Inventory

    Examining indoor air for microorganisms is generally performed by sampling for viable microbes, growing them on sterile media, and counting the colony forming units. A negative result does not indicate that the source of the sample was free of fungi or bacteria, only that if pre...

  8. Bacteria From Marine Sponges: A Source of New Drugs.

    PubMed

    Bibi, Fehmida; Faheem, Muhammad; Azhar, Esam I; Yasir, Muhammad; Alvi, Sana A; Kamal, Mohammad A; Ullah, Ikram; Naseer, Muhammad I

    2017-01-01

    Sponges are rich source of bioactive natural products synthesized by the symbiotic bacteria belonging to different phyla. Due to a competition for space and nutrients the marine bacteria associated with sponges could produce more antibiotic substances. To explore the proactive potential of marine microbes extensive research has been done. These bioactive metabolites have some unique properties that are pharmaceutically important. For this review, we have performed a non-systematic search of the available literature though various online search engines. This review provides an insight that how majority of active metabolites have been identified from marine invertebrates of which sponges predominate. Sponges harbor abundant and diverse microorganisms, which are the sources of a range of marine bioactive metabolites. From sponges and their associated microorganisms, approximately 5,300 different natural compounds are known. Current research on sponge-microbe interaction and their active metabolites has become a focal point for many researchers. Various active metabolites derived from sponges are now known to be produced by their symbiotic microflora. In this review, we attempt to report the latest studies regarding capability of bacteria from sponges as producers of bioactive metabolite. Moreover, these sponge associated bacteria are an important source of different enzymes of industrial significance. In present review, we will address some novel approaches for discovering marine metabolites from bacteria that have the greatest potential to be used in clinical treatments. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Characterization of Radiation-Resistant Vegetative Bacteria in Beef1

    PubMed Central

    Welch, Ardyce B.; Maxcy, R. B.

    1975-01-01

    Ground beef contains numerous microorganisms of various types. The commonly recognized bacteria are associated with current problems of spoilage. Irradiation, however, contributes a new factor through selective destruction of the microflora. The residual microorganisms surviving a nonsterilizing dose are predominantly gram-negative coccobacilli. Various classifications have been given, e.g., Moraxella, Acinetobacter, Achromobacter, etc. For a more detailed study of these radiation-resistant bacteria occurring in ground beef, an enrichment procedure was used for isolation. By means of morphological and biochemical tests, most of the isolates were found to be Moraxella, based on current classifications. The range of growth temperatures was from 2 to 50 C. These bacteria were relatively heat sensitive, e.g., D10 of 5.4 min at 70 C or less. The radiation resistance ranged from D10 values of 273 to 2,039 krad. Thus, some were more resistant than any presently recognized spores. A reference culture of Moraxella osloensis was irradiated under conditions comparable to the enrichment procedure used with the ground beef. The only apparent changes were in morphology and penicillin sensitivity. However, after a few subcultures these bacteria reverted to the characteristics of the parent strain. Thus, it is apparent that these isolates are a part of the normal flora of ground beef and not aberrant forms arising from the irradiation procedure. The significance, if any, of these bacteria is not presently recognized. Images PMID:1164011

  10. Molecular Viability Testing of UV-Inactivated Bacteria.

    PubMed

    Weigel, Kris M; Nguyen, Felicia K; Kearney, Moira R; Meschke, John S; Cangelosi, Gerard A

    2017-05-15

    PCR is effective in detecting bacterial DNA in samples, but it is unable to differentiate viable bacteria from inactivated cells or free DNA fragments. New PCR-based analytical strategies have been developed to address this limitation. Molecular viability testing (MVT) correlates bacterial viability with the ability to rapidly synthesize species-specific rRNA precursors (pre-rRNA) in response to brief nutritional stimulation. Previous studies demonstrated that MVT can assess bacterial inactivation by chlorine, serum, and low-temperature pasteurization. Here, we demonstrate that MVT can detect inactivation of Escherichia coli , Aeromonas hydrophila , and Enterococcus faecalis cells by UV irradiation. Some UV-inactivated E. coli cells transiently retained the ability to synthesize pre-rRNA postirradiation (generating false-positive MVT results), but this activity ceased within 1 h following UV exposure. Viable but transiently undetectable (by culture) E. coli cells were consistently detected by MVT. An alternative viability testing method, viability PCR (vPCR), correlates viability with cell envelope integrity. This method did not distinguish viable bacteria from UV-inactivated bacteria under some conditions, indicating that the inactivated cells retained intact cell envelopes. MVT holds promise as a means to rapidly assess microbial inactivation by UV treatment. IMPORTANCE UV irradiation is increasingly being used to disinfect water, food, and other materials for human use. Confirming the effectiveness of UV disinfection remains a challenging task. In particular, microbiological methods that rely on rapid detection of microbial DNA can yield misleading results, due to the detection of remnant DNA associated with dead microbial cells. This report describes a novel method that rapidly distinguishes living microbial cells from dead microbial cells after UV disinfection. Copyright © 2017 American Society for Microbiology.

  11. Plants and microorganisms as drivers of mineral weathering

    NASA Astrophysics Data System (ADS)

    Dontsova, K.; Chorover, J.; Maier, R.; Hunt, E.; Zaharescu, D. G.

    2011-12-01

    Plants and microorganisms play important role in mineral weathering and soil formation modifying their environment to make it more hospitable for life. This presentation summarizes several collaborative studies that focused on understanding how interactions between plants and microorganisms, where plants provide the energy through photosynthesis, drive mineral weathering and result in soil formation. Plants influence weathering through multiple mechanisms that have been previously established, such as increase in CO2 concentration in the soil through root respiration and degradation of plant residues and exudates by heterotrophic microorganisms, release of organic acids that promote mineral dissolution, removal of weathering products from soil solution through uptake, and water redistribution. Weathering processes result in nutrient release that satisfies immediate needs of the plants and microorganisms, as well as precipitation of secondary phases, that provide surfaces for retention of nutrients and organic carbon accumulation. What makes understanding contribution of plants and microorganisms, such as bacteria and fungi, to mineral weathering challenging is the fact that they closely interact, enhancing and amplifying each other's contribution. In order to address multiple processes that contribute to and result from biological weathering a combination of chemical, biological, mineralogical, and computational techniques and methodologies is needed. This complex array of methodologies includes bulk techniques, such as determination of total dissolved organic and inorganic carbon and nitrogen, ion chromatography and high performance liquid chromatography to characterize amount and composition of exuded organic acids, inductively coupled plasma mass spectrometry to determine concentrations of lithogenic elements in solution, X-ray diffraction to characterize changes in mineral composition of the material, DNA extraction to characterize community structure, as well

  12. Influence of environmental pollution with creosote oil or its vapors on biomass and selected physiological groups of microorganisms

    NASA Astrophysics Data System (ADS)

    Krzyśko-Łupicka, Teresa; Cybulska, Krystyna; Kołosowski, Paweł; Telesiński, Arkadiusz; Sudoł, Adam

    2017-11-01

    Survival of microorganisms in soils from treatment facility and landfill of wooden railway sleepers contaminated with creosote oil as well as in two types of soils with different content of organic carbon, treated with creosote oil vapors, was assessed. Microbiological assays including determination of: the biomass of living microorganisms method and the number of proteolytic, lipolytic and amylolytic microorganisms were carried out under laboratory conditions. Chromatography analysis of the soil extract from railway sleepers treatment facility was performed using GC/MS. The highest biomass and the number of tested microorganisms were determined in soils from wooden railway sleepers landfill, while the lowest in soil from the railway sleepers treatment facility. Vapors of creosote oil, regardless of the soil type, significantly increased only the number of lipolytic bacteria.

  13. Distribution of culturable microorganisms in Fennoscandian Shield groundwater.

    PubMed

    Haveman, Shelley A; Pedersen, Karsten

    2002-02-01

    Microbial populations in 16 groundwater samples from six Fennoscandian Shield sites in Finland and Sweden were investigated. The average total cell number was 3.7x10(5) cells ml(-1), and there was no change in the mean of the total cell numbers to a depth of 1390 m. Culture media were designed based on the chemical composition of each groundwater sample and used successfully to culture anaerobic microorganisms from all samples between 65 and 1350 m depth. Between 0.0084 and 14.8% of total cells were cultured from groundwater samples. Sulfate-reducing bacteria, iron-reducing bacteria and heterotrophic acetogenic bacteria were cultured from groundwater sampled at 65-686 m depth in geographically distant sites. Different microbial populations were cultured from deeper, older and more saline groundwater from 863 to 1350 m depth. Principal component analysis of groundwater chemistry data showed that sulfate- and iron-reducing bacteria were not detected in the most saline groundwater. Iron-reducing bacteria and acetogens were cultured from deep groundwater that contained 0.35-3.5 mM sulfate, while methanogens and acetogens were cultured from deep sulfate-depleted groundwater. In one borehole from which autotrophic methanogens were cultured, dissolved inorganic carbon was enriched in (13)C compared to other Fennoscandian Shield groundwater samples, suggesting that autotrophs were active. It can be concluded that a diverse microbial community is present from the surface to over 1300 m depth in the Fennoscandian Shield.

  14. [Phylogenetic diversity and activity of anaerobic microorganisms of high-temperature horizons of the Dagang Oilfield (China)].

    PubMed

    Nazina, T N; Shestakova, N M; Grigor'ian, A A; Mikhaĭlova, E M; Turova, T P; Poltaraus, A B; Feng, C; Ni, F; Beliaev, S S

    2006-01-01

    The number of microorganisms of major metabolic groups and the rates of sulfate-reducing and methanogenic processes in the formation waters of the high-temperature horizons of Dagang oilfield have been determined. Using cultural methods, it was shown that the microbial community contained aerobic bacteria oxidizing crude oil, anaerobic fermentative bacteria, sulfate-reducing bacteria, and methanogenic bacteria. Using cultural methods, the possibility of methane production from a mixture of hydrogen and carbon dioxide (H2 + CO2) and from acetate was established, and this result was confirmed by radioassays involving NaH14CO3 and 14CH3COONa. Analysis of 16S rDNA of enrichment cultures of methanogens demonstrated that these microorganisms belong to Methanothermobacter sp. (M. thermoautotrophicus), which consumes hydrogen and carbon dioxide as basic substrates. The genes of acetate-utilizing bacteria were not identified. Phylotypes of the representatives of Thermococcus spp. were found among 16S rDNAs of archaea. 16S rRNA genes of bacterial clones belong to the orders Thermoanaerobacteriales (Thermoanaerobacter, Thermovenabulum, Thermacetogenium, and Coprothermobacter spp.), Thermotogales, Nitrospirales (Thermodesulfovibrio sp.) and Planctomycetales. 16S rDNA of a bacterium capable of oxidizing acetate in the course of syntrophic growth with H2-utilizing methanogens was found at high-temperature petroleum reservoirs for the first time. These results provide further insight into the composition of microbial communities of high-temperature petroleum reservoirs, indicating that syntrophic processes play an important part in acetate degradation accompanied by methane production.

  15. PEF and UV combined system for pathogen microorganisms inactivation in liquid food products

    NASA Astrophysics Data System (ADS)

    Cramariuc, R.; Popa, M.; Tudorache, A.; Brînduşe, E.; Kontek, A.; Mitelut, A.; Fotescu, L.; Cramariuc, B.; Geicu, M.; Nisiparu, L.

    2011-06-01

    Pulsed electrical field (PEF) treatment is a non-thermal food preservation technology based on the use of the electrical field in impulses applied in order to inactivate and control pathogen microorganisms in foods. This technology is highly appreciated for its ability to prolong the shelf life of the treated product without the use of heat and also for its ability to preserve the product's sensory qualities and nutritional value as well as for the microbiological control of the treated products. This paper presents the PEF and UV treatment methods, or a combination between the two, for microbe inactivation in liquid products. The experiments were carried out using yeasts, lactic bacteria and acetic bacteria in the following systems: stand-alone treatments (PEF or UV) or in combination (UV+PEF or PEF+UV). The results of these experiments showed that one can obtain total inactivation of microorganisms using the combined UV+PEF system, thus leading to the possibility of increasing liquid food products quality as compared to the quality obtained using thermal pasteurization.

  16. Bacterial community analysis of an industrial wastewater treatment plant in Colombia with screening for lipid-degrading microorganisms.

    PubMed

    Silva-Bedoya, Lina Marcela; Sánchez-Pinzón, María Solange; Cadavid-Restrepo, Gloria Ester; Moreno-Herrera, Claudia Ximena

    2016-11-01

    The operation of wastewater treatment technologies depends on a combination of physical, chemical and biological factors. Microorganisms present in wastewater treatment plants play essential roles in the degradation and removal of organic waste and xenobiotic pollutants. Several microorganisms have been used in complementary treatments to process effluents rich in fats and oils. Microbial lipases have received significant industrial attention because of their stability, broad substrate specificity, high yields, and regular supply, as well as the fact that the microorganisms producing them grow rapidly on inexpensive media. In Colombia, bacterial community studies have focused on populations of cultivable nitrifying, heterotrophic and nitrogen-fixing bacteria present in constructed wetlands. In this study, culture-dependent methods, culture-independent methods (TTGE, RISA) and enzymatic methods were used to estimate bacterial diversity, to monitor temporal and spatial changes in bacterial communities, and to screen microorganisms that presented lipolytic activity. The dominant microorganisms in the Wastewater Treatment Plant (WWTP) examined in this study belonged to the phyla Firmicutes, Proteobacteria and Bacteroidetes. The enzymatic studies performed indicated that five bacterial isolates and three fungal isolates possessed the ability to degrade lipids; additionally, the Serratia, Kosakonia and Mucor genera presented lipase-mediated transesterification activity. The implications of these findings in regard to possible applications are discussed later in this paper. Our results indicate that there is a wide diversity of aerobic Gram-negative bacteria inhabiting the different sections of the WWTP, which could indicate its ecological condition, functioning and general efficiency. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Novel anti-infective compounds from marine bacteria.

    PubMed

    Rahman, Hafizur; Austin, Brian; Mitchell, Wilfrid J; Morris, Peter C; Jamieson, Derek J; Adams, David R; Spragg, Andrew Mearns; Schweizer, Michael

    2010-03-05

    As a result of the continuous evolution of microbial pathogens towards antibiotic-resistance, there have been demands for the development of new and effective antimicrobial compounds. Since the 1960s, the scientific literature has accumulated many publications about novel pharmaceutical compounds produced by a diverse range of marine bacteria. Indeed, marine micro-organisms continue to be a productive and successful focus for natural products research, with many newly isolated compounds possessing potentially valuable pharmacological activities. In this regard, the marine environment will undoubtedly prove to be an increasingly important source of novel antimicrobial metabolites, and selective or targeted approaches are already enabling the recovery of a significant number of antibiotic-producing micro-organisms. The aim of this review is to consider advances made in the discovery of new secondary metabolites derived from marine bacteria, and in particular those effective against the so called "superbugs", including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin resistant enterococci (VRE), which are largely responsible for the increase in numbers of hospital acquired, i.e., nosocomial, infections.

  18. [Isolation and identification of electrochemically active microorganism from micro-aerobic environment].

    PubMed

    Wu, Song; Xiao, Yong; Zheng, Zhi-Yong; Zheng, Yue; Yang, Zhao-Hui; Zhao, Feng

    2014-10-01

    Extracellular electron transfer of electrochemically active microorganism plays vital role in biogeochemical cycling of metals and carbon and in biosynthesis of bioenergy. Compared to anaerobic anode, micro-aerobic anode captures more energy from microbial fuel cell. However, most of previous researches focused on functioning bacteria in anaerobic anode, functioning bacteria in micro-aerobic anode was rarely studied. Herein, we used the traditional aerobic screening technology to isolate functioning bacteria from a micro-aerobic anode. Three pure cultures Aeromonas sp. WS-XY2, Citrobacter sp. WS-XY3 and Bacterium strain WS-XY4 were obtained. WS-XY2 and WS-XY3 were belonged to Proteobacteria, whereas WS-XY4 was possibly a new species. Cyclic voltammetry and chronoamperometry analysis demonstrated all of them showed the electrochemical activity by direct extracellular electron transfer, and micro-aerobic anode could select bacteria that have similar electrochemical activity to proliferate on the anode. We further conclude that functioning bacteria in micro-aerobic anode are more efficient than that of anaerobic anode may be the reason that micro-aerobic anode has better performance than anaerobic anode. Therefore, a thorough study of functioning bacteria in micro-aerobic anode will significantly promote the energy recovery from microbial fuel cell.

  19. Production of gaba (γ – Aminobutyric acid) by microorganisms: a review

    PubMed Central

    Dhakal, Radhika; Bajpai, Vivek K.; Baek, Kwang-Hyun

    2012-01-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods. PMID:24031948

  20. Heme compounds as iron sources for nonpathogenic Rhizobium bacteria.

    PubMed

    Noya, F; Arias, A; Fabiano, E

    1997-05-01

    Many animal-pathogenic bacteria can use heme compounds as iron sources. Like these microorganisms, rhizobium strains interact with host organisms where heme compounds are available. Results presented in this paper indicate that the use of hemoglobin as an iron source is not restricted to animal-pathogenic microorganisms. We also demonstrate that heme, hemoglobin, and leghemoglobin can act as iron sources under iron-depleted conditions for Rhizobium meliloti 242. Analysis of iron acquisition mutant strains indicates that siderophore-, heme-, hemoglobin-, and leghemoglobin-mediated iron transport systems expressed by R. meliloti 242 share at least one component.

  1. Corrosion of aluminum alloy 2024 by microorganisms isolated from aircraft fuel tanks.

    PubMed

    McNamara, Christopher J; Perry, Thomas D; Leard, Ryan; Bearce, Ktisten; Dante, James; Mitchell, Ralph

    2005-01-01

    Microorganisms frequently contaminate jet fuel and cause corrosion of fuel tank metals. In the past, jet fuel contaminants included a diverse group of bacteria and fungi. The most common contaminant was the fungus Hormoconis resinae. However, the jet fuel community has been altered by changes in the composition of the fuel and is now dominated by bacterial contaminants. The purpose of this research was to determine the composition of the microbial community found in fuel tanks containing jet propellant-8 (JP-8) and to determine the potential of this community to cause corrosion of aluminum alloy 2024 (AA2024). Isolates cultured from fuel tanks containing JP-8 were closely related to the genus Bacillus and the fungi Aureobasidium and Penicillium. Biocidal activity of the fuel system icing inhibitor diethylene glycol monomethyl ether is the most likely cause of the prevalence of endospore forming bacteria. Electrochemical impedance spectroscopy and metallographic analysis of AA2024 exposed to the fuel tank environment indicated that the isolates caused corrosion of AA2024. Despite the limited taxonomic diversity of microorganisms recovered from jet fuel, the community has the potential to corrode fuel tanks.

  2. Seeking key microorganisms for enhancing methane production in anaerobic digestion of waste sewage sludge.

    PubMed

    Mustapha, Nurul Asyifah; Hu, Anyi; Yu, Chang-Ping; Sharuddin, Siti Suhailah; Ramli, Norhayati; Shirai, Yoshihito; Maeda, Toshinari

    2018-06-01

    Efficient approaches for the utilization of waste sewage sludge have been widely studied. One of them is to use it for the bioenergy production, specifically methane gas which is well-known to be driven by complex bacterial interactions during the anaerobic digestion process. Therefore, it is important to understand not only microorganisms for producing methane but also those for controlling or regulating the process. In this study, azithromycin analogs belonging to macrolide, ketolide, and lincosamide groups were applied to investigate the mechanisms and dynamics of bacterial community in waste sewage sludge for methane production. The stages of anaerobic digestion process were evaluated by measuring the production of intermediate substrates, such as protease activity, organic acids, the quantification of bacteria and archaea, and its community dynamics. All azithromycin analogs used in this study achieved a high methane production compared to the control sample without any antibiotic due to the efficient hydrolysis process and the presence of important fermentative bacteria and archaea responsible in the methanogenesis stage. The key microorganisms contributing to the methane production may be Clostridia, Cladilinea, Planctomycetes, and Alphaproteobacteria as an accelerator whereas Nitrosomonadaceae and Nitrospiraceae may be suppressors for methane production. In conclusion, the utilization of antibiotic analogs of macrolide, ketolide, and lincosamide groups has a promising ability in finding the essential microorganisms and improving the methane production using waste sewage sludge.

  3. Biodiversity of yeasts, lactic acid bacteria and acetic acid bacteria in the fermentation of "Shanxi aged vinegar", a traditional Chinese vinegar.

    PubMed

    Wu, Jia Jia; Ma, Ying Kun; Zhang, Fen Fen; Chen, Fu Sheng

    2012-05-01

    Shanxi aged vinegar is a famous traditional Chinese vinegar made from several kinds of cereal by spontaneous solid-state fermentation techniques. In order to get a comprehensive understanding of culturable microorganism's diversity present in its fermentation, the indigenous microorganisms including 47 yeast isolates, 28 lactic acid bacteria isolates and 58 acetic acid bacteria isolates were recovered in different fermenting time and characterized based on a combination of phenotypic and genotypic approaches including inter-delta/PCR, PCR-RFLP, ERIC/PCR analysis, as well as 16S rRNA and 26S rRNA partial gene sequencing. In the alcoholic fermentation, the dominant yeast species Saccharomyces (S.) cerevisiae (96%) exhibited low phenotypic and genotypic diversity among the isolates, while Lactobacillus (Lb.) fermentum together with Lb. plantarum, Lb. buchneri, Lb. casei, Pediococcus (P.) acidilactici, P. pentosaceus and Weissella confusa were predominated in the bacterial population at the same stage. Acetobacter (A.) pasteurianus showing great variety both in genotypic and phenotypic tests was the dominant species (76%) in the acetic acid fermentation stage, while the other acetic acid bacteria species including A. senegalensis, A. indonesiensis, A. malorum and A. orientalis, as well as Gluconobacter (G.) oxydans were detected at initial point of alcoholic and acetic acid fermentation stage respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Factors of bacteria and virus transport in groundwater

    NASA Astrophysics Data System (ADS)

    Pekdeger, A.; Matthess, G.

    1983-06-01

    The underground transport of pathogenic bacteria and viruses may be described by the general transport equation considering dispersion, adsorption, and biological elimination. The survival time of bacteria and viruses in groundwater is different for the specific species and for the specific groundwater environment. Dispersion causes a distribution of pollutants in time and space, thus their concentration decreases over time and with transport distance. Microorganisms are reversibly adsorbed on underground particles, which causes a retardation of their transport velocity with respect to groundwater flow velocity. An additional approach is provided by the filter theory.

  5. High-Level Antimicrobial Efficacy of Representative Mediterranean Natural Plant Extracts against Oral Microorganisms

    PubMed Central

    Cecere, Manuel; Skaltsounis, Alexios Leandros; Argyropoulou, Aikaterini; Hellwig, Elmar; Aligiannis, Nektarios

    2014-01-01

    Nature is an unexplored reservoir of novel phytopharmaceuticals. Since biofilm-related oral diseases often correlate with antibiotic resistance, plant-derived antimicrobial agents could enhance existing treatment options. Therefore, the rationale of the present report was to examine the antimicrobial impact of Mediterranean natural extracts on oral microorganisms. Five different extracts from Olea europaea, mastic gum, and Inula viscosa were tested against ten bacteria and one Candida albicans strain. The extraction protocols were conducted according to established experimental procedures. Two antimicrobial assays—the minimum inhibitory concentration (MIC) assay and the minimum bactericidal concentration (MBC) assay—were applied. The screened extracts were found to be active against each of the tested microorganisms. O. europaea presented MIC and MBC ranges of 0.07–10.00 mg mL−1 and 0.60–10.00 mg mL−1, respectively. The mean MBC values for mastic gum and I. viscosa were 0.07–10.00 mg mL−1 and 0.15–10.00 mg mL−1, respectively. Extracts were less effective against C. albicans and exerted bactericidal effects at a concentration range of 0.07–5.00 mg mL−1 on strict anaerobic bacteria (Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Parvimonas micra). Ethyl acetate I. viscosa extract and total mastic extract showed considerable antimicrobial activity against oral microorganisms and could therefore be considered as alternative natural anti-infectious agents. PMID:25054150

  6. Electrode Cultivation and Interfacial Electron Transport in Subsurface Microorganisms

    NASA Astrophysics Data System (ADS)

    Karbelkar, A. A.; Jangir, Y.; Reese, B. K.; Wanger, G.; Anderson, C.; El-Naggar, M.; Amend, J.

    2016-12-01

    Continental subsurface environments can present significant energetic challenges to the resident microorganisms. While these environments are geologically diverse, potentially allowing energy harvesting by microorganisms that catalyze redox reactions, many of the abundant electron donors and acceptors are insoluble and therefore not directly bioavailable. Microbes can use extracellular electron transfer (EET) as a metabolic strategy to interact with redox active surfaces. This process can be mimicked on electrode surfaces and hence can lead to enrichment and quantification of subsurface microorganisms A primary bioelectrochemical enrichment with different oxidizing and reducing potentials set up in a single bioreactor was applied in situ to subsurface microorganisms residing in iron oxide rich deposits in the Sanford Underground Research Facility. Secondary enrichment revealed a plethora of classified and unclassified subsurface microbiota on both oxidizing and reducing potentials. From this enrichment, we have isolated a Gram-positive Bacillus along with Gram-negative Cupriavidus and Anaerospora strains (as electrode reducers) and Comamonas (as an electrode oxidizer). The Bacillus and Comamonas isolates were subjected to a detailed electrochemical characterization in half-reactors at anodic and cathodic potentials, respectively. An increase in cathodic current upon inoculation and cyclic voltammetry measurements confirm the hypothesis that Comamonas is capable of electron uptake from electrodes. In addition, measurements of Bacillus on anodes hint towards novel mechanisms that allow EET from Gram-positive bacteria. This study suggests that electrochemical approaches are well positioned to dissect such extracellular interactions that may be prevalent in the subsurface, while using physical electrodes to emulate the microhabitats, redox and geochemical gradients, and the spatially dependent interspecies interactions encountered in the subsurface. Electrochemical

  7. Dust Rains Deliver Diverse Assemblages of Microorganisms to the Eastern Mediterranean

    PubMed Central

    Itani, Ghida Nouhad; Smith, Colin Andrew

    2016-01-01

    Dust rains may be particularly effective at delivering microorganisms, yet their biodiversities have been seldom examined. During 2011 and 2012 in Beirut, Lebanon, 16 of 21 collected rainfalls appeared dusty. Trajectory modelling of air mass origins was consistent with North African sources and at least one Southwest Asian source. As much as ~4 g particulate matter, ~20 μg DNA, and 50 million colony forming units were found deposited per square meter during rainfalls each lasting less than one day. Sequencing of 93 bacteria and 25 fungi cultured from rain samples revealed diverse bacterial phyla, both Gram positive and negative, and Ascomycota fungi. Denaturing Gradient Gel Electrophoresis of amplified 16S rDNA of 13 rains revealed distinct and diverse assemblages of bacteria. Dust rain 16S libraries yielded 131 sequences matching, in decreasing order of abundance, Betaproteobacteria, Alphaproteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, Cyanobacteria, Epsilonproteobacteria, Gammaproteobacteria, and Deltaproteobacteria. Clean rain 16S libraries yielded 33 sequences matching only Betaproteobacteria family Oxalobacteraceae. Microbial composition varied between dust rains, and more diverse and different microbes were found in dust rains than clean rains. These results show that dust rains deliver diverse communities of microorganisms that may be complex products of revived desert soil species and fertilized cloud species. PMID:26939571

  8. Dust Rains Deliver Diverse Assemblages of Microorganisms to the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Itani, Ghida Nouhad; Smith, Colin Andrew

    2016-03-01

    Dust rains may be particularly effective at delivering microorganisms, yet their biodiversities have been seldom examined. During 2011 and 2012 in Beirut, Lebanon, 16 of 21 collected rainfalls appeared dusty. Trajectory modelling of air mass origins was consistent with North African sources and at least one Southwest Asian source. As much as ~4 g particulate matter, ~20 μg DNA, and 50 million colony forming units were found deposited per square meter during rainfalls each lasting less than one day. Sequencing of 93 bacteria and 25 fungi cultured from rain samples revealed diverse bacterial phyla, both Gram positive and negative, and Ascomycota fungi. Denaturing Gradient Gel Electrophoresis of amplified 16S rDNA of 13 rains revealed distinct and diverse assemblages of bacteria. Dust rain 16S libraries yielded 131 sequences matching, in decreasing order of abundance, Betaproteobacteria, Alphaproteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, Cyanobacteria, Epsilonproteobacteria, Gammaproteobacteria, and Deltaproteobacteria. Clean rain 16S libraries yielded 33 sequences matching only Betaproteobacteria family Oxalobacteraceae. Microbial composition varied between dust rains, and more diverse and different microbes were found in dust rains than clean rains. These results show that dust rains deliver diverse communities of microorganisms that may be complex products of revived desert soil species and fertilized cloud species.

  9. Distribution and Identification of Luminous Bacteria from the Sargasso Sea

    PubMed Central

    Orndorff, S. A.; Colwell, R. R.

    1980-01-01

    Vibrio fischeri and Lucibacterium harveyi constituted 75 of the 83 luminous bacteria isolated from Sargasso Sea surface waters. Photobacterium leiognathi and Photobacterium phosphoreum constituted the remainder of the isolates. Luminescent bacteria were recovered at concentrations of 1 to 63 cells per 100 ml from water samples collected at depths of 160 to 320 m. Two water samples collected at the thermocline yielded larger numbers of viable, aerobic heterotrophic and luminous bacteria. Luminescent bacteria were not recovered from surface microlayer samples. The species distribution of the luminous bacteria reflected previously recognized growth patterns; i.e., L. harveyi and V. fischeri were predominant in the upper, warm waters (only one isolate of P. phosphoreum was obtained from surface tropical waters). PMID:16345575

  10. Metabolic activity of uncultivated magnetotactic bacteria revealed by NanoSIMS

    NASA Astrophysics Data System (ADS)

    He, M.; Zhang, W.; Gu, L.; Pan, Y.; Lin, W.

    2017-12-01

    Microorganisms that exhibit magnetotaxis behavior, collectively known as the magnetotactic bacteria (MTB), are those whose motility is influenced by the Earth's magnetic field. MTB are a physiologically diverse group of bacteria with a unique feature of intracellular biomineralization of magnetosomes (Fe3O4 and/or Fe3S4) (Bazylinski et al., 2013). However, the ecophysiology of uncultivated MTB, especially those within the Nitrospirae phylum forming hundreds of bullet-shaped magnetite magnetosomes per cell, is still not well characterized (Lin et al., 2014). Nanoscale secondary ion mass spectrometry (NanoSIMS) is a powerful tool for revealing element distribution in nanometer-scale resolution, which opens exciting possibilities for the study of interactions between microorganisms and environments (Gao et al., 2016; Musat et al., 2016). Here we applied NanoSIMS to investigate the dynamics of carbon and nitrogen assimilations in two magnetotactic Nitrospirae populations at single cell level. Our NanoSIMS results confirmed the metabolic potential of Nitrospirae MTB proposed by genomic and metagenomic analysis and provided additional insights into the ecophysiology of uncultivated MTB. This study suggests that NanoSIMS-based analyses are powerful approaches for investigating and characterizing the ecological function of environmental microorganisms. References: Bazylinski D A., Lefèvre, C T., Schüler D., 2013. Magnetotactic Bacteria. 453-494.Lin W, Bazylinski DA, Xiao T, Wu L- F, Pan Y., 2014. Life with compass: diversity and biogeography of magnetotactic bacteria. Environ Microbiol, 16: 1462-2920.Gao D., Huang X., Tao Y., 2016. A critical review of NanoSIMS in analysis of microbial metabolic activities at single-cell level. Crit Rev Biotechnol, 36: 884-890.Musat N., Musat F., Weber PK., Pett-Ridge J., 2016. Tracking microbial interactions with NanoSIMS. Curr Opin Biotechnol, 41: 114-121.

  11. Nanomaterials-based biosensors for detection of microorganisms and microbial toxins.

    PubMed

    Sutarlie, Laura; Ow, Sian Yang; Su, Xiaodi

    2017-04-01

    Detection of microorganisms and microbial toxins is important for health and safety. Due to their unique physical and chemical properties, nanomaterials have been extensively used to develop biosensors for rapid detection of microorganisms with microbial cells and toxins as target analytes. In this paper, the design principles of nanomaterials-based biosensors for four selected analyte categories (bacteria cells, toxins, mycotoxins, and protozoa cells), closely associated with the target analytes' properties is reviewed. Five signal transducing methods that are less equipment intensive (colorimetric, fluorimetric, surface enhanced Raman scattering, electrochemical, and magnetic relaxometry methods) is described and compared for their sensory performance (in term oflimit of detection, dynamic range, and response time) for all analyte categories. In the end, the suitability of these five sensing principles for on-site or field applications is discussed. With a comprehensive coverage of nanomaterials, design principles, sensing principles, and assessment on the sensory performance and suitability for on-site application, this review offers valuable insight and perspective for designing suitable nanomaterials-based microorganism biosensors for a given application. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Characterization of Bacteria in Nigerian Yogurt as Promising Alternative to Antibiotics in Gastrointestinal Infections.

    PubMed

    Ayeni, Anthony Opeyemi; Ruppitsch, Werner; Ayeni, Funmilola Abidemi

    2018-03-14

    Gastrointestinal infections are endemic in Nigeria and several factors contribute to their continual survival, including bacterial resistance to commonly used antibiotics. Nigerian yogurts do not include probiotics, and limited information is available about the antimicrobial properties of the fermenters in the yogurt against gastrointestinal pathogens. Therefore, the antimicrobial potentials of bacteria in Nigeria-produced yogurts against intestinal pathogens were investigated in this study. Viable counts of lactic acid bacteria (LAB) in 15 brands of yogurt were enumerated and the bacteria identified by partial sequencing of 16S rRNA gene. Susceptibility of the gastrointestinal pathogens (Salmonella, Shigella and E. coli ) to antibiotics by disc diffusion method, to viable LAB by the agar overlay method, and to the cell-free culture supernatant (CFCS) of the LAB were investigated. Co-culture analysis of LAB and pathogens were also done. Viable counts of 1.5 × 10 11 cfu/ml were observed in some yogurt samples. Two genera were identified: Lactobacillus (70.7%) and Acetobacter (29.3%). The Lactobacillus species reduced multidrug-resistant gastrointestinal pathogens by 4 to 5 log while the zones of inhibition ranged between 11 and 23. The Lactobacillus and Acetobacter strains examined displayed good activities against the multidrug-resistant tested pathogens. This is the first report of antimicrobial activities of acetic acid bacteria isolated from yogurt in Nigeria.

  13. Removal of viable bioaerosol particles with a low-efficiency HVAC filter enhanced by continuous emission of unipolar air ions.

    PubMed

    Huang, R; Agranovski, I; Pyankov, O; Grinshpun, S

    2008-04-01

    Continuous emission of unipolar ions has been shown to improve the performance of respirators and stationary filters challenged with non-biological particles. In this study, we investigated the ion-induced enhancement effect while challenging a low-efficiency heating, ventilation and air-conditioning (HVAC) filter with viable bacterial cells, bacterial and fungal spores, and viruses. The aerosol concentration was measured in real time. Samples were also collected with a bioaerosol sampler for viable microbial analysis. The removal efficiency of the filter was determined, respectively, with and without an ion emitter. The ionization was found to significantly enhance the filter efficiency in removing viable biological particles from the airflow. For example, when challenged with viable bacteria, the filter efficiency increased as much as four- to fivefold. For viable fungal spores, the ion-induced enhancement improved the efficiency by a factor of approximately 2. When testing with virus-carrying liquid droplets, the original removal efficiency provided by the filter was rather low: 9.09 +/- 4.84%. While the ion emission increased collection about fourfold, the efficiency did not reach 75-100% observed with bacteria and fungi. These findings, together with our previously published results for non-biological particles, demonstrate the feasibility of a new approach for reducing aerosol particles in HVAC systems used for indoor air quality control. Recirculated air in HVAC systems used for indoor air quality control in buildings often contains considerable number of viable bioaerosol particles because of limited efficiency of the filters installed in these systems. In the present study, we investigated - using aerosolized bacterial cells, bacterial and fungal spores, and virus-carrying particles - a novel idea of enhancing the performance of a low-efficiency HVAC filter utilizing continuous emission of unipolar ions in the filter vicinity. The findings described in

  14. Antagonistic activity of isolated lactic acid bacteria from Pliek U against gram-negative bacteria Escherichia coli ATCC 25922

    NASA Astrophysics Data System (ADS)

    Kiti, A. A.; Jamilah, I.; Rusmarilin, H.

    2017-09-01

    Lactic acid bacteria (LAB) is one group of microbes that has many benefits, notably in food and health industries sector. LAB plays an important role in food fermentation and it has bacteriostatic effect against the growth of pathogenic microorganisms. The research related LAB continued to be done to increase the diversity of potential isolates derived from nature which is indigenous bacteria for biotechnological purposes. This study was aimed to isolate and characterize LAB derived from pliek u sample and to examine the potency to inhibits Escherichia coli ATCC 25922 bacteria growth. A total of 5 isolates were isolated and based on morphological and physiological characteristics of the fifth bacteria, they are allegedly belonging to the genus Bacillus. Result of antagonistic test showed that the five isolates could inhibits the growth of E. coli ATCC 25922. The highest inhibition zone is 8.5 mm was shown by isolates NQ2, while the lowest inhibition is 1.5 mm was shown by isolates NQ3.

  15. Surface characteristics of spacecraft components affect the aggregation of microorganisms and may lead to different survival rates of bacteria on Mars landers.

    PubMed

    Schuerger, Andrew C; Richards, Jeffrey T; Hintze, Paul E; Kern, Roger G

    2005-08-01

    Layers of dormant endospores of Bacillus subtilis HA101 were applied to eight different spacecraft materials and exposed to martian conditions of low pressure (8.5 mbar), low temperature (-10 degrees C), and high CO(2) gas composition and irradiated with a Mars-normal ultraviolet (UV-visible- near-infrared spectrum. Bacterial layers were exposed to either 1 min or 1 h of Mars-normal UV irradiation, which simulated clear-sky conditions on equatorial Mars (0.1 tau). When exposed to 1 min of Mars UV irradiation, the numbers of viable endospores of B. subtilis were reduced three to four orders of magnitude for two brands of aluminum (Al), stainless steel, chemfilm-treated Al, clear-anodized Al, and black-anodized Al coupons. In contrast, bacterial survival was reduced only one to two orders of magnitude for endospores on the non-metal materials astroquartz and graphite composite when bacterial endospores were exposed to 1 min of Mars UV irradiation. When bacterial monolayers were exposed to 1 h of Mars UV irradiation, no viable bacteria were recovered from the six metal coupons listed above. In contrast, bacterial survival was reduced only two to three orders of magnitude for spore layers on astroquartz and graphite composite exposed to 1 h of Mars UV irradiation. Scanning electron microscopy images of the bacterial monolayers on all eight spacecraft materials revealed that endospores of B. subtilis formed large aggregates of multilayered spores on astroquartz and graphite composite, but not on the other six spacecraft materials. It is likely that the formation of multilayered aggregates of endospores on astroquartz and graphite composite is responsible for the enhanced survival of bacterial cells on these materials.

  16. Surface characteristics of spacecraft components affect the aggregation of microorganisms and may lead to different survival rates of bacteria on Mars landers

    NASA Technical Reports Server (NTRS)

    Schuerger, Andrew C.; Richards, Jeffrey T.; Hintze, Paul E.; Kern, Roger G.

    2005-01-01

    Layers of dormant endospores of Bacillus subtilis HA101 were applied to eight different spacecraft materials and exposed to martian conditions of low pressure (8.5 mbar), low temperature (-10 degrees C), and high CO(2) gas composition and irradiated with a Mars-normal ultraviolet (UV-visible- near-infrared spectrum. Bacterial layers were exposed to either 1 min or 1 h of Mars-normal UV irradiation, which simulated clear-sky conditions on equatorial Mars (0.1 tau). When exposed to 1 min of Mars UV irradiation, the numbers of viable endospores of B. subtilis were reduced three to four orders of magnitude for two brands of aluminum (Al), stainless steel, chemfilm-treated Al, clear-anodized Al, and black-anodized Al coupons. In contrast, bacterial survival was reduced only one to two orders of magnitude for endospores on the non-metal materials astroquartz and graphite composite when bacterial endospores were exposed to 1 min of Mars UV irradiation. When bacterial monolayers were exposed to 1 h of Mars UV irradiation, no viable bacteria were recovered from the six metal coupons listed above. In contrast, bacterial survival was reduced only two to three orders of magnitude for spore layers on astroquartz and graphite composite exposed to 1 h of Mars UV irradiation. Scanning electron microscopy images of the bacterial monolayers on all eight spacecraft materials revealed that endospores of B. subtilis formed large aggregates of multilayered spores on astroquartz and graphite composite, but not on the other six spacecraft materials. It is likely that the formation of multilayered aggregates of endospores on astroquartz and graphite composite is responsible for the enhanced survival of bacterial cells on these materials.

  17. Microbial quality and molecular identification of cultivable microorganisms isolated from an urban drinking water distribution system (Limassol, Cyprus).

    PubMed

    Botsaris, George; Kanetis, Loukas; Slaný, Michal; Parpouna, Christiana; Makris, Konstantinos C

    2015-12-01

    Microorganisms can survive and multiply in aged urban drinking water distribution systems, leading to potential health risks. The objective of this work was to investigate the microbial quality of tap water and molecularly identify its predominant cultivable microorganisms. Tap water samples collected from 24 different households scattered in the urban area of Limassol, Cyprus, were microbiologically tested following standard protocols for coliforms, E. coli, Pseudomonas spp., Enterococcus spp., and total viable count at 22 and 37 °C. Molecular identification was performed on isolated predominant single colonies using 16SrRNA sequencing. Approximately 85% of the household water samples were contaminated with one or more microorganisms belonging to the genera of Pseudomonas, Corynebacterium, Agrobacterium, Staphylococcus, Bacillus, Delftia, Acinetobacter, Enterococcus, Enterobacter, and Aeromonas. However, all samples tested were free from E. coli. This is the first report in Cyprus molecularly confirming specific genera of relevant microbial communities in tap water.

  18. Prevalence of indicator and pathogenic bacteria in a tropical river of Western Ghats, India

    NASA Astrophysics Data System (ADS)

    Vincy, M. V.; Brilliant, R.; Pradeepkumar, A. P.

    2017-05-01

    The Meenachil, the only river that flows through the heart of the Kottayam district of Kerala state, India was selected for the study. The present study has been carried out with an objective to systematically examine the prevalence of indicator and pathogenic microorganisms and to compare the microbiological quality of the river water during the pre-monsoon and post-monsoon seasons. Water samples from 44 different sites during pre-monsoon and post-monsoon seasons were collected for the analysis. During the pre-monsoon period, the faecal coliform count ranged from 230 to 110,000 MPN/100 ml while there was a variation from 200 to 4600 MPN/100 ml during the post-monsoon period. When the faecal streptococci count was analysed, it ranged from 140 to 110,000 MPN/100 ml during the pre-monsoon and 70 to 4600 MPN/100 ml during the post-monsoon seasons, respectively. All the samples collected were found to have total viable count (TVC) higher than those prescribed by Bureau of Indian Standards (ISI 1991). Total viable counts were found in the range of 1.1 × 102 to 32 × 102 cfu/ml in the pre-monsoon and 1.0 × 102 to 26 × 102 cfu/ml in the post-monsoon. The presence of faecal indicator bacteria, Escherichia coli and potentially pathogenic bacteria, Vibrio cholerae, Vibrio parahaemolyticus and Salmonella enterica in the Meenachil River indicates that the bacteriological quality of the Meenachil River is poor. Moreover, it sheds light to the fact that raw sewage is being dumped into the Meenachil River. Urban runoffs and effluents of rubber factories appear to be the important sources of faecal contamination in the river. From this study, we conclude that these water bodies pose significant public health hazards. Adequate sanitary infrastructure will help in preventing source water contamination. Besides this, public health education aimed at improving personal, household and community hygiene is urgent.

  19. Co-electrospinning of bacteria and viruses

    NASA Astrophysics Data System (ADS)

    Salalha, Wael; Kuhn, Jonathan; Chervinsky, Shmuel; Zussman, Eyal

    2006-03-01

    Co-electrospinning provides a novel and highly versatile approach towards composite fibers with diameters ranging from a few hundred nm down to 30 nm with embedded elements. In the present work, co-electrospinning of poly(vinyl alcohol) (PVA) and viruses (T7, T4, λ) or bacteria (Escherichia coli, Staphylococcus albus) was carried out. These preparations should have applications for tissue engineering, gene therapy, phage therapy and biosensing. The average diameter of the co-spun nanofibers was about 300 nm. We found that the encapsulated viruses and bacteria manage to survive the electrospinning process, its pressure buildup in the core of the fiber and the electrostatic field in the co-electrospinning process. Approximately 10% of the Escherichia coli and 20% of Staphylococcus albus cells are viable after spinning. Approximately 5% of the bacterial viruses were also viable after the electrospinning. It should be noted that the encapsulated cells and viruses remain stable for two months without a further decrease in number. These results demonstrate the potential of the co-electrospinning process for the encapsulation and immobilization of bio-objects and the possibility of adapting them to technical applications (e.g., bio-chips).

  20. Identification normal external and internal bacteria and fungi in larvae and pupae Papilio polyetes

    NASA Astrophysics Data System (ADS)

    Sanjaya, Y.; Suhara; Nurjhani, M.

    2018-05-01

    Interaction between insects and microorganism has been occurring thousands years ago. The numerous ones are bacteria that live inside insect, but there are possibility also to finding other microorganisms like fungus. It can be becoming a good atmosphere. It is also indicating healthy of an insect. If there were existing foreign microbiota, it can be concluded that the insect was sick. The Methods of this research are examining bacteria external and internal with Nutrient Agar (NA) as Media under following the method of Caoili (2003) with investigating external, fore gut, mid gut and hind gut. The result showed that weather in larvae 5th of Papilio polyetes and its pupae on external examine. The appearance of bacteria gram + were more numerous than gram ‑ one. While in the fore gut, mid gut and fore gut were dominated by bacteria gram+, its correlated with the fact that its alkaline. Their presence influenced by habitat, morphology and feeding habits. The conclusion the simbiosism existence between P. polyetes with external and internal microfloral appear to assist from protection and metabolism process.

  1. Isolation of mesotrione-degrading bacteria from aquatic environments in Brazil

    USDA-ARS?s Scientific Manuscript database

    Mesotrione is a benzoylcyclohexane-1,3-dione herbicide that inhibits 4-hydroxyphenyl pyruvate dioxygenase (HPPD) in target plants. Although it has been used since 2000, only a limited number of degrading microorganisms have been reported. Mesotrione-degrading bacteria were selected among strains iso...

  2. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils.

    PubMed

    Rashid, Muhammad Imtiaz; Mujawar, Liyakat Hamid; Shahzad, Tanvir; Almeelbi, Talal; Ismail, Iqbal M I; Oves, Mohammad

    2016-02-01

    Intensive agricultural practices and cultivation of exhaustive crops has deteriorated soil fertility and its quality in agroecosystems. According to an estimate, such practices will convert 30% of the total world cultivated soil into degraded land by 2020. Soil structure and fertility loss are one of the main causes of soil degradation. They are also considered as a major threat to crop production and food security for future generations. Implementing safe and environmental friendly technology would be viable solution for achieving sustainable restoration of degraded soils. Bacterial and fungal inocula have a potential to reinstate the fertility of degraded land through various processes. These microorganisms increase the nutrient bioavailability through nitrogen fixation and mobilization of key nutrients (phosphorus, potassium and iron) to the crop plants while remediate soil structure by improving its aggregation and stability. Success rate of such inocula under field conditions depends on their antagonistic or synergistic interaction with indigenous microbes or their inoculation with organic fertilizers. Co-inoculation of bacteria and fungi with or without organic fertilizer are more beneficial for reinstating the soil fertility and organic matter content than single inoculum. Such factors are of great importance when considering bacteria and fungi inocula for restoration of degraded soils. The overview of presented mechanisms and interactions will help agriculturists in planning sustainable management strategy for reinstating the fertility of degraded soil and assist them in reducing the negative impact of artificial fertilizers on our environment. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Dispersal of micro-organisms in commercial defeathering systems.

    PubMed

    Allen, V M; Tinker, D B; Hinton, M H; Wathes, C M

    2003-03-01

    1. The extent of cross contamination between carcases and the dispersal of micro-organisms to the environs during defeathering was measured in a commercial processing plant. 2. Defeathering reduced the numbers of a marker organism, a nalidixic acid-resistant strain of Escherichia coli K12, on inoculated carcases but dispersed the organism on to preceding and following carcases. 3. The pattern of microbial dispersal during defeathering was similar for naturally occurring bacteria on the carcase, for example, total aerobic counts and counts of presumptive coliforms, suggesting that the marker organism mimics the natural situation realistically. 4. The majority of feathers, together with micro-organisms, were removed during the first 10 s of the defeathering process, which was completed in 45 s, indicating that control measures to minimise cross contamination would be most effective if applied in the early stages of the process. 5. The method of defeathering used by the machine influenced the pattern of microbial dispersal and the extent of cross contamination to other carcases on the same processing line.

  4. Symbiotic microorganisms in Puto superbus (Leonardi, 1907) (Insecta, Hemiptera, Coccomorpha: Putoidae).

    PubMed

    Szklarzewicz, Teresa; Kalandyk-Kołodziejczyk, Małgorzata; Michalik, Katarzyna; Jankowska, Władysława; Michalik, Anna

    2018-01-01

    The scale insect Puto superbus (Putoidae) lives in mutualistic symbiotic association with bacteria. Molecular phylogenetic analyses have revealed that symbionts of P. superbus belong to the gammaproteobacterial genus Sodalis. In the adult females, symbionts occur both in the bacteriocytes constituting compact bacteriomes and in individual bacteriocytes, which are dispersed among ovarioles. The bacteriocytes also house a few small, rod-shaped Wolbachia bacteria in addition to the numerous large, elongated Sodalis-allied bacteria. The symbiotic microorganisms are transovarially transmitted from generation to generation. In adult females which have choriogenic oocytes in the ovarioles, the bacteriocytes gather around the basal part of the tropharium. Next, the entire bacteriocytes pass through the follicular epithelium surrounding the neck region of the ovariole and enter the space between oocyte and follicular epithelium (perivitelline space). In the perivitelline space, the bacteriocytes assemble extracellularly in the deep depression of the oolemma at the anterior pole of the oocyte, forming a "symbiont ball".

  5. Abundance and Distribution of Enteric Bacteria and Viruses in Coastal and Estuarine Sediments—a Review

    PubMed Central

    Hassard, Francis; Gwyther, Ceri L.; Farkas, Kata; Andrews, Anthony; Jones, Vera; Cox, Brian; Brett, Howard; Jones, Davey L.; McDonald, James E.; Malham, Shelagh K.

    2016-01-01

    The long term survival of fecal indicator organisms (FIOs) and human pathogenic microorganisms in sediments is important from a water quality, human health and ecological perspective. Typically, both bacteria and viruses strongly associate with particulate matter present in freshwater, estuarine and marine environments. This association tends to be stronger in finer textured sediments and is strongly influenced by the type and quantity of clay minerals and organic matter present. Binding to particle surfaces promotes the persistence of bacteria in the environment by offering physical and chemical protection from biotic and abiotic stresses. How bacterial and viral viability and pathogenicity is influenced by surface attachment requires further study. Typically, long-term association with surfaces including sediments induces bacteria to enter a viable-but-non-culturable (VBNC) state. Inherent methodological challenges of quantifying VBNC bacteria may lead to the frequent under-reporting of their abundance in sediments. The implications of this in a quantitative risk assessment context remain unclear. Similarly, sediments can harbor significant amounts of enteric viruses, however, the factors regulating their persistence remains poorly understood. Quantification of viruses in sediment remains problematic due to our poor ability to recover intact viral particles from sediment surfaces (typically <10%), our inability to distinguish between infective and damaged (non-infective) viral particles, aggregation of viral particles, and inhibition during qPCR. This suggests that the true viral titre in sediments may be being vastly underestimated. In turn, this is limiting our ability to understand the fate and transport of viruses in sediments. Model systems (e.g., human cell culture) are also lacking for some key viruses, preventing our ability to evaluate the infectivity of viruses recovered from sediments (e.g., norovirus). The release of particle-bound bacteria and

  6. Infectious microorganisms in mice (Mus musculus) purchased from commercial pet shops in Germany.

    PubMed

    Dammann, P; Hilken, G; Hueber, B; Köhl, W; Bappert, M T; Mähler, M

    2011-10-01

    In this study, we investigated the prevalence of infectious microorganisms (viruses, bacteria, fungi and eukaryotic parasites) in mice from different pet shops in Germany; such animals may compromise the hygienic integrity of laboratory animal vivaria if private pet holders act as unintended vectors of infections carried by them. House mice sold as pets or feed specimens were purchased from different pet shops and tested for a comprehensive panel of unwanted microorganisms. We found a number of microorganisms in these pet shop mice, the most prevalent of which were Helicobacter species (92.9%), mouse parvovirus (89.3%), mouse hepatitis virus (82.7%), Pasteurella pneumotropica (71.4%) and Syphacia species (57.1%). Several microorganisms (e.g. mouse parvovirus, Theiler's murine encephalomyelitis virus, pneumonia virus of mice, Encephalitozoon cuniculi, Clostridium piliforme) had considerably higher prevalences than those reported in similar studies on wild mice from North America, Europe or Australia. Our study shows that direct contact with pet shop mice may constitute a risk for laboratory animal vivaria if hygienic precautions are not taken. However, even relatively simple precautions seem effective enough to hold the risk at bay.

  7. Calculation of the radiative properties of photosynthetic microorganisms

    NASA Astrophysics Data System (ADS)

    Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; Fournier, Richard

    2015-08-01

    photosynthetic bacteria, cyanobacteria and eukaryotic microalgae. The obtained results are in very good agreement with the experimental measurements when the shape of the microorganisms is well described (in comparison to the standard volume-equivalent sphere approximation). As a main perspective, the consideration of the helical shape of Arthrospira platensis appears to be a key to an accurate estimation of its radiative properties. On the whole, the presented methodological chain also appears of great interest for other scientific communities such as atmospheric science, oceanography, astrophysics and engineering.

  8. Electronic Nose Characterization of the Quality Parameters of Freeze-Dried Bacteria

    NASA Astrophysics Data System (ADS)

    Capuano, R.; Santonico, M.; Martinelli, E.; Paolesse, R.; Passot, S.; Fonseca, F.; Cenard, S.; Trelea, C.; Di Natale, C.

    2011-09-01

    Freeze-drying is the method of choice for preserving heat sensitive biological products such as microorganisms. The development of a fast analytical method for evaluating the properties of the dehydrated bacteria is then necessary for a proper utilization of the product in several food processes. In this paper, dried bacteria headspace is analyzed by a GC-MS and an electronic nose. Results indicate that headspace contains enough information to assess the products quality.

  9. RNA-Based Methods Increase the Detection of Fecal Bacteria and Fecal Identifiers in Environmental Waters

    EPA Science Inventory

    We evaluated the use of qPCR RNA-based methods in the detection of fecal bacteria in environmental waters. We showed that RNA methods can increase the detection of fecal bacteria in multiple water matrices. The data suggest that this is a viable alternative for the detection of a...

  10. Halophilic microorganisms in deteriorated historic buildings: insights into their characteristics.

    PubMed

    Adamiak, Justyna; Otlewska, Anna; Gutarowska, Beata; Pietrzak, Anna

    2016-01-01

    Historic buildings are constantly being exposed to numerous climatic changes such as damp and rainwater. Water migration into and out of the material's pores can lead to salt precipitation and the so-called efflorescence. The structure of the material may be seriously threatened by salt crystallization. A huge pressure is produced when salt hydrates occupy larger spaces, which leads at the end to cracking, detachment and material loss. Halophilic microorganisms have the ability to adapt to high salinity because of the mechanisms of inorganic salt (KCl or NaCl) accumulation in their cells at concentrations isotonic to the environment, or compatible solutes uptake or synthesis. In this study, we focused our attention on the determination of optimal growth conditions of halophilic microorganisms isolated from historical buildings in terms of salinity, pH and temperature ranges, as well as biochemical properties and antagonistic abilities. Halophilic microorganisms studied in this paper could be categorized as a halotolerant group, as they grow in the absence of NaCl, as well as tolerate higher salt concentrations (Staphylococcus succinus, Virgibacillus halodenitrificans). Halophilic microorganisms have been also observed (Halobacillus styriensis, H. hunanensis, H. naozhouensis, H. litoralis, Marinococcus halophilus and yeast Sterigmatomyces halophilus). With respect to their physiological characteristics, cultivation at a temperature of 25-30°C, pH 6-7, NaCl concentration for halotolerant and halophilic microorganisms, 0-10% and 15-30%, respectively, provides the most convenient conditions. Halophiles described in this study displayed lipolytic, glycolytic and proteolytic activities. Staphylococcus succinus and Marinococcus halophilus showed strong antagonistic potential towards bacteria from the Bacillus genus, while Halobacillus litoralis displayed an inhibiting ability against other halophiles.

  11. Efficacy of Specific Plant Products on Microorganisms Causing Dental Caries.

    PubMed

    Kanth, M Rajini; Prakash, A Ravi; Sreenath, G; Reddy, Vikram Simha; Huldah, S

    2016-12-01

    Dental caries and periodontal diseases are the most common oral diseases seen globally, both in developed and developing countries. Oral microorganisms that is gram positive and gram negative bacteria are known to be involved in causation of these diseases. Nowadays commercially available dentrifices and mouth rinses are known to contain ingredients that can alter the oral microbial flora and have undesirable side effects such as vomiting, diarrhoea, disarrangement of oral, intestinal flora and tooth staining. Naturally available plant products are known to be less harmful with fewer side effects and also economical for the patient. The aim of this study was to determine the antimicrobial properties of 10 naturally available plant products against oral microorganisms causing caries and to check the efficacy of these products in-vitro and to use these in mouth washes and dentrifices. Sample of caries material was scrapped out from the extracted teeth and transferred to liquid broth, streaked over the agar media to allow for the growth of microorganisms. Plant products like clove oil, neem, ginger-garlic paste, tea tree oil, ginger, garlic, cinnamon oil, green tea, eucalyptus oil and turmeric were used. Antimicrobial efficacy of these products, was estimated by measuring zones of inhibition in the nutrient agar media. Clove oil was the most effective of all products against microorganisms causing caries with zone of inhibition - 30mm followed by ginger-garlic paste - 25mm, Neem - 15mm, tea tree oil - 15mm. Based on the above results, it can be inferred that these natural products have the maximum efficacy against microorganisms and can be recommended in dentifrices, mouth rinses, topical gels, etc.

  12. Antibiotic-producing bacteria from stag beetle mycangia.

    PubMed

    Miyashita, Atsushi; Hirai, Yuuki; Sekimizu, Kazuhisa; Kaito, Chikara

    2015-02-01

    The search for new antibiotics or antifungal agents is crucial for the chemotherapies of infectious diseases. The limited resource of soil bacteria makes it difficult to discover such new drug candidate. We, therefore, focused on another bacterial resource than soil bacteria, the microbial flora of insect species. In the present study, we isolated 40 strains of bacteria and fungi from the mycangia of three species of stag beetle, Dorcus hopei binodulosus, Dorcus rectus, and Dorcus titanus pilifer. We identified those species with their ribosomal DNA sequences, and revealed that Klebsiella spp. are the most frequent symbiont in the stag beetle mycangia. We examined whether these microorganisms produce antibiotics against a Gram-negative bacterium, Escherichia coli, a Gram-positive bacterium, Staphylococcus aureus, or a fungus, Cryptococcus neoformans. Culture supernatants from 33, 29, or 18 strains showed antimicrobial activity against E. coli, S. aureus, or C. neoformans, respectively. These findings suggest that bacteria present in the mycangia of stag beetles are useful resources for screening novel antibiotics.

  13. Heme compounds as iron sources for nonpathogenic Rhizobium bacteria.

    PubMed Central

    Noya, F; Arias, A; Fabiano, E

    1997-01-01

    Many animal-pathogenic bacteria can use heme compounds as iron sources. Like these microorganisms, rhizobium strains interact with host organisms where heme compounds are available. Results presented in this paper indicate that the use of hemoglobin as an iron source is not restricted to animal-pathogenic microorganisms. We also demonstrate that heme, hemoglobin, and leghemoglobin can act as iron sources under iron-depleted conditions for Rhizobium meliloti 242. Analysis of iron acquisition mutant strains indicates that siderophore-, heme-, hemoglobin-, and leghemoglobin-mediated iron transport systems expressed by R. meliloti 242 share at least one component. PMID:9139934

  14. Methylotrophic bacteria in sustainable agriculture.

    PubMed

    Kumar, Manish; Tomar, Rajesh Singh; Lade, Harshad; Paul, Diby

    2016-07-01

    Excessive use of chemical fertilizers to increase production from available land has resulted in deterioration of soil quality. To prevent further soil deterioration, the use of methylotrophic bacteria that have the ability to colonize different habitats, including soil, sediment, water, and both epiphytes and endophytes as host plants, has been suggested for sustainable agriculture. Methylotrophic bacteria are known to play a significant role in the biogeochemical cycle in soil ecosystems, ultimately fortifying plants and sustaining agriculture. Methylotrophs also improve air quality by using volatile organic compounds such as dichloromethane, formaldehyde, methanol, and formic acid. Additionally, methylotrophs are involved in phosphorous, nitrogen, and carbon cycling and can help reduce global warming. In this review, different aspects of the interaction between methylotrophs and host plants are discussed, including the role of methylotrophs in phosphorus acquisition, nitrogen fixation, phytohormone production, iron chelation, and plant growth promotion, and co-inoculation of these bacteria as biofertilizers for viable agriculture practices.

  15. Algicidal microorganisms and secreted algicides: New tools to induce microalgal cell disruption.

    PubMed

    Demuez, Marie; González-Fernández, Cristina; Ballesteros, Mercedes

    2015-12-01

    Cell disruption is one of the most critical steps affecting the economy and yields of biotechnological processes for producing biofuels from microalgae. Enzymatic cell disruption has shown competitive results compared to mechanical or chemical methods. However, the addition of enzymes implies an associated cost in the overall production process. Recent studies have employed algicidal microorganisms to perform enzymatic cell disruption and degradation of microalgae biomass in order to reduce this associated cost. Algicidal microorganisms induce microalgae growth inhibition, death and subsequent lysis. Secreted algicidal molecules and enzymes produced by bacteria, cyanobacteria, viruses and the microalga themselves that are capable of inducing algal death are classified, and the known modes of action are described along with insights into cell-to-cell interaction and communication. This review aims to provide information regarding microalgae degradation by microorganisms and secreted algicidal substances that would be useful for microalgae cell breakdown in biofuels production processes. A better understanding of algae-to-algae communication and the specific mechanisms of algal cell lysis is expected to be an important breakthrough for the broader application of algicidal microorganisms in biological cell disruption and the production of biofuels from microalgae biomass. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Micro-Organ Device

    NASA Technical Reports Server (NTRS)

    Sun, Wei (Inventor); Chang, Robert C. (Inventor); Starly, Binil (Inventor); Holtorf, Heidi L. (Inventor); Leslie, Julia (Inventor); Culbertson, Christopher (Inventor); Gonda, Steve R. (Inventor)

    2013-01-01

    A method for fabricating a micro-organ device comprises providing a microscale support having one or more microfluidic channels and one or more micro-chambers for housing a micro-organ and printing a micro-organ on the microscale support using a cell suspension in a syringe controlled by a computer-aided tissue engineering system, wherein the cell suspension comprises cells suspended in a solution containing a material that functions as a three-dimensional scaffold. The printing is performed with the computer-aided tissue engineering system according to a particular pattern. The micro-organ device comprises at least one micro-chamber each housing a micro-organ; and at least one microfluidic channel connected to the micro-chamber, wherein the micro-organ comprises cells arranged in a configuration that includes microscale spacing between portions of the cells to facilitate diffusion exchange between the cells and a medium supplied from the at least one microfluidic channel.

  17. Micro-organ device

    NASA Technical Reports Server (NTRS)

    von Gustedt-Gonda, legal representative, Iris (Inventor); Holtorf, Heidi L. (Inventor); Gonda, Steve R. (Inventor); Leslie, Julia (Inventor); Chang, Robert C. (Inventor); Sun, Wei (Inventor); Starly, Binil (Inventor); Culbertson, Christopher (Inventor)

    2013-01-01

    A method for fabricating a micro-organ device comprises providing a microscale support having one or more microfluidic channels and one or more micro-chambers for housing a micro-organ and printing a micro-organ on the microscale support using a cell suspension in a syringe controlled by a computer-aided tissue engineering system, wherein the cell suspension comprises cells suspended in a solution containing a material that functions as a three-dimensional scaffold. The printing is performed with the computer-aided tissue engineering system according to a particular pattern. The micro-organ device comprises at least one micro-chamber each housing a micro-organ; and at least one microfluidic channel connected to the micro-chamber, wherein the micro-organ comprises cells arranged in a configuration that includes microscale spacing between portions of the cells to facilitate diffusion exchange between the cells and a medium supplied from the at least one microfluidic channel.

  18. Toxicity assessment of SiC nanofibers and nanorods against bacteria.

    PubMed

    Szala, Mateusz; Borkowski, Andrzej

    2014-02-01

    In the present study, evidence of the antibacterial effects of silicon carbide (SiC) nanofibers (NFSiC) and nanorods (NRSiC) obtained by combustion synthesis has been presented. It has been shown that the examined bacteria, Pseudomonas putida, could bind to the surface of the investigated SiC nanostructures. The results of respiration measurements, dehydrogenase activity measurements, and evaluation of viable bacteria after incubation with NFSiC and NRSiC demonstrated that the nanostructures of SiC affect the growth and activity of the bacteria examined. The direct count of bacteria stained with propidium iodide after incubation with SiC nanostructures revealed that the loss of cell membrane integrity could be one of the main effects leading to the death of the bacteria. © 2013 Published by Elsevier Inc.

  19. Vaginosis-associated bacteria and its association with HPV infection.

    PubMed

    Romero-Morelos, Pablo; Bandala, Cindy; Jiménez-Tenorio, Julián; Valdespino-Zavala, Mariana; Rodríguez-Esquivel, Miriam; Gama-Ríos, Reyna Anaid; Bandera, Artfy; Mendoza-Rodríguez, Mónica; Taniguchi, Keiko; Marrero-Rodríguez, Daniel; López-Romero, Ricardo; Ramón-Gallegos, Eva; Salcedo, Mauricio

    2018-03-12

    Cervical cancer is an important health problem in our country. It is known that there are several risk factors for this neoplasm, and it has been suggested that cervical microbiome alterations could play a role in the development and progress of cancer. Bacterial vaginosis associated bacteria such as Atopobium vaginae and Gardnerella vaginalis has been suggested as potential risk factor for cervical lesions and cervical cancer. DNA from 177 cervical scraping samples was studied: 104 belonged to women without cytological or colposcopic alterations and 73 samples from precursor lesions with previous human papillomavirus (HPV) infection history. All samples were screened for Atopobium vaginae, Gardnerella vaginalis and HPV by PCR. High HPV prevalence was found in precursor samples, and 30% of samples without lesions were positive for HPV. Virtually all samples contained sequences of both bacteria, and interestingly, there was not HPV association observed; these results could suggest that these microorganisms could be part of the cervical microbiome in Mexican population. The results obtained indicate that the bacteria analysed could be part of normal biome in Mexican women, suggesting a potential reconsideration of the pathogen role of these microorganisms. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  20. Functional Characterization of Bacteria Isolated from Ancient Arctic Soil Exposes Diverse Resistance Mechanisms to Modern Antibiotics

    PubMed Central

    Perron, Gabriel G.; Whyte, Lyle; Turnbaugh, Peter J.; Goordial, Jacqueline; Hanage, William P.; Dantas, Gautam; Desai, Michael M.

    2015-01-01

    Using functional metagenomics to study the resistomes of bacterial communities isolated from different layers of the Canadian high Arctic permafrost, we show that microbial communities harbored diverse resistance mechanisms at least 5,000 years ago. Among bacteria sampled from the ancient layers of a permafrost core, we isolated eight genes conferring clinical levels of resistance against aminoglycoside, β-lactam and tetracycline antibiotics that are naturally produced by microorganisms. Among these resistance genes, four also conferred resistance against amikacin, a modern semi-synthetic antibiotic that does not naturally occur in microorganisms. In bacteria sampled from the overlaying active layer, we isolated ten different genes conferring resistance to all six antibiotics tested in this study, including aminoglycoside, β-lactam and tetracycline variants that are naturally produced by microorganisms as well as semi-synthetic variants produced in the laboratory. On average, we found that resistance genes found in permafrost bacteria conferred lower levels of resistance against clinically relevant antibiotics than resistance genes sampled from the active layer. Our results demonstrate that antibiotic resistance genes were functionally diverse prior to the anthropogenic use of antibiotics, contributing to the evolution of natural reservoirs of resistance genes. PMID:25807523

  1. Rapid differentiation among bacteria that cause gastroenteritis by use of low-resolution Raman spectroscopy and PLS discriminant analysis.

    PubMed

    Mello, Cesar; Ribeiro, Diórginis; Novaes, Fábio; Poppi, Ronei J

    2005-10-01

    Use of classical microbiological methods to differentiate bacteria that cause gastroenteritis is cumbersome but usually very efficient. The high cost of reagents and the time required for such identifications, approximately four days, could have serious consequences, however, mainly when the patients are children, the elderly, or adults with low resistance. The search for new methods enabling rapid and reagentless differentiation of these microorganisms is, therefore, extremely relevant. In this work the main microorganisms responsible for gastroenteritis, Escherichia coli, Salmonella choleraesuis, and Shigella flexneri, were studied. For each microorganism sixty different dispersions were prepared in physiological solution. The Raman spectra of these dispersions were recorded using a diode laser operating in the near infrared region. Partial least-squares (PLS) discriminant analysis was used to differentiate among the bacteria by use of their respective Raman spectra. This approach enabled correct classification of 100% of the bacteria evaluated and unknown samples from the clinical environment, in less time ( approximately 10 h), by use of a low-cost, portable Raman spectrometer, which can be easily used in intensive care units and clinical environments.

  2. Microparticle based morphology engineering of filamentous microorganisms for industrial bio-production.

    PubMed

    Walisko, Robert; Krull, Rainer; Schrader, Jens; Wittmann, Christoph

    2012-11-01

    Filamentous microorganisms are important work horses in industrial biotechnology and supply enzymes, antibiotics, pharmaceuticals, bulk and fine chemicals. Here we highlight recent findings on the use of microparticles in the cultivation of filamentous bacteria and fungi, with the aim of enabling a more precise control of their morphology towards better production performance. First examples reveal a broad application range of microparticle based processes, since multiple filamentous organisms are controllable in their growth characteristics and respond by enhanced product formation.

  3. Reductive Dehalogenation of Brominated Phenolic Compounds by Microorganisms Associated with the Marine Sponge Aplysina aerophoba

    PubMed Central

    Ahn, Young-Beom; Rhee, Sung-Keun; Fennell, Donna E.; Kerkhof, Lee J.; Hentschel, Ute; Häggblom, Max M.

    2003-01-01

    Marine sponges are natural sources of brominated organic compounds, including bromoindoles, bromophenols, and bromopyrroles, that may comprise up to 12% of the sponge dry weight. Aplysina aerophoba sponges harbor large numbers of bacteria that can amount to 40% of the biomass of the animal. We postulated that there might be mechanisms for microbially mediated degradation of these halogenated chemicals within the sponges. The capability of anaerobic microorganisms associated with the marine sponge to transform haloaromatic compounds was tested under different electron-accepting conditions (i.e., denitrifying, sulfidogenic, and methanogenic). We observed dehalogenation activity of sponge-associated microorganisms with various haloaromatics. 2-Bromo-, 3-bromo-, 4-bromo-, 2,6-dibromo-, and 2,4,6-tribromophenol, and 3,5-dibromo-4-hydroxybenzoate were reductively debrominated under methanogenic and sulfidogenic conditions with no activity observed in the presence of nitrate. Monochlorinated phenols were not transformed over a period of 1 year. Debromination of 2,4,6-tribromophenol, and 2,6-dibromophenol to 2-bromophenol was more rapid than the debromination of the monobrominated phenols. Ampicillin and chloramphenicol inhibited activity, suggesting that dehalogenation was mediated by bacteria. Characterization of the debrominating methanogenic consortia by using terminal restriction fragment length polymorphism (TRFLP) and denaturing gradient gel electrophoresis analysis indicated that different 16S ribosomal DNA (rDNA) phylotypes were enriched on the different halogenated substrates. Sponge-associated microorganisms enriched on organobromine compounds had distinct 16S rDNA TRFLP patterns and were most closely related to the δ subgroup of the proteobacteria. The presence of homologous reductive dehalogenase gene motifs in the sponge-associated microorganisms suggested that reductive dehalogenation might be coupled to dehalorespiration. PMID:12839794

  4. Pathogen bacteria adhesion to skin mucus of fishes.

    PubMed

    Benhamed, Said; Guardiola, Francisco A; Mars, Mohammed; Esteban, María Ángeles

    2014-06-25

    Fish are always in intimate contact with their environment; therefore they are permanently exposed to very vary external hazards (e.g. aerobic and anaerobic bacteria, viruses, parasites, pollutants). To fight off pathogenic microorganisms, the epidermis and its secretion, the mucus acts as a barrier between the fish and the environment. Fish are surrounded by a continuous layer of mucus which is the first physical, chemical and biological barrier from infection and the first site of interaction between fish's skin cells and pathogens. The mucus composition is very complex and includes numerous antibacterial factors secreted by fish's skin cells, such as immunoglobulins, agglutinins, lectins, lysins and lysozymes. These factors have a very important role to discriminate between pathogenic and commensal microorganisms and to protect fish from invading pathogens. Furthermore, the skin mucus represents an important portal of entry of pathogens since it induces the development of biofilms, and represents a favorable microenvironment for bacteria, the main disease agents for fish. The purpose of this review is to summarize the current knowledge of the interaction between bacteria and fish skin mucus, the adhesion mechanisms of pathogens and the major factors influencing pathogen adhesion to mucus. The better knowledge of the interaction between fish and their environment could inspire other new perspectives to study as well as to exploit the mucus properties for different purposes. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. In vitro activity of Aloe vera inner gel against microorganisms grown in planktonic and sessile phases.

    PubMed

    Cataldi, V; Di Bartolomeo, S; Di Campli, E; Nostro, A; Cellini, L; Di Giulio, M

    2015-12-01

    The failure of traditional antimicrobial treatments is becoming a worldwide problem. The use of Aloe vera is of particular interest for its role as curative agent and its efficacy in complementary therapies for a variety of illnesses. This study evaluated the antimicrobial activity of A. vera inner gel against a panel of microorganisms, Gram-positive and -negative bacteria, and Candida albicans. In addition to A. vera inner gel being used in the treatment of peptic ulcers, in dermatological treatments, and wound healing, it was also tested on the sessile phase of clinical Helicobacter pylori strains (including multi-drug-resistant strains) and on planktonic and sessile phase of Staphylococcus aureus/Pseudomonas aeruginosa clinical isolates from venous leg ulcers.A. vera inner gel expresses its prevalent activity against Gram-negative bacteria and C. albicans in respect to Gram-positive bacteria. The results of the A. vera antibiofilm activity showed a decrease of the produced biomass in a concentration-dependent-way, in each analyzed microorganism. The data obtained show that A. vera inner gel has both an antimicrobial and antibiofilm activity suggesting its potential use for the treatment of microbial infections, in particular for H. pylori gastric infection, especially in case of multi-drug-resistance, as well as for an effective wound dressing. © The Author(s) 2015.

  6. The influence of super-high-frequency radiation on the enzyme activity and number of microorganisms in soils of southern Russia

    NASA Astrophysics Data System (ADS)

    Denisova, T. V.; Kolesnikov, S. I.

    2009-04-01

    The effects of super-high-frequency radiation (SHF radiation) on the microflora and enzymatic activity of an ordinary chernozem, a chestnut soil, a brown forest soil, and gray sands were studied. The exposure time of the 800-W SHF radiation was 30 s, 1, 10, and 60 min. The activity of the soil enzymes (catalase and invertase) was found to be more resistant to the action of SHF radiation than the number of microorganisms (ammonifying bacteria (including sporogenous ones), bacteria of the genus Azotobacter, and micromycetes). According to the resistance of the enzymes, the soils studied form the following sequence: gray sands > ordinary chernozem ≥ chestnut soil > brown forest soil. Under the action of the SHF radiation, the number of microorganisms in the ordinary chernozem decreased to a lesser extent.

  7. Synergistic mixtures for control of slime-forming bacteria and other delete rious micro-organisms and processes using same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tant, C.O.; Turner, N.E.; Bennett, E.O.

    1969-09-30

    Microbiocide compositions are described having a synergistic biocide effect on microorganisms, such as slime- forming bateria and other microorganisms considered to be deleterious or troublesome in water and especially in waterflooding operations, such as are used in the secondary recovery of petroleum oil in subterranean formations. The synergistic compositions consist of paired or multiple combinations of at least one of each of (1) compounds having furan, dihydrofuran or tetrahydrofuran nuclei, and (2) compounds having phenol nuclei or chloroanilines. (17 claims)

  8. Presence of Pathogenic Bacteria and Viruses in the Daycare Environment.

    PubMed

    Ibfelt, Tobias; Engelund, Eva Hoy; Permin, Anders; Madsen, Jonas Stenløkke; Schultz, Anna Charlotte; Andersen, Leif Percival

    2015-10-01

    The number of children in daycare centers (DCCs) is rising. This increases exposure to microorganisms and infectious diseases. Little is known about which bacteria and viruses are present in the DCC environment and where they are located. In the study described in this article, the authors set out to determine the prevalence of pathogenic bacteria and viruses and to find the most contaminated fomites in DCCs. Fifteen locations in each DCC were sampled for bacteria, respiratory viruses, and gastrointestinal viruses. The locations were in the toilet, kitchen, and playroom areas and included nursery pillows, toys, and tables, among other things. Coliform bacteria were primarily found in the toilet and kitchen areas whereas nasopharyngeal bacteria were found mostly on toys and fabric surfaces in the playroom. Respiratory viruses were omnipresent in the DCC environment, especially on the toys.

  9. Inhalable Microorganisms in Beijing’s PM2.5 and PM10 Pollutants during a Severe Smog Event

    PubMed Central

    2014-01-01

    Particulate matter (PM) air pollution poses a formidable public health threat to the city of Beijing. Among the various hazards of PM pollutants, microorganisms in PM2.5 and PM10 are thought to be responsible for various allergies and for the spread of respiratory diseases. While the physical and chemical properties of PM pollutants have been extensively studied, much less is known about the inhalable microorganisms. Most existing data on airborne microbial communities using 16S or 18S rRNA gene sequencing to categorize bacteria or fungi into the family or genus levels do not provide information on their allergenic and pathogenic potentials. Here we employed metagenomic methods to analyze the microbial composition of Beijing’s PM pollutants during a severe January smog event. We show that with sufficient sequencing depth, airborne microbes including bacteria, archaea, fungi, and dsDNA viruses can be identified at the species level. Our results suggested that the majority of the inhalable microorganisms were soil-associated and nonpathogenic to human. Nevertheless, the sequences of several respiratory microbial allergens and pathogens were identified and their relative abundance appeared to have increased with increased concentrations of PM pollution. Our findings may serve as an important reference for environmental scientists, health workers, and city planners. PMID:24456276

  10. Diagnostic Evasion of Highly-Resistant Microorganisms: A Critical Factor in Nosocomial Outbreaks.

    PubMed

    Zhou, Xuewei; Friedrich, Alexander W; Bathoorn, Erik

    2017-01-01

    Highly resistant microorganisms (HRMOs) may evade screening strategies used in routine diagnostics. Bacteria that have evolved to evade diagnostic tests may have a selective advantage in the nosocomial environment. Evasion of resistance detection can result from the following mechanisms: low-level expression of resistance genes not resulting in detectable resistance, slow growing variants, mimicry of wild-type-resistance, and resistance mechanisms that are only detected if induced by antibiotic pressure. We reviewed reports on hospital outbreaks in the Netherlands over the past 5 years. Remarkably, many outbreaks including major nation-wide outbreaks were caused by microorganisms able to evade resistance detection by diagnostic screening tests. We describe various examples of diagnostic evasion by several HRMOs and discuss this in a broad and international perspective. The epidemiology of hospital-associated bacteria may strongly be affected by diagnostic screening strategies. This may result in an increasing reservoir of resistance genes in hospital populations that is unnoticed. The resistance elements may horizontally transfer to hosts with systems for high-level expression, resulting in a clinically significant resistance problem. We advise to communicate the identification of HRMOs that evade diagnostics within national and regional networks. Such signaling networks may prevent inter-hospital outbreaks, and allow collaborative development of adapted diagnostic tests.

  11. Necromass as a source of energy to microorganisms in marine sediments.

    NASA Astrophysics Data System (ADS)

    Bradley, J.; Amend, J.; LaRowe, D.

    2017-12-01

    Marine sediments constitute one of the largest, most energy-limited biospheres on Earth. Despite increasing exploration and interest characterizing microbial communities in marine sediments, the production and role of microbial dead-matter (necromass) has largely been overlooked. Necromass is produced on a global scale, yet its significance as a power source to heterotrophic microorganisms remains unknown. We developed a physical, bio-energetic and geochemical model to quantify the total power supply from necromass oxidation and the total power demand of living microorganisms in marine sediments. This model is first applied to sediments from the oligotrophic South Pacific Gyre (SPG), where organic carbon and biomass concentrations are extremely low, yet microorganisms persist for millions of years in some of the lowest energy states on Earth. We show that necromass does not supply sufficient power to support the total demands of the living community (<39%) at SPG. Application of our model on a global scale, however, shows that necromass produced and subsequently oxidized can provide sufficient power to satisfy the maintenance demands of microorganisms in marine sediments for up to 60,000 years following burial. Our model assumes that all counted cells are viable. Yet, if only a fraction of counted cells are alive, the role of necromass as an electron donor in fueling microbial metabolisms is even greater. This new insight requires a reassessment of carbon fluxes in the deep biosphere. By extension, we also demonstrate a mechanism for microbial communities to persist by oxidizing necromass over geological timescales, and thereby endure unfavorable, low-energy settings that might be analogous to conditions on early Earth and on other planetary bodies.

  12. The presence of biofilm forming microorganisms on hydrotherapy equipment and facilities.

    PubMed

    Jarząb, Natalia; Walczak, Maciej

    2017-10-01

    Hydrotherapy equipment provides a perfect environment for the formation and growth of microbial biofilms. Biofilms may reduce the microbiological cleanliness of hydrotherapy equipment and harbour opportunistic pathogens and pathogenic bacteria. The aims of this study were to investigate the ability of microorganisms that colonize hydrotherapy equipment to form biofilms, and to assess the influence of temperature and nutrients on the rate of biofilm formation. Surface swab samples were collected from the whirlpool baths, inhalation equipment and submerged surfaces of a brine pool at the spa center in Ciechocinek, Poland. We isolated and identified microorganisms from the swab samples and measured their ability to form biofilms. Biofilm formation was observed at a range of temperatures, in both nutrient-deficient and nutrient-rich environments. We isolated and identified microorganisms which are known to form biofilms on medical devices (e.g. Stenotrophomonas maltophilia). All isolates were classified as opportunistic pathogens, which can cause infections in humans with weakened immunity systems. All isolates showed the ability to form biofilms in the laboratory conditions. The potential for biofilm formation was higher in the presence of added nutrients. In addition, the hydrolytic activity of the biofilm was connected with the presence of nutrients.

  13. [Can microorganisms survive upon high-temperature heating during the interplanetary transfer by meteorites?].

    PubMed

    Pavlov, A K; Shelegedin, V N; Kogan, V T; Pavlov, A A; Vdovina, M A; Tret'iakov, A V

    2007-01-01

    One of the most important aspects of the problem of life transfer in the cosmic space is the resistance of microorganisms to high-temperature heating during the launch and entry into the atmosphere. The high-temperature limits of the survival of microorganisms were studied under conditions modeling the laungh from the Mars and the landing on the Earth. Two strain of E. coli K12 exposed to short heating pulse were studied in order to tind out if they could resist high temperature while being in the desiccated state. The procedure was performed in vacuum. It was found that a fraction of bacteria survive heating pulses up to 250 degrees C in vacuum, while similar heating at normal atmospheric pressure leads to the total sterilization of samples.

  14. Biofouling of contaminated ground-water recovery wells: Characterization of microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, S.W.; Lange, C.R.; Lesold, E.A.

    1997-11-01

    The taxonomy and physiology of microorganisms isolated from contaminated ground-water recovery wells prone to biofouling are characterized for an industrial site in Rochester, New York. Principal aquifer contaminants include acetone, cyclohexane, dichloroethane, dichloromethane, 1,4-dioxane, isopropanol, methanol, and toluene. These contaminants represent a significant fraction (up to 95%) of the total organic carbon in the ground water. Ground-water samples from 12 recovery wells were used to isolate, quantify, and identify aerobic and anaerobic bacterial populations. Samples from selected wells were also characterized geochemically to assess redox conditions and availability of essential and trace nutrients. Dominant bacteria, listed in order of descendingmore » numbers, including sulfate-reducers (Desulfovibrio desulfuricans), anaerobic heterotrophs (Actinomyces, Bacteriodes, Bacillus, Agrobacterium), aerobic heterotrophs (Pseudomonas, Flavobacterium, Nocardia, Citrobacter), iron-oxidizers (Gallionella ferruginea, Crenothrix polyspora), iron-reducers (Shewanella), and sulfur-oxidizers (Thiobacillus ferrooxidans). Fungi were also recovered in low numbers. Both aerobic and anaerobic heterotrophs were able to utilize all principal contaminants as sole carbon and energy sources except 1,4-dioxane. The prevalence of heterotrophic bacteria and their ability to use the available anthropogenic carbon suggests that aerobic and anaerobic heterotrophs contribute to the biofouling of wells at this site, in addition to the often cited fouling due to iron-oxidizing bacteria and sulfate-reducing bacteria.« less

  15. The solubilization of low-ranked coals by microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strandberg, G.W.

    1987-07-09

    Late in 1984, our Laboratory was funded by the Pittsburgh Energy Technology Center, US Department of Energy, to investigate the potential utility of microorganisms for the solubilization of low-ranked coals. Our approach has been multifacited, including studies of the types of microorganisms involved, appropriate conditions for their growth and coal-solubilization, the suceptibility of different coals to microbial action, the chemical and physical nature of the product, and potential bioprocess designs. A substantial number of fungal species have been shown to be able to solubilize coal. Cohen and Gabrielle reported that two lignin-degrading fungi, Polyporous (Trametes) versicolor and Poria monticola couldmore » solubilize lignite. Ward has isolated several diverse fungi from nature which are capable of degrading different lignites, and our Laboratory has isolated three coal-solubilizing fungi which were found growing on a sample of Texas lignite. The organisms we studied are shown in Table 1. The perceived significance of lignin degradation led us to examine two lignin-degrading strains of the genus Streptomyces. As discussed later, these bacteria were capable of solubilizing coal; but, in the case of at least one, the mechanism was non-enzymatic. The coal-solubilizing ability of other strains of Streptomyces was recently reported. Fakoussa and Trueper found evidence that a strain of Pseudomonas was capble of solubizing coal. It would thus appear that a diverse array of microorganisms possess the ability to solubilize coal. 16 refs.« less

  16. Isolation and Characterization of Bacteria from Ancient Siberian Permafrost Sediment

    PubMed Central

    Zhang, De-Chao; Brouchkov, Anatoli; Griva, Gennady; Schinner, Franz; Margesin, Rosa

    2013-01-01

    In this study, we isolated and characterized bacterial strains from ancient (Neogene) permafrost sediment that was permanently frozen for 3.5 million years. The sampling site was located at Mammoth Mountain in the Aldan river valley in Central Yakutia in Eastern Siberia. Analysis of phospolipid fatty acids (PLFA) demonstrated the dominance of bacteria over fungi; the analysis of fatty acids specific for Gram-positive and Gram-negative bacteria revealed an approximately twofold higher amount of Gram-negative bacteria compared to Gram-positive bacteria. Direct microbial counts after natural permafrost enrichment showed the presence of (4.7 ± 1.5) × 108 cells g−1 sediment dry mass. Viable heterotrophic bacteria were found at 0 °C, 10 °C and 25 °C, but not at 37 °C. Spore-forming bacteria were not detected. Numbers of viable fungi were low and were only detected at 0 °C and 10 °C. Selected culturable bacterial isolates were identified as representatives of Arthrobacter phenanthrenivorans, Subtercola frigoramans and Glaciimonas immobilis. Representatives of each of these species were characterized with regard to their growth temperature range, their ability to grow on different media, to produce enzymes, to grow in the presence of NaCl, antibiotics, and heavy metals, and to degrade hydrocarbons. All strains could grow at −5 °C; the upper temperature limit for growth in liquid culture was 25 °C or 30 °C. Sensitivity to rich media, antibiotics, heavy metals, and salt increased when temperature decreased (20 °C > 10 °C > 1 °C). In spite of the ligninolytic activity of some strains, no biodegradation activity was detected. PMID:24832653

  17. Effect of toxicity of Ag nanoparticles on SERS spectral variance of bacteria

    NASA Astrophysics Data System (ADS)

    Cui, Li; Chen, Shaode; Zhang, Kaisong

    2015-02-01

    Ag nanoparticles (NPs) have been extensively utilized in surface-enhanced Raman scattering (SERS) spectroscopy for bacterial identification. However, Ag NPs are toxic to bacteria. Whether such toxicity can affect SERS features of bacteria and interfere with bacterial identification is still unknown and needed to explore. Here, by carrying out a comparative study on non-toxic Au NPs with that on toxic Ag NPs, we investigated the influence of nanoparticle concentration and incubation time on bacterial SERS spectral variance, both of which were demonstrated to be closely related to the toxicity of Ag NPs. Sensitive spectral alterations were observed on Ag NPs with increase of NPs concentration or incubation time, accompanied with an obvious decrease in number of viable bacteria. In contrast, SERS spectra and viable bacterial number on Au NPs were rather constant under the same conditions. A further analysis on spectral changes demonstrated that it was cell response (i.e. metabolic activity or death) to the toxicity of Ag NPs causing spectral variance. However, biochemical responses to the toxicity of Ag were very different in different bacteria, indicating the complex toxic mechanism of Ag NPs. Ag NPs are toxic to a great variety of organisms, including bacteria, fungi, algae, protozoa etc., therefore, this work will be helpful in guiding the future application of SERS technique in various complex biological systems.

  18. Effects of wastewater disinfection on waterborne bacteria and viruses

    USGS Publications Warehouse

    Blatchley, E. R.; Gong, W.-L.; Alleman, J.E.; Rose, J.B.; Huffman, D.E.; Otaki, M.; Lisle, J.T.

    2007-01-01

    Wastewater disinfection is practiced with the goal of reducing risks of human exposure to pathogenic microorganisms. In most circumstances, the efficacy of a wastewater disinfection process is regulated and monitored based on measurements of the responses of indicator bacteria. However, inactivation of indicator bacteria does not guarantee an acceptable degree of inactivation among other waterborne microorganisms (e.g., microbial pathogens). Undisinfected effluent samples from several municipal wastewater treatment facilities were collected for analysis. Facilities were selected to provide a broad spectrum of effluent quality, particularly as related to nitrogenous compounds. Samples were subjected to bench-scale chlorination and dechlorination and UV irradiation under conditions that allowed compliance with relevant discharge regulations and such that disinfectant exposures could be accurately quantified. Disinfected samples were subjected to a battery of assays to assess the immediate and long-term effects of wastewater disinfection on waterborne bacteria and viruses. In general, (viable) bacterial populations showed an immediate decline as a result of disinfectant exposure; however, incubation of disinfected samples under conditions that were designed to mimic the conditions in a receiving stream resulted in substantial recovery of the total bacterial community. The bacterial groups that are commonly used as indicators do not provide an accurate representation of the response of the bacterial community to disinfectant exposure and subsequent recovery in the environment. UV irradiation and chlorination/dechlorination both accomplished measurable inactivation of indigenous phage; however, the extent of inactivation was fairly modest under the conditions of disinfection used in this study. UV irradiation was consistently more effective as a virucide than chlorination/dechlorination under the conditions of application, based on measurements of virus (phage

  19. Microorganisms of the Upper Atmosphere

    PubMed Central

    Fulton, John D.; Mitchell, Roland B.

    1966-01-01

    The viable micropopulation found, at altitude over a city, in a land air mass was significantly higher than that found in a marine-influenced air mass. The percentage distribution of bacteria and fungi was approximately equal in both types of air masses. This indicates that, under the conditions of the experiment, the marine air mass was influenced by the land area over which it traveled during passage from its source to the sampling area. Activities taking place within the city significantly increased the micropopulation at altitude. This increase was quantitatively so small that it was not identifiable when the micropopulation moving into the city was high—as in a land air mass—but was recognizable when the micropopulation was low—as in a marine-influenced air mass. The modification of the micropopulation at altitude by temperature inversions was shown. PMID:5959858

  20. Halotolerant bacteria in the São Paulo Zoo composting process and their hydrolases and bioproducts

    PubMed Central

    Oliveira, Lilian C.G.; Ramos, Patricia Locosque; Marem, Alyne; Kondo, Marcia Y.; Rocha, Rafael C.S.; Bertolini, Thiago; Silveira, Marghuel A.V.; da Cruz, João Batista; de Vasconcellos, Suzan Pantaroto; Juliano, Luiz; Okamoto, Debora N.

    2015-01-01

    Halophilic microorganisms are able to grow in the presence of salt and are also excellent source of enzymes and biotechnological products, such as exopolysaccharides (EPSs) and polyhydroxyalkanoates (PHAs). Salt-tolerant bacteria were screened in the Organic Composting Production Unit (OCPU) of São Paulo Zoological Park Foundation, which processes 4 ton/day of organic residues including plant matter from the Atlantic Rain Forest, animal manure and carcasses and mud from water treatment. Among the screened microorganisms, eight halotolerant bacteria grew at NaCl concentrations up to 4 M. These cultures were classified based on phylogenetic characteristics and comparative partial 16S rRNA gene sequence analysis as belonging to the genera Staphylococcus, Bacillus and Brevibacterium. The results of this study describe the ability of these halotolerant bacteria to produce some classes of hydrolases, namely, lipases, proteases, amylases and cellulases, and biopolymers. The strain characterized as of Brevibacterium avium presented cellulase and amylase activities up to 4 M NaCl and also produced EPSs and PHAs. These results indicate the biotechnological potential of certain microorganisms recovered from the composting process, including halotolerant species, which have the ability to produce enzymes and biopolymers, offering new perspectives for environmental and industrial applications. PMID:26273248

  1. Identifying possible non-thermal effects of radio frequency energy on inactivating food microorganisms.

    PubMed

    Kou, Xiaoxi; Li, Rui; Hou, Lixia; Zhang, Lihui; Wang, Shaojin

    2018-03-23

    Radio frequency (RF) heating has been successfully used for inactivating microorganisms in agricultural and food products. Athermal (non-thermal) effects of RF energy on microorganisms have been frequently proposed in the literature, resulting in difficulties for developing effective thermal treatment protocols. The purpose of this study was to identify if the athermal inactivation of microorganisms existed during RF treatments. Escherichia coli and Staphylococcus aureus in apple juice and mashed potato were exposed to both RF and conventional thermal energies to compare their inactivation populations. A thermal death time (TDT) heating block system was used as conventional thermal energy source to simulate the same heating treatment conditions, involving heating temperature, heating rate and uniformity, of a RF treatment at a frequency of 27.12 MHz. Results showed that a similar and uniform temperature distribution in tested samples was achieved in both heating systems, so that the central sample temperature could be used as representative one for evaluating thermal inactivation of microorganisms. The survival patterns of two target microorganisms in two food samples were similar both for RF and heating block treatments since their absolute difference of survival populations was <1 log CFU/ml. The statistical analysis indicated no significant difference (P > 0.05) in inactivating bacteria between the RF and the heating block treatments at each set of temperatures. The solid temperature and microbial inactivation data demonstrated that only thermal effect of RF energy at 27.12 MHz was observed on inactivating microorganisms in foods. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Extensive characterizations of bacteria isolated from catheterized urine and stone matrices in patients with nephrolithiasis.

    PubMed

    Tavichakorntrakool, Ratree; Prasongwattana, Vitoon; Sungkeeree, Seksit; Saisud, Phitsamai; Sribenjalux, Pipat; Pimratana, Chaowat; Bovornpadungkitti, Sombat; Sriboonlue, Pote; Thongboonkerd, Visith

    2012-11-01

    Urinary tract infections are generally known to be associated with nephrolithiasis, particularly struvite stone, in which the most common microbe found is urea-splitting bacterium, i.e. Proteus mirabilis. However, our observation indicated that it might not be the case of stone formers in Thailand. We therefore extensively characterized microorganisms associated with all types of kidney stones. A total of 100 kidney stone formers (59 males and 41 females) admitted for elective percutaneous nephrolithotomy were recruited and microorganisms isolated from catheterized urine and cortex and nidus of their stones were analyzed. From 100 stone formers recruited, 36 cases had a total of 45 bacterial isolates cultivated from their catheterized urine and/or stone matrices. Among these 36 cases, chemical analysis by Fourier-transformed infrared spectroscopy revealed that 8 had the previously classified 'infection-induced stones', whereas the other 28 cases had the previously classified 'metabolic stones'. Calcium oxalate (in either pure or mixed form) was the most common and found in 64 and 75% of the stone formers with and without bacterial isolates, respectively. Escherichia coli was the most common bacterium (approximately one-third of all bacterial isolates) found in urine and stone matrices (both nidus and periphery). Linear regression analysis showed significant correlation (r = 0.860, P < 0.001) between bacterial types in urine and stone matrices. Multidrug resistance was frequently found in these isolated bacteria. Moreover, urea test revealed that only 31% were urea-splitting bacteria, whereas the majority (69%) had negative urea test. Our data indicate that microorganisms are associated with almost all chemical types of kidney stones and urea-splitting bacteria are not the major causative microorganisms found in urine and stone matrices of the stone formers in Thailand. These data may lead to rethinking and a new roadmap for future research regarding the role of

  3. Biomagnetic Recovery and Bioaccumulation of Selenium Granules in Magnetotactic Bacteria.

    PubMed

    Tanaka, Masayoshi; Knowles, William; Brown, Rosemary; Hondow, Nicole; Arakaki, Atsushi; Baldwin, Stephen; Staniland, Sarah; Matsunaga, Tadashi

    2016-07-01

    Using microorganisms to remove waste and/or neutralize pollutants from contaminated water is attracting much attention due to the environmentally friendly nature of this methodology. However, cell recovery remains a bottleneck and a considerable challenge for the development of this process. Magnetotactic bacteria are a unique group of organisms that can be manipulated by an external magnetic field due to the presence of biogenic magnetite crystals formed within their cells. In this study, we demonstrated an account of accumulation and precipitation of amorphous elemental selenium nanoparticles within magnetotactic bacteria alongside and independent of magnetite crystal biomineralization when grown in a medium containing selenium oxyanion (SeO3 (2-)). Quantitative analysis shows that magnetotactic bacteria accumulate the largest amount of target molecules (Se) per cell compared with any other previously reported nonferrous metal/metalloid. For example, 2.4 and 174 times more Se is accumulated than Te taken up into cells and Cd(2+) adsorbed onto the cell surface, respectively. Crucially, the bacteria with high levels of Se accumulation were successfully recovered with an external magnetic field. The biomagnetic recovery and the effective accumulation of target elements demonstrate the potential for application in bioremediation of polluted water. The development of a technique for effective environmental water remediation is urgently required across the globe. A biological remediation process of waste removal and/or neutralization of pollutant from contaminated water using microorganisms has great potential, but cell recovery remains a bottleneck. Magnetotactic bacteria synthesize magnetic particles within their cells, which can be recovered by a magnetic field. Herein, we report an example of accumulation and precipitation of amorphous elemental selenium nanoparticles within magnetotactic bacteria independent of magnetic particle synthesis. The cells were able to

  4. Minerals and Microorganisms in Evaporite Environments

    NASA Astrophysics Data System (ADS)

    Morris, P. A.; Brigmon, R. L.

    2010-12-01

    Traditional analysis of evaporite environments have either focused on the geology or the halophilic organisms. It is relatively rare that the two have been combined and even rarer that both disciplines have been incorporated in comparing evaporite sites. The variation in evaporite environments does influence microbial ecology and fossilization processes as each site varies in pH, temperature, presence or absence springs, and spring chemistry. Understanding the evaporite environments is important for planetary scientists as they serve as analogs for evaluating extraterrestrial materials, including the potential for water and ultimately life. For example Mars lander, rover and orbital missions have identified the evaporite signatures of gypsum, carbonates and chlorides, all indicating that water existed at sometime in the planets geological history. Terrestrial evaporite sites all possess halophilic tolerant life. In some instances such as the Dead Sea, Israel, it is restricted to microbial life, but in other sites there are higher life forms. The microbes associated with these evaporite sites can produce biofilms as a method to develop their own microenvironments. Microorganisms can be observed colonizing specific ecological niches or gradients can be created by these environments. These gradients occur due the localized drying and weathering patterns that create different soil chemistry. The microorganisms in turn colonize specific areas more suitable to their specific metabolic needs. For example, under anaerobic conditions with sulfur and methane prevalent methanogenic and/or sulfur reducing microbial species may be observed. However, under similar chemistry environments with the exception of aerobic conditions sulfur oxidizer and/or methanotrophic microorganism may occur. Because of their conspicuous colored pigments purple sulfur bacteria are frequently observed in anoxic zones of lakes, sulfur springs, and stratified evaporite crusts. Some of these bacteria

  5. Isolation and Characterization of Bacteria Capable of Tolerating the Extreme Conditions of Clean Room Environments▿

    PubMed Central

    La Duc, Myron T.; Dekas, Anne; Osman, Shariff; Moissl, Christine; Newcombe, David; Venkateswaran, Kasthuri

    2007-01-01

    In assessing the bacterial populations present in spacecraft assembly, spacecraft test, and launch preparation facilities, extremophilic bacteria (requiring severe conditions for growth) and extremotolerant bacteria (tolerant to extreme conditions) were isolated. Several cultivation approaches were employed to select for and identify bacteria that not only survive the nutrient-limiting conditions of clean room environments but can also withstand even more inhospitable environmental stresses. Due to their proximity to spacefaring objects, these bacteria pose a considerable risk for forward contamination of extraterrestrial sites. Samples collected from four geographically distinct National Aeronautics and Space Administration clean rooms were challenged with UV-C irradiation, 5% hydrogen peroxide, heat shock, pH extremes (pH 3.0 and 11.0), temperature extremes (4°C to 65°C), and hypersalinity (25% NaCl) prior to and/or during cultivation as a means of selecting for extremotolerant bacteria. Culture-independent approaches were employed to measure viable microbial (ATP-based) and total bacterial (quantitative PCR-based) burdens. Intracellular ATP concentrations suggested a viable microbial presence ranging from below detection limits to 106 cells/m2. However, only 0.1 to 55% of these viable cells were able to grow on defined culture medium. Isolated members of the Bacillaceae family were more physiologically diverse than those reported in previous studies, including thermophiles (Geobacillus), obligate anaerobes (Paenibacillus), and halotolerant, alkalophilic species (Oceanobacillus and Exiguobacterium). Non-spore-forming microbes (α- and β-proteobacteria and actinobacteria) exhibiting tolerance to the selected stresses were also encountered. The multiassay cultivation approach employed herein enhances the current understanding of the physiological diversity of bacteria housed in these clean rooms and leads us to ponder the origin and means of translocation of

  6. Isolation and characterization of bacteria capable of tolerating the extreme conditions of clean room environments.

    PubMed

    La Duc, Myron T; Dekas, Anne; Osman, Shariff; Moissl, Christine; Newcombe, David; Venkateswaran, Kasthuri

    2007-04-01

    In assessing the bacterial populations present in spacecraft assembly, spacecraft test, and launch preparation facilities, extremophilic bacteria (requiring severe conditions for growth) and extremotolerant bacteria (tolerant to extreme conditions) were isolated. Several cultivation approaches were employed to select for and identify bacteria that not only survive the nutrient-limiting conditions of clean room environments but can also withstand even more inhospitable environmental stresses. Due to their proximity to spacefaring objects, these bacteria pose a considerable risk for forward contamination of extraterrestrial sites. Samples collected from four geographically distinct National Aeronautics and Space Administration clean rooms were challenged with UV-C irradiation, 5% hydrogen peroxide, heat shock, pH extremes (pH 3.0 and 11.0), temperature extremes (4 degrees C to 65 degrees C), and hypersalinity (25% NaCl) prior to and/or during cultivation as a means of selecting for extremotolerant bacteria. Culture-independent approaches were employed to measure viable microbial (ATP-based) and total bacterial (quantitative PCR-based) burdens. Intracellular ATP concentrations suggested a viable microbial presence ranging from below detection limits to 10(6) cells/m(2). However, only 0.1 to 55% of these viable cells were able to grow on defined culture medium. Isolated members of the Bacillaceae family were more physiologically diverse than those reported in previous studies, including thermophiles (Geobacillus), obligate anaerobes (Paenibacillus), and halotolerant, alkalophilic species (Oceanobacillus and Exiguobacterium). Non-spore-forming microbes (alpha- and beta-proteobacteria and actinobacteria) exhibiting tolerance to the selected stresses were also encountered. The multiassay cultivation approach employed herein enhances the current understanding of the physiological diversity of bacteria housed in these clean rooms and leads us to ponder the origin and means

  7. Inhibition of biofouling by marine microorganisms and their metabolites.

    PubMed

    Dobretsov, Sergey; Dahms, Hans-Uwe; Qian, Peri-Yuan

    2006-01-01

    Development of microbial biofilms and the recruitment of propagules on the surfaces of man-made structures in the marine environment cause serious problems for the navies and for marine industries around the world. Current antifouling technology is based on the application of toxic substances that can be harmful to the natural environment. For this reason and the global ban of tributyl tin (TBT), there is a need for the development of "environmentally-friendly" antifoulants. Marine microbes are promising potential sources of non-toxic or less-toxic antifouling compounds as they can produce substances that inhibit not only the attachment and/or growth of microorganisms but also the settlement of invertebrate larvae and macroalgal spores. However, so far only few antilarval settlement compounds have been isolated and identified from bacteria. In this review knowledge about antifouling compounds produced by marine bacteria and diatoms are summarised and evaluated and future research directions are highlighted.

  8. Viability PCR, a Culture-Independent Method for Rapid and Selective Quantification of Viable Legionella pneumophila Cells in Environmental Water Samples▿

    PubMed Central

    Delgado-Viscogliosi, Pilar; Solignac, Lydie; Delattre, Jean-Marie

    2009-01-01

    PCR-based methods have been developed to rapidly screen for Legionella pneumophila in water as an alternative to time-consuming culture techniques. However, these methods fail to discriminate between live and dead bacteria. Here, we report a viability assay (viability PCR [v-PCR]) for L. pneumophila that combines ethidium monoazide bromide with quantitative real-time PCR (qPCR). The ability of v-PCR to differentiate viable from nonviable L. pneumophila cells was confirmed with permeabilizing agents, toluene, or isopropanol. v-PCR suppressed more than 99.9% of the L. pneumophila PCR signal in nonviable cultures and was able to discriminate viable cells in mixed samples. A wide range of physiological states, from culturable to dead cells, was observed with 64 domestic hot-water samples after simultaneous quantification of L. pneumophila cells by v-PCR, conventional qPCR, and culture methods. v-PCR counts were equal to or higher than those obtained by culture and lower than or equal to conventional qPCR counts. v-PCR was used to successfully monitor in vitro the disinfection efficacy of heating to 70°C and glutaraldehyde and chlorine curative treatments. The v-PCR method appears to be a promising and rapid technique for enumerating L. pneumophila bacteria in water and, in comparison with conventional qPCR techniques used to monitor Legionella, has the advantage of selectively amplifying only viable cells. PMID:19363080

  9. The effect of protein-coated contact lenses on the adhesion and viability of gram negative bacteria.

    PubMed

    Williams, Timothy J; Schneider, Rene P; Willcox, Mark D P

    2003-10-01

    Gram negative bacterial adhesion to contact lenses can cause adverse responses. During contact lens wear, components of the tear film adsorb to the contact lens. This study aimed to investigate the effect of this conditioning film on the viability of bacteria. Bacteria adhered to contact lenses which were either unworn, worn for daily-, extended- or overnight-wear or coated with lactoferrin or lysozyme. Numbers of viable and total cells were estimated. The number of viable attached cells was found to be significantly lower than the total number of cells on worn (50% for strain Paer1 on daily-wear lenses) or lactoferrin-coated lenses (56% for strain Paer1). Lysozyme-coated lenses no statistically significant effect on adhesion. The conditioning film gained through wear may not inhibit bacterial adhesion, but may act adversely upon those bacteria that succeed in attaching.

  10. Cyclic Dinucleotides in Oral Bacteria and in Oral Biofilms.

    PubMed

    Gürsoy, Ulvi K; Gürsoy, Mervi; Könönen, Eija; Sintim, Herman O

    2017-01-01

    Oral cavity acts as a reservoir of bacterial pathogens for systemic infections and several oral microorganisms have been linked to systemic diseases. Quorum sensing and cyclic dinucleotides, two "decision-making" signaling systems, communicate to regulate physiological process in bacteria. Discovery of cyclic dinucleotides has a long history, but the progress in our understanding of how cyclic dinucleotides regulate bacterial lifestyle is relatively new. Oral microorganisms form some of the most intricate biofilms, yet c-di-GMP, and c-di-AMP signaling have been rarely studied in oral biofilms. Recent studies demonstrated that, with the aid of bacterial messenger molecules and their analogs, it is possible to activate host innate and adaptive immune responses and epithelial integrity with a dose that is relevant to inhibit bacterial virulence mechanisms, such as fimbriae and exopolysaccharide production, biofilm formation, and host cell invasion. The aim of this perspective article is to present available information on cyclic dinucleotides in oral bacteria and in oral biofilms. Moreover, technologies that can be used to detect cyclic dinucleotides in oral biofilms are described. Finally, directions for future research are highlighted.

  11. N-acyl-homoserine lactones-producing bacteria protect plants against plant and human pathogens.

    PubMed

    Hernández-Reyes, Casandra; Schenk, Sebastian T; Neumann, Christina; Kogel, Karl-Heinz; Schikora, Adam

    2014-11-01

    The implementation of beneficial microorganisms for plant protection has a long history. Many rhizobia bacteria are able to influence the immune system of host plants by inducing resistance towards pathogenic microorganisms. In this report, we present a translational approach in which we demonstrate the resistance-inducing effect of Ensifer meliloti (Sinorhizobium meliloti) on crop plants that have a significant impact on the worldwide economy and on human nutrition. Ensifer meliloti is usually associated with root nodulation in legumes and nitrogen fixation. Here, we suggest that the ability of S. meliloti to induce resistance depends on the production of the quorum-sensing molecule, oxo-C14-HSL. The capacity to enhanced resistance provides a possibility to the use these beneficial bacteria in agriculture. Using the Arabidopsis-Salmonella model, we also demonstrate that the application of N-acyl-homoserine lactones-producing bacteria could be a successful strategy to prevent plant-originated infections with human pathogens. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  12. Endophytic microorganisms--promising applications in bioremediation of greenhouse gases.

    PubMed

    Stępniewska, Z; Kuźniar, A

    2013-11-01

    Bioremediation is a technique that uses microbial metabolism to remove pollutants. Various techniques and strategies of bioremediation (e.g., phytoremediation enhanced by endophytic microorganisms, rhizoremediation) can mainly be used to remove hazardous waste from the biosphere. During the last decade, this specific technique has emerged as a potential cleanup tool only for metal pollutants. This situation has changed recently as a possibility has appeared for bioremediation of other pollutants, for instance, volatile organic compounds, crude oils, and radionuclides. The mechanisms of bioremediation depend on the mobility, solubility, degradability, and bioavailability of contaminants. Biodegradation of pollutions is associated with microbial growth and metabolism, i.e., factors that have an impact on the process. Moreover, these factors have a great influence on degradation. As a result, recognition of natural microbial processes is indispensable for understanding the mechanisms of effective bioremediation. In this review, we have emphasized the occurrence of endophytic microorganisms and colonization of plants by endophytes. In addition, the role of enhanced bioremediation by endophytic bacteria and especially of phytoremediation is presented.

  13. Apparatus and method for the desulfurization of petroleum by bacteria

    DOEpatents

    Lizama, Hector M.; Scott, Timothy C.; Scott, Charles D.

    1995-01-01

    A method for treating petroleum with anaerobic microorganisms acting as biocatalysts that can remove sulfur atoms from hydrocarbon molecules, under anaerobic conditions, and then convert the sulfur atoms to hydrogen sulfide. The microorganisms utilized are from the family known as the "Sulfate Reducing Bacteria." These bacteria generate metabolic energy from the oxidation of organic compounds, but use oxidized forms of sulfur as an electron acceptor. Because the biocatalyst is present in the form of bacteria in an aqueous suspension, whereas the reacting substrate consists of hydrocarbon molecules in an organic phase, the actual desulfurization reaction takes place at the aqueous-organic interphase. To ensure adequate interfacial contacting and mass transfer, a biphasic electrostatic bioreactor system is utilized. The bioreactor is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the sulfur. High-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the sulfur to produce hydrogen sulfide which is then removed from the bioreactor. The organic liquid, now free of the sulfur, is ready for immediate use or further processing.

  14. Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes?

    PubMed

    Celli, Jean; Tsolis, Renée M

    2015-02-01

    The unfolded protein response (UPR) is a cytoprotective response that is aimed at restoring cellular homeostasis following physiological stress exerted on the endoplasmic reticulum (ER), which also invokes innate immune signalling in response to invading microorganisms. Although it has been known for some time that the UPR is modulated by various viruses, recent evidence indicates that it also has multiple roles during bacterial infections. In this Review, we describe how bacteria interact with the ER, including how bacteria induce the UPR, how subversion of the UPR promotes bacterial proliferation and how the UPR contributes to innate immune responses against invading bacteria.

  15. Quantifying viable Vibrio parahaemolyticus and Listeria monocytogenes simultaneously in raw shrimp.

    PubMed

    Zhang, Zhaohuan; Liu, Haiquan; Lou, Yang; Xiao, Lili; Liao, Chao; Malakar, Pradeep K; Pan, Yingjie; Zhao, Yong

    2015-08-01

    A novel TaqMan-based multiplex real-time PCR method combined with propidium monoazide (PMA) treatment was firstly developed for the simultaneous quantification of viable Vibrio parahaemolyticus and Listeria monocytogenes in raw shrimp. The optimization of PMA concentration showed that 100 μM was considered optimal to effectively inhibit 10(8) CFU/mL dead cells of both bacteria. The high specificity of this method was confirmed on tests using 96 target and non-target strains. The optimized assay could detect as low as 10(1)-10(2) CFU/g of each strain on the artificially contaminated shrimp, and its amplification efficiencies were up to 100 and 106 % for V. parahaemolyticus and L. monocytogenes, respectively. Furthermore, this assay has been successfully applied to describe the behavior of these two pathogens in raw shrimps stored at 4 °C. In conclusion, this PMA TaqMan-based multiplex real-time PCR technique, where the whole procedure takes less than 5 h, provides an effective and rapid tool for monitoring contamination of viable V. parahaemolyticus and L. monocytogenes in seafood, improving seafood safety and protecting public health.

  16. The Conceptual Mechanism for Viable Organizational Learning Based on Complex System Theory and the Viable System Model

    ERIC Educational Resources Information Center

    Sung, Dia; You, Yeongmahn; Song, Ji Hoon

    2008-01-01

    The purpose of this research is to explore the possibility of viable learning organizations based on identifying viable organizational learning mechanisms. Two theoretical foundations, complex system theory and viable system theory, have been integrated to provide the rationale for building the sustainable organizational learning mechanism. The…

  17. The occurrence of fungi, yeasts and bacteria in the air of a Spanish winery during vintage.

    PubMed

    Garijo, Patrocinio; Santamaría, Pilar; López, Rosa; Sanz, Susana; Olarte, Carmen; Gutiérrez, Ana Rosa

    2008-07-15

    This research studies the presence of microorganisms of enological interest (yeasts, bacteria and molds) and their evolution in the air of a wine cellar. The samples were taken throughout the winemaking campaign (September-December) in a winery of the D.O.Ca. Rioja, Spain. They were collected using an airIDEAL atmosphere sampler from Biomerieux. For the isolation, specific selective media were used for each group of microorganisms. The results obtained indicate that the presence in the winery air of the various different microorganisms studied is directly related to the winemaking processes that are taking place in the winery. Thus, the number of molds present decreases once grapes have ceased to be brought into the winery. The maximum number of yeasts in the air is found when all the vats in the cellar are fermenting, while the lactic bacteria are not detected until the first malolactic fermentation begins. The species of yeasts and molds identified are also related to the winemaking processes. The coincidence of strains of Saccharomyces cerevisiae among those present in the vats during alcoholic fermentation and those isolated from the air, confirms the role of the latter as a transmitter of microorganisms.

  18. Bacteria in atmospheric waters: Detection, characteristics and implications

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Niu, Hongya; Murata, Kotaro; Wu, Zhijun; Hu, Min; Kojima, Tomoko; Zhang, Daizhou

    2018-04-01

    In this review paper, we synthesize the current knowledges about bacteria in atmospheric waters, e.g., cloud, fog, rain, and snow, most of which were obtained very recently. First, we briefly describe the importance of bacteria in atmospheric waters, i.e., the essentiality of studying bacteria in atmospheric waters in understanding aerosol-cloud-precipitation-climate interactions in the Earth system. Next, approaches to collect atmospheric water samples for the detection of bacteria and methods to identify the bacteria are summarized and compared. Then the available data on the abundance, viability and community composition of bacteria in atmospheric waters are summarized. The average bacterial concentration in cloud water was usually on the order 104-105 cells mL-1, while that in precipitation on the order 103-104 cells mL-1. Most of the bacteria were viable or metabolically active. Their community composition was highly diverse and differed at various sites. Factors potentially influencing the bacteria, e.g., air pollution levels and sources, meteorological conditions, seasonal effect, and physicochemical properties of atmospheric waters, are described. After that, the implications of bacteria present in atmospheric waters, including their effect on nucleation in clouds, atmospheric chemistry, ecosystems and public health, are briefly discussed. Finally, based on the current knowledges on bacteria in atmospheric waters, which in fact remains largely unknown, we give perspectives that should be paid attention to in future studies.

  19. Expulsion of swimming bacteria by a circular flow

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Aronson, Igor

    Macroscopic shear flow alters swimming trajectories in a highly nontrivial way and results in dramatic reduction of viscosity and heterogeneous bacterial distributions. We report on experimental and theoretical studies of rapid expulsion of microswimmers, such as motile bacteria, by a circular flow created by a rotating microparticle. We observed a formation of a macroscopic depletion area in a high-shear region, in the vicinity of a microparticle. The rapid migration of bacteria from the shear-rich area is caused by a circular structure of the flow rather than intrinsic random fluctuations of bacteria orientations, in stark contrast to planar shear flow. Our mathematical model revealed that expulsion is a combined effect of motility and alignment by a vortical flow. Our findings offer a novel approach for manipulation of motile microorganisms and shed new light on bacteria-flow interactions. Was supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science And Engineering, under Contract No. DE AC02-06CH11357.

  20. [Occurrence of bacteria in the mouth from genera of Micrococcus, Kocuria, Nesterenkonia, Kytococcus and Dermacoccus].

    PubMed

    Szczerba, Izabela; Krzemiński, Zbigniew

    2002-01-01

    The aim of the study was to assess the prevalence of different bacteria in the oral cavity. The bacteria were present in the oral cavities of 73 (48.7%) of 150 individuals. Nesterenkonia halobia, the most frequently isolated species, was found in 20 (27%) individuals, Micrococcus luteus in 16 (22%), Kocuria kristinae in 12 (16%), Kocuria varians in 10 (14%), Dermacoccus sedentarius in 9 (12%), Micrococcus lylae in 8 (11%), and Kytococcus nishinomiyaensis in 3 (4%). Mean counts of these microorganisms were relatively low and amounted in log10 CFU/ml saliva for M. luteus 1.87 +/- 0.52, for M. lylae 2.03 +/- 0.39, for N. halobia 2.14 +/- 0.56, for K. kristinae 2.20 +/- 0.69, for K. varians 2.19 +/- 0.67, for K. nishinomiyaensis 1.72 +/- 0.39, and for D. sedentarius 2.27 +/- 0.55. The factor limiting the population sizes of these microorganisms was most probably the antagonistic activity of the bacteria living in oral cavity.

  1. Diversity and function of the Antarctic krill microorganisms from Euphausia superba

    NASA Astrophysics Data System (ADS)

    Cui, Xiaoqiu; Zhu, Guoliang; Liu, Haishan; Jiang, Guoliang; Wang, Yi; Zhu, Weiming

    2016-11-01

    The diversity and ecological function of microorganisms associated with Euphausia superba, still remain unknown. This study identified 75 microbial isolates from E. superba, that is 42 fungi and 33 bacteria including eight actinobacteria. And all the isolates showed NaF tolerance in conformity with the nature of the fluoride krill. The maximum concentration was 10%, 3% and 0.5% NaF for actinobacteria, bacteria and fungi, respectively. The results demonstrated that 82.4% bacteria, 81.3% actinobacteria and 12.3% fungi produced antibacterial metabolites against pathogenic bacteria without NaF; the MIC value reached to 3.9 μg/mL. In addition, more than 60% fungi produced cytotoxic metabolites against A549, MCF-7 or K562 cell lines. The presence of NaF led to a reduction in the producing antimicrobial compounds, but stimulated the production of cytotoxic compounds. Furthermore, seven cytotoxic compounds were identified from the metabolites of Penicillium citrinum OUCMDZ4136 under 0.5% NaF, with the IC50 values of 3.6-13.1 μM for MCF-7, 2.2-19.8 μM for A549 and 5.4-15.4 μM for K562, respectively. These results indicated that the krill microbes exert their chemical defense by producing cytotoxic compounds to the mammalians and antibacterial compounds to inhibiting the pathogenic bacteria.

  2. Laser thermal ablation of multidrug-resistant bacteria using functionalized gold nanoparticles

    PubMed Central

    Mocan, Lucian; Tabaran, Flaviu A; Mocan, Teodora; Pop, Teodora; Mosteanu, Ofelia; Agoston-Coldea, Lucia; Matea, Cristian T; Gonciar, Diana; Zdrehus, Claudiu; Iancu, Cornel

    2017-01-01

    The issue of multidrug resistance (MDR) has become an increasing threat to public health. One alternative strategy against MDR bacteria would be to construct therapeutic vectors capable of physically damaging these microorganisms. Gold nanoparticles hold great promise for the development of such therapeutic agents, since the nanoparticles exhibit impressive properties, of which the most important is the ability to convert light into heat. This property has scientific significance since is exploited to develop nano-photothermal vectors to destroy bacteria at a molecular level. The present paper summarizes the latest advancements in the field of nanotargeted laser hyperthermia of MDR bacteria mediated by gold nanoparticles. PMID:28356741

  3. Methylamine as a nitrogen source for microorganisms from a coastal marine environment.

    PubMed

    Taubert, Martin; Grob, Carolina; Howat, Alexandra M; Burns, Oliver J; Pratscher, Jennifer; Jehmlich, Nico; von Bergen, Martin; Richnow, Hans H; Chen, Yin; Murrell, J Colin

    2017-06-01

    Nitrogen is a key limiting resource for biomass production in the marine environment. Methylated amines, released from the degradation of osmolytes, could provide a nitrogen source for marine microbes. Thus far, studies in aquatic habitats on the utilization of methylamine, the simplest methylated amine, have mainly focussed on the fate of the carbon from this compound. Various groups of methylotrophs, microorganisms that can grow on one-carbon compounds, use methylamine as a carbon source. Non-methylotrophic microorganisms may also utilize methylamine as a nitrogen source, but little is known about their diversity, especially in the marine environment. In this proof-of-concept study, stable isotope probing (SIP) was used to identify microorganisms from a coastal environment that assimilate nitrogen from methylamine. SIP experiments using 15 N methylamine combined with metagenomics and metaproteomics facilitated identification of active methylamine-utilizing Alpha- and Gammaproteobacteria. The draft genomes of two methylamine utilizers were obtained and their metabolism with respect to methylamine was examined. Both bacteria identified in these SIP experiments used the γ-glutamyl-methylamide pathway, found in both methylotrophs and non-methylotrophs, to metabolize methylamine. The utilization of 15 N methylamine also led to the release of 15 N ammonium that was used as nitrogen source by other microorganisms not directly using methylamine. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Viable bacterial population and persistence of foodborne pathogens on the pear carpoplane.

    PubMed

    Duvenage, Francois J; Duvenage, Stacey; Du Plessis, Erika M; Volschenk, Quinton; Korsten, Lise

    2017-03-01

    Knowledge on the culturable bacteria and foodborne pathogen presence on pears is important for understanding the impact of postharvest practices on food safety assurance. Pear fruit bacteria were investigated from the point of harvest, following chlorine drenching and after controlled atmosphere (CA) storage to assess the impact on natural bacterial populations and potential foodborne pathogens. Salmonella spp. and Listeria monocytogenes were detected on freshly harvested fruit in season one. During season one, chemical drenching and CA storage did not have a significant effect on the bacterial load of orchard pears, except for two farms where the populations were lower 'after CA storage'. During season two, bacterial populations of orchard pears from three of the four farms increased significantly following drenching; however, the bacterial load decreased 'after CA storage'. Bacteria isolated following enumeration included Enterobacteriaceae, Microbacteriaceae, Pseudomonadaceae and Bacillaceae, with richness decreasing 'after drench' and 'after CA storage'. Salmonella spp. and L. monocytogenes were not detected after postharvest practices. Postharvest practices resulted in decreased bacterial species richness. Understanding how postharvest practices have an impact on the viable bacterial populations of pear fruit will contribute to the development of crop-specific management systems for food safety assurance. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. The evolution of glutathione metabolism in phototrophic microorganisms

    NASA Technical Reports Server (NTRS)

    Fahey, Robert C.; Buschbacher, Ralph M.; Newton, Gerald L.

    1988-01-01

    The low molecular weight thiol composition of a variety of phototropic microorganisms is examined in order to ascertain how evolution of glutathione (GSH) production is related to the evolution of oxygenic photosynthesis. Cells were extracted in the presence of monobromobimane (mBBr) to convert thiols (RSH) to fluorescent derivatives (RSmB) which were analyzed by high performance liquid chromatography (HPLC). Significant levels of GSH were not found in green sulfur bacteria. Substantial levels were present in purple bacteria, cyanobacteria, and eukaryotic algae. Other thiols measured included cysteine, gamma-glutamylcysteine, thiosulfate, coenzyme A, and sulfide. Many of the organisms also exhibited a marked ability to reduce mBBr to syn-(methyl,methyl)bimane, an ability which was quenched by treatment with 2-pyridyl disulfide or 5,5 prime-bisdithio - (2-nitrobenzoic acid) prior to reaction with mBBr. These observations indicate the presence of a reducing system capable of electron transfer to mBBr and reduction of reactive disulfides. The distribution of GSH in phototropic eubacteria indicates that GSH synthesis evolved at or around the time that oxygenic photosynthesis evolved.

  6. Recent developments in detection and enumeration of waterborne bacteria: a retrospective minireview.

    PubMed

    Deshmukh, Rehan A; Joshi, Kopal; Bhand, Sunil; Roy, Utpal

    2016-12-01

    Waterborne diseases have emerged as global health problems and their rapid and sensitive detection in environmental water samples is of great importance. Bacterial identification and enumeration in water samples is significant as it helps to maintain safe drinking water for public consumption. Culture-based methods are laborious, time-consuming, and yield false-positive results, whereas viable but nonculturable (VBNCs) microorganisms cannot be recovered. Hence, numerous methods have been developed for rapid detection and quantification of waterborne pathogenic bacteria in water. These rapid methods can be classified into nucleic acid-based, immunology-based, and biosensor-based detection methods. This review summarizes the principle and current state of rapid methods for the monitoring and detection of waterborne bacterial pathogens. Rapid methods outlined are polymerase chain reaction (PCR), digital droplet PCR, real-time PCR, multiplex PCR, DNA microarray, Next-generation sequencing (pyrosequencing, Illumina technology and genomics), and fluorescence in situ hybridization that are categorized as nucleic acid-based methods. Enzyme-linked immunosorbent assay (ELISA) and immunofluorescence are classified into immunology-based methods. Optical, electrochemical, and mass-based biosensors are grouped into biosensor-based methods. Overall, these methods are sensitive, specific, time-effective, and important in prevention and diagnosis of waterborne bacterial diseases. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  7. The impact of permafrost-associated microorganisms on hydrate formation kinetics

    NASA Astrophysics Data System (ADS)

    Luzi-Helbing, Manja; Liebner, Susanne; Spangenberg, Erik; Wagner, Dirk; Schicks, Judith M.

    2016-04-01

    The relationship between gas hydrates, microorganisms and the surrounding sediment is extremely complex: On the one hand, microorganisms producing methane provide the prerequisite for gas hydrate formation. As it is known most of the gas incorporated into natural gas hydrates originates from biogenic sources. On the other hand, as a result of microbial activity gas hydrates are surrounded by a great variety of organic compounds which are not incorporated into the hydrate structure but may influence the formation or degradation process. For gas hydrate samples from marine environments such as the Gulf of Mexico a direct association between microbes and gas hydrates was shown by Lanoil et al. 2001. It is further assumed that microorganisms living within the gas hydrate stability zone produce biosurfactants which were found to enhance the hydrate formation process significantly and act as nucleation centres (Roger et al. 2007). Another source of organic compounds is sediment organic matter (SOM) originating from plant material or animal remains which may also enhance hydrate growth. So far, the studies regarding this relationship were focused on a marine environment. The scope of this work is to extend the investigations to microbes originating from permafrost areas. To understand the influence of microbial activity in a permafrost environment on the methane hydrate formation process and the stability conditions of the resulting hydrate phase we will perform laboratory studies. Thereby, we mimic gas hydrate formation in the presence and absence of methanogenic archaea (e.g. Methanosarcina soligelidi) and other psychrophilic bacteria isolated from permafrost environments of the Arctic and Antarctic to investigate their impact on hydrate induction time and formation rates. Our results may contribute to understand and predict the occurrences and behaviour of potential gas hydrates within or adjacent to the permafrost. Lanoil BD, Sassen R, La Duc MT, Sweet ST, Nealson KH

  8. Sterilization of Microorganisms by Ozone and Ultrasound

    NASA Astrophysics Data System (ADS)

    Krasnyj, V. V.; Klosovskij, A. V.; Panasko, T. A.; Shvets, O. M.; Semenova, O. T.; Taran, V. S.; Tereshin, V. I.

    2008-03-01

    The results of recent experimental methods of sterilization of microorganisms with the use of ozone and ultrasound are presented. The main aim was to optimize the process of sterilization in water solution taking into account the ozone concentration, the power of ultrasonic emitter and the temperature of water. In the present work, the ultrasonic cavitation with simultaneous ozone generation has been used. The high ozone concentration in water solution was achieved by two-barrier glow discharge generated at atmospheric pressure and a cooling thermo-electric module. Such a sterilizer consists of ozone generator in a shape of flat electrodes covered with dielectric material and a high-voltage pulsed power supply of 250 W. The sterilization camera was equipped with ultrasonic source operated at 100 W. The experiments on the inactivation of bacteria of the Bacillus Cereus type were carried out in the distilled water saturated by ozone. The ozone concentration in the aqueous solution was 10 mg/1, whereas the ozone concentration at the output of ozone generator was 30 mg/1. The complete inactivation of spores took 15 min. Selection of the temperature of water, the ozone concentrations and ultrasonic power allowed to determine the time necessary for destroying the row of microorganisms.

  9. Metabolic interdependence of obligate intracellular bacteria and their insect hosts.

    PubMed

    Zientz, Evelyn; Dandekar, Thomas; Gross, Roy

    2004-12-01

    Mutualistic associations of obligate intracellular bacteria and insects have attracted much interest in the past few years due to the evolutionary consequences for their genome structure. However, much less attention has been paid to the metabolic ramifications for these endosymbiotic microorganisms, which have to compete with but also to adapt to another metabolism--that of the host cell. This review attempts to provide insights into the complex physiological interactions and the evolution of metabolic pathways of several mutualistic bacteria of aphids, ants, and tsetse flies and their insect hosts.

  10. Manufacture of Probiotic Bacteria

    NASA Astrophysics Data System (ADS)

    Muller, J. A.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C.

    Lactic acid bacteria (LAB) have been used for many years as natural biopreservatives in fermented foods. A small group of LAB are also believed to have beneficial health effects on the host, so called probiotic bacteria. Probiotics have emerged from the niche industry from Asia into European and American markets. Functional foods are one of the fastest growing markets today, with estimated growth to 20 billion dollars worldwide by 2010 (GIA, 2008). The increasing demand for probiotics and the new food markets where probiotics are introduced, challenges the industry to produce high quantities of probiotic cultures in a viable and stable form. Dried concentrated probiotic cultures are the most convenient form for incorporation into functional foods, given the ease of storage, handling and transport, especially for shelf-stable functional products. This chapter will discuss various aspects of the challenges associated with the manufacturing of probiotic cultures.

  11. Biocidal Efficacy of Dissolved Ozone, Formaldehyde and Sodium Hypochlorite Against Total Planktonic Microorganisms in Produced Water

    NASA Astrophysics Data System (ADS)

    Puyate, Y. T.; Rim-Rukeh, A.

    The performance of three biocides (dissolved ozone, formaldehyde and sodium hypochlorite) in eliminating the bacteria and fungi in produced water is investigated experimentally. The analysis involves monitoring the microbial population in nine conical flasks each containing the same volume of a mixture of produced water, culture medium that sustains the growth of microorganisms and a known concentration of biocide. The concentrations of each biocide used in the study are 0.1, 0.2 and 0.5 ppm. It is shown that dissolved ozone exhibits the best biocidal characteristics and a concentration of 0.5 ppm eliminated all the microorganisms in the produced water after 150 min contact time.

  12. Micro-motors: A motile bacteria based system for liposome cargo transport.

    PubMed

    Dogra, Navneet; Izadi, Hadi; Vanderlick, T Kyle

    2016-07-05

    Biological micro-motors (microorganisms) have potential applications in energy utilization and nanotechnology. However, harnessing the power generated by such motors to execute desired work is extremely difficult. Here, we employ the power of motile bacteria to transport small, large, and giant unilamellar vesicles (SUVs, LUVs, and GUVs). Furthermore, we demonstrate bacteria-bilayer interactions by probing glycolipids inside the model membrane scaffold. Fluorescence Resonance Energy Transfer (FRET) spectroscopic and microscopic methods were utilized for understanding these interactions. We found that motile bacteria could successfully propel SUVs and LUVs with a velocity of 28 μm s(-1) and 13 μm s(-1), respectively. GUVs, however, displayed Brownian motion and could not be propelled by attached bacteria. Bacterial velocity decreased with the larger loaded cargo, which agrees with our calculations of loaded bacteria swimming at low Reynolds number.

  13. Exposure to airborne culturable microorganisms and endotoxin in two Italian poultry slaughterhouses.

    PubMed

    Paba, Emilia; Chiominto, Alessandra; Marcelloni, Anna Maria; Proietto, Anna Rita; Sisto, Renata

    2014-01-01

    Even if slaughterhouses' workers handle large amounts of organic material and are potentially exposed to a wide range of biological agents, relatively little and not recent data are available. The main objective of this study was to characterize indoor concentrations of airborne bacteria, fungi, and endotoxin mod = Im (endotoxin∼Gram-negative*plant*filter) in two Italian poultry slaughterhouses. Air samples near air handling units inlets were also collected. Since there are not standardized protocols for endotoxin sampling and extraction procedures, an additional aim of the study was to compare the extraction efficiency of three different filter.. The study was also aimed at determining the correlation between concentrations of Gram-negative bacteria and endotoxin. In Plant A bacterial levels ranged from 17.5 to 2.6×10(3) CFU/m3. The highest concentrations were observed in evisceration area of chickens, between the automatic detachment of the neck and washing offal, and near birds coupling before hair-chilling. The highest mean value of Gram-negative (266.5 CFU/m3) was found near the washing offal of turkeys. In Plant B bacterial concentration ranged from 35 to 8×10(3) CFU/m3. The highest concentration. with the highest value of Gram-negative (248 CFU/m3), was found after defeathering. Fungal concentrations were overall lower than those found for bacteria (range: 0-205 CFU/m3 in Plant A and 0-146.2 CFU/m3 in Plant B). The microbial flora was dominated by Gram-negative and coagulase-negative staphylococci for bacteria and by species belonging to Cladosporium, Penicillium and Aspergillus genera for molds. The highest endotoxin concentrations were measured in washing offal for Plant A (range: 122.7-165.9 EU/m3) and after defeathering for Plant B (range: 0.83-38.85 EU/m3). In this study airborne microorganisms concentrations were lower than those found in similar occupational settings and below the occupational limits proposed by some authors. However, these

  14. Broad spectrum antimicrobial activity of melimine covalently bound to contact lenses.

    PubMed

    Dutta, Debarun; Cole, Nerida; Kumar, Naresh; Willcox, Mark D P

    2013-01-07

    To develop a stable antimicrobial contact lens, which is effective against the International Organization for Standardization (ISO) panel microorganisms, Acanthamoeba castellanii and drug resistant strains of Pseudomonas aeruginosa and Staphylococcus aureus. Melimine was covalently incorporated into etafilcon A lenses. The amount of peptide present on the lens surface was quantified using amino acid analysis. After coating, the heat stability (121°C), lens surface hydrophobicity (by captive bubble), and in vitro cytotoxicity to mouse L929 cells of the lenses were investigated. Antimicrobial activity against the micro-organisms was evaluated by viable plate count and fluorescence microscopy, measuring the proportion of cell death compared with control lenses with no melimine. The most effective concentration was determined to be 152 ± 44 μg lens(-1) melimine on the lens surface. After coating, lenses were relatively hydrophilic and were nontoxic to mammalian cells. The activity remained high after autoclaving (e.g., 3.1, 3.9, 1.2, and 1.0 log inhibition against P. aeruginosa, S. aureus, A. castellanii, and Fusarium solani, respectively). Fluorescence microscopy confirmed significantly reduced (P < 0.001) adhesion of viable bacteria to melimine contact lenses. Viable count confirmed that lenses were active against all the bacteria and fungi from the ISO panel, Acanthamoeba and gave at least 2 log inhibition against all the multidrug resistant S. aureus and P. aeruginosa strains. Melimine may offer excellent potential for development as a broad spectrum antimicrobial coating for contact lenses, showing activity against all the bacterial and fungal ISO panel microorganisms, Acanthamoeba, and antibiotic resistant strains of P. aeruginosa and S. aureus.

  15. Antimicrobial activity against beneficial microorganisms and chemical composition of essential oil of Mentha suaveolens ssp. insularis grown in Sardinia.

    PubMed

    Petretto, Giacomo Luigi; Fancello, Francesco; Zara, Severino; Foddai, Marzia; Mangia, Nicoletta P; Sanna, Maria Lina; Omer, Elasyed A; Menghini, Luigi; Chessa, Mario; Pintore, Giorgio

    2014-03-01

    The aim of this work was to determine the chemical constituents and in vitro antimicrobial activity of the essential oil (EO) of the aerial parts of Mentha sueveolens spp. insularis grown in Sardinia (Italy) against probiotic and starter microorganisms. The gas chromatography-mass spectrometry (GC-MS) analysis allowed to identified 34 compounds, most of oxygenated monoterpene compounds (82.5%) and among them, pulegone was found as major compound (46.5%). The agar diffusion test carried out employing the EO of Mentha suaveolens spp. insularis showed a low antibacterial activity, in particular no action was noticed for probiotic bacteria belonging to lactic acid bacteria groups, whereas almost all yeasts strains tested were inhibited. The automated microtitter dilution assay showed a clear effect at increasing concentration of EO on the specific growth rate (μ) and extension of the lag phase (λ) only for S. xylosus SA23 among bacteria and for Saccharomyces cerevisiae, Tetrapisispora phaffii CBS 4417, Metschnikowia pulcherrima, and Candida zemplinina among yeasts. Results obtained in this work allow us to broaden the knowledge on the effect of EOs on probiotic and food-related microorganisms. Mentha suaveolens spp. insularis may be used in combination with probiotic bacteria into the food matrix or encapsulated in coating and edible films for food preservation. © 2014 Institute of Food Technologists®

  16. Inhibitory and Toxic Effects of Volatiles Emitted by Strains of Pseudomonas and Serratia on Growth and Survival of Selected Microorganisms, Caenorhabditis elegans, and Drosophila melanogaster

    PubMed Central

    Popova, Alexandra A.; Koksharova, Olga A.; Lipasova, Valentina A.; Zaitseva, Julia V.; Katkova-Zhukotskaya, Olga A.; Eremina, Svetlana Iu.; Mironov, Alexander S.; Chernin, Leonid S.; Khmel, Inessa A.

    2014-01-01

    In previous research, volatile organic compounds (VOCs) emitted by various bacteria into the chemosphere were suggested to play a significant role in the antagonistic interactions between microorganisms occupying the same ecological niche and between bacteria and target eukaryotes. Moreover, a number of volatiles released by bacteria were reported to suppress quorum-sensing cell-to-cell communication in bacteria, and to stimulate plant growth. Here, volatiles produced by Pseudomonas and Serratia strains isolated mainly from the soil or rhizosphere exhibited bacteriostatic action on phytopathogenic Agrobacterium tumefaciens and fungi and demonstrated a killing effect on cyanobacteria, flies (Drosophila melanogaster), and nematodes (Caenorhabditis elegans). VOCs emitted by the rhizospheric Pseudomonas chlororaphis strain 449 and by Serratia proteamaculans strain 94 isolated from spoiled meat were identified using gas chromatography-mass spectrometry analysis, and the effects of the main headspace compounds—ketones (2-nonanone, 2-heptanone, 2-undecanone) and dimethyl disulfide—were inhibitory toward the tested microorganisms, nematodes, and flies. The data confirmed the role of bacterial volatiles as important compounds involved in interactions between organisms under natural ecological conditions. PMID:25006575

  17. Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems.

    PubMed

    Möritz, M; Peters, H; Nipko, B; Rüden, H

    2001-07-01

    The capability of air filters (filterclass: F6, F7) to retain airborne outdoor microorganisms was examined in field experiments in two heating, ventilating and air conditioning (HVAC) systems. At the beginning of the 15-month investigation period, the first filter stages of both HVAC systems were equipped with new unused air filters. The number of airborne bacteria and molds before and behind the filters were determined simultaneously in 14 days-intervals using 6-stage Andersen cascade impactors. Under relatively dry (< 80% R. H.) and warm (> 12 degrees C) outdoor air conditions air filters led to a marked reduction of airborne microorganism concentrations (bacteria by approximately 70% and molds by > 80%). However, during long periods of high relative humidity (> 80% R. H.) a proliferation of bacteria on air filters with subsequent release into the filtered air occurred. These microorganisms were mainly smaller than 1.1 microns therefore being part of the respirable fraction. The results showed furthermore that one possibility to avoid microbial proliferation is to limit the relative humidity in the area of the air filters to 80% R. H. (mean of 3 days), e.g. by using preheaters in front of air filters in HVAC-systems.

  18. Occurrence of yeasts, pseudomonads and enteric bacteria in the oral cavity of patients undergoing head and neck radiotherapy

    PubMed Central

    Gaetti-Jardim, Elerson; Ciesielski, Francisco Isaak Nicolas; de Sousa, Fátima Regina Nunes; Nwaokorie, Francisca; Schweitzer, Christiane Marie; Avila-Campos, Mario Júlio

    2011-01-01

    The aim of this study was to evaluate the occurrence of yeasts, pseudomonads and enteric bacteria in the oral cavity of patients undergoing radiotherapy (RT) for treatment of head and neck cancer. Fifty patients receiving RT were examined before, during and 30 days after RT. Saliva, mucosa, and biofilm samples were collected and microorganisms were detected by culture and polymerase chain reaction (PCR). The most prevalent yeasts in patients submitted to RT were Candida albicans, C. tropicalis, C. krusei, C. glabrata and C. parapsilosis. Citrobacter, Enterobacter, Enterococcus, Klebsiella, Proteus, and Pseudomonas were the most frequently cultivated bacteria. Before RT, targeted bacteria were cultivated from 22.2% of edentulous patients and 16.6% of dentate patients; 30 days after RT, these microorganisms were recovered from 77.8% edentulous and 46.8% dentate patients. By PCR, these microorganisms were detected from all edentulous patients, 78.1% of dentate patients. The presence of Gram-negative enteric roads and fungi was particularly frequent in patients presenting mucositis level III or IV. Modifications in the oral environment due to RT treatment seem to facilitate the colonization of oral cavity by members of family Enterobacteriaceae, genera Enterococcus and Candida. PMID:24031721

  19. Polymerase chain reaction-based discrimination of viable from non-viable Mycoplasma gallisepticum.

    PubMed

    Tan, Ching Giap; Ideris, Aini; Omar, Abdul R; Yii, Chen Pei; Kleven, Stanley H

    2014-09-02

    The present study was based on the reverse transcription polymerase chain reaction (RT-PCR) of the 16S ribosomal nucleic acid (rRNA) of Mycoplasma for detection of viable Mycoplasma gallisepticum. To determine the stability of M. gallisepticum 16S rRNA in vitro, three inactivation methods were used and the suspensions were stored at different temperatures. The 16S rRNA of M. gallisepticum was detected up to approximately 20-25 h at 37 °C, 22-25 h at 16 °C, and 23-27 h at 4 °C. The test, therefore, could detect viable or recently dead M. gallisepticum (< 20 h). The RT-PCR method was applied during an in vivo study of drug efficacy under experimental conditions, where commercial broiler-breeder eggs were inoculated with M. gallisepticum into the yolk. Hatched chicks that had been inoculated in ovo were treated with Macrolide 1. The method was then applied in a flock of day 0 chicks with naturally acquired vertical transmission of M. gallisepticum, treated with Macrolide 2. Swabs of the respiratory tract were obtained for PCR and RT-PCR evaluations to determine the viability of M. gallisepticum. This study proved that the combination of both PCR and RT-PCR enables detection and differentiation of viable from non-viable M. gallisepticum.

  20. Competitive interactions between sponge-associated bacteria.

    PubMed

    Esteves, Ana I S; Cullen, Alescia; Thomas, Torsten

    2017-03-01

    The diversity of the microbial communities associated with marine sponges has been extensively studied, but their functioning and interactions within the sponge holobiont are only recently being appreciated. Sponge-associated microorganisms are known for the production of a range of inhibitory metabolites with biotechnological application, but the ecological role that these compounds remains elusive. In this work, we explore the competitive interactions between cultivated sponge-associated bacteria to inspect whether bacteria that produce antimicrobial activities are able to inhibit potentially pathogenic bacteria. We isolated a Bacillus sp. bacterium with sponge-degrading activity, which likely has a negative impact on the host. This bacterium, along with other sponge isolates from the same genus, was found to be inhibited by a subpopulation of closely related sponge-derived Pseudovibrio spp. In some Pseudovibrio strains, these inhibitory activities were correlated with the genetic capacity to produce polyketides, such as erythronolide. Our observations suggest that antagonistic activities likely influence the composition of the sponge microbiome, including the abundance of bacteria that can be harmful to the host. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Biodegradation of chlorobenzene by indigenous bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishino, S.F.; Spain, J.C.; Pettigrew, C.A.

    Soil and ground water from four sites chronically contaminated with chlorobenzenes were examined to determine whether indigenous bacteria could degrade the contaminants and whether the addition of specific chlorobenzene-degrading bacteria enhanced the degradation rate. At each site, chlorobenzene-degrading bacteria were readily isolated from chlorobenzene-contaminated wells, whereas similar samples from noncontaminated wells yielded no chlorobenzene-degrading bacteria. Isolates were tested for growth on a variety of substrates. At a site contaminated with several solvents, a bioreactor was inoculated with the chlorobenzene-degrading Pseudomonas sp. strain JS150. Contaminated water was pumped through this bioreactor and a control bioreactor that had been colonized by inmore » indigenous microorganisms. The contaminants were removed from both bioreactors; however, JS150 could not be recovered from the inoculated bioreactor after three weeks of operation. A follow-up lab study using ground water from the contaminated site confirmed the field results. The authors conclude that chlorobenzene contamination of soil causes the development of indigenous degradative populations that have a competitive advantage over inoculated strains. The mechanism and time course of this acclimation are poorly understood and require additional study.« less

  2. Isolation of Thermophilic Lignin Degrading Bacteria from Oil-Palm Empty Fruit Bunch (EFB) Compost

    NASA Astrophysics Data System (ADS)

    Lai, C. M. T.; Chua, H. B.; Danquah, M. K.; Saptoro, A.

    2017-06-01

    Empty Fruit Bunch (EFB) is a potential and sustainable feedstock for bioethanol production due to its high cellulosic content and availability in Malaysia. Due to high lignin content of EFB and the lack of effective delignification process, commercial bioethanol production from EFB is presently not viable. Enzymatic delignification has been identified as one of the key steps in utilising EFB as a feedstock for bioethanol conversion. To date, limited work has been reported on the isolation of lignin degrading bacteria. Hence, there is a growing interest to search for new lignin degrading bacteria with greater tolerance to temperature and high level of ligninolytic enzymes for more effective lignin degradation. This study aimed to isolate and screen thermophilic ligninolytic microorganisms from EFB compost. Ten isolates were successfully isolated from EFB compost. Although they are not capable of decolorizing Methylene Blue (MB) dye under agar plate assay method, they are able to utilize lignin mimicked compound - guaiacol as a sole carbon on the agar plate assay. This infers that there is no correlation of ligninolytic enzymes with dye decolourization for all the isolates that have been isolated. However, they are able to produce ligninolytic enzymes (Lignin peroxidase, Manganese peroxidase, Laccase) in Minimal Salt Medium with Kraft Lignin (MSM-KL) with Lignin Peroxidase (LiP) as the predominant enzyme followed by Manganese Peroxidase (MnP) and Laccase (Lac). Among all the tested isolates, CLMT 29 has the highest LiP production up to 8.7673 U/mL following 24 h of growth.

  3. [The antagonistic properties of microaerophilic bacteria isolated from the human and mink digestive tracts].

    PubMed

    Sudenko, V I; Groma, L I; Podgorskiĭ, V S

    1996-01-01

    Study of antagonistic properties of microaerophilic bacteria isolated from human and mink gastroenteric tract have helped to establish differences in species composition, quantity and level of antagonistic activity of the studied microorganisms in respect to pathogenic microflora. It is shown that lactic acid bacteria identified as Lactobacillus fermentum and L. reuteri prevail among the strains isolated from the stomach and thin intestine of minks kept in the 30-km zone of Chernobyl NPP. Species composition of microaerophilic bacteria isolated from the digestive tract of the control minks is more variable. Antagonistically active bifidobacteria prevail in large intestine of experimental and control animals. Strains of lactic acid bacteria with the expressed antagonistic activity belonging to L. bavaricus, L. reuteri, L. coryniformis and L. maltaromicus have been found parallel with such known producers of antibiotic-like substances as L. fermentum. L. acidophilum. Streptococcus faecalis and bifidobacteria. L. maltaromicus most frequently occurred among antagonistically active strains revealed in feces of people which stayed in the zone of liquidation of the Chernobyl accident. Microaerophilic strains of bacteria (lactic acid, bifidobacteria and enterococci) manifest the expressed antagonistic activity connected with the capacity to not only acid formation but also to accumulation of antibiotic products of unknown nature. A strain of lactic acid bacteria L. fermentum 91 has been isolated from the contents of human gastroenteric tract. These bacteria are distinguished by most expressed and stable antagonism and characterized by the lack of pathogenicity in respect of albino mice that may be used to raise the microorganism resistance to gastric diseases.

  4. Physical and chemical control of released microorganisms at field sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donegan, K.; Seidler, R.; Matyac, C.

    1991-01-01

    An important consideration in the environmental release of a genetically engineered microorganism (GEM) is the capability for reduction or elimination of GEM populations once their function is completed or if adverse environmental effects are observed. The decontamination treatments of burning and biocide application, alone and in combination with tilling, were evaluated for their ability to reduce populations of bacteria released on the phylloplane. Field plots of bush beans sprayed with the bacterium Erwinia herbicola, received the following treatments: (1) control, (2) control + till, (3) burn, (4) burn + till, (5) Kocide (cupric hydroxide), (6) Kocide + till, (7) Agri-strepmore » (streptomycin sulfate), and (8) Agri-strept + till. Leaves and soil from the plots were sampled -1, 1, 5, 8, 12, 15, 19, and 27 days after application of the decontamination treatments. Burning produced a significant and persistent reduction in the number of bacteria whereas tilling, alone or in combination with the biocide treatments, stimulated a significant and persistent reduction in the number of bacteria, whereas tilling, alone or in combination with the biocide treatments, stimulated a significant increase in bacterial populations that persisted for several weeks.« less

  5. Effect of different packaging materials containing poly-[2-(tert-butylamino) methylstyrene] on the growth of spoilage and pathogenic bacteria on fresh meat.

    PubMed

    Dohlen, S; Braun, C; Brodkorb, F; Fischer, B; Ilg, Y; Kalbfleisch, K; Lorenz, R; Kreyenschmidt, M; Kreyenschmidt, J

    2017-09-18

    The objective of this study was to investigate the effect of novel antimicrobial packaging materials containing poly-[2-(tertbutylamino) methylstyrene] (poly(TBAMS)) on the growth of typical spoilage and pathogenic bacteria present on meat. The antimicrobial activity of materials containing different poly(TBAMS) concentrations was determined by comparing the bacterial counts on reference and sample materials at different temperatures and times and in the presence of meat components. Storage tests with poultry fillets and veal cutlets were conducted with samples vacuum packaged in the reference foil and foil containing 10% poly(TBAMS). After specific time intervals, typical spoilage microorganisms, total viable count (TVC), sensory changes and pH value were analysed. The results of the different poly(TBAMS) containing packaging materials showed an increase of the antimicrobial activity with an increasing amount of poly(TBAMS) in the base polymer. A high antimicrobial activity against inoculum of spoilage and pathogenic organisms typical for meat products was detected of a multilayer foil containing 10% poly(TBAMS) in the inner layer after 24h at 7°C. Gram positive-bacteria were more sensitive to poly(TBAMS) foil than gram-negative bacteria. In storage tests however, over the entire storage, a significant effect of this poly(TBAMS) foil on microbial growth on chicken breast fillets and veal cutlets could not be identified. Poly(TBAMS) packaging materials showed very good antimicrobial properties against a wide range of bacteria. However, for a significant inhibition of microbial growth on fresh meat, a higher amount of poly(TBAMS) was necessary to prolong the shelf life of meat. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling

    PubMed Central

    Magennis, E. Peter; Fernandez-Trillo, Francisco; Sui, Cheng; Spain, Sebastian G.; Bradshaw, David; Churchley, David; Mantovani, Giuseppe; Winzer, Klaus; Alexander, Cameron

    2014-01-01

    The detection and inactivation of pathogenic strains of bacteria continues to be an important therapeutic goal. Hence, there is a need for materials that can bind selectively to specific microorganisms, for diagnostic or anti-infective applications, but which can be formed from simple and inexpensive building blocks. Here, we exploit bacterial redox systems to induce a copper-mediated radical polymerisation of synthetic monomers at cell surfaces, generating polymers in situ that bind strongly to the microorganisms which produced them. This ‘bacteria-instructed synthesis’ can be carried out with a variety of microbial strains, and we show that the polymers produced are self-selective binding agents for the ‘instructing’ cell types. We further expand on the bacterial redox chemistries to ‘click’ fluorescent reporters onto polymers directly at the surfaces of a range of clinical isolate strains, allowing rapid, facile and simultaneous binding and visualisation of pathogens. PMID:24813421

  7. Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling

    NASA Astrophysics Data System (ADS)

    Magennis, E. Peter; Fernandez-Trillo, Francisco; Sui, Cheng; Spain, Sebastian G.; Bradshaw, David J.; Churchley, David; Mantovani, Giuseppe; Winzer, Klaus; Alexander, Cameron

    2014-07-01

    The detection and inactivation of pathogenic strains of bacteria continues to be an important therapeutic goal. Hence, there is a need for materials that can bind selectively to specific microorganisms for diagnostic or anti-infective applications, but that can be formed from simple and inexpensive building blocks. Here, we exploit bacterial redox systems to induce a copper-mediated radical polymerization of synthetic monomers at cell surfaces, generating polymers in situ that bind strongly to the microorganisms that produced them. This ‘bacteria-instructed synthesis’ can be carried out with a variety of microbial strains, and we show that the polymers produced are self-selective binding agents for the ‘instructing’ cell types. We further expand on the bacterial redox chemistries to ‘click’ fluorescent reporters onto polymers directly at the surfaces of a range of clinical isolate strains, allowing rapid, facile and simultaneous binding and visualization of pathogens.

  8. Characterization of Lactic Acid Bacteria (LAB) isolated from Indonesian shrimp paste (terasi)

    NASA Astrophysics Data System (ADS)

    Amalia, U.; Sumardianto; Agustini, T. W.

    2018-02-01

    Shrimp paste was one of fermented products, popular as a taste enhancer in many dishes. The processing of shrimp paste was natural fermentation, depends on shrimp it self and the presence of salt. The salt inhibits the growth of undesirable microorganism and allows the salt-tolerant lactic acid bacteria (LAB) to ferment the protein source to lactic acids. The objectives of this study were to characterize LAB isolated from Indonesian shrimp paste or "Terasi" with different times of fermentation (30, 60 and 90 days). Vitech analysis showed that there were four strains of the microorganism referred to as lactic acid bacteria (named: LABS1, LABS2, LABS3 and LABS4) with 95% sequence similarity. On the basis of biochemical, four isolates represented Lactobacillus, which the name Lactobacillus plantarum is proposed. L.plantarum was play role in resulting secondary metabolites, which gave umami flavor in shrimp paste.

  9. Evaluating death and activity decay of Anammox bacteria during anaerobic and aerobic starvation.

    PubMed

    Wang, Qilin; Song, Kang; Hao, Xiaodi; Wei, Jing; Pijuan, Maite; van Loosdrecht, Mark C M; Zhao, Huijun

    2018-06-01

    The decreased activity (i.e. decay) of anaerobic ammonium oxidation (Anammox) bacteria during starvation can be attributed to death (i.e. decrease in the amount of viable bacteria) and activity decay (i.e. decrease in the specific activity of viable bacteria). Although they are crucial for the operation of the Anammox process, they have never been comprehensively investigated. This study for the first time experimentally assessed death and activity decay of the Anammox bacteria during 84 days' starvation stress based on ammonium removal rate, Live/Dead staining and fluorescence in-situ hybridization. The anaerobic and aerobic decay rates of Anammox bacteria were determined as 0.015 ± 0.001 d -1 and 0.028 ± 0.001 d -1 , respectively, indicating Anammox bacteria would lose their activity more quickly in the aerobic starvation than in the anaerobic starvation. The anaerobic and aerobic death rates of Anammox bacteria were measured at 0.011 ± 0.001 d -1 and 0.025 ± 0.001 d -1 , respectively, while their anaerobic and aerobic activity decay rates were determined at 0.004 ± 0.001 d -1 and 0.003 ± 0.001 d -1 , respectively. Further analysis revealed that death accounted for 73 ± 4% and 89 ± 5% of the decreased activity of Anammox bacteria during anaerobic and aerobic starvations, and activity decay was only responsible for 27 ± 4% and 11 ± 5% of the decreased Anammox activity, respectively, over the same starvation periods. These deeply shed light on the response of Anammox bacteria to the starvation stress, which would facilitate operation and optimization of the Anammox process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Air-dust-borne associations of phototrophic and hydrocarbon-utilizing microorganisms: promising consortia in volatile hydrocarbon bioremediation.

    PubMed

    Al-Bader, Dhia; Eliyas, Mohamed; Rayan, Rihab; Radwan, Samir

    2012-11-01

    Aquatic and terrestrial associations of phototrophic and heterotrophic microorganisms active in hydrocarbon bioremediation have been described earlier. The question arises: do similar consortia also occur in the atmosphere? Dust samples at the height of 15 m were collected from Kuwait City air, and analyzed microbiologically for phototrophic and heterotrophic hydrocarbon-utilizing microorganisms, which were subsequently characterized according to their 16S rRNA gene sequences. The hydrocarbon utilization potential of the heterotrophs alone, and in association with the phototrophic partners, was measured quantitatively. The chlorophyte Gloeotila sp. and the two cyanobacteria Nostoc commune and Leptolyngbya thermalis were found associated with dust, and (for comparison) the cynobacteria Leptolyngbya sp. and Acaryochloris sp. were isolated from coastal water. All phototrophic cultures harbored oil vapor-utilizing bacteria in the magnitude of 10(5) g(-1). Each phototrophic culture had its unique oil-utilizing bacteria; however, the bacterial composition in Leptolyngbya cultures from air and water was similar. The hydrocarbon-utilizing bacteria were affiliated with Acinetobacter sp., Aeromonas caviae, Alcanivorax jadensis, Bacillus asahii, Bacillus pumilus, Marinobacter aquaeolei, Paenibacillus sp., and Stenotrophomonas maltophilia. The nonaxenic cultures, when used as inocula in batch cultures, attenuated crude oil in light and dark, and in the presence of antibiotics and absence of nitrogenous compounds. Aqueous and diethyl ether extracts from the phototrophic cultures enhanced the growth of the pertinent oil-utilizing bacteria in batch cultures, with oil vapor as a sole carbon source. It was concluded that the airborne microbial associations may be effective in bioremediating atmospheric hydrocarbon pollutants in situ. Like the aquatic and terrestrial habitats, the atmosphere contains dust-borne associations of phototrophic and heterotrophic hydrocarbon

  11. Micro-organisms growing on rapeseed during storage affect the profile of volatile compounds of virgin rapeseed oil.

    PubMed

    Wagner, Claudia; Bonte, Anja; Brühl, Ludger; Niehaus, Karsten; Bednarz, Hanna; Matthäus, Bertrand

    2018-04-01

    Micro-organisms populate on rapeseed after harvest during storage depending on the growing conditions. The composition of the bacterial colonization is unknown, although its contribution to the profile of volatile aroma-active compounds determines the sensory quality of virgin cold-pressed rapeseed oil. From four rapeseed samples, 46 bacterial strains were isolated. By DNA-sequencing, the identification of four bacteria species and 17 bacteria genera was possible. In total, 22 strains were selected, based on their typical off-flavors resembling those of virgin sensory bad cold-pressed rapeseed oils. The cultivation of these strains on rapeseed meal agar and examination of volatile compounds by solid phase microextraction-gas chromatography-mass spectrometry allowed the identification of 29 different compounds, mainly degradation products of fatty acids such as alkanes, alkenes, aldehydes, ketones and alcohols and, in addition, sulfur-containing compounds, including one terpene and three pyrazines. From these compounds, 19 are described as aroma-active in the literature. Micro-organisms populating on rapeseed during storage may strongly influence the sensory quality of virgin rapeseed oil as a result of the development of volatile aroma-active metabolic products. It can be assumed that occurrence of off-flavor of virgin rapeseed oils on the market are the result of metabolic degradation products produced by micro-organisms populating on rapeseed during storage. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Fungi are the predominant micro-organisms responsible for degradation of soil-buried polyester polyurethane over a range of soil water holding capacities.

    PubMed

    Barratt, S R; Ennos, A R; Greenhalgh, M; Robson, G D; Handley, P S

    2003-01-01

    To investigate the relationship between soil water holding capacity (WHC) and biodegradation of polyester polyurethane (PU) and to quantify and identify the predominant degrading micro-organisms in the biofilms on plastic buried in soil. High numbers of both fungi and bacteria were recovered from biofilms on soil-buried dumb-bell-shaped pieces of polyester PU after 44 days at 15-100% WHC. The tensile strength of the polyester PU was reduced by up to 60% over 20-80% soil WHC, but no reduction occurred at 15, 90 or 100% soil WHC. A PU agar clearance assay indicated that fungi, but not bacteria were, the major degrading organisms in the biofilms on polyester PU and 10-30% of all the isolated fungi were able to degrade polyester PU in this assay. A 5.8S rDNA sequencing identified 13 strains of fungi representing the three major colony morphology types responsible for PU degradation. Sequence homology matches identified these strains as Nectria gliocladioides (five strains), Penicillium ochrochloron (one strain) and Geomyces pannorum (seven strains). Geomyces pannorum was the predominant organism in the biofilms comprising 22-100% of the viable polyester PU degrading fungi. Polyester PU degradation was optimum under a wide range of soil WHC and the predominant degrading organisms were fungi. By identifying the predominant degrading fungi in soil and studying the optimum WHC conditions for degradation of PU it allows us to better understand how plastics are broken down in the environment such as in landfill sites.

  13. Characterization of culturable bacteria isolated from the cold-water coral Lophelia pertusa

    USGS Publications Warehouse

    Galkiewicz, Julia P.; Pratte, Zoe A.; Gray, Michael A.; Kellogg, Christina A.

    2011-01-01

    Microorganisms associated with corals are hypothesized to contribute to the function of the host animal by cycling nutrients, breaking down carbon sources, fixing nitrogen, and producing antibiotics. This is the first study to culture and characterize bacteria from Lophelia pertusa, a cold-water coral found in the deep sea, in an effort to understand the roles that the microorganisms play in the coral microbial community. Two sites in the northern Gulf of Mexico were sampled over 2 years. Bacteria were cultured from coral tissue, skeleton, and mucus, identified by 16S rRNA genes, and subjected to biochemical testing. Most isolates were members of the Gammaproteobacteria, although there was one isolate each from the Betaproteobacteria and Actinobacteria. Phylogenetic results showed that both sampling sites shared closely related isolates (e.g. Pseudoalteromonas spp.), indicating possible temporally and geographically stable bacterial-coral associations. The Kirby-Bauer antibiotic susceptibility test was used to separate bacteria to the strain level, with the results showing that isolates that were phylogenetically tightly grouped had varying responses to antibiotics. These results support the conclusion that phylogenetic placement cannot predict strain-level differences and further highlight the need for culture-based experiments to supplement culture-independent studies.

  14. A new application of a sodium deoxycholate-propidium monoazide-quantitative PCR assay for rapid and sensitive detection of viable Cronobacter sakazakii in powdered infant formula.

    PubMed

    Zhou, Baoqing; Chen, Bolu; Wu, Xin; Li, Fan; Yu, Pei; Aguilar, Zoraida P; Wei, Hua; Xu, Hengyi

    2016-12-01

    A rapid, reliable, and sensitive method for the detection of Cronobacter sakazakii, a common foodborne pathogen that may cause serious neonatal disease, has been developed. In this study, a rapid real-time quantitative PCR (qPCR) assay combined with sodium deoxycholate (SD) and propidium monoazide (PMA) was developed to detect C. sakazakii contamination in powdered infant formula (PIF). This method could eliminate the interference from dead or injured bacteria. Optimization studies indicated that SD and PMA at 0.08% (wt/vol) and 5µg/mL, respectively, were the most appropriate. In addition, qPCR, PMA-qPCR, SD-PMA-qPCR, and plate count assays were used to account for the number of viable bacteria in cell suspensions that were exposed to a 55°C water bath at different length of time. As a result, the viable number by PMA-qPCR showed significantly higher than of the number from SD-PMA-qPCR or plate counts. The number of viable bacteria was consistent between SD-PMA-qPCR and traditional plate counts, which indicated that SD treatment could eliminate the interference from dead or injured cells. Using the optimized parameters, the limit of detection with the SD-PMA-qPCR assay was 3.3×10 2 cfu/mL and 4.4×10 2 cfu/g in pure culture and in spiked PIF, respectively. A similar detection limit of 5.6×10 2 cfu/g was obtained in the presence of the Staphylococcus aureus (10 7 cfu/mL). The combined SD-PMA-qPCR assay holds promise for the rapid detection of viable C. sakazakii in PIF. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Bacteria and fungi in aerosols generated by two different types of wastewater treatment plants.

    PubMed

    Bauer, H; Fuerhacker, M; Zibuschka, F; Schmid, H; Puxbaum, H

    2002-09-01

    Raw wastewater is a potential carrier of pathogenic microorganisms and may pose a health risk when pathogenic microorganisms become aerosolized during aeration. Two different types of wastewater treatment plants were investigated, and the amounts of cultivable bacteria and fungi were measured in the emitted aerosols. Average concentrations of 17,000 CFU m(-3) of mesophilic, 2,100 CFU m(-3) of TSA-SB bacteria (bacteria associated with certain waterborne virulence factors), 1700 CFU m(-3) of mesophilic and 45 CFU m(-3) of thermotolerant fungi, were found in the aerosol emitted by the aeration tank of the activated sludge plant. In the aerosol of the fixed-film reactor 3000 CFU m(-3) mesophilic and 730CFUm(-3) TSA-SB bacteria, and 180 CFUm(-3) mesophilic and 14 CFU m(-3) thermotolerant fungi were measured. The specific emissions per population equivalent between the two types of treatment plants differed by two orders of magnitude. The microbial flux based on the open water surface area of the two treatment plants was similar. The aerosolization ratios of cultivable bacteria (expressed as CFU m(-3) aerosol/m(-3) wastewater) ranged between 8.4 x 10(-11) and 4.9 x 10(-9). The aerosolization ratio of fungi was one to three orders of magnitude higher and a significant difference between the two types of treatment plants could be observed.

  16. Lysosomal Degradation Is Required for Sustained Phagocytosis of Bacteria by Macrophages.

    PubMed

    Wong, Ching-On; Gregory, Steven; Hu, Hongxiang; Chao, Yufang; Sepúlveda, Victoria E; He, Yuchun; Li-Kroeger, David; Goldman, William E; Bellen, Hugo J; Venkatachalam, Kartik

    2017-06-14

    Clearance of bacteria by macrophages involves internalization of the microorganisms into phagosomes, which are then delivered to endolysosomes for enzymatic degradation. These spatiotemporally segregated processes are not known to be functionally coupled. Here, we show that lysosomal degradation of bacteria sustains phagocytic uptake. In Drosophila and mammalian macrophages, lysosomal dysfunction due to loss of the endolysosomal Cl - transporter ClC-b/CLCN7 delayed degradation of internalized bacteria. Unexpectedly, defective lysosomal degradation of bacteria also attenuated further phagocytosis, resulting in elevated bacterial load. Exogenous application of bacterial peptidoglycans restored phagocytic uptake in the lysosomal degradation-defective mutants via a pathway requiring cytosolic pattern recognition receptors and NF-κB. Mammalian macrophages that are unable to degrade internalized bacteria also exhibit compromised NF-κB activation. Our findings reveal a role for phagolysosomal degradation in activating an evolutionarily conserved signaling cascade, which ensures that continuous uptake of bacteria is preceded by lysosomal degradation of microbes. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Inhibition of mycotoxin-producing Aspergillus nomius vsc 23 by lactic acid bacteria and Saccharomyces cerevisiae

    PubMed Central

    Muñoz, R; Arena, M.E.; Silva, J.; González, S.N.

    2010-01-01

    The effect of different fermenting microorganisms on growth of a mycotoxin- producing Aspergillus nomius was assayed. Two lactic acid bacteria, Lactobacillus fermentum and Lactobacillus rhamnosus, and Saccharomyces cerevisiae, all of which are widely used in fermentation and preservation of food, were assayed on their fungus inhibitory properties. Assays were carried out by simultaneous inoculation of one of the possible inhibiting microorganisms and the fungus or subsequent inoculation of one of the microorganisms followed by the fungus. All three microorganisms assayed showed growth inhibition of the mycotoxin-producing Aspergillus strain. L. rhamnosus O236, isolated from sheep milk and selected for its technological properties, showed highest fungal inhibition of the microorganisms assayed. The use of antifungal LAB with excellent technological properties rather than chemical preservatives would enable the food industry to produce organic food without addition of chemical substances. PMID:24031582

  18. Inhibition of mycotoxin-producing Aspergillus nomius vsc 23 by lactic acid bacteria and Saccharomyces cerevisiae.

    PubMed

    Muñoz, R; Arena, M E; Silva, J; González, S N

    2010-10-01

    The effect of different fermenting microorganisms on growth of a mycotoxin- producing Aspergillus nomius was assayed. Two lactic acid bacteria, Lactobacillus fermentum and Lactobacillus rhamnosus, and Saccharomyces cerevisiae, all of which are widely used in fermentation and preservation of food, were assayed on their fungus inhibitory properties. Assays were carried out by simultaneous inoculation of one of the possible inhibiting microorganisms and the fungus or subsequent inoculation of one of the microorganisms followed by the fungus. All three microorganisms assayed showed growth inhibition of the mycotoxin-producing Aspergillus strain. L. rhamnosus O236, isolated from sheep milk and selected for its technological properties, showed highest fungal inhibition of the microorganisms assayed. The use of antifungal LAB with excellent technological properties rather than chemical preservatives would enable the food industry to produce organic food without addition of chemical substances.

  19. Diverse antimicrobial interactions of halophilic archaea and bacteria extend over geographical distances and cross the domain barrier

    PubMed Central

    Atanasova, Nina S; Pietilä, Maija K; Oksanen, Hanna M

    2013-01-01

    The significance of antimicrobial substances, halocins, produced by halophilic archaea and bacteria thriving in hypersaline environments is relatively unknown. It is suggested that their production might increase species diversity and give transient competitive advances to the producer strain. Halocin production is considered to be common among halophilic archaea, but there is a lack of information about halocins produced by bacteria in highly saline environments. We studied the antimicrobial activity of 68 halophilic archaea and 22 bacteria isolated from numerous geographically distant hypersaline environments. Altogether 144 antimicrobial interactions were found between the strains and aside haloarchaea, halophilic bacteria from various genera were identified as halocin producers. Close to 80% of the interactions were detected between microorganisms from different genera and in few cases, even across the domain boundary. Several of the strains produced halocins with a wide inhibitory spectrum as has been observed before. Most of the antimicrobial interactions were found between strains from distant sampling sites indicating that hypersaline environments around the world have similar microorganisms with the potential to produce wide activity range antimicrobials. PMID:23929527

  20. Transmission of Airborne Bacteria across Built Environments and Its Measurement Standards: A Review.

    PubMed

    Fujiyoshi, So; Tanaka, Daisuke; Maruyama, Fumito

    2017-01-01

    Human health is influenced by various factors including microorganisms present in built environments where people spend most of their lives (approximately 90%). It is therefore necessary to monitor and control indoor airborne microbes for occupational safety and public health. Most studies concerning airborne microorganisms have focused on fungi, with scant data available concerning bacteria. The present review considers papers published from 2010 to 2017 approximately and factors affecting properties of indoor airborne bacteria (communities and concentration) with respect to temporal perspective and to multiscale interaction viewpoint. From a temporal perspective, bacterial concentrations in built environments change depending on numbers of human occupancy, while properties of bacterial communities tend to remain stable. Similarly, the bacteria found in social and community spaces such as offices, classrooms and hospitals are mainly associated with human occupancy. Other major sources of indoor airborne bacteria are (i) outdoor environments, and (ii) the building materials themselves. Indoor bacterial communities and concentrations are varied with varying interferences by outdoor environment. Airborne bacteria from the outdoor environment enter an indoor space through open doors and windows, while indoor bacteria are simultaneously released to the outer environment. Outdoor bacterial communities and their concentrations are also affected by geographical factors such as types of land use and their spatial distribution. The bacteria found in built environments therefore originate from any of the natural and man-made surroundings around humans. Therefore, to better understand the factors influencing bacterial concentrations and communities in built environments, we should study all the environments that humans contact as a single ecosystem. In this review, we propose the establishment of a standard procedure for assessing properties of indoor airborne bacteria using

  1. Transmission of Airborne Bacteria across Built Environments and Its Measurement Standards: A Review

    PubMed Central

    Fujiyoshi, So; Tanaka, Daisuke; Maruyama, Fumito

    2017-01-01

    Human health is influenced by various factors including microorganisms present in built environments where people spend most of their lives (approximately 90%). It is therefore necessary to monitor and control indoor airborne microbes for occupational safety and public health. Most studies concerning airborne microorganisms have focused on fungi, with scant data available concerning bacteria. The present review considers papers published from 2010 to 2017 approximately and factors affecting properties of indoor airborne bacteria (communities and concentration) with respect to temporal perspective and to multiscale interaction viewpoint. From a temporal perspective, bacterial concentrations in built environments change depending on numbers of human occupancy, while properties of bacterial communities tend to remain stable. Similarly, the bacteria found in social and community spaces such as offices, classrooms and hospitals are mainly associated with human occupancy. Other major sources of indoor airborne bacteria are (i) outdoor environments, and (ii) the building materials themselves. Indoor bacterial communities and concentrations are varied with varying interferences by outdoor environment. Airborne bacteria from the outdoor environment enter an indoor space through open doors and windows, while indoor bacteria are simultaneously released to the outer environment. Outdoor bacterial communities and their concentrations are also affected by geographical factors such as types of land use and their spatial distribution. The bacteria found in built environments therefore originate from any of the natural and man-made surroundings around humans. Therefore, to better understand the factors influencing bacterial concentrations and communities in built environments, we should study all the environments that humans contact as a single ecosystem. In this review, we propose the establishment of a standard procedure for assessing properties of indoor airborne bacteria using

  2. Products containing microorganisms as a tool in integrated pest management and the rules of their market placement in the European Union.

    PubMed

    Matyjaszczyk, Ewa

    2015-09-01

    Products containing microorganisms (bacteria, fungi and viruses) can be used in plant production as an intervention as well as a prevention method for pest control. Their utilisation is strictly in line with the principles of integrated pest management, provided that they are effective and safe. The rules of registration of microorganisms for crop production in the European Union differ, depending on whether they are placed on the market as plant protection products or not. For over 20 years, uniform rules for registration of plant protection products have been in force. Currently, 36 microorganisms marked up to the strain are approved for use in pest control in the Community. The decision concerning market placement of plant protection products containing approved microorganisms is issued for each member state separately. The approaches to market placement of other products with microorganisms differ within the EU, ranging from a complete lack of requirements to long and costly registration procedures. © 2015 Society of Chemical Industry.

  3. Mucosal immunity to pathogenic intestinal bacteria.

    PubMed

    Perez-Lopez, Araceli; Behnsen, Judith; Nuccio, Sean-Paul; Raffatellu, Manuela

    2016-03-01

    The intestinal mucosa is a particularly dynamic environment in which the host constantly interacts with trillions of commensal microorganisms, known as the microbiota, and periodically interacts with pathogens of diverse nature. In this Review, we discuss how mucosal immunity is controlled in response to enteric bacterial pathogens, with a focus on the species that cause morbidity and mortality in humans. We explain how the microbiota can shape the immune response to pathogenic bacteria, and we detail innate and adaptive immune mechanisms that drive protective immunity against these pathogens. The vast diversity of the microbiota, pathogens and immune responses encountered in the intestines precludes discussion of all of the relevant players in this Review. Instead, we aim to provide a representative overview of how the intestinal immune system responds to pathogenic bacteria.

  4. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants

    USDA-ARS?s Scientific Manuscript database

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Fou...

  5. Salmonella and fecal indicator bacteria survival in soils amended with poultry manure

    USDA-ARS?s Scientific Manuscript database

    Minimizing the risks associated with manure-borne pathogenic microorganisms requires an understanding of microbial survival under realistic field conditions. The objective of this 3-year study was to assess the fate of Salmonella (SALM) and fecal indicator bacteria (FIB), E. coli (EC) and enterococc...

  6. [Characteristics of natural strains of naphthalene-utilizing bacteria of the genus Pseudomonas].

    PubMed

    Levchuk, A A; Vasilenko, S L; Bulyga, I M; Titok, M A; Thomas, K M

    2005-01-01

    Sixty-three strains of bacteria capable of utilizing naphthalene as the sole source of carbon and energy were isolated from 137 samples of soil taken in different sites in Belarus. All isolated bacteria contained extrachromosomal genetic elements of 45 to 150 kb in length. It was found that bacteria of 31 strains contained the IncP-9 incompatibility group plasmids, bacteria of one strain carried a plasmid containing replicons IncP-9 and IncP-7, and bacteria of 31 strains contained unidentified plasmids. Primary identification showed that the hosts of plasmids of naphthalene biodegradation are fluorescent bacteria of the genus Pseudomonas (P. putida and P. aeruginosa; a total of 47 strains) and unidentified nonfluorescent microorganisms (a total of 16 strains). In addition to the ability to utilize naphthalene, some strains exhibited the ability to stimulate the growth and development of the root system of Secale cereale.

  7. Enrichment of denitrifying methane-oxidizing microorganisms using up-flow continuous reactors and batch cultures.

    PubMed

    Hatamoto, Masashi; Kimura, Masafumi; Sato, Takafumi; Koizumi, Masato; Takahashi, Masanobu; Kawakami, Shuji; Araki, Nobuo; Yamaguchi, Takashi

    2014-01-01

    Denitrifying anaerobic methane oxidizing (DAMO) microorganisms were enriched from paddy field soils using continuous-flow and batch cultures fed with nitrate or nitrite as a sole electron acceptor. After several months of cultivation, the continuous-flow cultures using nitrite showed remarkable simultaneous methane oxidation and nitrite reduction and DAMO bacteria belonging to phylum NC10 were enriched. A maximum volumetric nitrite consumption rate of 70.4±3.4 mg-N·L(-1)·day(-1) was achieved with very short hydraulic retention time of 2.1 hour. In the culture, about 68% of total microbial cells were bacteria and no archaeal cells were detected by fluorescence in situ hybridization. In the nitrate-fed continuous-flow cultures, 58% of total microbial cells were bacteria while archaeal cells accounted for 7% of total cell numbers. Phylogenetic analysis of pmoA gene sequence showed that enriched DAMO bacteria in the continuous-flow cultivation had over 98% sequence similarity to DAMO bacteria in the inoculum. In contrast, for batch culture, the enriched pmoA gene sequences had 89-91% sequence similarity to DAMO bacteria in the inoculum. These results indicate that electron acceptor and cultivation method strongly affect the microbial community structures of DAMO consortia.

  8. The emerging role for bacteria in lignin degradation and bio-product formation.

    PubMed

    Bugg, Timothy D H; Ahmad, Mark; Hardiman, Elizabeth M; Singh, Rahul

    2011-06-01

    The microbial degradation of lignin has been well studied in white-rot and brown-rot fungi, but is much less well studied in bacteria. Recent published work suggests that a range of soil bacteria, often aromatic-degrading bacteria, are able to break down lignin. The enzymology of bacterial lignin breakdown is currently not well understood, but extracellular peroxidase and laccase enzymes appear to be involved. There are also reports of aromatic-degrading bacteria isolated from termite guts, though there are conflicting reports on the ability of termite gut micro-organisms to break down lignin. If biocatalytic routes for lignin breakdown could be developed, then lignin represents a potentially rich source of renewable aromatic chemicals. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. [Utility of MALDI-TOF MS for the identification of anaerobic bacteria].

    PubMed

    Zárate, Mariela S; Romano, Vanesa; Nievas, Jimena; Smayevsky, Jorgelina

    2014-01-01

    The analysis by MALDI-TOF MS (Matrix-assited laser desorption/ionization time-of-flight mass spectrometry) has become a reference method for the identification of microorganisms in Clinical Microbiology. However, data on some groups of microorganisms are still controversial. The aim of this study is to determine the utility of MALDI-TOF MS for the identification of clinical isolates of anaerobic bacteria. One-hundred and six anaerobic bacteria isolates were analyzed by MALDI-TOF MS and by conventional biochemical tests. In those cases where identification by conventional methodology was not applicable or in the face of discordance between sequencing methodologies, 16 S rRNA gene sequence analysis was performed. The conventional method and MALDI-TOF MS agreed at genus and species level by 95.3 %. Concordance in gram-negative bacilli was 91.4% and 100% among gram-positive bacilli; there was also concordance both in the 8 isolates studied in gram-positive cocci and in the single gram-negative cocci included. The data obtained in this study demonstrate that MALDI-TOF MS offers the possibility of adequate identification of anaerobic bacteria. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  10. Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights.

    PubMed

    Masschelein, J; Jenner, M; Challis, G L

    2017-07-01

    Covering: up to 2017The overwhelming majority of antibiotics in clinical use originate from Gram-positive Actinobacteria. In recent years, however, Gram-negative bacteria have become increasingly recognised as a rich yet underexplored source of novel antimicrobials, with the potential to combat the looming health threat posed by antibiotic resistance. In this article, we have compiled a comprehensive list of natural products with antimicrobial activity from Gram-negative bacteria, including information on their biosynthetic origin(s) and molecular target(s), where known. We also provide a detailed discussion of several unusual pathways for antibiotic biosynthesis in Gram-negative bacteria, serving to highlight the exceptional biocatalytic repertoire of this group of microorganisms.

  11. Generation of PHB from Spent Sulfite Liquor Using Halophilic Microorganisms.

    PubMed

    Weissgram, Michaela; Gstöttner, Janina; Lorantfy, Bettina; Tenhaken, Raimund; Herwig, Christoph; Weber, Hedda K

    2015-06-08

    Halophilic microorganisms thrive at elevated concentrations of sodium chloride up to saturation and are capable of growing on a wide variety of carbon sources like various organic acids, hexose and also pentose sugars. Hence, the biotechnological application of these microorganisms can cover many aspects, such as the treatment of hypersaline waste streams of different origin. Due to the fact that the high osmotic pressure of hypersaline environments reduces the risk of contamination, the capacity for cost-effective non-sterile cultivation can make extreme halophilic microorganisms potentially valuable organisms for biotechnological applications. In this contribution, the stepwise use of screening approaches, employing design of experiment (DoE) on model media and subsequently using industrial waste as substrate have been implemented to investigate the applicability of halophiles to generate PHB from the industrial waste stream spent sulfite liquor (SSL). The production of PHB on model media as well as dilutions of industrial substrate in a complex medium has been screened for by fluorescence microscopy using Nile Blue staining. Screening was used to investigate the ability of halophilic microorganisms to withstand the inhibiting substances of the waste stream without negatively affecting PHB production. It could be shown that neither single inhibiting substances nor a mixture thereof inhibited growth in the investigated range, hence, leaving the question on the inhibiting mechanisms open. However, it could be demonstrated that some haloarchaea and halophilic bacteria are able to produce PHB when cultivated on 3.3% w/w dry matter spent sulfite liquor, whereas H. halophila was even able to thrive on 6.6% w/w dry matter spent sulfite liquor and still produce PHB.

  12. Generation of PHB from Spent Sulfite Liquor Using Halophilic Microorganisms

    PubMed Central

    Weissgram, Michaela; Gstöttner, Janina; Lorantfy, Bettina; Tenhaken, Raimund; Herwig, Christoph; Weber, Hedda K.

    2015-01-01

    Halophilic microorganisms thrive at elevated concentrations of sodium chloride up to saturation and are capable of growing on a wide variety of carbon sources like various organic acids, hexose and also pentose sugars. Hence, the biotechnological application of these microorganisms can cover many aspects, such as the treatment of hypersaline waste streams of different origin. Due to the fact that the high osmotic pressure of hypersaline environments reduces the risk of contamination, the capacity for cost-effective non-sterile cultivation can make extreme halophilic microorganisms potentially valuable organisms for biotechnological applications. In this contribution, the stepwise use of screening approaches, employing design of experiment (DoE) on model media and subsequently using industrial waste as substrate have been implemented to investigate the applicability of halophiles to generate PHB from the industrial waste stream spent sulfite liquor (SSL). The production of PHB on model media as well as dilutions of industrial substrate in a complex medium has been screened for by fluorescence microscopy using Nile Blue staining. Screening was used to investigate the ability of halophilic microorganisms to withstand the inhibiting substances of the waste stream without negatively affecting PHB production. It could be shown that neither single inhibiting substances nor a mixture thereof inhibited growth in the investigated range, hence, leaving the question on the inhibiting mechanisms open. However, it could be demonstrated that some haloarchaea and halophilic bacteria are able to produce PHB when cultivated on 3.3% w/w dry matter spent sulfite liquor, whereas H. halophila was even able to thrive on 6.6% w/w dry matter spent sulfite liquor and still produce PHB. PMID:27682089

  13. Cultivation, detection, and ecophysiology of anaerobic ammonium-oxidizing bacteria.

    PubMed

    Kartal, Boran; Geerts, Wim; Jetten, Mike S M

    2011-01-01

    Anaerobic ammonium-oxidizing (anammox) bacteria oxidize ammonium with nitrite under anoxic conditions. The anammox process is currently used to remove ammonium from wastewater and contributes significantly to the loss of fixed nitrogen from the oceans. In this chapter, we focus on the ecophysiology of anammox bacteria and describe new methodologies to grow these microorganisms. Now, it is possible to enrich anammox bacteria up to 95% with a membrane bioreactor that removes forces of selection for fast settling aggregates and facilitates the growth of planktonic cells. The biomass from this system has a high anaerobic ammonium oxidation rate (50 fmol NH(4)(+) · cell(-1) day(-1)) and is suitable for many ecophysiological and molecular experiments. A high throughput Percoll density gradient centrifugation protocol may be applied on this biomass for further enrichment (>99.5%) of anammox bacteria. Furthermore, we provide an up-to-date list of commonly used primers and introduce protocols for quantification and detection of functional genes of anammox bacteria in their natural environment. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Effects of Growth Medium, Inoculum Size, and Incubation Time on Culturability and Isolation of Soil Bacteria

    PubMed Central

    Davis, Kathryn E. R.; Joseph, Shayne J.; Janssen, Peter H.

    2005-01-01

    Soils are inhabited by many bacteria from phylogenetic groups that are poorly studied because representatives are rarely isolated in cultivation studies. Part of the reason for the failure to cultivate these bacteria is the low frequency with which bacterial cells in soil form visible colonies when inoculated onto standard microbiological media, resulting in low viable counts. We investigated the effects of three factors on viable counts, assessed as numbers of CFU on solid media, and on the phylogenetic groups to which the isolated colony-forming bacteria belong. These factors were inoculum size, growth medium, and incubation time. Decreasing the inoculum size resulted in significant increases in the viable count but did not appear to affect colony formation by members of rarely isolated groups. Some media that are traditionally used for soil microbiological studies returned low viable counts and did not result in the isolation of members of rarely isolated groups. Newly developed media, in contrast, resulted in high viable counts and in the isolation of many members of rarely isolated groups, regardless of the inoculum size. Increased incubation times of up to 3 months allowed the development of visible colonies of members of rarely isolated groups in conjunction with the use of appropriate media. Once isolated, pure cultures of members of rarely isolated groups took longer to form visible colonies than did members of commonly isolated groups. Using these new media and extended incubation times, we were able to isolate many members of the phyla Acidobacteria (subdivisions 1, 2, 3, and 4), Gemmatimonadetes, Chloroflexi, and Planctomycetes (including representatives of the previously uncultured WPS-1 lineage) as well as members of the subclasses Rubrobacteridae and Acidimicrobidae of the phylum Actinobacteria. PMID:15691937

  15. Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol

    PubMed Central

    Lipińska, Lidia; Klewicki, Robert; Klewicka, Elżbieta; Kołodziejczyk, Krzysztof; Sójka, Michał; Nowak, Adriana

    2016-01-01

    Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis) and yeasts (Candida vini). We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds. PMID:27294124

  16. Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol.

    PubMed

    Lipińska, Lidia; Klewicki, Robert; Klewicka, Elżbieta; Kołodziejczyk, Krzysztof; Sójka, Michał; Nowak, Adriana

    2016-01-01

    Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis) and yeasts (Candida vini). We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds.

  17. Evaluation of hydrocarbons and organochlorine pesticides and their tolerant microorganisms from an agricultural soil to define its bioremediation feasibility.

    PubMed

    Islas-García, Alejandro; Vega-Loyo, Libia; Aguilar-López, Ricardo; Xoconostle-Cázares, Beatriz; Rodríguez-Vázquez, Refugio

    2015-01-01

    The concentrations of hydrocarbons and organochlorine pesticides (OCPs), nutrients and tolerant microorganisms in an agricultural soil from a locality in Tepeaca, Puebla, Mexico, were determined to define its feasibility for bioremediation. The OCPs detected were heptachlor, aldrin, trans-chlordane, endosulfán I, endosulfán II, 1,1,1-bis-(4-chlorophenyl)-2,2-trichloroethane (4,4'-DDT), 1,1-bis-(4-chlorophenyl)-2,2-dichloroethene (4,4'-DDE) and endrin aldehyde, with values of 0.69-30.81 ng g(-1). The concentration of hydrocarbons in the soil of Middle Hydrocarbons Fraction (MHF), C10 to C28, was 4608-27,748 mg kg(-1) and 1117-19,610 mg kg(-1) for Heavy Hydrocarbons Fraction (HHF), C28 to C35, due to an oil spill from the rupture of a pipeline. The soil was deficient in nitrogen (0.03-0.07%) and phosphorus (0 ppm), and therefore it was advisable to fertilize to bio-stimulate the native microorganisms of soil. In the soil samples, hydrocarbonoclast fungi 3.72 × 10(2) to 44.6 × 10(2) CFU g(-1) d.s. and hydrocarbonoclast bacteria (0.17 × 10(5) to 8.60 × 10(5) CFU g(-1) d.s.) were detected, with a tolerance of 30,000 mg kg(-1) of diesel. Moreover, pesticideclast fungi (5.13 × 10(2) to 42.2 × 10(2) CFU g(-1) d.s.) and pesticideclast bacteria (0.15 × 10(5) to 9.68 × 10(5) CFU g(-1) d.s.) were determined with tolerance to 20 mg kg(-1) of OCPs. Fungi and bacteria tolerant to both pollutants were also quantified. Therefore, native microorganisms had potential to be stimulated to degrade hydrocarbons and pesticides or both pollutants. The concentration of pollutants and the microbial activity analyzed indicated that bioremediation of the soil contaminated with hydrocarbons and pesticides using bio-stimulation of native microorganisms was feasible.

  18. The Relative Abundance and Transcriptional Activity of Marine Sponge-Associated Microorganisms Emphasizing Groups Involved in Sulfur Cycle.

    PubMed

    Jensen, Sigmund; Fortunato, Sofia A V; Hoffmann, Friederike; Hoem, Solveig; Rapp, Hans Tore; Øvreås, Lise; Torsvik, Vigdis L

    2017-04-01

    During the last decades, our knowledge about the activity of sponge-associated microorganisms and their contribution to biogeochemical cycling has gradually increased. Functional groups involved in carbon and nitrogen metabolism are well documented, whereas knowledge about microorganisms involved in the sulfur cycle is still limited. Both sulfate reduction and sulfide oxidation has been detected in the cold water sponge Geodia barretti from Korsfjord in Norway, and with specimens from this site, the present study aims to identify extant versus active sponge-associated microbiota with focus on sulfur metabolism. Comparative analysis of small subunit ribosomal RNA (16S rRNA) gene (DNA) and transcript (complementary DNA (cDNA)) libraries revealed profound differences. The transcript library was predominated by Chloroflexi despite their low abundance in the gene library. An opposite result was found for Acidobacteria. Proteobacteria were detected in both libraries with representatives of the Alpha- and Gammaproteobacteria related to clades with presumably thiotrophic bacteria from sponges and other marine invertebrates. Sequences that clustered with sponge-associated Deltaproteobacteria were remotely related to cultivated sulfate-reducing bacteria. The microbes involved in sulfur cycling were identified by the functional gene aprA (adenosine-5'-phosphosulfate reductase) and its transcript. Of the aprA sequences (DNA and cDNA), 87 % affiliated with sulfur-oxidizing bacteria. They clustered with Alphaproteobacteria and with clades of deep-branching Gammaproteobacteria. The remaining sequences clustered with sulfate-reducing Archaea of the phylum Euryarchaeota. These results indicate an active role of yet uncharacterized Bacteria and Archaea in the sponge's sulfur cycle.

  19. Tape Cassette Bacteria Detection System

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design, fabrication, and testing of an automatic bacteria detection system with a zero-g capability and based on the filter-capsule approach is described. This system is intended for monitoring the sterility of regenerated water in a spacecraft. The principle of detection is based on measuring the increase in chemiluminescence produced by the action of bacterial porphyrins (i.e., catalase, cytochromes, etc.) on a luminol-hydrogen peroxide mixture. Since viable as well as nonviable organisms initiate this luminescence, viable organisms are detected by comparing the signal of an incubated water sample with an unincubated control. Higher signals for the former indicate the presence of viable organisms. System features include disposable sealed sterile capsules, each containing a filter membrane, for processing discrete water samples and a tape transport for moving these capsules through a processing sequence which involves sample concentration, nutrient addition, incubation, a 4 Molar Urea wash and reaction with luminol-hydrogen peroxide in front of a photomultiplier tube. Liquids are introduced by means of a syringe needle which pierces a rubber septum contained in the wall of the capsule. Detection thresholds obtained with this unit towards E. coli and S. marcescens assuming a 400 ml water sample are indicated.

  20. Density assessment and mapping of microorganisms around a biocomposting plant in Sanandaj, Iran.

    PubMed

    Rashidi, Sanaz; Shahmoradi, B; Maleki, Afshin; Sharafi, Kiomars; Darvishi, Ebrahim

    2017-05-01

    Exposure to microorganisms can cause various diseases or exacerbate the excitatory responses, inflammation, dry cough and shortness of breath, reduced lung function, chronic obstructive pulmonary disease, and allergic response or allergic immune. The aim of the present study was to investigate the density of microorganisms around the air of processing facilities of a biocomposting plant. Each experiment was carried out according to ASTM E884-82 (2001) method. The samples were collected from inhaled air in four locations of the plant, which had a high traffic of workers and employees, including screen, conveyor belt, aerated compost pile, and static compost pile. The sampling was repeated five times for each location selected. The wind speed and its direction were measured using an anemometer. Temperature and humidity were also recorded at the time of sampling. The multistage impactor used for sampling was equipped with a solidified medium (agar) and a pump (with a flow rate of 28.3 l/m) for passing air through the media. It was found that the mean density of total bacteria was >1.7 × 10 3  cfu/m 3 in the study area. Moreover, the mean densities of fungi, intestinal bacteria (Klebsiella), and Staphylococcus aureus were 5.9 × 10 3 , 3.3 × 10 3 , and 4.1 × 10 3  cfu/m 3 , respectively. In conclusion, according to the findings, the density of bacteria and fungi per cubic meter of air in the samples collected around the processing facilities of the biocomposting plant in Sanandaj City was higher than the microbial standard for inhaled air.

  1. Foliar application of plant growth-promoting bacteria and humic acid increase maize yields

    USDA-ARS?s Scientific Manuscript database

    Plant growth promoter bacteria (PGPB) can be used to reduce fertilizer inputs to crops. Seed inoculation is the main method of PGPB application, but competition with rhizosphere microorganisms reduces their effectiveness. Here we propose a new biotechnological tool for plant stimulation using endoph...

  2. Gene-Based Detection of Microorganisms in Environmental Samples Using PCR

    NASA Technical Reports Server (NTRS)

    Glass, John I.; Lefkowitz, Elliot J.; Cassell, Gail H.; Wechser, Mark; Taylor, Theresa B.; Albin, Michael; Paszko-Kolva, Christine; Roman, Monsi C.

    1997-01-01

    Contaminating microorganisms pose a serious potential risk to the crew's well being and water system integrity aboard the International Space Station (ISS). We are developing a gene-based microbial monitor that functions by replicating specific segments of DNA as much as 10(exp 12) x. Thus a single molecule of DNA can be replicated to detectable levels, and the kinetics of that molecule's accumulation can be used to determine the original concentration of specific microorganisms in a sample. Referred to as the polymerase chain reaction (PCR), this enzymatic amplification of specific segments of the DNA or RNA from contaminating microbes offers the promise of rapid, sensitive, quantitative detection and identification of bacteria, fungi, viruses, and parasites. We envision a small instrument capable of assaying an ISS water sample for 48 different microbes in a 24 hour period. We will report on both the developments in the chemistry necessary for the PCR assays to detect microbial contaminants in ISS water, and on progress towards the miniaturization and automation of the instrumentation.

  3. Biomining Microorganisms: Molecular Aspects and Applications in Biotechnology and Bioremediation

    NASA Astrophysics Data System (ADS)

    Jerez, Carlos A.

    The microbial solubilization of metals using chemolithoautotrophic microorganisms has successfully been used in industrial processes called biomining to extract metals such as copper, gold, uranium and others. The most studied leaching bacteria are from the genus Acidithiobacillus belonging to the Gram-negative γ-proteobacteria. Acidithiobacillus spp. obtain their energy from the oxidation of ferrous iron, elemental sulfur, or partially oxidized sulfur compounds. Other thermophilic archaeons capable of oxidizing sulfur and iron (II) have also been known for many years, and they are mainly from the genera Sulfolobus, Acidianus, Metallosphaera and Sulfurisphaera. Recently, some mesophilic iron (II)-oxidizing archaeons such as Ferroplasma acidiphilium and F. acidarmanus belonging to the Thermoplasmales have also been isolated and characterized. Recent studies of microorganisms consider them in their consortia, integrating fundamental biological knowledge with metagenomics, metaproteomics, and other data to obtain a global picture of how a microbial community functions. The understanding of microbial growth and activities in oxidizing metal ions will be useful for improving applied microbial biotechnologies such as biomining, bioshrouding, biomonitoring and bioremediation of metals in acidic environments.

  4. Apparatus and method for the desulfurization of petroleum by bacteria

    DOEpatents

    Lizama, H.M.; Scott, T.C.; Scott, C.D.

    1995-10-17

    A method is described for treating petroleum with anaerobic microorganisms acting as biocatalysts that can remove sulfur atoms from hydrocarbon molecules, under anaerobic conditions, and then convert the sulfur atoms to hydrogen sulfide. The microorganisms utilized are from the family known as the ``Sulfate Reducing Bacteria``. These bacteria generate metabolic energy from the oxidation of organic compounds, but use oxidized forms of sulfur as an electron acceptor. Because the biocatalyst is present in the form of bacteria in an aqueous suspension, whereas the reacting substrate consists of hydrocarbon molecules in an organic phase, the actual desulfurization reaction takes place at the aqueous-organic interphase. To ensure adequate interfacial contacting and mass transfer, a biphasic electrostatic bioreactor system is utilized. The bioreactor is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the sulfur. High-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the sulfur to produce hydrogen sulfide which is then removed from the bioreactor. The organic liquid, now free of the sulfur, is ready for immediate use or further processing. 5 figs.

  5. Viewing marine bacteria, their activity and response to environmental drivers from orbit: satellite remote sensing of bacteria.

    PubMed

    Grimes, D Jay; Ford, Tim E; Colwell, Rita R; Baker-Austin, Craig; Martinez-Urtaza, Jaime; Subramaniam, Ajit; Capone, Douglas G

    2014-04-01

    Satellite-based remote sensing of marine microorganisms has become a useful tool in predicting human health risks associated with these microscopic targets. Early applications were focused on harmful algal blooms, but more recently methods have been developed to interrogate the ocean for bacteria. As satellite-based sensors have become more sophisticated and our ability to interpret information derived from these sensors has advanced, we have progressed from merely making fascinating pictures from space to developing process models with predictive capability. Our understanding of the role of marine microorganisms in primary production and global elemental cycles has been vastly improved as has our ability to use the combination of remote sensing data and models to provide early warning systems for disease outbreaks. This manuscript will discuss current approaches to monitoring cyanobacteria and vibrios, their activity and response to environmental drivers, and will also suggest future directions.

  6. Significance of Viable but Nonculturable Escherichia coli: Induction, Detection, and Control.

    PubMed

    Ding, Tian; Suo, Yuanjie; Xiang, Qisen; Zhao, Xihong; Chen, Shiguo; Ye, Xingqian; Liu, Donghong

    2017-03-28

    Diseases caused by foodborne or waterborne pathogens are emerging. Many pathogens can enter into the viable but nonculturable (VBNC) state, which is a survival strategy when exposed to harsh environmental stresses. Pathogens in the VBNC state have the ability to evade conventional microbiological detection methods, posing a significant and potential health risk. Therefore, controlling VBNC bacteria in food processing and the environment is of great importance. As the typical one of the gram-negatives, Escherichia coli ( E. coli ) is a widespread foodborne and waterborne pathogenic bacterium and is able to enter into a VBNC state in extreme conditions (similar to the other gram-negative bacteria), including inducing factors and resuscitation stimulus. VBNC E. coli has the ability to recover both culturability and pathogenicity, which may bring potential health risk. This review describes the concrete factors (nonthermal treatment, chemical agents, and environmental factors) that induce E. coli into the VBNC state, the condition or stimulus required for resuscitation of VBNC E. coli , and the methods for detecting VBNC E. coli . Furthermore, the mechanism of genes and proteins involved in the VBNC E. coli is also discussed in this review.

  7. Efficacy of microorganisms selected from compost to control soil-borne pathogens.

    PubMed

    Pugliese, M; Gullino, M L; Garibaldi, A

    2010-01-01

    Suppression of soil-borne plant pathogens with compost has been widely studied. Compost has been found to be suppressive against several soil-borne pathogens in various cropping systems. However, an increase of some diseases due to compost usage has also been observed, since compost is a product that varies considerably in chemical, physical and biotic composition, and, consequently, also in ability to suppress soil borne diseases. New opportunities in disease management can be obtained by the selection of antagonists from suppressive composts. The objective of the present work was to isolate microorganisms from a suppressive compost and to test them for their activity against soil-borne pathogens. A compost from green wastes, organic domestic wastes and urban sludge's that showed a good suppressive activity in previous trials was used as source of microorganisms. Serial diluted suspensions of compost samples were plated on five different media: selective for Fusarium sp., selective for Trichoderma sp., selective for oomycetes, potato dextrose agar (PDA) for isolation of fungi, lysogeny broth (LB) for isolation of bacteria. In total, 101 colonies were isolated from plates and tested under laboratory conditions on tomato seedlings growing on perlite medium in Petri plates infected with Fusarium oxysporum f.sp. radicis-lycopersici and compared to a commercial antagonist (Streptomyces griserovidis, Mycostop, Bioplanet). Among them, 28 showed a significant disease reduction and were assessed under greenhouse condition on three pathosystems: Fusarium oxysporum f.sp. basilica/basil, Phytophthora nicotianae/tomato and Rhizoctonia solani/bean. Fusarium spp. selected from compost generally showed a good disease control against Fusarium wilts, while only bacteria significantly controlled P. nicotianae on tomato under greenhouse conditions. None of the microorganisms was able to control the three soil-borne pathogens together, in particular Rhizoctonia solani. Results

  8. Peri-viable birth: legal considerations.

    PubMed

    Sayeed, Sadath A

    2014-02-01

    Peri-viable birth raises an array of complex moral and legal concerns. This article discusses the problem with defining viability, touches on its relationship to abortion jurisprudence, and analyzes a few interesting normative implications of current medical practice at the time of peri-viable birth. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Microbiological hazards resulting from application of dairy sewage sludge: effects on occurrence of pathogenic microorganisms in soil.

    PubMed

    Jezierska-Tys, Stefania; Frac, Magdalena; Tys, Jerzy

    2010-01-01

    The aims of this study were to (1) examine the extent of bacterial contamination of soils subjected to exposure to dairy sewage sludge applied to soils as measured by determination of number of bacteria from the Escherichia coli family and (2) determine the effects of dairy sewage sludge and straw on populations of other microbial species present in gray-brown podzolic soil. The gray-brown podzolic soil was formed from heavy loamy sand, which is characterized by the following granulometric composition: a sand fraction, 65%; a silt fraction, 19%; and a silt and clay fraction; 16%. The brown soil was formed from silt-loam and characterized by the following granulometric composition of silty-clay deposit: sand fraction, 8%; silt fraction, 48%; and clay and silt fraction, 46%. In dairy sewage sludge the total bacteria number as defined by Alef and Nannipieri (1995) was 51 x 10(4) colony-forming units (cfu)/ kg dry matter (dm), fungi total number 10 x 10(3) cfu/ kg dm, and E. coli bacteria 9.5 x 10(3) most probable number (MPN)/kg dm. In dairy sewage sludge mixed with straw, total number of bacteria and total number of fungi decreased to 10(3) and 10(2), respectively. Competition for nitrogen, glucose, and lactose and organic acids such as acetic and succinic with soil microorganisms, as well as soil conditions such as lack of oxygen, lower soil pH, and temperature, may account for the reduction in the number of E. coli bacteria in soils to which dairy sewage sludge was applied. Dairy sewage sludge may provide a beneficial impact on soil environment and adversely affect microorganisms such that dairy sewage sludge may be used as a safe organic fertilizer.

  10. Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation.

    PubMed

    Navarro, Claudio A; von Bernath, Diego; Jerez, Carlos A

    2013-01-01

    Microbial solubilizing of metals in acid environments is successfully used in industrial bioleaching of ores or biomining to extract metals such as copper, gold, uranium and others. This is done mainly by acidophilic and other microorganisms that mobilize metals and generate acid mine drainage or AMD, causing serious environmental problems. However, bioremediation or removal of the toxic metals from contaminated soils can be achieved by using the specific properties of the acidophilic microorganisms interacting with these elements. These bacteria resist high levels of metals by using a few "canonical" systems such as active efflux or trapping of the metal ions by metal chaperones. Nonetheless, gene duplications, the presence of genomic islands, the existence of additional mechanisms such as passive instruments for pH and cation homeostasis in acidophiles and an inorganic polyphosphate-driven metal resistance mechanism have also been proposed. Horizontal gene transfer in environmental microorganisms present in natural ecosystems is considered to be an important mechanism in their adaptive evolution. This process is carried out by different mobile genetic elements, including genomic islands (GI), which increase the adaptability and versatility of the microorganism. This mini-review also describes the possible role of GIs in metal resistance of some environmental microorganisms of importance in biomining and bioremediation of metal polluted environments such as Thiomonas arsenitoxydans, a moderate acidophilic microorganism, Acidithiobacillus caldus and Acidithiobacillus ferrooxidans strains ATCC 23270 and ATCC 53993, all extreme acidophiles able to tolerate exceptionally high levels of heavy metals. Some of these bacteria contain variable numbers of GIs, most of which code for high numbers of genes related to metal resistance. In some cases there is an apparent correlation between the number of metal resistance genes and the metal tolerance of each of these

  11. Treatment performance and microorganism community structure of integrated vertical-flow constructed wetland plots for domestic wastewater.

    PubMed

    Wu, Su-qing; Chang, Jun-jun; Dai, Yanran; Wu, Zhen-bin; Liang, Wei

    2013-06-01

    In order to investigate the treatment performance and microorganism mechanism of IVCW for domestic wastewater in central of China, two parallel pilot-scale IVCW systems were built to evaluate purification efficiencies, microbial community structure and enzyme activities. The results showed that mean removal efficiencies were 81.03 % for COD, 51.66 % for total nitrogen (TN), 42.50 % for NH4 (+)-N, and 68.01 % for TP. Significant positive correlations between nitrate reductase activities and TN and NH4 (+)-N removal efficiencies, along with a significant correlation between substrate enzyme activity and operation time, were observed. Redundancy analysis demonstrated gram-negative bacteria were mainly responsible for urease and phosphatase activities, and also played a major role in dehydrogenase and nitrate reductase activities. Meanwhile, anaerobic bacteria, gram-negative bacteria, and saturated FA groups, gram-positive bacteria exhibited good correlations with the removal of COD (p=0.388), N (p=0.236), and TP (p=0.074), respectively. The IVCW system can be used to treat domestic wastewater effectively.

  12. Potential for gulls to transport bacteria from human waste sites to beaches.

    PubMed

    Alm, Elizabeth W; Daniels-Witt, Quri R; Learman, Deric R; Ryu, Hodon; Jordan, Dustin W; Gehring, Thomas M; Santo Domingo, Jorge

    2018-02-15

    Contamination of recreational beaches due to fecal waste from gulls complicates beach monitoring and may pose a risk to public health. Gulls that feed at human waste sites may ingest human fecal microorganisms associated with that waste. If these gulls also visit beaches, they may serve as vectors, transporting fecal microorganisms to the beach where they may subsequently contaminate sand and water. In this study, samples collected from landfills, treated wastewater storage lagoons, and public beaches demonstrated a spatial and temporal overlap of markers for gull and human-associated microorganisms. In addition, markers for gull, fecal indicator bacteria, and the human-associated marker, HF183, were detected in gull feces and cloacae samples. Further, HF183 was detected in cloacae samples from gulls that were documented by radio-telemetry traveling between human waste sites and public beaches. This study highlights the potential for gulls that visit human waste sites to disperse human-associated microorganisms in the beach landscape. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments

    PubMed Central

    Yergeau, Etienne; Bokhorst, Stef; Kang, Sanghoon; Zhou, Jizhong; Greer, Charles W; Aerts, Rien; Kowalchuk, George A

    2012-01-01

    Because of severe abiotic limitations, Antarctic soils represent simplified systems, where microorganisms are the principal drivers of nutrient cycling. This relative simplicity makes these ecosystems particularly vulnerable to perturbations, like global warming, and the Antarctic Peninsula is among the most rapidly warming regions on the planet. However, the consequences of the ongoing warming of Antarctica on microorganisms and the processes they mediate are unknown. Here, using 16S rRNA gene pyrosequencing and qPCR, we report highly consistent responses in microbial communities across disparate sub-Antarctic and Antarctic environments in response to 3 years of experimental field warming (+0.5 to 2 °C). Specifically, we found significant increases in the abundance of fungi and bacteria and in the Alphaproteobacteria-to-Acidobacteria ratio, which could result in an increase in soil respiration. Furthermore, shifts toward generalist bacterial communities following warming weakened the linkage between the bacterial taxonomic and functional richness. GeoChip microarray analyses also revealed significant warming effects on functional communities, specifically in the N-cycling microorganisms. Our results demonstrate that soil microorganisms across a range of sub-Antarctic and Antarctic environments can respond consistently and rapidly to increasing temperatures. PMID:21938020

  14. Evolution of Mudstone Porosity, Permeability, and Microstructure in the Presence of Microorganisms During Vertical Compression

    NASA Astrophysics Data System (ADS)

    Mills, T.; Reece, J. S.

    2016-12-01

    Here we investigate the influence of microbial activity on the mechanical and transport properties of mudstones during early diagenesis. Despite the proven presence of microbial communities in marine sediments to depths of >500 meters below sea floor (mbsf), little is known about the interactions between microorganisms and sediments, especially during the early stages of burial and compression. To characterize and quantify the impact of microbial activity on mudstone properties, we compare natural mudstone samples treated with iron reducing bacteria Shewanella Oneidensis MR-1 and those without bacteria. Two bulk mudstones are experimentally prepared using sediments from Integrated Ocean Drilling Program Sites U1319 and U1324 in the Gulf of Mexico. The sediments originated from 4-13 mbsf in the Brazos-Trinity Basin and from three depth intervals (3-14 mbsf, 23-32 mbsf, and 493-502 mbsf) in the Ursa Basin. The sediments are dried and ground to clay- and silt-sized particles and homogenized into two natural mudstone powders. These powders are then used to make reproducible mudstone samples through a process called resedimentation, which replicates natural deposition and burial. Changes in microstructure, porosity, compressibility, and permeability are measured while the biotic (with bacteria) and abiotic (without bacteria) mudstones are being uniaxially compressed over several weeks to a maximum stress of 100 kPa. We anticipate that biofilm growth in pore spaces will decrease porosity, compressibility, and permeability, and the resultant microstructural changes created by microorganisms will be evident in high-resolution scanning electron microscope (SEM) images. Recognition of the micro-scale processes that take place during the early stages of mudstone diagenesis, especially those mediated by microbial activity, and their long-term effects on mudstone properties can lead to better identification and more effective production of unconventional hydrocarbon reservoirs.

  15. Bubble Shuttle: A newly discovered transport mechanism, which transfers microorganisms from the sediment into the water column

    NASA Astrophysics Data System (ADS)

    Schmale, O.; Stolle, C.; Leifer, I.; Schneider von Deimling, J.; Kiesslich, K.; Krause, S.; Frahm, A.; Treude, T.

    2013-12-01

    The diversity and abundance of methanotrophic microorganisms is well studied in the aquatic environment, indicating their importance in biogeochemical cycling of methane in the sediment and the water column. However, whether methanotrophs are distinct populations in these habitats or are exchanged between benthic and pelagic environments, remains an open question. Therefore, field studies were conducted at the 'Rostocker Seep' site (Coal Oil Point seep area, California, USA) to test our hypothesis that methane-oxidizing microorganisms can be transported by gas bubbles from the sediment into the water column. The natural methane emanating location 'Rostocker Seep' showed a strong surface water oversaturation in methane with respect to the atmospheric equilibrium. Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) analyzes were performed to determine the abundance of aerobic and anaerobic methanotrophic microorganisms. Aerobic methane oxidizing bacteria were detected in the sediment and the water column, whereas anaerobic methanotrophs were detected exclusively in the sediment. The key device of the project was the newly developed "Bubble Catcher" used to collect naturally emanating gas bubbles at the sea floor together with particles attached to the bubble surface rim. Bubble Catcher experiments were carried out directly above a natural bubble release spot and on a reference site at which artificially released gas bubbles were caught, which had no contact with the sediment. CARD-FISH analyzes showed that aerobic methane oxidizing bacteria were transported by gas bubbles from the sediment into the water column. In contrast anaerobic methanotrophs were not detected in the bubble catcher. Further results indicate that this newly discovered Bubble Shuttle transport mechanism might influence the distribution pattern of methanotrophic microorganisms in the water column and even at the air-sea interface. Methane seep areas are often characterized

  16. Selection and evaluation of micro-organisms for biocontrol of Verticillium dahliae in olive.

    PubMed

    Varo, A; Raya-Ortega, M C; Trapero, A

    2016-09-01

    To identify potential biological control agents against Verticillium wilt in olive through a mass screening approach. A total of 47 strains and nine mixtures of micro-organisms were evaluated against Verticillium dahliae in a three stage screening: (i) in vitro, by the effect on the mycelial growth and spore germination of the pathogen; (ii) in natural infested soil, by the effect on the reduction of microsclerotia of the pathogen; (iii) in planta, by the effect on the infection of olive plants under controlled conditions. Various fungal and bacterial strains and mixtures inhibited the pathogen and showed consistent biocontrol activity against Verticillium wilt of olive. The screening has resulted in promising fungi and bacteria strains with antagonistic activity against Verticillium, such as two non-pathogenic Fusarium oxysporum, one Phoma sp., one Pseudomonas fluorescens and two mixtures of micro-organisms that may possess multiple modes of action. This study provides a practical basis for the potential use of selected strains as biocontrol agents for the protection of olive plants against V. dahliae infection. In addition, our study presented an effective method to evaluate antagonistic micro-organisms of V. dahliae in olive. © 2016 The Society for Applied Microbiology.

  17. Impact on Human Health of Microorganisms Present in Fermented Dairy Products: An Overview

    PubMed Central

    Fernández, María; Hudson, John Andrew; de los Reyes-Gavilán, Clara G.

    2015-01-01

    Fermented dairy products provide nutrients in our diet, some of which are produced by the action of microorganisms during fermentation. These products can be populated by a diverse microbiota that impacts the organoleptic and physicochemical characteristics foods as well as human health. Acidification is carried out by starter lactic acid bacteria (LAB) whereas other LAB, moulds, and yeasts become dominant during ripening and contribute to the development of aroma and texture in dairy products. Probiotics are generally part of the nonstarter microbiota, and their use has been extended in recent years. Fermented dairy products can contain beneficial compounds, which are produced by the metabolic activity of their microbiota (vitamins, conjugated linoleic acid, bioactive peptides, and gamma-aminobutyric acid, among others). Some microorganisms can also release toxic compounds, the most notorious being biogenic amines and aflatoxins. Though generally considered safe, fermented dairy products can be contaminated by pathogens. If proliferation occurs during manufacture or storage, they can cause sporadic cases or outbreaks of disease. This paper provides an overview on the current state of different aspects of the research on microorganisms present in dairy products in the light of their positive or negative impact on human health. PMID:25839033

  18. Impact on human health of microorganisms present in fermented dairy products: an overview.

    PubMed

    Fernández, María; Hudson, John Andrew; Korpela, Riitta; de los Reyes-Gavilán, Clara G

    2015-01-01

    Fermented dairy products provide nutrients in our diet, some of which are produced by the action of microorganisms during fermentation. These products can be populated by a diverse microbiota that impacts the organoleptic and physicochemical characteristics foods as well as human health. Acidification is carried out by starter lactic acid bacteria (LAB) whereas other LAB, moulds, and yeasts become dominant during ripening and contribute to the development of aroma and texture in dairy products. Probiotics are generally part of the nonstarter microbiota, and their use has been extended in recent years. Fermented dairy products can contain beneficial compounds, which are produced by the metabolic activity of their microbiota (vitamins, conjugated linoleic acid, bioactive peptides, and gamma-aminobutyric acid, among others). Some microorganisms can also release toxic compounds, the most notorious being biogenic amines and aflatoxins. Though generally considered safe, fermented dairy products can be contaminated by pathogens. If proliferation occurs during manufacture or storage, they can cause sporadic cases or outbreaks of disease. This paper provides an overview on the current state of different aspects of the research on microorganisms present in dairy products in the light of their positive or negative impact on human health.

  19. Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria

    USGS Publications Warehouse

    Lonergan, D.J.; Jenter, H.L.; Coates, J.D.; Phillips, E.J.P.; Schmidt, T.M.; Lovley, D.R.

    1996-01-01

    Evolutionary relationships among strictly anaerobic dissimilatory Fe(III)- reducing bacteria obtained from a diversity of sedimentary environments were examined by phylogenetic analysis of 16S rRNA gene sequences. Members of the genera Geobacter, Desulfuromonas, Pelobacter, and Desulfuromusa formed a monophyletic group within the delta subdivision of the class Proteobacteria. On the basis of their common ancestry and the shared ability to reduce Fe(III) and/or S0, we propose that this group be considered a single family, Geobacteraceae. Bootstrap analysis, characteristic nucleotides, and higher- order secondary structures support the division of Geobacteraceae into two subgroups, designated the Geobacter and Desulfuromonas clusters. The genus Desulfuromusa and Pelobacter acidigallici make up a distinct branch with the Desulfuromonas cluster. Several members of the family Geobacteraceae, none of which reduce sulfate, were found to contain the target sequences of probes that have been previously used to define the distribution of sulfate-reducing bacteria and sulfate-reducing bacterium-like microorganisms. The recent isolations of Fe(III)-reducing microorganisms distributed throughout the domain Bacteria suggest that development of 16S rRNA probes that would specifically target all Fe(III) reducers may not be feasible. However, all of the evidence suggests that if a 16S rRNA sequence falls within the family Geobacteraceae, then the organism has the capacity for Fe(III) reduction. The suggestion, based on geological evidence, that Fe(III) reduction was the first globally significant process for oxidizing organic matter back to carbon dioxide is consistent with the finding that acetate-oxidizing Fe(III) reducers are phylogenetically diverse.

  20. Effect of Short-Term Chilling of Rumen Contents on Viable Bacterial Numbers †

    PubMed Central

    Dehority, Burk A.; Grubb, Jean A.

    1980-01-01

    Anaerobic storage of whole rumen contents at 0°C for 8 and 24 h resulted in viable colony counts which were 113 and 92%, respectively, of the colony count obtained with an unstored sample. No significant differences in the percentages of the total population capable of utilizing glucose, cellobiose, starch, or xylose occurred with storage. Numerous factors were investigated as possible explanations for the increase in bacterial numbers observed after storage for 8 h in ice. Growth and multiplication of bacteria, subsampling of rumen contents, susceptibility to oxygen, lysis of protozoa with the release of viable bacteria, and rumen sampling time did not appear to be involved. Compilation of the data from all 29 of the above experiments gave a mean value for samples stored for 8 h in ice which was 134.8% of the control (P < 0.005). The effect of storage time at 0°C indicated that a significant increase in colony count occurred after 4 h, and, based on these data, 6 h was subsequently used as the standard cold-storage period. Circumstantial evidence supported the hypothesis that storage of rumen contents for 6 h at 0°C appears to alter or to break down the material responsible for cell-to-cell or cell-to-particulate matter attachment. Addition of a surfactant to the anaerobic dilution solution significantly increased total colony count of rumen contents to an extent similar to chilling in ice for 6 h. However, an additive effect was observed when surfactant-containing anaerobic dilution solution was used with samples stored for 6 h at 0°C. PMID:7377771