Adaptive vibration energy harvesting
NASA Astrophysics Data System (ADS)
Behrens, Sam; Ward, John; Davidson, Josh
2007-04-01
By scavenging energy from their local environment, portable electronic devices such as mobile phones, radios and wireless sensors can achieve greater run-times with potentially lower weight. Vibration energy harvesting is one such approach where energy from parasitic vibrations can be converted into electrical energy, through the use of piezoelectric and electromagnetic transducers. Parasitic vibrations come from a range of sources such as wind, seismic forces and traffic. Existing approaches to vibration energy harvesting typically utilise a rectifier circuit, which is tuned to the resonant frequency of the harvesting structure and the dominant frequency of vibration. We have developed a novel approach to vibration energy harvesting, including adaption to non-periodic vibrations so as to extract the maximum amount of vibration energy available. Experimental results of an experimental apparatus using off-the-shelf transducer (i.e. speaker coil) show mechanical vibration to electrical energy conversion efficiencies of 27 - 34%. However, simulations of a more electro-mechanical efficient and lightly damped transducer show conversion efficiencies in excess of 80%.
Adaptive learning algorithms for vibration energy harvesting
NASA Astrophysics Data System (ADS)
Ward, John K.; Behrens, Sam
2008-06-01
By scavenging energy from their local environment, portable electronic devices such as MEMS devices, mobile phones, radios and wireless sensors can achieve greater run times with potentially lower weight. Vibration energy harvesting is one such approach where energy from parasitic vibrations can be converted into electrical energy through the use of piezoelectric and electromagnetic transducers. Parasitic vibrations come from a range of sources such as human movement, wind, seismic forces and traffic. Existing approaches to vibration energy harvesting typically utilize a rectifier circuit, which is tuned to the resonant frequency of the harvesting structure and the dominant frequency of vibration. We have developed a novel approach to vibration energy harvesting, including adaptation to non-periodic vibrations so as to extract the maximum amount of vibration energy available. Experimental results of an experimental apparatus using an off-the-shelf transducer (i.e. speaker coil) show mechanical vibration to electrical energy conversion efficiencies of 27-34%.
Design Methodology of Micro Vibration Energy Harvesters
NASA Astrophysics Data System (ADS)
Tanaka, Shuji
Recently, micro vibration energy harvesters are attracting much attention for wireless sensor applications. To answer the power requirement of practical applications, the design methodology is important. This paper first reviews the fundamental theory of vibration energy harvesting, and then discusses how to design a micro vibration energy harvester at a concept level. For the micro vibration energy harvesters, independent design parameters at the top level are only the mass and stroke of a seismic mass and quality factor, while the frequency and acceleration of vibration input are given parameters determined by the application. The key design point is simply to make the mass and stroke of the seismic mass as large as possible within the available device size. Some case studies based on the theory are also presented. This paper provides a guideline for the development of the micro vibration energy harvesters.
Vibration energy harvester optimization using artificial intelligence
NASA Astrophysics Data System (ADS)
Hadas, Z.; Ondrusek, C.; Kurfurst, J.; Singule, V.
2011-06-01
This paper deals with an optimization study of a vibration energy harvester. This harvester can be used as autonomous source of electrical energy for remote or wireless applications, which are placed in environment excited by ambient mechanical vibrations. The ambient energy of vibrations is usually on very low level but the harvester can be used as alternative source of energy for electronic devices with an expected low level of power consumption of several mW. The optimized design of the vibration energy harvester was based on previous development and the sensitivity of harvester design was improved for effective harvesting from mechanical vibrations in aeronautic applications. The vibration energy harvester is a mechatronic system which generates electrical energy from ambient vibrations due to precision tuning up generator parameters. The optimization study for maximization of harvested power or minimization of volume and weight are the main goals of our development. The optimization study of such complex device is complicated therefore artificial intelligence methods can be used for tuning up optimal harvester parameters.
Harvesting Vibrational Energy Using Material Work Functions
Varpula, Aapo; Laakso, Sampo J.; Havia, Tahvo; Kyynäräinen, Jukka; Prunnila, Mika
2014-01-01
Vibration energy harvesters scavenge energy from mechanical vibrations to energise low power electronic devices. In this work, we report on vibration energy harvesting scheme based on the charging phenomenon occurring naturally between two bodies with different work functions. Such work function energy harvester (WFEH) is similar to electrostatic energy harvester with the fundamental distinction that neither external power supplies nor electrets are needed. A theoretical model and description of different operation modes of WFEHs are presented. The WFEH concept is tested with macroscopic experiments, which agree well with the model. The feasibility of miniaturizing WFEHs is shown by simulating a realistic MEMS device. The WFEH can be operated as a charge pump that pushes charge and energy into an energy storage element. We show that such an operation mode is highly desirable for applications and that it can be realised with either a charge shuttle or with switches. The WFEH is shown to give equal or better output power in comparison to traditional electrostatic harvesters. Our findings indicate that WFEH has great potential in energy harvesting applications. PMID:25348004
Harvesting Vibrational Energy Using Material Work Functions
NASA Astrophysics Data System (ADS)
Varpula, Aapo; Laakso, Sampo J.; Havia, Tahvo; Kyynäräinen, Jukka; Prunnila, Mika
2014-10-01
Vibration energy harvesters scavenge energy from mechanical vibrations to energise low power electronic devices. In this work, we report on vibration energy harvesting scheme based on the charging phenomenon occurring naturally between two bodies with different work functions. Such work function energy harvester (WFEH) is similar to electrostatic energy harvester with the fundamental distinction that neither external power supplies nor electrets are needed. A theoretical model and description of different operation modes of WFEHs are presented. The WFEH concept is tested with macroscopic experiments, which agree well with the model. The feasibility of miniaturizing WFEHs is shown by simulating a realistic MEMS device. The WFEH can be operated as a charge pump that pushes charge and energy into an energy storage element. We show that such an operation mode is highly desirable for applications and that it can be realised with either a charge shuttle or with switches. The WFEH is shown to give equal or better output power in comparison to traditional electrostatic harvesters. Our findings indicate that WFEH has great potential in energy harvesting applications.
Energy harvesting from an autoparametric vibration absorber
NASA Astrophysics Data System (ADS)
Yan, Zhimiao; Hajj, Muhammad R.
2015-11-01
The combined control and energy harvesting characteristics of an autoparametric vibration absorber consisting of a base structure subjected to the external force and a cantilever beam with a tip mass are investigated. The piezoelectric sheets are attached to the cantilever beam to convert the vibrations of the base structure into electrical energy. The coupled nonlinear representative model is developed by using the extended Hamiton’s principle. The effects of the electrical load resistance on the frequency and damping ratio of the cantilever beam are analyzed. The impacts of the external force and load resistance on the structural displacements of the base structure and the beam and on the level of harvested energy are determined. The results show that the initial conditions have a significant impact on the system’s response. The relatively high level of energy harvesting is not necessarily accompanied with the minimum displacements of the base structure.
Internal resonance for nonlinear vibration energy harvesting
NASA Astrophysics Data System (ADS)
Cao, D. X.; Leadenham, S.; Erturk, A.
2015-11-01
The transformation of waste vibration energy into low-power electricity has been heavily researched over the last decade to enable self-sustained wireless electronic components. Monostable and bistable nonlinear oscillators have been explored by several research groups in an effort to enhance the frequency bandwidth of operation. Linear two-degree-of-freedom (2-DOF) configurations as well as the combination of a nonlinear single-DOF harvester with a linear oscillator to constitute a nonlinear 2-DOF harvester have also been explored to develop broadband energy harvesters. In the present work, the concept of nonlinear internal resonance in a continuous frame structure is explored for broadband energy harvesting. The L-shaped beam-mass structure with quadratic nonlinearity was formerly studied in the nonlinear dynamics literature to demonstrate modal energy exchange and the saturation phenomenon when carefully tuned for two-to-one internal resonance. In the current effort, piezoelectric coupling and an electrical load are introduced, and electromechanical equations of the L-shaped energy harvester are employed to explore primary resonance behaviors around the first and the second linear natural frequencies for bandwidth enhancement. Simulations using approximate analytical frequency response equations as well as numerical solutions reveal significant bandwidth enhancement as compared to a typical linear 2-DOF counterpart. Vibration and voltage responses are explored, and the effects of various system parameters on the overall dynamics of the internal resonance-based energy harvesting system are reported.
Enhanced vibration energy harvesting using nonlinear oscillations
NASA Astrophysics Data System (ADS)
Engel, Emily; Wei, Jiaying; Lee, Christopher L.
2015-05-01
Results for the design and testing of an electromagnetic device that converts ambient mechanical vibration into electricity are presented. The design of the device is based on an L-shaped beam structure which is tuned so that the first two natural frequencies have a near two-to-one ratio which is referred to as an internal resonance or autoparametic condition. It is shown that in contrast to single degree-of-freedom, linear-dynamics-based vibration harvesters which convert energy in a very narrow frequency band the prototype can generate power over an extended frequency range when subject to harmonic, base displacement excitation.
Piezoelectric energy harvesting from hybrid vibrations
NASA Astrophysics Data System (ADS)
Yan, Zhimiao; Abdelkefi, Abdessattar; Hajj, Muhammad R.
2014-02-01
The concept of harvesting energy from ambient and galloping vibrations of a bluff body with a triangular cross-section geometry is investigated. A piezoelectric transducer is attached to the transverse degree of freedom of the body in order to convert these vibrations to electrical energy. A coupled nonlinear distributed-parameter model is developed that takes into consideration the galloping force and moment nonlinearities and the base excitation effects. The aerodynamic loads are modeled using the quasi-steady approximation. Linear analysis is performed to determine the effects of the electrical load resistance and wind speed on the global damping and frequency of the harvester as well as on the onset of instability. Then, nonlinear analysis is performed to investigate the impact of the base acceleration, wind speed, and electrical load resistance on the performance of the harvester and the associated nonlinear phenomena that take place. The results show that, depending on the interaction between the base and galloping excitations, and the considered values of the wind speed, base acceleration, and electrical load resistance, different nonlinear phenomena arise while others disappear. Short- and open-circuit configurations for different wind speeds and base accelerations are assessed. The results show that the maximum levels of harvested power are accompanied by a minimum transverse displacement when varying the electrical load resistance.
Vibration energy harvesting with polyphase AC transducers
NASA Astrophysics Data System (ADS)
McCullagh, James J.; Scruggs, Jeffrey T.; Asai, Takehiko
2016-04-01
Three-phase transduction affords certain advantages in the efficient electromechanical conversion of energy, especially at higher power scales. This paper considers the use of a three-phase electric machine for harvesting energy from vibrations. We consider the use of vector control techniques, which are common in the area of industrial electronics, for optimizing the feedback loops in a stochastically-excited energy harvesting system. To do this, we decompose the problem into two separate feedback loops for direct and quadrature current components, and illustrate how each might be separately optimized to maximize power output. In a simple analytical example, we illustrate how these techniques might be used to gain insight into the tradeoffs in the design of the electronic hardware and the choice of bus voltage.
Multiple cell configuration electromagnetic vibration energy harvester
NASA Astrophysics Data System (ADS)
Marin, Anthony; Bressers, Scott; Priya, Shashank
2011-07-01
This paper reports the design of an electromagnetic vibration energy harvester that doubles the magnitude of output power generated by the prior four-bar magnet configuration. This enhancement was achieved with minor increase in volume by 23% and mass by 30%. The new 'double cell' design utilizes an additional pair of magnets to create a secondary air gap, or cell, for a second coil to vibrate within. To further reduce the dimensions of the device, two coils were attached to one common cantilever beam. These unique features lead to improvements of 66% in output power per unit volume (power density) and 27% increase in output power per unit volume and mass (specific power density), from 0.1 to 0.17 mW cm-3 and 0.41 to 0.51 mW cm-3 kg-1 respectively. Using the ANSYS multiphysics analysis, it was determined that for the double cell harvester, adding one additional pair of magnets created a small magnetic gradient between air gaps of 0.001 T which is insignificant in terms of electromagnetic damping. An analytical model was developed to optimize the magnitude of transformation factor and magnetic field gradient within the gap.
Two degrees of freedom piezoelectric vibration energy harvester
NASA Astrophysics Data System (ADS)
Wang, Wei; Liu, Shengsheng; Cao, Junyi; Zhou, Shengxi; Lin, Jing
2016-04-01
Recently, vibration energy harvesting from surrounding environments to power wearable devices and wireless sensors in structure health monitoring has received considerable interest. Piezoelectric conversion mechanism has been employed to develop many successful energy harvesting devices due to its simple structure, long life span, high harvesting efficiency and so on. However, there are many difficulties of microscale cantilever configurations in energy harvesting from low frequency ambient. In order to improve the adaptability of energy harvesting from ambient vibrations, a two degrees of freedom (2-DOF) magnetic-coupled piezoelectric energy harvester is proposed in this paper. The electromechanical governing models of the cantilever and clamped hybrid energy harvester are derived to describe the dynamic characteristics for 2-DOF magnetic-coupled piezoelectric vibration energy harvester. Numerical simulations based on Matlab and ANSYS software show that the proposed magnetically coupled energy harvester can enhance the effective operating frequency bandwidth and increase the energy density. The experimental voltage responses of 2-DOF harvester under different structure parameters are acquired to demonstrate the effectiveness of the lumped parameter model for low frequency excitations. Moreover, the proposed energy harvester can enhance the energy harvesting performance over a wider bandwidth of low frequencies and has a great potential for broadband vibration energy harvesting.
A vibration energy harvester using magnet/piezoelectric composite transducer
NASA Astrophysics Data System (ADS)
Qiu, Jing; Chen, Hengjia; Wen, Yumei; Li, Ping; Yang, Jin; Li, Wenli
2014-05-01
In this research, a vibration energy harvester employing the magnet/piezoelectric composite transducer to convert mechanical vibration energy into electrical energy is presented. The electric output performance of a vibration energy harvester has been investigated. Compared to traditional magnetoelectric transducer, the proposed vibration energy harvester has some remarkable characteristic which do not need binder. The experimental results show that the presented vibration energy harvester can obtain an average power of 0.39 mW for an acceleration of 0.6g at frequency of 38 Hz. Remarkably, this power is a very encouraging power figure that gives the prospect of being able to power a widely range of wireless sensors in wireless sensor network.
Coupling analysis of linear vibration energy harvesting systems
NASA Astrophysics Data System (ADS)
Wang, Xu; Liang, Xingyu; Shu, Gequn; Watkins, Simon
2016-03-01
This paper has disclosed the relationship of vibration energy harvester performance with dimensionless force factor. Numerical ranges of the dimensionless force factor have been defined for cases of weak, moderate and strong coupling. The relationships of coupling loss factor, dimensionless force factor, critical coupling strength, coupling quotient, electro-mechanical coupling factor, damping loss factor and modal densities have been established in linear vibration energy harvester systems. The new contribution of this paper is to determine a frequency range where the vibration energy harvesting systems are in a weak coupling and the statistical energy analysis is applicable.
Vibration energy harvesting from random force and motion excitations
NASA Astrophysics Data System (ADS)
Tang, Xiudong; Zuo, Lei
2012-07-01
A vibration energy harvester is typically composed of a spring-mass system with an electromagnetic or piezoelectric transducer connected in parallel with a spring. This configuration has been well studied and optimized for harmonic vibration sources. Recently, a dual-mass harvester, where two masses are connected in series by the energy transducer and a spring, has been proposed. The dual-mass vibration energy harvester is proved to be able to harvest more power and has a broader bandwidth than the single-mass configuration, when the parameters are optimized and the excitation is harmonic. In fact, some dual-mass vibration energy harvesters, such as regenerative vehicle suspensions and buildings with regenerative tuned mass dampers (TMDs), are subjected to random excitations. This paper is to investigate the dual-mass and single-mass vibration harvesters under random excitations using spectrum integration and the residue theorem. The output powers for these two types of vibration energy harvesters, when subjected to different random excitations, namely force, displacement, velocity and acceleration, are obtained analytically with closed-form expressions. It is also very interesting to find that the output power of the vibration energy harvesters under random excitations depends on only a few parameters in very simple and elegant forms. This paper also draws some important conclusions on regenerative vehicle suspensions and buildings with regenerative TMDs, which can be modeled as dual-mass vibration energy harvesters. It is found that, under white-noise random velocity excitation from road irregularity, the harvesting power from vehicle suspensions is proportional to the tire stiffness and road vertical excitation spectrum only. It is independent of the chassis mass, tire-wheel mass, suspension stiffness and damping coefficient. Under random wind force excitation, the power harvested from buildings with regenerative TMD will depends on the building mass only, not
A MEMS vibration energy harvester for automotive applications
NASA Astrophysics Data System (ADS)
van Schaijk, R.; Elfrink, R.; Oudenhoven, J.; Pop, V.; Wang, Z.; Renaud, M.
2013-05-01
The objective of this work is to develop MEMS vibration energy harvesters for tire pressure monitoring systems (TPMS), they can be located on the rim or on the inner-liner of the car tire. Nowadays TPMS modules are powered by batteries with a limited lifetime. A large effort is ongoing to replace batteries with small and long lasting power sources like energy harvesters [1]. The operation principle of vibration harvesters is mechanical resonance of a seismic mass, where mechanical energy is converted into electrical energy. In general, vibration energy harvesters are of specific interest for machine environments where random noise or repetitive shock vibrations are present. In this work we present the results for MEMS based vibration energy harvesting for applying on the rim or inner-liner. The vibrations on the rim correspond to random noise. A vibration energy harvester can be described as an under damped mass-spring system acting like a mechanical band-pass filter, and will resonate at its natural frequency [2]. At 0.01 g2/Hz noise amplitude the average power can reach the level that is required to power a simple wireless sensor node, approximately 10 μW [3]. The dominant vibrations on the inner-liner consist mainly of repetitive high amplitude shocks. With a shock, the seismic mass is displaced, after which the mass will "ring-down" at its natural resonance frequency. During the ring-down period, part of the mechanical energy is harvested. On the inner-liner of the tire repetitive (one per rotation) high amplitude (few hundred g) shocks occur. The harvester enables an average power of a few tens of μW [4], sufficient to power a more sophisticated wireless sensor node that can measure additional tire-parameters besides pressure. In this work we characterized MEMS vibration energy harvesters for noise and shock excitation. We validated their potential for TPMS modules by measurements and simulation.
Enhanced vibrational energy harvesting using nonlinear stochastic resonance
NASA Astrophysics Data System (ADS)
McInnes, C. R.; Gorman, D. G.; Cartmell, M. P.
2008-12-01
Stochastic resonance has seen wide application in the physical sciences as a tool to understand weak signal amplification by noise. However, this apparently counter-intuitive phenomenon does not appear to have been exploited as a tool to enhance vibrational energy harvesting. In this note we demonstrate that by adding periodic forcing to a vibrationally excited energy harvesting mechanism, the power available from the device is apparently enhanced over a mechanism without periodic forcing. In order to illustrate this novel effect, a conceptually simple, but plausible model of such a device is proposed to explore the use of stochastic resonance to enhance vibrational energy harvesting.
Wideband electromagnetic energy harvesting from ambient vibrations
NASA Astrophysics Data System (ADS)
Mallick, Dhiman; Podder, Pranay; Roy, Saibal
2015-06-01
Different bandwidth widening schemes of electromagnetic energy harvesters have been reported in this work. The devices are fabricated on FR4 substrate using laser micromachining techniques. The linear device operate in a narrow band around the resonance; in order to tune resonant frequency of the device electrically, two different types of complex load topologies are adopted. Using capacitive load, the resonant frequency is tuned in the low frequency direction whereas using inductive load, the resonant frequency is tuned in the high frequency direction. An overall tuning range of ˜2.4 Hz is obtained at 0.3g though the output power dropped significantly over the tuning range. In order to improve the off-resonance performance, nonlinear oscillation based systems are adopted. A specially designed spring arm with fixed-guided configuration produced single well nonlinear monostable configuration. With increasing input acceleration, wider bandwidth is obtained with such a system as large displacement, stretching nonlinearity comes into play and 9.55 Hz bandwidth is obtained at 0.5g. The repulsive force between one static and one vibrating oppositely polarized magnets are used to generate bistable nonlinear potential system. The distance between the mentioned magnets is varied between 4 to 10 mm to produce tunable nonlinearity with a maximum half power bandwidth over 3 Hz at 0.5g.
A vibration energy harvesting device with bidirectional resonance frequency tunability
NASA Astrophysics Data System (ADS)
Challa, Vinod R.; Prasad, M. G.; Shi, Yong; Fisher, Frank T.
2008-02-01
Vibration energy harvesting is an attractive technique for potential powering of wireless sensors and low power devices. While the technique can be employed to harvest energy from vibrations and vibrating structures, a general requirement independent of the energy transfer mechanism is that the vibration energy harvesting device operate in resonance at the excitation frequency. Most energy harvesting devices developed to date are single resonance frequency based, and while recent efforts have been made to broaden the frequency range of energy harvesting devices, what is lacking is a robust tunable energy harvesting technique. In this paper, the design and testing of a resonance frequency tunable energy harvesting device using a magnetic force technique is presented. This technique enabled resonance tuning to ± 20% of the untuned resonant frequency. In particular, this magnetic-based approach enables either an increase or decrease in the tuned resonant frequency. A piezoelectric cantilever beam with a natural frequency of 26 Hz is used as the energy harvesting cantilever, which is successfully tuned over a frequency range of 22-32 Hz to enable a continuous power output 240-280 µW over the entire frequency range tested. A theoretical model using variable damping is presented, whose results agree closely with the experimental results. The magnetic force applied for resonance frequency tuning and its effect on damping and load resistance have been experimentally determined.
Evaluating vehicular-induced bridge vibrations for energy harvesting applications
NASA Astrophysics Data System (ADS)
Reichenbach, Matthew; Fasl, Jeremiah; Samaras, Vasilis A.; Wood, Sharon; Helwig, Todd; Lindenberg, Richard
2012-04-01
Highway bridges are vital links in the transportation network in the United States. Identifying possible safety problems in the approximately 600,000 bridges across the country is generally accomplished through labor-intensive, visual inspections. Ongoing research sponsored by NIST seeks to improve inspection practices by providing real-time, continuous monitoring technology for steel bridges. A wireless sensor network with a service life of ten years that is powered by an integrated energy harvester is targeted. In order to achieve the target ten-year life for the monitoring system, novel approaches to energy harvesting for use in recharging batteries are investigated. Three main sources of energy are evaluated: (a) vibrational energy, (b) solar energy, and (c) wind energy. Assessing the energy produced from vehicular-induced vibrations and converted through electromagnetic induction is the focus of this paper. The goal of the study is to process acceleration data and analyze the vibrational response of steel bridges to moving truck loads. Through spectral analysis and harvester modeling, the feasibility of vibration-based energy harvesting for longterm monitoring can be assessed. The effects of bridge conditions, ambient temperature, truck traffic patterns, and harvester position on the power content of the vibrations are investigated. With sensor nodes continually recharged, the proposed real-time monitoring system will operate off the power grid, thus reducing life cycle costs and enhancing inspection practices for state DOTs. This paper will present the results of estimating the vibration energy of a steel bridge in Texas.
Autoparametric Resonance Systems for Vibration-Based Energy Harvesters
NASA Astrophysics Data System (ADS)
Kurmann, L.; Hoffmann, D.; Folkmer, B.; Manoli, Y.; Woias, P.; Anderegg, R.
2015-12-01
Motivation for this paper is the creation of a new kind of (vibration) kinetic energy harvester systems that can effectively transfer environmental mechanical vibrations into electrical energy over a wider frequency bandwidth than conventional devices. This paper presents a potential improvement in the 1DoF vibration transducer class and examining therefore analytically the behavior of such systems using strong nonlinear springs. Then a new 2DoF class of vibration transducer is presented having a strong nonlinear characteristic which is well suited for autoparametric resonance vibrations.
Piezoelectric diaphragm for vibration energy harvesting.
Minazara, E; Vasic, D; Costa, F; Poulin, G
2006-12-22
This paper presents a technique of electric energy generation using a mechanically excited unimorph piezoelectric membrane transducer. The electrical characteristics of the piezoelectric power generator are investigated under dynamic conditions. The electromechanical model of the generator is presented and used to predict its electrical performances. The experiments was performed with a piezoelectric actuator (shaker) moving a macroscopic 25 mm diameter piezoelectric membrane. A power of 0.65 mW was generated at the resonance frequency (1.71 kHz) across a 5.6 kOmega optimal resistor and for a 80 N force. A special electronic circuit has been conceived in order to increase the power harvested by the piezoelectric transducer. This electrical converter applies the SSHI (synchronized switch harvesting on inductor) technique, and leads to remarkable results: under the same actuation conditions the generated power reaches 1.7 mW, which is sufficient to supply a large range of low consumption sensors. PMID:16814837
Delayed-feedback vibration absorbers to enhance energy harvesting
NASA Astrophysics Data System (ADS)
Kammer, Ayhan S.; Olgac, Nejat
2016-02-01
Recovering energy from ambient vibrations has recently been a popular research topic. This article is conceived as a concept study that explores new directions to enhance the performance of such energy harvesting devices from base excitation. The main idea revolves around the introduction of delayed feedback sensitization (or tuning) of an active vibration absorber setup. To clarify the concept, the Delayed Resonator theory is reviewed and its suitability for energy harvesting purposes is studied. It is recognized that an actively tuned and purely resonant absorber is infeasible for such applications. The focus is then shifted to alternative tuning schemes that deviate from resonance conditions. Also called Delayed Feedback Vibration Absorbers, these devices may indeed provide significant enhancements in energy harvesting capacity. Analytical developments are presented to study energy generation and consumption characteristics. Effects of excitation frequency and absorber damping are investigated. The influences of time-delayed feedback on the stability and the transient performance of the system are also treated. The analysis starts from a stand-alone absorber, emulating seismic mass type harvesters. The work is then extended to vibration control applications, where an absorber/harvester is coupled with a primary structure. The results are demonstrated with numerical simulations on a case study.
Vibration energy harvesting using Galfenol-based transducer
NASA Astrophysics Data System (ADS)
Berbyuk, Viktor
2013-04-01
In this paper the novel design of Galfenol based vibration energy harvester is presented. The device uses Galfenol rod diameter 6.35 mm and length 50mm, polycrystalline, production grade, manufactured by FSZM process by ETREMA Product Inc. For experimental study of the harvester, the test rig was developed. It was found by experiment that for given frequency of external excitation there exist optimal values of bias and pre-stress which maximize generated voltage and harvested power. Under optimized operational conditions and external excitations with frequency 50Hz the designed transducer generates about 10 V and harvests about 0,45 W power. Within the running conditions, the Galfenol rod power density was estimated to 340mW/cm3. The obtained results show high practical potential of Galfenol based sensors for vibration-to-electrical energy conversion, structural health monitoring, etc.
Power-amplifying strategy in vibration-powered energy harvesters
NASA Astrophysics Data System (ADS)
Ma, Pyung Sik; Kim, Jae Eun; Kim, Yoon Young
2010-04-01
A new cantilevered piezoelectric energy harvester (PEH) of which the additional lumped mass is connected to a harmonically oscillating base through an elastic foundation is proposed for maximizing generated power and enlarging its frequency bandwidth. The base motion is assumed to provide a given acceleration level. Earlier, a similar energy harvester employing the concept of the dynamic vibration absorber was developed but the mechanism of the present energy harvester is new because it incorporates a mass-spring system in addition to a conventional cantilevered piezoelectric energy harvesting beam with or without a tip mass. Consequently, the proposed energy harvester actually forms a two-degree-of-freedom system. It will be theoretically shown that the output power can be indeed substantially improved if the fundamental resonant frequencies of each of the two systems in the proposed energy harvester are simultaneously tuned as closely as possible to the input excitation frequency and also if the mass ratio of a piezoelectric energy harvesting beam to the lumped mass is adjusted below a certain value. The performance of the proposed energy harvester is checked by numerical simulation.
Design, simulation, fabrication, and characterization of MEMS vibration energy harvesters
NASA Astrophysics Data System (ADS)
Oxaal, John
Energy harvesting from ambient sources has been a longtime goal for microsystem engineers. The energy available from ambient sources is substantial and could be used to power wireless micro devices, making them fully autonomous. Self-powered wireless sensors could have many applications in for autonomous monitoring of residential, commercial, industrial, geological, or biological environments. Ambient vibrations are of particular interest for energy harvesting as they are ubiquitous and have ample kinetic energy. In this work a MEMS device for vibration energy harvesting using a variable capacitor structure is presented. The nonlinear electromechanical dynamics of a gap-closing type structure is experimentally studied. Important experimental considerations such as the importance of reducing off-axis vibration during testing, characterization methods, dust contamination, and the effect of grounding on parasitic capacitance are discussed. A comprehensive physics based model is developed and validated with two different microfabricated devices. To achieve maximal power, devices with high aspect ratio electrodes and a novel two-level stopper system are designed and fabricated. The maximum achieved power from the MEMS device when driven by sinusoidal vibrations was 3.38 muW. Vibrations from HVAC air ducts, which have a primary frequency of 65 Hz and amplitude of 155 mgrms, are targeted as the vibration source and devices are designed for maximal power harvesting potential at those conditions. Harvesting from the air ducts, the devices reached 118 nW of power. When normalized to the operating conditions, the best figure of merit of the devices tested was an order of magnitude above state-of-the-art of the devices (1.24E-6).
Fundamental issues in nonlinear wideband-vibration energy harvesting
NASA Astrophysics Data System (ADS)
Halvorsen, Einar
2013-04-01
Mechanically nonlinear energy harvesters driven by broadband vibrations modeled as white noise are investigated. We derive an upper bound on output power versus load resistance and show that, subject to mild restrictions that we make precise, the upper-bound performance can be obtained by a linear harvester with appropriate stiffness. Despite this, nonlinear harvesters can have implementation-related advantages. Based on the Kramers equation, we numerically obtain the output power at weak coupling for a selection of phenomenological elastic potentials and discuss their merits.
A new figure of merit for wideband vibration energy harvesters
NASA Astrophysics Data System (ADS)
Liu, W. Q.; Badel, A.; Formosa, F.; Wu, Y. P.
2015-12-01
The performance evaluation method is a very important part in the field of vibration energy harvesting. It provides the ability to compare and rate different vibration energy harvesters (VEHs). Considering the lack of a well-recognized tool, this article proposed a new systematic figure of merit for the appraisement of wideband VEHs. Extensive investigations are first performed for some classic figures for linear VEHs. With the common fundamental information obtained, the proposed figure integrates four essential factors: the revised energy harvester effectiveness, the mechanical quality factor, the normalized bandwidth and the effective mass density. Special considerations are devoted to the properties of wideband VEHs about the operation range and the average power in this domain which are related to the performance target of stable power output. Afterward, this new figure is applied to some literature VEHs and demonstrated to present good evaluations of wideband VEHs. Moreover, it exhibits the ability to point out the improvement information of the concerned VEHs further developments.
Low-frequency meandering piezoelectric vibration energy harvester.
Berdy, David F; Srisungsitthisunti, Pornsak; Jung, Byunghoo; Xu, Xianfan; Rhoads, Jeffrey F; Peroulis, Dimitrios
2012-05-01
The design, fabrication, and characterization of a novel low-frequency meandering piezoelectric vibration energy harvester is presented. The energy harvester is designed for sensor node applications where the node targets a width-to-length aspect ratio close to 1:1 while simultaneously achieving a low resonant frequency. The measured power output and normalized power density are 118 μW and 5.02 μW/mm(3)/g(2), respectively, when excited by an acceleration magnitude of 0.2 g at 49.7 Hz. The energy harvester consists of a laser-machined meandering PZT bimorph. Two methods, strain-matched electrode (SME) and strain-matched polarization (SMP), are utilized to mitigate the voltage cancellation caused by having both positive and negative strains in the piezoelectric layer during operation at the meander's first resonant frequency. We have performed finite element analysis and experimentally demonstrated a prototype harvester with a footprint of 27 x 23 mm and a height of 6.5 mm including the tip mass. The device achieves a low resonant frequency while maintaining a form factor suitable for sensor node applications. The meandering design enables energy harvesters to harvest energy from vibration sources with frequencies less than 100 Hz within a compact footprint. PMID:22622969
Piezoelectric energy harvesting from heartbeat vibrations for leadless pacemakers
NASA Astrophysics Data System (ADS)
Ansari, M. H.; Karami, M. Amin
2015-12-01
This paper studies energy harvesting from heartbeat vibrations using fan-folded piezoelectric beams. The generated energy from the heartbeat can be used to power a leadless pacemaker. In order to utilize the available 3 dimensional space to the energy harvester, we chose the fan-folded design. The proposed device consists of several piezoelectric beams stacked on top of each other. The size for this energy harvester is 2 cm by 0.5 cm by 1 cm, which makes the natural frequency very high. High natural frequency is one major concern about the micro-scaled energy harvesters. By utilizing the fan-folded geometry and adding tip mass and link mass to the configuration, this natural frequency is reduced to the desired range. This fan-folded design makes it possible to generate more than 10 μW of power. The proposed device does not incorporate magnets and is thus Magnetic resonance imaging (MRI) compatible. Although our device is a linear energy harvester, it is shown that the device is relatively insensitive to the heartrate. The natural frequencies and the mode shapes of the device are calculated. An analytical solution is presented and the method is verified by experimental investigation. We use a closed loop shaker controller and a shaker to simulate the heartbeat vibrations. The developed analytical model is verified through comparison of theoretical and experimental tip displacement and acceleration frequency response functions.
Low Frequency Vibration Energy Harvesting using Diamagnetically Stabilized Magnet Levitation
NASA Astrophysics Data System (ADS)
Palagummi, Sri Vikram
Over the last decade, vibration-based energy harvesting has provided a technology push on the feasibility of self-powered portable small electronic devices and wireless sensor nodes. Vibration energy harvesters in general transduce energy by damping out the environmentally induced relative emotion through either a cantilever beam or an equivalent suspension mechanism with one of the transduction mechanisms, like, piezoelectric, electrostatic, electromagnetic or magnetostrictive. Two major challenges face the present harvesters in literature, one, they suffer from the unavoidable mechanical damping due to internal friction present in the systems, second, they cannot operate efficiently in the low frequency range (< 10 Hz), when most of the ambient vibrational energy is in this low frequency broadband range. Passive and friction free diamagnetically stabilized magnet levitation mechanisms which can work efficiently as a vibration energy harvester in the low frequency range are discussed in this work. First, a mono-stable vertical diamagnetic levitation (VDL) based vibration energy harvester (VEH) is discussed. The harvester consists of a lifting magnet (LM), a floating magnet (FM) and two diamagnetic plates (DPs). The LM balances out the weight of the FM and stability is brought about by the repulsive effect of the DPs, made of pyrolytic graphite. Two thick cylindrical coils, placed in grooves which are engraved in the DPs, are used to convert the mechanical energy into electrical energy. Experimental frequency response of the system is validated by the theoretical analysis which showed that the VEH works in a low frequency range but sufficient levitation gap was not achieved and the frequency response characteristic of the system was effectively linear. To overcome these challenges, the influence of the geometry of the FM, the LM, and the DP were parametrically studied to assess their effects on the levitation gap, size of the system and the natural frequency. For
Interface Circuit for Vibration Energy Harvesting with Adjustable Bias Voltage
NASA Astrophysics Data System (ADS)
Wei, J.; Lefeuvre, E.; Mathias, H.; Costa, F.
2015-12-01
This paper presents a new interface circuit for electrostatic vibration energy harvesting with adjustable bias voltage. An electronic switch is used to modify the circuit configuration so that the harvested energy increases the voltage across a biasing capacitor. Decrease of this biasing capacitor voltage occurs naturally due to the circuit imperfections. Such a control of the bias voltage enables to adjust the amount of energy converted by the variable capacitor on each cycle. This feature can be used to optimize the mechanical damping induced by the energy conversion process in order to maximize the harvested power. Another feature of this interface circuit is that it is capable to get high bias voltage whatever the battery voltage with low energy loss.
Resonant frequency tuning of an industrial vibration energy harvester
NASA Astrophysics Data System (ADS)
Toh, T. T.; Wright, S. W.; Mitcheson, P. D.
2014-11-01
This paper presents preliminary results of tuning the resonant frequency of two industrial vibration energy harvesters. The VEH-450 from Ferro Solutions and the PMG17-50 from Perpetuum were tested using discrete reactive electrical loads. The former could be tuned to +0.5 Hz and -2 Hz from its natural resonant frequency of 50.5 Hz at 0.1g. The latter, however, has a broadband output power spectrum that spans ±10 Hz and its output voltage saturates at 7 Vrms, thereby rendering it un-tunable using the method presented here. A comparison of output power between a tuned VEH-450 and an un-tuned PMG17-50, normalised by harvester weight, shows that the former outperforms the latter only at a tuned frequency of 49.8 Hz. A discussion of a resonant frequency tuning circuit that can be fitted to an existing harvester without making modifications to the harvester is presented.
Energy Harvesting Devices Utilizing Resonance Vibration of Piezoelectric Buzzer
NASA Astrophysics Data System (ADS)
Ogawa, Toshio; Sugisawa, Ryosuke; Sakurada, Yuta; Aoshima, Hiroshi; Hikida, Masahito; Akaishi, Hiroshi
2013-09-01
A piezoelectric buzzer for energy harvesting was investigated. Although an external force was added to a buzzer, a lead zirconate titanate (PZT) unimorph in the buzzer, the ceramic disc diameter, thickness, and capacitance of which were respectively 14 mm, 0.2 mm, and 10 nF, generated resonance vibration. As a result, alternating voltages of around 30 V and a frequency of 5 kHz were observed. When the generated voltages were applied to a LED lamp, new devices such as a “night-view footwear” and a “piezo-walker” were developed. It was confirmed that the piezo-buzzer for energy harvesting utilizing resonance vibration is an effective tool for obtaining clean energy.
Vibration energy harvesting for low power and wireless applications
NASA Astrophysics Data System (ADS)
Challa, Vinod Reddy
Vibration energy harvesting is an attractive technique for the potential powering of wireless sensors and low power devices. While the technique can be employed to harvest energy from ambient and mechanical vibrations, there are several generic requirements independent of the energy transfer mechanism that needs to be satisfied for efficient energy harvesting which are pursued here. For example, most energy harvesting devices developed are based on a single resonance frequency, and while recently efforts are being attempted to broaden the frequency range of the devices, lacking is a robust frequency tunable technique. In this work, a resonance frequency tunable mechanism employing magnetic force/stiffness technique is developed that allows the device frequency to increase or decrease based on the mode (attractive, repulsive) of the magnetic force applied. The developed technique provides the device to tune to approximately +/- 25% of its untuned resonance frequency allowing a wide frequency bandwidth. Further, this technique is developed into a self-tunable technique for autonomous device development. Another generic requirement is to match the electrical damping to the mechanical damping in the energy harvesting system for maximum efficiency. To satisfy this requirement, two independent energy harvesting techniques (piezoelectric and electromagnetic) are coupled through design, resulting in ˜30% and ˜65.5% increase in two different independent devices. Another key requirement is developing MEMS scale energy harvesting devices that will not only promises to enhance the power density but also allows potential integration with wireless sensors as an on-chip power source. Piezoelectric MEMS composite structures along with integrated silicon tip masses are fabricated using standard microfabrication techniques. Spray coating and spin coating techniques were explored to deposit zinc oxide as the piezoelectric material. Commercially available magnets were employed to
Effect of electrode configurations on piezoelectric vibration energy harvesting performance
NASA Astrophysics Data System (ADS)
Kim, Miso; Dugundji, John; Wardle, Brian L.
2015-04-01
Piezoelectric vibration energy harvesting is an attractive technology for self-powered wireless sensor networks because of the potential to deliver power to the sensor nodes from mechanical vibration sources in the surrounding medium. Systematic device designs are required in order to increase performance along with materials development of high piezoelectric coefficients and design of circuits with high power transfer efficiency. In this work, we present refined structural and electrical modeling of interdigitated electrodes (IDEs) for piezoelectric vibration energy harvesting, followed by parametric case studies on MEMS devices. Differences in geometric parameters including the size of the electrode and the number of IDE fingers for given device dimensions lead to substantial changes in harvesting performance such as capacitance, system coupling, voltage and power. When compared with parallel plate electrodes, use of IDEs results in much higher voltage generation by a factor of ten times while similar power levels are observed for both {3-1} and {3-3} configurations at optimal electrical loading conditions.
Electret transducer for vibration-based energy harvesting
Hillenbrand, J. Sessler, G. M.; Pondrom, P.
2015-05-04
Vibration-based electret energy harvesters with soft cellular spacer rings are presented. These harvesters are closely related to recently introduced electret accelerometers; however, their development targets are partially differing. Various harvesters with seismic masses from 8 to 23 g and surface potentials in the 500 V regime were built and characterized and powers of up to 8 μW at about 2 kHz and an acceleration of 1 g were measured. An analytical model is presented which, for instance, allows the calculation of the frequency response of the power output into a given load resistance. Finally, experimental and calculated results are compared.
Enhanced vibration based energy harvesting using embedded acoustic black holes
NASA Astrophysics Data System (ADS)
Zhao, L.; Semperlotti, F.; Conlon, S. C.
2014-03-01
In this paper, we investigate the use of dynamic structural tailoring via the concept of an Acoustic Black Hole (ABH) to enhance the performance of piezoelectric based energy harvesting from operational mechanical vibrations. The ABH is a variable thickness structural feature that can be embedded in the host structure allowing a smooth reduction of the phase velocity while minimizing the amplitude of reflected waves. The ABH thickness variation is typically designed according to power-law profiles. As a propagating wave enters the ABH, it is progressively slowed down while its wavelength is compressed. This effect results in structural areas with high energy density that can be exploited effectively for energy harvesting. The potential of ABH for energy harvesting is shown via a numerical study based on fully coupled finite element electromechanical models of an ABH tapered plate with surface mounted piezo-transducers. The performances of the novel design are evaluated by direct comparison with a non-tapered structure in terms of energy ratios and attenuation indices. Results show that the tailored structural design allows a drastic increase in the harvested energy both for steady state and transient excitation. Performance dependencies of key design parameters are also investigated.
Energy harvester array using piezoelectric circular diaphragm for rail vibration
NASA Astrophysics Data System (ADS)
Wang, Wei; Huang, Rong-Jin; Huang, Chuan-Jun; Li, Lai-Feng
2014-12-01
Generating electric energy from mechanical vibration using a piezoelectric circular membrane array is presented in this paper. The electrical characteristics of the functional array consisted of three plates with varies tip masses are examined under dynamic conditions. With an optimal load resistor of 11 kΩ, an output power of 21.4 mW was generated from the array in parallel connection at 150 Hz under a pre-stress of 0.8 N and a vibration acceleration of 9.8 m/s2. Moreover, the broadband energy harvesting using this array still can be realized with different tip masses. Three obvious output power peaks can be obtained in a frequency spectra of 110 Hz to 260 Hz. The results show that using a piezoelectric circular diaphragm array can increase significantly the output of energy compared with the use of a single plate. And by optimizing combination of tip masses with piezoelectric elements in array, the frequency range can be tuned to meet the broadband vibration. This array may possibly be exploited to design the energy harvesting for practical applications such as future high speed rail.
NASA Astrophysics Data System (ADS)
Zaghari, Bahareh; Rustighi, Emiliano; Ghandchi Tehrani, Maryam
2015-03-01
Vibration energy harvesting is the transformation of vibration energy to electrical energy. The motivation of this work is to use vibration energy harvesting to power wireless sensors that could be used in inaccessible or hostile environments to transmit information for condition health monitoring. Although considerable work has been done in the area of energy harvesting, there is still a demand for making a robust and small vibration energy harvesters from random excitations in a real environment that can produce a reliable amount of energy. Parametrically excited harvesters can have time-varying stiffness. Parametric amplification is used to tune vibration energy harvesters to maximize energy gains at system superharmonics, often at twice the first natural frequency. In this paper the parametrically excited harvester with cubic and cubic parametric nonlinearity is introduced as a novel work. The advantages of having cubic and cubic nonlinearity are explained theoretically and experimentally.
A piezomagnetoelastic structure for broadband vibration energy harvesting
NASA Astrophysics Data System (ADS)
Erturk, A.; Hoffmann, J.; Inman, D. J.
2009-06-01
This letter introduces a piezomagnetoelastic device for substantial enhancement of piezoelectric power generation in vibration energy harvesting. Electromechanical equations describing the nonlinear system are given along with theoretical simulations. Experimental performance of the piezomagnetoelastic generator exhibits qualitative agreement with the theory, yielding large-amplitude periodic oscillations for excitations over a frequency range. Comparisons are presented against the conventional case without magnetic buckling and superiority of the piezomagnetoelastic structure as a broadband electric generator is proven. The piezomagnetoelastic generator results in a 200% increase in the open-circuit voltage amplitude (hence promising an 800% increase in the power amplitude).
Smart Sand—a wide bandwidth vibration energy harvesting platform
NASA Astrophysics Data System (ADS)
Marinkovic, Bozidar; Koser, Hur
2009-03-01
We propose a concept for true wide bandwidth vibration energy harvesting. Our approach exploits nonlinear stretching of fixed-fixed beams in an off-resonance mode, effectively expanding the operational frequency range well beyond the narrow bandwidth of linear resonators. Our initial prototype demonstrates operation between 160-400 Hz, without the need for frequency tuning. A simple dynamic model shows good agreement with measurements. Optimized device geometry will allow for even lower frequency operation (starting at 60 Hz) at strain levels above 1e-3 (ideal for piezoelectric transduction).
Efficiency Enhancement of a Cantilever-Based Vibration Energy Harvester
Kubba, Ali E.; Jiang, Kyle
2014-01-01
Extracting energy from ambient vibration to power wireless sensor nodes has been an attractive area of research, particularly in the automotive monitoring field. This article reports the design, analysis and testing of a vibration energy harvesting device based on a miniature asymmetric air-spaced cantilever. The developed design offers high power density, and delivers electric power that is sufficient to support most wireless sensor nodes for structural health monitoring (SHM) applications. The optimized design underwent three evolutionary steps, starting from a simple cantilever design, going through an air-spaced cantilever, and ending up with an optimized air-spaced geometry with boosted power density level. Finite Element Analysis (FEA) was used as an initial tool to compare the three geometries' stiffness (K), output open-circuit voltage (Vave), and average normal strain in the piezoelectric transducer (εave) that directly affect its output voltage. Experimental tests were also carried out in order to examine the energy harvesting level in each of the three designs. The experimental results show how to boost the power output level in a thin air-spaced cantilever beam for energy within the same space envelope. The developed thin air-spaced cantilever (8.37 cm3), has a maximum power output of 2.05 mW (H = 29.29 μJ/cycle). PMID:24366177
Efficiency enhancement of a cantilever-based vibration energy harvester.
Kubba, Ali E; Jiang, Kyle
2013-01-01
Extracting energy from ambient vibration to power wireless sensor nodes has been an attractive area of research, particularly in the automotive monitoring field. This article reports the design, analysis and testing of a vibration energy harvesting device based on a miniature asymmetric air-spaced cantilever. The developed design offers high power density, and delivers electric power that is sufficient to support most wireless sensor nodes for structural health monitoring (SHM) applications. The optimized design underwent three evolutionary steps, starting from a simple cantilever design, going through an air-spaced cantilever, and ending up with an optimized air-spaced geometry with boosted power density level. Finite Element Analysis (FEA) was used as an initial tool to compare the three geometries' stiffness (K), output open-circuit voltage (V(ave)), and average normal strain in the piezoelectric transducer (ε(ave)) that directly affect its output voltage. Experimental tests were also carried out in order to examine the energy harvesting level in each of the three designs. The experimental results show how to boost the power output level in a thin air-spaced cantilever beam for energy within the same space envelope. The developed thin air-spaced cantilever (8.37 cm3), has a maximum power output of 2.05 mW (H = 29.29 μJ/cycle). PMID:24366177
Electrostatic MEMS vibration energy harvester for HVAC applications
NASA Astrophysics Data System (ADS)
Oxaal, J.; Hella, M.; Borca-Tasciuc, D.-A.
2015-12-01
This paper reports on an electrostatic MEMS vibration energy harvester with gapclosing interdigitated electrodes, designed for and tested on HVAC air ducts. The device is fabricated on SOI wafers using a custom microfabrication process. A dual-level physical stopper system is implemented in order to control the minimum gap between the electrodes and maximize the power output. It utilizes cantilever beams to absorb a portion of the impact energy as the electrodes approach the impact point, and a film of parylene with nanometer thickness deposited on the electrode sidewalls, which defines the absolute minimum gap and provides electrical insulation. The fabricated device was first tested on a vibration shaker to characterize its resonant behavior. The device exhibits spring hardening behavior due to impacts with the stoppers and spring softening behavior with increasing voltage bias. Testing was carried out on HVAC air duct vibrating with an RMS acceleration of 155 mgRMS and a primary frequency of 60 Hz with a PSD of 7.15·10-2 g2/Hz. The peak power measured is 12nW (0.6 nW RMS) with a PSD of 6.9·10-11 W/Hz at 240 Hz (four times of the primary frequency of 60 Hz), which is the highest output reported for similar vibration conditions and biasing voltages.
Harvesting energy from the natural vibration of human walking.
Yang, Weiqing; Chen, Jun; Zhu, Guang; Yang, Jin; Bai, Peng; Su, Yuanjie; Jing, Qingsheng; Cao, Xia; Wang, Zhong Lin
2013-12-23
The triboelectric nanogenerator (TENG), a unique technology for harvesting ambient mechanical energy based on the triboelectric effect, has been proven to be a cost-effective, simple, and robust approach for self-powered systems. However, a general challenge is that the output current is usually low. Here, we demonstrated a rationally designed TENG with integrated rhombic gridding, which greatly improved the total current output owing to the structurally multiplied unit cells connected in parallel. With the hybridization of both the contact-separation mode and sliding electrification mode among nanowire arrays and nanopores fabricated onto the surfaces of two contact plates, the newly designed TENG produces an open-circuit voltage up to 428 V, and a short-circuit current of 1.395 mA with the peak power density of 30.7 W/m(2). Relying on the TENG, a self-powered backpack was developed with a vibration-to-electric energy conversion efficiency up to 10.62(±1.19) %. And it was also demonstrated as a direct power source for instantaneously lighting 40 commercial light-emitting diodes by harvesting the vibration energy from natural human walking. The newly designed TENG can be a mobile power source for field engineers, explorers, and disaster-relief workers. PMID:24180642
NASA Astrophysics Data System (ADS)
Ren, Long; Chen, Renwen; Xia, Huakang; Zhang, Xiaoxiao
2016-04-01
To supply power to wireless sensor networks, a type of broadband electromagnetic vibration energy harvester (VEH) using bistable vibration scavenging structure is proposed. It consists of a planar spring, an electromagnetic transducer with an annular magnetic circuit, and a coil assembly with a ferrite bobbin inside. A nonlinear magnetic force respecting to the relative displacement is generated by the ferrite bobbin, and to broaden the working frequency bandwidth of the VEH. Moreover, the ferrite bobbin increases the magnetic flux linkage gradient of the coil assembly in its moving region, and further to improve its output voltage. The dynamic behaviors of the VEH are analyzed and predicted by finite element analysis and ODE calculation. Validation experiments are carried out and show that the VEH can harvest high energy in a relatively wide excitation frequency band. The further test shows that the load power of the VEH with a load resistor of 90Ω can reach 10mW level in a wide frequency bandwidth when the acceleration level of the harmonic excitation is 1g. It can ensure the intermittent work of many sensors as well as wireless communication modules at least.
Energy harvesting from vibration with cross-linked polypropylene piezoelectrets
NASA Astrophysics Data System (ADS)
Zhang, Xiaoqing; Wu, Liming; Sessler, Gerhard M.
2015-07-01
Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young's modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d33 coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d33 ṡ g33) for a more typical d33 value of 400 pC/N is about 11.2 GPa-1. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm2 and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.
Energy harvesting from vibration with cross-linked polypropylene piezoelectrets
Zhang, Xiaoqing; Wu, Liming; Sessler, Gerhard M.
2015-07-15
Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young’s modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d{sub 33} coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d{sub 33} ⋅ g{sub 33}) for a more typical d{sub 33} value of 400 pC/N is about 11.2 GPa{sup −1}. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm{sup 2} and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.
NASA Astrophysics Data System (ADS)
Karami, M. Amin; Inman, Daniel J.
2011-11-01
A unified approximation method is derived to illustrate the effect of electro-mechanical coupling on vibration-based energy harvesting systems caused by variations in damping ratio and excitation frequency of the mechanical subsystem. Vibrational energy harvesters are electro-mechanical systems that generate power from the ambient oscillations. Typically vibration-based energy harvesters employ a mechanical subsystem tuned to resonate with ambient oscillations. The piezoelectric or electromagnetic coupling mechanisms utilized in energy harvesters, transfers some energy from the mechanical subsystem and converts it to an electric energy. Recently the focus of energy harvesting community has shifted toward nonlinear energy harvesters that are less sensitive to the frequency of ambient vibrations. We consider the general class of hybrid energy harvesters that use both piezoelectric and electromagnetic energy harvesting mechanisms. Through using perturbation methods for low amplitude oscillations and numerical integration for large amplitude vibrations we establish a unified approximation method for linear, softly nonlinear, and bi-stable nonlinear energy harvesters. The method quantifies equivalent changes in damping and excitation frequency of the mechanical subsystem that resembles the backward coupling from energy harvesting. We investigate a novel nonlinear hybrid energy harvester as a case study of the proposed method. The approximation method is accurate, provides an intuitive explanation for backward coupling effects and in some cases reduces the computational efforts by an order of magnitude.
Vibration piezoelectric energy harvester with multi-beam
Cui, Yan Zhang, Qunying Yao, Minglei; Dong, Weijie; Gao, Shiqiao
2015-04-15
This work presents a novel vibration piezoelectric energy harvester, which is a micro piezoelectric cantilever with multi-beam. The characteristics of the PZT (Pb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3}) thin film were measured; XRD (X-ray diffraction) pattern and AFM (Atomic Force Microscope) image of the PZT thin film were measured, and show that the PZT (Pb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3}) thin film is highly (110) crystal oriented; the leakage current is maintained in nA magnitude, the residual polarisation Pr is 37.037 μC/cm{sup 2}, the coercive field voltage Ec is 27.083 kV/cm, and the piezoelectric constant d{sub 33} is 28 pC/N. In order to test the dynamic performance of the energy harvester, a new measuring system was set up. The maximum output voltage of the single beam of the multi-beam can achieve 80.78 mV under an acceleration of 1 g at 260 Hz of frequency; the maximum output voltage of the single beam of the multi-beam is almost 20 mV at 1400 Hz frequency. .
A diamagnetically stabilized horizontally levitated electromagnetic vibration energy harvester
NASA Astrophysics Data System (ADS)
Palagummi, S.; Zou, J.; Yuan, F. G.
2015-04-01
This article investigates a horizontal diamagnetic levitation (HDL) system for vibration energy harvesting. In this configuration, two large magnets, alias lifting magnets, are arranged co-axially at a distance such that in between them a magnet, alias floating magnet, is passively levitated at a laterally offset equilibrium position. The levitation is stabilized in the horizontal direction by two diamagnetic plates made of pyrolytic graphite placed on each side of the floating magnet. This HDL configuration permits large amplitude vibration of the floating magnet and exploits the ability to tailor the geometry to meet specific applications due to its frequency tuning capability. Theoretical modeling techniques are discussed followed by an experimental setup to validate it. At an input root mean square (RMS) acceleration of 0.0434 m/s2 (0.0044 grms) and at a resonant frequency of 1.2 Hz, the prototype generated a RMS power of 3.6 μW with an average system efficiency of 1.93%. Followed by the validation, parametric studies on the geometry of the components are undertaken to show that with the optimized parameters the efficiency can be further enhanced.
MEMS electrostatic vibration energy harvester without switches and inductive elements
NASA Astrophysics Data System (ADS)
Dorzhiev, V.; Karami, A.; Basset, P.; Dragunov, V.; Galayko, D.
2014-11-01
The paper is devoted to a novel study of monophase MEMS electrostatic Vibration Energy Harvester (e-VEH) with conditioning circuit based on Bennet's doubler. Unlike the majority of conditioning circuits that charge a power supply, the circuit based on Bennet's doubler is characterized by the absence of switches requiring additional control electronics, and is free from hardly compatible with batch fabrication process inductive elements. Our experiment with a 0.042 cm3 batch fabricated MEMS e-VEH shows that a pre-charged capacitor as a power supply causes a voltage increase, followed by a saturation which was not reported before. This saturation is due to the nonlinear dynamics of the system and the electromechanical damping that is typical for MEMS. It has been found that because of that coupled behavior there exists an optimal power supply voltage at which output power is maximum. At 187 Hz / 4 g external vibrations the system is shown to charge a 12 V supply with a output power of 1.8 μW.
NASA Astrophysics Data System (ADS)
Beeby, Stephen P.; Wang, Leran; Zhu, Dibin; Weddell, Alex S.; Merrett, Geoff V.; Stark, Bernard; Szarka, Gyorgy; Al-Hashimi, Bashir M.
2013-07-01
The design of vibration energy harvesters (VEHs) is highly dependent upon the characteristics of the environmental vibrations present in the intended application. VEHs can be linear resonant systems tuned to particular frequencies or nonlinear systems with either bistable operation or a Duffing-type response. This paper provides detailed vibration data from a range of applications, which has been made freely available for download through the Energy Harvesting Network’s online data repository. In particular, this research shows that simulation is essential in designing and selecting the most suitable vibration energy harvester for particular applications. This is illustrated through C-based simulations of different types of VEHs, using real vibration data from a diesel ferry engine, a combined heat and power pump, a petrol car engine and a helicopter. The analysis shows that a bistable energy harvester only has a higher output power than a linear or Duffing-type nonlinear energy harvester with the same Q-factor when it is subjected to white noise vibration. The analysis also indicates that piezoelectric transduction mechanisms are more suitable for bistable energy harvesters than electromagnetic transduction. Furthermore, the linear energy harvester has a higher output power compared to the Duffing-type nonlinear energy harvester with the same Q factor in most cases. The Duffing-type nonlinear energy harvester can generate more power than the linear energy harvester only when it is excited at vibrations with multiple peaks and the frequencies of these peaks are within its bandwidth. Through these new observations, this paper illustrates the importance of simulation in the design of energy harvesting systems, with particular emphasis on the need to incorporate real vibration data.
Cryns, Jackson W.; Hatchell, Brian K.; Santiago-Rojas, Emiliano; Silvers, Kurt L.
2013-07-01
Formal journal article Experimental analysis of a piezoelectric energy harvesting system for harmonic, random, and sine on random vibration Abstract: Harvesting power with a piezoelectric vibration powered generator using a full-wave rectifier conditioning circuit is experimentally compared for varying sinusoidal, random and sine on random (SOR) input vibration scenarios. Additionally, the implications of source vibration characteristics on harvester design are discussed. Studies in vibration harvesting have yielded numerous alternatives for harvesting electrical energy from vibrations but piezoceramics arose as the most compact, energy dense means of energy transduction. The rise in popularity of harvesting energy from ambient vibrations has made piezoelectric generators commercially available. Much of the available literature focuses on maximizing harvested power through nonlinear processing circuits that require accurate knowledge of generator internal mechanical and electrical characteristics and idealization of the input vibration source, which cannot be assumed in general application. In this manuscript, variations in source vibration and load resistance are explored for a commercially available piezoelectric generator. We characterize the source vibration by its acceleration response for repeatability and transcription to general application. The results agree with numerical and theoretical predictions for in previous literature that load optimal resistance varies with transducer natural frequency and source type, and the findings demonstrate that significant gains are seen with lower tuned transducer natural frequencies for similar source amplitudes. Going beyond idealized steady state sinusoidal and simplified random vibration input, SOR testing allows for more accurate representation of real world ambient vibration. It is shown that characteristic interactions from more complex vibrational sources significantly alter power generation and power processing
NASA Astrophysics Data System (ADS)
Wang, Xu
2016-02-01
This paper establishes coupling loss factor of linear vibration energy harvesting systems in a framework of statistical energy analysis under parameter variations and random excitations. The new contributions of this paper are to define the numerical ranges of the dimensionless force factor for the weak, moderate and strong coupling and to study the connections of dimensionless force factor, coupling loss factor, coupling quotient, critical coupling strength, electro-mechanical coupling factor, damping loss factor and modal densities in linear vibration energy harvesting systems. The motivation of this paper is to enable statistical energy analysis of linear vibration energy harvesting systems for reliable performance predictions and design optimisation under parameter variations of materials and manufacturing processes and random ambient environmental excitations.
A dimensionless analysis of a 2DOF piezoelectric vibration energy harvester
NASA Astrophysics Data System (ADS)
Xiao, Han; Wang, Xu; John, Sabu
2015-06-01
In this study, a dimensionless analysis method is proposed to predict the output voltage and harvested power for a 2DOF vibration energy harvesting system. This method allows us to compare the harvesting power and efficiency of the 2DOF vibration energy harvesting system and to evaluate the harvesting system performance regardless the sizes or scales. The analysis method is a hybrid of time domain simulation and frequency response analysis approaches, which would be a useful tool for parametric study, design and optimisation of a 2DOF piezoelectric vibration energy harvester. In a case study, a quarter car suspension model with a piezoelectric material insert is chosen to be studied. The 2DOF vibration energy harvesting system could potentially be applied in a vehicle to convert waste or harmful ambient vibration energy into electrical energy for charging the battery. Especially for its application in a hybrid vehicle or an electrical vehicle, the 2DOF vibration energy harvesting system could improve charge mileage, comfort and reliability.
Vibration energy harvesting using a phononic crystal with point defect states
NASA Astrophysics Data System (ADS)
Lv, Hangyuan; Tian, Xiaoyong; Wang, Michael Yu; Li, Dichen
2013-01-01
A vibration energy harvesting generator was studied in the present research using point-defect phononic crystal with piezoelectric material. By removing a rod from a perfect phononic crystal, a resonant cavity was formed. The elastic waves in the range of gap frequencies were all forbidden in any direction, while the waves with resonant frequency were localized and enhanced in the resonant cavity. The collected vibration energy was converted into electric energy by putting a polyvinylidene fluoride film in the middle of the defect. This structure can be used to simultaneously realize both vibration damping and broad-distributed vibration energy harvesting.
NASA Astrophysics Data System (ADS)
Kim, Jae Eun; Kim, Yoon Young
2013-07-01
We propose a vibration energy harvester consisting of an auxiliary frequency-tuned mass unit and a piezoelectric vibration energy harvesting unit for enhancing output power. The proposed integrated system is so configured that its out-of-phase mode can appear at the lowest eigenfrequency unlike in the conventional system using a tuned unit. Such an arrangement makes the resulting system distinctive: enhanced output power at or near the target operating frequency and very little eigenfrequency separation, not observed in conventional eigenfrequency-tuned vibration energy harvesters. The power enhancement of the proposed system is theoretically examined with and without tip mass normalization or footprint area normalization.
Validation of a hybrid electromagnetic–piezoelectric vibration energy harvester
NASA Astrophysics Data System (ADS)
Edwards, Bryn; Hu, Patrick A.; Aw, Kean C.
2016-05-01
This paper presents a low frequency vibration energy harvester with contact based frequency up-conversion and hybrid electromagnetic–piezoelectric transduction. An electromagnetic generator is proposed as a power source for low power wearable electronic devices, while a second piezoelectric generator is investigated as a potential power source for a power conditioning circuit for the electromagnetic transducer output. Simulations and experiments are conducted in order to verify the behaviour of the device under harmonic as well as wide-band excitations across two key design parameters—the length of the piezoelectric beam and the excitation frequency. Experimental results demonstrated that the device achieved a power output between 25.5 and 34 μW at an root mean squared (rms) voltage level between 16 and 18.5 mV for the electromagnetic transducer in the excitation frequency range of 3–7 Hz, while the output power of the piezoelectric transducer ranged from 5 to 10.5 μW with a minimum peak-to-peak output voltage of 6 V. A multivariate model validation was performed between experimental and simulation results under wide-band excitation in terms of the rms voltage outputs of the electromagnetic and piezoelectric transducers, as well as the peak-to-peak voltage output of the piezoelectric transducer, and it is found that the experimental data fit the model predictions with a minimum probability of 63.4% across the parameter space.
A hybrid electromagnetic energy harvesting device for low frequency vibration
NASA Astrophysics Data System (ADS)
Jung, Hyung-Jo; Kim, In-Ho; Min, Dong Yi; Sim, Sung-Han; Koo, Jeong-Hoi
2013-04-01
An electromagnetic energy harvesting device, which converts a translational base motion into a rotational motion by using a rigid bar having a moving mass pivoted on a hinged point with a power spring, has been recently developed for use of civil engineering structures having low natural frequencies. The device utilizes the relative motion between moving permanent magnets and a fixed solenoid coil in order to harvest electrical power. In this study, the performance of the device is enhanced by introducing a rotational-type generator at a hinged point. In addition, a mechanical stopper, which makes use of an auxiliary energy harvesting part to further improve the efficiency, is incorporated into the device. The effectiveness of the proposed hybrid energy harvesting device based on electromagnetic mechanism is verified through a series of laboratory tests.
NASA Astrophysics Data System (ADS)
Wang, Xu; Liang, Xingyu; Hao, Zhiyong; Du, Haiping; Zhang, Nong; Qian, Ma
2016-05-01
A frequency response analysis has been conducted for a single degree of freedom vibration energy harvester connected to four different interface circuits. The performance and characteristics of both electromagnetic and piezoelectric harvesters have been analysed and compared. The main research outcome is the disclosure of similarity and duality of the electromagnetic and piezoelectric harvesters with different interface circuits. The contribution of this paper is to provide a new method to identify a vibration energy harvester with the best interface circuit and the most stable performance.
NASA Astrophysics Data System (ADS)
Umaba, M.; Nakamachi, E.; Morita, Y.
2015-12-01
In this study, a high frequency piezoelectric energy harvester converted from the human low vibrated motion energy was newly developed. This hybrid energy harvester consists of the unimorph piezoelectric cantilever, the pendulum and a pair of permanent magnets. One magnet was attached at the edge of cantilever, and the counterpart magnet at the edge of pendulum. The mechanical energy provided through the human walking motion, which is a typical ubiquitous existence of vibration, is converted to the electric energy via the piezoelectric unimorph cantilever vibration. At first, we studied the energy convert mechanism and analyze the performance of novel energy harvester, where the resonance free vibration of unimorph piezoelectric cantilever generated a high electric power. Next, we equipped the counterpart permanent magnet at the edge of pendulum, which vibrates with a very low frequency caused by the human walking. Then the counterpart magnet was set at the edge of unimorph piezoelectric cantilever, which vibrated with a high frequency. This low-to-high frequency convert "dual vibration system" can be characterized as an enhanced energy harvester. We examined and obtained average values of voltage and power in this system, as 8.31 mV and 0.33 μW. Those results show the possibility to apply for the energy harvester in the portable and implantable Bio-MEMS devices.
NASA Astrophysics Data System (ADS)
Harne, Ryan L.
2012-04-01
Vibrational energy harvesting devices are oftentimes constructed in a manner identical to classical tuned-massdampers used in vibration control applications. However, many applications and models in past work assume that the harvesters will have negligible influence on the host structure (e.g. harvesters on a bridge). In contrast, this work adopts the perspective that the energy harvester is analogous to an electromechanical vibration absorber, attenuating the structural vibrations via a dominant mechanical influence while converting the absorbed energy into electric power. One embodiment of a device serving these two purposes-passive vibration attenuation and energy harvesting-is introduced. The device utilizes a distributed piezoelectric spring layer such that as the spring is strained between the top mass layer and the vibrating host structure the piezoelectric spring generates a voltage potential across its electrodes. Two experimental studies are detailed which investigate the capability for energy harvesting vibration absorbers to meet both goals. It is found that achievement of both objectives may require compromise but with proper device design still yields a viable electrical output.
Dual resonant structure for energy harvesting from random vibration sources at low frequency
NASA Astrophysics Data System (ADS)
Li, Shanshan; Peng, Zhuoteng; Zhang, Ai; Wang, Fei
2016-01-01
We introduce a design with dual resonant structure which can harvest energy from random vibration sources at low frequency range. The dual resonant structure consists of two spring-mass subsystems with different frequency responses, which exhibit strong coupling and broad bandwidth when the two masses collide with each other. Experiments with piezoelectric elements show that the energy harvesting device with dual resonant structure can generate higher power output than the sum of the two separate devices from random vibration sources.
An efficient vibration energy harvester with a multi-mode dynamic magnifier
NASA Astrophysics Data System (ADS)
Zhou, Wanlu; Reddy Penamalli, Gopinath; Zuo, Lei
2012-01-01
A novel piezoelectric energy harvester with a multi-mode dynamic magnifier, which is capable of significantly increasing the bandwidth and the energy harvested from the ambient vibration, is proposed and investigated in this paper. The design comprises a multi-mode intermediate beam with a tip mass, called a ‘dynamic magnifier’, and an ‘energy harvesting beam’ with a tip mass. The piezoelectric film is adhered to the harvesting beam to harvest the vibration energy. By properly designing the parameters, such as the length, width and thickness of the two beams and the weight of the two tip masses, we can magnify the motion virtually in all the resonance frequencies of the energy harvesting beam, in a similar way as designing a new beam-type tuned mass damper (TMD) to damp the resonance frequencies of all the modes of the primary beam. Theoretical analysis, finite element simulation, and the experiment study are carried out. The results show that voltage produced by the harvesting beam is amplified for efficient energy harvesting over a broader frequency range, while the peaks of the first three modes of the primary beam can be effectively mitigated simultaneously. The experiment demonstrates 25.5 times more energy harvesting capacity than the conventional cantilever type harvester in the frequency range 3-300 Hz, and 100-1000 times more energy around all the first three resonances of the harvesting beam.
NASA Astrophysics Data System (ADS)
Harne, Ryan L.
2012-03-01
Fundamental studies in vibrational energy harvesting consider the electromechanically coupled devices to be excited by uniform base vibration. Since many harvester devices are mass-spring systems, there is a clear opportunity to exploit the mechanical resonance in a fashion identical to tuned mass dampers to simultaneously suppress the vibration of the host structure via reactive forces while converting the ‘absorbed’ vibration into electrical power. This paper presents a general analytical model for the coupled electro-elastic dynamics of a vibrating panel to which distributed energy harvesting devices are attached. One such device is described which employs a corrugated piezoelectric spring layer. The model is validated by comparison to measured elastic and electric frequency response functions. Tests on an excited panel show that the device, contributing 1% additional mass to the structure, concurrently attenuates the lowest panel mode accelerance by >20 dB while generating 0.441 µW for a panel drive acceleration of 3.29 m s-2. Adjustment of the load resistance connected to the piezoelectric spring layer verifies the analogy between the present harvester device and an electromechanically stiffened and damped vibration absorber. The results show that maximum vibration suppression and energy harvesting objectives occur for nearly the same load resistance in the harvester circuit.
Piezoelectric-based power sources for harvesting energy from platforms with low-frequency vibration
NASA Astrophysics Data System (ADS)
Rastegar, J.; Pereira, C.; Nguyen, H.-L.
2006-03-01
This paper presents a new class of highly efficient piezoelectric based energy harvesting power sources for mounting on platforms that vibrate at very low frequencies as compared to the frequencies at which energy can be efficiently harvested using piezoelectric elements . These energy harvesting power sources have a very simple design and do not require accurate tuning for each application to match the frequency of the platform vibration. The developed method of harvesting mechanical energy and converting it to electrical energy overcomes problems that are usually encountered with harvesting energy from low frequency vibration of various platforms such as ships and other platforms with similar vibratory (rocking or translational) motions. Omnitek Partners has designed several such energy harvesting power sources and is in the process of constructing prototypes for testing. The developed designs are modular and can be used to construct power sources for various power requirements. The amount of mechanical energy available for harvesting is obviously dependent on the frequency and amplitude of vibration of the platform, and the size and mass of the power source.
Investigation of folded spring structures for vibration-based piezoelectric energy harvesting
NASA Astrophysics Data System (ADS)
Lueke, J.; Rezaei, M.; Moussa, W. A.
2014-12-01
This paper presents a fixed-fixed folded spring as an alternative elastic element for beam-based piezoelectric energy harvesting. In order to harvest energy from low frequency vibration in an optimal manner, the natural/operational frequencies of harvesters must be reduced to match low frequency input vibrations. Therefore, natural frequency reduction of vibration-based energy harvesters is critical to maximize output power at low operational frequency. The mechanical optimization of cantilever-based piezoelectric energy harvesters is limited by residual stress-based beam curling that produced through microfabrication adding additional mechanical stiffness to the system. The fixed-fixed folded spring structure presented in this paper allows for increased effective beam length and residual stress relaxation, without out of plane beam curling to further reducing the natural frequency. Multiple designs of folded spring energy harvesters are presented to demonstrate the effect of important design parameters. It is shown that the folded spring harvesters were capable of harvesting electricity at low natural frequencies, ranging from 45 Hz to 3667 Hz. Additionally, the harvesters were shown to be insensitive to microfabrication-based residual stress beam curling. The maximum power output achieved by the folded spring harvesters was 690.5 nW at 226.3 Hz for a single harvesting element of an array, with a PZT layer thickness of 0.24 μm. The work presented in this paper demonstrates that the fixed-fixed folded spring can be used as a viable structural element for low frequency piezoelectric energy harvesting to take advantage of ambient vibrations found in low frequency applications.
A hybrid indoor ambient light and vibration energy harvester for wireless sensor nodes.
Yu, Hua; Yue, Qiuqin; Zhou, Jielin; Wang, Wei
2014-01-01
To take advantage of applications where both light and vibration energy are available, a hybrid indoor ambient light and vibration energy harvesting scheme is proposed in this paper. This scheme uses only one power conditioning circuit to condition the combined output power harvested from both energy sources so as to reduce the power dissipation. In order to more accurately predict the instantaneous power harvested from the solar panel, an improved five-parameter model for small-scale solar panel applying in low light illumination is presented. The output voltage is increased by using the MEMS piezoelectric cantilever arrays architecture. It overcomes the disadvantage of traditional MEMS vibration energy harvester with low voltage output. The implementation of the maximum power point tracking (MPPT) for indoor ambient light is implemented using analog discrete components, which improves the whole harvester efficiency significantly compared to the digital signal processor. The output power of the vibration energy harvester is improved by using the impedance matching technique. An efficient mechanism of energy accumulation and bleed-off is also discussed. Experiment results obtained from an amorphous-silicon (a-Si) solar panel of 4.8 × 2.0 cm2 and a fabricated piezoelectric MEMS generator of 11 × 12.4 mm2 show that the hybrid energy harvester achieves a maximum efficiency around 76.7%. PMID:24854054
Nonlinear dynamics of magnetically coupled beams for multi-modal vibration energy harvesting
NASA Astrophysics Data System (ADS)
Abed, I.; Kacem, N.; Bouhaddi, N.; Bouazizi, M. L.
2016-04-01
We investigate the nonlinear dynamics of magnetically coupled beams for multi-modal vibration energy harvesting. A multi-physics model for the proposed device is developed taking into account geometric and magnetic nonlinearities. The coupled nonlinear equations of motion are solved using the Galerkin discretization coupled with the harmonic balance method and the asymptotic numerical method. Several numerical simulations have been performed showing that the expected performances of the proposed vibration energy harvester are significantly promising with up to 130 % in term of bandwidth and up to 60 μWcm-3g-2 in term of normalized harvested power.
NASA Astrophysics Data System (ADS)
Challa, Vinod R.; Prasad, M. G.; Fisher, Frank T.
2011-02-01
Future deployment of wireless sensor networks will ultimately require a self-sustainable local power source for each sensor, and vibration energy harvesting is a promising approach for such applications. A requirement for efficient vibration energy harvesting is to match the device and source frequencies. While techniques to tune the resonance frequency of an energy harvesting device have recently been described, in many applications optimization of such systems will require the energy harvesting device to be able to autonomously tune its resonance frequency. In this work a vibration energy harvesting device with autonomous resonance frequency tunability utilizing a magnetic stiffness technique is presented. Here a piezoelectric cantilever beam array is employed with magnets attached to the free ends of cantilever beams to enable magnetic force resonance frequency tuning. The device is successfully tuned from - 27% to + 22% of its untuned resonance frequency while outputting a peak power of approximately 1 mW. Since the magnetic force tuning technique is semi-active, energy is only consumed during the tuning process. The developed prototype consumed maximum energies of 3.3 and 3.9 J to tune to the farthest source frequencies with respect to the untuned resonance frequency of the device. The time necessary for this prototype device to harvest the energy expended during its most energy-intensive (largest resonant frequency adjustment) tuning operation is 88 min in a low amplitude 0.1g vibration environment, which could be further optimized using higher efficiency piezoelectric materials and system components.
NASA Astrophysics Data System (ADS)
Jo, Sung-Eun; Kim, Myoung-Soo; Kim, Yong-Jun
2012-01-01
A mismatch between the ambient frequency and the resonant frequency of the vibrational energy harvester causes decrease of the energy transduction efficiency. Therefore, there is a great demand for the resonant frequency tuning of the vibrational energy harvester. In this paper, a flexible PVDF (polyvinylidene fluoride) cantilever, which can switch its resonant frequency automatically and maintain the switched resonant frequency without energy consumption, is proposed. The proposed energy harvester is composed of cantilever couples which are similar with a seesaw structure. When the proposed energy harvester is excited by an external vibration and the excited frequency fluctuates, the cantilever couples can be horizontally moved by using the large deflection of a flexible cantilever. So the beam length of each cantilever which corresponds to each arm of the seesaw structure can be changed and the resonant frequency of the proposed energy harvester can be switched in real time. The proposed energy harvester was realized by application of a piezoelectric polymer, PVDF. Also, it was confirmed that the proposed energy harvester can switch its resonant frequency in several seconds without an additional energy source.
Tunable Vibration Energy Harvester for Condition Monitoring of Maritime Gearboxes
NASA Astrophysics Data System (ADS)
Hoffmann, D.; Willmann, A.; Folkmer, B.; Manoli, Y.
2014-11-01
This paper reports on a new tuning concept, which enables the operation of a vibration generator for energy autonomous condition monitoring of maritime gearboxes. The tuning concept incorporates a circular tuning magnet, which interacts with a coupling magnet attached to the active transducer element. The tuning range can be tailored to the application by careful design of the gap between tuning magnet and coupling magnet. A total rotation angle of only 180° is required for the tuning magnet in order to obtain the full frequency bandwidth. The tuning concept is successfully demonstrated by charging a 0.6 F capacitor on the basis of physical vibration profiles taken from a gearbox.
Roles of the Excitation in Harvesting Energy from Vibrations.
Zhang, Hui; Ma, Tianwei
2015-01-01
The study investigated the role of excitation in energy harvesting applications. While the energy ultimately comes from the excitation, it was shown that the excitation may not always behave as a source. When the device characteristics do not perfectly match the excitation, the excitation alternately behaves as a source and a sink. The extent to which the excitation behaves as a sink determines the energy harvesting efficiency. Such contradictory roles were shown to be dictated by a generalized phase defined as the instantaneous phase angle between the velocity of the device and the excitation. An inductive prototype device with a diamagnetically levitated seismic mass was proposed to take advantage of the well established phase changing mechanism of vibro-impact to achieve a broader device bandwidth. Results suggest that the vibro-impact can generate an instantaneous, significant phase shift in response velocity that switches the role of the excitation. If introduced properly outside the resonance zone it could dramatically increase the energy harvesting efficiency. PMID:26496183
Roles of the Excitation in Harvesting Energy from Vibrations
Zhang, Hui; Ma, Tianwei
2015-01-01
The study investigated the role of excitation in energy harvesting applications. While the energy ultimately comes from the excitation, it was shown that the excitation may not always behave as a source. When the device characteristics do not perfectly match the excitation, the excitation alternately behaves as a source and a sink. The extent to which the excitation behaves as a sink determines the energy harvesting efficiency. Such contradictory roles were shown to be dictated by a generalized phase defined as the instantaneous phase angle between the velocity of the device and the excitation. An inductive prototype device with a diamagnetically levitated seismic mass was proposed to take advantage of the well established phase changing mechanism of vibro-impact to achieve a broader device bandwidth. Results suggest that the vibro-impact can generate an instantaneous, significant phase shift in response velocity that switches the role of the excitation. If introduced properly outside the resonance zone it could dramatically increase the energy harvesting efficiency. PMID:26496183
Ostasevicius, Vytautas; Janusas, Giedrius; Milasauskaite, Ieva; Zilys, Mindaugas; Kizauskiene, Laura
2015-01-01
This paper focuses on several aspects extending the dynamical efficiency of a cantilever beam vibrating in the third mode. A few ways of producing this mode stimulation, namely vibro-impact or forced excitation, as well as its application for energy harvesting devices are proposed. The paper presents numerical and experimental analyses of novel structural dynamics effects along with an optimal configuration of the cantilever beam. The peculiarities of a cantilever beam vibrating in the third mode are related to the significant increase of the level of deformations capable of extracting significant additional amounts of energy compared to the conventional harvester vibrating in the first mode. Two types of a piezoelectric vibrating energy harvester (PVEH) prototype are analysed in this paper: the first one without electrode segmentation, while the second is segmented using electrode segmentation at the strain nodes of the third vibration mode to achieve effective operation at the third resonant frequency. The results of this research revealed that the voltage generated by any segment of the segmented PVEH prototype excited at the third resonant frequency demonstrated a 3.4–4.8-fold increase in comparison with the non-segmented prototype. Simultaneously, the efficiency of the energy harvester prototype also increased at lower resonant frequencies from 16% to 90%. The insights presented in the paper may serve for the development and fabrication of advanced piezoelectric energy harvesters which would be able to generate a considerably increased amount of electrical energy independently of the frequency of kinematical excitation. PMID:26029948
Ostasevicius, Vytautas; Janusas, Giedrius; Milasauskaite, Ieva; Zilys, Mindaugas; Kizauskiene, Laura
2015-01-01
This paper focuses on several aspects extending the dynamical efficiency of a cantilever beam vibrating in the third mode. A few ways of producing this mode stimulation, namely vibro-impact or forced excitation, as well as its application for energy harvesting devices are proposed. The paper presents numerical and experimental analyses of novel structural dynamics effects along with an optimal configuration of the cantilever beam. The peculiarities of a cantilever beam vibrating in the third mode are related to the significant increase of the level of deformations capable of extracting significant additional amounts of energy compared to the conventional harvester vibrating in the first mode. Two types of a piezoelectric vibrating energy harvester (PVEH) prototype are analysed in this paper: the first one without electrode segmentation, while the second is segmented using electrode segmentation at the strain nodes of the third vibration mode to achieve effective operation at the third resonant frequency. The results of this research revealed that the voltage generated by any segment of the segmented PVEH prototype excited at the third resonant frequency demonstrated a 3.4-4.8-fold increase in comparison with the non-segmented prototype. Simultaneously, the efficiency of the energy harvester prototype also increased at lower resonant frequencies from 16% to 90%. The insights presented in the paper may serve for the development and fabrication of advanced piezoelectric energy harvesters which would be able to generate a considerably increased amount of electrical energy independently of the frequency of kinematical excitation. PMID:26029948
Vibration energy harvesting from an array of flexible stalks exposed to airflow: a theoretical study
NASA Astrophysics Data System (ADS)
Gardonio, P.; Zilletti, M.
2016-03-01
This paper investigates the vibration energy harvesting of a system formed by an array of identical artificial flexible stalks connected by equal axial springs. The stalks are excited in bending by the propagating eddies produced by a mixing layer airflow at the top end of the canopy. The energy harvesting is localised in one pivotal stalk, which is equipped with a harvester. The paper first contrasts the spectra of the energy harvested by this system and by a classical system, formed by an equal array of mechanically uncoupled beams, which are all equipped with harvesters. Since the proposed system forms a periodic structure, this analysis considers variations of the stiffness of the harvesting stalk and of the connecting springs, which may lead to natural frequencies veering and mode localisation effects. Finally, the paper presents a parametric study that highlights how the bending stiffness of the harvesting stalk, the axial stiffness of the connecting springs and the energy absorption coefficient of the harvester influence the energy extraction. The study shows that, particularly in presence of strongly correlated drag force excitations produced on the stalks by the airflow, the energy harvested with the proposed system with a single harvester is comparable to that of a more complex and more expensive system formed by a whole array of harvesters.
Magnetostrictive vibration damper and energy harvester for rotating machinery
NASA Astrophysics Data System (ADS)
Deng, Zhangxian; Asnani, Vivake M.; Dapino, Marcelo J.
2015-04-01
Vibrations generated by machine driveline components can cause excessive noise and structural dam- age. Magnetostrictive materials, including Galfenol (iron-gallium alloys) and Terfenol-D (terbium-iron- dysprosium alloys), are able to convert mechanical energy to magnetic energy. A magnetostrictive vibration ring is proposed, which generates electrical energy and dampens vibration, when installed in a machine driveline. A 2D axisymmetric finite element (FE) model incorporating magnetic, mechanical, and electrical dynamics is constructed in COMSOL Multiphysics. Based on the model, a parametric study considering magnetostrictive material geometry, pickup coil size, bias magnet strength, flux path design, and electrical load is conducted to maximize loss factor and average electrical output power. By connecting various resistive loads to the pickup coil, the maximum loss factors for Galfenol and Terfenol-D due to electrical energy loss are identified as 0.14 and 0.34, respectively. The maximum av- erage electrical output power for Galfenol and Terfenol-D is 0.21 W and 0.58 W, respectively. The loss factors for Galfenol and Terfenol-D are increased to 0.59 and 1.83, respectively, by using an L-C resonant circuit.
Magnetostrictive Vibration Damper and Energy Harvester for Rotating Machinery
NASA Technical Reports Server (NTRS)
Deng, Zhangxian; Asnani, Vivake M.; Dapino, Marcelo J.
2015-01-01
Vibrations generated by machine driveline components can cause excessive noise and structural damage. Magnetostrictive materials, including Galfenol (iron-gallium alloys) and Terfenol-D (terbium-iron-dysprosium alloys), are able to convert mechanical energy to magnetic energy. A magnetostrictive vibration ring is proposed, which generates electrical energy and dampens vibration, when installed in a machine driveline. A 2D axisymmetric finite element (FE) model incorporating magnetic, mechanical, and electrical dynamics is constructed in COMSOL Multiphysics. Based on the model, a parametric study considering magnetostrictive material geometry, pickup coil size, bias magnet strength, flux path design, and electrical load is conducted to maximize loss factor and average electrical output power. By connecting various resistive loads to the pickup coil, the maximum loss factors for Galfenol and Terfenol-D due to electrical energy loss are identified as 0.14 and 0.34, respectively. The maximum average electrical output power for Galfenol and Terfenol-D is 0.21 W and 0.58 W, respectively. The loss factors for Galfenol and Terfenol-D are increased to 0.59 and 1.83, respectively, by using an L-C resonant circuit.
High output power AlN vibration-driven energy harvesters
NASA Astrophysics Data System (ADS)
Cao, Z.; He, J.; Wang, Q.; Hara, M.; Oguchi, H.; Kuwano, H.
2013-12-01
This paper presents miniature AlN harvesters for harvesting low-frequency and two-dimensional vibration energy. A high fracture toughness and high yield strength stainless steel substrate was used to enhance output power and reduce resonate frequency of vibration energy harvesters. The thickness of 1.89 μm AlN films were deposited on 50 μm thick stainless steel (SUS) substrates for fabricating the harvesters. The Al/AlN/SUS multi-layer sheet was made into long and thin plate-like cantilevers with heavy proof masses attached at their free ends. The devices can collect vibration energy efficiently not only under perpendicular direction to the plate surface of cantilevers but also under the parallel direction. When vibration acceleration was 1.0 g, output power was 28.114 μW for perpendicular vibration and 51.735 μW for parallel vibration. When the acceleration of parallel vibration was 1.6 g, output power was 89.339 μW.
Shock reliability analysis and improvement of MEMS electret-based vibration energy harvesters
NASA Astrophysics Data System (ADS)
Renaud, M.; Fujita, T.; Goedbloed, M.; de Nooijer, C.; van Schaijk, R.
2015-10-01
Vibration energy harvesters can serve as a replacement solution to batteries for powering tire pressure monitoring systems (TPMS). Autonomous wireless TPMS powered by microelectromechanical system (MEMS) electret-based vibration energy harvester have been demonstrated. The mechanical reliability of the MEMS harvester still has to be assessed in order to bring the harvester to the requirements of the consumer market. It should survive the mechanical shocks occurring in the tire environment. A testing procedure to quantify the shock resilience of harvesters is described in this article. Our first generation of harvesters has a shock resilience of 400 g, which is far from being sufficient for the targeted application. In order to improve this aspect, the first important aspect is to understand the failure mechanism. Failure is found to occur in the form of fracture of the device’s springs. It results from impacts between the anchors of the springs when the harvester undergoes a shock. The shock resilience of the harvesters can be improved by redirecting these impacts to nonvital parts of the device. With this philosophy in mind, we design three types of shock absorbing structures and test their effect on the shock resilience of our MEMS harvesters. The solution leading to the best results consists of rigid silicon stoppers covered by a layer of Parylene. The shock resilience of the harvesters is brought above 2500 g. Results in the same range are also obtained with flexible silicon bumpers, which are simpler to manufacture.
NASA Astrophysics Data System (ADS)
Das, Saptarshi; Shi, Yan; Dong, Bo; Biswas, Subir
2016-04-01
This paper develops an energy-aware ultrasonic sensor network architecture using a Pulse Switching approach for lightweight, through-substrate operation in Structural Health Monitoring applications. Pulse Switching protocols employ single pulses instead of multi-bit packets for information delivery with maximal lightness in event monitoring with binary sensing requirements i.e. where event information transmitted is only a single bit (YES / NO) based on evaluation of structural characteristics. The paper presents a simulation study of the Energy-Aware Through-Substrate Pulse Switching protocol performance for structural monitoring when operated using energy harvested from intermittent vibrations in the structure itself. The paper incorporates an energy harvesting model for simulating memory-less vibration patterns using exponentially distributed random processes at different networked nodes. These nodes are placed inside a rectangular plate structure and the corresponding harvested energy profiles are simulated. The vibration profiles are a function of the position of the node on the plate as well as time. Such spatio-temporal variation leads to interesting dynamics in the energy-aware protocol operation which have been explored in the current paper setting. Through the simulations, it is shown that the proposed Energy-Aware Pulse Switching protocol mechanisms can offer a robust through-substrate network that can be reliably used for Structural Health Monitoring using vibration-harvested energy.
Harvestable vibrational energy from an avian source: theoretical predictions vs. measured values
NASA Astrophysics Data System (ADS)
Shafer, Michael W.; MacCurdy, Robert; Garcia, Ephrahim; Winkler, David
2012-04-01
For many reasons, it would be beneficial to have the capability of powering a wildlife tag over the course of multiple migratory seasons. Such an energy harvesting system would allow for more data collection and eliminate the need to replace depleted batteries. In this work, we investigate energy harvesting on birds and focus on vibrational energy harvesting. We review a method of predicting the amount of power that can be safely harvested from the birds such that the effect on their longterm survivability is not compromised. After showing that the safely harvestable power is significant in comparison to the circuits used in avian tags, we present testing results for the flight accelerations of two species of birds. Using these measured values, we then design harvesters that matched the flight acceleration frequency and are sufficiently low mass to be carried by the birds.
NASA Astrophysics Data System (ADS)
Bibo, A.; Daqaq, M. F.
2013-06-01
In this letter, a single vibratory energy harvester integrated with an airfoil is proposed to concurrently harness energy from ambient vibrations and wind. In terms of its transduction capabilities and power density, the integrated device is shown to have a superior performance under the combined loading when compared to utilizing two separate devices to harvest energy independently from the two available energy sources. Even below its flutter speed, the proposed device was able to provide 2.5 times the power obtained using two separate harvesters.
Airflow energy harvesters of metal-based PZT thin films by self-excited vibration
NASA Astrophysics Data System (ADS)
Suwa, E.; Tsujiura, Y.; Kurokawa, F.; Hida, H.; Kanno, I.
2014-11-01
We developed self-excited vibration energy harvesters of Pb(Zr,Ti)O3 (PZT) thin films using airflow. To enhance the self-excited vibration, we used 30-μm-thick stainless steel (SS304) foils as base cantilevers on which PZT thin films were deposited by rf-magnetron sputtering. To compensate for the initial bending of PZT/SS304 unimorph cantilever due to the thermal stress, we deposited counter PZT thin films on the back of the SS304 cantilever. We evaluated power-generation performance and vibration mode of the energy harvester in the airflow. When the angle of attack (AOA) was 20° to 30°, large vibration was generated at wind speeds over 8 m/s. By FFT analysis, we confirmed that stable self-excited vibration was generated. At the AOA of 30°, the output power reached 19 μW at wind speeds of 12 m/s.
Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters
NASA Astrophysics Data System (ADS)
Amin Karami, M.; Inman, Daniel J.
2012-01-01
Linear and nonlinear piezoelectric devices are introduced to continuously recharge the batteries of the pacemakers by converting the vibrations from the heartbeats to electrical energy. The power requirement of a pacemaker is very low. However, after few years, patients require another surgical operation just to replace their pacemaker battery. Linear low frequency and nonlinear mono-stable and bi-stable energy harvesters are designed according to the especial signature of heart vibrations. The proposed energy harvesters are robust to variation of heart rate and can meet the power requirement of pacemakers.
NASA Astrophysics Data System (ADS)
Lin, Zhiming; Yang, Jin; Zhao, Jiangxin; Zhao, Nian; Liu, Jun; Wen, Yumei; Li, Ping
2016-07-01
In this work, we present a multimodal wideband vibration energy harvester designed to scavenge energy from ambient vibrations over a wide frequency range. The harvester consists of a folded cantilever, three magnetoelectric (ME) transducers, and two magnetic circuits. The folded cantilever enables multi-resonant response formed by bending of each stage, and the nonlinear magnetic forces acting on the folded cantilever beam allow further broadening of the frequency response. We also investigate the effects of the position of the ME transducer on the electrical output in order to achieve optimal performance. The experimental results show that the vibration energy harvester exhibited three resonance peaks in a range of 5 Hz to 30 Hz, a wider working bandwidth of 10.1 Hz, and a maximum average power value of 31.58 μW at an acceleration of 0.6 g (with g = 9.8 m/s2).
NASA Astrophysics Data System (ADS)
Lin, Zhiming; Yang, Jin; Zhao, Jiangxin; Zhao, Nian; Liu, Jun; Wen, Yumei; Li, Ping
2016-05-01
In this work, we present a multimodal wideband vibration energy harvester designed to scavenge energy from ambient vibrations over a wide frequency range. The harvester consists of a folded cantilever, three magnetoelectric (ME) transducers, and two magnetic circuits. The folded cantilever enables multi-resonant response formed by bending of each stage, and the nonlinear magnetic forces acting on the folded cantilever beam allow further broadening of the frequency response. We also investigate the effects of the position of the ME transducer on the electrical output in order to achieve optimal performance. The experimental results show that the vibration energy harvester exhibited three resonance peaks in a range of 5 Hz to 30 Hz, a wider working bandwidth of 10.1 Hz, and a maximum average power value of 31.58 μW at an acceleration of 0.6 g (with g = 9.8 m/s2).
Nonlinear vibration energy harvesting based on variable double well potential function
NASA Astrophysics Data System (ADS)
Yang, Wei; Towfighian, Shahrzad
2016-04-01
Converting ambient mechanical energy to electricity, vibration energy harvesting, enables powering of the low-power remote sensors. Nonlinear energy harvesters have the advantage of a wider frequency spectrum compared to linear resonators making them more efficient in scavenging the broadband frequency of ambient vibrations. To increase the output power of the nonlinear resonators, we propose an energy harvester composed of a cantilever piezoelectric beam carrying a movable magnet facing a fixed magnet at a distance. The movable magnet on the beam is attached to a spring at the base of the beam. The spring-magnet system on the cantilever beam creates the variable double well potential function. The spring attached to the magnet is in its compressed position when the beam is not deflected, as the beam oscillates, the spring energy gradually releases and further increases the amplitude of vibration. To describe the motion of the cantilever beam, we obtained two coupled partial differential equations by assuming the cantilever beam as Euler-Bernoulli beam considering the effect of the moving magnet. Method of multiple scales is used to solve the coupled equations. The cantilever beam with the two magnets is a bi-stable system. Making one magnet movable can create internal resonance that is explored as a mechanism to increase the frequency bandwidth. The effect of system parameters on the frequency bandwidth of the resonator is investigated through numerical solutions. This study benefits vibration energy harvesting to achieve a higher performance when excited by the wideband ambient vibrations.
NASA Astrophysics Data System (ADS)
Sun, Kyung Ho; Kim, Young-Cheol; Kim, Jae Eun
2014-10-01
While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm3, which was designed for a target frequency of as low as 100 Hz.
Sun, Kyung Ho; Kim, Young-Cheol; Kim, Jae Eun
2014-10-15
While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm{sup 3}, which was designed for a target frequency of as low as 100 Hz.
NASA Astrophysics Data System (ADS)
Tsampas, P.; Roditis, G.; Papadimitriou, V.; Chatzakos, P.; Gan, Tat-Hean
2013-05-01
Increasing demand in mobile, autonomous devices has made energy harvesting a particular point of interest. Systems that can be powered up by a few hundreds of microwatts could feature their own energy extraction module. Energy can be harvested from the environment close to the device. Particularly, the ambient mechanical vibrations conversion via piezoelectric transducers is one of the most investigated fields for energy harvesting. A technique for optimized energy harvesting using piezoelectric actuators called "Synchronized Switching Harvesting" is explored. Comparing to a typical full bridge rectifier, the proposed harvesting technique can highly improve harvesting efficiency, even in a significantly extended frequency window around the piezoelectric actuator's resonance. In this paper, the concept of design, theoretical analysis, modeling, implementation and experimental results using CEDRAT's APA 400M-MD piezoelectric actuator are presented in detail. Moreover, we suggest design guidelines for optimum selection of the storage unit in direct relation to the characteristics of the random vibrations. From a practical aspect, the harvesting unit is based on dedicated electronics that continuously sense the charge level of the actuator's piezoelectric element. When the charge is sensed, to come to a maximum, it is directed to speedily flow into a storage unit. Special care is taken so that electronics operate at low voltages consuming a very small amount of the energy stored. The final prototype developed includes the harvesting circuit implemented with miniaturized, low cost and low consumption electronics and a storage unit consisting of a super capacitors array, forming a truly self-powered system drawing energy from ambient random vibrations of a wide range of characteristics.
Dhote, Sharvari Zu, Jean; Zhu, Yang
2015-04-20
In this paper, a nonlinear wideband multi-mode piezoelectric vibration-based energy harvester (PVEH) is proposed based on a compliant orthoplanar spring (COPS), which has an advantage of providing multiple vibration modes at relatively low frequencies. The PVEH is made of a tri-leg COPS flexible structure, where three fixed-guided beams are capable of generating strong nonlinear oscillations under certain base excitation. A prototype harvester was fabricated and investigated through both finite-element analysis and experiments. The frequency response shows multiple resonance which corresponds to a hardening type of nonlinear resonance. By adding masses at different locations on the COPS structure, the first three vibration modes are brought close to each other, where the three hardening nonlinear resonances provide a wide bandwidth for the PVEH. The proposed PVEH has enhanced performance of the energy harvester in terms of a wide frequency bandwidth and a high-voltage output under base excitations.
NASA Astrophysics Data System (ADS)
Nili Ahmadabadi, Z.; Khadem, S. E.
2014-09-01
This paper presents an optimal design for a system comprising a nonlinear energy sink (NES) and a piezoelectric-based vibration energy harvester attached to a free-free beam under shock excitation. The energy harvester is used for scavenging vibration energy dissipated by the NES. Grounded and ungrounded configurations are examined and the systems parameters are optimized globally to both maximize the dissipated energy by the NES and increase the harvested energy by piezoelectric element. A satisfactory amount of energy has been harvested as electric power in both configurations. The realization of nonlinear vibration control through one-way irreversible nonlinear energy pumping and optimizing the system parameters result in acquiring up to 78 percent dissipation of the grounded system energy.
Adaptive tuned piezoelectric MEMS vibration energy harvester using an electrostatic device
NASA Astrophysics Data System (ADS)
Madinei, H.; Khodaparast, H. Haddad; Adhikari, S.; Friswell, M. I.; Fazeli, M.
2015-11-01
In this paper an adaptive tuned piezoelectric vibration based energy harvesting system based on the use of electrostatic device is proposed. The main motivation is to control the resonance frequency of the piezoelectric harvester with the DC voltage applied to the electrostatic system in order to maximize the harvested power. The idea is demonstrated in a hybrid system consisting of a cantilevered piezoelectric harvester combined with an electrostatic harvester which is connected to a variable voltage source. The nonlinear governing differential equation of motion is derived based on Euler Bernoulli theory, and solved to obtain the static and dynamic solutions. The results show that the harvester can be tuned to give a resonant response over a wide range of frequencies, and shows the great potential of this hybrid system.
Self-Powered Kinetic Energy Harvesters for Seek-Induced Vibrations in Hard Disk Drives
NASA Astrophysics Data System (ADS)
Chang, Jen-Yuan (James; Gutierrez, Mike
Energy harvesters with battery charging circuitry, which collect wasted kinetic energy from a magnetic disk drive's rotary actuator seek operations and flexible cable vibrations, are proposed, prototyped and presented in this paper. Depending on a disk drive's form factor and seek format, it is suggested by the present study that the harvested energy can be optimized by tuning the harvester's natural frequencies to major frequency content in the rotary actuator's excitation. It is demonstrated in this study that with prototype energy harvester systems, one can easily light up a regular LED. The work presented in this paper has implications in energy saving and recycling wasted mechanical energy for other low-power electronic applications in magnetic disk drive storage devices.
NASA Astrophysics Data System (ADS)
Xiao, Han; Wang, Xu; John, Sabu
2016-02-01
A novel piezoelectric vibration energy harvesting system is proposed whose harvesting performance could be significantly enhanced by introducing one or multiple additional piezoelectric elements placed between every two nearby oscillators. The proposed two degree-of-freedom piezoelectric vibration harvester system is expected to extract 9.78 times more electrical energy than a conventional two degrees of freedom harvester system with only one piezoelectric element inserted close to the base. A parameter study of a multiple degree-of-freedom piezoelectric vibration energy harvester system has been conducted to provide a guideline for tuning its harvesting bandwidth and optimizing its design. Based on the analysis method of the two degrees of freedom piezoelectric vibration harvester system, a generalised MDOF piezoelectric vibration energy harvester with multiple pieces of piezoelectric elements inserted between every two nearby oscillators is studied. The harvested power values of the piezoelectric vibration energy harvesters of 1 to 5 degree-of-freedom have been compared while the total mass and the mass ratio of the oscillators are kept as constants. It is found that the greater numbers of degree-of-freedom of a PVEH with the more additional piezoelectric elements inserted between every two nearby oscillators would enable that system to harvest more energy. The first mode resonant frequency will be shifted to a low-frequency range when the numbers of degree-of-freedom increase.
NASA Astrophysics Data System (ADS)
Ono, Kazuyoshi; Sato, Norio; Shimamura, Toshishige; Ugajin, Mamoru; Sakata, Tomomi; Mutoh, Shin'ichiro; Kodate, Junichi; Jin, Yoshito; Sato, Yasuhiro
2012-05-01
In this paper, we describe a novel structure of a vibrational micro-electro-mechanical system (MEMS) device for power generation enhancement. A synchronized multiple-array vibrational device, in which movable plates are connected by rods, increases the area of the movable plate in the energy conversion region and couples the phase of movement. The fabricated device resonates at approximately 1430 Hz with an acceleration amplitude of 6 m/s2 and nanoampere-order AC current is generated. These results confirm that this MEMS vibrational device will contribute to the progress in energy harvesting.
Zhao, Nian; Yang, Jin; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping
2016-01-01
This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life. PMID:26827346
NASA Astrophysics Data System (ADS)
Zhao, Nian; Yang, Jin; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping
2016-01-01
This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life.
Two-dimensional resonance frequency tuning approach for vibration-based energy harvesting
NASA Astrophysics Data System (ADS)
Dong, Lin; Prasad, M. G.; Fisher, Frank T.
2016-06-01
Vibration-based energy harvesting seeks to convert ambient vibrations to electrical energy and is of interest for, among other applications, powering the individual nodes of wireless sensor networks. Generally it is desired to match the resonant frequencies of the device to the ambient vibration source to optimize the energy harvested. This paper presents a two-dimensionally (2D) tunable vibration-based energy harvesting device via the application of magnetic forces in two-dimensional space. These forces are accounted for in the model separately, with the transverse force contributing to the transverse stiffness of the system while the axial force contributes to a change in axial stiffness of the beam. Simulation results from a COMSOL magnetostatic 3D model agree well with the analytical model and are confirmed with a separate experimental study. Furthermore, analysis of the three possible magnetization orientations between the fixed and tuning magnets shows that the transverse parallel magnetization orientation is the most effective with regards to the proposed 2D tuning approach. In all cases the transverse stiffness term is in general significantly larger than the axial stiffness contribution, suggesting that from a tuning perspective it may be possible to use these stiffness contributions for coarse and fine frequency tuning, respectively. This 2D resonant frequency tuning approach extends earlier 1D approaches and may be particularly useful in applications where space constraints impact the available design space of the energy harvester.
NASA Astrophysics Data System (ADS)
Ansari, M. H.; Karami, M. Amin
2016-03-01
This paper studies energy harvesting from heartbeat vibrations for powering leadless pacemakers. Unlike traditional pacemakers, leadless pacemakers are implanted inside the heart and the pacemaker is in direct contact with the myocardium. A leadless pacemaker is in the shape of a cylinder. Thus, in order to utilize the available 3-dimensional space for the energy harvester, we choose a fan-folded 3D energy harvester. The proposed device consists of several piezoelectric beams stacked on top of each other. The volume of the energy harvester is 1 cm3 and its dimensions are 2 cm × 0.5 cm × 1 cm. Although high natural frequency is generally a major concern with micro-scale energy harvesters, by utilizing the fan-folded geometry and adding tip mass and link mass to the configuration, we reduced the natural frequency to the desired range. This fan-folded design makes it possible to generate more than 10 μ W of power per cubic centimeter. The proposed device is compatible with Magnetic Resonance Imaging. Although the proposed device is a linear energy harvester, it is relatively insensitive to the heart rate. The natural frequencies and the mode shapes of the device are calculated analytically. The accuracy of the analytical model is verified by experimental investigations. We use a closed loop shaker system to precisely replicate heartbeat vibrations in vitro.
NASA Astrophysics Data System (ADS)
Haque, Md. Rejaul; Chowdhury, M. Arshad Zahangir; Goswami, Anjan
2016-07-01
A two-dimensional numerical study of flow induced vibration is reported in this paper to investigate flow over a semi-cricular D-shaped bluff body oriented at different angles-of-attack to determine an optimized design for energy harvesting. Bluff body structure governs fluid streamlines; therefore obtaining a suitable range of "lock in frequency" for energy harvesting purpose is dependent on refining and optimizing bluff body's shape and structure. A cantilever based novel energy harvester design incorporates the suitable angle-of-attack for optimized performance. This optimization was done by performing computations for 30°, 60° and 90° angles-of-attack. The frequency of vibration of the body was calculated at different Reynolds Number. A Fast Fourier Transformation yielded frequency of vortex shedding. From the wake velocity profile, lift oscillation and frequency of vortex shedding is estimated. Strouhal numbers of the body were analyzed at different angles-of-attack. A higher synchronized bandwidth of shedding frequencies is an indication of an optimized harvester design at different Reynolds number. The `D' shaped bluff bodies (with angle of attack of 30°,60° and 90°) are more suitable than that of cylindrical shaped bluff bodies. The research clearly stated that, bluff bodies shape has a prominent influence on vortex induced vibration and semicircular bluff body gives the highest vibration or energy under stated conditions.
A smart and self-sufficient frequency tunable vibration energy harvester
NASA Astrophysics Data System (ADS)
Eichhorn, C.; Tchagsim, R.; Wilhelm, N.; Woias, P.
2011-10-01
We present a piezoelectric energy-harvesting system, which is able to self-tune its resonance frequency in an energy-autonomous way, in order to extend its efficient operation over a large frequency range. The system consists of a resonant and frequency-tunable piezoelectric generator and a control unit. In predefined temporal intervals, the control unit analyzes the ambient vibration frequency, decides whether an adjustment of the generator's resonance frequency is necessary or not and delivers the appropriate voltage to a piezoelectric actuator which alters the generator's mechanical stiffness to tune its resonance frequency. The control unit has been optimized to an ultralow power consumption which means that up to 90% of the harvested energy can be fed to the powered electrical load, which could be an embedded system. With frequency-tunable generators, the application range of vibration energy harvesters can be extended to environments with a non-constant vibration frequency, like e.g. the surface of an engine with a varying number of revolutions per minute. Furthermore, the presented system opens the door to off-the-shelf solutions for environments with constant but uncommon vibration frequencies. With the smart tuning algorithm presented in this work, our system is even able to compensate typical weak points of piezoelectrically tunable harvesters, like e.g. hysteresis effects, the temperature dependence of the mechanical stiffness and aging effects.
Efficiency improvement of a cantilever-type energy harvester using torsional vibration
NASA Astrophysics Data System (ADS)
Kim, In-Ho; Jang, Seon-Jun; Koo, Jeong-Hoi; Jung, Hyung-Jo
2016-04-01
In this paper, a piezoelectric vibrational energy harvester utilizing coupled bending and torsional vibrations is investigated. The proposed system consists of a cantilever-type substrate covered by the piezoelectric ceramic and a proof mass which is perpendicularly connected to the free end of the cantilever beam by a rigid bar. While the natural frequency and output voltage of the conventional system are affected by bending deformation of the piezoelectric plate, the proposed system makes use of its twisting deformation. The natural frequency of the device can be significantly decreased by manipulating the location of the proof mass on the rigid bar. In order to validate the performance of the proposed energy harvester, numerical simulations and vertical shaker tests are carried out. It is demonstrated that the proposed energy harvester can shift down its resonant frequency considerably and generate much higher output power than the conventional system. It is, therefore, concluded that the proposed energy harvester utilizing the coupled bending and torsional vibrations can be effectively applied to low-frequency vibration situations.
NASA Astrophysics Data System (ADS)
Miller, Lindsay Margaret
Wireless sensor networks (WSNs) have the potential to transform engineering infrastructure, manufacturing, and building controls by allowing condition monitoring, asset tracking, demand response, and other intelligent feedback systems. A wireless sensor node consists of a power supply, sensor(s), power conditioning circuitry, radio transmitter and/or receiver, and a micro controller. Such sensor nodes are used for collecting and communicating data regarding the state of a machine, system, or process. The increasing demand for better ways to power wireless devices and increase operation time on a single battery charge drives an interest in energy harvesting research. Today, wireless sensor nodes are typically powered by a standard single-charge battery, which becomes depleted within a relatively short timeframe depending on the application. This introduces tremendous labor costs associated with battery replacement, especially when there are thousands of nodes in a network, the nodes are remotely located, or widely-distributed. Piezoelectric vibration energy harvesting presents a potential solution to the problems associated with too-short battery life and high maintenance requirements, especially in industrial environments where vibrations are ubiquitous. Energy harvester designs typically use the harvester to trickle charge a rechargeable energy storage device rather than directly powering the electronics with the harvested energy. This allows a buffer between the energy harvester supply and the load where energy can be stored in a "tank". Therefore, the harvester does not need to produce the full required power at every instant to successfully power the node. In general, there are tens of microwatts of power available to be harvested from ambient vibrations using micro scale devices and tens of milliwatts available from ambient vibrations using meso scale devices. Given that the power requirements of wireless sensor nodes range from several microwatts to about one
Lan, C. B.; Qin, W. Y.
2014-09-15
This letter investigates the energy harvesting from the horizontal coherent resonance of a vertical cantilever beam subjected to the vertical base excitation. The potential energy of the system has two symmetric potential wells. So, under vertical excitation, the system can jump between two potential wells, which will lead to the large vibration in horizontal direction. Two piezoelectric patches are pasted to harvest the energy. From experiment, it is found that the vertical excitation can make the beam turn to be bistable. The system can transform vertical vibration into horizontal vibration of low frequency when excited by harmonic motion. The horizontal coherence resonance can be observed when excited by a vertical white noise. The corresponding output voltages of piezoelectric films reach high values.
Coupled analysis of multi-impact energy harvesting from low-frequency wind induced vibrations
NASA Astrophysics Data System (ADS)
Zhu, Jin; Zhang, Wei
2015-04-01
Energy need from off-grid locations has been critical for effective real-time monitoring and control to ensure structural safety and reliability. To harvest energy from ambient environments, the piezoelectric-based energy-harvesting system has been proven very efficient to convert high frequency vibrations into usable electrical energy. However, due to the low frequency nature of the vibrations of civil infrastructures, such as those induced from vehicle impacts, wind, and waves, the application of a traditional piezoelectric-based energy-harvesting system is greatly restrained since the output power drops dramatically with the reduction of vibration frequencies. This paper focuses on the coupled analysis of a proposed piezoelectric multi-impact wind-energy-harvesting device that can effectively up-convert low frequency wind-induced vibrations into high frequency ones. The device consists of an H-shape beam and four bimorph piezoelectric cantilever beams. The H-shape beam, which can be easily triggered to vibrate at a low wind speed, is originated from the first Tacoma Narrows Bridge, which failed at wind speeds of 18.8 m s-1 in 1940. The multi-impact mechanism between the H-shape beam and the bimorph piezoelectric cantilever beams is incorporated to improve the harvesting performance at lower frequencies. During the multi-impact process, a series of sequential impacts between the H-shape beam and the cantilever beams can trigger high frequency vibrations of the cantilever beams and result in high output power with a considerably high efficiency. In the coupled analysis, the coupled structural, aerodynamic, and electrical equations are solved to obtain the dynamic response and the power output of the proposed harvesting device. A parametric study for several parameters in the coupled analysis framework is carried out including the external resistance, wind speed, and the configuration of the H-shape beam. The average harvested power for the piezoelectric cantilever
Nonlinear vibration analysis of the high-efficiency compressive-mode piezoelectric energy harvester
NASA Astrophysics Data System (ADS)
Yang, Zhengbao; Zu, Jean
2015-04-01
Power source is critical to achieve independent and autonomous operations of electronic mobile devices. The vibration-based energy harvesting is extensively studied recently, and recognized as a promising technology to realize inexhaustible power supply for small-scale electronics. Among various approaches, the piezoelectric energy harvesting has gained the most attention due to its high conversion efficiency and simple configurations. However, most of piezoelectric energy harvesters (PEHs) to date are based on bending-beam structures and can only generate limited power with a narrow working bandwidth. The insufficient electric output has greatly impeded their practical applications. In this paper, we present an innovative lead zirconate titanate (PZT) energy harvester, named high-efficiency compressive-mode piezoelectric energy harvester (HC-PEH), to enhance the performance of energy harvesters. A theoretical model was developed analytically, and solved numerically to study the nonlinear characteristics of the HC-PEH. The results estimated by the developed model agree well with the experimental data from the fabricated prototype. The HC-PEH shows strong nonlinear responses, favorable working bandwidth and superior power output. Under a weak excitation of 0.3 g (g = 9.8 m/s2), a maximum power output 30 mW is generated at 22 Hz, which is about ten times better than current energy harvesters. The HC-PEH demonstrates the capability of generating enough power for most of wireless sensors.
A novel design of a map-tuning piezoelectric vibration energy harvester
NASA Astrophysics Data System (ADS)
Huang, Shyh-Chin; Lin, Kao-An
2012-08-01
In this paper, a new design of a self-tuning bimorph PZT beam for maximum vibration energy harvesting is introduced. As is well known, a PZT beam harvester captures the most energy as it resonates with the ambient vibration. The ambient excitation frequency varies in nature so that proper tracking of the ambient frequency and adjusting the harvester’s resonance frequency accordingly would assure the most energy retrieved. The harvester introduced in the paper is composed of an elastic beam partially covered with two-sided PZT patches, the same as most others, but the method of tuning its resonance frequency is novel. A movable intermediate rigid support is attached to the beam and by adjusting the support’s position according to the sensed ambient frequency, the beam’s resonance frequency will coincide with the ambient frequency such that the harvested vibration energy is maximized. The theoretical analysis employs Hamilton’s principle, the assumed-mode method, and the receptance method. Numerical results are obtained and compared with the experimental ones. They show excellent agreement in a frequency versus support’s position chart. The most significant feature is that there can be up to ±35% of resonance frequency tunability. This achievement provides substantial advantages in power-harvesting applications. An experiment for base excitation to simulate the ambient vibration is setup as well and the results show that as little as 5% excitation frequency variation would cause more than 70% output voltage drop if there were no tuning ability. The novel design could significantly enhance the harvested energy in a short duration of time.
Scavenging vibration energy from seismically isolated bridges using an electromagnetic harvester
NASA Astrophysics Data System (ADS)
Lu, Qiuchen; Loong, Chengning; Chang, Chih-Chen; Dimitrakopoulos, Elias G.
2014-04-01
The increasing worldwide efforts in securing renewable energy sources increase incentive for civil engineers to investigate whether the kinetic energy associated with the vibration of larger-scale structures can be harvested. Such a research remains challenging and incomplete despite that hundreds of related articles have been published in the last decade. Base isolation is one of the most popular means of protecting a civil engineering structure against earthquake forces. Seismic isolation hinges on the decoupling of the structure from the shaking ground, hence protecting the structure from stress and damage during an earthquake excitation. The low stiffness isolator inserted between the structure and the ground dominates the response leading to a structural system of longer vibration period. As a consequence of this period shift, the spectral acceleration is reduced, but higher response displacements are produced. To mitigate this side effect, usually isolators are combined with the use of additional energy dissipation. In this study, the feasibility of scavenging the need-to-be dissipated energy from the isolator installed in a seismically isolated bridge using an electromagnetic (EM) energy harvester is investigated. The EM energy harvester consists of an energy harvesting circuit and a capacitor for energy storage. A mathematical model for this proposed EM energy harvester is developed and implemented on an idealized base-isolated single-degree-of-freedom system. The effect of having this EM energy harvester on the performance of this seismic isolated system is analyzed and discussed. The potential of installing such an EM energy harvester on a seismically isolated bridge is also addressed.
Orientation of bluff body for designing efficient energy harvesters from vortex-induced vibrations
NASA Astrophysics Data System (ADS)
Dai, H. L.; Abdelkefi, A.; Yang, Y.; Wang, L.
2016-02-01
The characteristics and performances of four distinct vortex-induced vibrations (VIVs) piezoelectric energy harvesters are experimentally investigated and compared. The difference between these VIV energy harvesters is the installation of the cylindrical bluff body at the tip of cantilever beam with different orientations (bottom, top, horizontal, and vertical). Experiments show that the synchronization regions of the bottom, top, and horizontal configurations are almost the same at low wind speeds (around 1.5 m/s). The vertical configuration has the highest wind speed for synchronization (around 3.5 m/s) with the largest harvested power, which is explained by its highest natural frequency and the smallest coupled damping. The results lead to the conclusion that to design efficient VIV energy harvesters, the bluff body should be aligned with the beam for low wind speeds (<2 m/s) and perpendicular to the beam at high wind speeds (>2 m/s).
NASA Astrophysics Data System (ADS)
Abdelkefi, A.; Najar, F.; Nayfeh, A. H.; Ben Ayed, S.
2011-11-01
Recently, piezoelectric cantilevered beams have received considerable attention for vibration-to-electric energy conversion. Generally, researchers have investigated a classical piezoelectric cantilever beam with or without a tip mass. In this paper, we propose the use of a unimorph cantilever beam undergoing bending-torsion vibrations as a new piezoelectric energy harvester. The proposed design consists of a single piezoelectric layer and a couple of asymmetric tip masses; the latter convert part of the base excitation force into a torsion moment. This structure can be tuned to be a broader band energy harvester by adjusting the first two global natural frequencies to be relatively close to each other. We develop a distributed-parameter model of the harvester by using the Euler-beam theory and Hamilton's principle, thereby obtaining the governing equations of motion and associated boundary conditions. Then, we calculate the exact eigenvalues and associated mode shapes and validate them with a finite element (FE) model. We use these mode shapes in a Galerkin procedure to develop a reduced-order model of the harvester, which we use in turn to obtain closed-form expressions for the displacement, twisting angle, voltage output, and harvested electrical power. These expressions are used to conduct a parametric study for the dynamics of the system to determine the appropriate set of geometric properties that maximizes the harvested electrical power. The results show that, as the asymmetry is increased, the harvester's performance improves. We found a 30% increase in the harvested power with this design compared to the case of beams undergoing bending only. We also show that the locations of the two masses can be chosen to bring the lowest two global natural frequencies closer to each other, thereby allowing the harvesting of electrical power from multi-frequency excitations.
Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder
NASA Astrophysics Data System (ADS)
Mehmood, A.; Abdelkefi, A.; Hajj, M. R.; Nayfeh, A. H.; Akhtar, I.; Nuhait, A. O.
2013-09-01
The concept of harvesting energy from a circular cylinder undergoing vortex-induced vibrations is investigated. The energy is harvested by attaching a piezoelectric transducer to the transverse degree of freedom. Numerical simulations are performed for Reynolds numbers (Re) in the range 96≤Re≤118, which covers the pre-synchronization, synchronization, and post-synchronization regimes. Load resistances (R) in the range 500 Ω≤R≤5 MΩ are considered. The results show that the load resistance has a significant effect on the oscillation amplitude, lift coefficient, voltage output, and harvested power. The results also show that the synchronization region widens when the load resistance increases. It is also found that there is an optimum value of the load resistance for which the harvested power is maximum. This optimum value does not correspond to the case of largest oscillations, which points to the need for a coupled analysis as performed here.
NASA Astrophysics Data System (ADS)
Chen, Shih-Jui; Wu, Jia-Yin
2016-09-01
A vibration structure with two-degrees-of-freedom is proposed to increase the usable bandwidth of a micromachined electromagnetic energy harvester. Compared with the structure of a pure cantilever harvester, the proposed structure is formed by integrating a spiral diaphragm into a U-shaped cantilever diaphragm. By performing finite element analysis, the resonance frequencies of the two diaphragms are designed with a slight shift, both lower than 300 Hz. In addition, to achieve output bandwidth broadening, electroplated copper coils on the spiral and the U-shaped cantilever are coupled and the connection sequences of the coupled coils are arranged such that single- or duo-mode tuning of the energy harvester can be realized. The harvester delivers powers of 22.1 and 21.5 nW at two resonance frequencies of 211 and 274 Hz, respectively, in the duo-mode operation. The proposed spiral–cantilever coupled energy harvester has lower resonance frequencies and broader bandwidth than a pure cantilever-type harvester of equal area, and can therefore harvest more energy from the environment.
NASA Astrophysics Data System (ADS)
Kim, D.; Hewa-Kasakarage, N. N.; Yoon, S.; Hall, N. A.
2012-09-01
The minimum transducer coupling to enable maximum theoretical power capture from vibration energy harvesters is derived, leading to the simple conclusion that the product of the transducer coupling coefficient and resonance quality factor must be greater than two. Maximum theoretical power capture is experimentally demonstrated on a micromachined piezoelectric energy harvester comprised of a 20 μm thick epitaxial silicon cantilever with 800 nm thick lead-zirconate-titanate along the top surface and a bulk silicon mass at the tip. The coupling of these structures, although small (κ2=0.0033), is entirely sufficient to enable maximum theoretical power capture owing to light damping (Q =906).
Self-suspended vibration-driven energy harvesting chip for power density maximization
NASA Astrophysics Data System (ADS)
Murillo, Gonzalo; Agustí, Jordi; Abadal, Gabriel
2015-11-01
This work introduces a new concept to integrate energy-harvesting devices with the aim of improving their throughput, mainly in terms of scavenged energy density and frequency tunability. This concept, named energy harvester in package (EHiP), is focused on the heterogeneous integration of a MEMS die, dedicated to scavenging energy, with an auxiliary chip, which can include the control and power management circuitry, sensors and RF transmission capabilities. The main advantages are that the whole die can be used as an inertial mass and the chip area usage is optimized. Based on this concept, in this paper we describe the development and characterization of a MEMS die fully dedicated to harvesting mechanical energy from ambient vibrations through an electrostatic transduction. A test PCB has been fabricated to perform the assembly that allows measurement of the resonance motion of the whole system at 289 Hz. An estimated maximum generated power of around 11 μW has been obtained for an input vibration acceleration of ˜10 m s-2 when the energy harvester operates in a constant-charge cycle for the best-case scenario. Therefore, a maximum scavenged power density of 0.85 mW cm-3 is theoretically expected for the assembled system. These results demonstrate that the generated power density of any vibration-based energy harvester can be significantly increased by applying the EHiP concept, which could become an industrial standard for manufacturing this kind of system, independently of the transduction type, fabrication technology or application.
A two-dimensional broadband vibration energy harvester using magnetoelectric transducer
Yang, Jin Wen, Yumei; Li, Ping; Yue, Xihai; Yu, Qiangmo; Bai, Xiaoling
2013-12-09
In this study, a magnetoelectric vibration energy harvester was demonstrated, which aims at addressing the limitations of the existing approaches in single dimensional operation with narrow working bandwidth. A circular cross-section cantilever rod, not a conventional thin cantilever beam, was adopted to extract vibration energy in arbitrary in-plane motion directions. The magnetic interaction not only resulted in a nonlinear motion of the rod with increased frequency bandwidth, but also contributed to a multi-mode motion to exhibit double power peaks. In energy harvesting with in-plane directions, it showed a maximum bandwidth of 4.4 Hz and power of 0.59 mW, with acceleration of 0.6 g (with g = 9.8 m s{sup −2})
An evaluation on low-level vibration energy harvesting using piezoelectret foam
NASA Astrophysics Data System (ADS)
Anton, S. R.; Farinholt, K. M.
2012-04-01
Energy harvesting technology is critical in the development of self-powered electronic devices. Over the past few decades, several transduction mechanisms have been investigated for harvesting various forms of ambient energy. This paper provides an investigation of a novel transducer material for vibration energy harvesting; piezoelectret foam. Piezoelectrets are cellular ferroelectret foams, which are thin, flexible polymeric materials that exhibit piezoelectric properties. The basic operational principle behind cellular ferroelectrets involves the deformation of internally charged voids in the polymer, which can be represented as macroscopic dipoles, resulting in a potential developed across the material. Both the mechanical and electromechanical properties of this material are investigated in this work. Mechanical testing is performed using traditional tensile testing techniques to obtain experimental measures of the stiffness and strength of the materials. Electromechanical testing is performed in order to establish a relationship between input mechanical energy and output electrical energy by dynamically measuring the piezoelectric constant, d33. Additionally, the properties of ferroelectret foams are compared to those of polyvinylidene fluoride (PVDF), a conventional polymer-based piezoelectric material whose crystalline phase exhibits piezoelectricity through dipole orientation. Finally, the feasibility of vibration energy harvesting using piezoelectret materials is investigated.
NASA Astrophysics Data System (ADS)
Zhao, S.; Erturk, A.
2013-01-01
We present electroelastic modeling, analytical and numerical solutions, and experimental validations of piezoelectric energy harvesting from broadband random vibrations. The modeling approach employed herein is based on a distributed-parameter electroelastic formulation to ensure that the effects of higher vibration modes are included, since broadband random vibrations, such as Gaussian white noise, might excite higher vibration modes. The goal is to predict the expected value of the power output and the mean-square shunted vibration response in terms of the given power spectral density (PSD) or time history of the random vibrational input. The analytical method is based on the PSD of random base excitation and distributed-parameter frequency response functions of the coupled voltage output and shunted vibration response. The first of the two numerical solution methods employs the Fourier series representation of the base acceleration history in an ordinary differential equation solver while the second method uses an Euler-Maruyama scheme to directly solve the resulting electroelastic stochastic differential equations. The analytical and numerical simulations are compared with several experiments for a brass-reinforced PZT-5H bimorph under different random excitation levels. The simulations exhibit very good agreement with the experimental measurements for a range of resistive electrical boundary conditions and input PSD levels. It is also shown that lightly damped higher vibration modes can alter the expected power curve under broadband random excitation. Therefore, the distributed-parameter modeling and solutions presented herein can be used as a more accurate alternative to the existing single-degree-of-freedom solutions for broadband random vibration energy harvesting.
Synergistic use of smart materials for vibration-based energy harvesting
NASA Astrophysics Data System (ADS)
Silva, L. L.; Oliveira, S. A.; Pacheco, P. M. C. L.; Savi, M. A.
2015-11-01
Vibration-based energy harvesting is an approach where available mechanical vibration energy is converted into electrical energy that can be employed for different purposes. This paper deals with the synergistic use of smart materials for energy harvesting purposes. In essence, piezoelectric and shape memory alloys are combined to build an energy harvesting system. The combined effect of these materials can increase the system performance and reduce some limitations. The possibility to control the mechanical stiffness under vibration by a shape memory alloy (SMA) element can provide the ability to tune resonant frequencies in order to increase the output power. The analysis is developed considering a one-degree of freedom mechanical system where the restitution force is provided by an SMA element. The electro-mechanical coupling is provided by a piezoelectric element. Linear piezoelectric constitutive equation is employed together with the Brinson's model for SMA element. Numerical simulations are carried out showing different responses of the system indicating that the inclusion of the SMA element can be used to extend the operational range of the system.
An investigation on vibration energy harvesting using nonlinear dynamic principles inspired by trees
NASA Astrophysics Data System (ADS)
Harne, R. L.; Sun, A.; Wang, K. W.
2015-04-01
Trees exploit intriguing mechanisms such as multimodal frequency distributions and nonlinearities to distribute and dampen the aerodynamically-induced vibration energies to which they are subjected. In dynamical systems, these mechanisms are comparable to the internal resonance phenomenon. In recent years, researchers have harnessed strong nonlinearities, including internal resonance, to induce energetic dynamics that enhance performance of vibration energy harvesting systems. For trees, the internal resonance-like dynamics are evidently useful damping mechanisms in spite of the high variation associated with excitation and structural parameters. Yet for dynamic systems, studies show narrow operating regimes which exhibit internal resonance-based behaviors, suggesting that the energetic dynamics may be deactivated if stochastic inputs corrupt ideal excitation properties. To address these issues, this research evaluates the opportunities enabled by exploiting nonlinear, multimodal motions in an L-shaped energy harvester platform. The system dynamics are probed analytically, numerically, and experimentally for comprehensive insights on the versatility of internal resonance-based behaviors for energy harvesting. It is found that although activating the high amplitude nonlinear dynamics to enhance power generation is robust to significant additive noise in the harmonic excitations, parameter sensitivities may pose practical challenges in application. Discussion is provided on means to address such concerns and on future strategies that may favorably exploit nonlinearity and multimodal dynamics for robust energy harvesting performance.
Leveraging nonlinear saturation-based phenomena in an L-shaped vibration energy harvesting system
NASA Astrophysics Data System (ADS)
Harne, R. L.; Sun, A.; Wang, K. W.
2016-02-01
Trees exploit intriguing mechanisms such as multimodal frequency distributions and nonlinearities to distribute and dampen the aerodynamically-induced vibration energies to which they are subjected. In dynamical systems, these mechanisms are comparable to internal resonance phenomena. In recent years, researchers have harnessed strong nonlinearities, including internal resonance, to induce energetic dynamics that enhance performance of vibration energy harvesting systems. For trees, the internal resonance-like dynamics are evidently useful to dampen swaying motions in spite of the high variation associated with excitation and structural parameters. Yet for dynamic systems, studies show narrow operating regimes which exhibit internal resonance-based behaviors; this additionally suggests that the energetic dynamics may be susceptible to deactivation if stochastic inputs corrupt ideal excitation properties. To address these issues and to investigate whether the underlying motivation of exploiting internal resonance-induced saturation dynamics is truly justified, this research evaluates the opportunities enabled by exploiting nonlinear, multimodal motions in an L-shaped energy harvester platform. The system dynamics are probed analytically, numerically, and experimentally for comprehensive insights on the versatility of internal resonance-based behaviors for energy harvesting. It is found that although activating the high amplitude nonlinear dynamics to enhance power generation is robust to significant additive noise in the harmonic excitations, parameter sensitivities may pose practical challenges in application. Discussion is provided on means to address such concerns and on future strategies that may favorably exploit nonlinearity and multimodal dynamics for robust energy harvesting performance.
NASA Astrophysics Data System (ADS)
Qiu, Jing; Wen, Yumei; Li, Ping; Chen, Hengjia; Yang, Jin
2015-05-01
In this research, a vibration energy harvester employing the FeCuNbSiB/Terfenol-D/PZT/Terfenol-D/FeCuNbSiB five-phase laminate composite transducer to convert mechanical vibration energy into electrical energy was presented. The electric output performance of the proposed vibration energy harvester has been investigated. It was found that appropriate FeCuNbSiB layer thickness was propitious to the electric output characteristics. Compared to traditional vibration energy harvester using Terfenol-D/PZT/Terfenol-D (MPM) transducer, the experimental results show that the proposed vibration energy harvester provides a remarkably enhanced output power performance. When the thickness of FeCuNbSiB layer was 30 μm, the optimum output power of vibration energy harvester achieved 4.00 mW/g for an acceleration of 0.8 g at frequency of 34.5 Hz, which was 1.29 times as great as that of traditional MPM transducer. Remarkably, this power is a very encouraging power figure and the proposed vibration energy harvester has great potential as far as its application in wireless sensor network.
NASA Astrophysics Data System (ADS)
Haroun, Ahmed; Yamada, Ichiro; Warisawa, Shin`ichi
2015-08-01
This paper presents study of an electromagnetic vibration energy harvesting configuration that can work effectively at low frequencies. Unlike the conventional form of vibration energy harvesters in which the mass is directly connected to a vibrating frame with spring suspension, in the proposed configuration a permanent magnet mass is allowed to move freely within a certain distance inside a frame-carrying coil and make impacts with spring end stops. The free motion distance allows matching lower vibration frequencies with an increase in the relative amplitude at resonance. Hence, significant power could be generated at low frequencies. A nonlinear mathematical model including impact and electromagnetic induction is derived. Study of the dynamic behaviour and investigation of the system performance is carried out with the aid of case study simulation. The proposed harvester shows a unique dynamic behaviour in which different ways of response of the internal relative oscillation appear over the range of input frequencies. A mathematical condition for the response type at which the higher relative amplitude appears is derived, followed by an investigation of the system resonant frequency and relative amplitude. The resonant frequency shows a dependency on the free motion distance as well as the utilized mass and spring stiffness. Simulation and experimental comparisons are carried out between the proposed harvester and similar conventional one tuned at the same input frequency. The power generated by the proposed harvesting configuration can reach more than 12 times at 11 Hz in the simulation case and about 10 times at 10 Hz in the experimental case. Simulation comparison also shows that this power magnification increases by matching lower frequencies which emphasize the advantages of the proposed configuration for low frequency operation.
A magnetic-spring-based, low-frequency-vibration energy harvester comprising a dual Halbach array
NASA Astrophysics Data System (ADS)
Salauddin, M.; Halim, M. A.; Park, J. Y.
2016-09-01
Energy harvesting that uses low-frequency vibrations is attractive due to the availability of such vibrations throughout the ambient environment. Significant power generation at low-frequency vibrations, however, is challenging because the power flow decreases as the frequency decreases; moreover, designing a spring-mass system that is suitable for low-frequency-vibration energy harvesting is difficult. In this work, our proposed device overcomes both of these challenges by using a dual Halbach array and magnetic springs. Each Halbach array concentrates the magnetic-flux lines on one side of the array while suppressing the flux lines on the other side; therefore, a dual Halbach array allows for an interaction between the concentrated magnetic-flux lines and the same coil so that the maximum flux linkage occurs. During the experiment, vibration was applied in a horizontal direction to reduce the gravity effect on the Halbach-array structure. To achieve an increased power generation at low-amplitude and low-frequency vibrations, the magnetic structure of the dual Halbach array and the magnetic springs were optimized in terms of the operating frequency and the power density; subsequently, a prototype was fabricated and tested. The prototype device offers a normalized power density of 133.45 μW cm‑3 g‑2 that is much higher than those of recently reported electromagnetic energy harvesters; furthermore, it is capable of delivering a maximum average power of 1093 μW to a 44 Ω optimum load, at an 11 Hz resonant frequency and under a 0.5 g acceleration.
NASA Astrophysics Data System (ADS)
Abed, I.; Kacem, N.; Bouhaddi, N.; Bouazizi, M. L.
2016-02-01
We propose a multi-modal vibration energy harvesting approach based on arrays of coupled levitated magnets. The equations of motion which include the magnetic nonlinearity and the electromagnetic damping are solved using the harmonic balance method coupled with the asymptotic numerical method. A multi-objective optimization procedure is introduced and performed using a non-dominated sorting genetic algorithm for the cases of small magnet arrays in order to select the optimal solutions in term of performances by bringing the eigenmodes close to each other in terms of frequencies and amplitudes. Thanks to the nonlinear coupling and the modal interactions even for only three coupled magnets, the proposed method enable harvesting the vibration energy in the operating frequency range of 4.6-14.5 Hz, with a bandwidth of 190% and a normalized power of 20.2 {mW} {{cm}}-3 {{{g}}}-2.
Optimization of piezoelectric bistable composite plates for broadband vibrational energy harvesting
NASA Astrophysics Data System (ADS)
Betts, David N.; Kim, H. Alicia; Bowen, Christopher R.; Inman, Daniel J.
2012-04-01
This paper presents a unique arrangement of bistable composite plates with piezoelectric patches bonded to its surface to perform broadband vibration-based energy harvesting from ambient mechanical vibrations. These bistable nonlinear devices have been shown to have improved power generation compared to conventional resonant systems and can be designed to occupy smaller volumes than bistable magnetic cantilever systems. This paper presents the results of an optimization study of bistable composites that are capable of generating greater electrical power from a smaller space by discovering the correct geometric configuration for energy harvesting. Optimum solutions are investigated in a series of design parameter studies intended to reveal the complex interactions of the physical constraints and design requirements. The proposed approach considers the optimal choice of device aspect ratio, thickness, laminate stacking sequence, and piezoelectric surface area. Increased electrical output is found for geometries and piezoelectric configurations which have not been considered previously.
Piezoelectric Vibration Energy Harvester Using Indirect Impact of Springless Proof Mass
NASA Astrophysics Data System (ADS)
Ju, S.; Ji, C.-H.
2015-12-01
This paper presents an impact-based piezoelectric vibration energy harvester using freely movable spherical proof mass and MFC (Macro Fiber Composite) beams as piezoelectric cantilevers. When external vibration is applied, a metal sphere moves freely along the channel and collides with both ends of the cavity, which induces the vibration of parallel- connected MFCs and generates electric power. A proof-of-concept device having the form- factor of a wristwatch has been designed and tested. Moreover, spherical proof mass made of different materials has been tested to analyze the relationship between output power, long-term reliability, and audible noise level during operation. Maximum peak-to-peak open circuit voltage of 41.2V and average power of 908.7 μW have been obtained in response to a 3g vibration at 17Hz for device with parallel-connected MFC beams.
Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters
NASA Astrophysics Data System (ADS)
Sharpes, Nathan; Abdelkefi, Abdessattar; Priya, Shashank
2015-08-01
Vibration-based energy harvesters using piezoelectric materials have long made use of the cantilever beam structure. Surmounting the deficiencies in one-dimensional cantilever-based energy harvesters has been a major focus in the literature. In this work, we demonstrate a strategy of using two-dimensional beam shapes to harvest energy from low frequency excitations. A characteristic Zigzag-shaped beam is created to compare against the two proposed two-dimensional beam shapes, all of which occupy a 25.4 × 25.4 mm2 area. In addition to maintaining the low-resonance bending frequency, the proposed beam shapes are designed with the goal of realizing a concentrated stress structure, whereby stress in the beam is concentrated in a single area where a piezoelectric layer may be placed, rather than being distributed throughout the beam. It is shown analytically, numerically, and experimentally that one of the proposed harvesters is able to provide significant increase in power production, when the base acceleration is set equal to 0.1 g, with only a minimal change in the resonant frequency compared to the current state-of-the-art Zigzag shape. This is accomplished by eliminating torsional effects, producing a more pure bending motion that is necessary for high electromechanical coupling. In addition, the proposed harvesters have a large effective beam tip whereby large tip mass may be placed while retaining a low-profile, resulting in a low volume harvester and subsequently large power density.
NASA Astrophysics Data System (ADS)
Zhang, Qian; Wang, Yufeng; Zhao, Lurui; Sok Kim, Eun
2016-02-01
This paper presents two microfabrication approaches for multi-layer coils for vibration-energy harvesters. A magnet array is arranged with alternating north- and south-orientation to provide a rapidly changing magnetic field for high electromagnetic energy conversion. Multi-turn spiral coils on silicon wafer are aligned to the magnet array for maximum magnetic flux change. One type of coil is made out of 300 μm-thick copper that is electroplated with silicon mold, and the other is built on 25 μm-thick copper electroplated with photoresist mold. The low resistive coils fabricated by the first approach are integrated in a microfabricated energy harvester of 17 × 7 × 1.7 mm3 (=0.2 cm3) weighing 0.8 g, which generates 14.3 μW power output (into 0.7 Ω load) from vibration amplitude of 6 μm at 250 Hz. The latter approach is used to make a 1080-turn coil for a microfabricated electromagnetic energy harvester with magnet array and plastic spring. Though the size and weight of the harvester are only 44 × 20 × 6 mm3 (=5.3 cm3) and 12 g, respectively, it generates 1.04 mW power output (into 190 Ω load) when it is vibrated at 75 Hz with vibration amplitude of 220 μm.
Magnetoelastic beam with extended polymer for low frequency vibration energy harvesting
NASA Astrophysics Data System (ADS)
Ibrahim, Alwathiqbellah; Towfighian, Shahrzad; Younis, Mohammad; Su, Quang
2016-04-01
Ambient energy in the form of mechanical kinetic energy is mostly considered waste energy. The process of scavenging and storing such energy is known as energy harvesting. Energy harvesting from mechanical vibration is performed using resonant energy harvesters (EH) with two major goals: enhancing the power scavenged at low frequency sources of vibrations, and increasing the efficiency of scavenging energy by increasing the bandwidth near the resonant frequency. Toward such goals, we propose a piezoelectric EH of a composite cantilever beam with a tip magnet facing another magnet at a distance. The composite cantilever consists of a piezoelectric bimorph with an extended polymer material. With the effect of the nonlinearity of the magnetic force, higher amplitude can be achieved because of the generated bi-stability oscillations of the cantilever beam under harmonic excitation. The contribution of the this paper is to demonstrate lowering the achieved resonant frequency down to 17 Hz compared to 100 Hz for the piezoelectric bimorph beam without the extended polymer. Depending on the magnetic distance, the beam responses are divided to mono and bi-stable regions, for which we investigate static and dynamic behaviors. The dynamics of the system and the frequency and voltage responses of the beam are obtained using the shooting method.
NASA Astrophysics Data System (ADS)
Muthalif, Asan G. A.; Nordin, N. H. Diyana
2015-03-01
Harvesting energy from the surroundings has become a new trend in saving our environment. Among the established ones are solar panels, wind turbines and hydroelectric generators which have successfully grown in meeting the world's energy demand. However, for low powered electronic devices; especially when being placed in a remote area, micro scale energy harvesting is preferable. One of the popular methods is via vibration energy scavenging which converts mechanical energy (from vibration) to electrical energy by the effect of coupling between mechanical variables and electric or magnetic fields. As the voltage generated greatly depends on the geometry and size of the piezoelectric material, there is a need to define an optimum shape and configuration of the piezoelectric energy scavenger. In this research, mathematical derivations for unimorph piezoelectric energy harvester are presented. Simulation is done using MATLAB and COMSOL Multiphysics software to study the effect of varying the length and shape of the beam to the generated voltage. Experimental results comparing triangular and rectangular shaped piezoelectric beam are also presented.
NASA Astrophysics Data System (ADS)
Galchev, Tzeno; McCullagh, James; Peterson, Rebecca L.; Najafi, Khalil; Mortazawi, Amir
2011-04-01
To power distributed wireless sensor networks on bridges, traditional power cables or battery replacement are excessively expensive or infeasible. This project develops two power harvesting technologies. First, a novel parametric frequency-increased generator (PFIG) is developed. The fabricated PFIG harvests the non-periodic and unprecedentedly low frequency (DC to 30 Hz) and low acceleration (0.55-9.8 m/s2) mechanical energy available on bridges with an average power > 2 μW. Prototype power conversion and storage electronics were designed and the harvester system was used to charge a capacitor from arbitrary bridge-like vibrations. Second, an RF scavenger operating at medium and shortwave frequencies has been designed and tested. Power scavenging at MHz frequencies allows for lower antenna directivities, reducing sensitivity to antenna positioning. Furthermore, ambient RF signals at these frequencies have higher power levels away from cities and residential areas compared to the UHF and SHF bands utilized for cellular communication systems. An RF power scavenger operating at 1 MHz along with power management and storage circuitry has been demonstrated. It powers a LED at a distance of 10 km from AM radio stations.
Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure
Li, Pengwei Wang, Yanfen; Luo, Cuixian; Li, Gang; Hu, Jie; Zhang, Wendong; Liu, Ying; Liu, Wei
2015-04-15
As an alternative to traditional cantilever beam structures and their evolutions, a flexible beam based, interdigital structure, vibration energy harvester has been presented and investigated. The proposed interdigital-shaped oscillator consists of a rectangular flexible frame and series of cantilever beams interdigitally bonded to it. In order to achieve low frequency and wide-bandwidth harvesting, Young’s modulus of materials, frame size and the amount of the cantilevers have been studied systematically. The measured frequency responses of the designed device (PDMS frame, quintuple piezoelectric cantilever beams) show a 460% increase in bandwidth below 80Hz. When excited at an acceleration of 1.0 g, the energy harvester achieves to a maximum open-circuit voltage of 65V, and the maximum output power 4.5 mW.
Cantilevers-on-membrane design for broadband MEMS piezoelectric vibration energy harvesting
NASA Astrophysics Data System (ADS)
Jia, Yu; Du, Sijun; Seshia, Ashwin A.
2015-12-01
Most MEMS piezoelectric vibration energy harvesters involve either cantilever-based topologies, doubly-clamped beams or membrane structures. While these traditional designs offer simplicity, their frequency response for broadband excitation are typically inadequate. This paper presents a new integrated cantilever-on-membrane design that attempts to both optimise the strain distribution on a piezoelectric membrane resonator and improve the power responsiveness of the harvester for broadband excitation. While a classic membrane-based resonator has the potential to theoretically offer wider operational frequency bandwidth than its cantilever counterpart, the addition of a centred proof mass neutralises its otherwise high strain energy regions. The proposed topology addresses this issue by relocating the proof mass onto subsidiary cantilevers and integrates the merits of both the membrane and the cantilever designs. When experimentally subjected to a band-limited white noise excitation, up to approximately two folds of power enhancement was observed for the new membrane harvester compared to a classic plain membrane device.
A resonant electromagnetic vibration energy harvester for intelligent wireless sensor systems
Qiu, Jing Wen, Yumei; Li, Ping; Liu, Xin; Chen, Hengjia; Yang, Jin
2015-05-07
Vibration energy harvesting is now receiving more interest as a means for powering intelligent wireless sensor systems. In this paper, a resonant electromagnetic vibration energy harvester (VEH) employing double cantilever to convert low-frequency vibration energy into electrical energy is presented. The VEH is made up of two cantilever beams, a coil, and magnetic circuits. The electric output performances of the proposed electromagnetic VEH have been investigated. With the enhancement of turns number N, the optimum peak power of electromagnetic VEH increases sharply and the resonance frequency deceases gradually. When the vibration acceleration is 0.5 g, we obtain the optimum output voltage and power of 9.04 V and 50.8 mW at frequency of 14.9 Hz, respectively. In a word, the prototype device was successfully developed and the experimental results exhibit a great enhancement in the output power and bandwidth compared with other traditional electromagnetic VEHs. Remarkably, the proposed resonant electromagnetic VEH have great potential for applying in intelligent wireless sensor systems.
Zuo, Lei; Cui, Wen
2013-10-01
This paper proposes a novel retrofittable approach for dual-functional energy-harvesting and robust vibration control by integrating the tuned mass damper (TMD) and electromagnetic shunted resonant damping. The viscous dissipative element between the TMD and primary system is replaced by an electromagnetic transducer shunted with a resonant RLC circuit. An efficient gradient based numeric method is presented for the parameter optimization in the control framework for vibration suppression and energy harvesting. A case study is performed based on the Taipei 101 TMD. It is found that by tuning the TMD resonance and circuit resonance close to that of the primary structure, the electromagnetic resonant-shunt TMD achieves the enhanced effectiveness and robustness of double-mass series TMDs, without suffering from the significantly amplified motion stroke. It is also observed that the parameters and performances optimized for vibration suppression are close to those optimized for energy harvesting, and the performance is not sensitive to the resistance of the charging circuit or electrical load. PMID:23918165
NASA Astrophysics Data System (ADS)
Sharpes, Nathan; Abdelkefi, Abdessattar; Abdelmoula, Hichem; Kumar, Prashant; Adler, Jan; Priya, Shashank
2016-07-01
Mode shapes in the design of mechanical energy harvesters, as a means of performance increase, have been largely overlooked. Currently, the vast majority of energy harvester designs employ some variation of a single-degree-of-freedom cantilever, and the mode shapes of such beams are well known. This is especially true for the first bending mode, which is almost exclusively the chosen vibration mode for energy harvesting. Two-dimensional beam shapes (those which curve, meander, spiral, etc., in a plane) have recently gained research interest, as they offer freedom to modify the vibration characteristics of the harvester beam for achieving higher power density. In this study, the second bending mode shape of the "Elephant" two-dimensional beam shape is examined, and its interaction with the first bending mode is evaluated. A combinatory mode shape created by using mass loading structural modification to lower the second bending modal frequency was found to interact with the first bending mode. This is possible since the first two bending modes do not share common areas of displacement. The combined mode shape is shown to produce the most power of any of the considered mode shapes.
Self-powered resonant frequency tuning for Piezoelectric Vibration Energy Harvesters
NASA Astrophysics Data System (ADS)
Ahmed-Seddik, B.; Despesse, G.; Boisseau, S.; Defay, E.
2013-12-01
This paper reports on the design, fabrication and testing of an innovative 33-mode piezoelectric vibration energy harvester (VEH). This system is able to change its resonant frequency in real time to follow the main frequency of a vibration source. The system proposed in this paper enables to adapt VEH characteristics (resonant frequency, electrical damping) to vibration parameters variations (frequency and amplitude) in order to optimize the extraction of energy and then the output power at any time. This solution allows up to 40% of resonant frequency tuning ratio; moreover, the adaptation is made in real time and the consumption of the regulation electronic is less than 10% of the VEH output power (480μW@0.1g-276Hz).
NASA Astrophysics Data System (ADS)
Uluşan, H.; Gharehbaghi, K.; Zorlu, Ö.; Muhtaroğlu, A.; Külah, H.
2015-12-01
This study presents a novel hybrid system that combines the power generated simultaneously by a vibration-based Electromagnetic (EM) harvester and a UHF band RF harvester. The novel hybrid scavenger interface uses a power management circuit in 180 nm CMOS technology to step-up and to regulate the combined output. At the first stage of the system, the RF harvester generates positive DC output with a 7-stage threshold compensated rectifier, while the EM harvester generates negative DC output with a self-powered AC/DC negative doubler circuit. At the second stage, the generated voltages are serially added, stepped-up with an on-chip charge pump circuit, and regulated to a typical battery voltage of 3 V. Test results indicate that the hybrid operation enables generation of 9 μW at 3 V output for a wide range of input stimulations, which could not be attained with either harvesting mode by itself. Moreover the hybrid system behaves as a typical battery, and keeps the output voltage stable at 3 V up to 18 μW of output power. The presented system is the first battery-like harvester to our knowledge that generates energy from two independent sources and regulates the output to a stable DC voltage.
Global Nonlinear Analysis of Piezoelectric Energy Harvesting from Ambient and Aeroelastic Vibrations
NASA Astrophysics Data System (ADS)
Abdelkefi, Abdessattar
Converting vibrations to a usable form of energy has been the topic of many recent investigations. The ultimate goal is to convert ambient or aeroelastic vibrations to operate low-power consumption devices, such as microelectromechanical systems, heath monitoring sensors, wireless sensors or replacing small batteries that have a finite life span or would require hard and expensive maintenance. The transduction mechanisms used for transforming vibrations to electric power include: electromagnetic, electrostatic, and piezoelectric mechanisms. Because it can be used to harvest energy over a wide range of frequencies and because of its ease of application, the piezoelectric option has attracted significant interest. In this work, we investigate the performance of different types of piezoelectric energy harvesters. The objective is to design and enhance the performance of these harvesters. To this end, distributed-parameter and phenomenological models of these harvesters are developed. Global analysis of these models is then performed using modern methods of nonlinear dynamics. In the first part of this Dissertation, global nonlinear distributed-parameter models for piezoelectric energy harvesters under direct and parametric excitations are developed. The method of multiple scales is then used to derive nonlinear forms of the governing equations and associated boundary conditions, which are used to evaluate their performance and determine the effects of the nonlinear piezoelectric coefficients on their behavior in terms of softening or hardening. In the second part, we assess the influence of the linear and nonlinear parameters on the dynamic behavior of a wing-based piezoaeroelastic energy harvester. The system is composed of a rigid airfoil that is constrained to pitch and plunge and supported by linear and nonlinear torsional and flexural springs with a piezoelectric coupling attached to the plunge degree of freedom. Linear analysis is performed to determine the
NASA Astrophysics Data System (ADS)
Zhu, Dibin; Roberts, Stephen; Mouille, Thomas; Tudor, Michael J.; Beeby, Stephen P.
2012-10-01
This paper presents a general model and its experimental validation for electrically tunable electromagnetic energy harvesters. Electrical tuning relies on the adjustment of the electrical load so that the maximum output power of the energy harvester occurs at a frequency which is different from the mechanical resonant frequency of the energy harvester. Theoretical analysis shows that for this approach to be feasible the electromagnetic vibration energy harvester’s coupling factor must be maximized so that its resonant frequency can be tuned with the minimum decrease of output power. Two different-sized electromagnetic energy harvesters were built and tested to validate the model. Experimentally, the micro-scale energy harvester has a coupling factor of 0.0035 and an untuned resonant frequency of 70.05 Hz. When excited at 30 mg, it was tuned by 0.23 Hz by changing its capacitive load from 0 to 4000 nF its effective tuning range is 0.15 Hz for a capacitive load variation from 0 to 1500 nF. The macro-scale energy harvester has a coupling factor of 552.25 and an untuned resonant frequency of 95.1 Hz and 95.5 Hz when excited at 10 mg and 25 mg, respectively. When excited at 10 mg, it was tuned by 3.8 Hz by changing its capacitive load from 0 to 1400 nF it has an effective tuning range of 3.5 Hz for a capacitive load variation from 0 to 1200 nF. When excited at 25 mg, its resonant frequency was tuned by 4.2 Hz by changing its capacitive load from 0 to 1400 nF it has an effective tuning range of about 5 Hz. Experimental results were found to agree with the theoretical analysis to within 10%.
NASA Astrophysics Data System (ADS)
Kawano, M.; Zhang, Y.; Zheng, R.; Nakano, K.; Kim, B.
2015-12-01
This paper describes extremely simple configuration of novel vibrational energy harvester, which can harness low frequency (less than 5 Hz, such as various environmental vibrations) over a broad frequency band for the first time. A design that utilizes a phenomenon called stochastic resonance can give significantly enhanced vibration mode for increasing efficiency, and simple bi-stable cantilever with tip mass installed a basement vertically fulfils the requirements for stochastic resonance. We fabricated bi-stable cantilever with tip mass and validated whether the cantilever could be used as an effective low frequency vibration energy harvester. In the experiment, when a 1 Hz periodic force and environmental noise vibration were applied, stochastic resonance occurred. The amplitude of the energy harvester increased over tenfold (over 30 mm).
Electromagnetic Vibration Energy Harvester Using Springless Proof Mass and Ferrofluid as a Lubricant
NASA Astrophysics Data System (ADS)
Chae, S. H.; Ju, S.; Choi, Y.; Jun, S.; Park, S. M.; Lee, S.; Lee, H. W.; Ji, C.-H.
2013-12-01
This paper presents an electromagnetic energy harvester using an array of rectangular permanent magnets as springless proof mass and ferrofluid as a lubricating material. Lateral motion of the multi-pole magnet array generates voltage across an array of copper windings formed under the aluminum channel in response to low frequency external vibrations such as human-body-induced motion. A proof-of-concept device has been fabricated and output voltage has been measured at various input frequencies and accelerations provided by a vibration exciter. Device with ferrofluid lubrication generated maximum open-circuit voltage of 0.47V at 3g vibration at 12Hz, which is 8% higher than that of the device without lubricant. Maximum output power of 71.26μW has been obtained at 40.8Ω with the device with ferrofluid lubrication.
Multi-modal vibration based MEMS energy harvesters for ultra-low power wireless functional nodes
NASA Astrophysics Data System (ADS)
Iannacci, J.; Gottardi, M.; Serra, E.; Di Criscienzo, R.; Borrielli, A.; Bonaldi, M.
2013-05-01
The aim of this contribution is to report and discuss a preliminary study and rough optimization of a novel concept of MEMS device for vibration energy harvesting, based on a multi-modal dynamic behavior. The circular-shaped device features Four-Leaf Clover-like (FLC) double spring-mass cascaded systems, kept constrained to the surrounding frame by means of four straight beams. The combination of flexural bending behavior of the slender beams plus deformable parts of the petals enable to populate the desired vibration frequency range with a number of resonant modes, and improve the energy conversion capability of the micro-transducer. The harvester device, conceived for piezoelectric mechanical into electric energy conversion, is intended to sense environmental vibrations and, thereby, its geometry is optimized to have a large concentration of resonant modes in a frequency range below 5-10 kHz. The results of FEM (Finite Element Method) based analysis performed in ANSYSTM Workbench are reported, both concerning modal and harmonic response, providing important indications related to the device geometry optimization. The analysis reported in this work is limited to the sole mechanical modeling of the proposed MEMS harvester device concept. Future developments of the study will encompass the inclusion of piezoelectric conversion in the FEM simulations, in order to have indications of the actual power levels achievable with the proposed harvester concept. Furthermore, the results of the FEM studies here discussed, will be validated against experimental data, as soon as the MEMS resonator specimens, currently under fabrication, are ready for testing.
NASA Astrophysics Data System (ADS)
Liu, Zhe Peng; Li, Qing
2013-04-01
Due to their two-way electromechanical coupling effect, piezoelectric transducers can be used to synthesize passive vibration control schemes, e.g., RLC circuit with the integration of inductance and resistance elements that is conceptually similar to damped vibration absorber. Meanwhile, the wide usage of wireless sensors has led to the recent enthusiasm of developing piezoelectric-based energy harvesting devices that can convert ambient vibratory energy into useful electrical energy. It can be shown that the integration of circuitry elements such as resistance and inductance can benefit the energy harvesting capability. Here we explore a dual-purpose circuit that can facilitate simultaneous vibration suppression and energy harvesting. It is worth noting that the goal of vibration suppression and the goal of energy harvesting may not always complement each other. That is, the maximization of vibration suppression doesn't necessarily lead to the maximization of energy harvesting, and vice versa. In this research, we develop a fuzzy-logic based algorithm to decide the proper selection of circuitry elements to balance between the two goals. As the circuitry elements can be online tuned, this research yields an adaptive circuitry concept for the effective manipulation of system energy and vibration suppression. Comprehensive analyses are carried out to demonstrate the concept and operation.
Study of the Ambient Vibration Energy Harvesting Based on Piezoelectric Effect
NASA Astrophysics Data System (ADS)
Si, Hongyu; Dong, Jinlu; Chen, Lei; Sun, Laizhi; Zhang, Xiaodong; Gao, Mintian
2014-01-01
The resonance between piezoelectric vibrator and the vibration source is the key to maximize the ambient vibration energy harvesting by using piezoelectric generator. In this paper, the factors that influence the output power of a single piezoelectric vibrator are analyzed. The effect of geometry size (length, thickness, width of piezoelectric chip and thickness of metal shim) of a single cantilever piezoelectric vibrator to the output power is analyzed and simulated with the help of MATLAB (matrix laboratory). The curves that output power varies with geometry size are obtained when the displacement and load at the free end are constant. Then the paper points out multi-resonant frequency piezoelectric power generation, including cantilever multi-resonant frequency piezoelectric power generation and disc type multi-resonant frequency piezoelectric generation. Multi-resonant frequency of cantilever piezoelectric power generation can be realized by placing different quality mass at the free end, while disc type multi-resonant frequency piezoelectric generation can be realized through series and parallel connection of piezoelectric vibrator.
A Vibration-Based MEMS Piezoelectric Energy Harvester and Power Conditioning Circuit
Yu, Hua; Zhou, Jielin; Deng, Licheng; Wen, Zhiyu
2014-01-01
This paper presents a micro-electro-mechanical system (MEMS) piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM) is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of the geometric parameters on the output voltage. Based on simulation results, a MEMS Pb(Zr,Ti)O3 (PZT) cantilever array with an integrated large Si proof mass is designed and fabricated to improve output voltage and power. Test results show that the fabricated generator, with five cantilever beams (with unit dimensions of about 3 × 2.4 × 0.05 mm3) and an individual integrated Si mass dimension of about 8 × 12.4 × 0.5 mm3, produces a output power of 66.75 μW, or a power density of 5.19 μW·mm−3·g−2 with an optimal resistive load of 220 kΩ from 5 m/s2 vibration acceleration at its resonant frequency of 234.5 Hz. In view of high internal impedance characteristic of the PZT generator, an efficient autonomous power conditioning circuit, with the function of impedance matching, energy storage and voltage regulation, is then presented, finding that the efficiency of the energy storage is greatly improved and up to 64.95%. The proposed self-supplied energy generator with power conditioning circuit could provide a very promising complete power supply solution for wireless sensor node loads. PMID:24556670
A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit.
Yu, Hua; Zhou, Jielin; Deng, Licheng; Wen, Zhiyu
2014-01-01
This paper presents a micro-electro-mechanical system (MEMS) piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM) is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of the geometric parameters on the output voltage. Based on simulation results, a MEMS Pb(Zr,Ti)O3 (PZT) cantilever array with an integrated large Si proof mass is designed and fabricated to improve output voltage and power. Test results show that the fabricated generator, with five cantilever beams (with unit dimensions of about 3 × 2.4 × 0.05 mm3) and an individual integrated Si mass dimension of about 8 × 12.4 × 0.5 mm3, produces a output power of 66.75 μW, or a power density of 5.19 μW∙mm-3∙g-2 with an optimal resistive load of 220 kΩ from 5 m/s2 vibration acceleration at its resonant frequency of 234.5 Hz. In view of high internal impedance characteristic of the PZT generator, an efficient autonomous power conditioning circuit, with the function of impedance matching, energy storage and voltage regulation, is then presented, finding that the efficiency of the energy storage is greatly improved and up to 64.95%. The proposed self-supplied energy generator with power conditioning circuit could provide a very promising complete power supply solution for wireless sensor node loads. PMID:24556670
NASA Astrophysics Data System (ADS)
Xiong, Xingyu; Oyadiji, S. Olutunde
2014-10-01
Piezoelectric vibration energy harvesters with multi-layer stacked structures have been developed. They consist of multi-layer beams, of zigzag configurations, with rigid masses attached between the beams. The rigid masses, which also serve as spacers, are attached to each layer to tune the frequencies of the harvester. Close resonance frequencies and considerable power output can be achieved in multiple modes by varying the positions of the masses. A modal approach is introduced to determine the modal performance conveniently using the mass ratio and the modal electromechanical coupling coefficient, and the required modal parameters are derived using the finite element method. Mass ratio represents the influence of modal mechanical behaviour on the power density. Since the modes with larger mass ratios cause the remaining modes to have smaller mass ratios and lower power densities, a screening process using the modal approach is developed to determine the optimal or near-optimal performance of the harvesters when altering mass positions. This procedure obviates the need for full analysis by pre-selecting the harvester configurations with close resonances and favourable values of mass ratio initially. Furthermore, the multi-layer stacked designs using the modal approach can be used to develop harvesters with different sizes with the power ranging from microwatts to milliwatts.
NASA Astrophysics Data System (ADS)
Truong, Binh Duc; Phu Le, Cuong; Halvorsen, Einar
2015-12-01
This paper presents experiments on how to approach the physical limits on power from vibration energy harvesting under displacement-constrained operation. A MEMS electrostatic vibration energy harvester with voltage-control of the system stiffness is used for this purpose. The power saturation problem, when the proof mass displacement reaches maximum amplitude for sufficient acceleration amplitude, is shifted to higher accelerations by use of load optimization and tunable electromechanical coupling k2. Measurement results show that harvested power can be made to follow the optimal velocity-damped generator also for a range of accelerations that implies displacement constraints. Comparing to the saturated power, the power increases 1.5 times with the optimal load and an electromechanical coupling k2=8.7%. This value is 2.3 times for a higher coupling k2=17.9%. The obtained system effectiveness is beyond 60% under the optimization. This work also shows a first demonstration of reaching optimal power in the intermediate acceleration-range between the two extremes of maximum efficiency and maximum power transfer.
Design and analysis of vibration energy harvesters based on peak response statistics
NASA Astrophysics Data System (ADS)
Adhikari, S.; Friswell, M. I.; Litak, G.; Haddad Khodaparast, H.
2016-06-01
Energy harvesting using cantilever piezoelectric vibration energy harvesters excited by Gaussian broadband random base excitation is considered. The optimal design and analysis of energy harvesters under random excitation is normally performed using the mean and standard deviation of a response quantity of interest, such as the voltage. An alternative approach based on the statistics of the peak voltage is developed in this paper. Three extreme response characteristics, namely (a) level crossing, (b) response peaks above certain level, and (c) fractional time spend above a certain level, have been employed. Two cases, namely the harvesting circuit with and without an inductor, have been considered. Exact closed-form expressions have been derived for number of level crossings, statistics of response peaks and fractional time spend above a certain level for the output voltage. It is shown that these quantities can be related to the standard deviation of the voltage and its derivative with respect to time. Direct numerical simulation has been used to validate the analytical expressions. Based on the analytical results, closed-form expressions for optimal system parameters have been proposed. Numerical examples are given to illustrate the applicability of the analytical results.
Topology optimization and fabrication of low frequency vibration energy harvesting microdevices
NASA Astrophysics Data System (ADS)
Deng, Jiadong; Rorschach, Katherine; Baker, Evan; Sun, Cheng; Chen, Wei
2015-02-01
Topological design of miniaturized resonating structures capable of harvesting electrical energy from low frequency environmental mechanical vibrations encounters a particular physical challenge, due to the conflicting design requirements: low resonating frequency and miniaturization. In this paper structural static stiffness to resist undesired lateral deformation is included into the objective function, to prevent the structure from degenerating and forcing the solution to be manufacturable. The rational approximation of material properties interpolation scheme is introduced to deal with the problems of local vibration and instability of the low density area induced by the design dependent body forces. Both density and level set based topology optimization (TO) methods are investigated in their parameterization, sensitivity analysis, and applicability for low frequency energy harvester TO problems. Continuum based variation formulations for sensitivity analysis and the material derivative based shape sensitivity analysis are presented for the density method and the level set method, respectively; and their similarities and differences are highlighted. An external damper is introduced to simulate the energy output of the resonator due to electrical damping and the Rayleigh proportional damping is used for mechanical damping. Optimization results for different scenarios are tested to illustrate the influences of dynamic and static loads. To demonstrate manufacturability, the designs are built to scale using a 3D microfabrication method and assembled into vibration energy harvester prototypes. The fabricated devices based on the optimal results from using different TO techniques are tested and compared with the simulation results. The structures obtained by the level set based TO method require less post-processing before fabrication and the structures obtained by the density based TO method have resonating frequency as low as 100 Hz. The electrical voltage response
NASA Astrophysics Data System (ADS)
Du, Sijun; Jia, Yu; Seshia, Ashwin
2015-12-01
A resonant vibration energy harvester typically comprises of a clamped anchor and a vibrating shuttle with a proof mass. Piezoelectric materials are embedded in locations of high strain in order to transduce mechanical deformation into electric charge. Conventional design for piezoelectric vibration energy harvesters (PVEH) usually utilizes piezoelectric material and metal electrode layers covering the entire surface area of the cantilever with no consideration provided to examining the trade-off involved with respect to maximizing output power. This paper reports on the theory and experimental verification underpinning optimization of the active electrode area of a cantilevered PVEH in order to maximize output power. The analytical formulation utilizes Euler-Bernoulli beam theory to model the mechanical response of the cantilever. The expression for output power is reduced to a fifth order polynomial expression as a function of the electrode area. The maximum output power corresponds to the case when 44% area of the cantilever is covered by electrode metal. Experimental results are also provided to verify the theory.
Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters
Sharpes, Nathan; Abdelkefi, Abdessattar; Priya, Shashank
2015-08-31
Vibration-based energy harvesters using piezoelectric materials have long made use of the cantilever beam structure. Surmounting the deficiencies in one-dimensional cantilever-based energy harvesters has been a major focus in the literature. In this work, we demonstrate a strategy of using two-dimensional beam shapes to harvest energy from low frequency excitations. A characteristic Zigzag-shaped beam is created to compare against the two proposed two-dimensional beam shapes, all of which occupy a 25.4 × 25.4 mm{sup 2} area. In addition to maintaining the low-resonance bending frequency, the proposed beam shapes are designed with the goal of realizing a concentrated stress structure, whereby stress in the beam is concentrated in a single area where a piezoelectric layer may be placed, rather than being distributed throughout the beam. It is shown analytically, numerically, and experimentally that one of the proposed harvesters is able to provide significant increase in power production, when the base acceleration is set equal to 0.1 g, with only a minimal change in the resonant frequency compared to the current state-of-the-art Zigzag shape. This is accomplished by eliminating torsional effects, producing a more pure bending motion that is necessary for high electromechanical coupling. In addition, the proposed harvesters have a large effective beam tip whereby large tip mass may be placed while retaining a low-profile, resulting in a low volume harvester and subsequently large power density.
NASA Astrophysics Data System (ADS)
Yang, Jin; Wen, Yumei; Li, Ping; Yue, Xihai; Yu, Qiangmo
2014-07-01
A magnetoelectric (ME) vibration energy harvester has been designed to scavenge sufficient energy from ambient vibration with arbitrary motion directions in a plane and over a range of frequencies. In the harvester, a circular-cross-section cantilever rod is adopted to extract the vibration energy due to its ability to host accelerations in arbitrary in-plane motion directions. The magnetic coupling between the magnet and the ME transducer results in nonlinear oscillation of the cantilever rod with increased frequency bandwidth. To achieve optimal vibration energy harvesting performance, the effects of the nonlinear vibration and the harvester parameters including the magnetic circuit and the separation distance on the electrical output and the␣working bandwidth are analyzed. The experimental results show that the harvester can scavenge vibration energy in arbitrary in-plane directions, exhibiting a bandwidth of 4.0 Hz and maximum power of 0.22 mW at acceleration of 0.6 g (with g = 9.8 m s-2).
S-shape spring sensor: Sensing specific low-frequency vibration by energy harvesting.
Zhang, Lan; Lu, Jian; Takei, Ryohei; Makimoto, Natsumi; Itoh, Toshihiro; Kobayashi, Takeshi
2016-08-01
We have developed a Si-based microelectromechanical systems sensor with high sensitivity for specific low-frequency vibration-sensing and energy-harvesting applications. The low-frequency vibration sensor contains a disk proof mass attached to two or three lead zirconate titanate (PZT) S-shape spring flexures. To obtain a faster and less expensive prototype, the design and optimization of the sensor structure are studied via finite-element method analysis. To validate the sensor structure to detect low-frequency vibration, the effects of geometrical dimensions, including the width and diameter of the S-shape spring of the proof mass, were analyzed and measured. The functional features, including the mechanical property and electrical performance of the vibration sensor, were evaluated. The results demonstrated that a very low resonant frequency of <11 Hz and a reasonably high voltage output of 7.5 mV at acceleration of >0.2g can be typically achieved. Given a low-frequency vibration sensor with ideal performance and mass fabrication, many advanced civilian and industrial applications can be possibly realized. PMID:27587151
S-shape spring sensor: Sensing specific low-frequency vibration by energy harvesting
NASA Astrophysics Data System (ADS)
Zhang, Lan; Lu, Jian; Takei, Ryohei; Makimoto, Natsumi; Itoh, Toshihiro; Kobayashi, Takeshi
2016-08-01
We have developed a Si-based microelectromechanical systems sensor with high sensitivity for specific low-frequency vibration-sensing and energy-harvesting applications. The low-frequency vibration sensor contains a disk proof mass attached to two or three lead zirconate titanate (PZT) S-shape spring flexures. To obtain a faster and less expensive prototype, the design and optimization of the sensor structure are studied via finite-element method analysis. To validate the sensor structure to detect low-frequency vibration, the effects of geometrical dimensions, including the width and diameter of the S-shape spring of the proof mass, were analyzed and measured. The functional features, including the mechanical property and electrical performance of the vibration sensor, were evaluated. The results demonstrated that a very low resonant frequency of <11 Hz and a reasonably high voltage output of 7.5 mV at acceleration of >0.2g can be typically achieved. Given a low-frequency vibration sensor with ideal performance and mass fabrication, many advanced civilian and industrial applications can be possibly realized.
NASA Astrophysics Data System (ADS)
Mori, Kotaro; Horibe, Tadashi; Ishikawa, Shigekazu; Shindo, Yasuhide; Narita, Fumio
2015-12-01
This work deals with the dynamic bending and energy harvesting characteristics of giant magnetostrictive cantilevers with resonant tuning both numerically and experimentally. The giant magnetostrictive cantilever is fabricated using a thin Terfenol-D layer, SUS layer, movable proof mass, etc, and, is designed to automatically adjust its own resonant frequency to match the external vibration frequency in real time. Three-dimensional finite element analysis was conducted, and the resonant frequency, induced voltage and stress in the magnetostrictive cantilevers were predicted. The resonant frequency and induced voltage were also measured, and comparison was made between simulation and experiment. The time-varying behavior and self-tuning ability are discussed in detail.
NASA Astrophysics Data System (ADS)
Harne, R. L.
2013-04-01
Vibrational energy harvesting devices are often designed in a manner analogous to classical dynamic vibration absorbers (DVAs). An electromechanical mass-spring system is devised so as to resonate at the frequency most dominant in the environmental vibration spectrum; the consequent device oscillation is converted to a electrical signal which is harnessed for immediate usage or as a charging mechanism for a battery. The DVA is likewise designed but with the intention of inducing substantial inertial influence upon a host structure for vibration control purposes, either to globally dampen the vibration of the main body or, in an undamped configuration to "absorb" the primary system vibration at a single frequency. This paper describes the development of an electromechanical mass-spring-damper which seeks to serve both goals of passive vibration control and energy harvesting. The device utilizes a piezoelectric film spring and a distributed mass layer so as to be suitable for the attenuation of surface vibrations and to convert a portion of the absorbed energy into electric power. The development and design of the device are presented and the results of realistic tests are provided to show both the potentials and the challenges encountered when attempting to superpose the goals of vibration control and energy harvesting.
NASA Astrophysics Data System (ADS)
Basset, P.; Galayko, D.; Cottone, F.; Guillemet, R.; Blokhina, E.; Marty, F.; Bourouina, T.
2014-03-01
This paper presents an advanced study including the design, characterization and theoretical analysis of a capacitive vibration energy harvester. Although based on a resonant electromechanical device, it is intended for operation in a wide frequency band due to the combination of stop-end effects and a strong biasing electrical field. The electrostatic transducer has an interdigited comb geometry with in-plane motion, and is obtained through a simple batch process using two masks. A continuous conditioning circuit is used for the characterization of the transducer. A nonlinear model of the coupled system ‘transduce-conditioning circuit’ is presented and analyzed employing two different semi-analytical techniques together with precise numerical modelling. Experimental results are in good agreement with results obtained from numerical modelling. With the 1 g amplitude of harmonic external acceleration at atmospheric pressure, the system transducer-conditioning circuit has a half-power bandwidth of more than 30% and converts more than 2 µW of the power of input mechanical vibrations over the range of 140 and 160 Hz. The harvester has also been characterized under stochastic noise-like input vibrations.
Design of piezoelectric MEMS cantilever for low-frequency vibration energy harvester
NASA Astrophysics Data System (ADS)
Takei, Ryohei; Makimoto, Natsumi; Okada, Hironao; Itoh, Toshihiro; Kobayashi, Takeshi
2016-06-01
We report the design of piezoelectric MEMS cantilevers formed on a silicon-on-insulator wafer to efficiently harvest electrical power from harmonic vibration with a frequency of approximately 30 Hz. Numerical simulation indicates that a >4-µm-thick top silicon layer and >3-µm-thick piezoelectric film are preferable to maximize the output electrical power. An in-plane structure of the cantilever is also designed retaining the footprint of the cantilever. The simulation results indicate that the output power is maximized when the length ratio of the proof mass to the cantilever beam is 1.5. To ensure the accuracy of the simulation, we fabricated and characterized cantilevers with a 10-µm-thick top silicon layer and a 1.8-µm-thick piezoelectric film, resulting in 0.21 µW at a vibration of 0.5 m/s2 and 25.1 Hz. The measured output power is in agreement with the simulated value, meaning that the design is significantly reliable for low-frequency vibration energy harvesters.
NASA Astrophysics Data System (ADS)
Maeguchi, T.; Masuda, A.; Katsumura, H.; Kagata, H.; Okumura, H.
2015-12-01
This paper presents a design of a piezoelectric hardening-type nonlinear vibration energy harvester which has widened resonance band while maintaining the same peak performance at the resonance frequency as that of the reference linear harvester. To this end, a pair of mechanical stoppers and a pair of repulsive magnets are introduced in this study. An experimental prototype device is designed by using a stainless steel-based piezoelectric cantilever, and numerical simulations and experiments are conducted to examine the validity of the presented design strategy. It is concluded that using the magnets to shift the resonance peak toward the lower frequency and using stoppers to expanding the resonance band toward the higher frequency can broaden the resonance band effectively maintaining the peak response. The damping due to the contact of the tip mass with the stopper is one of the key parameters which should be as small as possible to enhance the band widening effect.
Harvesting energy from the vibration of a passing train using a single-degree-of-freedom oscillator
NASA Astrophysics Data System (ADS)
Gatti, G.; Brennan, M. J.; Tehrani, M. G.; Thompson, D. J.
2016-01-01
With the advent of wireless sensors, there has been an increasing amount of research in the area of energy harvesting, particularly from vibration, to power these devices. An interesting application is the possibility of harvesting energy from the track-side vibration due to a passing train, as this energy could be used to power remote sensors mounted on the track for strutural health monitoring, for example. This paper describes a fundamental study to determine how much energy could be harvested from a passing train. Using a time history of vertical vibration measured on a sleeper, the optimum mechanical parameters of a linear energy harvesting device are determined. Numerical and analytical investigations are both carried out. It is found that the optimum amount of energy harvested per unit mass is proportional to the product of the square of the input acceleration amplitude and the square of the input duration. For the specific case studied, it was found that the maximum energy that could be harvested per unit mass of the oscillator is about 0.25 J/kg at a frequency of about 17 Hz. The damping ratio for the optimum harvester was found to be about 0.0045, and the corresponding amplitude of the relative displacement of the mass is approximately 5 mm.
NASA Astrophysics Data System (ADS)
Montanini, Roberto; Quattrocchi, Antonino
2016-06-01
A cantilever-type resonant piezoelectric generator (RPG) has been designed by gluing a PZT patch working in d31 mode onto a glass fibre reinforced composite cantilever beam with a discrete mass applied on its free end. The electrical and dynamic behaviour of the RPG prototype has been investigated by carrying out laboratory tests aimed to assess the effect of definite design parameters, specifically the electric resistance load and the excitation frequency. Results showed that an optimum resistance load exists, at which power generation is maximized. Moreover, it has been showed that power generation is strongly influenced by the vibration frequency highlighting that, at resonance, output power can be increased by more than one order of magnitude. Possible applications include inertial resonant harvester for energy recovery from vibrating machines, sea waves or wind flux and self-powering of wireless sensor nodes.
Novel optimized design of a piezoelectric energy harvester in a package for low amplitude vibrations
NASA Astrophysics Data System (ADS)
Murillo, G.; Campanella, H.; Esteve, J.; Abadal, G.
2013-12-01
This paper presents a novel piezoelectric energy harvesting device created with the flip-chip bonding of two different parts, one is a MEMS die which plays the role of inertial mass and the other is an associate CMOS chip anchored to the vibrating environment. The flip-chip bonding is performed between the MEMS die, which consists of four piezoelectric beams connected to four PADs or anchor points, and a test PCB, which is used to validate the feasibility of the whole assembled system. The resulting system in package is a proof of concept of a novel design concept that increases the extracted power from an ambient vibration. FEM simulations have been carried out to study the mechanical behaviour of the who le system. Moreover, the fabrication of the piezoelectric die and the test PCB has been successfully performed, as well as their flip-chip integration.
A high figure of merit vibrational energy harvester for low frequency applications
NASA Astrophysics Data System (ADS)
Nico, V.; Boco, E.; Frizzell, R.; Punch, J.
2016-01-01
Small-scale vibration energy harvesters that respond efficiently at low frequencies are challenging to realize. This paper describes the design and implementation of one such harvester, which achieves a high volumetric Figure of Merit (FoMv = 2.6% at 11.50 Hz) at the scale of a C-type battery and outperforms other state-of-the-art devices in the sub 20 Hz frequency range. The device employs a 2 Degree-of-Freedom velocity-amplified approach and electromagnetic transduction. The harvester comprises two masses oscillating one inside the other, between four sets of magnetic springs. Collisions between the two masses transfer momentum from the heavier to the lighter mass, exploiting velocity amplification. The paper first presents guidelines for designing and optimizing the transduction mechanism, before a nonlinear numerical model for the system dynamics is developed. Experimental characterisation of the harvester design is then presented to validate both the transducer optimization and the dynamics model. The resulting high FoMV demonstrates the effectiveness of the device for low frequency applications, such as human motion.
NASA Astrophysics Data System (ADS)
Li, Peng; Zhang, Chongxiao; Kim, Junyoung; Yu, Liangyao; Zuo, Lei
2014-04-01
Regenerative semi-active suspensions can capture the previously dissipated vibration energy and convert it to usable electrical energy for powering on-board electronic devices, while achieve both the better ride comfort and improved road handling performance at the same time when certain control is applied. To achieve this objective, the power electronics interface circuit connecting the energy harvester and the electrical loads, which can perform simultaneous vibration control and energy harvesting function is in need. This paper utilized a buck-boost converter for simultaneous semi-active vibration control and energy harvesting with electromagnetic regenerative shock absorber, which utilizes a rotational generator to converter the vibration energy to electricity. It has been found that when the circuit works in discontinuous current mode (DCM), the ratio between the input voltage and current is only related to the duty cycle of the switch pulse width modulation signal. Using this property, the buck-boost converter can be used to perform semi-active vibration control by controlling the load connected between the terminals of the generator in the electromagnetic shock absorber. While performing the vibration control, the circuit always draw current from the shock absorber and the suspension remain dissipative, and the shock absorber takes no additional energy to perform the vibration control. The working principle and dynamics of the circuit has been analyzed and simulations were performed to validate the concept.
A low frequency vibration energy harvester using dual Halbach array suspended in magnetic springs
NASA Astrophysics Data System (ADS)
Salauddin, M.; Halim, M. A.; Park, J. Y.
2015-12-01
An electromagnetic (EM) low frequency vibration energy harvester is newly developed based on dual Halbach array which is suspended in two magnetic springs. Each Halbach array concentrates the magnetic flux lines on one side of the array while suppressing the flux lines on the other side. Dual Halbach array allows the concentrated magnetic flux lines to interact with the same coil in a way where maximum flux linkage occurs. With the goal of higher power generation in low amplitude and low frequency vibrations, the magnetic structures (both the dual Halbach array and the magnetic springs) were optimized in terms of operating frequency and power density. A prototype was fabricated and tested. It is capable of delivering maximum 1.09mW average power to 44Ω optimum load at 11Hz resonant frequency and 0.5g acceleration. The prototype device offers 33.4μWcm-3 average power density which is much higher than recently reported electromagnetic energy harvesters.
NASA Astrophysics Data System (ADS)
Palagummi, S.; Yuan, F. G.
2016-04-01
This article identifies and studies key parameters that characterize a horizontal diamagnetic levitation (HDL) mechanism based low frequency vibration energy harvester with the aim of enhancing performance metrics such as efficiency and volume figure of merit (FoMv). The HDL mechanism comprises of three permanent magnets and two diamagnetic plates. Two of the magnets, aka lifting magnets, are placed co-axially at a distance such that each attract a centrally located magnet, aka floating magnet, to balance its weight. This floating magnet is flanked closely by two diamagnetic plates which stabilize the levitation in the axial direction. The influence of the geometry of the floating magnet, the lifting magnet and the diamagnetic plate are parametrically studied to quantify their effects on the size, stability of the levitation mechanism and the resonant frequency of the floating magnet. For vibration energy harvesting using the HDL mechanism, a coil geometry and eddy current damping are critically discussed. Based on the analysis, an efficient experimental system is setup which showed a softening frequency response with an average system efficiency of 25.8% and a FoMv of 0.23% when excited at a root mean square acceleration of 0.0546 m/s2 and at frequency of 1.9 Hz.
NASA Astrophysics Data System (ADS)
Palagummi, S.; Yuan, F. G.
2015-04-01
A detailed analysis of a mono-stable vertical diamagnetic levitation (VDL) system for optimal vibration energy harvesting is presented. Initial studies showed that simple analytical techniques such as the dipole model and the image method provide useful guideline for understanding the potential of a diamagnetic levitation system, however, it is discussed here that the more accurate semi-analytical techniques such as the thin coil model and the discrete volume method are needed for quantitative optimization and design of the VDL system. With the semi-analytical techniques, the influence of the cylindrical geometry of the floating magnet, the lifting magnet and the diamagnetic plate are parametrically studied to assess their effects on the levitation gap, size of the system and the natural frequency. For efficient vibration energy harvesting using the VDL system, ways to mitigate eddy current damping and a coil geometry for transduction are critically discussed. With the optimized parameters, an experimental system is realized which showed a hardening type nonlinearity. The results show an overall efficiency of 1.54 percent, a root mean square (rms) power output of 1.72 μW when excited at a peak acceleration of 0.081 m/s2 and at a frequency of 2.1 Hz.
NASA Astrophysics Data System (ADS)
Takeya, Kouichi; Sasaki, Eiichi; Kobayashi, Yusuke
2016-01-01
A bridge vibration energy harvester has been proposed in this paper using a tuned dual-mass damper system, named hereafter Tuned Mass Generator (TMG). A linear electromagnetic transducer has been applied to harvest and make use of the unused reserve of energy the aforementioned damper system absorbs. The benefits of using dual-mass systems over single-mass systems for power generation have been clarified according to the theory of vibrations. TMG parameters have been determined considering multi-domain parameters, and TMG has been tuned using a newly proposed parameter design method. Theoretical analysis results have shown that for effective energy harvesting, it is essential that TMG has robustness against uncertainties in bridge vibrations and tuning errors, and the proposed parameter design method for TMG has demonstrated this feature.
Wang, Peihong; Du, Hejun
2015-07-01
Zinc oxide (ZnO) thin film piezoelectric microelectromechanical systems (MEMS) based vibration energy harvesters with two different designs are presented. These harvesters consist of a silicon cantilever, a silicon proof mass, and a ZnO piezoelectric layer. Design I has a large ZnO piezoelectric element and Design II has two smaller and equally sized ZnO piezoelectric elements; however, the total area of ZnO thin film in two designs is equal. The ZnO thin film is deposited by means of radio-frequency magnetron sputtering method and is characterized by means of XRD and SEM techniques. These ZnO energy harvesters are fabricated by using MEMS micromachining. The natural frequencies of the fabricated ZnO energy harvesters are simulated and tested. The test results show that these two energy harvesters with different designs have almost the same natural frequency. Then, the output performance of different ZnO energy harvesters is tested in detail. The effects of series connection and parallel connection of two ZnO elements on the load voltage and power are also analyzed. The experimental results show that the energy harvester with two ZnO piezoelectric elements in parallel connection in Design II has higher load voltage and higher load power than the fabricated energy harvesters with other designs. Its load voltage is 2.06 V under load resistance of 1 MΩ and its maximal load power is 1.25 μW under load resistance of 0.6 MΩ, when it is excited by an external vibration with frequency of 1300.1 Hz and acceleration of 10 m/s(2). By contrast, the load voltage of the energy harvester of Design I is 1.77 V under 1 MΩ resistance and its maximal load power is 0.98 μW under 0.38 MΩ load resistance when it is excited by the same vibration. PMID:26233403
NASA Astrophysics Data System (ADS)
Wang, Peihong; Du, Hejun
2015-07-01
Zinc oxide (ZnO) thin film piezoelectric microelectromechanical systems (MEMS) based vibration energy harvesters with two different designs are presented. These harvesters consist of a silicon cantilever, a silicon proof mass, and a ZnO piezoelectric layer. Design I has a large ZnO piezoelectric element and Design II has two smaller and equally sized ZnO piezoelectric elements; however, the total area of ZnO thin film in two designs is equal. The ZnO thin film is deposited by means of radio-frequency magnetron sputtering method and is characterized by means of XRD and SEM techniques. These ZnO energy harvesters are fabricated by using MEMS micromachining. The natural frequencies of the fabricated ZnO energy harvesters are simulated and tested. The test results show that these two energy harvesters with different designs have almost the same natural frequency. Then, the output performance of different ZnO energy harvesters is tested in detail. The effects of series connection and parallel connection of two ZnO elements on the load voltage and power are also analyzed. The experimental results show that the energy harvester with two ZnO piezoelectric elements in parallel connection in Design II has higher load voltage and higher load power than the fabricated energy harvesters with other designs. Its load voltage is 2.06 V under load resistance of 1 MΩ and its maximal load power is 1.25 μW under load resistance of 0.6 MΩ, when it is excited by an external vibration with frequency of 1300.1 Hz and acceleration of 10 m/s2. By contrast, the load voltage of the energy harvester of Design I is 1.77 V under 1 MΩ resistance and its maximal load power is 0.98 μW under 0.38 MΩ load resistance when it is excited by the same vibration.
NASA Astrophysics Data System (ADS)
Zhao, Liuxian; Conlon, Stephen C.; Semperlotti, Fabio
2015-06-01
In this paper, we present an experimental investigation on the energy harvesting performance of dynamically tailored structures based on the concept of embedded acoustic black holes (ABHs). Embedded ABHs allow tailoring the wave propagation characteristics of the host structure creating structural areas with extreme levels of energy density. Experiments are conducted on a tapered plate-like aluminum structure with multiple embedded ABH features. The dynamic response of the structure is tested via laser vibrometry in order to confirm the vibration localization and the passive wavelength sweep characteristic of ABH embedded tapers. Vibrational energy is extracted from the host structure and converted into electrical energy by using ceramic piezoelectric discs bonded on the ABHs and shunted on an external electric circuit. The energy harvesting performance is investigated both under steady state and transient excitation. The experimental results confirm that the dynamic tailoring produces a drastic increase in the harvested energy independently from the nature of the excitation input.
Sassani, Farrokh
2014-01-01
The simulation results for electromagnetic energy harvesters (EMEHs) under broad band stationary Gaussian random excitations indicate the importance of both a high transformation factor and a high mechanical quality factor to achieve favourable mean power, mean square load voltage, and output spectral density. The optimum load is different for random vibrations and for sinusoidal vibration. Reducing the total damping ratio under band-limited random excitation yields a higher mean square load voltage. Reduced bandwidth resulting from decreased mechanical damping can be compensated by increasing the electrical damping (transformation factor) leading to a higher mean square load voltage and power. Nonlinear EMEHs with a Duffing spring and with linear plus cubic damping are modeled using the method of statistical linearization. These nonlinear EMEHs exhibit approximately linear behaviour under low levels of broadband stationary Gaussian random vibration; however, at higher levels of such excitation the central (resonant) frequency of the spectral density of the output voltage shifts due to the increased nonlinear stiffness and the bandwidth broadens slightly. Nonlinear EMEHs exhibit lower maximum output voltage and central frequency of the spectral density with nonlinear damping compared to linear damping. Stronger nonlinear damping yields broader bandwidths at stable resonant frequency. PMID:24605063
From MEMS to macro-world: a micro-milling machined wideband vibration piezoelectric energy harvester
NASA Astrophysics Data System (ADS)
Iannacci, J.; Sordo, G.
2015-05-01
In this work, we discuss a novel mechanical resonator design for the realization of vibration Energy Harvester (EH) capable to deliver power levels in the mW range. The device overcomes the typical constraint of frequency narrowband operability of standard cantilevered EHs, by exploiting a circular-shaped resonator with an increased number of mechanical Degrees Of Freedom (DOFs), leading to several resonant modes in the range of vibrations of interest (i.e. multi-modal wideband EH). The device, named Four-Leaf Clover (FLC), is simulated in Ansys Worbench™, showing a significant number of resonant modes up to vibrations of around 2 kHz (modal eigenfrequencies analysis), and exhibiting levels of converted power up to a few mW at resonance (harmonic coupled-field analysis). The sole FLC mechanical structure is realized by micro-milling an Aluminum foil, while a cantilevered test structure also including PolyVinyliDene Fluoride (PVDF) film sheet is assembled in order to collect first experimental feedback on generated power levels. The first lab based tests show peak-to-peak voltages of several Volts when the cantilever is stimulated with a mechanical pulse. Further developments of this work will comprise the assembly of an FLC demonstrator with PVDF pads, and its experimental testing in order to validate the simulated results.
Self-powered autonomous wireless sensor node using vibration energy harvesting
NASA Astrophysics Data System (ADS)
Torah, R.; Glynne-Jones, P.; Tudor, M.; O'Donnell, T.; Roy, S.; Beeby, S.
2008-12-01
This paper reports the development and implementation of an energy aware autonomous wireless condition monitoring sensor system (ACMS) powered by ambient vibrations. An electromagnetic (EM) generator has been designed to harvest sufficient energy to power a radio-frequency (RF) linked accelerometer-based sensor system. The ACMS is energy aware and will adjust the measurement/transmit duty cycle according to the available energy; this is typically every 3 s at 0.6 m s-2rms acceleration and can be as low as 0.2 m s-2rms with a duty cycle around 12 min. The EM generator has a volume of only 150 mm3 producing an average power of 58 µW at 0.6 m s-2rms acceleration at a frequency of 52 Hz. In addition, a voltage multiplier circuit is shown to increase the electrical damping compared to a purely resistive load; this allows for an average power of 120 µW to be generated at 1.7 m s-2rms acceleration. The ACMS has been successfully demonstrated on an industrial air compressor and an office air conditioning unit, continuously monitoring vibration levels and thereby simulating a typical condition monitoring application.
A novel two-degree-of-freedom MEMS electromagnetic vibration energy harvester
NASA Astrophysics Data System (ADS)
Tao, Kai; Wu, Jin; Tang, Lihua; Xia, Xin; Woh Lye, Sun; Miao, Jianmin; Hu, Xiao
2016-03-01
In this paper, a vibration-based MEMS electromagnetic energy harvester (EM-EH) device with two-degree-of-freedom (2DOF) configuration has been presented, modeled and characterized. The proposed 2DOF system comprises a primary subsystem for power generation, and an accessory subsystem for frequency tuning. A lumped parametric 2DOF model is built and examined in respect of energy harvesting capabilities. By controlling the mass ratio and frequency ratio, the first two resonances of primary mass can be tuned close to each other while maintaining comparable magnitudes. The 2DOF configuration is expected to be more adaptive and efficient than the conventional 1DOF structure, which could only operate near its sole resonance. The 2DOF EM-EH chip is fabricated on silicon-on-insulator (SOI) wafer through double-sided deep reactive-ion etching (DRIE). Induction coil is only patterned on the primary mass for energy conversion. With current prototype at an acceleration of 0.12 g, two resonances of 326 and 391 Hz with output voltages of 3.6 and 6.5 mV are obtained respectively, providing good validation for the modeling results. This paper offers new insights of implementing a multimodal MEMS EM-EH device.
NASA Astrophysics Data System (ADS)
Boughey, Francesca L.; Davies, Timothy; Datta, Anuja; Whiter, Richard A.; Sahonta, Suman-Lata; Kar-Narayan, Sohini
2016-07-01
A piezoelectric nanogenerator has been fabricated using a simple, fast and scalable template-assisted electrodeposition process, by which vertically aligned zinc oxide (ZnO) nanowires were directly grown within a nanoporous polycarbonate (PC) template. The nanowires, having average diameter 184 nm and length 12 μm, are polycrystalline and have a preferred orientation of the [100] axis parallel to the long axis. The output power density of a nanogenerator fabricated from the as-grown ZnO nanowires still embedded within the PC template was found to be 151 ± 25 mW m‑3 at an impedance-matched load, when subjected to a low-level periodic (5 Hz) impacting force akin to gentle finger tapping. An energy conversion efficiency of ∼4.2% was evaluated for the electrodeposited ZnO nanowires, and the ZnO–PC composite nanogenerator was found to maintain good energy harvesting performance through 24 h of continuous fatigue testing. This is particularly significant given that ZnO-based nanostructures typically suffer from mechanical and/or environmental degradation that otherwise limits their applicability in vibrational energy harvesting. Our template-assisted synthesis of ZnO nanowires embedded within a protective polymer matrix through a single growth process is thus attractive for the fabrication of low-cost, robust and stable nanogenerators.
Boughey, Francesca L; Davies, Timothy; Datta, Anuja; Whiter, Richard A; Sahonta, Suman-Lata; Kar-Narayan, Sohini
2016-07-15
A piezoelectric nanogenerator has been fabricated using a simple, fast and scalable template-assisted electrodeposition process, by which vertically aligned zinc oxide (ZnO) nanowires were directly grown within a nanoporous polycarbonate (PC) template. The nanowires, having average diameter 184 nm and length 12 μm, are polycrystalline and have a preferred orientation of the [100] axis parallel to the long axis. The output power density of a nanogenerator fabricated from the as-grown ZnO nanowires still embedded within the PC template was found to be 151 ± 25 mW m(-3) at an impedance-matched load, when subjected to a low-level periodic (5 Hz) impacting force akin to gentle finger tapping. An energy conversion efficiency of ∼4.2% was evaluated for the electrodeposited ZnO nanowires, and the ZnO-PC composite nanogenerator was found to maintain good energy harvesting performance through 24 h of continuous fatigue testing. This is particularly significant given that ZnO-based nanostructures typically suffer from mechanical and/or environmental degradation that otherwise limits their applicability in vibrational energy harvesting. Our template-assisted synthesis of ZnO nanowires embedded within a protective polymer matrix through a single growth process is thus attractive for the fabrication of low-cost, robust and stable nanogenerators. PMID:27256619
Modeling and Tuning for Vibration Energy Harvesting using a Piezoelectric Bimorph
NASA Astrophysics Data System (ADS)
Cao, Yongqing
With the development of wireless sensors and other devices, the need for continuous power supply with high reliability is growing ever more. The traditional battery power supply has the disadvantage of limited duration of continuous power supply capability so that replacement for new batteries has to be done regularly. This can be quite inconvenient and sometimes quite difficult especially when the sensors are located in places not easily accessible such as the inside of a machine or wild field. This situation stimulates the development of renewable power supply which can harvest energy from the environment. The use of piezoelectric materials to converting environment vibration to electrical energy is one of the alternatives of which a broad range of research has been done by many researchers, focusing on different issues. The improvement of efficiency is one of the most important issues in vibration based energy harvesting. For this purpose different methods are devised and more accurate modeling of coupled piezoelectric mechanical systems is investigated. In the current paper, the research is focused on improving voltage generation of a piezoelectric bimorph on a vibration beam, as well as the analytical modeling of the same system. Also an initial study is conducted on the characteristics of the vibration of Zinc oxide (ZnO) nanowire, which is a promising material for its coupled semiconducting and piezoelectric properties. The effect on the voltage generation by different placement of the piezoelectric bimorph on the vibrating beam is investigated. The relation between the voltage output and the curvature is derived which is used to explain the effect of placement on voltage generation. The effect of adding a lumped mass on the modal frequencies of the beam and on the curvature distribution is investigated. The increased voltage output from the piezoelectric bimorph by using appropriately selected mass is proved analytically and also verified by experiment. For
The influence of mass configurations on velocity amplified vibrational energy harvesters
NASA Astrophysics Data System (ADS)
O’Donoghue, D.; Frizzell, R.; Kelly, G.; Nolan, K.; Punch, J.
2016-05-01
Vibrational energy harvesters scavenge ambient vibrational energy, offering an alternative to batteries for the autonomous operation of low power electronics. Velocity amplified electromagnetic generators (VAEGs) utilize the velocity amplification effect to increase power output and operational bandwidth, compared to linear resonators. A detailed experimental analysis of the influence of mass ratio and number of degrees-of-freedom (dofs) on the dynamic behaviour and power output of a macro-scale VAEG is presented. Various mass configurations are tested under drop-test and sinusoidal forced excitation, and the system performances are compared. For the drop-test, increasing mass ratio and number of dofs increases velocity amplification. Under forced excitation, the impacts between the masses are more complex, inducing greater energy losses. This results in the 2-dof systems achieving the highest velocities and, hence, highest output voltages. With fixed transducer size, higher mass ratios achieve higher voltage output due to the superior velocity amplification. Changing the magnet size to a fixed percentage of the final mass showed the increase in velocity of the systems with higher mass ratios is not significant enough to overcome the reduction in transducer size. Consequently, the 3:1 mass ratio systems achieved the highest output voltage. These findings are significant for the design of future reduced-scale VAEGs.
Note: A cubic electromagnetic harvester that convert vibration energy from all directions
NASA Astrophysics Data System (ADS)
Han, Mengdi; Qiu, Guolin; Liu, Wen; Meng, Bo; Zhang, Xiao-Sheng; Zhang, Haixia
2014-07-01
We investigate the output performance of a cubic harvester which can scavenge low-frequency vibration energy from all directions. By adjusting the size and shape of the inside magnets, higher induced voltages and output power can be achieved. The optimal magnet is found to be cubic shape with the length of 6.35 mm (25.6% volume ratio), which can generate 4.27 mV root mean square voltage and 2.45 μW average power at the frequency of 28.86 Hz and acceleration of 1.17 g. The device is also demonstrated as a self-powered tilt sensor by measuring induced voltages at different tilt angles.
MEMS based Nonlinear Monostable Electromagnetic Vibrational Energy Harvester for Wider Bandwidth
NASA Astrophysics Data System (ADS)
Mallick, D.; Amann, A.; Roy, S.
2015-12-01
This paper reports a wideband vibrational energy harvesting scheme using a MEMS based nonlinear electromagnetic transducer. The nonlinearity is incorporated in the proposed device through the stretching strain in addition to the bending of the fixed-guided configured beams of the designed structure. The thin spring structure is fabricated on Silicon-On-Insulator substrate with device layer thickness of 50 m. The MEMS spring structure is packaged and characterized with wire wound copper coil (NE1) and micro fabricated double layer copper coil (NE2) for comparison. Measurement results show that ∼80 Hz half power bandwidth is obtained for the fabricated devices with maximum load powers of 2.8 W (NE1) and 0.4 W (NE2) respectively at 0.5g which improves the ‘power-bandwidth gain’ to one of the highest among reported works.
Vibration Energy Harvester with Bi-stable Curved Beam Spring Offset by Gravitational Acceleration
NASA Astrophysics Data System (ADS)
Yamamoto, Koki; Fujita, Takayuki; Badel, Adrien; Formosa, Fabien; Kanda, Kensuke; Maenaka, Kazusuke
2015-12-01
We developed MEMS bi-stable spring for vibration energy harvester (VEH), which consists of intrinsically curved shape spring and gravitational acceleration. By applying the gravitational acceleration, the curved beam is offset to the gravity direction. It will make more symmetrical bi-stable motion and the symmetry is improved from 3.3 to 65.4%. We proposed that the combination between curved beam and gravity acceleration for decreasing snap- through acceleration. From the analytical result, we investigate the combination can effective to use for decreasing of snap-through force. We also fabricated the prototype device by using MEMS fabrication process. The frequency response for horizontal direction and the acceleration response for vertical direction are measured. The acceleration response shows that the gravitational acceleration improves the symmetry of snap-through force.
Comparison of Five Topologies of Cantilever-based MEMS Piezoelectric Vibration Energy Harvesters
NASA Astrophysics Data System (ADS)
Jia, Y.; Seshia, A. A.
2014-11-01
In the realm of MEMS piezoelectric vibration energy harvesters, cantilever-based designs are by far the most popular. Despite being deceptively simple, the active piezoelectric area near the clamped end is able to accumulate maximum strain-generated-electrical-charge, while the free end is able to accommodate a proof mass without compromising the effective area of the piezoelectric generator since it experiences minimal strain anyway. While other contending designs do exist, this paper investigates five micro-cantilever (MC) topologies, namely: a plain MC, a tapered MC, a lined MC, a holed MC and a coupled MC, in order to assess their relative performance as an energy harvester. Although a classical straight and plain MC offers the largest active piezoelectric area, alternative MC designs can potentially offer higher average mechanical strain distribution for a given mechanical loading. Numerical simulation and experimental comparison of these 5 MCs (0.5 μ AlN on 10 μm Si) with the same practical dimensions of 500 μm and 2000 μm, suggest a cantilever with a coupled subsidiary cantilever yield the best power performance, closely followed by the classical plain topology.
NASA Astrophysics Data System (ADS)
Payne, Owen R.; Vandewater, Luke A.; Ung, Chandarin; Moss, Scott D.
2015-04-01
In this paper, a self-powered wireless sensor node utilising ambient vibrations for power is described. The device consists of a vibration energy harvester, power management system, microcontroller, accelerometer, RF transmitter/receiver and external LED indicators. The vibration energy harvester is adapted from a previously reported hybrid rotary-translational device and uses a pair of copper coil transducers to convert the mechanical energy of a magnetic sphere into usable electricity. The device requires less than 0.8 mW of power to operate continuously in its present setup (with LED indicators off) while measuring acceleration at a sample rate of 200 Hz, with the power source providing 39.7 mW of power from 500 mg excitations at 5.5 Hz. When usable input energy is removed, the device will continue to transmit data for more than 5 minutes.
NASA Astrophysics Data System (ADS)
Shen, Wenai; Zhu, Songye; Zhu, Hongping
2016-06-01
Flexible bridge stay cables are often vulnerable to problematic vibrations under dynamic excitations. However, from an energy perspective, such excessive vibrations denote a green and sustainable energy source to some electronic devices (such as semi-active dampers or wireless sensors) installed on the same cables. This paper presents an experimental study on a novel dual-function system called electromagnetic damper cum energy harvester (EMDEH). The proposed EMDEH, consisting of an electromagnetic device connected to an energy-harvesting circuit (EHC), simultaneously harvests cable vibration energy and provides sufficient damping to the cables. A fixed-duty-cycle buck–boost converter is employed as the EHC, which emulates a resistive load and provides approximately optimal damping and optimal energy harvesting efficiency when operating in discontinuous conduction mode. A 5.85 m long scaled stay cable installed with a prototype EMDEH is tested in the laboratory under a series of harmonic and random excitations. The EMDEH can achieve a control performance comparable to passive viscous dampers. An average electrical power of 31.6 and 21.51 mW is harvested under harmonic and random vibrations, respectively, corresponding to the efficiency of 16.9% and 13.8%, respectively. Moreover, this experimental study proves that optimal damping and energy harvesting can be achieved simultaneously, which answers a pending question regarding such a dual-objective optimization problem. Self-powered semi-active control systems or wireless sensor networks may be developed for bridge stay cables in the future based on the proposed concept in this study.
A composite beam with dual bistability for enhanced vibration energy harvesting
NASA Astrophysics Data System (ADS)
Harris, Peter; Litak, Grzegorz; Bowen, Chris R.; Arafa, Mustafa
2016-05-01
In this paper a bistable composite cantilever beam comprising asymmetric laminates is studied for vibration energy harvesting applications. An additional magnetic bistability is introduced to the harvesting system to lower the level of excitation that triggers the snap-through for the cantilever from one stable state to another, while retaining the favorable broadband performance. In order to achieve the, the cantilever beam is fitted with a permanent magnet at its tip that is oriented so that there is magnetic repulsion with a stationary magnet. The system performance can be adjusted by varying the separation between the magnets. Experimental results reveal that the use of magnetic bistability enhances broadband performance and improves the output power within a certain level of drive level and magnet separation. The load-deflection characteristic of the bistable beam is experimentally determined, and is subsequently used to model the system by a reduced single-degree-of-freedom (SDOF) system having the form of the Duffing equation for a double-well potential system. The dynamics of the beam are investigated using bifurcation diagrams and shows that the qualitative behavior given by the experimentally measured response is predicted well by the simple SDOF model.
Silicon MEMS bistable electromagnetic vibration energy harvester using double-layer micro-coils
NASA Astrophysics Data System (ADS)
Podder, P.; Constantinou, P.; Mallick, D.; Roy, S.
2015-12-01
This work reports the development of a MEMS bistable electromagnetic vibrational energy harvester (EMVEH) consisting of a silicon-on-insulator (SOI) spiral spring, double layer micro-coils and miniaturized NdFeB magnets. Furthermore, with respect to the spiral silicon spring based VEH, four different square micro-coil topologies with different copper track width and number of turns have been investigated to determine the optimal coil dimensions. The micro-generator with the optimal micro-coil generated 0.68 micro-watt load power over an optimum resistive load at 0.1g acceleration, leading to normalized power density of 3.5 kg.s/m3. At higher accelerations the load power increased, and the vibrating magnet collides with the planar micro-coil producing wider bandwidth. Simulation results show that a substantially wider bandwidth could be achieved in the same device by introducing bistable nonlinearity through a repulsive configuration between the moving and fixed permanent magnets.
NASA Astrophysics Data System (ADS)
Karami, Armine; Basset, Philippe; Galayko, Dimitri
2015-12-01
This paper reports for the first time experiments using an electrostatic vibration energy harvester comprised of a low voltage electret-charged MEMS transducer joined to an unstable autosynchronous conditioning circuit with rectangular charge-voltage characteristic, also known as the Bennet's doubler conditioning circuit. The experimental results show that the electret voltage, even if of low value, can be used as the necessary pre-charge for these type of electrostatic vibration energy harvesters. Also, the use of such a conditioning circuit with a low-voltage electret capacitive MEMS tranducer instead of the previously-reported conditioning circuits with direct connection to load or through a rectifier, can be advantageous in terms of maximal harvested power for a low-voltage electret, showing up to 95% higher converted power.
Hu, Youfan; Yang, Jin; Jing, Qingshen; Niu, Simiao; Wu, Wenzhuo; Wang, Zhong Lin
2013-11-26
An unstable mechanical structure that can self-balance when perturbed is a superior choice for vibration energy harvesting and vibration detection. In this work, a suspended 3D spiral structure is integrated with a triboelectric nanogenerator (TENG) for energy harvesting and sensor applications. The newly designed vertical contact-separation mode TENG has a wide working bandwidth of 30 Hz in low-frequency range with a maximum output power density of 2.76 W/m(2) on a load of 6 MΩ. The position of an in-plane vibration source was identified by placing TENGs at multiple positions as multichannel, self-powered active sensors, and the location of the vibration source was determined with an error less than 6%. The magnitude of the vibration is also measured by the output voltage and current signal of the TENG. By integrating the TENG inside a buoy ball, wave energy harvesting at water surface has been demonstrated and used for lighting illumination light, which shows great potential applications in marine science and environmental/infrastructure monitoring. PMID:24168315
NASA Astrophysics Data System (ADS)
Chandrasekharan, Nataraj
Innovation in integrated circuit technology along with improved manufacturing processes has resulted in considerable reduction in power consumption of electromechanical devices. Majority of these devices are currently powered by batteries. However, the issues posed by batteries, including the need for frequent battery recharge/replacement has resulted in a compelling need for alternate energy to achieve self-sufficient device operation or to supplement battery power. Vibration based energy harvesting methods through piezoelectric transduction provides with a promising potential towards replacing or supplementing battery power source. However, current piezoelectric energy harvesters generate low specific power (power-to-weight ratio) when compared to batteries that the harvesters seek to replace or supplement. In this study, the potential of integrating lightweight cellular honeycomb structures with existing piezoelectric device configurations (bimorph) to achieve higher specific power is investigated. It is shown in this study that at low excitation frequency ranges, replacing the solid continuous substrate of a conventional piezoelectric bimorph with honeycomb structures of the same material results in a significant increase in power-to-weight ratio of the piezoelectric harvester. In order to maximize the electrical response of vibration based power harvesters, the natural frequency of these harvesters is designed to match the input driving frequency. The commonly used technique of adding a tip mass is employed to lower the natural frequency (to match driving frequency) of both, solid and honeycomb substrate bimorphs. At higher excitation frequency, the natural frequency of the traditional solid substrate bimorph can only be altered (to match driving frequency) through a change in global geometric design parameters, typically achieved by increasing the thickness of the harvester. As a result, the size of the harvester is increased and can be disadvantageous
NASA Astrophysics Data System (ADS)
Hanumantha Rao, T. V.; Srinivasa Rao, M. S. S.; Apparao, B. V.; Satyanarayana, K.
2014-04-01
The basic purpose of a damper is to reduce the vibration and to have a better ride comfort, road handling and safety to the rider. Recent developments show that an active vibration damper can effectively work much better than a passive damper. The effectiveness and reliability can be further enhanced by using hybrid dampers, which is a combination of active and passive dampers. But the need to have energy optimization in any field need not be stressed. Consequently, novel suspension concepts are required, not only to improve the vehicle's dynamic performance, but also to see that the energy generated during vibration can be harvested by utilizing regeneration functions. Hence if a hybrid damper with energy harvesting capability be designed, it would serve both purposes. In the hybrid damper a combination of hydraulic damper to act as a passive damper and an electromagnetic (EM) damper to act as an active damper is considered. The hydraulic system has more reliability and is time tested and the EM system acts as a dynamic vibration system as well as energy harvester. In this study a hybrid EM damper is modeled, analyzed and validity is shown for frequency response functions and energy balance for its active use. It is also shown how the effectiveness of the suspension system can be enhanced by using a hybrid damper.
NASA Astrophysics Data System (ADS)
Harne, R. L.; Zhang, Chunlin; Li, Bing; Wang, K. W.
2016-07-01
Impulsive energies are abundant throughout the natural and built environments, for instance as stimulated by wind gusts, foot-steps, or vehicle-road interactions. In the interest of maximizing the sustainability of society's technological developments, one idea is to capture these high-amplitude and abrupt energies and convert them into usable electrical power such as for sensors which otherwise rely on less sustainable power supplies. In this spirit, the considerable sensitivity to impulse-type events previously uncovered for bistable oscillators has motivated recent experimental and numerical studies on the power generation performance of bistable vibration energy harvesters. To lead to an effective and efficient predictive tool and design guide, this research develops a new analytical approach to estimate the electroelastic response and power generation of a bistable energy harvester when excited by an impulse. Comparison with values determined by direct simulation of the governing equations shows that the analytically predicted net converted energies are very accurate for a wide range of impulse strengths. Extensive experimental investigations are undertaken to validate the analytical approach and it is seen that the predicted estimates of the impulsive energy conversion are in excellent agreement with the measurements, and the detailed structural dynamics are correctly reproduced. As a result, the analytical approach represents a significant leap forward in the understanding of how to effectively leverage bistable structures as energy harvesting devices and introduces new means to elucidate the transient and far-from-equilibrium dynamics of nonlinear systems more generally.
Broadband pendulum energy harvester
NASA Astrophysics Data System (ADS)
Liang, Changwei; Wu, You; Zuo, Lei
2016-09-01
A novel electromagnetic pendulum energy harvester with mechanical motion rectifier (MMR) is proposed and investigated in this paper. MMR is a mechanism which rectifies the bidirectional swing motion of the pendulum into unidirectional rotation of the generator by using two one-way clutches in the gear system. In this paper, two prototypes of pendulum energy harvester with MMR and without MMR are designed and fabricated. The dynamic model of the proposed MMR pendulum energy harvester is established by considering the engagement and disengagement of the one way clutches. The simulation results show that the proposed MMR pendulum energy harvester has a larger output power at high frequencies comparing with non-MMR pendulum energy harvester which benefits from the disengagement of one-way clutch during pendulum vibration. Moreover, the proposed MMR pendulum energy harvester is broadband compare with non-MMR pendulum energy harvester, especially when the equivalent inertia is large. An experiment is also conducted to compare the energy harvesting performance of these two prototypes. A flywheel is attached at the end of the generator to make the disengagement more significant. The experiment results also verify that MMR pendulum energy harvester is broadband and has a larger output power at high frequency over the non-MMR pendulum energy harvester.
Robust energy harvesting from walking vibrations by means of nonlinear cantilever beams
NASA Astrophysics Data System (ADS)
Kluger, Jocelyn M.; Sapsis, Themistoklis P.; Slocum, Alexander H.
2015-04-01
In the present work we examine how mechanical nonlinearity can be appropriately utilized to achieve strong robustness of performance in an energy harvesting setting. More specifically, for energy harvesting applications, a great challenge is the uncertain character of the excitation. The combination of this uncertainty with the narrow range of good performance for linear oscillators creates the need for more robust designs that adapt to a wider range of excitation signals. A typical application of this kind is energy harvesting from walking vibrations. Depending on the particular characteristics of the person that walks as well as on the pace of walking, the excitation signal obtains completely different forms. In the present work we study a nonlinear spring mechanism that is composed of a cantilever wrapping around a curved surface as it deflects. While for the free cantilever, the force acting on the free tip depends linearly on the tip displacement, the utilization of a contact surface with the appropriate distribution of curvature leads to essentially nonlinear dependence between the tip displacement and the acting force. The studied nonlinear mechanism has favorable mechanical properties such as low frictional losses, minimal moving parts, and a rugged design that can withstand excessive loads. Through numerical simulations we illustrate that by utilizing this essentially nonlinear element in a 2 degrees-of-freedom (DOF) system, we obtain strongly nonlinear energy transfers between the modes of the system. We illustrate that this nonlinear behavior is associated with strong robustness over three radically different excitation signals that correspond to different walking paces. To validate the strong robustness properties of the 2DOF nonlinear system, we perform a direct parameter optimization for 1DOF and 2DOF linear systems as well as for a class of 1DOF and 2DOF systems with nonlinear springs similar to that of the cubic spring that are physically realized
Zizys, Darius; Gaidys, Rimvydas; Dauksevicius, Rolanas; Ostasevicius, Vytautas; Daniulaitis, Vytautas
2015-01-01
The piezoelectric transduction mechanism is a common vibration-to-electric energy harvesting approach. Piezoelectric energy harvesters are typically mounted on a vibrating host structure, whereby alternating voltage output is generated by a dynamic strain field. A design target in this case is to match the natural frequency of the harvester to the ambient excitation frequency for the device to operate in resonance mode, thus significantly increasing vibration amplitudes and, as a result, energy output. Other fundamental vibration modes have strain nodes, where the dynamic strain field changes sign in the direction of the cantilever length. The paper reports on a dimensionless numerical transient analysis of a cantilever of a constant cross-section and an optimally-shaped cantilever with the objective to accurately predict the position of a strain node. Total effective strain produced by both cantilevers segmented at the strain node is calculated via transient analysis and compared to the strain output produced by the cantilevers segmented at strain nodes obtained from modal analysis, demonstrating a 7% increase in energy output. Theoretical results were experimentally verified by using open-circuit voltage values measured for the cantilevers segmented at optimal and suboptimal segmentation lines. PMID:26703623
Vibration-based energy harvesting with piezoelectrets having high d31 activity
NASA Astrophysics Data System (ADS)
Zhang, X.; Pondrom, P.; Wu, L.; Sessler, G. M.
2016-05-01
Sandwiched fluoroethylene propylene films with charged, parallel-tunnel voids between the layers, which exhibit high d31 piezoelectric activity, were designed. Stripes of such piezoelectrets were exposed to mechanical stress in length direction by a seismic mass excited to vibrations. Due to the piezoelectricity of the films, a current in a terminating resistor is generated. The harvested power across the resistor amounts to about 0.2 mW for a seismic mass of 2 g and an acceleration of 1 g. In comparison with other piezoelectret or with poly(vinylidene fluoride) harvesters, the generated power referred to equal acceleration and force, is significantly larger.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Zheng, R.; Kaizuka, T.; Su, D.; Nakano, K.; Cartmell, M. P.
2015-11-01
A model for energy harvesting from a rotating automotive tyre is suggested in which the principle of stochastic resonance is advantageously exploited. A bistable response characteristic is obtained by recourse a small harvester comprising a magnetically repellant configuration in which an instrumented cantilever beam can flip between two physical response states when suitably excited by the rotation of a car wheel into which it is fitted. The rotation of the wheel creates a periodic modulation which enables stochastic resonance to take place and as a consequence of this for energy to be harvested from road noise transmitted through the tyre. An optimised mathematical model of the system is presented based on a series of experimental tests and it is shown that a ten-fold increase in harvested energy over a comparable monostable case is feasible. The suggested application for this harvester is to provide electrical power for a tyre pressure monitoring system.
NASA Astrophysics Data System (ADS)
Li, Hao; Dai, Fuhong; Du, Shanyi
2015-04-01
Recently bistable composite laminates have been investigated for broadband energy harvesting, by taking advantage of their nonlinear oscillations around the first vibration mode. However, it has been reported that the excitation acceleration needed for the desired large amplitude limit cycle oscillation is too high, if the first vibration mode is elevated to relative higher frequencies (60 Hz e.g.). This study investigates the feasibility of exploiting the nonlinear oscillations around the second vibration mode of a rectangular piezoelectric bistable laminate (RPBL), for broadband vibration energy harvesting at relative higher frequencies, but with relative low excitation acceleration. The proposed RPBL has three oscillation patterns around the second vibration mode, including single-well oscillation, chaotic intermittency oscillation and limit cycle oscillation. The broadband characteristics and the considerable energy conversion efficiency of the RPBL are demonstrated in experiments. The static nonlinearity and the dynamic responses of the RPBL are investigated by finite element method. Finite element analysis (FEA) reveals that the enhanced dynamic responses of the RPBL are due to its softening bending stiffness and the local snap through phenomenon. The FEA results coincide reasonably well with experimental results.
A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting.
Li, Xiaotian; Guo, Mingsen; Dong, Shuxiang
2011-04-01
A piezoelectric transducer for harvesting energy from ambient mechanical vibrations/strains under pressure condition was developed. The proposed transducer was made of two ring-type piezoelectric stacks, one pair of bow-shaped elastic plates, and one shaft that pre-compresses them. This transducer works in flex-compressive (F-C) mode, which is different from a conventional flex-tensional (F-T) one, to transfer a transversely applied force F into an amplified longitudinal force N pressing against the two piezo-stacks via the two bowshaped elastic plates, generating a large electric voltage output via piezoelectric effect. Our experimental results show that without an electric load, an F-C mode piezo-transducer could generate a maximum electric voltage output of up to 110 Vpp, and with an electric load of 40 κΩ, it a maximum power output of 14.6 mW under an acceleration excitation of 1 g peak-peak at the resonance frequency of 87 Hz. PMID:21507747
Reliability of potassium ion electret in silicon oxide for vibrational energy harvester applications
NASA Astrophysics Data System (ADS)
Misawa, Kensuke; Sugiyama, Tatsuhiko; Hashiguchi, Gen; Toshiyoshi, Hiroshi
2015-06-01
In this paper, we report on the long-term reliability of potassium ion electret included in a thermally grown silicon oxide. The electret in this work is used in a microelectromechanical systems (MEMS) energy harvester to generate electrical current from mechanical vibration. A spring-mass system similar to a comb-drive electrostatic actuator is developed by silicon micromachining, and the surface is oxidized by wet-oxidation through a potassium hydroxide bubbler, thereby including potassium atoms at a high concentration. The potassium is then electrically polarized by an applied voltage of 150 V at 650 °C for 5 min. Degradation of the stored polarization potential is monitored in a vacuum of 1 × 10-3 Pa at elevated temperatures of 350, 400, and 450 °C. The time needed to cause a -1 dB decay of the potential is used as the lifetime of the electret, and the Arrhenius extrapolation plot suggested a life time of more than 400 years at 25 °C.
Optimal design of two-layer vibration energy harvesters using a modal approach
NASA Astrophysics Data System (ADS)
Xiong, Xingyu; Olutunde Oyadiji, S.
2014-03-01
Piezoelectric vibration energy harvesters (VEHs) with two-layer structures are developed. The attached masses are used to tune the frequencies and as spacers between the two layers. By changing the dimensions of the layers and masses and relocating the positions of the masses, the VEHs can generate close resonance frequencies and considerable power output. The modal approach is introduced to determine the modal performance using the mass ratio and the modal electromechanical coupling coefficient, where the mass ratio represents the influence of the modal mechanical behaviour on the power density directly, and the modal parameters required are derived using the finite element method. The findings indicate that a mode with too large mass ratio will cause the remaining modes to have small mass ratios and poor performance. Then, a screening process for the identification of the configurations of VEHs with optimal or near-optimal performance is developed using the modal approach. This procedure facilitates the selection of VEH configurations with close resonances and favourable values of mass ratio initially before carrying out full analysis. Furthermore, the approach can be used to develop VEHs of different sizes ranging from a few millimeters to hundreds of millimeters with the power ranging from microwatts to milliwatts.
Vibration energy harvesting by a Timoshenko beam model and piezoelectric transducer
NASA Astrophysics Data System (ADS)
Stoykov, S.; Litak, G.; Manoach, E.
2015-11-01
An electro-mechanical system of vibrational energy harvesting is studied. The beam is excited by external and kinematic periodic forces and damped by an electrical resistor through the coupled piezoelectric transducer. Nonlinearities are introduced by stoppers limiting the transverse displacements of the beam. The interaction between the beam and the stoppers is modeled as Winkler elastic foundation. The mechanical properties of the piezoelectric layer are taken into account and the beam is modeled as a composite structure. For the examined composite beam, the geometrically nonlinear version of the Timoshenko's beam theory is assumed. The equations of motion are derived by the principle of virtual work considering large deflections. An isogeometric approach is applied for space discretization and B-Splines are used as shape functions. Finally, the power output and the efficiency of the system due to harmonic excitations are discussed. The influence of the position of the stoppers and their length on the dynamics of the beam and consequently on the power output are analyzed and presented.
NASA Astrophysics Data System (ADS)
Javed, U.; Dai, H. L.; Abdelkefi, A.
2015-11-01
Modeling and comparative analysis of galloping-based hybrid piezoelectric-inductive energy harvesting systems are investigated. Both piezoelectric and electromagnetic transducers are attached to the transverse degree of freedom of the prismatic structure in order to harvest energy from two possible sources. A fully-coupled electroaeroelastic model is developed which takes into account the coupling between the generated voltage from the piezoelectric transducer, the induced current from the electromagnetic transducer, and the transverse displacement of the bluff body. A nonlinear quasi-steady approximation is employed to model the galloping force. To determine the influences of the external load resistances that are connected to the piezoelectric and electromagnetic circuits on the onset speed of galloping, a deep linear analysis is performed. It is found that the external load resistances in these two circuits have significant effects on the onset speed of galloping of the harvester with the presence of optimum values. To investigate the effects of these transduction mechanisms on the performance of the galloping energy harvester, a nonlinear analysis is performed. Using the normal form of the Hopf bifurcation, it is demonstrated that the hybrid energy harvester has a supercritical instability for different values of the external load resistances. For well-defined wind speed and external load resistance in the electromagnetic circuit, the results showed that there is a range of external load resistances in the piezoelectric circuit at which the output power generated by the electromagnetic induction is very small. On the other hand, there are two optimal load resistances at which the output power by the piezoelectric transducer is maximum. Based on a comparative study, it is demonstrated the hybrid piezoelectric-inductive energy harvester is very beneficial in terms of having two sources of energy. However, compared to the classical piezoelectric and
NASA Astrophysics Data System (ADS)
Somà, A.; De Pasquale, G.
2013-05-01
The reduction of power consumption of sensors allows the local power supply or wireless sensor networks. This paper introduces the results of design and experiments on devices for harvesting energy from vibrations of machines. The main contribution of this research is the empirical evaluation of different technical solutions able to improve harvester performances and sensing system duty cycle. Satisfactory results have been achieved in lowering of resonance by levitating suspensions and in increasing of Q-factor by studying the air flows. Output power values of 10mW (5.7Hz, 1.4g) and 115mW (3.2Hz, 0.2g) were obtained for piezoelectric and inductive harvesters respectively.
NASA Astrophysics Data System (ADS)
Remick, Kevin; Dane Quinn, D.; Michael McFarland, D.; Bergman, Lawrence; Vakakis, Alexander
2016-05-01
The authors investigate a vibration-based energy harvesting system utilizing essential (nonlinearizable) nonlinearities and electromagnetic coupling elements. The system consists of a grounded, weakly damped linear oscillator (primary system) subjected to a single impulsive load. This primary system is coupled to a lightweight, damped oscillating attachment (denoted as nonlinear energy sink, NES) via a neodymium magnet and an inductance coil, and a piano wire, which generates an essential geometric cubic stiffness nonlinearity. Under impulsive input, the transient damped dynamics of this system exhibit transient resonance captures (TRCs) causing intentional large-amplitude and high-frequency instabilities in the response of the NES. These TRCs result in strong energy transfer from the directly excited primary system to the light-weight attachment. The energy is harvested by the electromagnetic elements in the coupling and, in the present case, dissipated in a resistive element in the electrical circuit. The primary goal of this work is to numerically, analytically, and experimentally demonstrate the efficacy of employing this type of intentional high-frequency dynamic instability to achieve enhanced vibration energy harvesting under impulsive excitation.
NASA Astrophysics Data System (ADS)
Geiyer, Daniel; Kauffman, Jeffrey L.
2016-04-01
Research in broadband nonlinear piezoelectric energy harvesting has gained traction in recent years as resonant, linear harvesters do not operate optimally in dynamic environments. By placing a linear harvester in a symmetric magnetic field, a nonlinear restoring force allows the system to realize motion across two potential wells. Different levels of excitation enable the system to oscillate solely in one potential well, periodically across both potential wells, or aperiodically across both potential wells. Periodic interwell motion is considered desirable for nonlinear energy harvesting systems, however, coexistent attractors inhibit uniqueness of such a solution. The authors have previously shown that chaotic, aperiodic motion between potential wells can be optimized for improved energy harvesting. The technique applied a chaotic controller to stabilize a large amplitude periodic orbit within the chaotic attractor. This work considers the basins of attraction of the two concurrent attractors and applies an intermittent control law in which the system is perturbed from a chaotic, aperiodic interwell response into the desirable large amplitude, periodic, interwell response.
On enhancement of vibration-based energy harvesting by a random parametric excitation
NASA Astrophysics Data System (ADS)
Bobryk, Roman V.; Yurchenko, Daniil
2016-03-01
An electromechanical linear oscillator with a random ambient excitation and telegraphic noise parametric excitation is considered as an energy harvester model. It is shown that a parametric colored excitation can have a dramatic effect on the enhancement of the energy harvesting. A close relation with mean-square stability of the oscillator is established. Four sources of the ambient excitation are considered: the white noise, the Ornstein-Uhlenbeck noise, the harmonic noise and the periodic function. Analytical expressions for stationary electrical net mean power are presented for all the considered cases, confirming the proposed approach.
Extremely low-loss rectification methodology for low-power vibration energy harvesters
NASA Astrophysics Data System (ADS)
Tiwari, R.; Ryoo, K.; Schlichting, A.; Garcia, E.
2013-06-01
Because of its promise for the generation of wireless systems, energy harvesting technology using smart materials is the focus of significant reported effort. Various techniques and methodologies for increasing power extraction have been tested. One of the key issues with the existing techniques is the use of diodes in the harvesting circuits with a typical voltage drop of 0.7 V. Since most of the smart materials, and other transducers, do not produce large voltage outputs, this voltage drop becomes significant in most applications. Hence, there is a need for designing a rectification method that can convert AC to DC with minimal losses. This paper describes a new mechanical rectification scheme, designed using reed switches, in a full-bridge configuration that shows the capability of working with signals from millivolts to a few hundred volts with extremely low losses. The methodology has been tested for piezoelectric energy harvesters undergoing mechanical excitation.
NASA Astrophysics Data System (ADS)
Seo, Jongho; Kim, Jin-Su; Jeong, Un-Chang; Kim, Yong-Dae; Kim, Young-Cheol; Lee, Hanmin; Oh, Jae-Eung
2016-02-01
In this study, we derived an equation of motion for an electromechanical system in view of the components and working mechanism of an electromagnetic-type energy harvester (ETEH). An electromechanical transduction factor (ETF) was calculated using a finite-element analysis (FEA) based on Maxwell's theory. The experimental ETF of the ETEH measured by means of sine wave excitation was compared with and FEA data. Design parameters for the stationary part of the energy harvester were optimized in terms of the power performance by using a response surface method (RSM). With optimized design parameters, the ETEH showed an improvement in performance. We experimented with the optimized ETEH (OETEH) with respect to changes in the external excitation frequency and the load resistance by taking human body vibration in to account. The OETEH achieved a performance improvement of about 30% compared to the initial model.
NASA Astrophysics Data System (ADS)
Halim, M. A.; Cho, H. O.; Park, J. Y.
2014-11-01
We have presented a frequency up-converted hybrid type (Piezoelectric and Electromagnetic) vibration energy harvester that can be used in powering portable and wearable smart devices by handy motion. A transverse impact mechanism has been employed for frequency up-conversion. Use of two transduction mechanisms increases the output power as well as power density. The proposed device consists of a non-magnetic spherical ball (freely movable at handy motion frequency) to impact periodically on the parabolic top of a piezoelectric (PZT) cantilevered mass by sliding over it, allowing it to vibrate at its higher resonant frequency and generates voltage by virtue of piezoelectric effect. A magnet attached to the cantilever vibrates along with it at the same frequency and a relative motion between the magnet and a coil placed below it, induces emf voltage across the coil terminals as well. A macro-scale prototype of the harvester has been fabricated and tested by handy motion. With an optimum magnet-coil overlap, a maximum 0.98mW and 0.64mW peak powers have been obtained from the piezoelectric and the electromagnetic transducers of the proposed device while shaken, respectively. It offers 84.4μWcm-3 peak power density.
NASA Astrophysics Data System (ADS)
Lumentut, Mikail F.; Howard, Ian M.
2016-02-01
This paper focuses on the primary development of novel numerical and analytical techniques of the modal damped vibration energy harvesters with arbitrary proof mass offset. The key equations of electromechanical finite element discretisation using the extended Lagrangian principle are revealed and simplified to give matrix and scalar forms of the coupled system equations, indicating the most relevant numerical technique for the power harvester research. To evaluate the performance of the numerical study, the analytical closed-form boundary value equations have been developed using the extended Hamiltonian principle. The results from the electromechanical frequency response functions (EFRFs) derived from two theoretical studies show excellent agreement with experimental studies. The benefit of the numerical technique is in providing effective and quick predictions for analysing parametric designs and physical properties of piezoelectric materials. Although analytical technique provides a challenging process for analysing the complex smart structure, it shows complementary study for validating the numerical technique.
NASA Astrophysics Data System (ADS)
Lajimi, S. A. M.; Friswell, M. I.
2015-04-01
For a nonlinear beam-mass system used to harvest vibratory energy, the two-mode approximation of the response is computed and compared to the single-mode approximation of the response. To this end, the discretized equations of generalized coordinates are developed and studied using a computational method. By obtaining phase-portraits and time-histories of the displacement and voltage, it is shown that the strong nonlinearity of the system affects the system dynamics considerably. By comparing the results of single- and two-mode approximations, it is shown that the number of mode shapes affects the dynamics of the response. Varying the tip-mass results in different structural configurations namely linear, pre-buckled nonlinear, and post-buckled nonlinear configurations. The nonlinear dynamics of the system response are investigated for vibrations about static equilibrium points arising from the buckling of the beam. Furthermore, it is demonstrated that the harvested power is affected by the system configuration.
Vibration energy harvesting in a small channel fluid flow using piezoelectric transducer
NASA Astrophysics Data System (ADS)
Hassan, Md. Mehedi; Hossain, Md. Yeam; Mazumder, Rakib; Rahman, Roussel; Rahman, Md. Ashiqur
2016-07-01
This work is aimed at developing a way to harvest energy from a fluid stream with the application of piezoelectric transducers in a small channel. In this COMSOL Multiphysics based simulation study, it is attempted to harvest energy from the abundant renewable source of energy available in the form of kinetic energy of naturally occurring flow of fluids. The strategy involves harnessing energy from a fluid-actuator through generation of couples, eddies and vortices, resulting from the stagnation and separation of flow around a semi-circular bluff-body attached to a cantilever beam containing a piezoceramic layer. Fluctuation of fluidic pressure impulse on the beam due to vortex shedding and varying lift forces causes the flexible cantilever beam to oscillate in the direction normal to the fluid flow in a periodic manner. The periodic application and release of a mechanical strain upon the beam effected a generation of electric potential within the piezoelectric layer, thus enabling extraction of electrical energy from the kinetic energy of the fluid. The piezoelectric material properties and transducer design are kept unchanged throughout the study, whereas the configuration is tested with different fluids and varying flow characteristics. The size and geometry of the obstructing entity are systematically varied to closely inspect the output from different iterations and for finding the optimum design parameters. The intermittent changes in the generated forces and subsequent variation in the strain on the beam are also monitored to find definitive relationship with the electrical energy output.
Design of electromagnetic energy harvesters for large-scale structural vibration applications
NASA Astrophysics Data System (ADS)
Cassidy, Ian L.; Scruggs, Jeffrey T.; Behrens, Sam
2011-03-01
This paper reports on the design and experimental validation of transducers for energy harvesting from largescale civil structures, for which the power levels can be above 100W, and disturbance frequencies below 1Hz. The transducer consists of a back-driven ballscrew, coupled to a permanent-magnet synchronous machine, and power harvesting is regulated via control of a four-quadrant power electronic drive. Design tradeoffs between the various subsystems (including the controller, electronics, machine, mechanical conversion, and structural system) are illustrated, and an approach to device optimization is presented. Additionally, it is shown that nonlinear dissipative behavior of the electromechanical system must be properly characterized in order to assess the viability of the technology, and also to correctly design the matched impedance to maximize harvested power. An analytical expression for the average power generated across a resistive load is presented, which takes the nonlinear dissipative behavior of the device into account. From this expression the optimal resistance is determined to maximize power for an example in which the transducer is coupled to base excited tuned mass damper (TMD). Finally, the results from the analytical model are compared to an experimental system that uses hybrid testing to simulated the dynamics of the TMD.
Vibration shape effects on the power output in piezoelectric vibro-impact energy harvesters
NASA Astrophysics Data System (ADS)
Twiefel, Jens
2013-04-01
Vibro-Impcact harvesting devices are one concept to increase the bandwidth of resonant operated piezoelectric vibration generators. The fundamental setup is a piezoelectric bending element, where the deflection is limited by two stoppers. After starting the system in resonance operation the bandwidth increases towards higher frequencies as soon the deflection reach the stopper. If the stoppers are rigid, the frequency response gives constant amplitude for increasing frequencies, as long the system is treated as ideal one-DOF system with symmetric stoppers. In consequence, the bandwidth is theoretically unlimited large. However, such a system also has two major drawbacks, firstly the complicated startup mechanism and secondly the tendency to drop from the high constant branch in the frequency response on the much smaller linear branch if the system is disturbed. Nevertheless, the system has its application wherever the startup problem can be solved. Most modeling approaches utilize modal one-DOF models to describe the systems behavior and do not tread the higher harmonics of the beam. This work investigates the effects of the stoppers on the vibration shape of the piezoelectric beam, wherefore a finite element model is used. The used elements are one-dimensional two node elements based on the Timoshenko-beam theory. The finite element code is implemented in Matlab. The model is calculated utilizing time step integration for simulation, to reduce the computation time an auto-resonant calculation method is implemented. A control loop including positive feedback and saturation is used to create a self-excited system. Therefore, the system is always operated in resonance (on the backbone curve) and the frequency is a direct result of the computation. In this case tip velocity is used as feedback. This technique allows effective parametric studies. Investigated parameters include gap, excitation amplitude, tip mass as well as the stiffness of the stopper. The stress and
NASA Astrophysics Data System (ADS)
Halim, Miah A.; Park, Jae Y.
2014-03-01
We present a non-resonant, frequency up-converted electromagnetic energy harvester that generates significant power from human-body-induced vibration, e.g., hand-shaking. Upon excitation, a freely movable non-magnetic ball within a cylinder periodically hits two magnets suspended on two helical compression springs located at either ends of the cylinder, allowing those to vibrate with higher frequencies. The device parameters have been designed based on the characteristics of human hand-shaking vibration. A prototype has been developed and tested both by vibration exciter (for non-resonance test) and by manual hand-shaking. The fabricated device generated 110 μW average power with 15.4 μW cm-3 average power density, while the energy harvester was mounted on a smart phone and was hand-shaken, indicating its ability in powering portable hand-held smart devices from low frequency (<5 Hz) vibrations.
Tunable nonlinear piezoelectric vibration harvester
NASA Astrophysics Data System (ADS)
Neiss, S.; Goldschmidtboeing, F.; Kroener, M.; Woias, P.
2014-11-01
Nonlinear piezoelectric energy harvesting generators can provide a large bandwidth combined with a good resonant power output. However, the frequency response is characterized by a strong hysteresis making a technical use difficult if the hysteresis cannot be compensated. We propose a tuning mechanism that allows both, a compensation of the hysteresis as well as maintaining the optimal work point. The compensation algorithm can reduce the hysteresis to a minimum of only 1.5 Hz and maintain a high energy oscillation in a large frequency window between 53.3 Hz and 74.5 Hz.
Vibration harvesting in traffic tunnels to power wireless sensor nodes
NASA Astrophysics Data System (ADS)
Wischke, M.; Masur, M.; Kröner, M.; Woias, P.
2011-08-01
Monitoring the traffic and the structural health of traffic tunnels requires numerous sensors. Powering these remote and partially embedded sensors from ambient energies will reduce maintenance costs, and improve the sensor network performance. This work reports on vibration levels detected in railway and road tunnels as a potential energy source for embedded sensors. The measurement results showed that the vibrations at any location in the road tunnel and at the wall in the railway tunnel are too small for useful vibration harvesting. In contrast, the railway sleeper features usable vibrations and sufficient mounting space. For this application site, a robust piezoelectric vibration harvester was designed and equipped with a power interface circuit. Within the field test, it is demonstrated that sufficient energy is harvested to supply a microcontroller with a radio frequency (RF) interface.
NASA Astrophysics Data System (ADS)
Elvin, Niell; Azadeh Ranjbar, Vahid; Andreopoulos, Yiannis
2015-11-01
The present work has experimentally characterized energy harvesters consisting of a circular cylinder mounted at the tip of a flexible cantilever beam. VIV phenomena such as lock-in range, maximum amplitude of transverse oscillation and hysteresis effects have been studied by testing different physical parameters such as structural damping, mass ratio, and aspect ratio. Griffin plot generated by the experimental data of SDOF high aspect ratio circular cylinders have been used to validate VIV. As the harvester is a continuous system of low aspect ratio circular cylinders, three cases have been investigated: low aspect ratio effect of cylinders, effect of multiple modes or coupled transverse-torsional oscillation and non-linear effect due to large deformation of flexible cantilever beams. Griffin plot shows large variance in the case of aspect ratios less than 3. Coupled transverse-torsional oscillation affects VIV negatively. Results show that added structural damping due to piezoelectric patches attached to the cantilever beam decreases electrical power output as a non-linear function of mass ratio. Work supported by National Science Foundation under Grant No. CBET #1033117.
Experimental verification of a bridge-shaped, nonlinear vibration energy harvester
Gafforelli, Giacomo Corigliano, Alberto; Xu, Ruize; Kim, Sang-Gook
2014-11-17
This paper reports a comprehensive modeling and experimental characterization of a bridge shaped nonlinear energy harvester. A doubly clamped beam at large deflection requires stretching strain in addition to the bending strain to be geometrically compatible, which stiffens the beam as the beam deflects and transforms the dynamics to a nonlinear regime. The Duffing mode non-linear resonance widens the frequency bandwidth significantly at higher frequencies than the linear resonant frequency. The modeling includes a nonlinear measure of strain coupled with piezoelectric constitutive equations which end up in nonlinear coupling terms in the equations of motion. The main result supports that the power generation is bounded by the mechanical damping for both linear and nonlinear harvesters. Modeling also shows the power generation is over a wider bandwidth in the nonlinear case. A prototype is manufactured and tested to measure the power generation at different load resistances and acceleration amplitudes. The prototype shows a nonlinear behavior with well-matched experimental data to the modeling.
NASA Astrophysics Data System (ADS)
Sato, T.; Masuda, A.; Sanada, T.
2015-12-01
This paper presents an experimental verification of a self-excitation control of a resonance- type vibration energy harvester with a Duffing-type nonlinearity which is designed to perform effectively in a wide frequency range. For the conventional linear vibration energy harvester, the performance of the power generation at the resonance frequency and the bandwidth of the resonance peak are trade-off. The resonance frequency band can be expanded by introducing a Duffing-type nonlinear oscillator in order to enable the harvester to generate larger electric power in a wider frequency range. However, since such nonlinear oscillator can have multiple stable steady-state solutions in the resonance band, it is difficult for the nonlinear harvester to maintain the high performance of the power generation constantly. The principle of self-excitation and entrainment has been utilized to provide the global stability to the highest-energy solution by destabilizing other unexpected lower-energy solutions by introducing a switching circuit of the load resistance between positive and the negative values depending on the response amplitude of the oscillator. It has been experimentally validated that this control law imparts the self-excitation capability to the oscillator to show an entrainment into the highest-energy solution.
NASA Astrophysics Data System (ADS)
Iannacci, J.; Sordo, G.; Serra, E.; Kucera, M.; Schmid, U.
2015-05-01
In this work, we discuss the verification and preliminary experimental characterization of a MEMS-based vibration Energy Harvester (EH) design. The device, named Four-Leaf Clover (FLC), is based on a circular-shaped mechanical resonator with four petal-like mass-spring cascaded systems. This solution introduces several mechanical Degrees of Freedom (DOFs), and therefore enables multiple resonant modes and deformation shapes in the vibrations frequency range of interest. The target is to realize a wideband multi-modal EH-MEMS device, that overcomes the typical narrowband working characteristics of standard cantilevered EHs, by ensuring flexible and adaptable power source to ultra-low power electronics for integrated remote sensing nodes (e.g. Wireless Sensor Networks - WSNs) in the Internet of Things (IoT) scenario, aiming to self-powered and energy autonomous smart systems. Finite Element Method simulations of the FLC EH-MEMS show the presence of several resonant modes for vibrations up to 4-5 kHz, and level of converted power up to a few μW at resonance and in closed-loop conditions (i.e. with resistive load). On the other hand, the first experimental tests of FLC fabricated samples, conducted with a Laser Doppler Vibrometer (LDV), proved the presence of several resonant modes, and allowed to validate the accuracy of the FEM modeling method. Such a good accordance holds validity for what concerns the coupled field behavior of the FLC EH-MEMS, as well. Both measurements and simulations performed at 190 Hz (i.e. out of resonance) showed the generation of power in the range of nW (Root Mean Square - RMS values). Further steps of this work will include the experimental characterization in a full range of vibrations, aiming to prove the whole functionality of the FLC EH-MEMS proposed design concept.
NASA Astrophysics Data System (ADS)
Lu, Y.; Cottone, F.; Boisseau, S.; Galayko, D.; Marty, F.; Basset, P.
2015-12-01
This paper reports for the first time a MEMS electrostatic vibration energy harvester (e-VEH) with corona-charged vertical electrets on its electrodes. The bandwidth of the 1-cm2 device is extended in low and high frequencies by nonlinear elastic stoppers. With a bias voltage of 46 V (electret@21 V + DC external source@25 V) between the electrodes, the RMS power of the device reaches 0.89 μW at 33 Hz and 6.6 μW at 428 Hz. The -3dB frequency band including the hysteresis is 223∼432 Hz, the one excluding the hysteresis 88∼166 Hz. We also demonstrate the charging of a 47 μF capacitor used for powering a wireless and autonomous temperature sensor node with a data transmission beyond 10 m at 868 MHz.
Noise powered nonlinear energy harvesting
NASA Astrophysics Data System (ADS)
Gammaitoni, Luca; Neri, Igor; Vocca, Helios
2011-04-01
The powering of small-scale electronic mobile devices has been in recent years the subject of a great number of research efforts aimed primarily at finding an alternative solution to standard batteries. The harvesting of kinetic energy present in the form of random vibrations (from non-equilibrium thermal noise up to machine vibrations) is an interesting option due to the almost universal presence of some kind of motion. Present working solutions for vibration energy harvesting are based on oscillating mechanical elements that convert kinetic energy via capacitive, inductive or piezoelectric methods. These oscillators are usually designed to be resonantly tuned to the ambient dominant frequency. However, in most cases the ambient random vibrations have their energy distributed over a wide spectrum of frequencies, especially at low frequency, and frequency tuning is not always possible due to geometrical/dynamical constraints. We present a new approach to the powering of small autonomous sensors based on vibration energy harvesting by the exploitation of nonlinear stochastic dynamics. Such a method is shown to outperform standard linear approaches based on the use of resonant oscillators and to overcome some of the most severe limitations of present strategies, like narrow bandwidth, need for continuous frequency tuning and low power efficiency. We demonstrate the superior performances of this method by applying it to piezoelectric energy harvesting from ambient vibration.
Design and fabrication of bimorph transducer for optimal vibration energy harvesting.
Bedekar, Vishwas; Oliver, Josiah; Priya, Shashank
2010-07-01
High energy density piezoelectric composition corresponding to 0.9Pb(Zr0.56Ti0.44)O3–0.1Pb[(Zn0.8/3Ni0.2/3) Nb2/3]O3 + 2 mol% MnO2 (PZTZNN) and 0.8[Pb(Zr0.52Ti0.48) O3]-0.2[Pb(Zn1/3Nb2/3)O3] (PZTPZN) were synthesized by conventional ceramic processing technique using three different sintering profiles. Plates of the sintered samples were used to fabricate the piezoelectric bimorphs with optimized dimensions to exhibit resonance in the loaded condition in the range of ~200 Hz. An analytical model for energy harvesting from bimorph transducer was developed which was confirmed by experimental measurements. The results of this study clearly show that power density of bimorph transducer can be enhanced by increasing the magnitude of product (d ∙ g), where d is the piezoelectric strain constant and g is the piezoelectric voltage constant. PMID:20941885
A non-linear 3D printed electromagnetic vibration energy harvester
NASA Astrophysics Data System (ADS)
Constantinou, P.; Roy, S.
2015-12-01
This paper describes a novel electromagnetic energy harvester that exploits the low flexural modulus of ABS and comprises of a nonlinear mechanism to enhance the generated power and bandwidth. The device is printed using desktop additive manufacturing techniques (3D printing) that use thermoplastics. It has a ‘V’ spring topology and exhibits a softening spring non-linearity introduced through the magnetic arrangement, which introduces a monostable potential well. A model is presented and measurements correspond favourably. The produced prototype generates a peak power of approximately 2.5mW at a frame acceleration of 1g and has a power bandwidth of approximately 1.2→1.5Hz and 3.5→3.9Hz during up and down sweeps respectively. The device has a power density of 0.4mW/cm3 at a frame acceleration of 1g and a density of 0.04mW/cm3 from a generated power of 25μW at 0.1g.
Jia, Yu; Du, Sijun; Seshia, Ashwin A
2016-01-01
This paper contends to be the first to report the experimental observation of up to 28 orders of parametric resonance, which has thus far only been envisioned in the theoretical realm. While theory has long predicted the onset of n orders of parametric resonance, previously reported experimental observations have been limited up to about the first 5 orders. This is due to the rapid narrowing nature of the frequency bandwidth of the higher instability intervals, making practical accessibility increasingly more difficult. Here, the authors have experimentally confirmed up to 28 orders of parametric resonance in a micromachined membrane resonator when electrically undamped. While the implication of this finding spans across the vibration dynamics and transducer application spectrum, the particular significance of this work is to broaden the accumulative operational frequency bandwidth of vibration energy harvesting for enabling self-powered microsystems. Up to 5 orders were recorded when driven at 1.0 g of acceleration across a matched load of 70 kΩ. With a natural frequency of 980 Hz, the fundamental mode direct resonance had a -3 dB bandwidth of 55 Hz, in contrast to the 314 Hz for the first order parametric resonance; furthermore, the half power bands of all 5 orders accumulated to 478 Hz. PMID:27445205
NASA Astrophysics Data System (ADS)
Jia, Yu; Du, Sijun; Seshia, Ashwin A.
2016-07-01
This paper contends to be the first to report the experimental observation of up to 28 orders of parametric resonance, which has thus far only been envisioned in the theoretical realm. While theory has long predicted the onset of n orders of parametric resonance, previously reported experimental observations have been limited up to about the first 5 orders. This is due to the rapid narrowing nature of the frequency bandwidth of the higher instability intervals, making practical accessibility increasingly more difficult. Here, the authors have experimentally confirmed up to 28 orders of parametric resonance in a micromachined membrane resonator when electrically undamped. While the implication of this finding spans across the vibration dynamics and transducer application spectrum, the particular significance of this work is to broaden the accumulative operational frequency bandwidth of vibration energy harvesting for enabling self-powered microsystems. Up to 5 orders were recorded when driven at 1.0 g of acceleration across a matched load of 70 kΩ. With a natural frequency of 980 Hz, the fundamental mode direct resonance had a ‑3 dB bandwidth of 55 Hz, in contrast to the 314 Hz for the first order parametric resonance; furthermore, the half power bands of all 5 orders accumulated to 478 Hz.
Jia, Yu; Du, Sijun; Seshia, Ashwin A.
2016-01-01
This paper contends to be the first to report the experimental observation of up to 28 orders of parametric resonance, which has thus far only been envisioned in the theoretical realm. While theory has long predicted the onset of n orders of parametric resonance, previously reported experimental observations have been limited up to about the first 5 orders. This is due to the rapid narrowing nature of the frequency bandwidth of the higher instability intervals, making practical accessibility increasingly more difficult. Here, the authors have experimentally confirmed up to 28 orders of parametric resonance in a micromachined membrane resonator when electrically undamped. While the implication of this finding spans across the vibration dynamics and transducer application spectrum, the particular significance of this work is to broaden the accumulative operational frequency bandwidth of vibration energy harvesting for enabling self-powered microsystems. Up to 5 orders were recorded when driven at 1.0 g of acceleration across a matched load of 70 kΩ. With a natural frequency of 980 Hz, the fundamental mode direct resonance had a −3 dB bandwidth of 55 Hz, in contrast to the 314 Hz for the first order parametric resonance; furthermore, the half power bands of all 5 orders accumulated to 478 Hz. PMID:27445205
Scaling effects for piezoelectric energy harvesters
NASA Astrophysics Data System (ADS)
Zhu, D.; Beeby, S. P.
2015-05-01
This paper presents a fundamental investigation into scaling effects for the mechanical properties and electrical output power of piezoelectric vibration energy harvesters. The mechanical properties investigated in this paper include resonant frequency of the harvester and its frequency tunability, which is essential for the harvester to operate efficiently under broadband excitations. Electrical output power studied includes cases when the harvester is excited under both constant vibration acceleration and constant vibration amplitude. The energy harvester analysed in this paper is based on a cantilever structure, which is typical of most vibration energy harvesters. Both detailed mathematical derivation and simulation are presented. Furthermore, various piezoelectric materials used in MEMS and non-MEMS harvesters are also considered in the scaling analysis.
NASA Astrophysics Data System (ADS)
Harris, P.; Bowen, C. R.; Kim, H. A.; Litak, G.
2016-04-01
The use of bistable laminates is a potential approach to realize broadband piezoelectric-based energy harvesting by introducing elastic non-linearities to the system. In this paper the dynamic response of a piezoelectric material attached to a bistable laminate beam is examined based on the experimental measurement of the generated voltage-time series. The system was subjected to harmonic excitations and exhibited single-well and snap-through vibrations of both periodic and chaotic character. The ability to identify the vibration modes of the energy harvester is important since different levels of power are expected in each dynamic mode. We identify the dynamics of the selected system response using return maps, multiscale entropy, and "0-1" test. The potential of the approaches to identify periodic and chaotic modes and snap-through events in the non-linear bistable harvester is described.
NASA Astrophysics Data System (ADS)
Zhu, Dibin; Tudor, Michael J.; Beeby, Stephen P.
2010-02-01
This review presents possible strategies to increase the operational frequency range of vibration-based micro-generators. Most vibration-based micro-generators are spring-mass-damper systems which generate maximum power when the resonant frequency of the generator matches the frequency of the ambient vibration. Any difference between these two frequencies can result in a significant decrease in generated power. This is a fundamental limitation of resonant vibration generators which restricts their capability in real applications. Possible solutions include the periodic tuning of the resonant frequency of the generator so that it matches the frequency of the ambient vibration at all times or widening the bandwidth of the generator. Periodic tuning can be achieved using mechanical or electrical methods. Bandwidth widening can be achieved using a generator array, a mechanical stopper, nonlinear (e.g. magnetic) springs or bi-stable structures. Tuning methods can be classified into intermittent tuning (power is consumed periodically to tune the device) and continuous tuning (the tuning mechanism is continuously powered). This review presents a comprehensive review of the principles and operating strategies for increasing the operating frequency range of vibration-based micro-generators presented in the literature to date. The advantages and disadvantages of each strategy are evaluated and conclusions are drawn regarding the relevant merits of each approach.
NASA Astrophysics Data System (ADS)
Kim, In-Ho; Jang, Seon-Jun; Jung, Hyung-Jo
2013-07-01
In this paper, an innovative strategy for improving the performance of a recently developed rotational energy harvester is proposed. Its performance can be considerably enhanced by replacing the electromagnetic induction part, consisting of moving permanent magnets and a fixed solenoid coil, with a moving mass and a rotational generator (i.e., an electric motor). The proposed system is easily tuned to the natural frequency of a target structure using the position change of a proof mass. Owing to the high efficiency of the rotational generator, the device can more effectively harness electrical energy from the wind-induced vibration of a stay cable. Also, this new configuration makes the device more compact and geometrically tunable. In order to validate the effectiveness of the new configuration, a series of laboratory and field tests are carried out with the prototype of the proposed device, which is designed and fabricated based on the dynamic characteristics of the vibration of a stay cable installed in an in-service cable-stayed bridge. From the field test, it is observed that the normalized output power of the proposed system is 35.67 mW (m s-2)-2, while that of the original device is just 5.47 mW (m s-2)-2. These results show that the proposed device generates much more electrical energy than the original device. Moreover, it is verified that the proposed device can generate sufficient electricity to power a wireless sensor node placed on a cable under gentle-moderate wind conditions.
Piezoelectric Water Drop Energy Harvesting
NASA Astrophysics Data System (ADS)
Al Ahmad, Mahmoud
2014-02-01
Piezoelectric materials convert mechanical deformation directly into electrical charges, which can be harvested and used to drive micropower electronic devices. The low power consumption of such systems on the scale of microwatts leads to the possibility of using harvested vibrational energy due to its almost universal nature. Vibrational energy harvested using piezoelectric cantilevers provides sufficient output for small-scale power applications. This work reports on vibrational energy harvesting from free-falling droplets at the tip of lead zirconate titanate piezoelectric-based cantilevers. The harvester incorporates a multimorph clamped-free cantilever made of lead zirconate titanate piezoelectric thick films. During the impact, the droplet's kinetic energy is transferred to the form of mechanical stress, forcing the piezoelectric structure to vibrate and thereby producing charges. Experimental results show an instantaneous drop-power of 2.15 mW cm-3 g-1. The scenario of a medium intensity of falling water drops, i.e., 200 drops per second, yielded a power of 0.48 W cm-3 g-1 per second.
Electromagnetic harvester for lateral vibration in rotating machines
NASA Astrophysics Data System (ADS)
de Araujo, Marcus Vinícius Vitoratti; Nicoletti, Rodrigo
2015-02-01
Energy harvesters are devices that convert mechanical energy, usually vibration, into electrical energy that can be used to supply low power circuits (e.g. sensors). In this work, an energy harvester is designed for converting the mechanical energy of the lateral vibrations of shafts into electrical energy. For that, permanent magnets are mounted in the shaft and coils are mounted in a fixed structure. A configuration analysis is performed to find the appropriated polarization of the magnets and orientation of the coils in order to have electromagnetic induction without resisting torque on the shaft. Experimental tests are done for different electrical configurations of the coils: independent, in series and, in parallel. The results show that more electric power is induced when the coils are connected in series, and vibration reduction is more evident when the coils are connected independently.
NASA Astrophysics Data System (ADS)
Xu-Xu, J.; Barrero-Gil, A.; Velazquez, A.
2015-11-01
This paper presents a theoretical study of the coupling between a vortex-induced vibration (VIV) cylindrical resonator and its associated linear electromagnetic generator. The two-equation mathematical model is based on a dual-mass formulation in which the dominant masses are the stator and translator masses of the generator. The fluid-structure interaction implemented in the model equations follows the so-called ‘advanced forcing model’ whose closure relies on experimental data. The rationale to carry out the study is the fact that in these types of configurations there is a two-way interaction between the moving parts in such a way that their motions influence each other simultaneously, thereby affecting the energy actually harvested. It is believed that instead of mainly resorting to complementary numerical simulations, a theoretical model can shed some light on the nature of the interaction and, at the same time, provide scaling laws that can be used for practical design and optimization purposes. It has been found that the proposed configuration has a maximum hydrodynamic to mechanical to electrical conversion efficiency (based on the VIV resonator oscillation amplitude) of 8%. For a cylindrical resonator 10 cm long with a 2 cm diameter, this translates into an output power of 20 to 160 mW for water stream velocities in the range from 0.5 to 1 m s-1.
NASA Astrophysics Data System (ADS)
Mahmoudi, S.; Kacem, N.; Bouhaddi, N.
2014-07-01
A multiphysics model of a hybrid piezoelectric-electromagnetic vibration energy harvester (VEH), including the main sources of nonlinearities, is developed. The continuum problem is derived on the basis of the extended Hamilton principle, and the modal Galerkin decomposition method is used in order to obtain a reduced-order model consisting of a nonlinear Duffing equation of motion coupled with two transduction equations. The resulting system is solved analytically using the method of multiple time scales and numerically by means of the harmonic balance method coupled with the asymptotic numerical continuation technique. Closed-form expressions for the moving magnet critical amplitude and the critical load resistance are provided in order to allow evaluation of the linear dynamic range of the proposed device. Several numerical simulations have been performed to highlight the performance of the hybrid VEH. In particular, the power density and the frequency bandwidth can be boosted, by up to 60% and 29% respectively, compared to those for a VEH with pure magnetic levitation thanks to the nonlinear elastic guidance. Moreover, the hybrid transduction permits enhancement of the power density by up to 84%.
NASA Astrophysics Data System (ADS)
Dudka, A.; Basset, P.; Cottone, F.; Blokhina, E.; Galayko, D.
2013-12-01
This paper reports on an electrostatic Vibration Energy Harvester (e-VEH) system, for which the energy conversion process is initiated with a low bias voltage and is compatible with wideband stochastic external vibrations. The system employs the auto-synchronous conditioning circuit topology with the use of a novel dedicated integrated low-power high-voltage switch that is needed to connect the charge pump and flyback - two main parts of the used conditioning circuit. The proposed switch is designed and implemented in AMS035HV CMOS technology. Thanks to the proposed switch device, which is driven with a low-voltage ground-referenced logic, the e-VEH system may operate within a large voltage range, from a pre-charge low voltage up to several tens volts. With such a high-voltage e-VEH operation, it is possible to obtain a strong mechanical coupling and a high rate of vibration energy conversion. The used transducer/resonator device is fabricated with a batch-processed MEMS technology. When excited with stochastic vibrations having an acceleration level of 0.8 g rms distributed in the band 110-170 Hz, up to 0.75 μW of net electrical power has been harvested with our system. This work presents an important milestone in the challenge of designing a fully integrated smart conditioning interface for the capacitive e-VEHs.
NASA Astrophysics Data System (ADS)
Ray, Chase A.; Anton, Steven R.
2015-04-01
Electronic devices are high demand commodities in today's world, and such devices will continue increasing in popularity. Currently, batteries are implemented to provide power to these devices; however, the need for battery replacement, their cost, and the waste associated with battery disposal present a need for advances in self-powered technology. Energy harvesting technology has great potential to alleviate the drawbacks of batteries. In this work, a novel piezoelectret foam material is investigated for low-level energy harvesting. Specifically, piezoelectret foam assembled in a multilayer stack configuration is explored. Modeling and experimentation of the stack behavior when excited in compression at low frequencies are performed to investigate piezoelectret foam as a multilayer energy harvester. An examination of modeling piezoelectret foam as a stack with an equivalent circuit is made following recently published work and is used in this study. A 20-layer prototype device is fabricated and experimentally tested via harmonic base excitation. Electromechanical testing is performed by compressing the foam stack to obtain output electrical energy; consequently, allowing the frequency response between input mechanical energy and output electrical energy to be developed. Modeling results are compared to the experimental measurements to assess the fidelity of the model. Lastly, energy harvesting experimentation in which the device is subject to harmonic base excitation at the natural frequency is conducted to determine the ability of the piezoelectret foam stack to successfully charge a capacitor.
A Nonlinear Energy Sink with Energy Harvester
NASA Astrophysics Data System (ADS)
Kremer, Daniel
The transfer of energy between systems is a natural process, manifesting in many different ways. In engineering transferable energy can be considered wanted or unwanted. Specifically in mechanical systems, energy transfer can occur as unwanted vibrations, passing from a source to a receiver. In electrical systems, energy transfer can be desirable, where energy from a source may be used elsewhere. This work proposes a method to combine the two, converting unwanted mechanical energy into useable electrical energy. A nonlinear energy sink (NES) is a vibration absorber that passively localizes vibrational energy, removing mechanical energy from a primary system. Consisting of a mass-spring-damper such that the stiffness is essentially nonlinear, a NES can localize vibrational energy from a source and dissipate it through damping. Replacing the NES mass with a series of magnets surrounded by coils fixed to the primary mass, the dissipated energy can be directly converted to electrical energy. A NES with energy harvesting properties is constructed and introduced. The system parameters are identified, with the NES having an essentially cubic nonlinear stiffness. A transduction factor is quantified linking the electrical and mechanical systems. An analytic analysis is carried out studying the transient and harmonically excited response of the system. It is found that the energy harvesting does not reduce the vibrational absorption capabilities of the NES. The performance of the system in both transient and harmonically excited responses is found to be heavily influenced by input energies. The system is tested, with good match to analytic results.
Energy Harvesting From Low Frequency Applications Using Piezoelectric Materials
Li, Huidong; Tian, Chuan; Deng, Zhiqun
2014-11-06
This paper reviewed the state of research on piezoelectric energy harvesters. Various types of harvester configurations, piezoelectric materials, and techniques used to improve the mechanical-to-electrical energy conversion efficiency were discussed. Most of the piezoelectric energy harvesters studied today have focused on scavenging mechanical energy from vibration sources due to their abundance in both natural and industrial environments. Cantilever beams have been the most studied structure for piezoelectric energy harvester to date because of the high responsiveness to small vibrations.
A multiaxial piezoelectric energy harvester
NASA Astrophysics Data System (ADS)
Mousselmal, H. D.; Cottinet, P. J.; Quiquerez, L.; Remaki, B.; Petit, L.
2013-04-01
An important limitation in the classical energy harvesters based on cantilever beam structure is its monodirectional sensibility. The external excitation must generate an orthogonal acceleration from the beam plane to induced flexural deformation. If the direction of the excitation deviates from this privileged direction, the harvester output power is drastically reduced. This point is obviously very restrictive in the case of an arbitrary excitation direction induced for example by human body movements or vehicles vibrations. In order to overcome this issue of the conventional resonant cantilever configuration with seismic mass, a multidirectional harvester is introduced here by the authors. The multidirectional ability relies on the exploitation of 3 degenerate structural vibration modes where each of them is induced by the corresponding component of the acceleration vector. This specific structure has been already used for 3 axis accelerometers but the approach is here totally revisited because the final functional goal is different. This paper presents the principle and the design considerations of such multidirectional piezoelectric energy harvester. A finite element model has been used for the harvester optimisation. It has been shown that the seismic mass is a relevant parameter for the modes tuning because the resonant frequency of the 1st exploited flexural mode directly depends on the mass whereas the resonance frequency of the 2nd flexural mode depends on its moment of inertia. A simplified centimetric prototype limited to a two orthogonal direction sensibility has permitted to valid the theoretical approach.