Sample records for vibration energy harvesting

  1. Downhole vibration sensing by vibration energy harvesting

    E-print Network

    Trimble, A. Zachary

    2007-01-01

    This thesis outlines the design of a prototype electromagnetic induction vibration energy harvesting device for use in a downhole environment. First order models of the necessary components for a generic vibration energy ...

  2. Harvesting energy from non-ideal vibrations

    E-print Network

    Chang, Samuel C

    2013-01-01

    Energy harvesting has drawn significant interest for its potential to power autonomous low-power applications. Vibration energy harvesting is particularly well suited to industrial condition sensing, environmental monitoring ...

  3. A Miniature Coupled Bistable Vibration Energy Harvester

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Arthur, D. C.; Beeby, S. P.

    2014-11-01

    This paper reports the design and test of a miniature coupled bistable vibration energy harvester. Operation of a bistable structure largely depends on vibration amplitude rather than frequency, which makes it very promising for wideband vibration energy harvesting applications. A coupled bistable structure consists of a pair of mobile magnets that create two potential wells and thus the bistable phenomenon. It requires lower excitation to trigger bistable operation compared to conventional bistable structures. Based on previous research, this work focused on miniaturisation of the coupled bistable structure for energy harvesting application. The proposed bistable energy harvester is a combination of a Duffing's nonlinear structure and a linear assisting resonator. Experimental results show that the output spectrum of the miniature coupled bistable vibration energy harvester was the superposition of several spectra. It had a higher maximum output power and a much greater bandwidth compared to simply the Duffing's structure without the assisting resonator.

  4. Vibration energy harvesting by magnetostrictive material

    Microsoft Academic Search

    Lei Wang; F. G. Yuan

    2008-01-01

    A new class of vibration energy harvester based on magnetostrictive material (MsM), Metglas 2605SC, is designed, developed and tested. It contains two submodules: an MsM harvesting device and an energy harvesting circuit. Compared to piezoelectric materials, the Metglas 2605SC offers advantages including higher energy conversion efficiency, longer life cycles, lack of depolarization and higher flexibility to survive in strong ambient

  5. Harvesting vibrational energy using material work functions.

    PubMed

    Varpula, Aapo; Laakso, Sampo J; Havia, Tahvo; Kyynäräinen, Jukka; Prunnila, Mika

    2014-01-01

    Vibration energy harvesters scavenge energy from mechanical vibrations to energise low power electronic devices. In this work, we report on vibration energy harvesting scheme based on the charging phenomenon occurring naturally between two bodies with different work functions. Such work function energy harvester (WFEH) is similar to electrostatic energy harvester with the fundamental distinction that neither external power supplies nor electrets are needed. A theoretical model and description of different operation modes of WFEHs are presented. The WFEH concept is tested with macroscopic experiments, which agree well with the model. The feasibility of miniaturizing WFEHs is shown by simulating a realistic MEMS device. The WFEH can be operated as a charge pump that pushes charge and energy into an energy storage element. We show that such an operation mode is highly desirable for applications and that it can be realised with either a charge shuttle or with switches. The WFEH is shown to give equal or better output power in comparison to traditional electrostatic harvesters. Our findings indicate that WFEH has great potential in energy harvesting applications. PMID:25348004

  6. Harvesting Vibrational Energy Using Material Work Functions

    PubMed Central

    Varpula, Aapo; Laakso, Sampo J.; Havia, Tahvo; Kyynäräinen, Jukka; Prunnila, Mika

    2014-01-01

    Vibration energy harvesters scavenge energy from mechanical vibrations to energise low power electronic devices. In this work, we report on vibration energy harvesting scheme based on the charging phenomenon occurring naturally between two bodies with different work functions. Such work function energy harvester (WFEH) is similar to electrostatic energy harvester with the fundamental distinction that neither external power supplies nor electrets are needed. A theoretical model and description of different operation modes of WFEHs are presented. The WFEH concept is tested with macroscopic experiments, which agree well with the model. The feasibility of miniaturizing WFEHs is shown by simulating a realistic MEMS device. The WFEH can be operated as a charge pump that pushes charge and energy into an energy storage element. We show that such an operation mode is highly desirable for applications and that it can be realised with either a charge shuttle or with switches. The WFEH is shown to give equal or better output power in comparison to traditional electrostatic harvesters. Our findings indicate that WFEH has great potential in energy harvesting applications. PMID:25348004

  7. Energy harvesting vibration sources for microsystems applications

    Microsoft Academic Search

    S P Beeby; M J Tudor; N M White

    2006-01-01

    This paper reviews the state-of-the art in vibration energy harvesting for wireless, self-powered microsystems. Vibration-powered generators are typically, although not exclusively, inertial spring and mass systems. The characteristic equations for inertial-based generators are presented, along with the specific damping equations that relate to the three main transduction mechanisms employed to extract energy from the system. These transduction mechanisms are: piezoelectric,

  8. A vibration energy harvester using diamagnetic levitation

    NASA Astrophysics Data System (ADS)

    Palagummi, S.; Yuan, F. G.

    2013-04-01

    In this paper a novel electromagnetic vibration type energy harvester which uses a diamagnetic levitation system is conceptualized, designed, fabricated, and tested. The harvester uses two diamagnetic plates made of pyrolytic graphite between which a cylindrical magnet levitates passively. Two archimedean spiral coils are placed in grooves which are engraved in the pyrolytic graphite plates, used to convert the mechanical energy into electrical energy efficiently. The geometric configurations of coils are selected based on the field distribution of the magnet to enhance the efficiency of the harvester. A thorough theoretical analysis is done to compare with the experiment results. At an input power of 103.45 ?W and at a frequency of 2.7 Hz, the harvester generated a power of 0.744 ?W at an efficiency of 0.72 %. Both theoretical and experimental results show that this new energy harvesting system is efficient and can capture low frequency broadband spectra.

  9. A magnetically levitated vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Palagummi, S.; Liu, L.; Yuan, F. G.

    2013-05-01

    In this paper a novel electromagnetic vibration type energy harvester that uses a diamagnetic levitation system is conceptualized, designed, fabricated, and tested. The harvester uses two diamagnetic plates made of pyrolytic graphite between which a cylindrical magnet levitates passively. Two thick cylindrical coils, placed in grooves which are engraved in the pyrolytic graphite plates, are used to convert the mechanical energy into electrical energy efficiently. The geometric configurations of the coils are selected based on the field distribution of the magnet to enhance the efficiency of the harvester. A thorough theoretical analysis is carried out to compare with experimental results. At an input power of 103.45 ?W and at a frequency of 2.7 Hz, the harvester generated a power of 0.74 ?W with a system efficiency of 0.72%. Both theoretical and experimental results show that this new energy harvesting system can capture low frequency broadband spectra.

  10. Vibration based energy harvesting using piezoelectric material

    Microsoft Academic Search

    M. N Fakhzan; Asan G. A. Muthalif

    2011-01-01

    Energy harvesting has been around for centuries in the form of windmills, watermills and passive solar power systems. It is not only restricted to the natural resources but it has widen the tapping source to utilise the vibration which happen all around us. In the last decade, beam with piezoceramic patches have been used as a method to harverst energy.

  11. Energy harvesting of gas pipeline vibration

    NASA Astrophysics Data System (ADS)

    Arafa, M.; Akl, W.; Majeed, M.; Al-Hussain, K.; Baz, A.

    2010-04-01

    Pipelines conveying gas under pressure exhibit turbulence-induced vibrations. The current work is concerned with extracting useful power from pipelines operating well within their stability region. At such regions, the pipe vibrations exist in small magnitudes and are unlikely to cause structural failure, yet can be exploited to provide useful energy for low-power electronic devices. Accordingly, emphasis in the present work is placed on the development of an energy harvesting technique employing the omnipresent and inevitable flow-induced vibrations in gas pipelines.

  12. Piezoelectric energy harvesting from traffic-induced bridge vibrations

    E-print Network

    Paris-Sud XI, Université de

    Piezoelectric energy harvesting from traffic-induced bridge vibrations Micha¨el Peigney1 harvesting of traffic-induced vibrations in bridges. Using a pre-stressed concrete highway bridge as a case-induced bridge vibrations 2 1. Introduction This paper focuses on using bridge vibrations as an energy source

  13. Similarity and duality of electromagnetic and piezoelectric vibration energy harvesters

    NASA Astrophysics Data System (ADS)

    Wang, Xu; John, Sabu; Watkins, Simon; Yu, Xinghuo; Xiao, Han; Liang, Xingyu; Wei, Haiqiao

    2015-02-01

    A frequency analysis has been conducted to study vibration energy harvesting performance and characteristics of a single degree of freedom vibration energy harvester connected to a single load resistor based on the Laplace transfer method and physical models of a voltage source. The performance and characteristics of electromagnetic and piezoelectric harvesters have been analysed and compared. The main research outcome is the disclosure of similarity and duality of electromagnetic and piezoelectric harvesters for both the energy harvesting efficiency and the normalised resonant harvested power using only two dimensionless characteristic parameters: the normalised resistance and the normalised force factor. The dimensionless resonant harvested power and energy harvesting efficiency analysis allows for a parameter study and optimization of the ambient vibration energy harvesters from macro- to nano-scales and for evaluation of the vibration energy harvester performance regardless of the size and type.

  14. Piezoelectric energy harvesting from hybrid vibrations

    NASA Astrophysics Data System (ADS)

    Yan, Zhimiao; Abdelkefi, Abdessattar; Hajj, Muhammad R.

    2014-02-01

    The concept of harvesting energy from ambient and galloping vibrations of a bluff body with a triangular cross-section geometry is investigated. A piezoelectric transducer is attached to the transverse degree of freedom of the body in order to convert these vibrations to electrical energy. A coupled nonlinear distributed-parameter model is developed that takes into consideration the galloping force and moment nonlinearities and the base excitation effects. The aerodynamic loads are modeled using the quasi-steady approximation. Linear analysis is performed to determine the effects of the electrical load resistance and wind speed on the global damping and frequency of the harvester as well as on the onset of instability. Then, nonlinear analysis is performed to investigate the impact of the base acceleration, wind speed, and electrical load resistance on the performance of the harvester and the associated nonlinear phenomena that take place. The results show that, depending on the interaction between the base and galloping excitations, and the considered values of the wind speed, base acceleration, and electrical load resistance, different nonlinear phenomena arise while others disappear. Short- and open-circuit configurations for different wind speeds and base accelerations are assessed. The results show that the maximum levels of harvested power are accompanied by a minimum transverse displacement when varying the electrical load resistance.

  15. Energy harvesting from wind-induced vibration of suspension bridges

    E-print Network

    Shi, Miao, M. Eng. Massachusetts Institute of Technology

    2013-01-01

    Recently, an extensive amount of research has been focused on energy harvesting from structural vibration sources for wireless self-powered microsystem applications. One method of energy harvesting is using electromagnetic ...

  16. A vibration energy harvester using magnet/piezoelectric composite transducer

    NASA Astrophysics Data System (ADS)

    Qiu, Jing; Chen, Hengjia; Wen, Yumei; Li, Ping; Yang, Jin; Li, Wenli

    2014-05-01

    In this research, a vibration energy harvester employing the magnet/piezoelectric composite transducer to convert mechanical vibration energy into electrical energy is presented. The electric output performance of a vibration energy harvester has been investigated. Compared to traditional magnetoelectric transducer, the proposed vibration energy harvester has some remarkable characteristic which do not need binder. The experimental results show that the presented vibration energy harvester can obtain an average power of 0.39 mW for an acceleration of 0.6g at frequency of 38 Hz. Remarkably, this power is a very encouraging power figure that gives the prospect of being able to power a widely range of wireless sensors in wireless sensor network.

  17. Vibration energy harvesting from random force and motion excitations

    NASA Astrophysics Data System (ADS)

    Tang, Xiudong; Zuo, Lei

    2012-07-01

    A vibration energy harvester is typically composed of a spring-mass system with an electromagnetic or piezoelectric transducer connected in parallel with a spring. This configuration has been well studied and optimized for harmonic vibration sources. Recently, a dual-mass harvester, where two masses are connected in series by the energy transducer and a spring, has been proposed. The dual-mass vibration energy harvester is proved to be able to harvest more power and has a broader bandwidth than the single-mass configuration, when the parameters are optimized and the excitation is harmonic. In fact, some dual-mass vibration energy harvesters, such as regenerative vehicle suspensions and buildings with regenerative tuned mass dampers (TMDs), are subjected to random excitations. This paper is to investigate the dual-mass and single-mass vibration harvesters under random excitations using spectrum integration and the residue theorem. The output powers for these two types of vibration energy harvesters, when subjected to different random excitations, namely force, displacement, velocity and acceleration, are obtained analytically with closed-form expressions. It is also very interesting to find that the output power of the vibration energy harvesters under random excitations depends on only a few parameters in very simple and elegant forms. This paper also draws some important conclusions on regenerative vehicle suspensions and buildings with regenerative TMDs, which can be modeled as dual-mass vibration energy harvesters. It is found that, under white-noise random velocity excitation from road irregularity, the harvesting power from vehicle suspensions is proportional to the tire stiffness and road vertical excitation spectrum only. It is independent of the chassis mass, tire-wheel mass, suspension stiffness and damping coefficient. Under random wind force excitation, the power harvested from buildings with regenerative TMD will depends on the building mass only, not on the parameters of the TMD subsystem if the ratio of electrical and mechanical damping is constant.

  18. A MEMS vibration energy harvester for automotive applications

    NASA Astrophysics Data System (ADS)

    van Schaijk, R.; Elfrink, R.; Oudenhoven, J.; Pop, V.; Wang, Z.; Renaud, M.

    2013-05-01

    The objective of this work is to develop MEMS vibration energy harvesters for tire pressure monitoring systems (TPMS), they can be located on the rim or on the inner-liner of the car tire. Nowadays TPMS modules are powered by batteries with a limited lifetime. A large effort is ongoing to replace batteries with small and long lasting power sources like energy harvesters [1]. The operation principle of vibration harvesters is mechanical resonance of a seismic mass, where mechanical energy is converted into electrical energy. In general, vibration energy harvesters are of specific interest for machine environments where random noise or repetitive shock vibrations are present. In this work we present the results for MEMS based vibration energy harvesting for applying on the rim or inner-liner. The vibrations on the rim correspond to random noise. A vibration energy harvester can be described as an under damped mass-spring system acting like a mechanical band-pass filter, and will resonate at its natural frequency [2]. At 0.01 g2/Hz noise amplitude the average power can reach the level that is required to power a simple wireless sensor node, approximately 10 ?W [3]. The dominant vibrations on the inner-liner consist mainly of repetitive high amplitude shocks. With a shock, the seismic mass is displaced, after which the mass will "ring-down" at its natural resonance frequency. During the ring-down period, part of the mechanical energy is harvested. On the inner-liner of the tire repetitive (one per rotation) high amplitude (few hundred g) shocks occur. The harvester enables an average power of a few tens of ?W [4], sufficient to power a more sophisticated wireless sensor node that can measure additional tire-parameters besides pressure. In this work we characterized MEMS vibration energy harvesters for noise and shock excitation. We validated their potential for TPMS modules by measurements and simulation.

  19. Energy harvesting of random wide-band vibrations with applications to an electro-magnetic rotational energy harvester

    E-print Network

    Trimble, A. Zachary

    2011-01-01

    In general, vibration energy harvesting is the scavenging of ambient vibration by transduction of mechanical kinetic energy into electrical energy. Many mechanical or electro-mechanical systems produce mechanical vibrations. ...

  20. Modeling and design of a MEMS piezoelectric vibration energy harvester

    E-print Network

    Du Toit, Noël Eduard

    2005-01-01

    The modeling and design of MEMS-scale piezoelectric-based vibration energy harvesters (MPVEH) are presented. The work is motivated by the need for pervasive and limitless power for wireless sensor nodes that have application ...

  1. Magnetic induction systems to harvest energy from mechanical vibrations

    E-print Network

    Jonnalagadda, Aparna S

    2007-01-01

    This thesis documents the design process for magnetic induction systems to harvest energy from mechanical vibrations. Two styles of magnetic induction systems - magnet-through-coil and magnet-across-coils - were analyzed. ...

  2. Evaluating vehicular-induced bridge vibrations for energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Reichenbach, Matthew; Fasl, Jeremiah; Samaras, Vasilis A.; Wood, Sharon; Helwig, Todd; Lindenberg, Richard

    2012-04-01

    Highway bridges are vital links in the transportation network in the United States. Identifying possible safety problems in the approximately 600,000 bridges across the country is generally accomplished through labor-intensive, visual inspections. Ongoing research sponsored by NIST seeks to improve inspection practices by providing real-time, continuous monitoring technology for steel bridges. A wireless sensor network with a service life of ten years that is powered by an integrated energy harvester is targeted. In order to achieve the target ten-year life for the monitoring system, novel approaches to energy harvesting for use in recharging batteries are investigated. Three main sources of energy are evaluated: (a) vibrational energy, (b) solar energy, and (c) wind energy. Assessing the energy produced from vehicular-induced vibrations and converted through electromagnetic induction is the focus of this paper. The goal of the study is to process acceleration data and analyze the vibrational response of steel bridges to moving truck loads. Through spectral analysis and harvester modeling, the feasibility of vibration-based energy harvesting for longterm monitoring can be assessed. The effects of bridge conditions, ambient temperature, truck traffic patterns, and harvester position on the power content of the vibrations are investigated. With sensor nodes continually recharged, the proposed real-time monitoring system will operate off the power grid, thus reducing life cycle costs and enhancing inspection practices for state DOTs. This paper will present the results of estimating the vibration energy of a steel bridge in Texas.

  3. Power Processing Circuits for Piezoelectric Vibration-Based Energy Harvesters

    Microsoft Academic Search

    R. D'hulst; T. Sterken; R. Puers; G. Deconinck; J. Driesen

    2010-01-01

    The behavior of a piezoelectric vibration-driven energy harvester with different power processing circuits is evaluated. Two load types are considered: a resistive load and an ac-dc rectifier load. An optimal resistive and optimal dc-voltage load for the harvester is analytically calculated. The difference between the optimal output power flow from the harvester to both load circuits depends on the coupling

  4. Electromagnetic energy harvester with repulsively stacked multilayer magnets for low frequency vibrations

    E-print Network

    Stanford University

    traffic induced bridge vibrations. First, the governing equation for electromechanical coupling from the ambient vibration of the bridge. Keywords: energy harvesting, electromagnetic harvester, bridge vibration, linear generator, multilayer magnets. #12;1 1. Introduction Wireless sensors are now

  5. A Branched Beam-Based Vibration Energy Harvester

    NASA Astrophysics Data System (ADS)

    Zhang, Guangcheng; Hu, Junhui

    2014-09-01

    In this paper, a strategy to utilize a branched beam system to improve the frequency response characteristic of vibration energy harvesting is demonstrated. A basic unit of the device consists of several branch beams with proof mass at their ends and one main cantilever beam with a piezoelectric component at its root and proof mass at its end. The device can utilize the resonance of the branch beams and main beam to generate multiple output voltage peaks, providing a better frequency response characteristic than that of the conventional piezoelectric vibration energy harvester. Multiple branch structure and multiple basic units with similar structures can be connected to generate more output voltage peaks in the frequency response characteristic. Only one piezoelectric component is needed in the device, which makes it competitive in the management of harvested electric energy.

  6. DEAP-based energy harvesting using vortex-induced vibrations

    NASA Astrophysics Data System (ADS)

    Hoffstadt, Thorben; Heinze, Robert; Wahl, Tim; Kameier, Frank; Maas, Jürgen

    2014-03-01

    Generators based on dielectric electroactive polymers (DEAP) convert mechanical strain energy into electrical field energy. In order to harvest renewable energy from ambient sources adequate generator setups have to be developed. Thus, in this contribution a DEAP generator is presented which uses periodic vortex induced vibration of a circular cylinder as excitation mechanism, by which e.g. Flow energy of a wind or water current can be converted. For this purpose a novel generator design consisting of a cylinder that is elastically mounted on DEAP material is presented. Since the effect of vortex induced vibrations depends on the stiffness and damping of the utilized generator's eigenmode, a method to adapt both via the electrostatic pressure and energy conversion is proposed. After the validation of the general functionality of the novel generator design, analyses concerning the control of the overall harvester are carried out.

  7. Effect of electrode configurations on piezoelectric vibration energy harvesting performance

    NASA Astrophysics Data System (ADS)

    Kim, Miso; Dugundji, John; Wardle, Brian L.

    2015-04-01

    Piezoelectric vibration energy harvesting is an attractive technology for self-powered wireless sensor networks because of the potential to deliver power to the sensor nodes from mechanical vibration sources in the surrounding medium. Systematic device designs are required in order to increase performance along with materials development of high piezoelectric coefficients and design of circuits with high power transfer efficiency. In this work, we present refined structural and electrical modeling of interdigitated electrodes (IDEs) for piezoelectric vibration energy harvesting, followed by parametric case studies on MEMS devices. Differences in geometric parameters including the size of the electrode and the number of IDE fingers for given device dimensions lead to substantial changes in harvesting performance such as capacitance, system coupling, voltage and power. When compared with parallel plate electrodes, use of IDEs results in much higher voltage generation by a factor of ten times while similar power levels are observed for both {3-1} and {3-3} configurations at optimal electrical loading conditions.

  8. Enhanced vibration based energy harvesting using embedded acoustic black holes

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Semperlotti, F.; Conlon, S. C.

    2014-03-01

    In this paper, we investigate the use of dynamic structural tailoring via the concept of an Acoustic Black Hole (ABH) to enhance the performance of piezoelectric based energy harvesting from operational mechanical vibrations. The ABH is a variable thickness structural feature that can be embedded in the host structure allowing a smooth reduction of the phase velocity while minimizing the amplitude of reflected waves. The ABH thickness variation is typically designed according to power-law profiles. As a propagating wave enters the ABH, it is progressively slowed down while its wavelength is compressed. This effect results in structural areas with high energy density that can be exploited effectively for energy harvesting. The potential of ABH for energy harvesting is shown via a numerical study based on fully coupled finite element electromechanical models of an ABH tapered plate with surface mounted piezo-transducers. The performances of the novel design are evaluated by direct comparison with a non-tapered structure in terms of energy ratios and attenuation indices. Results show that the tailored structural design allows a drastic increase in the harvested energy both for steady state and transient excitation. Performance dependencies of key design parameters are also investigated.

  9. Energy harvester array using piezoelectric circular diaphragm for rail vibration

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Huang, Rong-Jin; Huang, Chuan-Jun; Li, Lai-Feng

    2014-12-01

    Generating electric energy from mechanical vibration using a piezoelectric circular membrane array is presented in this paper. The electrical characteristics of the functional array consisted of three plates with varies tip masses are examined under dynamic conditions. With an optimal load resistor of 11 k?, an output power of 21.4 mW was generated from the array in parallel connection at 150 Hz under a pre-stress of 0.8 N and a vibration acceleration of 9.8 m/s2. Moreover, the broadband energy harvesting using this array still can be realized with different tip masses. Three obvious output power peaks can be obtained in a frequency spectra of 110 Hz to 260 Hz. The results show that using a piezoelectric circular diaphragm array can increase significantly the output of energy compared with the use of a single plate. And by optimizing combination of tip masses with piezoelectric elements in array, the frequency range can be tuned to meet the broadband vibration. This array may possibly be exploited to design the energy harvesting for practical applications such as future high speed rail.

  10. Multistable chain for ocean wave vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Harne, R. L.; Schoemaker, M. E.; Wang, K. W.

    2014-03-01

    The heaving of ocean waves is a largely untapped, renewable kinetic energy resource. Conversion of this energy into electrical power could integrate with solar technologies to provide for round-the-clock, portable, and mobile energy supplies usable in a wide variety of marine environments. However, the direct drive conversion methodology of gridintegrated wave energy converters does not efficiently scale down to smaller, portable architectures. This research develops an alternative power conversion approach to harness the extraordinarily large heaving displacements and long oscillation periods as an excitation source for an extendible vibration energy harvesting chain. Building upon related research findings and engineering insights, the proposed system joins together a series of dynamic cells through bistable interfaces. Individual impulse events are generated as the inertial mass of each cell is pulled across a region of negative stiffness to induce local snap through dynamics; the oscillating magnetic inertial mass then generates current in a coil which is connected to energy harvesting circuitry. It is shown that linking the cells into a chain transmits impulses through the system leading to cascades of vibration and enhancement of electrical energy conversion from each impulse event. This paper describes the development of the multistable chain and ways in which realistic design challenges were addressed. Numerical modeling and corresponding experiments demonstrate the response of the chain due to slow and large amplitude input motion. Lastly, experimental studies give evidence that energy conversion efficiency of the chain for wave energy conversion is much higher than using an equal number of cells without connections.

  11. Vibration energy harvesting via parametrically-induced bistability

    NASA Astrophysics Data System (ADS)

    Abadal, G.; López, M.; Venstra, W. J.; Murillo, G.; Torres, F.

    2014-11-01

    The dynamic response to white Gaussian noise of a bistable non-linear vibration energy harvester based on the repulsive electrostatic interaction between a microcantilever and an electrode has been theoretically studied. The cantilever-electrode system can be brought from a linear regime characterized by a quadratic potential, when cantilever is far from the electrode, to a non-linear bistable regime characterized by a quartic potential, when both elements are close enough. This distance parameter, which is commonly used to tune bistability, is unusually used here also to inject the energy to the system in the form of displacement noise. Thus, the widening and shifting to the low-frequency region of the response spectrum as well as the enhancement of the rms out-of-plane vibration of the cantilever are both demonstrated through this parametrically-induced bistability.

  12. Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator

    E-print Network

    Wang, Zhong L.

    device has been designed for harvesting vibration energy, especially at low frequencies, opening its application as a new energy technology. 1 Introduction There are tremendous amounts of ambient vibration

  13. Efficiency Enhancement of a Cantilever-Based Vibration Energy Harvester

    PubMed Central

    Kubba, Ali E.; Jiang, Kyle

    2014-01-01

    Extracting energy from ambient vibration to power wireless sensor nodes has been an attractive area of research, particularly in the automotive monitoring field. This article reports the design, analysis and testing of a vibration energy harvesting device based on a miniature asymmetric air-spaced cantilever. The developed design offers high power density, and delivers electric power that is sufficient to support most wireless sensor nodes for structural health monitoring (SHM) applications. The optimized design underwent three evolutionary steps, starting from a simple cantilever design, going through an air-spaced cantilever, and ending up with an optimized air-spaced geometry with boosted power density level. Finite Element Analysis (FEA) was used as an initial tool to compare the three geometries' stiffness (K), output open-circuit voltage (Vave), and average normal strain in the piezoelectric transducer (?ave) that directly affect its output voltage. Experimental tests were also carried out in order to examine the energy harvesting level in each of the three designs. The experimental results show how to boost the power output level in a thin air-spaced cantilever beam for energy within the same space envelope. The developed thin air-spaced cantilever (8.37 cm3), has a maximum power output of 2.05 mW (H = 29.29 ?J/cycle). PMID:24366177

  14. Multi-link piezoelectric structure for vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Aryanpur, Rameen M.; White, Robert D.

    2012-04-01

    Work in piezoelectric vibration energy harvesting has typically focused on single member cantilevered structures with transverse tip displacement at a known frequency, taking advantage of the optimal coupling characteristics of piezoceramics in the 3-1 bending mode. Multi-member designs could be advantageous in delivering power to a load in environments with random or wide-band vibrations. The design presented in this work consists of two hinged piezoceramic (PZT-5A) beams x-poled for series operation. Each beam measures 31.8mm x 12.7mm x 0.38mm and consists of two layers of nickel-plated piezoceramic adhered to a brass center shim. The hinge device consists of two custom-machined aluminum attachments epoxied to the end of a beam and connected using a 1.59mm diameter alloy steel dowel. A stainless steel torsion spring is placed over the pin and attached to the aluminum body to provide a restoring torque when under rotation. The design is modeled using the piezoelectric constitutive equations to solve for voltage and power for a set of electromechanical boundary conditions. Experimental measurements on the design are achieved by bolting one end of the structure to a vibration shaker and fixing the other to a rigid framework of industrial aluminum framing material. For a given frequency of vibration, power output of the structure can be obtained by measuring voltage drop across a resistive load.

  15. Compliant bistable mechanism for low frequency vibration energy harvester inspired by auditory hair bundle structures

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Kim, Jaehwan

    2013-01-01

    This paper presents a bio-inspired mechanism for the performance enhancement of piezoelectric power generation in vibration energy harvesting. A compliant bistable mechanism for vibration energy harvesting was explored based on the negative stiffness inspired by the auditory hair bundle structures. The proposed mechanism consists of a compliant, four-bar linkage system to mimic the hair bundle structure inside an inner ear. Our initial prototype energy harvester demonstrates that the compliant bistable mechanism featuring negative stiffness outperforms the conventional vibration energy harvester in the infra-low frequency range (1-10 Hz).

  16. Vibration-based energy harvesting with stacked piezoelectrets

    SciTech Connect

    Pondrom, P., E-mail: ppondrom@nt.tu-darmstadt.de [Institute for Telecommunications Technology, Technische Universität Darmstadt, Merckstr. 25, 64283 Darmstadt (Germany); System Reliability and Machine Acoustics SzM, Technische Universität Darmstadt, Magdalenenstr. 4, 64289 Darmstadt (Germany); Hillenbrand, J.; Sessler, G. M. [Institute for Telecommunications Technology, Technische Universität Darmstadt, Merckstr. 25, 64283 Darmstadt (Germany); Bös, J.; Melz, T. [System Reliability and Machine Acoustics SzM, Technische Universität Darmstadt, Magdalenenstr. 4, 64289 Darmstadt (Germany)

    2014-04-28

    Vibration-based energy harvesters with multi-layer piezoelectrets (ferroelectrets) are presented. Using a simple setup with nine layers and a seismic mass of 8?g, it is possible to generate a power up to 1.3?µW at 140?Hz with an input acceleration of 1g. With better coupling between seismic mass and piezoelectret, and thus reduced damping, the power output of a single-layer system is increased to 5?µW at 700?Hz. Simulations indicate that for such improved setups with 10-layer stacks, utilizing seismic masses of 80?g, power levels of 0.1 to 1 mW can be expected below 100?Hz.

  17. A chaotic vibration energy harvester using magnetic material

    NASA Astrophysics Data System (ADS)

    Sato, Takahiro; Igarashi, Hajime

    2015-02-01

    This paper presents a new wideband electromagnetic vibration energy harvester (VEH) composed of a magnetic core embedded into the coil axis. The magnetic core generates a nonlinear magnetic force, which gives rise to the nonlinearity in the behavior of the VEH. Moreover, the magnetic core increases the flux linkage with the coil. These features improve the operational bandwidth and output power of the VEH. Numerical analysis and experimental measurements reveal that the operational bandwidth of the proposed VEH is over 30 Hz in which the output power is kept about 0.1 mW. Moreover, the proposed VEH operates by complicated oscillation due to nonlinear forces acting on the oscillator. Evaluation of the Lyapunov exponent for the measured oscillation suggests that the proposed VEH produces chaotic oscillation.

  18. New nonlinear vibration energy harvesters based on PVDF hybrid fluid diaphragm

    NASA Astrophysics Data System (ADS)

    Huet, F.; Formosa, F.; Badel, A.

    2014-11-01

    A low resonance frequency piezoelectric energy harvesting using a hybrid fluid diaphragm (HFD) is presented. This paper describes the design, fabrication and measurement of such device for harvesting energy from environmental vibrations. The HFD consists in an incompressible fluid confined between two thin piezoelectric membranes. The output voltage and power of the PVDF HFD are studied based on experimental and simulation results. Compared with conventional vibration harvester, this proposed solution is very simple and suitable for miniaturization and integration.

  19. A comparison of power output from linear and nonlinear kinetic energy harvesters using real vibration data

    NASA Astrophysics Data System (ADS)

    Beeby, Stephen P.; Wang, Leran; Zhu, Dibin; Weddell, Alex S.; Merrett, Geoff V.; Stark, Bernard; Szarka, Gyorgy; Al-Hashimi, Bashir M.

    2013-07-01

    The design of vibration energy harvesters (VEHs) is highly dependent upon the characteristics of the environmental vibrations present in the intended application. VEHs can be linear resonant systems tuned to particular frequencies or nonlinear systems with either bistable operation or a Duffing-type response. This paper provides detailed vibration data from a range of applications, which has been made freely available for download through the Energy Harvesting Network’s online data repository. In particular, this research shows that simulation is essential in designing and selecting the most suitable vibration energy harvester for particular applications. This is illustrated through C-based simulations of different types of VEHs, using real vibration data from a diesel ferry engine, a combined heat and power pump, a petrol car engine and a helicopter. The analysis shows that a bistable energy harvester only has a higher output power than a linear or Duffing-type nonlinear energy harvester with the same Q-factor when it is subjected to white noise vibration. The analysis also indicates that piezoelectric transduction mechanisms are more suitable for bistable energy harvesters than electromagnetic transduction. Furthermore, the linear energy harvester has a higher output power compared to the Duffing-type nonlinear energy harvester with the same Q factor in most cases. The Duffing-type nonlinear energy harvester can generate more power than the linear energy harvester only when it is excited at vibrations with multiple peaks and the frequencies of these peaks are within its bandwidth. Through these new observations, this paper illustrates the importance of simulation in the design of energy harvesting systems, with particular emphasis on the need to incorporate real vibration data.

  20. Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters

    Microsoft Academic Search

    M. Ferrari; V. Ferrari; M. Guizzetti; B. Andò; S. Baglio; C. Trigona

    2010-01-01

    Vibration harvesters typically are linear mass-spring devices working at resonance. A different approach is here proposed based on nonlinear converters that exploit stochastic resonance with white-noise excitation. It consists of a piezoelectric beam converter coupled to permanent magnets to create a bistable system. Under proper conditions, the system bounces between two stable states in response to random excitation, which significantly

  1. Experimental Analysis of a Piezoelectric Energy Harvesting System for Harmonic, Random, and Sine on Random Vibration

    SciTech Connect

    Cryns, Jackson W.; Hatchell, Brian K.; Santiago-Rojas, Emiliano; Silvers, Kurt L.

    2013-07-01

    Formal journal article Experimental analysis of a piezoelectric energy harvesting system for harmonic, random, and sine on random vibration Abstract: Harvesting power with a piezoelectric vibration powered generator using a full-wave rectifier conditioning circuit is experimentally compared for varying sinusoidal, random and sine on random (SOR) input vibration scenarios. Additionally, the implications of source vibration characteristics on harvester design are discussed. Studies in vibration harvesting have yielded numerous alternatives for harvesting electrical energy from vibrations but piezoceramics arose as the most compact, energy dense means of energy transduction. The rise in popularity of harvesting energy from ambient vibrations has made piezoelectric generators commercially available. Much of the available literature focuses on maximizing harvested power through nonlinear processing circuits that require accurate knowledge of generator internal mechanical and electrical characteristics and idealization of the input vibration source, which cannot be assumed in general application. In this manuscript, variations in source vibration and load resistance are explored for a commercially available piezoelectric generator. We characterize the source vibration by its acceleration response for repeatability and transcription to general application. The results agree with numerical and theoretical predictions for in previous literature that load optimal resistance varies with transducer natural frequency and source type, and the findings demonstrate that significant gains are seen with lower tuned transducer natural frequencies for similar source amplitudes. Going beyond idealized steady state sinusoidal and simplified random vibration input, SOR testing allows for more accurate representation of real world ambient vibration. It is shown that characteristic interactions from more complex vibrational sources significantly alter power generation and power processing requirements by increasing harvested power, shifting optimal conditioning impedance, inducing significant voltage supply fluctuations and ultimately rendering idealized sinusoidal and random analyses insufficient.

  2. Vibration energy harvesting using a phononic crystal with point defect states

    NASA Astrophysics Data System (ADS)

    Lv, Hangyuan; Tian, Xiaoyong; Wang, Michael Yu; Li, Dichen

    2013-01-01

    A vibration energy harvesting generator was studied in the present research using point-defect phononic crystal with piezoelectric material. By removing a rod from a perfect phononic crystal, a resonant cavity was formed. The elastic waves in the range of gap frequencies were all forbidden in any direction, while the waves with resonant frequency were localized and enhanced in the resonant cavity. The collected vibration energy was converted into electric energy by putting a polyvinylidene fluoride film in the middle of the defect. This structure can be used to simultaneously realize both vibration damping and broad-distributed vibration energy harvesting.

  3. Scaling and power density metrics of electromagnetic vibration energy harvesting devices

    NASA Astrophysics Data System (ADS)

    Moss, Scott D.; Payne, Owen R.; Hart, Genevieve A.; Ung, Chandarin

    2015-02-01

    A review of the vibration energy harvesting literature has been undertaken with the goal of establishing scaling laws for experimentally demonstrated harvesting devices based on electromagnetic transduction. Power density metrics are examined with respect to scaling length, mass, frequency and drive acceleration. Continuous improvements in demonstrated power density of harvesting devices over the past decade are noted. Scaling laws are developed from observations that appear to suggest an upper limit to the power density achievable with current harvesting techniques.

  4. Abstract--This paper presents ambient mechanical vibrations as an alternative source for energy harvesting, especially

    E-print Network

    Kumar, Ratnesh

    Abstract--This paper presents ambient mechanical vibrations as an alternative source for energy harvesting, especially beneficial where alternatives such as light, wind, biomass and thermal energy are limited, e.g., powering underground sensors. Transduction of ambient kinetic energy, e.g., the vibrations

  5. Electromagnetic energy harvesting from vibrations of multiple frequencies

    Microsoft Academic Search

    Bin Yang; Chengkuo Lee; Wenfeng Xiang; Jin Xie; Johnny Han He; Rama Krishna Kotlanka; Siew Ping Low; Hanhua Feng

    2009-01-01

    A novel multi-frequency energy harvester has been designed and fabricated, which consists of three permanent magnets, three sets of two-layer copper coils and a supported beam of acrylic, while these coils are made of thin fire resistant 4 (FR4) substrates using a standard printed circuit board. The energy under the first, second and third resonant modes can be harvested, corresponding

  6. A hybrid electromagnetic energy harvesting device for low frequency vibration

    NASA Astrophysics Data System (ADS)

    Jung, Hyung-Jo; Kim, In-Ho; Min, Dong Yi; Sim, Sung-Han; Koo, Jeong-Hoi

    2013-04-01

    An electromagnetic energy harvesting device, which converts a translational base motion into a rotational motion by using a rigid bar having a moving mass pivoted on a hinged point with a power spring, has been recently developed for use of civil engineering structures having low natural frequencies. The device utilizes the relative motion between moving permanent magnets and a fixed solenoid coil in order to harvest electrical power. In this study, the performance of the device is enhanced by introducing a rotational-type generator at a hinged point. In addition, a mechanical stopper, which makes use of an auxiliary energy harvesting part to further improve the efficiency, is incorporated into the device. The effectiveness of the proposed hybrid energy harvesting device based on electromagnetic mechanism is verified through a series of laboratory tests.

  7. Micro-scale piezoelectric vibration energy harvesting: From fixed-frequency to adaptable-frequency devices

    NASA Astrophysics Data System (ADS)

    Miller, Lindsay Margaret

    Wireless sensor networks (WSNs) have the potential to transform engineering infrastructure, manufacturing, and building controls by allowing condition monitoring, asset tracking, demand response, and other intelligent feedback systems. A wireless sensor node consists of a power supply, sensor(s), power conditioning circuitry, radio transmitter and/or receiver, and a micro controller. Such sensor nodes are used for collecting and communicating data regarding the state of a machine, system, or process. The increasing demand for better ways to power wireless devices and increase operation time on a single battery charge drives an interest in energy harvesting research. Today, wireless sensor nodes are typically powered by a standard single-charge battery, which becomes depleted within a relatively short timeframe depending on the application. This introduces tremendous labor costs associated with battery replacement, especially when there are thousands of nodes in a network, the nodes are remotely located, or widely-distributed. Piezoelectric vibration energy harvesting presents a potential solution to the problems associated with too-short battery life and high maintenance requirements, especially in industrial environments where vibrations are ubiquitous. Energy harvester designs typically use the harvester to trickle charge a rechargeable energy storage device rather than directly powering the electronics with the harvested energy. This allows a buffer between the energy harvester supply and the load where energy can be stored in a "tank". Therefore, the harvester does not need to produce the full required power at every instant to successfully power the node. In general, there are tens of microwatts of power available to be harvested from ambient vibrations using micro scale devices and tens of milliwatts available from ambient vibrations using meso scale devices. Given that the power requirements of wireless sensor nodes range from several microwatts to about one hundred milliwatts and are falling steadily as improvements are made, it is feasible to use energy harvesting to power WSNs. This research begins by presenting the results of a thorough survey of ambient vibrations in the machine room of a large campus building, which found that ambient vibrations are low frequency, low amplitude, time varying, and multi-frequency. The modeling and design of fixed-frequency micro scale energy harvesters are then presented. The model is able to take into account rotational inertia of the harvester's proof mass and it accepts arbitrary measured acceleration input, calculating the energy harvester's voltage as an output. The fabrication of the micro electromechanical system (MEMS) energy harvesters is discussed and results of the devices harvesting energy from ambient vibrations are presented. The harvesters had resonance frequencies ranging from 31 - 232 Hz, which was the lowest reported in literature for a MEMS device, and produced 24 pW/g2 - 10 nW/g2 of harvested power from ambient vibrations. A novel method for frequency modification of the released harvester devices using a dispenser printed mass is then presented, demonstrating a frequency shift of 20 Hz. Optimization of the MEMS energy harvester connected to a resistive load is then presented, finding that the harvested power output can be increased to several microwatts with the optimized design as long as the driving frequency matches the harvester's resonance frequency. A framework is then presented to allow a similar optimization to be conducted with the harvester connected to a synchronously switched pre-bias circuit. With the realization that the optimized energy harvester only produces usable amounts of power if the resonance frequency and driving frequency match, which is an unrealistic situation in the case of ambient vibrations which change over time and are not always known a priori, an adaptable-frequency energy harvester was designed. The adaptable-frequency harvester works by taking advantage of the coupling between

  8. Vibrational Energy Harvester based on Electrical Double Layer of Ionic Liquid

    NASA Astrophysics Data System (ADS)

    Yamada, S.; Mitsuya, H.; Fujita, H.

    2014-11-01

    To boost the output of the vibration energy harvester an order of magnitude higher, we devised a high-performance energy harvester taking advantages of the two characteristics of ionic liquid, namely variable deformation of liquid and the electrical double layer between ionic liquid and metal. The electrical double layer is approximately 1nm thick and works as insulator within the voltage range of ±2.0V. Therefore, we can obtain quite high capacitance(1- 10?/cm2). Squeezing and drawing ionic liquid between a pair of vibrating electrodes, we can obtain a ?W-class energy harvester.

  9. A wideband vibration energy harvester based on a folded asymmetric gapped cantilever

    NASA Astrophysics Data System (ADS)

    Hu, Yating; Xu, Yong

    2014-02-01

    This paper reports a wideband multi-mass multi-spring piezoelectric vibration energy harvester (VEH) based on a folded asymmetric gapped cantilever, which enables multiple resonant modes formed by pure bending of every stage. Moreover, the heaviest proof mass is placed at the last stage of the cantilever to increase the harvested power. The VEH's energy conversion efficiency is further increased using the asymmetric gapped structure. A prototype has been developed and characterized. The experimental results match with finite element simulation well. The prototype was tested on an air conditioning unit to demonstrate its energy harvesting capability with a realistic broadband vibration source.

  10. Investigation of folded spring structures for vibration-based piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Lueke, J.; Rezaei, M.; Moussa, W. A.

    2014-12-01

    This paper presents a fixed-fixed folded spring as an alternative elastic element for beam-based piezoelectric energy harvesting. In order to harvest energy from low frequency vibration in an optimal manner, the natural/operational frequencies of harvesters must be reduced to match low frequency input vibrations. Therefore, natural frequency reduction of vibration-based energy harvesters is critical to maximize output power at low operational frequency. The mechanical optimization of cantilever-based piezoelectric energy harvesters is limited by residual stress-based beam curling that produced through microfabrication adding additional mechanical stiffness to the system. The fixed-fixed folded spring structure presented in this paper allows for increased effective beam length and residual stress relaxation, without out of plane beam curling to further reducing the natural frequency. Multiple designs of folded spring energy harvesters are presented to demonstrate the effect of important design parameters. It is shown that the folded spring harvesters were capable of harvesting electricity at low natural frequencies, ranging from 45?Hz to 3667?Hz. Additionally, the harvesters were shown to be insensitive to microfabrication-based residual stress beam curling. The maximum power output achieved by the folded spring harvesters was 690.5?nW at 226.3?Hz for a single harvesting element of an array, with a PZT layer thickness of 0.24??m. The work presented in this paper demonstrates that the fixed-fixed folded spring can be used as a viable structural element for low frequency piezoelectric energy harvesting to take advantage of ambient vibrations found in low frequency applications.

  11. A Hybrid Indoor Ambient Light and Vibration Energy Harvester for Wireless Sensor Nodes

    PubMed Central

    Yu, Hua; Yue, Qiuqin; Zhou, Jielin; Wang, Wei

    2014-01-01

    To take advantage of applications where both light and vibration energy are available, a hybrid indoor ambient light and vibration energy harvesting scheme is proposed in this paper. This scheme uses only one power conditioning circuit to condition the combined output power harvested from both energy sources so as to reduce the power dissipation. In order to more accurately predict the instantaneous power harvested from the solar panel, an improved five-parameter model for small-scale solar panel applying in low light illumination is presented. The output voltage is increased by using the MEMS piezoelectric cantilever arrays architecture. It overcomes the disadvantage of traditional MEMS vibration energy harvester with low voltage output. The implementation of the maximum power point tracking (MPPT) for indoor ambient light is implemented using analog discrete components, which improves the whole harvester efficiency significantly compared to the digital signal processor. The output power of the vibration energy harvester is improved by using the impedance matching technique. An efficient mechanism of energy accumulation and bleed-off is also discussed. Experiment results obtained from an amorphous-silicon (a-Si) solar panel of 4.8 × 2.0 cm2 and a fabricated piezoelectric MEMS generator of 11 × 12.4 mm2 show that the hybrid energy harvester achieves a maximum efficiency around 76.7%. PMID:24854054

  12. A hybrid indoor ambient light and vibration energy harvester for wireless sensor nodes.

    PubMed

    Yu, Hua; Yue, Qiuqin; Zhou, Jielin; Wang, Wei

    2014-01-01

    To take advantage of applications where both light and vibration energy are available, a hybrid indoor ambient light and vibration energy harvesting scheme is proposed in this paper. This scheme uses only one power conditioning circuit to condition the combined output power harvested from both energy sources so as to reduce the power dissipation. In order to more accurately predict the instantaneous power harvested from the solar panel, an improved five-parameter model for small-scale solar panel applying in low light illumination is presented. The output voltage is increased by using the MEMS piezoelectric cantilever arrays architecture. It overcomes the disadvantage of traditional MEMS vibration energy harvester with low voltage output. The implementation of the maximum power point tracking (MPPT) for indoor ambient light is implemented using analog discrete components, which improves the whole harvester efficiency significantly compared to the digital signal processor. The output power of the vibration energy harvester is improved by using the impedance matching technique. An efficient mechanism of energy accumulation and bleed-off is also discussed. Experiment results obtained from an amorphous-silicon (a-Si) solar panel of 4.8 × 2.0 cm2 and a fabricated piezoelectric MEMS generator of 11 × 12.4 mm2 show that the hybrid energy harvester achieves a maximum efficiency around 76.7%. PMID:24854054

  13. Membrane-type vibrational energy harvester based on a multi-layered piezoelectric membrane

    NASA Astrophysics Data System (ADS)

    Yoo, Seunghwan; Kim, Jonghun; Park, Suk-in; Jang, Cheol-Yong; Jeong, Hakgeun

    2014-03-01

    In this study, we fabricated a membrane-type vibrational energy harvester by using a conventional micro-electro-mechanical (MEMS) method. The membrane-type vibrational energy harvester consists of a multi-layered diaphragm for stable and flexible vibration, a piezoelectric ZnO film for responding to the vibrational energy and for generating electric power, and a vibrator connected to the bottom of multi-layered diaphragm for enhancing the vibrational displacement of the diaphragm. First, we characterized the quality of a ZnO film through scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD), which showed a preferred c-axis orientation, a hexagonal rod shape and a quite smooth surface. After the membrane-type vibrational energy harvester had been fabricated, we integrated it into a printing circuit board to realize piezoelectric generation and confirm its performance. Finally, under vibrational motion, we obtained a useful output voltage of 400 mV, and we estimated that the energy harvester generated an actual output voltage of about 200 uV.

  14. Tunable Vibration Energy Harvester for Condition Monitoring of Maritime Gearboxes

    NASA Astrophysics Data System (ADS)

    Hoffmann, D.; Willmann, A.; Folkmer, B.; Manoli, Y.

    2014-11-01

    This paper reports on a new tuning concept, which enables the operation of a vibration generator for energy autonomous condition monitoring of maritime gearboxes. The tuning concept incorporates a circular tuning magnet, which interacts with a coupling magnet attached to the active transducer element. The tuning range can be tailored to the application by careful design of the gap between tuning magnet and coupling magnet. A total rotation angle of only 180° is required for the tuning magnet in order to obtain the full frequency bandwidth. The tuning concept is successfully demonstrated by charging a 0.6 F capacitor on the basis of physical vibration profiles taken from a gearbox.

  15. Improved mechanical reliability of MEMS electret based vibration energy harvesters for automotive applications

    NASA Astrophysics Data System (ADS)

    Renaud, M.; Fujita, T.; Goedbloed, M.; de Nooijer, C.; van Schaijk, R.

    2014-11-01

    Current commercial wireless tire pressure monitoring systems (TPMS) require a battery as electrical power source. The battery limits the lifetime of the TPMS. This limit can be circumvented by replacing the battery by a vibration energy harvester. Autonomous wireless TPMS powered by MEMS electret based vibration energy harvester have been demonstrated. A remaining technical challenge to attain the grade of commercial product with these autonomous TPMS is the mechanical reliability of the MEMS harvester. It should survive the harsh conditions imposed by the tire environment, particularly in terms of mechanical shocks. As shown in this article, our first generation of harvesters has a shock resilience of 400 g, which is far from being sufficient for the targeted application. In order to improve this aspect, several types of shock absorbing structures are investigated. With the best proposed solution, the shock resilience of the harvesters is brought above 2500 g.

  16. Harvestable vibrational energy from an avian source: theoretical predictions vs. measured values

    NASA Astrophysics Data System (ADS)

    Shafer, Michael W.; MacCurdy, Robert; Garcia, Ephrahim; Winkler, David

    2012-04-01

    For many reasons, it would be beneficial to have the capability of powering a wildlife tag over the course of multiple migratory seasons. Such an energy harvesting system would allow for more data collection and eliminate the need to replace depleted batteries. In this work, we investigate energy harvesting on birds and focus on vibrational energy harvesting. We review a method of predicting the amount of power that can be safely harvested from the birds such that the effect on their longterm survivability is not compromised. After showing that the safely harvestable power is significant in comparison to the circuits used in avian tags, we present testing results for the flight accelerations of two species of birds. Using these measured values, we then design harvesters that matched the flight acceleration frequency and are sufficiently low mass to be carried by the birds.

  17. Airflow energy harvesters of metal-based PZT thin films by self-excited vibration

    NASA Astrophysics Data System (ADS)

    Suwa, E.; Tsujiura, Y.; Kurokawa, F.; Hida, H.; Kanno, I.

    2014-11-01

    We developed self-excited vibration energy harvesters of Pb(Zr,Ti)O3 (PZT) thin films using airflow. To enhance the self-excited vibration, we used 30-?m-thick stainless steel (SS304) foils as base cantilevers on which PZT thin films were deposited by rf-magnetron sputtering. To compensate for the initial bending of PZT/SS304 unimorph cantilever due to the thermal stress, we deposited counter PZT thin films on the back of the SS304 cantilever. We evaluated power-generation performance and vibration mode of the energy harvester in the airflow. When the angle of attack (AOA) was 20° to 30°, large vibration was generated at wind speeds over 8 m/s. By FFT analysis, we confirmed that stable self-excited vibration was generated. At the AOA of 30°, the output power reached 19 ?W at wind speeds of 12 m/s.

  18. Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters

    NASA Astrophysics Data System (ADS)

    Amin Karami, M.; Inman, Daniel J.

    2012-01-01

    Linear and nonlinear piezoelectric devices are introduced to continuously recharge the batteries of the pacemakers by converting the vibrations from the heartbeats to electrical energy. The power requirement of a pacemaker is very low. However, after few years, patients require another surgical operation just to replace their pacemaker battery. Linear low frequency and nonlinear mono-stable and bi-stable energy harvesters are designed according to the especial signature of heart vibrations. The proposed energy harvesters are robust to variation of heart rate and can meet the power requirement of pacemakers.

  19. Low Frequency Vibration Energy Harvester Using Spherical Permanent Magnet with Non-uniform Mass Distribution

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Ju, S.; Chae, S. H.; Jun, S.; Park, S. M.; Lee, S.; Lee, H. W.; Ji, C.-H.

    2013-12-01

    We present a non-resonant vibration energy harvesting device using springless spherical permanent magnet with non-uniform mass distribution as a proof mass. The magnet has its center-of-mass below the geometrical center, which generates a roly-poly-like motion in response to external vibrations. Two different types of magnet assemblies with different center-of-mass position have been fabricated and tested. Using the roly-poly-like magnets, proof-of-concept electromagnetic energy harvesters have been fabricated and tested. Moreover, effect of ferrofluid as a lubricant has been tested with the fabricated energy harvester. Maximum open-circuit voltage of 154.4mV and output power of 4.53?W have been obtained at 3g vibration at 12Hz with the fabricated device.

  20. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    SciTech Connect

    Sun, Kyung Ho; Kim, Young-Cheol [Department of System Dynamics, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Jae Eun, E-mail: jekim@cu.ac.kr [School of Mechanical and Automotive Engineering, Catholic University of Daegu, 13-13 Hayang-Ro, Hayang-Eup, Gyeongsan-Si, Gyeongsangbuk-Do 712-702 (Korea, Republic of)

    2014-10-15

    While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm{sup 3}, which was designed for a target frequency of as low as 100 Hz.

  1. Optimized energy harvesting from mechanical vibrations through piezoelectric actuators, based on a synchronized switching technique

    NASA Astrophysics Data System (ADS)

    Tsampas, P.; Roditis, G.; Papadimitriou, V.; Chatzakos, P.; Gan, Tat-Hean

    2013-05-01

    Increasing demand in mobile, autonomous devices has made energy harvesting a particular point of interest. Systems that can be powered up by a few hundreds of microwatts could feature their own energy extraction module. Energy can be harvested from the environment close to the device. Particularly, the ambient mechanical vibrations conversion via piezoelectric transducers is one of the most investigated fields for energy harvesting. A technique for optimized energy harvesting using piezoelectric actuators called "Synchronized Switching Harvesting" is explored. Comparing to a typical full bridge rectifier, the proposed harvesting technique can highly improve harvesting efficiency, even in a significantly extended frequency window around the piezoelectric actuator's resonance. In this paper, the concept of design, theoretical analysis, modeling, implementation and experimental results using CEDRAT's APA 400M-MD piezoelectric actuator are presented in detail. Moreover, we suggest design guidelines for optimum selection of the storage unit in direct relation to the characteristics of the random vibrations. From a practical aspect, the harvesting unit is based on dedicated electronics that continuously sense the charge level of the actuator's piezoelectric element. When the charge is sensed, to come to a maximum, it is directed to speedily flow into a storage unit. Special care is taken so that electronics operate at low voltages consuming a very small amount of the energy stored. The final prototype developed includes the harvesting circuit implemented with miniaturized, low cost and low consumption electronics and a storage unit consisting of a super capacitors array, forming a truly self-powered system drawing energy from ambient random vibrations of a wide range of characteristics.

  2. Nonlinear vibration control and energy harvesting of a beam using a nonlinear energy sink and a piezoelectric device

    NASA Astrophysics Data System (ADS)

    Nili Ahmadabadi, Z.; Khadem, S. E.

    2014-09-01

    This paper presents an optimal design for a system comprising a nonlinear energy sink (NES) and a piezoelectric-based vibration energy harvester attached to a free-free beam under shock excitation. The energy harvester is used for scavenging vibration energy dissipated by the NES. Grounded and ungrounded configurations are examined and the systems parameters are optimized globally to both maximize the dissipated energy by the NES and increase the harvested energy by piezoelectric element. A satisfactory amount of energy has been harvested as electric power in both configurations. The realization of nonlinear vibration control through one-way irreversible nonlinear energy pumping and optimizing the system parameters result in acquiring up to 78 percent dissipation of the grounded system energy.

  3. Synchronized Multiple-Array Vibrational Device for Microelectromechanical System Electrostatic Energy Harvester

    NASA Astrophysics Data System (ADS)

    Ono, Kazuyoshi; Sato, Norio; Shimamura, Toshishige; Ugajin, Mamoru; Sakata, Tomomi; Mutoh, Shin'ichiro; Kodate, Junichi; Jin, Yoshito; Sato, Yasuhiro

    2012-05-01

    In this paper, we describe a novel structure of a vibrational micro-electro-mechanical system (MEMS) device for power generation enhancement. A synchronized multiple-array vibrational device, in which movable plates are connected by rods, increases the area of the movable plate in the energy conversion region and couples the phase of movement. The fabricated device resonates at approximately 1430 Hz with an acceleration amplitude of 6 m/s2 and nanoampere-order AC current is generated. These results confirm that this MEMS vibrational device will contribute to the progress in energy harvesting.

  4. Energy harvesting from coherent resonance of horizontal vibration of beam excited by vertical base motion

    SciTech Connect

    Lan, C. B.; Qin, W. Y. [Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072 (China)

    2014-09-15

    This letter investigates the energy harvesting from the horizontal coherent resonance of a vertical cantilever beam subjected to the vertical base excitation. The potential energy of the system has two symmetric potential wells. So, under vertical excitation, the system can jump between two potential wells, which will lead to the large vibration in horizontal direction. Two piezoelectric patches are pasted to harvest the energy. From experiment, it is found that the vertical excitation can make the beam turn to be bistable. The system can transform vertical vibration into horizontal vibration of low frequency when excited by harmonic motion. The horizontal coherence resonance can be observed when excited by a vertical white noise. The corresponding output voltages of piezoelectric films reach high values.

  5. Coupled analysis of multi-impact energy harvesting from low-frequency wind induced vibrations

    NASA Astrophysics Data System (ADS)

    Zhu, Jin; Zhang, Wei

    2015-04-01

    Energy need from off-grid locations has been critical for effective real-time monitoring and control to ensure structural safety and reliability. To harvest energy from ambient environments, the piezoelectric-based energy-harvesting system has been proven very efficient to convert high frequency vibrations into usable electrical energy. However, due to the low frequency nature of the vibrations of civil infrastructures, such as those induced from vehicle impacts, wind, and waves, the application of a traditional piezoelectric-based energy-harvesting system is greatly restrained since the output power drops dramatically with the reduction of vibration frequencies. This paper focuses on the coupled analysis of a proposed piezoelectric multi-impact wind-energy-harvesting device that can effectively up-convert low frequency wind-induced vibrations into high frequency ones. The device consists of an H-shape beam and four bimorph piezoelectric cantilever beams. The H-shape beam, which can be easily triggered to vibrate at a low wind speed, is originated from the first Tacoma Narrows Bridge, which failed at wind speeds of 18.8 m s?1 in 1940. The multi-impact mechanism between the H-shape beam and the bimorph piezoelectric cantilever beams is incorporated to improve the harvesting performance at lower frequencies. During the multi-impact process, a series of sequential impacts between the H-shape beam and the cantilever beams can trigger high frequency vibrations of the cantilever beams and result in high output power with a considerably high efficiency. In the coupled analysis, the coupled structural, aerodynamic, and electrical equations are solved to obtain the dynamic response and the power output of the proposed harvesting device. A parametric study for several parameters in the coupled analysis framework is carried out including the external resistance, wind speed, and the configuration of the H-shape beam. The average harvested power for the piezoelectric cantilever beam reaches 11.77 mW with a power density of 6.11 mW cm?3 under the wind speed of 10 m s?1, which is sufficient to power small sensors. The average harvested power can further reach up to 45 mW under the wind speed of 14 m s?1.

  6. Scavenging vibration energy from seismically isolated bridges using an electromagnetic harvester

    NASA Astrophysics Data System (ADS)

    Lu, Qiuchen; Loong, Chengning; Chang, Chih-Chen; Dimitrakopoulos, Elias G.

    2014-04-01

    The increasing worldwide efforts in securing renewable energy sources increase incentive for civil engineers to investigate whether the kinetic energy associated with the vibration of larger-scale structures can be harvested. Such a research remains challenging and incomplete despite that hundreds of related articles have been published in the last decade. Base isolation is one of the most popular means of protecting a civil engineering structure against earthquake forces. Seismic isolation hinges on the decoupling of the structure from the shaking ground, hence protecting the structure from stress and damage during an earthquake excitation. The low stiffness isolator inserted between the structure and the ground dominates the response leading to a structural system of longer vibration period. As a consequence of this period shift, the spectral acceleration is reduced, but higher response displacements are produced. To mitigate this side effect, usually isolators are combined with the use of additional energy dissipation. In this study, the feasibility of scavenging the need-to-be dissipated energy from the isolator installed in a seismically isolated bridge using an electromagnetic (EM) energy harvester is investigated. The EM energy harvester consists of an energy harvesting circuit and a capacitor for energy storage. A mathematical model for this proposed EM energy harvester is developed and implemented on an idealized base-isolated single-degree-of-freedom system. The effect of having this EM energy harvester on the performance of this seismic isolated system is analyzed and discussed. The potential of installing such an EM energy harvester on a seismically isolated bridge is also addressed.

  7. Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder

    NASA Astrophysics Data System (ADS)

    Mehmood, A.; Abdelkefi, A.; Hajj, M. R.; Nayfeh, A. H.; Akhtar, I.; Nuhait, A. O.

    2013-09-01

    The concept of harvesting energy from a circular cylinder undergoing vortex-induced vibrations is investigated. The energy is harvested by attaching a piezoelectric transducer to the transverse degree of freedom. Numerical simulations are performed for Reynolds numbers (Re) in the range 96?Re?118, which covers the pre-synchronization, synchronization, and post-synchronization regimes. Load resistances (R) in the range 500 ??R?5 M? are considered. The results show that the load resistance has a significant effect on the oscillation amplitude, lift coefficient, voltage output, and harvested power. The results also show that the synchronization region widens when the load resistance increases. It is also found that there is an optimum value of the load resistance for which the harvested power is maximum. This optimum value does not correspond to the case of largest oscillations, which points to the need for a coupled analysis as performed here.

  8. Vibration energy harvesting is an attractive technique for the potential powering of wireless sensors and low power devices. While the technique can be employed to

    E-print Network

    Fisher, Frank

    ABSTRACT Vibration energy harvesting is an attractive technique for the potential powering vibrations and vibrating structures, a general requirement independent of the mechanical to electrical energy transfer mechanism is that the vibration energy harvesting device operate in resonance at the excitation

  9. A two-dimensional broadband vibration energy harvester using magnetoelectric transducer

    SciTech Connect

    Yang, Jin, E-mail: yangjin@cqu.edu.cn; Wen, Yumei; Li, Ping; Yue, Xihai; Yu, Qiangmo; Bai, Xiaoling [Department of Optoelectronic Engineering, Research Center of Sensors and Instruments, Chongqing University, Chongqing 400044 (China)] [Department of Optoelectronic Engineering, Research Center of Sensors and Instruments, Chongqing University, Chongqing 400044 (China)

    2013-12-09

    In this study, a magnetoelectric vibration energy harvester was demonstrated, which aims at addressing the limitations of the existing approaches in single dimensional operation with narrow working bandwidth. A circular cross-section cantilever rod, not a conventional thin cantilever beam, was adopted to extract vibration energy in arbitrary in-plane motion directions. The magnetic interaction not only resulted in a nonlinear motion of the rod with increased frequency bandwidth, but also contributed to a multi-mode motion to exhibit double power peaks. In energy harvesting with in-plane directions, it showed a maximum bandwidth of 4.4?Hz and power of 0.59?mW, with acceleration of 0.6?g (with g?=?9.8?m?s{sup ?2})

  10. Modeling and analysis of a micromachined piezoelectric energy harvester stimulated by ambient random vibrations

    NASA Astrophysics Data System (ADS)

    Alamin Dow, Ali B.; Al-Rubaye, Hasan A.; Koo, David; Schneider, Michael; Bittner, Achim; Schmid, Ulrich; Kherani, Nazir P.

    2011-06-01

    Piezoelectric energy microgenerators are devices that continuously generate electricity when they are subjected to varying mechanical strain due to vibrations. They can generate electrical power up to 100 ?W which can be used to drive various sensing and actuating MEMS devices. Today, piezoelectric energy harvesters are considered autonomous and reliable energy sources to actuate low power microdevices such as wireless sensor networks, indoor-outdoor monitoring, facility management and biomedical applications. The advantages of piezoelectric energy harvesters including high power density, moderate output power and CMOS compatible fabrication in particular with aluminum nitride (AlN) have fuelled and motivated researchers to develop MEMS based energy harvesters. Recently, the use of AlN as a piezoelectric material has increased fabrication compatibility, enabling the realization of smart integrated systems on chip which include sensors, actuators and energy storage. Piezoelectric MEMS energy microgenerator is used to capture and transform the available ambient mechanical vibrations into usable electric energy via resonant coupling in the thin film piezoelectric material. Analysis and modeling of piezoelectric energy generators are very important aspects for improved performance. Aluminum nitride as the piezoelectric material is sandwiched between two electrodes. The device design includes a silicon cantilever on which the AlN film is deposited and which features a seismic mass at the end of the cantilever. Beam theory and lumped modeling with circuit elements are applied for modeling and analysis of the device operation at various acceleration values. The model shows good agreement with the experimental findings, thus giving confidence in the model.

  11. Investigation of geometries of bistable piezoelectric-laminate plates for vibration-based energy harvesting

    NASA Astrophysics Data System (ADS)

    Betts, David N.; Bowen, Christopher R.; Inman, Daniel J.; Weaver, Paul M.; Kim, H. A.

    2014-04-01

    The need for reduced power requirements for small electronic components, such as wireless sensor networks, has prompted interest in recent years for energy harvesting technologies capable of capturing energy from broadband ambient vibrations. Encouraging results have been reported for an arrangement of piezoelectric layers attached to carbon fiber / epoxy laminates which possess bistability by virtue of their specific asymmetric stacking sequence. The inherent bistability of the underlying structure is exploited for energy harvesting since a transition from one stable configuration to another, or `snap-through', is used to repeatedly strain the surface-bonded piezoelectric and generate electrical energy. Existing studies, both experimental and modelling, have been limited to simple geometric laminate shapes, restricting the scope for improved energy harvesting performance by limiting the number of design variables. In this paper we present an analytical model to predict the static shapes of laminates of any desired profile, validated experimentally using a digital image correlation system. Good accuracy in terms of out-of-plane displacements (5-7%) are shown in line with existing square modelling results. The static model is then mapped to a dynamics model and used to compare results against an experimental study of the harvesting performance of an example arbitrary geometry piezoelectric-laminate energy harvester.

  12. Harvesting microalgal biomass using a magnetically induced membrane vibration (MMV) system: filtration performance and energy consumption.

    PubMed

    Bilad, M R; Discart, V; Vandamme, D; Foubert, I; Muylaert, K; Vankelecom, Ivo F J

    2013-06-01

    This study was performed to investigate the effectiveness of submerged microfiltration to harvest both a marine diatom Phaeodactylum tricornutum and a Chlorella vulgaris in a recently developed magnetically induced membrane vibrating (MMV) system. We assess the filtration performance by conducting the improved flux step method (IFM), fed-batch concentration filtrations and membrane fouling autopsy using two lab-made membranes with different porosity. The full-scale energy consumption was also estimated. Overall results suggest that the MMV offers a good fouling control and the process was proven to be economically attractive. By combining the membrane filtration (15× concentration) with centrifugation to reach a final concentration of 25% w/v, the energy consumption to harvest P. tricornutum and C. vulgaris was, respectively, as low as 0.84 and 0.77kWh/m(3), corresponding to 1.46 and 1.39 kWh/kg of the harvested biomass. PMID:23624051

  13. Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: Modeling, simulation and experimental results

    NASA Astrophysics Data System (ADS)

    Muthalif, Asan G. A.; Nordin, N. H. Diyana

    2015-03-01

    Harvesting energy from the surroundings has become a new trend in saving our environment. Among the established ones are solar panels, wind turbines and hydroelectric generators which have successfully grown in meeting the world's energy demand. However, for low powered electronic devices; especially when being placed in a remote area, micro scale energy harvesting is preferable. One of the popular methods is via vibration energy scavenging which converts mechanical energy (from vibration) to electrical energy by the effect of coupling between mechanical variables and electric or magnetic fields. As the voltage generated greatly depends on the geometry and size of the piezoelectric material, there is a need to define an optimum shape and configuration of the piezoelectric energy scavenger. In this research, mathematical derivations for unimorph piezoelectric energy harvester are presented. Simulation is done using MATLAB and COMSOL Multiphysics software to study the effect of varying the length and shape of the beam to the generated voltage. Experimental results comparing triangular and rectangular shaped piezoelectric beam are also presented.

  14. Repulsively driven frequency-increased-generators for durable energy harvesting from ultra-low frequency vibration.

    PubMed

    Tang, Qiaochu; Yang, Yongliang; Li, Xinxin

    2014-04-01

    An electromagnetic kinetic energy harvester has been developed, which can convert ultra-low-frequency motion and vibration energy into electrical power. This harvester employs a two-stage vibratory structure to collect low-frequency kinetic energy and effectively transfer it into electric power by using a pair of high-frequency resonant generators. Non-contact magnetic repulsive force is herein utilized for the 1st-stage sliding vibrator to drive the 2nd-stage resonators into frequency-up-conversion resonance. The non-contact actuation is helpful for durable and long-life working of the device. The prototyped device is fabricated and the design is well confirmed by experimental test. The harvester can be well operated at the frequency as low as 0.25 Hz. Under driving acceleration of 1 g at 0.5 Hz, the miniaturized harvester can generate a peak power of 4.42 mW and an average power of 158 ?W. PMID:24784650

  15. Electromagnetic Energy Harvesting Circuit With Feedforward and Feedback DC–DC PWM Boost Converter for Vibration Power Generator System

    Microsoft Academic Search

    Xinping Cao; Wen-Jen Chiang; Ya-Chin King; Yi-Kuen Lee

    2007-01-01

    This paper presents an integrated vibration power generator system. The system consists of a mini electromagnetic vibration power generator and a highly efficient energy harvesting circuit implemented on a minute printed circuit board and a 0.35-mum CMOS integrated chip. By introducing a feedback control into the dc-dc pulsewidth modulation (PWM) boost converter with feedforward control, the energy harvesting circuit can

  16. Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves.

    PubMed

    Wen, Xiaonan; Yang, Weiqing; Jing, Qingshen; Wang, Zhong Lin

    2014-07-22

    We invented a triboelectric nanogenerator (TENG) that is based on a wavy-structured Cu-Kapton-Cu film sandwiched between two flat nanostructured PTFE films for harvesting energy due to mechanical vibration/impacting/compressing using the triboelectrification effect. This structure design allows the TENG to be self-restorable after impact without the use of extra springs and converts direct impact into lateral sliding, which is proved to be a much more efficient friction mode for energy harvesting. The working mechanism has been elaborated using the capacitor model and finite-element simulation. Vibrational energy from 5 to 500 Hz has been harvested, and the generator's resonance frequency was determined to be ?100 Hz at a broad full width at half-maximum of over 100 Hz, producing an open-circuit voltage of up to 72 V, a short-circuit current of up to 32 ?A, and a peak power density of 0.4 W/m(2). Most importantly, the wavy structure of the TENG can be easily packaged for harvesting the impact energy from water waves, clearly establishing the principle for ocean wave energy harvesting. Considering the advantages of TENGs, such as cost-effectiveness, light weight, and easy scalability, this approach might open the possibility for obtaining green and sustainable energy from the ocean using nanostructured materials. Lastly, different ways of agitating water were studied to trigger the packaged TENG. By analyzing the output signals and their corresponding fast Fourier transform spectra, three ways of agitation were evidently distinguished from each other, demonstrating the potential of the TENG for hydrological analysis. PMID:24964297

  17. Global Nonlinear Analysis of Piezoelectric Energy Harvesting from Ambient and Aeroelastic Vibrations

    NASA Astrophysics Data System (ADS)

    Abdelkefi, Abdessattar

    Converting vibrations to a usable form of energy has been the topic of many recent investigations. The ultimate goal is to convert ambient or aeroelastic vibrations to operate low-power consumption devices, such as microelectromechanical systems, heath monitoring sensors, wireless sensors or replacing small batteries that have a finite life span or would require hard and expensive maintenance. The transduction mechanisms used for transforming vibrations to electric power include: electromagnetic, electrostatic, and piezoelectric mechanisms. Because it can be used to harvest energy over a wide range of frequencies and because of its ease of application, the piezoelectric option has attracted significant interest. In this work, we investigate the performance of different types of piezoelectric energy harvesters. The objective is to design and enhance the performance of these harvesters. To this end, distributed-parameter and phenomenological models of these harvesters are developed. Global analysis of these models is then performed using modern methods of nonlinear dynamics. In the first part of this Dissertation, global nonlinear distributed-parameter models for piezoelectric energy harvesters under direct and parametric excitations are developed. The method of multiple scales is then used to derive nonlinear forms of the governing equations and associated boundary conditions, which are used to evaluate their performance and determine the effects of the nonlinear piezoelectric coefficients on their behavior in terms of softening or hardening. In the second part, we assess the influence of the linear and nonlinear parameters on the dynamic behavior of a wing-based piezoaeroelastic energy harvester. The system is composed of a rigid airfoil that is constrained to pitch and plunge and supported by linear and nonlinear torsional and flexural springs with a piezoelectric coupling attached to the plunge degree of freedom. Linear analysis is performed to determine the effects of the linear spring coefficients and electrical load resistance on the flutter speed. Then, the normal form of the Hopf bifurcation ( utter) is derived to characterize the type of instability and determine the effects of the aerodynamic nonlinearities and the nonlinear coefficients of the springs on the system's stability near the bifurcation. This is useful to characterize the effects of different parameters on the system's output and ensure that subcritical or "catastrophic" bifurcation does not take place. Both linear and nonlinear analyses are then used to design and enhance the performance of these harvesters. In the last part, the concept of energy harvesting from vortex-induced vibrations of a circular cylinder is investigated. The power levels that can be generated from these vibrations and the variations of these levels with the freestream velocity are determined. A mathematical model that accounts for the coupled lift force, cylinder motion and generated voltage is presented. Linear analysis of the electromechanical model is performed to determine the effects of the electrical load resistance on the natural frequency of the rigid cylinder and the onset of the synchronization region. The impacts of the nonlinearities on the cylinder's response and energy harvesting are then investigated.

  18. Electromagnetic Vibration Energy Harvester Using Springless Proof Mass and Ferrofluid as a Lubricant

    NASA Astrophysics Data System (ADS)

    Chae, S. H.; Ju, S.; Choi, Y.; Jun, S.; Park, S. M.; Lee, S.; Lee, H. W.; Ji, C.-H.

    2013-12-01

    This paper presents an electromagnetic energy harvester using an array of rectangular permanent magnets as springless proof mass and ferrofluid as a lubricating material. Lateral motion of the multi-pole magnet array generates voltage across an array of copper windings formed under the aluminum channel in response to low frequency external vibrations such as human-body-induced motion. A proof-of-concept device has been fabricated and output voltage has been measured at various input frequencies and accelerations provided by a vibration exciter. Device with ferrofluid lubrication generated maximum open-circuit voltage of 0.47V at 3g vibration at 12Hz, which is 8% higher than that of the device without lubricant. Maximum output power of 71.26?W has been obtained at 40.8? with the device with ferrofluid lubrication.

  19. Multi-modal vibration based MEMS energy harvesters for ultra-low power wireless functional nodes

    NASA Astrophysics Data System (ADS)

    Iannacci, J.; Gottardi, M.; Serra, E.; Di Criscienzo, R.; Borrielli, A.; Bonaldi, M.

    2013-05-01

    The aim of this contribution is to report and discuss a preliminary study and rough optimization of a novel concept of MEMS device for vibration energy harvesting, based on a multi-modal dynamic behavior. The circular-shaped device features Four-Leaf Clover-like (FLC) double spring-mass cascaded systems, kept constrained to the surrounding frame by means of four straight beams. The combination of flexural bending behavior of the slender beams plus deformable parts of the petals enable to populate the desired vibration frequency range with a number of resonant modes, and improve the energy conversion capability of the micro-transducer. The harvester device, conceived for piezoelectric mechanical into electric energy conversion, is intended to sense environmental vibrations and, thereby, its geometry is optimized to have a large concentration of resonant modes in a frequency range below 5-10 kHz. The results of FEM (Finite Element Method) based analysis performed in ANSYSTM Workbench are reported, both concerning modal and harmonic response, providing important indications related to the device geometry optimization. The analysis reported in this work is limited to the sole mechanical modeling of the proposed MEMS harvester device concept. Future developments of the study will encompass the inclusion of piezoelectric conversion in the FEM simulations, in order to have indications of the actual power levels achievable with the proposed harvester concept. Furthermore, the results of the FEM studies here discussed, will be validated against experimental data, as soon as the MEMS resonator specimens, currently under fabrication, are ready for testing.

  20. A distributed parameter electromechanical and statistical model for energy harvesting from turbulence-induced vibration

    NASA Astrophysics Data System (ADS)

    Hobeck, J. D.; Inman, D. J.

    2014-11-01

    Extensive research has been done on the topics of both turbulence-induced vibration and vibration based energy harvesting; however, little effort has been put into bringing these two topics together. Preliminary experimental studies have shown that piezoelectric structures excited by turbulent flow can produce significant amounts of useful power. This research could serve to benefit applications such as powering remote, self-sustained sensors in small rivers or air ventilation systems where turbulent fluid flow is a primary source of ambient energy. A novel solution for harvesting energy in these unpredictable fluid flow environments was explored by the authors in previous work, and a harvester prototype was developed. This prototype, called piezoelectric grass, has been the focus of many experimental studies. In this paper the authors present a theoretical analysis of the piezoelectric grass harvester modeled as a single unimorph cantilever beam exposed to turbulent cross-flow. This distributed parameter model was developed using a combination of both analytical and statistical techniques. The analytical portion uses a Rayleigh–Ritz approximation method to describe the beam dynamics, and utilizes piezoelectric constitutive relationships to define the electromechanical coupling effects. The statistical portion of the model defines the turbulence-induced forcing function distributed across the beam surface. The model presented in this paper was validated using results from several experimental case studies. Preliminary results show that the model agrees quite well with experimental data. A parameter optimization study was performed with the proposed model. This study demonstrated how a new harvester could be designed to achieve maximum power output in a given turbulent fluid flow environment.

  1. A Vibration-Based MEMS Piezoelectric Energy Harvester and Power Conditioning Circuit

    PubMed Central

    Yu, Hua; Zhou, Jielin; Deng, Licheng; Wen, Zhiyu

    2014-01-01

    This paper presents a micro-electro-mechanical system (MEMS) piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM) is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of the geometric parameters on the output voltage. Based on simulation results, a MEMS Pb(Zr,Ti)O3 (PZT) cantilever array with an integrated large Si proof mass is designed and fabricated to improve output voltage and power. Test results show that the fabricated generator, with five cantilever beams (with unit dimensions of about 3 × 2.4 × 0.05 mm3) and an individual integrated Si mass dimension of about 8 × 12.4 × 0.5 mm3, produces a output power of 66.75 ?W, or a power density of 5.19 ?W·mm?3·g?2 with an optimal resistive load of 220 k? from 5 m/s2 vibration acceleration at its resonant frequency of 234.5 Hz. In view of high internal impedance characteristic of the PZT generator, an efficient autonomous power conditioning circuit, with the function of impedance matching, energy storage and voltage regulation, is then presented, finding that the efficiency of the energy storage is greatly improved and up to 64.95%. The proposed self-supplied energy generator with power conditioning circuit could provide a very promising complete power supply solution for wireless sensor node loads. PMID:24556670

  2. A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit.

    PubMed

    Yu, Hua; Zhou, Jielin; Deng, Licheng; Wen, Zhiyu

    2014-01-01

    This paper presents a micro-electro-mechanical system (MEMS) piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM) is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of the geometric parameters on the output voltage. Based on simulation results, a MEMS Pb(Zr,Ti)O3 (PZT) cantilever array with an integrated large Si proof mass is designed and fabricated to improve output voltage and power. Test results show that the fabricated generator, with five cantilever beams (with unit dimensions of about 3 × 2.4 × 0.05 mm3) and an individual integrated Si mass dimension of about 8 × 12.4 × 0.5 mm3, produces a output power of 66.75 ?W, or a power density of 5.19 ?W?mm-3?g-2 with an optimal resistive load of 220 k? from 5 m/s2 vibration acceleration at its resonant frequency of 234.5 Hz. In view of high internal impedance characteristic of the PZT generator, an efficient autonomous power conditioning circuit, with the function of impedance matching, energy storage and voltage regulation, is then presented, finding that the efficiency of the energy storage is greatly improved and up to 64.95%. The proposed self-supplied energy generator with power conditioning circuit could provide a very promising complete power supply solution for wireless sensor node loads. PMID:24556670

  3. Energy Harvesting from Ambient Vibrations with Arbitrary In-Plane Motion Directions Using a Magnetostrictive/Piezoelectric Laminate Composite Transducer

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Wen, Yumei; Li, Ping; Yue, Xihai; Yu, Qiangmo

    2014-07-01

    A magnetoelectric (ME) vibration energy harvester has been designed to scavenge sufficient energy from ambient vibration with arbitrary motion directions in a plane and over a range of frequencies. In the harvester, a circular-cross-section cantilever rod is adopted to extract the vibration energy due to its ability to host accelerations in arbitrary in-plane motion directions. The magnetic coupling between the magnet and the ME transducer results in nonlinear oscillation of the cantilever rod with increased frequency bandwidth. To achieve optimal vibration energy harvesting performance, the effects of the nonlinear vibration and the harvester parameters including the magnetic circuit and the separation distance on the electrical output and the?working bandwidth are analyzed. The experimental results show that the harvester can scavenge vibration energy in arbitrary in-plane directions, exhibiting a bandwidth of 4.0 Hz and maximum power of 0.22 mW at acceleration of 0.6 g (with g = 9.8 m s-2).

  4. Topology optimization and fabrication of low frequency vibration energy harvesting microdevices

    NASA Astrophysics Data System (ADS)

    Deng, Jiadong; Rorschach, Katherine; Baker, Evan; Sun, Cheng; Chen, Wei

    2015-02-01

    Topological design of miniaturized resonating structures capable of harvesting electrical energy from low frequency environmental mechanical vibrations encounters a particular physical challenge, due to the conflicting design requirements: low resonating frequency and miniaturization. In this paper structural static stiffness to resist undesired lateral deformation is included into the objective function, to prevent the structure from degenerating and forcing the solution to be manufacturable. The rational approximation of material properties interpolation scheme is introduced to deal with the problems of local vibration and instability of the low density area induced by the design dependent body forces. Both density and level set based topology optimization (TO) methods are investigated in their parameterization, sensitivity analysis, and applicability for low frequency energy harvester TO problems. Continuum based variation formulations for sensitivity analysis and the material derivative based shape sensitivity analysis are presented for the density method and the level set method, respectively; and their similarities and differences are highlighted. An external damper is introduced to simulate the energy output of the resonator due to electrical damping and the Rayleigh proportional damping is used for mechanical damping. Optimization results for different scenarios are tested to illustrate the influences of dynamic and static loads. To demonstrate manufacturability, the designs are built to scale using a 3D microfabrication method and assembled into vibration energy harvester prototypes. The fabricated devices based on the optimal results from using different TO techniques are tested and compared with the simulation results. The structures obtained by the level set based TO method require less post-processing before fabrication and the structures obtained by the density based TO method have resonating frequency as low as 100 Hz. The electrical voltage response in the experiment matches the trend of the simulation data.

  5. Design considerations for small-scale wind energy harvesters driven by broadband vortex-induced vibrations

    NASA Astrophysics Data System (ADS)

    Paxson, Benjamin; Wickenheiser, Adam M.

    2014-04-01

    In recent years, an increasing number of breakthroughs have been made in the field of small-scale wind energy harvesting, where specialized materials are utilized to convert flow energy into electric power. Several studies on this power extraction rely on a common energy harvester setup in which a stiff cantilever beam is attached to the trailing edge of a miniature bluff body. At these small scales where boundary layer effects are appreciable in the laminar flow regime, periodic vortex shedding can be used to drive transverse vibrations in the beam. Interestingly, the fluid dynamics involved in this unsteady process have been studied for decades not to exploit their characteristics, but instead to eliminate potentially destructive effects. As a result, there is still much room for improvement and expansion on recent design studies. A study of how subtle changes in bluff body trailing edge geometry effect power output of a model will be presented in this paper. The model under consideration consists of a miniature bluff body on the order of tens of millimeters in diameter, to which a piezoelectric cantilever is attached at the trailing edge. This model is specifically designed for laminar to transitional Reynolds Number flows (500-2800) where the periodicity of vortex shedding approaches the natural frequency of the beam. As the flow speed is further increased, the effect of lock-in occurs where the resonant beam motion resists a change in vortex shedding frequency. Vibration amplitudes of the beam reach a maximum under this condition, thus maximizing power generation efficiency of the system and providing an optimal condition to operate the harvester. In an effort to meaningfully compare the results, a number of dimensionless parameters are employed. The influence of parameters such as beam length and natural frequency, fluid flow speed, and trailing edge geometry are studied utilizing COMSOL Multiphysics laminar, fluid-structure interaction simulations in order to create design guidelines for an improved energy harvester.

  6. Motion characteristics and output voltage analysis of micro-vibration energy harvester based on diamagnetic levitation

    NASA Astrophysics Data System (ADS)

    Ye, Zhitong; Duan, Zhiyong; Takahata, Kenichi; Su, Yufeng

    2015-01-01

    In this paper, the force analysis and output performance of the micro-vibration energy harvester are elaborated. The force of the floating magnet in the magnetic field of the lifting magnet is firstly analyzed. Using COMSOL™, the change of magnetic force exerted on the floating magnet versus the vertical distance and the horizontal eccentric distance is obtained for different lifting magnets of a cylinder, a ring and an inner cylinder plus an outer ring, respectively. When the distance between the lifting and floating magnets ranges from 7.3 to 8.1 mm, the change rate of the magnetic force versus the vertical distance for the inner cylinder plus outer ring structure is the smallest, whose value is 619 µN/mm. In other words, if the inner cylinder plus outer ring structure is used as the lifting magnet, the vibration space of the floating magnet is the largest, which is 8 and 7.6 % larger than the cylinder and ring lifting magnets, respectively. The horizontal restoring forces of the three structures are substantially equal to each other at the horizontal eccentric distance of 4 mm, which is around 860 µN. Then the equilibrium position change of the floating magnet is discussed when the energy harvester is in an inclined position. Finally, by the analysis of the vibration model, the output performances of the energy harvester are comparatively calculated under the vertical and inclined positions. At the natural frequency of 6.93 Hz, the maximum power of 66.7 µW is generated.

  7. Motion characteristics and output voltage analysis of micro-vibration energy harvester based on diamagnetic levitation

    NASA Astrophysics Data System (ADS)

    Ye, Zhitong; Duan, Zhiyong; Takahata, Kenichi; Su, Yufeng

    2014-08-01

    In this paper, the force analysis and output performance of the micro-vibration energy harvester are elaborated. The force of the floating magnet in the magnetic field of the lifting magnet is firstly analyzed. Using COMSOL™, the change of magnetic force exerted on the floating magnet versus the vertical distance and the horizontal eccentric distance is obtained for different lifting magnets of a cylinder, a ring and an inner cylinder plus an outer ring, respectively. When the distance between the lifting and floating magnets ranges from 7.3 to 8.1 mm, the change rate of the magnetic force versus the vertical distance for the inner cylinder plus outer ring structure is the smallest, whose value is 619 µN/mm. In other words, if the inner cylinder plus outer ring structure is used as the lifting magnet, the vibration space of the floating magnet is the largest, which is 8 and 7.6 % larger than the cylinder and ring lifting magnets, respectively. The horizontal restoring forces of the three structures are substantially equal to each other at the horizontal eccentric distance of 4 mm, which is around 860 µN. Then the equilibrium position change of the floating magnet is discussed when the energy harvester is in an inclined position. Finally, by the analysis of the vibration model, the output performances of the energy harvester are comparatively calculated under the vertical and inclined positions. At the natural frequency of 6.93 Hz, the maximum power of 66.7 µW is generated.

  8. Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact

    NASA Astrophysics Data System (ADS)

    Basset, P.; Galayko, D.; Cottone, F.; Guillemet, R.; Blokhina, E.; Marty, F.; Bourouina, T.

    2014-03-01

    This paper presents an advanced study including the design, characterization and theoretical analysis of a capacitive vibration energy harvester. Although based on a resonant electromechanical device, it is intended for operation in a wide frequency band due to the combination of stop-end effects and a strong biasing electrical field. The electrostatic transducer has an interdigited comb geometry with in-plane motion, and is obtained through a simple batch process using two masks. A continuous conditioning circuit is used for the characterization of the transducer. A nonlinear model of the coupled system ‘transduce-conditioning circuit’ is presented and analyzed employing two different semi-analytical techniques together with precise numerical modelling. Experimental results are in good agreement with results obtained from numerical modelling. With the 1 g amplitude of harmonic external acceleration at atmospheric pressure, the system transducer-conditioning circuit has a half-power bandwidth of more than 30% and converts more than 2 µW of the power of input mechanical vibrations over the range of 140 and 160 Hz. The harvester has also been characterized under stochastic noise-like input vibrations.

  9. Harvesting traffic-induced bridge vibrations

    Microsoft Academic Search

    T. Galchev; J. McCullagh; R. L. Peterson; K. Najafi

    2011-01-01

    This paper demonstrates the harvesting of low-frequency and low-amplitude vibration energy from a suspension bridge. The performance of a Parametric Frequency Increased Generator (PFIG) (1) is evaluated at different locations along the bridge. Bridge vibrations have very low acceleration 0.1-1 m\\/s 2 and variable frequency characteristics (1-40 Hz), making them very challenging to harvest. Field test results show consistent operation

  10. Buck-boost converter for simultaneous semi-active vibration control and energy harvesting for electromagnetic regenerative shock absorber

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhang, Chongxiao; Kim, Junyoung; Yu, Liangyao; Zuo, Lei

    2014-04-01

    Regenerative semi-active suspensions can capture the previously dissipated vibration energy and convert it to usable electrical energy for powering on-board electronic devices, while achieve both the better ride comfort and improved road handling performance at the same time when certain control is applied. To achieve this objective, the power electronics interface circuit connecting the energy harvester and the electrical loads, which can perform simultaneous vibration control and energy harvesting function is in need. This paper utilized a buck-boost converter for simultaneous semi-active vibration control and energy harvesting with electromagnetic regenerative shock absorber, which utilizes a rotational generator to converter the vibration energy to electricity. It has been found that when the circuit works in discontinuous current mode (DCM), the ratio between the input voltage and current is only related to the duty cycle of the switch pulse width modulation signal. Using this property, the buck-boost converter can be used to perform semi-active vibration control by controlling the load connected between the terminals of the generator in the electromagnetic shock absorber. While performing the vibration control, the circuit always draw current from the shock absorber and the suspension remain dissipative, and the shock absorber takes no additional energy to perform the vibration control. The working principle and dynamics of the circuit has been analyzed and simulations were performed to validate the concept.

  11. Low-frequency vibration energy harvesting using a locally resonant phononic crystal plate with spiral beams

    NASA Astrophysics Data System (ADS)

    Shen, Li; Wu, Jiu Hui; Zhang, Siwen; Liu, Zhangyi; Li, Jing

    2015-01-01

    A low-frequency vibration energy generator has been proposed by using a locally resonant phononic crystal plate which has spiral beams connecting the scatterers and the matrix. Finite element analysis shows that at the flat bands frequencies of the phononic crystal, locally resonant leads to the spiral beams having strong deformations which are perpendicular to the plate. A designed structure with three PC cells arranged in the same direction was adopted for the experiments. Piezoelectric patches were adhered on the end of the spiral beams and then the collected vibration energy could be converted into electric energy. The maximum single-channel output voltage which reached as much as 13 V was obtained at the first flat band frequency 29.2 Hz in the experiment. Meanwhile, in the low-frequency range of 0-500 Hz, it showed that the piezoelectric transformation could be conducted at a dozen of resonant frequencies. Furthermore, through modulating the structure parameters, this phononic crystal has the potential to realize broad-distributed vibration energy harvesting.

  12. An elastic-support model for enhanced bistable piezoelectric energy harvesting from random vibrations

    NASA Astrophysics Data System (ADS)

    Leng, Y. G.; Gao, Y. J.; Tan, D.; Fan, S. B.; Lai, Z. H.

    2015-02-01

    To overcome the defect of conventional nonlinear piezoelectric cantilever vibration energy harvesters, in this paper we conceive an elastic-support model to study the performance of energy converters under two types of variable-intensity excitation conditions: filtered Gaussian noises and pink noises. When excitation intensity is insufficient, thanks to the system's variable potential function, frequent bistable transition oscillations between two wells occur in elastic-support systems, while only weak oscillations in either well could be observed in rigid-support systems. In practical applications, the structural parameters of energy harvesters are not allowed to make real-time changes. If considered remaining the magnet interval and the spring's elastic stiffness unchanged while receiving stable maximum output voltage, elastic-support systems can be made full use toward variable-intensity filtered Gaussian noises. It has been proven that elastic-support systems are capable of adapting to random excitations with variable intensity, through which maximum power output and sufficient electromechanical energy conversion of the system can be accomplished.

  13. White Noise Responsiveness of an AlN Piezoelectric MEMS Cantilever Vibration Energy Harvester

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Seshia, A. A.

    2014-11-01

    This paper reports the design, analysis and experimental characterisation of a piezoelectric MEMS cantilever vibration energy harvester, the enhancement of its power output by adding various values of end mass, as well as assessing the responsiveness towards white noise. Devices are fabricated using a 0.5 ?m AlN on 10 ?m doped Si process. Cantilevers with 5 mm length and 2 mm width were tested at either unloaded condition (MC0: fn 577 Hz) or subjected to estimated end masses of 2 mg (MC2: fn 129 Hz) and 5 mg (MC5: fn 80 Hz). While MC0 was able to tolerate a higher drive acceleration prior to saturation (7 g with 0.7 ?W), MC5 exhibited higher peak power attainable at a lower input vibration (2.56 ?W at 3 ms?2). MC5 was also subjected to band-limited (10 Hz to 2 kHz) white noise vibration, where the power response was only a fraction of its resonant counterpart for the same input: peak instantaneous power >1 ?W was only attainable beyond 2 g of white noise, whereas single frequency resonant response only required 2.5 ms?2. Both the first resonant response and the band-limited white noise response were also compared to a numerical model, showing close agreements.

  14. Modeling and Simulation of Linear and Nonlinear MEMS Scale Electromagnetic Energy Harvesters for Random Vibration Environments

    PubMed Central

    Sassani, Farrokh

    2014-01-01

    The simulation results for electromagnetic energy harvesters (EMEHs) under broad band stationary Gaussian random excitations indicate the importance of both a high transformation factor and a high mechanical quality factor to achieve favourable mean power, mean square load voltage, and output spectral density. The optimum load is different for random vibrations and for sinusoidal vibration. Reducing the total damping ratio under band-limited random excitation yields a higher mean square load voltage. Reduced bandwidth resulting from decreased mechanical damping can be compensated by increasing the electrical damping (transformation factor) leading to a higher mean square load voltage and power. Nonlinear EMEHs with a Duffing spring and with linear plus cubic damping are modeled using the method of statistical linearization. These nonlinear EMEHs exhibit approximately linear behaviour under low levels of broadband stationary Gaussian random vibration; however, at higher levels of such excitation the central (resonant) frequency of the spectral density of the output voltage shifts due to the increased nonlinear stiffness and the bandwidth broadens slightly. Nonlinear EMEHs exhibit lower maximum output voltage and central frequency of the spectral density with nonlinear damping compared to linear damping. Stronger nonlinear damping yields broader bandwidths at stable resonant frequency. PMID:24605063

  15. A Study on Energy Harvesting Aware Routing for Vibration-Motivated Wireless Sensor Networks

    E-print Network

    Lim, Sunho

    an electrical energy from various environmental sources, called energy harvesting (or energy scavenging), has communication infrastructure in the near future. However, due to a limited amount of battery energy, there has energy from various environmental sources, called energy harvesting (or energy scavenging), for easy

  16. Self-powered autonomous wireless sensor node using vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Torah, R.; Glynne-Jones, P.; Tudor, M.; O'Donnell, T.; Roy, S.; Beeby, S.

    2008-12-01

    This paper reports the development and implementation of an energy aware autonomous wireless condition monitoring sensor system (ACMS) powered by ambient vibrations. An electromagnetic (EM) generator has been designed to harvest sufficient energy to power a radio-frequency (RF) linked accelerometer-based sensor system. The ACMS is energy aware and will adjust the measurement/transmit duty cycle according to the available energy; this is typically every 3 s at 0.6 m s-2rms acceleration and can be as low as 0.2 m s-2rms with a duty cycle around 12 min. The EM generator has a volume of only 150 mm3 producing an average power of 58 µW at 0.6 m s-2rms acceleration at a frequency of 52 Hz. In addition, a voltage multiplier circuit is shown to increase the electrical damping compared to a purely resistive load; this allows for an average power of 120 µW to be generated at 1.7 m s-2rms acceleration. The ACMS has been successfully demonstrated on an industrial air compressor and an office air conditioning unit, continuously monitoring vibration levels and thereby simulating a typical condition monitoring application.

  17. Improved design of linear electromagnetic transducers for large-scale vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Tang, Xiudong; Zuo, Lei; Lin, Teng; Zhang, Peisheng

    2011-03-01

    This paper presents the design and optimization of tubular Linear Electromagnetic Transducers (LETs) with applications to large-scale vibration energy harvesting, such as from vehicle suspensions, tall buildings or long bridges. Four types of LETs are considered and compared, namely, single-layer configuration using axial magnets, double-layer configuration using axial magnets, single-layer configuration using both axial and radial magnets, double-layer configuration using both axial and radial magnets. In order to optimize the LETs, the parameters investigated in this paper include the thickness of the magnets in axial direction and the thickness of the coils in the radial direction. Finite element method is used to analyze the axisymmetric two-dimensional magnetic fields. Both magnetic flux densities Br [T] in the radial direction and power density [W/m3] are calculated. It is found that the parameter optimization can increase the power density of LETs to 2.7 times compared with the initial design [Zuo et al, Smart Materials and Structures, v19 n4, 2010], and the double-layer configuration with both radial and axial magnets can improve the power density to 4.7 times, approaching to the energy dissipation rate of traditional oil dampers. As a case study, we investigate its application to energy-harvesting shock absorbers. For a reasonable retrofit size, the LETs with double-layer configuration and both axial and radial NdFeB magnets can provide a damping coefficient of 1138 N.s/m while harvesting 35.5 W power on the external electric load at 0.25 m/s suspension velocity. If the LET is shorten circuit, it can dissipate energy at the rate of 142.0 W, providing of a damping coefficient of 2276 N.s/m. Practical consideration of number of coil phases is also discussed.

  18. Comparison of Five Topologies of Cantilever-based MEMS Piezoelectric Vibration Energy Harvesters

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Seshia, A. A.

    2014-11-01

    In the realm of MEMS piezoelectric vibration energy harvesters, cantilever-based designs are by far the most popular. Despite being deceptively simple, the active piezoelectric area near the clamped end is able to accumulate maximum strain-generated-electrical-charge, while the free end is able to accommodate a proof mass without compromising the effective area of the piezoelectric generator since it experiences minimal strain anyway. While other contending designs do exist, this paper investigates five micro-cantilever (MC) topologies, namely: a plain MC, a tapered MC, a lined MC, a holed MC and a coupled MC, in order to assess their relative performance as an energy harvester. Although a classical straight and plain MC offers the largest active piezoelectric area, alternative MC designs can potentially offer higher average mechanical strain distribution for a given mechanical loading. Numerical simulation and experimental comparison of these 5 MCs (0.5 ? AlN on 10 ?m Si) with the same practical dimensions of 500 ?m and 2000 ?m, suggest a cantilever with a coupled subsidiary cantilever yield the best power performance, closely followed by the classical plain topology.

  19. Reliability of vibration energy harvesters of metal-based PZT thin films

    NASA Astrophysics Data System (ADS)

    Tsujiura, Y.; Suwa, E.; Kurokawa, F.; Hida, H.; Kanno, I.

    2014-11-01

    This paper describes the reliability of piezoelectric vibration energy harvesters (PVEHs) of Pb(Zr,Ti)O3 (PZT) thin films on metal foil cantilevers. The PZT thin films were directly deposited onto the Pt-coated stainless-steel (SS430) cantilevers by rf-magnetron sputtering, and we observed their aging behavior of power generation characteristics under the resonance vibration condition for three days. During the aging measurement, there was neither fatigue failure nor degradation of dielectric properties in our PVEHs (length: 13 mm, width: 5.0 mm, thickness: 104 ?m) even under a large excitation acceleration of 25 m/s2. However, we observed clear degradation of the generated electric voltage depending on excitation acceleration. The decay rate of the output voltage was 5% from the start of the measurement at 25 m/s2. The transverse piezoelectric coefficient (e31,f) also degraded with almost the same decay rate as that of the output voltage; this indicates that the degradation of output voltage was mainly caused by that of piezoelectric properties. From the decay curves, the output powers are estimated to degrade 7% at 15 m/s2 and 36% at 25 m/s2 if we continue to excite the PVEHs for 30 years.

  20. A Study on Design and Analysis of Hybrid Vibration Damper with Energy Harvesting and Optimal Damping Effect

    NASA Astrophysics Data System (ADS)

    Hanumantha Rao, T. V.; Srinivasa Rao, M. S. S.; Apparao, B. V.; Satyanarayana, K.

    2014-04-01

    The basic purpose of a damper is to reduce the vibration and to have a better ride comfort, road handling and safety to the rider. Recent developments show that an active vibration damper can effectively work much better than a passive damper. The effectiveness and reliability can be further enhanced by using hybrid dampers, which is a combination of active and passive dampers. But the need to have energy optimization in any field need not be stressed. Consequently, novel suspension concepts are required, not only to improve the vehicle's dynamic performance, but also to see that the energy generated during vibration can be harvested by utilizing regeneration functions. Hence if a hybrid damper with energy harvesting capability be designed, it would serve both purposes. In the hybrid damper a combination of hydraulic damper to act as a passive damper and an electromagnetic (EM) damper to act as an active damper is considered. The hydraulic system has more reliability and is time tested and the EM system acts as a dynamic vibration system as well as energy harvester. In this study a hybrid EM damper is modeled, analyzed and validity is shown for frequency response functions and energy balance for its active use. It is also shown how the effectiveness of the suspension system can be enhanced by using a hybrid damper.

  1. A performance-enhanced energy harvester for low frequency vibration utilizing a corrugated cantilevered beam

    NASA Astrophysics Data System (ADS)

    Kim, In-Ho; Jin, SeungSeop; Jang, Seon-Jun; Jung, Hyung-Jo

    2014-03-01

    This note proposes a performance-enhanced piezoelectric energy harvester by replacing a conventional flat cantilevered beam with a corrugated beam. It consists of a proof mass and a sinusoidally or trapezoidally corrugated cantilevered beam covered by a polyvinylidene fluoride (PVDF) film. Compared to the conventional energy harvester of the same size, it has a more flexible bending stiffness and a larger bonding area of the PVDF layer, so higher output voltage from the device can be expected. In order to investigate the characteristics of the proposed energy harvester, analytical developments and numerical simulations on its natural frequency and tip displacement are carried out. Shaking table tests are also conducted to verify the performance of the proposed device. It is clearly shown from the tests that the proposed energy harvester not only has a lower natural frequency than an equivalent sized standard energy harvester, but also generates much higher output voltage than the standard one.

  2. Optimal design of a vibration-based energy harvester using magnetostrictive material (MsM)

    NASA Astrophysics Data System (ADS)

    Hu, J.; Xu, F.; Huang, A. Q.; Yuan, F. G.

    2011-01-01

    In this study, an optimal vibration-based energy harvesting system using magnetostrictive material (MsM) was designed and tested to enable the powering of a wireless sensor. In particular, the conversion efficiency, converting from magnetic to electric energy, is approximately modeled from the magnetic field induced by the beam vibration. A number of factors that affect the output power such as the number of MsM layers, coil design and load matching are analyzed and explored in the design optimization. From the measurements, the open-circuit voltage can reach 1.5 V when the MsM cantilever beam operates at the second natural frequency 324 Hz. The AC output power is 970 µW, giving a power density of 279 µW cm - 3. The attempt to use electrical reactive components (either inductors or capacitors) to resonate the system at any frequency has also been analyzed and tested experimentally. The results showed that this approach is not feasible to optimize the power. Since the MsM device has low output voltage characteristics, a full-wave quadrupler has been designed to boost the rectified output voltage. To deliver the maximum output power to the load, a complex conjugate impedance matching between the load and the MsM device is implemented using a discontinuous conduction mode (DCM) buck-boost converter. The DC output power after the voltage quadrupler reaches 705 µW and the corresponding power density is 202 µW cm - 3. The output power delivered to a lithium rechargeable battery is around 630 µW, independent of the load resistance.

  3. Broadband energy harvesting by exploiting nonlinear oscillations around the second vibration mode of a rectangular piezoelectric bistable laminate

    NASA Astrophysics Data System (ADS)

    Li, Hao; Dai, Fuhong; Du, Shanyi

    2015-04-01

    Recently bistable composite laminates have been investigated for broadband energy harvesting, by taking advantage of their nonlinear oscillations around the first vibration mode. However, it has been reported that the excitation acceleration needed for the desired large amplitude limit cycle oscillation is too high, if the first vibration mode is elevated to relative higher frequencies (60 Hz e.g.). This study investigates the feasibility of exploiting the nonlinear oscillations around the second vibration mode of a rectangular piezoelectric bistable laminate (RPBL), for broadband vibration energy harvesting at relative higher frequencies, but with relative low excitation acceleration. The proposed RPBL has three oscillation patterns around the second vibration mode, including single-well oscillation, chaotic intermittency oscillation and limit cycle oscillation. The broadband characteristics and the considerable energy conversion efficiency of the RPBL are demonstrated in experiments. The static nonlinearity and the dynamic responses of the RPBL are investigated by finite element method. Finite element analysis (FEA) reveals that the enhanced dynamic responses of the RPBL are due to its softening bending stiffness and the local snap through phenomenon. The FEA results coincide reasonably well with experimental results.

  4. A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting.

    PubMed

    Li, Xiaotian; Guo, Mingsen; Dong, Shuxiang

    2011-04-01

    A piezoelectric transducer for harvesting energy from ambient mechanical vibrations/strains under pressure condition was developed. The proposed transducer was made of two ring-type piezoelectric stacks, one pair of bow-shaped elastic plates, and one shaft that pre-compresses them. This transducer works in flex-compressive (F-C) mode, which is different from a conventional flex-tensional (F-T) one, to transfer a transversely applied force F into an amplified longitudinal force N pressing against the two piezo-stacks via the two bowshaped elastic plates, generating a large electric voltage output via piezoelectric effect. Our experimental results show that without an electric load, an F-C mode piezo-transducer could generate a maximum electric voltage output of up to 110 Vpp, and with an electric load of 40 ??, it a maximum power output of 14.6 mW under an acceleration excitation of 1 g peak-peak at the resonance frequency of 87 Hz. PMID:21507747

  5. An Innovative Controller to Increase Harvested Energy

    NASA Astrophysics Data System (ADS)

    Makihara, K.; Yamamoto, Y.; Horiguchi, C.; Sakaguchi, H.; Fujimoto, K.

    2014-11-01

    This paper proposes an innovative energy-harvesting controller to increase energy harvested from vibrations. Energy harvesting is a process that removes mechanical energy from a vibrating structure, which necessarily results in damping. The damping associated with piezoelectric energy harvesting suppresses the amplitude of mechanical vibration and reduces the harvested energy. To address this critical problem, we devise an energy-harvesting controller that maintains the vibration amplitude as high as possible to increase the harvested energy. Our proposed switching controller is designed to intentionally stop the switching action intermittently. We experimentally demonstrate that the proposed control scheme successfully increases the harvested energy. The piezoelectric voltage with the proposed controller is larger than that with the original synchronized switching harvesting on inductor (SSHI) technique, which increases the harvested energy. The stored energy with our controller is up to 5.7 times greater than that with the conventional SSHI control scheme.

  6. A 1-mW vibration energy harvesting system for moth flight-control applications

    E-print Network

    Chang, Samuel C

    2010-01-01

    This thesis focuses on the approach and methodologies required to build a 1-mW energy-harvesting system for moth flight control applications. The crepuscular hawk moth Manduca sexta is the chosen test subject. This project ...

  7. Design of high-efficiency vibration energy harvesters and experimental functional tests for improving bandwidth and tunability

    NASA Astrophysics Data System (ADS)

    Somà, A.; De Pasquale, G.

    2013-05-01

    The reduction of power consumption of sensors allows the local power supply or wireless sensor networks. This paper introduces the results of design and experiments on devices for harvesting energy from vibrations of machines. The main contribution of this research is the empirical evaluation of different technical solutions able to improve harvester performances and sensing system duty cycle. Satisfactory results have been achieved in lowering of resonance by levitating suspensions and in increasing of Q-factor by studying the air flows. Output power values of 10mW (5.7Hz, 1.4g) and 115mW (3.2Hz, 0.2g) were obtained for piezoelectric and inductive harvesters respectively.

  8. Demonstration of the effect of piezoelectric polarization vector on the performance of a vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Gibert, James M.

    2014-04-01

    This manuscript is motivated by research that shows the shear, d15, mode energy harvesters offer significant improvement in power generation over the traditional normal, d31, mode based harvesters. The premise behind this study is to examine the effect of expanding the design domain of PZT based energy harvesters by considering an arbitrary poling angle. In the first part of the manuscript, we derive the equation of motions of a harvester based on Timoshenko beam theory in an unimorph configuration. The resulting equations are solved using a Rayleigh Ritz analysis. The electric displacement depends on both the normal and shear strain. Thus the proposed device operates using a combination of shear and normal modes to extract power. The extent to which each mode is used depends on the polarization orientation. We examine the effect of poling on the fundamental short and open circuit frequencies. Next, the poling angle is examined over a range to determine the effect on the power harvested at the fundamental modal frequencies of the system. The study demonstrates that an arbitrary poled piezoelectric increases the power that the harvester produces over traditionally poled devices; however, the performance is highly dependent on the geometry.

  9. Development of energy harvester system for avionics

    NASA Astrophysics Data System (ADS)

    Hadas, Z.; Vetiska, V.; Ancik, Z.; Ondrusek, C.; Singule, V.

    2013-05-01

    This paper deals with an energy harvesting system for avionics; it is an energy source for a unit which is used for wireless monitoring or autonomous control of a small aircraft engine. This paper is focused on development process of energy harvesting system from mechanical vibrations in the engine area. The used energy harvesting system consists of an electro-magnetic energy harvester, power management and energy storage element. The energy harvesting system with commercial power management circuits have to be tested and verified measured results are used for an optimal redesign of the electro-magnetic harvester. This developmental step is necessary for the development of the optimal vibration energy harvesting system.

  10. Analysis and Modelling towards Hybrid Piezo-Electromagnetic Vibrating Energy Harvesting Devices

    NASA Astrophysics Data System (ADS)

    Reuschel, Torsten; Salehian, Armaghan

    2011-11-01

    The efficiency of mobile electrical devices increased over the last years. Self-supply by harvesting ambient energy became a possibility of reducing operational costs by ruling out the need of battery replacement. Many energy harvesting devices employ cantilever configurations with base excitation to increase the effective displacement. The proposed design extends this design with an electromagnetic harvesting device (EMH) placed at its tip. It features an alternating stack of magnets with opposing poles and discs of highly permeable material. The composite cylinder is encircled by coils. This EMH design has successfully been employed for ocean wave harvesting and vehicle suspension systems. Its efficiency with respect to mass and energy output is compared to a previously published design using a single magnet placed at the tip moving within a coil. There exists proof that combining readily available technologies into a so-called coupled or hybrid design can increase the efficiency in comparison to respective stand-alone designs. Once the model for the proposed design is derived and evaluated, it is extended by a cantilevered excitation. Piezoelectric layers for hybrid harvesting may be included in future research.

  11. Electromechanical and statistical modeling of turbulence-induced vibration for energy harvesting

    NASA Astrophysics Data System (ADS)

    Hobeck, Jared D.; Inman, Daniel J.

    2013-04-01

    Preliminary experimental studies have shown that piezoelectric structures excited by turbulent flow can produce significant amounts of useful power. The research presented in this paper could benefit applications such as powering self-sustained sensor networks in small rivers or air flow environments where turbulent fluid flow is a primary source of ambient energy. A novel prototype called piezoelectric grass was designed to be a robust solution for harvesting energy in turbulent fluid flow environments. In this paper, the authors present an experimentally validated theoretical analysis of the piezoelectric grass harvester modeled as a single unimorph cantilever beam exposed to turbulent cross-flow. Lastly, a brief parameter optimization study will be presented. This study will demonstrate how the unimorph harvester design could be modified to achieve maximum power output in a given turbulent fluid flow condition.

  12. Piezoelectric MEMS for energy harvesting

    E-print Network

    Kim, Sang-Gook

    Piezoelectric microelectromechanical systems (MEMS) have been proven to be an attractive technology for harvesting small magnitudes of energy from ambient vibrations. This technology promises to eliminate the need for ...

  13. Ultra wide-bandwidth micro energy harvester

    E-print Network

    Hajati, Arman

    2011-01-01

    An ultra wide-bandwidth resonating thin film PZT MEMS energy harvester has been designed, modeled, fabricated and tested. It harvests energy from parasitic ambient vibration at a wide range of amplitude and frequency via ...

  14. Design, fabrication and characterization of a very low frequency piezoelectric energy harvester designed for heart beat vibration scavenging

    NASA Astrophysics Data System (ADS)

    Colin, M.; Basrour, S.; Rufer, L.

    2013-05-01

    Current version of implantable cardioverter defibrillators (ICDs) and pacemakers consists of a battery-powered pulse generator connected onto the heart through electrical leads inserted through the veins. However, it is known that long-term lead failure may occur and cause a dysfunction of the device. When required, the removal of the failed leads is a complex procedure associated with a potential risk of mortality. As a consequence, the main players in the field of intracardiac implants prepare a next generation of devices: miniaturized and autonomous leadless implants, which could be directly placed inside the heart. In this paper, we discuss the frequency content of a heart vibration spectrum, and the dimensional restrictions in the case of a leadless pacemaker. In combination with the requirements in terms of useable energy, we will present a design study of a resonant piezoelectric scavenger aimed at powering such a device. In particular, we will show how the frequency-volume-energy requirement leads to new challenges in terms of power densities, which are to be addressed through implementation of innovative piezoelectric thick films fabrication processes. This paper also presents the simulation, fabrication and the testing of an ultralow frequency (15Hz) resonant piezoelectric energy harvester prototype. Using both harmonic (50mg) and real heart-induced vibrations, we obtained an output power of 60?W and 10?W respectively. Finally, we will place emphasis on the new constraint represented by the gravitational (orientation) sensitivity inherent to these ultra low frequency resonant energy harvesters.

  15. An autoparametric energy harvester

    NASA Astrophysics Data System (ADS)

    Kecik, K.; Borowiec, M.

    2013-09-01

    This paper presents a numerical study of an autoparametric system composed of two elements: a pendulum and an excited nonlinear oscillator. Owing to an inertial coupling between the two elements, different types of motion are possible, from periodic to chaotic. This study examines a linear induction of an energy harvester depending on the pendulum motion. The harvester consists of a cylindrical permanent magnet mounted on a rotor and of four windings fixed to the housing as a stator. When the pendulum is rotating or swinging, the converter is generating energy due to magnetic induction. In this paper, a method utilizing parametrical resonance for harvesting energy from low frequency vibrations is studied. The authors compare energy induced by different types of pendulum motion: swinging, rotation and chaotic dynamics. Additionally, voltage values for different parameters of excitation are estimated.

  16. Vibration harvesting in traffic tunnels to power wireless sensor nodes

    NASA Astrophysics Data System (ADS)

    Wischke, M.; Masur, M.; Kröner, M.; Woias, P.

    2011-08-01

    Monitoring the traffic and the structural health of traffic tunnels requires numerous sensors. Powering these remote and partially embedded sensors from ambient energies will reduce maintenance costs, and improve the sensor network performance. This work reports on vibration levels detected in railway and road tunnels as a potential energy source for embedded sensors. The measurement results showed that the vibrations at any location in the road tunnel and at the wall in the railway tunnel are too small for useful vibration harvesting. In contrast, the railway sleeper features usable vibrations and sufficient mounting space. For this application site, a robust piezoelectric vibration harvester was designed and equipped with a power interface circuit. Within the field test, it is demonstrated that sufficient energy is harvested to supply a microcontroller with a radio frequency (RF) interface.

  17. Rotor hub vibration and blade loads reduction, and energy harvesting via embedded radial oscillator

    NASA Astrophysics Data System (ADS)

    Austruy, Julien

    An embedded radial absorber is investigated to control helicopter rotor hub vibration and blade loads. The absorber is modeled as a discrete mass moving in the spanwise direction within the blade. The absorber is retained in place and tuned with a spring and a damper. The radial absorber couples with lead-lag dynamic through Coriolis forces. The embedded radial absorber coupled to the helicopter is analyzed with a comprehensive rotorcraft model. The blade is modeled as an elastic beam undergoing flap bending, lag bending and elastic torsion, and a radial degree of freedom is added for the absorber. The tuning of the embedded radial absorber to a frequency close to 3/rev with no damping is shown to reduce significantly (up to 86%) the 4/rev in-plane hub forces of a 4-bladed hingeless rotor similar to a MBB BO-105 in high speed flight. The simulation shows that the absorber modifies the in-plane blade root shears to synchronize them to cancel each other in the transmission from rotating frame to fixed frame. A design of an embedded radial absorber experiment for hub vibration control is presented and it is concluded that for such high tuning frequencies as 3/rev, it is feasible to use a regular coil spring to compensate for the steady centrifugal force. Large reduction of blade lag shear (85%) and lag bending moment (71%) is achieved by tuning the embedded radial absorber close to 1/rev (also shown for a BO-105 like helicopter in high speed flight). The absorber reduces the amplitude of the lag bending moment at 1/rev, thus reducing the blade lead-lag motion and reducing the blade drag shear and lag bending moment. Finally, the use of the embedded radial absorber is investigated as a source electrical power when combined with an electromagnetic circuit. A model of the electromagnetic system is developed and validated, and an evaluation of the amount of power harvestable for different configurations is presented. The maximum power harvested was calculated to be 133 watts.

  18. Dynamic analysis of an electrostatic energy harvesting system

    E-print Network

    Niu, Feifei

    2013-01-01

    Traditional small-scale vibration energy harvesters have typically low efficiency of energy harvesting from low frequency vibrations. Several recent studies have indicated that introduction of nonlinearity can significantly ...

  19. Lumped parameter models of vortex induced vibration with application to the design of aquatic energy harvester

    NASA Astrophysics Data System (ADS)

    Dhanwani, Manish A.; Sarkar, Abhijit; Patnaik, B. S. V.

    2013-11-01

    In the present study, a lumped parameter model for vortex-induced vibrations is analysed. In this work, the vortex-induced vibrations of an elastically mounted rigid cylinder are able to move in-line and transverse to the flow with equal mass ratio and natural frequencies. A simplified lumped mass model is proposed to study the two degree of freedom (dof) structural oscillator. A classical van der Pol equation along with acceleration coupling, models the near wake dynamics describing the fluctuating nature of vortex shedding. The model dynamics is investigated analytically and the results are compared for moderate mass ratios. The results predicted using this model show a good agreement with the experimental data. The dependence of stream-wise displacement on mass and damping is explored. The cause of cross-flow displacement magnification due to freedom to move in stream-wise direction is also explored using the proposed model. Apart from these two degrees of freedom, the cylinder can also undergo rotation about its centre of mass. The effect of freedom to move in this rotational degree of freedom is exploited to our advantage by applying it to the VIVACE (Vortex induced vibration aquatic clean energy) design which was originally proposed by Bernitsas et al. (2008). The original design was not reported to be the optimal one and the set-up was shown to work only for a given flow velocity. But, the flow environment keeps changing and hence there is a need to bring in robustness and optimize the proposed design. The values of optimized spring stiffness have been found using the lumped mass model. The design is made robust by exploiting the rotational mode. This mode is triggered by varying the overhang lengths in accordance with the varying flow velocity in order to strike resonance for a certain flow regime.

  20. Electrostatic Force-induced Broadband Effect in Electret- based Vertical Vibration Energy Harvesters using Finegrained Stainless Steel Oscillator

    NASA Astrophysics Data System (ADS)

    Asanuma, H.; Hara, M.; Oguchi, H.; Kuwano, H.

    2014-11-01

    We propose a fine-grained stainless-steel as a promising material for a robust oscillator and investigate the dependence of frequency band width, resonance frequency, and output power on initial air gaps in electret-based vertical vibration energy harvesters. Beams of the oscillator showed a shallow side-etched depth less than 10 ?m, as well as smooth edges. The oscillator succeeded in travelling over 1-mm displacement without fracture. Also, we found that broader frequency band, as well as lower resonance frequency, can be achieved with reducing the initial air gap, whereas the output power exhibited a peak value at an optimal initial air gap. The results may be attributed to the soft spring effect induced by the stronger electrostatic force. Maximum output power density and FWHM of frequency band width of our harvester are 4.7 ?W/cm3 and 14 Hz at initial air gap 0.3 mm and acceleration 4.9 m/s2.

  1. Design and fabrication of a PZT cantilever for low frequency vibration energy harvesting.

    PubMed

    Kim, Moonkeun; Hwang, Beomseok; Min, Nam Ki; Jeong, Jaehwa; Kwon, Kwang-Ho; Park, Kang-Bak

    2011-07-01

    In this study, a PZT cantilever with a Si proof mass is designed and fabricated for a low frequency energy harvesting application. A mathematical model of a multi-layer composite beam was derived and applied in a parametric analysis of the piezoelectric cantilever. Finally, the dimensions of the cantilever were determined for the resonant frequency of the cantilever. Our cantilever design was based on MATLAB and ANSYS simulations. For this simulation, the proof mass volumes were varied from 0 to 0.5 mm3 and resonant frequencies were calculated from 833.5 Hz to 125.5 Hz, respectively. Based on simulation, we fabricated a device with beam dimensions of about 4.10 mm x 0.48 mm x 0.012 mm, and an integrated Si proof mass with dimensions of about 0.481 mm x 0.48 mm x 0.45 mm. The resonant frequency, maximum peak voltage, and highest average power of the cantilever device were 224.8 Hz, 4.8 mV, and 2.24 nW, respectively. PMID:22121746

  2. Performance enhancement of a rotational energy harvester utilizing wind-induced vibration of an inclined stay cable

    NASA Astrophysics Data System (ADS)

    Kim, In-Ho; Jang, Seon-Jun; Jung, Hyung-Jo

    2013-07-01

    In this paper, an innovative strategy for improving the performance of a recently developed rotational energy harvester is proposed. Its performance can be considerably enhanced by replacing the electromagnetic induction part, consisting of moving permanent magnets and a fixed solenoid coil, with a moving mass and a rotational generator (i.e., an electric motor). The proposed system is easily tuned to the natural frequency of a target structure using the position change of a proof mass. Owing to the high efficiency of the rotational generator, the device can more effectively harness electrical energy from the wind-induced vibration of a stay cable. Also, this new configuration makes the device more compact and geometrically tunable. In order to validate the effectiveness of the new configuration, a series of laboratory and field tests are carried out with the prototype of the proposed device, which is designed and fabricated based on the dynamic characteristics of the vibration of a stay cable installed in an in-service cable-stayed bridge. From the field test, it is observed that the normalized output power of the proposed system is 35.67 mW (m s-2)-2, while that of the original device is just 5.47 mW (m s-2)-2. These results show that the proposed device generates much more electrical energy than the original device. Moreover, it is verified that the proposed device can generate sufficient electricity to power a wireless sensor node placed on a cable under gentle-moderate wind conditions.

  3. Electromagnetic harvester for lateral vibration in rotating machines

    NASA Astrophysics Data System (ADS)

    de Araujo, Marcus Vinícius Vitoratti; Nicoletti, Rodrigo

    2015-02-01

    Energy harvesters are devices that convert mechanical energy, usually vibration, into electrical energy that can be used to supply low power circuits (e.g. sensors). In this work, an energy harvester is designed for converting the mechanical energy of the lateral vibrations of shafts into electrical energy. For that, permanent magnets are mounted in the shaft and coils are mounted in a fixed structure. A configuration analysis is performed to find the appropriated polarization of the magnets and orientation of the coils in order to have electromagnetic induction without resisting torque on the shaft. Experimental tests are done for different electrical configurations of the coils: independent, in series and, in parallel. The results show that more electric power is induced when the coils are connected in series, and vibration reduction is more evident when the coils are connected independently.

  4. Multi-mechanism vibration harvester combining inductive and piezoelectric mechanisms

    NASA Astrophysics Data System (ADS)

    Marin, Anthony; Priya, Shashank

    2012-04-01

    With increasing demand for wireless sensor nodes in automobile, aircraft and rail applications, the need for energy harvesters has been growing. In these applications, energy harvesters provide a more robust and inexpensive power solution than batteries. In order to enhance the power density of existing energy harvesters, a variety of multimodal energy harvesting techniques have been proposed. Multi-modal energy harvesters can be categorized as: (i) Multi-Source Energy Harvester (MSEH), (ii) Multi-Mechanism Energy Harvester (MMEH), and (iii) Single Source Multi-Mode Energy Harvester (S2M2EH). In this study, we focus on developing MMEH which combines the inductive and piezoelectric mechanisms. The multi-mechanism harvester was modeled using FEM techniques and theoretically analyzed to optimize the performance and reduce the overall shape and size similar to that of AA battery. The theoretical model combining analytical and FEM modeling techniques provides the system dynamics and output power for specific generator and cymbal geometry at various source conditions. In the proposed design, a cylindrical tube contains a magnetic levitation cavity where a center magnet oscillates through a copper coil. Piezoelectric cymbal transducers were mounted on the top and bottom sections of the cylindrical shell. In response to the external vibrations, electrical energy was harvested from the relative motion between magnet and coil through Faraday's effect and from the piezoelectric material through the direct piezoelectric effect. Experimental results validate the predictions from theoretical model and show the promise of multimodal harvester for powering wireless sensor nodes in automobile, aircraft, and rail applications.

  5. Enhancement of the performance of a hybrid nonlinear vibration energy harvester based on piezoelectric and electromagnetic transductions

    NASA Astrophysics Data System (ADS)

    Mahmoudi, S.; Kacem, N.; Bouhaddi, N.

    2014-07-01

    A multiphysics model of a hybrid piezoelectric-electromagnetic vibration energy harvester (VEH), including the main sources of nonlinearities, is developed. The continuum problem is derived on the basis of the extended Hamilton principle, and the modal Galerkin decomposition method is used in order to obtain a reduced-order model consisting of a nonlinear Duffing equation of motion coupled with two transduction equations. The resulting system is solved analytically using the method of multiple time scales and numerically by means of the harmonic balance method coupled with the asymptotic numerical continuation technique. Closed-form expressions for the moving magnet critical amplitude and the critical load resistance are provided in order to allow evaluation of the linear dynamic range of the proposed device. Several numerical simulations have been performed to highlight the performance of the hybrid VEH. In particular, the power density and the frequency bandwidth can be boosted, by up to 60% and 29% respectively, compared to those for a VEH with pure magnetic levitation thanks to the nonlinear elastic guidance. Moreover, the hybrid transduction permits enhancement of the power density by up to 84%.

  6. Energy Harvesting From Low Frequency Applications Using Piezoelectric Materials

    SciTech Connect

    Li, Huidong; Tian, Chuan; Deng, Zhiqun

    2014-11-06

    This paper reviewed the state of research on piezoelectric energy harvesters. Various types of harvester configurations, piezoelectric materials, and techniques used to improve the mechanical-to-electrical energy conversion efficiency were discussed. Most of the piezoelectric energy harvesters studied today have focused on scavenging mechanical energy from vibration sources due to their abundance in both natural and industrial environments. Cantilever beams have been the most studied structure for piezoelectric energy harvester to date because of the high responsiveness to small vibrations.

  7. Energy Harvesting Optimization

    E-print Network

    Lavaei, Javad

    . Energy sources include kinetic, thermal, light, and wind energy, with the first and consistent nature. Energy derived from these sources is stored in small, energy harvesting has a place in the future. However, a large issue at hand

  8. A Nonlinear Energy Sink with Energy Harvester

    NASA Astrophysics Data System (ADS)

    Kremer, Daniel

    The transfer of energy between systems is a natural process, manifesting in many different ways. In engineering transferable energy can be considered wanted or unwanted. Specifically in mechanical systems, energy transfer can occur as unwanted vibrations, passing from a source to a receiver. In electrical systems, energy transfer can be desirable, where energy from a source may be used elsewhere. This work proposes a method to combine the two, converting unwanted mechanical energy into useable electrical energy. A nonlinear energy sink (NES) is a vibration absorber that passively localizes vibrational energy, removing mechanical energy from a primary system. Consisting of a mass-spring-damper such that the stiffness is essentially nonlinear, a NES can localize vibrational energy from a source and dissipate it through damping. Replacing the NES mass with a series of magnets surrounded by coils fixed to the primary mass, the dissipated energy can be directly converted to electrical energy. A NES with energy harvesting properties is constructed and introduced. The system parameters are identified, with the NES having an essentially cubic nonlinear stiffness. A transduction factor is quantified linking the electrical and mechanical systems. An analytic analysis is carried out studying the transient and harmonically excited response of the system. It is found that the energy harvesting does not reduce the vibrational absorption capabilities of the NES. The performance of the system in both transient and harmonically excited responses is found to be heavily influenced by input energies. The system is tested, with good match to analytic results.

  9. Stresa, Italy, 25-27 April 2007 CHARACTERISATION OF AN ELECTROSTATIC VIBRATION HARVESTER

    E-print Network

    Paris-Sud XI, Université de

    Stresa, Italy, 25-27 April 2007 CHARACTERISATION OF AN ELECTROSTATIC VIBRATION HARVESTER T. Sterken ambient vibration is proposed as an alternative to storage based power supplies for autonomous systems. The system presented converts the mechanical energy of a vibration into electrical energy by means

  10. Effect of hydrodynamic interaction on energy harvesting in arrays of ionic polymer metal composites vibrating in a viscous fluid

    NASA Astrophysics Data System (ADS)

    Cellini, Filippo; Intartaglia, Carmela; Soria, Leonardo; Porfiri, Maurizio

    2014-04-01

    In this paper, we investigate underwater energy harvesting of a parallel array of nominally identical ionic polymer metal composites (IPMCs) subjected to low frequency base excitation in water. The IPMCs are connected in parallel and shunted with a varying resistor. We model the IPMCs as slender beams with uniform cross section undergoing small oscillations in an otherwise quiescent viscous fluid. We utilize a boundary element approach to compute the hydrodynamic loading on each structure, which is due to the oscillations of the whole array. Leveraging recent findings on sensing in ionic polymer metal composites, we propose a coupled electromechanical model for predicting energy harvesting as a function of the IPMCs’ impedance and the base excitation. To validate our theoretical predictions, we perform experiments on an in-house-fabricated array of five centimeter-size composites, which we characterize on a dedicated test rig. We experimentally determine the power harvested by varying the excitation frequency in the broad range 2-35 Hz and the shunting resistance from 1 to 1000 ?.

  11. Mechanical Amplifier for Translational Kinetic Energy Harvesters

    NASA Astrophysics Data System (ADS)

    Shahosseini, I.; Najafi, K.

    2014-11-01

    This paper reports the design, optimization, and test results of a mechanical amplifier coupled to an electromagnetic energy harvester to generate power from low- amplitude (±1 mm) and low-frequency (<5 Hz) vibrations in the presence of large static displacements. When coupled to a translational kinetic energy harvester, the amplifier boosts small vibration amplitudes by as much as 4x while accommodating translational displacements of more than 10x of vibration amplitudes. A complete electromagnetic energy harvester using this mechanical amplifier produces 16x improvement in output power (30 mW vs 1.9 mW without amplifier at 5 Hz), and a high power density of 170 ?W/cm3.

  12. Harvesting Raindrop Energy with Piezoelectrics: a Review

    NASA Astrophysics Data System (ADS)

    Wong, Chin-Hong; Dahari, Zuraini; Abd Manaf, Asrulnizam; Miskam, Muhammad Azman

    2015-01-01

    Harvesting vibration energy from piezoelectric material impacted by raindrops has proved to be a promising approach for future applications. A piezoelectric harvester has interesting advantages such as simple structure, easy fabrication, reduced number of components, and direct conversion of vibrations to electrical charge. Extensive research has been carried out and is still underway to explore this technique for practical applications. This review provides a comprehensive picture of global research and development of raindrop energy harvesting using piezoelectric material to enable researchers to determine the direction of further investigation. The work published so far in this area is reviewed and summarized with relevant suggestions for future work. In addition, a brief experiment was carried out to investigate the suitable piezoelectric structure for raindrop energy harvesting. Results showed that the bridge structure generated a higher voltage compared with the cantilever structure.

  13. Piezoelectric monolayers as nonlinear energy harvesters

    NASA Astrophysics Data System (ADS)

    López-Suárez, Miquel; Pruneda, Miguel; Abadal, Gabriel; Rurali, Riccardo

    2014-05-01

    We study the dynamics of h-BN monolayers by first performing ab-initio calculations of the deformation potential energy and then solving numerically a Langevine-type equation to explore their use in nonlinear vibration energy harvesting devices. An applied compressive strain is used to drive the system into a nonlinear bistable regime, where quasi-harmonic vibrations are combined with low-frequency swings between the minima of a double-well potential. Due to its intrinsic piezoelectric response, the nonlinear mechanical harvester naturally provides an electrical power that is readily available or can be stored by simply contacting the monolayer at its ends. Engineering the induced nonlinearity, a 20 nm^{2} device is predicted to harvest an electrical power of up to 0.18 pW for a noisy vibration of 5 pN.

  14. Energy Harvesting Communication Networks: Optimization and Demonstration

    E-print Network

    Gesbert, David

    of energy. E-CROPS will combine theoret- ical modelling and performance analysis with experimen- tal harvesting devices. EH capability can scavenge ambient energy, such as vibrations, thermal gradients or solar of these devices, to achieve an optimal balance between the quality of service, performance, and efficient usage

  15. Double synchronized switch harvesting (DSSH): a new energy harvesting scheme for efficient energy extraction.

    PubMed

    Lallart, Mickaël; Garbuio, Lauric; Petit, Lionel; Richard, Claude; Guyomar, Daniel

    2008-10-01

    This paper presents a new technique for optimized energy harvesting using piezoelectric microgenerators called double synchronized switch harvesting (DSSH). This technique consists of a nonlinear treatment of the output voltage of the piezoelectric element. It also integrates an intermediate switching stage that ensures an optimal harvested power whatever the load connected to the microgenerator. Theoretical developments are presented considering either constant vibration magnitude, constant driving force, or independent extraction. Then experimental measurements are carried out to validate the theoretical predictions. This technique exhibits a constant output power for a wide range of load connected to the microgenerator. In addition, the extracted power obtained using such a technique allows a gain up to 500% in terms of maximal power output compared with the standard energy harvesting method. It is also shown that such a technique allows a fine-tuning of the trade-off between vibration damping and energy harvesting. PMID:18986861

  16. Algae Harvest Energy Conversion

    Microsoft Academic Search

    Yung-Tse Hung; O. Sarafadeen Amuda; A. Olanrewaju Alade; I. Adekunle Amoo; Stephen Tiong-Lee Tay; Kathleen Hung Li

    \\u000a Algae harvest energy conversion to biofuel technology is a promising alternative to fossil fuel that has inherent pollution\\u000a attachment. With present resources available for the microalgae mass production and hence, high oil yield, microalgal can\\u000a sufficiently be a new source of renewable energy to replace the fossil fuels. In this chapter, algae description, composition,\\u000a cultivation, its conversion to biofuel, and

  17. Energy harvesting through wind excitation of a piezoelectric flag-like harvester

    NASA Astrophysics Data System (ADS)

    Truitt, Andrew

    This study seeks to propose a novel approach to wind-based piezoelectric energy harvesting. A brief literature review of energy harvesting followed by a discussion of piezoelectric system dynamics is offered. Biomedical applications for piezoelectric energy harvesting are then presented offering a segue into fluid based energy harvesting. Fluid based energy harvesting is a relatively young subfield within piezoelectric energy harvesting, but it is increasingly pursued due to the ubiquitous nature of the excitation source as well as the strong correlation with other types of excitation. Vortex-induced vibrations (VIV), as well as vibrations induced by bluff bodies, and the effect of their shape on potential gains have been investigated. The interactions of VIVs on a flag-like membrane form the foundation for the piezoelectric energy harvester in this study. Polyvinylidene fluoride (PVDF) piezoelectric energy harvesters are chosen due to their desirable flexibility. Modeling of flag-like systems is review followed by system modeling of a PVDF piezoelectric flag. Numerical and experimental results from the PVDF flag-like piezoelectric energy harvester are generated and compared. A maximum power output of 1.5 mW is achieved with the flag-like system which is competitive when compared to power output and energy density levels of other studies. The power output of this system provides concrete evidence for the effective use of not only this type of energy harvester system model but also for the use of PVDFs in wind-based applications.

  18. Piezoelectric Energy Harvesting Solutions

    PubMed Central

    Caliò, Renato; Rongala, Udaya Bhaskar; Camboni, Domenico; Milazzo, Mario; Stefanini, Cesare; de Petris, Gianluca; Oddo, Calogero Maria

    2014-01-01

    This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions. PMID:24618725

  19. Cantilever-based electret energy harvesters

    E-print Network

    Boisseau, S; Ricart, T; Defay, E; Sylvestre, A; 10.1088/0964-1726/20/10/105013

    2011-01-01

    Integration of structures and functions allowed reducing electric consumptions of sensors, actuators and electronic devices. Therefore, it is now possible to imagine low-consumption devices able to harvest their energy in their surrounding environment. One way to proceed is to develop converters able to turn mechanical energy, such as vibrations, into electricity: this paper focuses on electrostatic converters using electrets. We develop an accurate analytical model of a simple but efficient cantilever-based electret energy harvester. Therefore, we prove that with vibrations of 0.1g (~1m/s^{2}), it is theoretically possible to harvest up to 30\\muW per gram of mobile mass. This power corresponds to the maximum output power of a resonant energy harvester according to the model of William and Yates. Simulations results are validated by experimental measurements but the issues of parasitic capacitances get a large impact. Therefore, we 'only' managed to harvest 10\\muW per gram of mobile mass, but according to our...

  20. Sound energy harvesting using an acoustic grating

    NASA Astrophysics Data System (ADS)

    Cui, Xiao-Bin; Huang, Cheng-Ping; Hu, Jun-Hui

    2015-03-01

    A sound energy harvester with an acoustic grating and a piezoelectric plate has been demonstrated. The acoustic grating consists of a metal slit grating and a thin flat metal screen. The metal slit grating can squeeze an incident acoustic wave into the air gap between the slit grating and metal screen, thus giving rise to high sound pressure and causing the metal screen to vibrate. Using the direct piezoelectric effect, the "squeezed" acoustic energy is harvested efficiently by a piezoelectric component that is mounted on the back of the metal screen.

  1. An Equivalent Circuit Model for Electrostatic Energy Harvester utilized Energy Harvesting System

    NASA Astrophysics Data System (ADS)

    Minami, K.; Fujita, T.; Sonoda, K.; Miwatani, N.; Kanda, K.; Maenaka, K.

    2014-11-01

    In this study, we report an equivalent circuit model of an electrostatic energy harvester for a SPICE circuit simulator. In order to simulate a harvesting system, the output power of the device is calculated in the simulator. The capacitance between the electrodes is obtained by FEM analysis by taking the fringing effect into account and the result is applied to a sub-circuit model for the simulator. Mechanical vibrations are converted into electricity by an equivalent circuit model of a mass-spring structure and an electrostatic energy harvester. The simulated output power and output waveform correspond with the measurement results of our electrostatic energy harvester. We also simulate the operation of a harvesting system connected with a power management IC.

  2. Energy Harvesting Diamond Channel with Energy Cooperation

    E-print Network

    Ulukus, Sennur

    Energy Harvesting Diamond Channel with Energy Cooperation Berk Gurakan Sennur Ulukus Department@umd.edu Abstract--We consider the energy harvesting diamond channel, where the source and two relays harvest energy the option of wirelessly transferring some of its energy to the relays via energy cooperation. We find

  3. The design of low-frequency, low-g piezoelectric micro energy harvesters

    E-print Network

    Xu, Ruize, S.M. Massachusetts Institute of Technology

    2012-01-01

    A low-frequency, low-g piezoelectric MEMS energy harvester has been designed. Theoretically, this new generation energy harvester will generate electric power from ambient vibrations in the frequency range of 200~30OHz at ...

  4. An Efficient Piezoelectric Energy Harvesting Interface Circuit Using a Bias-Flip Rectifier and Shared Inductor

    E-print Network

    Ramadass, Yogesh Kumar

    Harvesting ambient vibration energy through piezoelectric means is a popular energy harvesting technique which can potentially supply 10-100's of [mu]W of available power. One of the main limitations of existing piezoelectric ...

  5. Energy Harvesting Communications with Continuous Energy Arrivals

    E-print Network

    Yener, Aylin

    Energy Harvesting Communications with Continuous Energy Arrivals Burak Varan Kaya Tutuncuoglu Aylin--This work considers an energy harvesting transmit- ter that gathers a continuous flow of energy from intermittent sources, thus relaxing the modeling assumption of discrete amounts of harvested energy present

  6. Study on Vibration of Logging Harvester in Forest Land

    Microsoft Academic Search

    Xu Wenxuan; Lu Huaimin; Guo Xiuli

    2010-01-01

    The logging harvester is made up of a walking mechanism, a mechanical arm, a felling head and a driving control system, which can do the works of felling, limbing, measuring and bucking. Because the ground surface of the forest land is very rough, the vibration should be studied when it is going in the forest land in order to prevent

  7. Enhancing light-harvesting power with coherent vibrational interactions: a quantum heat engine picture

    E-print Network

    Nathan Killoran; Susana F. Huelga; Martin B. Plenio

    2014-12-12

    Recent evidence suggests that quantum effects may have functional importance in biological light-harvesting systems. Along with delocalized electronic excitations, it is now suspected that quantum coherent interactions with certain near-resonant vibrations contribute to light-harvesting performance. However, the actual quantum advantage offered by such coherent vibrational interactions has not yet been established. We investigate a quantum design principle, whereby coherent exchange of single energy quanta between electronic and vibrational degrees of freedom can enhance a light-harvesting system's power above what is possible by thermal mechanisms alone. We present a prototype quantum heat engine which cleanly illustrates this quantum design principle, and quantify its quantum advantage using thermodynamic measures of performance. We also demonstrate the principle's applicability for realistic biological structures.

  8. The case for energy harvesting on wildlife in flight

    NASA Astrophysics Data System (ADS)

    Shafer, Michael W.; MacCurdy, Robert; Shipley, J. Ryan; Winkler, David; Guglielmo, Christopher G.; Garcia, Ephrahim

    2015-02-01

    The confluence of advancements in microelectronic components and vibrational energy harvesting has opened the possibility of remote sensor units powered solely from the motion of their hosts. There are numerous applications of such systems, including the development of modern wildlife tracking/data-logging devices. These ‘bio-logging’ devices are typically mass-constrained because they must be carried by an animal. Thus, they have historically traded scientific capability for operational longevity due to restrictions on battery size. Recently, the precipitous decrease in the power requirements of microelectronics has been accompanied by advancements in the area of piezoelectric vibrational energy harvesting. These energy harvesting devices are now capable of powering the type of microelectronic circuits used in bio-logging devices. In this paper we consider the feasibility of employing these vibrational energy harvesters on flying vertebrates for the purpose of powering a bio-logging device. We show that the excess energy available from birds and bats could be harvested without adversely affecting their overall energy budget. We then present acceleration measurements taken on flying birds in a flight tunnel to understand modulation of flapping frequency during steady flight. Finally, we use a recently developed method of estimating the maximum power output from a piezoelectric energy harvester to determine the amount of power that could be practically harvested from a flying bird. The results of this analysis show that the average power output of a piezoelectric energy harvester mounted to a bird or bat could produce more than enough power to run a bio-logging device. We compare the power harvesting capabilities to the energy requirements of an example system and conclude that vibrational energy harvesting on flying birds and bats is viable and warrants further study, including testing.

  9. Energy harvesting for self-powered aerostructure actuation

    NASA Astrophysics Data System (ADS)

    Bryant, Matthew; Pizzonia, Matthew; Mehallow, Michael; Garcia, Ephrahim

    2014-04-01

    This paper proposes and experimentally investigates applying piezoelectric energy harvesting devices driven by flow induced vibrations to create self-powered actuation of aerostructure surfaces such as tabs, flaps, spoilers, or morphing devices. Recently, we have investigated flow-induced vibrations and limit cycle oscillations due to aeroelastic flutter phenomena in piezoelectric structures as a mechanism to harvest energy from an ambient fluid flow. We will describe how our experimental investigations in a wind tunnel have demonstrated that this harvested energy can be stored and used on-demand to actuate a control surface such as a trailing edge flap in the airflow. This actuated control surface could take the form of a separate and discrete actuated flap, or could constitute rotating or deflecting the oscillating energy harvester itself to produce a non-zero mean angle of attack. Such a rotation of the energy harvester and the associated change in aerodynamic force is shown to influence the operating wind speed range of the device, its limit cycle oscillation (LCO) amplitude, and its harvested power output; hence creating a coupling between the device's performance as an energy harvester and as a control surface. Finally, the induced changes in the lift, pitching moment, and drag acting on a wing model are quantified and compared for a control surface equipped with an oscillating energy harvester and a traditional, static control surface of the same geometry. The results show that when operated in small amplitude LCO the energy harvester adds negligible aerodynamic drag.

  10. A low frequency nonlinear energy harvester with large bandwidth utilizing magnet levitation

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Cai, C. S.; Kong, Bo

    2015-04-01

    The application of vibration based energy harvesting in civil infrastructures usually has to resolve two major problems, namely, the low excitation frequency and large frequency range. To this end, a nonlinear energy harvester utilizing magnet levitation is proposed in this study. The proposed harvester can convert low frequency excitations into high frequency ones in its four doubly clamped piezoelectric beams through multi-impact. A large bandwidth is expected due to the stiffness nonlinearity introduced by using magnet levitation. A theoretical model is first developed for the harvester. Then, sinusoidal vibrations and simulated bridge vibrations are used as the external excitations to verify the performance of the harvester. The simulation results show an improved robustness of the harvester under low frequency vibrations, which indicates the proposed harvester is an ideal device for energy harvesting in civil infrastructures.

  11. Harvesting Energy from Wastewater Treatment

    E-print Network

    Harvesting Energy from Wastewater Treatment Bruce Logan Penn State University #12;Energy Costs? 5-7% of electricity used in USA is for water &wastewater #12;Global Energy & Health IssuesGlobal Energy & Health content of WastewatersEnergy content of Wastewaters ·· ElectricityElectricity ""lostlost"" to water

  12. Harvesting Energy from Wastewater Treatment

    E-print Network

    Harvesting Energy from Wastewater Treatment Bruce Logan Penn State University #12;Energy Costs? 5-7% of electricity used in USA is for water &wastewater #12;Global Energy & Health Issues 1 Billion people lack #12;Energy content of Wastewaters · Electricity "lost" to water and wastewater treatment= 0.6 quad

  13. Energy harvesting from motion using rotating and gyroscopic proof masses

    Microsoft Academic Search

    E M Yeatman

    2008-01-01

    Energy harvesting - the extraction of energy from the local environment for conver- sion to electrical power - is of particular interest for low power wireless devices such as body or machine mounted sensors. Motion and vibration are a potential energy source, and can be exploited by inertial devices, which derive electrical power by the damping of the relative move-

  14. Micro-fabricated silicon spiral spring based electromagnetic energy harvester

    NASA Astrophysics Data System (ADS)

    Bang, Dong Hyun; Park, Jae Yeong

    2013-06-01

    In this study, an electromagnetic energy harvester using a bulk micromachined silicon spiral spring and a polydimethylsiloxane (PDMS) packaging technique was fabricated and characterized to generate electrical energy from ultra-low ambient vibrations under at vibration accelerations 0.3g. The proposed energy harvester was comprised of a highly-miniaturized neodymium-ironboron (NdFeB) magnet, a silicon spiral spring, a multi-turn copper coil, and a PDMS housing in order to improve its electrical output power and reduce its size/volume. When an external vibration directly moves the mounted magnet as a seismic mass at the center of the spiral spring, the mechanical energy of the moving mass was transformed into electrical energy through the 183 turns of the solenoid copper coil. Silicon spiral springs were used to generate a high electrical output power by maximizing the deflection of the movable mass in response to low-level vibrations. The fabricated energy harvester exhibited a resonant frequency of 36 Hz and an optimal load resistance of 99 ?. It generated an output power of 29.02 µW and load voltage of 107.3 mV at a vibration acceleration of 0.3g. It also exhibited a power density and normalized power density of 48.37 µW·cm-3 and 537.41 µW·cm-3·g-2, respectively. The total volume of the fabricated energy harvester was 1 cm × 1 cm × 0.6 cm (height).

  15. Electrostatic Energy Harvester and Li-Ion Charger Circuit for Micro-Scale Applications

    E-print Network

    Rincon-Mora, Gabriel A.

    Electrostatic Energy Harvester and Li-Ion Charger Circuit for Micro-Scale Applications Erick O, the surrounding environment is a rich source of energy, from solar and thermal to kinetic, but harnessing harvesting, electrostatic vibration harvester circuit, lithium-ion charger, self-powered, self

  16. Energy-harvesting shock absorber with a mechanical motion rectifier

    NASA Astrophysics Data System (ADS)

    Li, Zhongjie; Zuo, Lei; Kuang, Jian; Luhrs, George

    2013-02-01

    Energy-harvesting shock absorbers are able to recover the energy otherwise dissipated in the suspension vibration while simultaneously suppressing the vibration induced by road roughness. They can work as a controllable damper as well as an energy generator. An innovative design of regenerative shock absorbers is proposed in this paper, with the advantage of significantly improving the energy harvesting efficiency and reducing the impact forces caused by oscillation. The key component is a unique motion mechanism, which we called ‘mechanical motion rectifier (MMR)’, to convert the oscillatory vibration into unidirectional rotation of the generator. An implementation of a MMR-based harvester with high compactness is introduced and prototyped. A dynamic model is created to analyze the general properties of the motion rectifier by making an analogy between mechanical systems and electrical circuits. The model is capable of analyzing electrical and mechanical components at the same time. Both simulation and experiments are carried out to verify the modeling and the advantages. The prototype achieved over 60% efficiency at high frequency, much better than conventional regenerative shock absorbers in oscillatory motion. Furthermore, road tests are done to demonstrate the feasibility of the MMR shock absorber, in which more than 15 Watts of electricity is harvested while driving at 15 mph on a smooth paved road. The MMR-based design can also be used for other applications of vibration energy harvesting, such as from tall buildings or long bridges.

  17. A Hip Implant Energy Harvester

    NASA Astrophysics Data System (ADS)

    Pancharoen, K.; Zhu, D.; Beeby, S. P.

    2014-11-01

    This paper presents a kinetic energy harvester designed to be embedded in a hip implant which aims to operate at a low frequency associated with body motion of patients. The prototype is designed based on the constrained volume available in a hip prosthesis and the challenge is to harvest energy from low frequency movements (< 1 Hz) which is an average frequency during free walking of a patient. The concept of magnetic-force-driven energy harvesting is applied to this prototype considering the hip movements during routine activities of patients. The magnetic field within the harvester was simulated using COMSOL. The simulated resonant frequency was around 30 Hz and the voltage induced in a coil was predicted to be 47.8 mV. A prototype of the energy harvester was fabricated and tested. A maximum open circuit voltage of 39.43 mV was obtained and the resonant frequency of 28 Hz was observed. Moreover, the power output of 0.96 ?W was achieved with an optimum resistive load of 250?.

  18. Implementation of a piezoelectric energy harvester in railway health monitoring

    NASA Astrophysics Data System (ADS)

    Li, Jingcheng; Jang, Shinae; Tang, Jiong

    2014-03-01

    With development of wireless sensor technology, wireless sensor network has shown a great potential for railway health monitoring. However, how to supply continuous power to the wireless sensor nodes is one of the critical issues in long-term full-scale deployment of the wireless smart sensors. Some energy harvesting methodologies have been available including solar, vibration, wind, etc; among them, vibration-based energy harvester using piezoelectric material showed the potential for converting ambient vibration energy to electric energy in railway health monitoring even for underground subway systems. However, the piezoelectric energy harvester has two major problems including that it could only generate small amount of energy, and that it should match the exact narrow band natural frequency with the excitation frequency. To overcome these problems, a wide band piezoelectric energy harvester, which could generate more power on various frequencies regions, has been designed and validated with experimental test. Then it was applied to a full-scale field test using actual railway train. The power generation of the wide band piezoelectric array has been compared to a narrow-band, resonant-based, piezoelectric energy harvester.

  19. An innovative tri-directional broadband piezoelectric energy harvester

    SciTech Connect

    Su, Wei-Jiun, E-mail: weijiun@mie.utoronto.ca; Zu, Jean [Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8 (Canada)] [Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8 (Canada)

    2013-11-11

    This paper presents a tri-directional piezoelectric energy harvester that is able to harvest vibration energy over a wide bandwidth from three orthogonal directions. The harvester consists of a main beam, an auxiliary beam, and a spring-mass system, with magnets integrated to introduce nonlinear force and couple the three sub-systems. Theoretical analysis and experiments were performed at constant acceleration under frequency sweeps to acquire frequency responses. The experimental results show that the voltage can achieve more than 2?V over more than 5?Hz of bandwidth with 1 M? load in the three orthogonal directions.

  20. An innovative tri-directional broadband piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Su, Wei-Jiun; Zu, Jean

    2013-11-01

    This paper presents a tri-directional piezoelectric energy harvester that is able to harvest vibration energy over a wide bandwidth from three orthogonal directions. The harvester consists of a main beam, an auxiliary beam, and a spring-mass system, with magnets integrated to introduce nonlinear force and couple the three sub-systems. Theoretical analysis and experiments were performed at constant acceleration under frequency sweeps to acquire frequency responses. The experimental results show that the voltage can achieve more than 2 V over more than 5 Hz of bandwidth with 1 M? load in the three orthogonal directions.

  1. Energy harvesting with coupled magnetostrictive resonators

    NASA Astrophysics Data System (ADS)

    Naik, Suketu; Phipps, Alex; In, Visarath; Cavaroc, Peyton; Matus-Vargas, Antonio; Palacios, Antonio; Gonzalez-Hernandez, H. G.

    2014-03-01

    We report the investigation of an energy harvesting system composed of coupled resonators with the magnetostrictive material Galfenol (FeGa). A coupled system of meso-scale (1-10 cm) cantilever beams for harvesting vibration energy is described for powering and aiding the performance of low-power wireless sensor nodes. Galfenol is chosen in this work for its durability, compared to the brittleness often encountered with piezoelectric materials, and high magnetomechanical coupling. A lumped model, which captures both the mechanical and electrical behavior of the individual transducers, is first developed. The values of the lumped element parameters are then derived empirically from fabricated beams in order to compare the model to experimental measurements. The governing equations of the coupled system lead to a system of differential equations with all-to-all coupling between transducers. An analysis of the system equations reveals different patterns of collective oscillations. Among the many different patterns, a synchronous state appears to yield the maximum energy that can be harvested by the system. Experiments on coupled system shows that the coupled system exhibits synchronization and an increment in the output power. Discussion of the required power converters is also included.

  2. An electromagnetic micro energy harvester based on an array of parylene cantilevers

    Microsoft Academic Search

    Ibrahim Sari; Tuna Balkan; Haluk Kulah

    2009-01-01

    This paper presents the design, optimization and implementation of an electromagnetic type vibration-to-electrical micro energy harvester. The proposed harvester implements a new design employing array of parylene cantilevers on which planar gold coils are fabricated. The micro harvester generates voltage by virtue of the relative motion between the coils and a stationary magnet. The coils are connected electrically in series

  3. Spiral electrode d33 mode piezoelectric diaphragm combined with proof mass as energy harvester

    NASA Astrophysics Data System (ADS)

    Shen, Zhiyuan; Liu, Shuwei; Miao, Jianmin; Woh, Lye Sun; Wang, Zhihong

    2015-03-01

    The paper demonstrates an energy harvester using a freestanding piezoelectric diaphragm combined with a proof mass. The diaphragm bearing double-sided spiral electrodes makes use of the d33 piezoelectric effect to realize energy scavenging. The harvester was fabricated by using a MEMS technique. The energy converting performance of the diaphragm was characterized by a shaker system. Proof masses were combined at the center of the diaphragm to tune the resonance of the harvester for the sake of scavenging low frequency vibrational energy. A receptance model was built to explain the vibrational behavior of the combined system. The resonance tuning and energy harvesting performance of the combination system was experimentally verified.

  4. Flexible and Robust Multilayer Micro-Vibrational Harvesters for High Acceleration Environments

    NASA Astrophysics Data System (ADS)

    Lockhart, R.; Dauksevicius, R.; Vasquez Quintero, A.; Janphuang, P.; Briand, D.; de Rooij, N. F.

    2013-12-01

    This paper presents the fabrication and characterization of multilayer PVDF resonant micro-vibrational energy harvesters designed to withstand environments in which high levels of acceleration are present. The multilayer cantilevers are fabricated by combining two folded PVDF stacks into a multilayered, bimorph structure. This acts to increase the overall capacitance of the harvester, a problem that plaques PVDF cantilevers as a result of its low dielectric constant. Moderate powers (7 ?W) are produced from the cantilevers even at high acceleration levels (20 g) due to the limited piezoelectric coefficient of PVDF; however, as a result of the high tensile strength and low elastic modulus of PVDF, the cantilevers are able to survive extremely high accelerations (> 4000 g) without breakage - a critical problem for harvesters based on brittle piezoelectric materials and substrates.

  5. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    DOEpatents

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  6. Design and simulation of a capacitive vibration energy generator based on radioisotope 63Ni

    Microsoft Academic Search

    Yanfei Li; Zaijun Cheng; Haisheng San; Yingxian Duo; Xuyuan Chen

    2010-01-01

    This paper presents the design and simulation of energy harvesting system based on radioisotope. This energy generator is a typical spring-mass-damping system that converts nuclear energy into mechanical vibration energy. The vibration energy is converted into extricable electrical energy by a capacitive energy converter which consists of a top Pt electrode and a bottom Al electrode deposited on vibration mass.

  7. Passive self-tuning energy harvester for extracting energy from rotational motion

    Microsoft Academic Search

    Lei Gu; Carol Livermore

    2010-01-01

    This paper presents experiments and models of a passive self-tuning energy harvester for rotational vibration applications. Tensile stress due to centrifugal force in a radially oriented piezoelectric cantilever beam passively tunes the resonant frequency so that the harvester remains at or near its resonant frequency. Because centrifugal force is proportional to the square of driving frequency, the resonant frequency of

  8. Wideband energy harvesting using a combination of an optimized synchronous electric charge extraction circuit and a bistable harvester

    NASA Astrophysics Data System (ADS)

    Liu, W. Q.; Badel, A.; Formosa, F.; Wu, Y. P.; Agbossou, A.

    2013-12-01

    The challenge of variable vibration frequencies for energy harvesting calls for the development of wideband energy harvesters. Bistability has been proven to be a potential solution. Optimization of the energy extraction is another important objective for energy harvesting. Nonlinear synchronized switching techniques have demonstrated some of the best performances. This paper presents a novel energy harvesting solution which combines these two techniques: the OSECE (optimized synchronous electric charge extraction) technique is used along with a BSM (buckled-spring-mass) bistable generator to achieve wideband energy harvesting. The effect of the electromechanical coupling coefficient on the harvested power for the bistable harvester with the nonlinear energy extraction technique is discussed for the first time. The performances of the proposed solution for different levels of electromechanical coupling coefficients in the cases of chirp and noise excitations are compared against the performances of the bistable harvester with the standard technique. It is shown that the OSECE technique is a much better option for wideband energy harvesting than the standard circuit. Moreover, the harvested energy is drastically increased for all excitations in the case of low electromechanical coupling coefficients. When the electromechanical coupling coefficient is high, the performance of the OSECE technique is not as good as the standard circuit for forward sweeps, but superior for the reverse sweep and band-limited noise cases. However, considering that real excitation signals are more similar to noise signals, the OSECE technique enhances the performance.

  9. Ferrofluid based micro-electrical energy harvesting

    NASA Astrophysics Data System (ADS)

    Purohit, Viswas; Mazumder, Baishakhi; Jena, Grishma; Mishra, Madhusha

    2013-03-01

    Innovations in energy harvesting have seen a quantum leap in the last decade. With the introduction of low energy devices in the market, micro energy harvesting units are being explored with much vigor. One of the recent areas of micro energy scavenging is the exploitation of existing vibrational energy and the use of various mechanical motions for the same, useful for low power consumption devices. Ferrofluids are liquids containing magnetic materials having nano-scale permanent magnetic dipoles. The present work explores the possibility of the use of this property for generation of electricity. Since the power generation is through a liquid material, it can take any shape as well as response to small acceleration levels. In this work, an electromagnet-based micropower generator is proposed to utilize the sloshing of the ferrofluid within a controlled chamber which moves to different low frequencies. As compared to permanent magnet units researched previously, ferrofluids can be placed in the smallest of containers of different shapes, thereby giving an output in response to the slightest change in motion. Mechanical motion from 1- 20 Hz was able to give an output voltage in mV's. In this paper, the efficiency and feasibility of such a system is demonstrated.

  10. Experimental study of a multi-impact energy harvester under low frequency excitations

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Cai, C. S.; Zhang, Wei

    2014-05-01

    The multi-impact energy harvester of the present study is a retrofitted piezoelectric based energy harvesting device that is designed especially for low frequency excitations. It consists of a spring-mass system and two piezoelectric cantilevers. By utilizing a series of impacts between the cantilevers and the moving mass, ambient vibrations of low frequencies can be up-converted into high frequency vibrations on the piezoelectric cantilevers and therefore generate usable electric energy. To examine the performance of the multi-impact harvester, a model is designed and machined for the experimental study. Sinusoidal vibrations and simulated bridge vibrations are used as the excitations for the harvester. A traditional cantilever piezoelectric harvester is also made for a performance comparison.

  11. A Wideband Triboelectric Energy Harvester

    NASA Astrophysics Data System (ADS)

    Dhakar, Lokesh; Liu, Huicong; Tay, F. E. H.; Lee, Chengkuo

    2013-12-01

    Contact electrification or triboelectric charging has mostly been seen as a negative phenomenon in various engineering applications. In electronic applications, static charge buildup may even destroy some of the components. In this paper, we demonstrate a cantilever based design using triboelectric charging mechanism for energy harvesting applications. The voltage output of triboelectric energy harvester (TEH) continuously increases with increased mass applied force and proof mass loading on the cantilever. The voltage output increases from 0.4 V to 1.8V as the excitation acceleration increases from 0.4g to 1.8g. The design has been shown to demonstrate wide bandwidth characteristics. The FWHM increases from 3.76 to 12.64 Hz as the acceleration increases from 0.4g to 1.8g. The peak power output is found to be 0.18?W at 1.4g.

  12. Invited talk, IEEE Int. Symp. Micro-NanoMechatoronics and Human Science (MHS2008), Nagoya, (2008), pp. 180-183. Energy Harvesting from Vibration Using Polymer Electret

    E-print Network

    Kasagi, Nobuhide

    applications of electrets such as acoustic/mechanical transducers and air filter have been proposed [14 for large output power. Figure 2 shows power spectra of vibration acceleration in a car cabin. Since high Figure 1. Vibration-driven power generator. Figure 2. Power spectra of vibration in a car cabin. -180

  13. Enhanced PVDF film for multi energy harvesting

    NASA Astrophysics Data System (ADS)

    Karunarathna, Ranmunige Nadeeka

    PVDF is a very important piezoelectric polymer material which has a promising range of applications in a variety of fields such as acoustic sensors and transducers, electrical switches, medical instrumentation, artificial sensitive skin in robotics, automotive detection on roads, nondestructive testing, structural health monitoring and as a biocampatible material. In this research cantilever based multi energy harvester was developed to maximize the power output of PVDF sensor. Nano mixture containing ferrofluid (FF) and ZnO nano particles were used to enhance the piezoelectric output of the sensor. The samples were tested under different energy conditions to observe the behavior of nano coated PVDF film under multi energy conditions. Composition of the ZnO and FF nano particles were changed by weight, in order to achieve the optimal composition of the nano mixture. Light energy, vibration energy, combined effect of light and vibration energy, and magnetic effect were used to explore the behavior of the sensor. The sensor with 60% ZnO and 40% FF achieved a maximum power output of 10.7 microwatts when it is under the combined effect of light and vibration energy. Which is nearly 16 times more power output than PVDF sensor. When the magnetic effect is considered the sensor with 100% FF showed the highest power output of 11.2 microwatts which is nearly 17 times more power output than pure PVDF. The effective piezoelctric volume of the sensor was 0.017 cm3. In order to explore the effect of magnetic flux, cone patterns were created on the sensor by means of a external magnetic field. Stability of the cones generated on the sensor played a major role in generated power output.

  14. Energy Harvesting Broadcast Channel with Inefficient Energy Storage

    E-print Network

    Yener, Aylin

    Energy Harvesting Broadcast Channel with Inefficient Energy Storage Kaya Tutuncuoglu Aylin Yener with an energy harvesting transmitter equipped with an inefficient energy storage device. For this setting by the energy harvesting process. The convexity of the capacity region for the energy harvesting broadcast

  15. The fundamental role of localised vibrations in excitation dynamics in photosynthetic light-harvesting systems

    E-print Network

    Kolli, Avinash; Scholes, Gregory D; Olaya-Castro, Alexandra

    2012-01-01

    The importance of fast vibrations in enhancing and controlling energy transfer and conversion in biomolecules is an issue of current debate. In this article we show that coupling between localised high-frequency vibrations and electronic degrees of freedom is fundamental for efficient excitation transport in photosynthetic light-harvesting systems with high degree of disorder. We consider the cryptophyte antennae protein phycoerythrin 545 and discuss how the balance between electronic interactions and coupling to fast vibronic modes supports the biological function of these antennae by generating a non-cascaded transport that leads to a rapid, directed and wider spatial distribution of excitation energy across the complex. Furthermore, we illustrate signatures of vibronic influence in the beating of excitonic coherences and show that mechanisms supporting coherent evolution of excitons also assist coupling to selected modes that enhance energy transfer to preferential sites in the complex. We therefore argue ...

  16. PIEZOELECTRIC POWER SCAVENGING OF MECHANICAL VIBRATION ENERGY

    E-print Network

    Ervin, Elizabeth K.

    PIEZOELECTRIC POWER SCAVENGING OF MECHANICAL VIBRATION ENERGY PIEZOELECTRIC POWER SCAVENGING OFPIEZOELECTRIC POWER SCAVENGING OF MECHANICAL VIBRATION ENERGYMECHANICAL VIBRATION ENERGY CE 511- Structural

  17. Enhanced aeroelastic energy harvesting with a beam stiffener

    NASA Astrophysics Data System (ADS)

    Zhao, Liya; Yang, Yaowen

    2015-03-01

    In this article, we propose an easy but quite effective method to significantly enhance the power generation capability of an aeroelastic energy harvester. The method is to attach a beam stiffener to the substrate of the harvester, which works as an electromechanical coupling magnifier. It is shown to be effective for all three considered types of harvesters based on galloping, vortex-induced vibration and flutter, leading to a superior performance over the conventional designs without the beam stiffener, with dozens of times the increase in power and an almost 100% increase in the power extraction efficiency yet with comparable or even smaller transverse displacement. Choice guidelines of optimal types of energy harvesters are also suggested based on the given wind situations where the electronic device is located.

  18. Power management for energy harvesting wireless sensors

    NASA Astrophysics Data System (ADS)

    Arms, S. W.; Townsend, C. P.; Churchill, D. L.; Galbreath, J. H.; Mundell, S. W.

    2005-05-01

    The objective of this work was to demonstrate smart wireless sensing nodes capable of operation at extremely low power levels. These systems were designed to be compatible with energy harvesting systems using piezoelectric materials and/or solar cells. The wireless sensing nodes included a microprocessor, on-board memory, sensing means (1000 ohm foil strain gauge), sensor signal conditioning, 2.4 GHz IEEE 802.15.4 radio transceiver, and rechargeable battery. Extremely low power consumption sleep currents combined with periodic, timed wake-up was used to minimize the average power consumption. Furthermore, we deployed pulsed sensor excitation and microprocessor power control of the signal conditioning elements to minimize the sensors" average contribution to power draw. By sleeping in between samples, we were able to demonstrate extremely low average power consumption. At 10 Hz, current consumption was 300 microamps at 3 VDC (900 microwatts); at 5 Hz: 400 microwatts, at 1 Hz: 90 microwatts. When the RF stage was not used, but data were logged to memory, consumption was further reduced. Piezoelectric strain energy harvesting systems delivered ~2000 microwatts under low level vibration conditions. Output power levels were also measured from two miniature solar cells; which provided a wide range of output power (~100 to 1400 microwatts), depending on the light type & distance from the source. In summary, system power consumption may be reduced by: 1) removing the load from the energy harvesting & storage elements while charging, 2) by using sleep modes in between samples, 3) pulsing excitation to the sensing and signal conditioning elements in between samples, and 4) by recording and/or averaging, rather than frequently transmitting, sensor data.

  19. Conceptual design of rotary magnetostrictive energy harvester

    NASA Astrophysics Data System (ADS)

    Park, Young-Woo; Kang, Han-Sam; Wereley, Norman M.

    2014-05-01

    This paper presents the conceptual design of a rotary magnetostrictive energy harvester (RMEH), which consists of one coil-wound Galfenol cantilever, with two PMs adhered onto the each end, and one permanent magnet (PM) array sandwiched between two wheels. Modeling and simulation are used to validate the concept. The proof-of-concept RMEH is fabricated by using the simulation results, and subjected to the experimental characterization. The experimental setup for the simulated characterization uses the motor-driven PM array to induce a forced vibration. It can be concluded that the theoretical prediction on the induced voltage agrees well with the experimental results and that induced voltage increases with rpm and with number of PMs. Future work includes optimization of RMEH performance via PM array configuration and development of prototype.

  20. Energy harvesting from low frequency applications using piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Li, Huidong; Tian, Chuan; Deng, Z. Daniel

    2014-12-01

    In an effort to eliminate the replacement of the batteries of electronic devices that are difficult or impractical to service once deployed, harvesting energy from mechanical vibrations or impacts using piezoelectric materials has been researched over the last several decades. However, a majority of these applications have very low input frequencies. This presents a challenge for the researchers to optimize the energy output of piezoelectric energy harvesters, due to the relatively high elastic moduli of piezoelectric materials used to date. This paper reviews the current state of research on piezoelectric energy harvesting devices for low frequency (0-100 Hz) applications and the methods that have been developed to improve the power outputs of the piezoelectric energy harvesters. Various key aspects that contribute to the overall performance of a piezoelectric energy harvester are discussed, including geometries of the piezoelectric element, types of piezoelectric material used, techniques employed to match the resonance frequency of the piezoelectric element to input frequency of the host structure, and electronic circuits specifically designed for energy harvesters.

  1. Micromachined silicon Generator for Harvesting Power from Vibrations

    Microsoft Academic Search

    S. P. Beeby; M. J. Tudor; E. Koukharenko; N. M. White; T. O'Donnell; C. Saha; S. Kulkarni; S. Roy

    This paper describes the design, simulation and fabrication of an electromagnetic device for generating electrical energy from vibrations. A range of dimensions has been simulated using ANSYS in order to determine natural frequencies and material stresses. A 300µm wide paddle beam gives a natural frequency of 6.4 kHz for the mode of operation and induced stresses at maximum amplitudes are

  2. Analytical modeling and experimental verification of vibration-based piezoelectric bimorph beam with a tip-mass for power harvesting

    NASA Astrophysics Data System (ADS)

    Wang, Hongjin; Meng, Qingfeng

    2013-03-01

    Power harvesting techniques that convert vibration energy into electrical energy through piezoelectric transducers show strong potential for powering smart wireless sensor devices in applications of structural health monitoring. This paper presents an analytical model of the dynamic behavior of an electromechanical piezoelectric bimorph cantilever harvester connected with an AC-DC circuit based on the Euler-Bernoulli beam theory and Hamiltonian theorem. A new cantilevered piezoelectric bimorph structure is proposed in which the plug-type connection between support layer and tip-mass ensures that the gravity center of the tip-mass is collinear with the gravity center of the beam so that the brittle fracture of piezoelectric layers can also be avoided while vibrating with large amplitude. The tip-mass is equated by the inertial force and inertial moment acting at the end of the piezoelectric bimorph beam based on D'Alembert's principle. An AC-DC converting circuit soldered with the piezoelectric elements is also taken into account. A completely new analytic expression of the global behavior of the electromechanical piezoelectric bimorph harvesting system with AC-DC circuit under input base transverse excitation is derived. Moreover, an experimental energy harvester is fabricated and the theoretical analysis and experimental results of the piezoelectric harvester under the input base transverse displacement excitation are validated by using measurements of the absolute tip displacement, electric voltage response, electric current response and electric power harvesting.

  3. Piezoelectric energy harvesting using a series synchronized switch technique

    NASA Astrophysics Data System (ADS)

    Li, Yang; Lallart, Mickaël.; Richard, Claude

    2014-04-01

    An alternative switching technique for piezoelectric energy harvesting is presented. The energy harvester based on piezoelectric elements is a promising method to scavenge ambient energy. Several non-linear techniques such as SSHI have been implemented to improve the global harvested energy. However, these techniques are sensitive to load and should be tuned to obtain optimal power output. This technique, called Series Synchronized Switch Harvesting (S3H), has both the advantage of easy implementation and independence of the harvested power with the load impedance. The harvesting circuit simply consists of a switch in series with the piezoelement and the load. The switch is nearly always open and is triggered-on each time the piezoelectric voltage reaches an extremum. It is opened back after an arbitrary on-time t0. The energy scavenging process happens when switch is closed. Based on linear motion assumption, the harvester structure is modeled as a "Mass-Spring-Damper" system. The analysis of S3H technique is considered with harmonic excitation. An analytical model of S3H is presented and discussed. The main advantage of this approach compared with the usual standard technique is that the extracted power is independent of the load within a wide range of load impedance, and that the useful impedance range is simply related to the defined switch on-time. For constant displacement excitation condition, the optimal power output is more than twice the power extracted by the standard technique as long as the on-time interval is small comparatively with the vibration period. For constant force excitation, an optimal on-time can be defined resulting in an optimally wide load bandwidth. Keywords: piezoelectric; energy harvesting; non-linear harvesting techniques; switching techniques.

  4. Feasibility of a multidimensional wave energy harvester

    Microsoft Academic Search

    Anthony Fowler; Sam Behrens

    2010-01-01

    Wave motions represent a source of substantial untapped energy. Given the current interest in renewable power, research continues into the development of wave energy harvesting devices. An evaluation of existing wave energy harvester designs has shown that there are a number of different methods typically used to carry out the mechanical-to-electrical energy conversion process. A common observation is that existing

  5. Mechanical vibration to electrical energy converter

    DOEpatents

    Kellogg, Rick Allen (Tijeras, NM); Brotz, Jay Kristoffer (Albuquerque, NM)

    2009-03-03

    Electromechanical devices that generate an electrical signal in response to an external source of mechanical vibrations can operate as a sensor of vibrations and as an energy harvester for converting mechanical vibration to electrical energy. The devices incorporate a magnet that is movable through a gap in a ferromagnetic circuit, wherein a coil is wound around a portion of the ferromagnetic circuit. A flexible coupling is used to attach the magnet to a frame for providing alignment of the magnet as it moves or oscillates through the gap in the ferromagnetic circuit. The motion of the magnet can be constrained to occur within a substantially linear range of magnetostatic force that develops due to the motion of the magnet. The devices can have ferromagnetic circuits with multiple arms, an array of magnets having alternating polarity and, encompass micro-electromechanical (MEM) devices.

  6. Impact-induced high-energy orbits of nonlinear energy harvesters

    NASA Astrophysics Data System (ADS)

    Zhou, Shengxi; Cao, Junyi; Inman, Daniel J.; Liu, Shengsheng; Wang, Wei; Lin, Jing

    2015-03-01

    This letter presents an impact-induced method for nonlinear energy harvesters to obtain high-energy orbits over a wide frequency range under low excitation levels. Based on the impact principle and conservation of momentum, nonlinear electromechanical equations are derived to describe the system response due to initial impacts. Numerical and experimental results show that nonlinear bistable and tristable harvesters can sustain large-amplitude interwell oscillations over a wide range of frequencies, by achieving high-energy orbits in the beginning induced by an initial impact. The proposed impact-induced method could facilitate to efficient energy harvesting from low level ambient vibrations.

  7. Ocean wave energy harvesting buoy for sensors

    Microsoft Academic Search

    Steven P. Bastien; Raymond B. Sepe; Annette R. Grilli; Stephan T. Grilli; Malcolm L. Spaulding

    2009-01-01

    Methodology and results are presented for the numerical simulations and experimental measurements on ocean energy harvesting systems that utilize anchored linear generators, driven by heaving surface buoys that convert ambient ocean wave energy into useful electrical power. The results demonstrate the feasibility of using ocean wave energy harvesting buoys and simple linear generators to provide sufficient electrical power for ocean

  8. Investigations of biomimetic light energy harvesting pigments

    SciTech Connect

    Van Patten, P.G.; Donohoe, R.J. [Los Alamos National Lab., NM (United States); Lindsey, J.S. [North Carolina State Univ., Raleigh, NC (United States); Bocian, D.F. [Univ. of California, Riverside, CA (United States)

    1998-12-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Nature uses chlorophyll and other porphyrinic pigments to capture and transfer light energy as a preliminary step in photosynthesis. The design of synthetic assemblies of light harvesting and energy directing pigments has been explored through synthesis and characterization of porphyrin oligomers. In this project, pigment electronic and vibrational structures have been explored by electrochemistry and dynamic and static optical measurements. Transient absorption data reveal energy transfer between pigments with lifetimes on the order of 20--200 picoseconds, while Raman data reveal that the basic porphyrin core structure is unperturbed relative to the individual monomer units. These two findings, along with an extensive series of experiments on the oxidized oligomers, reveal that coupling between the pigments is fundamentally weak, but sufficient to allow facile energy transfer as the predominant excited state process. Modeling of the expected quantum yields for energy transfer within a variety of arrays was accomplished, thereby providing a tool to guide synthetic goals.

  9. Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost

    E-print Network

    Ulukus, Sennur

    Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost Omur Ozel Khurram with an energy harvesting transmitter with non-negligible processing circuitry power and a hybrid energy storage for energy storage while the battery has unlimited space. The transmitter stores the harvested energy either

  10. Multi-objective optimal control of vibratory energy harvesting systems

    NASA Astrophysics Data System (ADS)

    Scruggs, J. T.

    2008-03-01

    This paper presents a new approach, based on H II optimal control theory, for the maximization of power generation in energy harvesting systems. The theory determines the optimal harvested power attainable through the use of power electronics to effect linear feedback control of transducer current. In contrast to most of the prior work in this area, which has assumed harmonic response, the theory proposed here applies to stochastically-excited systems in broadband response, and can be used to harvest power simultaneously from multiple significant vibratory modes. It is also applicable to coupled networks of many transducers. The theory accounts for the impact of energy harvesting on the dynamics of the vibrating system in which the transducers are embedded. It also accounts for resistive and semiconductor dissipation in the power-electronic network interfacing the transducers with energy storage. Thus, losses in the electronics are addressed in the formulation of the optimal control law. Finally, the H II-optimal control formulation of the problem naturally allows for harvested power to be systematically balanced against other response objectives. Here, this is illustrated by showing how the harvesting objective can be maximized, subject to the constraint that the transducer voltages be maintained below that of the power-electronic bus; a condition which is required for the power-electronic control system to be fully operational. Although the theory is applicable across a broad range of applications, it is presented in the context of a piezoelectric bimorph example.

  11. The Energy Harvesting Multiple Access Channel with Energy Storage Losses

    E-print Network

    Yener, Aylin

    The Energy Harvesting Multiple Access Channel with Energy Storage Losses Kaya Tutuncuoglu and Aylin considers a Gaussian multiple access channel with two energy harvesting transmitters with lossy energy storage. The power allocation policy maximizing the average weighted sum rate given the energy harvesting

  12. Optimal Energy-Bandwidth Allocation for Energy Harvesting Interference Networks

    E-print Network

    Fisher, Kathleen

    Optimal Energy-Bandwidth Allocation for Energy Harvesting Interference Networks Zhe Wang, Vaneet@research.att.com Abstract--We develop optimal energy-bandwidth allocation algorithm for the energy harvesting transmitters in interference networks. We assume that both the channel gain and the harvested energy are known for K slots

  13. Extracting energy from Vortex-Induced Vibrations: A parametric study

    Microsoft Academic Search

    Antonio Barrero-Gil; Santiago Pindado; Sergio Avila

    Here, Vortex-Induced Vibrations (VIVs) of a circular cylinder are analyzed as a potential source for energy harvesting. To this end, VIV is described by a one-degree-of-freedom model where fluid forces are introduced from experimental data from forced vibration tests. The influence of some influencing parameters, like the mass ratio m? or the mechanical damping ? in the energy conversion factor

  14. Flight Test Results of a Thermoelectric Energy Harvester for Aircraft

    NASA Astrophysics Data System (ADS)

    Samson, D.; Kluge, M.; Fuss, T.; Schmid, U.; Becker, Th.

    2012-06-01

    The idea of thermoelectric energy harvesting for low-power wireless sensor systems in aircraft and its practical implementation was recently published. The concept of using a thermoelectric generator (TEG) attached to the aircraft inner hull and a thermal storage device to create an artificial temperature gradient at the TEG during take-off and landing from the temperature changes of the fuselage has passed initial tests and is now subject to flight testing. This work presents preflight test results, e.g., vibration and temperature testing of the harvesters, the practical installation of two harvesting devices inside a test plane, and the first test flight results. Several flight cycles with different flight profiles, flight lengths, and outside temperatures have been performed. Although the influence of different flight profiles on the energy output of the harvester can be clearly observed, the results are in good agreement with expectations from numerical simulations with boundary conditions evaluated from initial climate chamber experiments. In addition, the flight test demonstrates that reliable operation of thermoelectric energy harvesting in harsh aircraft environments seems to be feasible, therefore paving the way for realization of energy-autonomous, wireless sensor networks.

  15. Design and development of a novel bi-directional piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Su, Wei-Jiun; Zu, Jean W.

    2014-09-01

    In this paper, a novel bi-directional piezoelectric energy harvester which can harvest vibration energy bi-directionally is introduced and investigated theoretically and experimentally. The proposed harvester is composed of two sub-systems: a main beam to generate electricity and a spring-mass oscillator to trigger the vibration of the main beam from an additional direction by using magnets to couple the two sub-systems. The theoretical model is built on the basis of the Euler-Bernoulli beam theory and the magnetic charge model. A prototype is fabricated to test the performance of the harvester experimentally. Linear upward and downward frequency sweeps are used to obtain the frequency responses. The experimental results show good agreement with the theoretical model under frequency sweeps. A comparison with a beam-beam bi-directional piezoelectric energy harvester is also performed experimentally. Although both bi-directional piezoelectric energy harvesters exhibit the capability of harvesting vibration energy in two orthogonal directions, the beam-spring energy harvester shows a more consistent performance in both directions as regards the bandwidth and amplitude of the frequency responses.

  16. Vibration-assisted resonance in photosynthetic excitation-energy transfer

    NASA Astrophysics Data System (ADS)

    Irish, E. K.; Gómez-Bombarelli, R.; Lovett, B. W.

    2014-07-01

    Understanding how the effectiveness of natural photosynthetic energy-harvesting systems arises from the interplay between quantum coherence and environmental noise represents a significant challenge for quantum theory. Recently it has begun to be appreciated that discrete molecular vibrational modes may play an important role in the dynamics of such systems. Here we present a microscopic mechanism by which intramolecular vibrations may be able to contribute to the efficiency and directionality of energy transfer. Excited vibrational states create resonant pathways through the system, supporting fast and efficient energy transport. Vibrational damping together with the natural downhill arrangement of molecular energy levels gives intrinsic directionality to the energy flow. Analytical and numerical results demonstrate a significant enhancement of the efficiency and directionality of energy transport that can be directly related to the existence of resonances between vibrational and excitonic levels.

  17. Broadband energy harvesting using acoustic black hole structural tailoring

    NASA Astrophysics Data System (ADS)

    Zhao, Liuxian; Conlon, Stephen C.; Semperlotti, Fabio

    2014-06-01

    This paper explores the concept of an acoustic black hole (ABH) as a main design framework for performing dynamic structural tailoring of mechanical systems for vibration energy harvesting applications. The ABH is an integral feature embedded in the host structure that allows for a smooth reduction of the phase velocity, theoretically approaching zero, while minimizing the reflected energy. This mechanism results in structural areas with high energy density that can be effectively exploited to develop enhanced vibration-based energy harvesting. Fully coupled electro-mechanical models of an ABH tapered structure with surface mounted piezo-transducers are developed to numerically simulate the response of the system to both steady state and transient excitations. The design performances are numerically evaluated using structural intensity data as well as the instantaneous voltage/power and energy output produced by the piezo-transducer network. Results show that the dynamically tailored structural design enables a drastic increase in the harvested energy as compared to traditional structures, both under steady state and transient excitation conditions.

  18. Flow energy harvesting -- another application of the biomimetic flapping foils

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang; Peng, Zhangli

    2009-11-01

    Imitating fish fins and insect wings, flapping foils are usually used for biomimetic propulsion. Theoretical studies and experiments have demonstrated that through specific combinations of heaving and pitching motions, these foils can also extract energy from incoming wind or current. Compared with conventional flow energy harvesting devices based upon rotating turbines, this novel design promises mitigated impact upon the environment. To achieve the required motions, existing studies focus on hydrodynamic mode coupling, in which a periodic pitching motion is activated and a heaving motion is then generated by the oscillating lifting force. Energy extraction is achieved through a damper in the heaving direction (representing the generator). This design involves a complicated control and activation system. In addition, there is always the possibility that the energy required to activate the system exceeds the energy recovered by the generator. We have discovered that a much simpler device without activation, a 2DOF foil mounted on a rotational spring and a damper undergoing flow-induced motions can achieve stable flow energy harvesting. Using Navier-Stokes simulations we predicted different behaviors of the system during flow-induced vibrations and identified the specific requirements to achieve controllable periodic motions essential for stable energy harvesting. The energy harvesting capacity and efficiency were also determined.

  19. Hybrid piezoelectric energy harvesting transducer system

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor); Rehrig, Paul W. (Inventor); Hackenberger, Wesley S. (Inventor)

    2008-01-01

    A hybrid piezoelectric energy harvesting transducer system includes: (a) first and second symmetric, pre-curved piezoelectric elements mounted separately on a frame so that their concave major surfaces are positioned opposite to each other; and (b) a linear piezoelectric element mounted separately on the frame and positioned between the pre-curved piezoelectric elements. The pre-curved piezoelectric elements and the linear piezoelectric element are spaced from one another and communicate with energy harvesting circuitry having contact points on the frame. The hybrid piezoelectric energy harvesting transducer system has a higher electromechanical energy conversion efficiency than any known piezoelectric transducer.

  20. Thermal Energy Harvesting from Wildlife

    NASA Astrophysics Data System (ADS)

    Woias, P.; Schule, F.; Bäumke, E.; Mehne, P.; Kroener, M.

    2014-11-01

    In this paper we present the measurement of temperature differences between the ambient air and the body temperature of a sheep (Heidschnucke) and its applicability for thermoelectric energy harvesting from livestock, demonstrated via the test of a specially tailored TEG system in a real-life experiment. In three measurement campaigns average temperature differences were found between 2.5 K and 3.5 K. Analytical models and FEM simulations were carried out to determine the actual thermal resistance of the sheep's fur from comparisons with the temperature measurements. With these data a thermoelectric (TEG) generator was built in a thermally optimized housing with adapted heats sink. The whole TEG system was mounted to a collar, including a data logger for recording temperature and TEG voltage. First measurements at the neck of a sheep were accomplished, with a calculated maximal average power output of 173 ?W at the TEG. Taking the necessity of a low-voltage step-up converter into account, an electric output power of 54 ?W is available which comes close to the power consumption of a low-power VHF tracking system.

  1. Vibration-to-electric energy conversion using a mechanically-varied capacitor

    E-print Network

    Yen, Bernard Chih-Hsun, 1981-

    2005-01-01

    Past research in vibration energy harvesting has focused on the use of variable capacitors, magnets, or piezoelectric materials as the basis of energy transduction. How- ever, few of these studies have explored the detailed ...

  2. Energy scavenging from low frequency vibrations

    NASA Astrophysics Data System (ADS)

    Galchev, Tzeno V.

    The development of three energy conversion devices that are able to transform vibrations in their surroundings to electrical energy is discussed in this thesis. These energy harvesters are based upon a newly invented architecture called the Parametric Frequency Increased Generator (PFIG). The PFIG structure is designed to efficiently convert low frequency and non-periodic vibrations into electrical power. The three PFIG devices have a combined operating range covering two orders of magnitude in acceleration (0.54--19.6m/s 2) and a frequency range spanning up to 60Hz; making them some of the most versatile generators in existence. The PFIG utilizes a bi-stable mechanical structure to initiate high-frequency mechanical oscillations in an electromechanical scavenger. By up-converting the ambient vibration frequency to a higher internal operation frequency, the PFIG achieves better electromechanical coupling. The fixed internal displacement and dynamics of the PFIG allow it to operate more efficiently than resonant generators when the ambient vibration amplitude is higher than the internal displacement limit of the device. The PFIG structure is capable of efficiently converting mechanical vibrations with variable characteristics including amplitude and frequency, into electrical power. The first electromagnetic harvester can generate a peak power of 163microW and an average power of 13.6microW from an input acceleration of 9.8m/s 2 at 10Hz, and it can operate up to 60Hz. The internal volume of the generator is 2.12cm3 (3.75 including casing). It sets the state-of-the-art in efficiency in the <20Hz range. The volume figure of merit is 0.068%, which is a 10x improvement over other published works. It has a record high bandwidth figure of merit (0.375%). A second piezoelectric implementation generates 3.25microW of average power under the same excitation conditions, while the volume of the generator is halved (1.2cm3). A third PFIG was developed for critical infrastructure monitoring applications. It is used to harvest the very low-amplitude, low-frequency, and non-periodic vibrations present on bridges. The device generates 2.3microW of average power from an input acceleration of 0.54m/s2 at only 2Hz. The internal volume of the generator is 43cm3. It can operate over an unprecedentedly large acceleration (0.54--9.8m/s2) and frequency range (up to 30Hz) without any modifications or tuning.

  3. Ultrasound acoustic wave energy transfer and harvesting

    NASA Astrophysics Data System (ADS)

    Shahab, Shima; Leadenham, Stephen; Guillot, François; Sabra, Karim; Erturk, Alper

    2014-04-01

    This paper investigates low-power electricity generation from ultrasound acoustic wave energy transfer combined with piezoelectric energy harvesting for wireless applications ranging from medical implants to naval sensor systems. The focus is placed on an underwater system that consists of a pulsating source for spherical wave generation and a harvester connected to an external resistive load for quantifying the electrical power output. An analytical electro-acoustic model is developed to relate the source strength to the electrical power output of the harvester located at a specific distance from the source. The model couples the energy harvester dynamics (piezoelectric device and electrical load) with the source strength through the acoustic-structure interaction at the harvester-fluid interface. Case studies are given for a detailed understanding of the coupled system dynamics under various conditions. Specifically the relationship between the electrical power output and system parameters, such as the distance of the harvester from the source, dimensions of the harvester, level of source strength, and electrical load resistance are explored. Sensitivity of the electrical power output to the excitation frequency in the neighborhood of the harvester's underwater resonance frequency is also reported.

  4. Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies.

    PubMed

    Xue, Huan; Hu, Yuantai; Wang, Qing-Ming

    2008-09-01

    This paper presents a novel approach for designing broadband piezoelectric harvesters by integrating multiple piezoelectric bimorphs (PBs) with different aspect ratios into a system. The effect of 2 connecting patterns among PBs, in series and in parallel, on improving energy harvesting performance is discussed. It is found for multifrequency spectra ambient vibrations: 1) the operating frequency band (OFB) of a harvesting structure can be widened by connecting multiple PBs with different aspect ratios in series; 2) the OFB of a harvesting structure can be shifted to the dominant frequency domain of the ambient vibrations by increasing or decreasing the number of PBs in parallel. Numerical results show that the OFB of the piezoelectric energy harvesting devices can be tailored by the connection patterns (i.e., in series and in parallel) among PBs. PMID:18986908

  5. Ultra-wide bandwidth piezoelectric energy harvesting

    E-print Network

    Hajati, Arman

    Here, we present an ultra wide-bandwidth energy harvester by exploiting the nonlinear stiffness of a doubly clamped microelectromechanical systems (MEMSs) resonator. The stretching strain in a doubly clamped beam shows a ...

  6. An aero-elastic flutter based electromagnetic energy harvester with wind speed augmenting funnel

    E-print Network

    Stanford University

    An aero-elastic flutter based electromagnetic energy harvester with wind speed augmenting funnel been used to convert wind flow energy into mechanical vibration, which is then transformed-scale renewable energy generating systems such as wind turbines, thermal generators, and solar panels, energy

  7. Characterization of a rotary hybrid multimodal energy harvester

    NASA Astrophysics Data System (ADS)

    Larkin, Miles R.; Tadesse, Yonas

    2014-04-01

    In this study, experimental characterizations of a new hybrid energy harvesting device consisting of piezoelectric and electromagnetic transducers are presented. The generator, to be worn on the legs or arms of a person, harnesses linear motion and impact forces from human motion to generate electrical energy. The device consists of an unbalanced rotor made of three piezoelectric beams which have permanent magnets attached to the ends. Impact forces cause the beams to vibrate, generating a voltage across their electrodes and linear motion causes the rotor to spin. As the rotor spins, the magnets pass over ten electromagnetic coils mounted to the base, inducing a current through the wire. Several design related issues were investigated experimentally in order to optimize the hybrid device for maximum power generation. Further experiments were conducted on the system to characterize the energy harvesting capabilities of the device, all of which are presented in this study.

  8. Development of a biomechanical energy harvester

    Microsoft Academic Search

    Qingguo Li; Veronica Naing; J Maxwell Donelan

    2009-01-01

    BACKGROUND: Biomechanical energy harvesting–generating electricity from people during daily activities–is a promising alternative to batteries for powering increasingly sophisticated portable devices. We recently developed a wearable knee-mounted energy harvesting device that generated electricity during human walking. In this methods-focused paper, we explain the physiological principles that guided our design process and present a detailed description of our device design with

  9. Analytical modeling and experimental validation of a structurally integrated piezoelectric energy harvester on a thin plate

    NASA Astrophysics Data System (ADS)

    Aridogan, U.; Basdogan, I.; Erturk, A.

    2014-04-01

    Vibration-based energy harvesting using piezoelectric cantilevers has been extensively studied over the past decade. As an alternative to cantilevered harvesters, piezoelectric patch harvesters integrated to thin plates can be more convenient for use in marine, aerospace and automotive applications since these systems are often composed of thin plate-like structures with various boundary conditions. In this paper, we present analytical electroelastic modeling of a piezoelectric energy harvester structurally integrated to a thin plate along with experimental validations. The distributed-parameter electroelastic model of the thin plate with the piezoceramic patch harvester is developed based on Kirchhoff’s plate theory for all-four-edges clamped (CCCC) boundary conditions. Closed-form steady-state response expressions for coupled electrical output and structural vibration are obtained under transverse point force excitation. Analytical electroelastic frequency response functions (FRFs) relating the voltage output and vibration response to force input are derived and generalized for different boundary conditions. Experimental validation and extensive theoretical analysis efforts are then presented with a case study employing a thin PZT-5A piezoceramic patch attached on the surface of a rectangular aluminum CCCC plate. The importance of positioning of the piezoceramic patch harvester is discussed through an analysis of dynamic strain distribution on the overall plate surface. The electroelastic model is validated by a comparison of analytical and experimental FRFs for a wide range of resistive electrical boundary conditions. Finally, power generation performance of the structurally integrated piezoceramic patch harvester from multiple vibration modes is investigated analytically and experimentally.

  10. Low power interface IC's for electrostatic energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Kempitiya, Asantha

    The application of wireless distributed micro-sensor systems ranges from equipment diagnostic and control to real time structural and biomedical monitoring. A major obstacle in developing autonomous micro-sensor networks is the need for local electric power supply, since using a battery is often not a viable solution. This void has sparked significant interest in micro-scale power generators based on electrostatic, piezoelectric and electromagnetic energy conversion that can scavenge ambient energy from the environment. In comparison to existing energy harvesting techniques, electrostatic-based power generation is attractive as it can be integrated using mainstream silicon technologies while providing higher power densities through miniaturization. However the power output of reported electrostatic micro-generators to date does not meet the communication and computation requirements of wireless sensor nodes. The objective of this thesis is to investigate novel CMOS-based energy harvesting circuit (EHC) architectures to increase the level of harvested mechanical energy in electrostatic converters. The electronic circuits that facilitate mechanical to electrical energy conversion employing variable capacitors can either have synchronous or asynchronous architectures. The later does not require synchronization of electrical events with mechanical motion, which eliminates difficulties in gate clocking and the power consumption associated with complex control circuitry. However, the implementation of the EHC with the converter can be detrimental to system performance when done without concurrent optimization of both elements, an aspect mainly overlooked in the literature. System level analysis is performed to show that there is an optimum value for either the storage capacitor or cycle number for maximum scavenging of ambient energy. The analysis also shows that maximum power is extracted when the system approaches synchronous operation. However, there is a region of interest where the storage capacitor can be optimized to produce almost 70% of the ideal power taken as the power harvested with synchronous converters when neglecting the power consumption associated with synchronizing control circuitry. Theoretical predictions are confirmed by measurements on an asynchronous EHC implemented with a macro-scale electrostatic converter prototype. Based on the preceding analysis, the design of a novel ultra low power electrostatic integrated energy harvesting circuit is proposed for efficient harvesting of mechanical energy. The fundamental challenges of designing reliable low power sensing circuits for charge constrained electrostatic energy harvesters with capacity to self power its controller and driver stages are addressed. Experimental results are presented for a controller design implemented in AMI 0.7muM high voltage CMOS process using a macro-scale electrostatic converter prototype. The EHC produces 1.126muW for a power investment of 417nW with combined conduction and controller losses of 450nW which is a 20-30% improvement compared to prior art on electrostatic EHCs operating under charge constrain. Inherently dual plate variable capacitors harvest energy only during half of the mechanical cycle with the other half unutilized for energy conversion. To harvest mechanical energy over the complete mechanical vibration cycle, a low power energy harvesting circuit (EHC) that performs charge constrained synchronous energy conversion on a tri-plate variable capacitor for maximizing energy conversion is proposed. The tri-plate macro electrostatic generator with capacitor variation of 405pF to 1.15nF and 405pF to 1.07nF on two complementary adjacent capacitors is fabricated and used in the characterization of the designed EHC. The integrated circuit fabricated in AMI 0.7muM high voltage CMOS process, produces a total output power of 497nW to a 10muF reservoir capacitor from a 98Hz vibration signal. In summary, the thesis lays out the theoretical and experimental foundation for overcoming the main challenges associated with the desi

  11. Optimal design of piezoelectric materials and devices for energy harvesting

    NASA Astrophysics Data System (ADS)

    Kim, Miso; Dugundji, John; Wardle, Brian L.

    2013-06-01

    Piezoelectric vibration energy harvesters (PVEHs) have received considerable attention as an enabling technology for self-powered wireless sensor networks. However, the biggest challenge with PVEHs has been their insufficient power generation for practical applications, which necessitates creative and disruptive materials and structure design on various scales. In this work, a model-based design study is performed that includes structural, materials, and device-level power optimizations of PVEHs. The optimization results help in understanding the behavior of the device performance, such as voltage and power, when the devices are optimized under various operating conditions, including input operating frequencies and mechanical damping. Furthermore, the optimization provides both an optimal device design scheme for power improvement and a better understanding of the correlation between the material property and the energy-harvesting output performance.

  12. Optimal Scheduling for Energy Harvesting Transmitters with Hybrid Energy Storage

    E-print Network

    Ulukus, Sennur

    Optimal Scheduling for Energy Harvesting Transmitters with Hybrid Energy Storage Omur Ozel Khurram with an energy harvesting transmitter which has a hybrid energy storage unit composed of a perfectly efficient super-capacitor (SC) and an inefficient battery. The SC has finite space for energy storage while

  13. Harvesting Residuals-Economic Energy Link

    E-print Network

    Owens, E. T.; Curtis, D. B.

    than at roadside, but is gradually losing its once dominant position. Processing a whole tree to optimum efficiency, on balance, is limited at roadside settings to limb ing and topping, thus producing tree lenghts. Further reduction into shorter...HARVESTING RESIDUALS-ECONOMIC ENERGY LINK E.T. Owens, R.P.F. Research and Productivity Council, Fredericton, N.B. D.B. Curtis, P.Eng. Dept. Forests, Mines and ABSTRACT A description of systems used in integrated harvesting of quality...

  14. MEMS electromagnetic energy harvesters with multiple resonances

    NASA Astrophysics Data System (ADS)

    Nelatury, Sudarshan R.; Gray, Robert

    2014-06-01

    There is going on a flurry of research activity in the development of effcient energy harvesters from all branches of energy conversion. The need for developing self-powered wireless sensors and actuators to be employed in unmanned combat vehicles also seems to grow steadily. These vehicles are inducted into perilous war zones for silent watch missions. Energy management is sometimes carried out using misson-aware energy expenditure strategies. Also, when there is a requirement for constant monitoring of events, the sensors and the subsystems of combat vehicles require energy harvesters that can operate over a discrete set of spot frequencies. This paper attempts to review some of the recent techniques and the energy harvesting devices based on electromagnetic and electromechanical principles. In particular, we shall discuss the design and performance of a MEMS-harvester that exhibits multiple resonances. Frequency response of a simulated electromagnetic harvester is plotted. It has three dominant peaks at three different resonant frequencies. Variation in the load power in the normalized units as a function of load is found, which determines the matched load resistance.

  15. Nonlinear optimization of acoustic energy harvesting using piezoelectric devices.

    PubMed

    Lallart, Mickaeël; Guyomar, Daniel; Richard, Claude; Petit, Lionel

    2010-11-01

    In the first part of the paper, a single degree-of-freedom model of a vibrating membrane with piezoelectric inserts is introduced and is initially applied to the case when a plane wave is incident with frequency close to one of the resonance frequencies. The model is a prototype of a device which converts ambient acoustical energy to electrical energy with the use of piezoelectric devices. The paper then proposes an enhancement of the energy harvesting process using a nonlinear processing of the output voltage of piezoelectric actuators, and suggests that this improves the energy conversion and reduces the sensitivity to frequency drifts. A theoretical discussion is given for the electrical power that can be expected making use of various models. This and supporting experimental results suggest that a nonlinear optimization approach allows a gain of up to 10 in harvested energy and a doubling of the bandwidth. A model is introduced in the latter part of the paper for predicting the behavior of the energy-harvesting device with changes in acoustic frequency, this model taking into account the damping effect and the frequency changes introduced by the nonlinear processes in the device. PMID:21110569

  16. Flat inductors for human motion energy harvesting

    NASA Astrophysics Data System (ADS)

    Blums, Juris; Terlecka, Galina; Gornevs, Ilgvars; Vilumsone, Ausma

    2013-05-01

    The human motion energy harvesting is under investigation. The aim of this investigation: to develop electromagnetic human motion energy harvester that will consist only from flat elements and is integrable into the apparel. Main parts of the developed human motion energy harvester are flat, spiral-shaped inductors. Voltage pulses in such flat inductors can be induced during the motion of a permanent magnet along it. Due to the flat structure, inductors can be completely integrated into the parts of the clothes and it is not necessary to keep empty place for the movement of the magnet, as in usual electromagnetic harvesters. The prototype of the clothing, jacket with integrated electromagnetic human motion energy harvester with flat inductors is tested. The theoretical model for the induction of the electromotive force due to the magnet's movement is created for the basic shapes (round, rhombic, square) of the inductive elements and the results (shape of voltage pulse and generated energy) of the calculations are in a good qualitative and quantitative coincidence with an experimental research.

  17. Green vehicle shock absorber: Micromachined wavy shaped piezoelectric cushion energy harvester and its power generating demonstration based on real navigation

    Microsoft Academic Search

    Guo-Hua Feng; Min-Yiang Tsai

    2011-01-01

    The paper presents a novel micromachined piezoelectric cushion power generator which harvests vibration energy from the vehicle shock absorber. The developed transducer demonstrates the feasibility of the concept of Green vehicle shock absorber. Two major components are involved in implementation of the device: a wavy shaped PVDF film for scavenging vibration energy and an elastic PDMS cushion for damping the

  18. Optimization of piezoelectric energy harvester for wireless smart sensors in railway health monitoring

    NASA Astrophysics Data System (ADS)

    Li, Jingcheng; Jang, Shinae; Tang, Jiong

    2013-04-01

    Wireless sensor network is one of the prospective methods for railway monitoring due to the long-term operation and low-maintenance performances. How to supply power to the wireless sensor nodes has drawn much attention recently. In railway monitoring, the idea of converting ambient vibration energy from vibration of railway track induced by passing trains to electric energy has made it a potential way for powering the wireless sensor nodes. Nowadays, most of vibration based energy harvesters are designed at resonance. However, as railway vibration frequency is a wide band range, how to design an energy harvester working at that range is critical. In this paper, the energy consumption of the wireless smart sensor platform, Imote2, at different working states were investigated. Based on the energy consumption, a design of a bimorph cantilever piezoelectric energy harvester has been optimized to generate maximum average power between a wide-band frequency range. Significant power and current outputs have been increased after optimal design. Finally, the rechargeable battery life for supplying the Imote2 for railway monitoring is predicted by using the optimized piezoelectric energy harvesting system.

  19. A generic double-curvature piezoelectric shell energy harvester: Linear/nonlinear theory and applications

    NASA Astrophysics Data System (ADS)

    Zhang, X. F.; Hu, S. D.; Tzou, H. S.

    2014-12-01

    Converting vibration energy to useful electric energy has attracted much attention in recent years. Based on the electromechanical coupling of piezoelectricity, distributed piezoelectric zero-curvature type (e.g., beams and plates) energy harvesters have been proposed and evaluated. The objective of this study is to develop a generic linear and nonlinear piezoelectric shell energy harvesting theory based on a double-curvature shell. The generic piezoelectric shell energy harvester consists of an elastic double-curvature shell and piezoelectric patches laminated on its surface(s). With a current model in the closed-circuit condition, output voltages and energies across a resistive load are evaluated when the shell is subjected to harmonic excitations. Steady-state voltage and power outputs across the resistive load are calculated at resonance for each shell mode. The piezoelectric shell energy harvesting mechanism can be simplified to shell (e.g., cylindrical, conical, spherical, paraboloidal, etc.) and non-shell (beam, plate, ring, arch, etc.) distributed harvesters using two Lamé parameters and two curvature radii of the selected harvester geometry. To demonstrate the utility and simplification procedures, the generic linear/nonlinear shell energy harvester mechanism is simplified to three specific structures, i.e., a cantilever beam case, a circular ring case and a conical shell case. Results show the versatility of the generic linear/nonlinear shell energy harvesting mechanism and the validity of the simplification procedures.

  20. Acoustic energy harvesting using an electromechanical Helmholtz resonator.

    PubMed

    Liu, Fei; Phipps, Alex; Horowitz, Stephen; Ngo, Khai; Cattafesta, Louis; Nishida, Toshikazu; Sheplak, Mark

    2008-04-01

    This paper presents the development of an acoustic energy harvester using an electromechanical Helmholtz resonator (EMHR). The EMHR consists of an orifice, cavity, and a piezoelectric diaphragm. Acoustic energy is converted to mechanical energy when sound incident on the orifice generates an oscillatory pressure in the cavity, which in turns causes the vibration of the diaphragm. The conversion of acoustic energy to electrical energy is achieved via piezoelectric transduction in the diaphragm of the EMHR. Moreover, the diaphragm is coupled with energy reclamation circuitry to increase the efficiency of the energy conversion. Lumped element modeling of the EMHR is used to provide physical insight into the coupled energy domain dynamics governing the energy reclamation process. The feasibility of acoustic energy reclamation using an EMHR is demonstrated in a plane wave tube for two power converter topologies. The first is comprised of only a rectifier, and the second uses a rectifier connected to a flyback converter to improve load matching. Experimental results indicate that approximately 30 mW of output power is harvested for an incident sound pressure level of 160 dB with a flyback converter. Such power level is sufficient to power a variety of low power electronic devices. PMID:18397006

  1. Vibrational excitation energies from vibrational coupled cluster response theory

    NASA Astrophysics Data System (ADS)

    Seidler, Peter; Christiansen, Ove

    2007-05-01

    Response theory in the context of vibrational coupled cluster (VCC) theory is introduced and used to obtain vibrational excitation energies. The relation to the vibrational configuration interaction (VCI) approach is described, and the increase in accuracy of VCC response energies relative to VCI energies is discussed theoretically in terms of a perturbational order expansion and demonstrated numerically. To illustrate the theory, a pilot implementation is used to obtain anharmonic vibrational frequencies for fundamental, first overtone and combination excitations of formaldehyde as well as for the fundamental transitions of ethylene.

  2. IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 1, JANUARY 2010 189 An Efficient Piezoelectric Energy Harvesting

    E-print Network

    Chandrakasan, Anantha

    , Member, IEEE, and Anantha P. Chandrakasan, Fellow, IEEE Abstract--Harvesting ambient vibration energy capability from piezoelectric harvesters over conventional full-bridge rectifiers and voltage doublers the system reducing the overall component count. Index Terms--Bias-flip rectifier, DC-DC converter, full-bridge

  3. ENERGY HARVESTING UTILISING THE GYROSCOPIC EFFECT

    E-print Network

    Sóbester, András

    ENERGY HARVESTING UTILISING THE GYROSCOPIC EFFECT N.C. Townsend nick@soton.ac.uk Fluid Structure of a marine vessel can induce gyroscopic precession. x y Z 0 Figure 1: A Schematic of a Single Unit Gyroscopic the gyroscopic effect) Experimental sea trials will be conducted in 2011. The motivation behind the project

  4. The effects of width reduction on the damping of a cantilever beam and its application in increasing the harvesting power of piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Dayou, Jedol; Kim, Jaehwan; Im, Jongbeom; Zhai, Lindong; How, Aaron Ting Chuan; Liew, Willey Y. H.

    2015-04-01

    Previous work shows that when a cantilever piezoelectric energy harvester with a given width is split into several pieces and then electrically connected in parallel, the output power increases substantially compared with when it acts in a single piece with a similar total width. It was hypothesized that this increase is due to the reduction in the damping of the width-reduced beam. As a result, the beam with the smaller width vibrates with higher amplitudes and therefore has higher energy harvesting capability. In this paper, this hypothesis is examined by measuring the damping of the cantilever beam as its width is reduced. It is shown that as the width decreases, the damping is reduced, which contributes to the increase in the harvested power. It is then shown that the harvested energy from an array of cantilever piezobeams with a certain total width is higher than that from a single-piece harvester of similar width.

  5. On the self-powering of SHM techniques using seismic energy harvesting

    NASA Astrophysics Data System (ADS)

    Wu, Yi-Chieh; Lallart, Mickaël.; Yan, Linjuan; Guyomar, Daniel; Richard, Claude

    2013-04-01

    Growing demands in self-powered, wireless Structural Health Monitoring (SHM) systems has placed a particular attention on energy harvesting products. While most of works done in this domain considered directly coupled active materials, it may be preferential to use seismic (or indirect-coupled) harvesters for maintenance issues. With a seismic type harvester, a model considering constant vibration magnitude excitation is no longer valid as electrical energy extraction from mechanical vibration leads to a reduction of the vibration magnitude of the harvester because of electromechanical coupling effect. This paper extends a Single Degree of Freedom (SDOF) model with a constant force or acceleration excitation to a Two Degree of Freedom (TDOF) approach to describe the tradeoff between the damping effect on the host structure and the harvested power due to the mechanical to mechanical coupling effect. When the harvester mass to host structure mass ratio is around 10-3, the maximal power is obtained and the host structure has then a sudden displacement reduction due to the strong mechanical to mechanical coupling. Its application to self-powered SHM will be also introduced in the paper.

  6. State of the art in acoustic energy harvesting

    NASA Astrophysics Data System (ADS)

    Ullah Khan, Farid; Izhar

    2015-02-01

    For portable and embedded smart, wireless electronic systems, energy harvesting from the ambient energy sources has gained immense interest in recent years. Several ambient energies exist in the environment of wireless sensor nodes (WSNs) that include thermal, solar, vibration and acoustic energy. This paper presents the recent development in the field of acoustic energy harvesters (AEHs). AEHs convert the acoustic energy into useful electrical energy for the operation of autonomous wireless sensors. Mainly, two types of AEHs (electromagnetic and piezoelectric based) have been developed and reported in literature. The power produced by the reported piezoelectric AEHs ranges from 0.68?pW to 30?mW however, the power generation of the developed electromagnetic AEHs is in the range of 1.5–1.96?mW. The overall size of most of the developed piezoelectric and electromagnetic AEHs are quite comparable and in millimeter scale. The resonant frequencies of electromagnetic AEHs are on the lower side (143–470?Hz), than that of piezoelectric AEHs (146?Hz–16.7?kHz).

  7. Finite element modeling of nonlinear piezoelectric energy harvesters with magnetic interaction

    NASA Astrophysics Data System (ADS)

    Upadrashta, Deepesh; Yang, Yaowen

    2015-04-01

    Piezoelectric energy harvesting from ambient vibrations is a potential technology for powering wireless sensors and low power electronic devices. The conventional linear harvesters suffer from narrow operational bandwidth. Many attempts have been made especially using the magnetic interaction to broaden the bandwidth of harvesters. The finite element (FE) modeling has been used only for analyzing the linear harvesters in the literature. The main difficulties in extending the FE modeling to analyze the nonlinear harvesters involving magnetic interaction are developing the mesh needed for magnetic interaction in dynamic problems and the high demand on computational resource needed for solving the coupled electrical–mechanical–magnetic problem. In this paper, an innovative method is proposed to model the magnetic interaction without inclusion of the magnetic module. The magnetic force is modeled using the nonlinear spring element available in ANSYS finite element analysis (FEA) package, thus simplifying the simulation of nonlinear piezoelectric energy harvesters as an electromechanically coupled problem. Firstly, an FE model of a monostable nonlinear harvester with cantilever configuration is developed and the results are validated with predictions from the theoretical model. Later, the proposed technique of FE modeling is extended to a complex 2-degree of freedom nonlinear energy harvester for which an accurate analytical model is difficult to derive. The performance predictions from FEA are compared with the experimental results. It is concluded that the proposed modeling technique is able to accurately analyze the behavior of nonlinear harvesters with magnetic interaction.

  8. Vibrational dynamics of plant light-harvesting complex LHC II investigated by quasi- and inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Golub, Maksym; Irrgang, Klaus-Dieter; Rusevich, Leonid; Pieper, Jörg

    2015-01-01

    Vibrational dynamics of the light-harvesting complex II (LHC II) from spinach was investigated by quasi- and inelastic neutron scattering (QENS and INS) at three different temperatures of 80, 160, and 285 K. QENS/INS spectra of solubilised LHC II and of the corresponding buffer solution were obtained separately and exhibit characteristic inelastic features. After subtraction of the buffer contribution, the INS spectrum of LHC II reveals a distinct Boson peak at ˜ 2.5 meV at 80 K that shifts towards lower energies if the temperature is increased to 285 K. This effect is interpreted in terms of a "softening" of the protein matrix along with the dynamical transition at ˜ 240 K. Our findings indicate that INS is a valuable method to obtain the density of vibrational states not only at cryogenic, but also at physiological temperatures.

  9. Energy harvesting/scavenging for powering (-)sensors Lead: P. Basset.

    E-print Network

    Baudoin, Geneviève

    Energy harvesting/scavenging for powering (µ-)sensors Lead: P. Basset. Permanent members: F. Marty Scavenger for Autonomous Microsystems (SESAM): The objective is the elaboration of an energy harvester

  10. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework

    PubMed Central

    Tiwari, Vivek; Peters, William K.; Jonas, David M.

    2013-01-01

    The delocalized, anticorrelated component of pigment vibrations can drive nonadiabatic electronic energy transfer in photosynthetic light-harvesting antennas. In femtosecond experiments, this energy transfer mechanism leads to excitation of delocalized, anticorrelated vibrational wavepackets on the ground electronic state that exhibit not only 2D spectroscopic signatures attributed to electronic coherence and oscillatory quantum energy transport but also a cross-peak asymmetry not previously explained by theory. A number of antennas have electronic energy gaps matching a pigment vibrational frequency with a small vibrational coordinate change on electronic excitation. Such photosynthetic energy transfer steps resemble molecular internal conversion through a nested intermolecular funnel. PMID:23267114

  11. Energy-harvesting at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Jordan, Andrew; Sothmann, Björn; Sánchez, Rafael; Büttiker, Markus

    2013-03-01

    Energy harvesting is the process by which energy is taken from the environment and transformed to provide power for electronics. Specifically, the conversion of thermal energy into electrical power, or thermoelectrics, can play a crucial role in future developments of alternative sources of energy. Unfortunately, present thermoelectrics have low efficiency. Therefore, an important task in condensed matter physics is to find new ways to harvest ambient thermal energy, particularly at the smallest length scales where electronics operate. To achieve this goal, there is on one hand the miniaturizing of electrical devices, and on the other, the maximization of either efficiency or power the devices produce. We will present the theory of nano heat engines able to efficiently convert heat into electrical power. We propose a resonant tunneling quantum dot engine that can be operated either in the Carnot efficient mode, or maximal power mode. The ability to scale the power by putting many such engines in a ``Swiss cheese sandwich'' geometry gives a paradigmatic system for harvesting thermal energy at the nanoscale.

  12. Electroaeroelastic modeling and analysis of a hybrid piezoelectric-inductive flow energy harvester

    NASA Astrophysics Data System (ADS)

    Dias, J. A. C.; De Marqui, C.; Erturk, Alper

    2013-04-01

    The conversion of aeroelastic vibrations into low-power electricity has received growing attention in the energy harvesting literature. Most of the existing research on wind energy harvesting has focused on transforming flow-induced vibrations into electricity by employing electromagnetic or piezoelectric transduction mechanisms separately. In this work, a hybrid airfoil-based aeroelastic energy harvester that simultaneously exploits piezoelectric transduction and electromagnetic induction is analyzed based on fully coupled electroaeroelastic modeling. Both forms of electromechanical coupling are introduced to the plunge degree of freedom. The interaction between total power generation (from piezoelectric transduction and electromagnetic induction) and the linear electroaeroelastic behavior of the typical section is investigated in the presence of two separate electrical loads. The effects of systems parameters, such as internal coil resistance, on the total power output and linear flutter speed are also discussed.

  13. POWER EVALUATION FOR FLUTTER-BASED ELCTROMAGNETIC ENERGY HARVESTER USING CFD SIMULATIONS

    E-print Network

    Stanford University

    to generate power (Allen and Smits 2001; Sun et al. 2011) and to generate inductance power in electromagneticPOWER EVALUATION FOR FLUTTER-BASED ELCTROMAGNETIC ENERGY HARVESTER USING CFD SIMULATIONS J. Park 1-shape cantilever causes periodic vibration, which can be converted into electric power through an electromagnetic

  14. Automated Checkpointing for Enabling Intensive Applications on Energy Harvesting Devices

    E-print Network

    infeasible or costly. A promising alternative is to use energy harvesting sources which can be remotelyAutomated Checkpointing for Enabling Intensive Applications on Energy Harvesting Devices Azalia intensive computation on ultra-low power devices with discontinuous energy-harvesting supplies. We devise

  15. Pyroelectric Nanogenerators for Harvesting Thermoelectric Energy Ken C. Pradel,

    E-print Network

    Wang, Zhong L.

    contact, Seebeck effect Wasted heat is a rich source of energy that could be harvested. In 2010 of wasted heat,1 which presents us with a great opportunity to harvest this type of energy using nanoPyroelectric Nanogenerators for Harvesting Thermoelectric Energy Ya Yang, Wenxi Guo, Ken C. Pradel

  16. Human Motion Energy Harvesting for AAL Applications

    NASA Astrophysics Data System (ADS)

    Ylli, K.; Hoffmann, D.; Becker, P.; Willmann, A.; Folkmer, B.; Manoli, Y.

    2014-11-01

    Research and development into the topic of ambient assisted living has led to an increasing range of devices that facilitate a person's life. The issue of the power supply of these modern mobile systems however has not been solved satisfactorily yet. In this paper a flat inductive multi-coil harvester for integration into the shoe sole is presented. The device is designed for ambient assisted living (AAL) applications and particularly to power a self-lacing shoe. The harvester exploits the horizontal swing motion of the foot to generate energy. Stacks of opposing magnets move through a number of equally spaced coils to induce a voltage. The requirement of a flat structure which can be integrated into the shoe sole is met by a reduced form factor of the magnet stack. In order to exploit the full width of the shoe sole, supporting structures are used to parallelize the harvester and therefore increase the number of active elements, i.e. magnets and coils. The development and characterization of different harvester variations is presented with the best tested design generating an average power of up to 2.14 mW at a compact device size of 75 × 41.5 × 15 mm3 including housing.

  17. Flexible piezoelectric energy harvesting from jaw movements

    NASA Astrophysics Data System (ADS)

    Delnavaz, Aidin; Voix, Jérémie

    2014-10-01

    Piezoelectric fiber composites (PFC) represent an interesting subset of smart materials that can function as sensor, actuator and energy converter. Despite their excellent potential for energy harvesting, very few PFC mechanisms have been developed to capture the human body power and convert it into an electric current to power wearable electronic devices. This paper provides a proof of concept for a head-mounted device with a PFC chin strap capable of harvesting energy from jaw movements. An electromechanical model based on the bond graph method is developed to predict the power output of the energy harvesting system. The optimum resistance value of the load and the best stretch ratio in the strap are also determined. A prototype was developed and tested and its performances were compared to the analytical model predictions. The proposed piezoelectric strap mechanism can be added to all types of head-mounted devices to power small-scale electronic devices such as hearing aids, electronic hearing protectors and communication earpieces.

  18. Energy Cooperation in Energy Harvesting Two-Way Communications

    E-print Network

    Ulukus, Sennur

    Energy Cooperation in Energy Harvesting Two-Way Communications Berk Gurakan1 , Omur Ozel1 , Jing energy from nature and energy can be transferred in one-way from one of the users to the other. Energy and users have unlimited batteries to store energy for future use. In addition, there is a separate wireless

  19. Development of a biomechanical energy harvester

    PubMed Central

    Li, Qingguo; Naing, Veronica; Donelan, J Maxwell

    2009-01-01

    Background Biomechanical energy harvesting–generating electricity from people during daily activities–is a promising alternative to batteries for powering increasingly sophisticated portable devices. We recently developed a wearable knee-mounted energy harvesting device that generated electricity during human walking. In this methods-focused paper, we explain the physiological principles that guided our design process and present a detailed description of our device design with an emphasis on new analyses. Methods Effectively harvesting energy from walking requires a small lightweight device that efficiently converts intermittent, bi-directional, low speed and high torque mechanical power to electricity, and selectively engages power generation to assist muscles in performing negative mechanical work. To achieve this, our device used a one-way clutch to transmit only knee extension motions, a spur gear transmission to amplify the angular speed, a brushless DC rotary magnetic generator to convert the mechanical power into electrical power, a control system to determine when to open and close the power generation circuit based on measurements of knee angle, and a customized orthopaedic knee brace to distribute the device reaction torque over a large leg surface area. Results The device selectively engaged power generation towards the end of swing extension, assisting knee flexor muscles by producing substantial flexion torque (6.4 Nm), and efficiently converted the input mechanical power into electricity (54.6%). Consequently, six subjects walking at 1.5 m/s generated 4.8 ± 0.8 W of electrical power with only a 5.0 ± 21 W increase in metabolic cost. Conclusion Biomechanical energy harvesting is capable of generating substantial amounts of electrical power from walking with little additional user effort making future versions of this technology particularly promising for charging portable medical devices. PMID:19549313

  20. Optimized energy harvesting materials and generator design

    NASA Astrophysics Data System (ADS)

    Graf, Christian; Hitzbleck, Julia; Feller, Torsten; Clauberg, Karin; Wagner, Joachim; Krause, Jens; Maas, Jürgen

    2013-04-01

    Electroactive polymers are soft capacitors made of thin elastic and electrically insulating films coated with compliant electrodes offering a large amount of deformation. They can either be used as actuators by applying an electric charge or they can be used as energy converters based on the electrostatic principle. These unique properties enable the industrial development of highly efficient and environmentally sustainable energy converters, which opens up the possibility to further exploit large renewable and inexhaustible energy sources like wind and water that are widely unused otherwise. Compared to other electroactive polymer materials, polyurethanes, whose formulations have been systematically modified and optimized for energy harvesting applications, have certain advantages over silicones and acrylates. The inherently higher dipole content results in a significantly increased permittivity and the dielectric breakdown strength is higher, too, whereby the overall specific energy, a measure for the energy gain, is better by at least factor ten, i.e. more than ten times the energy can be gained out of the same amount of material. In order to reduce conduction losses on the electrode during charging and discharging, a highly conductive bidirectional stretchable electrode has been developed. Other important material parameters like stiffness and bulk resistivity have been optimized to fit the requirements. To realize high power energy harvesting systems, substantial amounts of electroactive polymer material are necessary as well as a smart mechanical and electrical design of the generator. In here we report on different measures to evaluate and improve electroactive polymer materials for energy harvesting by e.g. reducing the defect occurrence and improving the electrode behavior.

  1. Consideration of impedance matching techniques for efficient piezoelectric energy harvesting.

    PubMed

    Kim, Hyeoungwoo; Priya, Shashank; Stephanou, Harry; Uchino, Kenji

    2007-09-01

    This study investigates multiple levels of impedance-matching methods for piezoelectric energy harvesting in order to enhance the conversion of mechanical to electrical energy. First, the transduction rate was improved by using a high piezoelectric voltage constant (g) ceramic material having a magnitude of g33 = 40 x 10(-3) V m/N. Second, a transducer structure, cymbal, was optimized and fabricated to match the mechanical impedance of vibration source to that of the piezoelectric transducer. The cymbal transducer was found to exhibit approximately 40 times higher effective strain coefficient than the piezoelectric ceramics. Third, the electrical impedance matching for the energy harvesting circuit was considered to allow the transfer of generated power to a storage media. It was found that, by using the 10-layer ceramics instead of the single layer, the output current can be increased by 10 times, and the output load can be reduced by 40 times. Furthermore, by using the multilayer ceramics the output power was found to increase by 100%. A direct current (DC)-DC buck converter was fabricated to transfer the accumulated electrical energy in a capacitor to a lower output load. The converter was optimized such that it required less than 5 mW for operation. PMID:17941391

  2. Energy-harvesting linear MR damper: prototyping and testing

    NASA Astrophysics Data System (ADS)

    Sapi?ski, Bogdan

    2014-03-01

    The present study is concerned with an energy-harvesting linear MR (EH-LMR) damper which is able to recover energy from external excitations using an electromagnetic energy extractor, and to adjust itself to excitations by varying the damping characteristics. The device has three main components: an MR part having a damper piston assembly movable in relation to the damper cylinder under an external excitation, a power generator to produce electrical power according to the relative movement between the damper piston and the cylinder assembly, and a conditioning electronics unit to interface directly with the generator and the MR damper. The EH-LMR damper integrates energy harvesting, dynamic sensor and MR damping technologies in a single device. The objective of the study is to get a better insight into the structure of EH-LMR damper components, to investigate the performance of each component and a device as a whole, and to compare results of experimental study against numerical data obtained in simulations conducted at the design stage. The research work demonstrates that the proposed EH-LMR damper provides a smart and compact solution with the potential of application to vibration isolation. The advantage of the device is its adaptability to external excitations and the fact that it does not need any extra power supply unit or sensor on account of its self-powered and self-sensing capabilities.

  3. A frequency up-converted electromagnetic energy harvester using human hand-shaking

    NASA Astrophysics Data System (ADS)

    Halim, M. A.; Park, J. Y.

    2013-12-01

    We present a frequency up-converted electromagnetic (EM) energy harvester that is capable of powering various portable devices and systems by hand-shaking. It consists of a freely movable ball to impact periodically (at low frequency) on the parabolic top surface of a mass of a cantilever beam allowing it to vibrate at higher (resonant) frequency. Relative motion between a magnet attached to the cantilever and a coil induces voltage. A prototype of the energy harvester has been fabricated and characterized by applying vibration from handshaking. The frequency and acceleration of the applied hand-shaking vibration has been experimentally found to be 4.6 Hz and 2g, respectively. With an optimum distance between magnet and coil, a maximum 672 mV peak-peak open circuit voltage of 370 Hz frequency and a maximum 413?W peak power delivered to an 85? matched load resistance have been obtained, respectively.

  4. Environmental effects of harvesting forests for energy

    SciTech Connect

    Van Hook, R.I.; Johnson, D.W.; West, D.C.; Mann, L.K.

    1980-01-01

    Present interest in decreasing US dependence on foreign oil by increasing the use of wood for energy may bring about a change in our forest utilization policies. In the past, forests have been removed in areas believed to be suited for agriculture, or sawtimber and pulp have been the only woody material removed in any quantity from land not generally considered tillable. The new demands on wood for energy are effecting a trend toward (1) removing all woody biomass from harvested areas, (2) increasing the frequency of harvesting second growth forests, and (3) increasing production with biomass plantations. Considering the marginal quality of much of the remaining forested land, the impacts of these modes of production could be significant. For example, it is anticipated that increased losses of nutrients and carbon will occur by direct forest removal and through erosion losses accelerated by forest clearing. There are, however, control measures that can be utilized in minimizing both direct and indirect effects of forest harvesting while maximizing woody biomass production.

  5. Vibrational structure theory: new vibrational wave function methods for calculation of anharmonic vibrational energies and vibrational contributions to molecular properties.

    PubMed

    Christiansen, Ove

    2007-06-21

    A number of recently developed theoretical methods for the calculation of vibrational energies and wave functions are reviewed. Methods for constructing the appropriate quantum mechanical Hamilton operator are briefly described before reviewing a particular branch of theoretical methods for solving the nuclear Schrödinger equation. The main focus is on wave function methods using the vibrational self-consistent field (VSCF) as starting point, and includes vibrational configuration interaction (VCI), vibrational Møller-Plesset (VMP) theory, and vibrational coupled cluster (VCC) theory. The convergence of the different methods towards the full vibrational configuration interaction (FVCI) result is discussed. Finally, newly developed vibrational response methods for calculation of vibrational contributions to properties, energies, and transition probabilities are discussed. PMID:17551617

  6. Liquid-based electrostatic energy harvester with high sensitivity to human physical motion

    Microsoft Academic Search

    Dong-Hoon Choi; Chang-Hoon Han; Hyun-Don Kim; Jun-Bo Yoon

    2011-01-01

    This paper presents a new liquid-based electrostatic energy harvester that converts the mechanical energy of human-motion-induced vibrations to electrical energy. The basic design uses a conducting liquid to enhance sensitivity to human motion, the frequency of which is typically as low as several hertz; it also uses a hydrophobic coating to provide a broad frequency bandwidth. As liquid slops in

  7. Integrated actuation and energy harvesting in prestressed piezoelectric synthetic jets

    NASA Astrophysics Data System (ADS)

    Mane, Poorna

    With the looming energy crisis compounded by the global economic downturn there is an urgent need to increase energy efficiency and to discover new energy sources. An approach to solve this problem is to improve the efficiency of aerodynamic vehicles by using active flow control tools such as synthetic jet actuators. These devices are able to reduce fuel consumption and streamlined vehicle design by reducing drag and weight, and increasing maneuverability. Hence, the main goal of this dissertation is to study factors that affect the efficiency of synthetic jets by incorporating energy harvesting into actuator design using prestressed piezoelectric composites. Four state-of-the-art piezoelectric composites were chosen as active diaphragms in synthetic jet actuators. These composites not only overcome the inherent brittle and fragile nature of piezoelectric materials but also enhance domain movement which in turn enhances intrinsic contributions. With these varying characteristics among different types of composites, the intricacies of the synthetic jet design and its implementation increases. In addition the electrical power requirements of piezoelectric materials make the new SJA system a coupled multiphysics problem involving electro-mechanical and structural-fluid interactions. Due to the nature of this system, a design of experiments approach, a method of combining experiments and statistics, is utilized. Geometric and electro-mechanical factors are investigated using a fractional factorial design with peak synthetic jet velocity as a response variable. Furthermore, energy generated by the system oscillations is harvested with a prestressed composite and a piezo-polymer. Using response surface methodology the process is optimized under different temperatures and pressures to simulate harsh environmental conditions. Results of the fractional factorial experimental design showed that cavity dimensions and type of signal used to drive the synthetic jet actuator were statistically significant factors when studying peak jet velocity. The Bimorph (˜50m/s) and the prestressed metal composite (˜45m/s) generated similar peak jet velocities but the later is the most robust of all tested actuators. In addition, an alternate input signal to the composite, a sawtooth waveform, leads to jets formed with larger peak velocities at frequencies above 15Hz. The optimized factor levels for the energy harvesting process were identified as 237.6kPa, 3.7Hz, 1MO and 12°C and the power density measured at these conditions was 24.27microW/mm3. Finally, the SJA is integrated with an energy harvesting system and the power generated is stored into a large capacitor and a rechargeable battery. After approximately six hours of operation 5V of generated voltage is stored in a 330microF capacitor with the prestressed metal composite as the harvester. It is then demonstrated that energy harvested from the inherent vibrations of a SJA can be stored for later use. Then, the system proposed in this dissertation not only improves on the efficiency of aerodynamic bodies, but also harvests energy that is otherwise wasted.

  8. Nonlinear analysis and enhancement of wing-based piezoaeroelastic energy harvesters

    NASA Astrophysics Data System (ADS)

    Abdelkefi, A.; Ghommem, M.; Nuhait, A. O.; Hajj, M. R.

    2014-01-01

    We investigate the level of harvested power from aeroelastic vibrations for an elastically mounted wing supported by nonlinear springs. The energy is harvested by attaching a piezoelectric transducer to the plunge degree of freedom. The considered wing has a low-aspect ratio and hence three dimensional aerodynamic effects cannot be neglected. To this end, the three dimensional unsteady vortex lattice method for the prediction of the unsteady aerodynamic loads is developed. A strong coupling scheme that is based on Hamming's fourth-order predictor-corrector method and accounts for the interaction between the aerodynamic loads and the motion of the wing is employed. The effects of the electrical load resistance, nonlinear torsional spring and eccentricity between the elastic axis and the gravity axis on the level of the harvested power, pitch and plunge amplitudes are investigated for a range of operating wind speeds. The results show that there is a specific wind speed beyond which the pitch motion does not pick any further energy from the incident flow. As such, the displacement in the plunge direction grows significantly and causes enhanced energy harvesting. The results also show that the nonlinear torsional spring plays an important role in enhancing the level of the harvested power. Furthermore, the harvested power can be increased by an order of magnitude by properly choosing the eccentricity and the load resistance. This analysis is helpful in designing piezoaeroelastic energy harvesters that can operate optimally at specific wind speeds.

  9. Models for 31-Mode PVDF Energy Harvester for Wearable Applications

    PubMed Central

    Zhao, Jingjing; You, Zheng

    2014-01-01

    Currently, wearable electronics are increasingly widely used, leading to an increasing need of portable power supply. As a clean and renewable power source, piezoelectric energy harvester can transfer mechanical energy into electric energy directly, and the energy harvester based on polyvinylidene difluoride (PVDF) operating in 31-mode is appropriate to harvest energy from human motion. This paper established a series of theoretical models to predict the performance of 31-mode PVDF energy harvester. Among them, the energy storage one can predict the collected energy accurately during the operation of the harvester. Based on theoretical study and experiments investigation, two approaches to improve the energy harvesting performance have been found. Furthermore, experiment results demonstrate the high accuracies of the models, which are better than 95%. PMID:25114981

  10. Flexible Electret Energy Harvester with Copper Mesh Electrodes

    NASA Astrophysics Data System (ADS)

    Chiu, Yi; Lee, Ming Hsuan; Hsu, Wei-Hung

    2014-11-01

    Flexible energy harvesters are desired in biomedical applications since human motion is often complicated and aperiodic. However, most demonstrated flexible energy harvesters employ piezoelectric materials which are not biocompatible. Therefore we propose a PDMS-based flexible energy harvester with Parylene-C electret suitable for biomedical applications. To address the reliability issues of sputtered metal electrodes, we use copper mesh electrodes to improve the reliability. The proposed flexible harvester was fabricated and characterized. The measured power of the proposed harvester was 3.33 pW in the compression tests at 20 Hz and 8.5 nW in the finger bending tests at 2 Hz.

  11. Fabrication and characterization of the electrets material for electrostatic energy harvester

    NASA Astrophysics Data System (ADS)

    Ahmad, M. R.; Khir, M. H. Md; Dennis, J. O.; Mohd Zain, A.

    2013-12-01

    Electrostatic energy harvesting devices have been found feasible to convert ambient vibrations into electrical energy. Fabrications of such devices are carried out using standard CMOS technology. This paper explains the fabrications processes of the energy harvesting components and the characterizations of the electret material for the electrostatic energy harvester device. The electrostatic energy harvester components are made up of the trapezoidal electrodes and electrets structures. The aluminum-silicon-copper (AlSiCu) electrodes reside on the Micro Electro-Mechanical System (MEMS) structure of 25 mm2 and comprises the seismic mass and serpentine beams. On the other hand, the electrets which made up of Silicon Dioxide (SiO2) and Silicon Nitride (Si3N4) material, are fabricated separately. A 0.35 ?m CMOS processes technology is utilized to fabricate the electrodes and electrets structures onto 200 mm silicon wafers. The performance of the energy harvester is evaluated through the characterizations of the electrets material. The electrets are charged with the Corona charging method and the surface potential is measured. From the experiment, it is proven that the CVD oxides is chargeable at 4.7 kV Corona voltage, 200 V grid voltage, 10 minutes charging time and 70°C substrate temperature, hence it is a recommended material for electrostatic energy harvester device.

  12. Robust segment-type energy harvester and its application to a wireless sensor

    NASA Astrophysics Data System (ADS)

    Lee, Soobum; Youn, Byeng D.; Jung, Byung C.

    2009-09-01

    This paper presents an innovative design platform of a piezoelectric energy harvester (EH), called a segment-type EH, and its application to a wireless sensor. Energy harvesting technology is motivated to minimize battery replacement cost for wireless sensors, which aims at developing self-powered sensors by utilizing ambient energy sources. Vibration energy is one of the widely available ambient energy sources which can be converted into electrical energy using piezoelectric material. The current state-of-the-art in piezoelectric EH technology mainly utilizes a single natural frequency, which is less effective when utilizing a random ambient vibration with multi-modal frequencies. This research thus proposes a segment-type harvester to generate electric power efficiently which utilizes multiple modes by separating the piezoelectric material. In order to reflect the random nature of ambient vibration energy, a stochastic design optimization is solved to determine the optimal configuration in terms of energy efficiency and durability. A prototype is manufactured and mounted on a heating, ventilation, air conditioning (HVAC) system to operate a temperature wireless sensor. It shows its excellent performance to generate sufficient power for real-time temperature monitoring for building automation.

  13. An accurate model for numerical prediction of piezoelectric energy harvesting from fluid structure interaction problems

    NASA Astrophysics Data System (ADS)

    Amini, Y.; Emdad, H.; Farid, M.

    2014-09-01

    Piezoelectric energy harvesting (PEH) from ambient energy sources, particularly vibrations, has attracted considerable interest throughout the last decade. Since fluid flow has a high energy density, it is one of the best candidates for PEH. Indeed, a piezoelectric energy harvesting process from the fluid flow takes the form of natural three-way coupling of the turbulent fluid flow, the electromechanical effect of the piezoelectric material and the electrical circuit. There are some experimental and numerical studies about piezoelectric energy harvesting from fluid flow in literatures. Nevertheless, accurate modeling for predicting characteristics of this three-way coupling has not yet been developed. In the present study, accurate modeling for this triple coupling is developed and validated by experimental results. A new code based on this modeling in an openFOAM platform is developed.

  14. Broadband electromagnetic power harvester from vibrations via frequency conversion by impact oscillations

    NASA Astrophysics Data System (ADS)

    Yuksek, N. S.; Feng, Z. C.; Almasri, M.

    2014-09-01

    In this paper, we propose an electromagnetic power harvester that uses a transformative multi-impact approach to achieve a wide bandwidth response from low frequency vibration sources through frequency-up conversion. The device consists of a pick-up coil, fixed at the free edge of a cantilever beam with high resonant frequency, and two cantilever beams with low excitation frequencies, each with an impact mass attached at its free edge. One of the two cantilevers is designed to resonate at 25 Hz, while the other resonates at 50 Hz within the range of ambient vibration frequency. When the device is subjected to a low frequency vibration, the two low-frequency cantilevers responded by vibrating at low frequencies, and thus their thick metallic masses made impacts with the high resonance frequency cantilever repeatedly at two locations. This has caused it along with the pick-up coil to oscillate, relative to the permanent magnet, with decaying amplitude at its resonance frequency, and results in a wide bandwidth response from 10 to 63 Hz at 2 g. A wide bandwidth response between 10-51 Hz and 10-58 Hz at acceleration values of 0.5 g and 2 g, respectively, were achieved by adjusting the impact cantilever frequencies closer to each other (25 Hz and 45 Hz). A maximum output power of 85 ?W was achieved at 5 g at 30 Hz across a load resistor, 2.68 ?.

  15. Broadband electromagnetic power harvester from vibrations via frequency conversion by impact oscillations

    SciTech Connect

    Yuksek, N. S.; Almasri, M. [Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211 (United States); Feng, Z. C. [Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 (United States)

    2014-09-15

    In this paper, we propose an electromagnetic power harvester that uses a transformative multi-impact approach to achieve a wide bandwidth response from low frequency vibration sources through frequency-up conversion. The device consists of a pick-up coil, fixed at the free edge of a cantilever beam with high resonant frequency, and two cantilever beams with low excitation frequencies, each with an impact mass attached at its free edge. One of the two cantilevers is designed to resonate at 25?Hz, while the other resonates at 50?Hz within the range of ambient vibration frequency. When the device is subjected to a low frequency vibration, the two low-frequency cantilevers responded by vibrating at low frequencies, and thus their thick metallic masses made impacts with the high resonance frequency cantilever repeatedly at two locations. This has caused it along with the pick-up coil to oscillate, relative to the permanent magnet, with decaying amplitude at its resonance frequency, and results in a wide bandwidth response from 10 to 63?Hz at 2?g. A wide bandwidth response between 10–51?Hz and 10–58?Hz at acceleration values of 0.5?g and 2?g, respectively, were achieved by adjusting the impact cantilever frequencies closer to each other (25?Hz and 45?Hz). A maximum output power of 85??W was achieved at 5?g at 30?Hz across a load resistor, 2.68 ?.

  16. Thermoelectric energy harvesting with quantum dots

    NASA Astrophysics Data System (ADS)

    Sothmann, Björn; Sánchez, Rafael; Jordan, Andrew N.

    2015-01-01

    We review recent theoretical work on thermoelectric energy harvesting in multi-terminal quantum-dot setups. We first discuss several examples of nanoscale heat engines based on Coulomb-coupled conductors. In particular, we focus on quantum dots in the Coulomb-blockade regime, chaotic cavities and resonant tunneling through quantum dots and wells. We then turn toward quantum-dot heat engines that are driven by bosonic degrees of freedom such as phonons, magnons and microwave photons. These systems provide interesting connections to spin caloritronics and circuit quantum electrodynamics.

  17. Energy harvesting using a thermoelectric material

    DOEpatents

    Nersessian, Nersesse (Van Nuys, CA); Carman, Gregory P. (Los Angeles, CA); Radousky, Harry B. (San Leandro, CA)

    2008-07-08

    A novel energy harvesting system and method utilizing a thermoelectric having a material exhibiting a large thermally induced strain (TIS) due to a phase transformation and a material exhibiting a stress induced electric field is introduced. A material that exhibits such a phase transformation exhibits a large increase in the coefficient of thermal expansion over an incremental temperature range (typically several degrees Kelvin). When such a material is arranged in a geometric configuration, such as, for a example, a laminate with a material that exhibits a stress induced electric field (e.g. a piezoelectric material) the thermally induced strain is converted to an electric field.

  18. Thermoelectric energy harvesting with quantum dots.

    PubMed

    Sothmann, Björn; Sánchez, Rafael; Jordan, Andrew N

    2015-01-21

    We review recent theoretical work on thermoelectric energy harvesting in multi-terminal quantum-dot setups. We first discuss several examples of nanoscale heat engines based on Coulomb-coupled conductors. In particular, we focus on quantum dots in the Coulomb-blockade regime, chaotic cavities and resonant tunneling through quantum dots and wells. We then turn toward quantum-dot heat engines that are driven by bosonic degrees of freedom such as phonons, magnons and microwave photons. These systems provide interesting connections to spin caloritronics and circuit quantum electrodynamics. PMID:25549281

  19. Optimal Transmission Policies for Energy Harvesting Two-hop Networks

    E-print Network

    Orhan, Oner

    2012-01-01

    In this paper, a two-hop communication system with energy harvesting nodes is considered. Unlike battery powered wireless nodes, both the source and the relay are able to harvest energy from environment during communication, therefore, both data and energy causality over the two hops need to be considered. Assuming both nodes know the harvested energies in advance, properties of optimal transmission policies to maximize the delivered data by a given deadline are identified. Using these properties, optimal power allocation and transmission schedule for the case in which both nodes harvest two energy packets is developed.

  20. Harvesting Kinetic Energy with Switched-Inductor DCDC Converters

    E-print Network

    Rincon-Mora, Gabriel A.

    ambient energy offers an appealing alternative, except the act of transferring energy requires power to impractical levels [3]. Energy harvesting is therefore an attractive alternative, as it continuouslyHarvesting Kinetic Energy with Switched-Inductor DC­DC Converters Dongwon Kwon, Gabriel A. Rincón

  1. Potential Ambient Energy-Harvesting Sources and Techniques

    ERIC Educational Resources Information Center

    Yildiz, Faruk

    2009-01-01

    Ambient energy harvesting is also known as energy scavenging or power harvesting, and it is the process where energy is obtained from the environment. A variety of techniques are available for energy scavenging, including solar and wind powers, ocean waves, piezoelectricity, thermoelectricity, and physical motions. For example, some systems…

  2. Multi-source energy harvester for wildlife tracking

    NASA Astrophysics Data System (ADS)

    Wu, You; Zuo, Lei; Zhou, Wanlu; Liang, Changwei; McCabe, Michael

    2014-03-01

    Sufficient power supply to run GPS machinery and transmit data on a long-term basis remains to be the key challenge for wildlife tracking technology. Traditional way of replacing battery periodically is not only time and money consuming but also dangerous to live-trapping wild animals. In this paper, an innovative wildlife tracking device with multi-source energy harvester with advantage of high efficiency and reliability is investigated and developed. This multi-source energy harvester entails a solar energy harvester and an innovative rotational electromagnetic energy harvester is mounted on the "wildlife tracking collar" which will remarkably extend the duration of wild life tracking. A feedforward and feedback control of DC-DC converter circuit is adopted to passively realize the Maximum Power Point Tracking (MPPT) logic for the solar energy harvester. The rotational electromagnetic energy harvester can mechanically rectify the irregular bidirectional motion into unidirectional motion has been modeled and demonstrated.

  3. Design, fabrication, and testing of energy-harvesting thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Jovanovic, Velimir; Ghamaty, Saeid

    2006-03-01

    An energy-harvesting thermoelectric generator (TEG) is being developed to provide power for wireless sensors used in health monitoring of Navy machinery. TEGs are solid-state devices that convert heat directly into electricity without any moving parts. In this application, the TEGs utilize the heat transfer between shipboard waste heat sources and the ambient air to generate electricity. In order to satisfy the required small design volume of less than one cubic inch, Hi-Z is using its innovative thin-film Quantum Well (QW) thermoelectric technology that will provide a factor of four increase in efficiency and a large reduction in the device volume over the currently used bulk Bi IITe 3 based thermoelectics. QWs are nanostructured multi-layer films. These wireless sensors can be used to detect cracks, corrosion, impact damage, and temperature and vibration excursions as part of the Condition Based Maintenance (CBM) of the Navy ship machinery. The CBM of the ship machinery can be significantly improved by automating the process with the use of self-powered wireless sensors. These power-harvesting TEGs can be used to replace batteries as electrical power sources and to eliminate power cables and data lines. The first QW TEG module was fabricated and initial tests were successful. It is planned to conduct performance tests the entire prototype QW TEG device (consisting of the TEG module, housing, thermal insulation and the heat sink) in a simulated thermal environment of a Navy ship.

  4. Piezoelectric energy harvesting: State-of-the-art and challenges

    NASA Astrophysics Data System (ADS)

    Toprak, Alperen; Tigli, Onur

    2014-09-01

    Piezoelectric energy harvesting has attracted wide attention from researchers especially in the last decade due to its advantages such as high power density, architectural simplicity, and scalability. As a result, the number of studies on piezoelectric energy harvesting published in the last 5 years is more than twice the sum of publications on its electromagnetic and electrostatic counterparts. This paper presents a comprehensive review on the history and current state-of-the art of piezoelectric energy harvesting. A brief theory section presents the basic principles of piezoelectric energy conversion and introduces the most commonly used mechanical architectures. The theory section is followed by a literature survey on piezoelectric energy harvesters, which are classified into three groups: (i) macro- and mesoscale, (ii) MEMS scale, and (iii) nanoscale. The size of a piezoelectric energy harvester affects a variety of parameters such as its weight, fabrication method, achievable power output level, and potential application areas. Consequently, size-based classification provides a reliable and effective basis to study various piezoelectric energy harvesters. The literature survey on each scale group is concluded with a summary, potential application areas, and future directions. In a separate section, the most prominent challenges in piezoelectric energy harvesting and the studies focusing on these challenges are discussed. The conclusion part summarizes the current standing of piezoelectric energy harvesters as possible candidates for various applications and discusses the issues that need to be addressed for realization of practical piezoelectric energy harvesting devices.

  5. Nonlinear dynamics of a bistable piezoelectric-composite energy harvester for broadband application

    NASA Astrophysics Data System (ADS)

    Betts, D. N.; Bowen, C. R.; Kim, H. A.; Gathercole, N.; Clarke, C. T.; Inman, D. J.

    2013-09-01

    The continuing need for reduced power requirements for small electronic components, such as wireless sensor networks, has prompted renewed interest in recent years for energy harvesting technologies capable of capturing energy from ambient vibrations. A particular focus has been placed on piezoelectric materials and devices due to the simplicity of the mechanical to electrical energy conversion and their high strain energy densities compared to electrostatic and electromagnetic equivalents. In this paper an arrangement of piezoelectric layers attached to a bistable asymmetric laminate is investigated experimentally to understand the dynamic response of the structure and power generation characteristics. The inherent bistability of the underlying structure is exploited for energy harvesting since a transition from one stable configuration to another, or "snap-through", is used to repeatedly strain the surface bonded piezoelectric and generate electrical energy. This approach has been shown to exhibit high levels of power extraction over a wide range of vibrational frequencies. Using high speed digital image correlation, a variety of dynamic modes of oscillation are identified in the harvester. The sensitivity of such modes to changes in vibration frequency and amplitude are investigated. Power outputs are measured for repeatable snap-through events of the device and are correlated with the measured modes of oscillation. The typical power generated is approximately 3.2 mW, comparing well with the needs of typical wireless senor node applications.

  6. The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae

    NASA Astrophysics Data System (ADS)

    Kolli, Avinash; O'Reilly, Edward J.; Scholes, Gregory D.; Olaya-Castro, Alexandra

    2012-11-01

    The influence of fast vibrations on energy transfer and conversion in natural molecular aggregates is an issue of central interest. This article shows the important role of high-energy quantized vibrations and their non-equilibrium dynamics for energy transfer in photosynthetic systems with highly localized excitonic states. We consider the cryptophyte antennae protein phycoerythrin 545 and show that coupling to quantized vibrations, which are quasi-resonant with excitonic transitions is fundamental for biological function as it generates non-cascaded transport with rapid and wider spatial distribution of excitation energy. Our work also indicates that the non-equilibrium dynamics of such vibrations can manifest itself in ultrafast beating of both excitonic populations and coherences at room temperature, with time scales in agreement with those reported in experiments. Moreover, we show that mechanisms supporting coherent excitonic dynamics assist coupling to selected modes that channel energy to preferential sites in the complex. We therefore argue that, in the presence of strong coupling between electronic excitations and quantized vibrations, a concrete and important advantage of quantum coherent dynamics is precisely to tune resonances that promote fast and effective energy distribution.

  7. The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae

    E-print Network

    Avinash Kolli; Edward J. O'Reilly; Gregory D. Scholes; Alexandra Olaya-Castro

    2012-10-10

    The influence of fast vibrations on energy transfer and conversion in natural molecular aggregates is an issue of central interest. This article shows the important role of high-energy quantized vibrations and their non-equilibrium dynamics for energy transfer in photosynthetic systems with highly localized excitonic states. We consider the cryptophyte antennae protein phycoerythrin 545 and show that coupling to quantized vibrations which are quasi-resonant with excitonic transitions is fundamental for biological function as it generates non-cascaded transport with rapid and wider spatial distribution of excitation energy. Our work also indicates that the non-equilibrium dynamics of such vibrations can manifest itself in ultrafast beating of both excitonic populations and coherences at room temperature, with time scales in agreement with those reported in experiments. Moreover, we show that mechanisms supporting coherent excitonic dynamics assist coupling to selected modes that channel energy to preferential sites in the complex. We therefore argue that, in the presence of strong coupling between electronic excitations and quantized vibrations, a concrete and important advantage of quantum coherent dynamics is precisely to tune resonances that promote fast and effective energy distribution.

  8. Magnetocaloric piezoelectric composites for energy harvesting

    NASA Astrophysics Data System (ADS)

    Cleveland, Michael; Liang, Hong

    2012-04-01

    Magnetocaloric alloy, Gd5Si2Ge2, was developed into a composite with the poly(vinylidene fluoride) (PVDF) piezoelectric polymer. This multifunctional material possesses unique properties that are suitable for energy conversion and harvesting. Experimental approaches include using an arc melting technique to synthesize the Gd5Si2Ge2 (GSG) alloy and the spinning casting method to fabricate the composite. The materials were characterized using various techniques at different length scales. These include atomic force microscopy (AFM), optical microscopy, scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS). The results indicated that the phase transformation of the magnetocaloric material close to its Curie temperature induced a significant increase in power generation in the piezoelectric polymer. The power output of a laminated structure was 1.1 mW, more than 200 thousand times higher than the piezoelectric materials alone (5.1 nW).

  9. A multiscale-based approach for composite materials with embedded PZT filaments for energy harvesting

    NASA Astrophysics Data System (ADS)

    El-Etriby, Ahmed E.; Abdel-Meguid, Mohamed E.; Hatem, Tarek M.; Bahei-El-Din, Yehia A.

    2014-03-01

    Ambient vibrations are major source of wasted energy, exploiting properly such vibration can be converted to valuable energy and harvested to power up devices, i.e. electronic devices. Accordingly, energy harvesting using smart structures with active piezoelectric ceramics has gained wide interest over the past few years as a method for converting such wasted energy. This paper provides numerical and experimental analysis of piezoelectric fiber based composites for energy harvesting applications proposing a multi-scale modeling approach coupled with experimental verification. The multi-scale approach suggested to predict the behavior of piezoelectric fiber-based composites use micromechanical model based on Transformation Field Analysis (TFA) to calculate the overall material properties of electrically active composite structure. Capitalizing on the calculated properties, single-phase analysis of a homogeneous structure is conducted using finite element method. The experimental work approach involves running dynamic tests on piezoelectric fiber-based composites to simulate mechanical vibrations experienced by a subway train floor tiles. Experimental results agree well with the numerical results both for static and dynamic tests.

  10. Energy harvesting with piezoelectric applied on shoes

    NASA Astrophysics Data System (ADS)

    Camilloni, Enrico; Carloni, Mirko; Giammarini, Marco; Conti, Massimo

    2013-05-01

    In the last few years the continuous demand of energy saving has brought continuous research on low-power devices, energy storage and new sources of energy. Energy harvesting is an interesting solution that captures the energy from the environment that would otherwise be wasted. This work presents an electric-mechanical model of a piezoelectric transducer in a cantilever configuration. The model has been characterized measuring the acceleration and the open circuit voltage of a piezoelectric cantilever subjected to a sinusoidal force with different values frequency and subject to an impulsive force. The model has been used to identify the optimal position in which the piezoelectric cantilever has to be placed on a shoe in order to obtain the maximum energy while walking or running. As a second step we designed the DC-DC converter with an hysteresis comparator. The circuit is able to give energy to switch on a microprocessor for the amount of time long enough to capture and store the information required. The complete system has been implemented, installed on a shoe and used in a 10 Km running competition.

  11. Energy Harvesting for Self-Powered Nanosystems Zhong Lin Wang

    E-print Network

    Wang, Zhong L.

    Energy Harvesting for Self-Powered Nanosystems Zhong Lin Wang School of Materials Science In this article, an introduction is presented about the energy harvesting technologies that have potential. This is a potential technology for converting mechanical movement energy (such as body movement, muscle stretching

  12. Macro and Micro Scale Electromagnetic Kinetic Energy Harvesting Generators

    Microsoft Academic Search

    Stephen P. Beeby; M.-J. Tudor; Russel N. Torah; E. Koukharenko; S. Roberts; Terence O'donnell; S. Roy

    2007-01-01

    INTRODUCTION Developments in ultra low power electronics, RF communications and MEMS sensors in wireless sensor networks has led to the requirement for in-situ power supplies capable of harvesting energy from the environment. This paper is concerned with generators that harvest electrical energy from the kinetic energy present in the sensor nodes environment. These generators have the potential to replace or

  13. Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems

    E-print Network

    Shenoy, Prashant

    Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems Navin Sharma,gummeson,irwin,shenoy}@cs.umass.edu Abstract--To sustain perpetual operation, systems that harvest environmental energy must carefully regulate their usage to satisfy their demand. Regulating energy usage is challenging if a system's demands

  14. Finite-Horizon Optimal Transmission Policies for Energy Harvesting Sensors

    E-print Network

    Jagannathan, Krishna

    Finite-Horizon Optimal Transmission Policies for Energy Harvesting Sensors Rahul Vaze School: krishnaj@ee.iitm.ac.in Abstract--In this paper, we derive optimal transmission poli- cies for energy harvesting sensors to maximize the utility obtained over a finite horizon. First, we consider a single energy

  15. Wind energy harvesting using a piezo-composite generating element (PCGE)

    NASA Astrophysics Data System (ADS)

    Tien, Cam Minh Tri; Goo, Nam-Seo

    2010-04-01

    Energy can be reclaimed and stored for later use to recharge a battery or power a device through a process called energy harvesting. Piezoelectric is being widely investigated for use in harvesting surrounding energy sources such as sun, wind, tides, indoor lighting, body movement or machine vibration, etc. This paper introduces a wind energy harvesting device using a Piezo-Composite Generating Element (PCGE). The PCGE is composed of layers of carbon/epoxy, PZT ceramic, and glass/epoxy cured at an elevated temperature. In the prototype, The PCGE performs as a secondary beam element. One end of the PCGE is attached on the frame of the device. The fan blade rotates in the direction of the wind and hits the PCGE's tip. When the PCGE is excited, the effects of the beam deformation allow it to generate electric power. In wind tunnel experiments, the PCGE is excited to vibrate at its first natural frequency and generates the power up to 8.5 mW. The prototype can harvest energy in urban regions with minor wind movement.

  16. Ecological impacts of energy-wood harvests: lessons from whole-tree harvesting and natural disturbance

    USGS Publications Warehouse

    Berger, Alaina L.; Palik, Brian; D'Amato, Anthony W.; Fraver, Shawn; Bradford, John B.; Nislow, Keith; King, David; Brooks, Robert T.

    2013-01-01

    Recent interest in using forest residues and small-diameter material for biofuels is generating a renewed focus on harvesting impacts and forest sustainability. The rich legacy of research from whole-tree harvesting studies can be examined in light of this interest. Although this research largely focused on consequences for forest productivity, in particular carbon and nutrient pools, it also has relevance for examining potential consequences for biodiversity and aquatic ecosystems. This review is framed within a context of contrasting ecosystem impacts from whole-tree harvesting because it represents a high level of biomass removal. Although whole-tree harvesting does not fully use the nonmerchantable biomass available, it indicates the likely direction and magnitude of impacts that can occur through energy-wood harvesting compared with less-intensive conventional harvesting and to dynamics associated with various natural disturbances. The intent of this comparison is to gauge the degree of departure of energy-wood harvesting from less intensive conventional harvesting. The review of the literature found a gradient of increasing departure in residual structural conditions that remained in the forest when conventional and whole-tree harvesting was compared with stand-replacing natural disturbance. Important stand- and landscape-level processes were related to these structural conditions. The consequence of this departure may be especially potent because future energy-wood harvests may more completely use a greater range of forest biomass at potentially shortened rotations, creating a great need for research that explores the largely unknown scale of disturbance that may apply to our forest ecosystems.

  17. Energy scavenging from environmental vibration.

    SciTech Connect

    Galchev, Tzeno (University of Michigan); Apblett, Christopher Alan; Najafi, Khalil (University of Michigan)

    2009-10-01

    The goal of this project is to develop an efficient energy scavenger for converting ambient low-frequency vibrations into electrical power. In order to achieve this a novel inertial micro power generator architecture has been developed that utilizes the bi-stable motion of a mechanical mass to convert a broad range of low-frequency (< 30Hz), and large-deflection (>250 {micro}m) ambient vibrations into high-frequency electrical output energy. The generator incorporates a bi-stable mechanical structure to initiate high-frequency mechanical oscillations in an electromagnetic scavenger. This frequency up-conversion technique enhances the electromechanical coupling and increases the generated power. This architecture is called the Parametric Frequency Increased Generator (PFIG). Three generations of the device have been fabricated. It was first demonstrated using a larger bench-top prototype that had a functional volume of 3.7cm3. It generated a peak power of 558{micro}W and an average power of 39.5{micro}W at an input acceleration of 1g applied at 10 Hz. The performance of this device has still not been matched by any other reported work. It yielded the best power density and efficiency for any scavenger operating from low-frequency (<10Hz) vibrations. A second-generation device was then fabricated. It generated a peak power of 288{micro}W and an average power of 5.8{micro}W from an input acceleration of 9.8m/s{sup 2} at 10Hz. The device operates over a frequency range of 20Hz. The internal volume of the generator is 2.1cm{sup 3} (3.7cm{sup 3} including casing), half of a standard AA battery. Lastly, a piezoelectric version of the PFIG is currently being developed. This device clearly demonstrates one of the key features of the PFIG architecture, namely that it is suitable for MEMS integration, more so than resonant generators, by incorporating a brittle bulk piezoelectric ceramic. This is the first micro-scale piezoelectric generator capable of <10Hz operation. The fabricated device currently generates a peak power of 25.9{micro}W and an average power of 1.21{micro}W from an input acceleration of 9.8m/s{sup -} at 10Hz. The device operates over a frequency range of 23Hz. The internal volume of the generator is 1.2cm{sup 3}.

  18. Harvesting dissipated energy with a mesoscopic ratchet.

    PubMed

    Roche, B; Roulleau, P; Jullien, T; Jompol, Y; Farrer, I; Ritchie, D A; Glattli, D C

    2015-01-01

    The search for new efficient thermoelectric devices converting waste heat into electrical energy is of major importance. The physics of mesoscopic electronic transport offers the possibility to develop a new generation of nanoengines with high efficiency. Here we describe an all-electrical heat engine harvesting and converting dissipated power into an electrical current. Two capacitively coupled mesoscopic conductors realized in a two-dimensional conductor form the hot source and the cold converter of our device. In the former, controlled Joule heating generated by a voltage-biased quantum point contact results in thermal voltage fluctuations. By capacitive coupling the latter creates electric potential fluctuations in a cold chaotic cavity connected to external leads by two quantum point contacts. For unequal quantum point contact transmissions, a net electrical current is observed proportional to the heat produced. PMID:25828578

  19. Energy Harvesting Using PVDF Piezoelectric Nanofabric

    NASA Astrophysics Data System (ADS)

    Shafii, Chakameh Shafii

    Energy harvesting using piezoelectric nanomaterial provides an opportunity for advancement towards self-powered electronics. The fabrication complexities and limited power output of these nano/micro generators have hindered these advancements thus far. This thesis presents a fabrication technique with electrospinning using a grounded cylinder as the collector. This method addresses the difficulties with the production and scalability of the nanogenerators. The non-aligned nanofibers are woven into a textile form onto the cylindrical drum that can be easily removed. The electrical poling and mechanical stretching induced by the electric field and the drum rotation increase the concentration of the piezoelectric beta phase in the PVDF nanofabric. The nanofabric is placed between two layers of polyethylene terephthalate (PET) that have interdigitated electrodes painted on them with silver paint. Applying continuous load onto the flexible PVDF nanofabric at 35Hz produces a peak voltage of 320 mV and maximum power of 2200 pW/(cm2) .

  20. Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode

    Microsoft Academic Search

    Geffrey K. Ottman; Heath F. Hofmann; George A. Lesieutre

    2003-01-01

    An optimized method of harvesting vibrational energy with a piezoelectric element using a step-down DC-DC converter is presented. In this configuration, the converter regulates the power flow from the piezoelectric element to the desired electronic load. Analysis of the converter in discontinuous current conduction mode results in an expression for the duty cycle-power relationship. Using parameters of the mechanical system,

  1. The Internet of Tags: Energy-Harvesting Adaptive Algorithms

    E-print Network

    Hone, James

    The Internet of Tags: Energy-Harvesting Adaptive Algorithms Robert Margolies Ph.D. Candidate a top-down approach and develop energy harvesting adaptive algorithms to support the Internet of Tags (IoTags). We believe that IoTags will be a key component of the Internet of Things (IoT). In the near

  2. Micro Seismic Electret Generator for Energy Harvesting T. Tsutsumino1

    E-print Network

    Kasagi, Nobuhide

    - 279 - Micro Seismic Electret Generator for Energy Harvesting T. Tsutsumino1 *, Y. Suzuki1 , N-ku, Yokohama, Kanagawa, 221-8757 Abstract Evaluation of a micro electret generator for energy harvesting material. In power generation experiments using a prototype seismic generator, maximum power output of 0

  3. Design considerations for solar energy harvesting wireless embedded systems

    Microsoft Academic Search

    Vijay Raghunathan; Aman Kansal; Jason Hsu; Jonathan Friedman; Mani B. Srivastava

    2005-01-01

    Sustainable operation of battery powered wireless embed- ded systems (such as sensor nodes) is a key challenge, and considerable research effort has been devoted to energy optimization of such systems. Environmental energy harvesting, in particular solar based, has emerged as a viable technique to supplement battery supplies. However, designing an efficient solar harvesting system to realize the potential benefits of

  4. Impedance adaptation methods of the piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Kim, Hyeoungwoo

    In this study, the important issues of energy recovery were addressed and a comprehensive investigation was performed on harvesting electrical power from an ambient mechanical vibration source. Also discussed are the impedance matching methods used to increase the efficiency of energy transfer from the environment to the application. Initially, the mechanical impedance matching method was investigated to increase mechanical energy transferred to the transducer from the environment. This was done by reducing the mechanical impedance such as damping factor and energy reflection ratio. The vibration source and the transducer were modeled by a two-degree-of-freedom dynamic system with mass, spring constant, and damper. The transmissibility employed to show how much mechanical energy that was transferred in this system was affected by the damping ratio and the stiffness of elastic materials. The mechanical impedance of the system was described by electrical system using analogy between the two systems in order to simply the total mechanical impedance. Secondly, the transduction rate of mechanical energy to electrical energy was improved by using a PZT material which has a high figure of merit and a high electromechanical coupling factor for electrical power generation, and a piezoelectric transducer which has a high transduction rate was designed and fabricated. The high g material (g33 = 40 [10-3Vm/N]) was developed to improve the figure of merit of the PZT ceramics. The cymbal composite transducer has been found as a promising structure for piezoelectric energy harvesting under high force at cyclic conditions (10--200 Hz), because it has almost 40 times higher effective strain coefficient than PZT ceramics. The endcap of cymbal also enhances the endurance of the ceramic to sustain ac load along with stress amplification. In addition, a macro fiber composite (MFC) was employed as a strain component because of its flexibility and the high electromechanical coupling factor. This characteristic is useful for a small force vibration source which has a high displacement such as human's activities. An experimental setup was used to apply the same conditions as a vibrating car engine. The experiment was done with a cymbal transducer which has 29 mm PZT diameter, 1mm PZT thickness, and 0.4mm endcap operating under force of 70 N in the frequency range of 10--200 Hz. It was found that the generated power was increased and the output impedance was decreased with a higher frequency of vibration source at a constant force. The experimental results were found to be in agreement with the analytical results from the model using the equivalent circuit. In addition, the FEM simulation (ATILA) was employed to optimize the dimensions of cymbal transducer such as endcap thickness and PZT thickness. Finally, the electrical impedance matching method used to increase the electrical to electrical energy transfer for some applications was discussed. To match the output impedance, two methods were employed: one is changing capacitance of transducer by size effect and multilayered ceramics, and another one is developing an energy harvesting circuit which consumes low electrical power and maximizes the output transferred to the intended load. The fabricated multilayered ceramics which has 10, 100 mum thick, layers yielded 10 times higher output current for 40 times reduced output load. Also the electrical output power was double. A DC-DC buck converter which has 78% efficiency was fabricated to transfer the accumulated electrical energy to the low output load without consuming more than 5 mW of power itself. In this DC-DC converter, most of the power was consumed by the gate drive which was required for PWM switching. To reduce the power consumption of the gate drive, the switching frequency was fixed at 1 kHz with optimal duty cycle around 1˜5%. Also the dependence of the inductance (L) in the DC-DC converter was investigated and optimized to increase the output power transferred to the small output load. Using this optimized DC-DC converter, two circ

  5. Hybrid energy harvesting/transmission system for embedded devices

    NASA Astrophysics Data System (ADS)

    Hehr, Adam; Park, Gyuhae; Farinholt, Kevin

    2012-04-01

    In most energy harvesting applications the need for a reliable long-term energy supply is essential in powering embedded sensing and control electronics. The goal of many harvesters is to extract energy from the ambient environment to power hardware; however in some applications there may be conditions in which the harvester's performance cannot meet all of the demands of the embedded electronics. One method for addressing this shortfall is to supplement harvested power through the transmission of wireless energy, a concept that has successfully been demonstrated by the authors in previous studies. In this paper we present our findings on the use of a single electromagnetic coil to harvest kinetic energy in a solenoid configuration, as well as background and directed wireless energy in the 2.4 GHz radio frequency (RF) bands commonly used in WiFi and cellular phone applications. The motivation for this study is to develop a compact energy harvester / receiver that conserves physical volume, while providing multi-modal energy harvesting capabilities. As with most hybrid systems there are performance trade-offs that must be considered when capturing energy from different physical sources. As part of this paper, many of the issues related to power transmission, physical design, and potential applications are addressed for this device.

  6. Techniques for Maximizing Efficiency of Solar Energy Harvesting Systems (Invited Paper)

    E-print Network

    Shinozuka, Masanobu

    Techniques for Maximizing Efficiency of Solar Energy Harvesting Systems (Invited Paper) Pai H requiring battery replacement. This paper ex- amines technical issues with solar energy harvesting. First power point tracking, energy harvest- ing, solar panel, photovoltaic cell, supercapacitor, ultracapac

  7. Frequency Rectification Applied to Piezoelectric Energy Harvesting and Improving Available Power of Piezoelectric Motors

    NASA Astrophysics Data System (ADS)

    Kuroda, Kazuaki; LCGT Collaboration

    Piezoelectric materials are just now, within the last decade, coming into their own as a commercial material. Capable of converting energy from the mechanical domain to the electrical domain; piezos are ideal sensors, vibration dampers, energy harvesters, and actuators. Frequency rectification, or the conversion of small, high frequency piezoelectric vibrations into useful low frequency actuation, is required to obtain widespread industrial use of piezoelectric devices. This work examines three manifestations of piezoelectric frequency rectification: energy harvesting, a hydraulic motor, and friction based commercial-off-the-shelf motors. An energy harvesting device is developed, manufactured, and tested in this work, resulting in the development of a high Energy Density (J/m 3), high Power Density (W/m3) energy harvester. The device is shown to have an Energy Density nearly twice that of a similar conventional energy harvesting device. The result of this work is the development of an energy harvesting system that generates more energy in a given volume of piezoelectric material, opening the possibility of miniaturization of energy harvesting devices. Also presented is an effort to integrate a high frequency, high flow rate micromachined valve array into a PiezoHydraulic Pump (PHP), enabling resonant operation of the PHP. Currently, the device is limited by the resonant frequency of the proprietary passive check valves. The PHP is fully characterized, and the microvalve array is tested to determine its resonant frequency in a fluid medium. The valve testing resulted in a resonant frequency of 6.9 kHz, slightly lower than the target operating frequency of 10 kHz. Finally, the results of an examination of frequency rectification as applied to COTS piezoelectric motors are presented. Currently, motors are almost universally characterized based upon their available mechanical power. A better comparison is one based upon the actual Energy Density of the piezoelectric material utilized in the motor compared to the theoretical maximum Energy Density under the motor operating conditions (i.e., frequency, applied electric field). The result of this work is a more descriptive metric to evaluate piezoelectric motors that provides information on the effectiveness of the motor drive train; that is, how effectively the motion of the piezoelectric is transferred to the outside world.

  8. Investigation of bistable piezo-composite plates for broadband energy harvesting

    NASA Astrophysics Data System (ADS)

    Betts, David N.; Bowen, Christopher R.; Kim, H. Alicia; Gathercole, Nicholas; Clarke, Christopher T.; Inman, Daniel J.

    2013-04-01

    The need to power small electronic components, such as wireless sensor networks, has prompted interest in energy harvesting technologies capable of generating electrical energy from ambient vibrations. There has been a particular focus on piezoelectric materials and devices due to the simplicity of the mechanical to electrical energy conversion and their high strain energy densities compared to electrostatic and electromagnetic equivalents. This paper describes research on an arrangement of piezoelectric elements attached to a bistable asymmetric laminate to understand the dynamic response of the structure and power generation characteristics. The inherent bistability of the underlying structure is exploited for energy harvesting since 'snap-through' from one stable configuration to another is used to strain the piezoelectric materials bonded to the laminate and generate piezoelectric energy. Using high speed digital image correlation, a variety of dynamic modes of oscillation are identified in the bistable harvester. The sensitivity of such vibrational modes to changes in frequency and amplitude are investigated. Electrical power outputs are measured for repeatable snap-through events and are correlated with the modes of oscillation. The typical power generated is approximately 25mW and compares well with the needs of typical wireless senor node applications.

  9. An energy-aware multiple-input power supply with charge recovery for energy harvesting applications

    Microsoft Academic Search

    Nathaniel J. Guilar; Rajeevan Amirtharajah; Paul J. Hurst; Stephen H. Lewis

    2009-01-01

    This paper describes an integrated power management system for use with multiple energy harvesters, which employs energy awareness and charge recycling. Previous multiple-input power management systems only allow energy to be harvested from a single source at a time (typically the source with the largest voltage) thereby wasting the energy from the other energy harvesters. In order to increase the

  10. Vibrationally assisted energy transfer to IF

    NASA Astrophysics Data System (ADS)

    Davis, S. J.; Kessler, W. J.

    1991-06-01

    The vibrationally assisted transfer laser, a novel concept which enhances energy transfer from metastable molecules to excited electric states of species that are candidate systems for short wavelength chemical lasers, is presented. The concept uses chemically derived vibrational energy in the ground state of the acceptor series to open energy transfer pathways that would other wise be inaccessible. It is demonstrated that vibrational energy within IF(X,v) can dramatically enhance the energy transfer from NF(a) and O2(a) to IF(B), the upper level of a proven laser. It is suggested that this result may have general implications for numerous potential systems since the formation of highly nonthermal vibrational distributions within electronic ground states of diatomic molecules is a common result of exothermic reactions.

  11. Model of a single mode energy harvester and properties for optimal power generation

    NASA Astrophysics Data System (ADS)

    Liao, Yabin; Sodano, Henry A.

    2008-12-01

    The process of acquiring the energy surrounding a system and converting it into usable electrical energy is termed power harvesting. In the last few years, the field of power harvesting has experienced significant growth due to the ever increasing desire to produce portable and wireless electronics with extended life. Current portable and wireless devices must be designed to include electrochemical batteries as the power source. The use of batteries can be troublesome due to their finite energy supply, which necessitates their periodic replacement. In the case of wireless sensors that are to be placed in remote locations, the sensor must be easily accessible or of disposable nature to allow the device to function over extended periods of time. Energy scavenging devices are designed to capture the ambient energy surrounding the electronics and covert it into usable electrical energy. The concept of power harvesting works towards developing self-powered devices that do not require replaceable power supplies. The development of energy harvesting systems is greatly facilitated by an accurate model to assist in the design of the system. This paper will describe a theoretical model of a piezoelectric based energy harvesting system that is simple to apply yet provides an accurate prediction of the power generated around a single mode of vibration. Furthermore, this model will allow optimization of system parameters to be studied such that maximal performance can be achieved. Using this model an expression for the optimal resistance and a parameter describing the energy harvesting efficiency will be presented and evaluated through numerical simulations. The second part of this paper will present an experimental validation of the model and optimal parameters.

  12. Self-Excited Fluidic Energy Harvesters with Finite-Length Cylinders

    NASA Astrophysics Data System (ADS)

    Dogus Akaydin, Huseyin; Duquesnois, Chloe; Elvin, Niell; Andreopoulos, Yiannis

    2011-11-01

    In this experimental work, we explore the possibility of using piezoelectric materials for harvesting electrical energy from fluid flow. Such harvesters may be used for powering small sensors and obviate the need for batteries and/or power lines. Piezoelectric harvesters behave as AC-coupled devices and need oscillatory motion to generate an electrical output. The harvester should be designed to be ``self-excited,'' i.e. capable of initiating and sustaining the necessary oscillations in steady and uniform flows. The present configuration consists of a piezoelectric cantilever beam with a cylindrical tip body which promotes aeroelastic vibrations induced by vortex shedding. The harvester was tested in a wind tunnel and it produced 0.1 mW of electrical power at a flow speed of about 1.19 m/s. Using strain measurements and a distributed parameter model, the harvested electrical power was predicted, and a reasonable agreement is obtained with the measurements. The magnitude and frequency of the driving aerodynamic forces were also estimated. Results were comparable with literature data on flow past oscillating cylinders. Finally, the effect of using various shapes of tip body is presented.

  13. Analytical model for nonlinear piezoelectric energy harvesting devices

    NASA Astrophysics Data System (ADS)

    Neiss, S.; Goldschmidtboeing, F.; Kroener, M.; Woias, P.

    2014-10-01

    In this work we propose analytical expressions for the jump-up and jump-down point of a nonlinear piezoelectric energy harvester. In addition, analytical expressions for the maximum power output at optimal resistive load and the 3 dB-bandwidth are derived. So far, only numerical models have been used to describe the physics of a piezoelectric energy harvester. However, this approach is not suitable to quickly evaluate different geometrical designs or piezoelectric materials in the harvester design process. In addition, the analytical expressions could be used to predict the jump-frequencies of a harvester during operation. In combination with a tuning mechanism, this would allow the design of an efficient control algorithm to ensure that the harvester is always working on the oscillator's high energy attractor.

  14. Industrial Solid-State Energy Harvesting: Mechanisms and Examples

    Microsoft Academic Search

    Matthew Kocoloski; Kevin Hallinan; Kelly Kissock

    2007-01-01

    This paper explores the potential for solid-state energy harvesting in industrial applications. In contrast to traditional heat recovery, the output of solid-state devices is electricity, which can be readily used in virtually any plant. The progress in harvesting waste heat via thermoelectric and thermionic generators is described. With second law efficiencies now approaching 50% and 80% respectively, we show that

  15. Control of Vibratory Energy Harvesters in the Presence of Nonlinearities and Power-Flow Constraints

    NASA Astrophysics Data System (ADS)

    Cassidy, Ian L.

    Over the past decade, a significant amount of research activity has been devoted to developing electromechanical systems that can convert ambient mechanical vibrations into usable electric power. Such systems, referred to as vibratory energy harvesters, have a number of useful of applications, ranging in scale from self-powered wireless sensors for structural health monitoring in bridges and buildings to energy harvesting from ocean waves. One of the most challenging aspects of this technology concerns the efficient extraction and transmission of power from transducer to storage. Maximizing the rate of power extraction from vibratory energy harvesters is further complicated by the stochastic nature of the disturbance. The primary purpose of this dissertation is to develop feedback control algorithms which optimize the average power generated from stochastically-excited vibratory energy harvesters. This dissertation will illustrate the performance of various controllers using two vibratory energy harvesting systems: an electromagnetic transducer embedded within a flexible structure, and a piezoelectric bimorph cantilever beam. Compared with piezoelectric systems, large-scale electromagnetic systems have received much less attention in the literature despite their ability to generate power at the watt--kilowatt scale. Motivated by this observation, the first part of this dissertation focuses on developing an experimentally validated predictive model of an actively controlled electromagnetic transducer. Following this experimental analysis, linear-quadratic-Gaussian control theory is used to compute unconstrained state feedback controllers for two ideal vibratory energy harvesting systems. This theory is then augmented to account for competing objectives, nonlinearities in the harvester dynamics, and non-quadratic transmission loss models in the electronics. In many vibratory energy harvesting applications, employing a bi-directional power electronic drive to actively control the harvester is infeasible due to the high levels of parasitic power required to operate the drive. For the case where a single-directional drive is used, a constraint on the directionality of power-flow is imposed on the system, which necessitates the use of nonlinear feedback. As such, a sub-optimal controller for power-flow-constrained vibratory energy harvesters is presented, which is analytically guaranteed to outperform the optimal static admittance controller. Finally, the last section of this dissertation explores a numerical approach to compute optimal discretized control manifolds for systems with power-flow constraints. Unlike the sub-optimal nonlinear controller, the numerical controller satisfies the necessary conditions for optimality by solving the stochastic Hamilton-Jacobi equation.

  16. Energy harvesting with piezoelectric grass for autonomous self-sustaining sensor networks

    NASA Astrophysics Data System (ADS)

    Hobeck, Jared Dale

    The primary objective of this research is to develop a deploy-and-forget energy harvesting device for use in low velocity, highly turbulent, and unpredictable fluid flow environments. The work presented in this dissertation focuses on a novel, lightweight, highly robust, energy harvester design referred to as piezoelectric grass. This biologically inspired design consists of an array of cantilevers, constructed with piezoelectric material. When exposed to a wide range of flow conditions, these cantilevers experience vigorous persistent vibration. Included in this work is an experimentally validated theoretical analysis of the piezoelectric grass harvester generalized for the case of a single cantilever in turbulent cross-flow. A brief parameter optimization study is presented using this distributed parameter model. Two high-sensitivity pressure probes were needed to perform spatiotemporal measurements within various turbulent flows. Measurements with these probes are used to develop a turbulent fluid forcing function. This function is then combined with an analytical structural dynamics model such that not only the modal RMS displacements, but also the modal displacement power spectral density trends are predicted for a given structure. Pressure probe design, turbulence measurement techniques, and both statistical and analytical models are validated with experimental results. An experimental investigation on the energy harvesting potential of large harvester arrays containing up to 112 flexible piezoelectric structures is presented. Experimental results show that a given array will experience large amplitude, waving, resonant-type vibration over a large range of velocities, and is unaffected by large-scale turbulence upstream of the array. These dynamic characteristics make large arrays of flexible piezoelectric structures ideal for many energy harvesting applications. Lastly, this dissertation presents the first documented investigation of a flow-induced vibration phenomenon referred to as dual cantilever flutter (DCF). At a particular combination of flow velocity and distance between two adjacent beams, aeroelastic coupling between the beams causes them to become unstable and undergo limit cycle oscillations. An attractive feature of DCF for energy harvesting is that it provides robust flow-induced excitation over a large range of flow velocities. An experimentally validated lumped parameter model for DCF is presented. Results include CFD simulations that were setup and executed using ANSYS-CFX.

  17. Metal oxide semiconductors for solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Thimsen, Elijah James

    The correlation between energy consumption and human development illustrates the importance of this societal resource. We will consume more energy in the future. In light of issues with the status quo, such as climate change, long-term supply and security, solar energy is an attractive source. It is plentiful, virtually inexhaustible, and can provide more than enough energy to power society. However, the issue with producing electricity and fuels from solar energy is that it is expensive, primarily from the materials (silicon) used in building the cells. Metal oxide semiconductors are an attractive class of materials that are extremely low cost and can be produced at the scale needed to meet widespread demand. An industrially attractive thin film synthesis process based on aerosol deposition was developed that relies on self-assembly to afford rational control over critical materials parameters such as film morphology and nanostructure. The film morphology and nanostructure were found to have dramatic effects on the performance of TiO2-based photovoltaic dye-sensitized solar cells. Taking a cue from nature, to overcome the spatial and temporal mismatch between the supply of sunlight and demand for energy consumption, it is desirable to produce solar fuels such as hydrogen from photoelectrochemical water splitting. The source of water is important---seawater is attractive. The fundamental reaction mechanism for TiO2-based cells is discussed in the context of seawater splitting. There are two primary issues with producing hydrogen by photoelectrochemical water splitting using metal-oxide semiconductors: visible light activity and spontaneous activity. To address the light absorption issue, a combined theory-experiment approach was taken to understand the fundamental role of chemical composition in determining the visible light absorption properties of mixed metal-oxide semiconductors. To address the spontaneous activity issue, self-biasing all oxide p/n bulk-heterojunctions were synthesized and the nanostructure was systematically varied to understand the fundamental role of various characteristic length scales in the nanostructured region of the device on performance. The conclusion of this work is that solar energy harvesting by metal oxide semiconductors is highly promising. All of the scientific concepts have been proven, and steady gains in efficiency are being achieved as researchers continue to tackle the problem.

  18. Optimization of an Electromagnetic Energy Harvesting Device

    Microsoft Academic Search

    Chitta Ranjan Saha; Terence O'Donnell; Heiko Loder; Steve Beeby; John Tudor

    2006-01-01

    This paper presents the modeling and optimization of an electromagnetic-based generator for generating power from ambient vibrations. Basic equations describing such generators are presented and the conditions for maximum power generation are described. Two-centimeter scale prototype generators, which consist of magnets suspended on a beam vibrating relative to a coil, have been built and tested. The measured power and modeled

  19. High temperature energy harvester for wireless sensors

    NASA Astrophysics Data System (ADS)

    Köhler, J. E.; Heijl, R.; Staaf, L. G. H.; Zenkic, S.; Svenman, E.; Lindblom, A.; Palmqvist, A. E. C.; Enoksson, P.

    2014-09-01

    Implementing energy harvesters and wireless sensors in jet engines will simplify development and decrease costs by reducing the need for cables. Such a device could include a small thermoelectric generator placed in the cooling channels of the jet engine where the temperature is between 500-900 °C. This paper covers the synthesis of suitable thermoelectric materials, design of module and proof of concept tests of a thermoelectric module. The materials and other design variables were chosen based on an analytic model and numerical analysis. The module was optimized for 600-800 °C with the thermoelectric materials n-type Ba8Ga16Ge30 and p-type La-doped Yb14MnSb11, both with among the highest reported figure-of-merit values, zT, for bulk materials in this region. The materials were synthesized and their structures confirmed by x-ray diffraction. Proof of concept modules containing only two thermoelectric legs were built and tested at high temperatures and under high temperature gradients. The modules were designed to survive an ambient temperature gradient of up to 200 °C. The first measurements at low temperature showed that the thermoelectric legs could withstand a temperature gradient of 123 °C and still be functional. The high temperature measurement with 800 °C on the hot side showed that the module remained functional at this temperature.

  20. Energy harvesting based on piezoelectric Ericsson cycles in a piezoceramic material

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Ducharne, B.; Guyomar, D.; Sebald, G.

    2013-09-01

    The possibility of recycling ambient energies with electric generators instead of using batteries with limited life spans has stimulated important research efforts over the past years. The integration of such generators into mainly autonomous low-power systems, for various industrial or domestic applications is envisioned. In particular, the present work deals with energy harvesting from mechanical vibrations. It is shown here that direct piezoelectric energy harvesting (short circuiting on an adapted resistance, for example) leads to relatively weak energy levels that are insufficient for an industrial development. By coupling an electric field and mechanical excitation on Ericsson-based cycles, the amplitude of the harvested energy can be highly increased, and can reach a maximum close to 100 times its initial value. To obtain such a gain, one needs to employ high electrical field levels (high amplitude, high frequency), which induce a non-linearity through the piezoceramic. A special dynamic hysteresis model has been developed to correctly take into account the material properties, and to provide a real estimation of the harvested energy. A large number of theoretical predictions and experimental results have been compared and are discussed herein, in order to validate the proposed solution.

  1. Scaling of electromagnetic transducers for shunt damping and energy harvesting

    NASA Astrophysics Data System (ADS)

    Elliott, Stephen J.; Zilletti, Michele

    2014-04-01

    In order for an electromagnetic transducer to operate well as either a mechanical shunt damper or as a vibration energy harvester, it must have good electromechanical coupling. A simple two-port analysis is used to derive a non-dimensional measure of electromechanical coupling, which must be large compared with unity for efficient operation in both of these applications. The two-port parameters for an inertial electromagnetic transducer are derived, from which this non-dimensional coupling parameter can be evaluated. The largest value that this parameter takes is approximately equal to the square of the magnetic flux density times the length of wire in the field, divided by the mechanical damping times the electrical resistance. This parameter is found to be only of the order of one for voice coil devices that weigh approximately 1 kg, and so such devices are generally not efficient, within the definition used here, in either of these applications. The non-dimensional coupling parameter is found to scale in approximate proportion to the device's characteristic length, however, and so although miniaturised devices are less efficient, greater efficiency can be obtained with large devices, such as those used to control civil engineering structures.

  2. Innovative thermal energy harvesting for future autonomous applications

    NASA Astrophysics Data System (ADS)

    Monfray, Stephane

    2013-12-01

    As communicating autonomous systems market is booming, the role of energy harvesting will be a key enabler. As example, heat is one of the most abundant energy sources that can be converted into electricity in order to power circuits. Harvesting systems that use wasted heat open new ways to power autonomous sensors when the energy consumption is low, or to create systems of power generators when the conversion efficiency is high. The combination of different technologies (low power ?-processors, ?-batteries, radio, sensors...) with new energy harvesters compatible with large varieties of use-cases with allow to address this booming market. Thanks to the conjunction of ultra-low power electronic development, 3D technologies & Systems in Package approaches, the integration of autonomous sensors and electronics with ambient energy harvesting will be achievable. The applications are very wide, from environment and industrial sensors to medical portable applications, and the Internet of things may also represent in the future a several billions units market.

  3. Embedded fragmentation of vibrational energies

    NASA Astrophysics Data System (ADS)

    Sode, Olaseni; Hirata, So

    2012-11-01

    Can the zero-point vibrational energies (ZPVE) of molecular clusters and crystals be evaluated as sums of ZPVE of constituent molecular fragments embedded in the cluster or crystal electrostatic environment? What is the appropriate unit of fragmentation: monomers or overlapping dimers? Can the contributions of acoustic phonons, which are fundamentally delocalized, be recuperated at satisfactory accuracy? These questions are answered by this study applying embedded monomer- and dimer-fragmentation methods to the harmonic ZPVE of hydrogen fluoride clusters, hydrogen fluoride crystal, and water clusters. Our findings are as follows: (1) ZPVE are reproduced accurately by both fragmentation schemes within a few percents of exact values or a few tenths of 1 kcal mol-1 per molecule even for crystalline hydrogen fluoride, which has acoustic phonons. (2) Both the monomer- and dimer-based fragmentation are nearly equally accurate and useful for the absolute values of ZPVE, but the latter is more reliable than the former in reproducing the relative ZPVE of cluster isomers of the same size. (3) The embedding field is essential as it renders nonzero frequencies to the translational and rotational motions of monomers and dimers, accounting for the pseudo-translational and librational motions of the entire clusters or crystals. (4) Some of these low-frequency modes of fragments are calculated to have imaginary frequencies because the fragments are not at their equilibrium geometries, causing ZPVE to be complex. The imaginary part of ZPVE, which is nonphysical and is guaranteed to vanish in the exact limit of the many-body expansion, is nonetheless a useful estimate of errors in the real part.

  4. Output power and efficiency of electromagnetic energy harvesting systems with constrained range of motion

    NASA Astrophysics Data System (ADS)

    Hendijanizadeh, M.; Sharkh, S. M.; Elliott, S. J.; Moshrefi-Torbati, M.

    2013-12-01

    In some energy harvesting systems, the maximum displacement of the seismic mass is limited due to the physical constraints of the device. This is especially the case where energy is harvested from a vibration source with large oscillation amplitude (e.g., marine environment). For the design of inertial systems, the maximum permissible displacement of the mass is a limiting condition. In this paper the maximum output power and the corresponding efficiency of linear and rotational electromagnetic energy harvesting systems with a constrained range of motion are investigated. A unified form of output power and efficiency is presented to compare the performance of constrained linear and rotational systems. It is found that rotational energy harvesting systems have a greater capability in transferring energy to the load resistance than linear directly coupled systems, due to the presence of an extra design variable, namely the ball screw lead. Also, in this paper it is shown that for a defined environmental condition and a given proof mass with constrained throw, the amount of power delivered to the electrical load by a rotational system can be higher than the amount delivered by a linear system. The criterion that guarantees this favourable design has been obtained.

  5. Dynamic Power Allocation For Maximizing Throughput in Energy Harvesting

    E-print Network

    Vaze, Rahul

    1 Dynamic Power Allocation For Maximizing Throughput in Energy Harvesting Communication System general case of arbitrarily varying energy arrivals is considered, where neither the future energy arrival strategy that invests available energy uniformly over all remaining slots until the next energy arrival

  6. An active piezoelectric energy extraction method for pressure energy harvesting

    NASA Astrophysics Data System (ADS)

    Deterre, M.; Lefeuvre, E.; Dufour-Gergam, E.

    2012-08-01

    This paper presents an energy harvesting technique to power autonomous systems and more particularly active implantable medical devices. We employ a piezoelectric diaphragm placed in a fluidic environment such as blood subjected to very low frequency (2 Hz) pressure variations that is deflected in a quasi-static manner and transduces mechanical energy into electrical energy. In order to maximize energy generation and to get the most out of a given piezoelectric device, we propose to apply an optimized method to extract the piezoelectrically generated charge through the application of a controlled voltage. We believe that this method could be one of the improvement levers to achieve self-powered miniaturized implants. An analytical model is presented and shows that within its validity domain, the extracted energy is proportional to the desired applied voltage. Taking power electronics losses into account can yield a theoretical increase in the extracted energy of several thousand per cent. Experimental measurements in a pressure chamber have been carried out whose results corroborate the proposed model. For the tested setup, the application of a 10 V peak amplitude square-wave voltage increased the extracted energy by a factor of nine compared to a classical rectifier-based energy harvesting method.

  7. Evaluation of smart-fabric approach to biomechanical energy harvesting

    E-print Network

    Denault, Sebastian Ramirez

    2014-01-01

    This thesis evaluates the proposed use of piezoelectric energy harvesting methods as a power source for light-up sneakers. Light-up sneakers currently marketed for purposes of pedestrian visibility and personal fashion are ...

  8. Microbial fuel cell energy harvesting using synchronous flyback converter

    NASA Astrophysics Data System (ADS)

    Alaraj, Muhannad; Ren, Zhiyong Jason; Park, Jae-Do

    2014-02-01

    Microbial Fuel Cells (MFCs) use biodegradable substrates, such as wastewater and marine sediments to generate electrical energy. To harvest more energy from an MFC, power electronic converters have recently been used to replace resistors or charge pumps, because they have superior controllability on MFC's operating point and higher efficiency in energy storage for different applications. Conventional diode-based energy harvesters suffer from low efficiency because of the energy losses through the diode. Replacing the diode with a MOSFET can reduce the conduction loss, but it requires an isolated gate signal to control the floating secondary MOSFET, which makes the control circuitry complex. This study presents a new MFC energy harvesting regime using a synchronous flyback converter, which implements a transformer-based harvester with much simpler configuration and improves harvesting efficiency by 37.6% compared to a diode based boost converter, from 33.5% to 46.1%. The proposed harvester was able to store 2.27 J in the output capacitor out of 4.91 J generated energy from the MFC, while the boost converter can capture 1.67 J from 4.95 J.

  9. Characterization of ferroelectric material properties of multifunctional lead zirconate titanate for energy harvesting sensor nodes

    NASA Astrophysics Data System (ADS)

    Marinkovic, Bozidar; Kaya, Tolga; Koser, Hur

    2011-01-01

    We propose a microsystem integration technique that is ideal for low-cost fabrication of vibration energy harvesting sensor nodes. Our approach exploits diverse uses of sol-gel deposited lead zirconate titanate, effectively combining fabrication of several microsystem components into a single process and significantly reducing manufacturing cost and time. Here, we measure and characterize thin film parameters—such as the piezoelectric coefficient e31 (-4.0 C/m2), the dielectric constant ?r-eff (219 at 3.3 V), and the total switching polarization (2Pr;52 ?C/cm2)—in order to verify this material's potential for energy harvesting, energy storage, and nonvolatile memory applications simultaneously on the same device.

  10. Aeroelastic flutter energy harvester design: the sensitivity of the driving instability to system parameters

    NASA Astrophysics Data System (ADS)

    Bryant, Matthew; Wolff, Eric; Garcia, Ephrahim

    2011-12-01

    This study examines the design parameters affecting the stability characteristics of a novel fluid flow energy harvesting device powered by aeroelastic flutter vibrations. The energy harvester makes use of a modal convergence flutter instability to generate limit cycle bending oscillations of a cantilevered piezoelectric beam with a small flap connected to its free end by a revolute joint. The critical flow speed at which destabilizing aerodynamic effects cause self-excited vibrations of the structure to emerge is essential to the design of the energy harvester because it sets the lower bound on the operating wind speed and frequency range of the system. A linearized analytic model of the device that accounts for the three-way coupling between the structural, unsteady aerodynamic, and electrical aspects of the system is used to examine tuning several design parameters while the size of the system is held fixed. The effects on the aeroelastic system dynamics and relative sensitivity of the flutter stability boundary are presented and discussed. A wind tunnel experiment is performed to validate the model predictions for the most significant system parameters.

  11. Vibrational energy levels of hydrogen cyanide

    Microsoft Academic Search

    Kevin M. Dunn; James E. Boggs; Peter Pulay

    1986-01-01

    Sixty-nine vibrational energy levels have been calculated for HCN, using an abinitio potential energy function adjusted to the fundamentals, and also an empirical potential function by Murrell etal. The energy levels were calculated variationally, using a novel directCI procedure analogous to methods widely used in electronic structure theory. The present paper includes states with up to four quanta of excitation

  12. Flexible Piezoelectric Thin-Film Energy Harvesters and Nanosensors for Biomedical Applications.

    PubMed

    Hwang, Geon-Tae; Byun, Myunghwan; Jeong, Chang Kyu; Lee, Keon Jae

    2014-12-01

    The use of inorganic-based flexible piezoelectric thin films for biomedical applications has been actively reported due to their advantages of highly piezoelectric, pliable, slim, lightweight, and biocompatible properties. The piezoelectric thin films on plastic substrates can convert ambient mechanical energy into electric signals, even responding to tiny movements on corrugated surfaces of internal organs and nanoscale biomechanical vibrations caused by acoustic waves. These inherent properties of flexible piezoelectric thin films enable to develop not only self-powered energy harvesters for eliminating batteries of bio-implantable medical devices but also sensitive nanosensors for in vivo diagnosis/therapy systems. This paper provides recent progresses of flexible piezoelectric thin-film harvesters and nanosensors for use in biomedical fields. First, developments of flexible piezoelectric energy-harvesting devices by using high-quality perovskite thin film and innovative flexible fabrication processes are addressed. Second, their biomedical applications are investigated, including self-powered cardiac pacemaker, acoustic nanosensor for biomimetic artificial hair cells, in vivo energy harvester driven by organ movements, and mechanical sensor for detecting nanoscale cellular deflections. At the end, future perspective of a self-powered flexible biomedical system is also briefly discussed with relation to the latest advancements of flexible electronics. PMID:25476410

  13. A bulk micromachined lead zinconate titanate cantilever energy harvester with inter-digital IrO(x) electrodes.

    PubMed

    Park, Jongcheol; Park, Jae Yeong

    2013-10-01

    A piezoelectric vibration energy harvester with inter-digital IrO(x) electrode was developed by using silicon bulk micromachining technology. Most PZT cantilever based energy harvesters have utilized platinum electrode material. However, the PZT fatigue characteristics and adhesion/delamination problems caused by the platinum electrode might be serious problem in reliability of energy harvester. To address these problems, the iridium oxide was newly applied. The proposed energy harvester was comprised of bulk micromachined silicon cantilever with 800 x 1000 x 20 microm3, which having a silicon supporting membrane, sol-gel-spin coated Pb(Zr52, Ti48)O3 thin film, and sputtered inter-digitally shaped IrO(x) electrodes, and silicon inertial mass with 1000 x 1000 x 500 microm3 to adjust its resonant frequency. The fabricated energy harvester generated 1 microW of electrical power to 470 komega of load resistance and 1.4 V(peak-to-peak) from a vibration of 0.4 g at 1.475 kHz. The corresponding power density was 6.25 mW x cm(-3) x g(-2). As expected, its electrical failure was significantly improved. PMID:24245226

  14. COTTON HARVEST PREPARATION USING THERMAL ENERGY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton is prepared for mechanical harvest using desiccant and defoliant chemicals. Conventional chemical defoliation is not effective immediately, it requires a period of good weather, and it is restricted in organic production. This study was conducted to determine what impact thermal defoliation...

  15. A shoe-embedded piezoelectric energy harvester for wearable sensors.

    PubMed

    Zhao, Jingjing; You, Zheng

    2014-01-01

    Harvesting mechanical energy from human motion is an attractive approach for obtaining clean and sustainable electric energy to power wearable sensors, which are widely used for health monitoring, activity recognition, gait analysis and so on. This paper studies a piezoelectric energy harvester for the parasitic mechanical energy in shoes originated from human motion. The harvester is based on a specially designed sandwich structure with a thin thickness, which makes it readily compatible with a shoe. Besides, consideration is given to both high performance and excellent durability. The harvester provides an average output power of 1 mW during a walk at a frequency of roughly 1 Hz. Furthermore, a direct current (DC) power supply is built through integrating the harvester with a power management circuit. The DC power supply is tested by driving a simulated wireless transmitter, which can be activated once every 2-3 steps with an active period lasting 5 ms and a mean power of 50 mW. This work demonstrates the feasibility of applying piezoelectric energy harvesters to power wearable sensors. PMID:25019634

  16. A Shoe-Embedded Piezoelectric Energy Harvester for Wearable Sensors

    PubMed Central

    Zhao, Jingjing; You, Zheng

    2014-01-01

    Harvesting mechanical energy from human motion is an attractive approach for obtaining clean and sustainable electric energy to power wearable sensors, which are widely used for health monitoring, activity recognition, gait analysis and so on. This paper studies a piezoelectric energy harvester for the parasitic mechanical energy in shoes originated from human motion. The harvester is based on a specially designed sandwich structure with a thin thickness, which makes it readily compatible with a shoe. Besides, consideration is given to both high performance and excellent durability. The harvester provides an average output power of 1 mW during a walk at a frequency of roughly 1 Hz. Furthermore, a direct current (DC) power supply is built through integrating the harvester with a power management circuit. The DC power supply is tested by driving a simulated wireless transmitter, which can be activated once every 2–3 steps with an active period lasting 5 ms and a mean power of 50 mW. This work demonstrates the feasibility of applying piezoelectric energy harvesters to power wearable sensors. PMID:25019634

  17. Development of MEMS based pyroelectric thermal energy harvesters

    NASA Astrophysics Data System (ADS)

    Hunter, Scott R.; Lavrik, Nickolay V.; Bannuru, Thirumalesh; Mostafa, Salwa; Rajic, Slo; Datskos, Panos G.

    2011-06-01

    The efficient conversion of waste thermal energy into electrical energy is of considerable interest due to the huge sources of low-grade thermal energy available in technologically advanced societies. Our group at the Oak Ridge National Laboratory (ORNL) is developing a new type of high efficiency thermal waste heat energy converter that can be used to actively cool electronic devices, concentrated photovoltaic solar cells, computers and large waste heat producing systems, while generating electricity that can be used to power remote monitoring sensor systems, or recycled to provide electrical power. The energy harvester is a temperature cycled pyroelectric thermal-to-electrical energy harvester that can be used to generate electrical energy from thermal waste streams with temperature gradients of only a few degrees. The approach uses a resonantly driven pyroelectric capacitive bimorph cantilever structure that potentially has energy conversion efficiencies several times those of any previously demonstrated pyroelectric or thermoelectric thermal energy harvesters. The goals of this effort are to demonstrate the feasibility of fabricating high conversion efficiency MEMS based pyroelectric energy converters that can be fabricated into scalable arrays using well known microscale fabrication techniques and materials. These fabrication efforts are supported by detailed modeling studies of the pyroelectric energy converter structures to demonstrate the energy conversion efficiencies and electrical energy generation capabilities of these energy converters. This paper reports on the modeling, fabrication and testing of test structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy harvesters.

  18. Development of MEMS based pyroelectric thermal energy harvesters

    SciTech Connect

    Hunter, Scott Robert [ORNL; Lavrik, Nickolay V [ORNL; Bannuru, Thirumalesh [ORNL; Mostafa, Salwa [ORNL; Rajic, Slobodan [ORNL; Datskos, Panos G [ORNL

    2011-01-01

    The efficient conversion of waste thermal energy into electrical energy is of considerable interest due to the huge sources of low-grade thermal energy available in technologically advanced societies. Our group at the Oak Ridge National Laboratory (ORNL) is developing a new type of high efficiency thermal waste heat energy converter that can be used to actively cool electronic devices, concentrated photovoltaic solar cells, computers and large waste heat producing systems, while generating electricity that can be used to power remote monitoring sensor systems, or recycled to provide electrical power. The energy harvester is a temperature cycled pyroelectric thermal-to-electrical energy harvester that can be used to generate electrical energy from thermal waste streams with temperature gradients of only a few degrees. The approach uses a resonantly driven pyroelectric capacitive bimorph cantilever structure that potentially has energy conversion efficiencies several times those of any previously demonstrated pyroelectric or thermoelectric thermal energy harvesters. The goals of this effort are to demonstrate the feasibility of fabricating high conversion efficiency MEMS based pyroelectric energy converters that can be fabricated into scalable arrays using well known microscale fabrication techniques and materials. These fabrication efforts are supported by detailed modeling studies of the pyroelectric energy converter structures to demonstrate the energy conversion efficiencies and electrical energy generation capabilities of these energy converters. This paper reports on the modeling, fabrication and testing of test structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy harvesters.

  19. Power Generation Characteristics of Single Electrode Output Circuit in Electret Energy Harvester

    NASA Astrophysics Data System (ADS)

    Bu, L.; Xu, H. Y.; Xu, B. J.; Song, L.

    2014-11-01

    This paper reports the new output circuit using a single electrode in electret energy harvester, and proves that the single electrode is able to generate output power on grounded load. 3D numerical model of gap-closing type electret energy harvester is presented, and power generation characteristics are analysed and verified. Results show that the two electrodes are actually two independent current sources. Single electrode output circuit has two merits: when only one electrode is connected, it reduces wiring difficulty; when both electrodes are connected to grounded load respectively, it doubles output power compared with traditional output circuit. Using proposed circuit, maximal total power of 30mm×20mm prototype reaches 154.5?W@10Hz, 1.8mm sinusoidal vibration, and an LED has been successfully lighted up.

  20. A 330nA energy-harvesting charger with battery management for solar and thermoelectric energy harvesting

    Microsoft Academic Search

    Karthik Kadirvel; Yogesh Ramadass; Umar Lyles; John Carpenter; Vadim Ivanov; Vince McNeil; Anantha Chandrakasan; Brian Lum-Shue-Chan

    2012-01-01

    Harvesting energy from ambient energy sources such as solar and thermal gradients is one solution to address the dramatic increase in energy consumption of personal electronics. In this paper, an ultra low quiescent current charger and battery management IC that can efficiently extract energy from solar panels and thermoelectric generators to charge batteries and super capacitors is presented. While previous

  1. Harvesting energy from the counterbalancing (weaving) movement in bicycle riding.

    PubMed

    Yang, Yoonseok; Yeo, Jeongjin; Priya, Shashank

    2012-01-01

    Bicycles are known to be rich source of kinetic energy, some of which is available for harvesting during speedy and balanced maneuvers by the user. A conventional dynamo attached to the rim can generate a large amount of output power at an expense of extra energy input from the user. However, when applying energy conversion technology to human powered equipments, it is important to minimize the increase in extra muscular activity and to maximize the efficiency of human movements. This study proposes a novel energy harvesting methodology that utilizes lateral oscillation of bicycle frame (weaving) caused by user weight shifting movements in order to increase the pedaling force in uphill riding or during quick speed-up. Based on the 3D motion analysis, we designed and implemented the prototype of an electro-dynamic energy harvester that can be mounted on the bicycle's handlebar to collect energy from the side-to-side movement. The harvester was found to generate substantial electric output power of 6.6 mW from normal road riding. It was able to generate power even during uphill riding which has never been shown with other approaches. Moreover, harvesting of energy from weaving motion seems to increase the economy of cycling by helping efficient usage of human power. PMID:23112598

  2. Harvesting Energy from the Counterbalancing (Weaving) Movement in Bicycle Riding

    PubMed Central

    Yang, Yoonseok; Yeo, Jeongjin; Priya, Shashank

    2012-01-01

    Bicycles are known to be rich source of kinetic energy, some of which is available for harvesting during speedy and balanced maneuvers by the user. A conventional dynamo attached to the rim can generate a large amount of output power at an expense of extra energy input from the user. However, when applying energy conversion technology to human powered equipments, it is important to minimize the increase in extra muscular activity and to maximize the efficiency of human movements. This study proposes a novel energy harvesting methodology that utilizes lateral oscillation of bicycle frame (weaving) caused by user weight shifting movements in order to increase the pedaling force in uphill riding or during quick speed-up. Based on the 3D motion analysis, we designed and implemented the prototype of an electro-dynamic energy harvester that can be mounted on the bicycle's handlebar to collect energy from the side-to-side movement. The harvester was found to generate substantial electric output power of 6.6 mW from normal road riding. It was able to generate power even during uphill riding which has never been shown with other approaches. Moreover, harvesting of energy from weaving motion seems to increase the economy of cycling by helping efficient usage of human power. PMID:23112598

  3. Harvesting Chaparral Biomass for Energy--An Environmental Assessment1

    E-print Network

    Standiford, Richard B.

    Harvesting Chaparral Biomass for Energy--An Environmental Assessment1 Philip J. Riggan and Paul H and could provide a locally important alternative source of energy. CHAPARRAL BIOMASS Considerable amounts of potential energy are present in the biomass of some chaparral communi- ties. Biomass in mature Adenostoma

  4. Real-Time Scheduling for Energy Harvesting Sensors

    E-print Network

    Paris-Sud XI, Université de

    and energy requirements and the replenishment rate of the storage unit. When this condition is not verified harvesting is the conversion of ambient energy into electricity to power small devices such as wireless sensors, making them self-sufficient. The electrical energy used to power them is variable over time

  5. Large-scale self-tuning solid-state kinetic energy harvester

    NASA Astrophysics Data System (ADS)

    Pletner, Baruch; Swan, Lukas; Wettels, Nicholas; Joseph, Alain

    2012-04-01

    In recent years there has been a strong emphasis on kinetic (vibration) energy harvesting using smart structure technology. This emphasis has been driven in large part by industry demand for powering sensors and wireless telemetry of sensor data in places into which running power and data cables is difficult or impossible. Common examples are helicopter drive shafts and other rotating equipment. In many instances, available space in these locations is highly limited, resulting in a trend for miniaturization of kinetic energy harvesters. While in some cases size limitations are dominant, in other cases large and even very large harvesters are possible and even desirable since they may produce significantly more power. Examples of large-scale energy harvesting include geomatics, which is the discipline of gathering, storing, processing, and delivering spatially referenced information on vast scales. Geomatics relies on suites of various sensors and imaging devices such as meteorological sensors, seismographs, high-resolution cameras, and LiDAR's. These devices may be stationed for prolonged periods of time in remote and poorly accessible areas and are required to operate continuously over prolonged periods of time. In other cases, sensing and imaging equipment may be mounted on land, sea, or airborne platforms and expected to operate for many hours on its own power. Providing power to this equipment constitutes a technological challenge. Other cases may include commercial buildings, unmanned powered gliders and more. Large scale kinetic energy harvesting thus constitutes a paradigm shift in the approach to kinetic energy harvesting as a whole and as often happens it poses its own unique technological challenges. Primarily these challenges fall into two categories: the cost-effective manufacturing of large and very large scale transducing elements based on smart structure technology and the continuous optimization (tuning) of these transducers for various operating conditions. Current research proposes the simultaneous solution of both of the aforementioned challenges via the use of specialized technology for the incorporation of large numbers of piezoelectric transducers into standard printed circuit boards and the continuous control of structural resonance via the application of adaptive compressive stress. Used together, these technologies allow for fully scalable and tunable kinetic energy harvesting. Since the design is modular in nature and a typical size of a single module can easily reach dimensions of 60 by 40 centimeters, there is virtually no upper limit on the size of the harvester other than the limits that derive from its specific applications and placement. The use of compressive forces rather than the commonly used non-structural mass for the tuning of the harvester frequency to the disturbing frequency allows for continuous adaptive tuning while at the same time avoiding the undesirable vibration damping effects of non-structural mass. A proof of concept large-scale harvester capable of manual compressive force tuning was built as part of the current study and preliminary tests were conducted. The tests validate the proposed approach showing power generation on the order of 10 mW at disturbing frequencies between 10 and 100 Hz, with RMS voltages reaching over 20 volts and RMS currents over 2 mA, with proven potential for 50 mW with over 100 VAC and 10 mA for a transducing panel 20 by 10 cm. The results also validate the tuning via compressive force approach, showing strong dependence of energy harvesting efficiency on the compressive force applied to the transducing panel.

  6. Practical energy harvesting for microbial fuel cells: a review.

    PubMed

    Wang, Heming; Park, Jae-Do; Ren, Zhiyong Jason

    2015-03-17

    The microbial fuel cell (MFC) technology offers sustainable solutions for distributed power systems and energy positive wastewater treatment, but the generation of practically usable power from MFCs remains a major challenge for system scale up and application. Commonly used external resistors will not harvest any usable energy, so energy-harvesting circuits are needed for real world applications. This review summarizes, explains, and discusses the different energy harvesting methods, components, and systems that can extract and condition the MFC energy for direct utilization. This study aims to assist environmental scientists and engineers to gain fundamental understandings of these electronic systems and algorithms, and it also offers research directions and insights on how to overcome the barriers, so the technology can be further advanced and applied in larger scale. PMID:25670167

  7. Energy Harvesting for Structural Health Monitoring Sensor Networks

    SciTech Connect

    G. Park, C. R. Farrar, M. D. Todd, W. Hodgkiss, T. Rosing

    2007-02-26

    This report has been developed based on information exchanges at a 2.5-day workshop on energy harvesting for embedded structural health monitoring (SHM) sensing systems that was held June 28-30, 2005, at Los Alamos National Laboratory. The workshop was hosted by the LANL/UCSD Engineering Institute (EI). This Institute is an education- and research-focused collaboration between Los Alamos National Laboratory (LANL) and the University of California, San Diego (UCSD), Jacobs School of Engineering. A Statistical Pattern Recognition paradigm for SHM is first presented and the concept of energy harvesting for embedded sensing systems is addressed with respect to the data acquisition portion of this paradigm. Next, various existing and emerging sensing modalities used for SHM and their respective power requirements are summarized, followed by a discussion of SHM sensor network paradigms, power requirements for these networks and power optimization strategies. Various approaches to energy harvesting and energy storage are discussed and limitations associated with the current technology are addressed. This discussion also addresses current energy harvesting applications and system integration issues. The report concludes by defining some future research directions and possible technology demonstrations that are aimed at transitioning the concept of energy harvesting for embedded SHM sensing systems from laboratory research to field-deployed engineering prototypes.

  8. Intramolecular Vibrational-Energy Redistribution in Fluoroform

    NASA Astrophysics Data System (ADS)

    Maynard, Andrew Thomas

    In this study, theoretical vibrational spectra and molecular dynamics of fluoroform, developed from first principles, are presented. Particular attention is given to intramolecular vibrational-energy redistribution (IVR) present in the CH overtones which exhibit multiple time scales and thus multiple mechanisms in the IVR dynamics. A 9-dimensional ab initio potential energy surface is developed to adequately account for the vibrational couplings of all modes. Furthermore, all-mode vibrational state calculations, of large primitive space dimension, are performed using a recently developed wave operator sorting algorithm (WOSA) in tandem with the recursive residue generation method (RRGM). All fundamentals, first overtones, and bimodal combination states with up to 3 quanta are presented. Also, the A_1 and E-symmetry CH polyads are characterized through the second overtone. Equilibrium geometry, rotational constants, and vibrational properties agree quantitatively with experiment in most cases. The error is systematic in origin and largely due to the error in the ab initio harmonic frequencies. New vibrational constants and resonance interactions are reported for the background modes. In contrast to the prominent CH stretch -bend Fermi resonance structure, responsible for ultrafast (t < 50 fs) energy transfer, the CH polyads also exhibit vibrational fine-structure of order 1 to 10 cm^{-1} due to background -mode coupling. This secondary coupling results in IVR on the picosecond time scale. Modifications to the WOSA are presented, based on systematic analysis of its convergence properties for the CH fundamental and first overtone, and filtered-Lanczos eigenstate analysis is performed on these states. Finally, the IVR dynamics of the CH overtones, through upsilon_{s}=4, is assessed by explicit propagation of initial zero-order overtone states. Preliminary findings are discussed.

  9. A Piezoelectric PZT Ceramic Mulitlayer Stack for Energy Harvesting Under Dynamic Forces

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Siochi, Emilie J.; Kang, Jin Ho; Zuo, Lei; Zhou, Wanlu; Tang, Xiudong; Jiang, Xiaoning

    2011-01-01

    Piezoelectric energy harvesting transducers (PEHTs) are commonly used in motion/vibration energy scavenging devices. To date, most researchers have focused on energy harvesting at narrow bandwidths around the mechanical resonance frequency, and most piezoelectric harvesting devices reported in the literature have very low effective piezoelectric coefficient (d(sub eff)) (< 10(exp 4) pC/N). For instance, more than 80% of PEHT related papers are on transverse "31" mode cantilever beam type PEHTs (CBPEHTs) having piezoelectric coefficients of about 100 pC/N. The level of harvested electrical power for CBPEHTs is on the order of microW even at resonance mode. In order to harvest more electrical energy across broader bandwidth, high effective piezoelectric coefficient structures are needed. In this study, we investigate a "33" longitudinal mode, piezoelectric PZT ceramic multilayer stack (PZT-Stack) with high effective piezoelectric coefficient for high-performance PEHTs. The PZT-Stack is composed of 300 layers of 0.1 mm thick PZT plates, with overall dimensions of 32.4 mm X 7.0 mm X 7.0 mm. Experiments were carried out with dynamic forces in a broad bandwidth ranging from 0.5 Hz to 25 kHz. The measured results show that the effective piezoelectric coefficient of the PZT-stack is about 1 X 10(exp 5) pC/N at off-resonance frequencies and 1.39 X 10(exp 6) pC/N at resonance, which is order of magnitude larger than that of traditional PEHTs. The effective piezoelectric coefficients (d(sub eff)) do not change significantly with applied dynamic forces having root mean square (RMS) values ranging from 1 N to 40 N. In resonance mode, 231 mW of electrical power was harvested at 2479 Hz with a dynamic force of 11.6 N(sub rms), and 7.6 mW of electrical power was generated at a frequency of 2114 Hz with 1 N(sub rms) dynamic force. In off-resonance mode, an electrical power of 18.7 mW was obtained at 680 Hz with a 40 N(sub rms) dynamic force. A theoretical model of energy harvesting for the PZT-Stack is established. The modeled results matched well with experimental measurements. This study demonstrated that high effective piezoelectric coefficient structures enable PEHTs to harvest more electrical energy from mechanical vibrations or motions, suggesting an effective design for high-performance low-footprint PEHTs with potential applications in military, aerospace, and portable electronics. In addition, this study provides a route for using piezoelectric multilayer stacks for active or semi-active adaptive control to damp, harvest or transform unwanted dynamic vibrations into useful electrical energy.

  10. Energy Aware Dynamic Voltage and Frequency Selection for Real-Time Systems with Energy Harvesting

    E-print Network

    Qiu, Qinru

    Energy Aware Dynamic Voltage and Frequency Selection for Real-Time Systems with Energy Harvesting}@binghamton.edu Abstract In this paper, an energy aware dynamic voltage and frequency selection (EA-DVFS) algorithm energy and the harvested energy in a future duration. Specifically, if the system has sufficient energy

  11. Hybridizing triboelectrification and electromagnetic induction effects for high-efficient mechanical energy harvesting.

    PubMed

    Hu, Youfan; Yang, Jin; Niu, Simiao; Wu, Wenzhuo; Wang, Zhong Lin

    2014-07-22

    The recently introduced triboelectric nanogenerator (TENG) and the traditional electromagnetic induction generator (EMIG) are coherently integrated in one structure for energy harvesting and vibration sensing/isolation. The suspended structure is based on two oppositely oriented magnets that are enclosed by hollow cubes surrounded with coils, which oscillates in response to external disturbance and harvests mechanical energy simultaneously from triboelectrification and electromagnetic induction. It extends the previous definition of hybrid cell to harvest the same type of energy with multiple approaches. Both the sliding-mode TENG and contact-mode TENG can be achieved in the same structure. In order to make the TENG and EMIG work together, transformers are used to match the output impedance between these two power sources with very different characteristics. The maximum output power of 7.7 and 1.9 mW on the same load of 5 k? was obtained for the TENG and EMIG, respectively, after impedance matching. Benefiting from the rational design, the output signal from the TENG and the EMIG are in phase. They can be added up directly to get an output voltage of 4.6 V and an output current of 2.2 mA in parallel connection. A power management circuit was connected to the hybrid cell, and a regulated voltage of 3.3 V with constant current was achieved. For the first time, a logic operation was carried out on a half-adder circuit by using the hybrid cell working as both the power source and the input digit signals. We also demonstrated that the hybrid cell can serve as a vibration isolator. Further applications as vibration dampers, triggers, and sensors are all promising. PMID:24924185

  12. Energy harvesting from the tail beating of a carangiform swimmer using ionic polymer-metal composites.

    PubMed

    Cha, Youngsu; Verotti, Matteo; Walcott, Horace; Peterson, Sean D; Porfiri, Maurizio

    2013-09-01

    In this paper, we study energy harvesting from the beating of a biomimetic fish tail using ionic polymer-metal composites. The design of the biomimetic tail is based on carangiform swimmers and is specifically inspired by the morphology of the heterocercal tail of thresher sharks. The tail is constituted of a soft silicone matrix molded in the form of the heterocercal tail and reinforced by a steel beam of rectangular cross section. We propose a modeling framework for the underwater vibration of the biomimetic tail, wherein the tail is assimilated to a cantilever beam with rectangular cross section and heterogeneous physical properties. We focus on base excitation in the form of a superimposed rotation about a fixed axis and we consider the regime of moderately large-amplitude vibrations. In this context, the effect of the encompassing fluid is described through a hydrodynamic function, which accounts for inertial, viscous and convective phenomena. The model is validated through experiments in which the base excitation is systematically varied and the motion of selected points on the biomimetic tail tracked in time. The feasibility of harvesting energy from an ionic polymer-metal composite attached to the vibrating structure is experimentally and theoretically assessed. The response of the transducer is described using a black-box model, where the voltage output is controlled by the rate of change of the mean curvature. Experiments are performed to elucidate the impact of the shunting resistance, the frequency of the base excitation and the placement of the ionic polymer-metal composite on energy harvesting from the considered biomimetic tail. PMID:23793023

  13. Stationary response of nonlinear magneto-piezoelectric energy harvester systems under stochastic excitation

    NASA Astrophysics Data System (ADS)

    Martens, W.; von Wagner, U.; Litak, G.

    2013-09-01

    Recent years have shown increasing interest of researchers in energy harvesting systems designed to generate electrical energy from ambient energy sources, such as mechanical excitations. In a lot of cases excitation patterns of such systems exhibit random rather than deterministic behaviour with broad-band frequency spectra. In this paper, we study the efficiency of vibration energy harvesting systems with stochastic ambient excitations by solving corresponding Fokker-Planck equations. In the system under consideration, mechanical energy is transformed by a piezoelectric transducer in the presence of mechanical potential functions which are governed by magnetic fields applied to the device. Depending on the magnet positions and orientations the vibrating piezo beam system is subject to characteristic potential functions, including single and double well shapes. Considering random excitation, the probability density function (pdf) of the state variables can be calculated by solving the corresponding Fokker-Planck equation. For this purpose, the pdf is expanded into orthogonal polynomials specially adapted to the problem and the residual is minimized by a Galerkin procedure. The power output has been estimated as a function of basic potential function parameters determining the characteristic pdf shape.

  14. Wideband energy harvesting for piezoelectric devices with linear resonant behavior.

    PubMed

    Luo, Cheng; Hofmann, Heath F

    2011-07-01

    In this paper, an active energy harvesting technique for a spring-mass-damper mechanical resonator with piezoelectric electromechanical coupling is investigated. This technique applies a square-wave voltage to the terminals of the device at the same frequency as the mechanical excitation. By controlling the magnitude and phase angle of this voltage, an effective impedance matching can be achieved which maximizes the amount of power extracted from the device. Theoretically, the harvested power can be the maximum possible value, even at off-resonance frequencies. However, in actual implementation, the efficiency of the power electronic circuit limits the amount of power harvested. A power electronic full-bridge converter is built to implement the technique. Experimental results show that the active technique can increase the effective bandwidth by a factor of more than 2, and harvests significantly higher power than rectifier-based circuits at off-resonance frequencies. PMID:21768014

  15. Energy harvesting from human motion: exploiting swing and shock excitations

    NASA Astrophysics Data System (ADS)

    Ylli, K.; Hoffmann, D.; Willmann, A.; Becker, P.; Folkmer, B.; Manoli, Y.

    2015-02-01

    Modern compact and low power sensors and systems are leading towards increasingly integrated wearable systems. One key bottleneck of this technology is the power supply. The use of energy harvesting techniques offers a way of supplying sensor systems without the need for batteries and maintenance. In this work we present the development and characterization of two inductive energy harvesters which exploit different characteristics of the human gait. A multi-coil topology harvester is presented which uses the swing motion of the foot. The second device is a shock-type harvester which is excited into resonance upon heel strike. Both devices were modeled and designed with the key constraint of device height in mind, in order to facilitate the integration into the shoe sole. The devices were characterized under different motion speeds and with two test subjects on a treadmill. An average power output of up to 0.84 mW is achieved with the swing harvester. With a total device volume including the housing of 21 cm3 a power density of 40 ?W cm?3 results. The shock harvester generates an average power output of up to 4.13 mW. The power density amounts to 86 ?W cm?3 for the total device volume of 48 cm3. Difficulties and potential improvements are discussed briefly.

  16. Long term performance of wearable transducer for motion energy harvesting

    NASA Astrophysics Data System (ADS)

    McGarry, Scott A.; Behrens, Sam

    2010-04-01

    Personal electronic devices such as cell phones, GPS and MP3 players have traditionally depended on battery energy storage technologies for operation. By harvesting energy from a person's motion, these devices may achieve greater run times without increasing the mass or volume of the electronic device. Through the use of a flexible piezoelectric transducer such as poly-vinylidene fluoride (PVDF), and integrating it into a person's clothing, it becomes a 'wearable transducer'. As the PVDF transducer is strained during the person's routine activities, it produces an electrical charge which can then be harvested to power personal electronic devices. Existing wearable transducers have shown great promise for personal motion energy harvesting applications. However, they are presently physically bulky and not ergonomic for the wearer. In addition, there is limited information on the energy harvesting performance for wearable transducers, especially under realistic conditions and for extended cyclic force operations - as would be experienced when worn. In this paper, we present experimental results for a wearable PVDF transducer using a person's measured walking force profile, which is then cycled for a prolonged period of time using an experimental apparatus. Experimental results indicate that after an initial drop in performance, the transducer energy harvesting performance does not substantially deteriorate over time, as less than 10% degradation was observed. Longevity testing is still continuing at CSIRO.

  17. A Skin-attachable Flexible Piezoelectric Pulse Wave Energy Harvester

    NASA Astrophysics Data System (ADS)

    Yoon, Sunghyun; Cho, Young-Ho

    2014-11-01

    We present a flexible piezoelectric generator, capable to harvest energy from human arterial pulse wave on the human wrist. Special features and advantages of the flexible piezoelectric generator include the multi-layer device design with contact windows and the simple fabrication process for the higher flexibility with the better energy harvesting efficiency. We have demonstrated the design effectiveness and the process simplicity of our skin- attachable flexible piezoelectric pulse wave energy harvester, composed of the sensitive P(VDF-TrFE) piezoelectric layer on the flexible polyimide support layer with windows. We experimentally characterize and demonstrate the energy harvesting capability of 0.2~1.0?W in the Human heart rate range on the skin contact area of 3.71cm2. Additional physiological and/or vital signal monitoring devices can be fabricated and integrated on the skin attachable flexible generator, covered by an insulation layer; thus demonstrating the potentials and advantages of the present device for such applications to the flexible multi-functional selfpowered artificial skins, capable to detect physiological and/or vital signals on Human skin using the energy harvested from arterial pulse waves.

  18. 7/30/2014 Smart sensors that harvest power from sun, heat or vibrations https://ec.europa.eu/programmes/horizon2020/en/print/688 1/2

    E-print Network

    Rossi, Michele

    7/30/2014 Smart sensors that harvest power from sun, heat or vibrations https://ec.europa.eu/programmes/horizon2020) Smart sensors that harvest power from sun, heat or vibrations Published by newsroom editor that allows wireless sensor networks to power themselves from the sun, heat or vibrations. The innovation

  19. Energy-harvesting power sources for gun-fired munitions

    NASA Astrophysics Data System (ADS)

    Rastegar, J.; Murray, R.; Pereira, C.; Nguyen, H.-L.

    2011-06-01

    A novel class of piezoelectric-based energy-harvesting power sources has been developed for gun-fired munitions which harvest energy from the firing acceleration. These piezoelectric-based devices have been shown to produce enough electrical energy for many applications such as fuzing, where they provide an ultrasafe power source, often eliminating the need for chemical batteries. An overview of the development of these power sources is provided, along with methods and results of laboratory and field testing performed on prototypes. Additionally, methods for integrating the generators into different classes of projectiles are discussed along with strategies for manufacturing and a side-by-side comparison with competing technologies.

  20. Energy issues in WSN for Aeronautics Applications: Harvesting and Scavenging, Power Management, Storage

    E-print Network

    Ingrand, François

    Energy issues in WSN for Aeronautics Applications: Harvesting and Scavenging, Power Management: harvesting vs scavenging · An example of energy capture: thermoelectricity · Energy storage · Energy · Energy issue: harvesting vs scavenging · An example of energy capture: thermoelectricity · Energy storage

  1. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters

    E-print Network

    Perlík, Václav; Cranston, Laura J; Cogdell, Richard J; Lincoln, Craig N; Savolainen, Janne; Šanda, František; Man?al, Tomáš; Hauer, Jürgen

    2015-01-01

    The initial energy transfer in photosynthesis occurs between the light-harvesting pigments and on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that F\\"orster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which leads to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited state as part of the system's Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid el...

  2. Integrated bistable generator for wideband energy harvesting with optimized synchronous electric charge extraction circuit

    NASA Astrophysics Data System (ADS)

    Liu, Weiqun; Badel, Adrien; Formosa, Fabien; Wu, Yipeng; Agbossou, Amen

    2013-12-01

    Bistable generators have been proposed as potential solutions to the challenge of variable vibration frequencies. In the authors' previous works, a specific BSM (Buckled-Spring-Mass) harvester architecture has been suggested. It presents some properties of interests: simplicity, compactness and wide bandwidth. Using a normalized model of the BSM generator for design and optimization at different scales, this paper presents a new integrated BSM bistable generator design with the OSECE (Optimized Synchronous Electric Charge Extraction) technique which is used for broadband energy harvesting. The experimental results obtained from an initial prototype device show that the BSM generator with the OSECE circuit exhibits better performance for low coupling cases or reverse sweep excitations. This is also confirmed by simulations for the proposed integrated generator. Good applications prospective is expected for the bistable generator with the nonlinear OSECE circuit.

  3. Design and Experimental Evaluation on an Advanced Multisource Energy Harvesting System for Wireless Sensor Nodes

    PubMed Central

    Li, Hao; Zhang, Gaofei; Ma, Rui; You, Zheng

    2014-01-01

    An effective multisource energy harvesting system is presented as power supply for wireless sensor nodes (WSNs). The advanced system contains not only an expandable power management module including control of the charging and discharging process of the lithium polymer battery but also an energy harvesting system using the maximum power point tracking (MPPT) circuit with analog driving scheme for the collection of both solar and vibration energy sources. Since the MPPT and the power management module are utilized, the system is able to effectively achieve a low power consumption. Furthermore, a super capacitor is integrated in the system so that current fluctuations of the lithium polymer battery during the charging and discharging processes can be properly reduced. In addition, through a simple analog switch circuit with low power consumption, the proposed system can successfully switch the power supply path according to the ambient energy sources and load power automatically. A practical WSNs platform shows that efficiency of the energy harvesting system can reach about 75–85% through the 24-hour environmental test, which confirms that the proposed system can be used as a long-term continuous power supply for WSNs. PMID:25032233

  4. Title of thesis: SCHEDULING IN ENERGY HARVESTING SYSTEMS WITH HYBRID ENERGY STORAGE

    E-print Network

    Ulukus, Sennur

    ABSTRACT Title of thesis: SCHEDULING IN ENERGY HARVESTING SYSTEMS WITH HYBRID ENERGY STORAGE and Computer Engineering In wireless networks, efficient energy storage and utilization plays a vital role transmission with an energy harvesting trans- mitter which has hybrid energy storage with a perfect super

  5. EXPLOITING NONLINEARITY TO PROVIDE BROADBAND ENERGY HARVESTING Jeff Moehlis

    E-print Network

    Moehlis, Jeff

    ­13]. In this paper we describe the promising approach of exploiting nonlinear effects for oscil- lators with negative@engineering.ucsb.edu ABSTRACT Energy harvesters are a promising technology for capturing useful energy from the environment. Specifically, we consider how to exploit ideas based on properties of nonlinear oscillators with negative

  6. Active and reactive power in stochastic resonance for energy harvesting

    E-print Network

    Kubota, Madoka; Hikihara, Takashi

    2015-01-01

    A power allocation to active and reactive power in stochastic resonance is discussed for energy harvesting from mechanical noise. It is confirmed that active power can be increased at stochastic resonance, in the same way of the relationship between energy and phase at an appropriate setting in resonance.

  7. Practical implementation of piezoelectric energy harvesting synchronized switching schemes

    NASA Astrophysics Data System (ADS)

    Schlichting, Alexander D.; Phadke, Ajay; Garcia, Ephrahim

    2013-04-01

    Many closed-loop control methods for increasing the power output from piezoelectric energy harvesters have been investigated over the past decade. Initial work started with the application of Maximum Power Point Tracking techniques (MPPT) developed for solar power. More recent schemes have focused on taking advantage of the capacitive nature of piezoelectric harvesters to manipulate the transfer of energy from the piezoelectric to the storage element. There have been a couple of main techniques investigated in the literature: Synchronous Charge Extraction (SCE), Synchronized Switching and Discharging to a Capacitor through an Inductor (SSDCI), Synchronized Switch Harvesting on an Inductor (SSHI), and Piezoelectric Pre-Biasing (PPB). While significant increases in harvested power are seen both theoretically and experimentally using powerful external control systems, the applicability of these methods depends highly on the performance and efficiency of the system which implements the synchronized switching. Many piezoelectric energy harvesting systems are used to power devices controlled by a microcontroller (MCU), making them readily available for switching control methods. This work focuses on the practical questions which dictate the applicability of synchronized switching techniques using MCU-based switching control.

  8. Energy Harvesting Shock Absorbers Lei Zuo, State University of New York at Stony Brook (lei.zuo@stonybrook.edu, 631-632-9327)

    E-print Network

    Zuo, Lei

    Energy Harvesting Shock Absorbers Lei Zuo, State University of New York at Stony Brook (lei important energy loss mechanism - vehicle vibration and designed retrofit regenerative shock absorbers the regenerative shock absorbers while driving on Class B (good), C (average), and D (poor) highways at 60 mph

  9. Wireless energy transmission to supplement energy harvesters in sensor network applications

    SciTech Connect

    Farinholt, Kevin M [Los Alamos National Laboratory; Taylor, Stuart G [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory

    2010-01-01

    In this paper we present a method for coupling wireless energy transmission with traditional energy harvesting techniques in order to power sensor nodes for structural health monitoring applications. The goal of this study is to develop a system that can be permanently embedded within civil structures without the need for on-board power sources. Wireless energy transmission is included to supplement energy harvesting techniques that rely on ambient or environmental, energy sources. This approach combines several transducer types that harvest ambient energy with wireless transmission sources, providing a robust solution that does not rely on a single energy source. Experimental results from laboratory and field experiments are presented to address duty cycle limitations of conventional energy harvesting techniques, and the advantages gained by incorporating a wireless energy transmission subsystem. Methods of increasing the efficiency, energy storage medium, target applications and the integrated use of energy harvesting sources with wireless energy transmission will be discussed.

  10. Harvesting renewable energy from Earth's mid-infrared emissions.

    PubMed

    Byrnes, Steven J; Blanchard, Romain; Capasso, Federico

    2014-03-18

    It is possible to harvest energy from Earth's thermal infrared emission into outer space. We calculate the thermodynamic limit for the amount of power available, and as a case study, we plot how this limit varies daily and seasonally in a location in Oklahoma. We discuss two possible ways to make such an emissive energy harvester (EEH): A thermal EEH (analogous to solar thermal power generation) and an optoelectronic EEH (analogous to photovoltaic power generation). For the latter, we propose using an infrared-frequency rectifying antenna, and we discuss its operating principles, efficiency limits, system design considerations, and possible technological implementations. PMID:24591604

  11. The Assistance of Molecular Vibrations on Coherent Energy Transfer in Photosynthesis from the View of Quantum Heat Engine

    E-print Network

    Zhang, Zhedong

    2015-01-01

    Recently the quantum nature in the energy transport in solar cell and light-harvesting complexes have attracted much attention, as being triggered by the experimental observations. We model the light-harvesting complex (i.e., PEB50 dimer) as a quantum heat engine (QHE) and study the effect of the undamped intra-molecule vibrational modes on the coherent energy transfer process and quantum transport. We find that the exciton-vibration interaction has non-trivial contribution to the promotion of quantum yield as well as transport properties of the quantum heat engine at steady state, by enhancing the quantum coherence quantified by entanglement entropy. The perfect quantum yield over 90% has been obtained, with theexciton-vibration coupling. We attribute these improvements to the renormalization of the electronic couplings effectively induced by exciton-vibration interaction and the subsequent delocalization of excitons. Finally we demonstrate that the thermal relaxation and dephasing can help the excitation en...

  12. Bringing Robustness and Power Efficiency to Autonomous Energy Harvesting Microsystems

    Microsoft Academic Search

    J. F. Christmann; E. Beigne?; C. Condemine; N. Leblond; P. Vivet; G. Waltisperger; J. Willemin

    2010-01-01

    Autonomous devices that are self-powered by extracting their energy from their environment are a new opportunity for monitoring purposes. A multi-energy sources and multi-sensors microsystem targeting autonomous wireless sensor node applications is presented. Since the available energy is not constant over time and due to very low harvested power levels, an efficient energy and power management strategy is mandatory. In

  13. A design and experimental verification methodology for an energy harvester skin structure

    NASA Astrophysics Data System (ADS)

    Lee, Soobum; Youn, Byeng D.

    2011-05-01

    This paper presents a design and experimental verification methodology for energy harvesting (EH) skin, which opens up a practical and compact piezoelectric energy harvesting concept. In the past, EH research has primarily focused on the design improvement of a cantilever-type EH device. However, such EH devices require additional space for proof mass and fixture and sometimes result in significant energy loss as the clamping condition becomes loose. Unlike the cantilever-type device, the proposed design is simply implemented by laminating a thin piezoelectric patch onto a vibrating structure. The design methodology proposed, which determines a highly efficient piezoelectric material distribution, is composed of two tasks: (i) topology optimization and (ii) shape optimization of the EH material. An outdoor condensing unit is chosen as a case study among many engineered systems with harmonic vibrating configuration. The proposed design methodology determined an optimal PZT material configuration on the outdoor unit skin structure. The designed EH skin was carefully prototyped to demonstrate that it can generate power up to 3.7 mW, which is sustainable for operating wireless sensor units for structural health monitoring and/or building automation.

  14. Optimal Power Policy for Energy Harvesting Transmitters with Inefficient Energy Storage

    E-print Network

    Yener, Aylin

    1 Optimal Power Policy for Energy Harvesting Transmitters with Inefficient Energy Storage Kaya with an inefficient energy storage device, i.e., battery or capacitor, is considered, where a fraction of the stored for optimal power allocations with energy harvesting transmitters, it is observed that storage losses

  15. Resonant intermolecular transfer of vibrational energy in liquid water

    Microsoft Academic Search

    Sander Woutersen; Huib J. Bakker

    1999-01-01

    Many biological, chemical and physical processes involve the transfer of energy. In the case of electronic excitations, transfer between molecules is rapid, whereas for vibrations in the condensed phase, resonant energy transfer is an unlikely process because the typical timescale of vibrational relaxation (a few picoseconds) is much shorter than that of resonant intermolecular vibrational energy transfer. For the OH-stretch

  16. Vibration-to-electric energy conversion

    Microsoft Academic Search

    Scott Meninger; Jose Oscar Mur-Miranda; Rajeevan Amirtharajah; Anantha Chandrakasan; Jeffrey Lang

    1999-01-01

    A system is proposed to convert ambient mechanical vibration into electrical energy for use in powering autonomous low-power electronic systems. The energy is transduced through the use of a variable capacitor, which has been designed with MEMS (microelectromechanical systems) tech- nology. A low-power controller IC has been fabricated in a 0 6µm CMOS pro- cess and has been tested and

  17. Energy harvesting from electric power lines employing the Halbach arrays

    NASA Astrophysics Data System (ADS)

    He, Wei; Li, Ping; Wen, Yumei; Zhang, Jitao; Lu, Caijiang; Yang, Aichao

    2013-10-01

    This paper proposes non-invasive energy harvesters to scavenge alternating magnetic field energy from electric power lines. The core body of a non-invasive energy harvester is a linear Halbach array, which is mounted on the free end of a piezoelectric cantilever beam. The Halbach array augments the magnetic flux density on the side of the array where the power line is placed and significantly lowers the magnetic field on the other side. Consequently, the magnetic coupling strength is enhanced and more alternating magnetic field energy from the current-carrying power line is converted into electrical energy. An analytical model is developed and the theoretical results verify the experimental results. A power of 566 ?W across a 196 k? resistor is generated from a single wire, and a power of 897 ?W across a 212 k? resistor is produced from a two-wire power cord carrying opposite currents at 10 A. The harvesters employing Halbach arrays for a single wire and a two-wire power cord, respectively, exhibit 3.9 and 3.2 times higher power densities than those of the harvesters employing conventional layouts of magnets. The proposed devices with strong response to the alternating currents are promising to be applied to electricity end-use environment in electric power systems.

  18. A self-adaptive switched-capacitor voltage converter with dynamic input load control for energy harvesting

    Microsoft Academic Search

    Dominic Maurath; Yiannos Manoli

    2009-01-01

    This paper presents an implementation of a fully-integrated switched capacitor voltage converter with self-adjusting source loading. A charge control unit ensures improved load matching to the power source, which can be an RFID antenna or vibration energy harvesting generator. In conjunction with an adaptive stacking scheme voltage-up conversion is also realized leading to capacitor storage voltages which are higher than

  19. Energy Harvesting Systems and Methods of Assembling Same

    NASA Technical Reports Server (NTRS)

    Cepeda-Rizo, Juan (Inventor); Ganapathi, Gani B. (Inventor)

    2013-01-01

    A method of assembling an energy harvesting system is provided. The method includes coupling at least one energy storage device in flow communication with at least one apparatus that is configured to generate thermal energy and to transfer the thermal energy into at least one fluid stream. The energy storage device is configured to store the fluid stream. Moreover, the method includes coupling at least one fluid transfer device downstream from the energy storage device. The fluid transfer device receives the fluid stream from the energy storage device. A bladeless turbine is coupled in flow communication with the fluid transfer device, wherein the bladeless turbine receives the fluid stream to generate power.

  20. Light-harvesting materials: Soft support for energy conversion

    NASA Astrophysics Data System (ADS)

    Stolley, Ryan M.; Helm, Monte L.

    2014-11-01

    To convert solar energy into viable fuels, coupling light-harvesting materials to catalysts is a crucial challenge. Now, the combination of an organic supramolecular hydrogel and a non-precious metal catalyst has been demonstrated to be effective for photocatalytic H2 production.

  1. Energy harvesting for the implantable biomedical devices: issues and challenges.

    PubMed

    Hannan, Mahammad A; Mutashar, Saad; Samad, Salina A; Hussain, Aini

    2014-01-01

    The development of implanted devices is essential because of their direct effect on the lives and safety of humanity. This paper presents the current issues and challenges related to all methods used to harvest energy for implantable biomedical devices. The advantages, disadvantages, and future trends of each method are discussed. The concept of harvesting energy from environmental sources and human body motion for implantable devices has gained a new relevance. In this review, the harvesting kinetic, electromagnetic, thermal and infrared radiant energies are discussed. Current issues and challenges related to the typical applications of these methods for energy harvesting are illustrated. Suggestions and discussion of the progress of research on implantable devices are also provided. This review is expected to increase research efforts to develop the battery-less implantable devices with reduced over hole size, low power, high efficiency, high data rate, and improved reliability and feasibility. Based on current literature, we believe that the inductive coupling link is the suitable method to be used to power the battery-less devices. Therefore, in this study, the power efficiency of the inductive coupling method is validated by MATLAB based on suggested values. By further researching and improvements, in the future the implantable and portable medical devices are expected to be free of batteries. PMID:24950601

  2. Small Buoys for Energy Harvesting : Experimental and Numerical Modeling Studies

    E-print Network

    Grilli, Stéphan T.

    resilient systems, to provide a renewable wave power source of ( kW for distributed marine surveillance of Ocean Engineering, University of Rhode Island, Narragansett, RI, USA 2. Electro Standards Laboratories for wave energy harvesting (free-floating or slackly moored), to produce about 1 KW per unit at full scale

  3. Energy harvesting for the implantable biomedical devices: issues and challenges

    PubMed Central

    2014-01-01

    The development of implanted devices is essential because of their direct effect on the lives and safety of humanity. This paper presents the current issues and challenges related to all methods used to harvest energy for implantable biomedical devices. The advantages, disadvantages, and future trends of each method are discussed. The concept of harvesting energy from environmental sources and human body motion for implantable devices has gained a new relevance. In this review, the harvesting kinetic, electromagnetic, thermal and infrared radiant energies are discussed. Current issues and challenges related to the typical applications of these methods for energy harvesting are illustrated. Suggestions and discussion of the progress of research on implantable devices are also provided. This review is expected to increase research efforts to develop the battery-less implantable devices with reduced over hole size, low power, high efficiency, high data rate, and improved reliability and feasibility. Based on current literature, we believe that the inductive coupling link is the suitable method to be used to power the battery-less devices. Therefore, in this study, the power efficiency of the inductive coupling method is validated by MATLAB based on suggested values. By further researching and improvements, in the future the implantable and portable medical devices are expected to be free of batteries. PMID:24950601

  4. Experimental investigations on energy harvesting performance of dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Wang, Yongquan; Liu, Xuejing; Xue, Huanhuan; Chen, Hualing; Jia, Shuhai

    2014-03-01

    In this paper, the emerging technology of energy harvesting based on dielectric elastomers (DE), a new type of functional materials belonging to the family of Electroactive Polymers (EAPs), is presented with emphasis on its performance characteristics and some key influencing factors. At first, on the basic principle of DE energy harvesting, the effects of some control parameters are theoretically analyzed under certain mechanical and electrical constraints. Then, a type of annular DE generator using the commercial elastomers of VHB 4910 (3M, USA), is specially designed and fabricated. A series of experimental tests for the device's energy harvesting performance are implemented at different pre-stretch ratios, stretch amplitudes (displacements), and bias voltages in the constant charge (open-circuit) condition. The experiment results demonstrate the associated influence laws of the above control parameters on the performance of the DE generator, and have good consistent with those obtained from the theoretical analysis. This study is expected to provide a helpful guidance for the design and operation of practical DE energy harvesting devices/systems.

  5. A System Design Approach for Unattended Solar Energy Harvesting Supply

    Microsoft Academic Search

    Jonathan W. Kimball; Brian T. Kuhn; Robert S. Balog

    2009-01-01

    Remote devices, such as sensors and communications devices, require continuously available power. In many applications, conventional approaches are too expensive, too large, or unreliable. For short-term needs, primary batteries may be used. However, they do not scale up well for long-term installations. Instead, energy harvesting methods must be used. Here, a system design approach is introduced that results in a

  6. Harvesting Energy from Wastewater in a 2-Chamber

    E-print Network

    a microbial fuel cell (MFC), it takes a source of bacteria, food, no oxygen, and two electrodes. The microorganisms oxidize the organic food matter, and transfer the electrons to the anode. The electrons travel to operate the plant. This can be done by using a MFC to harvest that energy. In addition to reducing

  7. Myocardial Cell Pattern on Piezoelectric Nanofiber Mats for Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Liu, X.; Wang, X.; Zhao, H.; Du, Y.

    2014-11-01

    The paper presents in vitro contractile myocardial cell pattern on piezoelectric nanofiber mats with applications in energy harvesting. The cell-based energy harvester consists of myocardial cell sheet and a PDMS substrate with a PVDF nanofiber mat on. Experimentally, cultured on specifically distributed nanofiber mats, neonatal rat ventricular cardiomyocytes are characterized with the related morphology and contraction. Previously, we have come up with the concept of energy harvesting from heart beating using piezoelectric material. A bio-hybrid energy harvester combined living cardiomyocytes, PDMS polymer substrate and piezoelectric PVDF film with the electrical output of peak current 87.5nA and peak voltage 92.3mV. However, the thickness of the cardiomyocyte cultured on a two-dimensional substrate is much less than that of the piezoelectric film. The Micro Contact Printing (?CP) method used in cell pattern on the PDMS thin film has tough requirement for the film surface. As such, in this paper we fabricated nanofiber-constructed PDMS thin film to realize cell pattern due to PVDF nanofibers with better piezoelectricity and microstructures of nanofiber mats guiding cell distribution. Living cardiomyocytes patterned on those distributed piezoelectric nanofibers with the result of the same distribution as the nanofiber pattern.

  8. Amplified energy harvester from footsteps: design, modeling, and experimental analysis

    NASA Astrophysics Data System (ADS)

    Wang, Ya; Chen, Wusi; Guzman, Plinio; Zuo, Lei

    2014-04-01

    This paper presents the design, modeling and experimental analysis of an amplified footstep energy harvester. With the unique design of amplified piezoelectric stack harvester the kinetic energy generated by footsteps can be effectively captured and converted into usable DC power that could potentially be used to power many electric devices, such as smart phones, sensors, monitoring cameras, etc. This doormat-like energy harvester can be used in crowded places such as train stations, malls, concerts, airport escalator/elevator/stairs entrances, or anywhere large group of people walk. The harvested energy provides an alternative renewable green power to replace power requirement from grids, which run on highly polluting and global-warming-inducing fossil fuels. In this paper, two modeling approaches are compared to calculate power output. The first method is derived from the single degree of freedom (SDOF) constitutive equations, and then a correction factor is applied onto the resulting electromechanically coupled equations of motion. The second approach is to derive the coupled equations of motion with Hamilton's principle and the constitutive equations, and then formulate it with the finite element method (FEM). Experimental testing results are presented to validate modeling approaches. Simulation results from both approaches agree very well with experimental results where percentage errors are 2.09% for FEM and 4.31% for SDOF.

  9. Simulation and testing of a micro electromagnetic energy harvester for self-powered system

    NASA Astrophysics Data System (ADS)

    Lei, Yiming; Wen, Zhiyu; Chen, Li

    2014-03-01

    This paper describes a low cost and efficient electromagnetic vibration energy harvester (EVEH) for a self-powered system. The EVEH consists of a resistant (copper) spring, a permanent magnet (NdFeB35) and a wire-wound copper coil. The copper spring was fabricated by the laser precision cutting technology. A numerical model was adopted to analyze magnetic field distribution of a rectangle permanent magnet. The finite element (FEM) soft ANSYS was used to simulate the mechanical properties of the system. The testing results show that the micro electromagnetic vibration energy harvester can generate the maximal power 205.38 ?W at a resonance frequency of 124.2 Hz with an acceleration of 0.5 g (g = 9.8 ms-2) across a load the 265 ? and a superior normalized power density (NPD) of 456.5 ?W cm-3 g-2. The magnetic field distribution of the permanent magnet was calculated to optimize geometric parameters of the coil. The proposed EVEH has a high efficiency with the lower cost.

  10. Thermal energy harvesters with piezoelectric or electrostatic transducer

    NASA Astrophysics Data System (ADS)

    Prokaryn, Piotr; Doma?ski, Krzysztof; Marchewka, Micha?; Tomaszewski, Daniel; Grabiec, Piotr; Puscasu, Onoriu; Monfray, Stéphane; Skotnicki, Thomas

    2014-08-01

    This paper describes the idea of the energy harvester which converts thermal gradient present in environment into electricity. Two kinds of such devices are proposed and their prototypes are shown and discussed. The main parts of harvesters are bimetallic spring, piezoelectric transducer or electrostatic transducer with electret. The applied piezomembrane was commercial available product but electrets was made by authors. In the paper a fabrication procedure of electrets formed by the corona discharge process is described. Devices were compared in terms of generated power, charging current, and the voltage across a storage capacitor.

  11. Estimation of Electric Charge Output for Piezoelectric Energy Harvesting

    Microsoft Academic Search

    H. A. Sodano; D. J. Inman

    2004-01-01

    Piezoelectric materials (PZT) can be used as mechanisms to transfer mechanical energy, usually ambient vibration, into electrical energy that can be stored and used to power other devices. With the recent advances in wireless and micro-electro-mechanical-systems (MEMS) technology, sensors can be placed in exotic and remote locations. As these devices are wireless it becomes necessary that they have their own

  12. Nonlinear modeling, strength-based design, and testing of flexible piezoelectric energy harvesters under large dynamic loads for rotorcraft applications

    NASA Astrophysics Data System (ADS)

    Leadenham, Stephen; Erturk, Alper

    2014-04-01

    There has been growing interest in enabling wireless health and usage monitoring for rotorcraft applications, such as helicopter rotor systems. Large dynamic loads and acceleration fluctuations available in these environments make the implementation of vibration-based piezoelectric energy harvesters a very promising choice. However, such extreme loads transmitted to the harvester can also be detrimental to piezoelectric laminates and overall system reliability. Particularly flexible resonant cantilever configurations tuned to match the dominant excitation frequency can be subject to very large deformations and failure of brittle piezoelectric laminates due to excessive bending stresses at the root of the harvester. Design of resonant piezoelectric energy harvesters for use in these environments require nonlinear electroelastic dynamic modeling and strength-based analysis to maximize the power output while ensuring that the harvester is still functional. This paper presents a mathematical framework to design and analyze the dynamics of nonlinear flexible piezoelectric energy harvesters under large base acceleration levels. A strength-based limit is imposed to design the piezoelectric energy harvester with a proof mass while accounting for material, geometric, and dissipative nonlinearities, with a focus on two demonstrative case studies having the same linear fundamental resonance frequency but different overhang length and proof mass values. Experiments are conducted at different excitation levels for validation of the nonlinear design approach proposed in this work. The case studies in this work reveal that harvesters exhibiting similar behavior and power generation performance at low excitation levels (e.g. less than 0.1g) can have totally different strength-imposed performance limitations under high excitations (e.g. above 1g). Nonlinear modeling and strength-based design is necessary for such excitation levels especially when using resonant cantilevers with no geometric constraint.

  13. Theoretical and experimental investigation of a nonlinear compressive-mode energy harvester with high power output under weak excitations

    NASA Astrophysics Data System (ADS)

    Yang, Zhengbao; Zhu, Yang; Zu, Jean

    2015-02-01

    Harvesting ambient vibration energy is a promising method for realizing self-powered autonomous operation for low-power electronic devices. Most energy harvesters developed to date employ bending-beam configurations and work around the resonant points. There are two critical problems that have hindered the widespread adoption of energy harvesters: insufficient power output and narrow working bandwidth. To overcome these problems, we proposed a novel energy harvester, called a high-efficiency compressive-mode piezoelectric energy harvester (HC-PEH). The HC-PEH delicately synthesizes the merits of the force amplification effect of the flexural motion and the dynamic properties of elastic beams, and thus is capable of high power output with wide working bandwidth. In this paper, theoretical and experimental studies were performed on the HC-PEH. Taking nonlinear stiffness, nonlinear damping, and nonlinear piezoelectricity into account, we developed an analytical model that provides comprehensive insight into the nonlinear mechanical and electrical behaviors of the system. The analytical results closely render the experimental data and demonstrate great performance enhancement. In the experiment, a maximum power output of 54.7 mW is generated at 26 Hz under an acceleration of 4.9 m s?2, which is over one order of magnitude higher than other state-of-the-art systems.

  14. Validation of energy harvest modeling for X14 system

    NASA Astrophysics Data System (ADS)

    Finot, Marc; MacDonald, Bob; Lance, Tamir

    2012-10-01

    Skyline Solar has developed a second generation medium concentration photovoltaic system with an optical concentration of around 14. The energy harvest model based on the first generation system has been updated and improved using field data. The model combines a bottom-up modeling approach based on performance of subcomponents such as mirrors and cells with a top-down approach based on measuring the system output under different environmental conditions. Improvement of the model includes the effect of non-uniformity of the light on the panel. The predicted energy ratio (ratio between the observed energy and expected energy) has been measured over a 10-month period and shows monthly variability below 2%, resulting in high confidence level for the mean of the expected energy harvest.

  15. Energy harvesting measurements from stall flutter limit cycle oscillations

    NASA Astrophysics Data System (ADS)

    Chen, Jasper; Dhanushkodi, Adit; Lee, Christopher L.

    2014-04-01

    Results from experiments using a two-degree-of-freedom airfoil system are presented. Air speeds of the airfoil are determined at which dynamic flutter can be initiated and where limit cycle oscillations (LCO) can be excited by initial (pitch or plunge) displacements. LCO's with large pitch angle displacements attributed to stall flutter behavior are measured. The LCO oscillations are converted into electric power by an electromagnetic-inductor device. The energy harvester consists of three magnets in which one magnet floats between two fixed magnets. The force-displacement relationship of the harvester is best described by a fifth-order polynomial. The integration of the harvester into the airfoil system introduces nonlinear stiffness into the vertical (plunge) direction. When the LCO has been initiated, displacement amplitudes and resulting power generation are measured.

  16. Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies.

    PubMed

    Yang, Ya; Zhang, Hulin; Zhu, Guang; Lee, Sangmin; Lin, Zong-Hong; Wang, Zhong Lin

    2013-01-22

    We report the first flexible hybrid energy cell that is capable of simultaneously or individually harvesting thermal, mechanical, and solar energies to power some electronic devices. For having both the pyroelectric and piezoelectric properties, a polarized poly(vinylidene fluoride) (PVDF) film-based nanogenerator (NG) was used to harvest thermal and mechanical energies. Using aligned ZnO nanowire arrays grown on the flexible polyester (PET) substrate, a ZnO-poly(3-hexylthiophene) (P3HT) heterojunction solar cell was designed for harvesting solar energy. By integrating the NGs and the solar cells, a hybrid energy cell was fabricated to simultaneously harvest three different types of energies. With the use of a Li-ion battery as the energy storage, the harvested energy can drive four red light-emitting diodes (LEDs). PMID:23199138

  17. Energy-Harvesting Thermoelectric Sensing for Unobtrusive Water and Appliance Metering

    E-print Network

    Dutta, Prabal

    Energy-Harvesting Thermoelectric Sensing for Unobtrusive Water and Appliance Metering Bradford address these common pitfalls for water and heat metering by developing a small, energy-harvesting sensor Keywords Water-Sensing, Energy Metering, Wireless Sensing, Energy-Harvesting Permission to make digital

  18. Energy harvesting with piezoelectric circular membrane under pressure loading

    NASA Astrophysics Data System (ADS)

    Mo, Changki; Davidson, Joseph; Clark, William W.

    2014-04-01

    This paper presents a comprehensive theoretical model for predicting the energy generating performance of an energy harvesting device that uses a piezoelectric circular membrane subject to pressure fluctuation. PVDF (polyvinylidene fluoride) film is adopted for the membrane. In order to predict the power generating performance due to stretching and bending of the membrane, the total stress on the membrane, rather than the stress at the center point of the circular membrane, is determined using the energy method. Analytical results indicate that the theoretically predicted generated power of the device under normal blood pressure variation is close to experimental results available in the literature. This comprehensive model provides a useful design tool during parameter optimization for energy harvesters that use piezoelectric circular membranes for a pressure fluctuating system.

  19. Near-field thermodynamics: Useful work, efficiency, and energy harvesting

    SciTech Connect

    Latella, Ivan, E-mail: ilatella@ffn.ub.edu; Pérez-Madrid, Agustín, E-mail: agustiperezmadrid@ub.edu [Departament de Física Fonamental, Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Lapas, Luciano C., E-mail: luciano.lapas@pq.cnpq.br [Universidade Federal da Integração Latino-Americana, Caixa Postal 2067, 85867-970 Foz do Iguaçu (Brazil); Miguel Rubi, J., E-mail: mrubi@ub.edu [Departament de Física Fonamental, Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Department of Chemistry, Imperial College London, SW7 2AZ London (United Kingdom)

    2014-03-28

    We show that the maximum work that can be obtained from the thermal radiation emitted between two planar sources in the near-field regime is much larger than that corresponding to the blackbody limit. This quantity, as well as an upper bound, for the efficiency of the process is computed from the formulation of thermodynamics in the near-field regime. The case when the difference of temperatures of the hot source and the environment is small, relevant for energy harvesting, is studied in detail. We also show that thermal radiation energy conversion can be more efficient in the near-field regime. These results open new possibilities for the design of energy converters that can be used to harvest energy from sources of moderate temperature at the nanoscale.

  20. Harvesting the Sun's Energy with Antennas

    SciTech Connect

    INL

    2008-05-28

    Researchers at Idaho National Laboratory, along with partners at Microcontinuum Inc. (Cambridge, MA) and Patrick Pinhero of the University of Missouri, are developing a novel way to collect energy from the sun with a technology that could potentially cost pennies a yard, be imprinted on flexible materials and still draw energy after the sun has set.

  1. Practical Challenges in Harvesting Wave Energy

    Microsoft Academic Search

    John Ringwood

    This paper examines the challenges of ecien tly har- nessing wave energy. A variety of energy conversion device types is reviewed and a generic heaving buoy device selected for detailed examination. A number of modelling and control challenges are de- tailed and a hierarchical control structure is indicated. Both potable water production and electricity generation are included as possible uses

  2. Harvesting the Sun's Energy with Antennas

    ScienceCinema

    INL

    2009-09-01

    Researchers at Idaho National Laboratory, along with partners at Microcontinuum Inc. (Cambridge, MA) and Patrick Pinhero of the University of Missouri, are developing a novel way to collect energy from the sun with a technology that could potentially cost pennies a yard, be imprinted on flexible materials and still draw energy after the sun has set.

  3. Comparison of energy harvesting systems for wireless sensor networks

    Microsoft Academic Search

    James M. Gilbert; Farooq Balouchi

    2008-01-01

    Wireless sensor networks (WSNs) offer an attractive solution to many environmental, security, and process monitoring problems.\\u000a However, one barrier to their fuller adoption is the need to supply electrical power over extended periods of time without\\u000a the need for dedicated wiring. Energy harvesting provides a potential solution to this problem in many applications. This\\u000a paper reviews the characteristics and energy

  4. Light-harvesting materials: Soft support for energy conversion

    SciTech Connect

    Stolley, Ryan M.; Helm, Monte L.

    2014-11-10

    To convert solar energy into viable fuel sources, coupling light-harvesting materials to catalysts is a critical challenge. Now, coupling between an organic supramolecular hydrogel and a non precious metal catalyst has been demonstrated to be effective for photocatalytic H2 production. Ryan M. Stolley and Monte L. Helm are at Pacific Northwest National Laboratory (PNNL), Richland, WA, USA 99352. PNNL is operated by Battelle for the US Department of Energy. e-mail: Monte.Helm@pnnl.gov

  5. Optimum Transmission Policies for Battery Limited Energy Harvesting Nodes

    E-print Network

    Tutuncuoglu, Kaya

    2010-01-01

    Wireless networks with energy harvesting battery powered nodes are quickly emerging as a viable option for future wireless networks with extended lifetime. Equally important to their counterpart in the design of energy harvesting radios are the design principles that this new networking paradigm calls for. In particular, unlike wireless networks considered up to date, the energy replenishment process and the storage constraints of the rechargeable batteries need to be taken into account in designing efficient transmission strategies. In this work, we consider such transmission policies for rechargeable nodes, and identify the optimum solution for two related problems. Specifically, the transmission policy that maximizes the short term throughput, i.e., the amount of data transmitted in a finite time horizon is found. In addition, we show the relation of this optimization problem to another, namely, the minimization of the transmission completion time for a given amount of data, and solve that as well. The tra...

  6. Structures, systems and methods for harvesting energy from electromagnetic radiation

    DOEpatents

    Novack, Steven D. (Idaho Falls, ID); Kotter, Dale K. (Shelley, ID); Pinhero, Patrick J. (Columbia, MO)

    2011-12-06

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  7. Delay-Tolerant Data Gathering in Energy Harvesting Sensor Networks With a Mobile Sink

    E-print Network

    Liang, Weifa

    Delay-Tolerant Data Gathering in Energy Harvesting Sensor Networks With a Mobile Sink Xiaojiang Ren collection in an energy harvesting sensor network with a mobile sink, where a mobile sink travels along, this is the first kind of work of data collection for energy harvesting sensor networks with mobile sinks. I

  8. Improving an energy harvesting device for railroad safety applications

    NASA Astrophysics Data System (ADS)

    Pourghodrat, Abolfazl; Nelson, Carl A.; Phillips, Kyle J.; Fateh, Mahmood

    2011-03-01

    Due to hundreds of fatalities annually at unprotected railroad crossings (mostly because of collisions with passenger vehicles and derailments resulting from improperly maintained tracks and mechanical failures), supplying a reliable source of electrical energy to power crossing lights and distributed sensor networks is essential to improve safety. With regard to the high cost of electrical infrastructure for railroad crossings in remote areas and the lack of reliability and robustness of solar and wind energy solutions, development of alternative energy harvesting devices is of interest. In this paper, improvements to a mechanical energy harvesting device are presented. The device scavenges electrical energy from deflection of railroad track due to passing railcar traffic. It is mounted to and spans two rail ties and converts and magnifies the track's entire upward and downward displacement into rotational motion of a PMDC generator. The major improvements to the new prototype include: harvesting power from upward displacement in addition to downward, changing the gearing and generator in order to maximize power production capacity for the same shaft speed, and improving the way the system is stabilized for minimizing lost motion. The improved prototype was built, and simulations and tests were conducted to quantify the effects of the improvements.

  9. Modeling and performance of electromagnetic energy harvesting from galloping oscillations

    NASA Astrophysics Data System (ADS)

    Dai, H. L.; Abdelkefi, A.; Javed, U.; Wang, L.

    2015-04-01

    The modeling and performance of a galloping-based electromagnetic energy harvester are investigated. To convert galloping oscillations into electrical energy, an electromagnetic transducer is used. A set of representative coupled equations that account for the transverse displacement of the bluff body and the induced electromagnetic current are constructed. The galloping force is modeled by using the quasi-steady approximation. The effects of the electrical load resistance on the coupled damping and onset speed of galloping are determined through a linear analysis. It is shown that the electrical load resistance strongly affects the coupled damping and hence the onset speed of galloping of the harvester. For high values of the electrical load resistance, it is demonstrated that the load resistance has a negligible impact on the onset speed of galloping. A nonlinear analysis is then performed to investigate the effects of the electrical load resistance and wind speed on the harvester’s outputs. The nonlinear normal form is first derived and validated with numerical predictions in order to characterize the type of instability for various cross-section geometries. The results show that a very good agreement is obtained between the normal form solutions and numerical predictions near Hopf bifurcation. It is also shown that, for well-defined values of wind speeds, both the transverse displacement amplitude and the generated voltage are increasing with the electrical load resistance. On the other hand, there is an optimum value of the electrical load resistance, which varies with the wind speed, at which the levels of the harvested power are maximized.

  10. Nonlinear beam-based vibration energy harvesters and load cells

    E-print Network

    Kluger, Jocelyn Maxine

    2014-01-01

    This thesis studies a novel nonlinear spring mechanism that is comprised of a cantilever wrapping around a curved surface as it deflects. Static force versus displacement tests and dynamic "initial displacement" tests ...

  11. Resonant vibrational energy transfer in ice Ih

    SciTech Connect

    Shi, L.; Li, F.; Skinner, J. L. [Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2014-06-28

    Fascinating anisotropy decay experiments have recently been performed on H{sub 2}O ice Ih by Timmer and Bakker [R. L. A. Timmer, and H. J. Bakker, J. Phys. Chem. A 114, 4148 (2010)]. The very fast decay (on the order of 100 fs) is indicative of resonant energy transfer between OH stretches on different molecules. Isotope dilution experiments with deuterium show a dramatic dependence on the hydrogen mole fraction, which confirms the energy transfer picture. Timmer and Bakker have interpreted the experiments with a Förster incoherent hopping model, finding that energy transfer within the first solvation shell dominates the relaxation process. We have developed a microscopic theory of vibrational spectroscopy of water and ice, and herein we use this theory to calculate the anisotropy decay in ice as a function of hydrogen mole fraction. We obtain very good agreement with experiment. Interpretation of our results shows that four nearest-neighbor acceptors dominate the energy transfer, and that while the incoherent hopping picture is qualitatively correct, vibrational energy transport is partially coherent on the relevant timescale.

  12. Converged vibrational energy levels and quantum mechanical vibrational partition function of ethane

    E-print Network

    Truhlar, Donald G

    Converged vibrational energy levels and quantum mechanical vibrational partition function of ethane function of ethane is calculated in the temperature range of 200­600 K using well-converged energy levels have been successfully carried out for small systems such as H2O and CH4; however, it is very difficult

  13. IPMC as a mechanoelectric energy harvester: tailored properties

    NASA Astrophysics Data System (ADS)

    Tiwari, R.; Kim, K. J.

    2013-01-01

    Due to their inherited mechanoelectric transduction capability, long-life, and effective operation in both air and water, ionic polymer-metal composites (IPMCs) are considered for energy harvesting applications. The reported research aims to study different parameters in the mechanical domain (stiffness and scalability) and the electrical domain (impedance and interfacial area) that seem to have profound effects on battery charging, with the aid of an electromechanical transducer model (Tiwari et al 2008 Smart Struct. Syst. 4 549-3). Experiments performed to confirm the model predictions are also reported. The research demonstrates the applicability of IPMC as an energy harvester in lower frequency regions (<50 Hz) with an average efficiency of around 2% or less. The instantaneous power output from 10 mm (width)×50 mm (length)×0.2 mm (thickness) was measured to be approximately 4 ?W (20 W m-3).

  14. Harvesting human kinematical energy based on liquid metal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Jia, Dewei; Liu, Jing; Zhou, Yixin

    2009-03-01

    A flexible human energy harvesting generator - Liquid Metal Magnetohydrodynamics Generator (LMMG) is proposed and fabricated. Conceptual experiments were performed to investigate this electricity harvesting principle. Theoretical analysis predicts that the present method is promising at converting otherwise wasted human kinematical energy via a directional selective generation paradigm. In vitro experiment demonstrates output of 1.4 V/3.61 ?W by 5.68 g Ga 62In 25Sn 13 liquid metal with a rather high efficiency of more than 45%. The in vivo experiment actuated by a wrist swing during brisk walking with the plastic valve to rectify the flow, verified the potentiality of unidirectional actuation. This concept based on the flexible movement of LMMG is robust to supply electricity which would be important for future wearable micro/nano devices as a voltage constrained charge provider.

  15. Piezoelectric energy harvester having planform-tapered interdigitated beams

    DOEpatents

    Kellogg, Rick A. (Tijeras, NM); Sumali, Hartono (Albuquerque, NM)

    2011-05-24

    Embodiments of energy harvesters have a plurality of piezoelectric planform-tapered, interdigitated cantilevered beams anchored to a common frame. The plurality of beams can be arranged as two or more sets of beams with each set sharing a common sense mass affixed to their free ends. Each set thus defined being capable of motion independent of any other set of beams. Each beam can comprise a unimorph or bimorph piezoelectric configuration bonded to a conductive or non-conductive supporting layer and provided with electrical contacts to the active piezoelectric elements for collecting strain induced charge (i.e. energy). The beams are planform tapered along the entirety or a portion of their length thereby increasing the effective stress level and power output of each piezoelectric element, and are interdigitated by sets to increase the power output per unit volume of a harvester thus produced.

  16. Energy harvesting from a backpack instrumented with piezoelectric shoulder straps

    NASA Astrophysics Data System (ADS)

    Granstrom, Jonathan; Feenstra, Joel; Sodano, Henry A.; Farinholt, Kevin

    2007-10-01

    Over the past few decades the use of portable and wearable electronics has grown steadily. These devices are becoming increasingly more powerful. However, the gains that have been made in the device performance have resulted in the need for significantly higher power to operate the electronics. This issue has been further complicated due to the stagnant growth of battery technology over the past decade. In order to increase the life of these electronics, researchers have begun investigating methods of generating energy from ambient sources such that the life of the electronics can be prolonged. Recent developments in the field have led to the design of a number of mechanisms that can be used to generate electrical energy, from a variety of sources including thermal, solar, strain, inertia, etc. Many of these energy sources are available for use with humans, but their use must be carefully considered such that parasitic effects that could disrupt the user's gait or endurance are avoided. These issues have arisen from previous attempts to integrate power harvesting mechanisms into a shoe such that the energy released during a heal strike could be harvested. This study develops a novel energy harvesting backpack that can generate electrical energy from the differential forces between the wearer and the pack. The goal of this system is to make the energy harvesting device transparent to the wearer such that his or her endurance and dexterity is not compromised. This will be accomplished by replacing the traditional strap of the backpack with one made of the piezoelectric polymer polyvinylidene fluoride (PVDF). Piezoelectric materials have a structure such that an applied electrical potential results in a mechanical strain. Conversely, an applied stress results in the generation of an electrical charge, which makes the material useful for power harvesting applications. PVDF is highly flexible and has a high strength, allowing it to effectively act as the load bearing member. In order to preserve the performance of the backpack and user, the design of the pack will be held as close to existing systems as possible. This paper develops a theoretical model of the piezoelectric strap and uses experimental testing to identify its performance in this application.

  17. A non-ideal portal frame energy harvester controlled using a pendulum

    NASA Astrophysics Data System (ADS)

    Iliuk, I.; Balthazar, J. M.; Tusset, A. M.; Piqueira, J. R. C.; Rodrigues de Pontes, B.; Felix, J. L. P.; Bueno, Á. M.

    2013-09-01

    A model of energy harvester based on a simple portal frame structure is presented. The system is considered to be non-ideal system (NIS) due to interaction with the energy source, a DC motor with limited power supply and the system structure. The nonlinearities present in the piezoelectric material are considered in the piezoelectric coupling mathematical model. The system is a bi-stable Duffing oscillator presenting a chaotic behavior. Analyzing the average power variation, and bifurcation diagrams, the value of the control variable that optimizes power or average value that stabilizes the chaotic system in the periodic orbit is determined. The control sensitivity is determined to parametric errors in the damping and stiffness parameters of the portal frame. The proposed passive control technique uses a simple pendulum to tuned to the vibration of the structure to improve the energy harvesting. The results show that with the implementation of the control strategy it is possible to eliminate the need for active or semi active control, usually more complex. The control also provides a way to regulate the energy captured to a desired operating frequency.

  18. Self powered sensing by combining novel sensor architectures with energy harvesting

    NASA Astrophysics Data System (ADS)

    Bedekar, Vishwas Narayan

    The sensing techniques investigated in this thesis utilize piezoelectric materials, piezoresistive materials, and magnetoelectric composites. Prior studies on structural health monitoring have demonstrated the use and promise of piezoelectric sensors. In this research, impedance spectroscopy based sensing technique was investigated with respect to two parameters (i) effect of the piezoelectric vibration mode on damage index metric, and (ii) selection of frequency band through manipulation of the electrode size and shape. These results were then used to determine sensor geometry and dimensions for detecting surface defects, fatigue and corrosion. Based upon these results, power requirement for structural health monitoring sensors was determined. Next, piezoelectric materials were coupled with magnetostrictive material for novel magnetic field gradient sensing. The ceramic -- ceramic (CC) gradiometer resembles in functionality a magnetoelectric transformer. It measures the magnetic field gradient and sensitivity with respect to a reference value. The CC gradiometer designed in this study was based upon the magnetoelectric (ME) composites and utilizes the ring-dot piezoelectric transformer structure working near resonance as the basis. This study investigated the gradiometer design and characterized the performance of gradiometer based upon Terfenol--D -- PZT composites. Based upon these results, next a metal -- ceramic gradiometer consisting of PZT and nickel was designed and characterized. In this thesis, two different designs of gradiometer with nickel and PZT laminate composites were fabricated. Nickel was chosen over other materials considering its co-firing ability with PZT. It can give a better control over dimensional parameters of the gradiometer sample and further size reduction is possible with tape casting technique. Detailed theoretical analysis was conducted in order to understand the experimental results. In order to significantly reduce the power consumption of health monitoring and magnetic field sensors, bottom -- up design of structural health monitoring and magnetic field sensors was investigated. A MWCNT/SiCN nanotube template was developed that exhibits piezoresistive effect. Next, a novel nanotube morphology "nanoNecklace" was synthesized that consists of BaTiO 3 (BTO) nanoparticles decorated along the surface of SiCN. Monolayer coating of SiCN on MWCNT serves two purposes: (i) modifies the surface wetting characteristics, and (ii) enhances the piezoresistive effect. Investigation of the mechanisms that provide periodic arrangement of BTO on nanotube surface was conducted using HRTEM and contact angle measurements. Next, we tried to modify the surface wetting characteristics of MWCNTs in order to get a full coating of BTO nanoparticles. The SiCN/MWCNT approach was further extended to fabricate magnetoelectric nanowire based sensors designs. In this approach a SiCN-NT template was coated with BTO and CoFe2O4 (CFO) nanoparticles. Microstructural studies indicated the presence of piezoelectric (BTO) as well as magnetic (CFO) material on the nanotube surface. In order to power the sensors from mechanical vibrations, we investigated two different techniques, (i) piezoelectric and (ii) inductive. An analytical model for energy harvesting from bimorph transducer was developed which was confirmed by experimental measurements. The results show that power density of bimorph transducer can be enhanced by increasing the magnitude of product (d.g), where d is the piezoelectric strain constant and g is the piezoelectric voltage constant. Under inductive energy harvesting, we designed and fabricated a small scale harvester that was integrated inside a pen commonly carried by humans to harvest vibration energy. Inductive energy harvesting was selected in order to achieve high power at lower frequencies. The prototype cylindrical harvester was found to generate 3mW at 5 Hz and 1mW at 3.5 Hz operating under displacement amplitude of 16mm (corresponding to an acceleration of approximately 1.14 grms at 5Hz and

  19. Energy harvesting under combined aerodynamic and base excitations

    NASA Astrophysics Data System (ADS)

    Bibo, Amin; Daqaq, Mohammed F.

    2013-09-01

    This paper investigates the transduction of a piezoaeroelastic energy harvester under the combination of vibratory base excitations and aerodynamic loadings. The harvester which consists of a rigid airfoil supported by nonlinear flexural and torsional springs is placed in an incompressible air flow and subjected to a harmonic base excitation in the plunge direction. Under this combined loading, the airfoil undergoes complex motions which strain a piezoelectric element producing a voltage across an electric load. To capture the qualitative behavior of the harvester, a five-dimensional lumped-parameter model which adopts nonlinear quasi-steady aerodynamics is used. A center manifold reduction is implemented to reduce the full model into one nonlinear first-order ordinary differential equation. The normal form of the reduced system is then derived to study slow modulation of the response amplitude and phase near the flutter instability. Below the flutter speed, the response of the harvester is observed to be always periodic with the air flow serving to amplify the influence of the base excitation on the response by reducing the effective stiffness of the system, and hence, increasing the RMS output power. Beyond the flutter speed, two distinct regions are observed. The first occurs when the base excitation is small and/or when the excitation frequency is not close to the frequency of the self-sustained oscillations induced by the flutter instability. In this case, the response of the harvester is two-period quasiperiodic with amplitude modulation due to the presence of two incommensurate frequencies in the response. This amplitude modulation reduces the RMS output power. In the second region, the amplitude of excitation is large enough to eliminate the quasiperiodic response by causing the two frequencies to lock into each other. In this region, the response becomes periodic and the output power increases exhibiting little dependence on the base excitation.

  20. Suspended electrodes for reducing parasitic capacitance in electret energy harvesters

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Suzuki, Yuji

    2013-12-01

    MEMS electret energy harvesting devices are believed promising to replace coin batteries in low-power consumption electronics such as wireless sensor nodes and wearable devices. However, the parasitic capacitance of the interdigital electrodes imposes significant restrictions to enhancing the power output. To address this issue, this paper presents a novel low-k electrode structure based on a new model of the parasitic capacitance in electret energy harvesters. By employing the trench-filled parylene technology, metal electrodes suspended with deep honeycomb parylene structures have been prototyped. Thanks to the high air volume fraction (76%) of the honeycomb parylene structure, the effective relative permittivity ?eff surrounding the electrodes is reduced to as low as 1.8 when the air gap is 90 µm between the electret surface and the counter electrode. As a result, the parasitic capacitance in the electret energy harvester is decreased by 36% compared with that of electrodes on glass substrates, which leads to a 35% increase in the power output.

  1. Power performance improvements for high pressure ripple energy harvesting

    NASA Astrophysics Data System (ADS)

    Skow, E. A.; Cunefare, K. A.; Erturk, A.

    2014-10-01

    A hydraulic pressure energy harvester (HPEH) device, which utilizes a housing in order to isolate a piezoelectric stack from the hydraulic fluid via a mechanical interface, generates power by converting the dynamic pressure within the system into electricity. Energy harvester prototypes were designed for generating low-power electricity from pressure ripples. These devices generate low-power electricity from off-resonance dynamic pressure excitation. The power produced per volume of piezoelectric material is analyzed to increase the power density; this is accomplished through evaluating piezoelectric stack characteristics, adding an inductor to the system circuit, and solving for optimal loading in order to achieve maximum power output. The prototype device utilizes a piezoelectric stack with high overall capacitance, which allows for inductance matching without using an active circuit. This work presents an electromechanical model and the experimental results of the HPEH devices using a parallel connection of inductive and resistive loads as the energy harvesting circuit. A non-ideal inductive load case is also considered and successfully modeled by accounting for the parasitic resistance of the inductive load. Various HPEH prototypes are fabricated, modeled, and compared in terms of their normalized power density levels, and milli-Watt level average power generation is demonstrated. The highest power density is reported for the single-crystal HPEH prototype.

  2. Methods of performing downhole operations using orbital vibrator energy sources

    DOEpatents

    Cole, Jack H.; Weinberg, David M.; Wilson, Dennis R.

    2004-02-17

    Methods of performing down hole operations in a wellbore. A vibrational source is positioned within a tubular member such that an annulus is formed between the vibrational source and an interior surface of the tubular member. A fluid medium, such as high bulk modulus drilling mud, is disposed within the annulus. The vibrational source forms a fluid coupling with the tubular member through the fluid medium to transfer vibrational energy to the tubular member. The vibrational energy may be used, for example, to free a stuck tubular, consolidate a cement slurry and/or detect voids within a cement slurry prior to the curing thereof.

  3. Production, Delivery and Application of Vibration Energy in Healthcare

    NASA Astrophysics Data System (ADS)

    Abundo, Paolo; Trombetta, Chiara; Foti, Calogero; Rosato, Nicola

    2011-02-01

    In Rehabilitation Medicine therapeutic application of vibration energy in specific clinical treatments and in sport rehabilitation is being affirmed more and more.Vibration exposure can have positive or negative effects on the human body depending on the features and time of the characterizing wave. The human body is constantly subjected to different kinds of vibrations, inducing bones and muscles to actively modify their structure and metabolism in order to fulfill the required functions. Like every other machine, the body supports only certain vibration energy levels over which long term impairments can be recognized. As shown in literature anyway, short periods of vibration exposure and specific frequency values can determine positive adjustments.

  4. An electret-based aeroelastic flutter energy harvester

    NASA Astrophysics Data System (ADS)

    Perez, M.; Boisseau, S.; Gasnier, P.; Willemin, J.; Reboud, J. L.

    2015-03-01

    This paper presents a new airflow energy harvester exploiting fluttering effects coupled to an electret-based conversion to turn the flow-induced movements of a membrane into electricity. The proposed device is made of a polymer membrane placed between two parallel flat electrodes coated with 25 ?m thick Teflon PTFE electret layers; a bluff body is placed at the inlet of the device to induce vortex shedding. When the wind or airstream of any kind flows through the harvester, the membrane enters in oscillation due to fluttering and successively comes into contact with the two Teflon-coated fixed electrodes. This periodic motion is directly converted into electricity thanks to the electret-based conversion process. Various geometries have been tested and have highlighted a 2.7 cm3 device, with an output power of 481 ?W (178 ?W cm?3) at 15 m s?1 and 2.1 mW (782 ?W cm?3) at 30 m s?1 with an electret charged at ?650 V. The power coefficient Cp of the device reaches 0.54% at 15 m s?1 which is low, but compares favorably with the other small-scale airflow energy harvesters.

  5. Vibrational energy transfer in ultracold molecule - molecule collisions

    E-print Network

    Goulven Quéméner; Naduvalath Balakrishnan; Roman V. Krems

    2008-01-15

    We present a rigorous study of vibrational relaxation in p-H2 + p-H2 collisions at cold and ultracold temperatures and identify an efficient mechanism of ro-vibrational energy transfer. If the colliding molecules are in different rotational and vibrational levels, the internal energy may be transferred between the molecules through an extremely state-selective process involving simultaneous conservation of internal energy and total rotational angular momentum. The same transition in collisions of distinguishable molecules corresponds to the rotational energy transfer from one vibrational state of the colliding molecules to another.

  6. Experimental and numerical study of cellulose-based electro-active paper energy harvester

    NASA Astrophysics Data System (ADS)

    Abas, Zafar; Kim, Heung Soo; Zhai, Lindong; Kim, Jaehwan

    2014-04-01

    In this present study experimental and finite element analysis of cellulose based electro-active paper energy harvester is presented. Electro-active paper coated with metal electrode is a smart form of cellulose and exhibit piezoelectric effect. Specimens were prepared by depositing electrodes on both sides of the cellulose film. A 50 mm x 50 mm cellulose film coated with aluminum electrodes was bonded on 100 mm x 50 mm x 1 mm aluminum host structure. The voltage output to input acceleration frequency response across a load resistor of 1 M? is recorded by conventional energy harvesting experimental setup at the fundamental vibration mode of the EAPap cantilever beam. A coupled piezoelectric-circuit finite element model is developed in which load resistor is directly connected to energy scavenging device. Voltage output FRF is measured for the cases, without proof mass, and by adding a 2 grams proof mass near the tip of the cantilever. The experimental voltage FRF value is 7.6 V/g at 75.1 Hz and is improved to 13.8 V/g at 62.2 Hz when a stainless steel proof mass of 2 grams is added. The presented CPC-FEM model results agree reasonably well with the experimental results. Despite the fact that the electro-mechanical coupling coefficient of electro-active paper is lower than other available piezoelectric materials, it is biocompatible, cheap and naturally occurring polymeric material. It is also very flexible and posses similar piezoelectric characteristics such a PVDF which inspire to use EAPap in energy harvesting applications.

  7. Acoustic energy harvesting using resonant cavity of a sonic crystal

    NASA Astrophysics Data System (ADS)

    Wu, Liang-Yu; Chen, Lien-Wen; Liu, Chia-Ming

    2009-07-01

    This paper presents the development of an acoustic energy harvester using the sonic crystal and the piezoelectric material. A point defect is created by removing a rod from a perfect sonic crystal. The point defect in the sonic crystal acts as a resonant cavity, and the acoustic waves at the resonant frequency of the cavity can be localized in the cavity. The power generation from acoustic energy is based on the effect of the wave localization in the cavity of the sonic crystal and the direct piezoelectric effect of the piezoelectric material.

  8. Modelling excitonic-energy transfer in light-harvesting complexes

    SciTech Connect

    Kramer, Tobias [Institut für Physik, Humboldt-Universität zu Berlin, Germany and Department of Physics, Harvard University (United States); Kreisbeck, Christoph [Department of Chemistry and Chemical Biology, Harvard University (United States)

    2014-01-08

    The theoretical and experimental study of energy transfer in photosynthesis has revealed an interesting transport regime, which lies at the borderline between classical transport dynamics and quantum-mechanical interference effects. Dissipation is caused by the coupling of electronic degrees of freedom to vibrational modes and leads to a directional energy transfer from the antenna complex to the target reaction-center. The dissipative driving is robust and does not rely on fine-tuning of specific vibrational modes. For the parameter regime encountered in the biological systems new theoretical tools are required to directly compare theoretical results with experimental spectroscopy data. The calculations require to utilize massively parallel graphics processor units (GPUs) for efficient and exact computations.

  9. Modelling excitonic-energy transfer in light-harvesting complexes

    NASA Astrophysics Data System (ADS)

    Kramer, Tobias; Kreisbeck, Christoph

    2014-01-01

    The theoretical and experimental study of energy transfer in photosynthesis has revealed an interesting transport regime, which lies at the borderline between classical transport dynamics and quantum-mechanical interference effects. Dissipation is caused by the coupling of electronic degrees of freedom to vibrational modes and leads to a directional energy transfer from the antenna complex to the target reaction-center. The dissipative driving is robust and does not rely on fine-tuning of specific vibrational modes. For the parameter regime encountered in the biological systems new theoretical tools are required to directly compare theoretical results with experimental spectroscopy data. The calculations require to utilize massively parallel graphics processor units (GPUs) for efficient and exact computations.

  10. The Potential for Harvesting Energy from the Movement of Trees

    PubMed Central

    McGarry, Scott; Knight, Chris

    2011-01-01

    Over the last decade, wireless devices have decreased in size and power requirements. These devices generally use batteries as a power source but can employ additional means of power, such as solar, thermal or wind energy. However, sensor networks are often deployed in conditions of minimal lighting and thermal gradient such as densely wooded environments, where even normal wind energy harvesting is limited. In these cases a possible source of energy is from the motion of the trees themselves. We investigated the amount of energy and power available from the motion of a tree in a sheltered position, during Beaufort 4 winds. We measured the work performed by the tree to lift a mass, we measured horizontal acceleration of free movement, and we determined the angular deflection of the movement of the tree trunk, to determine the energy and power available to various types of harvesting devices. We found that the amount of power available from the tree, as demonstrated by lifting a mass, compares favourably with the power required to run a wireless sensor node. PMID:22163695

  11. Development of an innovative energy harvesting device using MFC bimorphs

    NASA Astrophysics Data System (ADS)

    Tabesh, Majid; Nguyen, The; Motlagh, Amin M.; Elahinia, Mohammad

    2009-03-01

    Recently, widespread attention has been directed towards scavenging energy from renewable sources such as wind. Piezoelectric materials are particularly suitable for capturing energy from motion since mechanical deflection of a piezoelectric specimen results in an electric displacement. This electricity can be stored in batteries or used to power portable devices. The present work is on the development of a device that can generate electricity from an oscillating motion using a piezoelectric Macro Fiber Composite (MFC) bimorph. Previously, bimorph vibration was created by a rotating or reciprocating part hitting the bimorph tip; whereas in the current work, base reciprocation excites the piezoelectric bimorph. The device includes a fan blade, which aligns with the direction of the wind and moves a rod in vertical direction. The microfiber composite beams (MFC) are attached to the upper end of the rod. Reciprocation of the rod acts as a harmonic excitation for the MFC bimorphs. Vibration of the MFCs produces electricity which is stored in a capacitor to be used to power electronic systems such as different types of remote sensors. Simulation and experimental results have been compared. In vibration and wind tunnel experiments, comparable amounts of energy were collected and accumulated in a capacitor.

  12. Lowest of AC-DC power output for electrostrictive polymers energy harvesting systems

    NASA Astrophysics Data System (ADS)

    Meddad, Mounir; Eddiai, Adil; Hajjaji, Abdelowahed; Guyomar, Daniel; Belkhiat, Saad; Boughaleb, Yahia; Chérif, Aida

    2013-11-01

    Advances in technology led to the development of electronic circuits and sensors with extremely low electricity consumption. At the same time, structural health monitoring, technology and intelligent integrated systems created a need for wireless sensors in hard to reach places in aerospace vehicles and large civil engineering structures. Powering sensors with energy harvesters eliminates the need to replace batteries on a regular basis. Scientists have been forced to search for new power source that are able to harvested energy from their surrounding environment (sunlight, temperature gradients etc.). Electrostrictive polymer belonging to the family of electro-active polymers, offer unique properties for the electromechanical transducer technology has been of particular interest over the last few years in order to replace conventional techniques such as those based on piezoelectric or electromagnetic, these materials are highly attractive for their low-density, with large strain capability that can be as high as two orders of magnitude greater than the striction-limited, rigid and fragile electroactive ceramics. Electrostrictive polymers sensors respond to vibration with an ac output signal, one of the most important objectives of the electronic interface is to realize the required AC-DC conversion. The goal of this paper is to design an active, high efficiency power doubler converter for electrostrictive polymers exclusively uses a fraction of the harvested energy to supply its active devices. The simulation results show that it is possible to obtain a maximum efficiency of the AC-DC converter equal to 80%. Premiliminary experimental measurements were performed and the results obtained are in good agreement with simulations.

  13. Investigating the energy harvesting potential of ferro-fluids sloshing in base-excited containers

    NASA Astrophysics Data System (ADS)

    Bibo, A.; Masana, R.; King, A.; Li, G.; Daqaq, M. F.

    2012-04-01

    This paper investigates the potential of designing a vibratory energy harvester which utilizes a ferrofluid sloshing in a seismically excited tank to generate electric power. Mechanical vibrations change the orientational order of the magnetic dipoles in the ferrofluid and create a varying magnetic flux which induces an electromotive force in a coil wound around the tank, thereby generating an electric current according to Faraday's law. Several experiments are performed on a cylindrical container of volume 5x10-5 m3 carrying a ferrofluid and subjected to different base excitation levels. Initial results illustrate that the proposed device can be excited at one or multiple modal frequencies depending on the container's size, can exhibit tunable characteristics by adjusting the external magnetic field, and currently produces 28 mV of open-circuit voltage using a base excitation of 2.5 m/s2 at a frequency of 5.5 Hz.

  14. Vibrational energy levels of CH5(+).

    PubMed

    Wang, Xiao-Gang; Carrington, Tucker

    2008-12-21

    We present a parallelized contracted basis-iterative method for calculating numerically exact vibrational energy levels of CH(5)(+) (a 12-dimensional calculation). We use Radau polyspherical coordinates and basis functions that are products of eigenfunctions of bend and stretch Hamiltonians. The bend eigenfunctions are computed in a nondirect product basis with more than 200x10(6) functions and the stretch functions are computed in a product potential optimized discrete variable basis. The basis functions have amplitude in all of the 120 equivalent minima. Many low-lying levels are well converged. We find that the energy level pattern is determined in part by the curvature and width of the valley connecting the minima and in part by the slope of the walls of this valley but does not depend on the height or shape of the barriers separating the minima. PMID:19102521

  15. A nonlinear stretching based electromagnetic energy harvester on FR4 for wideband operation

    NASA Astrophysics Data System (ADS)

    Mallick, Dhiman; Amann, Andreas; Roy, Saibal

    2015-01-01

    We report a nonlinear stretching-based electromagnetic energy harvester using FR4 as a vibrating spring material due to its low Young’s modulus. We show analytically that the nonlinearity is caused by the stretching, in addition to the bending, of the specially designed spring arms; this gives rise to a wider half-power bandwidth of 10 Hz at 1 g acceleration, which is almost 5 times higher than that of a comparable linear counterpart. The output spectra show the first reported experimental evidence of a symmetry broken nonlinear secondary peak in a single potential well system at frequencies close to the nonlinear jump frequency, which may appear to be due to the dynamic symmetry breaking of the oscillator or to the inherent asymmetry of the built prototype. The presence of this secondary peak is useful in generating a significant amount of power compared to the symmetric states, producing ˜3 times more power at the secondary peak than the nearby symmetric states. 110% of the peak power obtained for 0.5 g acceleration is achieved at the secondary peak during the frequency up-sweep. The experimental results are compared with a deterministic numerical model based on the Duffing oscillator, and we include a qualitative discussion on the influence of noise in an experimental energy harvesting system.

  16. Electrohydroelastic dynamics of macro-fiber composites for underwater energy harvesting from base excitation

    NASA Astrophysics Data System (ADS)

    Shahab, S.; Erturk, A.

    2014-04-01

    Low-power electronic systems are used in various underwater applications ranging from naval sensor networks to ecological monitoring for sustainability. In this work, underwater base excitation of cantilevers made of Macro-Fiber Composite (MFC) piezoelectric structures is explored experimentally and theoretically to harvest energy for such wireless electronic components toward enabling self-powered underwater systems. Bimorph cantilevers made of MFCs with different length-to-width ratios and same thickness are tested in air and under water to characterize the change in natural frequency and damping with a focus on the fundamental bending mode. The real and imaginary parts of hydrodynamic frequency response functions are identified and corrected based on this set of experiments. An electrohydroelastic model is developed and experimentally validated for predicting the power delivered to an electrical load as well as the shunted underwater vibration response under base excitation. Variations of the electrical power output with excitation frequency and load resistance are obtained for different length-to-width ratios. Underwater power density results are reported and compared with their in-air counterparts. Specifically a nonlinear dependence of the power density to the cantilever width is reported for energy harvesting from underwater base excitation.

  17. Impulse excitation of piezoelectric bimorphs for energy harvesting: a dimensionless model

    NASA Astrophysics Data System (ADS)

    Pozzi, Michele

    2014-04-01

    Energy harvesting (EH) is a multidisciplinary research area, involving physics, materials science and engineering, with the objective of providing renewable sources of power sufficient to operate targeted low-power applications. Piezoelectric transducers are often used for inertial vibrational as well as direct excitation EH. However, due to the stiffness of the most common material (PZT), compact and light-weight harvesters have high resonant frequencies, making them inefficient at extracting low-frequency power from the environment. The technique of frequency up-conversion, in the form of either plucking or impulse excitation, aims to bridge this frequency gap. In this paper, the technique is modelled analytically with focus on impulse excitation via impact or shock. An analytical model is developed in a standard way starting from the Euler-Bernoulli beam equations adapted to a piezoelectric bimorph. A set of dimensionless variables and parameters is defined and a system of differential equations derived. Here the system is solved numerically for a wide range of the two group parameters present, covering piezoelectric coupling strength between PVDF and PMN-PT. One major result is that the strength of the coupling strongly affects the timescale of the process, but has only a minor effect on the total energy converted. The model can be readily adapted to different excitation profiles.

  18. Lumped model of bending electrostrictive transducers for energy harvesting

    NASA Astrophysics Data System (ADS)

    Lallart, Mickaël; Wang, Liuqing; Richard, Claude; Petit, Lionel; Guyomar, Daniel

    2014-09-01

    Electroactive polymers, and more particular dielectric electrostrictive polymers, have been of great interest over the last decade thanks to their flexibility, easy processing, conformability, and relatively low cost. Their application as actuators, sensors, or energy harvesters suits very well to systems that require high strain. In particular, bending devices are an important application field of such materials, especially when dealing with devices subjected to air or liquid flows. Nevertheless, the design of such devices and their associated electrical interface still requires starting from the local aspects of the electrostrictive effect. In order to provide a simple yet efficient design tool, this paper exposes a simple lumped model for electrostrictive dielectric devices working under flexural solicitation. Based on the analysis of the converted energy with respect to the provided energy, it is shown that electrostrictive systems can easily be reduced to a simple spring-mass-damper system with a quadratic dependence to the applied voltage on the mechanical side and to a current source controlled by the applied voltage with a capacitive internal impedance on the electrical side. Experimental measurements carried out to evaluate the mechanical to electrical conversion effect as well as the energy harvesting abilities in such systems also validate the proposed approach.

  19. Bio-kinetic energy harvesting using electroactive polymers

    NASA Astrophysics Data System (ADS)

    Slade, Jeremiah R.; Bowman, Jeremy; Kornbluh, Roy

    2012-06-01

    In hybrid vehicles, electric motors are used on each wheel to not only propel the car but also to decelerate the car by acting as generators. In the case of the human body, muscles spend about half of their time acting as a brake, absorbing energy, or doing what is known as negative work. Using dielectric elastomers it is possible to use the "braking" phases of walking to generate power without restricting or fatiguing the Warfighter. Infoscitex and SRI have developed and demonstrated methods for using electroactive polymers (EAPs) to tap into the negative work generated at the knee during the deceleration phase of the human gait cycle and convert it into electrical power that can be used to support wearable information systems, including display and communication technologies. The specific class of EAP that has been selected for these applications is termed dielectric elastomers. Because dielectric elastomers dissipate very little mechanical energy into heat, greater amounts of energy can be converted into electricity than by any other method. The long term vision of this concept is to have EAP energy harvesting cells located in components of the Warfighter ensemble, such as the boot uppers, knee pads and eventually even the clothing itself. By properly locating EAPs at these sites it will be possible to not only harvest power from the negative work phase but to actually reduce the amount of work done by the Warfighter's muscles during this phase, thereby reducing fatigue and minimizing the forces transmitted to the joints.

  20. Energy harvesting using AC machines with high effective pole count

    NASA Astrophysics Data System (ADS)

    Geiger, Richard Theodore

    In this thesis, ways to improve the power conversion of rotating generators at low rotor speeds in energy harvesting applications were investigated. One method is to increase the pole count, which increases the generator back-emf without also increasing the I2R losses, thereby increasing both torque density and conversion efficiency. One machine topology that has a high effective pole count is a hybrid "stepper" machine. However, the large self inductance of these machines decreases their power factor and hence the maximum power that can be delivered to a load. This effect can be cancelled by the addition of capacitors in series with the stepper windings. A circuit was designed and implemented to automatically vary the series capacitance over the entire speed range investigated. The addition of the series capacitors improved the power output of the stepper machine by up to 700%. At low rotor speeds, with the addition of series capacitance, the power output of the hybrid "stepper" was more than 200% that of a similarly sized PMDC brushed motor. Finally, in this thesis a hybrid lumped parameter / finite element model was used to investigate the impact of number, shape and size of the rotor and stator teeth on machine performance. A typical off-the-shelf hybrid stepper machine has significant cogging torque by design. This cogging torque is a major problem in most small energy harvesting applications. In this thesis it was shown that the cogging and ripple torque can be dramatically reduced. These findings confirm that high-pole-count topologies, and specifically the hybrid stepper configuration, are an attractive choice for energy harvesting applications.

  1. Fabrication and characterization of free-standing thick-film piezoelectric cantilevers for energy harvesting

    NASA Astrophysics Data System (ADS)

    Kok, Swee-Leong; White, Neil M.; Harris, Nick R.

    2009-12-01

    Research into energy harvesting from ambient vibration sources has attracted great interest over the last few years, largely as a result of advances in the areas of wireless technology and low-power electronics. One of the mechanisms for converting mechanical vibration to electrical energy is the use of piezoelectric materials, typically operating as a cantilever in a bending mode, which generate a voltage across the electrodes when they are stressed. Typically, the piezoelectric materials are deposited on a non-electro-active substrate and are physically clamped at one end to a rigid base. The presence of the substrate does not contribute directly to the electrical output, but merely serves as a mechanical supporting platform, which can pose difficulties for integration with other microelectronic devices. The aim of this paper is to describe a novel thick-film free-standing cantilever structure that does not use a supporting platform and has the advantage of minimizing the movement constraints on the piezoelectric material, thereby maximizing the electrical output power. Two configurations of the composite cantilever structure were investigated: unimorph and multimorph. A unimorph consists of a pair of silver/palladium (Ag/Pd) electrodes sandwiching a laminar layer of lead zirconate titanate (PZT). A mulitmorph is an extended version of the unimorph with two pairs of Ag/Pd electrodes and three laminar sections of PZT.

  2. Modeling and evaluation of d33 mode piezoelectric energy harvesters

    NASA Astrophysics Data System (ADS)

    Kim, Seon-Bae; Park, Jung-Hyun; Kim, Seung-Hyun; Ahn, Hosang; Wikle, H. Clyde; Kim, Dong-Joo

    2012-10-01

    A microfabricated d33 mode piezoelectric energy harvester (PEH) with unimorph cantilever structure patterned by interdigital electrodes was designed, fabricated and analyzed. New analytical expression for estimating output power was developed based on the modification of conformal mapping and Roundy's analytical modeling. The results using the new analytical equation can explain the effects of electrode design on the output power of d33 PEH. The output power increases with a longer finger width to a certain limit, and then decreases presumably due to depoling and polarization reversal by charge injection and charged defects in a piezoelectric layer.

  3. An energy harvesting system surveyed for a variety of unattended electronic applications

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Choi, Kwangsik; Bauman, Scott; Salter, Thomas; Lowy, Daniel A.; Peckerar, Martin; Khandani, Mehdi Kalantari

    2013-01-01

    All energy-harvesting schemes require some form of "intermediate" storage - batteries or capacitors that reservoir energy harvested from the environment. There are a number of reasons for this requirement. Ambient energy fluctuates and intermediate storage smoothes out the impact of these fluctuations on the power delivered to a load. In addition, energy must be "conditioned" to be useful in a given application. It must be set to a certain voltage or made capable of delivering a desired current to load. In this article, a complete energy harvesting system including storage and conditioning electronics is described with a concentration on radio frequency (RF) harvesting. The system is capable of harvesting energy from a commercially available hand-held communication device, and exhibits an overall energy harvesting efficiency of 13.2%. Several potential applications have been investigated based on the performance of this system. Highlighted example applications include power sources for nodes in an architectural structural integrity monitor, and limb prosthesis.

  4. Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy.

    PubMed

    Lin, Long; Wang, Sihong; Xie, Yannan; Jing, Qingshen; Niu, Simiao; Hu, Youfan; Wang, Zhong Lin

    2013-06-12

    We introduce an innovative design of a disk triboelectric nanogenerator (TENG) with segmental structures for harvesting rotational mechanical energy. Based on a cyclic in-plane charge separation between the segments that have distinct triboelectric polarities, the disk TENG generates electricity with unique characteristics, which have been studied by conjunction of experimental results with finite element calculations. The role played by the segmentation number is studied for maximizing output. A distinct relationship between the rotation speed and the electrical output has been thoroughly investigated, which not only shows power enhancement at high speed but also illuminates its potential application as a self-powered angular speed sensor. Owing to the nonintermittent and ultrafast rotation-induced charge transfer, the disk TENG has been demonstrated as an efficient power source for instantaneously or even continuously driving electronic devices and/or charging an energy storage unit. This work presents a novel working mode of TENGs and opens up many potential applications of nanogenerators for harvesting even large-scale energy. PMID:23656350

  5. Electromechanical fatigue in IPMC under dynamic energy harvesting conditions

    NASA Astrophysics Data System (ADS)

    Krishnaswamy, Arvind; Roy Mahapatra, D.

    2011-04-01

    Ionic polymer-metal composites (IPMCs) are an interesting subset of smart, multi-functional materials that have shown promises in energy conversion technologies. Being electromechanically coupled, IPMCs can function as dynamic actuators and sensors, transducers for energy conversion and harvesting, as well as artificial muscles for medical and industrial applications. Like all natural materials, even IPMCs undergo fatigue under dynamic load conditions. Here, we investigate the electromechanical fatigue induced in the IPMCs due to the application of cyclic mechanical bending deformation under hydrodynamic energy harvesting condition. Considering the viscoelastic nature of the IPMC, we employ an analytical approach to modeling electromechanical fatigue primarily under the cyclic stresses induced in the membrane. The polymer-metal composite undergoes cyclic softening throughout the fatigue life without attaining a saturated state of charge migration. However, it results in (1) degradation of electromechanical performance; (2) nucleation and growth of microscopic cracks in the metal electrodes; (3) delamination of metal electrodes at the polymer-electrode interface. To understand these processes, we employ a phenomenological approach based on experimentally measured relaxation properties of the IPMC membrane. Electromechanical performance improves significantly with self-healing like properties for a certain range of relaxation time. This is due to reorientation of the backbone polymer chains which eventually leads to a regenerative process with increased charge transport.

  6. Investigating the energy harvesting capabilities of a hybrid ZnO nanowires/carbon fiber polymer composite beam.

    PubMed

    Masghouni, N; Burton, J; Philen, M K; Al-Haik, M

    2015-03-01

    Hybrid piezoelectric composite structures that are able to convert mechanical energy into electricity have gained growing attention in the past few years. In this work, an energy harvesting composite beam is developed by growing piezoelectric zinc oxide nanowires on the surface of carbon fiber prior to forming structural composites. The piezoelectric behavior of the composite beam was demonstrated under different vibration sources such as water bath sonicator and permanent magnet vibration shaker. The beam was excited at its fundamental natural frequency (43.2 Hz) and the open circuit voltage and the short circuit current were measured to be 3.1 mV and 23 nA, respectively. Upon connecting an optimal resistor (1.2 k?) in series with the beam a maximum power output 2.5 nW was achieved. PMID:25670370

  7. Power inversion design for ocean wave energy harvesting

    NASA Astrophysics Data System (ADS)

    Talebani, Anwar N.

    The needs for energy sources are increasing day by day because of several factors, such as oil depletion, and global climate change due to the higher level of CO2, so the exploration of various renewable energy sources is very promising area of study. The available ocean waves can be utilized as free source of energy as the water covers 70% of the earth surface. This thesis presents the ocean wave energy as a source of renewable energy. By addressing the problem of designing efficient power electronics system to deliver 5 KW from the induction generator to the grid with less possible losses and harmonics as possible and to control current fed to the grid to successfully harvest ocean wave energy. We design an AC-DC full bridge rectifier converter, and a DC-DC boost converter to harvest wave energy from AC to regulated DC. In order to increase the design efficiency, we need to increase the power factor from (0.5-0.6) to 1. This is accomplished by designing the boost converter with power factor correction in continues mode with RC circuit as an input to the boost converter power factor correction. This design results in a phase shift between the input current and voltage of the full bridge rectifier to generate a small reactive power. The reactive power is injected to the induction generator to maintain its functionality by generating a magnetic field in its stator. Next, we design a single-phase pulse width modulator full bridge voltage source DC-AC grid-tied mode inverter to harvest regulated DC wave energy to AC. The designed inverter is modulated by inner current loop, to control current injected to the grid with minimal filter component to maintain power quality at the grid. The simulation results show that our design successfully control the current level fed to the grid. It is noteworthy that the simulated efficiency is higher than the calculated one since we used an ideal switch in the simulated circuit.

  8. Dynamic Response of a Pendulum-Driven Energy Harvester in the Presence of Noise

    NASA Astrophysics Data System (ADS)

    Borowiec, M.; Litak, G.; Rysak, A.; Mitcheson, P. D.; Toh, T. T.

    2013-12-01

    This paper presents time- and frequency-domain analyses of a previously reported wave energy harvesting system in the presence of noise. The energy harvester comprises a pendulum that drives two DC generators connected electrically in series. A mechanical model of the wave energy harvester is developed and simulated in Matlab. The output voltage and output power of the energy harvester is evaluated and compared for two input signal types: a deterministic case and a stochastic case. The latter consists of a white noise random excitation source that is bounded in amplitude at a fixed standard deviation. Simulation results indicate that a stochastic input signal shows considerable influence on the output characteristics of the energy harvester. The simulation models developed in this paper can be used to complement the design of resonant frequency tuning electronics for energy harvesting systems.

  9. Acoustic noise and pneumatic wave vortices energy harvesting on highways

    NASA Astrophysics Data System (ADS)

    Pogacian, S.; Bot, A.; Zotoiu, D.

    2012-02-01

    This paper is aimed to present the structure and the principle of a energy harvesting system that uses the air movement emanated from passing traffic to produce and accumulate electrical energy. Each of the system's elements consists of a inertial mass panel which oscillate when driving cars pass. The panel is attached to a linear electromagnetic mini generator (or/and some piezo electric micro generators) and at the time of passing, it produces energy which is store it in a supercapacitor or in a rechargeable battery. The concept can be applied to busy roads, and to high-frequented rail networks and it can work with street and road lighting, information panels and monitoring devices.

  10. [The influence of posture on transmission and absorption of vibration energy in whole body vibration exercise].

    PubMed

    Berschin, G; Sommer, H-M

    2010-03-01

    Muscle exercise using whole body vibration platforms is well known as an alternative physical exercise in therapy as well as in high performance sports. Various studies could show an effectiveness in particular to improve maximal strength and springiness. Using these platforms there is no consideration to posture although the damage potential of vibration stress i. e. on intervertebral discs is well-known. Therefore the effect of posture on the transmission and absorption of vibration loads in bipedal standing was examined in a study with 20 sport students. They were exposed to a whole body vibration load in bipedal standing at a vibration frequency of 25 Hz. The transmission of energy was measured at the head in different postural positions. An average transmission of 9 % was measured in spontaneous bipedal standing. It significantly decreased with gradual changes of posture. After 6 weeks posture conditioning exercise this effect was significantly improved. In conclusion different posture in bipedal standing implies not only different energy absorption but also different effects on muscle performance which can explain the partly inconsistent results after vibration exercise. In addition whole body vibration exercise in a prone or sitting position may increase the risk of overload and should be avoided because of reduced energy absorption capacity. PMID:20229446

  11. Proceedings of the ASME 2012 International Design Engineering Technical Conferences & Conference on Mechanical Vibration and Noise

    E-print Network

    Feeny, Brian

    on Mechanical Vibration and Noise IDETC/VIB 2012 August 12-15, 2012, Chicago, IL, USA DETC2012 to harvest energy from a variety of sources such as ambient vibrations, earthquake, low frequency seismic

  12. An Optimal Energy Allocation Algorithm for Energy Harvesting Wireless Sensor Networks

    E-print Network

    Wong, Vincent

    by enabling the wireless sensor nodes to replenish energy from ambient sources, such as solar, wind decision would affect the outcome in the future. Some of the recent works on energy harvesting WSNs have-varying fading channel and energy source by using DP. In [10], a throughput-optimal energy allocation policy

  13. Efficient Energy Management Policies for Networks with Energy Harvesting Sensor Nodes

    E-print Network

    Sharma, Vinod

    Efficient Energy Management Policies for Networks with Energy Harvesting Sensor Nodes Vinod Sharma at that time at the node. For such networks we develop efficient energy management policies. First for the largest possible data rate. Next we obtain energy management policies which minimize the mean delay

  14. Fabrication of High Temperature Thermoelectric Energy Harvesters for Wireless Sensors

    NASA Astrophysics Data System (ADS)

    Köhler, J. E.; Heijl, R.; Staaf, L. G. H.; Zenkic, S.; Svenman, E.; Palmqvist, A. E. C.; Enoksson, P.

    2013-12-01

    Implementing energy harvesters and wireless sensors in jet engines could simplify development and decrease costs. A thermoelectric energy harvester could be placed in the cooling channels where the temperature is between 500-900°C. This paper covers the synthesis of suitable materials and the design and fabrication of a thermoelectric module. The material choices and other design variables were done from an analytic model by numerical analysis. The module was optimized for 600-800°C with the materials Ba8Ga16Ge30 and La-doped Yb14MnSb11, both having the highest measured zT value in this region. The design goal was to be able to maintain a temperature gradient of at least 200°C with high power output. The La-doped Yb14MnSb11 was synthesized and its structure confirmed by x-ray diffraction. Measurement of properties of this material was not possible due to insufficient size of the crystals. Ba8Ga16Ge30 was synthesized and resulted in an approximated zT value of 0.83 at 700°C. Calculations based on a module with 17 couples gave a power output of 1100mW/g or 600mW/cm2 with a temperature gradient of 200K.

  15. Thermoelectric energy harvesting for a solid waste processing toilet

    NASA Astrophysics Data System (ADS)

    Stokes, C. David; Baldasaro, Nicholas G.; Bulman, Gary E.; Stoner, Brian R.

    2014-06-01

    Over 2.5 billion people do not have access to safe and effective sanitation. Without a sanitary sewer infrastructure, self-contained modular systems can provide solutions for these people in the developing world and remote areas. Our team is building a better toilet that processes human waste into burnable fuel and disinfects the liquid waste. The toilet employs energy harvesting to produce electricity and does not require external electrical power or consumable materials. RTI has partnered with Colorado State University, Duke University, and Roca Sanitario under a Bill and Melinda Gates Foundation Reinvent the Toilet Challenge (RTTC) grant to develop an advanced stand-alone, self-sufficient toilet to effectively process solid and liquid waste. The system operates through the following steps: 1) Solid-liquid separation, 2) Solid waste drying and sizing, 3) Solid waste combustion, and 4) Liquid waste disinfection. Thermoelectric energy harvesting is a key component to the system and provides the electric power for autonomous operation. A portion of the exhaust heat is captured through finned heat-sinks and converted to electricity by thermoelectric (TE) devices to provide power for the electrochemical treatment of the liquid waste, pumps, blowers, combustion ignition, and controls.

  16. Comparisons of two methods of harvesting biomass for energy

    Microsoft Academic Search

    W. F. Watson; B. J. Stokes; I. W. Sabelle

    1986-01-01

    Two harvesting methods for utilization of understory biomass were tested against a conventional harvesting method to determine relative costs. The conventional harvesting method tested removed all pine 6 inches diameter at breast height (DBH) and larger and hardwood sawlogs as tree length logs. The two intensive harvesting methods were a one-pass and a two-pass method. In the one-pass method, all

  17. Analysis and modeling of a piezoelectric energy harvester for powering a wireless sensor

    NASA Astrophysics Data System (ADS)

    Bassetti, Marco; Braghin, Francesco; Milani, Damiano; Ripamonti, Francesco; Tomasini, Gisella

    2013-04-01

    The work presented aims at modeling, designing and implementing an energy harvesting system capable of generating electricity from environmental vibrations. Subject of the analysis is a piezoelectric bimorph; this particular transducer, composed of two layers of piezoceramic material, is clamped in a cantilever configuration and is dynamically bent due to vibrations. The resulting deformation ensures enough current to power the electronic circuit of a wireless sensor. An analytical model is adopted, that describes the dynamics of the mechanical system using an electrical duality. In particular the coupling of the variables is represented by an equivalent transformer. The obtainable voltage and power are investigated, focusing on the influence of the electric load on the performance of the conversion process. In addition, to overcome the limitations related to the analytical study, a finite element model is provided, capable of simulating the behavior of the system more accurately. Finally, both models are validated by means of experimental tests, showing the mutual influence between the mechanical and the electrical domain.

  18. Energy harvesting with stacked dielectric elastomer transducers: Nonlinear theory, optimization, and linearized scaling law

    NASA Astrophysics Data System (ADS)

    Tutcuoglu, A.; Majidi, C.

    2014-12-01

    Using principles of damped harmonic oscillation with continuous media, we examine electrostatic energy harvesting with a "soft-matter" array of dielectric elastomer (DE) transducers. The array is composed of infinitely thin and deformable electrodes separated by layers of insulating elastomer. During vibration, it deforms longitudinally, resulting in a change in the capacitance and electrical enthalpy of the charged electrodes. Depending on the phase of electrostatic loading, the DE array can function as either an actuator that amplifies small vibrations or a generator that converts these external excitations into electrical power. Both cases are addressed with a comprehensive theory that accounts for the influence of viscoelasticity, dielectric breakdown, and electromechanical coupling induced by Maxwell stress. In the case of a linearized Kelvin-Voigt model of the dielectric, we obtain a closed-form estimate for the electrical power output and a scaling law for DE generator design. For the complete nonlinear model, we obtain the optimal electrostatic voltage input for maximum electrical power output.

  19. Novel motion-doubling mechanism for improved piezoelectric energy-harvesting performance

    NASA Astrophysics Data System (ADS)

    Rastegar, J.; Murray, R.; Pereira, C.

    2012-04-01

    A novel technique is presented for transmitting forces to piezoelectric elements in electrical energy harvesting applications. The approach results in amplifying any force transmitted to the piezoelectric element. Additionally, the frequency of any cyclical input force is doubled. The increased performance and scalability of the technique make possible its employment in a wide variety of energy harvesting applications. The methods and designs may be mated to a number of intermediate energy harvesting techniques, which are discussed in detail with analysis of complete energy harvesting devices including specific applications in munitions.

  20. Modeling of piezo-SMA composites for thermal energy harvester

    NASA Astrophysics Data System (ADS)

    Namli, Onur Cem; Lee, Jae-Kon; Taya, Minoru

    2007-04-01

    A hydrid composite comprised of shape memory alloy (SMA) fibers with piezoelectric ceramic is designed to transform thermomechanical energy into electrical energy that can be stored or used to power other devices. SMA fiber, after its shape is memorized and prestrained at martensitic phase, extends to its original length upon heating to austenitic finish temperature. The compressive residual stress of the composite is induced at austenitic phase, and then by cooling to martensitic finish temperature, SMA will shrink and the residual stress will reduce. By direct effect of the piezoelectric matrix material the mechanical energy which was induced by temperature change can be converted to electrical energy. 1-D and 3-D models for the energy harvesting mechanism of the composite have been proposed. Eshelby formulation with Mori-Tanaka mean field theory modification is used to determine the effective thermo-electro-mechanical properties of the composite. Attention is focused on the constrained recovery behavior of SMA phase in this study. Electrical model is examined and the electrical energy stored in the piezoelectric matrix as a result of stress fluctuation is estimated. Numerical example is given that illustrate the ability of the composite to convert the thermomechanical energy into electrical energy.

  1. Energy harvesting and wireless energy transmission for powering SHM sensor nodes

    SciTech Connect

    Taylor, Stuart G [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory

    2009-01-01

    In this paper, we present a feasibility study of using energy harvesting and wireless energy transmission systems to operate SHM sensor nodes. The energy harvesting approach examines the use of kinetic energy harvesters to scavenge energy from the ambient sources. Acceleration measurements were made on a bridge, and serve as the basis for a series of laboratory experiments that replicate these sources using an electromagnetic shaker. We also investigated the use of wireless energy transmission systems to operate SHM sensor nodes. The goal of this investigation is to develop SHM sensing systems which can be permanently embedded in the host structure and do not require on-board power sources. This paper summarizes considerations needed to design such systems, experimental procedures and results, and additional issues that can be used as guidelines for future investigations.

  2. Integrated Solar-Energy-Harvesting and -Storage Device

    NASA Technical Reports Server (NTRS)

    whitacre, Jay; Fleurial, Jean-Pierre; Mojarradi, Mohammed; Johnson, Travis; Ryan, Margaret Amy; Bugga, Ratnakumar; West, William; Surampudi, Subbarao; Blosiu, Julian

    2004-01-01

    A modular, integrated, completely solid-state system designed to harvest and store solar energy is under development. Called the power tile, the hybrid device consists of a photovoltaic cell, a battery, a thermoelectric device, and a charge-control circuit that are heterogeneously integrated to maximize specific energy capacity and efficiency. Power tiles could be used in a variety of space and terrestrial environments and would be designed to function with maximum efficiency in the presence of anticipated temperatures, temperature gradients, and cycles of sunlight and shadow. Because they are modular in nature, one could use a single power tile or could construct an array of as many tiles as needed. If multiple tiles are used in an array, the distributed and redundant nature of the charge control and distribution hardware provides an extremely fault-tolerant system. The figure presents a schematic view of the device.

  3. Improvement of Pyroelectric Cells for Thermal Energy Harvesting

    PubMed Central

    Hsiao, Chun-Ching; Siao, An-Shen; Ciou, Jing-Chih

    2012-01-01

    This study proposes trenching piezoelectric (PZT) material in a thicker PZT pyroelectric cell to improve the temperature variation rate to enhance the efficiency of thermal energy-harvesting conversion by pyroelectricity. A thicker pyroelectric cell is beneficial in generating electricity pyroelectrically, but it hinders rapid temperature variations. Therefore, the PZT sheet was fabricated to produce deeper trenches to cause lateral temperature gradients induced by the trenched electrode, enhancing the temperature variation rate under homogeneous heat irradiation. When the trenched electrode type with an electrode width of 200 ?m and a cutting depth of 150 ?m was used to fabricate a PZT pyroelectric cell with a 200 ?m thick PZT sheet, the temperature variation rate was improved by about 55%. Therefore, the trenched electrode design did indeed enhance the temperature variation rate and the efficiency of pyroelectric energy converters. PMID:22368484

  4. Flutter-driven triboelectrification for harvesting wind energy.

    PubMed

    Bae, Jihyun; Lee, Jeongsu; Kim, SeongMin; Ha, Jaewook; Lee, Byoung-Sun; Park, YoungJun; Choong, Chweelin; Kim, Jin-Baek; Wang, Zhong Lin; Kim, Ho-Young; Park, Jong-Jin; Chung, U-In

    2014-01-01

    Technologies to harvest electrical energy from wind have vast potentials because wind is one of the cleanest and most sustainable energy sources that nature provides. Here we propose a flutter-driven triboelectric generator that uses contact electrification caused by the self-sustained oscillation of flags. We study the coupled interaction between a fluttering flexible flag and a rigid plate. In doing so, we find three distinct contact modes: single, double and chaotic. The flutter-driven triboelectric generator having small dimensions of 7.5 × 5?cm at wind speed of 15?ms(-1) exhibits high-electrical performances: an instantaneous output voltage of 200?V and a current of 60??A with a high frequency of 158?Hz, giving an average power density of approximately 0.86?mW. The flutter-driven triboelectric generation is a promising technology to drive electric devices in the outdoor environments in a sustainable manner. PMID:25247474

  5. Optimal Transmission Policies over Vector Gaussian Broadcast Channels with Energy Harvesting

    E-print Network

    Ulukus, Sennur

    Optimal Transmission Policies over Vector Gaussian Broadcast Channels with Energy Harvesting framework. In [2], energy management policies which stabilize the data queue This work was supported by NSF, University of Wisconsin-Madison, Madison, WI 53706 Abstract--We consider an energy harvesting transmitter

  6. Multiple Access and Two-way Channels with Energy Harvesting and Bi-directional

    E-print Network

    Yener, Aylin

    Multiple Access and Two-way Channels with Energy Harvesting and Bi-directional Energy Cooperation-dimensional directional water-filling algorithm. It is observed that in the multiple access channel, a node either@ee.psu.edu Abstract--This paper considers the multiple access and two- way channels with energy harvesting

  7. Supporting Quality of Service in Energy Harvesting Wireless Links: The Effective Capacity Analysis

    E-print Network

    Supporting Quality of Service in Energy Harvesting Wireless Links: The Effective Capacity Analysis}@tsinghua.edu.cn Abstract--This paper studies the quality of service (QoS) performance of wireless links powered by energy limitations, providing QoS guarantee for users by energy harvesting technology is a challenging issue

  8. Impact of Mobile Transmitter Sources on Radio Frequency Wireless Energy Harvesting

    E-print Network

    Sanyal, Sugata

    1 Impact of Mobile Transmitter Sources on Radio Frequency Wireless Energy Harvesting Antonio Organization, Tata Consultancy Services, India. Abstract--Wireless energy harvesting sensor networks consti battery resource, but are able to re-charge themselves through directed electromagnetic energy transfer

  9. Optimization Intensive Energy Harvesting Mahsan Rofouei, Mohammad Ali Ghodrat, Miodrag Potkonjak

    E-print Network

    Potkonjak, Miodrag

    Optimization Intensive Energy Harvesting Mahsan Rofouei, Mohammad Ali Ghodrat, Miodrag Potkonjak of primary limiting factors of MSs is their energy sensitivity. In order to overcome this limitation, we have developed an optimization intensive approach for energy harvesting. Our goal is to size and position

  10. Adaptive Control of Duty Cycling in Energy-Harvesting Wireless Sensor Networks

    E-print Network

    Massachusetts at Amherst, University of

    Adaptive Control of Duty Cycling in Energy-Harvesting Wireless Sensor Networks Christopher M wireless sensor network deployments are using harvested environmental energy to extend system lifetime. Because the temporal profiles of such energy sources exhibit great variability due to dynamic weather

  11. Approximate Response Time for Fixed Priority Real-Time Systems with Energy-Harvesting

    E-print Network

    Boyer, Edmond

    Approximate Response Time for Fixed Priority Real-Time Systems with Energy-Harvesting Yasmina sufficient schedulability tests for fixed-priority pre-emptive scheduling of a real-time system under energy constraints. In this problem, energy is harvested from the ambient environment and used to replenish a storage

  12. Adapting Task Utility in Externally Triggered Energy Harvesting Wireless Sensing Systems

    E-print Network

    Simunic, Tajana

    Adapting Task Utility in Externally Triggered Energy Harvesting Wireless Sensing Systems Jamie tajana@ucsd.edu Abstract--Energy harvesting sensor nodes eliminate the need for post-deployment physical the utility of their tasks to accommodate the energy availability. For example, on sunny days, a solar

  13. INTRODUCTION Energy harvesting is the transformation of ambient energy present in

    E-print Network

    Sóbester, András

    into electrical energy. This energy is derived from different external sources such as solar power, thermal energy is to improve the performance of the linear harvesters by introducing a periodic time-varying co of Infrastructure Systems vol. 14, pp. 64-79, 2008. [2] R. B. Y. C.B. Williams, "Analysis of a micro

  14. Fluid-Solid-Electric Lock-In of Energy-Harvesting Piezoelectric Flags

    NASA Astrophysics Data System (ADS)

    Xia, Yifan; Michelin, Sébastien; Doaré, Olivier

    2015-01-01

    The spontaneous flapping of a flag in a steady flow can be used to power an output circuit using piezoelectric elements positioned at its surface. Here, we study numerically the effect of inductive circuits on the dynamics of this fluid-solid-electric system and on its energy-harvesting efficiency. In particular, a destabilization of the system is identified, leading to energy harvesting at lower flow velocities. Also, a frequency lock-in between the flag and the circuit is shown to significantly enhance the system's harvesting efficiency. These results suggest promising efficiency enhancements of such flow-energy harvesters through the output circuit optimization.

  15. Modeling and experimental characterization of a fluttering windbelt for energy harvesting

    NASA Astrophysics Data System (ADS)

    Arroyo, E.; Foong, S.; Wood, K. L.

    2014-11-01

    Wind energy harvesters based on fluttering offer a valuable and efficient alternative to the traditional wind turbines. A longer life expectancy and cheaper fabrication is attained through the absence of gears or bearings. This article presents the theoretical and experimental study of a novel windbelt-based energy harvester, designed to harvest from continuously changing low-speed winds. A theoretical model is derived to explore the scaling effect on the critical flutter frequency, and experimental results validate the theoretical predictions.

  16. Piezoelectric Artificial Kelp: Experimentally Validated Parameter Optimization of a Quasi-Static, Flow-Driven Energy Harvester

    E-print Network

    Pankonien, Alexander Morgan

    2011-10-21

    Piezoelectric energy harvesting is the process of taking an external mechanical input and converting it directly into electrical energy via the piezoelectric effect. To determine the power created by a piezoelectric energy harvester, a specific...

  17. High Frequency Supercapacitors for Piezo-based Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Ervin, Matthew; Pereira, Carlos; Miller, John; Outlaw, Ronald; Rastegar, Jay; Murray, Richard

    2013-03-01

    Energy harvesting is being investigated as an alternative to batteries for powering munition guidance and fuzing functions during flight. A piezoelectric system that generates energy from the oscillation of a mass on a spring (set in motion by the launch acceleration) is being developed. Original designs stored this energy in an electrolytic capacitor for use during flight. Here we replace the electrolytic capacitor with a smaller, lighter, and potentially more reliable electrochemical double layer capacitor (aka, supercapacitor). The potential problems with using supercapacitors in this application are that the piezoelectric output greatly exceeds the supercapacitor electrolyte breakdown voltage, and the frequency greatly exceeds the operating frequency of commercial supercapacitors. Here we have investigated the use of ultrafast vertically oriented graphene array-based supercapacitors for storing the energy in this application. We find that the electrolyte breakdown is not a serious limitation as it is either kinetically limited by the relatively high frequency of the piezoelectric output, or it is overcome by the self-healing nature of supercapacitors. We also find that these supercapacitors have sufficient dynamic response to efficiently store the generated energy.

  18. Infrared Solar Energy Harvesting using Nano-Rectennas

    E-print Network

    Sayed, Islam E Hashem

    2015-01-01

    Rectennas formed from nanodipole antennas terminated by plasmonic metal-insulator-metal (MIM) travelling wave transmission line rectifiers are developed for ambient thermal energy harvesting at 30 THz. The transmission lines are formed from two strips coupled either vertically or laterally. A systematic design approach is presented, that shows how different components can be integrated with each other with maximum radiation receiving nantenna efficiency, maximum coupling efficiency between nantenna and rectifier, and maximum MIM diode rectifier efficiency. The tunneling current of the rectifier is calculated using the transfer matrix method (TMM) and the nonequilibrium Green's function (NEGF). The figures of merit of the rectifier are analyzed, and the effect of the metals and insulator choices on these merits is investigated. A detailed parametric study of the coupled strips plasmonic transmission lines is presented and thoroughly discussed. The overall efficiencies of the proposed travelling wave rectennas ...

  19. Piezoelectric energy harvester interface with real-time MPPT

    NASA Astrophysics Data System (ADS)

    Elliott, A. D. T.; Mitcheson, P. D.

    2014-11-01

    Power of resonant piezoelectric harvesters can be severely limited if the damping force cannot be dynamically altered as the mechanical excitation level changes. The singlesupply pre-biasing (SSPB) technique enables the Coulomb damping force to be set by a single voltage and so by varying that voltage, real-time adaptation to variations in the mechanical force can be implemented. Similarly the conduction angle of a diode bridge rectifier circuit can be altered by changing the biasing voltage applied. This paper presents a method of achieving this by altering the amount of energy transferred from the pre-biasing capacitor used in SSPB and the diode bridge rectifier to a storage battery via a buck converter. The control system was implemented on a FPGA and consumed 50 ?W.

  20. Plasmonic Ag nanostructures on thin substrates for enhanced energy harvesting

    NASA Astrophysics Data System (ADS)

    Osgood, R. M.; Giardini, S. A.; Carlson, J. B.; Gear, C.; Diest, K.; Rothschild, M.; Fernandes, G. E.; Xu, J.; Kooi, S.; Periasamy, P.; O'Hayre, R.; Parilla, P.; Berry, J.; Ginley, D.

    2013-09-01

    Nanoparticles and nanostructures with plasmonic resonances are currently being employed to enhance the efficiency of solar cells. Ag stripe arrays have been shown theoretically to enhance the short-circuit current of thin silicon layers. Such Ag stripes are combined with 200 nm long and 60 nm wide "teeth", which act as nanoantennas, and form vertical rectifying metal-insulator-metal (MIM) nanostructures on metallic substrates coated with thin oxides, such as Nb/NbOx films. We characterize experimentally and theoretically the visible and near-infrared spectra of these "stripeteeth" arrays, which act as microantenna arrays for energy harvesting and detection, on silicon substrates. Modeling the stripe-teeth arrays predicts a substantial net a.c. voltage across the MIM diode, even when the stripe-teeth microrectenna arrays are illuminated at normal incidence.

  1. Nondestructive methods of integrating energy harvesting systems with structures

    NASA Astrophysics Data System (ADS)

    Inamdar, Sumedh; Zimowski, Krystian; Crawford, Richard; Wood, Kristin; Jensen, Dan

    2012-04-01

    Designing an attachment structure that is both novel and meets the system requirements can be a difficult task especially for inexperienced designers. This paper presents a design methodology for concept generation of a "parent/child" attachment system. The "child" is broadly defined as any device, part, or subsystem that will attach to any existing system, part, or device called the "parent." An inductive research process was used to study a variety of products, patents, and biological examples that exemplified the parent/child system. Common traits among these products were found and categorized as attachment principles in three different domains: mechanical, material, and field. The attachment principles within the mechanical domain and accompanying examples are the focus of this paper. As an example of the method, a case study of generating concepts for a bridge mounted wind energy harvester using the mechanical attachment principles derived from the methodology and TRIZ principles derived from Altshuller's matrix of contradictions is presented.

  2. Nondestructive methods of integrating energy harvesting systems for highway bridges

    NASA Astrophysics Data System (ADS)

    Inamdar, Sumedh; Zimowski, Krystian; Crawford, Richard; Wood, Kristin; Jensen, Dan

    2012-04-01

    Designing an attachment structure that is both novel and meets the system requirements can be a difficult task especially for inexperienced designers. This paper presents a design methodology for concept generation of a "parent/child" attachment system. The "child" is broadly defined as any device, part, or subsystem that will attach to any existing system, part, or device called the "parent." An inductive research process was used to study a variety of products, patents, and biological examples that exemplified the parent/child system. Common traits among these products were found and categorized as attachment principles in three different domains: mechanical, material, and field. The attachment principles within the mechanical domain and accompanying examples are the focus of this paper. As an example of the method, a case study of generating concepts for a bridge mounted wind energy harvester using the mechanical attachment principles derived from the methodology and TRIZ principles derived from Altshuller's matrix of contradictions is presented.

  3. Power Management Integrated Circuit for Indoor Photovoltaic Energy Harvesting System

    NASA Astrophysics Data System (ADS)

    Jain, Vipul

    In today's world, power dissipation is a main concern for battery operated mobile devices. Key design decisions are being governed by power rather than area/delay because power requirements are growing more stringent every year. Hence, a hybrid power management system is proposed, which uses both a solar panel to harvest energy from indoor lighting and a battery to power the load. The system tracks the maximum power point of the solar panel and regulates the battery and microcontroller output load voltages through the use of an on-chip switched-capacitor DC-DC converter. System performance is verified through simulation at the 180nm technology node and is made to be integrated on-chip with 0.25 second startup time, 79% efficiency, --8/+14% ripple on the load, an average 1micro A of quiescent current (3.7micro W of power) and total on-chip area of 1.8mm2 .

  4. Excitation of energy harvesters using stick-slip motion

    NASA Astrophysics Data System (ADS)

    Helseth, L. E.

    2014-08-01

    During the past decades a large number of energy harvesting systems with the ability to transform mechanical energy into electrical energy have been proposed, ranging from systems exhibiting pure sinusoidal motion to stochastic systems. However, to date little emphasis has been put on stick-slip motion as a method for excitation of energy harvesting systems. Stick-slip motion can be associated with both microscopic and macroscopic processes and is omnipresent. The motion can be characterized by two stages. In the first stage there is buildup of elastic energy with little associated motion, whereas in the second stage the elastic energy is released into kinetic energy. We study here the spectral signal characteristics of two different electrical generators excited by stick-slip motion: a piezoelectric macro fiber composite and a triboelectric generator. The force and the voltage generated during the motion were monitored, and we found that the signal spectral density of both variables changes with the frequency in a characteristic manner, thus classifying the slip-stick motion as a colored noise excitation scheme. The force spectral density in both systems was found to exhibit a power-law spectrum following an {{f}^{-2}} trend, where f is the frequency. The voltage spectral density was governed by the product of a high-pass filter, the force spectral density, and the intrinsic generator spectral density. Here the piezoelectric generator exhibited a nearly flat voltage spectral density below the cutoff frequency of the high-pass filter and an {{f}^{-2}} spectrum at higher frequencies, thus demonstrating that the piezoelectric coupling coefficient had a nearly flat frequency response. On the other hand, the triboelectric generator had a coupling coefficient with a spectral response that varied in a non-systematic manner, possibly related to the large number of contact sites and relaxation times occurring during operation. The average power delivered by the generators to a resistive load was also measured for sinusoidal mechanical excitations and was compared with the average power generated by stick-slip motion.

  5. Electrostatic vibration-to-electric energy conversion

    E-print Network

    Mur Miranda, José Oscar, 1972-

    2004-01-01

    Ultra-Low-Power electronics can perform useful functions with power levels as low as 170 nW. This makes them amenable to powering from ambient sources such as vibration. In this case, they can become autonomous. Motivated ...

  6. Inkjet-printed RF Energy Harvesting and Wireless Power Trasmission Devices on Paper Substrate

    E-print Network

    Tentzeris, Manos

    as the properties of organic paper substrate. A. Inkjet-printed Nano-silver Particle Silver nano-particles inkInkjet-printed RF Energy Harvesting and Wireless Power Trasmission Devices on Paper Substrate an overview of the state-of- the-art inkjet-printed energy harvesting and wireless power transfer technology

  7. Toward Large-Scale Energy Harvesting by a Nanoparticle-Enhanced Triboelectric Nanogenerator

    E-print Network

    Wang, Zhong L.

    to harvest large-scale mechanical energy, such as footsteps, rolling wheels, wind power, and ocean waves. KEYWORDS: Triboelectric nanogenerator, large-scale, nanoparticle, wind power, ocean wave We are surrounded flow, and ocean waves, just to name a few. Research on mechanical energy harvesting falls into three

  8. Industrial Solid-State Energy Harvesting: Mechanisms and Examples Matthew Kocoloski, Carnegie Mellon University

    E-print Network

    Kissock, Kelly

    of finding a use for what otherwise would be wasted is prominent in Lean Manufacturing, which seeks in an industrial application. The example considers energy harvesting from a furnace at a glass manufacturing harvested energy from streams and wind for manufacturing and transportation. In the early 1700's, Thomas

  9. On Energy Harvesting Module for Scalable Cognitive Autonomous Nondestructive Sensing Network (SCANSn

    E-print Network

    Ha, Dong S.

    of the solar panel, the TEG continues to supply power to the battery charger. Since the output voltages to the battery charger. Since the output voltages and currents of the solar and thermal energy harvesters vary energy harvesting from both solar and thermal sources to recharge the lithium-ion battery of the system

  10. Ultrafast vibrational energy relaxation of the water bridge.

    PubMed

    Piatkowski, Lukasz; Wexler, Adam D; Fuchs, Elmar C; Schoenmaker, Hinco; Bakker, Huib J

    2012-05-14

    We report the energy relaxation of the OH stretch vibration of HDO molecules contained in an HDO:D(2)O water bridge using femtosecond mid-infrared pump-probe spectroscopy. We found that the vibrational lifetime is shorter (~630 ± 50 fs) than for HDO molecules in bulk HDO:D(2)O (~740 ± 40 fs). In contrast, the thermalization dynamics following the vibrational relaxation are much slower (~1.5 ± 0.4 ps) than in bulk HDO:D(2)O (~250 ± 90 fs). These differences in energy relaxation dynamics strongly indicate that the water bridge and bulk water differ on a molecular scale. PMID:21997703

  11. Measurement of effective piezoelectric coefficients of PZT thin films for energy harvesting application with interdigitated electrodes.

    PubMed

    Chidambaram, Nachiappan; Mazzalai, Andrea; Muralt, Paul

    2012-08-01

    Interdigitated electrode (IDE) systems with lead zirconate titanate (PZT) thin films play an increasingly important role for two reasons: first, such a configuration generates higher voltages than parallel plate capacitor-type electrode (PPE) structures, and second, the application of an electric field leads to a compressive stress component in addition to the overall stress state, unlike a PPE structure, which results in tensile stress component. Because ceramics tend to crack at relatively moderate tensile stresses, this means that IDEs have a lower risk of cracking than PPEs. For these reasons, IDE systems are ideal for energy harvesting of vibration energy, and for actuators. Systematic investigations of PZT films with IDE systems have not yet been undertaken. In this work, we present results on the evaluation of the in-plane piezoelectric coefficients with IDE systems. Additionally, we also propose a simple and measurable figure of merit (FOM) to analyze and evaluate the relevant piezoelectric parameter for harvesting efficiency without the need to fabricate the energy harvesting device. Idealized effective coefficients e(IDE) and h(IDE) are derived, showing its composite nature with about one-third contribution of the transverse effect, and about two-thirds contribution of the longitudinal effect in the case of a PZT film deposited on a (100)-oriented silicon wafer with the in-plane electric field along one of the <011> Si directions. Randomly oriented 1-?m-thick PZT 53/47 film deposited by a sol-gel technique, was evaluated and yielded an effective coefficient e(IDE) of 15 C·m(-2). Our FOM is the product between effective e and h coefficient representing twice the electrical energy density stored in the piezoelectric film per unit strain deformation (both for IDE and PPE systems). Assuming homogeneous fields between the fingers, and neglecting the contribution from below the electrode fingers, the FOM for IDE structures with larger electrode gap is derived to be twice as large as for PPE structures, for PZT-5H properties. The experiments yielded an FOM of the IDE structures of 1.25 × 10(10) J/m(3) and 14 mV/? strain. PMID:22899110

  12. Review of pyroelectric thermal energy harvesting and new MEMs based resonant energy conversion techniques

    SciTech Connect

    Hunter, Scott Robert [ORNL; Lavrik, Nickolay V [ORNL; Mostafa, Salwa [ORNL; Rajic, Slobodan [ORNL; Datskos, Panos G [ORNL

    2012-01-01

    Harvesting electrical energy from thermal energy sources using pyroelectric conversion techniques has been under investigation for over 50 years, but it has not received the attention that thermoelectric energy harvesting techniques have during this time period. This lack of interest stems from early studies which found that the energy conversion efficiencies achievable using pyroelectric materials were several times less than those potentially achievable with thermoelectrics. More recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. This paper will review the recent history in this field and describe the techniques that are being developed to increase the opportunities for pyroelectric energy harvesting. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, are also outlined. The approach uses a resonantly driven, pyroelectric capacitive bimorph cantilever structure that can be used to rapidly cycle the temperature in the energy harvester. The device has been modeled using a finite element multi-physics based method, where the effect of the structure material properties and system parameters on the frequency and magnitude of temperature cycling, and the efficiency of energy recycling using the proposed structure, have been modeled. Results show that thermal contact conductance and heat source temperature differences play key roles in dominating the cantilever resonant frequency and efficiency of the energy conversion technique. This paper outlines the modeling, fabrication and testing of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy conversion devices.

  13. Assistance of molecular vibrations on coherent energy transfer in photosynthesis from the view of a quantum heat engine.

    PubMed

    Zhang, Zhedong; Wang, Jin

    2015-04-01

    Recently, the quantum nature in the energy transport in solar cells and light-harvesting complexes has attracted much attention as being triggered by the experimental observations. We model the light-harvesting complex (i.e., PEB50 dimer) as a quantum heat engine (QHE) and study the effect of the undamped intramolecule vibrational modes on the coherent energy-transfer process and quantum transport. We find that the exciton-vibration interaction has nontrivial contribution to the promotion of quantum yield as well as transport properties of the QHE at steady state by enhancing the quantum coherence quantified by entanglement entropy. The perfect quantum yield over 90% has been obtained, with the exciton-vibration coupling. We attribute these improvements to the renormalization of the electronic couplings effectively induced by exciton-vibration interaction and the subsequent delocalization of excitons. Finally, we demonstrate that the thermal relaxation and dephasing can help the excitation energy transfer in the PEB50 dimer. PMID:25776946

  14. Photoactive supercapacitors for solar energy harvesting and storage

    NASA Astrophysics Data System (ADS)

    Takshi, Arash; Yaghoubi, Houman; Tevi, Tete; Bakhshi, Sara

    2015-02-01

    In most applications an energy storage device is required when solar cells are applied for energy harvesting. In this work, we have demonstrated that composite films of a conducting polymer and a dye can be used as photoactive electrodes in an electrochemical cell for concurrent solar energy conversion and charge storage. A device was made of poly ethylenedioxythiophene:polystyrene sulfonate and (PEDOT:PSS) and a porphyrin dye which showed a capacitance of ?1.04 mF. The device was charged up to 430 mV (open circuit voltage) under a solar simulated illumination and was able to store the charge for more than 10 min in the dark. Further study on the concentration of the dye revealed the importance of the ratio between the dye and the conducting polymer to optimize the photovoltage and capacitance of the device. Also, the effect of the dye material was studied by using a Ruthenium (Ru) based dye. The device with the Ru dye showed a photovolatge of 198 mV and charge stability of more than 2 h.

  15. Kinetic and thermal energy harvesters for implantable medical devices and biomedical autonomous sensors

    NASA Astrophysics Data System (ADS)

    Cadei, Andrea; Dionisi, Alessandro; Sardini, Emilio; Serpelloni, Mauro

    2014-01-01

    Implantable medical devices usually require a battery to operate and this can represent a severe restriction. In most cases, the implantable medical devices must be surgically replaced because of the dead batteries; therefore, the longevity of the whole implantable medical device is determined by the battery lifespan. For this reason, researchers have been studying energy harvesting techniques from the human body in order to obtain batteryless implantable medical devices. The human body is a rich source of energy and this energy can be harvested from body heat, breathing, arm motion, leg motion or the motion of other body parts produced during walking or any other activity. In particular, the main human-body energy sources are kinetic energy and thermal energy. This paper reviews the state-of-art in kinetic and thermoelectric energy harvesters for powering implantable medical devices. Kinetic energy harvesters are based on electromagnetic, electrostatic and piezoelectric conversion. The different energy harvesters are analyzed highlighting their sizes, energy or power they produce and their relative applications. As they must be implanted, energy harvesting devices must be limited in size, typically about 1 cm3. The available energy depends on human-body positions; therefore, some positions are more advantageous than others. For example, favorable positions for piezoelectric harvesters are hip, knee and ankle where forces are significant. The energy harvesters here reported produce a power between 6 nW and 7.2 mW; these values are comparable with the supply requirements of the most common implantable medical devices; this demonstrates that energy harvesting techniques is a valid solution to design batteryless implantable medical devices.

  16. Optimal Power Control for Energy Harvesting Transmitters in an Interference Channel

    E-print Network

    Yener, Aylin

    harvesting wireless net- works are fundamentally different than their traditional coun- terparts due neutrality [1] was utilized in queueing-theoretic work [2], [3] to stabilize energy queues of energy

  17. Capacity of Fading Gaussian Channel with an Energy Harvesting Sensor Node

    E-print Network

    Sharma, Vinod

    ) and converts them to electrical energy. Common energy harvesting devices are solar cells, wind turbines- ing sensor node transmitting over a fading Additive White Gaussian Noise (AWGN) Channel. We provide

  18. Identifying and Evaluating Energy Cost Reduction Opportunities for Harvesters - The Community Food Network

    E-print Network

    Miller, Aaron M.

    2011-05-20

    The purpose of this project is to identify and evaluate opportunities where energy costs can be reduced for Harvesters - The Community Food Network. This is accomplished by conducting an energy audit, analyzing the data ...

  19. Improving Energy Efficiency for Energy Harvesting Embedded Systems*

    E-print Network

    Qiu, Qinru

    efficient energy storage. Hybrid Electrical Energy Storage (HEES) system is proposed recently as a cost a fast heuristic algorithm to improve the efficiency of charge allocation and replacement in an EHS/HEES stored in the HEES system. We first provide an approximated but accurate power consumption model

  20. Energy harvesting to power sensing hardware onboard wind turbine blade

    SciTech Connect

    Carlson, Clinton P [Los Alamos National Laboratory; Schichting, Alexander D [Los Alamos National Laboratory; Quellette, Scott [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory

    2009-10-05

    Wind turbines are becoming a larger source of renewable energy in the United States. However, most of the designs are geared toward the weather conditions seen in Europe. Also, in the United States, manufacturers have been increasing the length of the turbine blades, often made of composite materials, to maximize power output. As a result of the more severe loading conditions in the United States and the material level flaws in composite structures, blade failure has been a more common occurrence in the U.S. than in Europe. Therefore, it is imperative that a structural health monitoring system be incorporated into the design of the wind turbines in order to monitor flaws before they lead to a catastrophic failure. Due to the rotation of the turbine and issues related to lightning strikes, the best way to implement a structural health monitoring system would be to use a network of wireless sensor nodes. In order to provide power to these sensor nodes, piezoelectric, thermoelectric and photovoltaic energy harvesting techniques are examined on a cross section of a CX-100 wind turbine blade in order to determine the feasibility of powering individual nodes that would compose the sensor network.

  1. Light harvesting and energy transfer in large multidomain molecules

    NASA Astrophysics Data System (ADS)

    Spanggaard, Holger; Krebs, Frederik C.; Jørgensen, Mikkel; Rozlosnik, Noemi; Larsen, Niels B.; Hagemann, Ole

    2005-10-01

    Light harvesting and energy transfer in two oligomer-dye assemblies has been investigated. In both cases the oligomer was a poly(terphenylenecyanovinylene) derivative while two different dyes was used, a porphyrin and an ionic dye. It is well known that the efficiency of solar cells consisting of a single homopolymer is limited. To increase overall efficiency different strategies have been used. One possible strategy aims at covalently linking different domains. With careful design, this type of assemblies is envisaged to show improved charge separation and charge transport properties. We have shown how photophysical measurements can be used to determine what happens to an exciton formed on any of the domains. From fluorescence and absorption measurements on the assemblies, along with model compounds, it was possible to quantify the number of excitons that are emitted (fluorescence), transferred between domains or lost in internal transfer processes. Both steady state and lifetime measurements were performed in solution and on solid films. The effect of acid was investigated in the cases of the oligomer-porphyrin assembly. We found that in solution the effect of acid was an increase in the time of energy transfer, probably due to acid induced structural change of the porphyrin moiety. It was possible to make LB-films of the ionic dye-assembly, which made it possible to investigate a monolayer of the assembly.

  2. On the counteractive effect of dielectric loss in piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Liang, Junrui; Shi, Shuo; Liao, Wei-Hsin

    2014-03-01

    Dielectric loss is one of the important parasitic features of piezoelectric materials; nevertheless, its role in practical piezoelectric energy harvesting (PEH) systems has received little attention in previous studies. Based on the integrated equivalent impedance network model, this paper investigates the susceptibility of harvested power in PEH systems under different dielectric leakage conditions when different harvesting interface circuit is adopted. It shows that dielectric loss always counteracts power generation in PEH systems. In particular, harvested power degrades from the ideal lossless case more significantly under large dielectric leakage, or when power boosting interface circuits, e.g., synchronized switch harvesting on inductor (SSHI), are adopted. These results provide useful insight for the selections of piezoelectric material and harvesting interface circuit towards holistic PEH designs.

  3. Atomistic mechanisms of rapid energy transport in light-harvesting molecules

    NASA Astrophysics Data System (ADS)

    Ohmura, Satoshi; Koga, Shiro; Akai, Ichiro; Shimojo, Fuyuki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2011-03-01

    Synthetic supermolecules such as ?-conjugated light-harvesting dendrimers efficiently harvest energy from sunlight, which is of significant importance for the global energy problem. Key to their success is rapid transport of electronic excitation energy from peripheral antennas to photochemical reaction cores, the atomistic mechanisms of which remains elusive. Here, quantum-mechanical molecular dynamics simulation incorporating nonadiabatic electronic transitions reveals the key molecular motion that significantly accelerates the energy transport based on the Dexter mechanism.

  4. Atomistic mechanisms of rapid energy transport in light-harvesting molecules

    SciTech Connect

    Ohmura, Satoshi; Koga, Shiro; Akai, Ichiro; Shimojo, Fuyuki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2011-01-01

    Synthetic supermolecules such as ?-conjugated light-harvesting dendrimers efficiently harvest energy from sunlight, which is of significant importance for the global energy problem. Key to their success is rapid transport of electronic excitation energy from peripheral antennas to photochemical reaction cores, the atomistic mechanisms of which remains elusive. Here, quantum-mechanical molecular dynamics simulation incorporating nonadiabatic electronic transitions reveals the key molecular motion that significantly accelerates the energy transport based on the Dexter mechanism.

  5. Nanotechnologies for efficient solar and wind energy harvesting and storage

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.

    2010-08-01

    We describe nanotechnologies used to improve the efficient harvest of energy from the Sun and the wind, and the efficient storage of energy in secondary batteries and ultracapacitors, for use in a variety of applications including smart grids, electric vehicles, and portable electronics. We demonstrate high-quality nanostructured copper indium gallium selenide (CIGS) thin films for photovoltaic (PV) applications. The self-assembly of nanoscale p-n junction networks creates n-type networks that act as preferential electron pathways, and p-type networks that act as preferential hole pathways, allowing positive and negative charges to travel to the contacts in physically separated paths, reducing charge recombination. We also describe PV nanotechnologies used to enhance light trapping, photon absorption, charge generation, charge transport, and current collection. Furthermore, we describe nanotechnologies used to improve the efficiency of power-generating wind turbines. These technologies include nanoparticle-containing lubricants that reduce the friction generated from the rotation of the turbines, nanocoatings for de-icing and self-cleaning technologies, and advanced nanocomposites that provide lighter and stronger wind blades. Finally, we describe nanotechnologies used in advanced secondary batteries and ultracapacitors. Nanostructured powder-based and carbon-nanotube-based cathodes and anodes with ultra-high surface areas boost the energy and power densities in secondary batteries, including lithium-ion and sodium-sulfur batteries. Nanostructured carbon materials are also controlled on a molecular level to offer large surface areas for the electrodes of ultracapacitors, allowing to store and supply large bursts of energy needed in some applications.

  6. Spectroscopic probes of vibrationally excited molecules at chemically significant energies

    SciTech Connect

    Rizzo, T.R. [Univ. of Rochester, NY (United States)

    1993-12-01

    This project involves the application of multiple-resonance spectroscopic techniques for investigating energy transfer and dissociation dynamics of highly vibrationally excited molecules. Two major goals of this work are: (1) to provide information on potential energy surfaces of combustion related molecules at chemically significant energies, and (2) to test theoretical modes of unimolecular dissociation rates critically via quantum-state resolved measurements.

  7. Underwater energy harvesting from a turbine hosting ionic polymer metal composites

    NASA Astrophysics Data System (ADS)

    Cellini, Filippo; Pounds, Jason; Peterson, Sean D.; Porfiri, Maurizio

    2014-08-01

    In this study, we explore the possibility of energy harvesting from fluid flow through a turbine hosting ionic polymer metal composites (IPMCs). Specifically, IPMC harvesters are embedded in the blades of a small-scale vertical axis water turbine to convert flow kinetics into electrical power via low-frequency flow-induced IPMC deformations. An in-house fabricated Savonius-Darrieus hybrid active turbine with three IPMCs is tested in a laboratory water tunnel to estimate the energy harvesting capabilities of the device as a function of the shunting electrical load. The turbine is shown to harvest a few nanowatt from a mean flow of 0.43\\;m\\;{{s}^{-1}} for shunting resistances in the range 100-1000\\;\\Omega . To establish a first understanding of the energy harvesting device, we propose a quasi-static hydroelastic model for the bending of the IPMCs and we utilize a black-box model to study their electromechanical response.

  8. Energy transfer in nanowire solar cells with photon-harvesting shells C. H. Peters,a

    E-print Network

    McGehee, Michael

    , is still more expensive than that from conventional fossil fuels.1 The most efficient silicon solar cellsEnergy transfer in nanowire solar cells with photon-harvesting shells C. H. Peters,a A. R. Guichard; published online 23 June 2009 The concept of a nanowire solar cell with photon-harvesting shells

  9. Photovoltaic Enhanced UHF RFID Tag Antennas for Dual Purpose Energy Harvesting

    E-print Network

    Hochberg, Michael

    Photovoltaic Enhanced UHF RFID Tag Antennas for Dual Purpose Energy Harvesting Alanson P. Sample@cs.washington.edu Abstract--The most significant barrier to improving passive RFID tag performance for both fixed function ID tags and enhanced RFID tags is the limitation on the amount of power that can be harvested

  10. Energy Harvesting by Sweeping Voltage-Escalated Charging of a Reconfigurable Supercapacitor Array

    E-print Network

    Shinozuka, Masanobu

    to portable solar chargers for cell phones. Several recent features distinguish embedded-grade, microCap can harvest energy efficiently under low and high solar irradiation conditions, achieve shorter ("harvesters") have been receiv- ing growing attention in recent years, from grid-tied roof-top solar arrays

  11. A Hip Implant Energy Harvester K Pancharoen, D Zhu, and S P Beeby

    E-print Network

    is an average frequency during free walking of a patient. The concept of magnetic-force-driven energy harvesting. The magnetic field within the harvester was simulated using COMSOL. The simulated resonant frequency was around and the resonant frequency of 28 Hz was observed. Moreover, the power output of 0.96 µW was achieved

  12. Improving Charging Efficiency with Workload Scheduling in Energy Harvesting Embedded Systems

    E-print Network

    Qiu, Qinru

    -harvesting aware dynamic voltage frequency selection (EA-DVFS) algorithm, which adjusts the speed of task execution by exploring task slacks. From the perspective of energy harvesting optimization, the operating conditions] have been proposed that dynamically adjust the output current to match the output impedance

  13. Vibration-translation energy transfer in vibrationally excited diatomic molecules. Ph.D. Thesis - York Univ., Toronto

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1976-01-01

    A semiclassical collision model is applied to the study of energy transfer rates between a vibrationally excited diatomic molecule and a structureless atom. The molecule is modeled as an anharmonic oscillator with a multitude of dynamically coupled vibrational states. Three main aspects in the prediction of vibrational energy transfer rates are considered. The applicability of the semiclassical model to an anharmonic oscillator is first evaluated for collinear encounters. Second, the collinear semiclassical model is applied to obtain numerical predictions of the vibrational energy transfer rate dependence on the initial vibrational state quantum number. Thermally averaged vibration-translation rate coefficients are predicted and compared with CO-He experimental values for both ground and excited initial states. The numerical model is also used as a basis for evaluating several less complete but analytic models. Third, the role of rational motion in the dynamics of vibrational energy transfer is examined. A three-dimensional semiclassical collision model is constructed with coupled rotational motion included. Energy transfer within the molecule is shown to be dominated by vibration-rotation transitions with small changes in angular momentum. The rates of vibrational energy transfer in molecules with rational frequencies that are very small in comparison to their vibrational frequency are shown to be adequately treated by the preceding collinear models.

  14. Figure 1: Configuration of energy recovering system Modeling of an Electromechanical Energy Harvesting

    E-print Network

    Paris-Sud XI, Université de

    of the system are integrated permanent magnets (PM) with the magnetic fields in opposition. This arrangement induction, v is the displacement's speed of permanent magnet, d is the displacement, pe is the coil position. Keywords--regenerative; energy harvesting; vehicle suspension; electromagnetic. I. INTRODUCTION Nowadays

  15. Improving Pyroelectric Energy Harvesting Using a Sandblast Etching Technique

    PubMed Central

    Hsiao, Chun-Ching; Siao, An-Shen

    2013-01-01

    Large amounts of low-grade heat are emitted by various industries and exhausted into the environment. This heat energy can be used as a free source for pyroelectric power generation. A three-dimensional pattern helps to improve the temperature variation rates in pyroelectric elements by means of lateral temperature gradients induced on the sidewalls of the responsive elements. A novel method using sandblast etching is successfully applied in fabricating the complex pattern of a vortex-like electrode. Both experiment and simulation show that the proposed design of the vortex-like electrode improved the electrical output of the pyroelectric cells and enhanced the efficiency of pyroelectric harvesting converters. A three-dimensional finite element model is generated by commercial software for solving the transient temperature fields and exploring the temperature variation rate in the PZT pyroelectric cells with various designs. The vortex-like type has a larger temperature variation rate than the fully covered type, by about 53.9%.The measured electrical output of the vortex-like electrode exhibits an obvious increase in the generated charge and the measured current, as compared to the fully covered electrode, by of about 47.1% and 53.1%, respectively. PMID:24025557

  16. Design and Implementation of an Electromagnetic Energy Harvester for Linear and Rotary Motion Applications

    NASA Astrophysics Data System (ADS)

    Hekmati, Alireza

    This thesis presents a new design for an electromagnetic energy harvester to be used in both linear and rotary motion applications. This electromagnetic energy harvester consists of a moving coil within a fixed magnetic circuit. This magnetic circuit comprises of a permanent magnet (as a magnetic source), a magnetic conductor (such as iron), and an air gap to create a space for coil movement inside energy harvester setup. In the parameter study of this electromagnetic energy harvester, it has been demonstrated that applying design modifications will improve the amount of induced voltage by %50. For linear motion applications, the energy harvester has been mounted on a linear motor and the experimental results indicated that when the coil movements' speed is 70 [mm/s], the maximum harvested power is 5.320 [mW]. For rotary motion applications, first a voice coil speaker has been used as a single degree of freedom system to produce voltage through a rotating beam and hub. Since in lower resonance frequencies, the maximum induced voltage is quite low, thus in next step, the two degrees of freedom energy harvesting system for rotary motion applications has been introduced. This system has been mounted on a car ring and the result illustrated that at the resonance frequency (15 [Hz]), the induced voltage was 0.175 [V] for each coil.

  17. Influence of harvest time on fuel characteristics of five potential energy crops in northern China.

    PubMed

    Xiong, Shaojun; Zhang, Quan-Guo; Zhang, Da-Yong; Olsson, Rolf

    2008-02-01

    Five potential energy crops in northern China were examined for fuel characteristics over different harvest times to test whether or not a delayed harvest improves fuel quality in a semiarid area in China as is the case in northern Europe and North America. The five crops include indigo bush (Amorpha fruticosa), sand willow (Salix cheilophila), switch grass (Panicum virgatum), reed canary grass (Phalaris arundinacea), and sainfoin (Onobrychis viciifolia). These crops are considered as fuels for thermal conversion. From September 2002 to April 2003, biomass was sampled monthly, and the effects of harvest time on the fuel characteristics of the five crops were studied. With respect to ash and some undesired element contents in biomass, a delayed harvest in spring resulted in a better fuel quality than a traditional harvest in autumn. Of the five species, indigo bush and sand willow had the lowest ash contents when harvested in spring. Switch grass is a promising herbaceous energy crop in semiarid areas in terms of its yield, fuel characteristics, and low water use. Chlorine had the most significant correlation with harvest time and ash content in the biomass. In a comparison with the biofuel crops in Europe and North America, a much higher proportion of chlorine was found in all examined plants. The results from this study indicate that an energy crop with delayed harvest may extend fuel resources and conserve soil in semiarid regions in northern China, practices that will help maintain and improve economical and ecological sustainability. PMID:17382539

  18. Energy harvesting from self-sustained aeroelastic limit cycle oscillations of rectangular wings

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Ega, Evan

    2014-09-01

    Three different aspect-ratio rectangular wings are designed and experimentally tested to produce self-sustained aeroelastic oscillations for energy harvesting via implementing a piezoelectric generator. Sensitivity measurements are conducted first to determine the critical conditions producing such oscillations with a dominant frequency of 1 Hz. Furthermore, the energy harvesting performance is maximized as the piezoelectric generator is implemented in parallel with oncoming flow streamline. Approximately 55 mW electricity is produced from a wing with a surface area of 0.025 m2. Unlike conventional wind turbine technology, the present work opens up another possible way to harvest energy via nonlinear aeroelastic oscillations.

  19. Metal-organic framework materials for light-harvesting and energy transfer.

    PubMed

    So, Monica C; Wiederrecht, Gary P; Mondloch, Joseph E; Hupp, Joseph T; Farha, Omar K

    2015-02-28

    A critical review of the emerging field of MOFs for photon collection and subsequent energy transfer is presented. Discussed are examples involving MOFs for (a) light harvesting, using (i) MOF-quantum dots and molecular chromophores, (ii) chromophoric MOFs, and (iii) MOFs with light-harvesting properties, and (b) energy transfer, specifically via the (i) Förster energy transfer and (ii) Dexter exchange mechanism. PMID:25578391

  20. A scalable piezoelectric impulse-excited energy harvester for human body excitation

    NASA Astrophysics Data System (ADS)

    Pillatsch, P.; Yeatman, E. M.; Holmes, A. S.

    2012-11-01

    Harvesting energy from low-frequency and non-harmonic excitations typical of human motion presents specific challenges. While resonant devices do have an advantage in environments where the excitation frequency is constant, and while they can make use of the entire proof mass travel range in the case of excitation amplitudes that are smaller than the internal displacement limit, they are not suitable for body applications since the frequencies are random and the amplitudes tend to be larger than the device size. In this paper a piezoelectric, impulse-excited approach is presented. A cylindrical proof mass actuates an array of piezoelectric bi-morph beams through magnetic attraction. After the initial excitation these transducers are left to vibrate at their natural frequency. This increases the operational frequency range as well as the electromechanical coupling. The principle of impulse excitation is discussed and a centimetre-scale functional model is introduced as a proof of concept. The obtained data show the influence of varying the frequency, acceleration and proof mass. Finally, a commercially available integrated circuit for voltage regulation is tested. At a frequency of 2 Hz and an acceleration of 2.7 m s-2 a maximal power output of 2.1 mW was achieved.